hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
27af82c734c9c172d86f1e925df82c41889d2af8
5,388
py
Python
main.py
GuruOfPython/Python-Tkinter-GUI
de17e819cc6008274077d8347d722e779cb9166b
[ "MIT" ]
null
null
null
main.py
GuruOfPython/Python-Tkinter-GUI
de17e819cc6008274077d8347d722e779cb9166b
[ "MIT" ]
null
null
null
main.py
GuruOfPython/Python-Tkinter-GUI
de17e819cc6008274077d8347d722e779cb9166b
[ "MIT" ]
null
null
null
# from binary_tree import * # # root = Node(8) # # root.insert(3) # root.insert(10) # root.insert(1) # root.insert(6) # root.insert(4) # root.insert(7) # root.insert(14) # root.insert(13) # node, parent = root.lookup(6) # print(node, parent) # root.print_tree() # # root.delete(10) # # root.print_tree() import tkinter as tk from tkinter import * # import tkMessageBox as messagesbox import tkinter.messagebox as messagebox import ttk from tkinter import simpledialog from treeview import TreeView from random import shuffle from naive import NaiveBST, perfect_inserter from random import * import random class main_GUI(Tk): def __init__(self, parent): tk.Tk.__init__(self, parent) self.parent = parent self.resizable(0, 0) self.geometry("1200x800") self.setting_frame = LabelFrame(self, text="Setting") create_btn = Button(self.setting_frame, text="Create", height=1, width=10, command=self.create) create_btn.grid(row=0, padx=5, pady=5) insert_btn = Button(self.setting_frame, text="Insert", height=1, width=10, command=self.insert) insert_btn.grid(row=2, padx=5, pady=5) # self.insert_e = Entry(self.setting_frame, height=1, width=10) self.insert_e = Entry(self.setting_frame) self.insert_e.grid(row=2, column=1, padx=5, pady=5) delete_btn = Button(self.setting_frame, text="Delete", height=1, width=10, command=self.delete) delete_btn.grid(row=4, padx=5, pady=5) # self.delete_e = Entry(self.setting_frame, height=1, width=10) self.delete_e = Entry(self.setting_frame) self.delete_e.grid(row=4, column=1, padx=5, pady=5) search_btn = Button(self.setting_frame, text="Search", height=1, width=10, command=self.search) search_btn.grid(row=6, padx=5, pady=5) # self.search_e = Entry(self.setting_frame, height=1, width=10) self.search_e = Entry(self.setting_frame) self.search_e.grid(row=6, column=1, padx=5, pady=5) # self.setting_frame.grid(row=1, padx=5, pady=5, sticky=N+S) self.setting_frame.pack(padx=5, pady=5, side=LEFT) self.drawing_frame = tk.LabelFrame(self, text="Drawing") # self.drawing_frame.grid(row=1, column=2, padx=5, pady=5, sticky=N+S) self.drawing_frame.pack(padx=5, pady=5, fill=BOTH, expand=1) self.tree = NaiveBST() self.treeview = TreeView(self.drawing_frame, tree=self.tree) def callback(): if messagebox.askokcancel("Quit", "Do you really wish to quit?"): self.destroy() self.treeview.end_pause = True self.protocol("WM_DELETE_WINDOW", callback) def create(self): # keys = list(range(20)) # shuffle(keys) # print(keys) # keys = [randint(1,30) for i in range(20)] keys = random.sample(range(1, 30), 20) self.tree.root = None print(keys) for i in keys: self.tree.insert(i) # perfect_inserter(self.tree, sorted(keys)) self.tree.view() def insert(self): if self.tree.root is None: messagebox.showerror("No Tree", "There is no tree. Please create a tree") return if not self.insert_e.get(): messagebox.showerror("No Value", "Please enter a node key") return elif not self.insert_e.get().isdigit(): messagebox.showerror("Invalid Value", "Please enter an integer value") return node_key = int(self.insert_e.get()) [flag, p] = self.tree.search(node_key) if not flag: self.tree.insert(node_key) self.tree.view() else: messagebox.showerror("Invalid Value", "The key already exists. Please enter another value") return def delete(self): if self.tree.root is None: messagebox.showerror("No Tree", "There is no tree. Please create a tree") return if not self.delete_e.get(): messagebox.showerror("No Value", "Please enter a node key") return elif not self.delete_e.get().isdigit(): messagebox.showerror("Invalid Value", "Please enter an integer value") return node_key = int(self.delete_e.get()) [flag, p] = self.tree.search(node_key) if flag: self.tree.delete(node_key) self.tree.view() else: messagebox.showerror("Invalid Value", "The key doesn't exists. Please enter another value") return def search(self): if self.tree.root is None: messagebox.showerror("No Tree", "There is no tree. Please create a tree") return if not self.search_e.get(): messagebox.showerror("No Value", "Please enter a node key") return elif not self.search_e.get().isdigit(): messagebox.showerror("Invalid Value", "Please enter an integer value") return node_key = int(self.search_e.get()) [flag, p] = self.tree.search(node_key) if flag and p: self.tree.view(highlight_nodes=[p]) else: messagebox.showerror("Invalid Value", "The key can't be found") if __name__ == '__main__': app = main_GUI(None) app.title("Binary Search Tree") app.mainloop()
32.853659
103
0.615256
4,669
0.866555
0
0
0
0
0
0
1,484
0.275427
27b12ffdc16386ed1ffaa3ad7820397e93894fcc
4,634
py
Python
cbagent/collectors/sgimport_latency.py
sharujayaram/perfrunner
8fe8ff42a5c74c274b569ba2c45cd43b320f48eb
[ "Apache-2.0" ]
null
null
null
cbagent/collectors/sgimport_latency.py
sharujayaram/perfrunner
8fe8ff42a5c74c274b569ba2c45cd43b320f48eb
[ "Apache-2.0" ]
null
null
null
cbagent/collectors/sgimport_latency.py
sharujayaram/perfrunner
8fe8ff42a5c74c274b569ba2c45cd43b320f48eb
[ "Apache-2.0" ]
1
2019-05-20T13:44:29.000Z
2019-05-20T13:44:29.000Z
import requests import json from concurrent.futures import ProcessPoolExecutor as Executor from concurrent.futures import ThreadPoolExecutor from time import sleep, time from couchbase.bucket import Bucket from cbagent.collectors import Latency, Collector from logger import logger from perfrunner.helpers.misc import uhex from spring.docgen import Document from cbagent.metadata_client import MetadataClient from cbagent.stores import PerfStore from perfrunner.settings import ( ClusterSpec, PhaseSettings, TargetIterator, TestConfig, ) def new_client(host, bucket, password, timeout): connection_string = 'couchbase://{}/{}?password={}' connection_string = connection_string.format(host, bucket, password) client = Bucket(connection_string=connection_string) client.timeout = timeout return client class SGImport_latency(Collector): COLLECTOR = "sgimport_latency" METRICS = "sgimport_latency" INITIAL_POLLING_INTERVAL = 0.001 # 1 ms TIMEOUT = 3600 # 1hr minutes MAX_SAMPLING_INTERVAL = 10 # 250 ms def __init__(self, settings, cluster_spec: ClusterSpec, test_config: TestConfig ): self.cluster_spec = cluster_spec self.test_config = test_config self.mc = MetadataClient(settings) self.store = PerfStore(settings.cbmonitor_host) self.workload_setting = PhaseSettings self.interval = self.MAX_SAMPLING_INTERVAL self.cluster = settings.cluster self.clients = [] self.cb_host = self.cluster_spec.servers[int(self.test_config.nodes)] self.sg_host = next(self.cluster_spec.masters) src_client = new_client(host=self.cb_host, bucket='bucket-1', password='password', timeout=self.TIMEOUT) self.clients.append(('bucket-1', src_client)) self.new_docs = Document(1024) def check_longpoll_changefeed(self, host: str, key: str, last_sequence: str): sg_db = 'db' api = 'http://{}:4985/{}/_changes'.format(host, sg_db) last_sequence_str = "{}".format(last_sequence) data = {'filter': 'sync_gateway/bychannel', 'feed': 'longpoll', "channels": "123", "since": last_sequence_str, "heartbeat": 3600000} response = requests.post(url=api, data=json.dumps(data)) t1 = time() record_found = 0 if response.status_code == 200: for record in response.json()['results']: if record['id'] == key: record_found = 1 break if record_found != 1: self.check_longpoll_changefeed(host=host, key=key, last_sequence=last_sequence) return t1 def insert_doc(self, src_client, key: str, doc): src_client.upsert(key, doc) return time() def get_lastsequence(self, host: str): sg_db = 'db' api = 'http://{}:4985/{}/_changes'.format(host, sg_db) data = {'filter': 'sync_gateway/bychannel', 'feed': 'normal', "channels": "123", "since": "0" } response = requests.post(url=api, data=json.dumps(data)) last_sequence = response.json()['last_seq'] return last_sequence def measure(self, src_client): key = "sgimport_{}".format(uhex()) doc = self.new_docs.next(key) last_sequence = self.get_lastsequence(host=self.sg_host) executor = ThreadPoolExecutor(max_workers=2) future1 = executor.submit(self.check_longpoll_changefeed, host=self.sg_host, key=key, last_sequence=last_sequence) future2 = executor.submit(self.insert_doc, src_client=src_client, key=key, doc=doc) t1, t0 = future1.result(), future2.result() print('import latency t1, t0', t1, t0, (t1 - t0) * 1000) return {'sgimport_latency': (t1 - t0) * 1000} # s -> ms def sample(self): for bucket, src_client in self.clients: lags = self.measure(src_client) self.store.append(lags, cluster=self.cluster, collector=self.COLLECTOR) def update_metadata(self): self.mc.add_cluster() self.mc.add_metric(self.METRICS, collector=self.COLLECTOR)
30.486842
95
0.594087
3,691
0.796504
0
0
0
0
0
0
430
0.092792
27b2e2a025ad448d149dbcc0d2fb399829c3c2bf
370
py
Python
clean_junos_routes.py
JNPRAutomate/event_driven_automation_with_a_TIG_stack
4e2cebdec4dc8d681d71374a7c342f016b8b649e
[ "MIT" ]
4
2019-08-23T10:55:48.000Z
2021-06-24T01:00:12.000Z
clean_junos_routes.py
JNPRAutomate/event_driven_automation_with_a_TIG_stack
4e2cebdec4dc8d681d71374a7c342f016b8b649e
[ "MIT" ]
null
null
null
clean_junos_routes.py
JNPRAutomate/event_driven_automation_with_a_TIG_stack
4e2cebdec4dc8d681d71374a7c342f016b8b649e
[ "MIT" ]
5
2019-03-25T11:12:00.000Z
2021-12-23T03:01:14.000Z
from jnpr.junos import Device from jnpr.junos.utils.config import Config def clean_routing_table(): device=Device (host='100.123.1.3', user='jcluser', password='Juniper!1') device.open() cfg=Config(device, mode='private') cfg.load(path='junos_configuration/clean_routes.conf', format='text') cfg.commit() device.close() clean_routing_table()
24.666667
76
0.716216
0
0
0
0
0
0
0
0
87
0.235135
27b4b4442e8234ce781c98d6ea27cb6fba57c3a9
5,000
py
Python
Tools/renew-navi-npc.py
vakhet/ragnarok-navigation
df7d3ff95a9bd1c0497744113ad664a31d248de6
[ "MIT" ]
3
2017-12-02T16:40:32.000Z
2020-02-11T17:44:02.000Z
Tools/renew-navi-npc.py
vakhet/ragnarok-navigation
df7d3ff95a9bd1c0497744113ad664a31d248de6
[ "MIT" ]
null
null
null
Tools/renew-navi-npc.py
vakhet/ragnarok-navigation
df7d3ff95a9bd1c0497744113ad664a31d248de6
[ "MIT" ]
null
null
null
""" Author : vakhet at gmail.com This script gets all your NPC names from the original rAthena folder and updates their lines in navi_npc_krpri.lub wherever matches the map_name and coords """ import re import os import random import sqlite3 NPC_match = r'^[\w\d_]+,\d+,\d+,\d+\tscript\t[\w\d_ -]+#*[\w\d_ -]*\t[\d,{]+$' allfiles = [] log = open('result.log', 'w', errors='ignore') conn = sqlite3.connect('db.sqlite') db = conn.cursor() intro = ''' Renew navi_npc_krpri.lub | Version 0.2 | (C) 2017 vakhet @ gmail.com Changes: v0.2 - *.new file now creates in same folder with original *.lub ''' outro = ''' Check results in result.log NEW file generated: navi_npc_krpri.new ''' db.executescript(''' DROP TABLE IF EXISTS npc; CREATE TABLE npc ( id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE, map TEXT, thing1 INTEGER, thing2 INTEGER, thing3 INTEGER, name TEXT, shadow TEXT, x INTEGER, y INTEGER ) ''') def parse_npc(line): ln = line.split(',') map_name, x, y = ln[0], int(ln[1]), int(ln[2]) fullname = ln[3].split('\t') fullname = fullname[2] if re.search('#', fullname): ln = fullname.split('#') name = ln[0] shadow = ln[1] # print(line,'\n',shadow,'<\n=====') else: name = fullname shadow = '' return name, map_name, x, y, shadow def parse_navi(line): line = re.sub('^.*{\s*', '', line) line = re.sub('\s*}.*$', '', line) line = line.split(', ') for i in range(len(line)): line[i] = re.sub('"', '', line[i], count=2) try: line[i] = int(line[i]) except ValueError: pass return tuple(line) def stage_1(): for root, dirs, files in os.walk(path_rathena): for file in files: if file.endswith('.txt'): line = os.path.join(root, file) allfiles.append(line) def stage_2(): fh = open(path_navi+'\\navi_npc_krpri.lub', 'r', errors='ignore') for line in fh.readlines(): navi = parse_navi(line) if len(navi) != 8: continue db.execute('''INSERT INTO npc (map, thing1, thing2, thing3, name, shadow, x, y) VALUES (?, ?, ?, ?, ?, ?, ?, ?)''', navi) conn.commit() fh.close() def stage_3(): total, updated = 0, 0 print('Working... ', end='') for file in allfiles: fh = open(file, 'r', errors='ignore') for line in fh.readlines(): print('\b'+chr(random.randint(65, 122)), end='') if re.match(NPC_match, line) is None: continue npc = parse_npc(line) total = total + 1 db.execute('''SELECT COUNT(id), id, name, map, x, y, shadow FROM npc WHERE map=? AND x=? AND y=?''', (npc[1], npc[2], npc[3])) sql = db.fetchone() if sql[0] == 0 or (sql[2] == npc[0] and sql[6] == npc[4]): continue log.writelines('({},{},{}) {} -> {}#{}\n'.format( sql[3], str(sql[4]), str(sql[5]), sql[2], npc[0], npc[4])) db.execute('UPDATE npc SET name=?, shadow=? WHERE id=?', (npc[0], npc[4], sql[1])) conn.commit() updated += 1 fh.close() log.close() print('\bOK!') print('Found {} NPC definitions (warps not included)'.format(total)) print('Updated {} NPC names'.format(updated)) def stage_4(): file = open(path_navi+'navi_npc_krpri.new', 'w', errors='ignore') file.writelines('Navi_Npc = {\n') sql = db.execute('SELECT * FROM npc WHERE thing1<>0 ORDER BY map, thing1') for row in sql: line = '\t{ ' for i in range(1, 9): try: item = str(row[i]) except (ValueError, TypeError): pass if i in (1, 5, 6): item = '"{}"'.format(row[i]) line += item + ', ' line = line[:-2] + ' },\n' file.writelines(line) file.writelines('\t{ "NULL", 0, 0, 0, "", "", 0, 0 }\n}\n\n') file.close() # The Beginning print(intro) while True: path_rathena = input('Enter path to NPC: ') if not os.path.exists(path_rathena): print('Wrong path!\n\n') continue else: break while True: path_navi = input('Enter path to navi_npc_krpri.lub: ') if not os.path.exists(path_navi+'\\navi_npc_krpri.lub'): print('Wrong path!\n\n') continue else: break stage_1() # scan for *.txt in \npc directory stage_2() # build DB from navi_npc_krpri.lub stage_3() # update NPC names in DB from *.txt stage_4() # building navi_npc_krpri.new print('Complete list of changes see in log.txt') print('NEW file generated: navi_npc_krpri.new') input('\nPress any key')
28.571429
82
0.523
0
0
0
0
0
0
0
0
1,870
0.374
27b65665bc694cadf63afa04994bea99c68ab2c9
85
py
Python
rpicarserver/backlight/__init__.py
krixian/rpi-car-server
8058bec91462b5f2645119de898779d4bf292a84
[ "MIT" ]
null
null
null
rpicarserver/backlight/__init__.py
krixian/rpi-car-server
8058bec91462b5f2645119de898779d4bf292a84
[ "MIT" ]
null
null
null
rpicarserver/backlight/__init__.py
krixian/rpi-car-server
8058bec91462b5f2645119de898779d4bf292a84
[ "MIT" ]
null
null
null
from rpicarserver import ext class Extension(ext.Extension): name = "backlight"
17
31
0.752941
54
0.635294
0
0
0
0
0
0
11
0.129412
27b801a71ed41ab9ae80dc219943a39cdead01b2
712
py
Python
tests/components/rtsp_to_webrtc/test_diagnostics.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
tests/components/rtsp_to_webrtc/test_diagnostics.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
tests/components/rtsp_to_webrtc/test_diagnostics.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Test nest diagnostics.""" from typing import Any from .conftest import ComponentSetup from tests.common import MockConfigEntry from tests.components.diagnostics import get_diagnostics_for_config_entry THERMOSTAT_TYPE = "sdm.devices.types.THERMOSTAT" async def test_entry_diagnostics( hass, hass_client, config_entry: MockConfigEntry, rtsp_to_webrtc_client: Any, setup_integration: ComponentSetup, ): """Test config entry diagnostics.""" await setup_integration() assert await get_diagnostics_for_config_entry(hass, hass_client, config_entry) == { "discovery": {"attempt": 1, "web.failure": 1, "webrtc.success": 1}, "web": {}, "webrtc": {}, }
25.428571
87
0.716292
0
0
0
0
0
0
452
0.634831
156
0.219101
27b8c7ca0cbfe891ed4189a0d771be178c3ebb62
556
py
Python
Modulo_5/semana_3/pandas/pd.py
AutodidactaMx/cocid_python
11628f465ff362807a692c79ede26bf30dd8e26a
[ "MIT" ]
null
null
null
Modulo_5/semana_3/pandas/pd.py
AutodidactaMx/cocid_python
11628f465ff362807a692c79ede26bf30dd8e26a
[ "MIT" ]
null
null
null
Modulo_5/semana_3/pandas/pd.py
AutodidactaMx/cocid_python
11628f465ff362807a692c79ede26bf30dd8e26a
[ "MIT" ]
1
2022-03-04T00:57:18.000Z
2022-03-04T00:57:18.000Z
import pandas as pd import numpy as np df = pd.read_csv('poblacion.csv') pd.options.display.float_format = '{:,.1f}'.format df = pd.read_csv('poblacion.csv') df['year'] = pd.Categorical(df['year'].apply(str)) idx_filtro = df['Country'].isin(['Mexico','Panama']) df_filtro_country = df[idx_filtro] df_filtro_country =df_filtro_country.set_index(['Country','year']).sort_index(ascending= [False,True]) print(df_filtro_country.unstack('Country')) ids = pd.IndexSlice print(df_filtro_country.loc[ids['Albania':'Azerbaijan','2015':'2016'],:].sort_index())
30.888889
102
0.733813
0
0
0
0
0
0
0
0
133
0.239209
27b8f98dbc5944c52c7fdf99ecb0474a2db0ffed
3,477
py
Python
reachweb/models.py
kamauvick/ReachOutDash
ceb7da731982bc9d1b1bb4185f34822b4dcf6526
[ "MIT" ]
null
null
null
reachweb/models.py
kamauvick/ReachOutDash
ceb7da731982bc9d1b1bb4185f34822b4dcf6526
[ "MIT" ]
9
2020-02-12T02:44:31.000Z
2022-03-12T00:03:57.000Z
reachweb/models.py
kamauvick/ReachOutDash
ceb7da731982bc9d1b1bb4185f34822b4dcf6526
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User from django.db import models class Chv(models.Model): name = models.OneToOneField(User, on_delete=models.PROTECT, related_name='profile') age = models.IntegerField() phonenumber = models.CharField(max_length=255) profile_picture = models.ImageField(upload_to='chv_profiles/', blank=True, default='prof.jpg') location = models.CharField(max_length=200) class Meta: db_table = 'chv' ordering = ['-name'] def __str__(self): return f'{self.name}' @classmethod def get_all_chvs(cls): chvs = cls.objects.all() return chvs # @receiver(post_save, sender=User) # def create_chv(sender, instance, created, **kwargs): # if created: # Chv.objects.create(name=instance) # # @receiver(post_save, sender=User) # def save_chv(sender, instance, **kwargs): # instance.profile.save() class Patient(models.Model): URGENCY_LEVELS = ( ('red', 'High severity'), ('yellow', 'Moderate severity'), ('green', 'Low severity'), ('blue', 'Unknown severity'), ) LOCATIONS = ( ('Juja', 'Gachororo'), ('High Point', 'Sewage'), ('K-road', 'Stage'), ('Gwa-Kairu', 'Estate'), ('Ruiru', 'Kimbo'), ('Kasarani', 'Nairobi'), ) name = models.CharField(max_length=255) examiner = models.ForeignKey('Chv', on_delete=models.CASCADE, related_name='chv') age = models.IntegerField() gender = models.CharField(max_length=200) location = models.CharField(choices=LOCATIONS, max_length=200, default='Ruiru') time = models.DateTimeField() symptoms = models.TextField() urgency = models.CharField(max_length=200, choices=URGENCY_LEVELS, default='blue') action_taken = models.TextField() class Meta: db_table = 'patient' ordering = ['-name'] def __str__(self): return f'{self.name},::: {self.location}' @classmethod def get_all_patients(cls): patients = cls.objects.all() return patients class Emergencies(models.Model): Emergency_TYPES = ( ('Road', 'Road accidents'), ('Fire', 'Fire emergencies'), ('Water', 'Water related accidents'), ('Sickness', 'Sick people emergencies'), ) type = models.CharField(max_length=200, choices=Emergency_TYPES, default='Sickness') location = models.ForeignKey('Location', on_delete=models.CASCADE, related_name='locale') reported_by = models.ForeignKey('Chv', on_delete=models.CASCADE, related_name='reporter') class Meta: db_table = 'emergencies' ordering = ['type'] @classmethod def get_all_emergencies(cls): emergencies = cls.objects.all() return emergencies class Location(models.Model): ROAD_ACCESS = ( ('Great', 'The roads are well passable in all weather conditions'), ('Good', 'The roads are passable in favourable weather conditions'), ('Bad', 'The roads are not passable'), ) name = models.CharField(max_length=200) county = models.CharField(max_length=200) accessibility = models.CharField(max_length=200, choices=ROAD_ACCESS) class Meta: db_table = 'location' ordering = ['-name'] def __str__(self): return f'{self.name}' @classmethod def get_all_locations(cls): locations = cls.objects.all() return locations
30.5
98
0.632442
3,392
0.975554
0
0
416
0.119643
0
0
950
0.273224
27bb547681e27f63805f0e3f2bcfba62a6d181f3
4,876
py
Python
distances/symmetric_amd_distance.py
npielawski/py_alpha_amd_release
6fb5b3cdef65ba8902daea050785dd73970002c2
[ "MIT" ]
14
2019-02-12T20:30:23.000Z
2021-11-04T01:10:34.000Z
distances/symmetric_amd_distance.py
npielawski/py_alpha_amd_release
6fb5b3cdef65ba8902daea050785dd73970002c2
[ "MIT" ]
2
2021-05-12T05:02:59.000Z
2021-10-11T14:40:10.000Z
distances/symmetric_amd_distance.py
npielawski/py_alpha_amd_release
6fb5b3cdef65ba8902daea050785dd73970002c2
[ "MIT" ]
7
2019-02-20T12:19:28.000Z
2021-02-09T10:12:06.000Z
# # Py-Alpha-AMD Registration Framework # Author: Johan Ofverstedt # Reference: Fast and Robust Symmetric Image Registration Based on Distances Combining Intensity and Spatial Information # # Copyright 2019 Johan Ofverstedt # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # # Symmetric Average Minimal Distances (AMD) Distance implemented as a class. # import numpy as np class SymmetricAMDDistance: def __init__(self, symmetric_measure = True, squared_measure = False): self.ref_image_source = None self.flo_image_source = None self.ref_image_target = None self.flo_image_target = None self.sampling_fraction = 1.0 self.sampling_count = np.nan self.symmetric_measure = symmetric_measure self.squared_measure = squared_measure def set_ref_image_source(self, image): self.ref_image_source = image def set_flo_image_source(self, image): self.flo_image_source = image def set_ref_image_target(self, image): self.ref_image_target = image def set_flo_image_target(self, image): self.flo_image_target = image def set_sampling_fraction(self, sampling_fraction): self.sampling_fraction = sampling_fraction def initialize(self): self.sampling_count_forward = self.ref_image_source.get_sampling_fraction_count(self.sampling_fraction) self.sampling_count_inverse = self.flo_image_source.get_sampling_fraction_count(self.sampling_fraction) def asymmetric_value_and_derivatives(self, transform, source, target, target_cp, sampling_count): w_acc = 0.0 value_acc = 0.0 grad_acc = np.zeros(transform.get_param_count()) sampled_points = source.random_sample(sampling_count) for q in range(len(sampled_points)): sampled_points_q = sampled_points[q] if sampled_points_q.size == 0: continue w_q = sampled_points_q[:, -1:] pnts_q = sampled_points_q[:, 0:-1] tf_pnts = transform.transform(pnts_q) + target_cp (eval_pnts, eval_w) = target.compute_spatial_grad_and_value(tf_pnts, w_q, q) values_q = eval_pnts[:, -1:] grads_q = eval_pnts[:, :-1] if self.squared_measure: grads_q = 2.0 * values_q * grads_q values_q = np.square(values_q) value_acc = value_acc + np.sum(values_q) w_acc = w_acc + np.sum(eval_w) grad_q_2 = transform.grad(pnts_q, grads_q, False) grad_acc[:] = grad_acc[:] + grad_q_2 #print("grad_acc: " + str(grad_acc)) if w_acc < 0.000001: w_acc = 1.0 #print("w_acc: " + str(w_acc)) #print("grad_acc: " + str(grad_acc)) w_rec = 1.0 / w_acc value_acc = value_acc * w_rec grad_acc[:] = grad_acc[:] * w_rec #print("grad_acc: " + str(grad_acc)) return (value_acc, grad_acc) def value_and_derivatives(self, transform): ref_cp = self.ref_image_source.get_center_point() flo_cp = self.flo_image_source.get_center_point() (forward_value, forward_grad) = self.asymmetric_value_and_derivatives(transform, self.ref_image_source, self.flo_image_target, flo_cp, self.sampling_count_forward) if self.symmetric_measure: inv_transform = transform.invert() (inverse_value, inverse_grad) = self.asymmetric_value_and_derivatives(inv_transform, self.flo_image_source, self.ref_image_target, ref_cp, self.sampling_count_inverse) inverse_grad = transform.grad_inverse_to_forward(inverse_grad) value = 0.5 * (forward_value + inverse_value) grad = 0.5 * (forward_grad + inverse_grad) else: value = forward_value grad = forward_grad return (value, grad)
41.322034
179
0.689295
3,502
0.718212
0
0
0
0
0
0
1,467
0.300861
27bbbbc489c4d13faa511e2c2877df5e0ce8a2dd
431
py
Python
shop/migrations/0005_product_discounted_price.py
RitvikDayal/The-Stone-Shop
fed85d5ebb993fb1ce235f5e8a8ebc06a76fb956
[ "MIT" ]
2
2020-08-27T21:02:54.000Z
2020-08-27T21:03:44.000Z
shop/migrations/0005_product_discounted_price.py
RitvikDayal/The-Stone-Shop
fed85d5ebb993fb1ce235f5e8a8ebc06a76fb956
[ "MIT" ]
null
null
null
shop/migrations/0005_product_discounted_price.py
RitvikDayal/The-Stone-Shop
fed85d5ebb993fb1ce235f5e8a8ebc06a76fb956
[ "MIT" ]
null
null
null
# Generated by Django 3.0.8 on 2020-07-28 12:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0004_product_product_image'), ] operations = [ migrations.AddField( model_name='product', name='discounted_price', field=models.FloatField(default=None), preserve_default=False, ), ]
21.55
50
0.605568
338
0.784223
0
0
0
0
0
0
108
0.25058
27bc982db629d22f64003fb61afd5dee8511c5de
131
py
Python
tudo/ex060b.py
Ramon-Erik/Exercicios-Python
158a7f1846dd3d486aa0517fa337d46d73aab649
[ "MIT" ]
1
2021-07-08T00:35:57.000Z
2021-07-08T00:35:57.000Z
tudo/ex060b.py
Ramon-Erik/Exercicios-Python
158a7f1846dd3d486aa0517fa337d46d73aab649
[ "MIT" ]
null
null
null
tudo/ex060b.py
Ramon-Erik/Exercicios-Python
158a7f1846dd3d486aa0517fa337d46d73aab649
[ "MIT" ]
null
null
null
from math import factorial n = int(input('Digite um número, para obter seu fatorial: ')) print('{}! é {}'.format(n, factorial(n)))
32.75
61
0.679389
0
0
0
0
0
0
0
0
57
0.428571
27bd073801f417f0a990ea8f8617bbc868baa23e
157
py
Python
setup.py
messa/bloom
ce975471d0fabac436bcbd3040d22c6e5a97e47c
[ "MIT" ]
1
2021-03-14T13:54:42.000Z
2021-03-14T13:54:42.000Z
setup.py
messa/bloom
ce975471d0fabac436bcbd3040d22c6e5a97e47c
[ "MIT" ]
1
2021-03-15T09:02:24.000Z
2021-03-16T07:41:46.000Z
setup.py
messa/bloom
ce975471d0fabac436bcbd3040d22c6e5a97e47c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from setuptools import setup, Extension setup( ext_modules=[ Extension('bloom._hashc', ['bloom/_hashcmodule.c']) ])
17.444444
59
0.66242
0
0
0
0
0
0
0
0
58
0.369427
27be070f86ae724315deda03de85e57e9b0b008d
5,645
py
Python
misc/util.py
winder/indexer
18f48f026f022cdeef92dcac558d3900d6ea798d
[ "MIT" ]
87
2020-08-20T19:14:02.000Z
2022-03-30T21:31:59.000Z
misc/util.py
hassoon1986/indexer
0a58e9a78ba7684c7f4cfb4fe7cb24b3d4622d9b
[ "MIT" ]
615
2020-06-03T14:13:29.000Z
2022-03-31T12:08:38.000Z
misc/util.py
hassoon1986/indexer
0a58e9a78ba7684c7f4cfb4fe7cb24b3d4622d9b
[ "MIT" ]
58
2020-06-03T21:33:48.000Z
2022-03-26T15:39:50.000Z
#!/usr/bin/env python3 import atexit import logging import os import random import subprocess import sys import time import msgpack logger = logging.getLogger(__name__) def maybedecode(x): if hasattr(x, 'decode'): return x.decode() return x def mloads(x): return msgpack.loads(x, strict_map_key=False, raw=True) def unmsgpack(ob): "convert dict from msgpack.loads() with byte string keys to text string keys" if isinstance(ob, dict): od = {} for k,v in ob.items(): k = maybedecode(k) okv = False if (not okv) and (k == 'note'): try: v = unmsgpack(mloads(v)) okv = True except: pass if (not okv) and k in ('type', 'note'): try: v = v.decode() okv = True except: pass if not okv: v = unmsgpack(v) od[k] = v return od if isinstance(ob, list): return [unmsgpack(v) for v in ob] #if isinstance(ob, bytes): # return base64.b64encode(ob).decode() return ob def _getio(p, od, ed): if od is not None: od = maybedecode(od) elif p.stdout: try: od = maybedecode(p.stdout.read()) except: logger.error('subcomand out', exc_info=True) if ed is not None: ed = maybedecode(ed) elif p.stderr: try: ed = maybedecode(p.stderr.read()) except: logger.error('subcomand err', exc_info=True) return od, ed def xrun(cmd, *args, **kwargs): timeout = kwargs.pop('timeout', None) kwargs['stdout'] = subprocess.PIPE kwargs['stderr'] = subprocess.STDOUT cmdr = ' '.join(map(repr,cmd)) try: p = subprocess.Popen(cmd, *args, **kwargs) except Exception as e: logger.error('subprocess failed {}'.format(cmdr), exc_info=True) raise stdout_data, stderr_data = None, None try: if timeout: stdout_data, stderr_data = p.communicate(timeout=timeout) else: stdout_data, stderr_data = p.communicate() except subprocess.TimeoutExpired as te: logger.error('subprocess timed out {}'.format(cmdr), exc_info=True) stdout_data, stderr_data = _getio(p, stdout_data, stderr_data) if stdout_data: sys.stderr.write('output from {}:\n{}\n\n'.format(cmdr, stdout_data)) if stderr_data: sys.stderr.write('stderr from {}:\n{}\n\n'.format(cmdr, stderr_data)) raise except Exception as e: logger.error('subprocess exception {}'.format(cmdr), exc_info=True) stdout_data, stderr_data = _getio(p, stdout_data, stderr_data) if stdout_data: sys.stderr.write('output from {}:\n{}\n\n'.format(cmdr, stdout_data)) if stderr_data: sys.stderr.write('stderr from {}:\n{}\n\n'.format(cmdr, stderr_data)) raise if p.returncode != 0: logger.error('cmd failed ({}) {}'.format(p.returncode, cmdr)) stdout_data, stderr_data = _getio(p, stdout_data, stderr_data) if stdout_data: sys.stderr.write('output from {}:\n{}\n\n'.format(cmdr, stdout_data)) if stderr_data: sys.stderr.write('stderr from {}:\n{}\n\n'.format(cmdr, stderr_data)) raise Exception('error: cmd failed: {}'.format(cmdr)) if logger.isEnabledFor(logging.DEBUG): logger.debug('cmd success: %s\n%s\n%s\n', cmdr, maybedecode(stdout_data), maybedecode(stderr_data)) def atexitrun(cmd, *args, **kwargs): cargs = [cmd]+list(args) atexit.register(xrun, *cargs, **kwargs) def find_indexer(indexer_bin, exc=True): if indexer_bin: return indexer_bin # manually search local build and PATH for algorand-indexer path = ['cmd/algorand-indexer'] + os.getenv('PATH').split(':') for pd in path: ib = os.path.join(pd, 'algorand-indexer') if os.path.exists(ib): return ib msg = 'could not find algorand-indexer. use --indexer-bin or PATH environment variable.' if exc: raise Exception(msg) logger.error(msg) return None def ensure_test_db(connection_string, keep_temps=False): if connection_string: # use the passed db return connection_string # create a temporary database dbname = 'e2eindex_{}_{}'.format(int(time.time()), random.randrange(1000)) xrun(['dropdb', '--if-exists', dbname], timeout=5) xrun(['createdb', dbname], timeout=5) if not keep_temps: atexitrun(['dropdb', '--if-exists', dbname], timeout=5) else: logger.info("leaving db %r", dbname) return 'dbname={} sslmode=disable'.format(dbname) # whoever calls this will need to import boto and get the s3 client def firstFromS3Prefix(s3, bucket, prefix, desired_filename, outdir=None, outpath=None): response = s3.list_objects_v2(Bucket=bucket, Prefix=prefix, MaxKeys=10) if (not response.get('KeyCount')) or ('Contents' not in response): raise Exception('nothing found in s3://{}/{}'.format(bucket, prefix)) for x in response['Contents']: path = x['Key'] _, fname = path.rsplit('/', 1) if fname == desired_filename: if outpath is None: if outdir is None: outdir = '.' outpath = os.path.join(outdir, desired_filename) logger.info('s3://%s/%s -> %s', bucket, x['Key'], outpath) s3.download_file(bucket, x['Key'], outpath) return
34.845679
107
0.589725
0
0
0
0
0
0
0
0
1,055
0.186891
27c0f66f70a59c9a16bcacfd772c973fa3bad2e9
11,093
py
Python
coconut/_pyparsing.py
evhub/coconut
27a4af9dc06667870f736f20c862930001b8cbb2
[ "Apache-2.0" ]
3,624
2015-02-22T07:06:18.000Z
2022-03-31T03:38:00.000Z
coconut/_pyparsing.py
evhub/coconut
27a4af9dc06667870f736f20c862930001b8cbb2
[ "Apache-2.0" ]
627
2015-03-31T01:18:53.000Z
2022-03-28T07:48:31.000Z
coconut/_pyparsing.py
evhub/coconut
27a4af9dc06667870f736f20c862930001b8cbb2
[ "Apache-2.0" ]
162
2016-03-02T05:22:55.000Z
2022-03-31T23:42:55.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------------------------------------------------- # INFO: # ----------------------------------------------------------------------------------------------------------------------- """ Author: Evan Hubinger License: Apache 2.0 Description: Wrapper around PyParsing that selects the best available implementation. """ # ----------------------------------------------------------------------------------------------------------------------- # IMPORTS: # ----------------------------------------------------------------------------------------------------------------------- from __future__ import print_function, absolute_import, unicode_literals, division from coconut.root import * # NOQA import os import sys import traceback import functools import inspect from warnings import warn from collections import defaultdict from coconut.constants import ( PURE_PYTHON, PYPY, use_fast_pyparsing_reprs, use_packrat_parser, packrat_cache_size, default_whitespace_chars, varchars, min_versions, pure_python_env_var, enable_pyparsing_warnings, use_left_recursion_if_available, ) from coconut.util import get_clock_time # NOQA from coconut.util import ( ver_str_to_tuple, ver_tuple_to_str, get_next_version, ) # warning: do not name this file cPyparsing or pyparsing or it might collide with the following imports try: if PURE_PYTHON: raise ImportError("skipping cPyparsing check due to " + pure_python_env_var + " = " + os.environ.get(pure_python_env_var, "")) import cPyparsing as _pyparsing from cPyparsing import * # NOQA from cPyparsing import __version__ PYPARSING_PACKAGE = "cPyparsing" PYPARSING_INFO = "Cython cPyparsing v" + __version__ except ImportError: try: import pyparsing as _pyparsing from pyparsing import * # NOQA from pyparsing import __version__ PYPARSING_PACKAGE = "pyparsing" PYPARSING_INFO = "Python pyparsing v" + __version__ except ImportError: traceback.print_exc() __version__ = None PYPARSING_PACKAGE = "cPyparsing" PYPARSING_INFO = None # ----------------------------------------------------------------------------------------------------------------------- # VERSION CHECKING: # ----------------------------------------------------------------------------------------------------------------------- min_ver = min(min_versions["pyparsing"], min_versions["cPyparsing"][:3]) # inclusive max_ver = get_next_version(max(min_versions["pyparsing"], min_versions["cPyparsing"][:3])) # exclusive cur_ver = None if __version__ is None else ver_str_to_tuple(__version__) if cur_ver is None or cur_ver < min_ver: min_ver_str = ver_tuple_to_str(min_ver) raise ImportError( "Coconut requires pyparsing/cPyparsing version >= " + min_ver_str + ("; got " + PYPARSING_INFO if PYPARSING_INFO is not None else "") + " (run '{python} -m pip install --upgrade {package}' to fix)".format(python=sys.executable, package=PYPARSING_PACKAGE), ) elif cur_ver >= max_ver: max_ver_str = ver_tuple_to_str(max_ver) warn( "This version of Coconut was built for pyparsing/cPyparsing versions < " + max_ver_str + ("; got " + PYPARSING_INFO if PYPARSING_INFO is not None else "") + " (run '{python} -m pip install {package}<{max_ver}' to fix)".format(python=sys.executable, package=PYPARSING_PACKAGE, max_ver=max_ver_str), ) # ----------------------------------------------------------------------------------------------------------------------- # SETUP: # ----------------------------------------------------------------------------------------------------------------------- if cur_ver >= (3,): MODERN_PYPARSING = True _trim_arity = _pyparsing.core._trim_arity _ParseResultsWithOffset = _pyparsing.core._ParseResultsWithOffset else: MODERN_PYPARSING = False _trim_arity = _pyparsing._trim_arity _ParseResultsWithOffset = _pyparsing._ParseResultsWithOffset USE_COMPUTATION_GRAPH = ( not MODERN_PYPARSING # not yet supported and not PYPY # experimentally determined ) if enable_pyparsing_warnings: if MODERN_PYPARSING: _pyparsing.enable_all_warnings() else: _pyparsing._enable_all_warnings() _pyparsing.__diag__.warn_name_set_on_empty_Forward = False if MODERN_PYPARSING and use_left_recursion_if_available: ParserElement.enable_left_recursion() elif use_packrat_parser: ParserElement.enablePackrat(packrat_cache_size) ParserElement.setDefaultWhitespaceChars(default_whitespace_chars) Keyword.setDefaultKeywordChars(varchars) # ----------------------------------------------------------------------------------------------------------------------- # FAST REPRS: # ----------------------------------------------------------------------------------------------------------------------- if PY2: def fast_repr(cls): """A very simple, fast __repr__/__str__ implementation.""" return "<" + cls.__name__ + ">" else: fast_repr = object.__repr__ _old_pyparsing_reprs = [] def set_fast_pyparsing_reprs(): """Make pyparsing much faster by preventing it from computing expensive nested string representations.""" for obj in vars(_pyparsing).values(): try: if issubclass(obj, ParserElement): _old_pyparsing_reprs.append((obj, (obj.__repr__, obj.__str__))) obj.__repr__ = functools.partial(fast_repr, obj) obj.__str__ = functools.partial(fast_repr, obj) except TypeError: pass def unset_fast_pyparsing_reprs(): """Restore pyparsing's default string representations for ease of debugging.""" for obj, (repr_method, str_method) in _old_pyparsing_reprs: obj.__repr__ = repr_method obj.__str__ = str_method if use_fast_pyparsing_reprs: set_fast_pyparsing_reprs() # ----------------------------------------------------------------------------------------------------------------------- # PROFILING: # ----------------------------------------------------------------------------------------------------------------------- _timing_info = [None] # in list to allow reassignment class _timing_sentinel(object): pass def add_timing_to_method(cls, method_name, method): """Add timing collection to the given method. It's a monstrosity, but it's only used for profiling.""" from coconut.terminal import internal_assert # hide to avoid circular import args, varargs, keywords, defaults = inspect.getargspec(method) internal_assert(args[:1] == ["self"], "cannot add timing to method", method_name) if not defaults: defaults = [] num_undefaulted_args = len(args) - len(defaults) def_args = [] call_args = [] fix_arg_defaults = [] defaults_dict = {} for i, arg in enumerate(args): if i >= num_undefaulted_args: default = defaults[i - num_undefaulted_args] def_args.append(arg + "=_timing_sentinel") defaults_dict[arg] = default fix_arg_defaults.append( """ if {arg} is _timing_sentinel: {arg} = _exec_dict["defaults_dict"]["{arg}"] """.strip("\n").format( arg=arg, ), ) else: def_args.append(arg) call_args.append(arg) if varargs: def_args.append("*" + varargs) call_args.append("*" + varargs) if keywords: def_args.append("**" + keywords) call_args.append("**" + keywords) new_method_name = "new_" + method_name + "_func" _exec_dict = globals().copy() _exec_dict.update(locals()) new_method_code = """ def {new_method_name}({def_args}): {fix_arg_defaults} _all_args = (lambda *args, **kwargs: args + tuple(kwargs.values()))({call_args}) _exec_dict["internal_assert"](not any(_arg is _timing_sentinel for _arg in _all_args), "error handling arguments in timed method {new_method_name}({def_args}); got", _all_args) _start_time = _exec_dict["get_clock_time"]() try: return _exec_dict["method"]({call_args}) finally: _timing_info[0][str(self)] += _exec_dict["get_clock_time"]() - _start_time {new_method_name}._timed = True """.format( fix_arg_defaults="\n".join(fix_arg_defaults), new_method_name=new_method_name, def_args=", ".join(def_args), call_args=", ".join(call_args), ) exec(new_method_code, _exec_dict) setattr(cls, method_name, _exec_dict[new_method_name]) return True def collect_timing_info(): """Modifies pyparsing elements to time how long they're executed for. It's a monstrosity, but it's only used for profiling.""" from coconut.terminal import logger # hide to avoid circular imports logger.log("adding timing to pyparsing elements:") _timing_info[0] = defaultdict(float) for obj in vars(_pyparsing).values(): if isinstance(obj, type) and issubclass(obj, ParserElement): added_timing = False for attr_name in dir(obj): attr = getattr(obj, attr_name) if ( callable(attr) and not isinstance(attr, ParserElement) and not getattr(attr, "_timed", False) and attr_name not in ( "__getattribute__", "__setattribute__", "__init_subclass__", "__subclasshook__", "__class__", "__setattr__", "__getattr__", "__new__", "__init__", "__str__", "__repr__", "__hash__", "__eq__", "_trim_traceback", "_ErrorStop", "enablePackrat", "inlineLiteralsUsing", "setDefaultWhitespaceChars", "setDefaultKeywordChars", "resetCache", ) ): added_timing |= add_timing_to_method(obj, attr_name, attr) if added_timing: logger.log("\tadded timing to", obj) def print_timing_info(): """Print timing_info collected by collect_timing_info().""" print( """ ===================================== Timing info: (timed {num} total pyparsing objects) ===================================== """.rstrip().format( num=len(_timing_info[0]), ), ) sorted_timing_info = sorted(_timing_info[0].items(), key=lambda kv: kv[1]) for method_name, total_time in sorted_timing_info: print("{method_name}:\t{total_time}".format(method_name=method_name, total_time=total_time))
35.554487
180
0.554945
40
0.003606
0
0
0
0
0
0
4,251
0.383215
27c1c2dd0bdd326bf942be3440f758392e7db45f
4,948
py
Python
tests/test_explicit_hll.py
aholyoke/python-hll
30793aeb18103600fce0f3ad0b0c9e99e8b756fe
[ "MIT" ]
13
2019-11-19T07:38:46.000Z
2022-02-11T13:23:25.000Z
tests/test_explicit_hll.py
aholyoke/python-hll
30793aeb18103600fce0f3ad0b0c9e99e8b756fe
[ "MIT" ]
4
2019-12-12T04:19:34.000Z
2021-06-09T17:52:52.000Z
tests/test_explicit_hll.py
aholyoke/python-hll
30793aeb18103600fce0f3ad0b0c9e99e8b756fe
[ "MIT" ]
6
2019-11-06T21:33:25.000Z
2022-02-21T14:43:35.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import random from python_hll.hlltype import HLLType from python_hll.hll import HLL from python_hll.serialization import SerializationUtil """Unit tests for BitVector.""" def test_add_basic(): """ Tests basic set semantics of ``HLL.add_raw()``. """ # Adding a single positive value to an empty set should work. hll = new_hll(128) # arbitrary hll.add_raw(1) # positive assert hll.cardinality() == 1 # Adding a single negative value to an empty set should work. hll = new_hll(128) # arbitrary hll.add_raw(-1) # negative assert hll.cardinality() == 1 # Adding a duplicate value to a set should be a no-op. hll = new_hll(128) # arbitrary hll.add_raw(1) # positive hll.add_raw(1) # dupe assert hll.cardinality() == 1 def test_union(): """ Tests ``HLL.union()``. """ # Unioning two distinct sets should work hll_a = new_hll(128) # arbitrary hll_b = new_hll(128) # arbitrary hll_a.add_raw(1) hll_a.add_raw(2) hll_b.add_raw(3) hll_a.union(hll_b) assert hll_a.cardinality() == 3 # Unioning two sets whose union doesn't exceed the cardinality cap should not promote hll_a = new_hll(128) # arbitrary hll_b = new_hll(128) # arbitrary hll_a.add_raw(1) hll_a.add_raw(2) hll_b.add_raw(1) hll_a.union(hll_b) assert hll_a.cardinality() == 2 assert hll_a.get_type() == HLLType.EXPLICIT # Unioning two sets whose union exceeds the cardinality cap should promote hll_a = new_hll(128) # arbitrary hll_b = new_hll(128) # arbitrary for i in range(0, 128): hll_a.add_raw(i) hll_b.add_raw(i+128) hll_a.union(hll_b) assert hll_a.get_type() == HLLType.SPARSE def test_clear(): """ Tests ``HLL.clear()`` """ hll = new_hll(128) # arbitrary hll.add_raw(1) hll.clear() assert hll.cardinality() == 0 def test_to_from_bytes(): """ Tests ``HLL.to_bytes() and ``HLL.from_bytes(). """ schema_version = SerializationUtil.DEFAULT_SCHEMA_VERSION type = HLLType.EXPLICIT padding = schema_version.padding_bytes(type) bytes_per_word = 8 # Should work on an empty set hll = new_hll(128) bytes = hll.to_bytes(schema_version) assert len(bytes) == padding # no elements, just padding in_hll = HLL.from_bytes(bytes) assert_elements_equal(hll, in_hll) # Should work on a partially filled set hll = new_hll(128) for i in range(0, 3): hll.add_raw(i) bytes = hll.to_bytes(schema_version) assert len(bytes) == padding + bytes_per_word * 3 in_hll = HLL.from_bytes(bytes) assert_elements_equal(hll, in_hll) # Should work on a full set explicit_threshold = 128 hll = new_hll(explicit_threshold) for i in range(0, explicit_threshold): hll.add_raw(27 + i) bytes = hll.to_bytes(schema_version) assert len(bytes) == padding + bytes_per_word * explicit_threshold in_hll = HLL.from_bytes(bytes) assert_elements_equal(hll, in_hll) def test_random_values(): """ Tests correctness against `set()`. """ explicit_threshold = 4096 canonical = set() hll = new_hll(explicit_threshold) seed = 1 # constant so results are reproducible random.seed(seed) max_java_long = 9223372036854775807 for i in range(0, explicit_threshold): random_long = random.randint(1, max_java_long) canonical.add(random_long) hll.add_raw(random_long) canonical_cardinality = len(canonical) assert hll.cardinality() == canonical_cardinality def test_promotion(): """ Tests promotion to ``HLLType.SPARSE`` and ``HLLType.FULL``. """ explicit_threshold = 128 hll = HLL.create_for_testing(11, 5, explicit_threshold, 256, HLLType.EXPLICIT) for i in range(0, explicit_threshold + 1): hll.add_raw(i) assert hll.get_type() == HLLType.SPARSE hll = HLL(11, 5, 4, False, HLLType.EXPLICIT) # expthresh=4 => explicit_threshold=8 for i in range(0, 9): hll.add_raw(i) assert hll.get_type() == HLLType.FULL # ------------------------------------------------------------ # assertion helpers def assert_elements_equal(hll_a, hll_b): """ Asserts that values in both sets are exactly equal. """ assert hll_a._explicit_storage == hll_b._explicit_storage def new_hll(explicit_threshold): """ Builds a ``HLLType.EXPLICIT`` ``HLL`` instance with the specified explicit threshold. :param explicit_threshold: explicit threshold to use for the constructed ``HLL``. This must be greater than zero. :type explicit_threshold: int :returns: A default-sized ``HLLType.EXPLICIT`` empty ``HLL`` instance. This will never be ``None``. :rtype: HLL """ return HLL.create_for_testing(11, 5, explicit_threshold, 256, HLLType.EXPLICIT)
27.337017
89
0.653597
0
0
0
0
0
0
0
0
1,669
0.337308
27c4d9ac4a8dbf1e90e1e11bbe903ce9523aee39
4,792
py
Python
weixin/HelloMyDear.py
FantasyZsp/py-utils
4ccebd298780508d58400d2d8967f59ca7c6603d
[ "Apache-2.0" ]
null
null
null
weixin/HelloMyDear.py
FantasyZsp/py-utils
4ccebd298780508d58400d2d8967f59ca7c6603d
[ "Apache-2.0" ]
null
null
null
weixin/HelloMyDear.py
FantasyZsp/py-utils
4ccebd298780508d58400d2d8967f59ca7c6603d
[ "Apache-2.0" ]
null
null
null
from weixin.utils.WeiXinUtils import * # 5.主函数main() def hello(wxNames, atHours, atMinutes, cityCode): names = wxNames hours = atHours minutes = atMinutes number = cityCode g = getYMD() g1 = get_iciba_everyday_chicken_soup() # 天气接口的网站 number为城市编号 name = 'http://t.weather.sojson.com/api/weather/city/' + number # 向get_sentence 传入参数 g2 = get_sentence(name) times = g2['cityInfo'] for key, name in times.items(): city = times['city'] parent = times['parent'] # 字典嵌套字典 time1 = g2['data'] for key, name in time1.items(): shidu = time1['shidu'] pm25 = time1['pm25'] quality = time1['quality'] ganmao = time1['ganmao'] time1 = g2['data'] time2 = time1.get('forecast', '不存在该键') time2 = time2[0] itchat.auto_login(hotReload=True) for key, name in time2.items(): high = time2['high'] low = time2['low'] fx = time2['fx'] fl = time2['fl'] type = time2['type'] notice = time2['type'] # 调用微信机器人 users = itchat.search_friends(names) # 找到用户 userName = users[0]['UserName'] while True: t = datetime.datetime.now() t1 = t.strftime('%Y-%m-%d %H:%M:%S') hour = t.hour minute = t.minute second = t.second print('%d:%d:%d' % (hour, minute, second)) if hour == hours and minute == minutes: itchat.send_msg("%s" % g, toUserName=userName) itchat.send_msg('%s' % g1, toUserName=userName) itchat.send_msg('所在省份:%s\n' '所在城市:%s\n' '今日最高温度:%s\n ' '今日最低温度:%s\n' '风向:%s\n ' '风力:%s\n' '湿度:%s \n' 'PM2.5: %s\n' '空气质量:%s \n' '易感指数:%s\n' '天气:%s - %s ' % (parent, city, high, low, fx, fl, shidu, pm25, quality, ganmao, type, notice), toUserName=userName) break else: time.sleep(5) # 延迟5秒 continue itchat.run() time.sleep(86400) # 5.主函数main() if __name__ == '__main__': # names = input("请输入你要发送人的微信名:") # hours = int(input("请输入几点发送消息:")) # minutes = int(input("请输入几分发送消息:")) # number = input("输入所在城市的编号:") # hello(names, hours, minutes, number) names = input("请输入你要发送人的微信名:") hours = int(input("请输入几点发送消息:")) minutes = int(input("请输入几分发送消息:")) number = input("输入所在城市的编号:") print(names) print(hours) print(minutes) print(number) g = getYMD() g1 = get_iciba_everyday_chicken_soup() # 天气接口的网站 number为城市编号 name = 'http://t.weather.sojson.com/api/weather/city/' + number # 向get_sentence 传入参数 g2 = get_sentence(name) times = g2['cityInfo'] for key, name in times.items(): city = times['city'] parent = times['parent'] # 字典嵌套字典 time1 = g2['data'] for key, name in time1.items(): shidu = time1['shidu'] pm25 = time1['pm25'] quality = time1['quality'] ganmao = time1['ganmao'] time1 = g2['data'] time2 = time1.get('forecast', '不存在该键') time2 = time2[0] itchat.auto_login(hotReload=True) for key, name in time2.items(): high = time2['high'] low = time2['low'] fx = time2['fx'] fl = time2['fl'] type = time2['type'] notice = time2['type'] # 调用微信机器人 users = itchat.search_friends(names) # 找到用户 userName = users[0]['UserName'] while True: t = datetime.datetime.now() t1 = t.strftime('%Y-%m-%d %H:%M:%S') hour = t.hour minute = t.minute second = t.second print('%d:%d:%d' % (hour, minute, second)) if hour == hours and minute == minutes: itchat.send_msg("%s" % g, toUserName=userName) itchat.send_msg('%s' % g1, toUserName=userName) itchat.send_msg('所在省份:%s\n' '所在城市:%s\n' '今日最高温度:%s\n ' '今日最低温度:%s\n' '风向:%s\n ' '风力:%s\n' '湿度:%s \n' 'PM2.5: %s\n' '空气质量:%s \n' '易感指数:%s\n' '天气:%s - %s ' % (parent, city, high, low, fx, fl, shidu, pm25, quality, ganmao, type, notice), toUserName=userName) break else: time.sleep(5) # 延迟5秒 continue itchat.run() time.sleep(86400)
31.320261
97
0.47788
0
0
0
0
0
0
0
0
1,611
0.302365
27c607ecb317226ea26c46b6beec6b1d9d516ae8
7,892
py
Python
Medicine-manag-django/pharma/views.py
DanielDDHM/my-projects-py
f6c3af7f6cd61c69234d25c956027e8c7e626470
[ "MIT" ]
null
null
null
Medicine-manag-django/pharma/views.py
DanielDDHM/my-projects-py
f6c3af7f6cd61c69234d25c956027e8c7e626470
[ "MIT" ]
null
null
null
Medicine-manag-django/pharma/views.py
DanielDDHM/my-projects-py
f6c3af7f6cd61c69234d25c956027e8c7e626470
[ "MIT" ]
null
null
null
