hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
273f5601e7028883ce023d07d960ba6fa3bb289d
1,716
py
Python
M-SPRING/heuristic/shortest_paths.py
CN-UPB/SPRING
1cb74919689e832987cb2c9b490eec7f09a64f52
[ "Apache-2.0" ]
3
2019-09-27T08:07:11.000Z
2021-11-19T11:27:39.000Z
M-SPRING/heuristic/shortest_paths.py
CN-UPB/SPRING
1cb74919689e832987cb2c9b490eec7f09a64f52
[ "Apache-2.0" ]
null
null
null
M-SPRING/heuristic/shortest_paths.py
CN-UPB/SPRING
1cb74919689e832987cb2c9b490eec7f09a64f52
[ "Apache-2.0" ]
null
null
null
import math # return the delay of the specified path (= list of nodes) def path_delay(links, path): delay = 0 # go along nodes of the path and increment delay for each traversed link for i in range(len(path) - 1): # skip connections on same node without a link (both inst at same node) if path[i] != path[i + 1]: delay += links.delay[(path[i], path[i+1])] return delay # floyd-warshall algorithm def all_pairs_shortest_paths(nodes, links): shortest_paths = {} # key: (src, dest), value: (path, weight, delay) # initialize shortest paths for v1 in nodes.ids: for v2 in nodes.ids: # path from node to itself has weight 0 if v1 == v2: shortest_paths[(v1, v2)] = ([v1, v2], 0) # path via direct link elif (v1, v2) in links.ids: shortest_paths[(v1, v2)] = ([v1, v2], links.weight((v1, v2))) # other paths are initialized with infinite weight else: shortest_paths[(v1, v2)] = ([v1, v2], math.inf) # indirect paths via intermediate node k for k in nodes.ids: for v1 in nodes.ids: for v2 in nodes.ids: # use k if it reduces the path weight if shortest_paths[(v1, v2)][1] > shortest_paths[(v1, k)][1] + shortest_paths[(k, v2)][1]: # new path via intermediate node k (when adding the two paths, k is excluded from the second path) new_path = shortest_paths[(v1, k)][0] + shortest_paths[(k, v2)][0][1:] new_weight = shortest_paths[(v1, k)][1] + shortest_paths[(k, v2)][1] shortest_paths[(v1, v2)] = (new_path, new_weight) # update dictionary to include delay for each path shortest_paths = {k:(v[0], v[1], path_delay(links, v[0])) for k,v in shortest_paths.items()} return shortest_paths
36.510638
104
0.648601
0
0
0
0
0
0
0
0
651
0.379371
273f6a820dd8f3aeae5864ba60eb32fd5d0541ad
2,398
py
Python
testing/statistic.py
methk/RadixDLT-IoTSimulation
886ba589c8e7be08c95cf3636438c10e97e16752
[ "MIT" ]
null
null
null
testing/statistic.py
methk/RadixDLT-IoTSimulation
886ba589c8e7be08c95cf3636438c10e97e16752
[ "MIT" ]
3
2021-03-09T21:18:22.000Z
2021-09-02T01:05:44.000Z
testing/statistic.py
methk/RadixDLT-IoTSimulation
886ba589c8e7be08c95cf3636438c10e97e16752
[ "MIT" ]
1
2022-02-18T14:51:46.000Z
2022-02-18T14:51:46.000Z
import os import csv import numpy as np import scipy.stats import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') def mean_confidence_interval(data, confidence=0.95): a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1) return m, m-h, m+h startingDir = 'data/output' plotTestNumber = 12 totalRequests = 447 singleTestData = [] allLatencies = [] allErrors = 0 errorsData = [] tipsData = [] tipsDataSTD = [] powsData = [] powsDataSTD = [] plotData = {} path = os.walk(startingDir) next(path) for directory in path: tempTestData = { 'name': directory[0].split('/')[-1], 'tipsValue': [], 'powValue': [], 'errors': 0 } for csvFilename in directory[2]: with open(directory[0]+'/'+csvFilename, 'r') as csvFile: reader = csv.reader(csvFile) for row in reader: srt = int(row[1]) tips = int(row[2]) fin = int(row[3]) if fin is -1: tempTestData['errors'] += 1 allErrors += 1 else: tipsValue = tips - srt powValue = fin - tips tempTestData['powValue'].append(powValue) tempTestData['tipsValue'].append(tipsValue) allLatencies.append(tipsValue+powValue) latence = fin - srt if latence in plotData.keys(): plotData[latence] += 1 else: plotData[latence] = 1 csvFile.close() errorsNotWritten = totalRequests - \ len(tempTestData['powValue']) - tempTestData['errors'] tempTestData['errors'] += errorsNotWritten allErrors += errorsNotWritten singleTestData.append(tempTestData) print('Avg= ' + str(round(np.mean(allLatencies), 4))) print('Err= ' + str(100 * round((allErrors / (totalRequests * len(singleTestData))), 4)) + '%') print(mean_confidence_interval(allLatencies)) fig = plt.figure() ax = plt.axes() sortedData = {} for k, v in sorted(plotData.items()): sortedData[k] = v mean = int(round(np.mean(allLatencies), 4)) plt.plot(range(len(sortedData)), list(sortedData.values()), color='#b42526') plt.axvline(x = mean, color='#252525') plt.show()
27.25
95
0.565888
0
0
0
0
0
0
0
0
166
0.069224
273feec7e2e1888ae2ab4fb11f3421c980ee0353
4,844
py
Python
skutil/preprocessing/tests/test_balance.py
tgsmith61591/pynorm
672e353a721036791e1e32250879c3276961e05a
[ "BSD-3-Clause" ]
38
2016-08-31T19:24:13.000Z
2021-06-28T17:10:20.000Z
skutil/preprocessing/tests/test_balance.py
tgsmith61591/pynorm
672e353a721036791e1e32250879c3276961e05a
[ "BSD-3-Clause" ]
42
2016-06-20T19:07:21.000Z
2017-10-29T20:53:11.000Z
skutil/preprocessing/tests/test_balance.py
tgsmith61591/pynorm
672e353a721036791e1e32250879c3276961e05a
[ "BSD-3-Clause" ]
17
2016-06-27T18:07:53.000Z
2019-04-09T12:33:59.000Z
from __future__ import print_function import pandas as pd import numpy as np from sklearn.datasets import load_iris from skutil.preprocessing import * from skutil.preprocessing.balance import _BaseBalancer from numpy.testing import assert_array_equal from skutil.testing import assert_fails import warnings # Def data for testing iris = load_iris() X = pd.DataFrame(data=iris.data, columns=iris.feature_names) X['target'] = iris.target def _get_three_results(sampler): x = X.iloc[:60] # 50 zeros, 10 ones y = pd.concat([x, X.iloc[140:150]]) a, b = sampler.balance(x), sampler.balance(y) sampler.ratio = 0.2 return a, b, sampler.balance(y) def test_oversample(): a, b, c = _get_three_results(OversamplingClassBalancer(y='target', ratio=0.5)) expected_1_ct = 25 cts = a.target.value_counts() assert cts[1] == expected_1_ct cts = b.target.value_counts() assert cts[1] == expected_1_ct assert cts[2] == expected_1_ct expected_2_ct = 10 cts = c.target.value_counts() assert cts[1] == expected_2_ct assert cts[2] == expected_2_ct # test what happens when non-string passed as col name failed = False try: OversamplingClassBalancer(y=1).balance(X) except ValueError: failed = True assert failed # test with too many classes Y = X.copy() Y['class'] = np.arange(Y.shape[0]) failed = False try: OversamplingClassBalancer(y='class').balance(Y) except ValueError: failed = True assert failed # test with one class Y['class'] = np.zeros(Y.shape[0]) failed = False try: OversamplingClassBalancer(y='class').balance(Y) except ValueError: failed = True assert failed # test with bad ratio for r in [0.0, 1.1, 'string']: failed = False try: OversamplingClassBalancer(y='target', ratio=r).balance(X) except ValueError: failed = True assert failed # test where two classes are equally represented, and one has only a few Y = X.iloc[:105] d = OversamplingClassBalancer(y='target', ratio=1.0).balance(Y) assert d.shape[0] == 150 cts = d.target.value_counts() assert cts[0] == 50 assert cts[1] == 50 assert cts[2] == 50 def test_oversample_warning(): x = np.array([ [1, 2, 3], [1, 2, 3], [1, 2, 4] ]) df = pd.DataFrame.from_records(data=x, columns=['a', 'b', 'c']) # catch the warning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') OversamplingClassBalancer(y='c', ratio=1.0).balance(df) assert len(w) == 1 def test_smote_error(): x = np.array([ [1, 2, 3], [1, 2, 3], [1, 2, 4] ]) df = pd.DataFrame.from_records(data=x, columns=['a', 'b', 'c']) # this fails because we can't perform smote on single observation (obs='4', in this case) assert_fails(SMOTEClassBalancer(y='c', ratio=1.0).balance, ValueError, df) def test_smote(): a, b, c = _get_three_results(SMOTEClassBalancer(y='target', ratio=0.5)) expected_1_ct = 25 cts = a.target.value_counts() assert cts[1] == expected_1_ct cts = b.target.value_counts() assert cts[1] == expected_1_ct assert cts[2] == expected_1_ct expected_2_ct = 10 cts = c.target.value_counts() assert cts[1] == expected_2_ct assert cts[2] == expected_2_ct def test_undersample(): # since all classes are equal, should be no change here b = UndersamplingClassBalancer(y='target').balance(X) assert b.shape[0] == X.shape[0] x = X.iloc[:60] # 50 zeros, 10 ones b = UndersamplingClassBalancer(y='target', ratio=0.5).balance(x) assert b.shape[0] == 30 cts = b.target.value_counts() assert cts[0] == 20 assert cts[1] == 10 b = UndersamplingClassBalancer(y='target', ratio=0.25).balance(x) assert b.shape[0] == 50 cts = b.target.value_counts() assert cts[0] == 40 assert cts[1] == 10 def test_unneeded(): for sample_class in (UndersamplingClassBalancer, SMOTEClassBalancer, OversamplingClassBalancer): sampler = sample_class(y='target', ratio=0.2, shuffle=False) sampled = sampler.balance(X) # assert array the same assert_array_equal(X.index.values, sampled.index.values) assert sampled.shape[0] == X.shape[0] def test_superclass_not_implemented(): # anon balancer class AnonBalancer(_BaseBalancer): def __init__(self, y=None, ratio=0.2, as_df=True): super(AnonBalancer, self).__init__(ratio, y, as_df) def balance(self, X): return super(AnonBalancer, self).balance(X) assert_fails(AnonBalancer().balance, NotImplementedError, X)
27.367232
93
0.635632
244
0.050372
0
0
0
0
0
0
597
0.123245
2740e363aa1f94977ef475388c48f61555bf5a1a
754
py
Python
hard-gists/5017218/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
21
2019-07-08T08:26:45.000Z
2022-01-24T23:53:25.000Z
hard-gists/5017218/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
5
2019-06-15T14:47:47.000Z
2022-02-26T05:02:56.000Z
hard-gists/5017218/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
17
2019-05-16T03:50:34.000Z
2021-01-14T14:35:12.000Z
#!/usr/bin/env python from Crypto.Cipher import AES from Crypto.Util.strxor import strxor from binascii import hexlify K = '0123456789abcdef' cipher = AES.new(K, AES.MODE_ECB) # Original Message M1 = K M2 = K Cm0 = cipher.encrypt('\0' * AES.block_size) Cm1 = cipher.encrypt(strxor(Cm0,M1)) Tm = Cm2 = cipher.encrypt(strxor(Cm1,M2)) N1 = 'iheiowehfiowehfw' # Inject second message after the first message Cx0 = cipher.encrypt('\0' * AES.block_size) Cx1 = cipher.encrypt(strxor(Cx0,M1)) Cx2 = cipher.encrypt(strxor(Cx1,N1)) # X needs to *encrypt* to the same value as Cm1 X = strxor(cipher.decrypt(Cx1),Cx2) Cx3 = cipher.encrypt(strxor(Cx2,X)) Tx = Cx4 = cipher.encrypt(strxor(Cx3,M2)) print "Tm = '%s'" % hexlify(Tm) print "Tx = '%s'" % hexlify(Tx)
25.133333
47
0.709549
0
0
0
0
0
0
0
0
199
0.263926
274247c350250c602de94ec641a4010f931234e4
3,540
py
Python
options/running_options.py
kwshh/ImageDeconvlution
561468463372a5727b553efa0330fc75901e29fc
[ "MIT" ]
25
2019-05-10T13:51:25.000Z
2021-10-13T01:35:43.000Z
options/running_options.py
kwshh/ImageDeconvlution
561468463372a5727b553efa0330fc75901e29fc
[ "MIT" ]
8
2019-05-10T13:51:07.000Z
2021-06-03T07:13:28.000Z
options/running_options.py
kwshh/ImageDeconvlution
561468463372a5727b553efa0330fc75901e29fc
[ "MIT" ]
7
2020-08-15T09:16:11.000Z
2021-07-06T21:54:20.000Z
import argparse def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') class Options(): def __init__(self): """Reset the class; indicates the class hasn't been initailized""" self.initialized = False def initialize(self): parser = argparse.ArgumentParser() parser.add_argument('--ModelName', help='Model Name', default='RGDNbasic') parser.add_argument('--UseCUDA', help='Use CUDA?', type=str2bool, nargs='?', const=True, default=True) parser.add_argument('--UseGradAdj', help='Use grad adj module?', type=str2bool, nargs='?', const=True, default=True) parser.add_argument('--UseReg', help='Use Reg?', type=str2bool, nargs='?', const=True, default=True) parser.add_argument('--UseGradScaler', help='Add the grad scaler?', type=str2bool, nargs='?', const=True, default=True) parser.add_argument('--StepNum', help='maximum number of steps', type=int, nargs='?', const=True, default=40) parser.add_argument('--StopEpsilon', help='stopping condition', type=float, # default=1e-7) default=float("inf")) # CropSize =0 when no padding applied on y in advance; -1 for padding with kernel size in advance. parser.add_argument('--CropSize', help='crop boundaies of results', type=int, default=-1) parser.add_argument('--ImgPad', help='pad image before processing', type=str2bool, default=False) parser.add_argument('--DataPath', help='DataPath', type=str, default='../rgdn_dataset/') parser.add_argument('--OutPath', help='Path for output', type=str, default='../rgdn_results/') parser.add_argument('--TrainedModelPath', help='path of trained model', type=str, default='./rgdn.tr') parser.add_argument('--Suffix', type=str, help='Manually set suffix', default='Debug') self.initialized = True self.parser = parser return parser def print_options(self, opt): # This function is adapted from 'cycleGAN' project. message = '' message += '----------------- Options ---------------\n' for k, v in sorted(vars(opt).items()): comment = '' default = self.parser.get_default(k) if v != default: comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' print(message) self.message = message def parse(self, is_print): parser = self.initialize() opt = parser.parse_args() if(is_print): self.print_options(opt) self.opt = opt return self.opt
41.647059
110
0.487288
3,277
0.925706
0
0
0
0
0
0
924
0.261017
2743e4857e6a05d46ea22a4c0d0bcac87b1eae86
982
py
Python
python/scanr_doiresolver-0.10/scanr_doiresolver/main.py
dataesr/scanr-backend
39681be69b9a96b4a07b9410754c897cd5b65c24
[ "MIT" ]
null
null
null
python/scanr_doiresolver-0.10/scanr_doiresolver/main.py
dataesr/scanr-backend
39681be69b9a96b4a07b9410754c897cd5b65c24
[ "MIT" ]
null
null
null
python/scanr_doiresolver-0.10/scanr_doiresolver/main.py
dataesr/scanr-backend
39681be69b9a96b4a07b9410754c897cd5b65c24
[ "MIT" ]
null
null
null
import json from companies_plugin import extractor from companies_plugin.utils import add_logger from scanr_doiresolver import LIB_PATH from scanr_doiresolver.resolver import resolve_publications @add_logger class Extractor(extractor.Extractor): def extract(self, headers, properties, message): """ The message is only {"url": ""} as input Output is {"url": "", "publications": ["", ""]} """ reply_to = properties["reply_to"] msg = json.loads(message) return json.dumps({ "id": msg.get("id"), "url": msg.get("url"), "publications": resolve_publications(msg.get("dois", []), msg.get("references", [])) }), reply_to if __name__ == "__main__": m = extractor.Main(batch_name="PUBLICATION_RESOLVER", queue_name="PUBLICATION_RESOLVER", extractor_class=Extractor, mod_path=LIB_PATH) m.launch()
30.6875
96
0.602851
518
0.527495
0
0
530
0.539715
0
0
242
0.246436
27453b9db08872e055996422f63acffb64350e41
361
py
Python
examples/03additionals/legacy_score.py
dotness/swagger-marshmallow-codegen
62938d780672d754431d50bde3eae04abefb64f1
[ "MIT" ]
null
null
null
examples/03additionals/legacy_score.py
dotness/swagger-marshmallow-codegen
62938d780672d754431d50bde3eae04abefb64f1
[ "MIT" ]
null
null
null
examples/03additionals/legacy_score.py
dotness/swagger-marshmallow-codegen
62938d780672d754431d50bde3eae04abefb64f1
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # this is auto-generated by swagger-marshmallow-codegen from swagger_marshmallow_codegen.schema.legacy import ( AdditionalPropertiesSchema, LegacySchema ) from marshmallow import fields class Score(AdditionalPropertiesSchema): name = fields.String(required=True) class Meta: additional_field = fields.Integer()
24.066667
55
0.753463
141
0.390582
0
0
0
0
0
0
77
0.213296
2746d32e08d6ab65d2525605b064c6bb89db2db5
1,280
py
Python
tests/bigwig/test_create_bigwigs.py
BioinformaticsMaterials/epic
d601f2384784ea38f5de8c25156be4c8d9ef2fff
[ "MIT" ]
null
null
null
tests/bigwig/test_create_bigwigs.py
BioinformaticsMaterials/epic
d601f2384784ea38f5de8c25156be4c8d9ef2fff
[ "MIT" ]
null
null
null
tests/bigwig/test_create_bigwigs.py
BioinformaticsMaterials/epic
d601f2384784ea38f5de8c25156be4c8d9ef2fff
[ "MIT" ]
null
null
null
import pytest import pandas as pd import numpy as np from os import stat from io import StringIO from epic.bigwig.create_bigwigs import _create_bigwig from epic.config.genomes import create_genome_size_dict @pytest.fixture def input_data(): contents = u"""Chromosome Bin End examples/test.bed chr1 887600 887799 0 chr1 994600 994799 0 chr1 1041000 1041199 0 chr1 1325200 1325399 1 chr1 1541600 1541799 1 chr1 1599000 1599199 1 chr1 1770200 1770399 0 chr1 1820200 1820399 1 chr1 1995000 1995199 0 chr1 2063800 2063999 0 chr1 2129400 2129599 0 chr1 2239000 2239199 0 chr1 2318800 2318999 0 chr1 2448200 2448399 1 chr1 3006000 3006199 0 chr1 3046000 3046199 1 chr1 3089200 3089399 0 chr1 3093800 3093999 0 chr1 3096400 3096599 0""" return pd.read_table(StringIO(contents), sep="\s+", index_col=[0, 1, 2]) @pytest.fixture def output_bigwig(tmpdir): p = tmpdir.mkdir("sub").join("outfile.bw") return str(p) @pytest.mark.unit def test_create_bigwigs(input_data, output_bigwig, args_200_fast): print(input_data) print(output_bigwig) d = create_genome_size_dict(args_200_fast.genome) print(d) _create_bigwig(input_data, output_bigwig, d) filesize = stat(output_bigwig).st_size print(filesize, "filesize") assert filesize > 0
21.333333
76
0.767969
0
0
0
0
1,062
0.829688
0
0
508
0.396875
27484ca2bc8228c9f67c0d19e4ae6ba4c2b57e35
555
py
Python
tests/solvers/__init__.py
neuyhwu/MIPLearn
c6b31a827d6c6e682d45171f21478162c0bc46d6
[ "BSD-3-Clause" ]
64
2020-02-27T01:24:40.000Z
2022-03-31T12:38:56.000Z
tests/solvers/__init__.py
neuyhwu/MIPLearn
c6b31a827d6c6e682d45171f21478162c0bc46d6
[ "BSD-3-Clause" ]
3
2020-04-07T14:43:31.000Z
2021-01-15T14:02:01.000Z
tests/solvers/__init__.py
zclab/MIPLearn
9bd64c885aa645d41c30fa0ec4e0eedfaf703dac
[ "BSD-3-Clause" ]
13
2020-03-30T16:41:38.000Z
2022-02-17T15:38:01.000Z
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. from io import StringIO from miplearn.solvers import _RedirectOutput def test_redirect_output() -> None: import sys original_stdout = sys.stdout io = StringIO() with _RedirectOutput([io]): print("Hello world") assert sys.stdout == original_stdout assert io.getvalue() == "Hello world\n"
30.833333
82
0.731532
0
0
0
0
0
0
0
0
257
0.463063
27486b3592aa44c1f3081be500edb4d9d40e6414
1,717
py
Python
QuantumBlack Machine Learning Software Engineer 2019/Correlation.py
sivolko/codeforce
4b00c4c012780036e56d2f0e79adb2f5db7559df
[ "MIT" ]
3
2021-04-21T07:11:33.000Z
2022-01-09T00:05:55.000Z
InterviewChallenges/QuantumBlack Machine Learning Software Engineer 2019/Correlation.py
sweetpand/Algorithms
2e4dcf2d42de25531fae5b4ec0d96ce100043117
[ "MIT" ]
null
null
null
InterviewChallenges/QuantumBlack Machine Learning Software Engineer 2019/Correlation.py
sweetpand/Algorithms
2e4dcf2d42de25531fae5b4ec0d96ce100043117
[ "MIT" ]
null
null
null
import math def Correlation(scores): physics = [] maths = [] chemistry = [] for each_scores in scores: values = each_scores.split("\t") maths.append(int(values[0])) physics.append(int(values[1])) chemistry.append(int(values[2])) length = len(physics) value1 = calculate_correlation(maths, physics, length) value2 = calculate_correlation(physics, chemistry, length) value3 = calculate_correlation(chemistry, maths, length) # print(value1) # print(value2) # print(value3) return [str(value1), str(value2), str(value3)] # return '{}\{}{}'.format(value1, value2, value3) def calculate_correlation(list1, list2, length): # print("into calculate_correlation", list2, list1, length) multiply_list = [each[0] * each[1] for each in zip(list1, list2)] num_termA = sum(multiply_list) * length num_termB = sum(list1) * sum(list2) numerator = num_termA - num_termB # print("tA: {}, tB: {}, n: {}".format(num_termA, num_termB, numerator)) denom_calculator = lambda lis, l: math.sqrt((sum(list([pow(each, 2) for each in lis])) * l) - pow(sum(lis), 2)) denominator = denom_calculator(list1, length) * denom_calculator(list2, length) value = round(numerator / denominator, 2) # print("deno: {}, value: {}".format(denominator, value)) return value class_scores = ['73\t72\t76', '48\t67\t76', '95\t92\t95', '95\t95\t96', '33\t59\t79', '47\t58\t74', '98\t95\t97', '91\t94\t97', '95\t84\t90', '93\t83\t90', '70\t70\t78', '85\t79\t91', '33\t67\t76', '47\t73\t90', '95\t87\t95', '84\t86\t95', '43\t63\t75', '95\t92\t100', '54\t80\t87', '72\t76\t90'] res = Correlation(class_scores) print(res)
33.019231
115
0.638905
0
0
0
0
0
0
0
0
527
0.306931
27487403a3d7b9e65ea004d6b9bb66d14163ac93
2,617
py
Python
utest/test_iinekoko_db.py
MizunagiKB/IIneKoKo
495ae6dc2887bb8b41331fab1f21812368400cf2
[ "MIT" ]
null
null
null
utest/test_iinekoko_db.py
MizunagiKB/IIneKoKo
495ae6dc2887bb8b41331fab1f21812368400cf2
[ "MIT" ]
null
null
null
utest/test_iinekoko_db.py
MizunagiKB/IIneKoKo
495ae6dc2887bb8b41331fab1f21812368400cf2
[ "MIT" ]
null
null
null
import sys import unittest import configparser sys.path.append("./svc") class CIIneKoKo_DB(unittest.TestCase): def setUp(self): import iinekoko_db self.o_conf = configparser.ConfigParser() self.o_conf.read("./svc/config.ini") self.o_conn = iinekoko_db.CDatabase(self.o_conf) def test_database(self): pass """ def test_image_encdec(self): import iinekoko_db with open("utest/image/test.jpg", "rb") as f: raw_data = f.read() enc_data1 = iinekoko_db.dict_image_b64enc("image/jpeg", raw_data) mime, dec_data = iinekoko_db.dict_image_b64dec(enc_data1) iinekoko_db.dict_image_b64enc(mime, dec_data) self.assertTrue(True) def test_doc_session(self): o_doc1 = self.o_conn.new_session("1", "username_1") self.assertEqual(o_doc1.tw_id, "1") self.assertEqual(o_doc1.tw_username, "username_1") o_doc2 = self.o_conn.get_session(o_doc1.document_id) self.assertEqual(o_doc1.document_id, o_doc2.document_id) self.o_conn.del_session(o_doc1.document_id) o_doc = self.o_conn.get_session(o_doc1.document_id) self.assertEqual(o_doc, None) o_doc = self.o_conn.get_session("X") self.assertEqual(o_doc, None) self.assertFalse(self.o_conn.del_session("X")) def test_doc_image_ref(self): import iinekoko_db with open("utest/image/test.jpg", "rb") as f: raw_data = f.read() enc_data = iinekoko_db.dict_image_b64enc("image/jpeg", raw_data) TW_ID = "1" TW_USERNAME = "username_1" o_doc = self.o_conn.new_image_ref(enc_data, TW_ID, TW_USERNAME, []) self.assertEqual(o_doc.tw_id, TW_ID) o_doc1 = self.o_conn.get_image_ref(o_doc.get_document_id()) self.assertEqual(o_doc.get_document_id(), o_doc1.get_document_id()) self.o_conn.del_image_ref(o_doc.get_document_id()) o_doc = self.o_conn.get_image_ref(o_doc.get_document_id()) self.assertEqual(o_doc, None) def test_doc_image_mrk(self): import iinekoko_db ID_IMAGE_REF = "1" TW_ID = "1" TW_USERNAME = "username_1" o_doc = self.o_conn.append_image_mrk(ID_IMAGE_REF, TW_ID, TW_USERNAME, []) self.o_conn.remove_image_mrk(o_doc.get_document_id()) def test_doc_image_ref_list(self): import iinekoko_db TW_ID = "431236837" self.o_conn.get_image_ref_list(TW_ID) """ # [EOF]
29.077778
79
0.632404
2,531
0.967138
0
0
0
0
0
0
2,276
0.869698
2748a53e6b912bda05b5145d677d95d85ebd3529
987
py
Python
Champion.py
KhangOP/PaladinsAssistantBot
9b705dc688610ba52909f0b0e152d8684006c6a6
[ "MIT" ]
null
null
null
Champion.py
KhangOP/PaladinsAssistantBot
9b705dc688610ba52909f0b0e152d8684006c6a6
[ "MIT" ]
null
null
null
Champion.py
KhangOP/PaladinsAssistantBot
9b705dc688610ba52909f0b0e152d8684006c6a6
[ "MIT" ]
null
null
null
# Class to store champion names in one location class Champion: """Champions in Paladins""" DAMAGES = ["Cassie", "Kinessa", "Drogoz", "Bomb King", "Viktor", "Sha Lin", "Tyra", "Willo", "Lian", "Strix", "Vivian", "Dredge", "Imani", "Tiberius"] FLANKS = ["Skye", "Buck", "Evie", "Androxus", "Maeve", "Lex", "Zhin", "Talus", "Moji", "Koga"] TANKS = ["Barik", "Fernando", "Ruckus", "Makoa", "Torvald", "Inara", "Ash", "Terminus", "Khan", "Atlas", "Raum"] SUPPORTS = ["Grohk", "Grover", "Ying", "Mal Damba", "Seris", "Jenos", "Furia", "Pip"] # Returns a number for indexing in a list def get_champ_class(self, champ_name: str): champ_name = champ_name.title() if champ_name in self.DAMAGES: return 0 elif champ_name in self.FLANKS: return 1 elif champ_name in self.TANKS: return 2 elif champ_name in self.SUPPORTS: return 3 else: return -1
42.913043
116
0.566363
938
0.950355
0
0
0
0
0
0
432
0.43769
27491dfc485679f55f2ea50c1629c408b70c365b
2,292
py
Python
src/gpuz/data_helper.py
scalasm/gpuz-log-analysis
c9a6dd46bf8a12120c9d284411c5b1562b97fdfd
[ "Apache-2.0" ]
null
null
null
src/gpuz/data_helper.py
scalasm/gpuz-log-analysis
c9a6dd46bf8a12120c9d284411c5b1562b97fdfd
[ "Apache-2.0" ]
null
null
null
src/gpuz/data_helper.py
scalasm/gpuz-log-analysis
c9a6dd46bf8a12120c9d284411c5b1562b97fdfd
[ "Apache-2.0" ]
null
null
null
import logging from typing import Optional, List, Any import gpuz.utility as utility from pathlib import Path import os import pandas as pd from pandas.core.frame import DataFrame import numpy as np import matplotlib as mp logger: logging.Logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class DataHelper: def __init__(self, root_dir: str) -> None: self.root_dir = root_dir logger.info( f"DataHelper working on root dir \"{root_dir}\" with" f"\n\t - Dataset dir = {self.data_dir}" f"\n\t - Work dataset dir= {self.work_dir}" ) if not self.work_dir.exists(): logger.debug( f"Work dir {self.work_dir} does not exist: creating it ..." ) self.work_dir.mkdir() @property def data_dir(self) -> Path: return Path(self.root_dir) / "datasets" @property def work_dir(self) -> Path: return Path(self.root_dir) / "datasets_work" def get_dataset_path(self, dataset_name: str) -> str: dataset_path = self.data_dir / dataset_name return str(dataset_path) def get_work_dataset_path(self, dataset_name: str) -> str: dataset_path = self.work_dir / dataset_name return str(dataset_path) def create_clean_csv_dataset(self, dataset_name: str, clean_dataset_name: str) -> None: original_dataset_path = self.get_dataset_path(dataset_name) clean_dataset_path = self.get_work_dataset_path(clean_dataset_name) utility.preprocess_gpuz_log_file(original_dataset_path, clean_dataset_path) def load_gpuz_dataset(self, dataset_name: str) -> DataFrame: dataset_path = self.get_work_dataset_path(dataset_name) df: DataFrame = pd.read_csv( dataset_path ) # Force the right column data types for column in df.columns: print( column ) if str(column) == "date": df[column] = pd.to_datetime( df[column], errors="coerce" ) else: df[column] = pd.to_numeric( df[column], errors="coerce" ) return df if __name__ == "__main__": root_dir = os.getcwd() data_helper = DataHelper( root_dir ) data_helper.create_clean_csv_dataset( "gpuz_sensor_log.txt", "clean_gpuz_sensor_log.csv" )
32.742857
94
0.665794
1,783
0.777923
0
0
184
0.080279
0
0
338
0.147469
274a678ce7ef66ccf7cfb21453ee41a8617d1632
4,173
py
Python
m5-101/content/solutions/web-crawler/section1&2&3.py
PaulCCCCCCH/m5-101
81201b00cd81c1747ea0cd5f042a09eda02d6d1c
[ "MIT" ]
4
2021-03-25T13:15:38.000Z
2021-11-10T12:29:19.000Z
m5-101/content/solutions/web-crawler/section1&2&3.py
PaulCCCCCCH/m5-101
81201b00cd81c1747ea0cd5f042a09eda02d6d1c
[ "MIT" ]
null
null
null
m5-101/content/solutions/web-crawler/section1&2&3.py
PaulCCCCCCH/m5-101
81201b00cd81c1747ea0cd5f042a09eda02d6d1c
[ "MIT" ]
4
2021-03-25T13:18:10.000Z
2021-04-08T13:44:48.000Z
from posix import listdir import requests from bs4 import BeautifulSoup as bs import math import sys, getopt import re import os def re_cleaner(target: str, rep: str) -> str: return re.sub("[^0-9a-zA-Z]+", rep, target) # For Oxford ============================================================================== # base_url = "https://www.ox.ac.uk/" # base_dir = "pages/oxford" # if not os.path.exists(base_dir): # os.makedirs(base_dir) # # Get the root page and extract target urls # url_pages = requests.get('https://www.ox.ac.uk/admissions/graduate/courses/courses-a-z-listing') # root_soup = bs(url_pages.text, 'html.parser') # # print(root_soup.prettify()) # # find by class attr # course_divs = root_soup.find_all(attrs={"class": "course-title"}) # for div in course_divs: # # 从div中取出a然后解析url # # 用re直接find_all 符合 ** graduate/courses/ ** 的url更好解释 # link, degree = div.children # degree = degree.strip() # if re.search("D", degree) is None and re.match("PG", degree) is None: # r = requests.get(base_url + link.get('href')) # course_name = link.text # with open(os.path.join(base_dir, re_cleaner(course_name+' '+degree, '-')+'.html'), mode='wb') as f: # f.write(r.content) #UIUC ============================================================================== # base_url = "http://catalog.illinois.edu/" # base_dir = "pages/uiuc" # if not os.path.exists(base_dir): # os.makedirs(base_dir) # # Get the root page and extract target urls # url_pages = requests.get('http://catalog.illinois.edu/graduate/') # root_soup = bs(url_pages.text, 'html.parser') # # print(root_soup.prettify()) # course_heads = root_soup.find_all("h4") # for h in course_heads: # # 从head中取出a然后解析url, 若有margin left, 则不考虑 # if 'style' not in h.attrs: # # 最多分成两端,此处degree会有冗余, 但生成文件时正确的degree会在最后一个破折号处,优雅 # major, degree = h.text.split(',' ,1) # degree = degree.strip() # if re.search("D", degree) is None and re.match("PG", degree) is None: # r = requests.get(base_url + h.a['href']) # with open(os.path.join(base_dir, re_cleaner(major + ' ' + degree, ' ')+'.html'), mode='wb') as f: # f.write(r.content) # IC ============================================================================== # # base_url = "https://www.imperial.ac.uk/" # base_dir = "pages/ic" # if not os.path.exists(base_dir): # os.makedirs(base_dir) # # Get the root page and extract target urls # url_pages = requests.get('https://www.imperial.ac.uk/study/pg/courses/') # root_soup = bs(url_pages.text, 'html.parser') # # find by class attr # course_lis = root_soup.find_all(attrs={"class": "course"}) # for li in course_lis: # degree = li.a.contents[5].contents[1].strip() # if re.match("D", degree) is None and re.match("PG", degree) is None: # url = base_url + li.a['href'] # major = li.a['title'] # r = requests.get(url) # with open(os.path.join(base_dir, re_cleaner(major + ' ' + degree, '-')+'.html'), mode='wb') as f: # f.write(r.content) # Make Index ============================================================================== import json import pickle def clean_html(soup: bs): ss = soup.find_all('script') for s in ss: s.decompose() return re_cleaner(soup.get_text(), ' ') data = {} pages_path = os.path.join(os.getcwd(), 'pages') idx = 1 for school in os.listdir(pages_path): school_path = os.path.join(pages_path, school) for filename in os.listdir(school_path): filepath = os.path.join(school_path, filename) program, degree_html = filename.rsplit('-', 1) degree,_ = degree_html.split('.', 1) print(filename) with open(filepath) as f: soup = bs(f, 'html.parser') desc = clean_html(soup) jsobj = json.dumps({"document_id": idx, "school_name": school, "program_name": program, "degree": degree, "file_path": filepath, "program_desc": desc}) data[idx] = jsobj idx += 1 pkfile = 'programs.pkl' with open(pkfile, 'wb') as f: pickle.dump(data, f)
32.601563
163
0.578481
0
0
0
0
0
0
0
0
3,176
0.737404
274f3dedfd8af9c5162a6375c14921ce4ca86095
6,319
py
Python
sandbox/andrew/run_trpo_strike.py
leopauly/Observation-Learning-Simulations
462c04a87c45aae51537b8ea5b44646afa31d3a5
[ "MIT" ]
49
2017-12-11T11:00:02.000Z
2022-03-30T05:19:31.000Z
sandbox/andrew/run_trpo_strike.py
leopauly/Observation-Learning-Simulations
462c04a87c45aae51537b8ea5b44646afa31d3a5
[ "MIT" ]
2
2018-01-01T17:39:56.000Z
2019-07-24T04:49:08.000Z
sandbox/andrew/run_trpo_strike.py
leopauly/Observation-Learning-Simulations
462c04a87c45aae51537b8ea5b44646afa31d3a5
[ "MIT" ]
12
2017-12-13T11:52:17.000Z
2020-12-03T00:53:29.000Z
import os from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline # from rllab.envs.mujoco.gather.swimmer_gather_env import SwimmerGatherEnv os.environ["THEANO_FLAGS"] = "device=cpu" from rllab.envs.gym_env import GymEnv from rllab.envs.normalized_env import normalize from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy from rllab.envs.normalized_env import NormalizedEnv from rllab.algos.trpo import TRPO from rllab.misc.instrument import stub, run_experiment_lite import itertools from rllab import config from sandbox.bradly.third_person.launchers.cyberpunk_aws import CyberpunkAWS from sandbox.bradly.third_person.launchers.cyberpunk_aws_gail import CyberpunkAWSGAIL stub(globals()) from distutils.dir_util import copy_tree import numpy as np import os, shutil srcmodeldirs = ['../models/strikeinc/'] modeldir = 'model/' if os.path.exists(modeldir): shutil.rmtree(modeldir) for srcdir in srcmodeldirs: copy_tree(srcdir, modeldir) # config.AWS_IMAGE_ID = "ami-7d23496b"#"ami-1263eb04" # config.AWS_INSTANCE_TYPE = "g2.8xlarge" # config.AWS_SPOT_PRICE = "2.6001" # subnet = 'us-east-1d' config.AWS_IMAGE_ID = "ami-20c1e740" config.AWS_INSTANCE_TYPE = "g2.2xlarge" config.AWS_SPOT_PRICE = "0.903" subnet = 'us-west-1c' # config.AWS_IMAGE_ID = "ami-ecdd408c" # config.AWS_INSTANCE_TYPE = "g2.8xlarge" # config.AWS_SPOT_PRICE = "2.601" # subnet = 'us-west-2b' # config.AWS_IMAGE_ID = "ami-b8f069d8" # config.AWS_INSTANCE_TYPE = "g2.2xlarge" # config.AWS_SPOT_PRICE = "0.601" # subnet = 'us-west-2b' config.AWS_NETWORK_INTERFACES = [ dict( SubnetId=config.ALL_SUBNET_INFO[subnet]["SubnetID"], Groups=[config.ALL_SUBNET_INFO[subnet]["Groups"]], DeviceIndex=0, AssociatePublicIpAddress=True, ) ] def rand_strike(): vp = np.random.uniform(low=0, high=360, size=10).tolist() angle = [45]#np.random.uniform(low=0, high=90, size=10).tolist() ball = np.array([0.5, -0.175]) while True: goal = np.concatenate([ np.random.uniform(low=0.15, high=0.7, size=1), np.random.uniform(low=0.1, high=1.0, size=1)]) if np.linalg.norm(ball - goal) > 0.17: break return dict(vp=vp, goal=goal.tolist(), angle=angle, imsize=(64, 64), name="strike", nvp=1, modelname='model/model_90000_1408.57_1291.54_110.72', modeldata='model/vdata_train.npy') strike_params = { "env" : "Striker-v0", "rand" : rand_strike, } oracle_mode = dict(mode='oracle', mode2='oracle') # inception_mode = dict(mode='inception', imsize=(299, 299)) oursinception_mode = dict(mode='oursinception', mode2='oursinception', scale=0.1, imsize=(299, 299), modelname='model/model_70000_225002.77_128751.15_96043.16_0') ours_mode = dict(mode='ours', mode2='ours', scale=0.1) ours_recon = dict(mode='ours', mode2='oursrecon', scale=1.0, ablation_type='recon') tpil_mode = dict(mode='tpil', mode2='tpil', imsize=(48, 48)) gail_mode = dict(mode='tpil', mode2='gail') ours_nofeat = dict(mode='ours', mode2='ours_nofeat', scale=1.0, ablation_type='nofeat') ours_noimage = dict(mode='ours', mode2='ours_noimage', scale=1.0, ablation_type='noimage') seeds = [123] sanity = 'changing' for params in [strike_params]: for nvar in range(5): randparams = params['rand']() for modeparams in [oursinception_mode]: for scale in [0.0, 0.1, 100.0]:#[1.0, 10.0, 100.0, 0.1]: copyparams = randparams.copy() copyparams.update(modeparams) copyparams['scale'] = scale mdp = normalize(GymEnv(params['env'], **copyparams)) if copyparams['mode'] == 'tpil': if sanity == 'change1': copyparams = params['rand']() copyparams.update(modeparams) mdp2 = normalize(GymEnv(params['env'], **copyparams)) elif sanity == 'same': mdp2 = mdp elif sanity == 'changing': mdp2 = normalize(GymEnv(params['env'], mode='tpil')) if 'imsize' in copyparams: imsize = copyparams['imsize'] for seed in seeds: if copyparams['mode'] == 'tpil': del copyparams['imsize'] awsalgo = CyberpunkAWS if modeparams == gail_mode: awsalgo = CyberpunkAWSGAIL algo = awsalgo( expert_env=mdp2,#normalize(GymEnv(params['env'], mode='tpil')), novice_env=mdp, horizon=50, itrs=200, trajs=250, imsize=imsize, expert_pkl='expert_striker.pkl', sanity=sanity, **copyparams, ) else: policy = GaussianMLPPolicy( env_spec=mdp.spec, hidden_sizes=(32, 32), init_std=1.0 ) baseline = LinearFeatureBaseline( mdp.spec, ) batch_size = 50*250 algo = TRPO( env=mdp, policy=policy, baseline=baseline, batch_size=batch_size, whole_paths=True, max_path_length=50, n_itr=200, step_size=0.01, subsample_factor=1.0, **copyparams ) run_experiment_lite( algo.train(), exp_prefix="r-strike-ours-inception-7c-quad2", n_parallel=4, # dry=True, snapshot_mode="all", seed=seed, mode="ec2_mujoco", # terminate_machine=False )
37.613095
100
0.547238
0
0
0
0
0
0
0
0
1,336
0.211426
274fe43fa546672495660673160348de8f0a6c2e
17,257
py
Python
bpmfwfft/fft_sampling.py
jimtufts/bpmfwfft
091d2269b122f00b9dd8a01e34303e3e946f8ea0
[ "MIT" ]
null
null
null
bpmfwfft/fft_sampling.py
jimtufts/bpmfwfft
091d2269b122f00b9dd8a01e34303e3e946f8ea0
[ "MIT" ]
null
null
null
bpmfwfft/fft_sampling.py
jimtufts/bpmfwfft
091d2269b122f00b9dd8a01e34303e3e946f8ea0
[ "MIT" ]
null
null
null
""" This is to generate interaction energies and corresponding translational vectors, given a fixed receptor and an ensemble of ligand coordinates (including rotations and/or configurations) """ from __future__ import print_function import numpy as np import netCDF4 try: from bpmfwfft.grids import RecGrid from bpmfwfft.grids import LigGrid except: from grids import RecGrid from grids import LigGrid KB = 0.001987204134799235 class Sampling(object): def __init__(self, rec_prmtop, lj_sigma_scal_fact, rec_inpcrd, bsite_file, grid_nc_file, lig_prmtop, lig_inpcrd, lig_coord_ensemble, energy_sample_size_per_ligand, output_nc, temperature=300.): """ :param rec_prmtop: str, name of receptor prmtop file :param lj_sigma_scal_fact: float, used to check consitency when loading receptor and ligand grids :param rec_inpcrd: str, name of receptor inpcrd file :param bsite_file: None or str, name of file defining the box, the same as from AlGDock pipeline. "measured_binding_site.py" :param grid_nc_file: str, name of receptor precomputed grid netCDF file :param lig_prmtop: str, name of ligand prmtop file :param lig_inpcrd: str, name of ligand inpcrd file :param lig_coord_ensemble: list of 2d array, each array is an ligand coordinate :param energy_sample_size_per_ligand: int, number of energies and translational vectors to store for each ligand crd :param output_nc: str, name of nc file :param temperature: float """ self._energy_sample_size_per_ligand = energy_sample_size_per_ligand self._beta = 1./ temperature / KB rec_grid = self._create_rec_grid(rec_prmtop, lj_sigma_scal_fact, rec_inpcrd, bsite_file, grid_nc_file) self._rec_crd = rec_grid.get_crd() self._lig_grid = self._create_lig_grid(lig_prmtop, lj_sigma_scal_fact, lig_inpcrd, rec_grid) self._lig_coord_ensemble = self._load_ligand_coor_ensemble(lig_coord_ensemble) self._nc_handle = self._initialize_nc(output_nc) def _create_rec_grid(self, rec_prmtop, lj_sigma_scal_fact, rec_inpcrd, bsite_file, grid_nc_file): rec_grid = RecGrid(rec_prmtop, lj_sigma_scal_fact, rec_inpcrd, bsite_file, grid_nc_file, new_calculation=False) return rec_grid def _create_lig_grid(self, lig_prmtop, lj_sigma_scal_fact, lig_inpcrd, rec_grid): lig_grid = LigGrid(lig_prmtop, lj_sigma_scal_fact, lig_inpcrd, rec_grid) return lig_grid def _load_ligand_coor_ensemble(self, lig_coord_ensemble): assert len(lig_coord_ensemble.shape) == 3, "lig_coord_ensemble must be 3-D array." ensemble = lig_coord_ensemble natoms = self._lig_grid.get_natoms() for i in range(len(ensemble)): if (ensemble[i].shape[0] != natoms) or (ensemble[i].shape[1] != 3): raise RuntimeError("Ligand crd %d does not have correct shape"%i) return ensemble def _initialize_nc(self, output_nc): nc_handle = netCDF4.Dataset(output_nc, mode="w", format="NETCDF4") nc_handle.createDimension("three", 3) rec_natoms = self._rec_crd.shape[0] nc_handle.createDimension("rec_natoms", rec_natoms) lig_natoms = self._lig_grid.get_natoms() nc_handle.createDimension("lig_natoms", lig_natoms) nc_handle.createDimension("lig_sample_size", self._lig_coord_ensemble.shape[0]) nc_handle.createDimension("energy_sample_size_per_ligand", self._energy_sample_size_per_ligand) nc_handle.createVariable("rec_positions", "f8", ("rec_natoms", "three")) nc_handle.variables["rec_positions"][:,:] = self._rec_crd nc_handle.createVariable("lig_positions", "f8", ("lig_sample_size", "lig_natoms", "three")) nc_handle.createVariable("lig_com", "f8", ("lig_sample_size", "three")) nc_handle.createVariable("volume", "f8", ("lig_sample_size")) nc_handle.createVariable("nr_grid_points", "i8", ("lig_sample_size")) nc_handle.createVariable("exponential_sums", "f8", ("lig_sample_size")) nc_handle.createVariable("log_of_divisors", "f8", ("lig_sample_size")) nc_handle.createVariable("mean_energy", "f8", ("lig_sample_size")) nc_handle.createVariable("min_energy", "f8", ("lig_sample_size")) nc_handle.createVariable("energy_std", "f8", ("lig_sample_size")) nc_handle.createVariable("resampled_energies", "f8", ("lig_sample_size", "energy_sample_size_per_ligand")) nc_handle.createVariable("resampled_trans_vectors", "i8", ("lig_sample_size", "energy_sample_size_per_ligand", "three")) nc_handle = self._write_grid_info(nc_handle) return nc_handle def _write_grid_info(self, nc_handle): """ write grid info, "x", "y", "z" ... """ data = self._lig_grid.get_grids() grid_func_names = self._lig_grid.get_grid_func_names() keys = [key for key in data.keys() if key not in grid_func_names] for key in keys: for dim in data[key].shape: dim_name = "%d"%dim if dim_name not in nc_handle.dimensions.keys(): nc_handle.createDimension(dim_name, dim) for key in keys: if data[key].dtype == int: store_format = "i8" elif data[key].dtype == float: store_format = "f8" else: raise RuntimeError( "Unsupported dtype %s"%data[key].dtype ) dimensions = tuple([ "%d"%dim for dim in data[key].shape ]) nc_handle.createVariable(key, store_format, dimensions) for key in keys: nc_handle.variables[key][:] = data[key] return nc_handle def _save_data_to_nc(self, step): self._nc_handle.variables["lig_positions"][step, :, :] = self._lig_grid.get_crd() self._nc_handle.variables["lig_com"][step, :] = self._lig_grid.get_initial_com() self._nc_handle.variables["volume"][step] = self._lig_grid.get_box_volume() self._nc_handle.variables["nr_grid_points"][step] = self._lig_grid.get_number_translations() self._nc_handle.variables["exponential_sums"][step] = self._exponential_sum self._nc_handle.variables["log_of_divisors"][step] = self._log_of_divisor self._nc_handle.variables["mean_energy"][step] = self._mean_energy self._nc_handle.variables["min_energy"][step] = self._min_energy self._nc_handle.variables["energy_std"][step] = self._energy_std self._nc_handle.variables["resampled_energies"][step,:] = self._resampled_energies self._nc_handle.variables["resampled_trans_vectors"][step,:,:] = self._resampled_trans_vectors return None def _do_fft(self, step): print("Doing FFT for step %d"%step, "test") lig_conf = self._lig_coord_ensemble[step] self._lig_grid.cal_grids(molecular_coord = lig_conf) energies = self._lig_grid.get_meaningful_energies() print("Energies shape:", energies.shape) self._mean_energy = energies.mean() self._min_energy = energies.min() self._energy_std = energies.std() print("Number of finite energy samples", energies.shape[0]) exp_energies = -self._beta * energies print(f"Max exp energy {exp_energies.max()}, Min exp energy {exp_energies.min()}") self._log_of_divisor = exp_energies.max() exp_energies[exp_energies < 0] = 0 exp_energies = np.exp(exp_energies - self._log_of_divisor) self._exponential_sum = exp_energies.sum() exp_energies /= self._exponential_sum print("Number of exponential energy samples", exp_energies.sum()) # sel_ind = np.random.choice(exp_energies.shape[0], size=self._energy_sample_size_per_ligand, p=exp_energies, replace=True) try: sel_ind = np.random.choice(exp_energies.shape[0], size=self._energy_sample_size_per_ligand, p=exp_energies, replace=False) except: print(f"Only {np.count_nonzero(exp_energies)} non-zero entries in p, falling back to replacement") sel_ind = np.random.choice(exp_energies.shape[0], size=self._energy_sample_size_per_ligand, p=exp_energies, replace=True) del exp_energies self._resampled_energies = [energies[ind] for ind in sel_ind] del energies self._lig_grid.set_meaningful_energies_to_none() trans_vectors = self._lig_grid.get_meaningful_corners() self._resampled_trans_vectors = [trans_vectors[ind] for ind in sel_ind] del trans_vectors self._resampled_energies = np.array(self._resampled_energies, dtype=float) self._resampled_trans_vectors = np.array(self._resampled_trans_vectors, dtype=int) self._save_data_to_nc(step) return None def run_sampling(self): """ """ for step in range(self._lig_coord_ensemble.shape[0]): self._do_fft(step) print("Min energy", self._min_energy) print("Mean energy", self._mean_energy) print("STD energy", self._energy_std) print("Initial center of mass", self._lig_grid.get_initial_com()) print("Grid volume", self._lig_grid.get_box_volume()) print("Number of translations", self._lig_grid.get_number_translations()) print("-------------------------------\n\n") self._nc_handle.close() return None # #TODO the class above assumes that the resample size is smaller than number of meaningful energies # in general, the number of meaningful energies can be very smaller or even zero (no energy) # when the number of meaningful energies is zero, that stratum contributes n_points zeros to the exponential mean # # so when needs to consider separately 3 cases: # len(meaningful energies) == 0 # 0< len(meaningful energies) <= resample size # len(meaningful energies) > resample size # class Sampling_PL(Sampling): def _write_data_key_2_nc(self, data, key): if data.shape[0] == 0: return None for dim in data.shape: dim_name = "%d"%dim if dim_name not in self._nc_handle.dimensions.keys(): self._nc_handle.createDimension(dim_name, dim) if data.dtype == int: store_format = "i8" elif data.dtype == float: store_format = "f8" else: raise RuntimeError("unsupported dtype %s"%data.dtype) dimensions = tuple(["%d"%dim for dim in data.shape]) self._nc_handle.createVariable(key, store_format, dimensions) self._nc_handle.variables[key][:] = data return None def _initialize_nc(self, output_nc): """ """ nc_handle = netCDF4.Dataset(output_nc, mode="w", format="NETCDF4") nc_handle.createDimension("three", 3) rec_natoms = self._rec_crd.shape[0] nc_handle.createDimension("rec_natoms", rec_natoms) lig_natoms = self._lig_grid.get_natoms() nc_handle.createDimension("lig_natoms", lig_natoms) nc_handle.createDimension("lig_sample_size", self._lig_coord_ensemble.shape[0]) #nc_handle.createDimension("energy_sample_size_per_ligand", self._energy_sample_size_per_ligand) nc_handle.createVariable("rec_positions", "f8", ("rec_natoms", "three")) nc_handle.variables["rec_positions"][:,:] = self._rec_crd nc_handle.createVariable("lig_positions", "f8", ("lig_sample_size", "lig_natoms", "three")) nc_handle.createVariable("lig_com", "f8", ("lig_sample_size", "three")) nc_handle.createVariable("volume", "f8", ("lig_sample_size")) nc_handle.createVariable("nr_grid_points", "i8", ("lig_sample_size")) nc_handle.createVariable("nr_finite_energy", "i8", ("lig_sample_size")) nc_handle.createVariable("exponential_sums", "f8", ("lig_sample_size")) nc_handle.createVariable("log_of_divisors", "f8", ("lig_sample_size")) nc_handle.createVariable("mean_energy", "f8", ("lig_sample_size")) nc_handle.createVariable("min_energy", "f8", ("lig_sample_size")) nc_handle.createVariable("energy_std", "f8", ("lig_sample_size")) #nc_handle.createVariable("resampled_energies", "f8", ("lig_sample_size", "energy_sample_size_per_ligand")) #nc_handle.createVariable("resampled_trans_vectors", "i8", ("lig_sample_size", "energy_sample_size_per_ligand", "three")) nc_handle = self._write_grid_info(nc_handle) return nc_handle def _save_data_to_nc(self, step): self._nc_handle.variables["lig_positions"][step, :, :] = self._lig_grid.get_crd() self._nc_handle.variables["lig_com"][step, :] = self._lig_grid.get_initial_com() self._nc_handle.variables["volume"][step] = self._lig_grid.get_box_volume() self._nc_handle.variables["nr_grid_points"][step] = self._lig_grid.get_number_translations() self._nc_handle.variables["nr_finite_energy"][step] = self._nr_finite_energy self._nc_handle.variables["exponential_sums"][step] = self._exponential_sum self._nc_handle.variables["log_of_divisors"][step] = self._log_of_divisor self._nc_handle.variables["mean_energy"][step] = self._mean_energy self._nc_handle.variables["min_energy"][step] = self._min_energy self._nc_handle.variables["energy_std"][step] = self._energy_std self._write_data_key_2_nc(self._resampled_energies, "resampled_energies_%d"%step) self._write_data_key_2_nc(self._resampled_trans_vectors, "resampled_trans_vectors_%d"%step) return None def _do_fft(self, step): print("Doing FFT for step %d"%step) lig_conf = self._lig_coord_ensemble[step] print(self._lig_grid["SASAr"]) self._lig_grid.cal_grids(molecular_coord = lig_conf) energies = self._lig_grid.get_meaningful_energies() self._nr_finite_energy = energies.shape[0] print("Number of finite energy samples", self._nr_finite_energy) if energies.shape[0] > 0: self._mean_energy = energies.mean() self._min_energy = energies.min() self._energy_std = energies.std() exp_energies = -self._beta * energies self._log_of_divisor = exp_energies.max() exp_energies = np.exp(exp_energies - self._log_of_divisor) self._exponential_sum = exp_energies.sum() exp_energies /= self._exponential_sum sample_size = min(exp_energies.shape[0], self._energy_sample_size_per_ligand) sel_ind = np.random.choice(exp_energies.shape[0], size=sample_size, p=exp_energies, replace=True) del exp_energies self._resampled_energies = [energies[ind] for ind in sel_ind] del energies self._lig_grid.set_meaningful_energies_to_none() trans_vectors = self._lig_grid.get_meaningful_corners() self._resampled_trans_vectors = [trans_vectors[ind] for ind in sel_ind] del trans_vectors self._resampled_energies = np.array(self._resampled_energies, dtype=float) self._resampled_trans_vectors = np.array(self._resampled_trans_vectors, dtype=int) else: self._mean_energy = np.inf self._min_energy = np.inf self._energy_std = np.inf self._log_of_divisor = 1. self._exponential_sum = 0. self._resampled_energies = np.array([], dtype=float) del energies self._lig_grid.set_meaningful_energies_to_none() self._resampled_trans_vectors = np.array([], dtype=float) self._save_data_to_nc(step) return None if __name__ == "__main__": # test rec_prmtop = "../examples/amber/ubiquitin_ligase/receptor.prmtop" lj_sigma_scal_fact = 0.8 rec_inpcrd = "../examples/amber/ubiquitin_ligase/receptor.inpcrd" # bsite_file = "../examples/amber/t4_lysozyme/measured_binding_site.py" bsite_file = None grid_nc_file = "../examples/grid/ubiquitin_ligase/grid.nc" lig_prmtop = "../examples/amber/ubiquitin/ligand.prmtop" lig_inpcrd = "../examples/amber/ubiquitin/ligand.inpcrd" energy_sample_size_per_ligand = 200 output_nc = "../examples/fft_sampling/ubql_ubiquitin/fft_sampling.nc" ligand_md_trj_file = "../examples/ligand_md/ubiquitin/rotation.nc" lig_coord_ensemble = netCDF4.Dataset(ligand_md_trj_file, "r").variables["positions"][:] sampler = Sampling(rec_prmtop, lj_sigma_scal_fact, rec_inpcrd, bsite_file, grid_nc_file, lig_prmtop, lig_inpcrd, lig_coord_ensemble, energy_sample_size_per_ligand, output_nc, temperature=300.) sampler.run_sampling()
