title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Refining Source Representations with Relation Networks for Neural Machine Translation
Although neural machine translation (NMT) with the encoder-decoder framework has achieved great success in recent times, it still suffers from some drawbacks: RNNs tend to forget old information which is often useful and the encoder only operates through words without considering word relationship. To solve these problems, we introduce a relation networks (RN) into NMT to refine the encoding representations of the source. In our method, the RN first augments the representation of each source word with its neighbors and reasons all the possible pairwise relations between them. Then the source representations and all the relations are fed to the attention module and the decoder together, keeping the main encoder-decoder architecture unchanged. Experiments on two Chinese-to-English data sets in different scales both show that our method can outperform the competitive baselines significantly.
Adaptive Exploration-Exploitation Tradeoff for Opportunistic Bandits
In this paper, we propose and study opportunistic bandits - a new variant of bandits where the regret of pulling a suboptimal arm varies under different environmental conditions, such as network load or produce price. When the load/price is low, so is the cost/regret of pulling a suboptimal arm (e.g., trying a suboptimal network configuration). Therefore, intuitively, we could explore more when the load/price is low and exploit more when the load/price is high. Inspired by this intuition, we propose an Adaptive Upper-Confidence-Bound (AdaUCB) algorithm to adaptively balance the exploration-exploitation tradeoff for opportunistic bandits. We prove that AdaUCB achieves $O(\log T)$ regret with a smaller coefficient than the traditional UCB algorithm. Furthermore, AdaUCB achieves $O(1)$ regret with respect to $T$ if the exploration cost is zero when the load level is below a certain threshold. Last, based on both synthetic data and real-world traces, experimental results show that AdaUCB significantly outperforms other bandit algorithms, such as UCB and TS (Thompson Sampling), under large load/price fluctuations.
Shifting Mean Activation Towards Zero with Bipolar Activation Functions
We propose a simple extension to the ReLU-family of activation functions that allows them to shift the mean activation across a layer towards zero. Combined with proper weight initialization, this alleviates the need for normalization layers. We explore the training of deep vanilla recurrent neural networks (RNNs) with up to 144 layers, and show that bipolar activation functions help learning in this setting. On the Penn Treebank and Text8 language modeling tasks we obtain competitive results, improving on the best reported results for non-gated networks. In experiments with convolutional neural networks without batch normalization, we find that bipolar activations produce a faster drop in training error, and results in a lower test error on the CIFAR-10 classification task.
Parallelizing Linear Recurrent Neural Nets Over Sequence Length
Recurrent neural networks (RNNs) are widely used to model sequential data but their non-linear dependencies between sequence elements prevent parallelizing training over sequence length. We show the training of RNNs with only linear sequential dependencies can be parallelized over the sequence length using the parallel scan algorithm, leading to rapid training on long sequences even with small minibatch size. We develop a parallel linear recurrence CUDA kernel and show that it can be applied to immediately speed up training and inference of several state of the art RNN architectures by up to 9x. We abstract recent work on linear RNNs into a new framework of linear surrogate RNNs and develop a linear surrogate model for the long short-term memory unit, the GILR-LSTM, that utilizes parallel linear recurrence. We extend sequence learning to new extremely long sequence regimes that were previously out of reach by successfully training a GILR-LSTM on a synthetic sequence classification task with a one million timestep dependency.
Variational Reasoning for Question Answering with Knowledge Graph
Knowledge graph (KG) is known to be helpful for the task of question answering (QA), since it provides well-structured relational information between entities, and allows one to further infer indirect facts. However, it is challenging to build QA systems which can learn to reason over knowledge graphs based on question-answer pairs alone. First, when people ask questions, their expressions are noisy (for example, typos in texts, or variations in pronunciations), which is non-trivial for the QA system to match those mentioned entities to the knowledge graph. Second, many questions require multi-hop logic reasoning over the knowledge graph to retrieve the answers. To address these challenges, we propose a novel and unified deep learning architecture, and an end-to-end variational learning algorithm which can handle noise in questions, and learn multi-hop reasoning simultaneously. Our method achieves state-of-the-art performance on a recent benchmark dataset in the literature. We also derive a series of new benchmark datasets, including questions for multi-hop reasoning, questions paraphrased by neural translation model, and questions in human voice. Our method yields very promising results on all these challenging datasets.
Linear Stochastic Approximation: Constant Step-Size and Iterate Averaging
We consider $d$-dimensional linear stochastic approximation algorithms (LSAs) with a constant step-size and the so called Polyak-Ruppert (PR) averaging of iterates. LSAs are widely applied in machine learning and reinforcement learning (RL), where the aim is to compute an appropriate $\theta_{*} \in \mathbb{R}^d$ (that is an optimum or a fixed point) using noisy data and $O(d)$ updates per iteration. In this paper, we are motivated by the problem (in RL) of policy evaluation from experience replay using the \emph{temporal difference} (TD) class of learning algorithms that are also LSAs. For LSAs with a constant step-size, and PR averaging, we provide bounds for the mean squared error (MSE) after $t$ iterations. We assume that data is \iid with finite variance (underlying distribution being $P$) and that the expected dynamics is Hurwitz. For a given LSA with PR averaging, and data distribution $P$ satisfying the said assumptions, we show that there exists a range of constant step-sizes such that its MSE decays as $O(\frac{1}{t})$. We examine the conditions under which a constant step-size can be chosen uniformly for a class of data distributions $\mathcal{P}$, and show that not all data distributions `admit' such a uniform constant step-size. We also suggest a heuristic step-size tuning algorithm to choose a constant step-size of a given LSA for a given data distribution $P$. We compare our results with related work and also discuss the implication of our results in the context of TD algorithms that are LSAs.
Pre-training Neural Networks with Human Demonstrations for Deep Reinforcement Learning
Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by using a deep neural network as its function approximator and by learning directly from raw images. A drawback of using raw images is that deep RL must learn the state feature representation from the raw images in addition to learning a policy. As a result, deep RL can require a prohibitively large amount of training time and data to reach reasonable performance, making it difficult to use deep RL in real-world applications, especially when data is expensive. In this work, we speed up training by addressing half of what deep RL is trying to solve --- learning features. Our approach is to learn some of the important features by pre-training deep RL network's hidden layers via supervised learning using a small set of human demonstrations. We empirically evaluate our approach using deep Q-network (DQN) and asynchronous advantage actor-critic (A3C) algorithms on the Atari 2600 games of Pong, Freeway, and Beamrider. Our results show that: 1) pre-training with human demonstrations in a supervised learning manner is better at discovering features relative to pre-training naively in DQN, and 2) initializing a deep RL network with a pre-trained model provides a significant improvement in training time even when pre-training from a small number of human demonstrations.
A Constrained, Weighted-L1 Minimization Approach for Joint Discovery of Heterogeneous Neural Connectivity Graphs
Determining functional brain connectivity is crucial to understanding the brain and neural differences underlying disorders such as autism. Recent studies have used Gaussian graphical models to learn brain connectivity via statistical dependencies across brain regions from neuroimaging. However, previous studies often fail to properly incorporate priors tailored to neuroscience, such as preferring shorter connections. To remedy this problem, the paper here introduces a novel, weighted-$\ell_1$, multi-task graphical model (W-SIMULE). This model elegantly incorporates a flexible prior, along with a parallelizable formulation. Additionally, W-SIMULE extends the often-used Gaussian assumption, leading to considerable performance increases. Here, applications to fMRI data show that W-SIMULE succeeds in determining functional connectivity in terms of (1) log-likelihood, (2) finding edges that differentiate groups, and (3) classifying different groups based on their connectivity, achieving 58.6\% accuracy on the ABIDE dataset. Having established W-SIMULE's effectiveness, it links four key areas to autism, all of which are consistent with the literature. Due to its elegant domain adaptivity, W-SIMULE can be readily applied to various data types to effectively estimate connectivity.
Co-training for Demographic Classification Using Deep Learning from Label Proportions
Deep learning algorithms have recently produced state-of-the-art accuracy in many classification tasks, but this success is typically dependent on access to many annotated training examples. For domains without such data, an attractive alternative is to train models with light, or distant supervision. In this paper, we introduce a deep neural network for the Learning from Label Proportion (LLP) setting, in which the training data consist of bags of unlabeled instances with associated label distributions for each bag. We introduce a new regularization layer, Batch Averager, that can be appended to the last layer of any deep neural network to convert it from supervised learning to LLP. This layer can be implemented readily with existing deep learning packages. To further support domains in which the data consist of two conditionally independent feature views (e.g. image and text), we propose a co-training algorithm that iteratively generates pseudo bags and refits the deep LLP model to improve classification accuracy. We demonstrate our models on demographic attribute classification (gender and race/ethnicity), which has many applications in social media analysis, public health, and marketing. We conduct experiments to predict demographics of Twitter users based on their tweets and profile image, without requiring any user-level annotations for training. We find that the deep LLP approach outperforms baselines for both text and image features separately. Additionally, we find that co-training algorithm improves image and text classification by 4% and 8% absolute F1, respectively. Finally, an ensemble of text and image classifiers further improves the absolute F1 measure by 4% on average.
Empower Sequence Labeling with Task-Aware Neural Language Model
Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-of-speech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models without handcrafted features. However, in many cases, it is hard to obtain sufficient annotations to train these models. In this study, we develop a novel neural framework to extract abundant knowledge hidden in raw texts to empower the sequence labeling task. Besides word-level knowledge contained in pre-trained word embeddings, character-aware neural language models are incorporated to extract character-level knowledge. Transfer learning techniques are further adopted to mediate different components and guide the language model towards the key knowledge. Comparing to previous methods, these task-specific knowledge allows us to adopt a more concise model and conduct more efficient training. Different from most transfer learning methods, the proposed framework does not rely on any additional supervision. It extracts knowledge from self-contained order information of training sequences. Extensive experiments on benchmark datasets demonstrate the effectiveness of leveraging character-level knowledge and the efficiency of co-training. For example, on the CoNLL03 NER task, model training completes in about 6 hours on a single GPU, reaching F1 score of 91.71$\pm$0.10 without using any extra annotation.
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Recent studies have highlighted the vulnerability of deep neural networks (DNNs) to adversarial examples - a visually indistinguishable adversarial image can easily be crafted to cause a well-trained model to misclassify. Existing methods for crafting adversarial examples are based on $L_2$ and $L_\infty$ distortion metrics. However, despite the fact that $L_1$ distortion accounts for the total variation and encourages sparsity in the perturbation, little has been developed for crafting $L_1$-based adversarial examples. In this paper, we formulate the process of attacking DNNs via adversarial examples as an elastic-net regularized optimization problem. Our elastic-net attacks to DNNs (EAD) feature $L_1$-oriented adversarial examples and include the state-of-the-art $L_2$ attack as a special case. Experimental results on MNIST, CIFAR10 and ImageNet show that EAD can yield a distinct set of adversarial examples with small $L_1$ distortion and attains similar attack performance to the state-of-the-art methods in different attack scenarios. More importantly, EAD leads to improved attack transferability and complements adversarial training for DNNs, suggesting novel insights on leveraging $L_1$ distortion in adversarial machine learning and security implications of DNNs.
HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks
On electronic game platforms, different payment transactions have different levels of risk. Risk is generally higher for digital goods in e-commerce. However, it differs based on product and its popularity, the offer type (packaged game, virtual currency to a game or subscription service), storefront and geography. Existing fraud policies and models make decisions independently for each transaction based on transaction attributes, payment velocities, user characteristics, and other relevant information. However, suspicious transactions may still evade detection and hence we propose a broad learning approach leveraging a graph based perspective to uncover relationships among suspicious transactions, i.e., inter-transaction dependency. Our focus is to detect suspicious transactions by capturing common fraudulent behaviors that would not be considered suspicious when being considered in isolation. In this paper, we present HitFraud that leverages heterogeneous information networks for collective fraud detection by exploring correlated and fast evolving fraudulent behaviors. First, a heterogeneous information network is designed to link entities of interest in the transaction database via different semantics. Then, graph based features are efficiently discovered from the network exploiting the concept of meta-paths, and decisions on frauds are made collectively on test instances. Experiments on real-world payment transaction data from Electronic Arts demonstrate that the prediction performance is effectively boosted by HitFraud with fast convergence where the computation of meta-path based features is largely optimized. Notably, recall can be improved up to 7.93% and F-score 4.62% compared to baselines.
Recursive Exponential Weighting for Online Non-convex Optimization
In this paper, we investigate the online non-convex optimization problem which generalizes the classic {online convex optimization problem by relaxing the convexity assumption on the cost function. For this type of problem, the classic exponential weighting online algorithm has recently been shown to attain a sub-linear regret of $O(\sqrt{T\log T})$. In this paper, we introduce a novel recursive structure to the online algorithm to define a recursive exponential weighting algorithm that attains a regret of $O(\sqrt{T})$, matching the well-known regret lower bound. To the best of our knowledge, this is the first online algorithm with provable $O(\sqrt{T})$ regret for the online non-convex optimization problem.
Asymptotic Bayesian Generalization Error in Latent Dirichlet Allocation and Stochastic Matrix Factorization
Latent Dirichlet allocation (LDA) is useful in document analysis, image processing, and many information systems; however, its generalization performance has been left unknown because it is a singular learning machine to which regular statistical theory can not be applied. Stochastic matrix factorization (SMF) is a restricted matrix factorization in which matrix factors are stochastic; the column of the matrix is in a simplex. SMF is being applied to image recognition and text mining. We can understand SMF as a statistical model by which a stochastic matrix of given data is represented by a product of two stochastic matrices, whose generalization performance has also been left unknown because of non-regularity. In this paper, by using an algebraic and geometric method, we show the analytic equivalence of LDA and SMF, both of which have the same real log canonical threshold (RLCT), resulting in that they asymptotically have the same Bayesian generalization error and the same log marginal likelihood. Moreover, we derive the upper bound of the RLCT and prove that it is smaller than the dimension of the parameter divided by two, hence the Bayesian generalization errors of them are smaller than those of regular statistical models.
Action Schema Networks: Generalised Policies with Deep Learning
In this paper, we introduce the Action Schema Network (ASNet): a neural network architecture for learning generalised policies for probabilistic planning problems. By mimicking the relational structure of planning problems, ASNets are able to adopt a weight-sharing scheme which allows the network to be applied to any problem from a given planning domain. This allows the cost of training the network to be amortised over all problems in that domain. Further, we propose a training method which balances exploration and supervised training on small problems to produce a policy which remains robust when evaluated on larger problems. In experiments, we show that ASNet's learning capability allows it to significantly outperform traditional non-learning planners in several challenging domains.
Automated Cloud Provisioning on AWS using Deep Reinforcement Learning
As the use of cloud computing continues to rise, controlling cost becomes increasingly important. Yet there is evidence that 30\% - 45\% of cloud spend is wasted. Existing tools for cloud provisioning typically rely on highly trained human experts to specify what to monitor, thresholds for triggering action, and actions. In this paper we explore the use of reinforcement learning (RL) to acquire policies to balance performance and spend, allowing humans to specify what they want as opposed to how to do it, minimizing the need for cloud expertise. Empirical results with tabular, deep, and dueling double deep Q-learning with the CloudSim simulator show the utility of RL and the relative merits of the approaches. We also demonstrate effective policy transfer learning from an extremely simple simulator to CloudSim, with the next step being transfer from CloudSim to an Amazon Web Services physical environment.
Pattern Recognition using Artificial Immune System
In this thesis, the uses of Artificial Immune Systems (AIS) in Machine learning is studded. the thesis focus on some of immune inspired algorithms such as clonal selection algorithm and artificial immune network. The effect of changing the algorithm parameter on its performance is studded. Then a new immune inspired algorithm for unsupervised classification is proposed. The new algorithm is based on clonal selection principle and named Unsupervised Clonal Selection Classification (UCSC). The new proposed algorithm is almost parameter free. The algorithm parameters are data driven and it adjusts itself to make the classification as fast as possible. The performance of UCSC is evaluated. The experiments show that the proposed UCSC algorithm has a good performance and more reliable.
Neural Network Based Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent successes of nonlinear models in machine learning, it is natural to wonder whether ex-tending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinearWFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFAand relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real-world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Generating Music Medleys via Playing Music Puzzle Games
Generating music medleys is about finding an optimal permutation of a given set of music clips. Toward this goal, we propose a self-supervised learning task, called the music puzzle game, to train neural network models to learn the sequential patterns in music. In essence, such a game requires machines to correctly sort a few multisecond music fragments. In the training stage, we learn the model by sampling multiple non-overlapping fragment pairs from the same songs and seeking to predict whether a given pair is consecutive and is in the correct chronological order. For testing, we design a number of puzzle games with different difficulty levels, the most difficult one being music medley, which requiring sorting fragments from different songs. On the basis of state-of-the-art Siamese convolutional network, we propose an improved architecture that learns to embed frame-level similarity scores computed from the input fragment pairs to a common space, where fragment pairs in the correct order can be more easily identified. Our result shows that the resulting model, dubbed as the similarity embedding network (SEN), performs better than competing models across different games, including music jigsaw puzzle, music sequencing, and music medley. Example results can be found at our project website, https://remyhuang.github.io/DJnet.
Tight Semi-Nonnegative Matrix Factorization
The nonnegative matrix factorization is a widely used, flexible matrix decomposition, finding applications in biology, image and signal processing and information retrieval, among other areas. Here we present a related matrix factorization. A multi-objective optimization problem finds conical combinations of templates that approximate a given data matrix. The templates are chosen so that as far as possible only the initial data set can be represented this way. However, the templates are not required to be nonnegative nor convex combinations of the original data.
On Early-stage Debunking Rumors on Twitter: Leveraging the Wisdom of Weak Learners
Recently a lot of progress has been made in rumor modeling and rumor detection for micro-blogging streams. However, existing automated methods do not perform very well for early rumor detection, which is crucial in many settings, e.g., in crisis situations. One reason for this is that aggregated rumor features such as propagation features, which work well on the long run, are - due to their accumulating characteristic - not very helpful in the early phase of a rumor. In this work, we present an approach for early rumor detection, which leverages Convolutional Neural Networks for learning the hidden representations of individual rumor-related tweets to gain insights on the credibility of each tweets. We then aggregate the predictions from the very beginning of a rumor to obtain the overall event credits (so-called wisdom), and finally combine it with a time series based rumor classification model. Our extensive experiments show a clearly improved classification performance within the critical very first hours of a rumor. For a better understanding, we also conduct an extensive feature evaluation that emphasized on the early stage and shows that the low-level credibility has best predictability at all phases of the rumor lifetime.
An Inversion-Based Learning Approach for Improving Impromptu Trajectory Tracking of Robots with Non-Minimum Phase Dynamics
This paper presents a learning-based approach for impromptu trajectory tracking for non-minimum phase systems, i.e., systems with unstable inverse dynamics. Inversion-based feedforward approaches are commonly used for improving tracking performance; however, these approaches are not directly applicable to non-minimum phase systems due to their inherent instability. In order to resolve the instability issue, existing methods have assumed that the system model is known and used pre-actuation or inverse approximation techniques. In this work, we propose an approach for learning a stable, approximate inverse of a non-minimum phase baseline system directly from its input-output data. Through theoretical discussions, simulations, and experiments on two different platforms, we show the stability of our proposed approach and its effectiveness for high-accuracy, impromptu tracking. Our approach also shows that including more information in the training, as is commonly assumed to be useful, does not lead to better performance but may trigger instability and impact the effectiveness of the overall approach.
A Learning and Masking Approach to Secure Learning
Deep Neural Networks (DNNs) have been shown to be vulnerable against adversarial examples, which are data points cleverly constructed to fool the classifier. Such attacks can be devastating in practice, especially as DNNs are being applied to ever increasing critical tasks like image recognition in autonomous driving. In this paper, we introduce a new perspective on the problem. We do so by first defining robustness of a classifier to adversarial exploitation. Next, we show that the problem of adversarial example generation can be posed as learning problem. We also categorize attacks in literature into high and low perturbation attacks; well-known attacks like fast-gradient sign method (FGSM) and our attack produce higher perturbation adversarial examples while the more potent but computationally inefficient Carlini-Wagner (CW) attack is low perturbation. Next, we show that the dual approach of the attack learning problem can be used as a defensive technique that is effective against high perturbation attacks. Finally, we show that a classifier masking method achieved by adding noise to the a neural network's logit output protects against low distortion attacks such as the CW attack. We also show that both our learning and masking defense can work simultaneously to protect against multiple attacks. We demonstrate the efficacy of our techniques by experimenting with the MNIST and CIFAR-10 datasets.
A Study of AI Population Dynamics with Million-agent Reinforcement Learning
We conduct an empirical study on discovering the ordered collective dynamics obtained by a population of intelligence agents, driven by million-agent reinforcement learning. Our intention is to put intelligent agents into a simulated natural context and verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-scale predator-prey world, where the laws of the world are designed by only the findings or logical equivalence that have been discovered in nature. We endow the agents with the intelligence based on deep reinforcement learning (DRL). In order to scale the population size up to millions agents, a large-scale DRL training platform with redesigned experience buffer is proposed. Our results show that the population dynamics of AI agents, driven only by each agent's individual self-interest, reveals an ordered pattern that is similar to the Lotka-Volterra model studied in population biology. We further discover the emergent behaviors of collective adaptations in studying how the agents' grouping behaviors will change with the environmental resources. Both of the two findings could be explained by the self-organization theory in nature.