from .models import Dealer from .models import Employee from .models import Customer from .models import Medicine from .models import Purchase from django.shortcuts import render from django.db import IntegrityError def home(request): return render(request, 'pharma/index.html') def dealerform(request): dict = {'add': True, } return render(request, 'pharma/dealer.html', dict) def dealerforminsert(request): try: dealer = Dealer() dealer.dname = request.POST['dname'] dealer.address = request.POST['address'] dealer.phn_no = request.POST['pno'] dealer.email = request.POST['email'] dealer.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def dealerformupdate(request, foo): try: dealer = Dealer.objects.get(pk=foo) dealer.dname = request.POST['dname'] dealer.address = request.POST['address'] dealer.phn_no = request.POST['pno'] dealer.email = request.POST['email'] dealer.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def dealerformview(request, foo): dealer = Dealer.objects.get(pk=foo) dict = {'dealer': dealer} return render(request, 'pharma/dealer.html', dict) def dealerformdelete(request, foo): dealer = Dealer.objects.get(pk=foo) dealer.delete() return render(request, 'pharma/index.html') def dealertable(request): dealer = Dealer.objects.all() dict = {"dealer": dealer} return render(request, 'pharma/dealertable.html', dict) def empform(request): dict = {'add': True} return render(request, 'pharma/emp.html', dict) def empforminsert(request): try: emp = Employee() emp.e_id = request.POST['eid'] emp.fname = request.POST['fname'] emp.lname = request.POST['lname'] emp.address = request.POST['address'] emp.phn_no = request.POST['pno'] emp.email = request.POST['email'] emp.sal = request.POST['sal'] emp.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def empformupdate(request, foo): try: emp = Employee.objects.get(pk=foo) emp.e_id = request.POST['eid'] emp.fname = request.POST['fname'] emp.lname = request.POST['lname'] emp.address = request.POST['address'] emp.phn_no = request.POST['pno'] emp.email = request.POST['email'] emp.sal = request.POST['sal'] emp.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def empformview(request, foo): emp = Employee.objects.get(pk=foo) dict = {'emp': emp} return render(request, 'pharma/emp.html', dict) def empformdelete(request, foo): emp = Employee.objects.get(pk=foo) emp.delete() return render(request, 'pharma/index.html') def emptable(request): emp = Employee.objects.all() dict = {"emp": emp} return render(request, 'pharma/emptable.html', dict) def custform(request): dict = {'add': True} return render(request, 'pharma/cust.html', dict) def custforminsert(request): try: cust = Customer() cust.fname = request.POST['fname'] cust.lname = request.POST['lname'] cust.address = request.POST['address'] cust.phn_no = request.POST['pno'] cust.email = request.POST['email'] cust.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def custformupdate(request, foo): try: cust = Customer.objects.get(pk=foo) cust.fname = request.POST['fname'] cust.lname = request.POST['lname'] cust.address = request.POST['address'] cust.phn_no = request.POST['pno'] cust.email = request.POST['email'] cust.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def custformview(request, foo): cust = Customer.objects.get(pk=foo) dict = {'cust': cust} return render(request, 'pharma/cust.html', dict) def custformdelete(request, foo): cust = Customer.objects.get(pk=foo) cust.delete() return render(request, 'pharma/index.html') def custtable(request): cust = Customer.objects.all() dict = {"cust": cust} return render(request, 'pharma/custtable.html', dict) def medform(request): dict = {'add': True} return render(request, 'pharma/med.html', dict) def medforminsert(request): try: med = Medicine() med.m_id = request.POST['mid'] med.mname = request.POST['mname'] med.dname = request.POST['dname'] med.desc = request.POST['desc'] med.price = request.POST['price'] med.stock = request.POST['stock'] med.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def medformupdate(request, foo): try: med = Medicine.objects.get(pk=foo) med.m_id = request.POST['mid'] med.mname = request.POST['mname'] med.dname = request.POST['dname'] med.desc = request.POST['desc'] med.price = request.POST['price'] med.stock = request.POST['stock'] med.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def medformview(request, foo): med = Medicine.objects.get(pk=foo) dict = {'med': med} return render(request, 'pharma/med.html', dict) def medformdelete(request, foo): med = Medicine.objects.get(pk=foo) med.delete() return render(request, 'pharma/index.html') def medtable(request): med = Medicine.objects.all() dict = {"med": med} return render(request, 'pharma/medtable.html', dict) def purchaseform(request): dict = {'add': True} return render(request, 'pharma/purchase.html', dict) def purchaseforminsert(request): try: purchase = Purchase() purchase.pname = request.POST['pname'] purchase.fname = request.POST['fname'] purchase.lname = request.POST['lname'] purchase.qty = request.POST['qty'] purchase.phn_no = request.POST['pno'] purchase.price = request.POST['price'] a = (int(purchase.price)) * (int(purchase.qty)) purchase.total = a purchase.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def purchaseformupdate(request, foo): try: purchase = Purchase.objects.get(pk=foo) purchase.pname = request.POST['pname'] purchase.fname = request.POST['fname'] purchase.lname = request.POST['lname'] purchase.qty = request.POST['qty'] purchase.phn_no = request.POST['pno'] purchase.price = request.POST['price'] a = (int(purchase.price)) * (int(purchase.qty)) purchase.total = a purchase.save() except IntegrityError: return render(request, "pharma/new.html") return render(request, 'pharma/index.html') def purchaseformview(request, foo): purchase = Purchase.objects.get(pk=foo) dict = {'purchase': purchase} return render(request, 'pharma/purchase.html', dict) def purchaseformdelete(request, foo): purchase = Purchase.objects.get(pk=foo) purchase.delete() return render(request, 'pharma/index.html') def purchasetable(request): purchase = Purchase.objects.all() dict = {"purchase": purchase} return render(request, 'pharma/purchasetable.html', dict)
28.490975
61
0.637988
0
0
0
0
0
0
0
0
1,244
0.157628
27c811e47a423871511471f8e6a47527924900eb
202
py
Python
resume/display/views.py
Varun789/Profile
990818d233ac0279ef4d55641e1e284850bdbfb2
[ "BSD-3-Clause" ]
null
null
null
resume/display/views.py
Varun789/Profile
990818d233ac0279ef4d55641e1e284850bdbfb2
[ "BSD-3-Clause" ]
null
null
null
resume/display/views.py
Varun789/Profile
990818d233ac0279ef4d55641e1e284850bdbfb2
[ "BSD-3-Clause" ]
null
null
null
from django.shortcuts import render from .models import Profile # Create your views here. def home(request): profile=Profile.objects return render(request,'home.html',{'profile' : profile})
22.444444
60
0.737624
0
0
0
0
0
0
0
0
45
0.222772
27c8bd46f163cd7e8d07a019d3a50bfc0ca3baa3
458
py
Python
libStash/books/migrations/0023_auto_20210320_1241.py
Dev-Rem/libStash
a364e9997c1c91b09f5db8a004deb4df305fa8cf
[ "MIT" ]
null
null
null
libStash/books/migrations/0023_auto_20210320_1241.py
Dev-Rem/libStash
a364e9997c1c91b09f5db8a004deb4df305fa8cf
[ "MIT" ]
null
null
null
libStash/books/migrations/0023_auto_20210320_1241.py
Dev-Rem/libStash
a364e9997c1c91b09f5db8a004deb4df305fa8cf
[ "MIT" ]
null
null
null
# Generated by Django 3.0.4 on 2021-03-20 12:41 import phone_field.models from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('books', '0022_auto_20210215_1053'), ] operations = [ migrations.AlterField( model_name='warehouse', name='phone', field=phone_field.models.PhoneField(blank=True, max_length=31, verbose_name='Phone number'), ), ]
22.9
104
0.637555
347
0.757642
0
0
0
0
0
0
111
0.242358
27c9faa515cbfcb516d2a78da11f8590793a0cac
6,912
py
Python
src/PyTorch2ONNX/PyTorch2ONNX_Run_in_ONNX_RUNTIME.py
Yulv-git/Model_Inference_Deployment
623f9955dfb60fe7af9d17415bfec58fc4c86c1b
[ "MIT" ]
4
2022-02-05T14:16:05.000Z
2022-03-27T13:35:06.000Z
src/PyTorch2ONNX/PyTorch2ONNX_Run_in_ONNX_RUNTIME.py
Yulv-git/Model_Inference_Deployment
623f9955dfb60fe7af9d17415bfec58fc4c86c1b
[ "MIT" ]
null
null
null
src/PyTorch2ONNX/PyTorch2ONNX_Run_in_ONNX_RUNTIME.py
Yulv-git/Model_Inference_Deployment
623f9955dfb60fe7af9d17415bfec58fc4c86c1b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 ''' Author: Shuangchi He / Yulv Email: [email protected] Date: 2022-01-28 14:21:09 Motto: Entities should not be multiplied unnecessarily. LastEditors: Shuangchi He LastEditTime: 2022-04-06 11:40:23 FilePath: /Model_Inference_Deployment/src/PyTorch2ONNX/PyTorch2ONNX_Run_in_ONNX_RUNTIME.py Description: Init from https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html Exporting a model from PyTorch to ONNX and running it using ONNX RUNTIME. ''' import argparse import os import numpy as np from PIL import Image import torch.nn as nn import torch.nn.init as init import torch.utils.model_zoo as model_zoo import torchvision.transforms as transforms import onnx import torch.onnx import onnxruntime from utils import check_dir, torchtensor2numpy # Super Resolution model definition in PyTorch class SuperResolutionNet(nn.Module): def __init__(self, upscale_factor, inplace=False): super(SuperResolutionNet, self).__init__() self.relu = nn.ReLU(inplace=inplace) self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) self.pixel_shuffle = nn.PixelShuffle(upscale_factor) self._initialize_weights() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.pixel_shuffle(self.conv4(x)) return x def _initialize_weights(self): init.orthogonal_(self.conv1.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv2.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv3.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv4.weight) def PyTorch2ONNX(torch_model, dummy_input_to_model, onnx_save_dir, check_onnx_model=True): ''' Export the model. (PyTorch2ONNX) ''' torch.onnx.export( torch_model, # model being run. dummy_input_to_model, # model input (or a tuple for multiple inputs). onnx_save_dir, # where to save the model (can be a file or file-like object). export_params=True, # store the trained parameter weights inside the model file. opset_version=10, # the ONNX version to export the model to. do_constant_folding=True, # whether to execute constant folding for optimization. input_names=['input'], # the model's input names. output_names=['output'], # the model's output names. dynamic_axes={ # variable length axes. 'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) if check_onnx_model: # Verify the model’s structure and confirm that the model has a valid schema. onnx_model = onnx.load(onnx_save_dir) onnx.checker.check_model(onnx_model) def Verify_ONNX_in_ONNX_RUNTIME(onnx_dir, dummy_input_to_model, torch_out): ''' Verify ONNX Runtime and PyTorch are computing the same value for the model. ''' # Create an inference session. ort_session = onnxruntime.InferenceSession(onnx_dir) # Compute ONNX Runtime output prediction. ort_inputs = {ort_session.get_inputs()[0].name: torchtensor2numpy(dummy_input_to_model)} ort_outs = ort_session.run(None, ort_inputs) # Compare ONNX Runtime and PyTorch results np.testing.assert_allclose(torchtensor2numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05) print("Exported model has been tested with ONNXRuntime, and the result looks good!") def Run_ONNX_in_ONNX_RUNTIME(onnx_dir, img_path, img_save_path): ''' Running the model on an image using ONNX Runtime. ''' # Take the tensor representing the greyscale resized image. img = Image.open(img_path) resize = transforms.Resize([224, 224]) img = resize(img) img_ycbcr = img.convert('YCbCr') img_y, img_cb, img_cr = img_ycbcr.split() to_tensor = transforms.ToTensor() img_y = to_tensor(img_y) img_y.unsqueeze_(0) # Create an inference session. ort_session = onnxruntime.InferenceSession(onnx_dir) # Run the ONNX model in ONNX Runtime. ort_inputs = {ort_session.get_inputs()[0].name: torchtensor2numpy(img_y)} ort_outs = ort_session.run(None, ort_inputs) img_out_y = ort_outs[0] # Get the output image. img_out_y = Image.fromarray(np.uint8((img_out_y[0] * 255.0).clip(0, 255)[0]), mode='L') final_img = Image.merge( "YCbCr", [ img_out_y, img_cb.resize(img_out_y.size, Image.BICUBIC), img_cr.resize(img_out_y.size, Image.BICUBIC), ]).convert("RGB") # Save the image, compare this with the output image from mobile device. final_img.save(img_save_path) def main(args): # Create the super-resolution model. torch_model = SuperResolutionNet(upscale_factor=3) # Initialize model with the pretrained weights. def map_location(storage, loc): return storage if torch.cuda.is_available(): map_location = None torch_model.load_state_dict(model_zoo.load_url( url='https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth', map_location=map_location)) # Set the model to inference mode. torch_model.eval() # Input to the model. batch_size = 1 dummy_input_to_model = torch.randn(batch_size, 1, 224, 224, requires_grad=True) torch_out = torch_model(dummy_input_to_model) # Export the model. (PyTorch2ONNX) PyTorch2ONNX(torch_model, dummy_input_to_model, args.onnx_save_dir, args.check_onnx_model) # Verify ONNX Runtime and PyTorch are computing the same value for the model. Verify_ONNX_in_ONNX_RUNTIME(args.onnx_save_dir, dummy_input_to_model, torch_out) # Running the model on an image using ONNX Runtime. Run_ONNX_in_ONNX_RUNTIME(args.onnx_save_dir, args.img_path, args.img_save_path) if __name__ == "__main__": parse = argparse.ArgumentParser(description='PyTorch2ONNX_Run_in_ONNX_RUNTIME') parse.add_argument('--img_path', type=str, default='{}/data/cat.jpg'.format(os.path.dirname(os.path.abspath(__file__)))) parse.add_argument('--check_onnx_model', type=bool, default=True) parse.add_argument('--output_dir', type=str, default='{}/output'.format(os.path.dirname(os.path.abspath(__file__)))) args = parse.parse_args() check_dir(args.output_dir) args.onnx_save_dir = '{}/super_resolution.onnx'.format(args.output_dir) args.img_save_path = '{}/cat_superres_with_ort.jpg'.format(args.output_dir) main(args)
41.638554
124
0.684172
1,053
0.1523
0
0
0
0
0
0
2,230
0.322534
27cc788dc3d49e45198c96fa1cec36fea676e304
2,085
py
Python
scripts/dataset.py
MarcGroef/deeplearning
d1ef095fbe0f7e9b56017808d976efe7502e6b81
[ "MIT" ]
null
null
null
scripts/dataset.py
MarcGroef/deeplearning
d1ef095fbe0f7e9b56017808d976efe7502e6b81
[ "MIT" ]
null
null
null
scripts/dataset.py
MarcGroef/deeplearning
d1ef095fbe0f7e9b56017808d976efe7502e6b81
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf from sklearn.model_selection import StratifiedKFold # Set dataset seed np.random.seed(seed=842102) class SingletonDecorator: def __init__(self,klass): self.klass = klass self.instance = None def __call__(self,*args,**kwds): if self.instance == None: self.instance = self.klass(*args,**kwds) return self.instance @SingletonDecorator class Dataset(object): def __init__(self, nSplits, split_index): print("DATASET: You should only see this message once.") (self._trainImages, self._trainLabels), (self._testImages, self._testLabels) = tf.keras.datasets.fashion_mnist.load_data() # Cross validation skf = StratifiedKFold(n_splits=nSplits) indices_by_expIdx = [] for train_index, val_index in skf.split(self._trainImages, self._trainLabels): indices_by_expIdx.append((train_index, val_index)) def convert_to_tf(data): # reshape data to fit shape data = data.astype('float32') / 255 return np.expand_dims(data, axis=-1) def get_split(type, split_index): # Get the training or validation data+labels, by given split train, val = indices_by_expIdx[split_index] indices = train if type == 'validation': indices = val train_data = convert_to_tf(self._trainImages[indices]) train_labels = tf.keras.utils.to_categorical(self._trainLabels[indices]) return train_data, train_labels self.trainImages = lambda : get_split('train', split_index)[0] self.trainLabels = lambda : get_split('train', split_index)[1] self.valImages = lambda : get_split('validation', split_index)[0] self.valLabels = lambda : get_split('validation', split_index)[1] self.testImages = lambda : convert_to_tf(self._testImages) self.testLabels = lambda : tf.keras.utils.to_categorical(self._testLabels) if __name__ == "__main__": dataset = Dataset();
35.948276
130
0.659472
1,865
0.894484
0
0
1,621
0.777458
0
0
241
0.115588
27cf1141da0cf1cbeff01d7fcd33d6536ff17b4d
1,962
py
Python
src/python/utils/image.py
Lamzigit/manifold_learning
f699fe4f25dbabdbc2dc9635c4e654b59806e17d
[ "MIT" ]
10
2017-06-14T08:04:44.000Z
2021-07-06T07:13:16.000Z
src/python/utils/image.py
Lamzigit/manifold_learning
f699fe4f25dbabdbc2dc9635c4e654b59806e17d
[ "MIT" ]
1
2020-11-18T13:08:43.000Z
2020-11-18T13:12:39.000Z
src/python/utils/image.py
Lamzigit/manifold_learning
f699fe4f25dbabdbc2dc9635c4e654b59806e17d
[ "MIT" ]
3
2017-06-14T08:04:53.000Z
2019-11-18T13:21:15.000Z
# -*- coding: utf-8 -*- """ Created on Thu Oct 15 14:03:52 2015 @author: jemanjohnson """ import numpy as np import matplotlib.pyplot as plt import os import scipy.io from sklearn import preprocessing from time import time from sklearn.preprocessing import MinMaxScaler # Image Reshape Function def img_as_array(img, gt=False): """Takes a N*M*D image where: * N - number of rows * M - number of columns * D - dimension of data Returns: -------- Image as an array with dimensions - (N*M) by D """ if gt == False: img_array = img.reshape( img.shape[0]*img.shape[1], img.shape[2]) else: img_array = img.reshape( img.shape[0]*img.shape[1]) return img_array # Image Normalization function def standardize(data): """ Quick function to standardize my data between 0 and 1 """ return MinMaxScaler().fit_transform(data) # Define HSI X and y Ground Truth pairing function def img_gt_idx(img, img_gt, printinfo=False): """Takes a flattened image array and extracts the image indices that correspond to the ground truth that we have. """ # Find the non-zero entries n_samples = (img_gt>0).sum() # Find the classification labels classlabels = np.unique(img_gt[img_gt>0]) # Create X matrix containing the features X = img[img_gt>0,:] # Create y matrix containing the labels y = img_gt[img_gt>0] # Print out useful information if printinfo: print('We have {n} ground-truth samples.'.format( n=n_samples)) print('The training data includes {n} classes: {classes}'.format( n=classlabels.size, classes=classlabels.T)) print('Dimensions of matrix X: {sizeX}'.format(sizeX=X.shape)) print('Dimensions of matrix y: {sizey}'.format(sizey=y.shape)) return X, y #
25.480519
73
0.618756
0
0
0
0
0
0
0
0
955
0.486748
27cf8bbca13f1461fc47b01d2bfbcfa734035197
1,767
py
Python
test/finsignia/gae/controllers.py
finsignia/finsignia-gae
e8cf6a3855cb2844a3a7e113f26b600bd952d371
[ "MIT" ]
1
2016-05-08T21:47:10.000Z
2016-05-08T21:47:10.000Z
test/finsignia/gae/controllers.py
finsignia/finsignia-gae
e8cf6a3855cb2844a3a7e113f26b600bd952d371
[ "MIT" ]
null
null
null
test/finsignia/gae/controllers.py
finsignia/finsignia-gae
e8cf6a3855cb2844a3a7e113f26b600bd952d371
[ "MIT" ]
null
null
null
""" Tests for the finsignia.gae.controllers module. """ import os import sys from finsignia.gae import loader import unittest class ApplicationControllerTest(unittest.TestCase): def setUp(self): loader.load() from finsignia.gae import controllers class TestController(controllers.ApplicationController): def template_path(self): return os.path.join(os.path.dirname(__file__), 'templates') self.controller = TestController() def tearDown(self): del self.controller loader.unload() def testRenderWithoutData(self): text = self.controller.render(template='testRenderWithoutData.txt') self.assertEqual("testRenderWithoutData", text.strip()) def testRenderWithData(self): # I just watched 'The Reader' at the movie theatre this evening...thus the following name name = 'Hannah Schmidtz' text = self.controller.render(template='testRenderWithData.txt', data={'name': name}) self.assertEqual("%s did a very bad thing and then a very stupid thing" % name, text.strip()) class ResourceControllerTest(unittest.TestCase): def setUp(self): loader.load() self._modelClass = object() self._templateMappings = {} self._objectFields = [] from finsignia.gae import controllers class TestController(controllers.ResourceController): def modelClass(self): return self._modelClass def templateMappings(self): return self._templateMappings def objectFields(self): return self._objectFields self._testController = TestController() def tearDown(self): loader.unload() # TODO: create tests for ResourceController def test_cases(): return [ApplicationControllerTest, ResourceControllerTest] if '__main__' == __name__: unittest.main()
29.949153
97
0.730051
1,508
0.853424
0
0
0
0
0
0
359
0.203169
27d2e55ac297493daba610855afc860802f2e6c9
2,074
py
Python
tests/test_visualize_poll.py
UBC-MDS/tweepypoll
62ea4ea0ab381eecf8f24bd13da0a0cdfb18eaa6
[ "MIT" ]
null
null
null
tests/test_visualize_poll.py
UBC-MDS/tweepypoll
62ea4ea0ab381eecf8f24bd13da0a0cdfb18eaa6
[ "MIT" ]
30
2022-01-14T17:10:08.000Z
2022-02-02T21:17:05.000Z
tests/test_visualize_poll.py
UBC-MDS/tweepypoll
62ea4ea0ab381eecf8f24bd13da0a0cdfb18eaa6
[ "MIT" ]
1
2022-01-14T16:10:11.000Z
2022-01-14T16:10:11.000Z
from tweepypoll.tweepypoll import visualize_poll import pandas as pd import altair as alt def test_visualize_poll(): """Test visualize_poll on a dictionary input""" sample_poll_obj = [ { "text": "Important research!!!", "duration": 1440, "date": "2022-01-22T04:01:08.000Z", "poll options": [ {"position": 1, "label": "Cookies", "votes": 29}, {"position": 2, "label": "Cupcakes", "votes": 5}, {"position": 3, "label": "Donuts", "votes": 24}, {"position": 4, "label": "Ice Cream", "votes": 25}, ], "user": "GregShahade", "total": 83, } ] test_plot = visualize_poll(sample_poll_obj) # test settings on altair plot assert isinstance( test_plot[0], alt.Chart ), "The type of the output mush be a altair chart" assert ( test_plot[0].encoding.x.shorthand == "votes" ), "The votes should be mapped to the x axis" assert ( test_plot[0].encoding.y.shorthand == "label" ), "The label should be mapped to the y axis" assert test_plot[0].mark == "bar", "mark should be a bar" assert ( test_plot[0].encoding.color.title == "Options" ), "Option should be the legend title" # check if show_user=True, correct user name is printed assert sample_poll_obj[0]["user"] == "GregShahade", "The user name is not correct." # check if show_date=True, correct date and time is printed assert ( pd.Timestamp(sample_poll_obj[0]["date"]).strftime("%Y-%m-%d %H:%M:%S") == "2022-01-22 04:01:08" ), "Date and time is not correct." # check if show_duration=True, correct duration is printed assert sample_poll_obj[0]["duration"] / 60 == 24.0, "Duration is not correct." # check if calculated total votes is equal to the input dict df = pd.DataFrame(sample_poll_obj[0]["poll options"]) assert ( df["votes"].sum() == sample_poll_obj[0]["total"] ), "Total response is not correct."
35.152542
87
0.590646
0
0
0
0
0
0
0
0
993
0.478785
27d3c4c2fd777115e15bd0efa78ebba378f85ab4
5,629
py
Python
quilt/avahiservice.py
rossdylan/quilt
463e3cfe419410b41ee6945ab96d51692d46b036
[ "MIT" ]
2
2015-07-23T03:49:42.000Z
2015-11-05T18:49:53.000Z
quilt/avahiservice.py
rossdylan/quilt
463e3cfe419410b41ee6945ab96d51692d46b036
[ "MIT" ]
null
null
null
quilt/avahiservice.py
rossdylan/quilt
463e3cfe419410b41ee6945ab96d51692d46b036
[ "MIT" ]
null
null
null
""" Avahi Network Service Scripting """ import Queue import threading import avahi, dbus, gobject from dbus import DBusException from dbus.mainloop.glib import DBusGMainLoop __all__ = ["QuiltAvahiServer", "QuiltAvahiClient"] TYPE = '_quilt._tcp' class QuiltAvahiNode(object): """ Quilt Avahi Connection Node, represents a found connection, and its connection details. """ def __init__(self, domain="local", hostname="none", address="", port=""): """ Construct Connection Node """ self.domain = domain self.hostname = hostname self.address = address self.port = port def __str__(self): """ String representation. """ return "Quilt Avahi Connection Node:\n -domain: %s\n -hostname: %s\n -address: %s\n -port: %s\n"\ % (self.domain, self.hostname, self.address, self.port) from threading import Thread class QuiltAvahiClient(Thread): """ Qulit's Avahi Service Discovery Object """ def __init__(self): """ Construct Search Client """ threading.Thread.__init__(self) self.Nodes = Queue.Queue() self.loop = DBusGMainLoop() self.bus = dbus.SystemBus(mainloop = self.loop) self.server = dbus.Interface(self.bus.get_object(avahi.DBUS_NAME, '/'), 'org.freedesktop.Avahi.Server') self.sbrowser = dbus.Interface(self.bus.get_object(avahi.DBUS_NAME, self.server.ServiceBrowserNew(avahi.IF_UNSPEC, avahi.PROTO_UNSPEC, TYPE, 'local', dbus.UInt32(0))), avahi.DBUS_INTERFACE_SERVICE_BROWSER) def resolve(self, *args): """ :param args: Arguments of the resolved service :type args: Array of mixed string and integer arguments. """ # Handle Connection Pattern Here, for now just print that we found # the service #TODO node = QuiltAvahiNode(args[4], args[5].split('.')[0], args[7], args[8]) print node self.Nodes.put(node) def error(self, *args): """ :param args: Arguments of the error in the resolved service :type args: Mixed strings and integers """ print "Error: %s" % args[0] def search_handler(self, interface, protocol, name, stype, domain, flags): """ Handles the finding of a service on the local network. :param interface: Interface Name :type interface: String :param protocol: Protocol Type :type protocol: String :param name: Name of service :type name: String :param stype: Service Type :type stype: String :param domain: Domain of service :type domain: String :param flags: Flags of the Service :type flags: int """ print "Service Found %s type %s domain %s" % (name, stype, domain) # We can determine if the service is local, avoiding uncessary connections if flags & avahi.LOOKUP_RESULT_LOCAL: # TODO: Handle local service here pass self.server.ResolveService(interface, protocol, name, stype, domain, avahi.PROTO_UNSPEC, dbus.UInt32(0), reply_handler=self.resolve, error_handler=self.error) def run(self): """ Searches the local network for broadcasting avahi services, handles found services in the resolved method """ self.sbrowser.connect_to_signal("ItemNew", self.search_handler) gobject.MainLoop().run() class QuiltAvahiServer(object): """ Quilt's Avahi Server Object NOTE: Ports 9375-9379 should be our target ports """ def __init__(self, name="Quilt", port=9375, stype="_quilt._tcp", domain="", host="", text=""): """ Construct the avahi service :type name: string :param name: name of service :type port: int :param port: port to be run on. :type stype: str :param stype: service type :type domain: str :param domain: service domain :type host: str :param host: service host :type text: -- :param text: -- """ self.name = name self.stype = stype self.domain = domain self.host = host self.port = port self.text = text def publish(self): """ Make the service discoverable on the network """ bus = dbus.SystemBus() server = dbus.Interface( bus.get_object( avahi.DBUS_NAME, avahi.DBUS_PATH_SERVER), avahi.DBUS_INTERFACE_SERVER) interface = dbus.Interface( bus.get_object(avahi.DBUS_NAME, server.EntryGroupNew()), avahi.DBUS_INTERFACE_ENTRY_GROUP) interface.AddService( avahi.IF_UNSPEC, avahi.PROTO_UNSPEC, dbus.UInt32(0), self.name, self.stype, self.domain, self.host, dbus.UInt16(self.port), self.text) interface.Commit() self.group = interface def unpublish(self): """ Remove the service """ self.group.Reset()
35.626582
105
0.551252
5,340
0.948659
0
0
0
0
0
0
2,460
0.437023
27d5437b9102d270c520f2be5bfb611ac3f22737
612
py
Python
tests/test.py
Robert-96/altwalker-appium-example
17bb3087d13fed62a4cb98ac0d25b7aa3b8a937d
[ "MIT" ]
null
null
null
tests/test.py
Robert-96/altwalker-appium-example
17bb3087d13fed62a4cb98ac0d25b7aa3b8a937d
[ "MIT" ]
null
null
null
tests/test.py
Robert-96/altwalker-appium-example
17bb3087d13fed62a4cb98ac0d25b7aa3b8a937d
[ "MIT" ]
null
null
null
from appium import webdriver from .utils import PATH desired_caps = dict( platformName='Android', platformVersion='10', automationName='uiautomator2', deviceName='Android Emulator', app=PATH('app/ApiDemos-debug.apk.zip') ) driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) class ModelName: def setUpModel(self): global driver self.driver = driver def vertex_A(self): pass def vertex_B(self): pass def edge_A(self): element = self.driver.find_element_by_accessibility_id('Content') element.click()
19.741935
73
0.668301
291
0.47549
0
0
0
0
0
0
112
0.183007
27d5f9dbcf40cc145235b4fffe9387c62c414d60
6,161
py
Python
tests/pte-onPrem-test-package/scripts/create_SCFile.py
gbl1124/hfrd
327d7c1e18704d2e31a2649b40ae1d90353ebe24
[ "Apache-2.0" ]
5
2019-08-02T20:53:57.000Z
2021-06-25T05:16:46.000Z
tests/pte-onPrem-test-package/scripts/create_SCFile.py
anandbanik/hfrd
7bc1f13bfc9c7d902aec0363d27b089ef68c7eec
[ "Apache-2.0" ]
null
null
null
tests/pte-onPrem-test-package/scripts/create_SCFile.py
anandbanik/hfrd
7bc1f13bfc9c7d902aec0363d27b089ef68c7eec
[ "Apache-2.0" ]
14
2019-07-01T01:40:50.000Z
2020-03-24T06:14:32.000Z
import json import os import argparse HOME = os.environ['HOME']+'/results/' parser = argparse.ArgumentParser(description="Python script generates the SCFiles using MSPIDs") parser.add_argument("-m", "--mspids", nargs="+", required=True, help="1 or more MSPIDs") parser.add_argument("-n", "--networkId", metavar='', required=True, help="Network ID") args = parser.parse_args() class SCFileCreator: def __init__(self): self.MSPIDs = args.mspids self.peerInfo = {} self.SCFileObject = {} self.networkID = args.networkId self.writeToOutput(self.networkID) # Get information for each peerOrgs def getPeerInfo(self): # This function gets the peer information for all the peers and returns data in a dictionary format for mspid in self.MSPIDs: # read in connection profiles for each org with open(os.path.join(HOME, "creds/ConnectionProfile_{}.json".format(mspid)), "r") as f: orgCP = json.load(f) # read in admin cert for each org with open(os.path.join(HOME, "creds/{}admin/msp/signcerts/cert.pem".format(mspid)), "r") as f: orgCT = "".join(f.readlines()) # read in priv key for each org with open(os.path.join(HOME, "creds/{}admin/msp/keystore/priv.pem".format(mspid)), "r") as f: orgPK = "".join(f.readlines()) temp = {} temp["orgCP"] = orgCP temp["orgCT"] = orgCT temp["orgPK"] = orgPK self.peerInfo[mspid] = dict(temp) return self.peerInfo def generateSCFile(self): # This function builds the SCFile self.getPeerInfo() # Calling the gatherPeerOrg function self.SCFileObject["test-network"] = {} print(self.MSPIDs) # Added GOPATH as per Tanya"s request self.SCFileObject["test-network"]["gopath"] = "GOPATH" for mspid in self.MSPIDs: # Need to make copy of all inner dict to a new address location without sharing the same reference as the first one self.SCFileObject["test-network"]["orderer"] = {} self.SCFileObject["test-network"][mspid] = {} self.SCFileObject["test-network"][mspid]["ca"] = {} self.SCFileObject["test-network"][mspid]["name"] = mspid self.SCFileObject["test-network"][mspid]["mspid"] = mspid self.SCFileObject["test-network"][mspid]["username"] = "admin" self.SCFileObject["test-network"][mspid]["privateKeyPEM"] = "" self.SCFileObject["test-network"][mspid]["signedCertPEM"] = "" self.SCFileObject["test-network"][mspid]["adminPath"] = "" # Storing certificate and private key self.SCFileObject["test-network"][mspid]["admin_cert"] = self.peerInfo[mspid]["orgCT"] self.SCFileObject["test-network"][mspid]["priv"] = self.peerInfo[mspid]["orgPK"] # getting all fabric_ca in peer org fabricCaPeerList = [fabric_ca for fabric_ca in self.peerInfo[mspid]["orgCP"]["certificateAuthorities"].keys()] # storing the first fabric_ca since the data is the same for each peer org self.SCFileObject["test-network"][mspid]["ca"]["name"] = fabricCaPeerList[0] self.SCFileObject["test-network"][mspid]["ca"]["url"] = \ self.peerInfo[mspid]["orgCP"]["certificateAuthorities"][fabricCaPeerList[0]]["url"] self.SCFileObject["test-network"][mspid]["secret"] = \ self.peerInfo[mspid]["orgCP"]["certificateAuthorities"][fabricCaPeerList[0]]["registrar"][0]["enrollSecret"] # getting the right peer orgs for peer in self.peerInfo[mspid]["orgCP"]["organizations"][mspid]["peers"]: # building peer dict self.SCFileObject["test-network"][mspid][peer] = {} self.SCFileObject["test-network"][mspid][peer]["server-hostname"] = None self.SCFileObject["test-network"][mspid][peer]["tls_cacerts"] = "" self.SCFileObject["test-network"][mspid][peer]["requests"] = \ self.peerInfo[mspid]["orgCP"]["peers"][peer]["url"] self.SCFileObject["test-network"][mspid][peer]["events"] = self.peerInfo[mspid]["orgCP"]["peers"][peer][ "eventUrl"] # getting data for each orderer for fabricOrderer in self.peerInfo[mspid]["orgCP"]["orderers"]: self.SCFileObject["test-network"]["tls_cert"] = \ self.peerInfo[mspid]["orgCP"]["orderers"][fabricOrderer]["tlsCACerts"]["pem"] # building orderer dict self.SCFileObject["test-network"]["orderer"][fabricOrderer] = {} self.SCFileObject["test-network"]["orderer"][fabricOrderer]["name"] = "OrdererOrg" self.SCFileObject["test-network"]["orderer"][fabricOrderer]["mspid"] = "OrdererOrg" self.SCFileObject["test-network"]["orderer"][fabricOrderer]["mspPath"] = "" self.SCFileObject["test-network"]["orderer"][fabricOrderer]["adminPath"] = "" self.SCFileObject["test-network"]["orderer"][fabricOrderer]["comName"] = "" self.SCFileObject["test-network"]["orderer"][fabricOrderer]["server-hostname"] = None self.SCFileObject["test-network"]["orderer"][fabricOrderer]["tls_cacerts"] = "" self.SCFileObject["test-network"]["orderer"][fabricOrderer]["url"] = \ self.peerInfo[mspid]["orgCP"]["orderers"][fabricOrderer]["url"] # setting the ordererID for each mspid self.SCFileObject["test-network"][mspid]["ordererID"] = fabricOrderer return self.SCFileObject def writeToOutput(self, outputFile): # this function writes to config-net-${networkID}.json file with open(os.path.join(HOME, "SCFiles/config-net-{}.json".format(outputFile)), "w") as f: json.dump(self.generateSCFile(), f, indent=4, sort_keys=True) if __name__ == "__main__": scFileCreator = SCFileCreator()
50.917355
127
0.603636
5,715
0.927609
0
0
0
0
0
0
2,265
0.367635
27d6cff2a09a34968b82d0b674f282b1d2271a34
9,721
py
Python
catalogue/forms.py
lh00257/superharris
cc8794ac6a63fa157ed6d0ef75f5089253ff987d
[ "MIT" ]
null
null
null
catalogue/forms.py
lh00257/superharris
cc8794ac6a63fa157ed6d0ef75f5089253ff987d
[ "MIT" ]
null
null
null
catalogue/forms.py
lh00257/superharris
cc8794ac6a63fa157ed6d0ef75f5089253ff987d
[ "MIT" ]
null
null
null
import re #Regular expression library from django import forms from django.contrib.auth.models import User from django.core.exceptions import ObjectDoesNotExist from django.template import RequestContext from django.contrib.auth.forms import AuthenticationForm from catalogue.models import Submitted from models import GlobularCluster as GC from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Div, Submit, HTML, Button, Row, Field, Fieldset from crispy_forms.bootstrap import AppendedText, PrependedText, FormActions #from crispy_forms.bootstrap import InlineField #class login_page(forms.Form): # username = forms.CharField(label='Username', max_length=30) #password = forms.CharField(widget=forms.PasswordInput) #model = User #widgets = { # 'password': forms.PasswordInput(), #} class RegistrationForm(forms.Form): username = forms.CharField(label='Username', max_length=30) email = forms.EmailField(label='Email', max_length=50) password1 = forms.CharField( label='Password', widget=forms.PasswordInput() ) password2 = forms.CharField( label='Password (Again)', widget=forms.PasswordInput() ) def clean_password(self): if 'password1' in self.cleaned_data: password1 = self.Cleaned_data['password1'] password2 = self.Cleaned_data['password2'] if password1 == password2: return password2 raise forms.ValidationError('Passwords do not match.') def clean_username(self): username = self.cleaned_data['username'] if not re.search(r'^\w+$', username): raise forms.ValidationError('Username can only contain alphanumeric characters and the underscore.') try: User.objects.get(username=username) except ObjectDoesNotExist: return username raise forms.ValidationError('Username is already taken :( .') def __init__(self, *args, **kwargs): super(RegistrationForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'id-registrationForm' self.helper.form_class = 'blueForms' self.helper.form_method = 'post' self.helper.form_action = 'register' self.helper.form_class = 'form-horizontal' self.fields['username'].widget.attrs['placeholder'] = u'Enter here' self.fields['email'].widget.attrs['placeholder'] = u'Enter here' self.fields['password1'].widget.attrs['placeholder'] = u'Enter here' self.fields['password2'].widget.attrs['placeholder'] = u'Enter here' self.helper.layout = Layout( Div( Div('username', css_class='col-xs-6'), css_class='row-fluid'), Div( Div('email', css_class='col-xs-6'), css_class='row-fluid'), Div( Div('password1', css_class='col-xs-6'), css_class='row-fluid'), Div( Div('password2', css_class='col-xs-6'), css_class='row-fluid'), ) self.helper.add_input(Submit('submit', 'Submit')) class SubmitForm(forms.Form): gcs = GC.objects.all() drop_down_list = [(g, g.cluster_id) for g in gcs] drop_down_list.sort(key=lambda x:x[1]) cluster = forms.ChoiceField(label = "Cluster ID", choices = drop_down_list, required = True) name = forms.CharField(label = "Alternative names", max_length = 50, required = False) ra = forms.CharField(label = "Right ascension", max_length = 50, required = False) dec = forms.CharField(label = "Declination", max_length=50, required=False) gallon = forms.CharField(label = "Longitude", max_length=50, required=False) gallat = forms.CharField(label = "Latitude", max_length=50, required=False) dfs = forms.CharField(label = "Distance from the sun", max_length=50, required=False) metallicity = forms.CharField(label = "Metallicity", max_length=50, required=False) w_mean_met = forms.CharField(label = "Weight of mean metallicity", max_length=50, required=False) m_v_t = forms.CharField(label = "Cluster luminosity", max_length=50, required=False) ph_u_b = forms.CharField(label = "U-B", max_length=50, required=False) ph_b_v = forms.CharField(label = "B-V", max_length=50, required=False) ph_v_r = forms.CharField(label = "V-R", max_length=50, required=False) ph_v_i = forms.CharField(label = "V-I", max_length=50, required=False) ellipticity = forms.CharField(label = "Projected ellipticity of isophotes", max_length=50, required=False) v_r = forms.CharField(label = "Heliocentric radial velocity", max_length=50, required=False) sig_v = forms.CharField(label = "Velocity dispersion", max_length=50, required=False) sig_err = forms.CharField(label = "Observational uncertainty", max_length=50, required=False) sp_c = forms.CharField(label = "King-model central concentration", max_length=50, required=False) sp_r_c = forms.CharField(label = "Core radius", max_length=50, required=False) sp_r_h = forms.CharField(label = "Half-light radius", max_length=50, required=False) sp_mu_V = forms.CharField(label = "Central surface brightness", max_length=50, required=False) sp_rho_0 = forms.CharField(label = "Central luminosity density", max_length=50, required=False) comment = forms.CharField(label = "Comments", max_length=50, widget=forms.Textarea, required=False) def __init__(self, *args, **kwargs): super(SubmitForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_id = 'id-submitForm' self.helper.form_class = 'blueForms' self.helper.form_method = 'post' self.helper.form_action = 'submit' self.helper.form_class = 'form-horizontal' self.fields['name'].widget.attrs['placeholder'] = u'Enter here' self.fields['ra'].widget.attrs['placeholder'] = u'Enter here [degrees]' self.fields['dec'].widget.attrs['placeholder'] = u'Enter here [degrees]' self.fields['gallon'].widget.attrs['placeholder'] = u'Enter here [degrees]' self.fields['gallat'].widget.attrs['placeholder'] = u'Enter here [degrees]' self.fields['dfs'].widget.attrs['placeholder'] = u'Enter here[kpc]' self.fields['metallicity'].widget.attrs['placeholder'] = u'Enter here' self.fields['w_mean_met'].widget.attrs['placeholder'] = u'Enter here' self.fields['m_v_t'].widget.attrs['placeholder'] = u'Enter here' self.fields['ph_u_b'].widget.attrs['placeholder'] = u'Enter here' self.fields['ph_b_v'].widget.attrs['placeholder'] = u'Enter here' self.fields['ph_v_r'].widget.attrs['placeholder'] = u'Enter here' self.fields['ph_v_i'].widget.attrs['placeholder'] = u'Enter here' self.fields['ellipticity'].widget.attrs['placeholder'] = u'Enter here' self.fields['v_r'].widget.attrs['placeholder'] = u'Enter here [km/s]' self.fields['sig_v'].widget.attrs['placeholder'] = u'Enter here [km/s]' self.fields['sig_err'].widget.attrs['placeholder'] = u'Enter here [km/s]' self.fields['sp_c'].widget.attrs['placeholder'] = u'Enter here' self.fields['sp_r_c'].widget.attrs['placeholder'] = u'Enter here' self.fields['sp_r_h'].widget.attrs['placeholder'] = u'Enter here' self.fields['sp_mu_V'].widget.attrs['placeholder'] = u'Enter here' self.fields['sp_rho_0'].widget.attrs['placeholder'] = u'Enter here' self.fields['comment'].widget.attrs['placeholder'] = u'Enter here' #self.helper.label_class = 'col-lg-2' #self.helper.field_class = 'col-lg-6' self.helper.layout = Layout( Fieldset('Name and reference', Div('cluster', css_class='col-xs-6'), Div('name', css_class='col-xs-6'), css_class='row-fluid'), Fieldset('Observational data', Div('ra', css_class='col-xs-6'), Div('dec', css_class='col-xs-6'), css_class='row-fluid'), Div( Div('gallon', css_class='col-xs-6'), Div('gallat', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('dfs', css_class='col-xs-6'), Div('metallicity', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('w_mean_met', css_class='col-xs-6'), Div('m_v_t', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('ph_u_b', css_class='col-xs-6'), Div('ph_b_v', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('ph_v_r', css_class='col-xs-6'), Div('ph_v_i', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('ellipticity', css_class='col-xs-6'), Div('v_r', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('sig_v', css_class='col-xs-6'), Div('sig_err', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('sp_c', css_class='col-xs-6'), Div('sp_r_c', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('sp_r_h', css_class='col-xs-6'), Div('sp_mu_V', css_class='col-xs-6',), css_class='row-fluid'), Div( Div('sp_rho_0', css_class='col-xs-6'), css_class='row-fluid'), Fieldset('Additional information', Div('comment', css_class='col-xs-6'), css_class='row-fluid'), ) self.helper.add_input(Submit('submit', 'Submit'))
47.419512
110
0.632342
8,887
0.914206
0
0
0
0
0
0
2,926
0.300998
27d78b89ba7b997214a4c7166893ac8b3158ac3f
38,343
py
Python
sgan/models.py
peaceminusones/Group-GAN-GCN
ff0abf90bb830729d082d1fa46e41c749c738895
[ "MIT" ]
2
2021-05-25T09:10:15.000Z
2021-09-25T07:53:35.000Z
sgan/models.py
peaceminusones/Group-GAN-GCN
ff0abf90bb830729d082d1fa46e41c749c738895
[ "MIT" ]
null
null
null
sgan/models.py
peaceminusones/Group-GAN-GCN
ff0abf90bb830729d082d1fa46e41c749c738895
[ "MIT" ]
null
null
null
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def make_mlp(dim_list, activation='relu', batch_norm=True, dropout=0): # make_mlp主要是构造多层的全连接网络,并且根据需求决定激活函数的类型,其参数dim_list是全连接网络各层维度的列表 layers = [] for dim_in, dim_out in zip(dim_list[:-1], dim_list[1:]): layers.append(nn.Linear(dim_in, dim_out)) if batch_norm: layers.append(nn.BatchNorm1d(dim_out)) if activation == 'relu': layers.append(nn.ReLU()) elif activation == 'leakyrelu': layers.append(nn.LeakyReLU()) if dropout > 0: layers.append(nn.Dropout(p=dropout)) return nn.Sequential(*layers) def get_noise(shape, noise_type): # get_noise函数主要是生成特定的噪声 if noise_type == 'gaussian': return torch.randn(*shape).cuda() elif noise_type == 'uniform': return torch.rand(*shape).sub_(0.5).mul_(2.0).cuda() raise ValueError('Unrecognized noise type "%s"' % noise_type) class Encoder(nn.Module): """ Encoder is part of both TrajectoryGenerator and TrajectoryDiscriminator 网络结构主要包括一个全连接层和一个LSTM网络 """ def __init__( self, embedding_dim=64, h_dim=64, mlp_dim=1024, num_layers=1, dropout=0.0 ): super(Encoder, self).__init__() self.mlp_dim = 1024 self.h_dim = h_dim self.embedding_dim = embedding_dim self.num_layers = num_layers # 2*16 self.spatial_embedding = nn.Linear(2, embedding_dim) # input_size: 16 # hidden_size: 32 # num_layers: 1 self.encoder = nn.LSTM(embedding_dim, h_dim, num_layers, dropout=dropout) def init_hidden(self, batch): return ( torch.zeros(self.num_layers, batch, self.h_dim).cuda(), torch.zeros(self.num_layers, batch, self.h_dim).cuda() ) def forward(self, obs_traj): """ Inputs: - obs_traj: Tensor of shape (obs_len, batch, 2) 最原始的输入是这一批输数据所有人的观测数据中的相对位置变化坐标,即当前帧相对于上一帧每个人的坐标变化, 其经过一个2*16的全连接层,全连接层的输入的shape:[obs_len*batch,2],输出:[obs_len*batch,16] Output: - final_h: Tensor of shape (self.num_layers, batch, self.h_dim) """ # Encode observed Trajectory (batch即batch_size个sequence序列中的总人数 batch = obs_traj.size(1) '''经过一个2*16的全连接层,全连接层的输入的shape:[obs_len*batch,2],输出:[obs_len*batch,16]''' # shape: # "obs_traj":                          [obs_len,batch,2] # "obs_traj.contiguous().view(-1, 2)": [obs_len*batch,2] # "obs_traj_embedding": [obs_len*batch,16] obs_traj_embedding = self.spatial_embedding(obs_traj.reshape(-1, 2)) # 经过维度变换变成3维的以符合LSTM网络中输入input的格式要求 # "obs_traj_embedding": [obs_len,batch,16] obs_traj_embedding = obs_traj_embedding.view(-1, batch, self.embedding_dim) # lstm模块初始化h_0, c_0 state_tuple = self.init_hidden(batch) # LSTM,LSTM的输入input的shape为[seq_len,batch,input_size], 然后再把h_0和c_0输入LSTM # 输出数据:output, (h_n, c_n) # output.shape: [seq_length, batch_size, hidden_size] # output[-1]与h_n是相等的 output, state = self.encoder(obs_traj_embedding, state_tuple) # 输出隐藏状态h_t记为final_h final_h = state[0] return final_h class Decoder(nn.Module): """Decoder is part of TrajectoryGenerator""" def __init__( self, seq_len, embedding_dim=64, h_dim=128, mlp_dim=1024, num_layers=1, pool_every_timestep=True, dropout=0.0, bottleneck_dim=1024, activation='relu', batch_norm=True, pooling_type='pool_net', neighborhood_size=2.0, grid_size=8 ): super(Decoder, self).__init__() self.seq_len = seq_len self.mlp_dim = mlp_dim self.h_dim = h_dim self.embedding_dim = embedding_dim self.pool_every_timestep = pool_every_timestep # mlp [2,16] self.spatial_embedding = nn.Linear(2, embedding_dim) # lstm # input_size: 16 # hidden_size: 32 # num_layers: 1 self.decoder = nn.LSTM(embedding_dim, h_dim, num_layers, dropout=dropout) # mlp [32,2] self.hidden2pos = nn.Linear(h_dim, 2) if pool_every_timestep: if pooling_type == 'pool_net': self.pool_net = PoolHiddenNet( embedding_dim=self.embedding_dim, h_dim=self.h_dim, mlp_dim=mlp_dim, bottleneck_dim=bottleneck_dim, activation=activation, batch_norm=batch_norm, dropout=dropout ) mlp_dims = [h_dim + bottleneck_dim, mlp_dim, h_dim] self.mlp = make_mlp( mlp_dims, activation=activation, batch_norm=batch_norm, dropout=dropout ) def forward(self, last_pos, last_pos_rel, state_tuple, seq_start_end): """ Inputs: - last_pos: Tensor of shape (batch, 2) - last_pos_rel: Tensor of shape (batch, 2) - state_tuple: (hh, ch) each tensor of shape (num_layers, batch, h_dim) - seq_start_end: A list of tuples which delimit sequences within batch Output: - pred_traj: tensor of shape (self.seq_len, batch, 2) """ batch = last_pos.size(0) pred_traj_fake_rel = [] decoder_input = self.spatial_embedding(last_pos_rel) decoder_input = decoder_input.view(1, batch, self.embedding_dim) for _ in range(self.seq_len): output, state_tuple = self.decoder(decoder_input, state_tuple) rel_pos = self.hidden2pos(output.view(-1, self.h_dim)) curr_pos = rel_pos + last_pos if self.pool_every_timestep: decoder_h = state_tuple[0] pool_h = self.pool_net(decoder_h, seq_start_end, curr_pos) decoder_h = torch.cat([decoder_h.view(-1, self.h_dim), pool_h], dim=1) decoder_h = self.mlp(decoder_h) decoder_h = torch.unsqueeze(decoder_h, 0) state_tuple = (decoder_h, state_tuple[1]) embedding_input = rel_pos decoder_input = self.spatial_embedding(embedding_input) decoder_input = decoder_input.view(1, batch, self.embedding_dim) pred_traj_fake_rel.append(rel_pos.view(batch, -1)) last_pos = curr_pos pred_traj_fake_rel = torch.stack(pred_traj_fake_rel, dim=0) return pred_traj_fake_rel, state_tuple[0] """ modified by zyl 2021/3/2 """ class GraphAttentionLayer(nn.Module): def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.empty(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.empty(size=(2*out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, h, adj): Wh = torch.mm(h, self.W) a_input = self._prepare_attentional_mechanism_input(Wh) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9e15*torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, Wh) if self.concat: return F.elu(h_prime) else: return h_prime def _prepare_attentional_mechanism_input(self, Wh): N = Wh.size()[0] # 对第0个维度复制N遍 Wh_repeated_in_chunks = Wh.repeat_interleave(N, dim=0) # 对第1个维度复制N遍 Wh_repeated_alternating = Wh.repeat(N, 1) # 在第1维上做全连接操作,得到了(N * N, 2 * out_features)的矩阵 all_combinations_matrix = torch.cat([Wh_repeated_in_chunks, Wh_repeated_alternating], dim=1) return all_combinations_matrix.view(N, N, 2 * self.out_features) class GAT(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads): super(GAT, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False) def forward(self, x, adj): # dropout不改变x的维度 x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) x = F.elu(self.out_att(x, adj)) return F.log_softmax(x, dim=1) class GATEncoder(nn.Module): def __init__(self, n_units, n_heads, dropout, alpha): super(GATEncoder, self).__init__() self.gat_intra = GAT(40, 72, 16, dropout, alpha, n_heads) self.gat_inter = GAT(16, 72, 16, dropout, alpha, n_heads) self.out_embedding = nn.Linear(16*2, 24) def normalize(self, adj, dim): N = adj.size() adj2 = torch.sum(adj, dim) # 对每一行求和 norm = adj2.unsqueeze(1).float() # 扩展张量维度 norm = norm.pow(-1) # 求倒数 norm_adj = adj.mul(norm) # 点乘 return norm_adj def forward(self, h_states, seq_start_end, end_pos, end_group): graph_embeded_data = [] for _, (start, end) in enumerate(seq_start_end): start = start.item() end = end.item() curr_state = h_states[start:end] curr_end_group = end_group[start:end] num_ped = end - start eye_mtx = torch.eye(num_ped, device=end_group.device).bool() A_g = curr_end_group.repeat(1, num_ped) B_g = curr_end_group.transpose(1, 0).repeat(num_ped, 1) M_intra = (A_g == B_g) & (A_g != 0) | eye_mtx A_intra = self.normalize(M_intra, dim=1).cuda() curr_gat_state_intra = self.gat_intra(curr_state, A_intra) R_intra_unique = torch.unique(M_intra, sorted=False, dim=0) n_group = R_intra_unique.size()[0] R_intra_unique.unsqueeze_(1) R_intra = [] for i in range(n_group-1, -1, -1): R_intra.append(R_intra_unique[i]) R_intra = torch.cat(R_intra, dim=0) R_intra = self.normalize(R_intra, dim=1).cuda() curr_gat_group_state_in = torch.matmul(R_intra, curr_gat_state_intra) M_inter = torch.ones((n_group, n_group), device=end_group.device).bool() A_inter = self.normalize(M_inter, dim=1).cuda() curr_gat_group_state_out = self.gat_inter(curr_gat_group_state_in, A_inter) curr_gat_state_inter = torch.matmul(R_intra.T, curr_gat_group_state_out) curr_gat_state = torch.cat([curr_gat_state_intra, curr_gat_state_inter], dim=1) curr_gat_state = self.out_embedding(curr_gat_state) graph_embeded_data.append(curr_gat_state) graph_embeded_data = torch.cat(graph_embeded_data, dim=0) return graph_embeded_data # class BatchMultiHeadGraphAttention(nn.Module): # """ # graph attetion layer(GAL) # """ # def __init__(self, n_head, f_in, f_out, attn_dropout, bias=True): # super(BatchMultiHeadGraphAttention, self).__init__() # self.n_head = n_head # self.f_in = f_in # self.f_out = f_out # self.w = nn.Parameter(torch.Tensor(n_head, f_in, f_out)) # self.a_src = nn.Parameter(torch.Tensor(n_head, f_out, 1)) # self.a_dst = nn.Parameter(torch.Tensor(n_head, f_out, 1)) # self.leaky_relu = nn.LeakyReLU(negative_slope=0.2) # self.softmax = nn.Softmax(dim=-1) # self.dropout = nn.Dropout(attn_dropout) # if bias: # self.bias = nn.Parameter(torch.Tensor(f_out)) # nn.init.constant_(self.bias, 0) # else: # self.register_parameter("bias", None) # nn.init.xavier_uniform_(self.w, gain=1.414) # nn.init.xavier_uniform_(self.a_src, gain=1.414) # nn.init.xavier_uniform_(self.a_dst, gain=1.414) # def forward(self, h, adj): # bs, n = h.size()[:2] # h_prime = torch.matmul(h.unsqueeze(1), self.w) # attn_src = torch.matmul(h_prime, self.a_src) # attn_dst = torch.matmul(h_prime, self.a_dst) # attn = attn_src.expand(-1, -1, -1, n) + attn_dst.expand(-1, -1, -1, n).permute(0, 1, 3, 2) # attn = self.leaky_relu(attn) # attn = self.softmax(attn) # attn = self.dropout(attn) # attn = torch.matmul(torch.squeeze(attn, dim=0), adj) # attn = torch.unsqueeze(attn, 0) # output = torch.matmul(attn, h_prime) # if self.bias is not None: # return output + self.bias, attn # else: # return output, attn # def __repr__(self): # return ( # self.__class__.