42.296569
134
0.665121
15,119
0.876108
0
0
0
0
0
0
4,679
0.271136
27516da8559c76c6cbc57c679759132dc516e07e
6,241
py
Python
kotori/config.py
joshuaavalon/kotori
3e7e1cf7b2c1834aea9a9404e80a53f8282aba1b
[ "Apache-2.0" ]
null
null
null
kotori/config.py
joshuaavalon/kotori
3e7e1cf7b2c1834aea9a9404e80a53f8282aba1b
[ "Apache-2.0" ]
null
null
null
kotori/config.py
joshuaavalon/kotori
3e7e1cf7b2c1834aea9a9404e80a53f8282aba1b
[ "Apache-2.0" ]
null
null
null
import json import re from abc import ABC, abstractmethod from dataclasses import dataclass, field from os.path import splitext from pathlib import Path from typing import Any, Dict, List, Optional, Tuple, Type, Union from PIL import Image from ruamel.yaml import YAML from kotori.error import ConfigError __all__ = [ "ItemKey", "RouteConfig", "TransformConfig", "StorageConfig", "Config", "ConfigLoader", "DictConfigLoader", "JsonConfigLoader", "YamlConfigLoader" ] @dataclass class ItemKey: path: str key_path: str = field(init=False) key: str = field(init=False) transform: str = field(init=False) suffix: str = field(init=False) folder: str = field(init=False) name: str = field(init=False) format: str = field(init=False) def __post_init__(self): if self.path.endswith("/"): raise ValueError("path cannot end with /") path, suffix = splitext(self.path) parts: List[str] = list(filter(None, path.split("/"))) self.format = Image.registered_extensions().get(suffix) if self.format is None: raise ValueError("Unknown format") if len(parts) < 2: raise ValueError("Too few arguments") self.transform = parts[0] key_parts = parts[1:] self.key = "/".join(key_parts) self.key_path = f"/{self.key}" self.suffix = suffix self.name = key_parts.pop() self.folder = f"/{'/'.join(key_parts)}" @dataclass class SaveConfig: format: str options: Dict[str, Any] @dataclass class RouteConfig: storage: str transform: Union[bool, List[str], str] = False expire: Optional[int] = None save: Dict[str, Dict[str, Any]] = field(default_factory=dict) @dataclass class TransformConfig: type: str options: List[str] = field(default_factory=list) @staticmethod def from_query(query: str) -> "TransformConfig": parts = [t.strip() for t in query.split("_")] return TransformConfig(type=parts[0], options=parts[1:]) @staticmethod def from_queries(queries: str) -> List["TransformConfig"]: queries = [t.strip() for t in queries.split(",")] for query in queries: yield TransformConfig.from_query(query) @dataclass class StorageConfig: type: str options: Dict[str, Any] = field(default_factory=dict) @dataclass class Config: storage: Dict[str, StorageConfig] transform: Dict[str, List[TransformConfig]] route: List[Tuple[str, RouteConfig]] cache: Dict[str, Any] def storage_of(self, key: ItemKey) -> StorageConfig: route = self.route_of(key) return self.storage[route.storage] def route_of(self, key: ItemKey) -> RouteConfig: for route in self.route: pattern, config = route if re.search(pattern, key.path) is not None: return config raise ConfigError(f"Cannot find config for {key.path}") def transforms_of(self, key: ItemKey) -> List[TransformConfig]: if key.transform in self.transform.keys(): return self.transform[key.transform] return TransformConfig.from_queries(key.transform) def allow_transform(self, key: ItemKey) -> bool: route = self.route_of(key) if not route.transform: return False if isinstance(route.transform, bool): return True if isinstance(route.transform, str): transforms = [route.transform] else: transforms = route.transform if key.transform in self.transform.keys(): return key.transform in transforms configs = TransformConfig.from_queries(key.transform) for config in configs: if config.type not in transforms: return False return True class ConfigLoader(ABC): loaders: Dict[str, Type["ConfigLoader"]] = {} def __init_subclass__(cls, *args, **kwargs): super().__init_subclass__(*args, **kwargs) for suffix in cls.support_suffixes(): if suffix not in cls.loaders: cls.loaders[suffix] = cls @classmethod @abstractmethod def support_suffixes(cls) -> List[str]: raise NotImplementedError() @classmethod def load(cls, path: Union[Path, str]) -> Config: if isinstance(path, str): path = Path(path) suffix = path.suffix if suffix not in cls.loaders: raise ConfigError(f"{suffix} is a unknown format") loader = cls.loaders[suffix]() config = loader._load(path) # pylint: disable=protected-access return config @abstractmethod def _load(self, path: Path) -> Config: raise NotImplementedError() class DictConfigLoader(ConfigLoader): @classmethod def support_suffixes(cls) -> List[str]: return [] def _load(self, path: Path) -> Config: config = self._load_dict(path) storage = {} for name, cfg in config.get("storage", {}).items(): storage[name] = StorageConfig(**cfg) transform = {} for name, cfg in config.get("transform", {}).items(): transform[name] = [TransformConfig(**c) for c in cfg] route = [] for name, cfg in config.get("route", {}).items(): route.append((name, RouteConfig(**cfg))) return Config( storage=storage, transform=transform, route=route, cache=config.get("cache", {}) ) @abstractmethod def _load_dict(self, path: Path) -> Dict[str, Any]: raise NotImplementedError() class JsonConfigLoader(DictConfigLoader): @classmethod def support_suffixes(cls) -> List[str]: return [".json"] def _load_dict(self, path: Path) -> Dict[str, Any]: with open(path, "r", encoding="utf-8") as file: return json.load(file) class YamlConfigLoader(DictConfigLoader): @classmethod def support_suffixes(cls) -> List[str]: return [".yml", ".yaml"] def _load_dict(self, path: Path) -> Dict[str, Any]: yaml = YAML(typ="safe") with open(path, "r", encoding="utf-8") as file: return yaml.load(file)
30.296117
78
0.621054
5,667
0.908028
198
0.031726
4,286
0.686749
0
0
472
0.075629
27542459664ee95574391c6b162f6e4cf09c76b9
4,587
py
Python
parser_utils.py
fgypas/panoptes
d85bf83905fd0e546cce11e00d4daf4da2199fbf
[ "MIT" ]
1
2019-11-03T22:08:19.000Z
2019-11-03T22:08:19.000Z
parser_utils.py
fgypas/panoptes
d85bf83905fd0e546cce11e00d4daf4da2199fbf
[ "MIT" ]
27
2019-10-23T19:24:38.000Z
2022-02-10T19:40:24.000Z
parser_utils.py
fgypas/panoptes
d85bf83905fd0e546cce11e00d4daf4da2199fbf
[ "MIT" ]
null
null
null
import os import re from pprint import pprint from pandas.io.json import json_normalize import datetime import argparse import sys DATE = 'date' LEVEL = 'level' TYPE = 'type' CLASS = 'class' MESSAGE = 'message' def match_date(line): match_this = '' matched = re.match(r'\[\w\w\w\s\w\w\w \d\d \d\d:\d\d:\d\d\s\d\d\d\d\]', line) if matched: # matches a date and adds it to match_this match_this = matched.group() else: match_this = 'NONE' return match_this def generate_dicts(log_fh): current_dict = {} for line in log_fh: if line.startswith(match_date(line)): if current_dict: yield current_dict current_dict = {DATE: line.split('__')[0][1:25], # TYPE: temp[0], # CLASS: temp[1].split(' ')[2], MESSAGE: ''} else: if DATE in current_dict: current_dict[MESSAGE] += line[:] else: pass yield current_dict def structure_snakemake_logs(logs): """ Takes as input a parced log dictionary. Returns a structured object for each entry. Two types of entries exist: - Submitted rules/jobs - Finished rules/jobs Returns list of structured entries """ snakemake_log_objects = [] for log in logs: if 'rule' in log['message']: print(log["message"]) try: rule = re.search(r'rule (\w+):', log['message']).group(1) except: rule = None try: input = re.search(r'input:\s(.*)', log['message']).group(1).split(",") except Exception as e: input = None try: output = re.search(r'output:\s(.*)', log['message']).group(1).split(",") except: output = None try: log_c = re.search(r'log:\s(.*)', log['message']).group(1) except: log_c = None try: wildcards = re.search(r'wildcards:\s(.*)', log['message']).group(1).split(",") except Exception as e: wildcards = None try: jobid = re.search(r'jobid:\s(\d+)', log['message']).group(1) except Exception as e: jobid = None snakemake_log_objects.append({"job_type": 'submitted', "job_id": jobid, "rule": rule, "input": input, "output": output, "log": log_c, "wildcards": wildcards }) elif "Finished job" in log['message']: try: job_id = re.search(r'Finished job (\d+)\.', log['message']).group(1) progress = re.search(r'(\d+) of (\d+) steps \((\d+%)\) done', log['message']).group(1,2,3) current_job = progress[0] total_jobs = progress[1] percent = progress[2] except Exception as e: current_job = None total_jobs = None percent = None snakemake_log_objects.append({"job_type": 'finished', "job_id": job_id, "current_job": current_job, "total_jobs": total_jobs, "percent": percent }) return snakemake_log_objects def main(): """ -import_file "example_files/example.log" -export_csv_file "exported_tabular.csv" :return: """ parser = argparse.ArgumentParser() parser.add_argument('-import_file', metavar='import_file', type=str, help='Path to import the simulation json.') parser.add_argument('-export_csv_file', metavar='export_csv_file', type=str, help='Path to export the results') args = parser.parse_args() import_file = args.import_file with open(import_file) as f: parced_logs = list(generate_dicts(f)) pprint(parced_logs) print(structure_snakemake_logs(parced_logs)) #data = parced_logs.jason_normalize() #data.to_csv('exported.csv') if __name__ == '__main__': main()
30.177632
106
0.480706
0
0
553
0.120558
0
0
0
0
1,155
0.251799
2755a12d13ff285f1e00c9a95f222cd1d7e6e11b
71
py
Python
nimanifold/data/__init__.py
jcreinhold/nimanifold
21e6546d24304a7ccfdd6a56d7ec47b2527e1c15
[ "Apache-2.0" ]
null
null
null
nimanifold/data/__init__.py
jcreinhold/nimanifold
21e6546d24304a7ccfdd6a56d7ec47b2527e1c15
[ "Apache-2.0" ]
null
null
null
nimanifold/data/__init__.py
jcreinhold/nimanifold
21e6546d24304a7ccfdd6a56d7ec47b2527e1c15
[ "Apache-2.0" ]
null
null
null
from nimanifold.data.csv import * from nimanifold.data.sample import *
23.666667
36
0.802817
0
0
0
0
0
0
0
0
0
0
2756a87403668d7d8cbcd575aefad24bc180bbaa
452
py
Python
Simulations/Test.py
BoettigerLab/polychrom
b9d6b0e0f1a62def13ac28a32232c33628e43dae
[ "MIT" ]
null
null
null
Simulations/Test.py
BoettigerLab/polychrom
b9d6b0e0f1a62def13ac28a32232c33628e43dae
[ "MIT" ]
null
null
null
Simulations/Test.py
BoettigerLab/polychrom
b9d6b0e0f1a62def13ac28a32232c33628e43dae
[ "MIT" ]
null
null
null
import sys import os import numpy as np import ast import pandas as pd from LEBondUpdater import bondUpdater import polychrom from polychrom.starting_conformations import grow_cubic from polychrom.hdf5_format import HDF5Reporter, list_URIs, load_URI, load_hdf5_file from polychrom.simulation import Simulation from polychrom import polymerutils from polychrom import forces from polychrom import forcekits import time print('running!') import h5py
21.52381
83
0.85177
0
0
0
0
0
0
0
0
10
0.022124
27574dceb612771ac763cff0815e740d67568d21
373
py
Python
deca/gui/deca_interfaces.py
kk49/deca
8a03ea5d1b7ae0d787638f1797b6e2cb46de4bae
[ "MIT" ]
50
2019-06-05T04:01:04.000Z
2022-03-05T14:56:43.000Z
deca/gui/deca_interfaces.py
kk49/deca
8a03ea5d1b7ae0d787638f1797b6e2cb46de4bae
[ "MIT" ]
115
2019-03-27T13:34:00.000Z
2022-03-11T23:43:12.000Z
deca/gui/deca_interfaces.py
kk49/deca
8a03ea5d1b7ae0d787638f1797b6e2cb46de4bae
[ "MIT" ]
13
2020-01-25T01:15:49.000Z
2022-02-08T02:20:05.000Z
from PySide2.QtCore import Signal from PySide2.QtWidgets import QWidget from deca.db_view import VfsView class IVfsViewSrc(QWidget): signal_visible_changed = Signal(VfsView) signal_selection_changed = Signal(VfsView) def vfs_get(self): return None def vfs_view_get(self): return None def archive_open(self, selection): pass
20.722222
46
0.723861
265
0.710456
0
0
0
0
0
0
0
0
2758815a9272e4ba22d391476a74de67b2fc6c02
7,746
py
Python
python/beached_probability.py
OceanParcels/BayesianAnalysis_SouthAtlantic
a808896ea9104931a6ad625531231525c6c12826
[ "MIT" ]
1
2022-01-12T08:24:14.000Z
2022-01-12T08:24:14.000Z
python/beached_probability.py
OceanParcels/BayesianAnalysis_SouthAtlantic
a808896ea9104931a6ad625531231525c6c12826
[ "MIT" ]
null
null
null
python/beached_probability.py
OceanParcels/BayesianAnalysis_SouthAtlantic
a808896ea9104931a6ad625531231525c6c12826
[ "MIT" ]
null
null
null
""" Computes the probability field of beached particles from Ocean Parcels simulations. Computes the posterior probability in the latitude of the beached particles. """ import numpy as np import xarray as xr import pandas as pd import os def time_averaging_coast(array, window=30): """It averages the counts_america and computes a probability map that adds up to 100%. It is built for the Beached particles 2D array. Parameters ---------- array: array 2D array with dimensions (time, space). The time averaging happens in axis=0 of the array. window: int, optional The time window for the averaging. Default value is 30 (days). normalized: bool, optional Normalizes the average in space, axis=1&2. Default True. Returns ------- averaged: array time averaged fields dimensions (time//window, space). time_array: 1D array showing the window jumps. Its useless... """ nt, ny = array.shape new_t_dim = nt//window averaged = np.zeros((new_t_dim, ny)) time_array = np.arange(window, nt, window) for t in range(0, new_t_dim): index_slice = slice((t)*window, (t+1)*window) mean_aux = np.mean(array[index_slice, :], axis=0) if mean_aux.sum() == 0: print(f'-- mean_aux.sum() = {mean_aux.sum()}') averaged[t] = np.zeros_like(mean_aux) else: averaged[t] = mean_aux/mean_aux.sum() print('-- Normalized?', averaged[t].sum()) return averaged, time_array # Creating the directory to store the analysis dataset newpath = r'../analysis/' if not os.path.exists(newpath): os.makedirs(newpath) path2folder = '../PierardBassottoMeirervanSebille_AttributionofPlastic/' ############################################################################### # Setting the parameters ############################################################################### compute_mean = True # True if you want to compute the average probability average_window = 1234 # window size for computing the probability print(f'Compute mean == {compute_mean}!') domain_limits = [[-73, 25], [-80, -5]] number_bins = (98, 75) # defined with respect to domain_limits to be 1x1 cell half_point = number_bins[0]//2 lat_range = np.linspace(domain_limits[1][0], domain_limits[1][1], number_bins[1]) # Loading priors. Computed with release_points.py script. priors = pd.read_csv(path2folder + 'priors_river_inputs.csv', index_col=0) sources = list(priors.index) number_sources = len(sources) # Empty dictionaries to store computed probabilities. counts_america = {} counts_africa = {} likelihood_america = {} posterior_america = {} likelihood_africa = {} posterior_africa = {} avg_label = '' ############################################################################### # Building the histograms ############################################################################### print('Building histograms') time_dimensions = [] for loc in sources: print(f'- {loc}') path_2_file = path2folder + f"sa-s06-{loc}.nc" particles = xr.load_dataset(path_2_file) n = particles.dims['traj'] time = particles.dims['obs'] time_dimensions.append(time) # filter the particles that beached particles = particles.where((particles.beach == 1)) h_ame = np.zeros((time, number_bins[1])) h_afr = np.zeros((time, number_bins[1])) # beached_loc = np.zeros(time) for t in range(time): lons = particles['lon'][:, t].values lats = particles['lat'][:, t].values index = np.where(~np.isnan(lons)) lons = lons[index] lats = lats[index] # Compute the histogram H, x_edges, y_edges = np.histogram2d(lons, lats, bins=number_bins, range=domain_limits) H = np.nan_to_num(H) # drop nans or covert them to zeros count_ame = np.sum(H[:55, :], axis=0) # west meridional sum count_afr = np.sum(H[80:-5, :], axis=0) # east meridional sum h_ame[t] = count_ame h_afr[t] = count_afr counts_america[loc] = h_ame counts_africa[loc] = h_afr time = min(time_dimensions) ############################################################################### # To average or not to average, that's the question. ############################################################################### if compute_mean: print('Averaging histograms and computing likelihood') for loc in sources: print(f'- {loc}') mean_ame, time_range = time_averaging_coast(counts_america[loc], window=average_window) mean_afr, _ = time_averaging_coast(counts_africa[loc], window=average_window) likelihood_america[loc] = mean_ame likelihood_africa[loc] = mean_afr time = time//average_window avg_label = f'average_{average_window}' else: # convert counts to likelihood. The counts were normalized in line ~120. likelihood_america = counts_america likelihood_africa = counts_africa time_range = np.arange(0, time, 1) ############################################################################### # Normalizing constant (sum of all hypothesis) ############################################################################### print('Computing Normailizing constant') normalizing_constant = np.zeros((time, 2, number_bins[1])) # normalizing_constant_afr = np.zeros((time, 2, number_bins)) for t in range(time): total = np.zeros((number_sources, 2, number_bins[1])) for j, loc in enumerate(sources): total[j, 0] = likelihood_america[loc][t]*priors['prior'][loc] total[j, 1] = likelihood_africa[loc][t]*priors['prior'][loc] normalizing_constant[t, 0] = np.sum(total[:, 0, :], axis=0) normalizing_constant[t, 1] = np.sum(total[:, 1, :], axis=0) ############################################################################### # Posterior probability ############################################################################### print('Computing posterior probability') for k, loc in enumerate(sources): aux_ame = np.zeros((time, number_bins[1])) aux_afr = np.zeros((time, number_bins[1])) for t in range(time): aux_ame[t] = likelihood_america[loc][t]*priors['prior'][loc] / \ normalizing_constant[t, 0] aux_afr[t] = likelihood_africa[loc][t]*priors['prior'][loc] / \ normalizing_constant[t, 1] posterior_america[loc] = (["time", "y"], aux_ame) posterior_africa[loc] = (["time", "y"], aux_afr) ############################################################################### # Saving the likelihood & posteior as netCDFs ############################################################################### coordinates = dict(time=time_range, lat=(["y"], lat_range)) attributes = {'description': "Beached posterior probability for America.", 'average_window': average_window} # Posterior dataset post_ame = xr.Dataset(data_vars=posterior_america, coords=coordinates, attrs=attributes) attributes = {'description': "Beached posterior probability for Africa.", 'average_window': average_window} # Posterior dataset post_afr = xr.Dataset(data_vars=posterior_africa, coords=coordinates, attrs=attributes) output_path_ame = newpath + f'beach_posterior_America_{avg_label}.nc' output_path_afr = newpath + f'beach_posterior_Africa_{avg_label}.nc' post_ame.to_netcdf(output_path_ame) post_afr.to_netcdf(output_path_afr)
35.53211
79
0.572941
0
0
0
0
0
0
0
0
3,341
0.431319
2759eded27b5f65ad495b43a6846ccc30736fba9
2,985
py
Python
models/cam_decoder.py
BwCai/DCAA-UDA
359c2122060aebfbe4384c918768c261fe2dc9c7
[ "Apache-2.0" ]
2
2022-01-28T10:35:53.000Z
2022-03-09T14:38:59.000Z
models/cam_decoder.py
BwCai/DCAA-UDA
359c2122060aebfbe4384c918768c261fe2dc9c7
[ "Apache-2.0" ]
1
2022-03-07T10:48:11.000Z
2022-03-07T10:48:11.000Z
models/cam_decoder.py
BwCai/DCAA-UDA
359c2122060aebfbe4384c918768c261fe2dc9c7
[ "Apache-2.0" ]
null
null
null
import math import torch import torch.nn as nn import torch.nn.functional as F from models.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d from models.aspp import build_aspp from models.decoder import build_decoder import pdb class AttentionDecoder(nn.Module): def __init__(self, num_classes, modal_num, backbone, BatchNorm): super(AttentionDecoder, self).__init__() backbone = 'resnet' if backbone == 'resnet' or backbone == 'drn': inplanes = 256 * modal_num elif backbone == 'xception': inplanes = 128 * modal_num elif backbone == 'mobilenet': inplanes = 24 * modal_num else: raise NotImplementedError self.modal_num = modal_num # attention sequential self.att_conv = nn.Sequential( nn.Conv2d(inplanes, 256, kernel_size=3, stride=1, padding=1, bias=False), BatchNorm(256) if BatchNorm!=nn.GroupNorm else BatchNorm(16, 256), nn.ReLU(), nn.Dropout(p=0.5), nn.Conv2d(256, modal_num, kernel_size=1, stride=1, bias=False), nn.Softmax(), ) self.last_conv = nn.Sequential( nn.Conv2d(256 * (modal_num + 1), 256, kernel_size=3, stride=1, padding=1, bias=False), BatchNorm(256) if BatchNorm!=nn.GroupNorm else BatchNorm(16, 256), nn.ReLU(), nn.Dropout(0.5), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), BatchNorm(256) if BatchNorm!=nn.GroupNorm else BatchNorm(16, 256), nn.ReLU(), nn.Dropout(0.1), nn.Conv2d(256, num_classes, kernel_size=1, stride=1)) self._init_weight() def forward(self, x_in, low_level_feat): x = x_in.copy() _b, _c, _w, _h = x[0].size() modal_x = torch.cat(x, dim=1) # B x 2C x W x H # attention module att_mask = self.att_conv(modal_x) # B x 2 x W x H feat_x = x[0] * torch.unsqueeze(att_mask[:, 0, :, :], 1) for _i in range(1, self.modal_num): feat_x += x[_i] * torch.unsqueeze(att_mask[:, _i, :, :], 1) x.append(feat_x) residual_x = torch.cat(x, dim=1) for _j in range(len(self.last_conv)-1): residual_x = self.last_conv[_j](residual_x) out = self.last_conv[-1](residual_x) return att_mask, residual_x, out def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def build_attention_decoder(num_classes, modal_num, backbone, BatchNorm): return AttentionDecoder(num_classes, modal_num, backbone, BatchNorm)
37.78481
98
0.59665
2,601
0.871357
0
0
0
0
0
0
113
0.037856
275bb771b2d649e2d94b8d769d96499bc3dc8e16
2,505
py
Python
src/server/noize_reduction.py
kikuchiken-waseda/MRIVuewer
66cfe30d006b6491a093a9dfab5b538c5e49409e
[ "MIT" ]
null
null
null
src/server/noize_reduction.py
kikuchiken-waseda/MRIVuewer
66cfe30d006b6491a093a9dfab5b538c5e49409e
[ "MIT" ]
23
2020-02-11T19:13:24.000Z
2020-05-16T07:49:43.000Z
src/server/noize_reduction.py
kikuchiken-waseda/MRIVuewer
66cfe30d006b6491a093a9dfab5b538c5e49409e
[ "MIT" ]
null
null
null
import scipy as sp from pyssp.util import ( get_frame, add_signal, compute_avgpowerspectrum ) def writeWav(param, signal, filename): import wave with wave.open(filename, 'wb') as wf: wf.setparams(param) s = sp.int16(signal * 32767.0).tostring() wf.writeframes(s) def jointMap(signal, params, **kwargs): from pyssp.voice_enhancement import JointMap # Setting for JM ntime = kwargs.get('ntime', 300) ratio = kwargs.get('ratio', 0.9) winsize = kwargs.get('winsize', 256) alpha = kwargs.get('alpha', 0.99) constant = kwargs.get('constant', 0.001) window = sp.hanning(winsize) n_pow = compute_avgpowerspectrum( signal[0:winsize * int(params[2] / float(winsize) / (1000.0/ntime))], winsize, window ) nf = int(len(signal) / (winsize / 2) - 1) result = sp.zeros(len(signal), sp.float32) ss = JointMap( winsize, window, alpha=alpha, ratio=ratio, constant=constant ) for no in range(nf): s = get_frame(signal, winsize, no) add_signal(result, ss.compute_by_noise_pow(s, n_pow), winsize, no) return params, result def videoRead(videoclip, winsize=256): from wave import open from os import remove tmp = 'tmp.wav' audioclip = videoclip.audio audioclip.write_audiofile(tmp) with open(tmp) as wf: n = wf.getnframes() frames = wf.readframes(n) params = ( ( wf.getnchannels(), wf.getsampwidth(), wf.getframerate(), wf.getnframes(), wf.getcomptype(), wf.getcompname() ) ) siglen = ((int)(len(frames) / 2 / winsize) + 1) * winsize signal = sp.zeros(siglen, sp.float32) signal[0:int(len(frames) / 2)] = sp.float32( sp.fromstring(frames, sp.int16) ) / 32767.0 remove(tmp) return signal, params def normalization_from_video(fname, outfile, **kwargs): from glob import glob from os import remove from moviepy.editor import VideoFileClip, AudioFileClip tmp = 'tmp.wav' video = VideoFileClip(fname) winsize = kwargs.get('winsize', 256) signal, params = videoRead(video, winsize) kwargs.update({'params': params}) params, result = jointMap(signal, **kwargs) writeWav(params, result, tmp) newAudio = AudioFileClip(tmp) newVideo = video.set_audio(newAudio) newVideo.write_videofile(outfile) remove(tmp) for t in glob('*.mp3'): remove(t)
30.54878
77
0.621158
0
0
0
0
0
0
0
0
102
0.040719
275bf3b0ea75846995ad189f786825044efb445e
4,940
py
Python
chord_rec/harmalysis/classes/scale.py
TianxueHu/ChordSymbolRec
d64a5be4f4914e6f682cb6d4079d7ba8a6fc2eac
[ "Unlicense", "MIT" ]
null
null
null
chord_rec/harmalysis/classes/scale.py
TianxueHu/ChordSymbolRec
d64a5be4f4914e6f682cb6d4079d7ba8a6fc2eac
[ "Unlicense", "MIT" ]
null
null
null
chord_rec/harmalysis/classes/scale.py
TianxueHu/ChordSymbolRec
d64a5be4f4914e6f682cb6d4079d7ba8a6fc2eac
[ "Unlicense", "MIT" ]
null
null
null
''' harmalysis - a language for harmonic analysis and roman numerals Copyright (C) 2020 Nestor Napoles Lopez This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. ''' import harmalysis.common from harmalysis.classes import interval class MajorScale(object): def __init__(self): self._qualities = [ # Starting from I ['P', 'M', 'M', 'P', 'P', 'M', 'M'], # Starting from II ['P', 'M', 'm', 'P', 'P', 'M', 'm'], # Starting from III ['P', 'm', 'm', 'P', 'P', 'm', 'm'], # Starting from IV ['P', 'M', 'M', 'A', 'P', 'M', 'M'], # Starting from V ['P', 'M', 'M', 'P', 'P', 'M', 'm'], # Starting from VI ['P', 'M', 'm', 'P', 'P', 'm', 'm'], # Starting from VII ['P', 'm', 'm', 'P', 'D', 'm', 'm'], ] self._semitones = [ # Starting from I [0, 2, 4, 5, 7, 9, 11], # Starting from II [0, 2, 3, 5, 7, 9, 10], # Starting from III [0, 1, 3, 5, 7, 8, 10], # Starting from IV [0, 2, 4, 6, 7, 9, 11], # Starting from V [0, 2, 4, 5, 7, 9, 10], # Starting from VI [0, 2, 3, 5, 7, 8, 10], # Starting from VII [0, 1, 3, 5, 6, 8, 10], ] def step_to_interval_spelling(self, step, mode=1): qualities = self._qualities[(mode - 1) % harmalysis.common.DIATONIC_CLASSES] quality = qualities[(step - 1) % harmalysis.common.DIATONIC_CLASSES] return interval.IntervalSpelling(quality, step) def step_to_semitones(self, step, mode=1): semitones = self._semitones[(mode - 1) % harmalysis.common.DIATONIC_CLASSES] step_semitones = semitones[(step - 1) % harmalysis.common.DIATONIC_CLASSES] octaves = (step - 1) // harmalysis.common.DIATONIC_CLASSES distance = (12 * octaves) + step_semitones return distance class NaturalMinorScale(MajorScale): def __init__(self): super().__init__() self._qualities = [ ['P', 'M', 'm', 'P', 'P', 'm', 'm'], ['P', 'm', 'm', 'P', 'D', 'm', 'm'], ['P', 'M', 'M', 'P', 'P', 'M', 'M'], ['P', 'M', 'm', 'P', 'P', 'M', 'm'], ['P', 'm', 'm', 'P', 'P', 'm', 'm'], ['P', 'M', 'M', 'A', 'P', 'M', 'M'], ['P', 'M', 'M', 'P', 'P', 'M', 'm'], ] self._semitones = [ [0, 2, 3, 5, 7, 8, 10], [0, 1, 3, 5, 6, 8, 10], [0, 2, 4, 5, 7, 9, 11], [0, 2, 3, 5, 7, 9, 10], [0, 1, 3, 5, 7, 8, 10], [0, 2, 4, 6, 7, 9, 11], [0, 2, 4, 5, 7, 9, 10], ] class HarmonicMinorScale(NaturalMinorScale): def __init__(self): super().__init__() self._qualities = [ ['P', 'M', 'm', 'P', 'P', 'm', 'M'], ['P', 'm', 'm', 'P', 'D', 'M', 'm'], ['P', 'M', 'M', 'P', 'A', 'M', 'M'], ['P', 'M', 'm', 'A', 'P', 'M', 'm'], ['P', 'm', 'M', 'P', 'P', 'm', 'm'], ['P', 'A', 'M', 'A', 'P', 'M', 'M'], ['P', 'm', 'm', 'D', 'D', 'm', 'D'], ] self._semitones = [ [0, 2, 3, 5, 7, 8, 11], [0, 1, 3, 5, 6, 9, 10], [0, 2, 4, 5, 6, 9, 11], [0, 2, 3, 6, 7, 9, 10], [0, 1, 4, 5, 7, 8, 10], [0, 3, 4, 6, 7, 9, 11], [0, 1, 3, 4, 6, 8, 9], ] class AscendingMelodicMinorScale(HarmonicMinorScale): def __init__(self): super().__init__() self._qualities = [ ['P', 'M', 'm', 'P', 'P', 'M', 'M'], ['P', 'm', 'm', 'P', 'P', 'M', 'm'], ['P', 'M', 'M', 'A', 'A', 'M', 'M'], ['P', 'M', 'M', 'A', 'P', 'M', 'm'], ['P', 'M', 'M', 'P', 'P', 'm', 'm'], ['P', 'M', 'm', 'P', 'D', 'm', 'm'], ['P', 'm', 'm', 'D', 'D', 'm', 'm'], ] self._semitones = [ [0, 2, 3, 5, 7, 9, 11], [0, 1, 3, 5, 7, 9, 10], [0, 2, 4, 6, 8, 9, 11], [0, 2, 4, 6, 7, 9, 10], [0, 2, 4, 5, 7, 8, 10], [0, 2, 3, 5, 6, 8, 10], [0, 1, 3, 4, 6, 8, 10] ]
35.285714
84
0.411943
4,088
0.82753
0
0
0
0
0
0
1,615
0.326923
275c01a7663aa8d447750578c192b3d7fd40d88b
1,335
py
Python
airq/api/crypto.py
dwightmulcahy/airq
82e97825f70852d7fab973e498ef71345e1ed422
[ "MIT" ]
6
2020-11-25T10:34:52.000Z
2022-02-18T22:22:12.000Z
airq/api/crypto.py
dwightmulcahy/airq
82e97825f70852d7fab973e498ef71345e1ed422
[ "MIT" ]
6
2021-10-15T06:49:14.000Z
2021-11-09T20:30:01.000Z
airq/api/crypto.py
dwightmulcahy/airq
82e97825f70852d7fab973e498ef71345e1ed422
[ "MIT" ]
2
2021-04-18T03:11:35.000Z
2022-01-01T23:02:51.000Z
import hashlib from Crypto.Cipher import AES class Crypto: SALT = "@uhooinc.com" def __init__(self, clientCode): self.key = hashlib.md5( clientCode.encode("utf-8") ).digest() # initialization key self.length = AES.block_size # Initialize the block size self.aes = AES.new( self.key, AES.MODE_ECB ) # Initialize AES, an instance of ECB mode # Truncate function to remove padded characters self.unpad = lambda date: date[0 : -ord(date[-1])] def pad(self, text): """ Fill the function so that the bytecode length of the encrypted data is an integer multiple of block_size """ text = str(text, encoding="utf-8") count = len(text) add = self.length - (count % self.length) entext = text + (chr(add) * add) return bytes(entext, encoding="utf-8") def encrypt(self, uid, password): passwordSalted = uid + password + Crypto.SALT passwordHashed = ( hashlib.sha256(passwordSalted.encode("utf-8")).hexdigest().encode("utf-8") ) res = self.aes.encrypt(self.pad(passwordHashed)) return res def decrypt(self, decrData): res = decrData msg = self.aes.decrypt(res).decode("utf8") return self.unpad(msg)
32.560976
112
0.597753
1,287
0.964045
0
0
0
0
0
0
318
0.238202
275c77321e139727fd234a2be346f888681c1954
8,350
py
Python
idaes/apps/caprese/examples/cstr_rodrigo/nmpc_main.py
Robbybp/idaes-pse
8a41dbd05819f82806cf17a6e5f06aef79a775e3
[ "RSA-MD" ]
null
null
null
idaes/apps/caprese/examples/cstr_rodrigo/nmpc_main.py
Robbybp/idaes-pse
8a41dbd05819f82806cf17a6e5f06aef79a775e3
[ "RSA-MD" ]
2
2021-08-18T19:42:02.000Z
2021-10-22T04:44:31.000Z
idaes/apps/caprese/examples/cstr_rodrigo/nmpc_main.py
Robbybp/idaes-pse
8a41dbd05819f82806cf17a6e5f06aef79a775e3
[ "RSA-MD" ]
1
2021-03-17T20:31:17.000Z
2021-03-17T20:31:17.000Z
############################################################################## # Institute for the Design of Advanced Energy Systems Process Systems # Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the # software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia # University Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and # license information, respectively. Both files are also available online # at the URL "https://github.com/IDAES/idaes-pse". ############################################################################## """ Example for Caprese's module for NMPC. Main script for running the example. """ import random from idaes.apps.caprese.dynamic_builder import DynamicSim from idaes.apps.caprese.util import apply_noise_with_bounds from pyomo.environ import SolverFactory, Reference from pyomo.dae.initialization import solve_consistent_initial_conditions import idaes.logger as idaeslog from idaes.apps.caprese.examples.cstr_rodrigo.cstr_rodrigo_model import make_model from idaes.apps.caprese.data_manager import PlantDataManager from idaes.apps.caprese.data_manager import ControllerDataManager from idaes.apps.caprese.plotlibrary import ( plot_setpoint_tracking_results, plot_control_input) __author__ = "Kuan-Han Lin" # See if ipopt is available and set up solver if SolverFactory('ipopt').available(): solver = SolverFactory('ipopt') solver.options = { 'tol': 1e-6, 'bound_push': 1e-8, 'halt_on_ampl_error': 'yes', 'linear_solver': 'ma57', } else: solver = None def main(): m_controller = make_model(horizon=10, ntfe=5, ntcp=2, bounds=True) sample_time = 2. m_plant = make_model(horizon=sample_time, ntfe=2, ntcp=2, bounds = True) time_plant = m_plant.t simulation_horizon = 20 n_samples_to_simulate = round(simulation_horizon/sample_time) samples_to_simulate = [time_plant.first() + i*sample_time for i in range(1, n_samples_to_simulate)] # We must identify for the controller which variables are our # inputs and measurements. inputs = [ m_plant.Tjinb[0], ] measurements = [ m_plant.Tall[0, "T"], m_plant.Tall[0, "Tj"], m_plant.Ca[0], ] # Construct the "NMPC simulator" object nmpc = DynamicSim( plant_model=m_plant, plant_time_set=m_plant.t, controller_model=m_controller, controller_time_set=m_controller.t, inputs_at_t0=inputs, measurements_at_t0=measurements, sample_time=sample_time, ) plant = nmpc.plant controller = nmpc.controller p_t0 = nmpc.plant.time.first() c_t0 = nmpc.controller.time.first() p_ts = nmpc.plant.sample_points[1] c_ts = nmpc.controller.sample_points[1] #-------------------------------------------------------------------------- # Declare variables of interest for plotting. # It's ok not declaring anything. The data manager will still save some # important data. states_of_interest = [Reference(nmpc.plant.mod.Ca[:]), Reference(nmpc.plant.mod.Tall[:, "T"])] plant_data= PlantDataManager(plant, states_of_interest) controller_data= ControllerDataManager(controller, states_of_interest) #-------------------------------------------------------------------------- solve_consistent_initial_conditions(plant, plant.time, solver) solve_consistent_initial_conditions(controller, controller.time, solver) # We now perform the "RTO" calculation: Find the optimal steady state # to achieve the following setpoint setpoint = [(controller.mod.Ca[0], 0.018)] setpoint_weights = [(controller.mod.Ca[0], 1.)] # nmpc.controller.add_setpoint_objective(setpoint, setpoint_weights) # nmpc.controller.solve_setpoint(solver) nmpc.controller.add_single_time_optimization_objective(setpoint, setpoint_weights) nmpc.controller.solve_single_time_optimization(solver, ic_type = "measurement_var", require_steady = True, load_setpoints = True) # Now we are ready to construct the tracking NMPC problem tracking_weights = [ *((v, 1.) for v in nmpc.controller.vectors.differential[:,0]), *((v, 1.) for v in nmpc.controller.vectors.input[:,0]), ] nmpc.controller.add_tracking_objective(tracking_weights) nmpc.controller.constrain_control_inputs_piecewise_constant() nmpc.controller.initialize_to_initial_conditions() # Solve the first control problem nmpc.controller.vectors.input[...].unfix() nmpc.controller.vectors.input[:,0].fix() solver.solve(nmpc.controller, tee=True) controller_data.save_controller_data(iteration = 0) #------------------------------------------------------------------------- #noise for measurements variance = [ (nmpc.controller.mod.Tall[0, "T"], 0.05), (nmpc.controller.mod.Tall[0, "Tj"], 0.02), (nmpc.controller.mod.Ca[0], 1.0E-5), ] nmpc.controller.set_variance(variance) measurement_variance = [ v.variance for v in controller.MEASUREMENT_BLOCK[:].var ] measurement_noise_bounds = [ (var[c_t0].lb, var[c_t0].ub) for var in controller.MEASUREMENT_BLOCK[:].var ] # noise for inputs variance = [ (plant.mod.Tjinb[0], 0.01), ] nmpc.plant.set_variance(variance) input_variance = [v.variance for v in plant.INPUT_BLOCK[:].var] input_noise_bounds = [ (var[p_t0].lb, var[p_t0].ub) for var in plant.INPUT_BLOCK[:].var ] random.seed(246) #------------------------------------------------------------------------- # Extract inputs from controller and inject them into plant inputs = controller.generate_inputs_at_time(c_ts) plant.inject_inputs(inputs) plant_data.save_initial_plant_data() # This "initialization" really simulates the plant with the new inputs. nmpc.plant.initialize_by_solving_elements(solver) nmpc.plant.vectors.input[...].fix() #Fix the input to solve the plant solver.solve(nmpc.plant, tee = True) plant_data.save_plant_data(iteration = 0) for i in range(1, n_samples_to_simulate +1): print('\nENTERING NMPC LOOP ITERATION %s\n' % i) measured = nmpc.plant.generate_measurements_at_time(p_ts) nmpc.plant.advance_one_sample() nmpc.plant.initialize_to_initial_conditions() measured = apply_noise_with_bounds( measured, measurement_variance, random.gauss, measurement_noise_bounds, ) nmpc.controller.advance_one_sample() nmpc.controller.load_initial_conditions(measured) solver.solve(nmpc.controller, tee=True) controller_data.save_controller_data(iteration = i) inputs = controller.generate_inputs_at_time(c_ts) inputs = apply_noise_with_bounds( inputs, input_variance, random.gauss, input_noise_bounds, ) plant.inject_inputs(inputs) nmpc.plant.initialize_by_solving_elements(solver) nmpc.plant.vectors.input[...].fix() #Fix the input to solve the plant solver.solve(nmpc.plant, tee = True) plant_data.save_plant_data(iteration = i) plot_setpoint_tracking_results(states_of_interest, plant_data.plant_df, controller_data.setpoint_df) inputs_to_plot = [Reference(nmpc.plant.mod.Tjinb[:])] plot_control_input(inputs_to_plot, plant_data.plant_df) return nmpc, plant_data, controller_data if __name__ == '__main__': nmpc, plant_data, controller_data = main()
38.127854
82
0.623713
0
0
0
0
0
0
0
0
2,174
0.260359
275e2811cd73b93eae3878d64929106994338a2d
1,642
py
Python
apps/scheduler/migrations/0008_current_task.py
techlib/czechelib-stats
ca132e326af0924740a525710474870b1fb5fd37
[ "MIT" ]
1
2019-12-12T15:38:42.000Z
2019-12-12T15:38:42.000Z
apps/scheduler/migrations/0008_current_task.py
techlib/czechelib-stats
ca132e326af0924740a525710474870b1fb5fd37
[ "MIT" ]
null
null
null
apps/scheduler/migrations/0008_current_task.py
techlib/czechelib-stats
ca132e326af0924740a525710474870b1fb5fd37
[ "MIT" ]
null
null
null
# Generated by Django 3.1.3 on 2020-11-23 15:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('scheduler', '0007_fetchintention_one_to_one_attempt'), ] operations = [ migrations.AddField( model_name='scheduler', name='current_celery_task_id', field=models.UUIDField(blank=True, null=True), ), migrations.AddField( model_name='scheduler', name='current_intention', field=models.OneToOneField( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='current_scheduler', to='scheduler.fetchintention', ), ), migrations.AddField( model_name='scheduler', name='current_start', field=models.DateTimeField(blank=True, null=True), ), migrations.AlterField( model_name='fetchintention', name='scheduler', field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='intentions', to='scheduler.scheduler', ), ), migrations.AlterField( model_name='fetchintention', name='when_processed', field=models.DateTimeField( blank=True, help_text='When fetch intention was processed', null=True ), ), ]
30.407407
85
0.54933
1,516
0.923264
0
0
0
0
0
0
362
0.220463
275e8507ce35dccac0615b8d962c545d75b3823a
2,555
py
Python
connect_four/transposition/sqlite_transposition_table_test.py
rpachauri/connect4
6caf6965afaaff6883193ac295c6ac5b1f4e9c4a
[ "MIT" ]
null
null
null
connect_four/transposition/sqlite_transposition_table_test.py
rpachauri/connect4
6caf6965afaaff6883193ac295c6ac5b1f4e9c4a
[ "MIT" ]
null
null
null
connect_four/transposition/sqlite_transposition_table_test.py
rpachauri/connect4
6caf6965afaaff6883193ac295c6ac5b1f4e9c4a
[ "MIT" ]
null
null
null
import unittest import gym import numpy as np from connect_four.hashing import TicTacToeHasher from connect_four.transposition.sqlite_transposition_table import SQLiteTranspositionTable class TestSQLiteTranspositionTable(unittest.TestCase): def setUp(self) -> None: self.env = gym.make('tic_tac_toe-v0') def test_save_and_retrieve(self): self.env.state = np.array([ [ [0, 0, 0, ], [0, 0, 0, ], [0, 0, 0, ], ], [ [0, 0, 0, ], [0, 0, 0, ], [0, 0, 0, ], ], ]) transposition = TicTacToeHasher(self.env).hash() tt = SQLiteTranspositionTable(database_file=":memory:") want_phi, want_delta = 1, 1 tt.save(transposition=transposition, phi=want_phi, delta=want_delta) self.assertIn(transposition, tt) got_phi, got_delta = tt.retrieve(transposition=transposition) self.assertEqual(want_phi, got_phi) self.assertEqual(want_delta, got_delta) def test_overwrite_save(self): self.env.state = np.array([ [ [0, 0, 0, ], [0, 0, 0, ], [0, 0, 0, ], ], [ [0, 0, 0, ], [0, 0, 0, ], [0, 0, 0, ], ], ]) transposition = TicTacToeHasher(self.env).hash() tt = SQLiteTranspositionTable(database_file=":memory:") tt.save(transposition=transposition, phi=1, delta=1) want_phi, want_delta = 2, 2 tt.save(transposition=transposition, phi=want_phi, delta=want_delta) got_phi, got_delta = tt.retrieve(transposition=transposition) self.assertEqual(want_phi, got_phi) self.assertEqual(want_delta, got_delta) def test_close_and_reload(self): self.env.state = np.array([ [ [0, 0, 0, ], [0, 0, 0, ], [0, 0, 0, ], ], [ [0, 0, 0, ], [0, 0, 0, ], [0, 0, 0, ], ], ]) transposition = TicTacToeHasher(self.env).hash() tt = SQLiteTranspositionTable(database_file="sqlite_test.db") tt.save(transposition=transposition, phi=1, delta=1) tt.close() tt2 = SQLiteTranspositionTable(database_file="sqlite_test.db") self.assertIn(transposition, tt2) tt2.close() if __name__ == '__main__': unittest.main()
30.416667
90
0.523288
2,315
0.906067
0
0
0
0
0
0
78
0.030528
275ea88f14a647fe3701cbe45b6f30ea2d89fba6
1,226
py
Python
test/unittests/study/mri/test_mc.py
szho42/banana
131804803e6293716e9d11cbb6f3ca244b2931f9
[ "Apache-2.0" ]
null
null
null
test/unittests/study/mri/test_mc.py
szho42/banana
131804803e6293716e9d11cbb6f3ca244b2931f9
[ "Apache-2.0" ]
null
null
null
test/unittests/study/mri/test_mc.py
szho42/banana
131804803e6293716e9d11cbb6f3ca244b2931f9
[ "Apache-2.0" ]
null
null
null
from nipype import config config.enable_debug_mode() from banana.testing import BaseTestCase as TestCase # @IgnorePep8 @Reimport # from banana.study.multimodal.test_motion_detection import ( # @IgnorePep8 @Reimport # MotionDetection, inputs) from banana.study.multimodal.mrpet import create_motion_correction_class # @IgnorePep8 @Reimport ref = 'ref' ref_type = 't1' t1s = ['ute'] t2s = ['t2'] epis = ['epi'] dwis = [['dwi_main', '0'], ['dwi_opposite', '-1']] class TestMC(TestCase): # def test_epi_mc(self): # # study = self.create_study( # MotionDetection, 'MotionDetection', inputs=inputs, # enforce_inputs=False) # study.data('motion_detection_output') # self.assertFilesetCreated('motion_detection_output', study.name) def test_motion_correction(self): MotionCorrection, inputs, out_data = create_motion_correction_class( 'MotionCorrection', ref, ref_type, t1s=t1s, t2s=t2s, dwis=dwis, epis=epis) study = self.create_study( MotionCorrection, 'MotionCorrection', inputs=inputs, enforce_inputs=False) study.data(out_data) self.assertFilesetCreated(out_data, study.name)
32.263158
97
0.681892
754
0.615008
0
0
0
0
0
0
539
0.439641
275f0b6cee294c3156bfba77754c517b6dc76211
162
py
Python
dgbpy/__init__.py
maxprop/dgbpy
05d0900b0fb2cb612b298c8c78f0f84640a38c4e
[ "Apache-2.0" ]
7
2021-11-18T18:03:46.000Z
2022-02-09T06:55:50.000Z
dgbpy/__init__.py
maxprop/dgbpy
05d0900b0fb2cb612b298c8c78f0f84640a38c4e
[ "Apache-2.0" ]
null
null
null
dgbpy/__init__.py
maxprop/dgbpy
05d0900b0fb2cb612b298c8c78f0f84640a38c4e
[ "Apache-2.0" ]
1
2022-03-18T06:55:55.000Z
2022-03-18T06:55:55.000Z
# # (C) dGB Beheer B.V.; (LICENSE) http://opendtect.org/OpendTect_license.txt # AUTHOR : Bert # DATE : August 2018 # # Module init # __version__ = '1.0.0'
16.2
75
0.635802
0
0
0
0
0
0
0
0
139
0.858025
27616031c83ae4189c96219a4ca18b7e0e254aed
1,052
py
Python
tests/test_country_service.py
gothill/python-fedex
62dc8f554babd7066d6c6e7c478944f30fc2b75b
[ "BSD-3-Clause" ]
100
2016-01-22T23:46:10.000Z
2022-03-26T05:00:53.000Z
tests/test_country_service.py
gothill/python-fedex
62dc8f554babd7066d6c6e7c478944f30fc2b75b
[ "BSD-3-Clause" ]
77
2016-01-19T06:10:22.000Z
2022-03-26T06:04:14.000Z
tests/test_country_service.py
gothill/python-fedex
62dc8f554babd7066d6c6e7c478944f30fc2b75b
[ "BSD-3-Clause" ]
102
2016-02-08T23:28:45.000Z
2022-02-28T11:37:27.000Z
""" Test module for the Fedex CountryService WSDL. """ import unittest import logging import sys sys.path.insert(0, '..') from fedex.services.country_service import FedexValidatePostalRequest # Common global config object for testing. from tests.common import get_fedex_config CONFIG_OBJ = get_fedex_config() logging.getLogger('suds').setLevel(logging.ERROR) logging.getLogger('fedex').setLevel(logging.INFO) @unittest.skipIf(not CONFIG_OBJ.account_number, "No credentials provided.") class PackageMovementServiceTests(unittest.TestCase): """ These tests verify that the country service WSDL is in good shape. """ def test_postal_inquiry(self): inquiry = FedexValidatePostalRequest(CONFIG_OBJ) inquiry.Address.PostalCode = '29631' inquiry.Address.CountryCode = 'US' inquiry.send_request() assert inquiry.response assert inquiry.response.HighestSeverity == 'SUCCESS' if __name__ == "__main__": logging.basicConfig(stream=sys.stdout, level=logging.INFO) unittest.main()
25.658537
75
0.742395
447
0.424905
0
0
523
0.497148
0
0
251
0.238593
27621f7f93d71cdc400cae5017e3588d01c3c114
3,730
py
Python
setup_tools/getkucore.py
dougmassay/kindleunpack-calibre-plugin
906fc3820a9b1c179fc754ae5774ebe689a61419
[ "Unlicense", "MIT" ]
101
2015-03-24T10:29:15.000Z
2022-03-25T07:15:45.000Z
setup_tools/getkucore.py
dougmassay/kindleunpack-calibre-plugin
906fc3820a9b1c179fc754ae5774ebe689a61419
[ "Unlicense", "MIT" ]
3
2016-09-14T10:47:02.000Z
2018-01-09T13:32:29.000Z
setup_tools/getkucore.py
dougmassay/kindleunpack-calibre-plugin
906fc3820a9b1c179fc754ae5774ebe689a61419
[ "Unlicense", "MIT" ]
13
2015-09-28T07:05:18.000Z
2022-02-13T15:16:13.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab from __future__ import unicode_literals, division, absolute_import, print_function import os import sys import shutil import inspect import glob import zipfile import pythonpatch if sys.version_info >= (3,): import urllib else: import urllib2 SCRIPT_DIR = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) SOURCE_DIR = os.path.dirname(SCRIPT_DIR) COMMIT_SHA = 'c8be31a196fd92803f78ad34a3f18d40319bbac5' # REMOTE_URL = 'https://github.com/kevinhendricks/KindleUnpack/archive/master.zip' REMOTE_URL = 'https://github.com/kevinhendricks/KindleUnpack/archive/{}.zip'.format(COMMIT_SHA) # FILE_NAME = os.path.join(SCRIPT_DIR, REMOTE_URL.split('/')[-1]) FILE_NAME = os.path.join(SCRIPT_DIR, 'KindleUnpack-{}'.format(REMOTE_URL.split('/')[-1])) # CORE_DIR = 'KindleUnpack-master/lib/' CORE_DIR = 'KindleUnpack-{}/lib'.format(COMMIT_SHA) CORE_EXCLUDES = ['askfolder_ed.py', 'mobiml2xhtml.py', 'prefs.py', 'scrolltextwidget.py'] TARGET_DIR = os.path.join(SOURCE_DIR, 'kindleunpackcore') def retrieveKindleUnpack(): if os.path.exists(FILE_NAME) and os.path.isfile(FILE_NAME): os.remove(FILE_NAME) if sys.version_info >= (3,): def reporthook(blocknum, blocksize, totalsize): readsofar = blocknum * blocksize if totalsize > 0: percent = readsofar * 1e2 / totalsize s = "\r%5.1f%% %*d / %d" % ( percent, len(str(totalsize)), readsofar, totalsize) sys.stderr.write(s) if readsofar >= totalsize: # near the end sys.stderr.write("\n") else: # total size is unknown sys.stderr.write("read %d\n" % (readsofar,)) urllib.request.urlretrieve(REMOTE_URL, FILE_NAME, reporthook) else: u = urllib2.urlopen(REMOTE_URL) meta = u.info() file_size = int(meta.getheaders("Content-Length")[0]) with open(FILE_NAME, 'wb') as f: print('Downloading: %s Bytes: %s' % (FILE_NAME, file_size)) file_size_dl = 0 block_sz = 8192 while True: buffer = u.read(block_sz) if not buffer: break file_size_dl += len(buffer) f.write(buffer) status = r'%10d [%3.2f%%]' % (file_size_dl, file_size_dl * 100. / file_size) status = status + chr(8)*(len(status)+1) print(status), retrieveKindleUnpack() if os.path.exists(TARGET_DIR) and os.path.isdir(TARGET_DIR): shutil.rmtree(TARGET_DIR) os.mkdir(TARGET_DIR) with zipfile.ZipFile(FILE_NAME) as zip_file: for member in zip_file.namelist(): if member.startswith(CORE_DIR): name = os.path.basename(member) if not name or name in CORE_EXCLUDES: continue source = zip_file.open(member) target = open(os.path.join(TARGET_DIR, name), "wb") with source, target: shutil.copyfileobj(source, target) # Patch kindleunpack.py, mobi_nav.py print('Attempting to patch KindleUnpack file(s) ...') patchfiles = glob.glob('*.patch') for patch in patchfiles: parsedPatchSet = pythonpatch.fromfile(patch) if parsedPatchSet is not False: if parsedPatchSet.apply(): print(parsedPatchSet.diffstat()) else: os.chdir('..') sys.exit('Cannot apply patch to KindleUnpack file(s)!') else: os.chdir('..') sys.exit('Cannot parse patch file(s)!') if os.path.exists(FILE_NAME) and os.path.isfile(FILE_NAME): os.remove(FILE_NAME)
36.930693
95
0.627346
0
0
0
0
0
0
0
0
821
0.220107
2764c5afd2309a3e37c20e039e1d0182465889f2
5,696
py
Python
pymoku/_oscilloscope_data.py
liquidinstruments/pymoku
a10c2516e5953722a5f5b52aec7944bec22492c2
[ "MIT" ]
11
2016-10-11T04:37:14.000Z
2021-09-10T02:34:03.000Z
pymoku/_oscilloscope_data.py
liquidinstruments/pymoku
a10c2516e5953722a5f5b52aec7944bec22492c2
[ "MIT" ]
8
2017-06-02T18:19:49.000Z
2020-09-07T06:15:53.000Z
pymoku/_oscilloscope_data.py
liquidinstruments/pymoku
a10c2516e5953722a5f5b52aec7944bec22492c2
[ "MIT" ]
11
2018-07-12T04:18:40.000Z
2022-03-04T10:10:48.000Z