Differentially Private Mixture of Generative Neural Networks
Generative models are used in a wide range of applications building on large amounts of contextually rich information. Due to possible privacy violations of the individuals whose data is used to train these models, however, publishing or sharing generative models is not always viable. In this paper, we present a novel technique for privately releasing generative models and entire high-dimensional datasets produced by these models. We model the generator distribution of the training data with a mixture of $k$ generative neural networks. These are trained together and collectively learn the generator distribution of a dataset. Data is divided into $k$ clusters, using a novel differentially private kernel $k$-means, then each cluster is given to separate generative neural networks, such as Restricted Boltzmann Machines or Variational Autoencoders, which are trained only on their own cluster using differentially private gradient descent. We evaluate our approach using the MNIST dataset, as well as call detail records and transit datasets, showing that it produces realistic synthetic samples, which can also be used to accurately compute arbitrary number of counting queries.
Normalized Direction-preserving Adam
Adaptive optimization algorithms, such as Adam and RMSprop, have shown better optimization performance than stochastic gradient descent (SGD) in some scenarios. However, recent studies show that they often lead to worse generalization performance than SGD, especially for training deep neural networks (DNNs). In this work, we identify the reasons that Adam generalizes worse than SGD, and develop a variant of Adam to eliminate the generalization gap. The proposed method, normalized direction-preserving Adam (ND-Adam), enables more precise control of the direction and step size for updating weight vectors, leading to significantly improved generalization performance. Following a similar rationale, we further improve the generalization performance in classification tasks by regularizing the softmax logits. By bridging the gap between SGD and Adam, we also hope to shed light on why certain optimization algorithms generalize better than others.
Ignoring Distractors in the Absence of Labels: Optimal Linear Projection to Remove False Positives During Anomaly Detection
In the anomaly detection setting, the native feature embedding can be a crucial source of bias. We present a technique, Feature Omission using Context in Unsupervised Settings (FOCUS) to learn a feature mapping that is invariant to changes exemplified in training sets while retaining as much descriptive power as possible. While this method could apply to many unsupervised settings, we focus on applications in anomaly detection, where little task-labeled data is available. Our algorithm requires only non-anomalous sets of data, and does not require that the contexts in the training sets match the context of the test set. By maximizing within-set variance and minimizing between-set variance, we are able to identify and remove distracting features while retaining fidelity to the descriptiveness needed at test time. In the linear case, our formulation reduces to a generalized eigenvalue problem that can be solved quickly and applied to test sets outside the context of the training sets. This technique allows us to align technical definitions of anomaly detection with human definitions through appropriate mappings of the feature space. We demonstrate that this method is able to remove uninformative parts of the feature space for the anomaly detection setting.
MOLTE: a Modular Optimal Learning Testing Environment
We address the relative paucity of empirical testing of learning algorithms (of any type) by introducing a new public-domain, Modular, Optimal Learning Testing Environment (MOLTE) for Bayesian ranking and selection problem, stochastic bandits or sequential experimental design problems. The Matlab-based simulator allows the comparison of a number of learning policies (represented as a series of .m modules) in the context of a wide range of problems (each represented in its own .m module) which makes it easy to add new algorithms and new test problems. State-of-the-art policies and various problem classes are provided in the package. The choice of problems and policies is guided through a spreadsheet-based interface. Different graphical metrics are included. MOLTE is designed to be compatible with parallel computing to scale up from local desktop to clusters and clouds. We offer MOLTE as an easy-to-use tool for the research community that will make it possible to perform much more comprehensive testing, spanning a broader selection of algorithms and test problems. We demonstrate the capabilities of MOLTE through a series of comparisons of policies on a starter library of test problems. We also address the problem of tuning and constructing priors that have been largely overlooked in optimal learning literature. We envision MOLTE as a modest spur to provide researchers an easy environment to study interesting questions involved in optimal learning.
Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network
The prediction of organic reaction outcomes is a fundamental problem in computational chemistry. Since a reaction may involve hundreds of atoms, fully exploring the space of possible transformations is intractable. The current solution utilizes reaction templates to limit the space, but it suffers from coverage and efficiency issues. In this paper, we propose a template-free approach to efficiently explore the space of product molecules by first pinpointing the reaction center -- the set of nodes and edges where graph edits occur. Since only a small number of atoms contribute to reaction center, we can directly enumerate candidate products. The generated candidates are scored by a Weisfeiler-Lehman Difference Network that models high-order interactions between changes occurring at nodes across the molecule. Our framework outperforms the top-performing template-based approach with a 10\% margin, while running orders of magnitude faster. Finally, we demonstrate that the model accuracy rivals the performance of domain experts.
Learning Unknown Markov Decision Processes: A Thompson Sampling Approach
We consider the problem of learning an unknown Markov Decision Process (MDP) that is weakly communicating in the infinite horizon setting. We propose a Thompson Sampling-based reinforcement learning algorithm with dynamic episodes (TSDE). At the beginning of each episode, the algorithm generates a sample from the posterior distribution over the unknown model parameters. It then follows the optimal stationary policy for the sampled model for the rest of the episode. The duration of each episode is dynamically determined by two stopping criteria. The first stopping criterion controls the growth rate of episode length. The second stopping criterion happens when the number of visits to any state-action pair is doubled. We establish $\tilde O(HS\sqrt{AT})$ bounds on expected regret under a Bayesian setting, where $S$ and $A$ are the sizes of the state and action spaces, $T$ is time, and $H$ is the bound of the span. This regret bound matches the best available bound for weakly communicating MDPs. Numerical results show it to perform better than existing algorithms for infinite horizon MDPs.
A Framework for Generalizing Graph-based Representation Learning Methods
Random walks are at the heart of many existing deep learning algorithms for graph data. However, such algorithms have many limitations that arise from the use of random walks, e.g., the features resulting from these methods are unable to transfer to new nodes and graphs as they are tied to node identity. In this work, we introduce the notion of attributed random walks which serves as a basis for generalizing existing methods such as DeepWalk, node2vec, and many others that leverage random walks. Our proposed framework enables these methods to be more widely applicable for both transductive and inductive learning as well as for use on graphs with attributes (if available). This is achieved by learning functions that generalize to new nodes and graphs. We show that our proposed framework is effective with an average AUC improvement of 16.1% while requiring on average 853 times less space than existing methods on a variety of graphs from several domains.
Random matrix approach for primal-dual portfolio optimization problems
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by using the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.
Subspace Clustering using Ensembles of $K$-Subspaces
Subspace clustering is the unsupervised grouping of points lying near a union of low-dimensional linear subspaces. Algorithms based directly on geometric properties of such data tend to either provide poor empirical performance, lack theoretical guarantees, or depend heavily on their initialization. We present a novel geometric approach to the subspace clustering problem that leverages ensembles of the K-subspaces (KSS) algorithm via the evidence accumulation clustering framework. Our algorithm, referred to as ensemble K-subspaces (EKSS), forms a co-association matrix whose (i,j)th entry is the number of times points i and j are clustered together by several runs of KSS with random initializations. We prove general recovery guarantees for any algorithm that forms an affinity matrix with entries close to a monotonic transformation of pairwise absolute inner products. We then show that a specific instance of EKSS results in an affinity matrix with entries of this form, and hence our proposed algorithm can provably recover subspaces under similar conditions to state-of-the-art algorithms. The finding is, to the best of our knowledge, the first recovery guarantee for evidence accumulation clustering and for KSS variants. We show on synthetic data that our method performs well in the traditionally challenging settings of subspaces with large intersection, subspaces with small principal angles, and noisy data. Finally, we evaluate our algorithm on six common benchmark datasets and show that unlike existing methods, EKSS achieves excellent empirical performance when there are both a small and large number of points per subspace.
From Plants to Landmarks: Time-invariant Plant Localization that uses Deep Pose Regression in Agricultural Fields
Agricultural robots are expected to increase yields in a sustainable way and automate precision tasks, such as weeding and plant monitoring. At the same time, they move in a continuously changing, semi-structured field environment, in which features can hardly be found and reproduced at a later time. Challenges for Lidar and visual detection systems stem from the fact that plants can be very small, overlapping and have a steadily changing appearance. Therefore, a popular way to localize vehicles with high accuracy is based on ex- pensive global navigation satellite systems and not on natural landmarks. The contribution of this work is a novel image- based plant localization technique that uses the time-invariant stem emerging point as a reference. Our approach is based on a fully convolutional neural network that learns landmark localization from RGB and NIR image input in an end-to-end manner. The network performs pose regression to generate a plant location likelihood map. Our approach allows us to cope with visual variances of plants both for different species and different growth stages. We achieve high localization accuracies as shown in detailed evaluations of a sugar beet cultivation phase. In experiments with our BoniRob we demonstrate that detections can be robustly reproduced with centimeter accuracy.
Denoising Autoencoders for Overgeneralization in Neural Networks
Despite the recent developments that allowed neural networks to achieve impressive performance on a variety of applications, these models are intrinsically affected by the problem of overgeneralization, due to their partitioning of the full input space into the fixed set of target classes used during training. Thus it is possible for novel inputs belonging to categories unknown during training or even completely unrecognizable to humans to fool the system into classifying them as one of the known classes, even with a high degree of confidence. Solving this problem may help improve the security of such systems in critical applications, and may further lead to applications in the context of open set recognition and 1-class recognition. This paper presents a novel way to compute a confidence score using denoising autoencoders and shows that such confidence score can correctly identify the regions of the input space close to the training distribution by approximately identifying its local maxima.
Interpretable Graph-Based Semi-Supervised Learning via Flows
In this paper, we consider the interpretability of the foundational Laplacian-based semi-supervised learning approaches on graphs. We introduce a novel flow-based learning framework that subsumes the foundational approaches and additionally provides a detailed, transparent, and easily understood expression of the learning process in terms of graph flows. As a result, one can visualize and interactively explore the precise subgraph along which the information from labeled nodes flows to an unlabeled node of interest. Surprisingly, the proposed framework avoids trading accuracy for interpretability, but in fact leads to improved prediction accuracy, which is supported both by theoretical considerations and empirical results. The flow-based framework guarantees the maximum principle by construction and can handle directed graphs in an out-of-the-box manner.
On Multi-Relational Link Prediction with Bilinear Models
We study bilinear embedding models for the task of multi-relational link prediction and knowledge graph completion. Bilinear models belong to the most basic models for this task, they are comparably efficient to train and use, and they can provide good prediction performance. The main goal of this paper is to explore the expressiveness of and the connections between various bilinear models proposed in the literature. In particular, a substantial number of models can be represented as bilinear models with certain additional constraints enforced on the embeddings. We explore whether or not these constraints lead to universal models, which can in principle represent every set of relations, and whether or not there are subsumption relationships between various models. We report results of an independent experimental study that evaluates recent bilinear models in a common experimental setup. Finally, we provide evidence that relation-level ensembles of multiple bilinear models can achieve state-of-the art prediction performance.
Informed Non-convex Robust Principal Component Analysis with Features
We revisit the problem of robust principal component analysis with features acting as prior side information. To this aim, a novel, elegant, non-convex optimization approach is proposed to decompose a given observation matrix into a low-rank core and the corresponding sparse residual. Rigorous theoretical analysis of the proposed algorithm results in exact recovery guarantees with low computational complexity. Aptly designed synthetic experiments demonstrate that our method is the first to wholly harness the power of non-convexity over convexity in terms of both recoverability and speed. That is, the proposed non-convex approach is more accurate and faster compared to the best available algorithms for the problem under study. Two real-world applications, namely image classification and face denoising further exemplify the practical superiority of the proposed method.
Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.
Control-Oriented Learning on the Fly
This paper focuses on developing a strategy for control of systems whose dynamics are almost entirely unknown. This situation arises naturally in a scenario where a system undergoes a critical failure. In that case, it is imperative to retain the ability to satisfy basic control objectives in order to avert an imminent catastrophe. A prime example of such an objective is the reach-avoid problem, where a system needs to move to a certain state in a constrained state space. To deal with limitations on our knowledge of system dynamics, we develop a theory of myopic control. The primary goal of myopic control is to, at any given time, optimize the current direction of the system trajectory, given solely the information obtained about the system until that time. We propose an algorithm that uses small perturbations in the control effort to learn local dynamics while simultaneously ensuring that the system moves in a direction that appears to be nearly optimal, and provide hard bounds for its suboptimality. We additionally verify the usefulness of the algorithm on a simulation of a damaged aircraft seeking to avoid a crash, as well as on an example of a Van der Pol oscillator.
Convolutional Networks for Spherical Signals
The success of convolutional networks in learning problems involving planar signals such as images is due to their ability to exploit the translation symmetry of the data distribution through weight sharing. Many areas of science and egineering deal with signals with other symmetries, such as rotation invariant data on the sphere. Examples include climate and weather science, astrophysics, and chemistry. In this paper we present spherical convolutional networks. These networks use convolutions on the sphere and rotation group, which results in rotational weight sharing and rotation equivariance. Using a synthetic spherical MNIST dataset, we show that spherical convolutional networks are very effective at dealing with rotationally invariant classification problems.
One-Shot Visual Imitation Learning via Meta-Learning
In order for a robot to be a generalist that can perform a wide range of jobs, it must be able to acquire a wide variety of skills quickly and efficiently in complex unstructured environments. High-capacity models such as deep neural networks can enable a robot to represent complex skills, but learning each skill from scratch then becomes infeasible. In this work, we present a meta-imitation learning method that enables a robot to learn how to learn more efficiently, allowing it to acquire new skills from just a single demonstration. Unlike prior methods for one-shot imitation, our method can scale to raw pixel inputs and requires data from significantly fewer prior tasks for effective learning of new skills. Our experiments on both simulated and real robot platforms demonstrate the ability to learn new tasks, end-to-end, from a single visual demonstration.
Shared Learning : Enhancing Reinforcement in $Q$-Ensembles
Deep Reinforcement Learning has been able to achieve amazing successes in a variety of domains from video games to continuous control by trying to maximize the cumulative reward. However, most of these successes rely on algorithms that require a large amount of data to train in order to obtain results on par with human-level performance. This is not feasible if we are to deploy these systems on real world tasks and hence there has been an increased thrust in exploring data efficient algorithms. To this end, we propose the Shared Learning framework aimed at making $Q$-ensemble algorithms data-efficient. For achieving this, we look into some principles of transfer learning which aim to study the benefits of information exchange across tasks in reinforcement learning and adapt transfer to learning our value function estimates in a novel manner. In this paper, we consider the special case of transfer between the value function estimates in the $Q$-ensemble architecture of BootstrappedDQN. We further empirically demonstrate how our proposed framework can help in speeding up the learning process in $Q$-ensembles with minimum computational overhead on a suite of Atari 2600 Games.
Dynamic Pricing in Competitive Markets
Dynamic pricing of goods in a competitive environment to maximize revenue is a natural objective and has been a subject of research over the years. In this paper, we focus on a class of markets exhibiting the substitutes property with sellers having divisible and replenishable goods. Depending on the prices chosen, each seller observes a certain demand which is satisfied subject to the supply constraint. The goal of the seller is to price her good dynamically so as to maximize her revenue. For the static market case, when the consumer utility satisfies the Constant Elasticity of Substitution (CES) property, we give a $O(\sqrt{T})$ regret bound on the maximum loss in revenue of a seller using a modified version of the celebrated Online Gradient Descent Algorithm by Zinkevich. For a more specialized set of consumer utilities satisfying the iso-elasticity condition, we show that when each seller uses a regret-minimizing algorithm satisfying a certain technical property, the regret with respect to $(1-\alpha)$ times optimal revenue is bounded as $O(T^{1/4} / \sqrt{\alpha})$. We extend this result to markets with dynamic supplies and prove a corresponding dynamic regret bound, whose guarantee deteriorates smoothly with the inherent instability of the market. As a side-result, we also extend the previously known convergence results of these algorithms in a general game to the dynamic setting.
Two-sample Statistics Based on Anisotropic Kernels
The paper introduces a new kernel-based Maximum Mean Discrepancy (MMD) statistic for measuring the distance between two distributions given finitely-many multivariate samples. When the distributions are locally low-dimensional, the proposed test can be made more powerful to distinguish certain alternatives by incorporating local covariance matrices and constructing an anisotropic kernel. The kernel matrix is asymmetric; it computes the affinity between $n$ data points and a set of $n_R$ reference points, where $n_R$ can be drastically smaller than $n$. While the proposed statistic can be viewed as a special class of Reproducing Kernel Hilbert Space MMD, the consistency of the test is proved, under mild assumptions of the kernel, as long as $\|p-q\| \sqrt{n} \to \infty $, and a finite-sample lower bound of the testing power is obtained. Applications to flow cytometry and diffusion MRI datasets are demonstrated, which motivate the proposed approach to compare distributions.
Learning Intrinsic Sparse Structures within Long Short-Term Memory
Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden states, cell states and outputs. Independently reducing the sizes of basic structures can result in inconsistent dimensions among them, and consequently, end up with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously decrease the sizes of all basic structures by one and thereby always maintain the dimension consistency. By learning ISS within LSTM units, the obtained LSTMs remain regular while having much smaller basic structures. Based on group Lasso regularization, our method achieves 10.59x speedup without losing any perplexity of a language modeling of Penn TreeBank dataset. It is also successfully evaluated through a compact model with only 2.69M weights for machine Question Answering of SQuAD dataset. Our approach is successfully extended to non- LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is publicly available at https://github.com/wenwei202/iss-rnns
Self-Guiding Multimodal LSTM - when we do not have a perfect training dataset for image captioning
In this paper, a self-guiding multimodal LSTM (sg-LSTM) image captioning model is proposed to handle uncontrolled imbalanced real-world image-sentence dataset. We collect FlickrNYC dataset from Flickr as our testbed with 306,165 images and the original text descriptions uploaded by the users are utilized as the ground truth for training. Descriptions in FlickrNYC dataset vary dramatically ranging from short term-descriptions to long paragraph-descriptions and can describe any visual aspects, or even refer to objects that are not depicted. To deal with the imbalanced and noisy situation and to fully explore the dataset itself, we propose a novel guiding textual feature extracted utilizing a multimodal LSTM (m-LSTM) model. Training of m-LSTM is based on the portion of data in which the image content and the corresponding descriptions are strongly bonded. Afterwards, during the training of sg-LSTM on the rest training data, this guiding information serves as additional input to the network along with the image representations and the ground-truth descriptions. By integrating these input components into a multimodal block, we aim to form a training scheme with the textual information tightly coupled with the image content. The experimental results demonstrate that the proposed sg-LSTM model outperforms the traditional state-of-the-art multimodal RNN captioning framework in successfully describing the key components of the input images.
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Semi-supervised learning is attracting increasing attention due to the fact that datasets of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particular, has demonstrated the benefits of semi-supervised learning. The majority of existing semi-supervised VAEs utilize a classifier to exploit label information, where the parameters of the classifier are introduced to the VAE. Given the limited labeled data, learning the parameters for the classifiers may not be an optimal solution for exploiting label information. Therefore, in this paper, we develop a novel approach for semi-supervised VAE without classifier. Specifically, we propose a new model called Semi-supervised Disentangled VAE (SDVAE), which encodes the input data into disentangled representation and non-interpretable representation, then the category information is directly utilized to regularize the disentangled representation via the equality constraint. To further enhance the feature learning ability of the proposed VAE, we incorporate reinforcement learning to relieve the lack of data. The dynamic framework is capable of dealing with both image and text data with its corresponding encoder and decoder networks. Extensive experiments on image and text datasets demonstrate the effectiveness of the proposed framework.
Learning Compact Geometric Features
We present an approach to learning features that represent the local geometry around a point in an unstructured point cloud. Such features play a central role in geometric registration, which supports diverse applications in robotics and 3D vision. Current state-of-the-art local features for unstructured point clouds have been manually crafted and none combines the desirable properties of precision, compactness, and robustness. We show that features with these properties can be learned from data, by optimizing deep networks that map high-dimensional histograms into low-dimensional Euclidean spaces. The presented approach yields a family of features, parameterized by dimension, that are both more compact and more accurate than existing descriptors.
Accelerating SGD for Distributed Deep-Learning Using Approximated Hessian Matrix
We introduce a novel method to compute a rank $m$ approximation of the inverse of the Hessian matrix in the distributed regime. By leveraging the differences in gradients and parameters of multiple Workers, we are able to efficiently implement a distributed approximation of the Newton-Raphson method. We also present preliminary results which underline advantages and challenges of second-order methods for large stochastic optimization problems. In particular, our work suggests that novel strategies for combining gradients provide further information on the loss surface.
Shapechanger: Environments for Transfer Learning
We present Shapechanger, a library for transfer reinforcement learning specifically designed for robotic tasks. We consider three types of knowledge transfer---from simulation to simulation, from simulation to real, and from real to real---and a wide range of tasks with continuous states and actions. Shapechanger is under active development and open-sourced at: https://github.com/seba-1511/shapechanger/.
Multi-Label Zero-Shot Human Action Recognition via Joint Latent Ranking Embedding
Human action recognition refers to automatic recognizing human actions from a video clip. In reality, there often exist multiple human actions in a video stream. Such a video stream is often weakly-annotated with a set of relevant human action labels at a global level rather than assigning each label to a specific video episode corresponding to a single action, which leads to a multi-label learning problem. Furthermore, there are many meaningful human actions in reality but it would be extremely difficult to collect/annotate video clips regarding all of various human actions, which leads to a zero-shot learning scenario. To the best of our knowledge, there is no work that has addressed all the above issues together in human action recognition. In this paper, we formulate a real-world human action recognition task as a multi-label zero-shot learning problem and propose a framework to tackle this problem in a holistic way. Our framework holistically tackles the issue of unknown temporal boundaries between different actions for multi-label learning and exploits the side information regarding the semantic relationship between different human actions for knowledge transfer. Consequently, our framework leads to a joint latent ranking embedding for multi-label zero-shot human action recognition. A novel neural architecture of two component models and an alternate learning algorithm are proposed to carry out the joint latent ranking embedding learning. Thus, multi-label zero-shot recognition is done by measuring relatedness scores of action labels to a test video clip in the joint latent visual and semantic embedding spaces. We evaluate our framework with different settings, including a novel data split scheme designed especially for evaluating multi-label zero-shot learning, on two datasets: Breakfast and Charades. The experimental results demonstrate the effectiveness of our framework.