__name__ # + " (" # + str(self.n_head) # + " -> " # + str(self.f_in) # + " -> " # + str(self.f_out) # + ")" # ) # """ # modified by zyl 2021/2/6 graph attetion network # """ # class GAT(nn.Module): # def __init__(self, n_units, n_heads, dropout=0.2, alpha=0.2): # super(GAT, self).__init__() # self.n_layer = len(n_units) - 1 # self.dropout = dropout # self.layer_stack = nn.ModuleList() # for i in range(self.n_layer): # f_in = n_units[i] * n_heads[i - 1] if i else n_units[i] # self.layer_stack.append( # BatchMultiHeadGraphAttention( # n_heads[i], f_in=f_in, f_out=n_units[i + 1], attn_dropout=dropout # ) # ) # self.norm_list = [ # torch.nn.InstanceNorm1d(32).cuda(), # torch.nn.InstanceNorm1d(64).cuda(), # ] # def forward(self, x, adj): # bs, n = x.size()[:2] # for i, gat_layer in enumerate(self.layer_stack): # # x = self.norm_list[i](x.permute(0, 2, 1)).permute(0, 2, 1) # x, attn = gat_layer(x, adj) # if i + 1 == self.n_layer: # x = x.squeeze(dim=1) # else: # x = F.elu(x.contiguous().view(bs, n, -1)) # x = F.dropout(x, self.dropout, training=self.training) # else: # return x # """ # modified by zyl 2021/2/6 graph attetion network encoder # """ # class GATEncoder(nn.Module): # def __init__(self, n_units, n_heads, dropout, alpha): # super(GATEncoder, self).__init__() # self.gat_intra = GAT([40,72,16], n_heads, dropout, alpha) # self.gat_inter = GAT([16,72,16], n_heads, dropout, alpha) # self.out_embedding = nn.Linear(16*2, 24) # def normalize(self, adj, dim): # N = adj.size() # adj2 = torch.sum(adj, dim) # 对每一行求和 # norm = adj2.unsqueeze(1).float() # 扩展张量维度 # norm = norm.pow(-1) # 求倒数 # norm_adj = adj.mul(norm) # 点乘 # return norm_adj # def forward(self, obs_traj_embedding, seq_start_end, end_pos, end_group): # graph_embeded_data = [] # for start, end in seq_start_end.data: # curr_seq_embedding_traj = obs_traj_embedding[:, start:end, :] # h_states = torch.squeeze(obs_traj_embedding, dim=0) # num_ped = end - start # curr_end_group = end_group[start:end] # eye_mtx = torch.eye(num_ped, device=end_group.device).bool() # A_g = curr_end_group.repeat(1, num_ped) # B_g = curr_end_group.transpose(1, 0).repeat(num_ped, 1) # M_intra = (A_g == B_g) & (A_g != 0) | eye_mtx # A_intra = self.normalize(M_intra, dim=1).cuda() # curr_seq_graph_intra = self.gat_intra(curr_seq_embedding_traj, A_intra) # # print("curr_seq_embedding_traj:", curr_seq_embedding_traj.size()) # # print("curr_seq_graph_intra:", curr_seq_graph_intra.size()) # R_intra_unique = torch.unique(M_intra, sorted=False, dim=0) # n_group = R_intra_unique.size()[0] # R_intra_unique.unsqueeze_(1) # R_intra = [] # for i in range(n_group-1, -1, -1): # R_intra.append(R_intra_unique[i]) # R_intra = torch.cat(R_intra, dim=0) # R_intra = self.normalize(R_intra, dim=1).cuda() # curr_seq_graph_state_in = torch.matmul(R_intra, torch.squeeze(curr_seq_graph_intra, dim=0)) # curr_seq_graph_state_in = torch.unsqueeze(curr_seq_graph_state_in, 0) # M_inter = torch.ones((n_group, n_group), device=end_group.device).bool() # A_inter = self.normalize(M_inter, dim=1).cuda() # curr_seq_graph_out = self.gat_inter(curr_seq_graph_state_in, A_inter) # curr_seq_graph_inter = torch.matmul(R_intra.T, torch.squeeze(curr_seq_graph_out, dim=0)) # curr_seq_graph_inter = torch.unsqueeze(curr_seq_graph_inter, 0) # curr_gat_state = torch.cat([curr_seq_graph_intra, curr_seq_graph_inter],dim=2) # curr_gat_state = torch.squeeze(curr_gat_state, dim=0) # curr_gat_state = self.out_embedding(curr_gat_state) # curr_gat_state = torch.unsqueeze(curr_gat_state, 0) # graph_embeded_data.append(curr_gat_state) # graph_embeded_data = torch.cat(graph_embeded_data, dim=1) # return graph_embeded_data class PoolHiddenNet(nn.Module): """Pooling module as proposed in our paper""" def __init__( self, embedding_dim=64, h_dim=64, mlp_dim=1024, bottleneck_dim=1024, activation='relu', batch_norm=True, dropout=0.0 ): super(PoolHiddenNet, self).__init__() self.mlp_dim = 1024 self.h_dim = h_dim self.bottleneck_dim = bottleneck_dim self.embedding_dim = embedding_dim # 16 mlp_pre_dim = embedding_dim + h_dim mlp_pre_pool_dims = [mlp_pre_dim, 512, bottleneck_dim] # mlp_pre_pool_dims: [48,512,8] # mlp: 2*16 self.spatial_embedding = nn.Linear(2, embedding_dim) # mlp: 48*512*8 self.mlp_pre_pool = make_mlp( mlp_pre_pool_dims, activation=activation, batch_norm=batch_norm, dropout=dropout) def repeat(self, tensor, num_reps): """ Inputs: -tensor: 2D tensor of any shape -num_reps: Number of times to repeat each row Outpus: -repeat_tensor: Repeat each row such that: R1, R1, R2, R2 """ col_len = tensor.size(1) tensor = tensor.unsqueeze(dim=1).repeat(1, num_reps, 1) tensor = tensor.view(-1, col_len) return tensor def forward(self, h_states, seq_start_end, end_pos): """ Inputs: - h_states: Tensor of shape (num_layers, batch, h_dim) 即encoder的return:final_h - seq_start_end: A list of tuples which delimit sequences within batch - end_pos: Tensor of shape (batch, 2) Output: - pool_h: Tensor of shape (batch, bottleneck_dim) """ pool_h = [] for _, (start, end) in enumerate(seq_start_end): start = start.item() end = end.item() num_ped = end - start # print("num_ped:", num_ped) # print("h_states:", h_states.shape) # h_states == final_h (即这里h_states就是LSTM的输出) # h_states([1,batch,32]) -> cur_hidden([N,32]) curr_hidden = h_states.view(-1, self.h_dim)[start:end] # print("curr_hidden: ", curr_hidden.shape) # Repeat -> H1, H2, H1, H2 # curr_hidden([N,32]) -> curr_hidden_1([N*N,32]) curr_hidden_1 = curr_hidden.repeat(num_ped, 1) # print("curr_hidden_1: ", curr_hidden_1.shape) # Repeat position -> P1, P2, P1, P2 curr_end_pos = end_pos[start:end] curr_end_pos_1 = curr_end_pos.repeat(num_ped, 1) # Repeat position -> P1, P1, P2, P2 curr_end_pos_2 = self.repeat(curr_end_pos, num_ped) # curr_rel_pos: [N*N,2] curr_rel_pos = curr_end_pos_1 - curr_end_pos_2 # self.spatial_embedding(mlp): 2*16 # curr_rel_embedding: [N*N,16] curr_rel_embedding = self.spatial_embedding(curr_rel_pos) # mlp_h_inpur: [N*N,48] mlp_h_input = torch.cat([curr_rel_embedding, curr_hidden_1], dim=1) # curr_pool_h: [N*N,8] curr_pool_h = self.mlp_pre_pool(mlp_h_input) # curr_pool_h: [N,8] # print(curr_pool_h.view(num_ped, num_ped, -1)[0]) curr_pool_h = curr_pool_h.view(num_ped, num_ped, -1).max(1)[0] # [N,N,8] -->[n,8] # print(curr_pool_h) # print("curr_pool_h:", curr_pool_h.shape) pool_h.append(curr_pool_h) # pool_h: [batch,8]: a pooled tensor Pi for each person pool_h = torch.cat(pool_h, dim=0) # print("pool_h:", pool_h.shape) return pool_h class GCN(nn.Module): """GCN module""" def __init__(self, input_dim=48, hidden_dim=72, out_dim=8, gcn_layers=2): super(GCN, self).__init__() self.X_dim = input_dim self.hidden_dim = hidden_dim self.out_dim = out_dim self.gcn_layers = gcn_layers # graph convolution layer self.W = torch.nn.ParameterList() for i in range(self.gcn_layers): if i == 0: self.W.append(nn.Parameter(torch.randn(self.X_dim, self.hidden_dim))) elif i == self.gcn_layers-1: self.W.append(nn.Parameter(torch.randn(self.hidden_dim, self.out_dim))) else: self.W.append(nn.Parameter(torch.randn(self.hidden_dim, self.hidden_dim))) def forward(self, A, X): next_H = H = X for i in range(self.gcn_layers): next_H = F.relu(torch.matmul(torch.matmul(A, H), self.W[i])) H = next_H feat = H return feat class GCNModule(nn.Module): """group information aggregation with GCN layer""" def __init__( self, input_dim=40, hidden_dim=72, out_dim=16, gcn_layers=2, final_dim=24 ): super(GCNModule, self).__init__() # GCN_intra: 40*72*16 self.gcn_intra = GCN( input_dim=input_dim, hidden_dim=hidden_dim, out_dim=out_dim, gcn_layers=gcn_layers) # GCN_inter: 16*72*16 self.gcn_inter = GCN( input_dim=16, hidden_dim=hidden_dim, out_dim=out_dim, gcn_layers=gcn_layers) # mlp:16*8 self.out_embedding = nn.Linear(out_dim*2, final_dim) def normalize(self, adj, dim): N = adj.size() adj2 = torch.sum(adj, dim) # 对每一行求和 norm = adj2.unsqueeze(1).float() # 扩展张量维度 norm = norm.pow(-1) # 求倒数 norm_adj = adj.mul(norm) # 点乘 return norm_adj def repeat(self, tensor, num_reps): """ Inputs: -tensor: 2D tensor of any shape -num_reps: Number of times to repeat each row Outpus: -repeat_tensor: Repeat each row such that: R1, R1, R2, R2 """ col_len = tensor.size(1) tensor = tensor.unsqueeze(dim=1).repeat(1, num_reps, 1) tensor = tensor.view(-1, col_len) return tensor def forward(self, h_states, seq_start_end, end_pos, end_group): """ Inputs: - h_states: Tensor of shape (batch, h_dim) 即encoder+pooling net的return - seq_start_end: A list of tuples which delimit sequences within batch - end_pos: Tensor of shape (batch, 2) - end_group: group labels at the last time step (t_obs); shape: (batch, 1) Output: - gcn_aggre: Tensor of shape (batch, bottleneck_dim) """ gcn_aggre = [] for _, (start, end) in enumerate(seq_start_end): start = start.item() end = end.item() num_ped = end - start # num_ped: number of pedestrians in the scene # curr_state: [N,40] curr_state = h_states[start:end] # get the modulated adjacency matrix arrays # Generate masks from the group labels # labels can only be used to distinguish groups at a timestep. # var: end_group; def: group labels at the last time step (t_obs); shape: (batch, 1) # clip one onservation-prediction window out of multiple windows. curr_end_group = end_group[start:end] # get the coherency adjacency, dimension: (N, N) # coherency mask is shared by all pedestrians in the scene eye_mtx = torch.eye(num_ped, device=end_group.device).bool() A_g = curr_end_group.repeat(1, num_ped) B_g = curr_end_group.transpose(1, 0).repeat(num_ped, 1) # M_intra: [N,N] M_intra = (A_g == B_g) & (A_g != 0) | eye_mtx # get the modulated normalized adjacency matrix arrays # normalized M_intra: [N,N] A_intra = self.normalize(M_intra, dim=1).cuda() """gcn_intra""" # curr_gcn_state_intra: [N,16] (GCN:[40,72,16]) curr_gcn_state_intra = self.gcn_intra(A_intra, curr_state) """GPool ==================================================================""" # M_intra: [N,N] # R_intra_unique: [M,N] R_intra_unique = torch.unique(M_intra, sorted=False, dim=0) # group 的数量 n_group = R_intra_unique.size()[0] R_intra_unique.unsqueeze_(1) # 增加一维 # 从下到上翻转R_intra_unique R_intra = [] for i in range(n_group-1, -1, -1): R_intra.append(R_intra_unique[i]) R_intra = torch.cat(R_intra, dim=0) # 归一化 R_intra = self.normalize(R_intra, dim=1).cuda() # 提取群组部分 [M,N]*[N,16] # curr_gcn_group_state: [M,16] curr_gcn_group_state_in = torch.matmul(R_intra, curr_gcn_state_intra) """==========================================================================""" """gcn_inter""" # M_inter: [M,M] M_inter = torch.ones((n_group, n_group), device=end_group.device).bool() # normalize A_inter = self.normalize(M_inter, dim=1).cuda() # M_inter_norm: [M,M] # curr_gcn_group_state_in: [M,16] (GCN:[16,72,16]) # curr_gcn_group_state_out: [M,16] curr_gcn_group_state_out = self.gcn_inter(A_inter, curr_gcn_group_state_in) """GUnpool=================================================================""" # [N,M]*[M,16] # curr_gcn_state_inter: [N,16] curr_gcn_state_inter = torch.matmul(R_intra.T, curr_gcn_group_state_out) """=========================================================================""" # curr_gcn_state: [N,32] curr_gcn_state = torch.cat([curr_gcn_state_intra, curr_gcn_state_inter], dim=1) # curr_gcn_state: [N,24] curr_gcn_state = self.out_embedding(curr_gcn_state) gcn_aggre.append(curr_gcn_state) # gcn_aggre: [batch,24]: gcn_aggre = torch.cat(gcn_aggre, dim=0) return gcn_aggre class TrajectoryGenerator(nn.Module): def __init__( self, obs_len, pred_len, embedding_dim=64, encoder_h_dim=64, decoder_h_dim=128, mlp_dim=1024, num_layers=1, noise_dim=(0, ), noise_type='gaussian', noise_mix_type='ped', pooling_type=None, pool_every_timestep=True, dropout=0.0, bottleneck_dim=1024, activation='relu', batch_norm=True, neighborhood_size=2.0, grid_size=8, n_units=[32,16,32], n_heads=4, dropout1=0, alpha=0.2, ): super(TrajectoryGenerator, self).__init__() if pooling_type and pooling_type.lower() == 'none': pooling_type = None self.obs_len = obs_len self.pred_len = pred_len self.mlp_dim = mlp_dim self.encoder_h_dim = encoder_h_dim self.decoder_h_dim = decoder_h_dim self.embedding_dim = embedding_dim self.noise_dim = noise_dim self.num_layers = num_layers self.noise_type = noise_type self.noise_mix_type = noise_mix_type self.pooling_type = pooling_type self.noise_first_dim = 0 self.pool_every_timestep = pool_every_timestep self.bottleneck_dim = 1024 self.encoder = Encoder( embedding_dim=embedding_dim, h_dim=encoder_h_dim, mlp_dim=mlp_dim, num_layers=num_layers, dropout=dropout ) self.decoder = Decoder( pred_len, embedding_dim=embedding_dim, h_dim=decoder_h_dim, mlp_dim=mlp_dim, num_layers=num_layers, pool_every_timestep=pool_every_timestep, dropout=dropout, bottleneck_dim=bottleneck_dim, activation=activation, batch_norm=batch_norm, pooling_type=pooling_type, grid_size=grid_size, neighborhood_size=neighborhood_size ) if pooling_type == 'pool_net': self.pool_net = PoolHiddenNet( embedding_dim=self.embedding_dim, h_dim=encoder_h_dim, mlp_dim=mlp_dim, bottleneck_dim=bottleneck_dim, activation=activation, batch_norm=batch_norm ) if self.noise_dim is None: self.noise_dim = None elif self.noise_dim[0] == 0: self.noise_dim = None else: self.noise_first_dim = noise_dim[0] # gatencoder self.gatencoder = GATEncoder( n_units=n_units, n_heads=n_heads, dropout=dropout1, alpha=alpha ) # Decoder Hidden if pooling_type: input_dim = encoder_h_dim + bottleneck_dim else: input_dim = encoder_h_dim # if self.mlp_decoder_needed(): # mlp_decoder_context_dims = [input_dim, mlp_dim, decoder_h_dim - self.noise_first_dim] # self.mlp_decoder_context = make_mlp( # mlp_decoder_context_dims, # activation=activation, # batch_norm=batch_norm, # dropout=dropout # ) self.gcn_module = GCNModule( input_dim=input_dim, hidden_dim=72, out_dim=16, gcn_layers=2, final_dim=decoder_h_dim - self.noise_first_dim ) def add_noise(self, _input, seq_start_end, user_noise=None): """ Inputs: - _input: Tensor of shape (_, decoder_h_dim - noise_first_dim) - seq_start_end: A list of tuples which delimit sequences within batch. - user_noise: Generally used for inference when you want to see relation between different types of noise and outputs. Outputs: - decoder_h: Tensor of shape (_, decoder_h_dim) """ if not self.noise_dim: return _input if self.noise_mix_type == 'global': noise_shape = (seq_start_end.size(0), ) + self.noise_dim else: noise_shape = (_input.size(0), ) + self.noise_dim if user_noise is not None: z_decoder = user_noise else: z_decoder = get_noise(noise_shape, self.noise_type) if self.noise_mix_type == 'global': _list = [] for idx, (start, end) in enumerate(seq_start_end): start = start.item() end = end.item() _vec = z_decoder[idx].view(1, -1) _to_cat = _vec.repeat(end - start, 1) _list.append(torch.cat([_input[start:end], _to_cat], dim=1)) decoder_h = torch.cat(_list, dim=0) return decoder_h decoder_h = torch.cat([_input, z_decoder], dim=1) return decoder_h def mlp_decoder_needed(self): if ( self.noise_dim or self.pooling_type or self.encoder_h_dim != self.decoder_h_dim ): return True else: return False # modified by zyl 2021/1/12 def forward(self, obs_traj, obs_traj_rel, seq_start_end, obs_traj_g, user_noise=None): """ Inputs: - obs_traj: Tensor of shape (obs_len, batch, 2) - obs_traj_rel: Tensor of shape (obs_len, batch, 2) - seq_start_end: A list of tuples which delimit sequences within batch. - user_noise: Generally used for inference when you want to see relation between different types of noise and outputs. Output: - pred_traj_rel: Tensor of shape (self.pred_len, batch, 2) """ batch = obs_traj_rel.size(1) # Encode seq final_encoder_h = self.encoder(obs_traj_rel) # Pool States if self.pooling_type: end_pos = obs_traj[-1, :, :] pool_h = self.pool_net(final_encoder_h, seq_start_end, end_pos) # Construct input hidden states for decoder # final_encoder_h: [batch, 32] # pool_h: [batch, 8] # mlp_decoder_context_input: [batch, 40] mlp_decoder_context_input = torch.cat([final_encoder_h.view(-1, self.encoder_h_dim), pool_h], dim=1) else: mlp_decoder_context_input = final_encoder_h.view(-1, self.encoder_h_dim) # end_pos = obs_traj[-1, :, :] # end_group = obs_traj_g[-1, :, :] # mlp_decoder_context_input = torch.unsqueeze(mlp_decoder_context_input, 0) # mlp_decoder_context_input = self.gatencoder(mlp_decoder_context_input, seq_start_end, end_pos, end_group) # mlp_decoder_context_input = torch.squeeze(mlp_decoder_context_input, dim=0) # Add Noise if self.mlp_decoder_needed(): # # noise_input = self.mlp_decoder_context(mlp_decoder_context_input) # end_pos = obs_traj[-1, :, :] # # modified by zyl 2021/1/12 9:56 # end_group = obs_traj_g[-1, :, :] # noise_input = self.gcn_module(mlp_decoder_context_input, seq_start_end, end_pos, end_group) end_pos = obs_traj[-1, :, :] end_group = obs_traj_g[-1, :, :] noise_input = self.gatencoder(mlp_decoder_context_input, seq_start_end, end_pos, end_group) else: noise_input = mlp_decoder_context_input decoder_h = self.add_noise(noise_input, seq_start_end, user_noise=user_noise) decoder_h = torch.unsqueeze(decoder_h, 0) decoder_c = torch.zeros(self.num_layers, batch, self.decoder_h_dim).cuda() state_tuple = (decoder_h, decoder_c) last_pos = obs_traj[-1] last_pos_rel = obs_traj_rel[-1] # Predict Trajectory decoder_out = self.decoder( last_pos, last_pos_rel, state_tuple, seq_start_end, ) pred_traj_fake_rel, final_decoder_h = decoder_out return pred_traj_fake_rel class TrajectoryDiscriminator(nn.Module): def __init__( self, obs_len, pred_len, embedding_dim=64, h_dim=64, mlp_dim=1024, num_layers=1, activation='relu', batch_norm=True, dropout=0.0, d_type='local' ): super(TrajectoryDiscriminator, self).__init__() self.obs_len = obs_len self.pred_len = pred_len self.seq_len = obs_len + pred_len # self.mlp_dim = mlp_dim self.h_dim = h_dim self.d_type = d_type self.encoder = Encoder( embedding_dim=embedding_dim, # 16 h_dim=h_dim, # 48 mlp_dim=mlp_dim, # 64 num_layers=num_layers, dropout=dropout ) if d_type == 'global': mlp_pool_dims = [h_dim + embedding_dim, mlp_dim, h_dim] self.pool_net = PoolHiddenNet( embedding_dim=embedding_dim, h_dim=h_dim, mlp_dim=mlp_pool_dims, bottleneck_dim=h_dim, activation=activation, batch_norm=batch_norm ) real_classifier_dims = [h_dim, mlp_dim, 1] self.real_classifier = make_mlp( real_classifier_dims, activation=activation, batch_norm=batch_norm, dropout=dropout ) def forward(self, traj, traj_rel, seq_start_end=None): """ Inputs: - traj: Tensor of shape (obs_len + pred_len, batch, 2) - traj_rel: Tensor of shape (obs_len + pred_len, batch, 2) - seq_start_end: A list of tuples which delimit sequences within batch Output: - scores: Tensor of shape (batch,) with real/fake scores """ final_h = self.encoder(traj_rel) # Note: In case of 'global' option we are using start_pos as opposed to # end_pos. The intution being that hidden state has the whole # trajectory and relative postion at the start when combined with # trajectory information should help in discriminative behavior. if self.d_type == 'local': classifier_input = final_h.squeeze() else: classifier_input = self.pool_net(final_h.squeeze(), seq_start_end, traj[0]) scores = self.real_classifier(classifier_input) return scores
38.652218
126
0.586235
31,389
0.802582
0
0
0
0
0
0
15,178
0.388085
27d7ec475999a81872908a78c697615fa5aa0984
4,258
py
Python
netflow/mkipfixtypes/ipfixtypes.py
kohler/click-packages
cec70da7cf460548ef08f1ddad6924db29d5c0c5
[ "MIT" ]
13
2015-02-26T23:12:09.000Z
2021-04-18T04:37:12.000Z
netflow/mkipfixtypes/ipfixtypes.py
kohoumas/click-packages
6bb5c4ba286e5dbc74efd1708921d530425691f6
[ "MIT" ]
null
null
null
netflow/mkipfixtypes/ipfixtypes.py
kohoumas/click-packages
6bb5c4ba286e5dbc74efd1708921d530425691f6
[ "MIT" ]
7
2015-08-25T09:29:41.000Z
2021-04-18T04:37:13.000Z
#!/usr/bin/python # # Generates ipfixtypes.hh from IPFIX spec and schema # # Copyright (c) 2006 Mazu Networks, Inc. # # $Id: ipfixtypes.py,v 1.1 2006/05/12 16:43:44 eddietwo Exp $ # import xml.dom.minidom import sys import time class IPFIXField: """ Represents a <field> element in the IPFIX specification. Access attributes with getattr(), e.g., field.name or getattr(field, 'name') field.dataType or getattr(field, 'dataType') """ def __init__(self, node): self.node = node def __getattr__(self, name): return self.node.getAttribute(name) class IPFIXSpecification: """ Represents all <field> elements in the IPFIX specification. """ def __init__(self, file = None): dom = xml.dom.minidom.parse(file) self.fields = [] for fieldDefinitions in dom.getElementsByTagName('fieldDefinitions'): self.fields += [IPFIXField(field) for field in fieldDefinitions.getElementsByTagName('field')] self.types = [] for simpleType in dom.getElementsByTagName('simpleType'): if simpleType.getAttribute('name') == "dataType": for enumeration in simpleType.getElementsByTagName('enumeration'): self.types.append(enumeration.getAttribute('value')) def fieldDefinitions(self): """ Returns all fields declared in the <fieldDefinitions> section of the specification. """ return self.fields def dataTypes(self): """ Returns all dataTypes declared in the <schema> section of the specification. """ return self.types def main(): if len(sys.argv) < 2: print "Usage: %s [OPTION]... [FILE]..." % sys.argv[0] sys.exit(0) dataTypes = {} fieldTypes = {} for file in sys.argv[1:]: spec = IPFIXSpecification(file) for field in spec.fieldDefinitions(): if dataTypes.has_key(field.dataType): dataTypes[field.dataType].append(field.name) else: dataTypes[field.dataType] = [field.name] fieldTypes[int(field.fieldId)] = field.name for dataType in spec.dataTypes(): if not dataTypes.has_key(dataType): dataTypes[dataType] = [] # IPFIX_unsigned8, data_types = ["IPFIX_%s" % dataType for dataType in dataTypes] data_types = ",\n ".join(data_types) # IPFIX_octetDeltaCount = 1, field_types = fieldTypes.items() field_types.sort() field_types = ["IPFIX_%s = %d" % (name, fieldId) for fieldId, name in field_types] field_types = ",\n ".join(field_types) # case IPFIX_octetDeltaCount: # case IPFIX_packetDeltaCount: # ... # return IPFIX_unsigned64; ipfix_datatypes = [] for dataType, names in dataTypes.iteritems(): if names: ipfix_datatypes += ["case IPFIX_%s:" % name for name in names] ipfix_datatypes.append(" return IPFIX_%s;" % dataType) ipfix_datatypes = "\n ".join(ipfix_datatypes) # case IPFIX_octetDeltaCount: return "octetDeltaCount"; ipfix_names = ["case IPFIX_%s: return \"%s\";" % \ (name, name) for name in fieldTypes.values()] ipfix_names = "\n ".join(ipfix_names) # else if (strcmp(name, "octetDeltaCount") == 0) { return IPFIX_octetDeltaCount; } ipfix_types = ["else if (strcmp(name, \"%s\") == 0) { return IPFIX_%s; }" % \ (name, name) for name in fieldTypes.values()] ipfix_types = "\n ".join(ipfix_types) date = time.asctime() print """ // DO NOT EDIT. Generated at %(date)s. #ifndef IPFIXTYPES_HH #define IPFIXTYPES_HH CLICK_DECLS enum IPFIX_dataType { IPFIX_unknown = 0, %(data_types)s }; enum IPFIX_fieldType { %(field_types)s }; static inline IPFIX_dataType ipfix_datatype(uint16_t type) { switch (type) { %(ipfix_datatypes)s } return IPFIX_unknown; } static inline const char * ipfix_name(uint16_t type) { switch (type) { %(ipfix_names)s } return "unknown"; } static inline uint16_t ipfix_type(const char *name) { if (0) { } %(ipfix_types)s else { return 0; } } CLICK_ENDDECLS #endif """.strip() % locals() if __name__ == '__main__': main()
26.447205
106
0.625881
1,423
0.334194
0
0
0
0
0
0
1,846
0.433537
27d8e4bb5627f304929e5b7f3fa1b41d586d410e
694
py
Python
core_lib/web_helpers/constants_media_type.py
shubham-surya/core-lib
543db80706746a937e5ed16bd50f2de8d58b32e4
[ "MIT" ]
null
null
null
core_lib/web_helpers/constants_media_type.py
shubham-surya/core-lib
543db80706746a937e5ed16bd50f2de8d58b32e4
[ "MIT" ]
9
2021-03-11T02:29:17.000Z
2022-03-22T19:01:18.000Z
core_lib/web_helpers/constants_media_type.py
shubham-surya/core-lib
543db80706746a937e5ed16bd50f2de8d58b32e4
[ "MIT" ]
2
2022-01-27T11:19:00.000Z
2022-02-11T11:33:09.000Z
import enum class MediaType(enum.Enum): MEDIA_TYPE_WILDCARD = "*" WILDCARD = "*/*" APPLICATION_XML = "application/xml" APPLICATION_ATOM_XML = "application/atom+xml" APPLICATION_XHTML_XML = "application/xhtml+xml" APPLICATION_SVG_XML = "application/svg+xml" APPLICATION_JSON = "application/json" APPLICATION_FORM_URLENCODED = "application/x-www-form-urlencoded" MULTIPART_FORM_DATA = "multipart/form-data" APPLICATION_OCTET_STREAM = "application/octet-stream" TEXT_PLAIN = "text/plain" TEXT_XML = "text/xml" TEXT_HTML = "text/html" SERVER_SENT_EVENTS = "text/event-stream" APPLICATION_JSON_PATCH_JSON = "application/json-patch+json"
34.7
69
0.729107
679
0.978386
0
0
0
0
0
0
272
0.391931
27da1fb06b835a7c7c1c2845d17975f0ff1c9b74
2,940
py
Python
pylons-emlo/emlo/workspace/indexing/src/conversionhelper.py
culturesofknowledge/emlo-server
8a88ca98a5211086195793e4bed5960550638936
[ "MIT" ]
null
null
null
pylons-emlo/emlo/workspace/indexing/src/conversionhelper.py
culturesofknowledge/emlo-server
8a88ca98a5211086195793e4bed5960550638936
[ "MIT" ]
null
null
null
pylons-emlo/emlo/workspace/indexing/src/conversionhelper.py
culturesofknowledge/emlo-server
8a88ca98a5211086195793e4bed5960550638936
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ''' Created on 24 Aug 2010 @author: Matthew Wilcoxson functions convert from one value to another in the form: def conversion(value): #do something return new_value ''' import time def convert_to_rdf_date(value): date_check = value # rdf uses format '1651-12-31T00:00:00Z' or '1651-12-31T00:00:00.999Z' # Recognisers dates in the format: # * 'YYYY-M-D' to 'YYYY-MM-DD' # * 'YYYY-MM-DD HH:MM:SS' # * 'YYYY-MM-DD HH:MM:SS.M' to 'YYYY-MM-DD HH:MM:SS.MMMMMMM' d = None date_length = len( date_check ) if 8 <= date_length <= 10 : d = time.strptime( date_check, '%Y-%m-%d') elif date_length == 19 : d = time.strptime( date_check, '%Y-%m-%d %H:%M:%S') elif 20 <= date_length <= 26 : d = time.strptime( date_check[:23], '%Y-%m-%d %H:%M:%S.%f') if d == None : raise SyntaxError( "Value '" + value +"' can not be converted to a date") # Annoyingly time.strftime does not cope with years less than 1900, so I'm forced to use this: new_value = "%(year)d-%(month)02d-%(day)02dT%(hour)02d:%(minute)02d:%(second)02dZ" % \ { 'year':d.tm_year, 'month':d.tm_mon, 'day':d.tm_mday, 'hour':d.tm_hour, 'minute':d.tm_min, 'second':d.tm_sec } return new_value def convert_to_solr_date(value): # Just use rdf one! return convert_to_rdf_date(value) def convert_to_rdf_boolean( value ): value = value.lower() if value == '1' or value == 'y' or value == 'true' : new_value = 'true' elif value == '0' or value == 'n' or value == 'false' : new_value = 'false' else: raise SyntaxError( "Value '" + value + "' can not be converted to a boolean") return new_value def convert_to_solr_boolean(value): # Just use rdf one! return convert_to_rdf_boolean(value) def convert_people_gender( value ): valuelow = value.lower() if valuelow == 'male' or valuelow == 'm' or valuelow == 'man' or valuelow == 'men': new_value = "male" elif valuelow == 'female' or valuelow == 'f' or valuelow == 'woman' or valuelow == 'women': new_value = "female" else: raise SyntaxError( "Value '" + value + "' can not be converted to a gender" ) return new_value def convert_to_local_url( value ) : value = value.replace( 'http://sers018.sers.ox.ac.uk/history/cofk/union.php?iwork_id=', '/profile?iwork_id=' ) value = value.replace( 'http://sers018.sers.ox.ac.uk/history/cofk/selden_end.php?iwork_id=', '/profile?iwork_id=' ) return value def convert_manifestation_type( value ): if value == 'Scribal copy' : return "Manuscript copy" return value def convert_manifestation_opened( value ): if value == 'o' : return "Opened" elif value == 'p' : return "Partially Opened" elif value == 'u' : return "Unopened" return "Unknown:"+value
30
119
0.611905
0
0
0
0
0
0
0
0
1,200
0.408163
27de194719485c100a81b84fd59429f4b32b78e0
992
py
Python
modules/wxpy-index/wxpy_index/version.py
john04047210/mira_wepy_server
385b8561e63f9164102e60681e2704c55fec0577
[ "MIT" ]
1
2018-05-22T11:25:59.000Z
2018-05-22T11:25:59.000Z
modules/wxpy-index/wxpy_index/version.py
john04047210/mira_wepy_server
385b8561e63f9164102e60681e2704c55fec0577
[ "MIT" ]
null
null
null
modules/wxpy-index/wxpy_index/version.py
john04047210/mira_wepy_server
385b8561e63f9164102e60681e2704c55fec0577
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2018 QiaoPeng. # # Invenio is free software; you can redistribute it # and/or modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the # Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, # MA 02111-1307, USA. """Version information for Wxpy-Index. This file is imported by ``wxpy_index.__init__``, and parsed by ``setup.py``. """ from __future__ import absolute_import, print_function __version__ = '0.1.0.dev20180000'
33.066667
72
0.746976
0
0
0
0
0
0
0
0
899
0.90625
27dfaf52615924607a73e76ca9bec8a17c8c3880
11,305
py
Python
estimate.py
DS3Lab/feebee
eb210d07a7f9956ca2d0681ccf446330c8427a8b
[ "Apache-2.0" ]
1
2022-03-24T06:15:37.000Z
2022-03-24T06:15:37.000Z
estimate.py
DS3Lab/feebee
eb210d07a7f9956ca2d0681ccf446330c8427a8b
[ "Apache-2.0" ]
null
null
null
estimate.py
DS3Lab/feebee
eb210d07a7f9956ca2d0681ccf446330c8427a8b
[ "Apache-2.0" ]
1
2021-12-20T12:11:55.000Z
2021-12-20T12:11:55.000Z
from absl import app from absl import flags from absl import logging import csv import importlib import numpy as np import os.path as path import random from sklearn.model_selection import train_test_split import time from transformations.reader.matrix import test_argument_and_file, load_and_log import transformations.label_noise as label_noise import methods.knn as knn import methods.knn_extrapolate as knn_extrapolate import methods.ghp as ghp import methods.kde as kde import methods.onenn as onenn import methods.lr_model as lr_model FLAGS = flags.FLAGS flags.DEFINE_string("path", ".", "Path to the matrices directory") flags.DEFINE_string("features_train", None, "Name of the train features numpy matrix exported file (npy)") flags.DEFINE_string("features_test", None, "Name of the test features numpy matrix exported file (npy)") flags.DEFINE_string("labels_train", None, "Name of the train labels numpy matrix exported file (npy)") flags.DEFINE_string("labels_test", None, "Name of the test labels numpy matrix exported file (npy)") flags.DEFINE_list("noise_levels", [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], "Run at different noise levels") flags.DEFINE_integer("noise_runs", 5, "Number of runs for different noise levels") flags.DEFINE_string("output_file", None, "File to write the output in CSV format (including headers)") flags.DEFINE_bool("output_overwrite", True, "Writes (if True) or appends (if False) to the specified output file if any") flags.DEFINE_enum("method", None, ["knn", "knn_loo", "knn_extrapolate", "ghp", "kde_knn_loo", "kde", "onenn", "lr_model"], "Method to estimate the bayes error (results in either 1 value or a lower and upper bound)") def _get_csv_row(variant, run, samples, noise, results, time): return {'method': FLAGS.method, 'variant': variant, 'run': run, 'samples': samples, 'noise': noise, 'results': results, 'time': time} def _write_result(rows): writeheader = False if FLAGS.output_overwrite or not path.exists(FLAGS.output_file): writeheader = True with open(FLAGS.output_file, mode='w+' if FLAGS.output_overwrite else 'a+') as f: fieldnames = ['method', 'variant', 'run', 'samples', 'noise', 'results', 'time'] writer = csv.DictWriter(f, fieldnames=fieldnames) if writeheader: writer.writeheader() for r in rows: writer.writerow(r) def estimate_from_split_matrices(eval_fn): test_argument_and_file(FLAGS.path, "features_train") test_argument_and_file(FLAGS.path, "features_test") test_argument_and_file(FLAGS.path, "labels_train") test_argument_and_file(FLAGS.path, "labels_test") train_features, dim_train, samples_train = load_and_log(FLAGS.path, "features_train") test_features, dim_test, samples_test = load_and_log(FLAGS.path, "features_test") if dim_test != dim_train: raise AttributeError("Train and test features do not have the same dimension!") train_labels, dim, samples_train_labels = load_and_log(FLAGS.path, "labels_train") if dim != 1: raise AttributeError("Train labels file does not point to a vector!") if samples_train_labels != samples_train: raise AttributeError("Train features and labels files does not have the same amount of samples!") test_labels, _, samples_test_labels = load_and_log(FLAGS.path, "labels_test") if dim != 1: raise AttributeError("Test labels file does not point to a vector!") if samples_test_labels != samples_test: raise AttributeError("Test features and labels files does not have the same amount of samples!") logging.log(logging.DEBUG, "Start full estimation with method '{}'".format(FLAGS.method)) start = time.time() result_full = eval_fn(train_features, test_features, train_labels, test_labels) end = time.time() logging.log(logging.DEBUG, "Method '{}' executed in {} seconds".format(FLAGS.method, end - start)) logging.log(logging.INFO, "Full train and test set: {}".format(result_full)) if FLAGS.noise_levels and FLAGS.noise_runs > 0: result_rows = [] for run in range(FLAGS.noise_runs): if FLAGS.output_file: rows = [_get_csv_row(k, run, samples_train, 0.0, v, (end - start) / float(len(result_full))) for k, v in result_full.items()] result_rows.extend(rows) logging.log(logging.DEBUG, "Start noisy run {} out of {}".format(run+1, FLAGS.noise_runs)) run_start = time.time() for noise_level in [float(x) for x in FLAGS.noise_levels]: if noise_level > 1.0 or noise_level <= 0.0: raise AttributeError("Noise level {} has to be bigger than 0 and not larger than 1!".format(noise_level)) logging.log(logging.DEBUG, "Start noise level {} for run {} out of {}".format(noise_level, run+1, FLAGS.noise_runs)) noise_start = time.time() # flip labels test and train flipped_train_labels = label_noise.random_flip(train_labels, samples_train, noise_level, copy=True) flipped_test_labels = label_noise.random_flip(test_labels, samples_test, noise_level, copy=True) # run method logging.log(logging.DEBUG, "Start full estimation with method '{}', noise level {}, run {}/{}".format(FLAGS.method, noise_level, run+1, FLAGS.noise_runs)) start = time.time() result = eval_fn(train_features, test_features, flipped_train_labels, flipped_test_labels) end = time.time() logging.log(logging.DEBUG, "Method '{}' executed in {} seconds".format(FLAGS.method, end - start)) logging.log(logging.INFO, "Run {}/{} - noise level {}: {}".format(run+1, FLAGS.noise_runs, noise_level, result)) if FLAGS.output_file: rows = [_get_csv_row(k, run, samples_train, noise_level, v, (end - start) / float(len(result))) for k, v in result.items()] result_rows.extend(rows) noise_end = time.time() logging.log(logging.DEBUG, "Noise level {} for run {}/{} executed in {} seconds".format(noise_level, run+1, FLAGS.noise_runs, noise_end - noise_start)) run_end = time.time() logging.log(logging.DEBUG, "Run {}/{} executed in {} seconds".format(run+1, FLAGS.noise_runs, run_end - run_start)) if FLAGS.output_file: _write_result(result_rows) elif FLAGS.output_file: rows = [_get_csv_row(k, 0, samples_train, 0.0, v, (end - start) / float(len(result_full))) for k, v in result_full.items()] _write_result(rows) def estimate_from_single_matrix(eval_fn): test_argument_and_file(FLAGS.path, "features_train") test_argument_and_file(FLAGS.path, "labels_train") train_features, dim_train, samples_train = load_and_log(FLAGS.path, "features_train") train_labels, dim, samples_train_labels = load_and_log(FLAGS.path, "labels_train") if dim != 1: raise AttributeError("Train labels file does not point to a vector!") if samples_train_labels != samples_train: raise AttributeError("Train features and labels files does not have the same amount of samples!") logging.log(logging.DEBUG, "Start full estimation with method '{}'".format(FLAGS.method)) start = time.time() result_full = eval_fn(train_features, train_labels) end = time.time() logging.log(logging.DEBUG, "Method '{}' executed in {} seconds".format(FLAGS.method, end - start)) logging.log(logging.INFO, "Full train set: {}".format(result_full)) if FLAGS.noise_levels and FLAGS.noise_runs > 0: result_rows = [] for run in range(FLAGS.noise_runs): if FLAGS.output_file: rows = [_get_csv_row(k, run, samples_train, 0.0, v, (end - start) / float(len(result_full))) for k, v in result_full.items()] result_rows.extend(rows) logging.log(logging.DEBUG, "Start noisy run {} out of {}".format(run+1, FLAGS.noise_runs)) run_start = time.time() for noise_level in [float(x) for x in FLAGS.noise_levels]: if noise_level > 1.0 or noise_level <= 0.0: raise AttributeError("Noise level {} has to be bigger than 0 and not larger than 1!".format(noise_level)) logging.log(logging.DEBUG, "Start noise level {} for run {} out of {}".format(noise_level, run+1, FLAGS.noise_runs)) noise_start = time.time() # flip labels train flipped_train_labels = label_noise.random_flip(train_labels, samples_train, noise_level, copy=True) # run method logging.log(logging.DEBUG, "Start full estimation with method '{}', noise level {}, run {}/{}".format(FLAGS.method, noise_level, run+1, FLAGS.noise_runs)) start = time.time() result = eval_fn(train_features, flipped_train_labels) end = time.time() logging.log(logging.DEBUG, "Method '{}' executed in {} seconds".format(FLAGS.method, end - start)) logging.log(logging.INFO, "Run {}/{} - noise level {}: {}".format(run+1, FLAGS.noise_runs, noise_level, result)) if FLAGS.output_file: rows = [_get_csv_row(k, run, samples_train, noise_level, v, (end - start) / float(len(result))) for k, v in result.items()] result_rows.extend(rows) noise_end = time.time() logging.log(logging.DEBUG, "Noise level {} for run {}/{} executed in {} seconds".format(noise_level, run+1, FLAGS.noise_runs, noise_end - noise_start)) run_end = time.time() logging.log(logging.DEBUG, "Run {}/{} executed in {} seconds".format(run+1, FLAGS.noise_runs, run_end - run_start)) if FLAGS.output_file: _write_result(result_rows) elif FLAGS.output_file: rows = [_get_csv_row(k, 0, samples_train, 0.0, v, (end - start) / float(len(result_full))) for k, v in result_full.items()] _write_result(rows) def main(argv): if FLAGS.method is None: raise app.UsageError("You have to specify the method!") if FLAGS.method == "knn": estimate_from_split_matrices(knn.eval_from_matrices) elif FLAGS.method == "knn_extrapolate": estimate_from_split_matrices(knn_extrapolate.eval_from_matrices) elif FLAGS.method == "lr_model": estimate_from_split_matrices(lr_model.eval_from_matrices) elif FLAGS.method == "knn_loo": estimate_from_single_matrix(knn.eval_from_matrix_loo) elif FLAGS.method == "ghp": estimate_from_single_matrix(ghp.eval_from_matrix) elif FLAGS.method == "kde_knn_loo": estimate_from_single_matrix(kde.eval_from_matrix_knn_loo) elif FLAGS.method == "onenn": estimate_from_single_matrix(onenn.eval_from_matrix_onenn) elif FLAGS.method == "kde": estimate_from_single_matrix(kde.eval_from_matrix_kde) else: raise NotImplementedError("Method module for 'matrices' not yet implemented!") if __name__ == "__main__": app.run(main)
51.153846
215
0.665369
0
0
0
0
0
0
0
0
2,638
0.233348
27dfb13b1540ca2ae940981337f040231ef6dd46
2,610
py
Python
allmodels_image.py
GustavZ/Tensorflow-Object-Detection
3aab434b20e510d3953b4265dd73a1c7c315067d
[ "MIT" ]
187
2017-12-26T17:41:09.000Z
2019-03-06T04:44:25.000Z
allmodels_image.py
a554142589/realtime_object_detection
d2bd7e58df9af1848e473fa7627aa2433192903d
[ "MIT" ]
38
2018-02-01T17:05:01.000Z
2019-02-15T21:58:25.000Z
allmodels_image.py
a554142589/realtime_object_detection
d2bd7e58df9af1848e473fa7627aa2433192903d
[ "MIT" ]
65
2018-01-19T06:03:44.000Z
2019-03-06T04:58:31.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Jan 10 09:45:23 2018 @author: www.github.com/GustavZ """ import os import sys import numpy as np from rod.config import Config from rod.helper import get_model_list, check_if_optimized_model from rod.model import ObjectDetectionModel, DeepLabModel ROOT_DIR = os.getcwd() #MODELS_DIR = os.path.join(ROOT_DIR,'models') MODELS_DIR = '/home/gustav/workspace/eetfm_automation/nmsspeed_test' INPUT_TYPE = 'image' def create_test_config(type,model_name, optimized=False, single_class=False): class TestConfig(Config): OD_MODEL_PATH=MODELS_DIR+'/'+model_name+'/{}' DL_MODEL_PATH=MODELS_DIR+'/'+model_name+'/{}' OD_MODEL_NAME=model_name DL_MODEL_NAME=model_name VISUALIZE=False SPLIT_MODEL = False WRITE_TIMELINE = True LIMIT_IMAGES = 11 if optimized: USE_OPTIMIZED=True else: USE_OPTIMIZED=False if single_class: NUM_CLASSES=1 else: NUM_CLASSES=90 def __init__(self): super(TestConfig, self).__init__(type) return TestConfig() # Read sequentail Models or Gather all Models from models/ config = Config('od') if config.SEQ_MODELS: model_names = config.SEQ_MODELS else: model_names = get_model_list(MODELS_DIR) # Sequential testing for model_name in model_names: print("> testing model: {}".format(model_name)) # conditionals optimized=False single_class=False # Test Model if 'hands' in model_name or 'person' in model_name: single_class=True if 'deeplab' in model_name: config = create_test_config('dl',model_name,optimized,single_class) model = DeepLabModel(config).prepare_model(INPUT_TYPE) else: config = create_test_config('od',model_name,optimized,single_class) model = ObjectDetectionModel(config).prepare_model(INPUT_TYPE) # Check if there is an optimized graph model_dir = os.path.join(os.getcwd(),'models',model_name) optimized = check_if_optimized_model(model_dir) # Again for the optimized graph if optimized: if 'deeplab' in model_name: config = create_test_config('dl',model_name,optimized,single_class) model = DeepLabModel(config).prepare_model(INPUT_TYPE) else: config = create_test_config('od',model_name,optimized,single_class) model = ObjectDetectionModel(config).prepare_model(INPUT_TYPE) model.run()
32.222222
79
0.668966
649
0.248659
0
0
0
0
0
0
499
0.191188
27e04f3e71ee9ae2490b13c55437303fba48ca2d
5,953
py
Python
train.py
Jing-lun/GPR_3D_Model_Reconstruction
24259bdbdf5e993e286e556ee1bae720892a16b9
[ "Unlicense" ]
1
2021-09-30T10:22:54.000Z
2021-09-30T10:22:54.000Z
train.py
Jing-lun/GPR_3D_Model_Reconstruction
24259bdbdf5e993e286e556ee1bae720892a16b9
[ "Unlicense" ]
1
2021-07-23T13:10:58.000Z
2021-07-23T13:10:58.000Z
train.py
Jing-lun/GPR_3D_Model_Reconstruction
24259bdbdf5e993e286e556ee1bae720892a16b9
[ "Unlicense" ]
null
null
null
# Copyright 2021, Robotics Lab, City College of New York # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Originating Author: Jinglun Feng, ([email protected]) import argparse import logging import os import sys import numpy as np import torch import torch.nn as nn from torch import optim from tqdm import tqdm from torch.autograd import Variable from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader, random_split from torchvision.utils import save_image from model import UNet3D from utils.data_loader import BasicDataset from utils.utils import PointLoss from eval import eval_net def train_net(net, epochs, batch_size, lr, device, save_cp = True): dset = BasicDataset(args.input, args.gt) n_train = int(len(dset) * 0.85) n_val = len(dset) - n_train train, val = random_split(dset, [n_train, n_val]) dset_train = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True) dset_valid = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True) writer = SummaryWriter(comment=f'BS_{2}') logging.info(f'''Starting training: Epochs: {epochs} Batch size: {batch_size} Learning rate: {lr} Training size: {n_train} Validation size: {n_val} Device: {device.type} ''') optimizer = optim.Adam(net.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.2) L1_loss = nn.L1Loss() L1_loss.to(device) global_step = 0 for epoch in range(epochs): net.train() epoch_loss = 0 with tqdm(total=n_train, desc=f'Epoch {epoch+1}/{epochs}', unit='mat') as pbar: for batch in dset_train: mats = batch['mat_input'] pcds = batch['mat_gt'] mats = mats.to(device=device, dtype=torch.float32) pcds = pcds.to(device=device, dtype=torch.float32) test = pcds*6 + 1 optimizer.zero_grad() mats_pred = net(mats) new_predict = test * mats_pred new_ground_truth = 7*pcds loss = L1_loss(new_predict, new_ground_truth) epoch_loss += loss.item() writer.add_scalar('Loss/train', loss.item(), global_step) pbar.set_postfix(**{'loss (batch)': loss.item()}) loss.backward() optimizer.step() pbar.update(mats.shape[0]) global_step += 1 val_score = eval_net(net, dset_valid, device, n_val) logging.info(f'Validation L1 Distance: {val_score}') writer.add_scalar('Loss/test', val_score, global_step) scheduler.step() if epoch % 20 == 0: torch.save(net.state_dict(), 'check_points/' + f'CP_epoch{epoch + 1}.pth') logging.info(f'Checkpoint {epoch + 1} saved !') writer.close() def args_setting(): parser = argparse.ArgumentParser(description='Train the net on gpr data', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-e', '--epochs', metavar='E', type=int, default=101, help='Number of epochs', dest='epochs') parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=4, help='Batch size', dest='batchsize') parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.00001, help='Learning rate', dest='lr') parser.add_argument('-f', '--load', dest='load', type=str, default='check_points/good_627/CP_epoch101.pth', help='Load model from a .pth file') parser.add_argument('-i', '--input', default='../resnet_range/', type=str, metavar='PATH', help='path to input dataset', dest='input') parser.add_argument('-g', '--ground-truth', default='../new_mat_gt/', type=str, metavar='PATH', help='path to gt dataset', dest='gt') parser.add_argument('-c', '--checkpoint', default='check_point/', type=str, metavar='PATH', help='path to gt dataset', dest='cp') return parser.parse_args() if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') args = args_setting() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logging.info(f'Let\'s use {torch.cuda.device_count()} GPUs!') net = UNet3D(residual='conv') net = torch.nn.DataParallel(net) if args.load != '': net.load_state_dict( torch.load(args.load, map_location=device) ) logging.info(f'Model loaded from {args.load}') logging.info(f'Network Structure:\n' f'\t{net}\n') net.to(device=device) try: train_net(net=net, epochs=args.epochs, batch_size=args.batchsize, lr=args.lr, device=device) except KeyboardInterrupt: torch.save(net.state_dict(), 'INTERRUPTED.pth') logging.info('Saved interrupt') try: sys.exit(0) except SystemExit: os._exit(0)
36.975155
111
0.607425
0
0
0
0
0
0
0
0
1,744
0.292962
27e1b8a412e18403318f1bb9f3adb67ae8c94d10
805
py
Python
Python/1-Fundamentals/Week 2/workshop2/banking_pkg/account.py
armirh/Nucamp-SQL-Devops-Training
6c2dc5793c732bfb4c4d365acbb346a95fbf4bf2
[ "MIT" ]
2
2022-01-19T02:33:11.000Z
2022-01-19T02:33:13.000Z
Python/1-Fundamentals/Week 2/workshop2/banking_pkg/account.py
armirh/Nucamp-SQL-Devops-Training
6c2dc5793c732bfb4c4d365acbb346a95fbf4bf2
[ "MIT" ]
null
null
null
Python/1-Fundamentals/Week 2/workshop2/banking_pkg/account.py
armirh/Nucamp-SQL-Devops-Training
6c2dc5793c732bfb4c4d365acbb346a95fbf4bf2
[ "MIT" ]
null
null
null
import sys def show_balance(balance): balance = '' print(" Has logged in!") print(" The current balance is " + str(balance)) def deposit(balance): print("Your current balance is: " + str(balance)) while True: deposit_amount = float(input("Enter deposit amount: ")) balance = float() balance = balance + deposit_amount print("The new balance is: " + str(balance)) return balance def withdraw(balance): print("Current balance is: " + str(balance)) while True: withdraw_amount = float(input("Enter the withdrawl amount: ")) balance = float() balance = balance - withdraw_amount print("New balance is: " + str(balance)) return balance def logout(): print("Goodbye!! ") sys.exit()
23.676471
70
0.607453
0
0
0
0
0
0
0
0
200
0.248447
27e21695cafe73f0d93a69b097c0c530103f4723
2,098
py
Python
scrapers/who.py
kollivier/sushi-chef-who-covid-advice
cb50d5fdfe992767eff50bc33e323a682752d0b2
[ "MIT" ]
null
null
null
scrapers/who.py
kollivier/sushi-chef-who-covid-advice
cb50d5fdfe992767eff50bc33e323a682752d0b2
[ "MIT" ]
null
null
null
scrapers/who.py
kollivier/sushi-chef-who-covid-advice
cb50d5fdfe992767eff50bc33e323a682752d0b2
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup from ricecooker.classes import nodes class WHOPageScraperBase: def __init__(self, url, file_on_disk): self.url = url self.file_on_disk = file_on_disk def node_for_text_section(self, content): # print("content = {}".format(content.prettify())) pass def node_for_video(self, content): pass def node_for_rows(self, rows): for row in rows: pass #print("row = {}".format(row.prettify())) def get_ricecooker_node(self): """ Convert the data at the URL to a ricecooker/Kolibri-compatible representation. :return: A ricecooker.TreeNode-derived Node object. """ raise NotImplementedError("Not implemented!") class WHOCovidAdvicePageScraper(WHOPageScraperBase): def get_ricecooker_node(self): soup = BeautifulSoup(open(self.file_on_disk).read()) print("opening {}".format(self.file_on_disk)) # We'll add the title later when we iterate through the sections topic_node = nodes.TopicNode(source_id=self.url, title='') sections = soup.find_all('div', attrs={'class': 'section-heading'}) for section in sections: # This is the top-level header, meaning it's the page title title = section.text.strip() if section.find('h1'): print("Page title = {}".format(title)) topic_node.title = title continue print("Section = {}".format(title)) content = section.find_next_sibling() if "content-block" in content.attrs['class']: self.node_for_text_section(content) elif "row" in content.attrs['class']: # the section rows are siblings in the tree. rows = [content] next = content.find_next_sibling() while "row" in next.attrs['class']: rows.append(next) next = next.find_next_sibling() self.node_for_rows(rows) return topic_node
32.78125
86
0.597712
2,024
0.964728
0
0
0
0
0
0
562
0.267874
27e33b028e6c906a2e346f640e4d67536b199914
23,817
py
Python
dxtbx/tests/model/experiment/test_experiment_list.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
dxtbx/tests/model/experiment/test_experiment_list.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