import struct from pymoku import _frame_instrument _OSC_SCREEN_WIDTH = 1024 class VoltsData(_frame_instrument.InstrumentData): """ Object representing a frame of dual-channel data in units of Volts, and time in units of seconds. This is the native output format of the :any:`Oscilloscope` instrument. The *waveformid* property enables identification of uniqueness of a frame of data, as it is possible to retrieve the same data more than once (i.e. if the instrument has been paused). This object should not be instantiated directly, but will be returned by a call to :any:`get_data <pymoku.instruments.Oscilloscope.get_data>` or :any:`get_realtime_data <pymoku.instruments.Oscilloscope.get_realtime_data>` on the associated :any:`Oscilloscope` instrument. .. autoinstanceattribute:: pymoku._frame_instrument.VoltsData.ch1 :annotation: = [CH1_DATA] .. autoinstanceattribute:: pymoku._frame_instrument.VoltsData.ch2 :annotation: = [CH2_DATA] .. autoinstanceattribute:: pymoku._frame_instrument.VoltsData.time :annotation: = [TIME] .. autoinstanceattribute:: pymoku._frame_instrument.VoltsData.waveformid :annotation: = n """ def __init__(self, instrument, scales): super(VoltsData, self).__init__(instrument) # : Channel 1 data array in units of Volts. Present whether or not the # channel is enabled, but the # : contents are undefined in the latter case. self.ch1 = [] #: Channel 2 data array in units of Volts. self.ch2 = [] #: Timebase self.time = [] self._scales = scales def __json__(self): return {'ch1': self.ch1, 'ch2': self.ch2, 'time': self.time, 'waveform_id': self.waveformid} def process_complete(self): super(VoltsData, self).process_complete() if self._stateid not in self._scales: return scales = self._scales[self._stateid] scale_ch1 = scales['scale_ch1'] scale_ch2 = scales['scale_ch2'] t1 = scales['time_min'] ts = scales['time_step'] try: smpls = int(len(self._raw1) / 4) dat = struct.unpack('<' + 'i' * smpls, self._raw1) dat = [x if x != -0x80000000 else None for x in dat] self._ch1_bits = [float(x) if x is not None else None for x in dat[:_OSC_SCREEN_WIDTH]] self.ch1 = [x * scale_ch1 if x is not None else None for x in self._ch1_bits] smpls = int(len(self._raw2) / 4) dat = struct.unpack('<' + 'i' * smpls, self._raw2) dat = [x if x != -0x80000000 else None for x in dat] self._ch2_bits = [float(x) if x is not None else None for x in dat[:_OSC_SCREEN_WIDTH]] self.ch2 = [x * scale_ch2 if x is not None else None for x in self._ch2_bits] except (IndexError, TypeError, struct.error): # If the data is bollocksed, force a reinitialisation on next # packet self._frameid = None self._complete = False self.time = [t1 + (x * ts) for x in range(_OSC_SCREEN_WIDTH)] return True def process_buffer(self): # Compute the x-axis of the buffer if self._stateid not in self._scales: return scales = self._scales[self._stateid] self.time = [scales['buff_time_min'] + (scales['buff_time_step'] * x) for x in range(len(self.ch1))] return True def _get_timescale(self, tspan): # Returns a scaling factor and units for time 'T' if(tspan < 1e-6): scale_str = 'ns' scale_const = 1e9 elif (tspan < 1e-3): scale_str = 'us' scale_const = 1e6 elif (tspan < 1): scale_str = 'ms' scale_const = 1e3 else: scale_str = 's' scale_const = 1.0 return [scale_str, scale_const] def _get_xaxis_fmt(self, x, pos): # This function returns a format string for the x-axis ticks and # x-coordinates along the time scale. Use this to set an x-axis format # during plotting of Oscilloscope frames if self._stateid not in self._scales: return scales = self._scales[self._stateid] ts = scales['time_step'] tscale_str, tscale_const = self._get_timescale(ts * _OSC_SCREEN_WIDTH) return {'xaxis': '%.1f %s' % (x * tscale_const, tscale_str), 'xcoord': '%.3f %s' % (x * tscale_const, tscale_str)} def get_xaxis_fmt(self, x, pos): """ Function suitable to use as argument to a matplotlib FuncFormatter for X (time) axis """ return self._get_xaxis_fmt(x, pos)['xaxis'] def get_xcoord_fmt(self, x): """ Function suitable to use as argument to a matplotlib FuncFormatter for X (time) coordinate """ return self._get_xaxis_fmt(x, None)['xcoord'] def _get_yaxis_fmt(self, y, pos): return {'yaxis': '%.1f %s' % (y, 'V'), 'ycoord': '%.3f %s' % (y, 'V')} def get_yaxis_fmt(self, y, pos): """ Function suitable to use as argument to a matplotlib FuncFormatter for Y (voltage) axis """ return self._get_yaxis_fmt(y, pos)['yaxis'] def get_ycoord_fmt(self, y): """ Function suitable to use as argument to a matplotlib FuncFormatter for Y (voltage) coordinate """ return self._get_yaxis_fmt(y, None)['ycoord']
35.6
78
0.596208
5,615
0.985779
0
0
0
0
0
0
2,298
0.403441
2764e8cf2af125cde1e1dea98f00be38d0e21369
6,205
py
Python
FlightRisingColiseum/Bot_FR.py
Eternal05/Flightrising-Coliseum-Bot
8f4895ff8a2d5533fe6a6546e09361738fd54910
[ "MIT" ]
1
2021-05-17T02:52:40.000Z
2021-05-17T02:52:40.000Z
FlightRisingColiseum/Bot_FR.py
Eternal05/Flightrising-Coliseum-Bot
8f4895ff8a2d5533fe6a6546e09361738fd54910
[ "MIT" ]
null
null
null
FlightRisingColiseum/Bot_FR.py
Eternal05/Flightrising-Coliseum-Bot
8f4895ff8a2d5533fe6a6546e09361738fd54910
[ "MIT" ]
null
null
null
import os from PIL import ImageGrab import time import win32api, win32con from PIL import ImageOps from numpy import * import pyautogui import random from ctypes import windll user32 = windll.user32 user32.SetProcessDPIAware() #some sort of DPS problem unrelated to project #this stops the images from being cut off while using screengrab # ------------------ x_pad = 475 #These pads is so it works for different resolutions. Instead of y_pad = 699 #changing all the coordinates, other users of the bot would just #have to adjust the pads using screenGrab() defined further below class Cord: #All important coordinates that are checked often are stored here mainmenu = (835, 893) attack = (922, 806) scratch = (1106, 835) shred = (919, 950) attacker1 = (974, 177) hpattacker1 = (924, 13) attacker2 = (1091, 331) hpattacker2 = (1044, 147) attacker3 = (1223, 477) hpattacker3 = (1164, 305) attacker4 = (1031, 265) hpattacker4 = (984, 67) attacker5 = (1145, 433) hpattacker5 = (1104, 227) boss = (1007, 292) hpboss = (893, 67) def screenGrab(): #Originally used as a tool to get x_pad and y_pad #Currently used to scan the for RGB values in startGame(). See previous versions in journal box = (x_pad+1,y_pad+1,x_pad+1371,y_pad+1220) im = ImageGrab.grab(box) hm = im.getpixel(Cord.hpboss) #put any coordinate u want print(hm) return im def leftClick(): #just for clicking win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN,0,0) #Press left click time.sleep(.1) #delays win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP,0,0) #Release left click print('Click') def mousePos(cord): #Moves the mouse to the given coordinates. This changed a lot, see previous versions in journal pyautogui.moveTo(x_pad + cord[0] + random.randint(0, 20), y_pad + cord[1] + random.randint(0, 20), duration=0.25) #Receives coordinates given in startGame(), goes to location taking into account the pads #random.randint(0,20) randomizes the coordinates a bit to avoid bot detection def get_cords(): #Tool that was used to get the coordinates of all the buttons and attackers in the game. #No longer used now that the bot is completed x,y = win32api.GetCursorPos() x = x - x_pad #Takes into account pads, like all the other functions y = y - y_pad print(x,y) # ------------------ def startGame(): #Start of the main function wait = 0 #Used and explained further below while x_pad == 475: #Just needed this to loop forever so picked random variable #location of first menu mousePos((257, 559)) leftClick() leftClick() time.sleep(1.5) #location of second menu mousePos((489, 771)) leftClick() time.sleep(3.5) while x_pad == 475: #Loop for the actual game once past menus x = round(random.uniform(0, 0.2),2) #Generates random float that'll be added to randomize wait intervals screenGrab() s = screenGrab() #Takes picture of the screen and assigns it to s if s.getpixel((205, 57)) == (93, 94, 134): #Checks if bot got past the menu, good for checking 'camping' (explained in journal) wait = 0 #Resets the counter for amount of times 'waiting', used farther below if s.getpixel(Cord.mainmenu) == (222, 214, 202): #Checks if coordinates of mainmenu match RGB value. If so, that means this menu popped up, and level is complete #The coordinates & RGB values are from using get_cords() & screenGrab() as tools. Check journal for how print('level complete') mousePos((811, 822)) #Goes to the button that sends us back to the mainmenu leftClick() time.sleep(1.4 + x) #Pauses after clicking for 1.4 + (randomized number) seconds break #Breaks out of this loop to go back to the menu loop #All the other if statements have the same idea as the above if statement if s.getpixel(Cord.attack) == (236, 234, 231): wait=0 print('attacking') mousePos(Cord.attack) leftClick() time.sleep(0.1 + x) screenGrab() s = screenGrab() #Important screen change here, picture of screen taken again if s.getpixel(Cord.shred) == (214, 172, 99): #Special attack option mousePos(Cord.shred) leftClick() time.sleep(0.4 + x) else: mousePos(Cord.scratch) #Normal attack option leftClick() time.sleep(0.4 + x) if s.getpixel(Cord.hpattacker1) == (49, 61, 48): mousePos(Cord.attacker1) leftClick() time.sleep(1.2+ x) elif s.getpixel(Cord.hpattacker2) == (49, 61, 48): mousePos(Cord.attacker2) leftClick() time.sleep(1.2 + x) elif s.getpixel(Cord.hpattacker3) == (49, 61, 48): mousePos(Cord.attacker3) leftClick() time.sleep(1.2 + x) elif s.getpixel(Cord.hpattacker4) == (49, 61, 48): mousePos(Cord.attacker4) leftClick() time.sleep(1.2 + x) elif s.getpixel(Cord.hpattacker5) == (49, 61, 48): mousePos(Cord.attacker5) leftClick() time.sleep(1.2 + x) elif s.getpixel(Cord.hpboss) == (10, 10, 13): mousePos(Cord.boss) leftClick() time.sleep(1.2 + x) else: #If no hp bars or attack buttons are detected, page is probably loading or enemies are attacking wait = wait+1 #Wait counter goes up 1 every loop print('waiting') if wait == 15: #If computer waited 15 consecutive times, something must've went wrong. So, program exits exit() time.sleep(2) #Pauses for 2 seconds to wait, then loops back to recheck if they're hp bars or attack buttons
34.859551
134
0.604674
538
0.086704
0
0
0
0
0
0
2,516
0.405479
2764ee38e5ee492d56a5166db4a12d098e304e48
6,047
py
Python
models/layers.py
RemiDelaunay/DeepUSE
fea4220d53583fe3d4e63c870a62b04deb005eda
[ "MIT" ]
2
2021-08-19T07:40:35.000Z
2022-01-14T18:55:58.000Z
models/layers.py
RemiDelaunay/DeepUSE
fea4220d53583fe3d4e63c870a62b04deb005eda
[ "MIT" ]
null
null
null
models/layers.py
RemiDelaunay/DeepUSE
fea4220d53583fe3d4e63c870a62b04deb005eda
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class ConvLSTMCell(nn.Module): """ Generate a convolutional LSTM cell Adapted from "RVOS: End-to-End Recurrent Network for Video Object Segmentation" """ def __init__(self, input_size, hidden_size, kernel_size=3, padding=1): super(ConvLSTMCell,self).__init__() self.use_gpu = True self.input_size = input_size self.hidden_size = hidden_size self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, kernel_size, padding=padding) def forward(self, input_, prev_state): # get batch and spatial sizes batch_size = input_.data.size()[0] spatial_size = input_.data.size()[2:] if prev_state is None: state_size = [batch_size, self.hidden_size] + list(spatial_size) if self.use_gpu: prev_state = ( Variable(torch.zeros(state_size)).cuda(), Variable(torch.zeros(state_size)).cuda() ) else: prev_state = ( Variable(torch.zeros(state_size)), Variable(torch.zeros(state_size)) ) prev_hidden, prev_cell = prev_state # data size is [batch, channel, height, width] stacked_inputs = torch.cat([input_, prev_hidden], 1) gates = self.Gates(stacked_inputs) # chunk across channel dimension in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1) # apply sigmoid non linearity in_gate = F.sigmoid(in_gate) remember_gate = F.sigmoid(remember_gate) out_gate = F.sigmoid(out_gate) # apply tanh non linearity cell_gate = F.tanh(cell_gate) # compute current cell and hidden state cell = (remember_gate * prev_cell) + (in_gate * cell_gate) hidden = out_gate * F.tanh(cell) state = [hidden,cell] return state class convBNrelu(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super().__init__() self.conv = nn.Sequential( nn.Conv2d(kernel_size=kernel_size, in_channels=in_channels, out_channels=out_channels, padding=1, bias=False), nn.BatchNorm2d(out_channels, track_running_stats=False), nn.ReLU()) def forward(self, x): return self.conv(x) class deconvBNrelu(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super().__init__() self.conv = nn.Sequential( nn.ConvTranspose2d(in_channels,out_channels, kernel_size, stride=2,padding=1, output_padding=1, bias=False), nn.BatchNorm2d(out_channels, track_running_stats=False), nn.ReLU()) def forward(self, x): return self.conv(x) class convBN(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super().__init__() self.conv = nn.Sequential( nn.Conv2d(kernel_size=kernel_size, in_channels=in_channels, out_channels=out_channels, padding=1, bias=False), nn.BatchNorm2d(out_channels,track_running_stats=False)) def forward(self, x): return self.conv(x) class ddf_summand(nn.Module): def __init__(self, in_channels_list): super().__init__() self.convs = nn.ModuleList([nn.Conv2d(kernel_size=3, in_channels=in_channels, out_channels=2, padding=1, bias=True) for in_channels in in_channels_list]) def forward(self, x, size_out): x1_resize = [] for i, _ in enumerate(self.convs): x1 = self.convs[i](x[4-i]) x1_resize.append(F.interpolate(x1, size=size_out, mode='bilinear', align_corners=True)) return torch.sum(torch.stack(x1_resize,dim=4), dim=4) class DownResBlock(nn.Module): def __init__(self,in_channels, out_channels, kernel_size=3): super().__init__() self.conv_0 = convBNrelu(in_channels, out_channels, kernel_size) self.conv_1 = convBNrelu(out_channels, out_channels, kernel_size) self.conv_2 = convBN(out_channels, out_channels, kernel_size) self.acti = nn.ReLU() self.down = nn.MaxPool2d(kernel_size=2) def forward(self,x): x1 = self.conv_0(x) x2 = self.conv_1(x1) x3 = self.conv_2(x2) x3 += x1 x3 = self.acti(x3) down = self.down(x3) return x1, down class UpResBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super().__init__() self.transposed = deconvBNrelu(in_channels,out_channels, kernel_size) self.conv_0 = convBNrelu(out_channels, out_channels, kernel_size) self.conv_1 = convBN(out_channels, out_channels, kernel_size) self.acti = nn.ReLU() def forward(self, x, input_skip): add_up = self.transposed(x) add_up += input_skip add_up += additive_up_sampling(x, input_skip) x1 = self.conv_0(add_up) x2 = self.conv_1(x1) x2 += x1 x2 = self.acti(x2) return x2 class LstmUpBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): super().__init__() self.transposed = deconvBNrelu(in_channels,out_channels, kernel_size) self.lstm = ConvLSTMCell(out_channels, out_channels, kernel_size) def forward(self, x, input_skip, hidden_state_temporal): add_up = self.transposed(x) add_up += input_skip add_up += additive_up_sampling(x, input_skip) x1 = self.lstm(add_up, hidden_state_temporal) return x1 def additive_up_sampling(input, input_skip): upsampled = F.interpolate(input,size=input_skip.size()[2:4], mode='bilinear', align_corners=True) upsampled_split = torch.chunk(upsampled, 2, dim=1) upsampled_stack = torch.stack(upsampled_split, dim=1) upsampled_final = torch.sum(upsampled_stack, dim=1) return upsampled_final
38.272152
123
0.64379
5,583
0.923268
0
0
0
0
0
0
355
0.058707
2765c7c3e9e989737c9e28cfcc8a7675bc22b1e5
907
py
Python
main.py
denissearenas/face_recognition_image
63f43ae188cc12ba443d2aeff84959eba95c9049
[ "MIT" ]
null
null
null
main.py
denissearenas/face_recognition_image
63f43ae188cc12ba443d2aeff84959eba95c9049
[ "MIT" ]
null
null
null
main.py
denissearenas/face_recognition_image
63f43ae188cc12ba443d2aeff84959eba95c9049
[ "MIT" ]
null
null
null
import logging from logging.config import fileConfig import os, os.path import imageRecognition #Test Folder TestFolder = 'WorkingFolder/TestImages/' # Create the Working folders working_folders = ['logs','.metadata','WorkingFolder','./Workingfolder/OutputImages'] [os.makedirs(folder) for folder in working_folders if not os.path.exists(folder)] # Load log config fileConfig('logging_config.ini') logger = logging.getLogger() if __name__ == "__main__": encodings = imageRecognition.loadEncodings() if len(os.listdir(TestFolder)) > 0: for file in os.listdir(TestFolder): name_image = os.path.join(TestFolder,file) filename = 'output' if file.rfind('.') >= 0: filename = file[:file.rfind('.')] imageRecognition.tagPeople_cv2(TestFolder+file, encodings, tolerance=0.60, output_filename = filename)
24.513514
114
0.680265
0
0
0
0
0
0
0
0
190
0.209482
2768921c04ac38d6998b1d53e7d2b264cb24e683
755
py
Python
Medio 3/ex056.py
Gustavsantos/python1
5520f2d2ee591157942008fdcd6bd42eb521f1a6
[ "MIT" ]
null
null
null
Medio 3/ex056.py
Gustavsantos/python1
5520f2d2ee591157942008fdcd6bd42eb521f1a6
[ "MIT" ]
null
null
null
Medio 3/ex056.py
Gustavsantos/python1
5520f2d2ee591157942008fdcd6bd42eb521f1a6
[ "MIT" ]
null
null
null
total = 0 media = 0 hmais = 0 no = '' contm = 0 from datetime import date atual = date.today().year for p in range(1,5): print('{}° Pessoa'.format(p)) nome = str(input('Nome: ')).strip().capitalize() ns = int(input('O ano em que nasceu: ')) sexo = str(input('Sexo: ')).strip().upper() idade = atual - ns total += idade media = total/4 if p == 1 and sexo == 'M': hmais = idade no = nome if idade > hmais and sexo == 'M': hmais = idade no = nome if idade < 20 and sexo == 'F': contm += 1 print('Existem, {} mulheres com menos de 20 anos'.format(contm)) print('O homem mais, velho tem {} e se chama {}'.format(hmais, no)) print('A media de idade, é de {} anos'.format(media))
26.964286
67
0.564238
0
0
0
0
0
0
0
0
182
0.240423
2768edd67418ad70fbc7628b2d0db9a2e7e067b6
9,575
py
Python
modules/cdp.py
experiencedft/defisaver-sim
1d1f05078efb634286df450b125677a1685a066e
[ "MIT" ]
13
2021-02-01T11:08:21.000Z
2022-01-13T05:29:11.000Z
modules/cdp.py
experiencedft/defisaver-sim
1d1f05078efb634286df450b125677a1685a066e
[ "MIT" ]
null
null
null
modules/cdp.py
experiencedft/defisaver-sim
1d1f05078efb634286df450b125677a1685a066e
[ "MIT" ]
5
2021-01-27T22:01:55.000Z
2022-02-20T22:14:16.000Z
''' The CDP module contains all the tools required to simulate a collateralized debt position, such as increasing or decreasing its leverage (boost and repay), closing the vault to calculate its lifetime profit, adding collateral or drawing more debt. The position is represented as an object whose methods provide all the above interactions. It can be leveraged or non leveraged. For the purpose of this simulation, a vault is considered leveraged if part or all of the debt is used to buy more collateral. ''' import numpy as np class CDP(): ''' Attributes ___________ collateral: float the amount of collateral in the position, in unit of the collateral asset debt: float the amountof debt of the position, in unit of the debt asset automated: bool a boolean flag indicating whether the CDP is automated automation_settings: dictionnary a dictionnary containing the automation settings {"repay from": ..., "repay to": ..., "boost from": ..., "boost to": ...} min_automation_debt: float the minimum debt required for automation to be enabled, in amount of debt asset min_ratio: float the minimum collateralization ratio admitted by the protocol, below which liquidation occurs ''' def __init__(self, initial_collateral: float, initial_debt: float, min_ratio: float) -> None: ''' min_ratio in % ''' self.collateral = initial_collateral self.debt = initial_debt self.isAutomated = False self.automation_settings = {"repay from": 0, "repay to": 0, "boost from": 0, "boost to": 0} self.min_ratio = min_ratio # TODO: pass this as an argument later on and include change in simulate.py and related function calls self.min_automation_debt = 0 def getCollateralizationRatio(self, price: float): ''' Returns the collateralization ratio in % ''' return 100*self.collateral*price/self.debt def changeCollateral(self, deltaCollateral: float): ''' Add deltaCollateral to the position's collateral. Note: deltaCollateral may be negative. ''' self.collateral += deltaCollateral def changeDebt(self, deltaDebt: float): ''' Add deltaDebt to the position's debt. Note: deltaDebt may be negative. ''' self.debt += deltaDebt def close(self, price: float) -> float: ''' Close the vault by paying back all of the debt and return the amount of collateral left. Assumes infinite liquidity at the current price. Param: price: float The current price of the collateral denominated in the debt asset. ''' if self.debt > 0: # The amount of collateral to sell to pay back the debt collateralToSell = self.debt/price self.collateral -= collateralToSell self.debt = 0 return self.collateral def automate(self, repay_from: float, repay_to: float, boost_from: float, boost_to: float): ''' Enable or update automation for a CDP with the given automation settings. Param: automation_settings: each param is an automation setting in the order of repay from, repay to, boost from, boost to ''' assert repay_from > self.min_ratio + 10 self.isAutomated = True self.automation_settings["repay from"] = repay_from self.automation_settings["repay to"] = repay_to self.automation_settings["boost from"] = boost_from self.automation_settings["boost to"] = boost_to def disableAutomation(self): self.isAutomated = False def boostTo(self, target: float, price: float, gas_price_in_gwei: float, service_fee: float): ''' Given the current price of the collateral asset denominated in the debt asset, check whether the collateralization ratio is above threshold, and if yes, boost to the target ratio. A boost is defined as generating more debt from the position and buying collateral with it. Params: target: target collateralization ratio (in %) price: current price of the collateral denominated in the debt asset gas_price_in_gwei: current on-chain gas price in gwei (nanoETH) serice_fee: current fee charged by DeFi Saver (in %) ''' #Check that it's possible to boost with the desired target if self.debt == 0 or target/100 < self.collateral*price/self.debt: # Fixed estimate of 1M gas consumed by the boost operation to calculate the gas fee in # ETH g = 1000000*gas_price_in_gwei*1e-9 # Target collateralization ratio t = target/100 c = self.collateral d = self.debt p = price gamma = 1 - service_fee/100 # print("gas cost in USD: ", g*p) # print("gas cost limit: ", (p*c - t*d)/(5*(t - gamma) + 1)) # Gas cost must be below 20% of the boost amount if p*g < (p*c - t*d)/(5*(t - gamma) + 1): #The gas charged to the user is capped at a price of 499 gwei if gas_price_in_gwei > 499: g = 1000000*499*1e-9 # Calculate debt increase (> 0)required to arrive to the target collateralization ratio deltaDebt = (p*c - p*g - t*d)/(t - gamma) # print("debt change: ", deltaDebt) # print("gas_cost/debt_change: ", p*g/deltaDebt) # Calculate corresponding collateral increase (> 0) deltaCollateral = (gamma*deltaDebt - p*g)/p # Update position self.debt += deltaDebt self.collateral += deltaCollateral assert self.debt > 0 assert self.collateral > 0 # Return True if boost took place return True else: return False else: # If boost not possible with desired parameters return False def repayTo(self, target: float, price: float, gas_price_in_gwei: float, service_fee: float): ''' Given the current price of the collateral asset denominated in the debt asset, check whether the collateralization ratio is below threshold, and if yes, repay to the target ratio. A repay is defined as selling some of the collateral from the position to acquire more of the debt asset and repay part of the debt with it. Params: target: target collateralization ratio in % price: current price of the collateral denominated in the debt asset gas_price_in_gwei: current on-chain gas price in gwei (nanoETH) serice_fee: current fee charged by DeFi Saver (in %) ''' collateralization = self.collateral*price/self.debt # Check that it's possible to repay with the desired target assert self.debt != 0 # The current CRatio must be below the target OR below min_ratio + 10% if collateralization < target/100: # Fixed estimate of 1M gas consumed by the repay operation to calculate the gas fee in # ETH if gas_price_in_gwei > 499: gas_price_in_gwei = 499 g = 1000000*gas_price_in_gwei*1e-9 # Target collateralization ratio t = target/100 c = self.collateral d = self.debt p = price gamma = 1 - service_fee/100 # print("gas cost in USD: ", p*g) # print("gas cost in ETH: ", g) # print("gas cost limit: ", (t*d - p*c)/(5*(gamma*t - 1) + t)) # print("collateralization in %: ", 100*collateralization) # print("min repay threshold: ", self.min_ratio + 10) # Gas cost must be lower than 20% of repay amount OR we must be below the min repay ratio if 100*collateralization < self.min_ratio + 10: isEmergencyRepay = True else: isEmergencyRepay = False if p*g < (t*d - p*c)/(5*(gamma*t - 1) - t) or isEmergencyRepay: # In case of an emergency repay, this might exceed the previous 20%. In this case, cap the charged amount to 20%. if p*g > (t*d - p*c)/(5*(gamma*t - 1) - t): g = (1/p)*(t*d - p*c)/(5*(gamma*t - 1) - t) # Calculate collateral decrease (> 0) required to arrive to the target collateralization ratio deltaCollateral = (t*d + t*p*g - p*c)/(p*(gamma*t-1)) # print("collateral change: ", deltaCollateral) # print("gas_cost/collateral_change: ", g/deltaCollateral) deltaDebt = gamma*p*deltaCollateral - p*g if self.debt < self.min_automation_debt : self.isAutomated = False # Update position self.collateral -= deltaCollateral self.debt -= deltaDebt assert self.collateral > 0 assert self.debt > 0 # Return True if repay took place return True else: return False else: return False
43.522727
129
0.593211
9,036
0.943708
0
0
0
0
0
0
5,402
0.564178
276b88f7bc15b02ea6b733a96f259241381fe73b
5,683
py
Python
clustertools/test/test_experiment.py
jm-begon/clustertools
264198d0ffbd60b883b7b6a2af79341425c7729b
[ "BSD-3-Clause" ]
7
2017-05-31T15:28:28.000Z
2021-03-25T12:36:48.000Z
clustertools/test/test_experiment.py
jm-begon/clustertools
264198d0ffbd60b883b7b6a2af79341425c7729b
[ "BSD-3-Clause" ]
42
2017-06-09T07:35:50.000Z
2019-08-29T15:23:29.000Z
clustertools/test/test_experiment.py
jm-begon/clustertools
264198d0ffbd60b883b7b6a2af79341425c7729b
[ "BSD-3-Clause" ]
3
2017-05-29T13:39:18.000Z
2019-06-24T09:43:01.000Z
# -*- coding: utf-8 -*- from functools import partial from nose.tools import assert_equal, assert_in, assert_less, assert_raises, \ with_setup, assert_true from nose.tools import assert_false from clustertools import ParameterSet, Result, Experiment from clustertools.state import RunningState, CompletedState, AbortedState, \ CriticalState, PartialState, LaunchableState from clustertools.storage import PickleStorage from .util_test import purge, prep, __EXP_NAME__, IntrospectStorage, \ TestComputation, InterruptedComputation, pickle_prep, pickle_purge, \ with_setup_ __author__ = "Begon Jean-Michel <[email protected]>" __copyright__ = "3-clause BSD License" # ----------------------------------------------------------------------- Result def test_result(): expected = {"m"+str(x): x for x in range(1, 5)} result = Result("m1", m2=2, m3=6) result.m1 = 1 result.m3 = 3 result["m4"] = 4 assert_equal(len(expected), len(result)) for name, value in expected.items(): assert_equal(result[name], value) for name, value in result.items(): # redundant assert_equal(expected[name], value) dict(result) repr(result) # ------------------------------------------------------------------ Computation @with_setup(prep, purge) def test_correct_computation(): computation = TestComputation() intro_storage = computation.storage result1 = computation(x1=5, x2=2, x3=50) result2 = intro_storage.load_result(computation.comp_name) for result in result1, result2: assert_equal(len(result), 2) # One real metric + repr assert_equal(result["mult"], 2 * 5) assert_equal(len(intro_storage.result_history), 1) # Only one computation assert_equal(len(intro_storage.state_history), 1) # Only one computation states = list(intro_storage.state_history.values())[0] # If correct, state should have followed the sequence: # Running (p=0), Running (p=1), Critical, Partial, Completed assert_equal(len(states), 5) assert_true(isinstance(states[0], RunningState)) assert_true(isinstance(states[1], RunningState)) assert_true(isinstance(states[2], CriticalState)) assert_true(isinstance(states[3], PartialState)) assert_true(isinstance(states[4], CompletedState)) assert_equal(states[0].progress, 0.) assert_equal(states[1].progress, 1.) @with_setup(prep, purge) def test_error_computation(): computation = TestComputation() intro_storage = computation.storage computation = computation.lazyfy(x1=5, x2=None, x3=50) assert_raises(TypeError, computation) # 5*None assert_equal(len(intro_storage.result_history), 0) # Computation not saved assert_equal(len(intro_storage.state_history), 1) # Only one computation states = list(intro_storage.state_history.values())[0] # If correct (i.e. error occurs), state should have evolved as: # Running, Aborted assert_equal(len(states), 2) assert_true(isinstance(states[0], RunningState)) assert_true(isinstance(states[1], AbortedState)) @with_setup(prep, purge) def test_interrupted_computation(): computation = InterruptedComputation() intro_storage = computation.storage assert_raises(KeyboardInterrupt, computation) assert_equal(len(intro_storage.result_history[computation.comp_name]), 0) state_history = intro_storage.state_history[computation.comp_name] # Running -> Launchable assert_equal(len(state_history), 2) assert_true(isinstance(state_history[0], RunningState)) assert_true(isinstance(state_history[1], LaunchableState)) @with_setup(prep, purge) def test_has_parameters(): computation = TestComputation() computation.lazyfy(p1="1", p2=2) assert_true(computation.has_parameters(p1="1", p2=2)) assert_true(computation.has_parameters(p1="1")) assert_true(computation.has_parameters(p2=2)) assert_false(computation.has_parameters(p3="")) assert_false(computation.has_parameters(p1="1", p3="")) assert_false(computation.has_parameters(p1="1", p2=2, p3="")) # ------------------------------------------------------------------- Experiment @with_setup(prep, purge) def test_experiment(): parameter_set = ParameterSet() parameter_set.add_parameters(x1=range(3), x2=range(3)) experiment = Experiment(__EXP_NAME__, parameter_set, TestComputation, IntrospectStorage) assert_equal(len(list(experiment.yield_computations())), 9) # start=3 : skip 0,1,2 assert_equal(len(list(experiment.yield_computations(start=3))), 6) # capacity=6 : skip 6, 7, 8 assert_equal(len(list(experiment.yield_computations(capacity=6))), 6) @with_setup_(partial(pickle_prep, exp_name="{}_1".format(__EXP_NAME__)), partial(pickle_purge, exp_name="{}_1".format(__EXP_NAME__))) def do_auto_refresh(auto_refresh): parameter_set = ParameterSet() parameter_set.add_parameters(x1=range(3), x2=range(3)) experiment = Experiment("{}_1".format(__EXP_NAME__), parameter_set, TestComputation) # There should be 9 computations assert_equal(len(experiment), 9) count = 0 for i, _ in enumerate(experiment.yield_computations(auto_refresh=auto_refresh)): if i == 0: state = CompletedState( Experiment.name_computation(experiment.exp_name, 6) ) PickleStorage(experiment.exp_name).update_state(state) count += 1 print("Auto refresh?", auto_refresh, "--", count) assert_equal(count, 8 if auto_refresh else 9) def test_auto_refresh(): do_auto_refresh(True) do_auto_refresh(False)
36.664516
84
0.688193
0
0
0
0
4,217
0.742038
0
0
831
0.146226
276c363a6f57e3c85d7f037af185d706c5abdf10
1,657
py
Python
ed.py
zzx288/words
477516211cc43701ec4592a686f0bc06cbb9c141
[ "MIT" ]
null
null
null
ed.py
zzx288/words
477516211cc43701ec4592a686f0bc06cbb9c141
[ "MIT" ]
null
null
null
ed.py
zzx288/words
477516211cc43701ec4592a686f0bc06cbb9c141
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import codecs def find_words(words): split_words={} count_all = 0 unused_words = u" \t\r\n,。:;、“‘”【】『』|=+-——()*&……%¥#@!~·《》?/?<>,.;:'\"[]{}_)(^$!`" unused_english = u"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890" for i in unused_words: count_all += words.count(i) for i in unused_english: count_all += words.count(i) lens = len(words) len_deal = lens-count_all for i in range(0,lens): if(words[i] in unused_words or words[i] in unused_english): continue if(words[i+1] in unused_words or words[i+1] in unused_english): continue if words[i:i+2] in split_words: split_words[words[i:i+2]][0]+=1 split_words[words[i:i+2]][1]=float(split_words[words[i:i+2]][0])/float(len_deal) else: split_words[words[i:i+2]]=[1,1/float(len_deal)] return split_words def read_file(a): words = "" i=0 pathdir = os.listdir(a) for alldir in pathdir: test = codecs.open(a+"\\"+alldir, 'r',encoding='utf-8') words += test.read() test.close() i += 1 print(i) return words if __name__ == '__main__': words = read_file('F:\\cs') ''' test = codecs.open('F:\\760.xml', 'r',encoding='utf-8') words = test.read() test.close() ''' print ("splitting......") split=find_words(words) ci = codecs.open('F:\\result.txt','a',encoding = 'utf-8') for key in split.keys(): ci.write('('+key[0]+','+key[1]+','+str(split[key][1])+')\r\n') ci.close print("ok")
29.589286
92
0.556427
0
0
0
0
0
0
0
0
432
0.253521
276d667a87fa4dfdeb86a4993f51124a0783875c
2,971
py
Python
acestream/ACEStream/Plugin/EngineWx.py
GrandPaRPi/p2ptv-pi
6f79c00f9055a3763ddfe1dc41e14d2cb533f4c3
[ "MIT" ]
null
null
null
acestream/ACEStream/Plugin/EngineWx.py
GrandPaRPi/p2ptv-pi
6f79c00f9055a3763ddfe1dc41e14d2cb533f4c3
[ "MIT" ]
null
null
null
acestream/ACEStream/Plugin/EngineWx.py
GrandPaRPi/p2ptv-pi
6f79c00f9055a3763ddfe1dc41e14d2cb533f4c3
[ "MIT" ]
2
2018-04-17T17:34:39.000Z
2020-07-26T03:43:33.000Z
#Embedded file name: ACEStream\Plugin\EngineWx.pyo import os import sys from traceback import print_exc try: import wxversion wxversion.select('2.8') except: pass try: import wx except: print 'wx is not installed' os._exit(1) import ACEStream from ACEStream.GlobalConfig import globalConfig from ACEStream.Plugin.BackgroundProcess import run_bgapp, stop_bgapp, send_startup_event, get_default_api_version from ACEStream.Player.systray import PlayerTaskBarIcon from ACEStream.version import VERSION ALLOW_MULTIPLE = False class AppWrapper(wx.App): def __init__(self, redirectstderrout = False): self.bgapp = None self.systray = None wx.App.__init__(self, redirectstderrout) def OnExit(self): if self.systray is not None: self.systray.RemoveIcon() self.systray.Destroy() if self.bgapp is not None: self.bgapp.OnExit() def set_bgapp(self, bgapp): self.bgapp = bgapp iconpath = bgapp.iconpath self.systray = PlayerTaskBarIcon(self, self.bgapp, iconpath) def set_icon_tooltip(self, txt): if self.systray is not None: self.systray.set_icon_tooltip(txt) def on_error(self, errmsg, exit = False): if self.bgapp is None: title = 'Error' else: title = self.bgapp.appname + ' Error' dlg = wx.MessageDialog(None, errmsg, title, wx.OK | wx.ICON_ERROR | wx.STAY_ON_TOP) result = dlg.ShowModal() dlg.Destroy() if exit: self.ExitMainLoop() def start(apptype, exec_dir): if apptype == 'torrentstream': appname = 'Torrent Stream' elif apptype == 'acestream': appname = 'ACE Stream HD' else: raise Exception, 'Bad app type' single_instance_checker = wx.SingleInstanceChecker(appname + '-' + wx.GetUserId()) if single_instance_checker.IsAnotherRunning(): print >> sys.stderr, 'appwrapper: already running, exit' if get_default_api_version(apptype, exec_dir) < 2: send_startup_event() os._exit(0) globalConfig.set_value('apptype', apptype) globalConfig.set_mode('client_wx') wrapper = AppWrapper() try: bgapp = run_bgapp(wrapper, appname, VERSION) except Exception as e: print >> sys.stderr, 'Fatal error while starting:', str(e) print_exc() os._exit(0) wrapper.set_bgapp(bgapp) bgapp.debug_systray = bgapp.debug_level & 1024 != 0 ACEStream.Player.systray.DEBUG = bgapp.debug_systray ACEStream.Player.systray.SHOW_DEBUG_LEVEL = bgapp.debug_systray ACEStream.Player.systray.DEBUG_PIECES = bgapp.debug_level & 128 != 0 ACEStream.Player.systray.DEBUG_VIDEOSTATUS = bgapp.debug_level & 2048 != 0 ACEStream.Player.systray.DEBUG_PROXY_BUF = bgapp.debug_level & 4096 != 0 wrapper.MainLoop() if not ALLOW_MULTIPLE: del single_instance_checker stop_bgapp(bgapp)
31.946237
113
0.672164
1,031
0.347021
0
0
0
0
0
0
249
0.08381
276d90a94566353b66f7d294a0618d781bcf1b9c
899
py
Python
tcp_finite_state/client.py
aakashhemadri/python
16955810dd1ea491c9ff9c99ee02bd463ba97f0a
[ "MIT" ]
2
2021-01-20T14:08:26.000Z
2021-10-20T07:56:46.000Z
tcp_finite_state/client.py
aakashhemadri/python
16955810dd1ea491c9ff9c99ee02bd463ba97f0a
[ "MIT" ]
null
null
null
tcp_finite_state/client.py
aakashhemadri/python
16955810dd1ea491c9ff9c99ee02bd463ba97f0a
[ "MIT" ]
null
null
null
from tcp_statemachine import TCPStateMachine, Data import socket class Client: """ Client class """ def __init__(self, statemachine, data): self.ME = 'client' self.HOST = '127.0.0.1' self.PORT = 22085 self.ADDRESS = (self.HOST, self.PORT) self.client_socket = socket.socket() def run(self): self.client_socket.connect(self.ADDRESS) self.statemachine.send_syn(self.client_socket, self.statemachine) self.statemachine.conn_estb_client() data.receive(self.client_socket, statemachine) while statemachine.is_established: data.send(self.client_socket, statemachine) data.receive(self.client_socket, statemachine) self.client_socket.close() def whoami(self): return self.ME def main(): tcp_fsm = TCPFiniteStateMachine() data = Data(12345) client = Client(tcp_fsm, data) if __name__ == '__main__': main()
22.475
69
0.697442
681
0.757508
0
0
0
0
0
0
53
0.058954
276e00dcc9820a61c4d4ebff8a3b8b4d2a199a5f
467
py
Python
HackerRank/MinimumSwaps2.py
kokuraxc/play-ground
48b5291f3cca117e0cd0a17bf9255ec4dc1a5cdd
[ "MIT" ]
null
null
null
HackerRank/MinimumSwaps2.py
kokuraxc/play-ground
48b5291f3cca117e0cd0a17bf9255ec4dc1a5cdd
[ "MIT" ]
null
null
null
HackerRank/MinimumSwaps2.py
kokuraxc/play-ground
48b5291f3cca117e0cd0a17bf9255ec4dc1a5cdd
[ "MIT" ]
null
null
null
# https://www.hackerrank.com/challenges/minimum-swaps-2 # Complete the minimumSwaps function below. def minimumSwaps(arr): steps = 0 # for i, a in enumerate(arr): for i in range(len(arr)): while arr[i] != i+1: #arr = [a if x == i+1 else x for x in arr] #print(arr) left = arr[i] right = arr[left-1] arr[i] = right arr[left-1] = left steps += 1 return steps
25.944444
55
0.51606
0
0
0
0
0
0
0
0
180
0.385439
277311deb8c817997aeecabf48fe1ce321691cbf
3,081
py
Python
source/conf.py
Kinovea/kinovea-docs
a2c4c9561bd4f8cc663efcaaed017c9c018b6b20
[ "CC0-1.0" ]
4
2020-11-17T18:09:42.000Z
2021-12-29T07:34:29.000Z
source/conf.py
Kinovea/kinovea-docs
a2c4c9561bd4f8cc663efcaaed017c9c018b6b20
[ "CC0-1.0" ]
4
2021-07-12T09:41:06.000Z
2021-11-01T19:22:05.000Z
source/conf.py
Kinovea/kinovea-docs
a2c4c9561bd4f8cc663efcaaed017c9c018b6b20
[ "CC0-1.0" ]
1
2021-07-12T05:17:47.000Z
2021-07-12T05:17:47.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import sphinx_rtd_theme # -- Project information ----------------------------------------------------- project = 'Kinovea' copyright = '2021, Kinovea documentation authors (CC0 1.0)' author = 'Kinovea documentation authors' # The full version, including alpha/beta/rc tags release = '0.9.5' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx_rtd_theme", ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] master_doc = 'index' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- html_theme = "sphinx_rtd_theme" html_static_path = ['_static'] html_css_files = ['css/kinovea.css'] html_logo = 'images/logo/kinovea.svg' html_copy_source = False html_show_sourcelink = False html_show_sphinx = False html_theme_options = { 'logo_only': True, 'display_version': False, 'style_external_links': True, 'style_nav_header_background': "#404040", # Collapse navigation (False makes it tree-like) #'collapse_navigation': False, } html_context = { 'display_github': False, } pdf_documents = [('index', u'kinoveadoc', u'Kinovea documentation', u'Kinovea community'),] # -- Options for Epub output ---------------------------------------------- # EPUB Output epub_theme = "sphinx_rtd_theme" #epub_theme = 'epub' # Bibliographic Dublin Core info. epub_description = "Kinovea reference manual" epub_publisher = "Kinovea" epub_title = project epub_author = author epub_copyright = copyright # The cover page information. This is a tuple containing the filenames of # the cover image and the html template. #epub_cover = ('_static/cover.png', 'epub-cover.html') epub_css_files = ['css/kinovea.css'] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in the file toc.ncx. epub_tocdepth = 2 # Control whether to display URL addresses. epub_show_urls = 'no'
30.205882
91
0.683544
0
0
0
0
0
0
0
0
2,368
0.768582
277376eb0677ba7d0fb6770b5320ed63bd24de63
51
py
Python
0-hello-world/hello.py
zeyuri/computer-science-and-python-intro
178ff6647586fb2be716bb3c4796b03310731583
[ "MIT" ]
null
null
null
0-hello-world/hello.py
zeyuri/computer-science-and-python-intro
178ff6647586fb2be716bb3c4796b03310731583
[ "MIT" ]
null
null
null
0-hello-world/hello.py
zeyuri/computer-science-and-python-intro
178ff6647586fb2be716bb3c4796b03310731583
[ "MIT" ]
null
null
null
msg = "Hello World, i'm coming for you" print(msg)
17
39
0.686275
0
0
0
0
0
0
0
0
33
0.647059
2775121ab7502b6919cf78437931035cd8b7a2d9
158
py
Python
src/onegov/user/auth/clients/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/user/auth/clients/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/user/auth/clients/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.user.auth.clients.kerberos import KerberosClient from onegov.user.auth.clients.ldap import LDAPClient __all__ = ('KerberosClient', 'LDAPClient')
31.6
60
0.816456
0
0
0
0
0
0
0
0
28
0.177215
27756bad277e04032903ed08ddd795ce38d122b8
746
py
Python
img_utils/files/file.py
DewMaple/image_utils
a0ca6a1b088389f5a70df60623e629634d57065a
[ "MIT" ]
null
null
null
img_utils/files/file.py
DewMaple/image_utils
a0ca6a1b088389f5a70df60623e629634d57065a
[ "MIT" ]
null
null
null
img_utils/files/file.py
DewMaple/image_utils
a0ca6a1b088389f5a70df60623e629634d57065a
[ "MIT" ]
null
null
null
import glob import os def images_in_dir(images_dir, file_types=('*.png', '*.jpg', '*.jpeg', '*.gif')): """ :param images_dir: directory that contains target images :param file_types: image files extend :return: full image file path list """ file_names = [] for ext in file_types: file_names.extend(glob.glob(os.path.join(images_dir, ext))) return sorted(file_names) def filename(file_path): """ :param file_path: file path :return: file name with extend """ return file_path.split(os.sep)[-1] def fname(file_name): """ :param file_name: file name or file path :return: file name without extend """ idx = file_name.rindex(os.extsep) return file_name[0:idx]
23.3125
80
0.647453
0
0
0
0
0
0
0
0
354
0.474531
277599814e255a220a50444d8861eabc112abdd1
4,931
py
Python
financial_fundamentals/xbrl.py
Mahesh-Salunke/financial_fundamentals
421e7550e2c4b2cc9cc0ee8cb15ce2ad0d89234f
[ "Apache-2.0" ]
122
2015-01-28T17:57:08.000Z
2022-02-12T12:24:55.000Z
financial_fundamentals/xbrl.py
Mahesh-Salunke/financial_fundamentals
421e7550e2c4b2cc9cc0ee8cb15ce2ad0d89234f
[ "Apache-2.0" ]
1
2016-11-07T17:02:02.000Z
2016-11-09T20:51:50.000Z
financial_fundamentals/xbrl.py
Mahesh-Salunke/financial_fundamentals
421e7550e2c4b2cc9cc0ee8cb15ce2ad0d89234f
[ "Apache-2.0" ]
49
2015-01-01T03:12:27.000Z
2021-07-06T10:19:31.000Z
''' Created on Oct 8, 2013 @author: akittredge ''' import dateutil.parser import xmltodict from financial_fundamentals.exceptions import ValueNotInFilingDocument class XBRLMetricParams(object): '''Bundle the parameters sufficient to extract a metric from an xbrl document. ''' def __init__(self, possible_tags, context_type): self.possible_tags = possible_tags self.context_type = context_type class DurationContext(object): '''Encapsulate a time span XBRL context.''' characteristic_key = 'startDate' def __init__(self, start_date, end_date): self.start_date = start_date self.end_date = end_date @property def sort_key(self): return self.start_date def __repr__(self): return '{}(start_date={}, end_date={})'.format(self.__class__, self.start_date, self.end_date) @classmethod def from_period(cls, period): start_node = XBRLDocument.find_node(xml_dict=period, key='startDate') start_date = dateutil.parser.parse(start_node).date() end_node = XBRLDocument.find_node(xml_dict=period, key='endDate') end_date = dateutil.parser.parse(end_node).date() return cls(start_date, end_date) class InstantContext(object): characteristic_key = 'instant' def __init__(self, instant): self.instant = instant @property def sort_key(self): return self.instant def __repr__(self): return '{}(instant={}'.format(self.__class__, self.instant) @classmethod def from_period(cls, period): node = XBRLDocument.find_node(xml_dict=period, key='instant') instant = dateutil.parser.parse(node).date() return cls(instant=instant) class XBRLDocument(object): '''wrapper for XBRL documents, lazily downloads XBRL text.''' def __init__(self, xbrl_url, gets_xbrl): self._xbrl_url = xbrl_url self._xbrl_dict_ = None self._contexts = {} self._get_xbrl = gets_xbrl @property def _xbrl_dict(self): if not self._xbrl_dict_: doc_text = self._get_xbrl(self._xbrl_url) xml_dict = xmltodict.parse(doc_text) self._xbrl_dict_ = self.find_node(xml_dict, 'xbrl') return self._xbrl_dict_ def contexts(self, context_type): contexts = self._contexts.get(context_type, {}) if not contexts: context_nodes = self.find_node(xml_dict=self._xbrl_dict, key='context') for context in context_nodes: try: period = self.find_node(xml_dict=context, key='period') self.find_node(xml_dict=period, key=context_type.characteristic_key) except KeyError: continue else: contexts[context['@id']] = context_type.from_period(period) self._contexts[context_type] = contexts return contexts def _latest_metric_value(self, possible_tags, contexts): '''metric_params is a list of possible xbrl tags. ''' for tag in possible_tags: try: metric_nodes = self._xbrl_dict[tag] except KeyError: continue else: if type(metric_nodes) != list: metric_nodes = [metric_nodes] break else: raise MetricNodeNotFound('Did not find any of {} in the document @ {}'\ .format(possible_tags, self._xbrl_url)) def key_func(value): context_ref_id = value['@contextRef'] context = contexts[context_ref_id] return context.sort_key metric_node = sorted(metric_nodes, key=key_func, reverse=True)[0] return float(metric_node['#text']) def latest_metric_value(self, metric_params): contexts = self.contexts(context_type=metric_params.context_type) return self._latest_metric_value(possible_tags=metric_params.possible_tags, contexts=contexts) @staticmethod def find_node(xml_dict, key): '''OMG I hate XML.''' try: return xml_dict[key] except KeyError: return xml_dict['xbrli:{}'.format(key)] @classmethod def gets_XBRL_from_edgar(cls, xbrl_url): from financial_fundamentals import edgar return cls(xbrl_url=xbrl_url, gets_xbrl=edgar.get) @classmethod def gets_XBRL_locally(cls, file_path): return cls(xbrl_url=file_path, gets_xbrl=lambda file_path : open(file_path).read()) class MetricNodeNotFound(ValueNotInFilingDocument): pass
34.482517
88
0.602515
4,749
0.963091
0
0
1,488
0.301764
0
0
536
0.1087
277624309012d3684e6506d164e645ba545c1547
6,235
py
Python
geospacelab/datahub/sources/wdc/dst/downloader.py
JouleCai/GeoSpaceLab
6cc498d3c32501e946931de596a840c73e83edb3
[ "BSD-3-Clause" ]
19
2021-08-07T08:49:22.000Z
2022-03-02T18:26:30.000Z
geospacelab/datahub/sources/wdc/dst/downloader.py
JouleCai/GeoSpaceLab
6cc498d3c32501e946931de596a840c73e83edb3
[ "BSD-3-Clause" ]
4
2021-11-09T05:53:42.000Z
2022-03-25T11:49:37.000Z
geospacelab/datahub/sources/wdc/dst/downloader.py
JouleCai/GeoSpaceLab
6cc498d3c32501e946931de596a840c73e83edb3
[ "BSD-3-Clause" ]
3
2021-11-07T11:41:20.000Z
2022-02-14T13:43:11.000Z