Trend Detection based Regret Minimization for Bandit Problems
We study a variation of the classical multi-armed bandits problem. In this problem, the learner has to make a sequence of decisions, picking from a fixed set of choices. In each round, she receives as feedback only the loss incurred from the chosen action. Conventionally, this problem has been studied when losses of the actions are drawn from an unknown distribution or when they are adversarial. In this paper, we study this problem when the losses of the actions also satisfy certain structural properties, and especially, do show a trend structure. When this is true, we show that using \textit{trend detection}, we can achieve regret of order $\tilde{O} (N \sqrt{TK})$ with respect to a switching strategy for the version of the problem where a single action is chosen in each round and $\tilde{O} (Nm \sqrt{TK})$ when $m$ actions are chosen each round. This guarantee is a significant improvement over the conventional benchmark. Our approach can, as a framework, be applied in combination with various well-known bandit algorithms, like Exp3. For both versions of the problem, we give regret guarantees also for the \textit{anytime} setting, i.e. when the length of the choice-sequence is not known in advance. Finally, we pinpoint the advantages of our method by comparing it to some well-known other strategies.
LSTM Fully Convolutional Networks for Time Series Classification
Fully convolutional neural networks (FCN) have been shown to achieve state-of-the-art performance on the task of classifying time series sequences. We propose the augmentation of fully convolutional networks with long short term memory recurrent neural network (LSTM RNN) sub-modules for time series classification. Our proposed models significantly enhance the performance of fully convolutional networks with a nominal increase in model size and require minimal preprocessing of the dataset. The proposed Long Short Term Memory Fully Convolutional Network (LSTM-FCN) achieves state-of-the-art performance compared to others. We also explore the usage of attention mechanism to improve time series classification with the Attention Long Short Term Memory Fully Convolutional Network (ALSTM-FCN). Utilization of the attention mechanism allows one to visualize the decision process of the LSTM cell. Furthermore, we propose fine-tuning as a method to enhance the performance of trained models. An overall analysis of the performance of our model is provided and compared to other techniques.
A Spectral Method for Activity Shaping in Continuous-Time Information Cascades
Information Cascades Model captures dynamical properties of user activity in a social network. In this work, we develop a novel framework for activity shaping under the Continuous-Time Information Cascades Model which allows the administrator for local control actions by allocating targeted resources that can alter the spread of the process. Our framework employs the optimization of the spectral radius of the Hazard matrix, a quantity that has been shown to drive the maximum influence in a network, while enjoying a simple convex relaxation when used to minimize the influence of the cascade. In addition, use-cases such as quarantine and node immunization are discussed to highlight the generality of the proposed activity shaping framework. Finally, we present the NetShape influence minimization method which is compared favorably to baseline and state-of-the-art approaches through simulations on real social networks.
A Generic Framework for Interesting Subspace Cluster Detection in Multi-attributed Networks
Detection of interesting (e.g., coherent or anomalous) clusters has been studied extensively on plain or univariate networks, with various applications. Recently, algorithms have been extended to networks with multiple attributes for each node in the real-world. In a multi-attributed network, often, a cluster of nodes is only interesting for a subset (subspace) of attributes, and this type of clusters is called subspace clusters. However, in the current literature, few methods are capable of detecting subspace clusters, which involves concurrent feature selection and network cluster detection. These relevant methods are mostly heuristic-driven and customized for specific application scenarios. In this work, we present a generic and theoretical framework for detection of interesting subspace clusters in large multi-attributed networks. Specifically, we propose a subspace graph-structured matching pursuit algorithm, namely, SG-Pursuit, to address a broad class of such problems for different score functions (e.g., coherence or anomalous functions) and topology constraints (e.g., connected subgraphs and dense subgraphs). We prove that our algorithm 1) runs in nearly-linear time on the network size and the total number of attributes and 2) enjoys rigorous guarantees (geometrical convergence rate and tight error bound) analogous to those of the state-of-the-art algorithms for sparse feature selection problems and subgraph detection problems. As a case study, we specialize SG-Pursuit to optimize a number of well-known score functions for two typical tasks, including detection of coherent dense and anomalous connected subspace clusters in real-world networks. Empirical evidence demonstrates that our proposed generic algorithm SG-Pursuit performs superior over state-of-the-art methods that are designed specifically for these two tasks.
Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks
Learning to detect fraud in large-scale accounting data is one of the long-standing challenges in financial statement audits or fraud investigations. Nowadays, the majority of applied techniques refer to handcrafted rules derived from known fraud scenarios. While fairly successful, these rules exhibit the drawback that they often fail to generalize beyond known fraud scenarios and fraudsters gradually find ways to circumvent them. To overcome this disadvantage and inspired by the recent success of deep learning we propose the application of deep autoencoder neural networks to detect anomalous journal entries. We demonstrate that the trained network's reconstruction error obtainable for a journal entry and regularized by the entry's individual attribute probabilities can be interpreted as a highly adaptive anomaly assessment. Experiments on two real-world datasets of journal entries, show the effectiveness of the approach resulting in high f1-scores of 32.93 (dataset A) and 16.95 (dataset B) and less false positive alerts compared to state of the art baseline methods. Initial feedback received by chartered accountants and fraud examiners underpinned the quality of the approach in capturing highly relevant accounting anomalies.
Supervising Unsupervised Learning
We introduce a framework to leverage knowledge acquired from a repository of (heterogeneous) supervised datasets to new unsupervised datasets. Our perspective avoids the subjectivity inherent in unsupervised learning by reducing it to supervised learning, and provides a principled way to evaluate unsupervised algorithms. We demonstrate the versatility of our framework via simple agnostic bounds on unsupervised problems. In the context of clustering, our approach helps choose the number of clusters and the clustering algorithm, remove the outliers, and provably circumvent the Kleinberg's impossibility result. Experimental results across hundreds of problems demonstrate improved performance on unsupervised data with simple algorithms, despite the fact that our problems come from heterogeneous domains. Additionally, our framework lets us leverage deep networks to learn common features from many such small datasets, and perform zero shot learning.
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
We study the necessary and sufficient complexity of ReLU neural networks---in terms of depth and number of weights---which is required for approximating classifier functions in $L^2$. As a model class, we consider the set $\mathcal{E}^\beta (\mathbb R^d)$ of possibly discontinuous piecewise $C^\beta$ functions $f : [-1/2, 1/2]^d \to \mathbb R$, where the different smooth regions of $f$ are separated by $C^\beta$ hypersurfaces. For dimension $d \geq 2$, regularity $\beta > 0$, and accuracy $\varepsilon > 0$, we construct artificial neural networks with ReLU activation function that approximate functions from $\mathcal{E}^\beta(\mathbb R^d)$ up to $L^2$ error of $\varepsilon$. The constructed networks have a fixed number of layers, depending only on $d$ and $\beta$, and they have $O(\varepsilon^{-2(d-1)/\beta})$ many nonzero weights, which we prove to be optimal. In addition to the optimality in terms of the number of weights, we show that in order to achieve the optimal approximation rate, one needs ReLU networks of a certain depth. Precisely, for piecewise $C^\beta(\mathbb R^d)$ functions, this minimal depth is given---up to a multiplicative constant---by $\beta/d$. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions. Finally, we analyze approximation in high-dimensional spaces where the function $f$ to be approximated can be factorized into a smooth dimension reducing feature map $\tau$ and classifier function $g$---defined on a low-dimensional feature space---as $f = g \circ \tau$. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension.
Dynamic Capacity Estimation in Hopfield Networks
Understanding the memory capacity of neural networks remains a challenging problem in implementing artificial intelligence systems. In this paper, we address the notion of capacity with respect to Hopfield networks and propose a dynamic approach to monitoring a network's capacity. We define our understanding of capacity as the maximum number of stored patterns which can be retrieved when probed by the stored patterns. Prior work in this area has presented static expressions dependent on neuron count $N$, forcing network designers to assume worst-case input characteristics for bias and correlation when setting the capacity of the network. Instead, our model operates simultaneously with the learning Hopfield network and concludes on a capacity estimate based on the patterns which were stored. By continuously updating the crosstalk associated with the stored patterns, our model guards the network from overwriting its memory traces and exceeding its capacity. We simulate our model using artificially generated random patterns, which can be set to a desired bias and correlation, and observe capacity estimates between 93% and 97% accurate. As a result, our model doubles the memory efficiency of Hopfield networks in comparison to the static and worst-case capacity estimate while minimizing the risk of lost patterns.
Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning
In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 different attack scenarios. We find that our DNN generates fewer false positives than our one-class SVM while our SVM detects slightly more anomalies. Overall, our DNN has a slightly better F measure than our SVM. We discuss the characteristics of the DNN and one-class SVM used in this experiment, and compare the advantages and disadvantages of the two methods.
Supervised and Unsupervised Speech Enhancement Using Nonnegative Matrix Factorization
Reducing the interference noise in a monaural noisy speech signal has been a challenging task for many years. Compared to traditional unsupervised speech enhancement methods, e.g., Wiener filtering, supervised approaches, such as algorithms based on hidden Markov models (HMM), lead to higher-quality enhanced speech signals. However, the main practical difficulty of these approaches is that for each noise type a model is required to be trained a priori. In this paper, we investigate a new class of supervised speech denoising algorithms using nonnegative matrix factorization (NMF). We propose a novel speech enhancement method that is based on a Bayesian formulation of NMF (BNMF). To circumvent the mismatch problem between the training and testing stages, we propose two solutions. First, we use an HMM in combination with BNMF (BNMF-HMM) to derive a minimum mean square error (MMSE) estimator for the speech signal with no information about the underlying noise type. Second, we suggest a scheme to learn the required noise BNMF model online, which is then used to develop an unsupervised speech enhancement system. Extensive experiments are carried out to investigate the performance of the proposed methods under different conditions. Moreover, we compare the performance of the developed algorithms with state-of-the-art speech enhancement schemes using various objective measures. Our simulations show that the proposed BNMF-based methods outperform the competing algorithms substantially.
Road Friction Estimation for Connected Vehicles using Supervised Machine Learning
In this paper, the problem of road friction prediction from a fleet of connected vehicles is investigated. A framework is proposed to predict the road friction level using both historical friction data from the connected cars and data from weather stations, and comparative results from different methods are presented. The problem is formulated as a classification task where the available data is used to train three machine learning models including logistic regression, support vector machine, and neural networks to predict the friction class (slippery or non-slippery) in the future for specific road segments. In addition to the friction values, which are measured by moving vehicles, additional parameters such as humidity, temperature, and rainfall are used to obtain a set of descriptive feature vectors as input to the classification methods. The proposed prediction models are evaluated for different prediction horizons (0 to 120 minutes in the future) where the evaluation shows that the neural networks method leads to more stable results in different conditions.