dxtbx/tests/model/experiment/test_experiment_list.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import absolute_import, division, print_function import six.moves.cPickle as pickle from glob import glob import os import pytest from dxtbx.model import Experiment, ExperimentList from dxtbx.model.experiment_list import ExperimentListFactory, \ ExperimentListDumper, ExperimentListDict def test_experiment_contains(): from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal # Create a load of models b1 = Beam() d1 = Detector() g1 = Goniometer() s1 = Scan() c1 = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") # Create an experiment e = Experiment( beam=b1, detector=d1, goniometer=g1, scan=s1, crystal=c1, imageset=None) # Check experiment contains model assert b1 in e assert d1 in e assert g1 in e assert s1 in e assert c1 in e # Create a load of models that look the same but aren't b2 = Beam() d2 = Detector() g2 = Goniometer() s2 = Scan() c2 = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") # Check experiment doesn't contain model assert b2 not in e assert d2 not in e assert g2 not in e assert s2 not in e assert c2 not in e def test_experiment_equality(): from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal # Create a load of models b1 = Beam() d1 = Detector() g1 = Goniometer() s1 = Scan() c1 = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") # Create a load of models that look the same but aren't b2 = Beam() d2 = Detector() g2 = Goniometer() s2 = Scan() c2 = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") # Create an experiment e1 = Experiment( beam=b1, detector=d1, goniometer=g1, scan=s1, crystal=c1, imageset=None) # Create an experiment e2 = Experiment( beam=b1, detector=d1, goniometer=g1, scan=s1, crystal=c1, imageset=None) # Create an experiment e3 = Experiment( beam=b2, detector=d2, goniometer=g2, scan=s2, crystal=c2, imageset=None) # Check e1 equals e2 but not e3 assert e1 == e2 assert e1 != e3 assert e2 != e3 def test_experiment_consistent(dials_regression): from dxtbx.imageset import ImageSetFactory from dxtbx.model import Scan # Create a sweep sweep_filenames = os.path.join(dials_regression, 'centroid_test_data', 'centroid*.cbf') sweep = ImageSetFactory.new(sorted(glob(sweep_filenames)))[0] # Create experiment with sweep and good scan e = Experiment(imageset=sweep, scan=sweep.get_scan()) assert e.is_consistent() # Create experiment with sweep and defective scan scan = sweep.get_scan() scan.set_image_range((1, 1)) e = Experiment(imageset=sweep, scan=scan) #assert not e.is_consistent()) # FIXME ## Create experiment with imageset and good scan #assert e.is_consistent() ## Create experiment with imageset and non-still scan #assert not e.is_consistent() ## Create experiment with imageset and scan with more than 1 image #assert not e.is_consistent() ## Create experiment with imageset and defective scan #assert not e.is_consistent() def test_experimentlist_contains(experiment_list): from dxtbx.model import Beam, Detector, Goniometer, Scan # Check all the models are found for e in experiment_list: assert e.beam in experiment_list assert e.detector in experiment_list assert e.goniometer in experiment_list assert e.scan in experiment_list # Create some more models b = Beam() d = Detector() g = Goniometer() s = Scan() # Check that models not in are not found assert b not in experiment_list assert d not in experiment_list assert g not in experiment_list assert s not in experiment_list # def test_experimentlist_index(experiment_list): # # Check the indices of exisiting experiments # assert experiment_list.index(experiment_list[0]) is 0 # assert experiment_list.index(experiment_list[1]) is 1 # assert experiment_list.index(experiment_list[2]) is 2 # assert experiment_list.index(experiment_list[3]) is 1 # assert experiment_list.index(experiment_list[4]) is 0 # # Check index of non exisiting experiment # try: # experiment_list.index(Experiment()) # assert False # except ValueError: # pass def test_experimentlist_replace(experiment_list): # Get the models b = [e.beam for e in experiment_list] d = [e.detector for e in experiment_list] g = [e.goniometer for e in experiment_list] s = [e.scan for e in experiment_list] # Replace some models experiment_list.replace(b[0], b[1]) assert experiment_list[0].beam is b[1] assert experiment_list[4].beam is b[1] # Replace again experiment_list[0].beam = b[0] experiment_list[4].beam = b[4] def test_experimentlist_indices(experiment_list): from dxtbx.model import Beam, Detector, Goniometer, Scan # Get the models b = [e.beam for e in experiment_list] d = [e.detector for e in experiment_list] g = [e.goniometer for e in experiment_list] s = [e.scan for e in experiment_list] # Check indices of beams assert list(experiment_list.indices(b[0])) == [0, 4] assert list(experiment_list.indices(b[1])) == [1, 3] assert list(experiment_list.indices(b[2])) == [2] assert list(experiment_list.indices(b[3])) == [1, 3] assert list(experiment_list.indices(b[4])) == [0, 4] # Check indices of detectors assert list(experiment_list.indices(d[0])) == [0, 4] assert list(experiment_list.indices(d[1])) == [1, 3] assert list(experiment_list.indices(d[2])) == [2] assert list(experiment_list.indices(d[3])) == [1, 3] assert list(experiment_list.indices(d[4])) == [0, 4] # Check indices of goniometer assert list(experiment_list.indices(g[0])) == [0, 4] assert list(experiment_list.indices(g[1])) == [1, 3] assert list(experiment_list.indices(g[2])) == [2] assert list(experiment_list.indices(g[3])) == [1, 3] assert list(experiment_list.indices(g[4])) == [0, 4] # Check indices of scans assert list(experiment_list.indices(s[0])) == [0, 4] assert list(experiment_list.indices(s[1])) == [1, 3] assert list(experiment_list.indices(s[2])) == [2] assert list(experiment_list.indices(s[3])) == [1, 3] assert list(experiment_list.indices(s[4])) == [0, 4] # Check some models not in the list assert len(experiment_list.indices(Beam())) == 0 assert len(experiment_list.indices(Detector())) == 0 assert len(experiment_list.indices(Goniometer())) == 0 assert len(experiment_list.indices(Scan())) == 0 def test_experimentlist_models(experiment_list): # Get all the unique models b = experiment_list.beams() d = experiment_list.detectors() g = experiment_list.goniometers() s = experiment_list.scans() # Check we have the expected number assert len(b) == 3 assert len(d) == 3 assert len(g) == 3 assert len(s) == 3 # Check we have the expected order assert b[0] == experiment_list[0].beam assert b[1] == experiment_list[1].beam assert b[2] == experiment_list[2].beam assert d[0] == experiment_list[0].detector assert d[1] == experiment_list[1].detector assert d[2] == experiment_list[2].detector assert g[0] == experiment_list[0].goniometer assert g[0] == experiment_list[0].goniometer assert g[1] == experiment_list[1].goniometer assert s[2] == experiment_list[2].scan assert s[1] == experiment_list[1].scan assert s[2] == experiment_list[2].scan def test_experimentlist_to_dict(experiment_list): # Convert the list to a dictionary obj = experiment_list.to_dict() # Check this is the right object assert obj['__id__'] == 'ExperimentList' # Check length of items assert len(obj['experiment']) == 5 assert len(obj['beam']) == 3 assert len(obj['detector']) == 3 assert len(obj['goniometer']) == 3 assert len(obj['scan']) == 3 # The expected models b = [0, 1, 2, 1, 0] d = [0, 1, 2, 1, 0] g = [0, 1, 2, 1, 0] s = [0, 1, 2, 1, 0] # Check all the experiments for i, eobj in enumerate(obj['experiment']): assert eobj['__id__'] == 'Experiment' assert eobj['beam'] == b[i] assert eobj['detector'] == d[i] assert eobj['goniometer'] == g[i] assert eobj['scan'] == s[i] def test_experimentlist_where(experiment_list): for beam in experiment_list.beams(): assert beam is not None for i in experiment_list.where(beam=beam): assert experiment_list[i].beam is beam for goniometer in experiment_list.goniometers(): assert goniometer is not None for i in experiment_list.where(goniometer=goniometer): assert experiment_list[i].goniometer is goniometer for scan in experiment_list.scans(): assert scan is not None for i in experiment_list.where(scan=scan): assert experiment_list[i].scan is scan for detector in experiment_list.detectors(): assert detector is not None for i in experiment_list.where(detector=detector): assert experiment_list[i].detector is detector @pytest.fixture def experiment_list(): from dxtbx.model import Beam, Detector, Goniometer, Scan # Initialise a list of experiments experiments = ExperimentList() # Create a few beams b1 = Beam() b2 = Beam() b3 = Beam() # Create a few detectors d1 = Detector() d2 = Detector() d3 = Detector() # Create a few goniometers g1 = Goniometer() g2 = Goniometer() g3 = Goniometer() # Create a few scans s1 = Scan() s2 = Scan() s3 = Scan() # Create a list of models b = [b1, b2, b3, b2, b1] d = [d1, d2, d3, d2, d1] g = [g1, g2, g3, g2, g1] s = [s1, s2, s3, s2, s1] ident = ["sausage", "eggs", "bacon", "toast", "beans"] # Populate with various experiments for i in range(5): experiments.append(Experiment( beam=b[i], detector=d[i], goniometer=g[i], scan=s[i], identifier=ident[i])) # Return the list of experiments return experiments def test_experimentlist_factory_from_json(dials_regression): os.environ['DIALS_REGRESSION'] = dials_regression # Get all the filenames filename1 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_1.json') filename2 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_2.json') filename3 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_3.json') filename4 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_4.json') # Read all the experiment lists in el1 = ExperimentListFactory.from_json_file(filename1) #el2 = ExperimentListFactory.from_json_file(filename2) el3 = ExperimentListFactory.from_json_file(filename3) el4 = ExperimentListFactory.from_json_file(filename4) # All the experiment lists should be the same length assert len(el1) == 1 #assert len(el1) == len(el2) assert len(el1) == len(el3) assert len(el1) == len(el4) # Check all the models are the same for e in zip(el1, el3, el4): e1 = e[0] assert e1.imageset is not None assert e1.beam is not None assert e1.detector is not None assert e1.goniometer is not None assert e1.scan is not None assert e1.crystal is not None for ee in e[1:]: assert e1.imageset == ee.imageset assert e1.beam == ee.beam assert e1.detector == ee.detector assert e1.goniometer == ee.goniometer assert e1.scan == ee.scan assert e1.crystal == ee.crystal def test_experimentlist_factory_from_pickle(dials_regression): os.environ['DIALS_REGRESSION'] = dials_regression # Get all the filenames filename1 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_1.json') # Read all the experiment lists in el1 = ExperimentListFactory.from_json_file(filename1) # Pickle then load again el2 = pickle.loads(pickle.dumps(el1)) # All the experiment lists should be the same length assert len(el1) == 1 assert len(el1) == len(el2) # Check all the models are the same for e1, e2 in zip(el1, el2): assert e1.imageset and e1.imageset == e2.imageset assert e1.beam and e1.beam == e2.beam assert e1.detector and e1.detector == e2.detector assert e1.goniometer and e1.goniometer == e2.goniometer assert e1.scan and e1.scan == e2.scan assert e1.crystal and e1.crystal == e2.crystal def test_experimentlist_factory_from_args(dials_regression): pytest.importorskip('dials') os.environ['DIALS_REGRESSION'] = dials_regression # Get all the filenames filenames = [ os.path.join(dials_regression, 'experiment_test_data', 'experiment_1.json'), #os.path.join(dials_regression, 'experiment_test_data', 'experiment_2.json'), os.path.join(dials_regression, 'experiment_test_data', 'experiment_3.json'), os.path.join(dials_regression, 'experiment_test_data', 'experiment_4.json')] # Get the experiments from a list of filenames experiments = ExperimentListFactory.from_args(filenames, verbose=True) # Have 4 experiment assert len(experiments) == 3 for i in range(3): assert experiments[i].imageset is not None assert experiments[i].beam is not None assert experiments[i].detector is not None assert experiments[i].goniometer is not None assert experiments[i].scan is not None def test_experimentlist_factory_from_imageset(): from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal from dxtbx.format.Format import Format imageset = Format.get_imageset(["filename.cbf"], as_imageset=True) imageset.set_beam(Beam(), 0) imageset.set_detector(Detector(), 0) crystal = Crystal( (1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") experiments = ExperimentListFactory.from_imageset_and_crystal( imageset, crystal) assert len(experiments) == 1 assert experiments[0].imageset is not None assert experiments[0].beam is not None assert experiments[0].detector is not None assert experiments[0].crystal is not None def test_experimentlist_factory_from_sweep(): from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal from dxtbx.format.Format import Format filenames = ["filename_%01d.cbf" % (i+1) for i in range(0, 2)] imageset = Format.get_imageset( filenames, beam = Beam(), detector = Detector(), goniometer = Goniometer(), scan = Scan((1,2), (0,1)), as_sweep=True) crystal = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") experiments = ExperimentListFactory.from_imageset_and_crystal( imageset, crystal) assert len(experiments) == 1 assert experiments[0].imageset is not None assert experiments[0].beam is not None assert experiments[0].detector is not None assert experiments[0].goniometer is not None assert experiments[0].scan is not None assert experiments[0].crystal is not None def test_experimentlist_factory_from_datablock(): from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.datablock import DataBlockFactory from dxtbx.model import Crystal from dxtbx.format.Format import Format filenames = ["filename_%01d.cbf" % (i+1) for i in range(0, 2)] imageset = Format.get_imageset( filenames, beam = Beam(), detector = Detector(), goniometer = Goniometer(), scan = Scan((1,2), (0,1)), as_sweep=True) crystal = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") datablock = DataBlockFactory.from_imageset(imageset) experiments = ExperimentListFactory.from_datablock_and_crystal( datablock, crystal) assert len(experiments) == 1 assert experiments[0].imageset is not None assert experiments[0].beam is not None assert experiments[0].detector is not None assert experiments[0].goniometer is not None assert experiments[0].scan is not None assert experiments[0].crystal is not None def test_experimentlist_dumper_dump_formats(dials_regression, tmpdir): tmpdir.chdir() os.environ['DIALS_REGRESSION'] = dials_regression # Get all the filenames filename1 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_1.json') # Read all the experiment lists in elist1 = ExperimentListFactory.from_json_file(filename1) # Create the experiment list dumper dump = ExperimentListDumper(elist1) # Dump as JSON file and reload filename = 'temp1.json' dump.as_json(filename) elist2 = ExperimentListFactory.from_json_file(filename) check(elist1, elist2) # Dump as split JSON file and reload filename = 'temp2.json' dump.as_json(filename, split=True) elist2 = ExperimentListFactory.from_json_file(filename) check(elist1, elist2) # Dump as pickle and reload filename = 'temp.pickle' dump.as_pickle(filename) elist2 = ExperimentListFactory.from_pickle_file(filename) check(elist1, elist2) def test_experimentlist_dumper_dump_scan_varying(dials_regression, tmpdir): tmpdir.chdir() os.environ['DIALS_REGRESSION'] = dials_regression # Get all the filenames filename1 = os.path.join(dials_regression, 'experiment_test_data', 'experiment_1.json') # Read the experiment list in elist1 = ExperimentListFactory.from_json_file(filename1) # Make trivial scan-varying models crystal = elist1[0].crystal beam = elist1[0].beam goniometer = elist1[0].goniometer crystal.set_A_at_scan_points([crystal.get_A()] * 5) from scitbx.array_family import flex cov_B = flex.double([1e-5]*9*9) crystal.set_B_covariance(cov_B) cov_B.reshape(flex.grid(1, 9, 9)) cov_B_array = flex.double(flex.grid(5, 9, 9)) for i in range(5): cov_B_array[i:(i+1), :, :] = cov_B crystal.set_B_covariance_at_scan_points(cov_B_array) beam.set_s0_at_scan_points([beam.get_s0()] * 5) goniometer.set_setting_rotation_at_scan_points([goniometer.get_setting_rotation()] * 5) # Create the experiment list dumper dump = ExperimentListDumper(elist1) # Dump as JSON file and reload filename = 'temp.json' dump.as_json(filename) elist2 = ExperimentListFactory.from_json_file(filename) check(elist1, elist2) def test_experimentlist_dumper_dump_empty_sweep(tmpdir): tmpdir.chdir() from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal from dxtbx.format.Format import Format filenames = ["filename_%01d.cbf" % (i+1) for i in range(0, 2)] imageset = Format.get_imageset( filenames, beam = Beam((1, 0, 0)), detector = Detector(), goniometer = Goniometer(), scan = Scan((1,2), (0.0, 1.0)), as_sweep=True) crystal = Crystal((1, 0, 0), (0, 1, 0), (0, 0, 1), space_group_symbol="P1") experiments = ExperimentListFactory.from_imageset_and_crystal( imageset, crystal) dump = ExperimentListDumper(experiments) filename = 'temp.json' dump.as_json(filename) experiments2 = ExperimentListFactory.from_json_file(filename, check_format=False) check(experiments, experiments2) def test_experimentlist_dumper_dump_with_lookup(dials_regression, tmpdir): tmpdir.chdir() from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal filename = os.path.join(dials_regression, "centroid_test_data", "experiments_with_lookup.json") experiments = ExperimentListFactory.from_json_file( filename, check_format=True) imageset = experiments[0].imageset assert not imageset.external_lookup.mask.data.empty() assert not imageset.external_lookup.gain.data.empty() assert not imageset.external_lookup.pedestal.data.empty() assert imageset.external_lookup.mask.filename is not None assert imageset.external_lookup.gain.filename is not None assert imageset.external_lookup.pedestal.filename is not None assert imageset.external_lookup.mask.data.tile(0).data().all_eq(True) assert imageset.external_lookup.gain.data.tile(0).data().all_eq(1) assert imageset.external_lookup.pedestal.data.tile(0).data().all_eq(0) dump = ExperimentListDumper(experiments) filename = 'temp.json' dump.as_json(filename) experiments = ExperimentListFactory.from_json_file( filename, check_format=True) imageset = experiments[0].imageset assert not imageset.external_lookup.mask.data.empty() assert not imageset.external_lookup.gain.data.empty() assert not imageset.external_lookup.pedestal.data.empty() assert imageset.external_lookup.mask.filename is not None assert imageset.external_lookup.gain.filename is not None assert imageset.external_lookup.pedestal.filename is not None assert imageset.external_lookup.mask.data.tile(0).data().all_eq(True) assert imageset.external_lookup.gain.data.tile(0).data().all_eq(1) assert imageset.external_lookup.pedestal.data.tile(0).data().all_eq(0) def test_experimentlist_dumper_dump_with_bad_lookup(dials_regression, tmpdir): tmpdir.chdir() from dxtbx.model import Beam, Detector, Goniometer, Scan from dxtbx.model import Crystal filename = os.path.join(dials_regression, "centroid_test_data", "experiments_with_bad_lookup.json") experiments = ExperimentListFactory.from_json_file( filename, check_format=False) imageset = experiments[0].imageset assert imageset.external_lookup.mask.data.empty() assert imageset.external_lookup.gain.data.empty() assert imageset.external_lookup.pedestal.data.empty() assert imageset.external_lookup.mask.filename is not None assert imageset.external_lookup.gain.filename is not None assert imageset.external_lookup.pedestal.filename is not None dump = ExperimentListDumper(experiments) filename = 'temp.json' dump.as_json(filename) experiments = ExperimentListFactory.from_json_file( filename, check_format=False) imageset = experiments[0].imageset assert imageset.external_lookup.mask.data.empty() assert imageset.external_lookup.gain.data.empty() assert imageset.external_lookup.pedestal.data.empty() assert imageset.external_lookup.mask.filename is not None assert imageset.external_lookup.gain.filename is not None assert imageset.external_lookup.pedestal.filename is not None def test_experimentlist_with_identifiers(): from dxtbx.model import Beam, Detector, Goniometer, Scan # Initialise a list of experiments experiments = ExperimentList() experiments.append(Experiment( beam=Beam(s0=(0,0,-1)), detector=Detector(), identifier="bacon")) experiments.append(Experiment( beam=Beam(s0=(0,0,-1)), detector=Detector(), identifier="sausage")) with pytest.raises(Exception): experiments.append(Experiment( beam=Beam(), detector=Detector(), identifier="bacon")) d = experiments.to_dict() e2 = ExperimentListDict(d).decode() assert experiments[0].identifier == e2[0].identifier assert experiments[1].identifier == e2[1].identifier assert tuple(experiments.identifiers()) == ("bacon", "sausage") experiments[0].identifier = "spam" assert tuple(experiments.identifiers()) == ("spam", "sausage") experiments.append(Experiment(identifier="bacon")) experiments.select_on_experiment_identifiers(["spam", "bacon"]) assert list(experiments.identifiers()) == ["spam", "bacon"] experiments.append(Experiment(identifier="ham")) experiments.append(Experiment(identifier="jam")) experiments.remove_on_experiment_identifiers(["spam", "jam"]) assert list(experiments.identifiers()) == ["bacon", "ham"] def check(el1, el2): # All the experiment lists should be the same length assert len(el1) == 1 assert len(el1) == len(el2) # Check all the models are the same for e1, e2 in zip(el1, el2): assert e1.imageset and e1.imageset == e2.imageset assert e1.beam and e1.beam == e2.beam assert e1.detector is not None and e1.detector == e2.detector assert e1.goniometer and e1.goniometer == e2.goniometer assert e1.scan and e1.scan == e2.scan assert e1.crystal and e1.crystal == e2.crystal assert e1.identifier == e2.identifier
32.715659
89
0.719528
0
0
0
0
924
0.038796
0
0
4,255
0.178654
27e6185cd1321c58ae5c06b94cfd558705c422cd
365
py
Python
Divergence analysis/splitreference.py
MarniTausen/CloverAnalysisPipeline
ae169b46c7be40cdf0d97101480be12df87fc58e
[ "Unlicense" ]
4
2018-03-26T08:54:50.000Z
2021-07-28T13:34:07.000Z
Divergence analysis/splitreference.py
MarniTausen/CloverAnalysisPipeline
ae169b46c7be40cdf0d97101480be12df87fc58e
[ "Unlicense" ]
null
null
null
Divergence analysis/splitreference.py
MarniTausen/CloverAnalysisPipeline
ae169b46c7be40cdf0d97101480be12df87fc58e
[ "Unlicense" ]
4
2017-10-26T12:59:39.000Z
2021-07-12T08:40:56.000Z
from sys import argv def make_new_reference_files(filename, sub1, sub2, divider=">chr9"): genomes = open(filename).read().split(divider) f = open(sub1, "w") f.write(genomes[0]) f.close() f = open(sub2, "w") f.write(">chr9"+genomes[1]) f.close() if __name__=="__main__": make_new_reference_files(argv[1], argv[2], argv[3], argv[4])
26.071429
68
0.635616
0
0
0
0
0
0
0
0
30
0.082192
27e766575366ccd5d46f9e7a446bbcc0f07d388e
1,323
py
Python
__pg/appids.py
briandorsey/cloud-playground
6e8ee5fcc6bb4e96bd10dcdf9eda451870c3cc1e
[ "Apache-2.0" ]
5
2017-03-02T15:57:44.000Z
2020-02-14T05:17:28.000Z
__pg/appids.py
briandorsey/cloud-playground
6e8ee5fcc6bb4e96bd10dcdf9eda451870c3cc1e
[ "Apache-2.0" ]
null
null
null
__pg/appids.py
briandorsey/cloud-playground
6e8ee5fcc6bb4e96bd10dcdf9eda451870c3cc1e
[ "Apache-2.0" ]
3
2017-05-20T11:23:07.000Z
2022-01-13T12:00:57.000Z
"""Module which defines collaborating app ids. This module is used by: settings.py scripts/deploy.sh """ import os # List of (playground appid, mimic app id, playground app id alias) _APP_ID_TUPLES = [ # production environment ('try-appengine', 'shared-playground', 'cloud-playground'), # development environment ('fredsa-bliss', 'fredsa-hr', None), ('dansanderson-bliss', 'dansanderson-mimic', None), ] def _GetTupleFor(app_id): for app_ids in _APP_ID_TUPLES: if app_id in app_ids: return app_ids return (app_id, app_id, None) # Our app id _APP_ID = os.environ['APPLICATION_ID'].split('~')[-1] # support regular 'appspot.com' app ids only assert ':' not in _APP_ID, ('{} app ids are unsupported' .format(_APP_ID.split(':')[0])) app_ids = _GetTupleFor(_APP_ID) # The application where the playground IDE runs PLAYGROUND_APP_ID = app_ids[0] # The application where user code runs MIMIC_APP_ID = app_ids[1] # The application alias where the playground IDE runs PLAYGROUND_APP_ID_ALIAS = app_ids[2] # Whether we're using two collaborating app ids TWO_COLLABORATING_APP_IDS = PLAYGROUND_APP_ID != MIMIC_APP_ID def PrintAppIds(): """Prints a new line delimited list of known app ids.""" print '\n'.join(set((PLAYGROUND_APP_ID, MIMIC_APP_ID)))
25.442308
67
0.708995
0
0
0
0
0
0
0
0
696
0.526077
27e7f431903fe9377416892525c526c246e0ed24
21,183
py
Python
_states/novav21.py
NDPF/salt-formula-nova
265d9e6c2cbd41d564ee389b210441d9f7378433
[ "Apache-2.0" ]
4
2017-04-27T14:27:04.000Z
2017-11-04T18:23:09.000Z
_states/novav21.py
NDPF/salt-formula-nova
265d9e6c2cbd41d564ee389b210441d9f7378433
[ "Apache-2.0" ]
22
2017-02-01T09:04:52.000Z
2019-05-10T09:04:01.000Z
_states/novav21.py
NDPF/salt-formula-nova
265d9e6c2cbd41d564ee389b210441d9f7378433
[ "Apache-2.0" ]
35
2017-02-05T23:11:16.000Z
2019-04-04T17:21:36.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import six from six.moves import zip_longest import time import salt from salt.exceptions import CommandExecutionError LOG = logging.getLogger(__name__) KEYSTONE_LOADED = False def __virtual__(): """Only load if the nova module is in __salt__""" if 'keystonev3.project_get_details' in __salt__: global KEYSTONE_LOADED KEYSTONE_LOADED = True return 'novav21' class SaltModuleCallException(Exception): def __init__(self, result_dict, *args, **kwargs): super(SaltModuleCallException, self).__init__(*args, **kwargs) self.result_dict = result_dict def _get_failure_function_mapping(): return { 'create': _create_failed, 'update': _update_failed, 'find': _find_failed, 'delete': _delete_failed, } def _call_nova_salt_module(call_string, name, module_name='novav21'): def inner(*args, **kwargs): func = __salt__['%s.%s' % (module_name, call_string)] result = func(*args, **kwargs) if not result['result']: ret = _get_failure_function_mapping()[func._action_type]( name, func._resource_human_readable_name) ret['comment'] += '\nStatus code: %s\n%s' % (result['status_code'], result['comment']) raise SaltModuleCallException(ret) return result['body'].get(func._body_response_key) return inner def _error_handler(fun): @six.wraps(fun) def inner(*args, **kwargs): try: return fun(*args, **kwargs) except SaltModuleCallException as e: return e.result_dict return inner @_error_handler def flavor_present(name, cloud_name, vcpus=1, ram=256, disk=0, flavor_id=None, extra_specs=None): """Ensures that the flavor exists""" extra_specs = extra_specs or {} # There is no way to query flavors by name flavors = _call_nova_salt_module('flavor_list', name)( detail=True, cloud_name=cloud_name) flavor = [flavor for flavor in flavors if flavor['name'] == name] # Flavor names are unique, there is either 1 or 0 with requested name if flavor: flavor = flavor[0] current_extra_specs = _call_nova_salt_module( 'flavor_get_extra_specs', name)( flavor['id'], cloud_name=cloud_name) to_delete = set(current_extra_specs) - set(extra_specs) to_add = set(extra_specs) - set(current_extra_specs) for spec in to_delete: _call_nova_salt_module('flavor_delete_extra_spec', name)( flavor['id'], spec, cloud_name=cloud_name) _call_nova_salt_module('flavor_add_extra_specs', name)( flavor['id'], cloud_name=cloud_name, **extra_specs) if to_delete or to_add: ret = _updated(name, 'Flavor', extra_specs) else: ret = _no_change(name, 'Flavor') else: flavor = _call_nova_salt_module('flavor_create', name)( name, vcpus, ram, disk, id=flavor_id, cloud_name=cloud_name) _call_nova_salt_module('flavor_add_extra_specs', name)( flavor['id'], cloud_name=cloud_name, **extra_specs) flavor['extra_specs'] = extra_specs ret = _created(name, 'Flavor', flavor) return ret @_error_handler def flavor_absent(name, cloud_name): """Ensure flavor is absent""" # There is no way to query flavors by name flavors = _call_nova_salt_module('flavor_list', name)( detail=True, cloud_name=cloud_name) flavor = [flavor for flavor in flavors if flavor['name'] == name] # Flavor names are unique, there is either 1 or 0 with requested name if flavor: _call_nova_salt_module('flavor_delete', name)( flavor[0]['id'], cloud_name=cloud_name) return _deleted(name, 'Flavor') return _non_existent(name, 'Flavor') def _get_keystone_project_id_by_name(project_name, cloud_name): if not KEYSTONE_LOADED: LOG.error("Keystone module not found, can not look up project ID " "by name") return None project = __salt__['keystonev3.project_get_details']( project_name, cloud_name=cloud_name) if not project: return None return project['project']['id'] @_error_handler def quota_present(name, cloud_name, **kwargs): """Ensures that the nova quota exists :param name: project name to ensure quota for. """ project_name = name project_id = _get_keystone_project_id_by_name(project_name, cloud_name) changes = {} if not project_id: ret = _update_failed(project_name, 'Project quota') ret['comment'] += ('\nCould not retrieve keystone project %s' % project_name) return ret quota = _call_nova_salt_module('quota_list', project_name)( project_id, cloud_name=cloud_name) for key, value in kwargs.items(): if quota.get(key) != value: changes[key] = value if changes: _call_nova_salt_module('quota_update', project_name)( project_id, cloud_name=cloud_name, **changes) return _updated(project_name, 'Project quota', changes) else: return _no_change(project_name, 'Project quota') @_error_handler def quota_absent(name, cloud_name): """Ensures that the nova quota set to default :param name: project name to reset quota for. """ project_name = name project_id = _get_keystone_project_id_by_name(project_name, cloud_name) if not project_id: ret = _delete_failed(project_name, 'Project quota') ret['comment'] += ('\nCould not retrieve keystone project %s' % project_name) return ret _call_nova_salt_module('quota_delete', name)( project_id, cloud_name=cloud_name) return _deleted(name, 'Project quota') @_error_handler def aggregate_present(name, cloud_name, availability_zone_name=None, hosts=None, metadata=None): """Ensures that the nova aggregate exists""" aggregates = _call_nova_salt_module('aggregate_list', name)( cloud_name=cloud_name) aggregate_exists = [agg for agg in aggregates if agg['name'] == name] metadata = metadata or {} hosts = hosts or [] if availability_zone_name: metadata.update(availability_zone=availability_zone_name) if not aggregate_exists: aggregate = _call_nova_salt_module('aggregate_create', name)( name, availability_zone_name, cloud_name=cloud_name) if metadata: _call_nova_salt_module('aggregate_set_metadata', name)( cloud_name=cloud_name, **metadata) aggregate['metadata'] = metadata for host in hosts or []: _call_nova_salt_module('aggregate_add_host', name)( name, host, cloud_name=cloud_name) aggregate['hosts'] = hosts return _created(name, 'Host aggregate', aggregate) else: aggregate = aggregate_exists[0] changes = {} existing_meta = set(aggregate['metadata'].items()) requested_meta = set(metadata.items()) if existing_meta - requested_meta or requested_meta - existing_meta: _call_nova_salt_module('aggregate_set_metadata', name)( name, cloud_name=cloud_name, **metadata) changes['metadata'] = metadata hosts_to_add = set(hosts) - set(aggregate['hosts']) hosts_to_remove = set(aggregate['hosts']) - set(hosts) if hosts_to_remove or hosts_to_add: for host in hosts_to_add: _call_nova_salt_module('aggregate_add_host', name)( name, host, cloud_name=cloud_name) for host in hosts_to_remove: _call_nova_salt_module('aggregate_remove_host', name)( name, host, cloud_name=cloud_name) changes['hosts'] = hosts if changes: return _updated(name, 'Host aggregate', changes) else: return _no_change(name, 'Host aggregate') @_error_handler def aggregate_absent(name, cloud_name): """Ensure aggregate is absent""" existing_aggregates = _call_nova_salt_module('aggregate_list', name)( cloud_name=cloud_name) matching_aggs = [agg for agg in existing_aggregates if agg['name'] == name] if matching_aggs: _call_nova_salt_module('aggregate_delete', name)( name, cloud_name=cloud_name) return _deleted(name, 'Host Aggregate') return _non_existent(name, 'Host Aggregate') @_error_handler def keypair_present(name, cloud_name, public_key_file=None, public_key=None): """Ensures that the Nova key-pair exists""" existing_keypairs = _call_nova_salt_module('keypair_list', name)( cloud_name=cloud_name) matching_kps = [kp for kp in existing_keypairs if kp['keypair']['name'] == name] if public_key_file and not public_key: with salt.utils.fopen(public_key_file, 'r') as f: public_key = f.read() if not public_key: ret = _create_failed(name, 'Keypair') ret['comment'] += '\nPlease specify public key for keypair creation.' return ret if matching_kps: # Keypair names are unique, there is either 1 or 0 with requested name kp = matching_kps[0]['keypair'] if kp['public_key'] != public_key: _call_nova_salt_module('keypair_delete', name)( name, cloud_name=cloud_name) else: return _no_change(name, 'Keypair') res = _call_nova_salt_module('keypair_create', name)( name, cloud_name=cloud_name, public_key=public_key) return _created(name, 'Keypair', res) @_error_handler def keypair_absent(name, cloud_name): """Ensure keypair is absent""" existing_keypairs = _call_nova_salt_module('keypair_list', name)( cloud_name=cloud_name) matching_kps = [kp for kp in existing_keypairs if kp['keypair']['name'] == name] if matching_kps: _call_nova_salt_module('keypair_delete', name)( name, cloud_name=cloud_name) return _deleted(name, 'Keypair') return _non_existent(name, 'Keypair') def cell_present(name='cell1', transport_url='none:///', db_engine='mysql', db_name='nova_upgrade', db_user='nova', db_password=None, db_address='0.0.0.0'): """Ensure nova cell is present For newly created cells this state also runs discover_hosts and map_instances.""" cell_info = __salt__['cmd.shell']( "nova-manage cell_v2 list_cells --verbose | " "awk '/%s/ {print $4,$6,$8}'" % name).split() db_connection = ( '%(db_engine)s+pymysql://%(db_user)s:%(db_password)s@' '%(db_address)s/%(db_name)s?charset=utf8' % { 'db_engine': db_engine, 'db_user': db_user, 'db_password': db_password, 'db_address': db_address, 'db_name': db_name}) args = {'transport_url': transport_url, 'db_connection': db_connection} # There should be at least 1 component printed to cell_info if len(cell_info) >= 1: cell_info = dict(zip_longest( ('cell_uuid', 'existing_transport_url', 'existing_db_connection'), cell_info)) cell_uuid, existing_transport_url, existing_db_connection = cell_info command_string = '' if existing_transport_url != transport_url: command_string = ( '%s --transport-url %%(transport_url)s' % command_string) if existing_db_connection != db_connection: command_string = ( '%s --database_connection %%(db_connection)s' % command_string) if not command_string: return _no_change(name, 'Nova cell') try: __salt__['cmd.shell']( ('nova-manage cell_v2 update_cell --cell_uuid %s %s' % ( cell_uuid, command_string)) % args) LOG.warning("Updating the transport_url or database_connection " "fields on a running system will NOT result in all " "nodes immediately using the new values. Use caution " "when changing these values.") ret = _updated(name, 'Nova cell', args) except Exception as e: ret = _update_failed(name, 'Nova cell') ret['comment'] += '\nException: %s' % e return ret args.update(name=name) try: cell_uuid = __salt__['cmd.shell']( 'nova-manage cell_v2 create_cell --name %(name)s ' '--transport-url %(transport_url)s ' '--database_connection %(db_connection)s --verbose' % args) __salt__['cmd.shell']('nova-manage cell_v2 discover_hosts ' '--cell_uuid %s --verbose' % cell_uuid) __salt__['cmd.shell']('nova-manage cell_v2 map_instances ' '--cell_uuid %s' % cell_uuid) ret = _created(name, 'Nova cell', args) except Exception as e: ret = _create_failed(name, 'Nova cell') ret['comment'] += '\nException: %s' % e return ret def cell_absent(name, force=False): """Ensure cell is absent""" cell_uuid = __salt__['cmd.shell']( "nova-manage cell_v2 list_cells | awk '/%s/ {print $4}'" % name) if not cell_uuid: return _non_existent(name, 'Nova cell') try: __salt__['cmd.shell']( 'nova-manage cell_v2 delete_cell --cell_uuid %s %s' % ( cell_uuid, '--force' if force else '')) ret = _deleted(name, 'Nova cell') except Exception as e: ret = _delete_failed(name, 'Nova cell') ret['comment'] += '\nException: %s' % e return ret def _db_version_update(db, version, human_readable_resource_name): existing_version = __salt__['cmd.shell']( 'nova-manage %s version 2>/dev/null' % db) try: existing_version = int(existing_version) version = int(version) except Exception as e: ret = _update_failed(existing_version, human_readable_resource_name) ret['comment'] += ('\nCan not convert existing or requested version ' 'to integer, exception: %s' % e) LOG.error(ret['comment']) return ret if existing_version < version: try: __salt__['cmd.shell']( 'nova-manage %s sync --version %s' % (db, version)) ret = _updated(existing_version, human_readable_resource_name, {db: '%s sync --version %s' % (db, version)}) except Exception as e: ret = _update_failed(existing_version, human_readable_resource_name) ret['comment'] += '\nException: %s' % e return ret return _no_change(existing_version, human_readable_resource_name) def api_db_version_present(name=None, version="20"): """Ensures that specific api_db version is present""" return _db_version_update('api_db', version, 'Nova API database version') def db_version_present(name=None, version="334"): """Ensures that specific db version is present""" return _db_version_update('db', version, 'Nova database version') def online_data_migrations_present(name=None, api_db_version="20", db_version="334"): """Runs online_data_migrations if databases are of specific versions""" ret = {'name': 'online_data_migrations', 'changes': {}, 'result': False, 'comment': 'Current nova api_db version != {0} or nova db version ' '!= {1}.'.format(api_db_version, db_version)} cur_api_db_version = __salt__['cmd.shell']( 'nova-manage api_db version 2>/dev/null') cur_db_version = __salt__['cmd.shell']( 'nova-manage db version 2>/dev/null') try: cur_api_db_version = int(cur_api_db_version) cur_db_version = int(cur_db_version) api_db_version = int(api_db_version) db_version = int(db_version) except Exception as e: LOG.error(ret['comment']) ret['comment'] = ('\nCan not convert existing or requested database ' 'versions to integer, exception: %s' % e) return ret if cur_api_db_version == api_db_version and cur_db_version == db_version: try: __salt__['cmd.shell']('nova-manage db online_data_migrations') ret['result'] = True ret['comment'] = ('nova-manage db online_data_migrations was ' 'executed successfuly') ret['changes']['online_data_migrations'] = ( 'online_data_migrations run on nova api_db version {0} and ' 'nova db version {1}'.format(api_db_version, db_version)) except Exception as e: ret['comment'] = ( 'Failed to execute online_data_migrations on nova api_db ' 'version %s and nova db version %s, exception: %s' % ( api_db_version, db_version, e)) return ret @_error_handler def service_enabled(name, cloud_name, binary="nova-compute"): """Ensures that the service is enabled on the host :param name: name of a host where service is running :param service: name of the service have to be run """ changes = {} services = _call_nova_salt_module('services_list', name)( name, service=binary, cloud_name=cloud_name) enabled_service = [s for s in services if s['binary'] == binary and s['status'] == 'enabled' and s['host'] == name] if len(enabled_service) > 0: ret = _no_change(name, 'Compute services') else: changes = _call_nova_salt_module('services_update', name)( name, binary, 'enable', cloud_name=cloud_name) ret = _updated(name, 'Compute services', changes) return ret @_error_handler def service_disabled(name, cloud_name, binary="nova-compute", disabled_reason=None): """Ensures that the service is disabled on the host :param name: name of a host where service is running :param service: name of the service have to be disabled """ changes = {} kwargs = {} if disabled_reason is not None: kwargs['disabled_reason'] = disabled_reason services = _call_nova_salt_module('services_list', name)( name, service=binary, cloud_name=cloud_name) disabled_service = [s for s in services if s['binary'] == binary and s['status'] == 'disabled' and s['host'] == name] if len(disabled_service) > 0: ret = _no_change(name, 'Compute services') else: changes = _call_nova_salt_module('services_update', name)( name, binary, 'disable', cloud_name=cloud_name, **kwargs) ret = _updated(name, 'Compute services', changes) return ret def _find_failed(name, resource): return { 'name': name, 'changes': {}, 'result': False, 'comment': 'Failed to find {0}s with name {1}'.format(resource, name)} def _created(name, resource, changes): return { 'name': name, 'changes': changes, 'result': True, 'comment': '{0} {1} created'.format(resource, name)} def _create_failed(name, resource): return { 'name': name, 'changes': {}, 'result': False, 'comment': '{0} {1} creation failed'.format(resource, name)} def _no_change(name, resource): return { 'name': name, 'changes': {}, 'result': True, 'comment': '{0} {1} already is in the desired state'.format( resource, name)} def _updated(name, resource, changes): return { 'name': name, 'changes': changes, 'result': True, 'comment': '{0} {1} was updated'.format(resource, name)} def _update_failed(name, resource): return { 'name': name, 'changes': {}, 'result': False, 'comment': '{0} {1} update failed'.format(resource, name)} def _deleted(name, resource): return { 'name': name, 'changes': {}, 'result': True, 'comment': '{0} {1} deleted'.format(resource, name)} def _delete_failed(name, resource): return { 'name': name, 'changes': {}, 'result': False, 'comment': '{0} {1} deletion failed'.format(resource, name)} def _non_existent(name, resource): return { 'name': name, 'changes': {}, 'result': True, 'comment': '{0} {1} does not exist'.format(resource, name)}
39.155268
84
0.626729
206
0.009725
0
0
10,182
0.480668
0
0
6,418
0.302979
27ea8174cb81713dd5c70d96704d5a2c63cec32e
325
py
Python
server/dev.py
Khanable/Photography-Portfolio-Website
5019e8316e078dcb672888dd847fdd6b732443a9
[ "MIT" ]
null
null
null
server/dev.py
Khanable/Photography-Portfolio-Website
5019e8316e078dcb672888dd847fdd6b732443a9
[ "MIT" ]
null
null
null
server/dev.py
Khanable/Photography-Portfolio-Website
5019e8316e078dcb672888dd847fdd6b732443a9
[ "MIT" ]
null
null
null
from sys import modules from importlib import import_module modules['server'] = import_module('src') from werkzeug.serving import run_simple from server.app import App from server.mode import Mode if __name__=='__main__': app = App(mode=Mode.Development) run_simple('localhost', 8000, app, use_reloader=True)
27.083333
55
0.76
0
0
0
0
0
0
0
0
34
0.104615
27ed7774eba9356593529c7a047bb6eafaebca6b
6,891
py
Python
src/pyff/fetch.py
rhoerbe/pyFF
85933ed9cc9f720c9432d5e4c3114895cefd3579
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/pyff/fetch.py
rhoerbe/pyFF
85933ed9cc9f720c9432d5e4c3114895cefd3579
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/pyff/fetch.py
rhoerbe/pyFF
85933ed9cc9f720c9432d5e4c3114895cefd3579
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
""" An abstraction layer for metadata fetchers. Supports both syncronous and asyncronous fetchers with cache. """ from .logs import get_log import os import requests from .constants import config from datetime import datetime from collections import deque import six from concurrent import futures import traceback from .parse import parse_resource from itertools import chain from .exceptions import ResourceException from .utils import url_get from copy import deepcopy, copy if six.PY2: from UserDict import DictMixin as ResourceManagerBase elif six.PY3: from collections import MutableMapping as ResourceManagerBase requests.packages.urllib3.disable_warnings() log = get_log(__name__) class ResourceManager(ResourceManagerBase): def __init__(self): self._resources = dict() self.shutdown = False def __setitem__(self, key, value): if not isinstance(value, Resource): raise ValueError("I can only store Resources") self._resources[key] = value def __getitem__(self, key): return self._resources[key] def __delitem__(self, key): if key in self: del self._resources[key] def keys(self): return list(self._resources.keys()) def values(self): return list(self._resources.values()) def walk(self, url=None): if url is not None: return self[url].walk() else: i = [r.walk() for r in list(self.values())] return chain(*i) def add(self, r): if not isinstance(r, Resource): raise ValueError("I can only store Resources") self[r.name] = r def __contains__(self, item): return item in self._resources def __len__(self): return len(list(self.values())) def __iter__(self): return self.walk() def reload(self, url=None, fail_on_error=False, store=None): # type: (object, basestring) -> None if url is not None: resources = deque([self[url]]) else: resources = deque(list(self.values())) with futures.ThreadPoolExecutor(max_workers=config.worker_pool_size) as executor: while resources: tasks = dict((executor.submit(r.fetch, store=store), r) for r in resources) new_resources = deque() for future in futures.as_completed(tasks): r = tasks[future] try: res = future.result() if res is not None: for nr in res: new_resources.append(nr) except Exception as ex: log.debug(traceback.format_exc()) log.error(ex) if fail_on_error: raise ex resources = new_resources class Resource(object): def __init__(self, url, **kwargs): self.url = url self.opts = kwargs self.t = None self.type = "text/plain" self.expire_time = None self.last_seen = None self._infos = deque(maxlen=config.info_buffer_size) self.children = deque() def _null(t): return t self.opts.setdefault('cleanup', []) self.opts.setdefault('via', []) self.opts.setdefault('fail_on_error', False) self.opts.setdefault('as', None) self.opts.setdefault('verify', None) self.opts.setdefault('filter_invalid', True) self.opts.setdefault('validate', True) if "://" not in self.url: if os.path.isfile(self.url): self.url = "file://{}".format(os.path.abspath(self.url)) @property def post(self): return self.opts['via'] def add_via(self, callback): self.opts['via'].append(callback) @property def cleanup(self): return self.opts['cleanup'] def __str__(self): return "Resource {} expires at {} using ".format(self.url, self.expire_time) + \ ",".join(["{}={}".format(k, v) for k, v in list(self.opts.items())]) def walk(self): yield self for c in self.children: for cn in c.walk(): yield cn def is_expired(self): now = datetime.now() return self.expire_time is not None and self.expire_time < now def is_valid(self): return self.t is not None and not self.is_expired() def add_info(self, info): self._infos.append(info) def add_child(self, url, **kwargs): opts = deepcopy(self.opts) del opts['as'] opts.update(kwargs) r = Resource(url, **opts) self.children.append(r) return r @property def name(self): if 'as' in self.opts: return self.opts['as'] else: return self.url @property def info(self): if self._infos is None or not self._infos: return dict() else: return self._infos[-1] def fetch(self, store=None): info = dict() info['Resource'] = self.url self.add_info(info) data = None if os.path.isdir(self.url): data = self.url info['Directory'] = self.url elif '://' in self.url: r = url_get(self.url) info['HTTP Response Headers'] = r.headers log.debug("got status_code={:d}, encoding={} from_cache={} from {}". format(r.status_code, r.encoding, getattr(r, "from_cache", False), self.url)) info['Status Code'] = str(r.status_code) info['Reason'] = r.reason if r.ok: data = r.text else: raise ResourceException("Got status={:d} while fetching {}".format(r.status_code, self.url)) else: raise ResourceException("Unknown resource type {}".format(self.url)) parse_info = parse_resource(self, data) if parse_info is not None and isinstance(parse_info, dict): info.update(parse_info) if self.t is not None: self.last_seen = datetime.now() if self.post and isinstance(self.post, list): for cb in self.post: if self.t is not None: self.t = cb(self.t, **self.opts) if self.is_expired(): info['Expired'] = True raise ResourceException("Resource at {} expired on {}".format(self.url, self.expire_time)) else: info['Expired'] = False for (eid, error) in list(info['Validation Errors'].items()): log.error(error) if store is not None: store.update(self.t, tid=self.name) return self.children
29.702586
108
0.565085
6,181
0.896967
123
0.017849
420
0.060949
0
0
644
0.093455
27effbc79d2bf6543199f4b75da0205988092da4
498
py
Python
pychonet/HomeSolarPower.py
mochipon/pychonet
65ba4189f9a66b6e698646854542cdd506369813
[ "MIT" ]
null
null
null
pychonet/HomeSolarPower.py
mochipon/pychonet
65ba4189f9a66b6e698646854542cdd506369813
[ "MIT" ]
null
null
null
pychonet/HomeSolarPower.py
mochipon/pychonet
65ba4189f9a66b6e698646854542cdd506369813
[ "MIT" ]
null
null
null
from pychonet.EchonetInstance import EchonetInstance class HomeSolarPower(EchonetInstance): def __init__(self, netif, instance = 0x1): self.eojgc = 0x02 self.eojcc = 0x79 EchonetInstance.__init__(self, self.eojgc, self.eojcc, instance, netif) def getMeasuredInstantPower(self): return int.from_bytes(self.getSingleMessageResponse(0xE0), 'big') def getMeasuredCumulPower(self): return int.from_bytes(self.getSingleMessageResponse(0xE1), 'big')
35.571429
79
0.728916
443
0.889558
0
0
0
0
0
0
10
0.02008
27f5b22f4011155a67ce267a26bf5d2d27c8298e
6,955
py
Python
adlmagics/adlmagics/adlmagics_main.py
Azure/Azure-Data-Service-Notebook
6bd28587c9fa0a7c1f9113f638b790b1773c5585
[ "MIT" ]
6
2018-06-06T08:37:53.000Z
2020-06-01T13:13:13.000Z
adlmagics/adlmagics/adlmagics_main.py
Azure/Azure-Data-Service-Notebook
6bd28587c9fa0a7c1f9113f638b790b1773c5585
[ "MIT" ]
30
2018-06-08T02:47:18.000Z
2018-07-25T07:07:07.000Z
adlmagics/adlmagics/adlmagics_main.py
Azure/Azure-Data-Service-Notebook
6bd28587c9fa0a7c1f9113f638b790b1773c5585
[ "MIT" ]
5
2018-06-06T08:37:55.000Z
2021-01-07T09:15:15.000Z
from IPython.core.magic import Magics, magics_class, line_cell_magic from sys import stdout from os import linesep from os.path import join, expanduser from adlmagics.version import adlmagics_version from adlmagics.converters.dataframe_converter import DataFrameConverter from adlmagics.utils.json_file_persister import JsonFilePersister from adlmagics.utils.ipshell_result_receiver import IPShellResultReceiver from adlmagics.presenters.presenter_base import PresenterBase from adlmagics.presenters.text_presenter import TextPresenter from adlmagics.presenters.adla_job_presenter import AdlaJobPresenter from adlmagics.presenters.adla_jobs_presenter import AdlaJobsPresenter from adlmagics.presenters.adls_files_presenter import AdlsFilesPresenter from adlmagics.presenters.adls_folders_presenter import AdlsFoldersPresenter from adlmagics.services.azure_token_service import AzureTokenService from adlmagics.services.adla_service_sdk_impl import AdlaServiceSdkImpl from adlmagics.services.adls_service_sdk_impl import AdlsServiceSdkImpl from adlmagics.services.session_service import SessionService from adlmagics.services.presenter_factory import PresenterFactory from adlmagics.magics.session.session_magic_base import SessionMagicBase from adlmagics.magics.session.session_viewing_magic import SessionViewingMagic from adlmagics.magics.session.session_item_setting_magic import SessionItemSettingMagic from adlmagics.magics.azure.azure_magic_base import AzureMagicBase from adlmagics.magics.azure.azure_login_magic import AzureLoginMagic from adlmagics.magics.azure.azure_logout_magic import AzureLogoutMagic from adlmagics.magics.adla.adla_magic_base import AdlaMagicBase from adlmagics.magics.adla.adla_accounts_listing_magic import AdlaAccountsListingMagic from adlmagics.magics.adla.adla_job_viewing_magic import AdlaJobViewingMagic from adlmagics.magics.adla.adla_job_submission_magic import AdlaJobSubmissionMagic from adlmagics.magics.adla.adla_jobs_listing_magic import AdlaJobsListingMagic from adlmagics.magics.adls.adls_magic_base import AdlsMagicBase from adlmagics.magics.adls.adls_accounts_listing_magic import AdlsAccountsListingMagic from adlmagics.magics.adls.adls_folders_listing_magic import AdlsFoldersListingMagic from adlmagics.magics.adls.adls_files_listing_magic import AdlsFilesListingMagic from adlmagics.magics.adls.adls_file_sampling_magic import AdlsFileSamplingMagic @magics_class class AdlMagics(Magics): def __init__(self, shell, data = None): super(AdlMagics, self).__init__(shell) self.__session_service = SessionService(JsonFilePersister(join(expanduser("~"), "adlmagics.session"), "utf-8")) self.__presenter_factory = PresenterFactory() self.__register_presenter(TextPresenter) self.__register_presenter(AdlaJobPresenter) self.__register_presenter(AdlaJobsPresenter) self.__register_presenter(AdlsFilesPresenter) self.__register_presenter(AdlsFoldersPresenter) self.__token_service = AzureTokenService(self.__presenter_factory) self.__adla_service = AdlaServiceSdkImpl(self.__token_service) self.__adls_service = AdlsServiceSdkImpl(self.__token_service) self.__initialize_magics() self.__write_line("%s %s initialized" % (AdlMagics.__name__, adlmagics_version)) @line_cell_magic def adl(self, line, cell = ""): cmd = line.strip() arg_string = "" try: cmd_end_index = cmd.index(" ") cmd = cmd[0:cmd_end_index].strip().lower() arg_string = line[cmd_end_index:].strip() except: pass if (cmd not in self.__magics): raise ValueError("Unsupported command '%s'" % cmd) magic = self.__magics[cmd] return magic.execute(arg_string, cell) def __register_presenter(self, presenter_class): if (not issubclass(presenter_class, PresenterBase)): raise TypeError("%s not a presenter class." % (presenter_class.__name__)) presenter = presenter_class() self.__presenter_factory.register_presenter(presenter) def __initialize_magics(self): df_converter = DataFrameConverter() self.__magics = dict() self.__register_session_magic(SessionViewingMagic) self.__register_session_magic(SessionItemSettingMagic) self.__register_azure_magic(AzureLoginMagic) self.__register_azure_magic(AzureLogoutMagic) self.__register_adla_magic(AdlaAccountsListingMagic, df_converter) self.__register_adla_magic(AdlaJobViewingMagic, df_converter) self.__register_adla_magic(AdlaJobsListingMagic, df_converter) adla_job_submission_magic = AdlaJobSubmissionMagic(self.__session_service, self.__presenter_factory, df_converter, IPShellResultReceiver(), self.__adla_service) self.__magics[adla_job_submission_magic.cmd_name.lower()] = adla_job_submission_magic self.__register_adls_magic(AdlsAccountsListingMagic, df_converter) self.__register_adls_magic(AdlsFoldersListingMagic, df_converter) self.__register_adls_magic(AdlsFilesListingMagic, df_converter) self.__register_adls_magic(AdlsFileSamplingMagic, df_converter) def __register_session_magic(self, session_magic_class): if (not issubclass(session_magic_class, SessionMagicBase)): raise TypeError("%s not a session magic class." % (session_magic_class.__name__)) session_magic = session_magic_class(self.__session_service, self.__presenter_factory) self.__magics[session_magic.cmd_name.lower()] = session_magic def __register_azure_magic(self, azure_magic_class): if (not issubclass(azure_magic_class, AzureMagicBase)): raise TypeError("%s not a azure magic class." % (azure_magic_class.__name__)) azure_magic = azure_magic_class(self.__session_service, self.__presenter_factory, self.__token_service) self.__magics[azure_magic.cmd_name.lower()] = azure_magic def __register_adla_magic(self, adla_magic_class, result_converter): if (not issubclass(adla_magic_class, AdlaMagicBase)): raise TypeError("%s not a adla magic class." % (adla_magic_class.__name__)) adla_magic = adla_magic_class(self.__session_service, self.__presenter_factory, result_converter, self.__adla_service) self.__magics[adla_magic.cmd_name.lower()] = adla_magic def __register_adls_magic(self, adls_magic_class, result_converter): if (not issubclass(adls_magic_class, AdlsMagicBase)): raise TypeError("%s not a adls magic class." % (adls_magic_class.__name__)) adls_magic = adls_magic_class(self.__session_service, self.__presenter_factory, result_converter, self.__adls_service) self.__magics[adls_magic.cmd_name.lower()] = adls_magic def __write_line(self, text): stdout.write(text + linesep)