# Licensed under the BSD 3-Clause License # Copyright (C) 2021 GeospaceLab (geospacelab) # Author: Lei Cai, Space Physics and Astronomy, University of Oulu __author__ = "Lei Cai" __copyright__ = "Copyright 2021, GeospaceLab" __license__ = "BSD-3-Clause License" __email__ = "[email protected]" __docformat__ = "reStructureText" import datetime import numpy as np import requests import bs4 import pathlib import re import netCDF4 import cftime import geospacelab.toolbox.utilities.pydatetime as dttool import geospacelab.toolbox.utilities.pylogging as mylog import geospacelab.datahub.sources.wdc as wdc from geospacelab import preferences as prf class Downloader(object): def __init__(self, dt_fr, dt_to, data_file_root_dir=None, user_email=wdc.default_user_email): self.dt_fr = dt_fr self.dt_to = dt_to self.user_email = user_email self.done = False if data_file_root_dir is None: self.data_file_root_dir = prf.datahub_data_root_dir / 'WDC' / 'Dst' else: self.data_file_root_dir = pathlib.Path(data_file_root_dir) self.url_base = "http://wdc.kugi.kyoto-u.ac.jp" self.download() def download(self): diff_months = dttool.get_diff_months(self.dt_fr, self.dt_to) dt0 = datetime.datetime(self.dt_fr.year, self.dt_fr.month, 1) r = requests.get(self.url_base + '/dstae/') soup = bs4.BeautifulSoup(r.text, 'html.parser') form_tag = soup.find_all('form') r_method = form_tag[0].attrs['method'] r_action_url = self.url_base + form_tag[0].attrs['action'] for i in range(diff_months + 1): dt_fr = dttool.get_next_n_months(dt0, i) dt_to = dttool.get_next_n_months(dt0, i + 1) - datetime.timedelta(seconds=1) delta_seconds = (dt_to - dt_fr).total_seconds() file_name = 'WDC_Dst_' + dt_fr.strftime('%Y%m') + '.nc' file_path = self.data_file_root_dir / '{:4d}'.format(dt_fr.year) / file_name if file_path.is_file(): mylog.simpleinfo.info( "The file {} exists in the directory {}.".format(file_path.name, file_path.parent.resolve())) self.done = True continue else: file_path.parent.resolve().mkdir(parents=True, exist_ok=True) form_dst = { 'SCent': str(int(dt_fr.year/100)), 'STens': str(int((dt_fr.year - np.floor(dt_fr.year/100)*100) / 10)), 'SYear': str(int((dt_fr.year - np.floor(dt_fr.year/10)*10))), 'SMonth': '{:02d}'.format(dt_fr.month), 'ECent': str(int(dt_to.year/100)), 'ETens': str(int((dt_to.year - np.floor(dt_to.year/100)*100) / 10)), 'EYear': str(int((dt_to.year - np.floor(dt_to.year/10)*10))), 'EMonth': '{:02d}'.format(dt_to.month), "Image Type": "GIF", "COLOR": "COLOR", "AE Sensitivity": "100", "Dst Sensitivity": "20", "Output": 'DST', "Out format": "IAGA2002", "Email": self.user_email, } if r_method.lower() == 'get': mylog.StreamLogger.info("Requesting data from WDC ...") r_file = requests.get(r_action_url, params=form_dst) if "No data for your request" in r_file.text or "DATE TIME DOY" not in r_file.text: mylog.StreamLogger.warning("No data for your request!") return with open(file_path.with_suffix('.dat'), 'w') as f: f.write(r_file.text) mylog.StreamLogger.info("Preparing to save the data in the netcdf format ...") self.save_to_netcdf(r_file.text, file_path) def save_to_netcdf(self, r_text, file_path): results = re.findall( r'^(\d+-\d+-\d+ \d+:\d+:\d+.\d+)\s*(\d+)\s*([+\-\d.]+)', r_text, re.M ) results = list(zip(*results)) # time_array = np.array([(datetime.datetime.strptime(dtstr+'000', "%Y-%m-%d %H:%M:%S.%f") # - datetime.datetime(1970, 1, 1)) / datetime.timedelta(seconds=1) # for dtstr in results[0]]) dts = [datetime.datetime.strptime(dtstr+'000', "%Y-%m-%d %H:%M:%S.%f") for dtstr in results[0]] time_array = np.array(cftime.date2num(dts, units='seconds since 1970-01-01 00:00:00.0')) print('From {} to {}.'.format( datetime.datetime.utcfromtimestamp(time_array[0]), datetime.datetime.utcfromtimestamp(time_array[-1])) ) dst_array = np.array(results[2]) dst_array.astype(np.float32) num_rows = len(results[0]) fnc = netCDF4.Dataset(file_path, 'w') fnc.createDimension('UNIX_TIME', num_rows) fnc.title = "WDC DST index" time = fnc.createVariable('UNIX_TIME', np.float64, ('UNIX_TIME',)) time.units = 'seconds since 1970-01-01 00:00:00.0' dst = fnc.createVariable('Dst', np.float32, ('UNIX_TIME',)) time[::] = time_array[::] dst[::] = dst_array[::] # for i, res in enumerate(results): # dt = datetime.datetime.strptime(res[0]+'000', "%Y-%m-%d %H:%M:%S.%f") # time[i] = (dt - datetime.datetime(1970, 1, 1)) / datetime.timedelta(seconds=1) # asy_d[i] = float(res[2]) # asy_h[i] = float(res[3]) # sym_d[i] = float(res[4]) # sym_h[i] = float(res[5]) fnc.close() mylog.StreamLogger.info("The requested data has been downloaded and saved in the file {}.".format(file_path)) self.done = True if __name__ == "__main__": dt_fr1 = datetime.datetime(2000, 1, 14) dt_to1 = datetime.datetime(2000, 6, 16) Downloader(dt_fr1, dt_to1, user_email="[email protected]") # form_dst = {'SCent': 20, 'STens': 1, 'SYear': 1, 'SMonth': '01', 'ECent': 20, 'ETens': 1, 'EYear': 1, 'EMonth': 12, "Image Type": "GIF", "COLOR": "COLOR", "AE Sensitivity": "100", "Dst Sensitivity": "20", "Output": 'DST', "Out format": "IAGA2002", "Email": "[email protected]"}
38.018293
277
0.577225
5,112
0.819888
0
0
0
0
0
0
1,916
0.307298
277858124203940aedb7475ae3b0715e859459a7
914
py
Python
services/login_service.py
EderBevacqua/OPE_ADS_3C
af6e2a1757c82080dc5f6c1f7759f29f408341cc
[ "Apache-2.0" ]
null
null
null
services/login_service.py
EderBevacqua/OPE_ADS_3C
af6e2a1757c82080dc5f6c1f7759f29f408341cc
[ "Apache-2.0" ]
6
2020-06-14T21:50:25.000Z
2020-06-15T19:39:01.000Z
services/login_service.py
EderBevacqua/OPE_ADS_4C
af6e2a1757c82080dc5f6c1f7759f29f408341cc
[ "Apache-2.0" ]
null
null
null
from infra.usuario_dao import \ listar as dao_listar, \ consultar as dao_consultar, \ cadastrar as dao_cadastrar, \ alterar as dao_alterar, \ remover as dao_remover,\ loadUserEmail as dao_loadUserEmail,\ validarLogin as dao_validarLogin,\ validaMatriculaUsuario as dao_validaMatriculaUsuario,\ carregarUsuario as dao_carregarUsuario,\ cadastrarNovoLogin as dao_cadastrarNovoLogin,\ ativarConta as dao_ativarConta def loadUserEmail(email): return dao_loadUserEmail(email) def validarLogin(email): return dao_validarLogin(email) def validaMatriculaUsuario(nMatricula): return dao_validaMatriculaUsuario(nMatricula) def carregarUsuario(user_id): return dao_carregarUsuario(user_id) def cadastrarNovoLogin(novoLogin): return dao_cadastrarNovoLogin(novoLogin) def ativarConta(numeroMatricula,senha): return dao_ativarConta(numeroMatricula,senha)
30.466667
58
0.789934
0
0
0
0
0
0
0
0
0
0
27797d81ccdfc4597762321be84ef3aaa9517905
421
py
Python
server/apps/org/permissions.py
iotile/iotile_cloud
9dc65ac86d3a730bba42108ed7d9bbb963d22ba6
[ "MIT" ]
null
null
null
server/apps/org/permissions.py
iotile/iotile_cloud
9dc65ac86d3a730bba42108ed7d9bbb963d22ba6
[ "MIT" ]
null
null
null
server/apps/org/permissions.py
iotile/iotile_cloud
9dc65ac86d3a730bba42108ed7d9bbb963d22ba6
[ "MIT" ]
null
null
null
from rest_framework import permissions class IsMemberOnly(permissions.BasePermission): """ Custom permission to only allow owners of an object to access (read/write) """ def has_permission(self, request, view): return request.user.is_authenticated def has_object_permission(self, request, view, obj): return obj is None or request.user.is_staff or obj.has_access(user=request.user)
32.384615
88
0.736342
380
0.902613
0
0
0
0
0
0
90
0.213777
277b82514a7515e164e8b41c060b3213bef8d2d0
473
py
Python
multi_domain/utils.py
newbieyd/multi-domain_NER
78443f79cebf7c2fe1058bc6ba2dc793d0907574
[ "Apache-2.0" ]
3
2020-10-26T02:23:57.000Z
2021-01-28T09:29:35.000Z
multi_domain/utils.py
newbieyd/multi-domain_NER
78443f79cebf7c2fe1058bc6ba2dc793d0907574
[ "Apache-2.0" ]
null
null
null
multi_domain/utils.py
newbieyd/multi-domain_NER
78443f79cebf7c2fe1058bc6ba2dc793d0907574
[ "Apache-2.0" ]
1
2021-01-28T09:29:39.000Z
2021-01-28T09:29:39.000Z
import random import torch import numpy as np # 设置随机种子,一旦固定种子,后面依次生成的随机数其实都是固定的 def set_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # 计算评价指标:准确率,召回率,F1值 def calculate(data): p = -1 r = -1 f1 = -1 if data[0] > 0: p = data[2] / data[0] if data[1] > 0: r = data[2] / data[1] if p != -1 and r != -1 and p + r != 0: f1 = 2 * p * r / (p + r) return p, r, f1
19.708333
43
0.5074
0
0
0
0
0
0
0
0
149
0.262787
277c94d5ec87dc5540702d806c2c486ab6812053
769
py
Python
server/app/budget/migrations/0004_auto_20210521_1347.py
catvitalio/personal-budget
b4470115ebbfd185a8a781a2024787cbfe822639
[ "MIT" ]
null
null
null
server/app/budget/migrations/0004_auto_20210521_1347.py
catvitalio/personal-budget
b4470115ebbfd185a8a781a2024787cbfe822639
[ "MIT" ]
null
null
null
server/app/budget/migrations/0004_auto_20210521_1347.py
catvitalio/personal-budget
b4470115ebbfd185a8a781a2024787cbfe822639
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2021-05-21 06:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('budget', '0003_auto_20210521_1252'), ] operations = [ migrations.AlterField( model_name='expense', name='tags', field=models.ManyToManyField(blank=True, to='budget.ExpenseTag'), ), migrations.AlterField( model_name='income', name='tags', field=models.ManyToManyField(blank=True, to='budget.IncomeTag'), ), migrations.AlterField( model_name='transfer', name='tags', field=models.ManyToManyField(blank=True, to='budget.TransferTag'), ), ]
26.517241
78
0.579974
676
0.879064
0
0
0
0
0
0
182
0.236671
277c9b03dc3a5dfcdb9e0188ddbb3e71c27016ed
146
py
Python
recommendations_system/io_/__init__.py
mmikolajczak/recommendation_system_hetrec2011_movielens
3ae13e62605ffbf5517bc2079e086a400de48748
[ "MIT" ]
4
2019-12-04T08:42:21.000Z
2020-06-07T07:22:08.000Z
recommendations_system/io_/__init__.py
mmikolajczak/recommendation_system_hetrec2011_movielens
3ae13e62605ffbf5517bc2079e086a400de48748
[ "MIT" ]
null
null
null
recommendations_system/io_/__init__.py
mmikolajczak/recommendation_system_hetrec2011_movielens
3ae13e62605ffbf5517bc2079e086a400de48748
[ "MIT" ]
null
null
null
from ._load_hetrec import load_hetrec_to_df from ._df2ffm import DF2FFMConverter from ._utils import load_ffm, save_ffm, load_pickle, save_pickle
36.5
64
0.856164
0
0
0
0
0
0
0
0
0
0
277cde189ead3857304afdc2356fa310f621847b
7,689
py
Python
Stack_Exchange/py2_text.py
sadahanu/DataScience_SideProject
f476fe939d660099e3209b91bbd5cb883b37b2d3
[ "MIT" ]
null
null
null
Stack_Exchange/py2_text.py
sadahanu/DataScience_SideProject
f476fe939d660099e3209b91bbd5cb883b37b2d3
[ "MIT" ]
null
null
null
Stack_Exchange/py2_text.py
sadahanu/DataScience_SideProject
f476fe939d660099e3209b91bbd5cb883b37b2d3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Dec 13 23:10:40 2016 @author: zhouyu """ #%% import pandas as pd import numpy as np import os import re import nltk from nltk.corpus import stopwords from bs4 import BeautifulSoup os.chdir('/Users/zhouyu/Documents/Zhou_Yu/DS/kaggle_challenge/text processing') #%% step1: import data import glob alltrainfiles = glob.glob("*.csv") raw_text =pd.concat((pd.read_csv(f,index_col = None, header =0) for f in alltrainfiles),ignore_index = True) #raw_text = pd.read_csv("crypto.csv",index_col = None) #%% step2: clean data, remove HTML, symbols and stopwords def text_to_words(rawtext): #split into individual words, remove HTML, only keep letters and number # convert letters to lower case reg_c = re.compile('[^a-zA-Z0-9_\\+\\-]') words = [word for word in reg_c.split(rawtext.lower()) if word!=''] stops = set(stopwords.words("english")) #take out stop words meaningful_words = [w for w in words if not w in stops] return(" ".join(meaningful_words)) def target_to_words(rawtext): #only return the first target word reg_c = re.compile('[^a-zA-Z0-9_\\+\\-]') words = [word for word in reg_c.split(rawtext.lower()) if word!=''] stops = set(stopwords.words("english")) #take out stop words meaningful_words = [w for w in words if not w in stops] return(meaningful_words[0]) #%% cleaned_post = [] cleaned_target = [] sz = raw_text.shape[0] for i in range(0,sz): raw_post = raw_text['title'][i]+' '+raw_text['content'][i] raw_post = BeautifulSoup(raw_post).get_text() cleaned_post.append(text_to_words(raw_post)) cleaned_target.append(target_to_words(raw_text['tags'][i])) if((i+1)%1000==0): print "Cleanning %d of %d\n" % (i+1,sz) #print cleaned_post[1] #%% step3: creating features from a bag of words from sklearn.feature_extraction.text import CountVectorizer count_vect = CountVectorizer(analyzer = "word", \ tokenizer = None, \ preprocessor = None, \ stop_words = None, \ max_features = 5000) X_train_counts = count_vect.fit_transform(cleaned_post) #X_target_counts = count_vect.fit_transform(cleaned_target) from sklearn.feature_extraction.text import TfidfTransformer tf_transformer = TfidfTransformer(use_idf = False).fit(X_train_counts) X_train_tf = tf_transformer.transform(X_train_counts) #%% training a linear model # METHOD 1: BUILD randomforestclassifier... from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators = 10) forest = rf.fit(X_train_tf, cleaned_target) #%% examine the result produced by METHOD 1: pred = rf.predict(X_train_tf) from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from collections import OrderedDict import matplotlib.pyplot as plt import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') cnf_matrix = confusion_matrix(cleaned_target,pred) #target_names = set(cleaned_target) #np.set_printoptions(precision = 2) #plt.figure() #plot_confusion_matrix(cnf_matrix,classes = target_names,normalize = True,title='Normalized confusion matrix') #plt.show() target_names = list(OrderedDict.fromkeys(cleaned_target)) print(classification_report(cleaned_target,pred,target_names = target_names)) ####### #%% Method 2: directly predicted as the highest frequency element # find the highest tf-idf #step1: select a random sample from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from collections import OrderedDict sample = np.random.choice(87000,1000,replace = False) tf_pred = [] tf_target = [] for i in range(0,1000): r = sample[i]; tf_target.append(cleaned_target[r]) tf_post = X_train_tf.getrow(r).toarray() tf_post_max = tf_post.argmax() tf_pred.append(count_vect.get_feature_names()[tf_post_max]) tf_cnf_matrix = confusion_matrix(tf_target,tf_pred) target_names = list(OrderedDict.fromkeys(tf_pred+tf_target)) print(classification_report(tf_target, tf_pred,target_names =target_names)) #%% evaluate test set test = pd.read_csv('test/test.csv') cleaned_test = [] test_sz = test.shape[0] for i in range(0,test_sz): test_post = test['title'][i]+' '+test['content'][i] test_post = BeautifulSoup(test_post).get_text() cleaned_test.append(text_to_words(test_post)) if((i+1)%1000==0): print "Cleanning %d of %d\n" % (i+1,test_sz) #%% use random forest X_test_counts = count_vect.fit_transform(cleaned_test) X_test_tf = tf_transformer.transform(X_test_counts) result = forest.predict(X_test_counts) # use max tf-idf #%% test_pred = [] for i in range(0,test_sz): tf_test = X_test_tf.getrow(i).toarray() # just return one tag #tf_test_max = tf_test.argmax() #test_pred.append(count_vect.get_feature_names()[tf_test_max]) ind = np.argpartition(tf_test,-4)[:,-4:] pred_tags = [count_vect.get_feature_names()[j] for j in ind[0,:].tolist()] test_pred.append( " ".join(pred_tags)) if((i+1)%1000==0): print "Predicting %d of %d\n" % (i+1,test_sz) result = test_pred #%% prepare submission submission = pd.read_csv('test/sample_submission.csv') submission.iloc[:,1] = result submission.to_csv('test/submission.csv',index = None) #%% try to use NMF model can not be mapped to specific question... n_features = 5000 n_topics = 10 n_samples = test_sz n_top_words = 4 def get_top_words(model, feature_names, n_top_words): res = [] for topic_idx, topic in enumerate(model.components_): tags = " ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]]) res.append(tags) return res from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF from time import time tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') tfidf = tfidf_vectorizer.fit_transform(cleaned_test) # Fit the NMF model print("Fitting the NMF model (Frobenius norm) with tf-idf features, " "n_samples=%d and n_features=%d..." % (n_samples, n_features)) t0 = time() nmf = NMF(n_components=n_topics, random_state=1, alpha=.1, l1_ratio=.5).fit(tfidf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in NMF model (Frobenius norm):") tfidf_feature_names = tfidf_vectorizer.get_feature_names() #print_top_words(nmf, tfidf_feature_names, n_top_words) result = get_top_words(nmf,tfidf_feature_names,n_top_words)
38.253731
110
0.694629
0
0
0
0
0
0
0
0
2,104
0.273638
277d5ee604563ea1b0d6b261faa48f33c379cba6
1,210
py
Python
tests/test_types.py
apparentlymart/python-stl
befec2266b4a6b201ecc3c4c42007a5c24e90566
[ "MIT" ]
9
2015-01-25T19:46:31.000Z
2018-07-04T03:32:46.000Z
tests/test_types.py
apparentlymart/python-stl
befec2266b4a6b201ecc3c4c42007a5c24e90566
[ "MIT" ]
10
2015-03-10T19:04:34.000Z
2018-11-03T04:46:57.000Z
tests/test_types.py
apparentlymart/python-stl
befec2266b4a6b201ecc3c4c42007a5c24e90566
[ "MIT" ]
15
2015-03-07T21:46:44.000Z
2021-12-02T20:03:21.000Z
import unittest from stl.types import * class TestTypes(unittest.TestCase): def test_facet_geometry(self): facet = Facet( (1, 0, 0), [ (0, 0, 0), (1, 0, 0), (0, 1, 0), ], ) self.assertEqual(facet.a, 1.0) self.assertEqual(facet.b, 1.0) self.assertAlmostEqual(facet.c, 1.4142135623730951) self.assertAlmostEqual( facet.perimeter, 1.0 + 1.0 + 1.4142135623730951, ) self.assertAlmostEqual(facet.area, 0.5) def test_solid_geometry(self): solid = Solid( "test", [ Facet( (1, 0, 0), [ (0, 0, 0), (1, 0, 0), (0, 1, 0), ], ), Facet( (1, 0, 0), [ (0, 0, 0), (1, 0, 0), (0, 0, 1), ], ), ], ) self.assertAlmostEqual(solid.surface_area, 0.5 + 0.5)
23.72549
61
0.333884
1,167
0.964463
0
0
0
0
0
0
6
0.004959
277d94d70e278173e780c161c144680891ccd6df
116
py
Python
server/domain/datasets/exceptions.py
multi-coop/catalogage-donnees
1d70401ff6c7b01ec051460a253cb105adf65911
[ "MIT" ]
null
null
null
server/domain/datasets/exceptions.py
multi-coop/catalogage-donnees
1d70401ff6c7b01ec051460a253cb105adf65911
[ "MIT" ]
14
2022-01-25T17:56:52.000Z
2022-01-28T17:47:59.000Z
server/domain/datasets/exceptions.py
multi-coop/catalogage-donnees
1d70401ff6c7b01ec051460a253cb105adf65911
[ "MIT" ]
null
null
null
from ..common.exceptions import DoesNotExist class DatasetDoesNotExist(DoesNotExist): entity_name = "Dataset"
19.333333
44
0.793103
68
0.586207
0
0
0
0
0
0
9
0.077586
277dc18fc44eab6c4ec0aeec52c4030e30b5d869
967
py
Python
pysimplegui/DemoPrograms/Demo_Design_Pattern_Multiple_Windows2.py
konsan1101/py-etc
bcca13119b0d2453866988404fd1c4976f55d4d5
[ "MIT" ]
null
null
null
pysimplegui/DemoPrograms/Demo_Design_Pattern_Multiple_Windows2.py
konsan1101/py-etc
bcca13119b0d2453866988404fd1c4976f55d4d5
[ "MIT" ]
2
2020-06-06T00:30:56.000Z
2021-06-10T22:30:37.000Z
pysimplegui/DemoPrograms/Demo_Design_Pattern_Multiple_Windows2.py
konsan1101/py-etc
bcca13119b0d2453866988404fd1c4976f55d4d5
[ "MIT" ]
null
null
null
import PySimpleGUI as sg """ PySimpleGUI The Complete Course Lesson 7 Multiple Independent Windows """ # Design pattern 2 - First window remains active layout = [[ sg.Text('Window 1'),], [sg.Input()], [sg.Text('', size=(20,1), key='-OUTPUT-')], [sg.Button('Launch 2'), sg.Button('Exit')]] window1 = sg.Window('Window 1', layout) window2_active = False while True: event1, values1 = window1.read(timeout=100) window1['-OUTPUT-'].update(values1[0]) if event1 is None or event1 == 'Exit': break if not window2_active and event1 == 'Launch 2': window2_active = True layout2 = [[sg.Text('Window 2')], [sg.Button('Exit')]] window2 = sg.Window('Window 2', layout2) if window2_active: ev2, vals2 = window2.read(timeout=100) if ev2 is None or ev2 == 'Exit': window2_active = False window2.close() window1.close()
24.794872
53
0.584281
0
0
0
0
0
0
0
0
243
0.251293
2780f36861b56fbdc559cec62df68437bb7c262c
6,277
py
Python
pexpo.py
joeyspacerocks/pexpo
1b668bd3d8b399570f938d0b5e9e9545db2ad059
[ "Apache-2.0" ]
1
2016-05-07T12:32:36.000Z
2016-05-07T12:32:36.000Z
pexpo.py
joeyspacerocks/pexpo
1b668bd3d8b399570f938d0b5e9e9545db2ad059
[ "Apache-2.0" ]
33
2020-07-02T10:24:56.000Z
2020-08-03T17:26:23.000Z
pexpo.py
joeyspacerocks/pexpo
1b668bd3d8b399570f938d0b5e9e9545db2ad059
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import os import sys import StringIO import argparse import json import zipfile from PIL import Image, ImageColor import xml.etree.cElementTree as ET # TODO: compose multiple layers def compose_image(indexes, archive): file = 'layer' + str(indexes[0]) + '.png' return Image.open(StringIO.StringIO(archive.read(file))) def aggregate_sprites(sprites, data): for d in data: for s in d['sprites']: sprites.append(s) if 'mask' in s: sprites.append(s['mask']) def pack_images(filename, data): sprites = [] aggregate_sprites(sprites, data['anims']) aggregate_sprites(sprites, data['tiles']) # sort sprites by height sprites.sort(key = lambda s: s['image'].size[1], reverse = True) # pack dest = Image.new("RGBA", (256, 256)) mask = Image.new("1", (256, 256)) dp = dest.load() mp = mask.load() # masq.resize(image_width, 1); # dest.resize(image_width, 1); for s in sprites: idx = s['image'].size[0] idy = s['image'].size[1] # assert(idx <= image_width); found = False for ty in range(2048): if found: break # if(ty + idy > dest.dat.size()) { # masq.resize(image_width, ty + idy); # dest.resize(image_width, ty + idy); # } for tx in range(dest.size[0] - idx): if found: break valid = not(mp[tx, ty] or mp[tx, ty + idy - 1] or mp[tx + idx - 1, ty] or mp[tx + idx - 1, ty + idy - 1]) if valid: for ity in range(idy): if not valid: break for itx in range(idx): if not valid: break if mp[tx + itx, ty + ity]: valid = False if valid: dest.paste(s['image'], (tx, ty)) mask.paste(int(True), (tx, ty, tx + idx, ty + idy)) s["x"] = tx s["y"] = ty s["w"] = idx s["h"] = idy found = True # write image dest.save(filename, 'png') def write_meta(filename, imagefile, data): root = ET.Element("spritesheet", image=imagefile) aroot = ET.SubElement(root, "anims") for a in data['anims']: anode = ET.SubElement(aroot, "a", name=a['name']) for s in a["sprites"]: ET.SubElement(anode, "s", x=str(s['x']), y=str(s['y']), w=str(s['w']), h=str(s['h']), d=str(s['duration'])) if 'mask' in s: mnode = ET.SubElement(snode, "mask") ET.SubElement(mnode, "s", x=str(s['x']), y=str(s['y']), w=str(s['w']), h=str(s['h'])) sroot = ET.SubElement(root, "sprites") for t in data['tiles']: snode = ET.SubElement(sroot, "sprite", name=t['name']) for s in t["sprites"]: mnode = ET.SubElement(snode, "s", x=str(s['x']), y=str(s['y']), w=str(s['w']), h=str(s['h'])) if 'mask' in s: mask = s['mask'] mnode.set('mx', str(mask['x'])) mnode.set('my', str(mask['y'])) tree = ET.ElementTree(root) tree.write(filename) def grab_tiles(data, duration, img, mask, base, count, tw, th): img_w = img.size[0] tpr = img_w / tw x = (base % tpr) * tw y = (base / tpr) * th sprites = [] data['sprites'] = sprites for i in range(count): box = (x, y, x + tw, y + th) sprite = {} sprites.append(sprite) sprite['image'] = img.crop(box) if mask is not None: sprite['mask'] = { 'image': mask.crop(box) } sprite['duration'] = duration x += tw if x >= img_w: x = 0 y += th def generate_tileset(path, file, outpng): archive = zipfile.ZipFile(os.path.join(path, file), 'r') src = json.loads(archive.read('docData.json')) tileset = src['tileset'] tw = tileset['tileWidth'] th = tileset['tileHeight'] per_row = tileset['tilesWide'] tile_count = tileset['numTiles'] iw = per_row * tw ih = (tile_count / per_row) * th dest = Image.new("RGBA", (iw, ih)) tx = 0 ty = 0 for i in range(tile_count): tile_img = Image.open(StringIO.StringIO(archive.read("tile%d.png" % i))) dest.paste(tile_img, (tx * tw, ty * th)) tx += 1 if tx >= per_row: tx = 0 ty += 1 dest.save(outpng, 'png') def compile_sprite_data(data, path, file): archive = zipfile.ZipFile(os.path.join(path, file), 'r') src = json.loads(archive.read('docData.json')) canvas = src['canvas'] anims = src['animations'] w = canvas['width'] h = canvas['height'] tw = canvas['tileWidth'] th = canvas['tileHeight'] if tw == 0 or tw > w: tw = w if th == 0 or th > h: th = h # compose all visible layers, except for the magic 'mask' layer layers = [] masks = [] for i, layer in canvas['layers'].items(): if not layer['hidden']: if layer['name'] == 'mask': masks.append(i) else: layers.append(i) img = compose_image(layers, archive) if len(masks) > 0: mask = compose_image(masks, archive) else: mask = None name = os.path.splitext(file)[0] if len(anims) > 0: print ' - ' + name + ' - export animations (' + str(len(anims)) + ')' for ai in anims.keys(): anim = anims[ai] base = anim['baseTile'] length = anim['length'] duration = anim['frameDuration'] out = {} out['name'] = name + '-' + anim['name'] grab_tiles(out, duration, img, mask, base, length, tw, th) data['anims'].append(out) else: print ' - ' + name + ' - export tilemap' out = { 'name': name } grab_tiles(out, 0, img, mask, 0, (w / tw) * (h / th), tw, th) data['tiles'].append(out) return data def main(script, argv): parser = argparse.ArgumentParser(description='Export PNGs and meta-data from PyxelEdit files.') parser.add_argument('path', help='path to pyxel files (directory or single file)', metavar='<path>') parser.add_argument('-t', '--tileset', help='generate tileset instead of spritesheet', action='store_true', dest='tileset') parser.add_argument('-o', '--out', help='filename of assembled PNG', required=True, metavar='<file>', dest='outpng') args = parser.parse_args() path = args.path if args.tileset: generate_tileset(os.path.dirname(path), os.path.basename(path), args.outpng) else: data = { 'anims':[], 'tiles':[] } if os.path.isfile(path): compile_sprite_data(data, os.path.dirname(path), os.path.basename(path)) else: for i in os.listdir(path): if i.endswith(".pyxel"): compile_sprite_data(data, path, i) pack_images(args.outpng, data) write_meta(os.path.splitext(args.outpng)[0] + '.xml', os.path.basename(args.outpng), data) if __name__ == '__main__': sys.exit(main(sys.argv[0], sys.argv[1:]))
25.51626
124
0.608252
0
0
0
0
0
0
0
0
1,319
0.210132
27811ac83801b7707ced28bf3be304104b0b4fe0
212
py
Python
marsyas-vamp/marsyas/src/django/birdsong/application/birdsong/onsets/admin.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
marsyas-vamp/marsyas/src/django/birdsong/application/birdsong/onsets/admin.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
marsyas-vamp/marsyas/src/django/birdsong/application/birdsong/onsets/admin.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from calls.onsets.models import Recording class RecordingAdmin(admin.ModelAdmin): list_display = ('audio', 'image', 'length') admin.site.register(Recording, RecordingAdmin)
26.5
47
0.783019
87
0.410377
0
0
0
0
0
0
22
0.103774
27822976fe232c6827409ee540cdeeef7ab6474f
505
py
Python
secrets_sample.py
barbudor/upy-door-sensor
ce34226203c0f08b7b10dcdcb6f6f4f2f8689754
[ "MIT" ]
5
2020-04-12T17:10:23.000Z
2021-09-24T19:56:01.000Z
secrets_sample.py
barbudor/upy-door-sensor
ce34226203c0f08b7b10dcdcb6f6f4f2f8689754
[ "MIT" ]
null
null
null
secrets_sample.py
barbudor/upy-door-sensor
ce34226203c0f08b7b10dcdcb6f6f4f2f8689754
[ "MIT" ]
null
null
null
""" Your secrets and configurations items you must rename this file secrets.py and customize as needed """ # Wifi settings SSID = "mywifi" PASSWD = "thesecretpassword" # Network - comment to use DHCP (but slighly slower) IPADDR = "192.168.0.100" MASK = "255.255.255.0" GW = "192.168.0.1" DNS = "1.1.1.1" # MQTT settings MQTT_SVR = "192.168.0.200" MQTT_USER = "mqttuser" MQTT_PWD = "mqttpasswd" # Door status topic MQTT_TOPIC = "stat/door1/STATUS" MQTT_PAYLOAD = '{{"door":"open", "vcc":{:4.2f}}}'
25.25
64
0.683168
0
0
0
0
0
0
0
0
384
0.760396
27824e9b0a8bb25e5664e1e7337a726628d28d71
2,000
py
Python
src/d007/index.py
Yangfan2016/learn-python
84a375cda9d51349ae0a0faf1dc6444ac83ed948
[ "MIT" ]
null
null
null
src/d007/index.py
Yangfan2016/learn-python
84a375cda9d51349ae0a0faf1dc6444ac83ed948
[ "MIT" ]
null
null
null
src/d007/index.py
Yangfan2016/learn-python
84a375cda9d51349ae0a0faf1dc6444ac83ed948
[ "MIT" ]
null
null
null
# 练习1:在屏幕上显示跑马灯文字 from random import randint import os import time def marquee(): content = "我很开心。。。" while True: os.system("clear") print(content) time.sleep(.2) content = content[1:]+content[0] # marquee() # 练习2:设计一个函数产生指定长度的验证码,验证码由大小写字母和数字构成 def genrentae_code(l=4): all = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' res = '' for _ in range(l): index = randint(0, len(all)-1) res += all[index] return res # print(genrentae_code()) # print(genrentae_code(6)) # 练习3:设计一个函数返回给定文件名的后缀名 def get_suffix(filename): pos = filename.rfind(".") if pos > 0: return filename[pos+1:] return "" # print(get_suffix("a.doc")) # print(get_suffix("a.tmp.txt")) # print(get_suffix("abac")) # 练习4:设计一个函数返回传入的列表中最大和第二大的元素的值 def max2(arr): l = len(arr) m1 = arr[0] m2 = arr[1] if l < 2: return m1, m2 if m1 > m2 else m2, m1 for i in range(2, l): if arr[i] > m1: m2 = m1 m1 = arr[i] elif arr[i] > m2: m2 = arr[i] return m1, m2 # print(max2([1,3,5,7])) # 练习5:计算指定的年月日是这一年的第几天 def is_leap_year(y): return y % 4 == 0 and y % 100 != 0 or y % 400 == 0 def which_day(y, m, d): map = { 1: 31, 3: 31, 5: 31, 7: 31, 8: 31, 10: 31, 12: 31, 4: 30, 6: 30, 9: 30, 11: 30, 2: 29 if is_leap_year(y) else 28, } day = d for i in range(1, m): day += map[i] return day # print(which_day(2019, 5, 25)) # 练习6:打印杨辉三角 def pascal_triangle(row): if row < 2: return print("1") # if row<3: # return print("1\n1-1") arr = [1] brr = arr for i in range(1, row+1): arr = [1]*i for j in range(1, len(arr)-1): arr[j] = brr[j-1]+brr[j] print('-'.join(str(i) for i in arr)) brr = arr pascal_triangle(5)
15.151515
74
0.515
0
0
0
0
0
0
0
0
740
0.327144
27830a56e67664f45133b9939b59406608cd3555
147
py
Python
maintenance_mode/utils.py
fallen/django-maintenance-mode
826b18ca3c768ab5dbd3f665886106b0eb702de9
[ "MIT" ]
282
2015-06-08T22:57:44.000Z
2022-03-28T17:44:40.000Z
maintenance_mode/utils.py
fallen/django-maintenance-mode
826b18ca3c768ab5dbd3f665886106b0eb702de9
[ "MIT" ]
82
2015-08-24T09:27:07.000Z
2022-02-08T20:12:48.000Z
maintenance_mode/utils.py
fallen/django-maintenance-mode
826b18ca3c768ab5dbd3f665886106b0eb702de9
[ "MIT" ]
59
2015-06-16T13:06:10.000Z
2022-02-08T20:10:20.000Z
# -*- coding: utf-8 -*- def get_client_ip_address(request): """ Get the client IP Address. """ return request.META['REMOTE_ADDR']
18.375
38
0.612245
0
0
0
0
0
0
0
0
78
0.530612
27845720229d1cbede001bd8fe6879c12c7dc607
2,117
py
Python
dex/command/commands/DexUnreachable.py
TomWeaver18/dexter
d89b66ca6a0d1ba29a4c32f152773a34ce2881e8
[ "MIT" ]
null
null
null
dex/command/commands/DexUnreachable.py
TomWeaver18/dexter
d89b66ca6a0d1ba29a4c32f152773a34ce2881e8
[ "MIT" ]
null
null
null
dex/command/commands/DexUnreachable.py
TomWeaver18/dexter
d89b66ca6a0d1ba29a4c32f152773a34ce2881e8
[ "MIT" ]
null
null
null
# DExTer : Debugging Experience Tester # ~~~~~~ ~ ~~ ~ ~~ # # Copyright (c) 2019 by SN Systems Ltd., Sony Interactive Entertainment Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from dex.command.CommandBase import CommandBase from dex.dextIR import ValueIR class DexUnreachable(CommandBase): """Expect the source line this is found on will never be stepped on to. DexUnreachable() See Commands.md for more info. """ def __init(self): super(DexUnreachable, self).__init__() pass @staticmethod def get_name(): return __class__.__name__ def eval(self, debugger): # If we're ever called, at all, then we're evaluating a line that has # been marked as unreachable. Which means a failure. vir = ValueIR(expression="Unreachable", value="True", type_name=None, error_string=None, could_evaluate=True, is_optimized_away=True, is_irretrievable=False) return {'DexUnreachable' : vir}
38.490909
79
0.691072
818
0.386396
0
0
67
0.031649
0
0
1,486
0.701937
2786bc277b70a50e0d89afd7f11a15c26b25b2fa
1,825
py
Python
tests/test_platform.py
rennerocha/bottery
a082cfa1c21f9aa32ea1526ea3004b581f9e0cd4
[ "MIT" ]
null
null
null
tests/test_platform.py
rennerocha/bottery
a082cfa1c21f9aa32ea1526ea3004b581f9e0cd4
[ "MIT" ]
null
null
null
tests/test_platform.py
rennerocha/bottery
a082cfa1c21f9aa32ea1526ea3004b581f9e0cd4
[ "MIT" ]
null
null
null
import inspect import pytest from bottery.platform import BaseEngine def test_baseengine_platform_name_not_implemented(): """Check if attributes from the public API raise NotImplementedError""" engine = BaseEngine() with pytest.raises(NotImplementedError): getattr(engine, 'platform') @pytest.mark.asyncio @pytest.mark.parametrize('method_name', ['build_message', 'configure']) async def test_baseengine_not_implemented_calls(method_name): """Check if method calls from public API raise NotImplementedError""" engine = BaseEngine() with pytest.raises(NotImplementedError): method = getattr(engine, method_name) if inspect.iscoroutinefunction(method): await method() else: method() def sync_view(message): return 'pong' async def async_view(message): return 'pong' @pytest.mark.asyncio @pytest.mark.parametrize('view', [sync_view, async_view], ids=['sync', 'async']) # noqa async def test_get_response_from_views(view): """ Test if get_response can call an async/sync view and get its response. """ engine = BaseEngine() response = await engine.get_response(view, 'ping') assert response == 'pong' def test_baseengine_handling_message(): fake_handler = type('Handler', (object,), {'check': lambda msg: True}) view = True engine = BaseEngine() engine.registered_handlers = [(fake_handler, view)] returned_view = engine.discovery_view('new message') assert returned_view def test_baseengine_handler_not_found(): fake_handler = type('Handler', (object,), {'check': lambda msg: False}) view = True engine = BaseEngine() engine.registered_handlers = [(fake_handler, view)] returned_view = engine.discovery_view('new message') assert not returned_view
27.651515
88
0.706301
0
0
0
0
813
0.445479
658
0.360548
382
0.209315
27871567eec68506ebdf03b82d43a00ac9173647
26,071
py
Python
sarkas/potentials/core.py
lucianogsilvestri/sarkas
f4ab00014d09976561fbd4349b9d0610e47a61e1
[ "MIT" ]
null
null
null
sarkas/potentials/core.py
lucianogsilvestri/sarkas
f4ab00014d09976561fbd4349b9d0610e47a61e1
[ "MIT" ]
null
null
null
sarkas/potentials/core.py
lucianogsilvestri/sarkas
f4ab00014d09976561fbd4349b9d0610e47a61e1
[ "MIT" ]
null
null
null
""" Module handling the potential class. """ from copy import deepcopy from fmm3dpy import hfmm3d, lfmm3d from numpy import array, ndarray, pi, sqrt, tanh from warnings import warn from ..utilities.exceptions import AlgorithmWarning from ..utilities.fdints import fdm1h, invfd1h from .force_pm import force_optimized_green_function as gf_opt from .force_pm import update as pm_update from .force_pp import update as pp_update from .force_pp import update_0D as pp_update_0D class Potential: r""" Parameters specific to potential choice. Attributes ---------- a_rs : float Short-range cutoff to deal with divergence of the potential for r -> 0. box_lengths : array Pointer to :attr:`sarkas.core.Parameters.box_lengths`. box_volume : float Pointer to :attr:`sarkas.core.Parameters.box_volume`. force_error : float Force error due to the choice of the algorithm. fourpie0 : float Coulomb constant :math:`4 \pi \epsilon_0`. kappa : float Inverse screening length. linked_list_on : bool Flag for choosing the Linked cell list algorithm. matrix : numpy.ndarray Matrix of potential's parameters. measure : bool Flag for calculating the histogram for the radial distribution function. It is set to `False` during equilibration phase and changed to `True` during production phase. method : str Algorithm method. Choices = `["PP", "PPPM", "FMM", "Brute"]`. \n `"PP"` = Linked Cell List (default). `"PPPM"` = Particle-Particle Particle-Mesh. `"FMM"` = Fast Multipole Method. `"Brute"` = corresponds to calculating the distance between all pair of particles within a distance :math:`L/2`. pbox_lengths : numpy.ndarray Pointer to :attr:`sarkas.core.Parameters.pbox_lengths` pbox_volume : float Pointer to :attr:`sarkas.core.Parameters.pbox_lengths` pppm_on : bool Flag for turning on the PPPM algorithm. QFactor : float Sum of the squared of the charges. rc : float Cutoff radius for the Linked Cell List algorithm. screening_length_type : str Choice of ways to calculate the screening length. \n Choices = `[thomas-fermi, tf, debye, debye-huckel, db, moliere, custom, unscreened]`. \n Default = thomas-fermi screening_length : float Value of the screening length. total_net_charge : float Sum of all the charges. type : str Type of potential. \n Choices = [`"coulomb"`, `"egs"`, `"lennardjones"`, `"moliere"`, `"qsp"`]. """ a_rs: float = 0.0 box_lengths: ndarray = None box_volume: float = 0.0 force_error: float = 0.0 fourpie0: float = 0.0 kappa: float = None linked_list_on: bool = True matrix: ndarray = None measure: bool = False method: str = "pp" pbox_lengths: ndarray = None pbox_volume: float = 0.0 pppm_on: bool = False pppm_aliases: ndarray = array([3, 3, 3], dtype=int) pppm_alpha_ewald: float = 0.0 pppm_cao: ndarray = array([3, 3, 3], dtype=int) pppm_mesh: ndarray = array([8, 8, 8], dtype=int) pppm_h_array: ndarray = array([1.0, 1.0, 1.0], dtype=float) pppm_pm_err: float = 0.0 pppm_pp_err: float = 0.0 QFactor: float = 0.0 rc: float = None num_species: ndarray = None screening_length_type: str = "thomas-fermi" screening_length: float = None species_charges: ndarray = None species_masses: ndarray = None total_net_charge: float = 0.0 total_num_density: float = 0.0 total_num_ptcls: float = 0.0 type: str = "yukawa" def __copy__(self): """ Make a shallow copy of the object using copy by creating a new instance of the object and copying its __dict__. """ # Create a new object _copy = type(self)() # copy the dictionary _copy.from_dict(input_dict=self.__dict__) return _copy def __deepcopy__(self, memodict={}): """ Make a deepcopy of the object. Parameters ---------- memodict: dict Dictionary of id's to copies Returns ------- _copy: :class:`sarkas.potentials.core.Potential` A new Potential class. """ id_self = id(self) # memorization avoids unnecessary recursion _copy = memodict.get(id_self) if _copy is None: _copy = type(self)() # Make a deepcopy of the mutable arrays using numpy copy function for k, v in self.__dict__.items(): _copy.__dict__[k] = deepcopy(v, memodict) return _copy def __repr__(self): sortedDict = dict(sorted(self.__dict__.items(), key=lambda x: x[0].lower())) disp = "Potential( \n" for key, value in sortedDict.items(): disp += "\t{} : {}\n".format(key, value) disp += ")" return disp @staticmethod def calc_electron_properties(params): """Calculate electronic parameters. See Electron Properties webpage in documentation website. Parameters ---------- params : :class:`sarkas.core.Parameters` Simulation's parameters. """ warn( "Deprecated feature. It will be removed in the v2.0.0 release. \n" "Use parameters.calc_electron_properties(species). You need to pass the species list.", category=DeprecationWarning, ) twopi = 2.0 * pi spin_degeneracy = 2.0 # g in the notes # Inverse temperature for convenience beta_e = 1.0 / (params.kB * params.electron_temperature) # Plasma frequency params.electron_plasma_frequency = sqrt( 4.0 * pi * params.qe**2 * params.electron_number_density / (params.fourpie0 * params.me) ) params.electron_debye_length = sqrt( params.fourpie0 / (4.0 * pi * params.qe**2 * params.electron_number_density * beta_e) ) # de Broglie wavelength params.electron_deBroglie_wavelength = sqrt(twopi * params.hbar2 * beta_e / params.me) lambda3 = params.electron_deBroglie_wavelength**3 # Landau length 4pi e^2 beta. The division by fourpie0 is needed for MKS units params.electron_landau_length = 4.0 * pi * params.qe**2 * beta_e / params.fourpie0 # chemical potential of electron gas/(kB T), obtained by inverting the density equation. params.electron_dimensionless_chemical_potential = invfd1h( lambda3 * sqrt(pi) * params.electron_number_density / 4.0 ) # Thomas-Fermi length obtained from compressibility. See eq.(10) in Ref. [3]_ lambda_TF_sq = lambda3 / params.electron_landau_length lambda_TF_sq /= spin_degeneracy / sqrt(pi) * fdm1h(params.electron_dimensionless_chemical_potential) params.electron_TF_wavelength = sqrt(lambda_TF_sq) # Electron WS radius params.electron_WS_radius = (3.0 / (4.0 * pi * params.electron_number_density)) ** (1.0 / 3.0) # Brueckner parameters params.electron_rs = params.electron_WS_radius / params.a0 # Fermi wave number params.electron_Fermi_wavenumber = (3.0 * pi**2 * params.electron_number_density) ** (1.0 / 3.0) # Fermi energy params.electron_Fermi_energy = params.hbar2 * params.electron_Fermi_wavenumber**2 / (2.0 * params.me) # Other electron parameters params.electron_degeneracy_parameter = params.kB * params.electron_temperature / params.electron_Fermi_energy params.electron_relativistic_parameter = params.hbar * params.electron_Fermi_wavenumber / (params.me * params.c0) # Eq. 1 in Murillo Phys Rev E 81 036403 (2010) params.electron_coupling = params.qe**2 / ( params.fourpie0 * params.electron_Fermi_energy * params.electron_WS_radius * sqrt(1 + params.electron_degeneracy_parameter**2) ) # Warm Dense Matter Parameter, Eq.3 in Murillo Phys Rev E 81 036403 (2010) params.wdm_parameter = 2.0 / (params.electron_degeneracy_parameter + 1.0 / params.electron_degeneracy_parameter) params.wdm_parameter *= 2.0 / (params.electron_coupling + 1.0 / params.electron_coupling) if params.magnetized: b_mag = sqrt((params.magnetic_field**2).sum()) # magnitude of B if params.units == "cgs": params.electron_cyclotron_frequency = params.qe * b_mag / params.c0 / params.me else: params.electron_cyclotron_frequency = params.qe * b_mag / params.me params.electron_magnetic_energy = params.hbar * params.electron_cyclotron_frequency tan_arg = 0.5 * params.hbar * params.electron_cyclotron_frequency * beta_e # Perpendicular correction params.horing_perp_correction = (params.electron_plasma_frequency / params.electron_cyclotron_frequency) ** 2 params.horing_perp_correction *= 1.0 - tan_arg / tanh(tan_arg) params.horing_perp_correction += 1 # Parallel correction params.horing_par_correction = 1 - (params.hbar * beta_e * params.electron_plasma_frequency) ** 2 / 12.0 # Quantum Anisotropy Parameter params.horing_delta = params.horing_perp_correction - 1 params.horing_delta += (params.hbar * beta_e * params.electron_cyclotron_frequency) ** 2 / 12 params.horing_delta /= params.horing_par_correction def calc_screening_length(self, species): # Consistency self.screening_length_type = self.screening_length_type.lower() if self.screening_length_type in ["thomas-fermi", "tf"]: # Check electron properties if hasattr(self, "electron_temperature_eV"): self.electron_temperature = self.eV2K * self.electron_temperature_eV else: self.electron_temperature = species[-1].temperature self.screening_length = species[-1].ThomasFermi_wavelength elif self.screening_length_type in ["debye", "debye-huckel", "dh"]: self.screening_length = species[-1].debye_length elif self.screening_length_type in ["kappa", "from_kappa"]: self.screening_length = self.a_ws / self.kappa elif self.screening_length_type in ["custom"]: if self.screening_length is None: raise AttributeError("potential.screening_length not defined!") if not self.screening_length and not self.kappa: warn("You have not defined the screening_length nor kappa. I will use the Thomas-Fermi length") self.screening_length_type = "thomas-fermi" self.screening_length = species[-1].ThomasFermi_wavelength def copy_params(self, params): """ Copy necessary parameters. Parameters ---------- params: :class:`sarkas.core.Parameters` Simulation's parameters. """ self.measure = params.measure self.units = params.units self.dimensions = params.dimensions # Copy needed parameters self.box_lengths = params.box_lengths.copy() self.pbox_lengths = params.pbox_lengths.copy() self.box_volume = params.box_volume self.pbox_volume = params.pbox_volume # Needed physical constants self.fourpie0 = params.fourpie0 self.a_ws = params.a_ws self.kB = params.kB self.eV2K = params.eV2K self.eV2J = params.eV2J self.hbar = params.hbar self.QFactor = params.QFactor self.T_desired = params.T_desired self.coupling_constant = params.coupling_constant self.total_num_ptcls = params.total_num_ptcls self.total_net_charge = params.total_net_charge self.total_num_density = params.total_num_density self.num_species = params.num_species self.species_charges = params.species_charges.copy() self.species_masses = params.species_masses.copy() if self.type == "lj": self.species_lj_sigmas = params.species_lj_sigmas.copy() def from_dict(self, input_dict: dict) -> None: """ Update attributes from input dictionary. Parameters ---------- input_dict: dict Dictionary to be copied. """ self.__dict__.update(input_dict) def method_pretty_print(self): """Print algorithm information.""" print("\nALGORITHM: ", self.method) # PP section if self.method != "fmm": print(f"rcut = {self.rc / self.a_ws:.4f} a_ws = {self.rc:.6e} ", end="") print("[cm]" if self.units == "cgs" else "[m]") pp_cells = (self.box_lengths / self.rc).astype(int) print(f"No. of PP cells per dimension = {pp_cells}") ptcls_in_loop = int(self.total_num_density * (self.dimensions * self.rc) ** self.dimensions) print(f"No. of particles in PP loop = {ptcls_in_loop}") dim_const = (self.dimensions + 1) / 3.0 * pi pp_neighbors = int(self.total_num_density * dim_const * self.rc**self.dimensions) print(f"No. of PP neighbors per particle = {pp_neighbors}") if self.method == "pppm": # PM Section print(f"Charge assignment orders: {self.pppm_cao}") print(f"FFT aliases: {self.pppm_aliases}") print(f"Mesh: {self.pppm_mesh}") print( f"Ewald parameter alpha = {self.pppm_alpha_ewald * self.a_ws:.4f} / a_ws = {self.pppm_alpha_ewald:.6e} ", end="", ) print("[1/cm]" if self.units == "cgs" else "[1/m]") h_a = self.pppm_h_array / self.a_ws print(f"Mesh width = {h_a[0]:.4f}, {h_a[1]:.4f}, {h_a[2]:.4f} a_ws") print( f" = {self.pppm_h_array[0]:.4e}, {self.pppm_h_array[1]:.4e}, {self.pppm_h_array[2]:.4e} ", end="", ) print("[cm]" if self.units == "cgs" else "[m]") halpha = self.pppm_h_array * self.pppm_alpha_ewald inv_halpha = (1.0 / halpha).astype(int) print(f"Mesh size * Ewald_parameter (h * alpha) = {halpha[0]:.4f}, {halpha[1]:.4f}, {halpha[2]:.4f} ") print(f" ~ 1/{inv_halpha[0]}, 1/{inv_halpha[1]}, 1/{inv_halpha[2]}") print(f"PP Force Error = {self.pppm_pp_err:.6e}") print(f"PM Force Error = {self.pppm_pm_err:.6e}") print(f"Tot Force Error = {self.force_error:.6e}") def method_setup(self): """Setup algorithm's specific parameters.""" # Check for cutoff radius if not self.method == "fmm": self.linked_list_on = True # linked list on mask = self.box_lengths > 0.0 min_length = self.box_lengths[mask].min() if not self.rc: warn( f"\nThe cut-off radius is not defined. I will use the brute force method.", category=AlgorithmWarning, ) self.rc = min_length / 2.0 self.linked_list_on = False # linked list off if self.rc > min_length / 2.0: warn( f"\nThe cut-off radius is larger than half of the minimum box length. " f"I will use the brute force method.", # f"L_min/ 2 = {0.5 * min_length:.4e} will be used as rc", category=AlgorithmWarning, ) self.rc = min_length / 2.0 self.linked_list_on = False # linked list off if self.a_rs != 0.0: warn("\nShort-range cut-off enabled. Use this feature with care!", category=AlgorithmWarning) # renaming if self.method == "p3m": self.method == "pppm" # Compute pppm parameters if self.method == "pppm": self.pppm_on = True self.pppm_setup() else: self.linked_list_on = False self.pppm_on = False if self.type == "coulomb": self.force_error = self.fmm_precision else: self.force_error = self.fmm_precision def pppm_setup(self): """Calculate the pppm parameters.""" # Change lists to numpy arrays for Numba compatibility if isinstance(self.pppm_mesh, list): self.pppm_mesh = array(self.pppm_mesh, dtype=int) elif not isinstance(self.pppm_mesh, ndarray): raise TypeError(f"pppm_mesh is a {type(self.pppm_mesh)}. Please pass a list or numpy array.") # Mesh array should be 3 even in 2D if not len(self.pppm_mesh) == 3: raise AlgorithmWarning( f"len(potential.pppm_mesh) = {len(self.pppm_mesh)}.\n" f"The PPPM mesh array should be of length 3 even in non 3D simulations." ) if isinstance(self.pppm_aliases, list): self.pppm_aliases = array(self.pppm_aliases, dtype=int) elif not isinstance(self.pppm_aliases, ndarray): raise TypeError(f"pppm_aliases is a {type(self.pppm_aliases)}. Please pass a list or numpy array.") # In case you pass one number and not a list if isinstance(self.pppm_cao, int): caos = array([1, 1, 1], dtype=int) * self.pppm_cao self.pppm_cao = caos.copy() elif isinstance(self.pppm_cao, list): self.pppm_cao = array(self.pppm_cao, dtype=int) elif not isinstance(self.pppm_cao, ndarray): raise TypeError(f"pppm_cao is a {type(self.pppm_cao)}. Please pass a list or numpy array.") if self.pppm_cao.max() > 7: raise AttributeError("\nYou have chosen a charge assignment order bigger than 7. Please choose a value <= 7") # pppm parameters self.pppm_h_array = self.box_lengths / self.pppm_mesh # To avoid division by zero mask = self.pppm_h_array == 0.0 self.pppm_h_array[mask] = 1.0 self.pppm_h_volume = self.pppm_h_array.prod() # To avoid unnecessary loops self.pppm_aliases[mask] = 0 # Pack constants together for brevity in input list kappa = 1.0 / self.screening_length if self.type == "yukawa" else 0.0 constants = array([kappa, self.pppm_alpha_ewald, self.fourpie0]) # Calculate the Optimized Green's Function self.pppm_green_function, self.pppm_kx, self.pppm_ky, self.pppm_kz, self.pppm_pm_err = gf_opt( self.box_lengths, self.pppm_h_array, self.pppm_mesh, self.pppm_aliases, self.pppm_cao, constants ) # Complete PM Force error calculation self.pppm_pm_err *= sqrt(self.total_num_ptcls) * self.a_ws**2 * self.fourpie0 self.pppm_pm_err /= self.box_volume ** (2.0 / 3.0) # Total Force Error self.force_error = sqrt(self.pppm_pm_err**2 + self.pppm_pp_err**2) def pretty_print(self): """Print potential information in a user-friendly way.""" print("\nPOTENTIAL: ", self.type) self.pot_pretty_print(potential=self) self.method_pretty_print() def setup(self, params, species) -> None: """Setup the potential class. Parameters ---------- params : :class:`sarkas.core.Parameters` Simulation's parameters. """ # Enforce consistency self.type = self.type.lower() self.method = self.method.lower() self.copy_params(params) self.type_setup(species) self.method_setup() def type_setup(self, species): # Update potential-specific parameters # Coulomb potential if self.type == "coulomb": if self.method == "pp": warn("Use the PP method with care for pure Coulomb interactions.", category=AlgorithmWarning) from .coulomb import pretty_print_info, update_params self.pot_update_params = update_params update_params(self) elif self.type == "yukawa": # Yukawa potential from .yukawa import pretty_print_info, update_params self.calc_screening_length(species) self.pot_update_params = update_params update_params(self) elif self.type == "egs": # exact gradient-corrected screening (EGS) potential from .egs import pretty_print_info, update_params self.calc_screening_length(species) self.pot_update_params = update_params update_params(self) elif self.type == "lj": # Lennard-Jones potential from .lennardjones import pretty_print_info, update_params self.pot_update_params = update_params update_params(self) elif self.type == "moliere": # Moliere potential from .moliere import pretty_print_info, update_params self.pot_update_params = update_params update_params(self) elif self.type == "qsp": # QSP potential from .qsp import pretty_print_info, update_params self.pot_update_params = update_params update_params(self, species) elif self.type == "hs_yukawa": # Hard-Sphere Yukawa from .hs_yukawa import update_params self.calc_screening_length(species) self.pot_update_params = update_params update_params(self) self.pot_pretty_print = pretty_print_info def update_linked_list(self, ptcls): """ Calculate the pp part of the acceleration. Parameters ---------- ptcls : :class:`sarkas.particles.Particles` Particles data. """ ptcls.potential_energy, ptcls.acc, ptcls.virial = pp_update( ptcls.pos, ptcls.id, ptcls.masses, self.box_lengths, self.rc, self.matrix, self.force, self.measure, ptcls.rdf_hist, ) if self.type != "lj": # Mie Energy of charged systems # J-M.Caillol, J Chem Phys 101 6080(1994) https: // doi.org / 10.1063 / 1.468422 dipole = ptcls.charges @ ptcls.pos ptcls.potential_energy += 2.0 * pi * (dipole**2).sum() / (3.0 * self.box_volume * self.fourpie0) def update_brute(self, ptcls): """ Calculate particles' acceleration and potential brutally. Parameters ---------- ptcls: :class:`sarkas.particles.Particles` Particles data. """ ptcls.potential_energy, ptcls.acc, ptcls.virial = pp_update_0D( ptcls.pos, ptcls.id, ptcls.masses, self.box_lengths, self.rc, self.matrix, self.force, self.measure, ptcls.rdf_hist, ) if self.type != "lj": # Mie Energy of charged systems # J-M.Caillol, J Chem Phys 101 6080(1994) https: // doi.org / 10.1063 / 1.468422 dipole = ptcls.charges @ ptcls.pos ptcls.potential_energy += 2.0 * pi * (dipole**2).sum() / (3.0 * self.box_volume * self.fourpie0) def update_pm(self, ptcls): """Calculate the pm part of the potential and acceleration. Parameters ---------- ptcls : :class:`sarkas.particles.Particles` Particles' data """ U_long, acc_l_r = pm_update( ptcls.pos, ptcls.charges, ptcls.masses, self.pppm_mesh, self.pppm_h_array, self.pppm_h_volume, self.box_volume, self.pppm_green_function, self.pppm_kx, self.pppm_ky, self.pppm_kz, self.pppm_cao, ) # Ewald Self-energy U_long += self.QFactor * self.pppm_alpha_ewald / sqrt(pi) # Neutrality condition U_long += -pi * self.total_net_charge**2.0 / (2.0 * self.box_volume * self.pppm_alpha_ewald**2) ptcls.potential_energy += U_long ptcls.acc += acc_l_r def update_pppm(self, ptcls): """Calculate particles' potential and accelerations using pppm method. Parameters ---------- ptcls : :class:`sarkas.particles.Particles` Particles' data. """ self.update_linked_list(ptcls) self.update_pm(ptcls) def update_fmm_coulomb(self, ptcls): """Calculate particles' potential and accelerations using FMM method. Parameters ---------- ptcls : sarkas.core.Particles Particles' data """ out_fmm = lfmm3d(eps=self.fmm_precision, sources=ptcls.pos.transpose(), charges=ptcls.charges, pg=2) potential_energy = ptcls.charges @ out_fmm.pot.real / self.fourpie0 acc = -(ptcls.charges * out_fmm.grad.real / ptcls.masses) / self.fourpie0 ptcls.acc = acc.transpose() return potential_energy def update_fmm_yukawa(self, ptcls): """Calculate particles' potential and accelerations using FMM method. Parameters ---------- ptcls : sarkas.core.Particles Particles' data """ out_fmm = hfmm3d( eps=self.fmm_precision, zk=1j / self.screening_length, sources=ptcls.pos.transpose(), charges=ptcls.charges, pg=2, ) potential_energy = ptcls.charges @ out_fmm.pot.real / self.fourpie0 acc = -(ptcls.charges * out_fmm.grad.real / ptcls.masses) / self.fourpie0 ptcls.acc = acc.transpose() return potential_energy
