title
stringlengths
7
246
abstract
stringlengths
6
3.31k
House Price Prediction Using LSTM
In this paper, we use the house price data ranging from January 2004 to October 2016 to predict the average house price of November and December in 2016 for each district in Beijing, Shanghai, Guangzhou and Shenzhen. We apply Autoregressive Integrated Moving Average model to generate the baseline while LSTM networks to build prediction model. These algorithms are compared in terms of Mean Squared Error. The result shows that the LSTM model has excellent properties with respect to predict time series. Also, stateful LSTM networks and stack LSTM networks are employed to further study the improvement of accuracy of the house prediction model.
An efficient clustering algorithm from the measure of local Gaussian distribution
In this paper, I will introduce a fast and novel clustering algorithm based on Gaussian distribution and it can guarantee the separation of each cluster centroid as a given parameter, $d_s$. The worst run time complexity of this algorithm is approximately $\sim$O$(T\times N \times \log(N))$ where $T$ is the iteration steps and $N$ is the number of features.
J-MOD$^{2}$: Joint Monocular Obstacle Detection and Depth Estimation
In this work, we propose an end-to-end deep architecture that jointly learns to detect obstacles and estimate their depth for MAV flight applications. Most of the existing approaches either rely on Visual SLAM systems or on depth estimation models to build 3D maps and detect obstacles. However, for the task of avoiding obstacles this level of complexity is not required. Recent works have proposed multi task architectures to both perform scene understanding and depth estimation. We follow their track and propose a specific architecture to jointly estimate depth and obstacles, without the need to compute a global map, but maintaining compatibility with a global SLAM system if needed. The network architecture is devised to exploit the joint information of the obstacle detection task, that produces more reliable bounding boxes, with the depth estimation one, increasing the robustness of both to scenario changes. We call this architecture J-MOD$^{2}$. We test the effectiveness of our approach with experiments on sequences with different appearance and focal lengths and compare it to SotA multi task methods that jointly perform semantic segmentation and depth estimation. In addition, we show the integration in a full system using a set of simulated navigation experiments where a MAV explores an unknown scenario and plans safe trajectories by using our detection model.
Enhanced Quantum Synchronization via Quantum Machine Learning
We study the quantum synchronization between a pair of two-level systems inside two coupled cavities. By using a digital-analog decomposition of the master equation that rules the system dynamics, we show that this approach leads to quantum synchronization between both two-level systems. Moreover, we can identify in this digital-analog block decomposition the fundamental elements of a quantum machine learning protocol, in which the agent and the environment (learning units) interact through a mediating system, namely, the register. If we can additionally equip this algorithm with a classical feedback mechanism, which consists of projective measurements in the register, reinitialization of the register state and local conditional operations on the agent and environment subspace, a powerful and flexible quantum machine learning protocol emerges. Indeed, numerical simulations show that this protocol enhances the synchronization process, even when every subsystem experience different loss/decoherence mechanisms, and give us the flexibility to choose the synchronization state. Finally, we propose an implementation based on current technologies in superconducting circuits.
Predictive-State Decoders: Encoding the Future into Recurrent Networks
Recurrent neural networks (RNNs) are a vital modeling technique that rely on internal states learned indirectly by optimization of a supervised, unsupervised, or reinforcement training loss. RNNs are used to model dynamic processes that are characterized by underlying latent states whose form is often unknown, precluding its analytic representation inside an RNN. In the Predictive-State Representation (PSR) literature, latent state processes are modeled by an internal state representation that directly models the distribution of future observations, and most recent work in this area has relied on explicitly representing and targeting sufficient statistics of this probability distribution. We seek to combine the advantages of RNNs and PSRs by augmenting existing state-of-the-art recurrent neural networks with Predictive-State Decoders (PSDs), which add supervision to the network's internal state representation to target predicting future observations. Predictive-State Decoders are simple to implement and easily incorporated into existing training pipelines via additional loss regularization. We demonstrate the effectiveness of PSDs with experimental results in three different domains: probabilistic filtering, Imitation Learning, and Reinforcement Learning. In each, our method improves statistical performance of state-of-the-art recurrent baselines and does so with fewer iterations and less data.
Generative learning for deep networks
Learning, taking into account full distribution of the data, referred to as generative, is not feasible with deep neural networks (DNNs) because they model only the conditional distribution of the outputs given the inputs. Current solutions are either based on joint probability models facing difficult estimation problems or learn two separate networks, mapping inputs to outputs (recognition) and vice-versa (generation). We propose an intermediate approach. First, we show that forward computation in DNNs with logistic sigmoid activations corresponds to a simplified approximate Bayesian inference in a directed probabilistic multi-layer model. This connection allows to interpret DNN as a probabilistic model of the output and all hidden units given the input. Second, we propose that in order for the recognition and generation networks to be more consistent with the joint model of the data, weights of the recognition and generator network should be related by transposition. We demonstrate in a tentative experiment that such a coupled pair can be learned generatively, modelling the full distribution of the data, and has enough capacity to perform well in both recognition and generation.