48.298611
168
0.78404
4,529
0.651186
0
0
4,543
0.653199
0
0
224
0.032207
27f6676280bfbc46f5ea3961bee24ccfef845e05
10,137
py
Python
metadata_service/api/dashboard.py
iiAnderson/metaflow-service
b42391e5ee2187a93259b944c515522d76b1314e
[ "Apache-2.0" ]
null
null
null
metadata_service/api/dashboard.py
iiAnderson/metaflow-service
b42391e5ee2187a93259b944c515522d76b1314e
[ "Apache-2.0" ]
null
null
null
metadata_service/api/dashboard.py
iiAnderson/metaflow-service
b42391e5ee2187a93259b944c515522d76b1314e
[ "Apache-2.0" ]
null
null
null
import asyncio import json from datetime import datetime, timedelta from aiohttp import web from .utils import read_body, get_week_times, get_formatted_time from ..data.models import RunRow from ..data.postgres_async_db import AsyncPostgresDB import logging class DashboardAPI(object): _run_table = None lock = asyncio.Lock() def __init__(self, app, cors): cors.add(app.router.add_route("GET", "/dashboard/flows", self.get_flows)) cors.add(app.router.add_route("GET", "/dashboard/flows/{flow_id}/count", self.count_runs)) cors.add(app.router.add_route("GET", "/dashboard/flows/{flow_id}/recent", self.get_recent_run)) cors.add(app.router.add_route("GET", "/dashboard/flows/{flow_id}/last", self.get_last_n_runs)) cors.add(app.router.add_route("GET", "/dashboard/flows/{flow_id}/{timestamp}", self.get_runs_since)) self._run_async_table = AsyncPostgresDB.get_instance().run_table_postgres self._flow_async_table = AsyncPostgresDB.get_instance().flow_table_postgres self._rich_run_async_table = AsyncPostgresDB.get_instance().rich_run_table_postgres async def get_flows(self, request): """ --- description: Get run by run number tags: - Run parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" - name: "run_number" in: "path" description: "run_number" required: true type: "integer" produces: - text/plain responses: "200": description: successful operation. Return specified run "404": description: specified run not found "405": description: invalid HTTP Method """ flow_response = await self._flow_async_table.get_all_flows() data = [] for flow in flow_response.body: flow_id = flow['flow_id'] run_response = await self._run_async_table.get_all_runs(flow_id) last_run = run_response.body[-1] rich_run_response = await self._rich_run_async_table.get_rich_run(flow_id, last_run['run_number']) rich_last_run = rich_run_response.body data.append({ "success": rich_last_run['success'], "finished": rich_last_run['finished'], "finished_at": rich_last_run['finished_at'], "created_at": last_run['ts_epoch'], "run_id": last_run['run_number'], "flow": flow_id, "user": last_run['user_name'] }) return web.Response( status=rich_run_response.response_code, body=json.dumps(data) ) async def count_runs(self, request): """ --- description: Get all runs tags: - Run parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" produces: - text/plain responses: "200": description: Returned all runs of specified flow "405": description: invalid HTTP Method """ flow_name = request.match_info.get("flow_id") if flow_name == "all": flow_response = await self._flow_async_table.get_all_flows() flows = [x['flow_id'] for x in flow_response.body] else: flows = [flow_name] counts = get_week_times() time_bound = (datetime.now() - timedelta(days=7)).timestamp() for flow_id in flows: run_response = await self._rich_run_async_table.get_rich_run_since(flow_id, time_bound) for run in run_response.body: logging.error(run) datetime_created = datetime.fromtimestamp(run['ts_epoch']/1000) counts[get_formatted_time(datetime_created)] = counts[get_formatted_time(datetime_created)] + 1 return_data =[] for key, value in counts.items(): return_data.append({"time": key, "count": value}) return web.Response(status=run_response.response_code, body=json.dumps(return_data)) async def get_runs_since(self, request): """ --- description: Get all runs tags: - Run parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" produces: - text/plain responses: "200": description: Returned all runs of specified flow "405": description: invalid HTTP Method """ timestamp = request.match_info.get("timestamp") flow_name = request.match_info.get("flow_id") if flow_name == "all": flow_response = await self._flow_async_table.get_all_flows() flows = [x['flow_id'] for x in flow_response.body] else: flows = [flow_name] data = [] for flow_id in flows: run_response = await self._rich_run_async_table.get_rich_run_since(flow_id, timestamp) rich_runs = run_response.body for rich_run_data in rich_runs: logging.error(flow_id + " " + str(rich_run_data['run_number'])) run_response = await self._run_async_table.get_run(flow_id, rich_run_data['run_number']) run_data = run_response.body data.append({ "success": rich_run_data['success'], "finished": rich_run_data['finished'], "finished_at": rich_run_data['finished_at'], "created_at": run_data['ts_epoch'], "run_id": run_data['run_number'], "flow": flow_id, "user": run_data['user_name'] }) return web.Response(status=run_response.response_code, body=json.dumps(data)) async def get_run_data(self, request): """ --- description: Get all runs tags: - Run parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" produces: - text/plain responses: "200": description: Returned all runs of specified flow "405": description: invalid HTTP Method """ flow_id = request.match_info.get("flow_id") run_number = request.match_info.get("run_number") run_response = await self._rich_run_async_table.get_rich_run(flow_id, run_number) rich_run_data = run_response.body run_response = await self._run_async_table.get_run(flow_id, run_number) run_data = run_response.body data = { "success": rich_run_data['success'], "finished": rich_run_data['finished'], "finished_at": rich_run_data['finished_at'], "created_at": run_data['ts_epoch'], "run_id": run_data['run_number'], "flow": flow_id, "user": run_data['user_name'] } return web.Response(status=run_response.response_code, body=json.dumps(data)) async def get_recent_run(self, request): """ --- description: Get all runs tags: - Run parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" produces: - text/plain responses: "200": description: Returned all runs of specified flow "405": description: invalid HTTP Method """ flow_id = request.match_info.get("flow_id") run_response = await self._run_async_table.get_all_runs(flow_id) run_data = run_response.body recent_run = run_data[-1] run_response = await self._rich_run_async_table.get_rich_run(flow_id, recent_run['run_number']) rich_run_data = run_response.body data = { "success": rich_run_data['success'], "finished": rich_run_data['finished'], "finished_at": rich_run_data['finished_at'], "created_at": recent_run['ts_epoch'], "run_id": recent_run['run_number'], "flow": flow_id, "user": recent_run['user_name'] } return web.Response(status=run_response.response_code, body=json.dumps(data)) async def get_last_n_runs(self, request): """ --- description: Get all runs tags: - Run parameters: - name: "flow_id" in: "path" description: "flow_id" required: true type: "string" produces: - text/plain responses: "200": description: Returned all runs of specified flow "405": description: invalid HTTP Method """ flow_id = request.match_info.get("flow_id") run_response = await self._run_async_table.get_all_runs(flow_id) run_data = run_response.body n_recent_runs = run_data[-5:] data = [] for recent_run in n_recent_runs: run_response = await self._rich_run_async_table.get_rich_run(flow_id, recent_run['run_number']) rich_run_data = run_response.body data.append({ "success": rich_run_data['success'], "finished": rich_run_data['finished'], "finished_at": rich_run_data['finished_at'], "created_at": recent_run['ts_epoch'], "run_id": recent_run['run_number'], "flow": flow_id, "user": recent_run['user_name'] }) return web.Response(status=run_response.response_code, body=json.dumps(data))
32.805825
111
0.56792
9,876
0.974253
0
0
0
0
8,973
0.885173
3,940
0.388675
27f693df0e7ea237223f8c2bc9de9a57a4f98dac
838
py
Python
tests/test_report.py
whalebot-helmsman/pykt-64
ee5e0413cd850876d3abc438480fffea4f7b7517
[ "BSD-3-Clause" ]
null
null
null
tests/test_report.py
whalebot-helmsman/pykt-64
ee5e0413cd850876d3abc438480fffea4f7b7517
[ "BSD-3-Clause" ]
null
null
null
tests/test_report.py
whalebot-helmsman/pykt-64
ee5e0413cd850876d3abc438480fffea4f7b7517
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from setup_teardown import start_db, stop_db from nose.tools import * from pykt import KyotoTycoon, KTException @raises(IOError) def test_err_report(): db = KyotoTycoon() db.report() @with_setup(setup=start_db,teardown=stop_db) def test_report(): db = KyotoTycoon() db = db.open() ret = db.report() ok_(ret) ok_(isinstance(ret, dict)) db.close() @with_setup(setup=start_db,teardown=stop_db) def test_report_with_db(): db = KyotoTycoon("test") db = db.open() ret = db.report() ok_(ret) ok_(isinstance(ret, dict)) db.close() @with_setup(setup=start_db,teardown=stop_db) def test_report_loop(): db = KyotoTycoon() db = db.open() for i in xrange(100): ret = db.report() ok_(ret) ok_(isinstance(ret, dict)) db.close()
21.487179
44
0.643198
0
0
0
0
693
0.826969
0
0
29
0.034606
27f6d38ee1079239114141527da38c16b3c99951
1,024
py
Python
src/Screen.py
D3r3k23/CaveRun
27f7b3c518f8646bc506f5d3b774ef6e62faef96
[ "MIT" ]
1
2022-02-10T04:42:04.000Z
2022-02-10T04:42:04.000Z
src/Screen.py
D3r3k23/CaveRun
27f7b3c518f8646bc506f5d3b774ef6e62faef96
[ "MIT" ]
null
null
null
src/Screen.py
D3r3k23/CaveRun
27f7b3c518f8646bc506f5d3b774ef6e62faef96
[ "MIT" ]
1
2022-01-11T17:11:44.000Z
2022-01-11T17:11:44.000Z
import Resources import Colors import pygame screen = None def init(width, height): global screen screen = pygame.display.set_mode((width, height)) def width(): return screen.get_width() def height(): return screen.get_height() def res(): return (screen.get_width(), screen.get_height()) def rect(): return screen.get_rect() def clear(): screen.fill(Colors.BLACK) def draw_to_screen(img, rect=(0, 0)): screen.blit(img, rect) def display(): pygame.display.update() clear() # Base class for drawable objects # Created from image and coordinates, stores image and rect class Drawable: def __init__(self, img, x, y, center=False): # x, y: center or (left, top) coordinates width = img.get_width() height = img.get_height() origin = (x - (width // 2), y - (height // 2)) if center else (x, y) self.img = img self.rect = pygame.Rect(origin, (width, height)) def draw(self): draw_to_screen(self.img, self.rect)
21.333333
90
0.640625
405
0.395508
0
0
0
0
0
0
133
0.129883
27f931503927cf87b2047c06d44bfc6dbb23b7c2
5,416
py
Python
manga_db/extractor/toonily.py
nilfoer/mangadb
860d7de310002735631ea26810b4df5b6bc08d7b
[ "MIT" ]
3
2021-01-14T16:22:41.000Z
2022-02-21T03:31:22.000Z
manga_db/extractor/toonily.py
nilfoer/mangadb
860d7de310002735631ea26810b4df5b6bc08d7b
[ "MIT" ]
13
2021-01-14T10:34:19.000Z
2021-05-20T08:47:54.000Z
manga_db/extractor/toonily.py
nilfoer/mangadb
860d7de310002735631ea26810b4df5b6bc08d7b
[ "MIT" ]
1
2022-02-24T03:10:04.000Z
2022-02-24T03:10:04.000Z
import re import datetime import bs4 from typing import Dict, Tuple, Optional, TYPE_CHECKING, ClassVar, Pattern, cast, Match, Any from .base import BaseMangaExtractor, MangaExtractorData from ..constants import STATUS_IDS, CENSOR_IDS if TYPE_CHECKING: from ..ext_info import ExternalInfo class ToonilyExtractor(BaseMangaExtractor): site_name: ClassVar[str] = "Toonily" site_id: ClassVar[int] = 5 URL_PATTERN_RE: ClassVar[Pattern] = re.compile( r"(?:https?://)?toonily\.com/webtoon/([-A-Za-z0-9]+)") BASE_URL = "https://toonily.com" MANGA_URL = "https://toonily.com/webtoon/{id_onpage}" def __init__(self, url: str): super().__init__(url) self.id_onpage: str = self.book_id_from_url(url) self.cover_url: Optional[str] = None self.export_data: Optional[MangaExtractorData] = None @classmethod def match(cls, url: str) -> bool: """ Returns True on URLs the extractor is compatible with """ return bool(cls.URL_PATTERN_RE.match(url)) def extract(self) -> Optional[MangaExtractorData]: if self.export_data is None: html = self.get_html(self.url) if html is None: return None data_dict = self._extract_info(html) self.export_data = MangaExtractorData( pages=0, # seem to only be in english language='English', collection=[], groups=[], parody=[], character=[], url=self.url, id_onpage=self.id_onpage, imported_from=ToonilyExtractor.site_id, uploader=None, upload_date=datetime.date.min, **data_dict) return self.export_data def _extract_info(self, html: str) -> Dict[str, Any]: res: Dict[str, Any] = {} soup = bs4.BeautifulSoup(html, "html.parser") cover_url = soup.select_one("div.summary_image img") self.cover_url = cover_url.attrs['data-src'] res['title_eng'] = soup.select_one("div.post-title h1").text.strip() book_data = soup.select_one("div.summary_content") label_to_idx = {x.get_text().strip(): i for i, x in enumerate(book_data.select("div.summary-heading"))} content = book_data.select("div.summary-content") # assumes order stays the same rating_idx = label_to_idx["Rating"] res['rating'] = float(content[rating_idx].select_one("#averagerate").text.strip()) res['ratings'] = int(content[rating_idx].select_one("#countrate").text.strip()) # sep is ',' alt_title_idx = label_to_idx["Alt Name(s)"] alt_titles = [s.strip() for s in content[alt_title_idx].text.split(",")] if alt_titles[0] == 'N/A': res['title_foreign'] = None else: # @Incomplete take first non-latin title; alnum() supports unicode and thus returns # true for """"alphanumeric"""" japanese symbols !?!? non_latin = [s for s in alt_titles if ord(s[0]) > 128] if non_latin: res['title_foreign'] = non_latin[0] else: res['title_foreign'] = alt_titles[0] authors = [s.text.strip() for s in content[label_to_idx["Author(s)"]].select("a")] artists = [s.text.strip() for s in content[label_to_idx["Artist(s)"]].select("a")] res['artist'] = [n for n in authors if n not in artists] + artists tags = [a.text.strip() for a in book_data.select('div.genres-content a')] res['tag'] = tags res['nsfw'] = 'Mature' in tags uncensored = 'Uncensored' in tags res['censor_id'] = ( CENSOR_IDS['Uncensored'] if uncensored else CENSOR_IDS['Censored']) # type res['category'] = [content[label_to_idx["Type"]].text.strip()] # OnGoing or Completed status_str = content[label_to_idx["Status"]].text.strip().capitalize() res['status_id'] = STATUS_IDS['Hiatus'] if status_str == 'On Hiatus' else STATUS_IDS[status_str] # e.g.: 128 Users bookmarked this # e.g.: 128K Users bookmarked this favorites_str = book_data.select_one("div.add-bookmark span").text.split()[0].strip().lower() if 'k' in favorites_str: res['favorites'] = int(float(favorites_str[:-1]) * 1000) else: res['favorites'] = int(favorites_str) summary = soup.select_one("div.description-summary div.summary__content").text.strip() # @CleanUp res['note'] = f"{'Summary: ' if not uncensored else ''}{summary}" return res def get_cover(self) -> Optional[str]: if self.export_data is None: self.extract() return self.cover_url @classmethod def book_id_from_url(cls, url: str) -> str: # guaranteed match since we only get passed matching urls match = cast(Match, cls.URL_PATTERN_RE.match(url)) return match.group(1) @classmethod def url_from_ext_info(cls, ext_info: 'ExternalInfo') -> str: return cls.MANGA_URL.format(id_onpage=ext_info.id_onpage) @classmethod def read_url_from_ext_info(cls, ext_info: 'ExternalInfo') -> str: # @CleanUp just uses first chapter return f"{cls.url_from_ext_info(ext_info)}/chapter-1"
37.351724
111
0.605613
5,117
0.944793
0
0
732
0.135155
0
0
1,269
0.234306
27fb6ab9dc39790c3dcbcf43be391bd869cc5d49
10,965
py
Python
blindbackup/providers/blindfs.py
nagylzs/blindbackup
fa0c7a6ef42bb5aefec99eff69a3227c8695fdd9
[ "Apache-2.0" ]
1
2020-01-26T05:46:14.000Z
2020-01-26T05:46:14.000Z
blindbackup/providers/blindfs.py
nagylzs/blindbackup
fa0c7a6ef42bb5aefec99eff69a3227c8695fdd9
[ "Apache-2.0" ]
null
null
null
blindbackup/providers/blindfs.py
nagylzs/blindbackup
fa0c7a6ef42bb5aefec99eff69a3227c8695fdd9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import os.path import threading from .. import cryptfile from ..util import * from ..client import create_client from ..syncdir import FsProvider, FsListener class BlindFsListener(threading.Thread, FsListener): def is_stopping(self): return self.stop_requested.isSet() def __init__(self, client, sender, relpath, onchange): self.client = client self.sender = sender self.relpath = relpath self.onchange = onchange self.stop_requested = threading.Event() self.stopped = threading.Event() self.uid = None threading.Thread.__init__(self) FsListener.__init__(self) # This will create a dummy uid but we will overwrite it later in run(). def request_stop(self): """Request a stop on the listening thread.""" self.stop_requested.set() def is_stopped(self): """Tells if the listening thread has stopped.""" return self.stopped.is_set() def run(self): self.stopped.clear() self.stop_requested.clear() self.uid = self.client("listenchanges", root=self.relpath) while not self.stop_requested.is_set(): changes = self.client("pollchanges", uid=self.uid) if changes: for eventPath, eventType, eventUid in changes: self.onchange(self.sender, eventPath, eventType, eventUid) self.stopped.set() def get_uid(self): """Get unique identifier for the listener. This can be used to send notification messages that are not to be sent back to this listener.""" return self.uid class BlindFsProvider(FsProvider): """FsProvider that is provided by a backup server. @param client: A Client instance @param root: The root parameter must be a list of path elements. It represents the relative path on the server that will be snychronized. """ @classmethod def get_name(cls): return "blindfs" def __init__(self, path: str, can_create: bool, settings: dict, client=None, root=None): if root is None: # Normal construction if client is None: self.client = create_client(settings) else: self.client = client if path: root = path.split("/") else: root = [] if root and not root[0]: raise Exception("BlindFsProvider: root cannot be [''], it must be []. Hint: use :// instead of :///") if not client.directory_exists(path): if can_create: client("mkdir", relpath=path) # else: # parser.error("Remote path does not exist: %s" % loc) else: # cloned assert client assert path is None assert root self.client = client self.root = root self.settings = settings self._is_case_sensitive = None self.tmp_dir = settings.get("tmp_dir", None) super().__init__() def clone(self): res = BlindFsProvider(None, False, self.settings, self.client, self.root) res.uid = self.get_uid() return res def drill(self, relpath): """Change root of the FsProvider to a new subdir. @param relpath: a list of path items Should only use it on a clone.""" assert (isinstance(relpath, list)) self.root = self.root + relpath def get_event_relpath(self, event_path): """Convert the full path of an event into a path relative to this provider. @return: a list of path items""" myroot = "/".join(self.root) assert (event_path.startswith(myroot)) return event_path[len(myroot) + 1:].split("/") def _remotepath(self, relpath): return self.root + relpath def iscasesensitive(self): if self._is_case_sensitive is None: self._is_case_sensitive = self.client("iscasesensitive") return self._is_case_sensitive def listdir(self, relpath): # print("listdir",relpath,self._remotepath(relpath)) return self.client("listdir", relpath=self._remotepath(relpath)) def getinfo(self, items, encrypted): root = "/".join(self.root) # map object cannot be serialized, need to convert items to a list. return self.client( "getinfo", root=root, items=list(items), encrypted=encrypted) def sendchanges(self, delet, dcopy, fcopy): # Delete unwanted first for dpath in delet: yield (self.DELETE, "/".join(dpath)) # Then create new directories infos = self.getinfo(dcopy, bool(self.decryptionkey)) for idx, dpath in enumerate(dcopy): # use getinfo here, but need to have some buffering? atime, mtime, fsize = infos[idx] yield ( self.DIRECTORY, "/".join(dpath), atime, mtime) subdnames, subfnames = self.listdir(dpath) for change in self.sendchanges( [], self._prefixed(dpath, subdnames), self._prefixed(dpath, subfnames)): yield change # Finally send file data # TODO: make this much more efficient. Do not want to create one request per file, especially if files are small. infos = self.getinfo(fcopy, bool(self.decryptionkey)) for idx, relpath in enumerate(fcopy): atime, mtime, fsize = infos[idx] file_data = self.client.recv_backup( "/".join(self._remotepath(relpath))) localpath = create_tmp_file_for(self.tmp_dir) fout = open(localpath, "wb+") try: fout.write(file_data) fout.close() yield ( self.FILE, "/".join(relpath), atime, mtime, fsize, localpath, self.RECEIVER) finally: if os.path.isfile(localpath): os.unlink(localpath) def receivechanges(self, sender): # Unfortunately, we have to make our own schedule here. # Small files should be sent at once to minimize the number # of requests on the server. # TODO: store changes in a tmp file because there can be many. root = "/".join(self.root) delet, dcopy, fcopy = [], [], [] files, encfiles = [], [] ownedfiles = [] cnt, totalsize = 0, 0 try: while True: change = next(sender) op, *args = change if op == self.DELETE: # (self.DELETE, converted_path) change = (self.DELETE, "/".join( self.recrypt_path_items(change[1].split("/"))) ) delet.append(change) cnt += 1 elif op == self.DIRECTORY: # (self.DIRECTORY,converted_path,atime,mtime) change = list(change) change[1] = "/".join(self.recrypt_path_items(change[1].split("/"))) dcopy.append(tuple(change)) cnt += 1 elif op == self.FILE: # (self.FILE,converted_path,atime,mtime,fsize,fpath,owner) selpath, atime, mtime, fsize, fpath, owner = args selpath = "/".join( self.recrypt_path_items(selpath.split("/"))) if owner == self.RECEIVER: ownedfiles.append(fpath) # Hide original full path from the server. # The owner parameter is meaningless on the server side # (server cannot own a file on the client side) so it is # omited. change = (self.FILE, selpath, atime, mtime, fsize, "") fcopy.append(change) cnt += 1 totalsize += args[3] if self.encryptionkey and self.decryptionkey: encpath = create_tmp_file_for(fpath) cryptfile.recrypt_file( cryptfile.hashkey(self.decryptionkey), cryptfile.hashkey(self.encryptionkey), fpath, encpath) encfiles.append(encpath) files.append([selpath, encpath]) elif self.encryptionkey: encpath = create_tmp_file_for(fpath) cryptfile.encrypt_file( self.encryptionkey, fpath, encpath) encfiles.append(encpath) files.append([selpath, encpath]) elif self.decryptionkey: encpath = create_tmp_file_for(fpath) cryptfile.decrypt_file( self.decryptionkey, fpath, encpath) encfiles.append(encpath) files.append([selpath, encpath]) else: files.append([selpath, fpath]) else: raise Exception("Protocol error") if cnt > 1000 or totalsize > 1024 * 1024: self.client( "receivechanges", root=root, uid=self.get_uid(), delet=delet, dcopy=dcopy, fcopy=fcopy, files=files ) for encpath in encfiles: os.unlink(encpath) encfiles.clear() for ownedpath in ownedfiles: os.unlink(ownedpath) ownedfiles.clear() delet.clear() dcopy.clear() fcopy.clear() files.clear() except StopIteration: pass if cnt: self.client( "receivechanges", root=root, uid=self.get_uid(), delet=delet, dcopy=dcopy, fcopy=fcopy, files=files ) for encpath in encfiles: os.unlink(encpath) encfiles.clear() for ownedpath in ownedfiles: os.unlink(ownedpath) ownedfiles.clear() def listenchanges(self, onchange) -> FsListener: """Listen for changes in the filesystem.""" # Note: listenchanges always uses relative paths on the sedrver. # So instead of self.root, we pass "" here! listener = BlindFsListener(self.client, self, "", onchange) listener.start() return listener
38.882979
121
0.529503
10,777
0.982855
1,625
0.148199
60
0.005472
0
0
2,220
0.202462
27fd6c6f828a7e94f81f249d959e7e48fffdae85
3,587
py
Python
examples/computer_vision/harris.py
parag-hub/arrayfire-python
65040c10833506f212f13e5bcc0e49cb20645e6e
[ "BSD-3-Clause" ]
420
2015-07-30T00:02:21.000Z
2022-03-28T16:52:28.000Z
examples/computer_vision/harris.py
parag-hub/arrayfire-python
65040c10833506f212f13e5bcc0e49cb20645e6e
[ "BSD-3-Clause" ]
198
2015-07-29T17:17:36.000Z
2022-01-20T18:31:28.000Z
examples/computer_vision/harris.py
parag-hub/arrayfire-python
65040c10833506f212f13e5bcc0e49cb20645e6e
[ "BSD-3-Clause" ]
75
2015-07-29T15:17:54.000Z
2022-02-24T06:50:23.000Z
#!/usr/bin/env python ####################################################### # Copyright (c) 2018, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## from time import time import arrayfire as af import os import sys def draw_corners(img, x, y, draw_len): # Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner # Set only the first channel to 1 (green lines) xmin = max(0, x - draw_len) xmax = min(img.dims()[1], x + draw_len) img[y, xmin : xmax, 0] = 0.0 img[y, xmin : xmax, 1] = 1.0 img[y, xmin : xmax, 2] = 0.0 # Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner # Set only the first channel to 1 (green lines) ymin = max(0, y - draw_len) ymax = min(img.dims()[0], y + draw_len) img[ymin : ymax, x, 0] = 0.0 img[ymin : ymax, x, 1] = 1.0 img[ymin : ymax, x, 2] = 0.0 return img def harris_demo(console): root_path = os.path.dirname(os.path.abspath(__file__)) file_path = root_path if console: file_path += "/../../assets/examples/images/square.png" else: file_path += "/../../assets/examples/images/man.jpg" img_color = af.load_image(file_path, True); img = af.color_space(img_color, af.CSPACE.GRAY, af.CSPACE.RGB) img_color /= 255.0 ix, iy = af.gradient(img) ixx = ix * ix ixy = ix * iy iyy = iy * iy # Compute a Gaussian kernel with standard deviation of 1.0 and length of 5 pixels # These values can be changed to use a smaller or larger window gauss_filt = af.gaussian_kernel(5, 5, 1.0, 1.0) # Filter second order derivatives ixx = af.convolve(ixx, gauss_filt) ixy = af.convolve(ixy, gauss_filt) iyy = af.convolve(iyy, gauss_filt) # Calculate trace itr = ixx + iyy # Calculate determinant idet = ixx * iyy - ixy * ixy # Calculate Harris response response = idet - 0.04 * (itr * itr) # Get maximum response for each 3x3 neighborhood mask = af.constant(1, 3, 3) max_resp = af.dilate(response, mask) # Discard responses that are not greater than threshold corners = response > 1e5 corners = corners * response # Discard responses that are not equal to maximum neighborhood response, # scale them to original value corners = (corners == max_resp) * corners # Copy device array to python list on host corners_list = corners.to_list() draw_len = 3 good_corners = 0 for x in range(img_color.dims()[1]): for y in range(img_color.dims()[0]): if corners_list[x][y] > 1e5: img_color = draw_corners(img_color, x, y, draw_len) good_corners += 1 print("Corners found: {}".format(good_corners)) if not console: # Previews color image with green crosshairs wnd = af.Window(512, 512, "Harris Feature Detector") while not wnd.close(): wnd.image(img_color) else: idx = af.where(corners) corners_x = idx / float(corners.dims()[0]) corners_y = idx % float(corners.dims()[0]) print(corners_x) print(corners_y) if __name__ == "__main__": if (len(sys.argv) > 1): af.set_device(int(sys.argv[1])) console = (sys.argv[2] == '-') if len(sys.argv) > 2 else False af.info() print("** ArrayFire Harris Corner Detector Demo **\n") harris_demo(console)
28.927419
85
0.606078
0
0
0
0
0
0
0
0
1,296
0.361305
7e0022ad51ef52a75fd8fa97ecb5ea7bdfaf493d
4,376
py
Python
tests/generate_data.py
ngounou92/py-glm
83081444e2cbba4d94f9e6b85b6be23e0ff600b8
[ "BSD-3-Clause" ]
127
2017-09-01T13:54:43.000Z
2022-03-12T11:43:32.000Z
tests/generate_data.py
cscherrer/py-glm
d719d29fb5cc71c2cb5e728db36c6230a69292d8
[ "BSD-3-Clause" ]
8
2017-09-01T14:00:55.000Z
2020-11-09T14:42:50.000Z
tests/generate_data.py
cscherrer/py-glm
d719d29fb5cc71c2cb5e728db36c6230a69292d8
[ "BSD-3-Clause" ]
35
2017-09-01T19:23:04.000Z
2022-03-22T13:45:10.000Z
import numpy as np from scipy.linalg import sqrtm from sklearn.preprocessing import StandardScaler def make_linear_regression(n_samples=10000, n_uncorr_features=10, n_corr_features=10, n_drop_features=4, include_intercept=True, coef_range=(-1, 1), resid_sd=0.25): X = make_correlated_data( n_samples, n_uncorr_features, n_corr_features, include_intercept) parameters = make_regression_coeffs( X, n_drop_features=n_drop_features, coef_range=coef_range) y = make_linear_regression_y(X, parameters, resid_sd) return (X, y, parameters) def make_logistic_regression(n_samples=10000, n_uncorr_features=10, n_corr_features=10, n_drop_features=4, include_intercept=True, coef_range=(-1, 1)): X = make_correlated_data( n_samples, n_uncorr_features, n_corr_features, include_intercept) parameters = make_regression_coeffs( X, n_drop_features=n_drop_features, coef_range=coef_range) y = make_logistic_regression_y(X, parameters) return (X, y, parameters) def make_poisson_regression(n_samples=10000, n_uncorr_features=10, n_corr_features=10, n_drop_features=4, include_intercept=True, coef_range=(-1, 1)): X = make_correlated_data( n_samples, n_uncorr_features, n_corr_features, include_intercept) parameters = make_regression_coeffs( X, n_drop_features=n_drop_features, coef_range=coef_range) y = make_poisson_regression_y(X, parameters) return (X, y, parameters) def make_gamma_regression(n_samples=10000, n_uncorr_features=10, n_corr_features=10, n_drop_features=4, include_intercept=True, coef_range=(-1, 1)): X = make_correlated_data( n_samples, n_uncorr_features, n_corr_features, include_intercept) parameters = make_regression_coeffs( X, n_drop_features=n_drop_features, coef_range=coef_range) y = make_gamma_regression_y(X, parameters) return (X, y, parameters) def make_uncorrelated_data(n_samples=10000, n_features=25): X = np.random.normal(size=(n_samples, n_features)) return X def make_correlated_data(n_samples=10000, n_uncorr_features=10, n_corr_features=15, include_intercept=True): X_uncorr = make_uncorrelated_data(n_samples, n_uncorr_features) X_corr_base = make_uncorrelated_data(n_samples, n_corr_features) cov_matrix = make_covariance_matrix(n_corr_features) X_corr = StandardScaler().fit_transform(np.dot(X_corr_base, cov_matrix)) X = np.column_stack((X_uncorr, X_corr)) if include_intercept: intercept = np.ones(n_samples).reshape(-1, 1) return np.column_stack((intercept, X)) return X def make_covariance_matrix(n_features=15): A = np.random.normal(size=(n_features, n_features)) A_sq = np.dot(A.T, A) return sqrtm(A_sq) def make_regression_coeffs(X, n_drop_features=None, coef_range=(-1, 1)): n_features = X.shape[1] parameters = np.random.uniform(coef_range[0], coef_range[1], size=n_features) if n_drop_features is not None: drop_idxs = np.random.choice( list(range(len(parameters))), size=n_drop_features, replace=False) parameters[drop_idxs] = 0.0 return parameters def make_linear_regression_y(X, parameters, resid_sd=0.25): y_systematic = np.dot(X, parameters) y = y_systematic + np.random.normal(scale=resid_sd, size=X.shape[0]) return y def make_logistic_regression_y(X, parameters): y_systematic = np.dot(X, parameters) p = 1 / (1 + np.exp(-y_systematic)) return np.random.binomial(1, p=p, size=X.shape[0]) def make_poisson_regression_y(X, parameters): y_systematic = np.dot(X, parameters) mu = np.exp(y_systematic) return np.random.poisson(lam=mu, size=X.shape[0]) def make_gamma_regression_y(X, parameters): y_systematic = np.dot(X, parameters) mu = np.exp(y_systematic) return np.random.exponential(scale=mu, size=X.shape[0])
41.67619
81
0.658364
0
0
0
0
0
0
0
0
0
0
7e0285965f79d7e3cf86a7275a5d19452f38b750
1,735
py
Python
scripts/http-server.py
jrbenito/SonoffDIY-tasmotizer
1fe9eb9b3b5630102feaf941bd02173d916e81a5
[ "MIT" ]
null
null
null
scripts/http-server.py
jrbenito/SonoffDIY-tasmotizer
1fe9eb9b3b5630102feaf941bd02173d916e81a5
[ "MIT" ]
3
2020-03-30T14:07:54.000Z
2020-03-30T22:59:29.000Z
scripts/http-server.py
jrbenito/SonoffDIY-tasmotizer
1fe9eb9b3b5630102feaf941bd02173d916e81a5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # encoding: utf-8 """ fake-registration-server.py Created by nano on 2018-11-22. Copyright (c) 2018 VTRUST. All rights reserved. """ import tornado.web import tornado.locks from tornado.options import define, options, parse_command_line define("port", default=80, help="run on the given port", type=int) define("addr", default="192.168.254.1", help="run on the given ip", type=str) define("debug", default=True, help="run in debug mode") import os import signal def exit_cleanly(signal, frame): print("Received SIGINT, exiting...") exit(0) signal.signal(signal.SIGINT, exit_cleanly) from base64 import b64encode import hashlib import hmac import binascii from time import time timestamp = lambda : int(time()) class FilesHandler(tornado.web.StaticFileHandler): def parse_url_path(self, url_path): if not url_path or url_path.endswith('/'): url_path = url_path + str('index.html') return url_path class MainHandler(tornado.web.RequestHandler): def get(self): self.write("You are connected to vtrust-flash") def main(): parse_command_line() app = tornado.web.Application( [ (r"/", MainHandler), ('/files/(.*)', FilesHandler, {'path': str('../files/')}), (r".*", tornado.web.RedirectHandler, {"url": "http://" + options.addr + "/", "permanent": False}), ], debug=options.debug, ) try: app.listen(options.port, options.addr) print("Listening on " + options.addr + ":" + str(options.port)) tornado.ioloop.IOLoop.current().start() except OSError as err: print("Could not start server on port " + str(options.port)) if err.errno == 98: # EADDRINUSE print("Close the process on this port and try again") else: print(err) if __name__ == "__main__": main()
25.144928
101
0.702594
305
0.175793
0
0
0
0
0
0
515
0.29683
7e03585ae9ededa10d0e3ad01e0e054a8d2b1e4e
1,998
py
Python
tests/summary/test_binning_config.py
rob-tay/fast-carpenter
a8b128ba00b9a6808b2f0de40cefa2a360466897
[ "Apache-2.0" ]
null
null
null
tests/summary/test_binning_config.py
rob-tay/fast-carpenter
a8b128ba00b9a6808b2f0de40cefa2a360466897
[ "Apache-2.0" ]
null
null
null
tests/summary/test_binning_config.py
rob-tay/fast-carpenter
a8b128ba00b9a6808b2f0de40cefa2a360466897
[ "Apache-2.0" ]
null
null
null
import numpy as np import fast_carpenter.summary.binning_config as mgr from . import dummy_binning_descriptions as binning def test_create_one_region(): cfg = {"_" + k: v for k, v in binning.bins_nmuon.items()} _in, _out, _bins, _index = mgr.create_one_dimension("test_create_one_region", **cfg) assert _in == "NMuon" assert _out == "nmuon" assert _index is None assert _bins is None def test_create_one_dimension_aT(): cfg = {"_" + k: v for k, v in binning.bins_met_px.items()} _in, _out, _bins, _index = mgr.create_one_dimension("test_create_one_dimension_aT", **cfg) assert _in == "MET_px" assert _out == "met_px" assert _index is None assert isinstance(_bins, np.ndarray) assert np.all(_bins[1:-1] == np.linspace(0, 100, 11)) assert _bins[0] == float("-inf") assert _bins[-1] == float("inf") def test_create_one_dimension_HT(): cfg = {"_" + k: v for k, v in binning.bins_py.items()} _in, _out, _bins, _index = mgr.create_one_dimension("test_create_one_dimension_HT", **cfg) assert _in == "Jet_Py" assert _out == "py_leadJet" assert _index == 0 assert isinstance(_bins, np.ndarray) assert np.all(_bins[1:-1] == [0, 20, 100]) assert _bins[0] == float("-inf") assert _bins[-1] == float("inf") def test_create_binning_list(): ins, outs, bins = mgr.create_binning_list("test_create_binning_list", [binning.bins_nmuon, binning.bins_met_px]) assert ins == ["NMuon", "MET_px"] assert outs == ["nmuon", "met_px"] assert len(bins) == 2 assert bins[0] is None def test_create_weights_list(): name = "test_create_weights_list" weights = mgr.create_weights(name, binning.weight_list) assert len(weights) == 1 assert weights["EventWeight"] == "EventWeight" def test_create_weights_dict(): name = "test_create_weights_dict" weights = mgr.create_weights(name, binning.weight_dict) assert len(weights) == 1 assert weights["weighted"] == "EventWeight"
33.864407
116
0.68018
0
0
0
0
0
0
0
0
322
0.161161
7e037b73adcc0dc266a78c21e1147b45fea5e505
671
py
Python
create_ITIs.py
daanvanes/mloc_exp
bf6fb94b933f1cb78c60c38f80f03c78e9da3686
[ "MIT" ]
1
2019-03-20T15:12:07.000Z
2019-03-20T15:12:07.000Z
create_ITIs.py
daanvanes/mloc_exp
bf6fb94b933f1cb78c60c38f80f03c78e9da3686
[ "MIT" ]
null
null
null
create_ITIs.py
daanvanes/mloc_exp
bf6fb94b933f1cb78c60c38f80f03c78e9da3686
[ "MIT" ]
null
null
null
from __future__ import division from constants import * import numpy as np import os precueITIs = np.random.exponential(standard_parameters['mean_iti_precue'], standard_parameters['n_targets']) + standard_parameters['min_iti_precue'] np.save('ITIs/precueITIs.npy',precueITIs) postcueITIs = np.random.exponential(standard_parameters['mean_iti_postcue'], standard_parameters['n_targets']) + standard_parameters['min_iti_postcue'] np.save('ITIs/postcueITIs.npy',postcueITIs) spITIs = np.round(np.random.exponential(standard_parameters['mean_iti_sp'], standard_parameters['n_targets']) + standard_parameters['min_iti_sp']).astype('int32') np.save('ITIs/spITIs.npy',spITIs)
51.615385
162
0.81073
0
0
0
0
0
0
0
0
193
0.28763
7e040cb0e0c724ec734deffc7ed5a19d9e7e9d15
99
py
Python
venv/lib/python3.7/site-packages/kdlearn/myfunctions.py
FillOverFlow/kdlearn
1e57895cb10ca903a33e2774986661b9b64d4071
[ "MIT" ]
1
2021-01-19T03:35:20.000Z
2021-01-19T03:35:20.000Z
venv/lib/python3.7/site-packages/kdlearn/myfunctions.py
FillOverFlow/kdlearn
1e57895cb10ca903a33e2774986661b9b64d4071
[ "MIT" ]
null
null
null
venv/lib/python3.7/site-packages/kdlearn/myfunctions.py
FillOverFlow/kdlearn
1e57895cb10ca903a33e2774986661b9b64d4071
[ "MIT" ]
null
null
null
''' PUT FUNCTION HERE !! Author Davinci ''' def helloworld(name): return "KDlearn :" + name
9.9
29
0.626263
0
0
0
0
0
0
0
0
55
0.555556
7e0480f047709048b68affbe1e229fbea8aaa94b
4,122
py
Python
Set_ADT/linearset.py
jaeheeLee17/DS_and_Algorithms_summary
917500dd768eae8cfbb02cf2838d494cb720f1c0
[ "MIT" ]
null
null
null
Set_ADT/linearset.py
jaeheeLee17/DS_and_Algorithms_summary
917500dd768eae8cfbb02cf2838d494cb720f1c0
[ "MIT" ]
null
null
null
Set_ADT/linearset.py
jaeheeLee17/DS_and_Algorithms_summary
917500dd768eae8cfbb02cf2838d494cb720f1c0
[ "MIT" ]
null
null
null
# Implementation of the Set ADT container using a Python list. class Set: # Creates an empty set instance. def __init__(self): self._theElements = list() # Returns the number of items in the set def __len__(self): return len(self._theElements) # Determines if an element is in the set. def __contains__(self, element): return element in self._theElements # Adds a new unique element to the set. def add(self, element): if element not in self: self._theElements.append(element) # Removes an element from the set. def remove(self, element): assert element in self, "The element must be in the set." self._theElements.remove(item) # Determines if two sets are equal def __eq__(self, setB): if len(self) != len(setB): return False else: # return self.isSubsetOf(setB) for i in range(len(self)): if self._theElements[i] != setB._theElements[i]: return False return True # Determines if this set is a subset of setB def isSubsetOf(self, setB): for element in self: if element not in setB: return False return True # Creates a new set from the union of this set and setB def union(self, setB): ''' newSet = Set() newSet._theElements.extend(self._theElements) for element in setB: if element not in self: newSet._theElements.append(element) return newSet ''' newSet = Set() a, b = 0, 0 # Merge the two lists together until one is empty. while a < len(self) and b < len(setB): valueA = self._theElements[a] valueB = self._theElements[b] if valueA < valueB: newSet._theElements.append(valueA) a += 1 elif valueA > valueB: newSet._theElements.append(valueB) b += 1 else: # Only one of the two duplicates are appended. newSet._theElements.append(valueA) a += 1 b += 1 # If listA contains more items, append them to newList while a < len(self): newSet._theElements.append(self._theElements[a]) a += 1 # Or if listB contains more items, append them to newList while b < len(setB): newSet._theElements.append(setB._theElements[b]) b += 1 return newSet # TODO: Creates a new set from the intersection: self set and setB. def intersect(self, setB): newSet = Set() for element in setB: if element in self: newSet._theElements.append(element) return newSet # TODO: Creates a new set from the difference: self set and setB. def difference(self, setB): newSet = Set() newSet._theElements.extend(self._theElements) for element in setB: if element in self: newSet._theElements.remove(element) return newSet # Returns an iterator for traversing the list of items. def __iter__(self): return _SetIterator(self._theElements) # Finds the position of the element within the ordered list.. def _findPosition(self, element): start = 0 end = len(self) - 1 while start <= end: mid = (start + end) // 2 if self[mid] == element: return mid elif element < self[mid]: end = mid - 1 else: start = mid + 1 return start # An iterator for the Set ADT. class _SetIterator: def __init__(self, theElements): self._SetRef = theElements self._curidx = 0 def __iter__(self): return self def __next__(self): if self._curidx < len(self._SetRef): entry = self._SetRef[self._curidx] self._curidx += 1 return entry else: raise StopIteration
31.707692
71
0.563561
4,025
0.976468
0
0
0
0
0
0
1,160
0.281417
7e0968601bb493a7e6ab7c62ca33e94de63a37f6
123
py
Python
src/apps/buttons/apps.py
GoddessEyes/info_tbot
c7c5c818dc0c0c72aa15e6e4a85e7e28b4a7660d
[ "MIT" ]
null
null
null
src/apps/buttons/apps.py
GoddessEyes/info_tbot
c7c5c818dc0c0c72aa15e6e4a85e7e28b4a7660d
[ "MIT" ]
4
2021-03-19T02:42:10.000Z
2021-09-22T19:08:09.000Z
src/apps/buttons/apps.py
GoddessEyes/info_tbot
c7c5c818dc0c0c72aa15e6e4a85e7e28b4a7660d
[ "MIT" ]
null
null
null
from django.apps import AppConfig class ButtonsConfig(AppConfig): name = 'apps.buttons' verbose_name = 'Клавиши'
17.571429
33
0.731707
93
0.715385
0
0
0
0
0
0
30
0.230769
7e09cc367a70ac9496d060fdad8e3eb6e83f2472
141
py
Python
code/tenka1_2019_c_01.py
KoyanagiHitoshi/AtCoder
731892543769b5df15254e1f32b756190378d292
[ "MIT" ]
3
2019-08-16T16:55:48.000Z
2021-04-11T10:21:40.000Z
code/tenka1_2019_c_01.py
KoyanagiHitoshi/AtCoder
731892543769b5df15254e1f32b756190378d292
[ "MIT" ]
null
null
null
code/tenka1_2019_c_01.py
KoyanagiHitoshi/AtCoder
731892543769b5df15254e1f32b756190378d292
[ "MIT" ]
null
null
null
input() S=input() dot=S.count(".") ans=dot count=0 for s in S: if s=="#":count+=1 else:dot-=1 ans=(min(ans,count+dot)) print(ans)
14.1
28
0.574468
0
0
0
0
0
0
0
0
6
0.042553
7e0a3148033e56abb61f66e7e257ace62456c980
2,932
py
Python
app/billing/views.py
flaviogf/finance
86a74e1eea6b19d7fe8c311eb77394a267e26432
[ "MIT" ]
null
null
null
app/billing/views.py
flaviogf/finance
86a74e1eea6b19d7fe8c311eb77394a267e26432
[ "MIT" ]
null
null
null
app/billing/views.py
flaviogf/finance
86a74e1eea6b19d7fe8c311eb77394a267e26432
[ "MIT" ]
null
null
null
from flask import (Blueprint, abort, flash, redirect, render_template, request, url_for) from flask_login import current_user, login_required from app import db from app.billing.forms import CreateBillingForm from app.models import Billing from sqlalchemy import desc billing = Blueprint('billing', __name__) @billing.route('/billing/create', methods=['GET', 'POST']) @login_required def create(): form = CreateBillingForm() if form.validate_on_submit(): billing = Billing(title=form.title.data, description=form.description.data, value=form.value.data, work_date=form.work_date.data, user_id=current_user.get_id()) db.session.add(billing) db.session.commit() return redirect(url_for('billing.pagination')) return render_template('create_billing.html', title='Create Billing', form=form) @billing.route('/billing') @login_required def pagination(): page = request.args.get('page', 1, type=int) billings = (Billing.query .filter_by(user_id=current_user.get_id()) .order_by(desc(Billing.id)) .paginate(page=page, per_page=5)) return render_template('pagination_billing.html', title='Search Billing', billings=billings) @billing.route('/billing/<int:id>', methods=['GET', 'POST']) @login_required def update(id): billing = Billing.query.get_or_404(id) form = CreateBillingForm() if form.validate_on_submit(): billing.title = form.title.data billing.description = form.description.data billing.value = form.value.data billing.work_date = form.work_date.data db.session.commit() flash('Billing updated with successfully.') return redirect(url_for('billing.update', id=id)) elif request.method == 'GET': form.title.data = billing.title form.description.data = billing.description form.value.data = billing.value form.work_date.data = billing.work_date return render_template('create_billing.html', title='Update Billing', form=form) @billing.route('/billing/<int:id>/confirm-receive') @login_required def confirm_receive(id): billing = Billing.query.get_or_404(id) if current_user.get_id() != billing.user_id: abort(403) billing.confirm_receive() db.session.commit() page = request.args.get('page', 1, type=int) return redirect(url_for('billing.pagination', page=page)) @billing.route('/billing/<int:id>/cancel-receive') @login_required def cancel_receive(id): billing = Billing.query.get_or_404(id) if current_user.get_id() != billing.user_id: abort(403) billing.cancel_receive() db.session.commit() page = request.args.get('page', 1, type=int) return redirect(url_for('billing.pagination', page=page))
27.660377
96
0.664734
0
0
0
0
2,587
0.882333
0
0
396
0.135061
7e0b8779363fd91f6026918cffc7f561df56bcf8
9,120
py
Python
flickipedia/mashup.py
rfaulkner/Flickipedia
1b53f30be4027901748a09c411d568c7148f4e4b
[ "BSD-2-Clause" ]
1
2016-03-11T09:40:19.000Z
2016-03-11T09:40:19.000Z
flickipedia/mashup.py
rfaulkner/Flickipedia
1b53f30be4027901748a09c411d568c7148f4e4b
[ "BSD-2-Clause" ]
1
2015-02-27T02:23:19.000Z
2015-02-27T02:23:19.000Z
flickipedia/mashup.py
rfaulkner/Flickipedia
1b53f30be4027901748a09c411d568c7148f4e4b
[ "BSD-2-Clause" ]
null
null
null