36.260083
121
0.603199
25,593
0.981665
0
0
4,622
0.177285
0
0
8,907
0.341644
27877c156aab625b9201be4f2bcf3caf8ade21c6
328
py
Python
forest_lite/server/routers/api.py
uk-gov-mirror/MetOffice.forest-lite
9406b53f7e6a9651eb675e0ac2e5945421b25557
[ "BSD-3-Clause" ]
6
2020-08-05T16:12:57.000Z
2022-01-06T01:34:19.000Z
forest_lite/server/routers/api.py
uk-gov-mirror/MetOffice.forest-lite
9406b53f7e6a9651eb675e0ac2e5945421b25557
[ "BSD-3-Clause" ]
49
2020-08-14T13:58:32.000Z
2021-06-29T11:42:32.000Z
forest_lite/server/routers/api.py
uk-gov-mirror/MetOffice.forest-lite
9406b53f7e6a9651eb675e0ac2e5945421b25557
[ "BSD-3-Clause" ]
2
2020-12-03T09:24:13.000Z
2021-04-11T06:10:36.000Z
from fastapi import APIRouter router = APIRouter() @router.get("/api") async def api(): """Discoverable API by hitting root endpoint""" return { "links": { "datasets": "/datasets", "natural_earth_feature": "/natural_earth_feature", "viewport": "/viewport" } }
19.294118
62
0.564024
0
0
0
0
272
0.829268
252
0.768293
149
0.454268
278849dea2ba5567753d1997063d53e6a66da898
593
py
Python
tests/lupin/validators/test_match.py
Clustaar/lupin
9ef73642d84a99adb80abf5a922a9422ddae9254
[ "MIT" ]
22
2017-10-18T08:27:20.000Z
2022-03-25T18:53:43.000Z
tests/lupin/validators/test_match.py
Clustaar/lupin
9ef73642d84a99adb80abf5a922a9422ddae9254
[ "MIT" ]
5
2019-09-16T15:31:55.000Z
2022-02-10T08:29:14.000Z
tests/lupin/validators/test_match.py
Clustaar/lupin
9ef73642d84a99adb80abf5a922a9422ddae9254
[ "MIT" ]
null
null
null
import re import pytest from lupin.errors import InvalidMatch from lupin.validators import Match @pytest.fixture def validator(): regexp = re.compile("hello") return Match(regexp) class TestCall(object): def test_raise_error_if_does_not_match(self, validator): with pytest.raises(InvalidMatch) as exc: validator("bye", []) def test_does_nothing_if_match(self, validator): validator("hello", []) def test_raise_error_value_is_not_a_string(self, validator): with pytest.raises(InvalidMatch) as exc: validator(None, [])
22.807692
64
0.699831
398
0.671164
0
0
90
0.151771
0
0
19
0.03204
2788acf8b816fa004267a5988eb11b0290795f1e
289
py
Python
scripts/face_wall.py
Meeshbhoombah/burnt
c10113e7904c5d13c0feedc337681fb41f1006a7
[ "MIT" ]
null
null
null
scripts/face_wall.py
Meeshbhoombah/burnt
c10113e7904c5d13c0feedc337681fb41f1006a7
[ "MIT" ]
null
null
null
scripts/face_wall.py
Meeshbhoombah/burnt
c10113e7904c5d13c0feedc337681fb41f1006a7
[ "MIT" ]
null
null
null
#!/usr/bin/env python spacing = 0.1 # m lines = [] for c in range(0, 8): rs = [range(11), reversed(range(11))][c % 2] for r in rs: lines.append(' {"point": [%.2f, %.2f, %.2f]}' % (c*spacing, 0, (r)*spacing)) print '[\n' + ',\n'.join(lines) + '\n]'
24.083333
56
0.460208
0
0
0
0
0
0
0
0
72
0.249135
27893fac576198dea3db960f02abcae0e0707306
1,237
py
Python
201220/Q8958.py
JongGuk/BOJ
dd447d9f65481de19a3c0b4f8bb8b5f3d6277c15
[ "MIT" ]
null
null
null
201220/Q8958.py
JongGuk/BOJ
dd447d9f65481de19a3c0b4f8bb8b5f3d6277c15
[ "MIT" ]
null
null
null
201220/Q8958.py
JongGuk/BOJ
dd447d9f65481de19a3c0b4f8bb8b5f3d6277c15
[ "MIT" ]
null
null
null
'''There is an objective test result such as “OOXXOXXOOO”. An ‘O’ means a correct answer of a problem and an ‘X’ means a wrong answer. The score of each problem of this test is calculated by itself and its just previous consecutive ‘O’s only when the answer is correct. For example, the score of the 10th problem is 3 that is obtained by itself and its two previous consecutive ‘O’s. Therefore, the score of “OOXXOXXOOO” is 10 which is calculated by “1+2+0+0+1+0+0+1+2+3”. You are to write a program calculating the scores of test results. Your program is to read from standard input. The input consists of T test cases. The number of test cases T is given in the first line of the input. Each test case starts with a line containing a string composed by ‘O’ and ‘X’ and the length of the string is more than 0 and less than 80. There is no spaces between ‘O’ and ‘X’. Your program is to write to standard output. Print exactly one line for each test case. The line is to contain the score of the test case. ''' num_test_case = int(input()) for num in range(num_test_case): test_case = input().split("X") result = 0 for i in test_case: n = i.count("O") result += n*(1+n)/2 print(int(result))
49.48
114
0.720291
0
0
0
0
0
0
0
0
1,070
0.835285
278941aab99fac086f38eb414bccf8c30fd00617
328
py
Python
common/tasks.py
gaomugong/flask-demo
83bfb04634355565456cc16a5e98421338e3f562
[ "MIT" ]
12
2017-12-24T13:58:17.000Z
2021-04-06T16:21:00.000Z
common/tasks.py
gaomugong/flask-demo
83bfb04634355565456cc16a5e98421338e3f562
[ "MIT" ]
null
null
null
common/tasks.py
gaomugong/flask-demo
83bfb04634355565456cc16a5e98421338e3f562
[ "MIT" ]
1
2021-10-17T14:45:44.000Z
2021-10-17T14:45:44.000Z
# -*- coding: utf-8 -*- from app import celery, app @celery.task() def add_together(a, b): app.logger.info('hello world') return a + b # from common.extensions import celery # from flask import current_app # # # @celery.task() # def add_together(a, b): # current_app.logger.info('hello world') # return a + b
18.222222
44
0.652439
0
0
0
0
90
0.27439
0
0
210
0.640244
2789b658170df8dfdb61f142d656fdcfa80baf19
11,411
py
Python
Code/3_linear_regression_on_pixels.py
jjatinggoyal/accessbility-indicators
7126d3bc33dc6dadbcf6d9000d6ef6d432f093c0
[ "MIT" ]
null
null
null
Code/3_linear_regression_on_pixels.py
jjatinggoyal/accessbility-indicators
7126d3bc33dc6dadbcf6d9000d6ef6d432f093c0
[ "MIT" ]
null
null
null
Code/3_linear_regression_on_pixels.py
jjatinggoyal/accessbility-indicators
7126d3bc33dc6dadbcf6d9000d6ef6d432f093c0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """3_Linear_regression_on_pixels.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1nhECM9OxwIw8BjEqsQcSUwojX2KYrh1I """ from google.colab import drive #to retrieve data from drive drive.mount('/content/drive/') cd 'drive/My Drive/Data/OSM' import numpy as np import pandas as pd from pylab import * from PIL import Image from scipy import ndimage import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import os, sys # districts=['Bangalore', 'Chennai', 'Delhi', 'Gurgaon', 'Hyderabad', 'Kolkata', 'Mumbai'] # years = ['2016', '2017', '2018', '2019'] districts=['Bokaro', 'Jamui'] years = ['2016', '2019'] # defining required functions here ''' This function is used to prepare district image for the application of smoothing filters. The background and builtup pixels are given value 0 and the non-built-up pixels are given value 1. This is because the filters should perform smoothing over BU and NBU pixels only and not background. Input: a) original_image: The BU/NBU maps with background pixels having value 0, BU pixels having value 65, and NBU value 130 Output: a) prepped_image: The Background and BU pixels will have value 0 and NBU pixels will have value 1. ''' def Prepare_image_for_filters(original_image): prepped_image = original_image//130 return prepped_image ''' This function removes the background pixels from the 1D array of the smoothed image using original image. A pixel is retained in the smoothed array only if it's value in original image is either 1 (for BU) or 2 (for NBU) ''' def Remove_background_pixels(original_1D_image, smoothed_1D_image): smooth_temp = [ smoothed_1D_image[i] for i in range(len(smoothed_1D_image)) if original_1D_image[i] > 0] return smooth_temp """''' Driver code starts here ''' for district in districts: print (district) year_to_pixel_matrix = [] # this matrix stores for each year the value of all pixels for year in years: original_image = np.array( Image.open('BU_NBU_maps/'+district+'/'+district+'_BU_NBU_'+year+'.png') ) prepped_image_for_filters = Prepare_image_for_filters(original_image) # Apply Convolution and gaussian filters over prepped image. All filter parameters are hyper-parameters kernel = np.array([[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]) smoothed_image = ndimage.convolve( prepped_image_for_filters, kernel, mode='constant', cval=0.0) smoothed_image = ndimage.gaussian_filter(smoothed_image, sigma=0.2, truncate=11.0, output=float) # convert the 2D images into 1D arrays for further pixel-wise processing original_1D_image = original_image.flatten() smoothed_1D_image = smoothed_image.flatten() assert(len(original_1D_image) == len(smoothed_1D_image)) smoothed_1D_image = Remove_background_pixels(original_1D_image, smoothed_1D_image) year_to_pixel_matrix.append(smoothed_1D_image) # transpose is taken to store pixel values in rows against the years in columns pixel_to_year_matrix = np.array(year_to_pixel_matrix, copy=False).T # Applying linear regression on the values of each pixel over differen years i.e each row of pixel_to_year_matrix # For this, the boundary pixels of a district should be avoided as their smooth value is impacted by background pixels relabelled_original_image = original_image//65 # 0 for background, 1 for BU, and 2 for NBU dimensions = relabelled_original_image.shape background_vs_non_background_image = np.sign(relabelled_original_image) # using signum function, background pixels remain 0 and non-background become 1 # using convolution filter, each non-boundary pixel inside the district will have value 9 in the mask boundary_identifying_kernel = np.array([[1,1,1],[1,1,1],[1,1,1]]) # this should be a 5x5 filter but we'll loose out on double boundary pixels boundary_vs_non_boundary_mask = ndimage.convolve(background_vs_non_background_image, boundary_identifying_kernel, mode='constant', cval=0.0) current_pixel = 0 # refers to current pixel position we check for being boundary pixel or not # Define variables for applying linear regression year_list_as_input = np.reshape(range(len(years)), (-1,1)) # matrix of type [[1],[2],...,[len(year)]], -1 refers to unspecified no. of rows here # following values are found corresponding to each pixel using its value in all years slope = [] intercept = [] cost_array = [] for j in range(dimensions[0]): for k in range(dimensions[1]): if (background_vs_non_background_image[j][k]): # if pixel is inside the district if (boundary_vs_non_boundary_mask[j][k] == 9): # if pixel is not boundary pixel linear_model = LinearRegression() # we predict value of pixel for a given year and find best fit of linear regression on it # so year_list_as_input is our input variable for linear regression regression = linear_model.fit(year_list_as_input, pixel_to_year_matrix[current_pixel]) cost = np.mean((pixel_to_year_matrix[current_pixel] - linear_model.predict(year_list_as_input))**2) cost_array.append(cost) slope.append(round(regression.coef_[0], 4)) #coef.shape is (1,1) intercept.append(round(regression.intercept_, 4)) #intercept.shape is (1) current_pixel += 1 cost_array = np.array(cost_array) print(cost_array) # Save the cost array os.makedirs('Cost_results_from_Regression/'+district, exist_ok = True) # multiply each cost value by 1000 to overcome data loss from storing small values np.savetxt('Cost_results_from_Regression/'+district+'/'+district+'_regression_cost_array.txt', cost_array*1000, fmt='%d') # creating and saving CDFs against the cost values of pixels for each district unique_cost_values, cost_frequencies = np.unique(cost_array, return_counts=True) total_cost_values = (float) (cost_frequencies.sum()) cost_frequencies = cost_frequencies/total_cost_values cdf = np.cumsum(cost_frequencies) plt.plot(unique_cost_values,cdf,label = 'data') # check if a CDF file already exists, since matplotlib doesn't overwrite, delete previous file if os.path.isfile('Cost_results_from_Regression/'+district+'/'+district+'_linear_regression_cdf'): os.remove('Cost_results_from_Regression/'+district+'/'+district+'_linear_regression_cdf') savefig('Cost_results_from_Regression/'+district+'/'+district+'_linear_regression_cdf') plt.clf() print("Done") """ for year in years: original_image = np.array( Image.open('BU_NBU_maps/'+district+'/'+district+'_BU_NBU_'+year+'.png') ) prepped_image_for_filters = Prepare_image_for_filters(original_image) # Apply Convolution and gaussian filters over prepped image. All filter parameters are hyper-parameters kernel = np.array([[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]) smoothed_image = ndimage.convolve( prepped_image_for_filters, kernel, mode='constant', cval=0.0) smoothed_image = ndimage.gaussian_filter(smoothed_image, sigma=0.2, truncate=11.0, output=float) # convert the 2D images into 1D arrays for further pixel-wise processing original_1D_image = original_image.flatten() smoothed_1D_image = smoothed_image.flatten() assert(len(original_1D_image) == len(smoothed_1D_image)) smoothed_1D_image = Remove_background_pixels(original_1D_image, smoothed_1D_image) year_to_pixel_matrix.append(smoothed_1D_image) # transpose is taken to store pixel values in rows against the years in columns pixel_to_year_matrix = np.array(year_to_pixel_matrix, copy=False).T # Applying linear regression on the values of each pixel over differen years i.e each row of pixel_to_year_matrix # For this, the boundary pixels of a district should be avoided as their smooth value is impacted by background pixels relabelled_original_image = original_image//65 # 0 for background, 1 for BU, and 2 for NBU dimensions = relabelled_original_image.shape background_vs_non_background_image = np.sign(relabelled_original_image) # using signum function, background pixels remain 0 and non-background become 1 # using convolution filter, each non-boundary pixel inside the district will have value 9 in the mask boundary_identifying_kernel = np.array([[1,1,1],[1,1,1],[1,1,1]]) # this should be a 5x5 filter but we'll loose out on double boundary pixels boundary_vs_non_boundary_mask = ndimage.convolve(background_vs_non_background_image, boundary_identifying_kernel, mode='constant', cval=0.0) current_pixel = 0 # refers to current pixel position we check for being boundary pixel or not # Define variables for applying linear regression year_list_as_input = np.reshape(range(len(years)), (-1,1)) # matrix of type [[1],[2],...,[len(year)]], -1 refers to unspecified no. of rows here # following values are found corresponding to each pixel using its value in all years slope = [] intercept = [] cost_array = [] for j in range(dimensions[0]): for k in range(dimensions[1]): if (background_vs_non_background_image[j][k]): # if pixel is inside the district if (boundary_vs_non_boundary_mask[j][k] == 9): # if pixel is not boundary pixel linear_model = LinearRegression() # we predict value of pixel for a given year and find best fit of linear regression on it # so year_list_as_input is our input variable for linear regression regression = linear_model.fit(year_list_as_input, pixel_to_year_matrix[current_pixel]) cost = np.mean((pixel_to_year_matrix[current_pixel] - linear_model.predict(year_list_as_input))**2) cost_array.append(cost) slope.append(round(regression.coef_[0], 4)) #coef.shape is (1,1) intercept.append(round(regression.intercept_, 4)) #intercept.shape is (1) current_pixel += 1 cost_array = np.array(cost_array) print(cost_array) # Save the cost array os.makedirs('Cost_results_from_Regression/'+district, exist_ok = True) # multiply each cost value by 1000 to overcome data loss from storing small values np.savetxt('Cost_results_from_Regression/'+district+'/'+district+'_regression_cost_array.txt', cost_array*1000, fmt='%d') # creating and saving CDFs against the cost values of pixels for each district unique_cost_values, cost_frequencies = np.unique(cost_array, return_counts=True) total_cost_values = (float) (cost_frequencies.sum()) cost_frequencies = cost_frequencies/total_cost_values cdf = np.cumsum(cost_frequencies) plt.plot(unique_cost_values,cdf,label = 'data') # check if a CDF file already exists, since matplotlib doesn't overwrite, delete previous file if os.path.isfile('Cost_results_from_Regression/'+district+'/'+district+'_linear_regression_cdf'): os.remove('Cost_results_from_Regression/'+district+'/'+district+'_linear_regression_cdf') savefig('Cost_results_from_Regression/'+district+'/'+district+'_linear_regression_cdf') plt.clf() print("Done")
52.344037
155
0.729997
0
0
0
0
0
0
0
0
8,238
0.721935
278a8dffe7af41773e706a3b3b7522cea3642494
127
py
Python
ccc/cfg.py
zkdev/cc-utils
042c6632ca6f61a484bc0a71f85957aeba7f7278
[ "BSD-3-Clause" ]
15
2018-04-18T13:25:30.000Z
2022-03-04T09:25:41.000Z
ccc/cfg.py
zkdev/cc-utils
042c6632ca6f61a484bc0a71f85957aeba7f7278
[ "BSD-3-Clause" ]
221
2018-04-12T06:29:43.000Z
2022-03-27T03:01:40.000Z
ccc/cfg.py
zkdev/cc-utils
042c6632ca6f61a484bc0a71f85957aeba7f7278
[ "BSD-3-Clause" ]
29
2018-04-11T14:42:23.000Z
2021-11-09T16:26:32.000Z
import functools import ci.util ctx = ci.util.ctx() @functools.lru_cache() def cfg_factory(): return ctx.cfg_factory()
11.545455
28
0.716535
0
0
0
0
70
0.551181
0
0
0
0
278e170fcb4a1f505f51883094b18a872922bd6e
2,459
py
Python
scripts/create_grids.py
edwardoughton/taddle
f76ca6067e6fca6b699675ab038c31c9444e0a79
[ "MIT" ]
9
2020-08-18T04:25:00.000Z
2022-03-18T16:42:33.000Z
scripts/create_grids.py
edwardoughton/arpu_predictor
f76ca6067e6fca6b699675ab038c31c9444e0a79
[ "MIT" ]
null
null
null
scripts/create_grids.py
edwardoughton/arpu_predictor
f76ca6067e6fca6b699675ab038c31c9444e0a79
[ "MIT" ]
4
2020-01-27T01:48:30.000Z
2021-12-01T16:48:17.000Z
""" Create 10km x 10km grid using the country shapefile. Written by Ed Oughton. Winter 2020 """ import argparse import os import configparser import geopandas as gpd from shapely.geometry import Polygon, mapping import pandas as pd import numpy as np import rasterio from rasterstats import zonal_stats BASE_DIR = '.' # repo imports import sys sys.path.append(BASE_DIR) from config import VIS_CONFIG COUNTRY_ABBRV = VIS_CONFIG['COUNTRY_ABBRV'] COUNTRIES_DIR = os.path.join(BASE_DIR, 'data', 'countries') SHAPEFILE_DIR = os.path.join(COUNTRIES_DIR, COUNTRY_ABBRV, 'shapefile') GRID_DIR = os.path.join(COUNTRIES_DIR, COUNTRY_ABBRV, 'grid') def create_folders(): """ Function to create new folder. """ os.makedirs(GRID_DIR, exist_ok=True) def generate_grid(country): """ Generate a 10x10km spatial grid for the chosen country. """ filename = 'national_outline_{}.shp'.format(country) country_outline = gpd.read_file(os.path.join(SHAPEFILE_DIR, filename)) country_outline.crs = "epsg:4326" country_outline = country_outline.to_crs("epsg:3857") xmin,ymin,xmax,ymax = country_outline.total_bounds #10km sides, leading to 100km^2 area length = 1e4 wide = 1e4 cols = list(range(int(np.floor(xmin)), int(np.ceil(xmax)), int(wide))) rows = list(range(int(np.floor(ymin)), int(np.ceil(ymax)), int(length))) rows.reverse() polygons = [] for x in cols: for y in rows: polygons.append( Polygon([(x,y), (x+wide, y), (x+wide, y-length), (x, y-length)])) grid = gpd.GeoDataFrame({'geometry': polygons}) intersection = gpd.overlay(grid, country_outline, how='intersection') intersection.crs = "epsg:3857" intersection = intersection.to_crs("epsg:4326") final_grid = query_settlement_layer(intersection) final_grid = final_grid[final_grid.geometry.notnull()] final_grid.to_file(os.path.join(GRID_DIR, 'grid.shp')) print('Completed grid generation process') def query_settlement_layer(grid): """ Query the settlement layer to get an estimated population for each grid square. """ path = os.path.join(SHAPEFILE_DIR, f'{COUNTRY_ABBRV}.tif') grid['population'] = pd.DataFrame( zonal_stats(vectors=grid['geometry'], raster=path, stats='sum'))['sum'] grid = grid.replace([np.inf, -np.inf], np.nan) return grid if __name__ == '__main__': create_folders() generate_grid(COUNTRY_ABBRV)
26.44086
94
0.699471
0
0
0
0
0
0
0
0
613
0.249288
27907e0aff23ef4fbe2d4a38e27570505c4caa34
366
py
Python
test/test_all.py
beremaran/spdown
59e5ea6996be51ad015f9da6758e2ce556b9fb94
[ "MIT" ]
2
2019-08-13T15:13:58.000Z
2019-10-04T09:09:24.000Z
test/test_all.py
beremaran/spdown
59e5ea6996be51ad015f9da6758e2ce556b9fb94
[ "MIT" ]
4
2021-02-08T20:23:42.000Z
2022-03-11T23:27:07.000Z
test/test_all.py
beremaran/spdown
59e5ea6996be51ad015f9da6758e2ce556b9fb94
[ "MIT" ]
null
null
null
#!/usr/bin/env python import unittest test_modules = [ 'test.test_config', 'test.test_secrets', 'test.test_spotify', 'test.test_youtube' ] if __name__ == "__main__": suite = unittest.TestSuite() for tm in test_modules: suite.addTest(unittest.defaultTestLoader.loadTestsFromName(tm)) unittest.TextTestRunner().run(test=suite)
19.263158
71
0.691257
0
0
0
0
0
0
0
0
106
0.289617
2790d75b4b157f35c41640a672fd75216eb8137c
1,281
py
Python
tests/rec_util.py
pablohawz/tfg-Scan-Paint-clone
056cd50d9e4274620cf085a41ed9d326e16dd47b
[ "MIT" ]
null
null
null
tests/rec_util.py
pablohawz/tfg-Scan-Paint-clone
056cd50d9e4274620cf085a41ed9d326e16dd47b
[ "MIT" ]
null
null
null
tests/rec_util.py
pablohawz/tfg-Scan-Paint-clone
056cd50d9e4274620cf085a41ed9d326e16dd47b
[ "MIT" ]
null
null
null
import os import tempfile from time import time import numpy as np import sounddevice as sd from PySide2.QtWidgets import QApplication, QFileDialog from scipy.io.wavfile import write # Config t = 3 # s fs = 44100 def save(x, fs): # You have to create a QApp in order to use a # Widget (QFileDialg) app = QApplication([]) fname, _ = QFileDialog.getSaveFileName( None, caption='Save audio to disk', dir='C:/users/pablo/tfg', filter='Audio Wav File (.wav)') if fname == '': return if not fname.endswith('.wav'): fname += '.wav' write(fname, fs, x) def main(): with tempfile.TemporaryDirectory() as dir: # Rec print('Rec!') audio = sd.rec(frames=int(t*fs), samplerate=fs, channels=2) sd.wait() print('End!') # Sum to mono audio_mono = np.sum(audio, axis=1) # Calculate dB spl = 20 * np.log10(np.std(audio_mono) / 2e-5) print(round(spl, 2)) path = os.path.join(dir, repr(time())+'.wav') write(path, 44100, audio_mono) r = input('Do you want to save it? [y]/n: ') if r == '' or r == 'y': save(audio_mono, fs) print('Ciao') if __name__ == '__main__': main()
20.66129
67
0.565964
0
0
0
0
0
0
0
0
258
0.201405
2792236e3960ae778ac604767d58c8cfaef78404
10,977
py
Python
test/comptests/TestHybridQuasiGaussian.py
sschlenkrich/HybridMonteCarlo
72f54aa4bcd742430462b27b72d70369c01f9ac4
[ "MIT" ]
3
2021-08-18T18:34:41.000Z
2021-12-24T07:05:19.000Z
test/comptests/TestHybridQuasiGaussian.py
sschlenkrich/HybridMonteCarlo
72f54aa4bcd742430462b27b72d70369c01f9ac4
[ "MIT" ]
null
null
null
test/comptests/TestHybridQuasiGaussian.py
sschlenkrich/HybridMonteCarlo
72f54aa4bcd742430462b27b72d70369c01f9ac4
[ "MIT" ]
3
2021-01-31T11:41:19.000Z
2022-03-25T19:51:20.000Z
#!/usr/bin/python import sys sys.path.append('./') import unittest import copy import numpy as np from hybmc.mathutils.Helpers import BlackImpliedVol, BlackVega from hybmc.termstructures.YieldCurve import YieldCurve from hybmc.models.AssetModel import AssetModel from hybmc.models.HybridModel import HybridModel from hybmc.models.HullWhiteModel import HullWhiteModel from hybmc.models.QuasiGaussianModel import QuasiGaussianModel from hybmc.simulations.McSimulation import McSimulation from hybmc.simulations.Payoffs import Fixed, Pay, Asset, LiborRate, Max import matplotlib.pyplot as plt # a quick way to get a model def HWModel(rate=0.01, vol=0.0050, mean=0.03): curve = YieldCurve(rate) times = np.array([ 10.0 ]) vols = np.array([ vol ]) return HullWhiteModel(curve, mean, times, vols) def fwd(mcSim,p): samples = np.array([ p.discountedAt(mcSim.path(k)) for k in range(mcSim.nPaths) ]) fwd = np.average(samples) / \ mcSim.model.domRatesModel.yieldCurve.discount(p.obsTime) err = np.std(samples) / np.sqrt(samples.shape[0]) / \ mcSim.model.domRatesModel.yieldCurve.discount(p.obsTime) return fwd, err class TestHybridQuasiGaussian(unittest.TestCase): # set up the stage for testing the models def setUp(self): ### full smile/skew model # domestic rates domAlias = 'EUR' eurCurve = YieldCurve(0.03) d = 2 times = np.array([ 10.0 ]) sigma = np.array([ [ 0.0060 ], [ 0.0040 ] ]) slope = np.array([ [ 0.10 ], [ 0.15 ] ]) curve = np.array([ [ 0.05 ], [ 0.10 ] ]) delta = np.array([ 1.0, 10.0 ]) chi = np.array([ 0.01, 0.15 ]) Gamma = np.array([ [1.0, 0.6], [0.6, 1.0] ]) eurRatesModel = QuasiGaussianModel(eurCurve,d,times,sigma,slope,curve,delta,chi,Gamma) # assets forAliases = [ 'USD', 'GBP' ] spotS0 = [ 1.0, 2.0 ] spotVol = [ 0.3, 0.2 ] forAssetModels = [ AssetModel(S0, vol) for S0, vol in zip(spotS0,spotVol) ] # USD rates usdCurve = YieldCurve(0.02) d = 3 times = np.array([ 10.0 ]) sigma = np.array([ [ 0.0060 ], [ 0.0050 ], [ 0.0040 ] ]) slope = np.array([ [ 0.10 ], [ 0.20 ], [ 0.30 ] ]) curve = np.array([ [ 0.05 ], [ 0.10 ], [ 0.20 ] ]) delta = np.array([ 1.0, 5.0, 20.0 ]) chi = np.array([ 0.01, 0.05, 0.15 ]) Gamma = np.array([ [1.0, 0.8, 0.6], [0.8, 1.0, 0.8], [0.6, 0.8, 1.0] ]) usdRatesModel = QuasiGaussianModel(usdCurve,d,times,sigma,slope,curve,delta,chi,Gamma) # gbpRatesModel = HWModel() # # 'EUR_x_0', 'EUR_x_1', 'USD_logS', 'USD_x_0', 'USD_x_1', 'USD_x_2', 'GBP_logS', 'GBP_x' corr = np.array([ [ 1.0, 0.0, 0.5, -0.5, 0.0, 0.0, -0.5, -0.5 ], # EUR_x_0 [ 0.0, 1.0, 0.0, 0.0, -0.5, 0.0, -0.5, 0.0 ], # EUR_x_1 [ 0.5, 0.0, 1.0, -0.5, -0.5, -0.5, 0.0, 0.0 ], # USD_logS [ -0.5, 0.0, -0.5, 1.0, 0.0, 0.0, 0.0, 0.0 ], # USD_x_0 [ 0.0, -0.5, -0.5, 0.0, 1.0, 0.0, 0.0, 0.0 ], # USD_x_1 [ 0.0, 0.0, -0.5, 0.0, 0.0, 1.0, 0.0, 0.0 ], # USD_x_2 [ -0.5, -0.5, 0.0, 0.0, 0.0, 0.0, 1.0, 0.5 ], # GBP_logS [ -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 1.0 ], # GBP_x ]) # # corr = np.identity(2 + 1 + 3 + 1 + 1 ) # overwrite # self.model = HybridModel(domAlias,eurRatesModel,forAliases,forAssetModels,[usdRatesModel,gbpRatesModel],corr) ### Gaussian model # domestic rates domAlias = 'EUR' eurCurve = YieldCurve(0.03) d = 2 times = np.array([ 10.0 ]) sigma = np.array([ [ 0.0060 ], [ 0.0040 ] ]) slope = np.array([ [ 0.00 ], [ 0.00 ] ]) curve = np.array([ [ 0.00 ], [ 0.00 ] ]) delta = np.array([ 1.0, 10.0 ]) chi = np.array([ 0.01, 0.15 ]) Gamma = np.array([ [1.0, 0.6], [0.6, 1.0] ]) eurRatesModel = QuasiGaussianModel(eurCurve,d,times,sigma,slope,curve,delta,chi,Gamma) # assets forAliases = [ 'USD', 'GBP' ] spotS0 = [ 1.0, 2.0 ] spotVol = [ 0.3, 0.2 ] forAssetModels = [ AssetModel(S0, vol) for S0, vol in zip(spotS0,spotVol) ] # USD rates usdCurve = YieldCurve(0.02) d = 3 times = np.array([ 10.0 ]) sigma = np.array([ [ 0.0060 ], [ 0.0050 ], [ 0.0040 ] ]) slope = np.array([ [ 0.10 ], [ 0.20 ], [ 0.30 ] ]) curve = np.array([ [ 0.05 ], [ 0.10 ], [ 0.20 ] ]) delta = np.array([ 1.0, 5.0, 20.0 ]) chi = np.array([ 0.01, 0.05, 0.15 ]) Gamma = np.array([ [1.0, 0.8, 0.6], [0.8, 1.0, 0.8], [0.6, 0.8, 1.0] ]) self.gaussianModel = HybridModel(domAlias,eurRatesModel,forAliases,forAssetModels,[usdRatesModel,gbpRatesModel],corr) def test_ModelSetup(self): self.assertListEqual(self.model.stateAliases(), ['EUR_x_0', 'EUR_x_1', 'EUR_y_0_0', 'EUR_y_0_1', 'EUR_y_1_0', 'EUR_y_1_1', 'EUR_s', 'USD_logS', 'USD_x_0', 'USD_x_1', 'USD_x_2', 'USD_y_0_0', 'USD_y_0_1', 'USD_y_0_2', 'USD_y_1_0', 'USD_y_1_1', 'USD_y_1_2', 'USD_y_2_0', 'USD_y_2_1', 'USD_y_2_2', 'USD_s', 'GBP_logS', 'GBP_x', 'GBP_s']) self.assertListEqual(self.model.factorAliases(), ['EUR_x_0', 'EUR_x_1', 'USD_logS', 'USD_x_0', 'USD_x_1', 'USD_x_2', 'GBP_logS', 'GBP_x']) # @unittest.skip('Too time consuming') def test_HybridSimulation(self): times = np.concatenate([ np.linspace(0.0, 10.0, 11), [10.5] ]) nPaths = 2**13 seed = 314159265359 # risk-neutral simulation print('') mcSim = McSimulation(self.model,times,nPaths,seed,False) # T = 10.0 P = Pay(Fixed(1.0),T) fw, err = fwd(mcSim,P) # domestic numeraire print('1.0 @ %4.1lfy %8.6lf - mc_err = %8.6lf' % (T,fw,err)) # foreign assets for k, alias in enumerate(self.model.forAliases): p = Asset(T,alias) xT = self.model.forAssetModels[k].X0 * \ self.model.forRatesModels[k].yieldCurve.discount(T) / \ self.model.domRatesModel.yieldCurve.discount(T) fw, err = fwd(mcSim,p) print(alias + ' @ %4.1lfy %8.6lf vs %8.6lf (curve) - mc_err = %8.6lf' % (T,fw,xT,err)) # domestic Libor rate Tstart = 10.0 Tend = 10.5 L = Pay(LiborRate(T,Tstart,Tend,alias='EUR'),Tend) fw, err = fwd(mcSim,L) Lref = (mcSim.model.domRatesModel.yieldCurve.discount(Tstart) / \ mcSim.model.domRatesModel.yieldCurve.discount(Tend) - 1) / \ (Tend - Tstart) print('L_EUR @ %4.1lfy %8.6lf vs %8.6lf (curve) - mc_err = %8.6lf' % (T,fw,Lref,err)) # foreign Lbor rates for k, alias in enumerate(self.model.forAliases): L = Pay(LiborRate(T,Tstart,Tend,alias=alias)*Asset(Tend,alias),Tend) fw, err = fwd(mcSim,L) fw *= mcSim.model.domRatesModel.yieldCurve.discount(Tend) / \ mcSim.model.forRatesModels[k].yieldCurve.discount(Tend) / \ mcSim.model.forAssetModels[k].X0 err *= mcSim.model.domRatesModel.yieldCurve.discount(Tend) / \ mcSim.model.forRatesModels[k].yieldCurve.discount(Tend) / \ mcSim.model.forAssetModels[k].X0 Lref = (mcSim.model.forRatesModels[k].yieldCurve.discount(Tstart) / \ mcSim.model.forRatesModels[k].yieldCurve.discount(Tend) - 1) / \ (Tend - Tstart) print('L_%s @ %4.1lfy %8.6lf vs %8.6lf (curve) - mc_err = %8.6lf' % (alias,T,fw,Lref,err)) def test_HybridVolAdjusterCalculation(self): model = copy.deepcopy(self.model) # model = copy.deepcopy(self.gaussianModel) hybVolAdjTimes = np.linspace(0.0, 20.0, 21) model.recalculateHybridVolAdjuster(hybVolAdjTimes) plt.plot(model.hybAdjTimes,model.hybVolAdj[0], 'r*', label='USD') plt.plot(model.hybAdjTimes,model.hybVolAdj[1], 'b*', label='GBP') plt.legend() # times = np.linspace(0.0,20.0,101) plt.plot(times,[ model.hybridVolAdjuster(0,t) for t in times ] , 'r-') plt.plot(times,[ model.hybridVolAdjuster(1,t) for t in times ] , 'b-') plt.show() # # return times = np.linspace(0.0, 10.0, 11) nPaths = 2**13 seed = 314159265359 # risk-neutral simulation print('') mcSim = McSimulation(model,times,nPaths,seed,False) # T = 10.0 for k, alias in enumerate(model.forAliases): # ATM forward xT = model.forAssetModels[k].X0 * \ model.forRatesModels[k].yieldCurve.discount(T) / \ model.domRatesModel.yieldCurve.discount(T) K = Fixed(xT) Z = Fixed(0.0) C = Pay(Max(Asset(T,alias)-K,Z),T) fw, err = fwd(mcSim,C) vol = BlackImpliedVol(fw,xT,xT,T,1.0) vega = BlackVega(xT,xT,vol,T) err /= vega volRef = model.forAssetModels[k].sigma print('C_%s @ %4.1lfy %8.6lf vs %8.6lf (curve) - mc_err = %8.6lf' % (alias,T,vol,volRef,err)) P = Pay(Max(K-Asset(T,alias),Z),T) fw, err = fwd(mcSim,P) vol = BlackImpliedVol(fw,xT,xT,T,-1.0) vega = BlackVega(xT,xT,vol,T) err /= vega volRef = model.forAssetModels[k].sigma print('P_%s @ %4.1lfy %8.6lf vs %8.6lf (curve) - mc_err = %8.6lf' % (alias,T,vol,volRef,err)) if __name__ == '__main__': unittest.main()
41.579545
125
0.484376
9,746
0.887856
0
0
0
0
0
0
1,376
0.125353
27939e55222086ece981ba3a6efa56f956601617
143
py
Python
model/__init__.py
Blind-Aid/sentiment-discovery
081c7c855e00864b52e97cac0b0e097cc86d9731
[ "BSD-3-Clause" ]
1,093
2017-12-05T20:35:45.000Z
2022-02-26T17:48:30.000Z
model/__init__.py
Blind-Aid/sentiment-discovery
081c7c855e00864b52e97cac0b0e097cc86d9731
[ "BSD-3-Clause" ]
67
2017-12-05T22:02:55.000Z
2021-05-25T09:06:41.000Z
model/__init__.py
Blind-Aid/sentiment-discovery
081c7c855e00864b52e97cac0b0e097cc86d9731
[ "BSD-3-Clause" ]
207
2017-12-05T20:59:45.000Z
2022-03-08T09:32:39.000Z
from .distributed import * from .model import * from .sentiment_classifier import * from .transformer import * from .transformer_utils import *
28.6
35
0.797203
0
0
0
0
0
0
0
0
0
0
2793c0f51d8fcdcbec81fb953d41e2dc42b499c2
2,927
py
Python
SIP/src/peer/peer.py
trishantpahwa/Session-Initiation-Protocol
5b770dbb9533fbe3a8ff31fc583576cc107e5ba8
[ "MIT" ]
3
2019-06-18T18:21:05.000Z
2021-07-15T06:28:25.000Z
SIP/src/peer/peer.py
trishantpahwa/Session-Initiation-Protocol
5b770dbb9533fbe3a8ff31fc583576cc107e5ba8
[ "MIT" ]
4
2019-01-30T11:31:13.000Z
2019-03-06T12:36:54.000Z
SIP/src/peer/peer.py
trishantpahwa/Session-Initiation-Protocol
5b770dbb9533fbe3a8ff31fc583576cc107e5ba8
[ "MIT" ]
1
2019-08-12T11:31:23.000Z
2019-08-12T11:31:23.000Z
import socket class peer: __db = None __s = socket __protocol = '' __port = 5060 __s_address = () __buff_size = 4096 def __init__(self, protocol='TCP', port=5060, buff_size=4096): self.__set_protocol(protocol) self.__set_port(port) self.__set_buff_size(buff_size) self.__initialize_socket() self.__set_s_address() def __initialize_socket(self): if self._get_protocol() == 'TCP': self.__s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) else: if self._get_protocol() == 'UDP': self.__s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) else: print('Unable to initialize socket') exit(0) def socket_bind(self): self.__s.bind(self._get_s_address()) def socket_listen(self, backlog): self.__s.listen(backlog) def socket_accept(self): (client_socket, addr) = self.__s.accept() return (client_socket, addr) def socket_connect(self, server_address): self.__s.connect(server_address) def socket_close(self): self.__s.close() def client_send_message(self, message, address=None): message = message.encode('UTF-8') if address: self.__s.sendto(message, address) else: self.__s.send(message) def client_receive_message(self, protocol): if protocol == 'TCP': message = self.__s.recv(self._get_buff_size()) return message.decode('UTF-8') if protocol == 'UDP': message, addr = self.__s.recvfrom(self._get_buff_size()) return (message.decode('UTF-8'), addr) def server_send_message(self, message, client_socket=None, address=None): message = message.encode('UTF-8') if client_socket: client_socket.send(message) else: self.__s.sendto(message, address) def server_receive_message(self, client_socket=None): if client_socket: message = client_socket.recv(self._get_buff_size()) return message.decode('UTF-8') else: message, addr = self.__s.recvfrom(self._get_buff_size()) return (message.decode('UTF-8'), addr) def __set_protocol(self, protocol): self.__protocol = protocol def _get_protocol(self): return self.__protocol def __set_port(self, port): self.__port = port def _get_port(self): return self.__port def __set_buff_size(self, buff_size): self.__buff_size = buff_size def _get_buff_size(self): return self.__buff_size def __set_s_address(self): self.__s_address = (socket.gethostbyname(socket.gethostname()), self._get_port()) def _get_s_address(self): return self.__s_address
28.696078
75
0.60574
2,910
0.994192
0
0
0
0
0
0
98
0.033481
279582d504d9da0d858f00c0d357db9ba41aecb7
3,387
py
Python
champ_bringup/scripts/joint_calibrator_relay.py
lubitz99/champ
2e4c8606db9a365866726ea84e8107c14ee9446d
[ "BSD-3-Clause" ]
923
2020-04-06T15:09:24.000Z
2022-03-30T15:34:08.000Z
champ_bringup/scripts/joint_calibrator_relay.py
lubitz99/champ
2e4c8606db9a365866726ea84e8107c14ee9446d
[ "BSD-3-Clause" ]
73
2020-05-12T09:23:12.000Z
2022-03-28T06:22:16.000Z
champ_bringup/scripts/joint_calibrator_relay.py
lubitz99/champ
2e4c8606db9a365866726ea84e8107c14ee9446d
[ "BSD-3-Clause" ]
229
2020-04-26T06:32:28.000Z
2022-03-29T08:07:28.000Z
#!/usr/bin/env python ''' Copyright (c) 2019-2020, Juan Miguel Jimeno All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import rospy from champ_msgs.msg import Joints from sensor_msgs.msg import JointState from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint import rosparam import os, sys class JointsCalibratorRelay: def __init__(self): rospy.Subscriber("joints_calibrator", JointState, self.joints_cmd_callback) joint_controller_topic = rospy.get_param('champ_controller/joint_controller_topic') self.joint_minimal_pub = rospy.Publisher('cmd_joints', Joints, queue_size = 100) self.joint_trajectory_pub = rospy.Publisher(joint_controller_topic, JointTrajectory, queue_size = 100) joints_map = [None,None,None,None] joints_map[3] = rospy.get_param('/joints_map/left_front') joints_map[2] = rospy.get_param('/joints_map/right_front') joints_map[1] = rospy.get_param('/joints_map/left_hind') joints_map[0] = rospy.get_param('/joints_map/right_hind') self.joint_names = [] for leg in reversed(joints_map): for joint in leg: self.joint_names.append(joint) def joints_cmd_callback(self, joints): joint_minimal_msg = Joints() for i in range(12): joint_minimal_msg.position.append(joints.position[i]) self.joint_minimal_pub.publish(joint_minimal_msg) joint_trajectory_msg = JointTrajectory() joint_trajectory_msg.joint_names = self.joint_names point = JointTrajectoryPoint() point.time_from_start = rospy.Duration(1.0 / 60.0) point.positions = joint_minimal_msg.position joint_trajectory_msg.points.append(point) self.joint_trajectory_pub.publish(joint_trajectory_msg) if __name__ == "__main__": rospy.init_node('joints_calibrator_relay', anonymous=True) j = JointsCalibratorRelay() rospy.spin()
45.16
110
0.749631
1,502
0.44346
0
0
0
0
0
0
1,755
0.518158
279641443118aebc70b220bf9dae1dc53a9d2fc4
3,909
py
Python
touchdown/aws/vpc/vpc.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
14
2015-01-05T18:18:04.000Z
2022-02-07T19:35:12.000Z
touchdown/aws/vpc/vpc.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
106
2015-01-06T00:17:13.000Z
2019-09-07T00:35:32.000Z
touchdown/aws/vpc/vpc.py
yaybu/touchdown
70ecda5191ce2d095bc074dcb23bfa1584464814
[ "Apache-2.0" ]
5
2015-01-30T10:18:24.000Z
2022-02-07T19:35:13.000Z
# Copyright 2014 Isotoma Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from touchdown.core import argument, serializers from touchdown.core.plan import Plan from touchdown.core.resource import Resource from ..account import BaseAccount from ..common import SimpleApply, SimpleDescribe, SimpleDestroy, TagsMixin class VPC(Resource): resource_name = "vpc" name = argument.String(field="Name", group="tags") cidr_block = argument.IPNetwork(field="CidrBlock") tenancy = argument.String( default="default", choices=["default", "dedicated"], field="InstanceTenancy" ) tags = argument.Dict() account = argument.Resource(BaseAccount) enable_dns_support = argument.Boolean( default=True, field="EnableDnsSupport", serializer=serializers.Dict(Value=serializers.Identity()), group="dns_support_attribute", ) enable_dns_hostnames = argument.Boolean( default=True, field="EnableDnsHostnames", serializer=serializers.Dict(Value=serializers.Identity()), group="dns_hostnames_attribute", ) class Describe(SimpleDescribe, Plan): resource = VPC service_name = "ec2" api_version = "2015-10-01" describe_action = "describe_vpcs" describe_envelope = "Vpcs" key = "VpcId" def get_describe_filters(self): return {"Filters": [{"Name": "tag:Name", "Values": [self.resource.name]}]} def annotate_object(self, obj): obj["EnableDnsSupport"] = self.client.describe_vpc_attribute( Attribute="enableDnsSupport", VpcId=obj["VpcId"] )["EnableDnsSupport"] obj["EnableDnsHostnames"] = self.client.describe_vpc_attribute( Attribute="enableDnsHostnames", VpcId=obj["VpcId"] )["EnableDnsHostnames"] return obj class Apply(TagsMixin, SimpleApply, Describe): create_action = "create_vpc" waiter = "vpc_available" def update_dnssupport_attribute(self): diff = self.resource.diff( self.runner, self.object.get("EnableDnsSupport", {}), group="dns_support_attribute", ) if not diff.matches(): yield self.generic_action( ["Configure DNS Support Setting"] + list(diff.lines()), self.client.modify_vpc_attribute, VpcId=serializers.Identifier(), EnableDnsSupport=serializers.Argument("enable_dns_support"), ) def update_dnshostnames_attribute(self): diff = self.resource.diff( self.runner, self.object.get("EnableDnsHostnames", {}), group="dns_hostnames_attribute", ) if not diff.matches(): yield self.generic_action( ["Configure DNS Hostnames Setting"] + list(diff.lines()), self.client.modify_vpc_attribute, VpcId=serializers.Identifier(), EnableDnsHostnames=serializers.Argument("enable_dns_hostnames"), ) def update_object(self): for action in super(Apply, self).update_object(): yield action for action in self.update_dnssupport_attribute(): yield action for action in self.update_dnshostnames_attribute(): yield action class Destroy(SimpleDestroy, Describe): destroy_action = "delete_vpc" # waiter = 'vpc_terminated'
32.575
84
0.660783
3,078
0.787414
1,357
0.347148
0
0
0
0
1,188
0.303914
2796c1a0814e47f59cba47b456a1373f8929dd6d
77
py
Python
backend_django/type/__init__.py
mehranagh20/Typonent
702ae3e018dcffb952c870b0a680f2475845b744
[ "MIT" ]
4
2017-03-24T19:14:29.000Z
2017-04-02T18:23:25.000Z
backend_django/type/__init__.py
mehranagh20/typing_site
702ae3e018dcffb952c870b0a680f2475845b744
[ "MIT" ]
4
2017-03-25T20:25:04.000Z
2017-03-31T17:18:23.000Z
backend_django/type/__init__.py
mehranagh20/typing_site
702ae3e018dcffb952c870b0a680f2475845b744
[ "MIT" ]
null
null
null
# from type.models import User, Requirement, Involvement, Competition, Text
25.666667
75
0.792208
0
0
0
0
0
0
0
0
75
0.974026
2797b6dfc818a3de2bc52aaf5906014401475627
793
py
Python
estructuras de control secuenciales/ejercicio10.py
svcuellar/algoritmos_programacion
0813ee6a2ccb605557a7920bf82440b7388b49e8
[ "MIT" ]
null
null
null
estructuras de control secuenciales/ejercicio10.py
svcuellar/algoritmos_programacion
0813ee6a2ccb605557a7920bf82440b7388b49e8
[ "MIT" ]
null
null
null
estructuras de control secuenciales/ejercicio10.py
svcuellar/algoritmos_programacion
0813ee6a2ccb605557a7920bf82440b7388b49e8
[ "MIT" ]
null
null
null
""" entradas cantidadchelinesaustriacos-->c-->float cantidaddragmasgriegos-->dg-->float cantidadpesetas-->p-->float salidas chelines_a_pesetas-->c_p-->float dragmas_a_francosfrancese-->dg_ff-->float pesetas_a_dolares-->p_d-->float pesetas_a_lirasitalianas-->p_li-->float """ #entradas c=float(input("Ingrese la cantidad de chelines austriacos ")) dg=float(input("Ingrese la cantidad de dragmas griegos ")) p=float(input("Ingrese la cantidad de pesetas ")) #caja negra c_p=round((c*9.57), 2) dg_ff=round(((c*0.957)/20.110), 2) p_d=round((p/122.499), 2) p_li=round((p/0.092289), 2) #salidas print(c, " chelines equivalen a", c_p, " pesetas") print(dg, " dragmas griegos equivalen a", dg_ff, " francos franceses") print(p, " pesetas equivalen a", p_d, " dolares y ", p_li, " liras italianas")
28.321429
78
0.726356
0
0
0
0
0
0
0
0
558
0.703657
27981338330ee315b120f4f29b8d0163c165b34b
4,453
py
Python
st_model.py
saras108/Sentiment_Analysis
7e4e84637161cd005ebbcd303f68417726b5f098
[ "MIT" ]
null
null
null
st_model.py
saras108/Sentiment_Analysis
7e4e84637161cd005ebbcd303f68417726b5f098
[ "MIT" ]
null
null
null
st_model.py
saras108/Sentiment_Analysis
7e4e84637161cd005ebbcd303f68417726b5f098
[ "MIT" ]
null
null
null
#importing necessary libraries import numpy as np import pandas as pd import string import streamlit as st header = st.container() dataset = st.container() fearure = st.container() model_training = st.container() def get_data(file_name): df = pd.read_csv(file_name , header = None) return df with header: st.title("Emotion detection using Text") with dataset: st.header("Emotion Detection Datasets") df = get_data("1-P-3-ISEAR.csv") df.columns = ['sn','Target','Sentence'] df.drop('sn',inplace=True,axis =1) df.head() df.duplicated().sum() df.drop_duplicates(inplace = True) st.subheader("Lets check if the dataset is fairly distrributed.") col1 , col2 = st.columns(2) target_count = df['Target'].value_counts() col1.table(target_count) col2.text("Line Chart of the total output counts") col2.line_chart(target_count ) st.markdown("From the above data, we can easily say the data iss fairly distributed.") with fearure: st.header("Learning about Feature and converting them") def lowercase(text): text = text.lower() return text # df['Sentence'] = df['Sentence'].apply(lowercase) def remove_punc(text): text = "".join([char for char in text if char not in string.punctuation and not char.isdigit()]) return text df['Sentence'] = df['Sentence'].apply(lowercase).apply(remove_punc) #Removing the stop words import nltk nltk.download('omw-1.4') nltk.download('stopwords') from nltk.corpus import stopwords def remove_stopwords(text): text = [w for w in text.split() if w not in stopwords.words('english')] return ' '.join(text) df['Sentence'] = df['Sentence'].apply(remove_stopwords) #Lemmatization i.e changing words into it's root form from nltk.stem import WordNetLemmatizer nltk.download('wordnet') from nltk.corpus import wordnet lemmatizer = WordNetLemmatizer() def lemmatize(text): text = [lemmatizer.lemmatize(word,'v') for word in text.split()] return ' '.join(text) df['Sentence'] = df['Sentence'].apply(lemmatize) st.markdown('As the part of data pre-processing, we have done the following things:') st.text(" - Converting the sentence to lowercase ") st.text(" -Removing the Punction ") st.text(" -Removing the stop words ") st.text(" -Lemmatization i.e changing words into it is root form ,") st.markdown("After all these our data looks like-") st.dataframe(df.head()) st.markdown("After doing Train Test split we will apply TGIF, It is technique to transform text into a meaningful vector of numbers. TFIDF penalizes words that come up too often and dont really have much use. So it rescales the frequency of words that are common which makes scoring more balanced") with model_training: from sklearn.model_selection import train_test_split X = df['Sentence'] y = df['Target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,random_state=10) from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(min_df=2, max_df=0.5, ngram_range=(1, 2)) train_tfidf = tfidf.fit_transform(X_train) test_tfidf = tfidf.transform(X_test) from sklearn.linear_model import LogisticRegression logistic = LogisticRegression(max_iter=1000) logistic.fit(train_tfidf,y_train) from sklearn.naive_bayes import MultinomialNB nb = MultinomialNB() nb.fit(train_tfidf,y_train) st.header('Checking The Accuracy using diffrent model.') import joblib joblib.dump(logistic, './mymodel/logistic_model.joblib') joblib.dump(nb, './mymodel/naive_bayes_model.joblib') joblib.dump(tfidf, './mymodel/tfidf_model.joblib') sel_col , disp_col = st.columns(2) with sel_col: sel_col.subheader("Logistic Regression") sel_col.markdown("Logistic Regression Train Error") sel_col.write(logistic.score(train_tfidf, y_train)) sel_col.markdown("Logistic Regression Test Error") sel_col.write( logistic.score(test_tfidf, y_test)) with disp_col: disp_col.subheader("Naive Bias") disp_col.markdown("Naive Bias Train Error") disp_col.write(nb.score(train_tfidf, y_train)) disp_col.markdown("Naive Bias Test Error") disp_col.write(nb.score(test_tfidf, y_test))
29.885906
302
0.688974
0
0
0
0
0
0
0
0
1,439
0.323153
279b274296a91748dfbdabae0134ce96287057e9
540
py
Python
config.py
sheepmen/SpiderManage
850d6357fd1117c16684dabb5d1e79de1854e61c
[ "MIT" ]
1
2018-06-13T00:38:53.000Z
2018-06-13T00:38:53.000Z
config.py
sheepmen/SpiderManage
850d6357fd1117c16684dabb5d1e79de1854e61c
[ "MIT" ]
null
null
null
config.py
sheepmen/SpiderManage
850d6357fd1117c16684dabb5d1e79de1854e61c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- SECRET_KEY = 'some secret key' TEMPLATES_AUTO_RELOAD = True PROJECT_NAME = 'SpiderManage' # Redis Config REDIS_HOST = '120.25.227.8' REDIS_PORT = 6379 REDIS_PASSWORD = 'xuxinredis' # SQLite # SQLALCHEMY_DATABASE_URI = 'sqlite:///C:/Users/sheep3/workplace/SpiderManage/data.db' # SQLALCHEMY_TRACK_MODIFICATIONS = True # MYSQL SQLALCHEMY_DATABASE_URI = 'mysql://root:[email protected]:3306/spider_db?charset=utf8' SQLALCHEMY_COMMIT_ON_TEARDOWN = True SQLALCHEMY_TRACK_MODIFICATIONS = True
30
93
0.777778
0
0
0
0
0
0
0
0
321
0.594444
279b776bfdce89147881347913d489e839a74293
3,989
py
Python
PyPrometheus.py
RusDavies/PyPrometheus
8c0bb9489f42423942982829024d7359a374d7b1
[ "MIT" ]
null
null
null
PyPrometheus.py
RusDavies/PyPrometheus
8c0bb9489f42423942982829024d7359a374d7b1
[ "MIT" ]
null
null
null
PyPrometheus.py
RusDavies/PyPrometheus
8c0bb9489f42423942982829024d7359a374d7b1
[ "MIT" ]
null
null
null