Analytic solution and stationary phase approximation for the Bayesian lasso and elastic net
The lasso and elastic net linear regression models impose a double-exponential prior distribution on the model parameters to achieve regression shrinkage and variable selection, allowing the inference of robust models from large data sets. However, there has been limited success in deriving estimates for the full posterior distribution of regression coefficients in these models, due to a need to evaluate analytically intractable partition function integrals. Here, the Fourier transform is used to express these integrals as complex-valued oscillatory integrals over "regression frequencies". This results in an analytic expansion and stationary phase approximation for the partition functions of the Bayesian lasso and elastic net, where the non-differentiability of the double-exponential prior has so far eluded such an approach. Use of this approximation leads to highly accurate numerical estimates for the expectation values and marginal posterior distributions of the regression coefficients, and allows for Bayesian inference of much higher dimensional models than previously possible.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
EZLearn: Exploiting Organic Supervision in Large-Scale Data Annotation
Many real-world applications require automated data annotation, such as identifying tissue origins based on gene expressions and classifying images into semantic categories. Annotation classes are often numerous and subject to changes over time, and annotating examples has become the major bottleneck for supervised learning methods. In science and other high-value domains, large repositories of data samples are often available, together with two sources of organic supervision: a lexicon for the annotation classes, and text descriptions that accompany some data samples. Distant supervision has emerged as a promising paradigm for exploiting such indirect supervision by automatically annotating examples where the text description contains a class mention in the lexicon. However, due to linguistic variations and ambiguities, such training data is inherently noisy, which limits the accuracy of this approach. In this paper, we introduce an auxiliary natural language processing system for the text modality, and incorporate co-training to reduce noise and augment signal in distant supervision. Without using any manually labeled data, our EZLearn system learned to accurately annotate data samples in functional genomics and scientific figure comprehension, substantially outperforming state-of-the-art supervised methods trained on tens of thousands of annotated examples.
Towards automation of data quality system for CERN CMS experiment
Daily operation of a large-scale experiment is a challenging task, particularly from perspectives of routine monitoring of quality for data being taken. We describe an approach that uses Machine Learning for the automated system to monitor data quality, which is based on partial use of data qualified manually by detector experts. The system automatically classifies marginal cases: both of good an bad data, and use human expert decision to classify remaining "grey area" cases. This study uses collision data collected by the CMS experiment at LHC in 2010. We demonstrate that proposed workflow is able to automatically process at least 20\% of samples without noticeable degradation of the result.
Long Text Generation via Adversarial Training with Leaked Information
Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.
Glass-Box Program Synthesis: A Machine Learning Approach
Recently proposed models which learn to write computer programs from data use either input/output examples or rich execution traces. Instead, we argue that a novel alternative is to use a glass-box loss function, given as a program itself that can be directly inspected. Glass-box optimization covers a wide range of problems, from computing the greatest common divisor of two integers, to learning-to-learn problems. In this paper, we present an intelligent search system which learns, given the partial program and the glass-box problem, the probabilities over the space of programs. We empirically demonstrate that our informed search procedure leads to significant improvements compared to brute-force program search, both in terms of accuracy and time. For our experiments we use rich context free grammars inspired by number theory, text processing, and algebra. Our results show that (i) performing 4 rounds of our framework typically solves about 70% of the target problems, (ii) our framework can improve itself even in domain agnostic scenarios, and (iii) it can solve problems that would be otherwise too slow to solve with brute-force search.
Methodology and Results for the Competition on Semantic Similarity Evaluation and Entailment Recognition for PROPOR 2016
In this paper, we present the methodology and the results obtained by our teams, dubbed Blue Man Group, in the ASSIN (from the Portuguese {\it Avalia\c{c}\~ao de Similaridade Sem\^antica e Infer\^encia Textual}) competition, held at PROPOR 2016\footnote{International Conference on the Computational Processing of the Portuguese Language - http://propor2016.di.fc.ul.pt/}. Our team's strategy consisted of evaluating methods based on semantic word vectors, following two distinct directions: 1) to make use of low-dimensional, compact, feature sets, and 2) deep learning-based strategies dealing with high-dimensional feature vectors. Evaluation results demonstrated that the first strategy was more promising, so that the results from the second strategy have been discarded. As a result, by considering the best run of each of the six teams, we have been able to achieve the best accuracy and F1 values in entailment recognition, in the Brazilian Portuguese set, and the best F1 score overall. In the semantic similarity task, our team was ranked second in the Brazilian Portuguese set, and third considering both sets.
Stochastic Nonconvex Optimization with Large Minibatches
We study stochastic optimization of nonconvex loss functions, which are typical objectives for training neural networks. We propose stochastic approximation algorithms which optimize a series of regularized, nonlinearized losses on large minibatches of samples, using only first-order gradient information. Our algorithms provably converge to an approximate critical point of the expected objective with faster rates than minibatch stochastic gradient descent, and facilitate better parallelization by allowing larger minibatches.
Understanding a Version of Multivariate Symmetric Uncertainty to assist in Feature Selection
In this paper, we analyze the behavior of the multivariate symmetric uncertainty (MSU) measure through the use of statistical simulation techniques under various mixes of informative and non-informative randomly generated features. Experiments show how the number of attributes, their cardinalities, and the sample size affect the MSU. We discovered a condition that preserves good quality in the MSU under different combinations of these three factors, providing a new useful criterion to help drive the process of dimension reduction.