""" Author: Ryan Faulkner Date: October 19th, 2014 Container for mashup logic. """ import json import random from sqlalchemy.orm.exc import UnmappedInstanceError from flickipedia.redisio import DataIORedis from flickipedia.model.articles import ArticleModel, ArticleContentModel from flickipedia.config import log, settings from flickipedia.model.likes import LikeModel from flickipedia.model.exclude import ExcludeModel from flickipedia.model.photos import PhotoModel from flickipedia.parse import parse_strip_elements, parse_convert_links, \ handle_photo_integrate, format_title_link, add_formatting_generic def get_article_count(): """ Fetch total article count :return: int; total count of articles """ DataIORedis().connect() # Fetch article count from redis (query from DB if not present) # Refresh according to config for rate article_count = DataIORedis().read(settings.ARTICLE_COUNT_KEY) if not article_count \ or random.randint(1, settings.ARTICLE_COUNT_REFRESH_RATE) == 1 \ or article_count < settings.MYSQL_MAX_ROWS: with ArticleModel() as am: article_count = am.get_article_count() DataIORedis().write(settings.ARTICLE_COUNT_KEY, article_count) return int(article_count) def get_max_article_id(): """ Fetch the maximum article ID :return: int; maximum id from article meta """ max_aid = DataIORedis().read(settings.MAX_ARTICLE_ID_KEY) if not max_aid \ or random.randint(1, settings.ARTICLE_MAXID_REFRESH_RATE) == 1: with ArticleModel() as am: max_aid = am.get_max_id() DataIORedis().write(settings.MAX_ARTICLE_ID_KEY, max_aid) return max_aid def get_article_stored_body(article): """ Fetch corresponding article object :param article: str; article name :return: json, Article; stored page content, corresponding article model object """ with ArticleModel() as am: article_obj = am.get_article_by_name(article) try: with ArticleContentModel() as acm: body = acm.get_article_content(article_obj._id).markup except Exception as e: log.info('Article markup not found: "%s"' % e.message) body = '' return body def get_wiki_content(article): """ Retrieve the wiki content from the mediawiki API :param article: str; article name :return: Wikipedia; mediawiki api response object """ pass def get_flickr_photos(flickr_json): """ Retrience Flickr photo content from Flickr API :param article: str; article name :return: list; list of Flickr photo json """ photos = [] for i in xrange(settings.NUM_PHOTOS_TO_FETCH): try: photos.append( { 'owner': flickr_json['photos']['photo'][i]['owner'], 'photo_id': flickr_json['photos']['photo'][i]['id'], 'farm': flickr_json['photos']['photo'][i]['farm'], 'server': flickr_json['photos']['photo'][i]['server'], 'title': flickr_json['photos']['photo'][i]['title'], 'secret': flickr_json['photos']['photo'][i]['secret'], }, ) except (IndexError, KeyError) as e: log.error('No more photos to process for: - "%s"' % (e.message)) log.debug('Photo info: %s' % (str(photos))) return photos def manage_article_storage(max_article_id, article_count): """ Handle the storage of new articles :param max_article_id: int; article id :param article_count: int; total count of articles :return: bool; success """ if article_count >= settings.MYSQL_MAX_ROWS: if max_article_id: # TODO - CHANGE THIS be careful, could iterate many times article_removed = False attempts = 0 while not article_removed \ or attempts > settings.MAX_RETRIES_FOR_REMOVE: attempts += 1 article_id = random.randint(0, int(max_article_id)) with ArticleModel() as am: log.info('Removing article id: ' + str(article_id)) try: am.delete_article(article_id) article_removed = True except UnmappedInstanceError: continue else: log.error('Could not determine a max article id.') return True def handle_article_insert(article, wiki_page_id): """ Handle insertion of article meta data :param article_id: int; article id :return: int, bool; success """ with ArticleModel() as am: if am.insert_article(article, wiki_page_id): article_obj = am.get_article_by_name(article) article_id = article_obj._id success = True else: log.error('Couldn\'t insert article: "%s"' % article) article_id = -1 success = False return article_id, success def handle_article_content_insert(article_id, page_content, is_new_article): """ Handle the insertion of article content :param article_id: int; article id :param page_content: json; page content :param is_new_article: bool; a new article? :return: bool; success """ with ArticleContentModel() as acm: if is_new_article: acm.insert_article(article_id, json.dumps(page_content)) else: acm.update_article(article_id, json.dumps(page_content)) def prep_page_content(article_id, article, wiki, photos, user_obj): """ Prepare the formatted article content :param article_id: int; article id :param article: str; article name :param wiki_resp: wikipedia; mediawiki api response :param photos: list; list of photo json :param user_obj: User; user object for request :return: dict; formatted page response passed to jinja template """ html = parse_strip_elements(wiki.html()) html = parse_convert_links(html) html = add_formatting_generic(html) photo_ids = process_photos(article_id, photos, user_obj) html = handle_photo_integrate(photos, html, article) page_content = { 'title': format_title_link(wiki.title, article), 'content': html, 'section_img_class': settings.SECTION_IMG_CLASS, 'num_photos': len(photos), 'article_id': article_id, 'user_id': user_obj.get_id(), 'photo_ids': photo_ids } return page_content def update_last_access(article_id): """ Update article last access :param article_id: int; article id :return: bool; success """ pass def order_photos_by_rank(article_id, photos): """ Reorders photos by score """ # Compute scores for i in xrange(len(photos)): # Get Exclusions & Endorsements with ExcludeModel() as em: exclusions = em.get_excludes_article_photo(article_id, photos[i]['photo_id']) with LikeModel() as lm: endorsements = lm.get_likes_article_photo(article_id, photos[i]['photo_id']) photos[i]['score'] = len(endorsements) - len(exclusions) # lambda method for sorting by score descending f = lambda x, y: cmp(-x['score'], -y['score']) return sorted(photos, f) def process_photos(article_id, photos, user_obj): """ Handles linking photo results with the model and returns a list of Flickr photo ids to pass to templating :param article_id: int; article id :param photos: list of photos :param user_obj: User; user object for request :return: List of Flickr photo ids """ photo_ids = [] for photo in photos: # Ensure that each photo is modeled with PhotoModel() as pm: photo_obj = pm.get_photo(photo['photo_id'], article_id) if not photo_obj: log.info('Processing photo: "%s"' % str(photo)) if pm.insert_photo(photo['photo_id'], article_id): photo_obj = pm.get_photo( photo['photo_id'], article_id) if not photo_obj: log.error('DB Error: Could not retrieve or ' 'insert: "%s"' % str(photo)) continue else: log.error('Couldn\'t insert photo: "%s"' % ( photo['photo_id'])) photo['id'] = photo_obj._id photo['votes'] = photo_obj.votes # Retrieve like data with LikeModel() as lm: if lm.get_like(article_id, photo_obj._id, user_obj.get_id()): photo['like'] = True else: photo['like'] = False photo_ids.append(photo['photo_id']) return photo_ids
35.076923
78
0.607346
0
0
0
0
0
0
0
0
3,160
0.346491
7e0be21835c15a9296a6ae0c119d0388d9169b45
240
py
Python
docs/examples/slider_dimmer.py
SatoshiIwasada/BlueDot
e93bc242593d3a3cbfd0ff97f98fcffb0fcd961a
[ "MIT" ]
112
2017-03-27T17:23:17.000Z
2022-03-13T09:51:43.000Z
docs/examples/slider_dimmer.py
SatoshiIwasada/BlueDot
e93bc242593d3a3cbfd0ff97f98fcffb0fcd961a
[ "MIT" ]
109
2017-03-29T11:19:54.000Z
2022-02-03T14:18:15.000Z
docs/examples/slider_dimmer.py
SatoshiIwasada/BlueDot
e93bc242593d3a3cbfd0ff97f98fcffb0fcd961a
[ "MIT" ]
40
2017-03-30T23:23:27.000Z
2022-01-21T17:09:11.000Z
from bluedot import BlueDot from gpiozero import PWMLED from signal import pause def set_brightness(pos): brightness = (pos.y + 1) / 2 led.value = brightness led = PWMLED(27) bd = BlueDot() bd.when_moved = set_brightness pause()
17.142857
32
0.725
0
0
0
0
0
0
0
0
0
0
7e0e399837934c037868f72f1f2ece1fe8884d6e
328
py
Python
blog/urls.py
Halo-Developers/Halo-Learn
4c8f9e395c0145df39fa3333fefa23d02a370688
[ "MIT" ]
1
2021-09-23T16:02:51.000Z
2021-09-23T16:02:51.000Z
blog/urls.py
kuyesu/Halo-Learn
abd60d45c191297daedd20b3b308a30a78cba9c7
[ "MIT" ]
null
null
null
blog/urls.py
kuyesu/Halo-Learn
abd60d45c191297daedd20b3b308a30a78cba9c7
[ "MIT" ]
2
2021-09-20T09:50:45.000Z
2022-02-20T06:42:42.000Z
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('', views.post_list, name='post_list'), path('<slug:post>/',views.post_detail,name="post_detail"), path('comment/reply/', views.reply_page, name="reply"), path('tag/<slug:tag_slug>/',views.post_list, name='post_tag'), ]
27.333333
68
0.67378
0
0
0
0
0
0
0
0
101
0.307927
7e11a4d77fb343f77a786063eff503d5200a6c2d
1,313
py
Python
126-Word_Ladder_II.py
QuenLo/leecode
ce861103949510dc54fd5cb336bd992c40748de2
[ "MIT" ]
6
2018-06-13T06:48:42.000Z
2020-11-25T10:48:13.000Z
126-Word_Ladder_II.py
QuenLo/leecode
ce861103949510dc54fd5cb336bd992c40748de2
[ "MIT" ]
null
null
null
126-Word_Ladder_II.py
QuenLo/leecode
ce861103949510dc54fd5cb336bd992c40748de2
[ "MIT" ]
null
null
null
class Solution: def findLadders(self, beginWord: str, endWord: str, wordList: List[str]) -> List[List[str]]: tree, words, len_w = collections.defaultdict(set), set( wordList ), len(beginWord) if endWord not in words: return [] found, q, nextq = False, {beginWord}, set() while q and not found: words -= set(q) for x in q: # a -> z for char in string.ascii_lowercase: for i in range(len_w): test = x[:i] + char + x[i+1:] if test == endWord: found = True tree[x].add(test) elif test in words: nextq.add(test) tree[x].add(test) q, nextq = nextq, set() def back(x): if x == endWord: return [[x]] else: ans = [] for test in tree[x]: for y in back(test): ans.append( [x] + y ) return ans # [[x]] if x == endWord else [[x] + rest for y in tree[x] for rest in bt(y)] return back(beginWord)
35.486486
96
0.393755
1,312
0.999238
0
0
0
0
0
0
84
0.063976
fd665b1231aab43a664a3eab839a54a833e10f79
3,144
py
Python
web/env/lib/python3.6/site-packages/test/file/test_includer.py
Conbrown100/webfortune
779026d064498d36ddeba07e06cc744fb335ceb6
[ "Apache-2.0" ]
8
2015-07-30T16:19:18.000Z
2021-08-10T21:00:47.000Z
web/env/lib/python3.6/site-packages/test/file/test_includer.py
Conbrown100/webfortune
779026d064498d36ddeba07e06cc744fb335ceb6
[ "Apache-2.0" ]
3
2015-01-09T13:53:55.000Z
2017-06-05T17:39:46.000Z
web/env/lib/python3.6/site-packages/test/file/test_includer.py
Conbrown100/webfortune
779026d064498d36ddeba07e06cc744fb335ceb6
[ "Apache-2.0" ]
6
2015-01-09T13:47:15.000Z
2020-12-25T14:09:41.000Z
import os from tempfile import TemporaryDirectory import codecs import logging from grizzled.file.includer import * from grizzled.os import working_directory from grizzled.text import strip_margin import pytest @pytest.fixture def log(): return logging.getLogger('test') def test_simple(log): outer = '''|First non-blank line. |Second non-blank line. |%include "inner.txt" |Last line. |''' inner = '''|Inner line 1 |Inner line 2 |''' expected = strip_margin( '''|First non-blank line. |Second non-blank line. |Inner line 1 |Inner line 2 |Last line. |''' ) with TemporaryDirectory() as dir: outer_path = os.path.join(dir, "outer.txt") all = ( (outer, outer_path), (inner, os.path.join(dir, "inner.txt")), ) for text, path in all: log.debug(f'writing "{path}"') with codecs.open(path, mode='w', encoding='utf-8') as f: f.write(strip_margin(text)) inc = Includer(outer_path) lines = [line for line in inc] res = ''.join(lines) assert res == expected def test_nested(log): outer = '''|First non-blank line. |Second non-blank line. |%include "nested1.txt" |Last line. |''' nested1 = '''|Nested 1 line 1 |%include "nested2.txt" |Nested 1 line 3 |''' nested2 = '''|Nested 2 line 1 |Nested 2 line 2 |''' expected = strip_margin( '''|First non-blank line. |Second non-blank line. |Nested 1 line 1 |Nested 2 line 1 |Nested 2 line 2 |Nested 1 line 3 |Last line. |''' ) with TemporaryDirectory() as dir: outer_path = os.path.join(dir, "outer.txt") all = ( (outer, outer_path), (nested1, os.path.join(dir, "nested1.txt")), (nested2, os.path.join(dir, "nested2.txt")), ) for text, path in all: with codecs.open(path, mode='w', encoding='utf-8') as f: f.write(strip_margin(text)) inc = Includer(outer_path) lines = [line for line in inc] res = ''.join(lines) assert res == expected def test_overflow(log): outer = '''|First non-blank line. |Second non-blank line. |%include "outer.txt" |Last line. |''' with TemporaryDirectory() as dir: outer_path = os.path.join(dir, "outer.txt") with codecs.open(outer_path, mode='w', encoding='utf-8') as f: f.write(strip_margin(outer)) try: Includer(outer_path, max_nest_level=10) assert False, "Expected max-nesting exception" except MaxNestingExceededError as e: print(e) def _log_text_file(log, prefix: str, text: str) -> None: log.debug(f'{prefix}:\n---\n{text}\n---')
29.383178
70
0.515585
0
0
0
0
63
0.020038
0
0
1,253
0.398537
fd684e3bf1de0c4b9c2f1d5a15a6a2d42e862075
286
py
Python
output/models/nist_data/list_pkg/unsigned_short/schema_instance/nistschema_sv_iv_list_unsigned_short_min_length_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/list_pkg/unsigned_short/schema_instance/nistschema_sv_iv_list_unsigned_short_min_length_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/list_pkg/unsigned_short/schema_instance/nistschema_sv_iv_list_unsigned_short_min_length_2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.nist_data.list_pkg.unsigned_short.schema_instance.nistschema_sv_iv_list_unsigned_short_min_length_2_xsd.nistschema_sv_iv_list_unsigned_short_min_length_2 import NistschemaSvIvListUnsignedShortMinLength2 __all__ = [ "NistschemaSvIvListUnsignedShortMinLength2", ]
47.666667
221
0.905594
0
0
0
0
0
0
0
0
43
0.15035
fd69e06856c7f3a481475985f97cf69bf7d1965f
127
py
Python
satchmo/projects/skeleton/localsite/urls.py
predatell/satchmo
6ced1f845aadec240c7e433c3cbf4caca96e0d92
[ "BSD-3-Clause" ]
1
2019-10-08T16:19:59.000Z
2019-10-08T16:19:59.000Z
satchmo/projects/skeleton/localsite/urls.py
predatell/satchmo
6ced1f845aadec240c7e433c3cbf4caca96e0d92
[ "BSD-3-Clause" ]
null
null
null
satchmo/projects/skeleton/localsite/urls.py
predatell/satchmo
6ced1f845aadec240c7e433c3cbf4caca96e0d92
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url from simple.localsite.views import example urlpatterns = [ url(r'example/', example), ]
15.875
42
0.732283
0
0
0
0
0
0
0
0
11
0.086614
fd6a627b6084b5a56d9fe3161a2d00c62052ed2a
8,850
py
Python
tbconnect/tests/test_views.py
praekeltfoundation/healthcheck
3f8b3722ea41c2d81c706e0f9a3473ba2cb2f2ba
[ "BSD-3-Clause" ]
null
null
null
tbconnect/tests/test_views.py
praekeltfoundation/healthcheck
3f8b3722ea41c2d81c706e0f9a3473ba2cb2f2ba
[ "BSD-3-Clause" ]
23
2020-07-16T15:40:35.000Z
2021-12-13T13:59:30.000Z
tbconnect/tests/test_views.py
praekeltfoundation/healthcheck
3f8b3722ea41c2d81c706e0f9a3473ba2cb2f2ba
[ "BSD-3-Clause" ]
1
2021-02-24T04:58:40.000Z
2021-02-24T04:58:40.000Z
from django.test import TestCase from django.contrib.auth import get_user_model from django.contrib.auth.models import Permission from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from tbconnect.models import TBCheck, TBTest from userprofile.models import HealthCheckUserProfile from userprofile.tests.test_views import BaseEventTestCase from tbconnect.serializers import TBCheckSerializer class TBCheckViewSetTests(APITestCase, BaseEventTestCase): url = reverse("tbcheck-list") def test_data_validation(self): """ The supplied data must be validated, and any errors returned """ user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="add_tbcheck")) self.client.force_authenticate(user) response = self.client.post(self.url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_successful_request(self): """ Should create a new TBCheck object in the database """ user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="add_tbcheck")) self.client.force_authenticate(user) response = self.client.post( self.url, { "msisdn": "27856454612", "source": "USSD", "province": "ZA-WC", "city": "Cape Town", "age": TBCheck.AGE_18T40, "gender": TBCheck.GENDER_FEMALE, "cough": True, "fever": True, "sweat": False, "weight": True, "exposure": "yes", "tracing": True, "risk": TBCheck.RISK_LOW, "location": "+40.20361+40.20361", "follow_up_optin": True, "language": "eng", }, ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) [tbcheck] = TBCheck.objects.all() self.assertEqual(tbcheck.msisdn, "27856454612") self.assertEqual(tbcheck.source, "USSD") self.assertEqual(tbcheck.province, "ZA-WC") self.assertEqual(tbcheck.city, "Cape Town") self.assertEqual(tbcheck.age, TBCheck.AGE_18T40) self.assertEqual(tbcheck.gender, TBCheck.GENDER_FEMALE) self.assertTrue(tbcheck.cough) self.assertTrue(tbcheck.fever) self.assertFalse(tbcheck.sweat) self.assertTrue(tbcheck.weight) self.assertEqual(tbcheck.exposure, "yes") self.assertTrue(tbcheck.tracing) self.assertEqual(tbcheck.risk, TBCheck.RISK_LOW) self.assertEqual(tbcheck.location, "+40.20361+40.20361") self.assertTrue(tbcheck.follow_up_optin) self.assertEqual(tbcheck.language, "eng") def test_location_validation(self): """ Should create a new TBCheck object in the database """ user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="add_tbcheck")) self.client.force_authenticate(user) response = self.client.post( self.url, { "msisdn": "27856454612", "source": "USSD", "province": "ZA-WC", "city": "Cape Town", "age": TBCheck.AGE_18T40, "gender": TBCheck.GENDER_FEMALE, "cough": True, "fever": True, "sweat": False, "weight": True, "exposure": "yes", "tracing": True, "risk": TBCheck.RISK_LOW, }, ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), {"non_field_errors": ["location and city_location are both None"]}, ) def test_creates_user_profile(self): """ The user profile should be created when the TB Check is saved """ user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="add_tbcheck")) self.client.force_authenticate(user) response = self.client.post( self.url, { "msisdn": "+27856454612", "source": "USSD", "province": "ZA-WC", "city": "Cape Town", "age": TBCheck.AGE_18T40, "gender": TBCheck.GENDER_FEMALE, "cough": True, "fever": True, "sweat": False, "weight": True, "exposure": "yes", "tracing": True, "risk": TBCheck.RISK_LOW, "location": "+40.20361+40.20361", }, format="json", ) profile = HealthCheckUserProfile.objects.get(msisdn="+27856454612") self.assertEqual(profile.province, "ZA-WC") self.assertEqual(profile.city, "Cape Town") self.assertEqual(profile.age, TBCheck.AGE_18T40) self.assertEqual(response.status_code, status.HTTP_201_CREATED) class TBTestViewSetTests(APITestCase, BaseEventTestCase): url = reverse("tbtest-list") def test_data_validation(self): """ The supplied data must be validated, and any errors returned """ user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="add_tbtest")) self.client.force_authenticate(user) response = self.client.post(self.url) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_successful_create_request(self): """ Should create a new TBTest object in the database """ user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="add_tbtest")) self.client.force_authenticate(user) response = self.client.post( self.url, { "msisdn": "27856454612", "source": "WhatsApp", "result": TBTest.RESULT_PENDING, }, ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) [tbtest] = TBTest.objects.all() self.assertEqual(tbtest.msisdn, "27856454612") self.assertEqual(tbtest.source, "WhatsApp") self.assertEqual(tbtest.result, TBTest.RESULT_PENDING) def test_successful_update_request(self): """ Should create a new TBTest object in the database """ tbtest = TBTest.objects.create( **{ "msisdn": "27856454612", "source": "WhatsApp", "result": TBTest.RESULT_PENDING, } ) user = get_user_model().objects.create_user("test") user.user_permissions.add(Permission.objects.get(codename="change_tbtest")) self.client.force_authenticate(user) update_url = reverse("tbtest-detail", args=(tbtest.id,)) response = self.client.patch(update_url, {"result": TBTest.RESULT_POSITIVE}) self.assertEqual(response.status_code, status.HTTP_200_OK) tbtest.refresh_from_db() self.assertEqual(tbtest.msisdn, "27856454612") self.assertEqual(tbtest.source, "WhatsApp") self.assertEqual(tbtest.result, TBTest.RESULT_POSITIVE) class TBCheckSerializerTests(TestCase): def test_valid_tbcheck(self): """ If age is <18 skip location and location_ """ data = { "msisdn": "+2349039756628", "source": "WhatsApp", "province": "ZA-GT", "city": "<not collected>", "age": "<18", "gender": "male", "cough": "True", "fever": "False", "sweat": "False", "weight": "False", "exposure": "no", "tracing": "False", "risk": "low", } serializer = TBCheckSerializer(data=data) self.assertTrue(serializer.is_valid()) self.assertEqual( dict(serializer.validated_data), { "age": "<18", "city": "<not collected>", "cough": True, "exposure": "no", "fever": False, "gender": "male", "msisdn": "+2349039756628", "province": "ZA-GT", "risk": "low", "source": "WhatsApp", "sweat": False, "tracing": False, "weight": False, }, )
37.184874
84
0.568701
8,390
0.948023
0
0
0
0
0
0
1,988
0.224633
fd6abf4d61e22150256649650adbe262b09e0720
1,350
py
Python
code/runibm1.py
jrod2699/CS159-NLP-Final-Project-
76eea6149ab01d5e72232874398458ec9f35227f
[ "MIT" ]
null
null
null
code/runibm1.py
jrod2699/CS159-NLP-Final-Project-
76eea6149ab01d5e72232874398458ec9f35227f
[ "MIT" ]
null
null
null
code/runibm1.py
jrod2699/CS159-NLP-Final-Project-
76eea6149ab01d5e72232874398458ec9f35227f
[ "MIT" ]
null
null
null
import nltk import random from preprocess import compile_corpus from nltk.translate import IBMModel1, AlignedSent, Alignment def run(filename, iterations): # global variables utilized in the assessment of the IBM Model global ibm1 global corpus # construct and modify corpus by adding the system alignments to every sentence pair corpus = compile_corpus(filename) ibm1 = IBMModel1(corpus, iterations) # produce random sentences for testing purposes get_rand_sent() def get_rand_sent(): ''' Redirect the standard output of the program -- i.e. the random sentences -- and transfer it over to the appropriate file. From there we will take a look at the sentence pair and include the hand alignment (gold standard) to proceed with evaluating the IBM model. ''' i = 0 while i < 20: index = random.randint(0, len(corpus)) try: # only print out "valid" sentence pairs # valid = sentence pairs with system-created alignments print(" ".join(corpus[index].mots), "\t", " ".join(corpus[index].words), "\t", corpus[index].alignment) i += 1 except: pass def main(): # change the file based on the langauge being tested run("data/languages/vie-eng.txt", 5) if __name__ == "__main__": main()
31.395349
115
0.665926
0
0
0
0
0
0
0
0
683
0.505926
fd6ba7ba1979062899ef77a2f2ebee1332127153
374
py
Python
makenew_python_app/server/boot.py
makenew/python-app
5f3c6669efe6e80d356d39afb712d72bf0e69916
[ "MIT" ]
2
2021-01-10T05:54:37.000Z
2021-01-12T01:24:38.000Z
makenew_python_app/server/boot.py
makenew/python-app
5f3c6669efe6e80d356d39afb712d72bf0e69916
[ "MIT" ]
null
null
null
makenew_python_app/server/boot.py
makenew/python-app
5f3c6669efe6e80d356d39afb712d72bf0e69916
[ "MIT" ]
null
null
null
from os import environ, path from .server import Server from .config import configure def boot(create_dependencies): config_path = environ.get("PYAPP_CONFIG_PATH") or path.realpath( path.join(path.dirname(__file__), "..", "..", "config") ) server = Server(create_dependencies, config_path) server.update_config_factory(configure) server.run()
26.714286
68
0.716578
0
0
0
0
0
0
0
0
35
0.093583
fd6c34c3adb6f440619a388c9b66cf0b7a99a5e9
1,027
py
Python
checker/backends/pagure.py
1dot75cm/repo-checker
1ca191efbeaa9f44876546ee59487e8d515cd735
[ "MIT" ]
4
2016-01-10T15:58:48.000Z
2019-08-10T23:12:31.000Z
checker/backends/pagure.py
1dot75cm/repo-checker
1ca191efbeaa9f44876546ee59487e8d515cd735
[ "MIT" ]
1
2021-03-31T18:46:14.000Z
2021-03-31T18:46:14.000Z
checker/backends/pagure.py
1dot75cm/repo-checker
1ca191efbeaa9f44876546ee59487e8d515cd735
[ "MIT" ]
5
2016-03-22T00:58:33.000Z
2017-09-14T12:43:54.000Z
# -*- coding: utf-8 -*- from checker.backends import BaseBackend from checker import logger log = logger.getLogger(__name__) class PagureBackend(BaseBackend): """for projects hosted on pagure.io""" name = 'Pagure' domain = 'pagure.io' example = 'https://pagure.io/pagure' def __init__(self, url): super(PagureBackend, self).__init__() self._url = url self._rule_type = "xpath" def get_urls(self, branch=None): return ['https://releases.pagure.org/%s/' % self._url.split('/')[-1], '%s/commits/%s' % (self._url, branch)] def get_rules(self): log.debug('use %s backend rule for %s package.' % (self.name, self._url.split('/')[-1])) return [("//td[3][contains(text(), '-')]/text()", ""), ("//h5/a//span/@title", "//div[1]/h5/a/@href")] @classmethod def isrelease(cls, url): if cls.domain in url and 'commits' in url: return False else: return True
27.756757
77
0.559883
897
0.873418
0
0
155
0.150925
0
0
296
0.288218
fd6d8440e80ddfffc2b7c87e874259a2676fb497
2,184
py
Python
vial/plugins/grep/plugin.py
solarnz/vial
080dd204c6fac49c9541cd179e7842de7cb6f8ee
[ "MIT" ]
5
2015-06-27T09:36:26.000Z
2018-05-05T02:43:43.000Z
vial/plugins/grep/plugin.py
solarnz/vial
080dd204c6fac49c9541cd179e7842de7cb6f8ee
[ "MIT" ]
4
2018-06-07T15:19:33.000Z
2020-02-10T12:15:11.000Z
vial/plugins/grep/plugin.py
solarnz/vial
080dd204c6fac49c9541cd179e7842de7cb6f8ee
[ "MIT" ]
2
2019-08-30T07:27:05.000Z
2020-02-12T08:03:24.000Z
import os import re from time import time from vial import vfunc, vim from vial.fsearch import get_files from vial.utils import get_projects, redraw MAX_FILESIZE = 10 * 1024 * 1024 def grep(query): matcher = re.compile(re.escape(query)) t = time() - 1 result = [] for r in get_projects(): for name, path, root, top, fullpath in get_files(r): if time() - t >= 1: redraw() print fullpath t = time() try: if os.stat(fullpath).st_size > MAX_FILESIZE: continue with open(fullpath) as f: source = f.read() matches = matcher.finditer(source) lines = source.splitlines() except OSError: continue for m in matches: start = m.start() line = source.count('\n', 0, start) + 1 offset = start - source.rfind('\n', 0, start) text = lines[line - 1] if len(text) > 100: offstart = max(0, offset - 30) text = text[offstart:offstart+60] + '...' if offstart: text = '...' + text result.append({ 'bufnr': '', 'filename': fullpath, 'pattern': '', 'valid': 1, 'nr': -1, 'lnum': line, 'vcol': 0, 'col': offset, 'text': text.replace('\x00', ' '), 'type': '' }) vfunc.setqflist(result) if result: vim.command('cw') redraw() print '{} matches found'.format(len(result)) def grepop(type): old = vfunc.getreg('"') if type == 'v': vim.command('normal! `<v`>y') elif type == 'char': vim.command('normal! `[v`]y') else: return query = vfunc.getreg('"') if query.strip(): grep(query) else: redraw() print 'Search for nothing?' vfunc.setreg('"', old)
24.818182
61
0.431777
0
0
0
0
0
0
0
0
192
0.087912
fd6ea7420f474f3252a16e6bcdeebb2e566cf6e9
3,619
py
Python
tests/test_models.py
DynamicGravitySystems/DGP
5c0b566b846eb25f1e5ede64b2caaaa6a3352a29
[ "Apache-2.0" ]
7
2017-08-15T21:51:40.000Z
2020-10-28T00:40:23.000Z
tests/test_models.py
DynamicGravitySystems/DGP
5c0b566b846eb25f1e5ede64b2caaaa6a3352a29
[ "Apache-2.0" ]
63
2017-08-11T15:12:03.000Z
2020-05-23T19:03:46.000Z
tests/test_models.py
cbertinato/DGP
5bb8a30895365eccdd452970c45e248903fca8af
[ "Apache-2.0" ]
4
2018-03-29T21:30:26.000Z
2020-10-27T20:15:23.000Z
# -*- coding: utf-8 -*- """ Unit tests for new Project/Flight data classes, including JSON serialization/de-serialization """ import time from datetime import datetime from typing import Tuple from uuid import uuid4 from pathlib import Path import pytest import pandas as pd from dgp.core import DataType from dgp.core.models.project import AirborneProject from dgp.core.hdf5_manager import HDF5Manager from dgp.core.models.datafile import DataFile from dgp.core.models.dataset import DataSet from dgp.core.models import flight from dgp.core.models.meter import Gravimeter @pytest.fixture() def make_flight(): def _factory() -> Tuple[str, flight.Flight]: name = str(uuid4().hex)[:12] return name, flight.Flight(name) return _factory def test_flight_actions(make_flight): # TODO: Test adding/setting gravimeter flt = flight.Flight('test_flight') assert 'test_flight' == flt.name f1_name, f1 = make_flight() # type: flight.Flight f2_name, f2 = make_flight() # type: flight.Flight assert f1_name == f1.name assert f2_name == f2.name assert not f1.uid == f2.uid assert '<Flight %s :: %s>' % (f1_name, f1.uid) == repr(f1) def test_project_path(project: AirborneProject, tmpdir): assert isinstance(project.path, Path) new_path = Path(tmpdir).joinpath("new_prj_path") project.path = new_path assert new_path == project.path def test_project_add_child(project: AirborneProject): with pytest.raises(TypeError): project.add_child(None) def test_project_get_child(make_flight): prj = AirborneProject(name="Project-2", path=Path('.')) f1_name, f1 = make_flight() f2_name, f2 = make_flight() f3_name, f3 = make_flight() prj.add_child(f1) prj.add_child(f2) prj.add_child(f3) assert f1 == prj.get_child(f1.uid) assert f3 == prj.get_child(f3.uid) assert not f2 == prj.get_child(f1.uid) with pytest.raises(IndexError): fx = prj.get_child(str(uuid4().hex)) def test_project_remove_child(make_flight): prj = AirborneProject(name="Project-3", path=Path('.')) f1_name, f1 = make_flight() f2_name, f2 = make_flight() f3_name, f3 = make_flight() prj.add_child(f1) prj.add_child(f2) assert 2 == len(prj.flights) assert f1 in prj.flights assert f2 in prj.flights assert f3 not in prj.flights assert not prj.remove_child(f3.uid) assert prj.remove_child(f1.uid) assert f1 not in prj.flights assert 1 == len(prj.flights) def test_gravimeter(): meter = Gravimeter("AT1A-13") assert "AT1A" == meter.type assert "AT1A-13" == meter.name assert meter.config is None config = meter.read_config(Path("tests/at1m.ini")) assert isinstance(config, dict) with pytest.raises(FileNotFoundError): config = meter.read_config(Path("tests/at1a-fake.ini")) assert {} == meter.read_config(Path("tests/sample_gravity.csv")) def test_dataset(tmpdir): path = Path(tmpdir).joinpath("test.hdf5") df_grav = DataFile(DataType.GRAVITY, datetime.utcnow(), Path('gravity.dat')) df_traj = DataFile(DataType.TRAJECTORY, datetime.utcnow(), Path('gps.dat')) dataset = DataSet(df_grav, df_traj) assert df_grav == dataset.gravity assert df_traj == dataset.trajectory frame_grav = pd.DataFrame([0, 1, 2]) frame_traj = pd.DataFrame([7, 8, 9]) HDF5Manager.save_data(frame_grav, df_grav, path) HDF5Manager.save_data(frame_traj, df_traj, path) expected_concat: pd.DataFrame = pd.concat([frame_grav, frame_traj]) # assert expected_concat.equals(dataset.dataframe)
27.210526
80
0.698812
0
0
0
0
184
0.050843
0
0
461
0.127383
fd6f10a9e5cd95371737b186d651e8e464b2660c
389
py
Python
examples/urls.py
sayanjap/DynamicForms
071707de36d109fe3a17ae5df239240ea5ba707f
[ "BSD-3-Clause" ]
42
2018-01-18T14:50:05.000Z
2022-03-24T18:34:19.000Z
examples/urls.py
sayanjap/DynamicForms
071707de36d109fe3a17ae5df239240ea5ba707f
[ "BSD-3-Clause" ]
14
2018-12-05T21:39:23.000Z
2022-02-27T06:43:48.000Z
examples/urls.py
sayanjap/DynamicForms
071707de36d109fe3a17ae5df239240ea5ba707f
[ "BSD-3-Clause" ]
5
2018-01-18T16:32:20.000Z
2021-06-07T10:15:18.000Z
from django.conf.urls import include, url from rest_framework.documentation import include_docs_urls from examples.rest import router from .views import index urlpatterns = [ url(r'^$', index, name='index'), url(r'^', include(router.urls)), url(r'^dynamicforms/', include('dynamicforms.urls')), url(r'^api-docs/', include_docs_urls(title='Example API documentation')), ]
29.923077
77
0.722365
0
0
0
0
0
0
0
0
92
0.236504
fd6f1c1a3069baecfcb5b723cf12a8c76710a022
1,312
py
Python
tests/contract/test_concept.py
Informasjonsforvaltning/fdk-harvester-bff
21f5d41bbe2506d9c23f0e670e6dee1bfe9f0742
[ "Apache-2.0" ]
null
null
null
tests/contract/test_concept.py
Informasjonsforvaltning/fdk-harvester-bff
21f5d41bbe2506d9c23f0e670e6dee1bfe9f0742
[ "Apache-2.0" ]
20
2020-09-23T10:04:48.000Z
2022-03-14T07:47:45.000Z
tests/contract/test_concept.py
Informasjonsforvaltning/fdk-harvester-bff
21f5d41bbe2506d9c23f0e670e6dee1bfe9f0742
[ "Apache-2.0" ]
null
null
null
"""Test cases for concepts.""" from typing import Any import pytest import requests @pytest.mark.contract def test_get_concept_with_id(http_service: Any) -> None: test_id = "a683bc63-2961-46af-9956-8a4a3f991cc6" url = f"{http_service}/concepts/{test_id}" result = requests.get(url=url, headers={"accept": "application/json"}) assert result.headers["Cache-Control"] == "max-age=86400" parsed_result = result.json() assert parsed_result["id"] == "a683bc63-2961-46af-9956-8a4a3f991cc6" assert ( parsed_result["identifier"] == "http://begrepskatalogen/begrep/88804c36-ff43-11e6-9d97-005056825ca0" ) assert parsed_result["prefLabel"] == {"nb": "norsk etternavn"} assert parsed_result["altLabel"] == [{"nb": "etternavn"}] assert parsed_result["definition"]["text"] == { "nb": "navn som i rekkefølge er etter fornavn og eventuelt mellomnavn som skal være i henhold til Lov om personnavn" } assert parsed_result["definition"]["remark"] == { "nb": "Kan være bygget opp av to etternavn satt sammen med bindestrek - såkalt dobbelt etternavn. For at et navn skal anses som navn etter navneloven, må det i utgangspunktet være uttrykt med bokstavene i det norske alfabetet med de diakritiske tegn som støttes av folkeregisteret" }
42.322581
289
0.70503
0
0
0
0
1,231
0.933283
0
0
779
0.590599
fd6fc2f8e9fb0cf4963f53e0dd218bc472fd9daa
4,572
py
Python
passmanBackend/vault_backend/models.py
sharanvarma0/passman-backend
d210fcc43886bd9be40ceaba3411209799cb8476
[ "BSD-3-Clause" ]
null
null
null
passmanBackend/vault_backend/models.py
sharanvarma0/passman-backend
d210fcc43886bd9be40ceaba3411209799cb8476
[ "BSD-3-Clause" ]
null
null
null
passmanBackend/vault_backend/models.py
sharanvarma0/passman-backend
d210fcc43886bd9be40ceaba3411209799cb8476
[ "BSD-3-Clause" ]
null
null
null
''' Mostly these are internal imports related to django and rest_framework. The os and io imports are for creating files, paths and parsing bytes objects respectively ''' from django.db import models from django.contrib.auth.models import User from rest_framework.renderers import JSONRenderer from rest_framework.parsers import JSONParser from vault_backend.extra_functions import * import os import io ''' The Vault model represents the basic password vault in passman. This model will store the directory path, filename and vault_name specified. This is linked to the User model for only displaying vaults belonging to the authenticated user. The Vault model is later referenced in different places for creating and updating records stored in it. ''' class Vault(models.Model): number = models.IntegerField(primary_key=True) username = models.ForeignKey(User, on_delete=models.CASCADE) vault_name = models.CharField(max_length=200, unique=True) directory = models.CharField(max_length=200, default='/home/sharan/.vaults') filename = models.CharField(max_length=200, default="vault") # Create a new vault as a file in specified directory for future use and store of encrypted passwords. def create_vault(self): default_directory = self.directory default_filename = self.filename if not os.path.exists(default_directory): os.mkdir(default_directory) file = open(default_directory + '/' + default_filename, 'w').close() def check_data(self, term, data): if term in data: return True return False # adding passwords to the vault file after encrypting them def add_data(self, sitename, password): try: user = self.username key = generate_key(user) default_directory = self.directory default_filename = self.filename arr_of_passwords = self.get_data() print(arr_of_passwords) if arr_of_passwords == '': arr_of_passwords = [] # passwords stored as a JSON array for easy future retrieval and storage write_descriptor = open(default_directory + '/' + default_filename, 'w') write_data = {'site_name': sitename, 'password': password} if self.check_data(write_data, arr_of_passwords): return 2 arr_of_passwords.append(write_data) write_data = JSONRenderer().render(arr_of_passwords) encrypted_data = encrypt_data(key, write_data) # this encrypt_data function is defined in extra_functions module. It takes some data and encrypts it using cryptography.fernet (refer cryptography.fernet module). write_descriptor.write(encrypted_data) write_descriptor.close() return 0 except: if (write_descriptor): write_descriptor.close() return 1 # read data from the vault file and decrypt them before dispatch def get_data(self): try: user = self.username key = generate_key(user) default_directory = self.directory default_filename = self.filename read_descriptor = open(default_directory + '/' + default_filename, 'r') data = read_descriptor.read() if data == '': read_descriptor.close() return data read_data = io.BytesIO(decrypt_data(key, data)) # the decrypt_data function is defined in extra_functions module. It decrypts data given by generating a fernet key from PBKDF2 using user creds. json_read_data = JSONParser().parse(read_data) read_descriptor.close() return json_read_data except: read_descriptor.close() return 1 # Delete Record functionality in vault.Not tested delete functionality yet. Might implement in future. ''' def delete_data(self, sitename, password): try: delete_data = {'site_name':sitename, 'password':password} data = self.get_data() if self.check_data(delete_data, data): data.remove(delete_data) if data: for dictionary_data in data: self.add_data(dictionary_data['site_name'], dictionary_data['password']) return 0 else: self.create_vault() return 0 except ValueError: return 'No Such Value' '''
41.563636
227
0.649606
3,090
0.675853
0
0
0
0
0
0
1,890
0.413386
fd71a2a6d5b1e71ced9722bf68301238887fd3c8
95,557
py
Python
DexParse.py
liumengdeqq/DexParse
769899e26f01700c690ed82c48790d1000efb5f1
[ "Apache-2.0" ]
16
2015-11-19T01:51:52.000Z
2020-03-10T06:24:28.000Z
DexParse.py
CvvT/DexParse
80c3f4a27e7163536f98584c5e7f7ec35a9451b8
[ "Apache-2.0" ]
null
null
null
DexParse.py
CvvT/DexParse
80c3f4a27e7163536f98584c5e7f7ec35a9451b8
[ "Apache-2.0" ]
22
2015-09-15T02:20:48.000Z
2021-06-24T02:55:09.000Z
#! /usr/bin/python # coding=utf-8 import struct import os import hashlib import Instruction Access_Flag = {'public': 1, 'private': 2, 'protected': 4, 'static': 8, 'final': 0x10, 'synchronized': 0x20, 'volatile': 0x40, 'bridge': 0x40, 'transient': 0x80, 'varargs': 0x80, 'native': 0x100, 'interface': 0x200, 'abstract': 0x400, 'strictfp': 0x800, 'synthetic': 0x1000, 'annotation': 0x2000, 'enum': 0x4000, 'constructor': 0x10000, 'declared_synchronized': 0x20000} TypeDescriptor = {'void': 'V', 'boolean': 'Z', 'byte': 'B', 'short': 'S', 'char': 'C', 'int': 'I', 'long': 'J', 'float': 'F', 'double': 'D', 'boolean[]': '[Z', 'byte[]': '[B', 'short[]': '[S', 'char[]': '[C', 'int[]': 'I', 'long[]': '[J', 'float[]': '[F', 'double[]': 'D'} ShortyDescriptor = {'void': 'V', 'boolean': 'Z', 'byte': 'B', 'short': 'S', 'char': 'C', 'int': 'I', 'long': 'J', 'float': 'F', 'double': 'D'} ACSII = {'1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, '0': 0, 'a': 10, 'b': 11, 'c': 12, 'd': 13, 'e': 14, 'f': 15} def checksum(f, len): a = 1 b = 0 f.seek(12) print("file size is :", len) for i in range(12, len): onebyte = struct.unpack("B", f.read(1))[0] a = (a + onebyte) % 65521 b = (b + a) % 65521 return b << 16 | a def get_file_sha1(f): f.seek(32) # skip magic, checksum, sha sha = hashlib.sha1() while True: data = f.read(1024) if not data: break sha.update(data) return sha.hexdigest() def rightshift(value, n): mask = 0x80000000 check = value & mask if check != mask: return value >> n else: submask = mask for loop in range(0, n): submask = (submask | (mask >> loop)) strdata = struct.pack("I", submask | (value >> n)) ret = struct.unpack("i", strdata)[0] return ret def readunsignedleb128(file): res = struct.unpack("B", file.read(1))[0] if res > 0x7f: cur = struct.unpack("B", file.read(1))[0] res = (res & 0x7f) | ((cur & 0x7f) << 7) if cur > 0x7f: cur = struct.unpack("B", file.read(1))[0] res |= (cur & 0x7f) << 14 if cur > 0x7f: cur = struct.unpack("B", file.read(1))[0] res |= (cur & 0x7f) << 21 if cur > 0x7f: cur = struct.unpack("B", file.read(1))[0] res |= cur << 28 if res == 44370793110: print(file.tell()) return res def readsignedleb128(file): res = struct.unpack("B", file.read(1))[0] if res <= 0x7f: res = rightshift((res << 25), 25) else: cur = struct.unpack("B", file.read(1))[0] res = (res & 0x7f) | ((cur & 0x7f) << 7) if cur <= 0x7f: res = rightshift((res << 18), 18) else: cur = struct.unpack("B", file.read(1))[0] res |= (cur & 0x7f) << 14 if cur <= 0x7f: res = rightshift((res << 11), 11) else: cur = struct.unpack("B", file.read(1))[0] res |= (cur & 0x7f) << 21 if cur <= 0x7f: res = rightshift((res << 4), 4) else: cur = struct.unpack("B", file.read(1))[0] res |= cur << 28 return res def writesignedleb128(num, file): if num >= 0: writeunsignedleb128(num, file) else: mask = 0x80000000 for i in range(0, 32): tmp = num & mask mask >>= 1 if tmp == 0: break loop = 32 - i + 1 while loop > 7: cur = num & 0x7f | 0x80 num >>= 7 file.write(struct.pack("B", cur)) loop -= 7 cur = num & 0x7f file.write(struct.pack("B", cur)) def signedleb128forlen(num): if num >= 0: return unsignedleb128forlen(num) else: mask = 0x80000000 for i in range(0, 32): tmp = num & mask mask >>= 1 if tmp == 0: break loop = 32 - i + 1 if loop % 7 == 0: return loop / 7 else: return loop / 7 + 1 def writeunsignedleb128(num, file): if num <= 0x7f: file.write(struct.pack("B", num)) else: cur = num & 0x7F | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if num <= 0x7f: file.write(struct.pack("B", num)) else: cur = num & 0x7f | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if num <= 0x7f: file.write(struct.pack("B", num)) else: cur = num & 0x7f | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if num <= 0x7f: file.write(struct.pack("B", num)) else: cur = num & 0x7f | 0x80 file.write(struct.pack("B", cur)) num >>= 7 file.write(struct.pack("B", num)) def unsignedleb128forlen(num): len = 1 temp = num while num > 0x7f: len += 1 num >>= 7 if len > 5: print("error for unsignedleb128forlen", temp) os._exit(num) return len def writeunsignedleb128p1alignshort(num, file): num += 1 if num <= 0x7f: if file.tell() % 2 == 1: file.write(struct.pack("B", num)) else: # print(hex(num)) file.write(struct.pack("B", num | 0x80)) file.write(struct.pack("B", 0)) else: cur = num & 0x7F | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if num <= 0x7f: if file.tell() % 2 == 1: file.write(struct.pack("B", num)) else: file.write(struct.pack("B", num | 0x80)) file.write(struct.pack("B", 0)) else: cur = num & 0x7f | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if num <= 0x7f: if file.tell() % 2 == 1: file.write(struct.pack("B", num)) else: file.write(struct.pack("B", num | 0x80)) file.write(struct.pack("B", 0)) else: cur = num & 0x7f | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if num <= 0x7f: if file.tell() % 2 == 1: file.write(struct.pack("B", num)) else: file.write(struct.pack("B", num | 0x80)) file.write(struct.pack("B", 0)) else: cur = num & 0x7f | 0x80 file.write(struct.pack("B", cur)) num >>= 7 if file.tell() % 2 == 1: file.write(struct.pack("B", num)) else: file.write(struct.pack("B", num | 0x80)) file.write(struct.pack("B", 0)) def readunsignedleb128p1(file): res = readunsignedleb128(file) return res - 1 def writeunsignedleb128p1(num, file): writeunsignedleb128(num+1, file) def unsignedleb128p1forlen(num): return unsignedleb128forlen(num+1) def getutf8str(file): string = [] while 1: onebyte = struct.unpack("B", file.read(1))[0] if onebyte == 0: break string.append(onebyte) return bytearray(string).decode("utf-8") def getstr(bytes): return bytearray(bytes).decode("utf-8") class EncodedArray: def __init__(self, file): self.size = readunsignedleb128(file) self.values = [] for i in range(0, self.size): self.values.append(EncodedValue(file)) def copytofile(self, file): writeunsignedleb128(self.size, file) for i in range(0, self.size): self.values[i].copytofile(file) def makeoffset(self, off): off += unsignedleb128forlen(self.size) for i in range(0, self.size): off = self.values[i].makeoffset(off) return off def printf(self): print("encoded array size", self.size) class EncodedValue: def __init__(self, file): self.onebyte = struct.unpack("B", file.read(1))[0] self.type = self.onebyte & 0x1F self.arg = (self.onebyte >> 5) & 0x7 self.value = [] if self.type == 0x00: # print 'here 0x00 VALUE_BYTE in class : ' + str(curClass_idx) if self.arg != 0: print ("[-] Ca ,get error in VALUE_BYTE") os._exit(1) self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x02: # print 'here 0x02 VALUE_SHORT in class : ' + str(curClass_idx) if self.arg >= 2: print ("[-] Ca ,get error in VALUE_SHORT at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x03: # print 'here 0x03 VALUE_CHAR in class : ' + str(curClass_idx) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x04: # print 'here 0x04 VALUE_INT in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_INT at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x06: # print 'here 0x06 VALUE_LONG in class : ' + str(curClass_idx) if self.arg >= 8: print ("[-] Ca ,get error in VALUE_LONG at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x10: # print 'here 0x10 VALUE_FLOAT in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_FLOAT at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x11: # print 'here 0x11 VALUE_DOUBLE in class : ' + str(curClass_idx) if self.arg >= 8: print ("[-] Ca ,get error in VALUE_DOUBLE at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x17: # print 'here 0x17 VALUE_STRING in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_STRING at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x18: # print 'here 0x18 VALUE_TYPE in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_TYPE at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x19: # print 'here 0x19 VALUE_FIELD in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_FIELD at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x1a: # print 'here 0x1a VALUE_METHOD in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_METHOD at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x1b: # print 'here 0x1b VALUE_ENUM in class : ' + str(curClass_idx) if self.arg >= 4: print ("[-] Ca ,get error in VALUE_ENUM at class : ") os._exit(1) for i in range(0, self.arg+1): self.value.append(struct.unpack("B", file.read(1))[0]) elif self.type == 0x1c: # print 'here 0x1c VALUE_ARRAY in class : ' + str(curClass_idx) if self.arg != 0x00: print ("[-] Ca ,get error in VALUE_ARRAY") os._exit(1) self.value.append(EncodedArray(file)) elif self.type == 0x1d: # print 'here 0x1d VALUE_ANNOTATION in class : ' + str(curClass_idx) if self.arg != 0: os._exit() self.value.append(EncodedAnnotation(file)) # if case(0x1e): # print 'here 0x1e VALUE_NULL in class : ' + str(curClass_idx) # break # if case(0x1f): # print 'here 0x1f VALUE_BOOLEAN in class : ' + str(curClass_idx) # break def copytofile(self, file): file.write(struct.pack("B", self.onebyte)) if self.type <= 0x1b: for i in range(0, self.arg+1): file.write(struct.pack("B", self.value[i])) elif self.type == 0x1c: self.value[0].copytofile(file) elif self.type == 0x1d: self.value[0].copytofile(file) def makeoffset(self, off): off += 1 if self.type <= 0x1b: off += self.arg+1 elif self.type == 0x1c: off = self.value[0].makeoffset(off) elif self.type == 0x1d: off = self.value[0].makeoffset(off) return off def printf(self): print("encoded value :", self.type, self.arg) # ---------------------------------------------------------------------------------------- class AnnotationElement: def __init__(self, file): self.name_idx = readunsignedleb128(file) self.value = EncodedValue(file) def copytofile(self, file): writeunsignedleb128(self.name_idx, file) self.value.copytofile(file) def makeoffset(self, off): off += unsignedleb128forlen(self.name_idx) off = self.value.makeoffset(off) return off class EncodedAnnotation: def __init__(self, file): self.type_idx = readunsignedleb128(file) self.size = readunsignedleb128(file) self.elements = [] # annotation_element[size] for i in range(0, self.size): self.elements.append(AnnotationElement(file)) def copytofile(self, file): writeunsignedleb128(self.type_idx, file) writeunsignedleb128(self.size, file) for i in range(0, self.size): self.elements[i].copytofile(file) def makeoffset(self, off): off += unsignedleb128forlen(self.type_idx) off += unsignedleb128forlen(self.size) for i in range(0, self.size): off = self.elements[i].makeoffset(off) return off class DexHeader: def __init__(self, file, mode=0): if mode == 0: self.start = file.tell() self.magic = [] self.magic.append(chr(struct.unpack("B", file.read(1))[0])) self.magic.append(chr(struct.unpack("B", file.read(1))[0])) self.magic.append(chr(struct.unpack("B", file.read(1))[0])) self.magic.append(chr(struct.unpack("B", file.read(1))[0])) self.version = [] self.version.append(chr(struct.unpack("B", file.read(1))[0])) self.version.append(chr(struct.unpack("B", file.read(1))[0])) self.version.append(chr(struct.unpack("B", file.read(1))[0])) self.version.append(chr(struct.unpack("B", file.read(1))[0])) self.checksum = struct.unpack("I", file.read(4))[0] self.signature = file.read(20) self.file_size = struct.unpack("I", file.read(4))[0] self.header_size = struct.unpack("I", file.read(4))[0] self.endian_tag = hex(struct.unpack("I", file.read(4))[0]) self.link_size = struct.unpack("I", file.read(4))[0] self.link_off = struct.unpack("I", file.read(4))[0] self.map_off = struct.unpack("I", file.read(4))[0] self.string_ids_size = struct.unpack("I", file.read(4))[0] self.string_ids_off = struct.unpack("I", file.read(4))[0] self.type_ids_size = struct.unpack("I", file.read(4))[0] self.type_ids_off = struct.unpack("I", file.read(4))[0] self.proto_ids_size = struct.unpack("I", file.read(4))[0] self.proto_ids_off = struct.unpack("I", file.read(4))[0] self.field_ids_size = struct.unpack("I", file.read(4))[0] self.field_ids_off = struct.unpack("I", file.read(4))[0] self.method_ids_size = struct.unpack("I", file.read(4))[0] self.method_ids_off = struct.unpack("I", file.read(4))[0] self.class_defs_size = struct.unpack("I", file.read(4))[0] self.class_defs_off = struct.unpack("I", file.read(4))[0] self.data_size = struct.unpack("I", file.read(4))[0] self.data_off = struct.unpack("I", file.read(4))[0] self.len = file.tell() - self.start def create(self, dexfile): self.magic = [] self.magic.append('d') self.magic.append('e') self.magic.append('x') self.magic.append(0x0A) self.version = [] self.version.append('0') self.version.append('3') self.version.append('5') self.version.append(0) self.checksum = 1234 self.signature = "idontknow" self.file_size = 1234 self.header_size = 112 self.endian_tag = 0x12345678 self.link_size = 0 self.link_off = 0 # self.map_off = dexfile.dexmaplist def copytofile(self, file): file.seek(self.start, 0) file.write(struct.pack("B", ord(self.magic[0]))) file.write(struct.pack("B", ord(self.magic[1]))) file.write(struct.pack("B", ord(self.magic[2]))) file.write(struct.pack("B", ord(self.magic[3]))) file.write(struct.pack("B", ord(self.version[0]))) file.write(struct.pack("B", ord(self.version[1]))) file.write(struct.pack("B", ord(self.version[2]))) file.write(struct.pack("B", ord(self.version[3]))) file.write(struct.pack("I", self.checksum)) file.write(self.signature) file.write(struct.pack("I", self.file_size)) file.write(struct.pack("I", self.header_size)) file.write(struct.pack("I", int(self.endian_tag, 16))) file.write(struct.pack("I", self.link_size)) file.write(struct.pack("I", self.link_off)) file.write(struct.pack("I", self.map_off)) file.write(struct.pack("I", self.string_ids_size)) file.write(struct.pack("I", self.string_ids_off)) file.write(struct.pack("I", self.type_ids_size)) file.write(struct.pack("I", self.type_ids_off)) file.write(struct.pack("I", self.proto_ids_size)) file.write(struct.pack("I", self.proto_ids_off)) file.write(struct.pack("I", self.field_ids_size)) file.write(struct.pack("I", self.field_ids_off)) file.write(struct.pack("I", self.method_ids_size)) file.write(struct.pack("I", self.method_ids_off)) file.write(struct.pack("I", self.class_defs_size)) file.write(struct.pack("I", self.class_defs_off)) file.write(struct.pack("I", self.data_size)) file.write(struct.pack("I", self.data_off)) def makeoffset(self, dexmaplist): self.string_ids_size = dexmaplist[1].size self.string_ids_off = dexmaplist[1].offset self.type_ids_size = dexmaplist[2].size self.type_ids_off = dexmaplist[2].offset self.proto_ids_size = dexmaplist[3].size self.proto_ids_off = dexmaplist[3].offset self.field_ids_size = dexmaplist[4].size self.field_ids_off = dexmaplist[4].offset self.method_ids_size = dexmaplist[5].size self.method_ids_off = dexmaplist[5].offset self.class_defs_size = dexmaplist[6].size self.class_defs_off = dexmaplist[6].offset self.data_off = dexmaplist[0x1000].offset self.data_size = 0 self.map_off = dexmaplist[0x1000].offset self.file_size = 0 def printf(self): print ("DEX FILE HEADER:") print ("magic: ", self.magic) print ("version: ", self.version) print ("checksum: ", self.checksum) print ("signature: ", self.signature) print ("file_size: ", self.file_size) print ("header_size: ", self.header_size) print ("endian_tag: ", self.endian_tag) print ("link_size: ", self.link_size) print ("link_off: ", self.link_off) print ("map_off: ", self.map_off) print ("string_ids_size: ", self.string_ids_size) print ("string_ids_off: ", self.string_ids_off) print ("type_ids_size: ", self.type_ids_size) print ("type_ids_off: ", self.type_ids_off) print ("proto_ids_size: ", self.proto_ids_size) print ("proto_ids_off: ", self.proto_ids_off) print ("field_ids_size: ", self.field_ids_size) print ("field_ids_off: ", self.field_ids_off) print ("method_ids_size: ", self.method_ids_size) print ("method_ids_off: ", self.method_ids_off) print ("class_defs_size: ", self.class_defs_size) print ("class_defs_off: ", self.class_defs_off) print ("data_size: ", self.data_size) print ("data_off: ", self.data_off) class DexStringID: def __init__(self, file, mode=1): if mode == 1: self.stringDataoff = struct.unpack("I", file.read(4))[0] # in file file.seek(self.stringDataoff, 0) self.size = readunsignedleb128(file) self.str = getutf8str(file) self.ref = None else: self.stringDataoff = 0 self.size = 0 self.str = "" self.ref = None def addstrID(self, str): self.ref = str self.str = getstr(str.str) def copytofile(self, file): # self.stringDataoff = self.ref.start file.write(struct.pack("I", self.ref.start)) def getreference(self, dexmaplist): self.ref = dexmaplist[0x2002].getreference(self.stringDataoff) def printf(self): print ("size: ", self.size, " str: ", self.str, "dataof: ", self.stringDataoff) class DexTypeID: def __init__(self, file, str_table, mode=1): if mode == 1: self.descriptorIdx = struct.unpack("I", file.read(4))[0] # in file self.str = str_table[self.descriptorIdx].str else: self.descriptorIdx = 0 self.str = "" def addtype(self, index, string): self.descriptorIdx = index self.str = string def copytofile(self, file): file.write(struct.pack("I", self.descriptorIdx)) def printf(self): print ("type id: ", self.str) class DexProtoId: def __init__(self, file, str_table, type_table, mode=1): if mode == 1: self.shortyIdx = struct.unpack("I", file.read(4))[0] # in file self.returnTypeIdx = struct.unpack("I", file.read(4))[0] # in file self.parametersOff = struct.unpack("I", file.read(4))[0] # in file self.name = str_table[self.shortyIdx].str self.returnstr = type_table[self.returnTypeIdx].str self.ref = None else: self.shortyIdx = 0 self.returnTypeIdx = 0 self.parametersOff = 0 self.ref = None def addproto(self, idx, typeidx, reference): self.shortyIdx = idx self.returnTypeIdx = typeidx self.ref = reference def copytofile(self, file): file.write(struct.pack("I", self.shortyIdx)) file.write(struct.pack("I", self.returnTypeIdx)) if self.ref is not None: file.write(struct.pack("I", self.ref.start)) else: file.write(struct.pack("I", 0)) def getreference(self, dexmaplist): self.ref = dexmaplist[0x1001].getreference(self.parametersOff) def printf(self): print ("return Type:", self.returnstr) print ("methodname:", self.name) if self.ref is not None: self.ref.printf() class DexFieldId: def __init__(self, file, str_table, type_table, mode=1): if mode == 1: self.classIdx = struct.unpack("H", file.read(2))[0] # in file self.typeIdx = struct.unpack("H", file.read(2))[0] # in file self.nameIdx = struct.unpack("I", file.read(4))[0] # in file self.classstr = type_table[self.classIdx].str self.typestr = type_table[self.typeIdx].str self.name = str_table[self.nameIdx].str def addfield(self, classidx, typeidx, nameidx): self.classIdx = classidx self.typeIdx = typeidx self.nameIdx = nameidx def copytofile(self, file): file.write(struct.pack("H", self.classIdx)) file.write(struct.pack("H", self.typeIdx)) file.write(struct.pack("I", self.nameIdx)) def printf(self): print ("classstr:", self.classstr) print ("typestr:", self.typestr) print ("name:", self.name) print () class DexMethodId: def __init__(self, file, str_table, type_table, proto_table, mode=1): if mode == 1: self.classIdx = struct.unpack("H", file.read(2))[0] # in file self.protoIdx = struct.unpack("H", file.read(2))[0] # in file self.nameIdx = struct.unpack("I", file.read(4))[0] # in file self.classstr = type_table[self.classIdx].str self.name = str_table[self.nameIdx].str else: self.classIdx = 0 self.protoIdx = 0 self.nameIdx = 0 def addmethod(self, class_idx, proto_idx, name_idx): self.classIdx = class_idx self.protoIdx = proto_idx self.nameIdx = name_idx def copytofile(self, file): file.write(struct.pack("H", self.classIdx)) file.write(struct.pack("H", self.protoIdx)) file.write(struct.pack("I", self.nameIdx)) def printf(self): print ("classstr:", self.classstr) print ("name:", self.name) print () class DexClassDef: def __init__(self, file, str_table, type_table, mode=1): if mode == 1: self.classIdx = struct.unpack("I", file.read(4))[0] # in file self.accessFlags = struct.unpack("I", file.read(4))[0] # in file self.superclassIdx = struct.unpack("I", file.read(4))[0] # in file self.interfacesOff = struct.unpack("I", file.read(4))[0] # in file self.sourceFileIdx = struct.unpack("I", file.read(4))[0] # in file self.annotationsOff = struct.unpack("I", file.read(4))[0] # in file self.classDataOff = struct.unpack("I", file.read(4))[0] # in file self.staticValuesOff = struct.unpack("I", file.read(4))[0] # in file self.classstr = type_table[self.classIdx].str self.superclassstr = type_table[self.superclassIdx].str if self.sourceFileIdx == 0xFFFFFFFF: self.sourceFilestr = "NO_INDEX" else: self.sourceFilestr = str_table[self.sourceFileIdx].str else: self.classIdx = 0 self.accessFlags = 0 self.superclassIdx = 0 self.interfacesOff = 0 self.sourceFileIdx = 0 self.annotationsOff = 0 self.classDataOff = 0 self.staticValuesOff = 0 self.interfacesRef = None self.annotationsRef = None self.classDataRef = None self.staticValuesRef = None def addclassdef(self, classidx, access, superclass, source): self.classIdx = classidx self.accessFlags = access self.superclassIdx = superclass self.sourceFileIdx = source def addclassdefref(self, interref, annoref, classref, staticref): self.interfacesRef = interref self.annotationsRef = annoref self.classDataRef = classref self.staticValuesRef = staticref # get class data reference by its name,e.g. Lcom/cc/test/MainActivity; def getclassdefref(self, str): if self.classstr == str and self.classDataOff > 0: return self.classDataRef return None def copytofile(self, file): file.write(struct.pack("I", self.classIdx)) file.write(struct.pack("I", self.accessFlags)) file.write(struct.pack("I", self.superclassIdx)) if self.interfacesRef is not None: file.write(struct.pack("I", self.interfacesRef.start)) # print(self.interfacesRef.start) else: file.write(struct.pack("I", 0)) file.write(struct.pack("I", self.sourceFileIdx)) if self.annotationsRef is not None: file.write(struct.pack("I", self.annotationsRef.start)) # print(self.annotationsRef.start) else: file.write(struct.pack("I", 0)) if self.classDataRef is not None: file.write(struct.pack("I", self.classDataRef.start)) else: file.write(struct.pack("I", 0)) if self.staticValuesRef is not None: file.write(struct.pack("I", self.staticValuesRef.start)) else: file.write(struct.pack("I", 0)) def getreference(self, dexmaplist): self.interfacesRef = dexmaplist[0x1001].getreference(self.interfacesOff) if 0x2006 in dexmaplist.keys(): self.annotationsRef = dexmaplist[0x2006].getreference(self.annotationsOff) self.classDataRef = dexmaplist[0x2000].getreference(self.classDataOff) if 0x2005 in dexmaplist.keys(): self.staticValuesRef = dexmaplist[0x2005].getreference(self.staticValuesOff) def printf(self): print ("classtype:", self.classIdx, self.classstr) print("access flag:", self.accessFlags) print ("superclasstype:", self.superclassIdx, self.superclassstr) print ("iterface off", self.interfacesOff) print("source file index", self.sourceFilestr) print("annotations off", self.annotationsOff) print("class data off", self.classDataOff) print("static values off", self.staticValuesOff) if self.interfacesRef is not None: self.interfacesRef.printf() if self.annotationsRef is not None: self.annotationsRef.printf() if self.classDataRef is not None: self.classDataRef.printf() if self.staticValuesRef is not None: self.staticValuesRef.printf() class StringData: def __init__(self, file, mode = 1): if mode == 1: self.start = file.tell() self.len = 0 self.size = readunsignedleb128(file) # in file self.str = [] # getutf8str(file) # in file while 1: onebyte = struct.unpack("B", file.read(1))[0] if onebyte == 0: break self.str.append(onebyte) else: self.start = 0 self.len = 0 self.size = 0 self.str = [] def addstr(self, str): self.size = len(str) self.str = bytearray(str) def copytofile(self, file): writeunsignedleb128(self.size, file) for i in range(0, len(self.str)): file.write(struct.pack("B", self.str[i])) file.write(struct.pack("B", 0)) def makeoffset(self, off): self.start = off self.len = len(self.str) + unsignedleb128forlen(self.size) return off + self.len + 1 # 1 byte for '\0' def modify(self, str): self.size = len(str) self.str = bytearray(str) def printf(self): print (getstr(self.str)) class TypeItem: # alignment: 4 bytes def __init__(self, file, type_table, mode=1): if mode == 1: self.start = file.tell() self.size = struct.unpack("I", file.read(4))[0] # in file self.list = [] self.str = [] self.len = 0 for i in range(0, self.size): self.list.append(struct.unpack("H", file.read(2))[0]) # in file self.str.append(type_table[self.list[i]].str) if self.size % 2 == 1: struct.unpack("H", file.read(2)) # for alignment else: self.start = 0 self.size = 0 self.list = None self.str = None self.len = 0 def addtypeItem(self, type_list, str_list): self.size = len(type_list) self.list = type_list self.str = str_list def copytofile(self, file): file.write(struct.pack("I", self.size)) for i in range(0, self.size): file.write(struct.pack("H", self.list[i])) if self.size % 2 == 1: file.write(struct.pack("H", 0)) def equal(self, param_list, length): if length != self.size: return False for i in range(0, self.size): if param_list[i] != self.str[i]: return False return True def makeoffset(self, off): align = off % 4 if align != 0: off += (4 - align) self.len = 4 + 2 * self.size self.start = off return off + self.len def printf(self): for i in range(0, self.size): print (self.list[i], self.str[i]) # alignment: 4bytes class AnnotationsetItem: def __init__(self, file): self.start = file.tell() self.len = 0 self.size = struct.unpack("I", file.read(4))[0] # in file self.entries = [] # annotation_off, offset of annotation_item self.ref = [] for i in range(0, self.size): self.entries.append(struct.unpack("I", file.read(4))[0]) def copytofile(self, file): file.write(struct.pack("I", self.size)) for i in range(0, self.size): file.write(struct.pack("I", self.ref[i].start)) def makeoffset(self, off): align = off % 4 if align != 0: off += (4 - align) self.start = off self.len = 4 + 4 * self.size return off + self.len def getreference(self, dexmaplist): for i in range(0, self.size): self.ref.append(dexmaplist[0x2004].getreference(self.entries[i])) def printf(self): print ("size: ", self.size) # alignment: 4bytes class AnnotationsetrefList: def __init__(self, file): self.start = file.tell() self.size = struct.unpack("I", file.read(4))[0] # in file self.list = [] # annotaions_off, offset of annotation_set_item self.ref = [] self.len = 0 for i in range(0, self.size): self.list.append(struct.unpack("I", file.read(4))[0]) def copytofile(self, file): file.write(struct.pack("I", self.size)) for i in range(0, self.size): if self.ref[i] is not None: file.write(struct.pack("I", self.ref[i].start)) else: file.write(struct.pack("I", 0)) def makeoffset(self, off): align = off % 4 if align != 0: off += (4 - align) self.start = off self.len = 4 + 4 * self.size return off + self.len def getreference(self, dexmaplist): for i in range(0, self.size): self.ref.append(dexmaplist[0x1003].getreference(self.list[i])) def printf(self): print ("size: ", self.size) class Encodedfield: def __init__(self, file, mode=1): if mode == 1: self.start = file.tell() self.len = 0 self.field_idx_diff = readunsignedleb128(file) self.access_flags = readunsignedleb128(file) else: self.len = 0 self.field_idx_diff = 0 self.access_flags = 1 self.field_idx = 0 # need to set later def __lt__(self, other): # for sort return self.field_idx_diff < other.field_idx_diff def addfield(self, idx, flag): self.field_idx = idx self.access_flags = int(flag) def copytofile(self, file): writeunsignedleb128(self.field_idx_diff, file) writeunsignedleb128(self.access_flags, file) def makeoffset(self, off): self.start = off self.len += unsignedleb128forlen(self.field_idx_diff) self.len += unsignedleb128forlen(self.access_flags) return off + self.len def printf(self): print ("diff: ", self.field_idx_diff) print ("access: ", self.access_flags) class Encodedmethod: def __init__(self, file, mode=1): if mode == 1: self.start = file.tell() self.len = 0 self.method_idx_diff = readunsignedleb128(file) self.access_flags = readunsignedleb128(file) self.code_off = readunsignedleb128(file) self.coderef = None else: self.len = 0 self.method_idx_diff = 0 self.access_flags = 0 self.coderef = 0 self.method_idx = 0 # need to set later self.modified = 0 # if set this var, means that code_off will moodified to zero def addmethod(self, method_idx, access, ref): self.method_idx = method_idx self.access_flags = int(access) self.coderef = ref def copytofile(self, file): writeunsignedleb128(self.method_idx_diff, file) writeunsignedleb128(self.access_flags, file) if self.modified == 1: writeunsignedleb128(0, file) elif self.coderef is not None: writeunsignedleb128(self.coderef.start, file) else: writeunsignedleb128(0, file) def makeoffset(self, off): self.start = off self.len += unsignedleb128forlen(self.method_idx_diff) self.len += unsignedleb128forlen(self.access_flags) if self.modified == 1: self.len += unsignedleb128forlen(0) elif self.coderef is not None: self.len += unsignedleb128forlen(self.coderef.start) else: self.len += unsignedleb128forlen(0) return off + self.len def getreference(self, dexmaplist): self.coderef = dexmaplist[0x2001].getreference(self.code_off) def printf(self): print ("method_idx_diff: ", self.method_idx_diff) print("method idx:", self.method_idx) print ("access: ", self.access_flags) print ("code off: ", self.code_off) # alignment:none class ClassdataItem: def __init__(self, file, mode=1): if mode == 1: self.start = file.tell() self.len = 0 self.static_field_size = readunsignedleb128(file) self.instance_fields_size = readunsignedleb128(file) self.direct_methods_size = readunsignedleb128(file) self.virtual_methods_size = readunsignedleb128(file) self.static_fields = [] self.instance_fields = [] self.direct_methods = [] self.virtual_methods = [] for i in range(0, self.static_field_size): self.static_fields.append(Encodedfield(file)) for i in range(0, self.instance_fields_size): self.instance_fields.append(Encodedfield(file)) for i in range(0, self.direct_methods_size): self.direct_methods.append(Encodedmethod(file)) for i in range(0, self.virtual_methods_size): self.virtual_methods.append(Encodedmethod(file)) else: self.static_field_size = 0 self.instance_fields_size = 0 self.direct_methods_size = 0 self.virtual_methods_size = 0 self.static_fields = [] self.instance_fields = [] self.direct_methods = [] self.virtual_methods = [] def addstaticfield(self, field_idx, accessflag): self.static_field_size += 1 field = Encodedfield(None, 2) field.addfield(field_idx, accessflag) self.static_fields.append(field) def addinstancefield(self, field_idx, accessflag): self.instance_fields_size += 1 field = Encodedfield(None, 2) field.addfield(field_idx, accessflag) self.instance_fields.append(field) def adddirectmethod(self, method_idx, accessflag, code_ref): method = Encodedmethod(None, 2) method.addmethod(method_idx, accessflag, code_ref) self.direct_methods_size += 1 self.direct_methods.append(method) def addvirtualmethod(self, method_idx, accessflag, code_ref): method = Encodedmethod(None, 2) method.addmethod(method_idx, accessflag, code_ref) self.virtual_methods_size += 1 self.virtual_methods.append(method) def commit(self): # call this when everything done, just for static field by now if self.static_field_size > 0: # self.static_fields.sort() # since each field added has the largest index # there is no need to sort the list last = 0 for i in range(0, self.static_field_size): self.static_fields[i].field_idx_diff = self.static_fields[i].field_idx - last last = self.static_fields[i].field_idx if self.instance_fields_size > 0: last = 0 for i in range(0, self.instance_fields_size): self.instance_fields[i].field_idx_diff = self.instance_fields[i].field_idx - last last = self.instance_fields[i].field_idx if self.direct_methods_size > 0: last = 0 for i in range(0, self.direct_methods_size): self.direct_methods[i].method_idx_diff = self.direct_methods[i].method_idx - last last = self.direct_methods[i].method_idx if self.virtual_methods_size > 0: last = 0 for i in range(0, self.virtual_methods_size): self.virtual_methods[i].method_idx_diff = self.virtual_methods[i].method_idx - last last = self.virtual_methods[i].method_idx def copytofile(self, file): writeunsignedleb128(self.static_field_size, file) writeunsignedleb128(self.instance_fields_size, file) writeunsignedleb128(self.direct_methods_size, file) writeunsignedleb128(self.virtual_methods_size, file) for i in range(0, self.static_field_size): self.static_fields[i].copytofile(file) for i in range(0, self.instance_fields_size): self.instance_fields[i].copytofile(file) for i in range(0, self.direct_methods_size): self.direct_methods[i].copytofile(file) for i in range(0, self.virtual_methods_size): self.virtual_methods[i].copytofile(file) # besides adding refenrence, also need to set the correct index def getreference(self, dexmaplist): last = 0 for i in range(0, self.static_field_size): self.static_fields[i].field_idx = last + self.static_fields[i].field_idx_diff last = self.static_fields[i].field_idx last = 0 for i in range(0, self.instance_fields_size): self.instance_fields[i].field_idx = last + self.instance_fields[i].field_idx_diff last = self.instance_fields[i].field_idx last = 0 for i in range(0, self.direct_methods_size): self.direct_methods[i].getreference(dexmaplist) self.direct_methods[i].method_idx = last + self.direct_methods[i].method_idx_diff last = self.direct_methods[i].method_idx last = 0 for i in range(0, self.virtual_methods_size): self.virtual_methods[i].getreference(dexmaplist) self.virtual_methods[i].method_idx = last + self.virtual_methods[i].method_idx_diff last = self.virtual_methods[i].method_idx def makeoffset(self, off): self.start = off off += unsignedleb128forlen(self.static_field_size) off += unsignedleb128forlen(self.instance_fields_size) off += unsignedleb128forlen(self.direct_methods_size) off += unsignedleb128forlen(self.virtual_methods_size) for i in range(0, self.static_field_size): off = self.static_fields[i].makeoffset(off) for i in range(0, self.instance_fields_size): off = self.instance_fields[i].makeoffset(off) for i in range(0, self.direct_methods_size): off = self.direct_methods[i].makeoffset(off) for i in range(0, self.virtual_methods_size): off = self.virtual_methods[i].makeoffset(off) self.len = off - self.start return off def printf(self): print ("static field size: ", self.static_field_size) print ("instance fields size: ", self.instance_fields_size) print ("direct methods size: ", self.direct_methods_size) print ("virtual methods size: ", self.virtual_methods_size) for i in range(0, self.static_field_size): self.static_fields[i].printf() for i in range(0, self.instance_fields_size): self.instance_fields[i].printf() for i in range(0, self.direct_methods_size): self.direct_methods[i].printf() for i in range(0, self.virtual_methods_size): self.virtual_methods[i].printf() class TryItem: def __init__(self, file): self.start = file.tell() self.start_addr = struct.unpack("I", file.read(4))[0] # in file self.insn_count = struct.unpack("H", file.read(2))[0] # in file self.handler_off = struct.unpack("H", file.read(2))[0] # in file self.len = 0 def copytofile(self, file): file.write(struct.pack("I", self.start_addr)) file.write(struct.pack("H", self.insn_count)) file.write(struct.pack("H", self.handler_off)) def makeoffset(self, off): self.start = off self.len = 4 + 2 + 2 return off + self.len def printf(self): print ("start_Addr: ", self.start_addr) print ("insn_count: ", self.insn_count) print ("handler_off: ", self.handler_off) print () class EncodedTypeAddrPair: def __init__(self, file): self.type_idx = readunsignedleb128(file) self.addr = readunsignedleb128(file) def copytofile(self, file): writeunsignedleb128(self.type_idx, file) writeunsignedleb128(self.addr, file) def makeoffset(self, off): off += unsignedleb128forlen(self.type_idx) off += unsignedleb128forlen(self.addr) return off def printf(self): print ("type idx: ", self.type_idx) print ("addr: ", self.addr) print () class EncodedhandlerItem: def __init__(self, file): self.start = file.tell() self.len = 0 self.size = readsignedleb128(file) self.handlers = [] # print("start handler item", abs(self.size)) for i in range(0, abs(self.size)): self.handlers.append(EncodedTypeAddrPair(file)) if self.size <= 0: self.catch_all_addr = readunsignedleb128(file) def copytofile(self, file): writesignedleb128(self.size, file) for i in range(0, abs(self.size)): self.handlers[i].copytofile(file) if self.size <= 0: writeunsignedleb128(self.catch_all_addr, file) def makeoffset(self, off): self.start = off off += signedleb128forlen(self.size) for i in range(0, abs(self.size)): off = self.handlers[i].makeoffset(off) if self.size <= 0: off += unsignedleb128forlen(self.catch_all_addr) self.len = off - self.start return off class EncodedhandlerList: def __init__(self, file): self.start = file.tell() self.len = 0 self.size = readunsignedleb128(file) self.list = [] for i in range(0, self.size): self.list.append(EncodedhandlerItem(file)) def copytofile(self, file): file.seek(self.start, 0) writeunsignedleb128(self.size, file) for i in range(0, self.size): self.list[i].copytofile(file) def makeoffset(self, off): self.start = off off += unsignedleb128forlen(self.size) for i in range(0, self.size): off = self.list[i].makeoffset(off) return off # alignment: 4bytes class CodeItem: def __init__(self, file, mode=1): if mode == 1: self.start = file.tell() self.len = 0 self.register_size = struct.unpack("H", file.read(2))[0] # in file self.ins_size = struct.unpack("H", file.read(2))[0] # in file self.outs_size = struct.unpack("H", file.read(2))[0] # in file self.tries_size = struct.unpack("H", file.read(2))[0] # in file self.debug_info_off = struct.unpack("I", file.read(4))[0] # in file self.insns_size = struct.unpack("I", file.read(4))[0] # in file self.insns = [] self.debugRef = None for i in range(0, self.insns_size): self.insns.append(struct.unpack("H", file.read(2))[0]) if self.tries_size != 0 and self.insns_size % 2 == 1: self.padding = struct.unpack("H", file.read(2))[0] self.tries = [] for i in range(0, self.tries_size): self.tries.append(TryItem(file)) if self.tries_size != 0: self.handler = EncodedhandlerList(file) align = file.tell() % 4 # for alignment if align != 0: file.read(4-align) else: self.start = 0 self.len = 0 self.register_size = 0 self.ins_size = 0 self.outs_size = 0 self.tries_size = 0 self.debug_info_off = 0 self.insns_size = 0 self.insns = [] self.debugRef = None self.padding = 0 self.tries = [] self.handler = None def addcode(self, reg_size, insize, outsize, triessize, debugoff, inssize, insnslist, debugref, trieslist, handlerref): self.register_size = reg_size self.ins_size = insize self.outs_size = outsize self.tries_size = triessize self.debug_info_off = debugoff self.insns_size = inssize self.insns = insnslist self.debugRef = debugref self.tries = trieslist self.handler = handlerref def copytofile(self, file): file.seek(self.start, 0) file.write(struct.pack("H", self.register_size)) file.write(struct.pack("H", self.ins_size)) file.write(struct.pack("H", self.outs_size)) file.write(struct.pack("H", self.tries_size)) if self.debugRef is not None: file.write(struct.pack("I", self.debugRef.start)) else: file.write(struct.pack("I", 0)) file.write(struct.pack("I", self.insns_size)) for i in range(0, self.insns_size): file.write(struct.pack("H", self.insns[i])) if self.tries_size != 0 and self.insns_size % 2 == 1: file.write(struct.pack("H", self.padding)) for i in range(0, self.tries_size): self.tries[i].copytofile(file) if self.tries_size != 0: self.handler.copytofile(file) align = file.tell() % 4 # for alignment if align != 0: for i in range(0, 4-align): file.write(struct.pack("B", 0)) # print("code item addr:", file.tell()) def makeoffset(self, off): align = off % 4 if align != 0: off += (4 - align) self.start = off off += (4 * 2 + 2 * 4) # 4 ushort and 2 uint off += (2 * self.insns_size) if self.tries_size != 0 and self.insns_size % 2 == 1: # for padding off += 2 for i in range(0, self.tries_size): off = self.tries[i].makeoffset(off) if self.tries_size != 0: off = self.handler.makeoffset(off) self.len = off - self.start return off def getreference(self, dexmaplist): self.debugRef = dexmaplist[0x2003].getreference(self.debug_info_off) def printf(self): print("registers_size:", self.register_size) print("ins_size, outs_size, tries_size:", self.ins_size, self.outs_size, self.tries_size) print("debug info of:", self.debug_info_off) print("insn_size:", self.insns_size) for i in range(0, self.insns_size): print(self.insns[i]) tmp = Instruction.InstructionSet(self.insns) tmp.printf() # alignment: none class AnnotationItem: Visibity = {0: 'VISIBITITY_BUILD', 1: 'VISIBILITY_RUNTIME', 2: 'VISIBILITY_SYSTEM'} def __init__(self, file): self.start = file.tell() self.len = 0 self.visibility = struct.unpack("B", file.read(1))[0] # infile self.annotation = EncodedAnnotation(file) def copytofile(self, file): file.write(struct.pack("B", self.visibility)) self.annotation.copytofile(file) def makeoffset(self, off): self.start = off off += 1 off = self.annotation.makeoffset(off) self.len = off - self.start return off # alignment: none class EncodedArrayItem: def __init__(self, file): self.start = file.tell() self.len = 0 self.value = EncodedArray(file) def copytofile(self, file): self.value.copytofile(file) def makeoffset(self, off): # if self.start == 1096008: self.start = off off = self.value.makeoffset(off) self.len = off - self.start return off def printf(self): print("None for EncodedArrayItem by now") class FieldAnnotation: def __init__(self, file): self.field_idx = struct.unpack("I", file.read(4))[0] # in file self.annotations_off = struct.unpack("I", file.read(4))[0] # in file, offset of annotation_set_item self.annotations_off_ref = None def copytofile(self, file): file.write(struct.pack("I", self.field_idx)) file.write(struct.pack("I", self.annotations_off_ref.start)) def makeoffset(self, off): off += 4 * 2 return off def getreference(self, dexmaplist): self.annotations_off_ref = dexmaplist[0x1003].getreference(self.annotations_off) class MethodAnnotation: def __init__(self, file): self.method_idx = struct.unpack("I", file.read(4))[0] # in file self.annotations_off = struct.unpack("I", file.read(4))[0] # in file self.annotations_off_ref = None def copytofile(self, file): file.write(struct.pack("I", self.method_idx)) file.write(struct.pack("I", self.annotations_off_ref.start)) def makeoffset(self, off): off += 4 * 2 return off def getreference(self, dexmaplist): self.annotations_off_ref = dexmaplist[0x1003].getreference(self.annotations_off) class ParamterAnnotation: def __init__(self, file): self.method_idx = struct.unpack("I", file.read(4))[0] # in file self.annotations_off = struct.unpack("I", file.read(4))[0] # in file. offset of "annotation_set_ref_list" self.annotations_off_ref = None def copytofile(self, file): file.write(struct.pack("I", self.method_idx)) file.write(struct.pack("I", self.annotations_off_ref.start)) def makeoffset(self, off): off += 4 * 2 return off def getreference(self, dexmaplist): self.annotations_off_ref = dexmaplist[0x1002].getreference(self.annotations_off) # alignment: 4 bytes class AnnotationsDirItem: def __init__(self, file): self.start = file.tell() self.len = 0 self.class_annotations_off = struct.unpack("I", file.read(4))[0] # in file self.fields_size = struct.unpack("I", file.read(4))[0] # in file self.annotated_methods_size = struct.unpack("I", file.read(4))[0] # in file self.annotate_parameters_size = struct.unpack("I", file.read(4))[0] # in file self.field_annotations = [] # field_annotation[size] self.method_annotations = [] self.parameter_annotations = [] self.class_annotations_ref = None for i in range(0, self.fields_size): self.field_annotations.append(FieldAnnotation(file)) for i in range(0, self.annotated_methods_size): self.method_annotations.append(MethodAnnotation(file)) for i in range(0, self.annotate_parameters_size): self.parameter_annotations.append(ParamterAnnotation(file)) def copytofile(self, file): if self.class_annotations_ref is not None: file.write(struct.pack("I", self.class_annotations_ref.start)) else: file.write(struct.pack("I", self.class_annotations_off)) file.write(struct.pack("I", self.fields_size)) file.write(struct.pack("I", self.annotated_methods_size)) file.write(struct.pack("I", self.annotate_parameters_size)) for i in range(0, self.fields_size): self.field_annotations[i].copytofile(file) for i in range(0, self.annotated_methods_size): self.method_annotations[i].copytofile(file) for i in range(0, self.annotate_parameters_size): self.parameter_annotations[i].copytofile(file) def makeoffset(self, off): self.start = off off += 4 * 4 for i in range(0, self.fields_size): off = self.field_annotations[i].makeoffset(off) for i in range(0, self.annotated_methods_size): off = self.method_annotations[i].makeoffset(off) for i in range(0, self.annotate_parameters_size): off = self.parameter_annotations[i].makeoffset(off) self.len = off - self.start return off def getreference(self, dexmaplist): self.class_annotations_ref = dexmaplist[0x1003].getreference(self.class_annotations_off) for i in range(0, self.fields_size): self.field_annotations[i].getreference(dexmaplist) for i in range(0, self.annotated_methods_size): self.method_annotations[i].getreference(dexmaplist) for i in range(0, self.annotate_parameters_size): self.parameter_annotations[i].getreference(dexmaplist) def printf(self): print("None for AnnotationDirItem by now") # alignment: none class DebugInfo: def __init__(self, file, mode=1): if mode == 1: self.start = file.tell() self.len = 0 self.line_start = readunsignedleb128(file) self.parameters_size = readunsignedleb128(file) self.parameter_names = [] for i in range(0, self.parameters_size): self.parameter_names.append(readunsignedleb128p1(file)) self.debug = [] while 1: onebyte = struct.unpack("B", file.read(1))[0] self.debug.append(onebyte) if onebyte == 0: break elif onebyte == 1: self.debug.append(readunsignedleb128(file)) elif onebyte == 2: self.debug.append(readsignedleb128(file)) elif onebyte == 3: self.debug.append(readunsignedleb128(file)) self.debug.append(readunsignedleb128p1(file)) self.debug.append(readunsignedleb128p1(file)) elif onebyte == 4: self.debug.append(readunsignedleb128(file)) self.debug.append(readunsignedleb128p1(file)) self.debug.append(readunsignedleb128p1(file)) self.debug.append(readunsignedleb128p1(file)) elif onebyte == 5: self.debug.append(readunsignedleb128(file)) elif onebyte == 6: self.debug.append(readunsignedleb128(file)) elif onebyte == 9: self.debug.append(readunsignedleb128p1(file)) else: self.start = 0 self.len = 0 self.line_start = 0 self.parameters_size = 0 self.parameter_names = [] self.debug = [] def adddebugitem(self, linestart, paramsize, names_list, debug_list): self.line_start = linestart self.parameters_size = paramsize self.parameter_names = names_list self.debug = debug_list def copytofile(self, file): file.seek(self.start, 0) writeunsignedleb128(self.line_start, file) writeunsignedleb128(self.parameters_size, file) for i in range(0, self.parameters_size): # print(self.parameter_names[i]) # if i == self.parameters_size-1: # writeunsignedleb128p1alignshort(self.parameter_names[i], file) # else: writeunsignedleb128p1(self.parameter_names[i], file) index = 0 while 1: onebyte = self.debug[index] file.write(struct.pack("B", onebyte)) index += 1 if onebyte == 0: break elif onebyte == 1: writeunsignedleb128(self.debug[index], file) index += 1 elif onebyte == 2: writesignedleb128(self.debug[index], file) index += 1 elif onebyte == 3: writeunsignedleb128(self.debug[index], file) writeunsignedleb128p1(self.debug[index+1], file) writeunsignedleb128p1(self.debug[index+2], file) index += 3 elif onebyte == 4: writeunsignedleb128(self.debug[index], file) writeunsignedleb128p1(self.debug[index+1], file) writeunsignedleb128p1(self.debug[index+2], file) writeunsignedleb128p1(self.debug[index+3], file) index += 4 elif onebyte == 5: writeunsignedleb128(self.debug[index], file) index += 1 elif onebyte == 6: writeunsignedleb128(self.debug[index], file) index += 1 elif onebyte == 9: writeunsignedleb128p1(self.debug[index], file) index += 1 def printf(self): print(self.line_start, self.parameters_size) def makeoffset(self, off): self.start = off off += unsignedleb128forlen(self.line_start) off += unsignedleb128forlen(self.parameters_size) for i in range(0, self.parameters_size): off += unsignedleb128p1forlen(self.parameter_names[i]) index = 0 while 1: onebyte = self.debug[index] off += 1 index += 1 if onebyte == 0: break elif onebyte == 1: off += unsignedleb128forlen(self.debug[index]) index += 1 elif onebyte == 2: off += signedleb128forlen(self.debug[index]) index += 1 elif onebyte == 3: off += unsignedleb128forlen(self.debug[index]) off += unsignedleb128p1forlen(self.debug[index+1]) off += unsignedleb128p1forlen(self.debug[index+2]) index += 3 elif onebyte == 4: off += unsignedleb128forlen(self.debug[index]) off += unsignedleb128p1forlen(self.debug[index+1]) off += unsignedleb128p1forlen(self.debug[index+2]) off += unsignedleb128p1forlen(self.debug[index+3]) index += 4 elif onebyte == 5: off += unsignedleb128forlen(self.debug[index]) index += 1 elif onebyte == 6: off += unsignedleb128forlen(self.debug[index]) index += 1 elif onebyte == 9: off += unsignedleb128p1forlen(self.debug[index]) index += 1 self.len = off - self.start return off class DexMapItem: Constant = {0: 'TYPE_HEADER_ITEM', 1: 'TYPE_STRING_ID_ITEM', 2: 'TYPE_TYPE_ID_ITEM', 3: 'TYPE_PROTO_ID_ITEM', 4: 'TYPE_FIELD_ID_ITEM', 5: 'TYPE_METHOD_ID_ITEM', 6: 'TYPE_CLASS_DEF_ITEM', 0x1000: 'TYPE_MAP_LIST', 0x1001: 'TYPE_TYPE_LIST', 0x1002: 'TYPE_ANNOTATION_SET_REF_LIST', 0x1003: 'TYPE_ANNOTATION_SET_ITEM', 0x2000: 'TYPE_CLASS_DATA_ITEM', 0x2001: 'TYPE_CODE_ITEM', 0x2002: 'TYPE_STRING_DATA_ITEM', 0x2003: 'TYPE_DEBUG_INFO_ITEM', 0x2004: 'TYPE_ANNOTATION_ITEM', 0x2005: 'TYPE_ENCODED_ARRAY_ITEM', 0x2006: 'TYPE_ANNOTATIONS_DIRECTORY_ITEM'} def __init__(self, file): self.type = struct.unpack("H", file.read(2))[0] self.unused = struct.unpack("H", file.read(2))[0] self.size = struct.unpack("I", file.read(4))[0] self.offset = struct.unpack("I", file.read(4))[0] self.item = [] self.len = 0 # the length of the item def addstr(self, str): # return index of the string, I put it on the last position simply if self.type == 0x2002: strdata = StringData(None, 2) # new a empty class strdata.addstr(str) self.item.append(strdata) self.size += 1 return strdata else: print("error in add string") return None def addstrID(self, strdata): if self.type == 1: stringid = DexStringID(None, 2) stringid.addstrID(strdata) self.item.append(stringid) self.size += 1 else: print("error in add string id") def addtypeID(self, field): if self.type == 4: self.item.append(field) self.size += 1 else: print("error in add type id") def addclassdata(self, classdata): if self.type == 0x2000: self.item.append(classdata) self.size += 1 else: print("error in add class data") def addtypeid(self, index, str): if self.type == 2: type = DexTypeID(None, None, 2) type.addtype(index, str) self.item.append(type) self.size += 1 else: print("error in add type id") def addmethodid(self, class_idx, proto_idx, name_idx): method = DexMethodId(None, None, None, None, 2) method.addmethod(class_idx, proto_idx, name_idx) print("add method id", proto_idx) self.item.append(method) self.size += 1 def addclassdef(self, classdef): if self.type == 6: self.item.append(classdef) self.size += 1 else: print("error in add class def") def addprotoid(self, short_idx, type_idx, paramref): if self.type == 3: proto = DexProtoId(None, None, None, 2) proto.addproto(short_idx, type_idx, paramref) self.item.append(proto) self.size += 1 else: print("error in add proto id") def addtypelist(self, typeitem): if self.type == 0x1001: self.item.append(typeitem) self.size += 1 else: print("error in add type list") def addcodeitem(self, codeitem): if self.type == 0x2001: self.item.append(codeitem) self.size += 1 else: print("error in add code item") def adddebugitem(self, debugitem): if self.type == 0x2003: self.item.append(debugitem) self.size += 1 else: print("error in add debug item") def copytofile(self, file): file.seek(self.offset, 0) if self.type <= 0x2006: align = file.tell() % 4 if align != 0: for i in range(0, 4-align): file.write(struct.pack("B", 0)) print("copytofile:", DexMapItem.Constant[self.type], file.tell()) for i in range(0, self.size): self.item[i].copytofile(file) # if self.type == 0x2002: # print("for debug", i, getstr(self.item[i].str)) def printf(self, index): print ("type: ", DexMapItem.Constant[self.type]) print ("size: ", self.size) print ("offset: ", self.offset) if self.type == index: for i in range(0, self.size): self.item[i].printf() print () def setitem(self, file, dexmapitem): file.seek(self.offset) for i in range(0, self.size): if self.type == 1: # string file.seek(self.offset+i*4, 0) self.item.append(DexStringID(file)) elif self.type == 2: file.seek(self.offset+i*4, 0) self.item.append(DexTypeID(file, dexmapitem[1].item)) # make sure has already build string table elif self.type == 3: file.seek(self.offset+i*12, 0) self.item.append(DexProtoId(file, dexmapitem[1].item, dexmapitem[2].item)) elif self.type == 4: file.seek(self.offset+i*8, 0) self.item.append(DexFieldId(file, dexmapitem[1].item, dexmapitem[2].item)) elif self.type == 5: file.seek(self.offset+i*8, 0) self.item.append(DexMethodId(file, dexmapitem[1].item, dexmapitem[2].item, dexmapitem[3].item)) elif self.type == 6: file.seek(self.offset+i*32, 0) self.item.append(DexClassDef(file, dexmapitem[1].item, dexmapitem[2].item)) elif self.type == 0x1001: # TYPE_TYPE_LIST self.item.append(TypeItem(file, dexmapitem[2].item)) elif self.type == 0x1002: # TYPE_ANNOTATION_SET_REF_LIST self.item.append(AnnotationsetrefList(file)) elif self.type == 0x1003: # TYPE_ANNOTATION_SET_ITEM self.item.append(AnnotationsetItem(file)) elif self.type == 0x2000: # TYPE_CLASS_DATA_ITEM self.item.append(ClassdataItem(file)) elif self.type == 0x2001: # TYPE_CODE_ITEM self.item.append(CodeItem(file)) elif self.type == 0x2002: # TYPE_STRING_DATA_ITEM self.item.append(StringData(file)) elif self.type == 0x2003: # TYPE_DEBUG_INFO_ITEM self.item.append(DebugInfo(file)) elif self.type == 0x2004: # TYPE_ANNOTATION_ITEM self.item.append(AnnotationItem(file)) elif self.type == 0x2005: # TYPE_ENCODED_ARRAY_ITEM self.item.append(EncodedArrayItem(file)) elif self.type == 0x2006: # TYPE_ANNOTATIONS_DIRECTORY_ITEM self.item.append(AnnotationsDirItem(file)) def makeoffset(self, off): if self.type < 0x2000 or self.type == 0x2001 or self.type == 0x2006: align = off % 4 if align != 0: off += (4 - align) self.offset = off if self.type == 0: # header self.len = 112 elif self.type == 1: # string id self.len = 4 * self.size elif self.type == 2: # type id self.len = 4 * self.size elif self.type == 3: # proto id self.len = 12 * self.size elif self.type == 4: # field id self.len = 8 * self.size elif self.type == 5: # method id self.len = 8 * self.size elif self.type == 6: # class def self.len = 32 * self.size elif self.type == 0x1000: # map list, resolve specially in dexmaplist class pass elif 0x1001 <= self.type <= 0x2006: # type list, annotation ref set list, annotation set item... for i in range(0, self.size): off = self.item[i].makeoffset(off) # if self.type == 0x2002: # print("for debug", i, off) self.len = off - self.offset if self.type == 0x2000: print("the off is:", off) if self.type <= 6: return off + self.len else: return off def getref(self, dexmaplist): for i in range(0, self.size): self.item[i].getreference(dexmaplist) def getreference(self, addr): if addr == 0: return None i = 0 for i in range(0, self.size): if self.item[i].start == addr: return self.item[i] if i >= self.size: os._exit(addr) return None def getrefbystr(self, str): # for modify the string data if self.type == 0x2002: for i in range(0, self.size): if getstr(self.item[i].str) == str: return self.item[i] else: print("error occur here", self.type) return None def getindexbyname(self, str): # search for type id item for i in range(0, self.size): if self.item[i].str == str: print("find index of", DexMapItem.Constant[self.type], str) return i print("did not find it in", DexMapItem.Constant[self.type]) return -1 def getindexbyproto(self, short_idx, return_type_idx, param_list, length): # called by item, index of 3 for i in range(0, self.size): if short_idx == self.item[i].shortyIdx and return_type_idx == self.item[i].returnTypeIdx: if self.item[i].ref is not None: if self.item[i].ref.equal(param_list, length): return i return -1 class DexMapList: Seq = (0, 1, 2, 3, 4, 5, 6, 0x1000, 0x1001, 0x1002, 0x1003, 0x2001, 0x2000, 0x2002, 0x2003, 0x2004, 0x2005, 0x2006) def __init__(self, file, offset): file.seek(offset, 0) self.start = offset self.size = struct.unpack("I", file.read(4))[0] mapitem = [] self.dexmapitem = {} for i in range(0, self.size): mapitem.append(DexMapItem(file)) for i in range(0, self.size): mapitem[i].setitem(file, self.dexmapitem) self.dexmapitem[mapitem[i].type] = mapitem[i] def copy(self, file): for i in range(0, len(DexMapList.Seq)): index = DexMapList.Seq[i] if index in self.dexmapitem.keys(): print(index, "start at:", file.tell()) if index != 0x1000: self.dexmapitem[index].copytofile(file) else: self.copytofile(file) def copytofile(self, file): print("output map list", file.tell()) file.seek(self.start, 0) file.write(struct.pack("I", self.size)) for i in range(0, len(DexMapList.Seq)): index = DexMapList.Seq[i] if index in self.dexmapitem.keys(): # print(self.dexmapitem[index].type) file.write(struct.pack("H", self.dexmapitem[index].type)) file.write(struct.pack("H", self.dexmapitem[index].unused)) file.write(struct.pack("I", self.dexmapitem[index].size)) file.write(struct.pack("I", self.dexmapitem[index].offset)) def makeoff(self): off = 0 for i in range(0, len(DexMapList.Seq)): index = DexMapList.Seq[i] if index in self.dexmapitem.keys(): align = off % 4 if align != 0: off += (4 - align) if index != 0x1000: off = self.dexmapitem[index].makeoffset(off) else: off = self.makeoffset(off) return off def makeoffset(self, off): self.start = off off += (4 + self.size * 12) self.dexmapitem[0x1000].offset = self.start return off def getreference(self): self.dexmapitem[1].getref(self.dexmapitem) self.dexmapitem[3].getref(self.dexmapitem) self.dexmapitem[6].getref(self.dexmapitem) if 0x1002 in self.dexmapitem.keys(): self.dexmapitem[0x1002].getref(self.dexmapitem) if 0x1003 in self.dexmapitem.keys(): self.dexmapitem[0x1003].getref(self.dexmapitem) self.dexmapitem[0x2000].getref(self.dexmapitem) self.dexmapitem[0x2001].getref(self.dexmapitem) if 0x2006 in self.dexmapitem.keys(): self.dexmapitem[0x2006].getref(self.dexmapitem) def getrefbystr(self, str): return self.dexmapitem[0x2002].getrefbystr(str) def printf(self, index): print ("DexMapList:") print ("size: ", self.size) for i in self.dexmapitem: self.dexmapitem[i].printf(index) # default: 0 create from file 1 create from memory class DexFile: def __init__(self, filename, mode=0): if mode == 0: file = open(filename, 'rb') self.dexheader = DexHeader(file) self.dexmaplist = DexMapList(file, self.dexheader.map_off) self.dexmaplist.dexmapitem[0].item.append(self.dexheader) self.dexmaplist.getreference() file.close() def copytofile(self, filename): if os.path.exists(filename): os.remove(filename) file = open(filename, 'wb+') file.seek(0, 0) self.makeoffset() self.dexmaplist.copy(file) rest = self.dexheader.file_size -file.tell() for i in range(0, rest): file.write(struct.pack("B", 0)) file_sha = get_file_sha1(file) tmp = bytes(file_sha) i = 0 file.seek(12) while i < 40: num = (ACSII[tmp[i]] << 4) + ACSII[tmp[i+1]] file.write(struct.pack("B", num)) i += 2 csum = checksum(file, self.dexheader.file_size) print("checksum:", hex(csum), "file size:", self.dexheader.file_size) file.seek(8) file.write(struct.pack("I", csum)) file.close() def printf(self, index): if index == 0: self.dexheader.printf() else: self.dexmaplist.printf(index) def printclasscode(self, class_name, method_name): index = self.dexmaplist.dexmapitem[2].getindexbyname(class_name) if index < 0: print("did not find the class", class_name) return count = self.dexmaplist.dexmapitem[6].size classcoderef = None for i in range(0, count): if self.dexmaplist.dexmapitem[6].item[i].classIdx == index: print("the class def index is :", i) self.dexmaplist.dexmapitem[6].item[i].printf() classdataref = self.dexmaplist.dexmapitem[6].item[i].classDataRef flag = False if classdataref is not None: for i in range(0, classdataref.direct_methods_size): methodref = self.dexmaplist.dexmapitem[5].item[classdataref.direct_methods[i].method_idx] print(methodref.name, classdataref.direct_methods[i].method_idx) if methodref.name == method_name: print("find the direct method:", methodref.classstr, methodref.name, classdataref.direct_methods[i].access_flags, classdataref.direct_methods[i].code_off) classcoderef = classdataref.direct_methods[i].coderef if classcoderef is not None: classcoderef.printf() else: print("the code item is None") flag = True break if flag: break print("did not find the direct method") for j in range(0, classdataref.virtual_methods_size): methodref = self.dexmaplist.dexmapitem[5].item[classdataref.virtual_methods[j].method_idx] print(methodref.name) if methodref.name == method_name: print("find the virtual method:", methodref.classstr, methodref.name, classdataref.virtual_methods[j].access_flags, classdataref.virtual_methods[j].code_off) classcoderef = classdataref.virtual_methods[j].coderef classcoderef.printf() flag = True break if flag is False: print("did not find the virtual method") # if flag: # find the class data item, now get and print the code item # classcoderef.printf() # print("print done") # else: # print("sonething wrong here") # with open(method_name, "wb") as file: # classcoderef.copytofile(file) # file.close() break if classcoderef is not None: classcoderef.printf() def makeoffset(self): off = self.dexmaplist.makeoff() align = off % 4 if align != 0: off += (4 - align) self.dexheader.makeoffset(self.dexmaplist.dexmapitem) self.dexheader.file_size = off self.dexheader.data_size = off - self.dexheader.map_off def modifystr(self, src, dst): strData = self.dexmaplist.getrefbystr(src) if strData is not None: print("find string", src) strData.modify(dst) def addstr(self, str): strdata = self.dexmaplist.dexmapitem[0x2002].addstr(str) strdata.printf() self.dexmaplist.dexmapitem[1].addstrID(strdata) return self.dexmaplist.dexmapitem[1].size-1 # return the index of the str def addtype(self, str): index = self.addstr(str) self.dexmaplist.dexmapitem[2].addtypeid(index, str) return self.dexmaplist.dexmapitem[2].size-1 def addfield(self, classidx, type_str, name_str): field = DexFieldId(None, None, None, 2) str_idx = self.dexmaplist.dexmapitem[1].getindexbyname(name_str) if str_idx < 0: str_idx = self.addstr(name_str) if type_str in TypeDescriptor.keys(): # transform the type str to type descriptor type_str = TypeDescriptor[type_str] type_idx = self.dexmaplist.dexmapitem[2].getindexbyname(type_str) if type_idx < 0: print("did not find this type in type ids", type_str) type_idx = self.addtype(type_str) field.addfield(classidx, type_idx, str_idx) self.dexmaplist.dexmapitem[4].addtypeID(field) return self.dexmaplist.dexmapitem[4].size-1 # classtype: Lcom/cc/test/Dexparse; def addclass(self, classtype, accessflag, superclass, sourcefile): item = DexClassDef(None, None, None, 2) strdata = self.dexmaplist.getrefbystr(classtype) if strdata is not None: print("This class is existing", classtype) return type_index = self.addtype(classtype) super_index = self.dexmaplist.dexmapitem[2].getindexbyname(superclass) if super_index < 0: # did not find it print("This super class is not exiting", superclass) return source_index = self.dexmaplist.dexmapitem[1].getindexbyname(sourcefile) if source_index < 0: source_index = self.addstr(sourcefile) item.addclassdef(type_index, accessflag, super_index, source_index) self.dexmaplist.dexmapitem[6].addclassdef(item) return item def addclassData(self, classdataref): self.dexmaplist.dexmapitem[0x2000].addclassdata(classdataref) # add proto id and return the index, # if already exist just return the index def addproto(self, proto_list, return_str): size = len(proto_list) proto = "" if return_str in ShortyDescriptor.keys(): proto += ShortyDescriptor[return_str] else: proto += "L" for i in range(0, size): str = proto_list[i] if str in ShortyDescriptor.keys(): proto += ShortyDescriptor[str] else: proto += 'L' # for reference of class or array short_idx = self.dexmaplist.dexmapitem[1].getindexbyname(proto) if short_idx < 0: print("did not find this string in string ids", proto) short_idx = self.addstr(proto) if return_str in TypeDescriptor.keys(): # transform to type descriptor return_str = TypeDescriptor[return_str] type_idx = self.dexmaplist.dexmapitem[2].getindexbyname(return_str) if type_idx < 0: print("did not find this type in type ids", return_str) type_idx = self.addtype(return_str) proto_idx = self.dexmaplist.dexmapitem[3].getindexbyproto(short_idx, type_idx, proto_list, size) if proto_idx >= 0: return proto_idx typeItem = TypeItem(None, None, 2) type_list = [] str_list = [] for i in range(0, size): type_str = proto_list[i] if type_str in TypeDescriptor.keys(): type_str = TypeDescriptor[type_str] type_index = self.dexmaplist.dexmapitem[2].getindexbyname(type_str) if type_index < 0: print("did not find this param in type ids", type_str) type_index = self.addtype(type_str) type_list.append(type_index) str_list.append(type_str) typeItem.addtypeItem(type_list, str_list) self.dexmaplist.dexmapitem[0x1001].addtypelist(typeItem) self.dexmaplist.dexmapitem[3].addprotoid(short_idx, type_idx, typeItem) return self.dexmaplist.dexmapitem[3].size-1 def addmethod(self, class_idx, proto_list, return_str, name): name_idx = self.dexmaplist.dexmapitem[1].getindexbyname(name) if name_idx < 0: name_idx = self.addstr(name) self.dexmaplist.dexmapitem[5].addmethodid(class_idx, self.addproto(proto_list, return_str), name_idx) return self.dexmaplist.dexmapitem[5].size-1 def addcode(self, ref): self.dexmaplist.dexmapitem[0x2001].addcodeitem(ref) def adddebug(self, debugitem): self.dexmaplist.dexmapitem[0x2003].adddebugitem(debugitem) def getmethodItem(self, class_name, method_name): index = self.dexmaplist.dexmapitem[2].getindexbyname(class_name) if index < 0: print("did not find the class", class_name) return else: print("find the class, index is :", index) count = self.dexmaplist.dexmapitem[6].size encoded_method = None method_idx = 0 def_idx = 0 for i in range(0, count): if self.dexmaplist.dexmapitem[6].item[i].classIdx == index: def_idx = i self.dexmaplist.dexmapitem[6].item[i].printf() classdataref = self.dexmaplist.dexmapitem[6].item[i].classDataRef flag = False if classdataref is not None: for i in range(0, classdataref.direct_methods_size): methodref = self.dexmaplist.dexmapitem[5].item[classdataref.direct_methods[i].method_idx] print(methodref.name, classdataref.direct_methods[i].method_idx) if methodref.name == method_name: print("find the direct method:", methodref.classstr, methodref.name, classdataref.direct_methods[i].access_flags, classdataref.direct_methods[i].code_off) encoded_method = classdataref.direct_methods[i] method_idx = classdataref.direct_methods[i].method_idx flag = True break if flag: break print("did not find the direct method") for j in range(0, classdataref.virtual_methods_size): methodref = self.dexmaplist.dexmapitem[5].item[classdataref.virtual_methods[j].method_idx] print(methodref.name) if methodref.name == method_name: print("find the virtual method:", methodref.classstr, methodref.name, classdataref.virtual_methods[j].access_flags, classdataref.virtual_methods[j].code_off) encoded_method = classdataref.virtual_methods[j] method_idx = classdataref.virtual_methods[j].method_idx flag = True break if flag is False: print("did not find the virtual method") break return {"method": encoded_method, "classidx": index, "methodidx": method_idx, "defidx": def_idx} def verifyclass(self, def_idx): classdef = self.dexmaplist.dexmapitem[6].item[def_idx] classdef.accessFlags |= 0x00010000 def gettypeid(self, type): return self.dexmaplist.dexmapitem[2].getindexbyname(type) def jiaguAll(dexfile, outfile): method_list = [] # record all method need to protect tmp_method = dexfile.getmethodItem("Lcom/cc/test/MainActivity;", "onCreate") method_list.append({"access": tmp_method["method"].access_flags, "ref": tmp_method["method"].coderef, "classidx": tmp_method["classidx"], "methodidx": tmp_method["methodidx"]}) tmp_method["method"].access_flags = int(Access_Flag['native'] | Access_Flag['public']) tmp_method["method"].modified = 1 # change the access flag, make it native dexfile.makeoffset() # make offset if os.path.exists(outfile): # if exists, delete it print("the file is exist, just replace it") os.remove(outfile) file = open(outfile, 'wb+') file.seek(0, 0) size = len(method_list) filesize = dexfile.dexheader.file_size # in order to adjust the dex file dexfile.dexheader.file_size += 16 * size # each injected data need 16 bytes dexfile.dexmaplist.copy(file) file.seek(filesize, 0) print("file size :", filesize, " size : ", size) for i in range(0, size): file.write(struct.pack("I", method_list[i]["classidx"])) file.write(struct.pack("I", method_list[i]["methodidx"])) file.write(struct.pack("I", method_list[i]["access"])) file.write(struct.pack("I", method_list[i]["ref"].start)) print("inject data :", method_list[i]["classidx"], method_list[i]["methodidx"]) # assume that the code ref is not None, otherwise it make no sense(no need to protect) file_sha = get_file_sha1(file) tmp = bytes(file_sha) i = 0 file.seek(12) while i < 40: num = (ACSII[tmp[i]] << 4) + ACSII[tmp[i+1]] file.write(struct.pack("B", num)) i += 2 csum = checksum(file, dexfile.dexheader.file_size) print("checksum:", hex(csum), "file size:", dexfile.dexheader.file_size) file.seek(8) file.write(struct.pack("I", csum)) file.close() if __name__ == '__main__': dexfile = DexFile("classes.dex") # jiaguAll(dexfile, "classescp.dex") # dexfile.printclasscode("Lcom/cc/test/MainActivity;", "onCreate") # dexfile.printf(3) # dexfile.addstr("DexParse.java") # dexfile.addstr("Lcom/cc/test/DexParse.java") # dexfile.modifystr("A Text From CwT", "A Text From DexParse") # dexfile.printf() # note: you need to delete file classescp.dex first, otherwise # new dex file will append the old one # dexfile.copytofile("classescp.dex")