from PyPrometheusQueryClient import PrometheusQueryClient import json from pathlib import Path from datetime import datetime class Prometheus: def __init__(self, url, metrics_config_file=None, cache_path=None, cache_ttl=3600, ssl_verify=True, starttime=None, endtime=None): self._metrics_config_file = metrics_config_file self._starttime = starttime self._endtime = endtime self.pqc = PrometheusQueryClient(url=url, cache_path=cache_path, cache_ttl=cache_ttl, ssl_verify=ssl_verify) self._load_metrics_config() self.prometheus_data = {} #--- def _load_metrics_config(self, metrics_config_file=None): if (metrics_config_file): self._metrics_config_file = metrics_config_file if (not self._metrics_config_file): raise ValueError('No metrics config file set. Cannot continue.') path = Path(self._metrics_config_file) if(not path.exists()): raise ValueError("The configuration file '{}' does not exist".format(self._metrics_config_file)) with open(path, 'r') as f: self._metrics_config = json.loads( f.read() ) return def get_metrics(self, report_progress): for (metric, metadata) in self._metrics_config.items(): if metadata['active'] == False: continue if (not metric in self.pqc.metrics): raise ValueError("Metric '{}' is unknown".format(metric)) if (report_progress): print("Getting results for metric '{}'{}".format(metric, ' ' * 40), end='\r') _ = self.get_metric(metric, metadata) def get_metric(self, metric, metadata=None, starttime:datetime=None, endtime:datetime=None): # Order of precidence: start and end times passed as params first; otherwise those set on the class. if(not starttime): starttime = self._starttime if(not endtime): endtime = self._endtime # Make sure we have actual start and end times if(not starttime or not endtime): raise ValueError('Both starttime and endtime must be set') # Convert str objects to the expected datatime formats # if( isinstance(starttime, str) ): # starttime = datetime.strptime(starttime, '%Y-%m-%dT%H:%M:%SZ') # if( isinstance(endtime, str) ): # endtime = datetime.strptime(endtime, '%Y-%m-%dT%H:%M:%SZ') # Make sure we're give an actual metric name if (not metric or len(metric) == 0): raise ValueError("Metric '{}' cannot be None") # Make sure the metrics are present in the list retrived from the server if (not metric in self.pqc.metrics): raise ValueError("Metric '{}' is not available on the server".format(metric)) # If we're not passed the metadata, try to reocover it from our metrics config. if (not metadata): metadata = self._metrics_config.get(metric, {}) # # Now do the real work # # Set up the stub of the result self.prometheus_data[metric] = {} self.prometheus_data[metric]['metadata'] = metadata self.prometheus_data[metric]['title'] = metric # Pull the data via the PrometheusQueryClient, depending on deltas = metadata.get('deltas', None) if (deltas == None): (data, df) = self.pqc.get_metric(metric, start=starttime, end=endtime) elif (deltas == True): (data, df) = self.pqc.get_with_deltas(metric, start=starttime, end=endtime) else: (data, df) = self.pqc.get_without_deltas(metric, start=starttime, end=endtime) self.prometheus_data[metric]['data'] = data self.prometheus_data[metric]['df'] = df return self.prometheus_data[metric]
37.990476
134
0.613688
3,862
0.968162
0
0
0
0
0
0
1,028
0.257709
279d9301e8e9b967d31f0c36c000b8b79e8eab38
5,557
py
Python
tests/validate_schema_guide.py
dieghernan/citation-file-format
cfad34b82aa882d8169a0bcb6a21ad19cb4ff401
[ "CC-BY-4.0" ]
257
2017-12-18T14:09:32.000Z
2022-03-28T17:58:19.000Z
tests/validate_schema_guide.py
Seanpm2001-DIGITAL-Command-Language/citation-file-format
52647a247e9b1a5b04154934f39615b5ee8c4d65
[ "CC-BY-4.0" ]
307
2017-10-16T12:17:40.000Z
2022-03-18T11:18:49.000Z
tests/validate_schema_guide.py
Seanpm2001-DIGITAL-Command-Language/citation-file-format
52647a247e9b1a5b04154934f39615b5ee8c4d65
[ "CC-BY-4.0" ]
344
2018-09-19T03:00:26.000Z
2022-03-31T01:39:11.000Z
import pytest import os import json import jsonschema from ruamel.yaml import YAML def test(): def extract_snippets(): start = 0 end = len(markdown) while start < end: snippet_start = markdown.find("```yaml\n", start, end) if snippet_start == -1: break snippet_end = markdown.find("```\n", snippet_start + 8, end) text = markdown[snippet_start:snippet_end + 4] indent_size = 0 while text[8:][indent_size] == " ": indent_size += 1 unindented = "\n" for line in text[8:-4].split("\n"): unindented += line[indent_size:] unindented += "\n" snippets.append(dict(start=snippet_start, end=snippet_end + 4, text=unindented)) start = snippet_end + 4 return snippets with open("schema-guide.md", "r") as f: markdown = f.read() snippets = list() snippets = extract_snippets() yaml = YAML(typ='safe') yaml.constructor.yaml_constructors[u'tag:yaml.org,2002:timestamp'] = yaml.constructor.yaml_constructors[u'tag:yaml.org,2002:str'] schema_path = os.path.join(os.path.dirname(__file__), "..", "schema.json") with open(schema_path, "r") as sf: schema_data = json.loads(sf.read()) for i_snippet, snippet in enumerate(snippets): if "# incorrect" in snippet["text"]: continue instance = yaml.load(snippet["text"]) passes = False while not passes: try: jsonschema.validate(instance=instance, schema=schema_data, format_checker=jsonschema.FormatChecker()) passes = True print("snippet {0}/{1} (chars {2}-{3}): OK".format(i_snippet + 1, len(snippets), snippet["start"], snippet["end"])) except jsonschema.ValidationError as e: path = "" if len(e.relative_path) == 0 else "/".join([str(p) for p in e.relative_path]) + "/" if path == "": if e.message.startswith("'authors' is a required property"): instance["authors"] = [] elif e.message.startswith("'cff-version' is a required property"): instance["cff-version"] = "1.2.0" elif e.message.startswith("'message' is a required property"): instance["message"] = "testmessage" elif e.message.startswith("'title' is a required property"): instance["title"] = "testtitle" else: raise Exception("undefined behavior: " + e.message) elif path.startswith("authors"): if e.message.startswith("[] is too short"): instance["authors"].append({"name": "testname"}) else: raise Exception("undefined behavior: " + e.message) elif path.startswith("references"): index = int(path.split("/")[1]) if e.message.startswith("'authors' is a required property"): instance["references"][index]["authors"] = [] elif e.message.startswith("'title' is a required property"): instance["references"][index]["title"] = "testtitle" elif e.message.startswith("'type' is a required property"): instance["references"][index]["type"] = "generic" elif e.message.startswith("[] is too short"): instance["references"][index]["authors"].append({"name": "testname"}) elif path.startswith("references/{0}/conference".format(index)): if e.message.startswith("'name' is a required property"): instance["references"][index]["conference"]["name"] = "testname" else: raise Exception("undefined behavior: " + e.message) elif path.startswith("preferred-citation"): if e.message.startswith("'authors' is a required property"): instance["preferred-citation"]["authors"] = [] elif e.message.startswith("'title' is a required property"): instance["preferred-citation"]["title"] = "testtitle" elif e.message.startswith("'type' is a required property"): instance["preferred-citation"]["type"] = "generic" elif e.message.startswith("[] is too short"): instance["preferred-citation"]["authors"].append({"name": "testname"}) else: raise Exception("undefined behavior: " + e.message) else: print("Found a problem with snippet at char position {0}-{1}:\n {2}\n{3}".format(snippet["start"], snippet["end"], snippet["text"], e.message)) raise e
57.28866
171
0.479935
0
0
0
0
0
0
0
0
1,271
0.228721
279ec732b8ac9028c087cef84952b665f1b41600
188
py
Python
vkrpg/scripts/hello.py
Augmeneco/VKRPG
b071a490ae45a574a028af1eb831fff96782c06c
[ "Apache-2.0" ]
null
null
null
vkrpg/scripts/hello.py
Augmeneco/VKRPG
b071a490ae45a574a028af1eb831fff96782c06c
[ "Apache-2.0" ]
null
null
null
vkrpg/scripts/hello.py
Augmeneco/VKRPG
b071a490ae45a574a028af1eb831fff96782c06c
[ "Apache-2.0" ]
null
null
null
import vkrpg class MainContext(vkrpg.contexts.BaseContext): def on_message(self, msg): vkrpg.chat.send(msg['peer_id'], text='Привет, VKID#{}!'.format(msg['from_id']))
31.333333
87
0.659574
171
0.881443
0
0
0
0
0
0
42
0.216495
27a5750fd3834a5dd24fb63cbde3fd11a0fdfdd0
4,613
py
Python
flaskprediction/routes.py
killswitchh/flask-prediction-app
a8bdff96fa2dc05544991a705970d1550ac9a034
[ "MIT" ]
null
null
null
flaskprediction/routes.py
killswitchh/flask-prediction-app
a8bdff96fa2dc05544991a705970d1550ac9a034
[ "MIT" ]
1
2020-08-29T18:39:05.000Z
2020-08-30T09:43:47.000Z
flaskprediction/routes.py
killswitchh/flask-prediction-app
a8bdff96fa2dc05544991a705970d1550ac9a034
[ "MIT" ]
null
null
null
import secrets from flask import Flask , render_template , url_for , send_from_directory from flaskprediction import app from flaskprediction.utils.predict import Predictor from flaskprediction.forms import CarDetailsForm , TitanicDetailsForm , BostonDetailsForm , HeightDetailsForm, CatImageForm from PIL import Image import os @app.route('/favicon.ico') def favicon(): return send_from_directory(os.path.join(app.root_path, 'static'), 'favicon.ico', mimetype='image/vnd.microsoft.icon') @app.route("/") @app.route("/home") def home(): return render_template('home.html') @app.route("/classifier", methods=['GET' , 'POST']) def classifier(): return render_template('classification.html') @app.route("/regressor", methods=['GET' , 'POST']) def regressor(): return render_template('regression.html') @app.route("/classifier/titanic", methods=['GET' , 'POST']) def titanic(): message = "" form = TitanicDetailsForm() if form.validate_on_submit(): parameter_list = [form.p_id.data , form.p_class.data, form.sex.data ,form.age.data,form.sibsp.data,form.parch.data,form.fare.data,form.embarked.data] predictor = Predictor() print(parameter_list) answer = predictor.calculate_probability_titanic(parameter_list) message = "" return render_template('titanic.html' , title='Titanic Classifier' , form = form , message= message,answer = answer) else: message = "Enter Passenger Details" return render_template('titanic.html' , title='Titanic Classifier' , form = form , message= message) @app.route("/classifier/car" , methods=['GET' , 'POST']) def car(): message = "" form = CarDetailsForm() if form.validate_on_submit(): parameter_list = list(map(int,[form.price.data , form.maintenance.data,form.no_of_doors.data, form.capacity.data ,form.size_of_luggage_boot.data,form.safety.data])) predictor = Predictor() answer = predictor.calculate_probability_car(parameter_list) message = "" return render_template('car.html' , title='Car Classifier' , form = form , message= message,answer = answer) else: message = "Select All Values" return render_template('car.html' , title='Car Classifier' , form = form , message= message) @app.route("/regressor/boston" , methods=['GET' , 'POST']) def boston(): message = "" form = BostonDetailsForm() if form.validate_on_submit(): parameter_list = [form.crim.data , form.zn.data, form.chas.data ,form.nox.data,form.rm.data,form.age.data,form.dis.data,form.ptratio.data , form.black.data , form.lstat.data] predictor = Predictor() answer = predictor.calculate_price_boston(parameter_list) message = "" return render_template('boston.html' , title='Boston Regressor' , form = form , message= message,answer = answer) else: message = "Select All Values" return render_template('boston.html' , title='boston Regressor' , form = form , message= message) @app.route("/regressor/height" , methods=['GET' , 'POST']) def height(): message = "" form = HeightDetailsForm() if form.validate_on_submit(): parameter_list = [form.sex.data , form.height.data] predictor = Predictor() answer = predictor.calculate_weight(parameter_list) message = "" return render_template('height.html' , title='Weight Prediction' , form = form , message= message,answer = answer) else: message = "Select All Values" return render_template('height.html' , title='Weight Prediction' , form = form , message= message) def save_picture(form_picture): random_hex = secrets.token_hex(8) _, f_ext = os.path.splitext(form_picture.filename) picture_fn = random_hex + f_ext picture_path = os.path.join(app.root_path, 'static/pics', picture_fn) output_size = (64, 64) i = Image.open(form_picture) i.thumbnail(output_size) i.save(picture_path) return picture_path @app.route("/classifier/cat" , methods=['GET' , 'POST']) def cat(): message = "" form = CatImageForm() if form.validate_on_submit(): picture_file = form.cat_picture.data image_file = save_picture(picture_file) predictor = Predictor() answer = predictor.find_cat(image_file) message = "" return render_template('cat.html' , title='Cat Prediction' , form = form , message= message,answer = answer) else: message = "Upload A Picture" return render_template('cat.html' , title='Cat Prediction' , form = form , message= message)
39.767241
182
0.681986
0
0
0
0
3,884
0.841968
0
0
746
0.161717
27a61a2b957091652c5a6b1dfcf40f524e7bd75a
14,349
py
Python
air/gather.py
krisbukovi/AutomatedIngestReport
87cc65c9028382a0860069d86b69b8517d93f59c
[ "MIT" ]
null
null
null
air/gather.py
krisbukovi/AutomatedIngestReport
87cc65c9028382a0860069d86b69b8517d93f59c
[ "MIT" ]
null
null
null
air/gather.py
krisbukovi/AutomatedIngestReport
87cc65c9028382a0860069d86b69b8517d93f59c
[ "MIT" ]
null
null
null
import requests import re from time import sleep from datetime import datetime import shutil import elasticsearch2 from elasticsearch_dsl import Search, Q from collections import OrderedDict from sqlalchemy import create_engine from subprocess import Popen, PIPE, STDOUT import shlex import glob import csv # from apiclient.discovery import build from utils import Filename, FileType, Date, conf, logger, sort class Gather: """gather data from various sources (canonical list, solr, etc.) ads files are placed in a while known directory with a name based on date and their contents""" def __init__(self, date=Date.TODAY): """use passed date as prefix in filenames""" self.date = date self.values = {} self.values['passed_tests'] = [] self.values['failed_tests'] = [] def all(self): self.solr_admin() jobid = self.solr_bibcodes_start() self.canonical() self.elasticsearch() self.postgres() self.classic() self.solr_bibcodes_finish(jobid) self.fulltext() def canonical(self): """create local copy of canonical bibcodes""" c = conf['CANONICAL_FILE'] air = Filename.get(self.date, FileType.CANONICAL) logger.info('making local copy of canonical bibcodes file, from %s to %s', c, air) shutil.copy(c, air) sort(air) def solr(self): self.solr_admin() self.solr_bibcodes() def solr_admin(self): """obtain admin oriented data from solr instance """ url = conf.get('SOLR_URL', 'http://localhost:9983/solr/collection1/') query = 'admin/mbeans?stats=true&cat=UPDATEHANDLER&wt=json' rQuery = requests.get(url + query) if rQuery.status_code != 200: logger.error('failed to obtain stats on update handler, status code = %s', rQuery.status_code) else: j = rQuery.json() self.values['solr_cumulative_adds'] = j['solr-mbeans'][1]['updateHandler']['stats']['cumulative_adds'] self.values['solr_cumulative_errors'] = j['solr-mbeans'][1]['updateHandler']['stats']['cumulative_errors'] self.values['solr_errors'] = j['solr-mbeans'][1]['updateHandler']['stats']['errors'] def solr_bibcodes(self): jobid = self.solr_bibcodes_start() self.solr_bibcodes_finish(jobid) def solr_bibcodes_start(self): """use solr batch api to get list of all bibcode it has based on http://labs.adsabs.harvard.edu/trac/adsabs/wiki/SearchEngineBatch#Example4:Dumpdocumetsbyquery""" url = conf.get('SOLR_URL', 'http://localhost:9983/solr/collection1/') query = 'batch?command=dump-docs-by-query&q=*:*&fl=bibcode&wt=json' # use for testing # query = 'batch?command=dump-docs-by-query&q=bibcode:2003ASPC..295..361M&fl=bibcode&wt=json' start = 'batch?command=start&wt=json' logger.info('sending initial batch query to solr at %s', url) rQuery = requests.get(url + query) if rQuery.status_code != 200: logger.error('initial batch solr query failed, status: %s, text: %s', rQuery.status_code, rQuery.text) return False j = rQuery.json() jobid = j['jobid'] logger.info('sending solr start batch command') rStart = requests.get(url + start) if rStart.status_code != 200: logger.error('solr start batch processing failed, status %s, text: %s', rStart.status_code, rStart.text) return False return jobid def solr_bibcodes_finish(self, jobid): """get results from earlier submitted job""" url = conf.get('SOLR_URL', 'http://localhost:9983/solr/collection1/') status = 'batch?command=status&wt=json&jobid=' get_results = 'batch?command=get-results&wt=json&jobid=' # now we wait for solr to process batch query finished = False startTime = datetime.now() while not finished: rStatus = requests.get(url + status + jobid) if rStatus.status_code != 200: logger.error('batch status check failed, status: %s, text: %s', rStatus.status_code, rStatus.text) return False j = rStatus.json() if j['job-status'] == 'finished': finished = True else: sleep(10) if (datetime.now() - startTime).total_seconds() > 3600 * 2: logger.error('solr batch process taking too long, seconds: %s;', (datetime.now() - startTime).total_seconds()) return False logger.info('solr bacth completed in %s seconds, now fetching bibcodes', (datetime.now() - startTime).total_seconds()) rResults = requests.get(url + get_results + jobid) if rResults.status_code != 200: logger.error('failed to obtain bibcodes from solr batch query, status: %s, text: %s,', rResults.status_code, rResults.text) return False # finally save bibcodes to file bibs = rResults.text # all 12 million bibcodes are in this one text field # convert to json-ish text to simple string, response includes newlines between bibcodes bibs = re.sub(r'{"bibcode":"|,|"}', '', bibs) filename = Filename.get(self.date, FileType.SOLR) with open(filename, 'w') as f: f.write(bibs) sort(filename) return True def elasticsearch(self): """obtain error counts from elasticsearch """ u = conf['ELASTICSEARCH_URL'] es = elasticsearch2.Elasticsearch(u) # first get total errors for last 24 hours s = Search(using=es, index='_all') \ .query('match', **{'@message': 'error'}) \ .filter('range', **{'@timestamp': {'gte': 'now-24h', 'lt': 'now'}}) \ .count() errors = OrderedDict() # using ordered dict to control order in report errors['total'] = s # now get errors individually for each pipeline pipelines = ('backoffice-master_pipeline', 'backoffice-import_pipeline', 'backoffice-data_pipeline', 'backoffice-fulltext_pipeline', 'backoffice-orcid_pipeline', 'backoffice-citation_capture_pipeline') for pipeline in pipelines: s = Search(using=es, index='_all') \ .filter('range', **{'@timestamp': {'gte': 'now-24h', 'lt': 'now'}}) \ .query('match', **{'@message': 'error'}) \ .filter('match', **{'_type': pipeline}) \ .count() self.values[pipeline] = s self.values['backoffice-fulltext_pipeline'] = '123' # next, check on specific errors that should have been fixed # message must be in double quotes to force exact phrase match tests = (('backoffice-master_pipeline', '"too many records to add to db"'), ('backoffice-fulltext_pipeline', '"is linked to a non-existent file"'), ('backoffice-nonbib_pipeline', '"Unbalanced Parentheses"')) passed_tests = [] failed_tests = [] for pipeline, message in tests: count = Search(using=es, index='_all') \ .filter('range', **{'@timestamp': {'gte': 'now-24h', 'lt': 'now'}}) \ .query('query_string', query=message) \ .filter('match', **{'_type': pipeline}) \ .count() if count == 0: passed_tests.append('{}, message {}\n'.format(pipeline, message)) else: failed_tests.append('Unexpected error in {}: {} occured {} times' \ .format(pipeline, message, count)) if len(failed_tests): errors['failed_tests'] = failed_tests if len(passed_tests): errors['passed_tests'] = passed_tests print errors self.values['failed_tests'].extend(failed_tests) self.values['passed_tests'].extend(passed_tests) def classic(self): """are there errors from the classic pipeline""" files = ('/proj/ads/abstracts/sources/ArXiv/log/update.log', '/proj/ads/abstracts/sources/ArXiv/log/usage.log') for f in files: self.classic_file_check(f) def classic_file_check(self, f): x = Popen(['grep', '-i', 'error', f], stdout=PIPE, stderr=STDOUT) resp = x.communicate()[0] if x.returncode == 1: # no errors found in log files msg = 'passed arxiv check: file {}'.format(f) print msg self.values['passed_tests'].extend(msg) else: # return code = 0 if grep matched # return code = 2 if grep encounted an error msg = 'failed arxiv check: file {}, error {}'.format(f, resp) msg = 'failed arxiv check: file {}, error = \n{}'.format(f, resp) print msg self.values['failed_tests'].extend(msg) def postgres(self): # consider building on ADSPipelineUtils engine = create_engine(conf['SQLALCHEMY_URL_NONBIB'], echo=False) connection = engine.connect() self.values['nonbib_ned_row_count'] = self.exec_sql(connection, "select count(*) from nonbib.ned;") print 'from nonbib database, ned table has {} rows'.format(self.values['nonbib_ned_row_count']) connection.close() engine = create_engine(conf['SQLALCHEMY_URL_MASTER'], echo=False) connection = engine.connect() self.values['metrics_updated_count'] = self.exec_sql(connection, "select count(*) from records where metrics_updated>now() - interval ' 1 day';") self.values['metrics_null_count'] = self.exec_sql(connection, "select count(*) from records where metrics is null;") self.values['master_total_changed'] = self.exec_sql(connection, "select count(*) from records where processed >= NOW() - '1 day'::INTERVAL;") self.values['master_solr_changed'] = self.exec_sql(connection, "select count(*) from records where solr_processed >= NOW() - '1 day'::INTERVAL;") self.values['master_bib_changed'] = self.exec_sql(connection, "select count(*) from records where bib_data_updated >= NOW() - '1 day'::INTERVAL;") self.values['master_fulltext_changed'] = self.exec_sql(connection, "select count(*) from records where fulltext_updated >= NOW() - '1 day'::INTERVAL;") self.values['master_orcid_changed'] = self.exec_sql(connection, "select count(*) from records where orcid_claims_updated >= NOW() - '1 day'::INTERVAL;") self.values['master_nonbib_changed'] = self.exec_sql(connection, "select count(*) from records where nonbib_data_updated >= NOW() - '1 day'::INTERVAL;") connection.close() print 'from metrics database, null count = {}, 1 day updated count = {}'.format(self.values['metrics_null_count'], self.values['metrics_updated_count']) def exec_sql(self, connection, query): result = connection.execute(query) count = result.first()[0] return str(count) def fulltext(self): """Get errors from todays fulltext logs and generate a list for each type of error of corresponding bibcodes and source directories. These lists are written to files that are further processed in compute.py""" # types of errors with corresponding file names errors = conf['FULLTEXT_ERRORS'] # get todays date now = datetime.strftime(datetime.now(), "%Y-%m-%d") # loop through types of errors messages for err_msg in errors.keys(): bibs = [] dirs = [] # location of bibcode and directory in message field """example log: {"asctime": "2019-08-26T11:38:34.201Z", "msecs": 201.6739845275879, "levelname": "ERROR", "process": 13411, "threadName": "MainThread", "filename": "checker.py", "lineno": 238, "message": "Bibcode '2019arXiv190105463B' is linked to a non-existent file '/some/directory/filename.xml'", "timestamp": "2019-08-26T11:38:34.201Z", "hostname": "adsvm05"}""" loc_bib = 1 loc_dir = 3 if (err_msg == "No such file or directory"): loc_bib = 3 loc_dir = 11 elif (err_msg == "format not currently supported for extraction"): loc_bib = 7 loc_dir = 23 # loop through files for name in glob.glob(errors[err_msg]): command = "awk -F\: '/" + err_msg + "/ && /" + now + "/ && /ERROR/ {print $0}' " + name args = shlex.split(command) x = Popen(args, stdout=PIPE, stderr=STDOUT) # get bibcodes/directories from todays errors resp = x.communicate()[0].split("\n") for r in resp: if r: r = r.split("'") bibs.append(r[loc_bib]) dirs.append(r[loc_dir]) # create filename based on error message and date fname = Filename.get(self.date, FileType.FULLTEXT, adjective=None, msg="_" + ("_".join(err_msg.split())).replace('-', '_') + "_") # write bibcodes and directories for each error type to file with open(fname, 'w') as f: writer = csv.writer(f, delimiter='\t') writer.writerows(zip(bibs, dirs)) sort(fname)
45.122642
160
0.566451
13,933
0.971008
0
0
0
0
0
0
5,868
0.408948
27a686fae11eeb59ce17fe8f4cf6412be0900891
8,180
py
Python
python_aternos/atconf.py
DarkCat09/python-aternos
a75d729e938a181449f304e849762dd9bb0e51f3
[ "Apache-2.0" ]
11
2021-10-01T13:04:44.000Z
2022-03-31T19:19:48.000Z
python_aternos/atconf.py
DarkCat09/python-aternos
a75d729e938a181449f304e849762dd9bb0e51f3
[ "Apache-2.0" ]
7
2021-10-01T14:00:20.000Z
2022-03-21T12:29:24.000Z
python_aternos/atconf.py
DarkCat09/python-aternos
a75d729e938a181449f304e849762dd9bb0e51f3
[ "Apache-2.0" ]
4
2022-01-07T13:47:39.000Z
2022-02-22T21:51:28.000Z
import enum import re import lxml.html from typing import Any, Dict, List, Union, Optional from typing import TYPE_CHECKING if TYPE_CHECKING: from .atserver import AternosServer class ServerOpts(enum.Enum): """server.options file""" players = 'max-players' gm = 'gamemode' difficulty = 'difficulty' whl = 'white-list' online = 'online-mode' pvp = 'pvp' cmdblock = 'enable-command-block' flight = 'allow-flight' animals = 'spawn-animals' monsters = 'spawn-monsters' villagers = 'spawn-npcs' nether = 'allow-nether' forcegm = 'force-gamemode' spawnlock = 'spawn-protection' cmds = 'allow-cheats' packreq = 'require-resource-pack' pack = 'resource-pack' DAT_PREFIX = 'Data:' DAT_GR_PREFIX = 'Data:GameRules:' class WorldOpts(enum.Enum): """level.dat file""" seed12 = 'randomseed' seed = 'seed' hardcore = 'hardcore' difficulty = 'Difficulty' class WorldRules(enum.Enum): """/gamerule list""" advs = 'announceAdvancements' univanger = 'universalAnger' cmdout = 'commandBlockOutput' elytra = 'disableElytraMovementCheck' raids = 'disableRaids' daynight = 'doDaylightCycle' entdrop = 'doEntityDrops' fire = 'doFireTick' phantoms = 'doInsomnia' immrespawn = 'doImmediateRespawn' limitcraft = 'doLimitedCrafting' mobloot = 'doMobLoot' mobs = 'doMobSpawning' patrols = 'doPatrolSpawning' blockdrop = 'doTileDrops' traders = 'doTraderSpawning' weather = 'doWeatherCycle' drowndmg = 'drowningDamage' falldmg = 'fallDamage' firedmg = 'fireDamage' snowdmg = 'freezeDamage' forgive = 'forgiveDeadPlayers' keepinv = 'keepInventory' deathmsg = 'showDeathMessages' admincmdlog = 'logAdminCommands' cmdlen = 'maxCommandChainLength' entcram = 'maxEntityCramming' mobgrief = 'mobGriefing' regen = 'naturalRegeneration' sleeppct = 'playersSleepingPercentage' rndtick = 'randomTickSpeed' spawnradius = 'spawnRadius' reducedf3 = 'reducedDebugInfo' spectchunkgen = 'spectatorsGenerateChunks' cmdfb = 'sendCommandFeedback' class Gamemode(enum.IntEnum): """/gamemode numeric list""" survival = 0 creative = 1 adventure = 2 spectator = 3 class Difficulty(enum.IntEnum): """/difficulty numeric list""" peaceful = 0 easy = 1 normal = 2 hard = 3 # checking timezone format tzcheck = re.compile(r'(^[A-Z]\w+\/[A-Z]\w+$)|^UTC$') # options types converting convert = { 'config-option-number': int, 'config-option-select': int, 'config-option-toggle': bool } class AternosConfig: """Class for editing server settings :param atserv: :class:`python_aternos.atserver.AternosServer` object :type atserv: python_aternos.atserver.AternosServer """ def __init__(self, atserv:'AternosServer') -> None: self.atserv = atserv def get_timezone(self) -> str: """Parses timezone from options page :return: Area/Location :rtype: str """ optreq = self.atserv.atserver_request( 'https://aternos.org/options', 'GET' ) opttree = lxml.html.fromstring(optreq) tzopt = opttree.xpath('//div[@class="options-other-input timezone-switch"]')[0] tztext = tzopt.xpath('.//div[@class="option current"]')[0].text return tztext.strip() def set_timezone(self, value:str) -> None: """Sets new timezone :param value: New timezone :type value: str :raises ValueError: If given string doesn't match Area/Location format """ matches_tz = tzcheck.search(value) if not matches_tz: raise ValueError('Timezone must match zoneinfo format: Area/Location') self.atserv.atserver_request( 'https://aternos.org/panel/ajax/timezone.php', 'POST', data={'timezone': value}, sendtoken=True ) def get_java(self) -> int: """Parses Java version from options page :return: Java image version :rtype: int """ optreq = self.atserv.atserver_request( 'https://aternos.org/options', 'GET' ) opttree = lxml.html.fromstring(optreq) imgopt = opttree.xpath('//div[@class="options-other-input image-switch"]')[0] imgver = imgopt.xpath('.//div[@class="option current"]/@data-value')[0] jdkver = str(imgver or '').removeprefix('openjdk:') return int(jdkver) def set_java(self, value:int) -> None: """Sets new Java version :param value: New Java image version :type value: int """ self.atserv.atserver_request( 'https://aternos.org/panel/ajax/image.php', 'POST', data={'image': f'openjdk:{value}'}, sendtoken=True ) # # server.properties # def set_server_prop(self, option:str, value:Any) -> None: """Sets server.properties option :param option: Option name :type option: str :param value: New value :type value: Any """ self.__set_prop( '/server.properties', option, value ) def get_server_props(self, proptyping:bool=True) -> Dict[str,Any]: """Parses all server.properties from options page :param proptyping: If the returned dict should contain value that matches property type (e.g. max-players will be int) instead of string, defaults to True :type proptyping: bool, optional :return: Server.properties dict :rtype: Dict[str,Any] """ return self.__get_all_props('https://aternos.org/options', proptyping) def set_server_props(self, props:Dict[str,Any]) -> None: """Updates server.properties options with the given dict :param props: Dict with properties `{key:value}` :type props: Dict[str,Any] """ for key in props: self.set_server_prop(key, props[key]) # # level.dat # def set_world_prop( self, option:Union[WorldOpts,WorldRules], value:Any, gamerule:bool=False, world:str='world') -> None: """Sets level.dat option for specified world :param option: Option name :type option: Union[WorldOpts,WorldRules] :param value: New value :type value: Any :param gamerule: If the option is a gamerule, defaults to False :type gamerule: bool, optional :param world: Name of the world which level.dat must be edited, defaults to 'world' :type world: str, optional """ prefix = DAT_PREFIX if gamerule: prefix = DAT_GR_PREFIX self.__set_prop( f'/{world}/level.dat', f'{prefix}{option}', value ) def get_world_props( self, world:str='world', proptyping:bool=True) -> Dict[str,Any]: """Parses level.dat from specified world's options page :param world: Name of the world, defaults to 'world' :type world: str, optional :param proptyping: If the returned dict should contain the value that matches property type (e.g. randomTickSpeed will be bool) instead of string, defaults to True :type proptyping: bool, optional :return: Level.dat dict :rtype: Dict[str,Any] """ self.__get_all_props( f'https://aternos.org/files/{world}/level.dat', proptyping, [DAT_PREFIX, DAT_GR_PREFIX] ) def set_world_props(self, props:Dict[str,Any]) -> None: for key in props: self.set_world_prop(key, props[key]) # # helpers # def __set_prop(self, file:str, option:str, value:Any) -> None: self.atserv.atserver_request( 'https://aternos.org/panel/ajax/config.php', 'POST', data={ 'file': file, 'option': option, 'value': value }, sendtoken=True ) def __get_all_props( self, url:str, proptyping:bool=True, prefixes:Optional[List[str]]=None) -> Dict[str,Any]: optreq = self.atserv.atserver_request(url, 'GET') opttree = lxml.html.fromstring(optreq.content) configs = opttree.xpath('//div[@class="config-options"]') for i, conf in enumerate(configs): opts = conf.xpath('/div[contains(@class,"config-option ")]') result = {} for opt in opts: key = opt.xpath('.//span[@class="config-option-output-key"]')[0].text value = opt.xpath('.//span[@class="config-option-output-value"]')[0].text if prefixes != None: key = f'{prefixes[i]}{key}' opttype = opt.xpath('/@class').split(' ')[1] if proptyping and opttype in convert: value = convert[opttype](value) result[key] = value return result
24.638554
82
0.667604
7,687
0.939731
0
0
0
0
0
0
4,142
0.506357
27a6c1cdc477a10a4c9b691137650bb8e9980229
11,859
py
Python
examples/cadre_dymos.py
johnjasa/CADRE
a4ffd61582b8474953fc309aa540838a14f29dcf
[ "Apache-2.0" ]
null
null
null
examples/cadre_dymos.py
johnjasa/CADRE
a4ffd61582b8474953fc309aa540838a14f29dcf
[ "Apache-2.0" ]
null
null
null
examples/cadre_dymos.py
johnjasa/CADRE
a4ffd61582b8474953fc309aa540838a14f29dcf
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import unittest import numpy as np from openmdao.api import Problem, Group, pyOptSparseDriver, DirectSolver, SqliteRecorder from dymos import Phase from dymos.utils.indexing import get_src_indices_by_row from dymos.phases.components import ControlInterpComp from CADRE.odes_dymos.cadre_orbit_ode import CadreOrbitODE from CADRE.attitude_dymos.angular_velocity_comp import AngularVelocityComp from CADRE.odes_dymos.cadre_systems_ode import CadreSystemsODE GM = 398600.44 rmag = 7000.0 period = 2 * np.pi * np.sqrt(rmag ** 3 / GM) vcirc = np.sqrt(GM / rmag) duration = period duration = 6 * 3600.0 p = Problem(model=Group()) p.driver = pyOptSparseDriver() p.driver.options['optimizer'] = 'SNOPT' p.driver.options['dynamic_simul_derivs'] = True p.driver.opt_settings['Major iterations limit'] = 1000 p.driver.opt_settings['Major feasibility tolerance'] = 1.0E-4 p.driver.opt_settings['Major optimality tolerance'] = 1.0E-4 p.driver.opt_settings['Major step limit'] = 0.1 p.driver.opt_settings['iSumm'] = 6 p.driver.recording_options['includes'] = ['*'] p.driver.recording_options['record_objectives'] = True p.driver.recording_options['record_constraints'] = True p.driver.recording_options['record_desvars'] = True recorder = SqliteRecorder("cases.sql") p.driver.add_recorder(recorder) NUM_SEG = 30 TRANSCRIPTION_ORDER = 3 orbit_phase = Phase('radau-ps', ode_class=CadreOrbitODE, num_segments=NUM_SEG, transcription_order=TRANSCRIPTION_ORDER, compressed=False) p.model.add_subsystem('orbit_phase', orbit_phase) orbit_phase.set_time_options(fix_initial=True, fix_duration=True, duration_ref=duration) orbit_phase.set_state_options('r_e2b_I', defect_scaler=1000, fix_initial=True, units='km') orbit_phase.set_state_options('v_e2b_I', defect_scaler=1000, fix_initial=True, units='km/s') # orbit_phase.set_state_options('SOC', defect_scaler=1, fix_initial=True, units=None) # orbit_phase.add_design_parameter('P_bat', opt=False, units='W') orbit_phase.add_control('Gamma', opt=True, lower=-90, upper=90, units='deg', ref0=-90, ref=90, continuity=True, rate_continuity=True) # Add a control interp comp to interpolate the rates of O_BI from the orbit phase. faux_control_options = {'O_BI': {'units': None, 'shape': (3, 3)}} p.model.add_subsystem('obi_rate_interp_comp', ControlInterpComp(control_options=faux_control_options, time_units='s', grid_data=orbit_phase.grid_data), promotes_outputs=[('control_rates:O_BI_rate', 'Odot_BI')]) control_input_nodes_idxs = orbit_phase.grid_data.subset_node_indices['control_input'] src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3, 3)) p.model.connect('orbit_phase.rhs_all.O_BI', 'obi_rate_interp_comp.controls:O_BI', src_indices=src_idxs, flat_src_indices=True) p.model.connect('orbit_phase.time.dt_dstau', ('obi_rate_interp_comp.dt_dstau', 'w_B_rate_interp_comp.dt_dstau')) # Use O_BI and Odot_BI to compute the angular velocity vector p.model.add_subsystem('angular_velocity_comp', AngularVelocityComp(num_nodes=orbit_phase.grid_data.num_nodes)) p.model.connect('orbit_phase.rhs_all.O_BI', 'angular_velocity_comp.O_BI') p.model.connect('Odot_BI', 'angular_velocity_comp.Odot_BI') # Add another interpolation comp to compute the rate of w_B faux_control_options = {'w_B': {'units': '1/s', 'shape': (3,)}} p.model.add_subsystem('w_B_rate_interp_comp', ControlInterpComp(control_options=faux_control_options, time_units='s', grid_data=orbit_phase.grid_data), promotes_outputs=[('control_rates:w_B_rate', 'wdot_B')]) src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3,)) p.model.connect('angular_velocity_comp.w_B', 'w_B_rate_interp_comp.controls:w_B', src_indices=src_idxs, flat_src_indices=True) # Now add the systems phase systems_phase = Phase('radau-ps', ode_class=CadreSystemsODE, num_segments=NUM_SEG, transcription_order=TRANSCRIPTION_ORDER, compressed=False) p.model.add_subsystem('systems_phase', systems_phase) systems_phase.set_time_options(fix_initial=True, fix_duration=True, duration_ref=duration) systems_phase.set_state_options('SOC', defect_ref=10, lower=0.2, fix_initial=True, units=None) systems_phase.set_state_options('w_RW', defect_ref=10000, fix_initial=True, units='1/s') systems_phase.set_state_options('data', defect_ref=10, fix_initial=True, units='Gibyte') systems_phase.set_state_options('temperature', ref0=273, ref=373, defect_ref=1000, fix_initial=True, units='degK') systems_phase.add_design_parameter('LD', opt=False, units='d') systems_phase.add_design_parameter('fin_angle', opt=True, lower=0., upper=np.pi / 2.) systems_phase.add_design_parameter('antAngle', opt=True, lower=-np.pi / 4, upper=np.pi / 4) systems_phase.add_design_parameter('cellInstd', opt=True, lower=0.0, upper=1.0, ref=1.0) # Add r_e2b_I and O_BI as non-optimized controls, allowing them to be connected to external sources systems_phase.add_control('r_e2b_I', opt=False, units='km') systems_phase.add_control('O_BI', opt=False) systems_phase.add_control('w_B', opt=False) systems_phase.add_control('wdot_B', opt=False) systems_phase.add_control('P_comm', opt=True, lower=0.0, upper=30.0, units='W') systems_phase.add_control('Isetpt', opt=True, lower=1.0E-4, upper=0.4, units='A') systems_phase.add_objective('data', loc='final', ref=-1.0) # Connect r_e2b_I and O_BI values from all nodes in the orbit phase to the input values # in the attitude phase. src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3,)) p.model.connect('orbit_phase.states:r_e2b_I', 'systems_phase.controls:r_e2b_I', src_indices=src_idxs, flat_src_indices=True) p.model.connect('angular_velocity_comp.w_B', 'systems_phase.controls:w_B', src_indices=src_idxs, flat_src_indices=True) p.model.connect('wdot_B', 'systems_phase.controls:wdot_B', src_indices=src_idxs, flat_src_indices=True) src_idxs = get_src_indices_by_row(control_input_nodes_idxs, shape=(3, 3)) p.model.connect('orbit_phase.rhs_all.O_BI', 'systems_phase.controls:O_BI', src_indices=src_idxs, flat_src_indices=True) p.model.options['assembled_jac_type'] = 'csc' p.model.linear_solver = DirectSolver(assemble_jac=True) p.setup(check=True) # from openmdao.api import view_model # view_model(p.model) # Initialize values in the orbit phase p['orbit_phase.t_initial'] = 0.0 p['orbit_phase.t_duration'] = duration # p['systems_phase.states:w_RW'][:, 0] = 0.0 # p['systems_phase.states:w_RW'][:, 1] = 0.0 # p['systems_phase.states:w_RW'][:, 2] = 0.0 # Default starting orbit # [ 2.89078958e+03 5.69493134e+03 -2.55340189e+03 2.56640460e-01 # 3.00387409e+00 6.99018448e+00] p['orbit_phase.states:r_e2b_I'][:, 0] = 2.89078958e+03 p['orbit_phase.states:r_e2b_I'][:, 1] = 5.69493134e+03 p['orbit_phase.states:r_e2b_I'][:, 2] = -2.55340189e+03 p['orbit_phase.states:v_e2b_I'][:, 0] = 2.56640460e-01 p['orbit_phase.states:v_e2b_I'][:, 1] = 3.00387409e+00 p['orbit_phase.states:v_e2b_I'][:, 2] = 6.99018448e+00 # Initialize values in the systems phase p['systems_phase.t_initial'] = 0.0 p['systems_phase.t_duration'] = duration # p['systems_phase.states:w_RW'][:, 0] = 0.0 # p['systems_phase.states:w_RW'][:, 1] = 0.0 # p['systems_phase.states:w_RW'][:, 2] = 0.0 p['systems_phase.states:SOC'] = systems_phase.interpolate(ys=[1, .5], nodes='state_input') p['systems_phase.states:w_RW'] = 100.0 p['systems_phase.states:data'] = systems_phase.interpolate(ys=[0, 10], nodes='state_input') p['systems_phase.states:temperature'] = 273.0 # p['systems_phase.states:v_e2b_I'][:, 0] = 0.0 # p['systems_phase.states:v_e2b_I'][:, 1] = vcirc # p['systems_phase.states:v_e2b_I'][:, 2] = 0.0 p['systems_phase.controls:P_comm'] = 0.01 p['systems_phase.controls:Isetpt'] = 0.1 p['systems_phase.design_parameters:LD'] = 5233.5 p['systems_phase.design_parameters:fin_angle'] = np.radians(70.0) p['systems_phase.design_parameters:cellInstd'] = 0.0 p.run_model() # Simulate the orbit phase to get a (exact) guess to the orbit history solution. exp_out = orbit_phase.simulate() # import matplotlib.pyplot as plt # from mpl_toolkits import mplot3d # # plt.figure() # ax = plt.axes(projection='3d') # # plt.plot(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], 'b-') # ax.plot3D(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], exp_out.get_values('r_e2b_I')[:, 2], 'b-') # plt.show() p['orbit_phase.states:r_e2b_I'] = orbit_phase.interpolate(ys=exp_out.get_values('r_e2b_I'), xs=exp_out.get_values('time'), nodes='state_input') p['orbit_phase.states:v_e2b_I'] = orbit_phase.interpolate(ys=exp_out.get_values('v_e2b_I'), xs=exp_out.get_values('time'), nodes='state_input') p.run_driver() r_e2b_I = p.model.orbit_phase.get_values('r_e2b_I') v_e2b_I = p.model.orbit_phase.get_values('v_e2b_I') rmag_e2b = p.model.orbit_phase.get_values('rmag_e2b_I') # exp_out = systems_phase.simulate(times=500) import matplotlib.pyplot as plt plt.figure() plt.plot(orbit_phase.get_values('r_e2b_I')[:, 0], orbit_phase.get_values('r_e2b_I')[:, 1], 'ro') plt.figure() # plt.plot(exp_out.get_values('time')[:, 0], exp_out.get_values('data')[:, 1], 'b-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('data'), 'ro') plt.figure() # plt.plot(exp_out.get_values('time')[:, 0], exp_out.get_values('data')[:, 1], 'b-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_comm'), 'r-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_sol'), 'b-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_RW'), 'g-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('P_bat'), 'k-') plt.figure() plt.plot(systems_phase.get_values('time'), systems_phase.get_values('SOC'), 'r-') plt.plot(systems_phase.get_values('time'), systems_phase.get_values('dXdt:SOC'), 'r--') plt.show() # plt.figure() # plt.plot(exp_out.get_values('time'), exp_out.get_values('SOC'), 'b-') # plt.plot(phase.get_values('time'), phase.get_values('SOC'), 'ro') # assert_rel_error(self, rmag_e2b, rmag * np.ones_like(rmag_e2b), tolerance=1.0E-9) # delta_trua = 2 * np.pi * (duration / period) # assert_rel_error(self, r_e2b_I[-1, :], # rmag * np.array([np.cos(delta_trua), np.sin(delta_trua), 0]), # tolerance=1.0E-9) # assert_rel_error(self, v_e2b_I[-1, :], # vcirc * np.array([-np.sin(delta_trua), np.cos(delta_trua), 0]), # tolerance=1.0E-9) # def test_partials(self): # np.set_printoptions(linewidth=10000, edgeitems=1024) # cpd = self.p.check_partials(compact_print=True, out_stream=None) # assert_check_partials(cpd, atol=1.0E-4, rtol=1.0) # # def test_simulate(self): # phase = self.p.model.orbit_phase # exp_out = phase.simulate(times=500) # # import matplotlib.pyplot as plt # # plt.figure() # plt.plot(exp_out.get_values('r_e2b_I')[:, 0], exp_out.get_values('r_e2b_I')[:, 1], 'b-') # plt.plot(phase.get_values('r_e2b_I')[:, 0], phase.get_values('r_e2b_I')[:, 1], 'ro') # # # plt.figure() # # plt.plot(exp_out.get_values('time'), exp_out.get_values('SOC'), 'b-') # # plt.plot(phase.get_values('time'), phase.get_values('SOC'), 'ro') # # plt.show()
42.812274
143
0.70436
0
0
0
0
0
0
0
0
5,328
0.449279
27a730a5c6d3019f232b6aef55d357908663ff70
959
py
Python
deso/Media.py
AdityaChaudhary0005/DeSo.py
5cb3c757fb21bad472da921c0148675c8957eb17
[ "MIT" ]
11
2021-11-12T18:20:22.000Z
2022-03-16T02:12:06.000Z
deso/Media.py
AdityaChaudhary0005/DeSo.py
5cb3c757fb21bad472da921c0148675c8957eb17
[ "MIT" ]
6
2021-11-25T04:30:44.000Z
2021-12-15T12:33:24.000Z
deso/Media.py
AdityaChaudhary0005/DeSo.py
5cb3c757fb21bad472da921c0148675c8957eb17
[ "MIT" ]
8
2021-11-19T19:14:50.000Z
2022-01-31T21:27:32.000Z
from deso.utils import getUserJWT import requests class Media: def __init__(self, publicKey=None, seedHex=None, nodeURL="https://node.deso.org/api/v0/"): self.SEED_HEX = seedHex self.PUBLIC_KEY = publicKey self.NODE_URL = nodeURL def uploadImage(self, fileList): #uploads image to images.deso.org try: if type(fileList) == type("str"): fileList = [ ('file', (fileList, open( fileList, "rb"), 'image/png')) ] jwt_token = getUserJWT(self.SEED_HEX) # print(encoded_jwt) endpointURL = self.NODE_URL + "upload-image" payload = {'UserPublicKeyBase58Check': self.PUBLIC_KEY, 'JWT': jwt_token} response = requests.post(endpointURL, data=payload, files=fileList) return response except Exception as e: return e
31.966667
95
0.554745
906
0.944734
0
0
0
0
0
0
155
0.161627
27a8998af1db32b395a9af2dbb6c8a21bc35a70c
169
py
Python
workSpace/boot.py
khutson/macequilt
a4a090ddf296fcea763825fda4243bc84b4d5f0d
[ "MIT" ]
null
null
null
workSpace/boot.py
khutson/macequilt
a4a090ddf296fcea763825fda4243bc84b4d5f0d
[ "MIT" ]
null
null
null
workSpace/boot.py
khutson/macequilt
a4a090ddf296fcea763825fda4243bc84b4d5f0d
[ "MIT" ]
null
null
null
# This file is executed on every boot (including wake-boot from deepsleep) import esp esp.osdebug(None) import wifi wifi.connect(repl=False) import gc gc.collect()
13
74
0.763314
0
0
0
0
0
0
0
0
74
0.43787
27a8cc8eee02c003f65618c441f8c80b6ada0052
1,790
py
Python
s3-scan-tar/tests/test_models.py
omBratteng/mottak
b7d2e1d063b31c2ad89c66e5414297612f91ebe9
[ "Apache-2.0" ]
4
2021-03-05T15:39:24.000Z
2021-09-15T06:11:45.000Z
s3-scan-tar/tests/test_models.py
omBratteng/mottak
b7d2e1d063b31c2ad89c66e5414297612f91ebe9
[ "Apache-2.0" ]
631
2020-04-27T10:39:18.000Z
2022-03-31T14:51:38.000Z
s3-scan-tar/tests/test_models.py
omBratteng/mottak
b7d2e1d063b31c2ad89c66e5414297612f91ebe9
[ "Apache-2.0" ]
3
2020-02-20T15:48:03.000Z
2021-12-16T22:50:40.000Z
import pytest from app.models import AVScanResult @pytest.fixture def _scan_result() -> AVScanResult: clean = 10 virus = 0 skipped = 0 return AVScanResult(clean, virus, skipped) def test_avscanresult_init(_scan_result): result = AVScanResult(10, 0, 0) assert result == _scan_result def test_status_has_correct_values(): scan_found_virus = AVScanResult(9, 1, 0) scan_found_nothing = AVScanResult(10, 0, 0) assert scan_found_virus.get_status() == "Ikke ok" assert scan_found_nothing.get_status() == "ok" def test_correct_message_when_no_virus_found(_scan_result): expected_message = ( "Status etter virus scan: ok\n\n" "Antall filer kontrollert: 10 av 10\n" " - Filer uten virus: 10\n" " - Filer med virus: 0\n" " - Filer ikke kontrollert pga. filstørrelse: 0" ) assert expected_message == _scan_result.generate_message() # assert _scan_result.get_message() == expected_message def test_correct_message_when_virus_found(): expected_message = ( "Status etter virus scan: Ikke ok\n\n" "Antall filer kontrollert: 10 av 10\n" " - Filer uten virus: 8\n" " - Filer med virus: 2\n" " - Filer ikke kontrollert pga. filstørrelse: 0" ) actual = AVScanResult(8, 2, 0) assert expected_message == actual.generate_message() def test_correct_message_when_skipped_files(): expected_message = ( "Status etter virus scan: Ikke ok\n\n" "Antall filer kontrollert: 10 av 15\n" " - Filer uten virus: 8\n" " - Filer med virus: 2\n" " - Filer ikke kontrollert pga. filstørrelse: 5" ) actual = AVScanResult(8, 2, 5) assert expected_message == actual.generate_message()
29.833333
62
0.655307
0
0
0
0
143
0.079755
0
0
619
0.345231
27a97aed4e6639ade2261db847e3a6e16989a40c
1,424
py
Python
autoload/activate_this.py
BonaBeavis/vim-venom
a4ed892bd844de51c92e7b59dbc975db02c939b9
[ "Vim" ]
24
2020-04-26T11:50:40.000Z
2022-02-22T08:05:36.000Z
autoload/activate_this.py
BonaBeavis/vim-venom
a4ed892bd844de51c92e7b59dbc975db02c939b9
[ "Vim" ]
5
2021-01-26T12:41:12.000Z
2022-01-11T15:40:43.000Z
autoload/activate_this.py
BonaBeavis/vim-venom
a4ed892bd844de51c92e7b59dbc975db02c939b9
[ "Vim" ]
4
2020-05-02T21:45:36.000Z
2022-03-25T13:51:00.000Z
# -*- coding: utf-8 -*- """Activate virtualenv for current interpreter: Source: https://github.com/pypa/virtualenv Use exec(open(this_file).read(), {'__file__': this_file}). """ import os import site import sys try: abs_file = os.path.abspath(__file__) except NameError: raise AssertionError( "You must use exec(open(this_file).read(), {'__file__': this_file}))") # Prepend bin to PATH (this file is inside the bin directory) bin_dir = os.path.dirname(abs_file) os.environ["PATH"] = os.pathsep.join( [bin_dir] + os.environ.get("PATH", "").split(os.pathsep)) # Virtual env is right above bin directory base = os.path.dirname(bin_dir) os.environ["VIRTUAL_ENV"] = base # Concat site-packages library path IS_WIN = sys.platform == "win32" IS_PYPY = hasattr(sys, "pypy_version_info") IS_JYTHON = sys.platform.startswith("java") if IS_JYTHON or IS_WIN: site_packages = os.path.join(base, "Lib", "site-packages") elif IS_PYPY: site_packages = os.path.join(base, "site-packages") else: python_lib = "python{}.{}".format(*sys.version_info) site_packages = os.path.join(base, "lib", python_lib, "site-packages") # Add the virtual environment libraries to the host python import mechanism prev_length = len(sys.path) site.addsitedir(site_packages) sys.path[:] = sys.path[prev_length:] + sys.path[0:prev_length] sys.real_prefix = sys.prefix sys.prefix = base # vim: set ts=4 sw=4 tw=80 et :
30.297872
78
0.714185
0
0
0
0
0
0
0
0
618
0.433989
27abc06bb50512111945d911b3687183e05cd80c
2,731
py
Python
tattrdb/models.py
gmjosack/tattrdb
88d46eb049d05a1f0531531c49c2209c2bbbf562
[ "MIT" ]
1
2018-11-24T02:33:15.000Z
2018-11-24T02:33:15.000Z
tattrdb/models.py
gmjosack/tattrdb
88d46eb049d05a1f0531531c49c2209c2bbbf562
[ "MIT" ]
null
null
null
tattrdb/models.py
gmjosack/tattrdb
88d46eb049d05a1f0531531c49c2209c2bbbf562