The Uncertainty Bellman Equation and Exploration
We consider the exploration/exploitation problem in reinforcement learning. For exploitation, it is well known that the Bellman equation connects the value at any time-step to the expected value at subsequent time-steps. In this paper we consider a similar \textit{uncertainty} Bellman equation (UBE), which connects the uncertainty at any time-step to the expected uncertainties at subsequent time-steps, thereby extending the potential exploratory benefit of a policy beyond individual time-steps. We prove that the unique fixed point of the UBE yields an upper bound on the variance of the posterior distribution of the Q-values induced by any policy. This bound can be much tighter than traditional count-based bonuses that compound standard deviation rather than variance. Importantly, and unlike several existing approaches to optimism, this method scales naturally to large systems with complex generalization. Substituting our UBE-exploration strategy for $\epsilon$-greedy improves DQN performance on 51 out of 57 games in the Atari suite.
Multi-Agent Distributed Lifelong Learning for Collective Knowledge Acquisition
Lifelong machine learning methods acquire knowledge over a series of consecutive tasks, continually building upon their experience. Current lifelong learning algorithms rely upon a single learning agent that has centralized access to all data. In this paper, we extend the idea of lifelong learning from a single agent to a network of multiple agents that collectively learn a series of tasks. Each agent faces some (potentially unique) set of tasks; the key idea is that knowledge learned from these tasks may benefit other agents trying to learn different (but related) tasks. Our Collective Lifelong Learning Algorithm (CoLLA) provides an efficient way for a network of agents to share their learned knowledge in a distributed and decentralized manner, while preserving the privacy of the locally observed data. Note that a decentralized scheme is a subclass of distributed algorithms where a central server does not exist and in addition to data, computations are also distributed among the agents. We provide theoretical guarantees for robust performance of the algorithm and empirically demonstrate that CoLLA outperforms existing approaches for distributed multi-task learning on a variety of data sets.
Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks
We present a technique for efficiently synthesizing images of atmospheric clouds using a combination of Monte Carlo integration and neural networks. The intricacies of Lorenz-Mie scattering and the high albedo of cloud-forming aerosols make rendering of clouds---e.g. the characteristic silverlining and the "whiteness" of the inner body---challenging for methods based solely on Monte Carlo integration or diffusion theory. We approach the problem differently. Instead of simulating all light transport during rendering, we pre-learn the spatial and directional distribution of radiant flux from tens of cloud exemplars. To render a new scene, we sample visible points of the cloud and, for each, extract a hierarchical 3D descriptor of the cloud geometry with respect to the shading location and the light source. The descriptor is input to a deep neural network that predicts the radiance function for each shading configuration. We make the key observation that progressively feeding the hierarchical descriptor into the network enhances the network's ability to learn faster and predict with high accuracy while using few coefficients. We also employ a block design with residual connections to further improve performance. A GPU implementation of our method synthesizes images of clouds that are nearly indistinguishable from the reference solution within seconds interactively. Our method thus represents a viable solution for applications such as cloud design and, thanks to its temporal stability, also for high-quality production of animated content.
Grade Prediction with Temporal Course-wise Influence
There is a critical need to develop new educational technology applications that analyze the data collected by universities to ensure that students graduate in a timely fashion (4 to 6 years); and they are well prepared for jobs in their respective fields of study. In this paper, we present a novel approach for analyzing historical educational records from a large, public university to perform next-term grade prediction; i.e., to estimate the grades that a student will get in a course that he/she will enroll in the next term. Accurate next-term grade prediction holds the promise for better student degree planning, personalized advising and automated interventions to ensure that students stay on track in their chosen degree program and graduate on time. We present a factorization-based approach called Matrix Factorization with Temporal Course-wise Influence that incorporates course-wise influence effects and temporal effects for grade prediction. In this model, students and courses are represented in a latent "knowledge" space. The grade of a student on a course is modeled as the similarity of their latent representation in the "knowledge" space. Course-wise influence is considered as an additional factor in the grade prediction. Our experimental results show that the proposed method outperforms several baseline approaches and infer meaningful patterns between pairs of courses within academic programs.
Learning Sampling Distributions for Robot Motion Planning
A defining feature of sampling-based motion planning is the reliance on an implicit representation of the state space, which is enabled by a set of probing samples. Traditionally, these samples are drawn either probabilistically or deterministically to uniformly cover the state space. Yet, the motion of many robotic systems is often restricted to "small" regions of the state space, due to, for example, differential constraints or collision-avoidance constraints. To accelerate the planning process, it is thus desirable to devise non-uniform sampling strategies that favor sampling in those regions where an optimal solution might lie. This paper proposes a methodology for non-uniform sampling, whereby a sampling distribution is learned from demonstrations, and then used to bias sampling. The sampling distribution is computed through a conditional variational autoencoder, allowing sample generation from the latent space conditioned on the specific planning problem. This methodology is general, can be used in combination with any sampling-based planner, and can effectively exploit the underlying structure of a planning problem while maintaining the theoretical guarantees of sampling-based approaches. Specifically, on several planning problems, the proposed methodology is shown to effectively learn representations for the relevant regions of the state space, resulting in an order of magnitude improvement in terms of success rate and convergence to the optimal cost.
Subset Labeled LDA for Large-Scale Multi-Label Classification
Labeled Latent Dirichlet Allocation (LLDA) is an extension of the standard unsupervised Latent Dirichlet Allocation (LDA) algorithm, to address multi-label learning tasks. Previous work has shown it to perform in par with other state-of-the-art multi-label methods. Nonetheless, with increasing label sets sizes LLDA encounters scalability issues. In this work, we introduce Subset LLDA, a simple variant of the standard LLDA algorithm, that not only can effectively scale up to problems with hundreds of thousands of labels but also improves over the LLDA state-of-the-art. We conduct extensive experiments on eight data sets, with label sets sizes ranging from hundreds to hundreds of thousands, comparing our proposed algorithm with the previously proposed LLDA algorithms (Prior--LDA, Dep--LDA), as well as the state of the art in extreme multi-label classification. The results show a steady advantage of our method over the other LLDA algorithms and competitive results compared to the extreme multi-label classification algorithms.
A statistical interpretation of spectral embedding: the generalised random dot product graph
Spectral embedding is a procedure which can be used to obtain vector representations of the nodes of a graph. This paper proposes a generalisation of the latent position network model known as the random dot product graph, to allow interpretation of those vector representations as latent position estimates. The generalisation is needed to model heterophilic connectivity (e.g., `opposites attract') and to cope with negative eigenvalues more generally. We show that, whether the adjacency or normalised Laplacian matrix is used, spectral embedding produces uniformly consistent latent position estimates with asymptotically Gaussian error (up to identifiability). The standard and mixed membership stochastic block models are special cases in which the latent positions take only $K$ distinct vector values, representing communities, or live in the $(K-1)$-simplex with those vertices, respectively. Under the stochastic block model, our theory suggests spectral clustering using a Gaussian mixture model (rather than $K$-means) and, under mixed membership, fitting the minimum volume enclosing simplex, existing recommendations previously only supported under non-negative-definite assumptions. Empirical improvements in link prediction (over the random dot product graph), and the potential to uncover richer latent structure (than posited under the standard or mixed membership stochastic block models) are demonstrated in a cyber-security example.
DeepLung: 3D Deep Convolutional Nets for Automated Pulmonary Nodule Detection and Classification
In this work, we present a fully automated lung CT cancer diagnosis system, DeepLung. DeepLung contains two parts, nodule detection and classification. Considering the 3D nature of lung CT data, two 3D networks are designed for the nodule detection and classification respectively. Specifically, a 3D Faster R-CNN is designed for nodule detection with a U-net-like encoder-decoder structure to effectively learn nodule features. For nodule classification, gradient boosting machine (GBM) with 3D dual path network (DPN) features is proposed. The nodule classification subnetwork is validated on a public dataset from LIDC-IDRI, on which it achieves better performance than state-of-the-art approaches, and surpasses the average performance of four experienced doctors. For the DeepLung system, candidate nodules are detected first by the nodule detection subnetwork, and nodule diagnosis is conducted by the classification subnetwork. Extensive experimental results demonstrate the DeepLung is comparable to the experienced doctors both for the nodule-level and patient-level diagnosis on the LIDC-IDRI dataset.
Generating Compact Tree Ensembles via Annealing
Tree ensembles are flexible predictive models that can capture relevant variables and to some extent their interactions in a compact and interpretable manner. Most algorithms for obtaining tree ensembles are based on versions of boosting or Random Forest. Previous work showed that boosting algorithms exhibit a cyclic behavior of selecting the same tree again and again due to the way the loss is optimized. At the same time, Random Forest is not based on loss optimization and obtains a more complex and less interpretable model. In this paper we present a novel method for obtaining compact tree ensembles by growing a large pool of trees in parallel with many independent boosting threads and then selecting a small subset and updating their leaf weights by loss optimization. We allow for the trees in the initial pool to have different depths which further helps with generalization. Experiments on real datasets show that the obtained model has usually a smaller loss than boosting, which is also reflected in a lower misclassification error on the test set.
Deep Automated Multi-task Learning
Multi-task learning (MTL) has recently contributed to learning better representations in service of various NLP tasks. MTL aims at improving the performance of a primary task, by jointly training on a secondary task. This paper introduces automated tasks, which exploit the sequential nature of the input data, as secondary tasks in an MTL model. We explore next word prediction, next character prediction, and missing word completion as potential automated tasks. Our results show that training on a primary task in parallel with a secondary automated task improves both the convergence speed and accuracy for the primary task. We suggest two methods for augmenting an existing network with automated tasks and establish better performance in topic prediction, sentiment analysis, and hashtag recommendation. Finally, we show that the MTL models can perform well on datasets that are small and colloquial by nature.
Speech Dereverberation Using Nonnegative Convolutive Transfer Function and Spectro temporal Modeling
This paper presents two single channel speech dereverberation methods to enhance the quality of speech signals that have been recorded in an enclosed space. For both methods, the room acoustics are modeled using a nonnegative approximation of the convolutive transfer function (NCTF), and to additionally exploit the spectral properties of the speech signal, such as the low rank nature of the speech spectrogram, the speech spectrogram is modeled using nonnegative matrix factorization (NMF). Two methods are described to combine the NCTF and NMF models. In the first method, referred to as the integrated method, a cost function is constructed by directly integrating the speech NMF model into the NCTF model, while in the second method, referred to as the weighted method, the NCTF and NMF based cost functions are weighted and summed. Efficient update rules are derived to solve both optimization problems. In addition, an extension of the integrated method is presented, which exploits the temporal dependencies of the speech signal. Several experiments are performed on reverberant speech signals with and without background noise, where the integrated method yields a considerably higher speech quality than the baseline NCTF method and a state of the art spectral enhancement method. Moreover, the experimental results indicate that the weighted method can even lead to a better performance in terms of instrumental quality measures, but that the optimal weighting parameter depends on the room acoustics and the utilized NMF model. Modeling the temporal dependencies in the integrated method was found to be useful only for highly reverberant conditions.