40.958851
124
0.551744
84,445
0.883713
0
0
0
0
0
0
9,978
0.104419
fd71ae1315e427ea9c9874263b95024d2ffb8696
1,852
py
Python
api/myapi/serializers.py
UmmuRasul/sbvbn
3d4705b9eb5e6bc996028ecc0a8ec43a435ef18b
[ "MIT" ]
null
null
null
api/myapi/serializers.py
UmmuRasul/sbvbn
3d4705b9eb5e6bc996028ecc0a8ec43a435ef18b
[ "MIT" ]
null
null
null
api/myapi/serializers.py
UmmuRasul/sbvbn
3d4705b9eb5e6bc996028ecc0a8ec43a435ef18b
[ "MIT" ]
null
null
null
from rest_framework import serializers from api.models import User, UserProfile, Post, News, Video from datetime import datetime class UserProfileSerializer(serializers.ModelSerializer): class Meta: model = UserProfile fields = ('address', 'country', 'city', 'zip', 'photo') class UserSerializer(serializers.HyperlinkedModelSerializer): profile = UserProfileSerializer(required=True) class Meta: model = User fields = ('url', 'email', 'first_name', 'last_name', 'password', 'profile') extra_kwargs = {'password': {'write_only': True}} def create(self, validated_data): profile_data = validated_data.pop('profile') password = validated_data.pop('password') user = User(**validated_data) user.set_password(password) user.save() UserProfile.objects.create(user=user, **profile_data) return user def update(self, instance, validated_data): profile_data = validated_data.pop('profile') profile = instance.profile instance.email = validated_data.get('email', instance.email) instance.save() profile.address = profile_data.get('address', profile.address) profile.country = profile_data.get('country', profile.country) profile.city = profile_data.get('city', profile.city) profile.zip = profile_data.get('zip', profile.zip) profile.photo = profile_data.get('photo', profile.photo) profile.save() return instance class PostSerializer(serializers.Serializer): class Meta: model = Post fields = '__all__' class NewSerializer(serializers.Serializer): class Meta: model = News fields = '__all__' class VideoSerializer(serializers.Serializer): class Meta: model = Video fields = '__all__'
31.389831
83
0.665227
1,710
0.923326
0
0
0
0
0
0
210
0.113391
fd71c4f7dcacba2ce5484fe215f8d27faba98441
6,603
py
Python
src/morphforgecontrib/simulation/channels/hh_style/neuron/mm_neuron_alphabetabeta.py
mikehulluk/morphforge
2a95096f144ed4ea487decb735ce66706357d3c7
[ "BSD-2-Clause" ]
1
2021-01-21T11:31:59.000Z
2021-01-21T11:31:59.000Z
src/morphforgecontrib/simulation/channels/hh_style/neuron/mm_neuron_alphabetabeta.py
mikehulluk/morphforge
2a95096f144ed4ea487decb735ce66706357d3c7
[ "BSD-2-Clause" ]
null
null
null
src/morphforgecontrib/simulation/channels/hh_style/neuron/mm_neuron_alphabetabeta.py
mikehulluk/morphforge
2a95096f144ed4ea487decb735ce66706357d3c7
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Copyright (c) 2012 Michael Hull. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------- from ..core import StdChlAlphaBetaBeta from morphforge.units import qty from morphforge import units from hocmodbuilders.mmwriter_alphabetabeta import NEURONChlWriterAlphaBetaBeta from morphforge.simulation.neuron.hocmodbuilders import HocModUtils from morphforge.simulation.neuron import NEURONChl_Base from morphforge.constants.standardtags import StandardTags from morphforge.simulation.neuron.core.neuronsimulationenvironment import NEURONEnvironment from morphforge.simulation.neuron.objects.neuronrecordable import NEURONRecordableOnLocation class NEURONChl_AlphaBetaBeta_Record(NEURONRecordableOnLocation): def __init__(self, alphabeta_beta_chl, modvar, **kwargs): super(NEURONChl_AlphaBetaBeta_Record, self).__init__(**kwargs) self.alphabeta_beta_chl = alphabeta_beta_chl self.modvar = modvar def build_mod(self, modfile_set): pass def build_hoc(self, hocfile_obj): HocModUtils.create_record_from_modfile( hocfile_obj, vecname='RecVec%s' % self.name, cell_location=self.cell_location, modvariable=self.modvar, mod_neuronsuffix=self.alphabeta_beta_chl.get_neuron_suffix(), recordobj=self, ) def get_description(self): return '%s %s %s' % (self.modvar, self.alphabeta_beta_chl.name, self.cell_location.get_location_description_str()) class NEURONChl_AlphaBetaBeta_CurrentDensityRecord(NEURONChl_AlphaBetaBeta_Record): def __init__(self, **kwargs): super(NEURONChl_AlphaBetaBeta_CurrentDensityRecord, self).__init__(modvar='i', **kwargs) def get_unit(self): return units.parse_unit_str('mA/cm2') def get_std_tags(self): return [StandardTags.CurrentDensity] class NEURONChl_AlphaBetaBeta_ConductanceDensityRecord(NEURONChl_AlphaBetaBeta_Record): def __init__(self, **kwargs): super(NEURONChl_AlphaBetaBeta_ConductanceDensityRecord, self).__init__(modvar='g', **kwargs) def get_unit(self): return qty('S/cm2') def get_std_tags(self): return [StandardTags.ConductanceDensity] class NEURONChl_AlphaBetaBeta_StateVariableRecord(NEURONChl_AlphaBetaBeta_Record): def __init__(self, state, **kwargs): super(NEURONChl_AlphaBetaBeta_StateVariableRecord, self).__init__(modvar=state, **kwargs) def get_unit(self): return qty('') def get_std_tags(self): return [StandardTags.StateVariable] class NEURONChl_AlphaBetaBeta_StateVariableTauRecord(NEURONChl_AlphaBetaBeta_Record): def __init__(self, state, **kwargs): super(NEURONChl_AlphaBetaBeta_StateVariableTauRecord, self).__init__(modvar=state + 'tau', **kwargs) def get_unit(self): return qty('ms') def get_std_tags(self): return [StandardTags.StateTimeConstant] class NEURONChl_AlphaBetaBeta_StateVariableInfRecord(NEURONChl_AlphaBetaBeta_Record): def __init__(self, state, **kwargs): super(NEURONChl_AlphaBetaBeta_StateVariableInfRecord, self).__init__(modvar=state + 'inf', **kwargs) def get_unit(self): return qty('') def get_std_tags(self): return [StandardTags.StateSteadyState] class NEURONChl_AlphaBetaBeta(StdChlAlphaBetaBeta, NEURONChl_Base): class Recordables(object): CurrentDensity = StandardTags.CurrentDensity def __init__(self, **kwargs): super( NEURONChl_AlphaBetaBeta, self).__init__(**kwargs) def build_hoc_section(self, cell, section, hocfile_obj, mta): return NEURONChlWriterAlphaBetaBeta.build_hoc_section(cell=cell, section=section, hocfile_obj=hocfile_obj, mta=mta) def create_modfile(self, modfile_set): NEURONChlWriterAlphaBetaBeta.build_mod(alphabeta_beta_chl=self, modfile_set=modfile_set) def get_recordable(self, what, name, cell_location, **kwargs): recorders = { StdChlAlphaBetaBeta.Recordables.CurrentDensity: NEURONChl_AlphaBetaBeta_CurrentDensityRecord, } return recorders[what](alphabeta_beta_chl=self, cell_location= cell_location, name=name, **kwargs ) def get_mod_file_changeables(self): # If this fails, then the attirbute probably needs to be added to the list below: change_attrs = set([ 'conductance', 'beta2threshold', 'ion', 'eqn', 'conductance', 'statevars', 'reversalpotential', ]) assert set(self.__dict__) == set(['mm_neuronNumber','_name','_simulation', 'cachedNeuronSuffix']) | change_attrs attrs = [ 'ion', 'eqn', 'conductance', 'statevars', 'reversalpotential', 'beta2threshold', ] return dict([(a, getattr(self, a)) for a in attrs]) # Register the channel NEURONEnvironment.channels.register_plugin( StdChlAlphaBetaBeta, NEURONChl_AlphaBetaBeta)
33.015
123
0.69741
4,372
0.662123
0
0
0
0
0
0
1,878
0.284416
fd7312c0409e17edc8a594caad14c3eebd8edb1f
5,344
py
Python
cookie.py
cppchriscpp/fortune-cookie
46e433e1ae06a8ad742b252d642f8620bde9e38b
[ "MIT" ]
null
null
null
cookie.py
cppchriscpp/fortune-cookie
46e433e1ae06a8ad742b252d642f8620bde9e38b
[ "MIT" ]
null
null
null
cookie.py
cppchriscpp/fortune-cookie
46e433e1ae06a8ad742b252d642f8620bde9e38b
[ "MIT" ]
null
null
null
import markovify import re import nltk import os import urllib.request from shutil import copyfile # We need a temporary(ish) place to store the data we retrieve. # If you are running this in a docker container you may want to mount a volume and use it. # Also be sure to make a symlink between it and the assets directory. See our dockerfile for an example! datadir = "./web/assets/data" if 'DATA_DIR' in os.environ: datadir = os.environ['DATA_DIR'] if not os.path.exists(datadir): os.mkdir(datadir) # Basically the example from the markovify documentation that uses parts of speech and stuff to make better sentences class POSifiedText(markovify.Text): def word_split(self, sentence): words = re.split(self.word_split_pattern, sentence) words = [ "::".join(tag) for tag in nltk.pos_tag(words) ] return words def word_join(self, words): sentence = " ".join(word.split("::")[0] for word in words) return sentence # Grab a list of fortunes from Github if not os.path.exists(datadir+"/cookie.txt"): urllib.request.urlretrieve("https://raw.githubusercontent.com/ianli/fortune-cookies-galore/master/fortunes.txt", datadir+"/cookie.txt") # Grab the US constitution raw text if not os.path.exists(datadir+'/const.txt'): urllib.request.urlretrieve("https://www.usconstitution.net/const.txt", datadir+"/const.txt") if not os.path.exists(datadir+'/tweeter.txt'): urllib.request.urlretrieve("https://raw.githubusercontent.com/ElDeveloper/tweets/master/tweets_text.txt", datadir+"/tweeter.txt") # Read both files into variables with open(datadir+"/cookie.txt") as f: text = f.read() with open(datadir+'/const.txt') as f: tswext = f.read() with open(datadir+"/tweeter.txt") as f: tweetext = f.read() # Break up the text to make it more workable cookie_text_split = text.split("\n") const_text_split = tswext.split("\n") tweet_text_split = tweetext.split("\n") # Some cleanup to remove things in the fortune cookie file that aren't really fortunes. # (There are some odd facts and quotes in here. This is a bit barbaric, but this is a fun project anyway! No need for perfection...) def excluded(string): if string.startswith("Q:"): return False if "\"" in string: return False if "--" in string: return False return True # Same thing for the constitution text - this just removes the comment at the top. def exwifted(string): if "[" in string: return False return True # Apply the cleanups from above cookie_text_split[:] = [x for x in cookie_text_split if excluded(x)] const_text_split[:] = [x for x in const_text_split if exwifted(x)] # Merge the text back into one big blob like markovify expects. (There's probably a better way to do this, but again, fun project. Efficiency's not that important... cookie_text_model = POSifiedText("\n".join(cookie_text_split)) const_text_model = POSifiedText("\n".join(const_text_split)) tweet_text_model = POSifiedText("\n".join(tweet_text_split)) # Combine them into a terrifying structure const_and_cookie_model = markovify.combine([cookie_text_model, const_text_model]) tweet_and_cookie_model = markovify.combine([cookie_text_model, tweet_text_model], [4, 1]) everything_model = markovify.combine([cookie_text_model, const_text_model, tweet_text_model], [4, 1, 1]) # Print a couple lines to the terminal to show that everything's working... print("Examples:") for i in range(5): print(const_and_cookie_model.make_short_sentence(240, tries=25)) # Now, open a temporary file and write some javascript surrounding our story. with open(datadir+"/cookie.js.new", "w+") as file: # NOTE: I don't escape anything here... with bad seed text it'd be quite possible to inject weird js, etc. file.write("window.fortuneCookies=[\n") print("Running cookie") # Write 100 lines of junk into the js file. Note that leaving the closing comma is ok, as javascript doesn't care. for i in range(250): file.write("\"" + cookie_text_model.make_short_sentence(240, tries=25) + "\",\n") # Close it up! file.write("];") print("Running const + cookie") file.write("window.constCookies=[\n") for i in range(250): file.write("\"" + const_and_cookie_model.make_short_sentence(240, tries=25) + "\",\n") file.write("];") print("Running const only") file.write("window.constLines=[\n") for i in range(250): file.write("\"" + const_text_model.make_short_sentence(240, tries=25) + "\",\n") file.write("];") print("Running tweet only") file.write("window.tweetLines=[\n") for i in range(250): file.write("\"" + tweet_text_model.make_short_sentence(240, tries=25) + "\",\n") file.write("];") print("Running tweet cookie") file.write("window.tweetCookie=[\n") for i in range(250): file.write("\"" + tweet_and_cookie_model.make_short_sentence(240, tries=25) + "\",\n") file.write("];") print("Running everything") file.write("window.everythingCookie=[\n") for i in range(250): file.write("\"" + everything_model.make_short_sentence(240, tries=25) + "\",\n") file.write("];") # Finally, copy our temp file over the old one, so clients can start seeing it. copyfile(datadir+"/cookie.js.new", datadir+"/cookie.js")
36.60274
165
0.698915
342
0.063997
0
0
0
0
0
0
2,358
0.441243
fd76b6a6e3bed41850763cc3f44afdab15844d51
427
py
Python
wsgi_microservice_middleware/__init__.py
presalytics/WSGI-Microservice-Middleware
1dfcd1121d25569312d7c605d162cb52f38101e3
[ "MIT" ]
1
2020-08-13T05:31:01.000Z
2020-08-13T05:31:01.000Z
wsgi_microservice_middleware/__init__.py
presalytics/WSGI-Microservice-Middleware
1dfcd1121d25569312d7c605d162cb52f38101e3
[ "MIT" ]
null
null
null
wsgi_microservice_middleware/__init__.py
presalytics/WSGI-Microservice-Middleware
1dfcd1121d25569312d7c605d162cb52f38101e3
[ "MIT" ]
null
null
null
import environs env = environs.Env() env.read_env() from wsgi_microservice_middleware.cors import CORSMiddleware from wsgi_microservice_middleware.request_id import ( RequestIdFilter, RequestIdMiddleware, current_request_id, RequestIdJsonLogFormatter ) __all__ = [ 'CORSMiddleware', 'RequestIdFilter', 'RequestIdMiddleware', 'current_request_id', 'RequestIdJsonLogFormatter' ]
17.791667
60
0.744731
0
0
0
0
0
0
0
0
101
0.236534
fd77738934a082ed69675adc328a1ec23a42bd8b
686
py
Python
car_manager.py
njiang6/turtle_crossing
5445ca941bc53002299c60a0587d84f8a111f1be
[ "Apache-2.0" ]
1
2021-03-24T02:21:03.000Z
2021-03-24T02:21:03.000Z
car_manager.py
njiang6/turtle_crossing
5445ca941bc53002299c60a0587d84f8a111f1be
[ "Apache-2.0" ]
null
null
null
car_manager.py
njiang6/turtle_crossing
5445ca941bc53002299c60a0587d84f8a111f1be
[ "Apache-2.0" ]
null
null
null
import turtle as t import random COLORS = ["red", "orange", "yellow", "green", "blue", "purple"] STARTING_MOVE_DISTANCE = 5 MOVE_INCREMENT = 1 def next_level(): global STARTING_MOVE_DISTANCE STARTING_MOVE_DISTANCE += MOVE_INCREMENT class CarManager(t.Turtle): def __init__(self): super().__init__() self.penup() self.setheading(180) self.y = round(random.randint(-250, 250) / 10) * 10 self.x = 300 self.goto(self.x, self.y) self.shape("square") self.shapesize(stretch_wid=1, stretch_len=2) self.color(random.choice(COLORS)) def go_forward(self): self.forward(STARTING_MOVE_DISTANCE)
23.655172
63
0.644315
440
0.641399
0
0
0
0
0
0
50
0.072886
fd78ccdbc7f44ee790bb4e0e5bb66afdadb94039
3,329
py
Python
2021/05_2/solution.py
budavariam/advent_of_code
0903bcbb0df46371b6a340ca2be007dce6470c66
[ "MIT" ]
null
null
null
2021/05_2/solution.py
budavariam/advent_of_code
0903bcbb0df46371b6a340ca2be007dce6470c66
[ "MIT" ]
null
null
null
2021/05_2/solution.py
budavariam/advent_of_code
0903bcbb0df46371b6a340ca2be007dce6470c66
[ "MIT" ]
1
2022-02-11T13:14:50.000Z
2022-02-11T13:14:50.000Z
""" Advent of code 2021 day 05 / 2 """ import math from os import path import re from collections import Counter class Code(object): def __init__(self, lines): self.lines = lines def printmap(self, dim, minx, miny, maxx, maxy): for i in range(miny, maxy + 1): ln = "" for j in range(minx, maxx+1): pos = f"{i}-{j}" ln += str(dim.get(pos)) if dim.get(pos) is not None else '.' print(ln) print(dim) def solve(self): # print(self.lines) minx, miny, maxx, maxy = 0, 0, 0, 0 dim = {} cnt = 0 xa, xb, ya, yb = -1, -1, -1, -1 for line in self.lines: x1, y1, x2, y2 = line xa, xb = sorted([x1, x2]) ya, yb = sorted([y1, y2]) minx = min(minx, xa) miny = min(miny, ya) maxx = max(maxx, xb) maxy = max(maxy, yb) if x1 == x2: # print("hor", y1, x1, y2, x2, ya, xa, yb, xb) for i in range(ya, yb+1): pos = f"{i}-{x1}" if dim.get(pos) is not None: dim[pos] += 1 else: dim[pos] = 1 elif y1 == y2: # print("vert", y1, x1, y2, x2, ya, xa, yb, xb) for i in range(xa, xb+1): pos = f"{y1}-{i}" if dim.get(pos) is not None: dim[pos] += 1 else: dim[pos] = 1 else: # print("diag", y1, x1, y2, x2, ya, xa, yb, xb) if x1 < x2: for i, x in enumerate(range(x1, x2+1)): if y1 < y2: pos = f"{y1+i}-{x}" else: pos = f"{y1-i}-{x}" if dim.get(pos) is not None: dim[pos] += 1 else: dim[pos] = 1 else: for i, x in enumerate(range(x2, x1+1)): if y1 < y2: pos = f"{y2-i}-{x}" else: pos = f"{y2+i}-{x}" if dim.get(pos) is not None: dim[pos] += 1 else: dim[pos] = 1 # self.printmap(dim, minx, miny, maxx, maxy) for i in dim.values(): if i > 1: cnt += 1 return cnt def preprocess(raw_data): pattern = re.compile(r'(\d+),(\d+) -> (\d+),(\d+)') processed_data = [] for line in raw_data.split("\n"): match = re.match(pattern, line) data = [int(match.group(1)), int(match.group(2)), int(match.group(3)), int(match.group(4))] # data = line processed_data.append(data) return processed_data def solution(data): """ Solution to the problem """ lines = preprocess(data) solver = Code(lines) return solver.solve() if __name__ == "__main__": with(open(path.join(path.dirname(__file__), 'input.txt'), 'r')) as input_file: print(solution(input_file.read()))
31.40566
82
0.393812
2,533
0.760889
0
0
0
0
0
0
431
0.129468
fd7a3d5f8bd77ce667a1424c233439cb51d4d806
2,032
py
Python
examples/plot_tissue_specific_corrections.py
imagejan/starfish
adf48f4b30cfdf44ac8c9cc78fc469665ce7d594
[ "MIT" ]
null
null
null
examples/plot_tissue_specific_corrections.py
imagejan/starfish
adf48f4b30cfdf44ac8c9cc78fc469665ce7d594
[ "MIT" ]
null
null
null
examples/plot_tissue_specific_corrections.py
imagejan/starfish
adf48f4b30cfdf44ac8c9cc78fc469665ce7d594
[ "MIT" ]
null
null
null
""" Tissue Corrections ================== """ ################################################################################################### # .. _tutorial_removing_autoflourescence: # # Removing autofluorescence # ========================= # # In addition to the bright spots (signal) that we want to detect, microscopy experiments on tissue # slices often have a non-zero amount of auto-fluorescence from the cell bodies. This can be mitigated # by "clearing" strategies whereby tissue lipids and proteins are digested, or computationally by # estimating and subtracting the background values. # # We use the same test image from the previous section to demonstrate how this can work. # # Clipping # -------- # The simplest way to remove background is to set a global, (linear) cut-off and clip out the # background values. import starfish import starfish.data from starfish.image import Filter from starfish.types import Axes experiment: starfish.Experiment = starfish.data.ISS(use_test_data=True) field_of_view: starfish.FieldOfView = experiment["fov_001"] image: starfish.ImageStack = field_of_view.get_image("primary") ################################################################################################### # Next, create the clip filter. Here we clip at the 50th percentile, optimally separates the spots # from the background clip_50 = Filter.Clip(p_min=97) clipped: starfish.ImageStack = clip_50.run(image) ################################################################################################### # plot both images import matplotlib.pyplot as plt import xarray as xr # get the images orig_plot: xr.DataArray = image.sel({Axes.CH: 0, Axes.ROUND: 0}).xarray.squeeze() clip_plot: xr.DataArray = clipped.sel({Axes.CH: 0, Axes.ROUND: 0}).xarray.squeeze() f, (ax1, ax2) = plt.subplots(ncols=2) ax1.imshow(orig_plot) ax1.set_title("original") ax2.imshow(clip_plot) ax2.set_title("clipped") ################################################################################################### #
35.034483
102
0.599902
0
0
0
0
0
0
0
0
1,301
0.640256
fd7a65079d9a251ce00ad45789e94722c4e7ad4e
146
py
Python
cru_alaska_temperature/__init__.py
sc0tts/cruAKtemp
84dbfc424f5f36bb0f0055b5290f0ab2063ae225
[ "MIT" ]
null
null
null
cru_alaska_temperature/__init__.py
sc0tts/cruAKtemp
84dbfc424f5f36bb0f0055b5290f0ab2063ae225
[ "MIT" ]
7
2017-04-25T21:50:47.000Z
2018-03-19T17:39:28.000Z
cru_alaska_temperature/__init__.py
sc0tts/cruAKtemp
84dbfc424f5f36bb0f0055b5290f0ab2063ae225
[ "MIT" ]
2
2019-02-18T22:42:07.000Z
2020-08-31T23:37:17.000Z
from .alaska_temperature import AlaskaTemperature from .bmi import AlaskaTemperatureBMI __all__ = ["AlaskaTemperature", "AlaskaTemperatureBMI"]
24.333333
55
0.835616
0
0
0
0
0
0
0
0
41
0.280822
fd7b422625225dcfe35545919a8429eaaa584545
378
py
Python
Qualification/1-ForegoneSolution/Solution.py
n1try/codejam-2019
3cedc74915eca7384adaf8f6a68eeb21ada1beaf
[ "MIT" ]
null
null
null
Qualification/1-ForegoneSolution/Solution.py
n1try/codejam-2019
3cedc74915eca7384adaf8f6a68eeb21ada1beaf
[ "MIT" ]
null
null
null
Qualification/1-ForegoneSolution/Solution.py
n1try/codejam-2019
3cedc74915eca7384adaf8f6a68eeb21ada1beaf
[ "MIT" ]
null
null
null
import re t = int(input()) for i in range(0, t): chars = input() m1, m2 = [None] * len(chars), [None] * len(chars) for j in range(0, len(chars)): m1[j] = "3" if chars[j] == "4" else chars[j] m2[j] = "1" if chars[j] == "4" else "0" s1 = ''.join(m1) s2 = ''.join(m2) print("Case #{}: {} {}".format(i + 1, s1, re.sub(r'^0*', '', s2)))
29.076923
70
0.457672
0
0
0
0
0
0
0
0
44
0.116402
fd7bd590362f7ad441cb4aaacc481be5a9c4d64c
1,645
py
Python
1.imdbData.py
batucimenn/imdbScraperOnWaybackMachine2
e6d92b5c794a2603a05e986b587a796d2a80fd8d
[ "MIT" ]
null
null
null
1.imdbData.py
batucimenn/imdbScraperOnWaybackMachine2
e6d92b5c794a2603a05e986b587a796d2a80fd8d
[ "MIT" ]
null
null
null
1.imdbData.py
batucimenn/imdbScraperOnWaybackMachine2
e6d92b5c794a2603a05e986b587a796d2a80fd8d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # Scraper movies data from Imdb # In[ ]: import csv import pandas as pd # Year range to collect data. # In[ ]: startYear=int(input("startYear: ")) finishYear=int(input("finishYear: ")) # File path to save. Ex: C:\Users\User\Desktop\newFile # In[ ]: filePath = input("File path: "+"r'")+("/") # Create csv and set the titles. # In[ ]: with open(filePath+str(startYear)+"_"+str(finishYear)+".csv", mode='w', newline='') as yeni_dosya: yeni_yazici = csv.writer(yeni_dosya, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) yeni_yazici.writerow(['Title'+";"+'Film'+";"+'Year']) yeni_dosya.close() # Download title.basics.tsv.gz from https://datasets.imdbws.com/. Extract data.tsv, print it into csv. # In[ ]: with open("data.tsv",encoding="utf8") as tsvfile: tsvreader = csv.reader(tsvfile, delimiter="\t") for line in tsvreader: try: ceviri=int(line[5]) if(ceviri>=startYear and ceviri<=finishYear and (line[1]=="movie" or line[1]=="tvMovie")): print(line[0]+";"+line[3]+";"+line[5]+";"+line[1]) line0=line[0].replace("\"","") line5=line[5].replace("\"","") with open(filePath+str(startYear)+"_"+str(finishYear)+".csv", mode='a', newline='') as yeni_dosya: yeni_yazici = csv.writer(yeni_dosya, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) yeni_yazici.writerow([line0+";"+line[3]+";"+line5]) yeni_dosya.close() except: pass
26.532258
117
0.570821
0
0
0
0
0
0
0
0
499
0.303343
fd7c26cf48ae51b52e75c459ca5537852b6f4936
2,680
py
Python
effective_python/metaclass_property/descriptor_demo.py
ftconan/python3
eb63ba33960072f792ecce6db809866b38c402f8
[ "MIT" ]
1
2018-12-19T22:07:56.000Z
2018-12-19T22:07:56.000Z
effective_python/metaclass_property/descriptor_demo.py
ftconan/python3
eb63ba33960072f792ecce6db809866b38c402f8
[ "MIT" ]
12
2020-03-14T05:32:26.000Z
2022-03-12T00:08:49.000Z
effective_python/metaclass_property/descriptor_demo.py
ftconan/python3
eb63ba33960072f792ecce6db809866b38c402f8
[ "MIT" ]
1
2018-12-19T22:08:00.000Z
2018-12-19T22:08:00.000Z
""" @author: magician @file: descriptor_demo.py @date: 2020/1/14 """ from weakref import WeakKeyDictionary class Homework(object): """ Homework """ def __init__(self): self._grade = 0 @property def grade(self): return self._grade @grade.setter def grade(self, value): if not(0 <= value <= 100): raise ValueError('Grade must be between 0 and 120') self._grade = value # class Exam(object): # """ # Exam # """ # def __init__(self): # self._writing_grade = 0 # self._math_grade = 0 # # @staticmethod # def _check_grade(value): # if not(0 <= value <= 100): # raise ValueError('Grade must be between 0 and 100') # # @property # def writing_grade(self): # return self._writing_grade # # @writing_grade.setter # def writing_grade(self, value): # self._check_grade(value) # self._writing_grade = value # # @property # def math_grade(self): # return self._math_grade # # @math_grade.setter # def math_grade(self, value): # self._check_grade(value) # self._math_grade = value class Grade(object): """ Grade """ def __init__(self): # self._value = 0 # keep instance status # self._values = {} # preventing memory leaks self._values = WeakKeyDictionary() def __get__(self, instance, instance_type): # return self._value if instance is None: return self return self._values.get(instance, 0) def __set__(self, instance, value): if not (0 <= value <= 100): raise ValueError('Grade must be between 0 and 100') # self._value = value self._values[instance] = value class Exam(object): """ Exam """ math_grade = Grade() writing_grade = Grade() science_grade = Grade() if __name__ == '__main__': galileo = Homework() galileo.grade = 95 # first_exam = Exam() # first_exam.writing_grade = 82 # first_exam.science_grade = 99 # print('Writing', first_exam.writing_grade) # print('Science', first_exam.science_grade) # # second_exam = Exam() # second_exam.writing_grade = 75 # second_exam.science_grade = 99 # print('Second', second_exam.writing_grade, 'is right') # print('First', first_exam.writing_grade, 'is wrong') first_exam = Exam() first_exam.writing_grade = 82 second_exam = Exam() second_exam.writing_grade = 75 print('First ', first_exam.writing_grade, 'is right') print('Second ', second_exam.writing_grade, 'is right')
23.304348
65
0.596642
1,081
0.403358
0
0
225
0.083955
0
0
1,451
0.541418
fd7c5d171d30796fbb3b1df9d4223d6476d4d998
3,584
py
Python
afk-q-babyai/babyai/layers/aggrerator.py
IouJenLiu/AFK
db2b47bb3a5614b61766114b87f143e4a61a4a8d
[ "MIT" ]
1
2022-03-12T03:10:29.000Z
2022-03-12T03:10:29.000Z
afk-q-babyai/babyai/layers/aggrerator.py
IouJenLiu/AFK
db2b47bb3a5614b61766114b87f143e4a61a4a8d
[ "MIT" ]
null
null
null
afk-q-babyai/babyai/layers/aggrerator.py
IouJenLiu/AFK
db2b47bb3a5614b61766114b87f143e4a61a4a8d
[ "MIT" ]
null
null
null
import torch import numpy as np import torch.nn.functional as F def masked_softmax(x, m=None, axis=-1): ''' x: batch x time x hid m: batch x time (optional) ''' x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=axis, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=axis, keepdim=True) + 1e-6) return softmax class ScaledDotProductAttention(torch.nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = torch.nn.Dropout(attn_dropout) def forward(self, q, k, v, mask): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature attn = masked_softmax(attn, mask, 2) __attn = self.dropout(attn) output = torch.bmm(__attn, v) return output, attn class MultiHeadAttention(torch.nn.Module): ''' From Multi-Head Attention module https://github.com/jadore801120/attention-is-all-you-need-pytorch''' def __init__(self, block_hidden_dim, n_head, dropout=0.1, q_dim=128): super().__init__() self.q_dim = q_dim self.n_head = n_head self.block_hidden_dim = block_hidden_dim self.w_qs = torch.nn.Linear(q_dim, n_head * block_hidden_dim, bias=False) self.w_ks = torch.nn.Linear(block_hidden_dim, n_head * block_hidden_dim, bias=False) self.w_vs = torch.nn.Linear(block_hidden_dim, n_head * block_hidden_dim, bias=False) torch.nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (q_dim * 2))) torch.nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (block_hidden_dim * 2))) torch.nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (block_hidden_dim * 2))) self.attention = ScaledDotProductAttention(temperature=np.power(block_hidden_dim, 0.5)) self.fc = torch.nn.Linear(n_head * block_hidden_dim, block_hidden_dim) self.layer_norm = torch.nn.LayerNorm(self.block_hidden_dim) torch.nn.init.xavier_normal_(self.fc.weight) self.dropout = torch.nn.Dropout(dropout) def forward(self, q, mask, k, v): # q: batch x len_q x hid # k: batch x len_k x hid # v: batch x len_v x hid # mask: batch x len_q x len_k # output: batch x len_q x hid # attn: batch x len_q x len_k batch_size, len_q = q.size(0), q.size(1) len_k, len_v = k.size(1), v.size(1) assert mask.size(1) == len_q assert mask.size(2) == len_k residual = q q = self.w_qs(q).view(batch_size, len_q, self.n_head, self.block_hidden_dim) k = self.w_ks(k).view(batch_size, len_k, self.n_head, self.block_hidden_dim) v = self.w_vs(v).view(batch_size, len_v, self.n_head, self.block_hidden_dim) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, self.block_hidden_dim) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, self.block_hidden_dim) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, self.block_hidden_dim) # (n*b) x lv x dv mask = mask.repeat(self.n_head, 1, 1) # (n*b) x .. x .. output, attn = self.attention(q, k, v, mask=mask) attn = attn.view(self.n_head, batch_size, len_q, -1) attn = torch.mean(attn, 0) # batch x lq x lk output = None return output, attn
41.195402
103
0.624163
3,098
0.864397
0
0
0
0
0
0
457
0.127511
fd816f646c55f1654d9547e1f480c4843279f30e
707
py
Python
analysis_llt/ml/cv/neighbors.py
Tammy-Lee/analysis-llt
ea1bb62d614bb75dac68c010a0cc524a5be185f2
[ "MIT" ]
null
null
null
analysis_llt/ml/cv/neighbors.py
Tammy-Lee/analysis-llt
ea1bb62d614bb75dac68c010a0cc524a5be185f2
[ "MIT" ]
null
null
null
analysis_llt/ml/cv/neighbors.py
Tammy-Lee/analysis-llt
ea1bb62d614bb75dac68c010a0cc524a5be185f2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ create on 2019-03-20 04:17 author @lilia """ from sklearn.neighbors import KNeighborsClassifier from analysis_llt.ml.cv.base import BaseCV class KNNCV(BaseCV): fit_predict_proba_ = False def __init__(self, n_neighbors=5, cv=None, random_state=None, verbose=0, **model_params): super(KNNCV, self).__init__(cv=cv, random_state=random_state, verbose=verbose, **model_params) self.n_neighbors = n_neighbors if 'predict_proba' in model_params: warnings.warn("SVC does not have predict_proba function") def build_model(self): knn = KNeighborsClassifier(n_neighbors=self.n_neighbors, **self.model_params) return knn
29.458333
102
0.708628
535
0.756719
0
0
0
0
0
0
129
0.182461
fd8175ceff7997ec372ad498a63c3ba3b5e8e259
1,066
py
Python
tests/test_oas_cache.py
maykinmedia/zgw-consumers
9b0759d9b7c3590b245004afd4c5e5474785bf91
[ "MIT" ]
2
2021-04-25T11:29:33.000Z
2022-03-08T14:06:58.000Z
tests/test_oas_cache.py
maykinmedia/zgw-consumers
9b0759d9b7c3590b245004afd4c5e5474785bf91
[ "MIT" ]
27
2020-04-01T07:33:02.000Z
2022-03-14T09:11:05.000Z
tests/test_oas_cache.py
maykinmedia/zgw-consumers
9b0759d9b7c3590b245004afd4c5e5474785bf91
[ "MIT" ]
2
2020-07-30T15:40:47.000Z
2020-11-30T10:56:29.000Z
import threading from zds_client.oas import schema_fetcher def test_schema_fetch_twice(oas): schema = oas.fetch() assert isinstance(schema, dict) assert oas.mocker.call_count == 1 oas.fetch() # check that the cache is used assert oas.mocker.call_count == 1 def test_clear_caches_in_between(oas): schema = oas.fetch() assert isinstance(schema, dict) assert oas.mocker.call_count == 1 schema_fetcher.cache.clear() oas.fetch() assert oas.mocker.call_count == 2 def test_cache_across_threads(oas): def _target(): # disable the local python cache schema_fetcher.cache._local_cache = {} oas.fetch() thread1 = threading.Thread(target=_target) thread2 = threading.Thread(target=_target) # start thread 1 and let it complete, this ensures the schema is stored in the # cache thread1.start() thread1.join() # start thread 2 and let it complete, we can now verify the call count thread2.start() thread2.join() assert oas.mocker.call_count == 1
21.755102
82
0.684803
0
0
0
0
0
0
0
0
217
0.203565
fd81f57132ba4b8e36862c9d9eb8179dcba9623a
4,165
py
Python
src/uproot_browser/tree.py
amangoel185/uproot-browser
8181913ac04d0318b05256923d8980d6d3acaa7f
[ "BSD-3-Clause" ]
12
2022-03-18T11:47:26.000Z
2022-03-25T13:57:08.000Z
src/uproot_browser/tree.py
amangoel185/uproot-browser
8181913ac04d0318b05256923d8980d6d3acaa7f
[ "BSD-3-Clause" ]
7
2022-03-18T11:40:36.000Z
2022-03-29T22:15:01.000Z
src/uproot_browser/tree.py
amangoel185/uproot-browser
8181913ac04d0318b05256923d8980d6d3acaa7f
[ "BSD-3-Clause" ]
1
2022-03-21T14:37:07.000Z
2022-03-21T14:37:07.000Z
""" Display tools for TTrees. """ from __future__ import annotations import dataclasses import functools from pathlib import Path from typing import Any, Dict import uproot from rich.console import Console from rich.markup import escape from rich.text import Text from rich.tree import Tree console = Console() __all__ = ("make_tree", "process_item", "print_tree", "UprootItem", "console") def __dir__() -> tuple[str, ...]: return __all__ @dataclasses.dataclass class UprootItem: path: str item: Any @property def is_dir(self) -> bool: return isinstance(self.item, (uproot.reading.ReadOnlyDirectory, uproot.TTree)) def meta(self) -> dict[str, Any]: return process_item(self.item) def label(self) -> Text: return process_item(self.item)["label"] # type: ignore[no-any-return] @property def children(self) -> list[UprootItem]: if not self.is_dir: return [] items = {key.split(";")[0] for key in self.item.keys()} return [ UprootItem(f"{self.path}/{key}", self.item[key]) for key in sorted(items) ] def make_tree(node: UprootItem, *, tree: Tree | None = None) -> Tree: """ Given an object, build a rich.tree.Tree output. """ if tree is None: tree = Tree(**node.meta()) else: tree = tree.add(**node.meta()) for child in node.children: make_tree(child, tree=tree) return tree @functools.singledispatch def process_item(uproot_object: Any) -> Dict[str, Any]: """ Given an unknown object, return a rich.tree.Tree output. Specialize for known objects. """ name = getattr(uproot_object, "name", "<unnamed>") classname = getattr(uproot_object, "classname", uproot_object.__class__.__name__) label = Text.assemble( "❓ ", (f"{name} ", "bold"), (classname, "italic"), ) return {"label": label} @process_item.register def _process_item_tfile( uproot_object: uproot.reading.ReadOnlyDirectory, ) -> Dict[str, Any]: """ Given an TFile, return a rich.tree.Tree output. """ path = Path(uproot_object.file_path) result = { "label": Text.from_markup( f":file_folder: [link file://{path}]{escape(path.name)}" ), "guide_style": "bold bright_blue", } return result @process_item.register def _process_item_ttree(uproot_object: uproot.TTree) -> Dict[str, Any]: """ Given an tree, return a rich.tree.Tree output. """ label = Text.assemble( "🌴 ", (f"{uproot_object.name} ", "bold"), f"({uproot_object.num_entries:g})", ) result = { "label": label, "guide_style": "bold bright_green", } return result @process_item.register def _process_item_tbranch(uproot_object: uproot.TBranch) -> Dict[str, Any]: """ Given an branch, return a rich.tree.Tree output. """ jagged = isinstance( uproot_object.interpretation, uproot.interpretation.jagged.AsJagged ) icon = "🍃 " if jagged else "🍁 " label = Text.assemble( icon, (f"{uproot_object.name} ", "bold"), (f"{uproot_object.typename}", "italic"), ) result = {"label": label} return result @process_item.register def _process_item_th(uproot_object: uproot.behaviors.TH1.Histogram) -> Dict[str, Any]: """ Given an histogram, return a rich.tree.Tree output. """ icon = "📊 " if uproot_object.kind == "COUNT" else "📈 " sizes = " × ".join(f"{len(ax)}" for ax in uproot_object.axes) label = Text.assemble( icon, (f"{uproot_object.name} ", "bold"), (f"{uproot_object.classname} ", "italic"), f"({sizes})", ) result = {"label": label} return result # pylint: disable-next=redefined-outer-name def print_tree(entry: str, *, console: Console = console) -> None: """ Prints a tree given a specification string. Currently, that must be a single filename. Colons are not allowed currently in the filename. """ upfile = uproot.open(entry) tree = make_tree(UprootItem("/", upfile)) console.print(tree)
25.090361
90
0.623049
650
0.155391
0
0
3,006
0.718623
0
0
1,253
0.299546
fd83d8e2ff034305d143f2f77d3ed14a017cf93e
5,256
py
Python
backend/apps/tasks/models.py
HerlanAssis/simple-project-manager
800c833ec0cbeba848264753d79c5ecedc54cc39
[ "MIT" ]
1
2019-06-14T20:34:19.000Z
2019-06-14T20:34:19.000Z
backend/apps/tasks/models.py
HerlanAssis/simple-project-manager
800c833ec0cbeba848264753d79c5ecedc54cc39
[ "MIT" ]
3
2020-02-11T23:42:20.000Z
2020-06-25T17:35:48.000Z
backend/apps/tasks/models.py
HerlanAssis/simple-project-manager
800c833ec0cbeba848264753d79c5ecedc54cc39
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver from apps.core.models import BaseModel from apps.core.utils import HASH_MAX_LENGTH, create_hash, truncate from django.utils.encoding import python_2_unicode_compatible from django.utils import timezone from django.db.models import F import datetime TODO = 'TODO' DOING = 'DOING' BLOCKED = 'BLOCKED' DONE = 'DONE' PROGRESS = ( (TODO, 'To Do'), (DOING, 'Doing'), (BLOCKED, 'Blocked'), (DONE, 'Done'), ) @python_2_unicode_compatible class TaskManager(BaseModel): project_name = models.CharField(max_length=256) project_id = models.BigIntegerField(unique=True, editable=False) owner = models.ForeignKey( User, related_name="managed_tasks", on_delete=models.CASCADE) invitation_code = models.CharField( max_length=HASH_MAX_LENGTH, default=create_hash, unique=True, editable=False) class Meta: unique_together = ['owner', 'project_id'] @property def qtd_overdue_tasks(self): return self.tasks.exclude(status=DONE).filter(expected_date__lt=datetime.date.today()).count() @property def qtd_blocked_tasks(self): return self.tasks.filter(status=BLOCKED).count() @property def qtd_tasks_completed_late(self): return self.tasks.filter(status=DONE).filter(conclusion_date__gt=F('expected_date')).count() @property def qtd_tasks(self): return self.tasks.all().count() @property def progress(self): resultado = 0.0 try: resultado = "{0:.2f}".format(self.tasks.filter(status=DONE).count()/self.tasks.all().count() * 100) except ZeroDivisionError as e: pass return resultado @property def qtd_completed_tasks(self): return self.tasks.filter(status=DONE).count() @property def qtd_open_tasks(self): return self.tasks.exclude(status=DONE).count() def notify(self, message, **kwargs): created = kwargs['created'] message = "[{}]\n{}".format(self.project_name, message) notify_model = self.vigilantes.model notify_model.notify(self.vigilantes.all(), created, message) def resetInvitationCode(self): self.invitation_code = create_hash() self.save() def __str__(self): return "{}".format(self.project_name) @python_2_unicode_compatible class Task(BaseModel): status = models.CharField( max_length=64, choices=PROGRESS, default=TODO, ) title = models.CharField(max_length=32) description = models.CharField(max_length=256, null=True, blank=True) task_manager = models.ForeignKey( TaskManager, related_name="tasks", on_delete=models.CASCADE) owner = models.ForeignKey( User, related_name="tasks", on_delete=models.CASCADE) responsible = models.ForeignKey( User, related_name="responsibilities_tasks", on_delete=models.CASCADE, null=True, blank=True) expected_date = models.DateField(blank=True) conclusion_date = models.DateTimeField(blank=True, null=True, editable=False) def save(self, *args, **kwargs): if self.status == DONE: self.conclusion_date = datetime.datetime.now() else: self.conclusion_date = None task = super(Task, self).save(*args, **kwargs) return task @property def is_overdue(self): if self.expected_date is None: return False return self.expected_date > datetime.date.today() @property def expires_today(self): if self.expected_date is None: return False return self.expected_date == datetime.date.today() and self.status != DONE # notify_task_manager def notify(self, **kwargs): responsible_name = "-" if self.responsible is not None: responsible_name = self.responsible.get_username() message = "Código: {}\nTítulo: {}\nStatus: {}\nResponsável: {}".format(self.id, self.title, self.get_status_display(), responsible_name ) self.task_manager.notify(message, **kwargs) def __str__(self): return "{}-{}".format(self.id, self.title) @python_2_unicode_compatible class Note(BaseModel): owner = models.ForeignKey( User, related_name="notes", on_delete=models.CASCADE) task = models.ForeignKey( Task, related_name="task_notes", on_delete=models.CASCADE, blank=True) description = models.CharField(max_length=256) def __str__(self): return truncate(self.description, 10) @python_2_unicode_compatible class Release(BaseModel): completed_on = models.DateField() closed = models.BooleanField(default=False) is_final_release = models.BooleanField(default=False) title = models.CharField(max_length=32) description = models.CharField(max_length=256, blank=True) task_manager = models.ForeignKey( TaskManager, related_name="releases", on_delete=models.CASCADE) def __str__(self): return self.title # method for updating @receiver(post_save, sender=Task) def notify(sender, instance, **kwargs): instance.notify(**kwargs)
30.917647
145
0.68398
4,435
0.843316
0
0
4,654
0.884959
0
0
313
0.059517
fd84a04d43460db0ba028f9e178dd3ce7cffe504
2,650
py
Python
eland/tests/dataframe/test_aggs_pytest.py
redNixon/eland
1b9cb1db6d30f0662fe3679c7bb31e2c0865f0c3
[ "Apache-2.0" ]
null
null
null
eland/tests/dataframe/test_aggs_pytest.py
redNixon/eland
1b9cb1db6d30f0662fe3679c7bb31e2c0865f0c3
[ "Apache-2.0" ]
null
null
null
eland/tests/dataframe/test_aggs_pytest.py
redNixon/eland
1b9cb1db6d30f0662fe3679c7bb31e2c0865f0c3
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Elasticsearch BV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # File called _pytest for PyCharm compatability import numpy as np from pandas.util.testing import assert_almost_equal from eland.tests.common import TestData class TestDataFrameAggs(TestData): def test_basic_aggs(self): pd_flights = self.pd_flights() ed_flights = self.ed_flights() pd_sum_min = pd_flights.select_dtypes(include=[np.number]).agg(["sum", "min"]) ed_sum_min = ed_flights.select_dtypes(include=[np.number]).agg(["sum", "min"]) # Eland returns all float values for all metric aggs, pandas can return int # TODO - investigate this more pd_sum_min = pd_sum_min.astype("float64") assert_almost_equal(pd_sum_min, ed_sum_min) pd_sum_min_std = pd_flights.select_dtypes(include=[np.number]).agg( ["sum", "min", "std"] ) ed_sum_min_std = ed_flights.select_dtypes(include=[np.number]).agg( ["sum", "min", "std"] ) print(pd_sum_min_std.dtypes) print(ed_sum_min_std.dtypes) assert_almost_equal(pd_sum_min_std, ed_sum_min_std, check_less_precise=True) def test_terms_aggs(self): pd_flights = self.pd_flights() ed_flights = self.ed_flights() pd_sum_min = pd_flights.select_dtypes(include=[np.number]).agg(["sum", "min"]) ed_sum_min = ed_flights.select_dtypes(include=[np.number]).agg(["sum", "min"]) # Eland returns all float values for all metric aggs, pandas can return int # TODO - investigate this more pd_sum_min = pd_sum_min.astype("float64") assert_almost_equal(pd_sum_min, ed_sum_min) pd_sum_min_std = pd_flights.select_dtypes(include=[np.number]).agg( ["sum", "min", "std"] ) ed_sum_min_std = ed_flights.select_dtypes(include=[np.number]).agg( ["sum", "min", "std"] ) print(pd_sum_min_std.dtypes) print(ed_sum_min_std.dtypes) assert_almost_equal(pd_sum_min_std, ed_sum_min_std, check_less_precise=True)
37.323944
86
0.672075
1,859
0.701509
0
0
0
0
0
0
988
0.37283
fd8681cae85c92327aba29d9f6d3628698abb698
1,811
py
Python
frootspi_examples/launch/conductor.launch.py
SSL-Roots/FrootsPi
3aff59342a9d3254d8b089b66aeeed59bcb66c7b
[ "Apache-2.0" ]
2
2021-11-27T10:57:01.000Z
2021-11-27T11:25:52.000Z
frootspi_examples/launch/conductor.launch.py
SSL-Roots/FrootsPi
3aff59342a9d3254d8b089b66aeeed59bcb66c7b
[ "Apache-2.0" ]
1
2018-07-31T13:29:57.000Z
2018-07-31T13:36:50.000Z
frootspi_examples/launch/conductor.launch.py
SSL-Roots/FrootsPi
3aff59342a9d3254d8b089b66aeeed59bcb66c7b
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Roots # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import ComposableNodeContainer from launch_ros.actions import PushRosNamespace from launch_ros.descriptions import ComposableNode def generate_launch_description(): declare_arg_robot_id = DeclareLaunchArgument( 'id', default_value='0', description=('Set own ID.') ) push_ns = PushRosNamespace(['robot', LaunchConfiguration('id')]) # robot_id = LaunchConfiguration('robot_id') container = ComposableNodeContainer( name='frootspi_container', namespace='', package='rclcpp_components', executable='component_container', # component_container_mtはmulti threads composable_node_descriptions=[ ComposableNode( package='frootspi_conductor', plugin='frootspi_conductor::Conductor', name='frootspi_conductor', extra_arguments=[{'use_intra_process_comms': True}], ), ], output='screen', ) return LaunchDescription([ declare_arg_robot_id, push_ns, container ])
34.826923
81
0.703479
0
0
0
0
0
0
0
0
837
0.461666
fd876869a60981b01094fa1c90ddae1cb851c885
1,639
py
Python
src/vnf/l23filter/controllers/InitializeDbController.py
shield-h2020/vnsfs
864bdd418d3910b86783044be94d2bdb07e95aec
[ "Apache-2.0" ]
2
2018-11-06T17:55:56.000Z
2021-02-09T07:40:17.000Z
src/vnf/l23filter/controllers/InitializeDbController.py
shield-h2020/vnsfs
864bdd418d3910b86783044be94d2bdb07e95aec
[ "Apache-2.0" ]
null
null
null
src/vnf/l23filter/controllers/InitializeDbController.py
shield-h2020/vnsfs
864bdd418d3910b86783044be94d2bdb07e95aec
[ "Apache-2.0" ]
4
2018-03-28T18:06:26.000Z
2021-07-17T00:33:55.000Z
import logging from sqlalchemy import create_engine, event from configuration import config as cnf from helpers.DbHelper import on_connect, db_session, assert_database_type from models import Base, Flow # from models.depreciated import Metric logging.basicConfig() logging.getLogger('sqlalchemy.engine').setLevel(logging.ERROR) class InitializeDbController: def create_DB(self): mysqldbType = "mysql" connection_string = None # empty string connection_string = mysqldbType + cnf.DATABASE_CONN_STRING print(connection_string) # if connection_string.startswith('sqlite'): # db_file = re.sub("sqlite.*:///", "", connection_string) # os.makedirs(os.path.dirname(db_file)) engine = create_engine(connection_string, echo=False) # event.listen(engine, 'connect', on_connect) conn = engine.connect() conn.execute("commit") conn.execute("CREATE DATABASE IF NOT EXISTS test;") conn.close() def init_DB(self): # if connection_string.startswith('sqlite'): # db_file = re.sub("sqlite.*:///", "", connection_string) # os.makedirs(os.path.dirname(db_file)) # 3 commands for creating database base = Base.Base() Flow.Flow() engine = assert_database_type() base.metadata.create_all(engine) response = "OK" return response def delete_DB(self): engine = assert_database_type() base = Base.Base() for tbl in reversed(base.metadata.sorted_tables): tbl.drop(engine, checkfirst=True)
26.015873
73
0.649786
1,303
0.794997
0
0
0
0
0
0
503
0.306894
fd88ba06d62178ae22d727dfd3879ac3e980173e
166
py
Python
tests/web_platform/css_flexbox_1/test_flexbox_flex_1_1_Npercent.py
fletchgraham/colosseum
77be4896ee52b8f5956a3d77b5f2ccd2c8608e8f
[ "BSD-3-Clause" ]
null
null
null
tests/web_platform/css_flexbox_1/test_flexbox_flex_1_1_Npercent.py
fletchgraham/colosseum
77be4896ee52b8f5956a3d77b5f2ccd2c8608e8f
[ "BSD-3-Clause" ]
null
null
null
tests/web_platform/css_flexbox_1/test_flexbox_flex_1_1_Npercent.py
fletchgraham/colosseum
77be4896ee52b8f5956a3d77b5f2ccd2c8608e8f
[ "BSD-3-Clause" ]
1
2020-01-16T01:56:41.000Z
2020-01-16T01:56:41.000Z
from tests.utils import W3CTestCase class TestFlexbox_Flex11Npercent(W3CTestCase): vars().update(W3CTestCase.find_tests(__file__, 'flexbox_flex-1-1-Npercent'))
27.666667
80
0.807229
127
0.76506
0
0
0
0
0
0
27
0.162651
fd88c78266fc4209a289fbc25268f76bce338838
150
py
Python
frontends/python/tests/analysis/constant_attribute.py
aardwolf-sfl/aardwolf
33bfe3e0649a73aec7efa0fa80bff8077b550bd0
[ "MIT" ]
2
2020-08-15T08:55:39.000Z
2020-11-09T17:31:16.000Z
frontends/python/tests/analysis/constant_attribute.py
aardwolf-sfl/aardwolf
33bfe3e0649a73aec7efa0fa80bff8077b550bd0
[ "MIT" ]
null
null
null
frontends/python/tests/analysis/constant_attribute.py
aardwolf-sfl/aardwolf
33bfe3e0649a73aec7efa0fa80bff8077b550bd0
[ "MIT" ]
null
null
null
# AARD: function: __main__ # AARD: #1:1 -> :: defs: %1 / uses: [@1 4:1-4:22] { call } 'value: {}'.format(3) # AARD: @1 = constant_attribute.py
21.428571
63
0.546667
0
0
0
0
0
0
0
0
134
0.893333
fd88d6da1a9e31351274cdc8c9d06c97bd2fa421
884
py
Python
rl_server/tensorflow/networks/layer_norm.py
parilo/tars-rl
17595905a0d1bdc90fe3d8f793acb60de96ea897
[ "MIT" ]
9
2019-03-11T11:02:12.000Z
2022-03-10T12:53:25.000Z
rl_server/tensorflow/networks/layer_norm.py
parilo/tars-rl
17595905a0d1bdc90fe3d8f793acb60de96ea897
[ "MIT" ]
1
2021-01-06T20:18:33.000Z
2021-01-06T20:19:53.000Z
rl_server/tensorflow/networks/layer_norm.py
parilo/tars-rl
17595905a0d1bdc90fe3d8f793acb60de96ea897
[ "MIT" ]
3
2019-01-19T03:32:26.000Z
2020-11-29T18:15:57.000Z
from tensorflow.python.keras.layers import Layer from tensorflow.python.keras import backend as K class LayerNorm(Layer): def __init__(self, axis=-1, eps=1e-6, **kwargs): self.axis = axis self.eps = eps super(LayerNorm, self).__init__(**kwargs) def build(self, input_shape): input_dim = input_shape[self.axis] self.gamma = self.add_weight(shape=(input_dim,), initializer="ones", name="gamma") self.beta = self.add_weight(shape=(input_dim,), initializer="zeros", name="beta") super(LayerNorm, self).build(input_shape) def call(self, x): mean = K.mean(x, axis=self.axis, keepdims=True) std = K.std(x, axis=self.axis, keepdims=True) out = self.gamma * (x - mean) / (std + self.eps) + self.beta return out def compute_output_shape(self, input_shape): return input_shape
34
90
0.645928
783
0.885747
0
0
0
0
0
0
26
0.029412