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy import ( Table, Column, Integer, String, Text, Boolean, ForeignKey, Enum, DateTime ) from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, backref, sessionmaker Session = sessionmaker() Model = declarative_base() def connect(uri): engine = create_engine(uri) Session.configure(bind=engine) return Session() def _sync(connection): """ This will build the database for whatever connection you pass.""" Model.metadata.create_all(connection.bind) host_tags = Table("host_tags", Model.metadata, Column("host_id", Integer, ForeignKey("hosts.id"), primary_key=True), Column("tag_id", Integer, ForeignKey("tags.id"), primary_key=True) ) class Tag(Model): __tablename__ = 'tags' id = Column(Integer(), primary_key=True, nullable=False) tagname = Column(String(length=255), unique=True) def as_dict(self): return { "id": self.id, "tagname": self.tagname, "hosts": [host.hostname for host in self.hosts], } class HostAttributes(Model): __tablename__ = "host_attributes" host_id = Column(Integer, ForeignKey("hosts.id"), primary_key=True) attribute_id = Column(Integer, ForeignKey("attributes.id"), primary_key=True) value = Column(String(length=255), nullable=False) attribute = relationship("Attribute", lazy="joined", backref="host_assocs") class Attribute(Model): __tablename__ = 'attributes' id = Column(Integer(), primary_key=True, nullable=False) attrname = Column(String(length=255), unique=True) hosts = relationship("Host", secondary="host_attributes", lazy="joined", backref="real_attributes") def as_dict(self): values = {} for host_assoc in self.host_assocs: if host_assoc.value not in values: values[host_assoc.value] = [] values[host_assoc.value].append(host_assoc.host.hostname) return { "id": self.id, "attrname": self.attrname, "values": values, } class Host(Model): __tablename__ = 'hosts' id = Column(Integer(), primary_key=True, nullable=False) hostname = Column(String(length=255), unique=True) tags = relationship( "Tag", secondary=host_tags, lazy="joined", backref="hosts") attributes = relationship("HostAttributes", lazy="joined", backref="host") def as_dict(self): return { "id": self.id, "hostname": self.hostname, "tags": [tag.tagname for tag in self.tags], "attributes": {attr.attribute.attrname: attr.value for attr in self.attributes} }
28.154639
103
0.656902
1,949
0.713658
0
0
0
0
0
0
387
0.141706
27abe035638fda37c09ec1990dca44e2161d8667
30
py
Python
onepassword/__init__.py
jemmyw/1pass
8dbfa5e062ce08e26c5619dbdb2b27323e5b3dc9
[ "MIT" ]
1
2016-11-14T22:16:48.000Z
2016-11-14T22:16:48.000Z
onepassword/__init__.py
elliotchance/1pass
4bd45a52476c410c6e5b51f90fd46cbdd436807f
[ "MIT" ]
null
null
null
onepassword/__init__.py
elliotchance/1pass
4bd45a52476c410c6e5b51f90fd46cbdd436807f
[ "MIT" ]
null
null
null
from keychain import Keychain
15
29
0.866667
0
0
0
0
0
0
0
0
0
0
27ae7ed160d61ff6977fb0ea0dc61ee80279d33b
152,955
py
Python
modules/cockatoo/_knitnetwork.py
fstwn/Cockatoo
0c5f9c515053bfc31e62d20fddc4ae9bece09d88
[ "MIT" ]
9
2020-09-26T03:41:21.000Z
2021-11-29T06:52:35.000Z
modules/cockatoo/_knitnetwork.py
fstwn/Cockatoo
0c5f9c515053bfc31e62d20fddc4ae9bece09d88
[ "MIT" ]
9
2020-08-10T19:38:03.000Z
2022-02-24T08:41:32.000Z
modules/cockatoo/_knitnetwork.py
fstwn/Cockatoo
0c5f9c515053bfc31e62d20fddc4ae9bece09d88
[ "MIT" ]
3
2020-12-26T08:43:56.000Z
2021-10-17T19:37:52.000Z
# PYTHON STANDARD LIBRARY IMPORTS --------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import deque from collections import OrderedDict from math import radians from math import pi from operator import itemgetter # DUNDER ---------------------------------------------------------------------- __all__ = [ "KnitNetwork" ] # THIRD PARTY MODULE IMPORTS -------------------------------------------------- import networkx as nx # LOCAL MODULE IMPORTS -------------------------------------------------------- from cockatoo._knitnetworkbase import KnitNetworkBase from cockatoo._knitmappingnetwork import KnitMappingNetwork from cockatoo._knitdinetwork import KnitDiNetwork from cockatoo.environment import RHINOINSIDE from cockatoo.exception import KnitNetworkError from cockatoo.exception import KnitNetworkGeometryError from cockatoo.exception import NoEndNodesError from cockatoo.exception import NoWeftEdgesError from cockatoo.exception import MappingNetworkError from cockatoo.utilities import pairwise # RHINO IMPORTS --------------------------------------------------------------- if RHINOINSIDE: import rhinoinside rhinoinside.load() from Rhino.Geometry import Brep as RhinoBrep from Rhino.Geometry import Curve as RhinoCurve from Rhino.Geometry import Line as RhinoLine from Rhino.Geometry import Interval as RhinoInterval from Rhino.Geometry import Mesh as RhinoMesh from Rhino.Geometry import NurbsSurface as RhinoNurbsSurface from Rhino.Geometry import Point3d as RhinoPoint3d from Rhino.Geometry import Polyline as RhinoPolyline from Rhino.Geometry import Surface as RhinoSurface from Rhino.Geometry import Vector3d as RhinoVector3d else: from Rhino.Geometry import Brep as RhinoBrep from Rhino.Geometry import Curve as RhinoCurve from Rhino.Geometry import Line as RhinoLine from Rhino.Geometry import Interval as RhinoInterval from Rhino.Geometry import Mesh as RhinoMesh from Rhino.Geometry import NurbsSurface as RhinoNurbsSurface from Rhino.Geometry import Point3d as RhinoPoint3d from Rhino.Geometry import Polyline as RhinoPolyline from Rhino.Geometry import Surface as RhinoSurface from Rhino.Geometry import Vector3d as RhinoVector3d # CLASS DECLARATION ----------------------------------------------------------- class KnitNetwork(KnitNetworkBase): """ Datastructure for representing a network (graph) consisting of nodes with special attributes aswell as 'warp' edges, 'weft' edges and contour edges which are neither 'warp' nor 'weft'. Used for the automatic generation of knitting patterns based on mesh or NURBS surface geometry. Inherits from :class:`KnitNetworkBase`. Notes ----- The implemented algorithms are strongly based on the paper *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. The implementation was further influenced by concepts and ideas presented in the papers *Automatic Machine Knitting of 3D Meshes* [3]_, *Visual Knitting Machine Programming* [4]_ and *A Compiler for 3D Machine Knitting* [5]_. References ---------- .. [1] Popescu, Mariana et al. *Automated Generation of Knit Patterns for Non-developable Surfaces* See: `Automated Generation of Knit Patterns for Non-developable Surfaces <https://block.arch.ethz.ch/brg/files/ POPESCU_DMSP-2017_automated-generation-knit-patterns_1505737906. pdf>`_ .. [2] Popescu, Mariana *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* See: `KnitCrete - Stay-in-place knitted formworks for complex concrete structures <https://block.arch.ethz.ch/brg/files/ POPESCU_2019_ETHZ_PhD_KnitCrete-Stay-in-place-knitted-fabric- formwork-for-complex-concrete-structures_small_1586266206.pdf>`_ .. [3] Narayanan, Vidya; Albaugh, Lea; Hodgins, Jessica; Coros, Stelian; McCann, James *Automatic Machine Knitting of 3D Meshes* See: `Automatic Machine Knitting of 3D Meshes <https://textiles-lab.github.io/publications/2018-autoknit/>`_ .. [4] Narayanan, Vidya; Wu, Kui et al. *Visual Knitting Machine Programming* See: `Visual Knitting Machine Programming <https://textiles-lab.github.io/publications/2019-visualknit/>`_ .. [5] McCann, James; Albaugh, Lea; Narayanan, Vidya; Grow, April; Matusik, Wojciech; Mankoff, Jen; Hodgins, Jessica *A Compiler for 3D Machine Knitting* See: `A Compiler for 3D Machine Knitting <https://la.disneyresearch.com/publication/machine-knitting- compiler/>`_ """ # INITIALIZATION ---------------------------------------------------------- def __init__(self, data=None, **attr): """ Initialize a KnitNetwork (inherits NetworkX graph) with edges, name, graph attributes. Parameters ---------- data : input graph Data to initialize graph. If data=None (default) an empty network is created. The data can be an edge list, any KnitNetworkBase or NetworkX graph object. name : string, optional (default='') An optional name for the graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. """ # initialize using original init method super(KnitNetwork, self).__init__(data=data, **attr) # also copy the mapping_network attribute if it is already available if data and isinstance(data, KnitNetwork) and data.mapping_network: self.mapping_network = data.mapping_network else: self.mapping_network = None @classmethod def create_from_contours(cls, contours, course_height, reference_geometry=None): """ Create and initialize a KnitNetwork based on a set of contours, a given course height and an optional reference geometry. The reference geometry is a mesh or surface which should be described by the network. While it is optional, it is **HIGHLY** recommended to provide it! Parameters ---------- contours : :obj:`list` of :class:`Rhino.Geometry.Polyline` or :class:`Rhino.Geometry.Curve` Ordered contours (i.e. isocurves, isolines) to initialize the KnitNetwork with. course_height : float The course height for sampling the contours. reference_geometry : :class:`Rhino.Geometry.Mesh` or :class:`Rhino.Geometry.Surface` Optional underlying geometry that this network is based on. Returns ------- KnitNetwork : KnitNetwork A new, initialized KnitNetwork instance. Notes ----- This method will automatically call initialize_position_contour_edges() on the newly created network! Raises ------ KnitNetworkGeometryError If a supplied contour is not a valid instance of :obj:`Rhino.Geometry.Polyline` or :obj:`Rhino.Geometry.Curve`. """ # create network network = cls(reference_geometry=reference_geometry) # assign reference_geometry if present and valid if reference_geometry: if isinstance(reference_geometry, RhinoMesh): network.graph["reference_geometry"] = reference_geometry elif isinstance(reference_geometry, RhinoBrep): if reference_geometry.IsSurface: network.graph["reference_geometry"] = RhinoNurbsSurface( reference_geometry.Surfaces[0]) elif isinstance(reference_geometry, RhinoSurface): network.graph["reference_geometry"] = reference_geometry else: network.graph["reference_geometry"] = None # divide the contours and fill network with nodes nodenum = 0 for i, crv in enumerate(contours): # check input if not isinstance(crv, RhinoCurve): if isinstance(crv, RhinoPolyline): crv = crv.ToPolylineCurve() else: errMsg = ("Contour at index {} is not ".format(i) + "a valid Curve or Polyline!") raise KnitNetworkGeometryError(errMsg) # compute divisioncount and divide contour dc = round(crv.GetLength() / course_height) tcrv = crv.DivideByCount(dc, True) if not tcrv: dpts = [crv.PointAtStart, crv.PointAtEnd] else: dpts = [crv.PointAt(t) for t in tcrv] # loop over all nodes on the current contour for j, point in enumerate(dpts): # declare node attributes vpos = i vnum = j if j == 0 or j == len(dpts) - 1: vleaf = True else: vleaf = False # create network node from rhino point network.node_from_point3d(nodenum, point, position=vpos, num=vnum, leaf=vleaf, start=False, end=False, segment=None, increase=False, decrease=False, color=None) # increment counter nodenum += 1 # call position contour initialization network.initialize_position_contour_edges() return network # TEXTUAL REPRESENTATION OF NETWORK --------------------------------------- def __repr__(self): """ Return a textual description of the network. Returns ------- description : str A textual description of the network. """ if self.name != "": name = self.name else: name = "KnitNetwork" nn = len(self.nodes()) ce = len(self.contour_edges) wee = len(self.weft_edges) wae = len(self.warp_edges) data = ("({} Nodes, {} Position Contours, {} Weft, {} Warp)") data = data.format(nn, ce, wee, wae) return name + data def ToString(self): """ Return a textual description of the network. Returns ------- description : str A textual description of the network. Notes ----- Used for overloading the Grasshopper display in data parameters. """ return repr(self) # INITIALIZATION OF POSITION CONTOUR EDGES -------------------------------- def initialize_position_contour_edges(self): """ Creates all initial position contour edges as neither 'warp' nor 'weft' by iterating over all nodes in the network and grouping them based on their 'position' attribute. Notes ----- This method is automatically called when creating a KnitNetwork using the create_from_contours method! Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # get all nodes by position posList = self.all_nodes_by_position(data=True) for i, pos in enumerate(posList): for j, node in enumerate(pos): k = j + 1 if k < len(pos): self.create_contour_edge(node, pos[k]) # INITIALIZATION OF 'WEFT' EDGES BETWEEN 'LEAF' NODES --------------------- def initialize_leaf_connections(self): """ Create all initial connections of the 'leaf' nodes by iterating over all position contours and creating 'weft' edges between the 'leaf' nodes of the position contours. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # get all leaves leafNodes = self.all_leaves_by_position(True) # loop through all the positions leaves for i, lpos in enumerate(leafNodes): j = i + 1 # loop through pairs of leaves if j < len(leafNodes): startLeaf = lpos[0] endLeaf = lpos[1] nextStart = leafNodes[j][0] nextEnd = leafNodes[j][1] # add edges to the network self.create_weft_edge(startLeaf, nextStart) self.create_weft_edge(endLeaf, nextEnd) # INITIALIZATION OF PRELIMINARY 'WEFT' EDGES ------------------------------ def attempt_weft_connection(self, node, candidate, source_nodes, max_connections=4, verbose=False): """ Method for attempting a 'weft' connection to a candidate node based on certain parameters. Parameters ---------- node : :obj:`tuple` 2-tuple representing the source node for the possible 'weft' edge. candidate ::obj:`tuple` -tuple representing the target node for the possible 'weft' edge. source_nodes : :obj:`list` List of nodes on the position contour of node. Used to check if the candidate node already has a connection. max_connections : int, optional The new 'weft' connection will only be made if the candidate nodes number of connected neighbors is below this. Defaults to ``4``. verbose : bool, optional If ``True``, this routine and all its subroutines will print messages about what is happening to the console. Defaults to ``False``. Returns ------- bool ``True`` if the connection has been made, ``False`` otherwise. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # define verbose print function v_print = print if verbose else lambda *a, **k: None # get connected neighbors connecting_neighbors = self[candidate[0]] # only do something if the maximum is not reached if len(connecting_neighbors) < max_connections: # determine if the node is already connected to a node from # the input source nodes isConnected = False for cn in connecting_neighbors: if cn in [v[0] for v in source_nodes]: isConnected = True # print info on verbose setting v_print("Candidate node {} is ".format(candidate[0]) + "already connected! " + "Skipping to next " + "node...") break # check the flag and act accordingly if not isConnected: # print info on verbose setting v_print("Connecting node {} to best ".format(node[0]) + "candidate {}.".format(candidate[0])) # if all conditions are met, make the 'weft' connection if node[1]["position"] < candidate[1]["position"]: self.create_weft_edge(node, candidate) else: self.create_weft_edge(candidate, node) return True else: return False else: return False def _create_initial_weft_connections(self, contour_set, force_continuous_start=False, force_continuous_end=False, max_connections=4, precise=False, verbose=False): """ Private method for creating initial 'weft' connections for the supplied set of contours, starting from the first contour in the set and propagating to the last contour in the set. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # define verbose print function v_print = print if verbose else lambda *a, **k: None if len(contour_set) < 2: v_print("Not enough contours in contour set!") return # print info on verbose output v_print("Creating initial 'weft' connections for contour set...") # loop over all nodes of positions (list of lists of tuples) for i, pos in enumerate(contour_set): # pos is a list of tuples (nodes) if i < len(contour_set): j = i + 1 if j == len(contour_set): break # get initial and target nodes without 'leaf' nodes initial_nodes = contour_set[i][1:-1] target_nodes = contour_set[j][1:-1] # options for continuous start and end if force_continuous_start: initial_nodes = initial_nodes[1:] target_nodes = target_nodes[1:] if force_continuous_end: initial_nodes = initial_nodes[:-1] target_nodes = target_nodes[:-1] # skip if one of the contours has no nodes if len(initial_nodes) == 0 or len(target_nodes) == 0: continue # define forbidden node index forbidden_node = -1 # loop through all nodes on the current position for k, node in enumerate(initial_nodes): # print info on verbose setting v_print("Processing node {} on position {}:".format( node[0], node[1]["position"])) # get the geometry for the current node thisPt = node[1]["geo"] # filtering according to forbidden nodes target_nodes = [tn for tn in target_nodes if tn[0] >= forbidden_node] if len(target_nodes) == 0: continue # get four closest nodes on adjacent contour if precise: allDists = [thisPt.DistanceTo(tv[1]["geo"]) for tv in target_nodes] else: allDists = [thisPt.DistanceToSquared(tv[1]["geo"]) for tv in target_nodes] # sort the target nodes by distance to current node allDists, sorted_target_nodes = zip( *sorted(zip(allDists, target_nodes), key=itemgetter(0))) # the four closest nodes are the possible connections possible_connections = sorted_target_nodes[:4] # print info on verbose setting v_print("Possible connections: {}".format( [pc[0] for pc in possible_connections])) # handle edge case where there is no possible # connection or just one if len(possible_connections) == 0: # skip if there are no possible connections continue elif len(possible_connections) == 1: # attempt to connect to only possible candidate fCand = possible_connections[0] res = self.attempt_weft_connection( node, fCand, initial_nodes, max_connections=max_connections, verbose=verbose) # set forbidden node if res: forbidden_node = fCand[0] continue # get the contours current direction if k < len(initial_nodes)-1: contourDir = RhinoLine( thisPt, initial_nodes[k+1][1]["geo"]).Direction elif k == len(initial_nodes)-1: contourDir = RhinoLine( initial_nodes[k-1][1]["geo"], thisPt).Direction contourDir.Unitize() # get the directions of the possible connections candidatePoints = [pc[1]["geo"] for pc in possible_connections] candidateDirections = [RhinoLine( thisPt, cp).Direction for cp in candidatePoints] [cd.Unitize() for cd in candidateDirections] # get the angles between contour dir and possible conn dir normals = [RhinoVector3d.CrossProduct( contourDir, cd) for cd in candidateDirections] angles = [RhinoVector3d.VectorAngle( contourDir, cd, n) for cd, n in zip( candidateDirections, normals)] # compute deltas as a mesaure of perpendicularity deltas = [abs(a - (0.5 * pi)) for a in angles] # sort possible connections by distance, then by delta allDists, deltas, angles, most_perpendicular = zip( *sorted(zip( allDists, deltas, angles, possible_connections[:]), key=itemgetter(0, 1))) # get node neighbors nNeighbors = self[node[0]] # compute angle difference aDelta = angles[0] - angles[1] # CONNECTION FOR LEAST ANGLE CHANGE ----------------------- if len(nNeighbors) > 2 and aDelta < radians(6.0): # print info on verbose setting v_print("Using procedure for least angle " + "change connection...") # get previous connected edge and its direction prevEdges = self.node_weft_edges(node[0], data=True) if len(prevEdges) > 1: raise KnitNetworkError( "More than one previous 'weft' connection! " + "This was unexpeced...") prevDir = prevEdges[0][2]["geo"].Direction else: prevDir = prevEdges[0][2]["geo"].Direction prevDir.Unitize() # get directions for the best two candidates mpA = most_perpendicular[0] mpB = most_perpendicular[1] dirA = RhinoLine(thisPt, mpA[1]["geo"]).Direction dirB = RhinoLine(thisPt, mpB[1]["geo"]).Direction dirA.Unitize() dirB.Unitize() # get normals for angle measurement normalA = RhinoVector3d.CrossProduct(prevDir, dirA) normalB = RhinoVector3d.CrossProduct(prevDir, dirB) # measure the angles angleA = RhinoVector3d.VectorAngle( prevDir, dirA, normalA) angleB = RhinoVector3d.VectorAngle( prevDir, dirB, normalB) # select final candidate for connection by angle if angleA < angleB: fCand = mpA else: fCand = mpB # attempt to connect to final candidate res = self.attempt_weft_connection( node, fCand, initial_nodes, max_connections=max_connections, verbose=verbose) # set forbidden node for next pass if res: forbidden_node = fCand[0] # CONNECTION FOR MOST PERPENDICULAR -------------------- else: # print info on verbose setting v_print("Using procedure for most " + "perpendicular connection...") # define final candidate fCand = most_perpendicular[0] # attempt to connect to final candidate node res = self.attempt_weft_connection( node, fCand, initial_nodes, max_connections=max_connections, verbose=verbose) # set forbidden node if connection has been made if res: forbidden_node = fCand[0] def _create_second_pass_weft_connections(self, contour_set, include_leaves=False, least_connected=False, precise=False, verbose=False): """ Private method for creating second pass 'weft' connections for the given set of contours. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ v_print = print if verbose else lambda *a, **k: None # get attributes only once position_attributes = nx.get_node_attributes(self, "position") num_attributes = nx.get_node_attributes(self, "num") if len(contour_set) < 2: v_print("Not enough contours in contour set!") return # print info on verbose output v_print("Creating second pass 'weft' connections for contour set...") # loop over all nodes of positions (list of lists of tuples) for i, pos in enumerate(contour_set): # get initial nodes initial_nodes = contour_set[i] # get target position candidates if (i > 0 and i < len(contour_set)-1 and i != 0 and i != len(contour_set)-1): target_positionA = contour_set[i-1][0][1]["position"] target_positionB = contour_set[i+1][0][1]["position"] elif i == 0: target_positionA = None target_positionB = contour_set[i+1][0][1]["position"] elif i == len(contour_set)-1: target_positionA = contour_set[i-1][0][1]["position"] target_positionB = None # loop through all nodes on current position for k, node in enumerate(initial_nodes): # print info on verbose setting v_print( "Processing node {} on position {}:".format( node[0], node[1]["position"])) # get connecting edges on target position conWeftEdges = self.node_weft_edges(node[0], data=True) conPos = [] if len(conWeftEdges) == 0 and verbose: # print info on verbose setting v_print("No previously connected weft edges...") for weftEdge in conWeftEdges: weftEdgeFrom = weftEdge[0] weftEdgeTo = weftEdge[1] if weftEdgeFrom != node[0]: posEdgeTarget = position_attributes[weftEdgeFrom] elif weftEdgeTo != node[0]: posEdgeTarget = position_attributes[weftEdgeTo] if posEdgeTarget not in conPos: conPos.append(posEdgeTarget) # select target position and continue in edge case scenarios target_positions = [] if target_positionA == None: if target_positionB in conPos: v_print("Node is connected. Skipping...") continue target_positions.append(target_positionB) elif target_positionB == None: if target_positionA in conPos: v_print("Node is connected. Skipping...") continue target_positions.append(target_positionA) elif ((target_positionA in conPos) and (target_positionB in conPos)): v_print("Node is connected. Skipping...") continue elif ((target_positionB in conPos) and (target_positionA not in conPos)): target_positions.append(target_positionA) elif ((target_positionA in conPos) and (target_positionB not in conPos)): target_positions.append(target_positionB) elif (target_positionA != None and target_positionB != None and len(conPos) == 0): target_positions = [target_positionA, target_positionB] # print info on verbose setting if verbose and len(target_positions) > 1: v_print("Two target positions: {}, {}".format( *target_positions)) elif verbose and len(target_positions) == 1: v_print("Target position: {}".format(target_positions[0])) # skip if there are no target positions if len(target_positions) == 0: v_print("No target position! Skipping...") continue # only proceed if there is a target position for target_position in target_positions: # get target nodes target_nodes = self.nodes_on_position( target_position, True) # get the point geo of this node thisPt = node[1]["geo"] # get a window of possible connections on the target # position by looking for the previos node on this contour # connected to target position, then propagating along # the target position to the next node that is connected # to this position. these two nodes will define the window # NOTE: the current node should never have a connection # to target position (theoretically!), otherwise it should # have fallen through the checks by now # print info on verbose setting v_print("Target position is {}. ".format(target_position) + "Computing window...") # get the previous node on this contour prevNode = initial_nodes[k-1] # assume that the previous node has a connection prevCon = self.node_weft_edges(prevNode[0], data=True) # get possible connections from previous connection possible_connections = [] for edge in prevCon: edgeFrom = edge[0] edgeTo = edge[1] if edgeFrom != prevNode[0]: prevNodeTargetPos = position_attributes[edgeFrom] prevNodeTargetIndex = num_attributes[edgeFrom] elif edgeTo != prevNode[0]: prevNodeTargetPos = position_attributes[edgeTo] prevNodeTargetIndex = num_attributes[edgeTo] if prevNodeTargetPos == target_position: possible_connections.append( target_nodes[prevNodeTargetIndex]) # the farthest connection of the previous node is the first # point for our window if len(possible_connections) > 1: possible_connections.sort(key=lambda x: x[1]["num"]) possible_connections.reverse() start_of_window = possible_connections[0] elif len(possible_connections) == 1: start_of_window = possible_connections[0] elif len(possible_connections) == 0: # print info on verbose setting v_print("No possible connection, skipping...") continue # get the next node on this pos that is # connected to target position if k < len(initial_nodes)-1: future_nodes = initial_nodes[k+1:] for futurenode in future_nodes: filteredWeftEdges = [] futureWeftEdges = self.node_weft_edges( futurenode[0], data=True) for futureweft in futureWeftEdges: fwn = (futureweft[1], self.node[futureweft[1]]) fwn_pos = fwn[1]["position"] fwn_num = fwn[1]["num"] if (fwn_pos == target_position and fwn_num == start_of_window[1]["num"]): # if the start of the window is found, # it is the only possible connection filteredWeftEdges = [futureweft] break if (fwn_pos == target_position and fwn_num > start_of_window[1]["num"]): filteredWeftEdges.append(futureweft) else: continue if (not filteredWeftEdges or len(filteredWeftEdges) == 0): end_of_window = None continue # sort the filtered weft edges based on the 'num' # attribute of their target node filteredWeftEdges.sort( key=lambda x: self.node[x[1]]["num"]) # get the end of the window from the first edge on # the target position end_of_window = ( filteredWeftEdges[0][1], self.node[filteredWeftEdges[0][1]]) break else: end_of_window = None # define the window if end_of_window == None: window = [start_of_window] elif end_of_window == start_of_window: window = [start_of_window] else: window = [(n, d) for n, d in self.nodes_iter(data=True) if n >= start_of_window[0] and n <= end_of_window[0]] if len(window) == 0: # print info on verbose setting v_print("Length of window is 0, skipping...") elif len(window) == 1: # print info on verbose setting v_print("Window has only one node.") v_print("Connecting to node {}".format(window[0][0]) + " on position {}...".format( window[0][1]["position"])) # connect weft edge if node[1]["position"] < window[0][1]["position"]: self.create_weft_edge(node, window[0]) else: self.create_weft_edge(window[0], node) else: # print info on verbose setting v_print("Processing window nodes: {}".format( [w[0] for w in window])) # sort nodes in window by distance if precise: allDists = [thisPt.DistanceTo(pc[1]["geo"]) for pc in window] else: allDists = [thisPt.DistanceToSquared(pc[1]["geo"]) for pc in window] allDists, window = zip(*sorted(zip(allDists, window), key=itemgetter(0))) if least_connected: wn_count = [len(self[n[0]]) for n in window] wn_count, allDists, window = zip( *sorted(zip(allDists, wn_count, window), key=itemgetter(0, 1))) # set final candidate node fCand = window[0] else: # get the contours current direction if k < len(initial_nodes)-1: contourDir = RhinoLine( thisPt, initial_nodes[k+1][1]["geo"]).Direction elif k == len(initial_nodes)-1: contourDir = RhinoLine( initial_nodes[k-1][1]["geo"], thisPt).Direction contourDir.Unitize() # get the directions of the possible connections candidatePoints = [pc[1]["geo"] for pc in window] candidateDirections = [ RhinoLine(thisPt, cp).Direction for cp in candidatePoints] [cd.Unitize() for cd in candidateDirections] # get the angles between contour dir and window dir normals = [RhinoVector3d.CrossProduct( contourDir, cd) for cd in candidateDirections] angles = [RhinoVector3d.VectorAngle( contourDir, cd, n) for cd, n in zip( candidateDirections, normals)] # compute deltas as a mesaure of perpendicularity deltas = [abs(a - (0.5 * pi)) for a in angles] # sort window by distance, then by delta allDists, deltas, most_perpendicular = zip(*sorted( zip(allDists, deltas, window), key=itemgetter(0, 1))) # set final candidate node for connection fCand = most_perpendicular[0] # print info on verbose setting v_print("Connecting to node " + "{} on position {}...".format( fCand[0], fCand[1]["position"])) # connect weft edge to best target if node[1]["position"] < fCand[1]["position"]: self.create_weft_edge(node, fCand) else: self.create_weft_edge(fCand, node) def initialize_weft_edges(self, start_index=None, propagate_from_center=False, force_continuous_start=False, force_continuous_end=False, angle_threshold=radians(6.0), max_connections=4, least_connected=False, precise=False, verbose=False): """ Attempts to create all the preliminary 'weft' connections for the network. Parameters ---------- start_index : int, optional This value defines at which index the list of contours is split. If no index is supplied, will split the list at the longest contour. Defaults to ``None``. propagate_from_center : bool, optional If ``True``, will propagate left and right set of contours from the center contour defined by start_index or the longest contour ( < | > ). Otherwise, the propagation of the contours left to the center will start at the left boundary ( > | > ). Defaults to ``False`` force_continuous_start : bool, optional If ``True``, forces the first row of stitches to be continuous. Defaults to ``False``. force_continuous_end : bool, optional If ``True``, forces the last row of stitches to be continuous. Defaults to ``False``. max_connections : int, optional The maximum connections a node is allowed to have to be considered for an additional 'weft' connection. Defaults to ``4``. least_connected : bool, optional If ``True``, uses the least connected node from the found candidates. Defaults to ``False`` precise : bool, optional If ``True``, the distance between nodes will be calculated using the Rhino.Geometry.Point3d.DistanceTo method, otherwise the much faster Rhino.Geometry.Point3d.DistanceToSquared method is used. Defaults to ``False``. verbose : bool, optional If ``True``, this routine and all its subroutines will print messages about what is happening to the console. Great for debugging and analysis. Defaults to ``False``. Raises ------ KnitNetworkError If the supplied splitting index is too high. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # get all the positions / contours AllPositions = self.all_nodes_by_position(data=True) if start_index == None: # get index of longest contour start_index = self.longest_position_contour()[0] elif start_index >= len(AllPositions): raise KnitNetworkError("Supplied splitting index is too high!") # if continuous start is True, connect the whole first row if force_continuous_start: chain = [pos[1] for pos in AllPositions] for pair in pairwise(chain): self.create_weft_edge(pair[0], pair[1]) # if continuous end is True, connect the whole last row if force_continuous_end: chain = [pos[-2] for pos in AllPositions] for pair in pairwise(chain): self.create_weft_edge(pair[0], pair[1]) # split position list into two sets based on start index leftContours = AllPositions[0:start_index+1] # optional propagation from center # NOTE: this has shown problems / weird stitch geometries if propagate_from_center: leftContours.reverse() rightContours = AllPositions[start_index:] # create the initial weft connections self._create_initial_weft_connections( leftContours, force_continuous_start=force_continuous_start, force_continuous_end=force_continuous_end, max_connections=max_connections, precise=precise, verbose=verbose) self._create_initial_weft_connections( rightContours, force_continuous_start=force_continuous_start, force_continuous_end=force_continuous_end, max_connections=max_connections, precise=precise, verbose=verbose) # create second pass weft connections self._create_second_pass_weft_connections( leftContours, least_connected, precise=precise, verbose=verbose) self._create_second_pass_weft_connections( rightContours, least_connected, precise=precise, verbose=verbose) return True # INITIALIZATION OF PRELIMINARY 'WARP' EDGES ------------------------------ def initialize_warp_edges(self, contour_set=None, verbose=False): """ Method for initializing first 'warp' connections once all preliminary 'weft' connections are made. Parameters ---------- contour_set : :obj:`list`, optional List of lists of nodes to initialize 'warp' edges. If none are supplied, all nodes ordered by thei 'position' attributes are used. Defaults to ``None``. verbose : bool, optional If ``True``, will print verbose output to the console. Defaults to ``False``. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # if no contour set is provided, use all contours of this network if contour_set == None: contour_set = self.all_nodes_by_position(data=True) # loop through all positions in the set of contours for i, pos in enumerate(contour_set): # get all nodes on current contour initial_nodes = contour_set[i] # loop through all nodes on this contour for k, node in enumerate(initial_nodes): connected_edges = self.edges(node[0], data=True) numweft = len(self.node_weft_edges(node[0])) if (len(connected_edges) > 4 or numweft > 2 or i == 0 or i == len(contour_set)-1): # set 'end' attribute for this node self.node[node[0]]["end"] = True # loop through all candidate edges for j, edge in enumerate(connected_edges): # if it's not a 'weft' edge, assign attributes if not edge[2]["weft"]: connected_node = edge[1] # set 'end' attribute to conneted node self.node[connected_node]["end"] = True # set 'warp' attribute to current edge self[edge[0]][edge[1]]["warp"] = True # ASSIGNING OF 'SEGMENT' ATTRIBUTES FOR MAPPING NETWORK ------------------- def _traverse_weft_edge_until_end(self, start_end_node, start_node, seen_segments, way_nodes=None, way_edges=None, end_nodes=None): """ Private method for traversing a path of 'weft' edges until another 'end' node is discoverd. """ # initialize output lists if way_nodes == None: way_nodes = deque() way_nodes.append(start_node[0]) if way_edges == None: way_edges = deque() if end_nodes == None: end_nodes = deque() # get the connected edges and filter them, sort out the ones that # already have a 'segment' attribute assigned connected_weft_edges = self.node_weft_edges(start_node[0], data=True) filtered_weft_edges = [] for cwe in connected_weft_edges: if cwe[2]["segment"] != None: continue if cwe in way_edges: continue elif (cwe[1], cwe[0], cwe[2]) in way_edges: continue filtered_weft_edges.append(cwe) if len(filtered_weft_edges) > 1: print(filtered_weft_edges) print("More than one filtered candidate weft edge! " + "Segment complete...?") elif len(filtered_weft_edges) == 1: fwec = filtered_weft_edges[0] connected_node = (fwec[1], self.node[fwec[1]]) # if the connected node is an end node, the segment is finished if connected_node[1]["end"]: # find out which order to set segment attributes if start_end_node > connected_node[0]: segStart = connected_node[0] segEnd = start_end_node else: segStart = start_end_node segEnd = connected_node[0] if (segStart, segEnd) in seen_segments: segIndex = len([s for s in seen_segments if s == (segStart, segEnd)]) else: segIndex = 0 # append the relevant data to the lists end_nodes.append(connected_node[0]) way_edges.append(fwec) seen_segments.append((segStart, segEnd)) # set final 'segment' attributes to all the way nodes for waynode in way_nodes: self.node[waynode]["segment"] = (segStart, segEnd, segIndex) # set final 'segment' attributes to all the way edges for wayedge in way_edges: self[wayedge[0]][wayedge[1]]["segment"] = (segStart, segEnd, segIndex) # return the seen segments return seen_segments else: # set the initial segment attribute to the node self.node[connected_node[0]]["segment"] = (start_end_node, None, None) # set the initial segment attribute to the edge self[fwec[0]][fwec[1]]["segment"] = (start_end_node, None, None) # append the relevant data to the lists way_nodes.append(connected_node[0]) way_edges.append(fwec) # call this method recursively until a 'end' node is found return self._traverse_weft_edge_until_end( start_end_node, connected_node, seen_segments, way_nodes, way_edges, end_nodes) else: return seen_segments def traverse_weft_edges_and_set_attributes(self, start_end_node): """ Traverse a path of 'weft' edges starting from an 'end' node until another 'end' node is discovered. Set 'segment' attributes to nodes and edges along the way. start_end_node : :obj:`tuple` 2-tuple representing the node to start the traversal. """ # get connected weft edges and sort them by their connected node weft_connections = self.node_weft_edges(start_end_node[0], data=True) weft_connections.sort(key=lambda x: x[1]) # loop through all connected weft edges seen_segments = [] for cwe in weft_connections: # check if connected weft edge already has a segment attribute if cwe[2]["segment"]: continue # get connected node connected_node = (cwe[1], self.node[cwe[1]]) # check the connected node. if it is an end node, we are done if connected_node[1]["end"]: # get segment start and end if start_end_node[0] > connected_node[0]: segStart = connected_node[0] segEnd = start_end_node[0] else: segStart = start_end_node[0] segEnd = connected_node[0] # get segment index if (segStart, segEnd) in seen_segments: segIndex = len([s for s in seen_segments if s == (segStart, segEnd)]) else: segIndex = 0 # set the final segment attribute to the edge self[cwe[0]][cwe[1]]["segment"] = (segStart, segEnd, segIndex) seen_segments.append((segStart, segEnd)) # if the connected node is not an end node, we need to travel # until we find one else: seen_segments = self._traverse_weft_edge_until_end( start_end_node[0], connected_node, seen_segments, way_edges=[cwe]) def assign_segment_attributes(self): """ Get the segmentation for loop generation and assign 'segment' attributes to 'weft' edges and nodes. """ if len(self.weft_edges) == 0: errMsg = ("No 'weft' edges in KnitNetwork! Segmentation " + "is impossible.") raise NoWeftEdgesError(errMsg) if len(self.end_nodes) == 0: errMsg = ("No 'end' nodes in KnitNetwork! Segmentation " + "is impossible.") raise NoEndNodesError(errMsg) # remove contour and 'warp' edges and store them warp_storage = [] contour_storage = [] for edge in self.edges(data=True): if not edge[2]["weft"]: if edge[2]["warp"]: warp_storage.append(edge) else: contour_storage.append(edge) self.remove_edge(edge[0], edge[1]) # get all 'end' nodes ordered by their 'position' attribute all_ends_by_position = self.all_ends_by_position(data=True) # loop through all 'end' nodes for position in all_ends_by_position: for endnode in position: self.traverse_weft_edges_and_set_attributes(endnode) # add all previously removed edges back into the network [self.add_edge(edge[0], edge[1], attr_dict=edge[2]) for edge in warp_storage + contour_storage] # CREATION OF MAPPING NETWORK --------------------------------------------- def create_mapping_network(self): """ Creates the corresponding mapping network for the final loop generation from a KnitNetwork instance with fully assigned 'segment' attributes. The created mapping network will be part of the KnitNetwork instance. It can be accessed using the mapping_network property. Notes ----- All nodes without an 'end' attribute as well as all 'weft' edges are removed by this step. Final nodes as well as final 'weft' and 'warp' edges can only be created using the mapping network. Returns ------- success : bool ``True`` if the mapping network has been successfully created, ``False`` otherwise. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # create a new KnitMappingNetwork instance MappingNetwork = KnitMappingNetwork() # get all edges of the current network by segment weft_edges = sorted(self.weft_edges, key=lambda x: x[2]["segment"]) warp_edges = self.warp_edges # initialize deque container for segment ids segment_ids = deque() # loop through all 'weft' edges and fill container with unique ids for edge in weft_edges: segment_id = edge[2]["segment"] if segment_id not in segment_ids: segment_ids.append(segment_id) # error checking if len(segment_ids) == 0: errMsg = ( "The network contains no 'weft' edges with a 'segment' " + "attribute assigned to them. A KnitMappingNetwork can " + "only be created from a KnitNetwork with initialized " + "'weft' edges for courses and corresponding 'warp' " + "edges connecting their 'end' nodes.") raise NoWeftEdgesError(errMsg) # loop through all unique segment ids for id in segment_ids: # get the corresponding edges for this id and sort them segment_edges = [e for e in weft_edges if e[2]["segment"] == id] segment_edges.sort(key=lambda x: x[0]) # extract start and end nodes start_node = (id[0], self.node[id[0]]) endNode = (id[1], self.node[id[1]]) # get all the geometry of the individual edges segment_geo = [e[2]["geo"] for e in segment_edges] # create a segment contour edge in the mapping network res = MappingNetwork.create_segment_contour_edge( start_node, endNode, id, segment_geo) if not res: errMsg = ("SegmentContourEdge at segment id {} could not be " + "created!") raise KnitNetworkError(errMsg) # add all warp edges to the mapping network to avoid lookup hassle for warp_edge in warp_edges: if warp_edge[0] > warp_edge[1]: warp_from = warp_edge[1] warp_to = warp_edge[0] else: warp_from = warp_edge[0] warp_to = warp_edge[1] MappingNetwork.add_edge(warp_from, warp_to, attr_dict=warp_edge[2]) # set mapping network property for this instance self.mapping_network = MappingNetwork # ditch all edges that are not 'warp' and nodes without 'end' attribute [self.remove_node(n) for n, d in self.nodes_iter(data=True) if not d["end"]] [self.remove_edge(s, e) for s, e, d in self.edges_iter(data=True) if not d["warp"]] return True # MAPPING NETWORK PROPERTY ------------------------------------------------ def _get_mapping_network(self): """ Gets the associated mapping network for this KnitNetwork instance. """ return self._mapping_network def _set_mapping_network(self, mapping_network): """ Setter for this instance's associated mapping network. """ # set mapping network to instance if (isinstance(mapping_network, KnitMappingNetwork) or mapping_network == None): self._mapping_network = mapping_network else: raise ValueError("Input is not of type KnitMappingNetwork!") mapping_network = property(_get_mapping_network, _set_mapping_network, None, "The associated mapping network of this " + "KnitNetwork instance.") # RETRIEVAL OF NODES AND EDGES FROM MAPPING NETWORK ----------------------- def all_nodes_by_segment(self, data=False, edges=False): """ Returns all nodes of the network ordered by 'segment' attribute. Note: 'end' nodes are not included! Parameters ---------- data : bool, optional If ``True``, the nodes contained in the output will be represented as 2-tuples in the form of (node_identifier, node_data). Defaults to ``False`` edges : bool, optional If ``True``, the returned output list will contain 3-tuples in the form of (segment_value, segment_nodes, segment_edge). Defaults to ``False``. Returns ------- nodes_by_segment : :obj:`list` of :obj:`tuple` List of 2-tuples in the form of (segment_value, segment_nodes) or 3-tuples in the form of (segment_value, segment_nodes, segment_edge) depending on the ``edges`` argument. Raises ------ MappingNetworkError If the mapping network is not available for this instance. """ # retrieve mappingnetwork mapnet = self.mapping_network if not mapnet: errMsg = ("Mapping network has not been built for this instance!") raise MappingNetworkError(errMsg) allSegments = mapnet.segment_contour_edges allSegmentNodes = [(n, d) for n, d in self.nodes_iter(data=True) if d["segment"]] segdict = {} for n in allSegmentNodes: if n[1]["segment"] not in segdict: segdict[n[1]["segment"]] = [n] else: segdict[n[1]["segment"]].append(n) anbs = [] if data and edges: for segment in allSegments: segval = segment[2]["segment"] try: segnodes = sorted(segdict[segval]) except KeyError: segnodes = [] anbs.append((segval, segnodes, segment)) elif data and not edges: for segment in allSegments: segval = segment[2]["segment"] try: segnodes = sorted(segdict[segval]) except KeyError: segnodes = [] anbs.append((segval, segnodes)) elif not data and edges: for segment in allSegments: segval = segment[2]["segment"] try: segnodes = sorted(segdict[segval]) except KeyError: segnodes = [] anbs.append((segval, [sn[0] for sn in segnodes], segment)) elif not data and not edges: for segment in allSegments: segval = segment[2]["segment"] try: segnodes = sorted(segdict[segval]) except KeyError: segnodes = [] anbs.append((segval, [sn[0] for sn in segnodes])) return anbs # STITCH WIDTH SAMPLING --------------------------------------------------- def sample_segment_contours(self, stitch_width): """ Samples the segment contours of the mapping network with the given stitch width. The resulting points are added to the network as nodes and a 'segment' attribute is assigned to them based on their origin segment contour edge. Parameters ---------- stitch_width : float The width of a single stitch inside the knit. Raises ------ MappingNetworkError If the mapping network is not available for this instance. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # retrieve mapping network mapnet = self.mapping_network if not mapnet: errMsg = ("Mapping network has not been built for this " + "instance, sampling segment contours is impossible!") raise MappingNetworkError(errMsg) # get the highest index of all the nodes in the network maxNode = max(self.nodes()) # get all the segment geometry ordered by segment number segment_contours = mapnet.segment_contour_edges # sample all segments with the stitch width nodeindex = maxNode + 1 for i, seg in enumerate(segment_contours): # get the geometry of the contour and reparametreize its domain geo = seg[2]["geo"] geo = geo.ToPolylineCurve() geo.Domain = RhinoInterval(0.0, 1.0) # compute the division points crvlen = geo.GetLength() density = int(round(crvlen / stitch_width)) if density == 0: continue divT = geo.DivideByCount(density, False) divPts = [geo.PointAt(t) for t in divT] # set leaf attribute # TODO: better leaf strategy - this works but assigns false # leaf nodes. usually not a problem but it should be fixed anyway if self.node[seg[0]]["leaf"] and self.node[seg[1]]["leaf"]: nodeLeaf = True else: nodeLeaf = False # add all the nodes to the network for j, pt in enumerate(divPts): # add node to network self.node_from_point3d( nodeindex, pt, position=None, num=j, leaf=nodeLeaf, start=False, end=False, segment=seg[2]["segment"], increase=False, decrease=False, color=None) # increment node index nodeindex += 1 # CREATION OF FINAL 'WEFT' CONNECTIONS ------------------------------------ def create_final_weft_connections(self): """ Loop through all the segment contour edges and create all 'weft' connections for this network. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # get all nodes by segment contour SegmentValues, AllNodesBySegment = zip(*self.all_nodes_by_segment( data=True)) # loop through all the segment contours for i, segment in enumerate(AllNodesBySegment): segval = SegmentValues[i] firstNode = (segval[0], self.node[segval[0]]) lastNode = (segval[1], self.node[segval[1]]) if len(segment) == 0: self.create_weft_edge(firstNode, lastNode, segval) elif len(segment) == 1: self.create_weft_edge(firstNode, segment[0], segval) self.create_weft_edge(segment[0], lastNode, segval) else: # loop through all nodes on the current segment and create # the final 'weft' edges for j, node in enumerate(segment): if j == 0: self.create_weft_edge(firstNode, node, segval) self.create_weft_edge(node, segment[j+1], segval) elif j < len(segment)-1: self.create_weft_edge(node, segment[j+1], segval) elif j == len(segment)-1: self.create_weft_edge(node, lastNode, segval) # CREATION OF FINAL 'WARP' CONNECTIONS ------------------------------------ def attempt_warp_connection(self, node, candidate, source_nodes, max_connections=4, verbose=False): """ Method for attempting a 'warp' connection to a candidate node based on certain parameters. Parameters ---------- node : node The starting node for the possible 'weft' edge. candidate : node The target node for the possible 'weft' edge. source_nodes : :obj:`list` List of nodes on the position contour of node. Used to check if the candidate node already has a connection. max_connections : int, optional The new 'weft' connection will only be made if the candidate nodes number of connected neighbors is below this. Defaults to ``4``. verbose : bool, optional If ``True``, this routine and all its subroutines will print messages about what is happening to the console. Defaults to ``False``. Returns ------- result : bool True if the connection has been made, otherwise false. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # define verbose print function v_print = print if verbose else lambda *a, **k: None connecting_neighbors = self[candidate[0]] if len(connecting_neighbors) < max_connections: isConnected = False for cn in connecting_neighbors: if cn in [v[0] for v in source_nodes]: isConnected = True # print info on verbose setting v_print("Candidate node {} is ".format(candidate[0]) + "already connected! Skipping to next node...") break if not isConnected: # print info on verbose setting v_print("Connecting node {} to best candidate {}.".format( node[0], candidate[0])) # finally create the warp edge for good self.create_warp_edge(node, candidate) return True else: return False else: return False def _create_initial_warp_connections(self, segment_pair, max_connections=4, precise=False, verbose=False): """ Private method for creating first pass 'warp' connections for the supplied pair of segment chains. The pair is only defined as a list of nodes, the nodes have to be supplied with their attribute data! Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # define verbose print function v_print = print if verbose else lambda *a, **k: None if len(segment_pair) < 2: v_print("Not enough contour segments in supplied set!") return # print info on verbose output v_print("Creating initial 'warp' connections for contour set...") # get initial and target nodes without 'end' nodes initial_nodes = segment_pair[0] target_nodes = segment_pair[1] # define forbidden node index forbidden_node = -1 # do nothing if one of the sets is empty if len(initial_nodes) == 0 or len(target_nodes) == 0: return # loop through all nodes on the current segment for k, node in enumerate(initial_nodes): # get geometry from current node thisPt = node[1]["geo"] # print info on verbose setting v_print("Processing node {} on segment {}:".format( node[0], node[1]["segment"])) # filtering according to forbidden nodes if forbidden_node != -1: target_nodes = [tnode for tx, tnode in enumerate(target_nodes) if tx >= target_nodes.index(forbidden_node)] if len(target_nodes) == 0: continue # compute distances to target nodes if precise: allDists = [thisPt.DistanceTo(tn[1]["geo"]) for tn in target_nodes] else: allDists = [thisPt.DistanceToSquared(tn[1]["geo"]) for tn in target_nodes] # sort nodes after distances allDists, sorted_target_nodes = zip(*sorted( zip(allDists, target_nodes), key=itemgetter(0))) # the four nearest nodes are the possible connections possible_connections = sorted_target_nodes[:4] # print info on verbose setting v_print("Possible connections: {}".format([pc[0] for pc in possible_connections])) # handle edge case where there is no possible connection or just # one if len(possible_connections) == 0: continue elif len(possible_connections) == 1: # attempt to connect to only possible candidate fCand = possible_connections[0] res = self.attempt_warp_connection( node, fCand, initial_nodes, max_connections=max_connections, verbose=verbose) # set forbidden node if res: forbidden_node = fCand continue # get the segment contours current direction if k < len(initial_nodes)-1: contourDir = RhinoLine(thisPt, initial_nodes[k+1][1]["geo"]).Direction elif k == len(initial_nodes)-1: contourDir = RhinoLine( initial_nodes[k-1][1]["geo"], thisPt).Direction contourDir.Unitize() # get the directions of the possible connections candidatePoints = [pc[1]["geo"] for pc in possible_connections] candidateDirections = [RhinoLine( thisPt, cp).Direction for cp in candidatePoints] [cd.Unitize() for cd in candidateDirections] # get the angles between segment contour dir and possible conn dir normals = [RhinoVector3d.CrossProduct( contourDir, cd) for cd in candidateDirections] angles = [RhinoVector3d.VectorAngle( contourDir, cd, n) for cd, n in zip( candidateDirections, normals)] # compute deltas as a measure of perpendicularity deltas = [abs(a - (0.5 * pi)) for a in angles] # sort possible connections first by distance, then by delta (allDists, deltas, angles, most_perpendicular) = zip(*sorted(zip(allDists, deltas, angles, possible_connections[:]), key=itemgetter(0, 1))) # compute angle difference aDelta = angles[0] - angles[1] # get node neighbors nNeighbors = self[node[0]] # CONNECTION FOR LEAST ANGLE CHANGE ------------------------------- if len(nNeighbors) > 2 and aDelta < radians(6.0): # print info on verbose setting v_print("Using procedure for least angle " + "change connection...") # get previous connected edge and its direction prevEdges = self.node_warp_edges(node[0], data=True) if len(prevEdges) > 1: print("More than one previous " + "'warp' connection! This was unexpected..." + "Taking the first one..?") prevDir = prevEdges[0][2]["geo"].Direction else: prevDir = prevEdges[0][2]["geo"].Direction prevDir.Unitize() # get directions for the best two candidates mpA = most_perpendicular[0] mpB = most_perpendicular[1] dirA = RhinoLine(thisPt, mpA[1]["geo"]).Direction dirB = RhinoLine(thisPt, mpB[1]["geo"]).Direction dirA.Unitize() dirB.Unitize() # get normals for angle measurement normalA = RhinoVector3d.CrossProduct(prevDir, dirA) normalB = RhinoVector3d.CrossProduct(prevDir, dirB) # measure the angles angleA = RhinoVector3d.VectorAngle(prevDir, dirA, normalA) angleB = RhinoVector3d.VectorAngle(prevDir, dirB, normalB) # select final candidate for connection if angleA < angleB: fCand = mpA else: fCand = mpB # attempt connection to final candidate res = self.attempt_warp_connection( node, fCand, initial_nodes, max_connections=max_connections, verbose=verbose) # set forbidden node if res: forbidden_node = fCand continue # CONNECTION FOR MOST PERPENDICULAR ------------------------------- else: # print info on verbose setting v_print("Using procedure for most " + "perpendicular connection...") # define final candidate node fCand = most_perpendicular[0] # attempt connection to final candidate res = self.attempt_warp_connection( node, fCand, initial_nodes, max_connections=max_connections, verbose=verbose) # set forbidden node if res: forbidden_node = fCand def _create_second_pass_warp_connection(self, source_nodes, source_index, window, precise=False, verbose=False, reverse=False): """ Private method for creating second pass 'warp' connections for the given set of contours. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # define verbose print function v_print = print if verbose else lambda *a, **k: None if len(window) == 0: # print info on verbose setting v_print("Length of window is 0, skipping...") elif len(window) == 1: # print info on verbose setting v_print("Window has only one node.") v_print("Connecting to node {}.".format(window[0][0])) # connect 'warp' edge if reverse: self.create_warp_edge(window[0], source_nodes[source_index]) else: self.create_warp_edge(source_nodes[source_index], window[0]) else: # retrive the point of the current source node thisPt = source_nodes[source_index][1]["geo"] # print info on verbose setting v_print("Processing window nodes: {}".format( [w[0] for w in window])) # sort nodes in window by distance if precise: allDists = [thisPt.DistanceTo(pc[1]["geo"]) for pc in window] else: allDists = [thisPt.DistanceToSquared(pc[1]["geo"]) for pc in window] allDists, window = zip(*sorted(zip(allDists, window), key=itemgetter(0))) # get the contours current direction if source_index < len(source_nodes)-1: sourceDir = RhinoLine( thisPt, source_nodes[source_index+1][1]["geo"]).Direction elif source_index == len(source_nodes)-1: sourceDir = RhinoLine(source_nodes[source_index-1][1]["geo"], thisPt).Direction sourceDir.Unitize() # get the directions of the possible connections candidatePoints = [pc[1]["geo"] for pc in window] candidateDirections = [RhinoLine(thisPt, cp).Direction for cp in candidatePoints] [cd.Unitize() for cd in candidateDirections] # get the angles between contour dir and window dir normals = [RhinoVector3d.CrossProduct(sourceDir, cd) for cd in candidateDirections] angles = [RhinoVector3d.VectorAngle(sourceDir, cd, n) for cd, n in zip(candidateDirections, normals)] # compute deltas as a mesaure of perpendicularity deltas = [abs(a - (0.5 * pi)) for a in angles] # sort window by distance, then by delta allDists, deltas, most_perpendicular = zip(*sorted( zip(allDists, deltas, window), key=itemgetter(0, 1))) # set final candidate node for connection fCand = most_perpendicular[0] # print info on verbose setting v_print("Connecting to node " + "{} on segment {}...".format(fCand[0], fCand[1]["segment"])) # connect warp edge to best target if reverse: self.create_warp_edge(fCand, source_nodes[source_index]) else: self.create_warp_edge(source_nodes[source_index], fCand) def create_final_warp_connections(self, max_connections=4, include_end_nodes=True, precise=False, verbose=False): """ Create the final 'warp' connections by building chains of segment contour edges and connecting them. For each source chain, a target chain is found using an 'educated guessing' strategy. This means that the possible target chains are guessed by leveraging known topology facts about the network and its special 'end' nodes. Parameters ---------- max_connections : int, optional The number of maximum previous connections a candidate node for a 'warp' connection is allowed to have. Defaults to ``4``. include_end_nodes : bool, optional If ``True``, 'end' nodes between adjacent segment contours in a source chain will be included in the first pass of connecting 'warp' edges. Defaults to ``True``. precise : bool If ``True``, the distance between nodes will be calculated using the Rhino.Geometry.Point3d.DistanceTo method, otherwise the much faster Rhino.Geometry.Point3d.DistanceToSquared method is used. Defaults to ``False``. verbose : bool, optional If ``True``, this routine and all its subroutines will print messages about what is happening to the console. Great for debugging and analysis. Defaults to ``False``. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # define verbose print function v_print = print if verbose else lambda *a, **k: None # get all segment ids, nodes per segment and edges SegmentValues, AllNodesBySegment, SegmentContourEdges = zip( *self.all_nodes_by_segment(data=True, edges=True)) # build a dictionary of the segments by their index SegmentDict = dict(zip(SegmentValues, zip(SegmentContourEdges, AllNodesBySegment))) # build source and target chains source_chains, target_chain_dict = self.mapping_network.build_chains( False, True) # initialize container dict for connected chains connected_chains = dict() # initialize segment mapping dictionaries source_to_target = OrderedDict() target_to_source = OrderedDict() source_to_key = dict() target_to_key = dict() # ITERATE OVER SOURCE SEGMENT CHAINS ---------------------------------- # loop through all source chains and find targets in target chains # using an 'educated guess strategy' for i, source_chain in enumerate(source_chains): # get the first and last node ('end' nodes) firstNode = (source_chain[0][0][0], self.node[source_chain[0][0][0]]) lastNode = (source_chain[0][-1][1], self.node[source_chain[0][-1][1]]) # get the chain value of the current chain chain_value = source_chain[1] # extract the ids of the current chain current_ids = tuple(source_chain[0]) # extract the current chains geometry current_chain_geo_list = [SegmentDict[id][0][2]["geo"] for id in current_ids] current_chain_geo = RhinoCurve.JoinCurves( [ccg.ToPolylineCurve() for ccg in current_chain_geo_list])[0] current_chain_spt = current_chain_geo.PointAtNormalizedLength(0.5) # retrieve the current segments from the segment dictionary by id current_segment_nodes = [SegmentDict[id][1] for id in current_ids] # retrieve the current nodes from the list of current segments current_nodes = [] for j, csn in enumerate(current_segment_nodes): if include_end_nodes and j > 0: current_nodes.append((current_ids[j][0], self.node[current_ids[j][0]])) [current_nodes.append(n) for n in csn] # reset the target key target_key = None # print info on verbose setting v_print("--------------------------------------------------------") v_print("Processing segment chain {} ...".format(source_chain)) # CASE 1 - ENCLOSED SHORT ROW <====> ALL CASES -------------------- # look for possible targets using a guess about the chain value possible_target_keys = [key for key in target_chain_dict if key[0] == chain_value[0] and key[1] == chain_value[1] and key not in connected_chains] if len(possible_target_keys) > 0: # find the correct chain by using geometric distance possible_target_chains = [target_chain_dict[tk] for tk in possible_target_keys] # for every chain in the possible target chains, get the # geometry and compute a sample distance filtered_target_keys = [] possible_target_chain_dists = [] for j, ptc in enumerate(possible_target_chains): # retrieve possible target geometry and join into one crv ptc_geo_list = [SegmentDict[id][0][2]["geo"] for id in ptc] if ptc_geo_list == current_chain_geo_list: continue ptc_geo = RhinoCurve.JoinCurves( [ptcg.ToPolylineCurve() for ptcg in ptc_geo_list])[0] # get a sample point and measure the distance to the # source chain sample point ptc_spt = ptc_geo.PointAtNormalizedLength(0.5) if precise: ptc_dist = current_chain_spt.DistanceTo(ptc_spt) else: ptc_dist = current_chain_spt.DistanceToSquared(ptc_spt) # append the filtered key to the key list filtered_target_keys.append(possible_target_keys[j]) # append the measured distance to the distance list possible_target_chain_dists.append(ptc_dist) if len(filtered_target_keys) > 0: # sort filtered target keys using the distances possible_target_chain_dists, filtered_target_keys = zip( *sorted(zip( possible_target_chain_dists, filtered_target_keys), key=itemgetter(0))) # set target key target_key = filtered_target_keys[0] else: target_key = None else: target_key = None # attempt warp connections if we have found a correct key if target_key: # get the guessed target chain from the chain dictionary target_chain = target_chain_dict[target_key] # extract the ids for node retrieval target_ids = tuple([seg for seg in target_chain]) # retrieve the target nodes from the segment dictionary by id target_segment_nodes = [SegmentDict[id][1] for id in target_ids] target_nodes = [] for j, tsn in enumerate(target_segment_nodes): if include_end_nodes and j > 0: target_nodes.append(( target_ids[j][0], self.node[target_ids[j][0]])) [target_nodes.append(n) for n in tsn] # print info on verbose setting v_print("<=====> detected. Connecting to " + "segment chain {}.".format(target_key)) # we have successfully verified our target segment and # can create some warp edges! segment_pair = [current_nodes, target_nodes] # fill mapping dictionaries if current_ids not in source_to_target: source_to_target[current_ids] = target_ids if current_ids not in source_to_key: source_to_key[current_ids] = chain_value if target_ids not in target_to_source: target_to_source[target_ids] = current_ids if target_ids not in target_to_key: target_to_key[target_ids] = target_key # create initial warp connections between the chains connected_chains[target_key] = True self._create_initial_warp_connections( segment_pair, max_connections=max_connections, precise=precise, verbose=verbose) continue # CASE 2 - SHORT ROW TO THE RIGHT <=====/ ALL CASES --------------- # look for possible targets using a guess about the chain value possible_target_keys = [key for key in target_chain_dict if key[0] == chain_value[0] and key[1] == chain_value[1]+1 and key not in connected_chains] if len(possible_target_keys) == 1: target_key = possible_target_keys[0] elif len(possible_target_keys) > 1: # find the correct chain by using geometric distance possible_target_chains = [target_chain_dict[tk] for tk in possible_target_keys] # for every chain in the possible target chains, get the # geometry and compute a sample distance possible_target_chain_dists = [] for ptc in possible_target_chains: # retrieve possible target geometry and join into one crv ptc_geo = [SegmentDict[id][0][2]["geo"] for id in ptc] ptc_geo = RhinoCurve.JoinCurves([pg.ToPolylineCurve() for pg in ptc_geo])[0] # get a sample point and measure the distance to the # source chain sample point ptc_spt = ptc_geo.PointAtNormalizedLength(0.5) if precise: ptc_dist = current_chain_spt.DistanceTo(ptc_spt) else: ptc_dist = current_chain_spt.DistanceToSquared(ptc_spt) # append the measured distance to the list possible_target_chain_dists.append(ptc_dist) # sort possible target keys using the distances possible_target_chain_dists, possible_target_keys = zip( *sorted(zip(possible_target_chain_dists, possible_target_keys), key=itemgetter(0))) target_key = possible_target_keys[0] else: target_key = None # attempt warp connections if we have found a correct key if target_key: # get the guessed target chain from the chain dictionary target_chain = target_chain_dict[target_key] # extract the ids for node retrieval target_ids = tuple([seg for seg in target_chain]) # retrieve the target nodes from the segment dictionary by id target_segment_nodes = [SegmentDict[id][1] for id in target_ids] target_nodes = [] for j, tsn in enumerate(target_segment_nodes): if include_end_nodes and j > 0: target_nodes.append((target_ids[j][0], self.node[target_ids[j][0]])) [target_nodes.append(n) for n in tsn] targetFirstNode = target_ids[0][0] targetLastNode = target_ids[-1][1] # check if firstNode and targetFirstNode are connected via a # 'warp' edge to verify if (targetFirstNode == firstNode[0] and targetLastNode in self[lastNode[0]]): # print info on verbose setting v_print("<=====/ detected. Connecting " + "to segment {}.".format(target_key)) # we have successfully verified our target segment and # can create some warp edges! segment_pair = [current_nodes, target_nodes] connected_chains[target_key] = True # fill mapping dictionaries if current_ids not in source_to_target: source_to_target[current_ids] = target_ids if current_ids not in source_to_key: source_to_key[current_ids] = chain_value if target_ids not in target_to_source: target_to_source[target_ids] = current_ids if target_ids not in target_to_key: target_to_key[target_ids] = target_key # create initial 'warp' connections between the chains self._create_initial_warp_connections( segment_pair, max_connections=max_connections, precise=precise, verbose=verbose) continue else: v_print("No real connection for <=====/. Next case...") # CASE 3 - SHORT ROW TO THE LEFT /====> ALL CASES ----------------- # look for possible targets using a guess about the chain value possible_target_keys = [key for key in target_chain_dict if key[0] == chain_value[0]+1 and key[1] == chain_value[1] and key not in connected_chains] if len(possible_target_keys) == 1: target_key = possible_target_keys[0] elif len(possible_target_keys) > 1: # find the correct chain by using geometric distance possible_target_chains = [target_chain_dict[tk] for tk in possible_target_keys] # for every chain in the possible target chains, get the # geometry and compute a sample distance possible_target_chain_dists = [] for ptc in possible_target_chains: # retrieve possible target geometry and join into one crv ptc_geo = [SegmentDict[id][0][2]["geo"] for id in ptc] ptc_geo = RhinoCurve.JoinCurves( [pg.ToPolylineCurve() for pg in ptc_geo])[0] # get a sample point and measure the distance to the # source chain sample point ptc_spt = ptc_geo.PointAtNormalizedLength(0.5) if precise: ptc_dist = current_chain_spt.DistanceTo(ptc_spt) else: ptc_dist = current_chain_spt.DistanceToSquared(ptc_spt) # append the measured distance to the list possible_target_chain_dists.append(ptc_dist) # sort possible target keys using the distances possible_target_chain_dists, possible_target_keys = zip( *sorted(zip(possible_target_chain_dists, possible_target_keys), key=itemgetter(0))) target_key = possible_target_keys[0] else: target_key = None # attempt warp connections if we have found a correct key if target_key: # get the guessed target chain from the chain dictionary target_chain = target_chain_dict[target_key] # extract the ids for node retrieval target_ids = tuple([seg for seg in target_chain]) # retrieve the target nodes from the segment dictionary by id target_segment_nodes = [SegmentDict[id][1] for id in target_ids] target_nodes = [] for j, tsn in enumerate(target_segment_nodes): if include_end_nodes and j > 0: target_nodes.append((target_ids[j][0], self.node[target_ids[j][0]])) [target_nodes.append(n) for n in tsn] targetFirstNode = target_ids[0][0] targetLastNode = target_ids[-1][1] # check if firstNode and targetFirstNode are connected via a # 'warp' edge to verify if (targetFirstNode in self[firstNode[0]] and targetLastNode == lastNode[0]): # print info on verbose setting v_print("/=====> detected. Connecting " + "to segment {}.".format(target_key)) # we have successfully verified our target segment and # can create some warp edges! segment_pair = [current_nodes, target_nodes] connected_chains[target_key] = True # fill mapping dictionaries if current_ids not in source_to_target: source_to_target[current_ids] = target_ids if current_ids not in source_to_key: source_to_key[current_ids] = chain_value if target_ids not in target_to_source: target_to_source[target_ids] = current_ids if target_ids not in target_to_key: target_to_key[target_ids] = target_key self._create_initial_warp_connections( segment_pair, max_connections=max_connections, precise=precise, verbose=verbose) continue else: v_print("No real connection for /=====>. Next case...") # CASE 4 - REGULAR ROW /=====/ ALL CASES -------------------------- # look for possible targets using a guess about the chain value possible_target_keys = [key for key in target_chain_dict if key[0] == chain_value[0]+1 and key[1] == chain_value[1]+1 and key not in connected_chains] if len(possible_target_keys) == 1: target_key = possible_target_keys[0] elif len(possible_target_keys) > 1: # find the correct chain by using geometric distance possible_target_chains = [target_chain_dict[tk] for tk in possible_target_keys] # for every chain in the possible target chains, get the # geometry and compute a sample distance possible_target_chain_dists = [] for ptc in possible_target_chains: # retrieve possible target geometry and join into one crv ptc_geo = [SegmentDict[id][0][2]["geo"] for id in ptc] ptc_geo = RhinoCurve.JoinCurves([pg.ToPolylineCurve() for pg in ptc_geo])[0] # get a sample point and measure the distance to the # source chain sample point ptc_spt = ptc_geo.PointAtNormalizedLength(0.5) if precise: ptc_dist = current_chain_spt.DistanceTo(ptc_spt) else: ptc_dist = current_chain_spt.DistanceToSquared(ptc_spt) # append the measured distance to the list possible_target_chain_dists.append(ptc_dist) # sort possible target keys using the distances possible_target_chain_dists, possible_target_keys = zip( *sorted(zip(possible_target_chain_dists, possible_target_keys), key=itemgetter(0))) target_key = possible_target_keys[0] else: target_key = None # attempt warp connections if we have found a correct key if target_key: # get the guessed target chain from the chain dictionary target_chain = target_chain_dict[target_key] # extract the ids for node retrieval target_ids = tuple([seg for seg in target_chain]) # retrieve the target nodes from the segment dictionary by id target_segment_nodes = [SegmentDict[id][1] for id in target_ids] target_nodes = [] for j, tsn in enumerate(target_segment_nodes): if include_end_nodes and j > 0: target_nodes.append((target_ids[j][0], self.node[target_ids[j][0]])) [target_nodes.append(n) for n in tsn] # set target first and last node ('end' nodes) targetFirstNode = target_ids[0][0] targetLastNode = target_ids[-1][1] # check if firstNode and targetFirstNode are connected via a # 'warp' edge to verify if (targetFirstNode in self[firstNode[0]] and targetLastNode in self[lastNode[0]]): # print info on verbose setting v_print("/=====/ detected. Connecting " + "to segment {}.".format(target_key)) # we have successfully verified our target segment and # can create some warp edges! segment_pair = [current_nodes, target_nodes] connected_chains[target_key] = True # fill mapping dictionaries if current_ids not in source_to_target: source_to_target[current_ids] = target_ids if current_ids not in source_to_key: source_to_key[current_ids] = chain_value if target_ids not in target_to_source: target_to_source[target_ids] = current_ids if target_ids not in target_to_key: target_to_key[target_ids] = target_key self._create_initial_warp_connections( segment_pair, max_connections=max_connections, precise=precise, verbose=verbose) continue else: v_print("No real connection for /=====/. No cases match.") # INVOKE SECOND PASS FOR SOURCE ---> TARGET --------------------------- for i, current_chain in enumerate(source_to_target): v_print("--------------------------------------------------------") v_print("S>T Current Chain: {}".format(current_chain)) # build a list of nodes containing all nodes in the current chain # including all 'end' nodes current_chain_nodes = [] for j, ccid in enumerate(current_chain): current_chain_nodes.append((ccid[0], self.node[ccid[0]])) [current_chain_nodes.append(n) for n in SegmentDict[ccid][1]] current_chain_nodes.append((current_chain[-1][1], self.node[current_chain[-1][1]])) # retrieve target chain from the source to target mapping target_chain = source_to_target[current_chain] cckey = source_to_key[current_chain] tckey = target_to_key[target_chain] # build a list of nodes containing all nodes in the target chain # including all 'end' nodes target_chain_nodes = [] for j, tcid in enumerate(target_chain): target_chain_nodes.append((tcid[0], self.node[tcid[0]])) [target_chain_nodes.append(n) for n in SegmentDict[tcid][1]] target_chain_nodes.append((target_chain[-1][1], self.node[target_chain[-1][1]])) # initialize start of window marker start_of_window = -1 # loop through all nodes on the current chain for k, node in enumerate(current_chain_nodes): # find out if the current node is already principally connected node_connected = False # if the node is the first or the last node, it is defined as # connected per-se if k == 0 or k == len(current_chain_nodes)-1: node_connected = True # find out if the current node is already connected to the # target chain, get node warp edges and their target nodes node_warp_edges = self.node_warp_edges(node[0], data=False) warp_edge_targets = [we[1] for we in node_warp_edges] # loop over warp edge targets to get the start of the window for wet in warp_edge_targets: # loop over target chain nodes for n, tcn in enumerate(target_chain_nodes): # if a warp edge target is in the target chain, # the node is connected and star of window for next # node is defined if wet == tcn[0]: if n > start_of_window or start_of_window == -1: start_of_window = n node_connected = True # if the node is not connected to the target chain, we # need to find the end of the window if not node_connected: v_print("Node: {}".format(node[0])) v_print("Start of window: {}".format(start_of_window)) # re-check start of window for <.====/ case if len(target_chain_nodes) >= 2 and start_of_window == -1: if target_chain_nodes[0] == current_chain_nodes[0]: start_of_window = 1 else: start_of_window = 0 end_of_window = None # loop over target chain nodes for n, tcn in enumerate(target_chain_nodes): if n >= start_of_window: if tcn[0] == current_chain_nodes[-1][0]: end_of_window = n # get all warp edges of the current target node # and their targets tcn_warp_edges = self.node_warp_edges(tcn[0], data=False) tcn_warp_edge_targets = [we[1] for we in tcn_warp_edges] # loop over warp edge targets for twet in tcn_warp_edge_targets: if (twet in [cn[0] for cn in current_chain_nodes]): end_of_window = n break if end_of_window and end_of_window > start_of_window: break # re-check end of window for /====.> case if end_of_window: tcn_we = target_chain_nodes[end_of_window] ccn_end = current_chain_nodes[-1] ccn_len = len(current_chain_nodes) if tcn_we == ccn_end and k == ccn_len-2: end_of_window -= 1 if end_of_window < start_of_window: start_of_window = -1 end_of_window = None # if we have a valid window, set the target nodes if start_of_window != -1 and end_of_window != None: if end_of_window == len(target_chain_nodes)-1: window = target_chain_nodes[start_of_window:] else: window = target_chain_nodes[start_of_window: end_of_window+1] v_print("End of window: {}".format(end_of_window)) # execute connection to target if cckey <= tckey: rev = False else: rev = True v_print("Connecting chain {} to chain {}".format( cckey, tckey)) self._create_second_pass_warp_connection( current_chain_nodes, k, window, precise=precise, verbose=verbose, reverse=rev) else: # print info on verbose setting v_print("No valid window for current chain!") # INVOKE SECOND PASS FOR TARGET ---> SOURCE --------------------------- for i, current_chain in enumerate(target_to_source): v_print("--------------------------------------------------------") v_print("T>S Current Chain: {}".format(current_chain)) # build a list of nodes containing all nodes in the current chain # including all 'end' nodes current_chain_nodes = [] for j, ccid in enumerate(current_chain): current_chain_nodes.append((ccid[0], self.node[ccid[0]])) [current_chain_nodes.append(n) for n in SegmentDict[ccid][1]] current_chain_nodes.append((current_chain[-1][1], self.node[current_chain[-1][1]])) # retrieve target chain from the source to target mapping target_chain = target_to_source[current_chain] cckey = target_to_key[current_chain] tckey = source_to_key[target_chain] # build a list of nodes containing all nodes in the target chain # including all 'end' nodes target_chain_nodes = [] for j, tcid in enumerate(target_chain): target_chain_nodes.append((tcid[0], self.node[tcid[0]])) [target_chain_nodes.append(n) for n in SegmentDict[tcid][1]] target_chain_nodes.append((target_chain[-1][1], self.node[target_chain[-1][1]])) # initialize start of window marker start_of_window = -1 # loop through all nodes on the current chain for k, node in enumerate(current_chain_nodes): # find out if the current node is already principally connected node_connected = False if k == 0 or k == len(current_chain_nodes)-1: node_connected = True # find out if the current node is already connected to the # target chain node_warp_edges = self.node_warp_edges(node[0], data=False) warp_edge_targets = [we[1] for we in node_warp_edges] # loop over weft edge targets for wet in warp_edge_targets: # if warp edge target is in target chain nodes, node # is connected and the start of our window for the next # node for n, tcn in enumerate(target_chain_nodes): if wet == tcn[0]: if n > start_of_window or start_of_window == -1: start_of_window = n node_connected = True # if the node is not connected to the target chain, we # need to find the end of the window if not node_connected: # print info on verbose output v_print("Node: {}".format(node[0])) v_print("Start of window: {}".format(start_of_window)) # re-check start of window for <.====/ case if len(target_chain_nodes) >= 2 and start_of_window == -1: if target_chain_nodes[0] == current_chain_nodes[0]: start_of_window = 1 else: start_of_window = 0 end_of_window = None # loop over target chain nodes for n, tcn in enumerate(target_chain_nodes): if n >= start_of_window: if tcn[0] == current_chain_nodes[-1][0]: end_of_window = n # get all warp edges of the current target node and # their targets tcn_warp_edges = self.node_warp_edges(tcn[0], data=False) tcn_warp_edge_targets = [we[1] for we in tcn_warp_edges] # loop over warp edge targets of current target # node for twet in tcn_warp_edge_targets: # if warp edge target is in current chain, # it is the end of the window if (twet in [cn[0] for cn in current_chain_nodes]): end_of_window = n break if end_of_window and end_of_window > start_of_window: break # re-check end of window for /====.> case if end_of_window: tcn_we = target_chain_nodes[end_of_window] ccn_end = current_chain_nodes[-1] ccn_len = len(current_chain_nodes) if tcn_we == ccn_end and k == ccn_len-2: end_of_window -= 1 if end_of_window < start_of_window: start_of_window = -1 end_of_window = None # if there is a valid window, set the target chain nodes if start_of_window != -1 and end_of_window != None: if end_of_window == len(target_chain_nodes)-1: window = target_chain_nodes[start_of_window:] else: window = target_chain_nodes[start_of_window: end_of_window+1] # print info on verbose output v_print("End of window: {}".format(end_of_window)) # execute connection if cckey < tckey: rev = False else: rev = True v_print("Connecting chain {} to chain {}.".format( cckey, tckey)) self._create_second_pass_warp_connection( current_chain_nodes, k, window, precise=precise, verbose=verbose, reverse=rev) else: v_print("No valid window for current chain!") # FIND FACES OF NETWORK --------------------------------------------------- def to_KnitDiNetwork(self): """ Constructs and returns a directed KnitDiNetwork based on this network by duplicating all edges so that [u -> v] and [v -> u] for every edge [u - v] in this undirected network. Returns ------- directed_network : :class:`KnitDiNetwork` The directed representation of this network. """ # create a directed network with duplicate edges in opposing directions dirnet = KnitDiNetwork() dirnet.name = self.name dirnet.add_nodes_from(self) dirnet.add_edges_from((u, v, data) for u, nbrs in self.adjacency_iter() for v, data in nbrs.items()) dirnet.graph = self.graph dirnet.node = self.node dirnet.mapping_network = self.mapping_network return dirnet def find_cycles(self, mode=-1): """ Finds the cycles (faces) of this network by utilizing a wall-follower mechanism. Parameters ---------- mode : int, optional Determines how the neighbors of each node are sorted when finding cycles for the network. ``-1`` equals to using the world XY plane. ``0`` equals to using a plane normal to the origin nodes closest point on the reference geometry. ``1`` equals to using a plane normal to the average of the origin and neighbor nodes' closest points on the reference geometry. ``2`` equals to using an average plane between a plane fit to the origin and its neighbor nodes and a plane normal to the origin nodes closest point on the reference geometry. Defaults to ``-1``. Warning ------- Modes other than ``-1`` are only possible if this network has an underlying reference geometry in form of a Mesh or NurbsSurface. The reference geometry should be assigned when initializing the network by assigning the geometry to the "reference_geometry" attribute of the network. Notes ----- Based on an implementation inside the COMPAS framework. For more info see [16]_. """ return self.to_KnitDiNetwork().find_cycles(mode=mode) def create_mesh(self, mode=-1, max_valence=4): """ Constructs a mesh from this network by finding cycles and using them as mesh faces. Parameters ---------- mode : int, optional Determines how the neighbors of each node are sorted when finding cycles for the network. ``-1`` equals to using the world XY plane. ``0`` equals to using a plane normal to the origin nodes closest point on the reference geometry. ``1`` equals to using a plane normal to the average of the origin and neighbor nodes' closest points on the reference geometry. ``2`` equals to using an average plane between a plane fit to the origin and its neighbor nodes and a plane normal to the origin nodes closest point on the reference geometry. Defaults to ``-1``. max_valence : int, optional Sets the maximum edge valence of the faces. If this is set to > 4, n-gon faces (more than 4 edges) are allowed. Otherwise, their cycles are treated as invalid and will be ignored. Defaults to ``4``. Warning ------- Modes other than ``-1`` are only possible if this network has an underlying reference geometry in form of a Mesh or NurbsSurface. The reference geometry should be assigned when initializing the network by assigning the geometry to the "reference_geometry" attribute of the network. """ return self.to_KnitDiNetwork().create_mesh(mode=mode, max_valence=max_valence) # DUALITY ----------------------------------------------------------------- def create_dual(self, mode=-1, merge_adj_creases=False, mend_trailing_rows=False): """ Creates the dual of this KnitNetwork while translating current edge attributes to the edges of the dual network. Parameters ---------- mode : int, optional Determines how the neighbors of each node are sorted when finding cycles for the network. ``-1`` equals to using the world XY plane. ``0`` equals to using a plane normal to the origin nodes closest point on the reference geometry. ``1`` equals to using a plane normal to the average of the origin and neighbor nodes' closest points on the reference geometry. ``2`` equals to using an average plane between a plane fit to the origin and its neighbor nodes and a plane normal to the origin nodes closest point on the reference geometry. Defaults to ``-1``. merge_adj_creases : bool, optional If ``True``, will merge adjacent 'increase' and 'decrease' nodes connected by a 'weft' edge into a single node. This effectively simplifies the pattern, as a decrease is unneccessary to perform if an increase is right beside it - both nodes can be replaced by a single regular node (stitch). Defaults to ``False``. mend_trailing_rows : bool, optional If ``True``, will attempt to mend trailing rows by reconnecting nodes. Defaults to ``False``. Returns ------- dual_network : :class:`KnitDiNetwork` The dual network of this KnitNetwork. Warning ------- Modes other than -1 (default) are only possible if this network has an underlying reference geometry in form of a Mesh or NurbsSurface. The reference geometry should be assigned when initializing the network by assigning the geometry to the 'reference_geometry' attribute of the network. Notes ----- Closely resembles the implementation described in *Automated Generation of Knit Patterns for Non-developable Surfaces* [1]_. Also see *KnitCrete - Stay-in-place knitted formworks for complex concrete structures* [2]_. """ # first find the cycles of this network cycles = self.find_cycles(mode=mode) # get node data for all nodes once node_data = {k: self.node[k] for k in self.nodes_iter()} # create new directed KnitDiNetwork for dual network DualNetwork = KnitDiNetwork( reference_geometry=self.graph["reference_geometry"]) # create mapping dict for edges to adjacent cycles edge_to_cycle = {(u, v): None for u, v in self.edges_iter()} edge_to_cycle.update({(v, u): None for u, v in self.edges_iter()}) # CREATE NODES OF DUAL ------------------------------------------------ # for each cycle, find the centroid node for ckey in sorted(cycles.keys()): cycle = cycles[ckey] clen = len(cycle) # skip invalid cycles (ngons and self-loops) if clen > 4 or clen < 3: continue # loop over cycle edges and fill mapping dicts closed_cycle = cycle[:] closed_cycle.append(cycle[0]) for u, v in pairwise(closed_cycle): edge_to_cycle[(u, v)] = ckey # get coords of cycle nodes cycle_coords = [[node_data[k]["x"], node_data[k]["y"], node_data[k]["z"]] for k in cycle] # compute centroid cx, cy, cz = zip(*cycle_coords) centroid = [sum(cx) / clen, sum(cy) / clen, sum(cz) / clen] centroid_pt = RhinoPoint3d(*centroid) # get node 'leaf' attributes is_leaf = True in [node_data[k]["leaf"] for k in cycle] # get node 'color' attributes. only if all colors of the cycle # match, the color attribute will be set! colors = [node_data[k]["color"] for k in cycle] if all(x == colors[0] for x in colors): cycle_color = colors[0] else: cycle_color = None # add node to dual network DualNetwork.node_from_point3d(ckey, centroid_pt, position=None, num=None, leaf=is_leaf, start=False, end=False, segment=None, increase=False, decrease=False, color=cycle_color) # CREATE EDGES IN DUAL ------------------------------------------------ # loop over original edges and create corresponding edges in dual for u, v, d in self.edges_iter(data=True): u, v = self.edge_geometry_direction(u, v) cycle_a = edge_to_cycle[(u, v)] cycle_b = edge_to_cycle[(v, u)] if cycle_a != None and cycle_b != None: node_a = (cycle_a, DualNetwork.node[cycle_a]) node_b = (cycle_b, DualNetwork.node[cycle_b]) if d["warp"]: DualNetwork.create_weft_edge(node_b, node_a) elif d["weft"]: DualNetwork.create_warp_edge(node_a, node_b) # SET ATTRIBUTES OF DUAL NODES ---------------------------------------- # loop over all nodes of the network and set crease and end attributes for node in DualNetwork.nodes_iter(): node_data = DualNetwork.node[node] warp_in = DualNetwork.node_warp_edges_in(node) warp_out = DualNetwork.node_warp_edges_out(node) weft_in = DualNetwork.node_weft_edges_in(node) weft_out = DualNetwork.node_weft_edges_out(node) warplen = len(warp_in) + len(warp_out) weftlen = len(weft_in) + len(weft_out) # 2 warp edges and 1 weft edge >> end if warplen == 2 and weftlen == 1: node_data["end"] = True if weft_out: node_data["start"] = True # 1 warp edge and 1 weft edge >> end and increase / decrease elif warplen == 1 and weftlen == 1: node_data["end"] = True if weft_out: node_data["start"] = True if warp_out and not node_data["leaf"]: node_data["increase"] = True elif warp_in and not node_data["leaf"]: node_data["decrease"] = True # 2 warp edges and 0 weft edges >> end elif warplen == 2 and weftlen == 0: node_data["end"] = True node_data["start"] = True # 1 warp edge and 0 weft edges >> end elif warplen == 1 and weftlen == 0: node_data["end"] = True node_data["start"] = True # 0 warp edges and 1 weft edge >> end elif warplen == 0 and weftlen == 1: node_data["end"] = True if weft_out: node_data["start"] = True # 1 warp edge and 2 weft edges >> increase or decrease elif warplen == 1 and weftlen == 2: if not node_data["leaf"]: if warp_out: node_data["increase"] = True elif warp_in: node_data["decrease"] = True # MERGE ADJACENT INCREASES/DECREASES ---------------------------------- if merge_adj_creases: increase_nodes = [inc for inc in DualNetwork.nodes_iter(data=True) if inc[1]["increase"]] for increase, data in increase_nodes: pred = DualNetwork.predecessors(increase) suc = DualNetwork.successors(increase) pred = [p for p in pred if DualNetwork.node[p]["decrease"]] suc = [s for s in suc if DualNetwork.node[s]["decrease"]] # merge only with pred or with suc but not both if (len(pred) == 1 and DualNetwork.edge[pred[0]][increase]["weft"]): # merge nodes, edge is pred, increase pred = pred[0] pd = DualNetwork.node[pred] # remove the connecting edge DualNetwork.remove_edge(pred, increase) # get the points of the nodes increase_pt = data["geo"] pred_pt = pd["geo"] # compute the new merged point new_vec = RhinoVector3d(increase_pt - pred_pt) new_pt = pred_pt + (new_vec * 0.5) # replace the increase with the new pt and invert the # increase attribute data["geo"] = new_pt data["x"] = new_pt.X data["y"] = new_pt.Y data["z"] = new_pt.Z data["increase"] = False # edit the edges of the increase for edge in DualNetwork.edges_iter(increase, data=True): edge[2]["geo"] = RhinoLine( data["geo"], DualNetwork.node[edge[1]]["geo"]) # edit edges of decrease for edge in DualNetwork.in_edges_iter(pred, data=True): if edge[2]["warp"]: fromNode = (edge[0], DualNetwork.node[edge[0]]) toNode = (increase, data) DualNetwork.create_warp_edge(fromNode, toNode) DualNetwork.remove_edge(edge[0], edge[1]) elif edge[2]["weft"]: fromNode = (edge[0], DualNetwork.node[edge[0]]) toNode = (increase, data) DualNetwork.create_weft_edge(fromNode, toNode) DualNetwork.remove_edge(edge[0], edge[1]) DualNetwork.remove_node(pred) elif (not pred and len(suc) == 1 and DualNetwork.edge[increase][suc[0]]["weft"]): # merge nodes, edge is increase, suc suc = suc[0] sd = DualNetwork.node[suc] # remove the connecting edge DualNetwork.remove_edge(increase, suc) # get the points of the nodes increase_pt = data["geo"] suc_pt = sd["geo"] # compute the new merged point new_vec = RhinoVector3d(suc_pt - increase_pt) new_pt = increase_pt + (new_vec * 0.5) # replace the increase with the new pt and invert the # increase attribute data["geo"] = new_pt data["x"] = new_pt.X data["y"] = new_pt.Y data["z"] = new_pt.Z data["increase"] = False # edit the edges of the increase for edge in DualNetwork.edges_iter(increase, data=True): edge[2]["geo"] = RhinoLine( data["geo"], DualNetwork.node[edge[1]]["geo"]) for edge in DualNetwork.in_edges_iter(increase, data=True): edge[2]["geo"] = RhinoLine( DualNetwork.node[edge[0]]["geo"], data["geo"]) # edit incoming edges of decrease for edge in DualNetwork.in_edges_iter(suc, data=True): if edge[2]["warp"]: fromNode = (edge[0], DualNetwork.node[edge[0]]) toNode = (increase, data) DualNetwork.create_warp_edge(fromNode, toNode) DualNetwork.remove_edge(edge[0], edge[1]) elif edge[2]["weft"]: fromNode = (edge[0], DualNetwork.node[edge[0]]) toNode = (increase, data) DualNetwork.create_weft_edge(fromNode, toNode) DualNetwork.remove_edge(edge[0], edge[1]) # edit outgoing edges of decrease for edge in DualNetwork.edges_iter(suc, data=True): if edge[2]["warp"]: fromNode = (increase, data) toNode = (edge[1], DualNetwork.node[edge[1]]) DualNetwork.create_warp_edge(fromNode, toNode) DualNetwork.remove_edge(edge[0], edge[1]) elif edge[2]["weft"]: fromNode = (increase, data) toNode = (edge[1], DualNetwork.node[edge[1]]) DualNetwork.create_weft_edge(fromNode, toNode) DualNetwork.remove_edge(edge[0], edge[1]) DualNetwork.remove_node(suc) # ATTEMPT TO MEND TRAILING ROWS --------------------------------------- if mend_trailing_rows: # TODO: find a safer / more robust implementation attempt! errMsg = ("This option is not satisfyingly implemented for this " + "method, yet. Therefore, it is deactivated for now.") raise NotImplementedError(errMsg) # get all nodes which are 'leaf' and 'end' (right side) # and all nodes which are 'leaf' and 'start' (left side) trailing = sorted([(n, d) for n, d in DualNetwork.nodes_iter(data=True) if d["leaf"] and d["end"]], key=lambda x: x[0]) trailing_left = deque([t for t in trailing if t[1]["start"]]) trailing_right = deque([t for t in trailing if not t[1]["start"]]) # from the trailing left nodes... # travel one outgoing 'weft' # from there travel one incoming 'warp' # if the resulting node is 'start', 'end' and has 3 edges in total # >> take its outgoing 'warp' edge (we already traveled that so # we should already have it) # >> connect it to the trailing left node # >> remove the 'leaf' attribute from the trailing node as it is no # longer trailing # >> add the 'increase' attribute to the previous target of the # 'warp' edge while len(trailing_left) > 0: # pop an item from the deque trail = trailing_left.popleft() # travel one outgoing 'weft' edge weft_out = DualNetwork.node_weft_edges_out(trail[0], data=True) if not weft_out: continue weft_out = weft_out[0] # check the target of the 'weft' edge for incoming 'warp' warp_in = DualNetwork.node_warp_edges_in( weft_out[1], data=True) warp_out = DualNetwork.node_warp_edges_out( weft_out[1], data=True) if not warp_in: continue warp_in = warp_in[0] candidate = (warp_in[0], DualNetwork.node[warp_in[0]]) nce = len(DualNetwork.in_edges(warp_in[0])) nce += len(DualNetwork.edges(warp_in[0])) # if this condition holds, we have a trailing increase if (candidate[1]["start"] and candidate[1]["end"] and nce == 3): # remove found 'warp' edge DualNetwork.remove_edge(warp_in[0], warp_in[1]) # assign 'increase' attribute to former 'warp' edge target DualNetwork.node[warp_in[1]]["increase"] = True # connect candidate to trail with new 'warp' edge DualNetwork.create_warp_edge(candidate, trail) # remove 'leaf' attribute of former trail trail[1]["leaf"] = False else: if warp_out: warp_out = warp_out[0] candidate = (warp_out[1], DualNetwork.node[warp_out[1]]) nce = len(DualNetwork.in_edges(warp_out[1])) nce += len(DualNetwork.edges(warp_out[1])) # if this condition holds, we have a trailing decrease if (candidate[1]["start"] and candidate[1]["end"] and nce == 3): # remove found 'warp' edge DualNetwork.remove_edge(warp_out[0], warp_out[1]) # assign 'decrease' attribute to former 'warp' # edge source DualNetwork.node[warp_out[0]]["decrease"] = True # connect former trail to candidate with new # 'warp' edge DualNetwork.create_warp_edge(trail, candidate) # remove 'leaf' attribute of former trail trail[1]["leaf"] = False while len(trailing_right) > 0: # pop an item from the deque trail = trailing_right.popleft() # travel one incoming 'weft' edge weft_in = DualNetwork.node_weft_edges_in(trail[0], data=True) if not weft_in: continue weft_in = weft_in[0] # check the target of the 'weft' edge for incoming 'warp' warp_in = DualNetwork.node_warp_edges_in(weft_in[0], data=True) warp_out = DualNetwork.node_warp_edges_out(weft_in[0], data=True) if not warp_in: continue warp_in = warp_in[0] candidate = (warp_in[0], DualNetwork.node[warp_in[0]]) nce = len(DualNetwork.in_edges(warp_in[0])) nce += len(DualNetwork.edges(warp_in[0])) # if this condition holds, we have a trailing increase if candidate[1]["end"] and nce == 3: # remove found 'warp' edge DualNetwork.remove_edge(warp_in[0], warp_in[1]) # assign 'increase' attribute to former 'warp' edge target DualNetwork.node[warp_in[1]]["increase"] = True # connect candidate to trail with new 'warp' edge DualNetwork.create_warp_edge(candidate, trail) # remove 'leaf' attribute of former trail trail[1]["leaf"] = False else: if warp_out: warp_out = warp_out[0] candidate = (warp_out[1], DualNetwork.node[warp_out[1]]) nce = len(DualNetwork.in_edges(warp_out[1])) nce += len(DualNetwork.edges(warp_out[1])) # if this condition holds, we have a trailing decrease if (candidate[1]["start"] and candidate[1]["end"] and nce == 3): # remove found 'warp' edge DualNetwork.remove_edge(warp_out[0], warp_out[1]) # assign 'decrease' attribute to former 'warp' # edge source DualNetwork.node[warp_out[0]]["decrease"] = True # connect former trail to candidate with new # 'warp' edge DualNetwork.create_warp_edge(trail, candidate) # remove 'leaf' attribute of former trail trail[1]["leaf"] = False return DualNetwork # MAIN ------------------------------------------------------------------------ if __name__ == '__main__': pass
45.454681
79
0.495106
150,387
0.983211
0
0
4,247
0.027766
0
0
52,321
0.342068