Nonnegative HMM for Babble Noise Derived from Speech HMM: Application to Speech Enhancement
Deriving a good model for multitalker babble noise can facilitate different speech processing algorithms, e.g. noise reduction, to reduce the so-called cocktail party difficulty. In the available systems, the fact that the babble waveform is generated as a sum of N different speech waveforms is not exploited explicitly. In this paper, first we develop a gamma hidden Markov model for power spectra of the speech signal, and then formulate it as a sparse nonnegative matrix factorization (NMF). Second, the sparse NMF is extended by relaxing the sparsity constraint, and a novel model for babble noise (gamma nonnegative HMM) is proposed in which the babble basis matrix is the same as the speech basis matrix, and only the activation factors (weights) of the basis vectors are different for the two signals over time. Finally, a noise reduction algorithm is proposed using the derived speech and babble models. All of the stationary model parameters are estimated using the expectation-maximization (EM) algorithm, whereas the time-varying parameters, i.e. the gain parameters of speech and babble signals, are estimated using a recursive EM algorithm. The objective and subjective listening evaluations show that the proposed babble model and the final noise reduction algorithm significantly outperform the conventional methods.
MultiNet: Multi-Modal Multi-Task Learning for Autonomous Driving
Autonomous driving requires operation in different behavioral modes ranging from lane following and intersection crossing to turning and stopping. However, most existing deep learning approaches to autonomous driving do not consider the behavioral mode in the training strategy. This paper describes a technique for learning multiple distinct behavioral modes in a single deep neural network through the use of multi-modal multi-task learning. We study the effectiveness of this approach, denoted MultiNet, using self-driving model cars for driving in unstructured environments such as sidewalks and unpaved roads. Using labeled data from over one hundred hours of driving our fleet of 1/10th scale model cars, we trained different neural networks to predict the steering angle and driving speed of the vehicle in different behavioral modes. We show that in each case, MultiNet networks outperform networks trained on individual modes while using a fraction of the total number of parameters.
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification
Deep neural networks (DNNs) have transformed several artificial intelligence research areas including computer vision, speech recognition, and natural language processing. However, recent studies demonstrated that DNNs are vulnerable to adversarial manipulations at testing time. Specifically, suppose we have a testing example, whose label can be correctly predicted by a DNN classifier. An attacker can add a small carefully crafted noise to the testing example such that the DNN classifier predicts an incorrect label, where the crafted testing example is called adversarial example. Such attacks are called evasion attacks. Evasion attacks are one of the biggest challenges for deploying DNNs in safety and security critical applications such as self-driving cars. In this work, we develop new methods to defend against evasion attacks. Our key observation is that adversarial examples are close to the classification boundary. Therefore, we propose region-based classification to be robust to adversarial examples. For a benign/adversarial testing example, we ensemble information in a hypercube centered at the example to predict its label. In contrast, traditional classifiers are point-based classification, i.e., given a testing example, the classifier predicts its label based on the testing example alone. Our evaluation results on MNIST and CIFAR-10 datasets demonstrate that our region-based classification can significantly mitigate evasion attacks without sacrificing classification accuracy on benign examples. Specifically, our region-based classification achieves the same classification accuracy on testing benign examples as point-based classification, but our region-based classification is significantly more robust than point-based classification to various evasion attacks.
Representation Learning on Graphs: Methods and Applications
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
Characterization of Hemodynamic Signal by Learning Multi-View Relationships
Multi-view data are increasingly prevalent in practice. It is often relevant to analyze the relationships between pairs of views by multi-view component analysis techniques such as Canonical Correlation Analysis (CCA). However, data may easily exhibit nonlinear relations, which CCA cannot reveal. We aim to investigate the usefulness of nonlinear multi-view relations to characterize multi-view data in an explainable manner. To address this challenge, we propose a method to characterize globally nonlinear multi-view relationships as a mixture of linear relationships. A clustering method, it identifies partitions of observations that exhibit the same relationships and learns those relationships simultaneously. It defines cluster variables by multi-view rather than spatial relationships, unlike almost all other clustering methods. Furthermore, we introduce a supervised classification method that builds on our clustering method by employing multi-view relationships as discriminative factors. The value of these methods resides in their capability to find useful structure in the data that single-view or current multi-view methods may struggle to find. We demonstrate the potential utility of the proposed approach using an application in clinical informatics to detect and characterize slow bleeding in patients whose central venous pressure (CVP) is monitored at the bedside. Presently, CVP is considered an insensitive measure of a subject's intravascular volume status or its change. However, we reason that features of CVP during inspiration and expiration should be informative in early identification of emerging changes of patient status. We empirically show how the proposed method can help discover and analyze multiple-to-multiple correlations, which could be nonlinear or vary throughout the population, by finding explainable structure of operational interest to practitioners.
Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder
Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.
On Inductive Abilities of Latent Factor Models for Relational Learning
Latent factor models are increasingly popular for modeling multi-relational knowledge graphs. By their vectorial nature, it is not only hard to interpret why this class of models works so well, but also to understand where they fail and how they might be improved. We conduct an experimental survey of state-of-the-art models, not towards a purely comparative end, but as a means to get insight about their inductive abilities. To assess the strengths and weaknesses of each model, we create simple tasks that exhibit first, atomic properties of binary relations, and then, common inter-relational inference through synthetic genealogies. Based on these experimental results, we propose new research directions to improve on existing models.
Neural Affine Grayscale Image Denoising
We propose a new grayscale image denoiser, dubbed as Neural Affine Image Denoiser (Neural AIDE), which utilizes neural network in a novel way. Unlike other neural network based image denoising methods, which typically apply simple supervised learning to learn a mapping from a noisy patch to a clean patch, we formulate to train a neural network to learn an \emph{affine} mapping that gets applied to a noisy pixel, based on its context. Our formulation enables both supervised training of the network from the labeled training dataset and adaptive fine-tuning of the network parameters using the given noisy image subject to denoising. The key tool for devising Neural AIDE is to devise an estimated loss function of the MSE of the affine mapping, solely based on the noisy data. As a result, our algorithm can outperform most of the recent state-of-the-art methods in the standard benchmark datasets. Moreover, our fine-tuning method can nicely overcome one of the drawbacks of the patch-level supervised learning methods in image denoising; namely, a supervised trained model with a mismatched noise variance can be mostly corrected as long as we have the matched noise variance during the fine-tuning step.
FlashProfile: A Framework for Synthesizing Data Profiles
We address the problem of learning a syntactic profile for a collection of strings, i.e. a set of regex-like patterns that succinctly describe the syntactic variations in the strings. Real-world datasets, typically curated from multiple sources, often contain data in various syntactic formats. Thus, any data processing task is preceded by the critical step of data format identification. However, manual inspection of data to identify the different formats is infeasible in standard big-data scenarios. Prior techniques are restricted to a small set of pre-defined patterns (e.g. digits, letters, words, etc.), and provide no control over granularity of profiles. We define syntactic profiling as a problem of clustering strings based on syntactic similarity, followed by identifying patterns that succinctly describe each cluster. We present a technique for synthesizing such profiles over a given language of patterns, that also allows for interactive refinement by requesting a desired number of clusters. Using a state-of-the-art inductive synthesis framework, PROSE, we have implemented our technique as FlashProfile. Across $153$ tasks over $75$ large real datasets, we observe a median profiling time of only $\sim\,0.7\,$s. Furthermore, we show that access to syntactic profiles may allow for more accurate synthesis of programs, i.e. using fewer examples, in programming-by-example (PBE) workflows such as FlashFill.
Adversarial Discriminative Sim-to-real Transfer of Visuo-motor Policies
Various approaches have been proposed to learn visuo-motor policies for real-world robotic applications. One solution is first learning in simulation then transferring to the real world. In the transfer, most existing approaches need real-world images with labels. However, the labelling process is often expensive or even impractical in many robotic applications. In this paper, we propose an adversarial discriminative sim-to-real transfer approach to reduce the cost of labelling real data. The effectiveness of the approach is demonstrated with modular networks in a table-top object reaching task where a 7 DoF arm is controlled in velocity mode to reach a blue cuboid in clutter through visual observations. The adversarial transfer approach reduced the labelled real data requirement by 50%. Policies can be transferred to real environments with only 93 labelled and 186 unlabelled real images. The transferred visuo-motor policies are robust to novel (not seen in training) objects in clutter and even a moving target, achieving a 97.8% success rate and 1.8 cm control accuracy.
Adaptive Laplace Mechanism: Differential Privacy Preservation in Deep Learning
In this paper, we focus on developing a novel mechanism to preserve differential privacy in deep neural networks, such that: (1) The privacy budget consumption is totally independent of the number of training steps; (2) It has the ability to adaptively inject noise into features based on the contribution of each to the output; and (3) It could be applied in a variety of different deep neural networks. To achieve this, we figure out a way to perturb affine transformations of neurons, and loss functions used in deep neural networks. In addition, our mechanism intentionally adds "more noise" into features which are "less relevant" to the model output, and vice-versa. Our theoretical analysis further derives the sensitivities and error bounds of our mechanism. Rigorous experiments conducted on MNIST and CIFAR-10 datasets show that our mechanism is highly effective and outperforms existing solutions.
Word Vector Enrichment of Low Frequency Words in the Bag-of-Words Model for Short Text Multi-class Classification Problems
The bag-of-words model is a standard representation of text for many linear classifier learners. In many problem domains, linear classifiers are preferred over more complex models due to their efficiency, robustness and interpretability, and the bag-of-words text representation can capture sufficient information for linear classifiers to make highly accurate predictions. However in settings where there is a large vocabulary, large variance in the frequency of terms in the training corpus, many classes and very short text (e.g., single sentences or document titles) the bag-of-words representation becomes extremely sparse, and this can reduce the accuracy of classifiers. A particular issue in such settings is that short texts tend to contain infrequently occurring or rare terms which lack class-conditional evidence. In this work we introduce a method for enriching the bag-of-words model by complementing such rare term information with related terms from both general and domain-specific Word Vector models. By reducing sparseness in the bag-of-words models, our enrichment approach achieves improved classification over several baseline classifiers in a variety of text classification problems. Our approach is also efficient because it requires no change to the linear classifier before or during training, since bag-of-words enrichment applies only to text being classified.
Minimal Effort Back Propagation for Convolutional Neural Networks
As traditional neural network consumes a significant amount of computing resources during back propagation, \citet{Sun2017mePropSB} propose a simple yet effective technique to alleviate this problem. In this technique, only a small subset of the full gradients are computed to update the model parameters. In this paper we extend this technique into the Convolutional Neural Network(CNN) to reduce calculation in back propagation, and the surprising results verify its validity in CNN: only 5\% of the gradients are passed back but the model still achieves the same effect as the traditional CNN, or even better. We also show that the top-$k$ selection of gradients leads to a sparse calculation in back propagation, which may bring significant computational benefits for high computational complexity of convolution operation in CNN.
Autoencoder-Driven Weather Clustering for Source Estimation during Nuclear Events
Emergency response applications for nuclear or radiological events can be significantly improved via deep feature learning due to the hidden complexity of the data and models involved. In this paper we present a novel methodology for rapid source estimation during radiological releases based on deep feature extraction and weather clustering. Atmospheric dispersions are then calculated based on identified predominant weather patterns and are matched against simulated incidents indicated by radiation readings on the ground. We evaluate the accuracy of our methods over multiple years of weather reanalysis data in the European region. We juxtapose these results with deep classification convolution networks and discuss advantages and disadvantages.
Neonatal Seizure Detection using Convolutional Neural Networks
This study presents a novel end-to-end architecture that learns hierarchical representations from raw EEG data using fully convolutional deep neural networks for the task of neonatal seizure detection. The deep neural network acts as both feature extractor and classifier, allowing for end-to-end optimization of the seizure detector. The designed system is evaluated on a large dataset of continuous unedited multi-channel neonatal EEG totaling 835 hours and comprising of 1389 seizures. The proposed deep architecture, with sample-level filters, achieves an accuracy that is comparable to the state-of-the-art SVM-based neonatal seizure detector, which operates on a set of carefully designed hand-crafted features. The fully convolutional architecture allows for the localization of EEG waveforms and patterns that result in high seizure probabilities for further clinical examination.
Continuous Multimodal Emotion Recognition Approach for AVEC 2017
This paper reports the analysis of audio and visual features in predicting the continuous emotion dimensions under the seventh Audio/Visual Emotion Challenge (AVEC 2017), which was done as part of a B.Tech. 2nd year internship project. For visual features we used the HOG (Histogram of Gradients) features, Fisher encodings of SIFT (Scale-Invariant Feature Transform) features based on Gaussian mixture model (GMM) and some pretrained Convolutional Neural Network layers as features; all these extracted for each video clip. For audio features we used the Bag-of-audio-words (BoAW) representation of the LLDs (low-level descriptors) generated by openXBOW provided by the organisers of the event. Then we trained fully connected neural network regression model on the dataset for all these different modalities. We applied multimodal fusion on the output models to get the Concordance correlation coefficient on Development set as well as Test set.
Depression Scale Recognition from Audio, Visual and Text Analysis
Depression is a major mental health disorder that is rapidly affecting lives worldwide. Depression not only impacts emotional but also physical and psychological state of the person. Its symptoms include lack of interest in daily activities, feeling low, anxiety, frustration, loss of weight and even feeling of self-hatred. This report describes work done by us for Audio Visual Emotion Challenge (AVEC) 2017 during our second year BTech summer internship. With the increase in demand to detect depression automatically with the help of machine learning algorithms, we present our multimodal feature extraction and decision level fusion approach for the same. Features are extracted by processing on the provided Distress Analysis Interview Corpus-Wizard of Oz (DAIC-WOZ) database. Gaussian Mixture Model (GMM) clustering and Fisher vector approach were applied on the visual data; statistical descriptors on gaze, pose; low level audio features and head pose and text features were also extracted. Classification is done on fused as well as independent features using Support Vector Machine (SVM) and neural networks. The results obtained were able to cross the provided baseline on validation data set by 17% on audio features and 24.5% on video features.
ZhuSuan: A Library for Bayesian Deep Learning
In this paper we introduce ZhuSuan, a python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon Tensorflow. Unlike existing deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks, ZhuSuan is featured for its deep root into Bayesian inference, thus supporting various kinds of probabilistic models, including both the traditional hierarchical Bayesian models and recent deep generative models. We use running examples to illustrate the probabilistic programming on ZhuSuan, including Bayesian logistic regression, variational auto-encoders, deep sigmoid belief networks and Bayesian recurrent neural networks.
Institutionally Distributed Deep Learning Networks
Deep learning has become a promising approach for automated medical diagnoses. When medical data samples are limited, collaboration among multiple institutions is necessary to achieve high algorithm performance. However, sharing patient data often has limitations due to technical, legal, or ethical concerns. In such cases, sharing a deep learning model is a more attractive alternative. The best method of performing such a task is unclear, however. In this study, we simulate the dissemination of learning deep learning network models across four institutions using various heuristics and compare the results with a deep learning model trained on centrally hosted patient data. The heuristics investigated include ensembling single institution models, single weight transfer, and cyclical weight transfer. We evaluated these approaches for image classification in three independent image collections (retinal fundus photos, mammography, and ImageNet). We find that cyclical weight transfer resulted in a performance (testing accuracy = 77.3%) that was closest to that of centrally hosted patient data (testing accuracy = 78.7%). We also found that there is an improvement in the performance of cyclical weight transfer heuristic with high frequency of weight transfer.
Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
High-dimensional partial differential equations (PDE) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment (CVA) models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (i) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (ii) a merged formulation of the PDE and the 2BSDE problem, (iii) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (iv) a stochastic gradient descent-type optimization procedure. Numerical results obtained using ${\rm T{\small ENSOR}F{\small LOW}}$ in ${\rm P{\small YTHON}}$ illustrate the efficiency and the accuracy of the method in the cases of a $100$-dimensional Black-Scholes-Barenblatt equation, a $100$-dimensional Hamilton-Jacobi-Bellman equation, and a nonlinear expectation of a $ 100 $-dimensional $ G $-Brownian motion.
Why Pay More When You Can Pay Less: A Joint Learning Framework for Active Feature Acquisition and Classification
We consider the problem of active feature acquisition, where we sequentially select the subset of features in order to achieve the maximum prediction performance in the most cost-effective way. In this work, we formulate this active feature acquisition problem as a reinforcement learning problem, and provide a novel framework for jointly learning both the RL agent and the classifier (environment). We also introduce a more systematic way of encoding subsets of features that can properly handle innate challenge with missing entries in active feature acquisition problems, that uses the orderless LSTM-based set encoding mechanism that readily fits in the joint learning framework. We evaluate our model on a carefully designed synthetic dataset for the active feature acquisition as well as several real datasets such as electric health record (EHR) datasets, on which it outperforms all baselines in terms of prediction performance as well feature acquisition cost.
Leveraging Distributional Semantics for Multi-Label Learning
We present a novel and scalable label embedding framework for large-scale multi-label learning a.k.a ExMLDS (Extreme Multi-Label Learning using Distributional Semantics). Our approach draws inspiration from ideas rooted in distributional semantics, specifically the Skip Gram Negative Sampling (SGNS) approach, widely used to learn word embeddings for natural language processing tasks. Learning such embeddings can be reduced to a certain matrix factorization. Our approach is novel in that it highlights interesting connections between label embedding methods used for multi-label learning and paragraph/document embedding methods commonly used for learning representations of text data. The framework can also be easily extended to incorporate auxiliary information such as label-label correlations; this is crucial especially when there are a lot of missing labels in the training data. We demonstrate the effectiveness of our approach through an extensive set of experiments on a variety of benchmark datasets, and show that the proposed learning methods perform favorably compared to several baselines and state-of-the-art methods for large-scale multi-label learning. To facilitate end-to-end learning, we develop a joint learning algorithm that can learn the embeddings as well as a regression model that predicts these embeddings given input features, via efficient gradient-based methods.
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents
The Arcade Learning Environment (ALE) is an evaluation platform that poses the challenge of building AI agents with general competency across dozens of Atari 2600 games. It supports a variety of different problem settings and it has been receiving increasing attention from the scientific community, leading to some high-profile success stories such as the much publicized Deep Q-Networks (DQN). In this article we take a big picture look at how the ALE is being used by the research community. We show how diverse the evaluation methodologies in the ALE have become with time, and highlight some key concerns when evaluating agents in the ALE. We use this discussion to present some methodological best practices and provide new benchmark results using these best practices. To further the progress in the field, we introduce a new version of the ALE that supports multiple game modes and provides a form of stochasticity we call sticky actions. We conclude this big picture look by revisiting challenges posed when the ALE was introduced, summarizing the state-of-the-art in various problems and highlighting problems that remain open.
Learning Neural Networks with Two Nonlinear Layers in Polynomial Time
We give a polynomial-time algorithm for learning neural networks with one layer of sigmoids feeding into any Lipschitz, monotone activation function (e.g., sigmoid or ReLU). We make no assumptions on the structure of the network, and the algorithm succeeds with respect to {\em any} distribution on the unit ball in $n$ dimensions (hidden weight vectors also have unit norm). This is the first assumption-free, provably efficient algorithm for learning neural networks with two nonlinear layers. Our algorithm-- {\em Alphatron}-- is a simple, iterative update rule that combines isotonic regression with kernel methods. It outputs a hypothesis that yields efficient oracle access to interpretable features. It also suggests a new approach to Boolean learning problems via real-valued conditional-mean functions, sidestepping traditional hardness results from computational learning theory. Along these lines, we subsume and improve many longstanding results for PAC learning Boolean functions to the more general, real-valued setting of {\em probabilistic concepts}, a model that (unlike PAC learning) requires non-i.i.d. noise-tolerance.
Guided Deep Reinforcement Learning for Swarm Systems
In this paper, we investigate how to learn to control a group of cooperative agents with limited sensing capabilities such as robot swarms. The agents have only very basic sensor capabilities, yet in a group they can accomplish sophisticated tasks, such as distributed assembly or search and rescue tasks. Learning a policy for a group of agents is difficult due to distributed partial observability of the state. Here, we follow a guided approach where a critic has central access to the global state during learning, which simplifies the policy evaluation problem from a reinforcement learning point of view. For example, we can get the positions of all robots of the swarm using a camera image of a scene. This camera image is only available to the critic and not to the control policies of the robots. We follow an actor-critic approach, where the actors base their decisions only on locally sensed information. In contrast, the critic is learned based on the true global state. Our algorithm uses deep reinforcement learning to approximate both the Q-function and the policy. The performance of the algorithm is evaluated on two tasks with simple simulated 2D agents: 1) finding and maintaining a certain distance to each others and 2) locating a target.
N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
While bigger and deeper neural network architectures continue to advance the state-of-the-art for many computer vision tasks, real-world adoption of these networks is impeded by hardware and speed constraints. Conventional model compression methods attempt to address this problem by modifying the architecture manually or using pre-defined heuristics. Since the space of all reduced architectures is very large, modifying the architecture of a deep neural network in this way is a difficult task. In this paper, we tackle this issue by introducing a principled method for learning reduced network architectures in a data-driven way using reinforcement learning. Our approach takes a larger `teacher' network as input and outputs a compressed `student' network derived from the `teacher' network. In the first stage of our method, a recurrent policy network aggressively removes layers from the large `teacher' model. In the second stage, another recurrent policy network carefully reduces the size of each remaining layer. The resulting network is then evaluated to obtain a reward -- a score based on the accuracy and compression of the network. Our approach uses this reward signal with policy gradients to train the policies to find a locally optimal student network. Our experiments show that we can achieve compression rates of more than 10x for models such as ResNet-34 while maintaining similar performance to the input `teacher' network. We also present a valuable transfer learning result which shows that policies which are pre-trained on smaller `teacher' networks can be used to rapidly speed up training on larger `teacher' networks.