A Deep Learning Model for Traffic Flow State Classification Based on Smart Phone Sensor Data
This study proposes a Deep Belief Network model to classify traffic flow states. The model is capable of processing massive, high-density, and noise-contaminated data sets generated from smartphone sensors. The statistical features of Vehicle acceleration, angular acceleration, and GPS speed data, recorded by smartphone software, are analyzed, and then used as input for traffic flow state classification. Data from a five-day experiment is used to train and test the proposed model. A total of 747,856 sets of data are generated and used for both traffic flow states classification and sensitivity analysis of input variables. The result shows that the proposed Deep Belief Network model is superior to traditional machine learning methods in both classification performance and computational efficiency.
Catching Anomalous Distributed Photovoltaics: An Edge-based Multi-modal Anomaly Detection
A significant challenge in energy system cyber security is the current inability to detect cyber-physical attacks targeting and originating from distributed grid-edge devices such as photovoltaics (PV) panels, smart flexible loads, and electric vehicles. We address this concern by designing and developing a distributed, multi-modal anomaly detection approach that can sense the health of the device and the electric power grid from the edge. This is realized by exploiting unsupervised machine learning algorithms on multiple sources of time-series data, fusing these multiple local observations and flagging anomalies when a deviation from the normal behavior is observed. We particularly focus on the cyber-physical threats to the distributed PVs that has the potential to cause local disturbances or grid instabilities by creating supply-demand mismatch, reverse power flow conditions etc. We use an open source power system simulation tool called GridLAB-D, loaded with real smart home and solar datasets to simulate the smart grid scenarios and to illustrate the impact of PV attacks on the power system. Various attacks targeting PV panels that create voltage fluctuations, reverse power flow etc were designed and performed. We observe that while individual unsupervised learning algorithms such as OCSVMs, Corrupt RF and PCA surpasses in identifying particular attack type, PCA with Convex Hull outperforms all algorithms in identifying all designed attacks with a true positive rate of 83.64% and an accuracy of 95.78%. Our key insight is that due to the heterogeneous nature of the distribution grid and the uncertainty in the type of the attack being launched, relying on single mode of information for defense can lead to increased false alarms and missed detection rates as one can design attacks to hide within those uncertainties and remain stealthy.
Learning a Predictive Model for Music Using PULSE
Predictive models for music are studied by researchers of algorithmic composition, the cognitive sciences and machine learning. They serve as base models for composition, can simulate human prediction and provide a multidisciplinary application domain for learning algorithms. A particularly well established and constantly advanced subtask is the prediction of monophonic melodies. As melodies typically involve non-Markovian dependencies their prediction requires a capable learning algorithm. In this thesis, I apply the recent feature discovery and learning method PULSE to the realm of symbolic music modeling. PULSE is comprised of a feature generating operation and L1-regularized optimization. These are used to iteratively expand and cull the feature set, effectively exploring feature spaces that are too large for common feature selection approaches. I design a general Python framework for PULSE, propose task-optimized feature generating operations and various music-theoretically motivated features that are evaluated on a standard corpus of monophonic folk and chorale melodies. The proposed method significantly outperforms comparable state-of-the-art models. I further discuss the free parameters of the learning algorithm and analyze the feature composition of the learned models. The models learned by PULSE afford an easy inspection and are musicologically interpreted for the first time.
Active Learning amidst Logical Knowledge
Structured prediction is ubiquitous in applications of machine learning such as knowledge extraction and natural language processing. Structure often can be formulated in terms of logical constraints. We consider the question of how to perform efficient active learning in the presence of logical constraints among variables inferred by different classifiers. We propose several methods and provide theoretical results that demonstrate the inappropriateness of employing uncertainty guided sampling, a commonly used active learning method. Furthermore, experiments on ten different datasets demonstrate that the methods significantly outperform alternatives in practice. The results are of practical significance in situations where labeled data is scarce.
Object-oriented Neural Programming (OONP) for Document Understanding
We propose Object-oriented Neural Programming (OONP), a framework for semantically parsing documents in specific domains. Basically, OONP reads a document and parses it into a predesigned object-oriented data structure (referred to as ontology in this paper) that reflects the domain-specific semantics of the document. An OONP parser models semantic parsing as a decision process: a neural net-based Reader sequentially goes through the document, and during the process it builds and updates an intermediate ontology to summarize its partial understanding of the text it covers. OONP supports a rich family of operations (both symbolic and differentiable) for composing the ontology, and a big variety of forms (both symbolic and differentiable) for representing the state and the document. An OONP parser can be trained with supervision of different forms and strength, including supervised learning (SL) , reinforcement learning (RL) and hybrid of the two. Our experiments on both synthetic and real-world document parsing tasks have shown that OONP can learn to handle fairly complicated ontology with training data of modest sizes.
Generating Sentences by Editing Prototypes
We propose a new generative model of sentences that first samples a prototype sentence from the training corpus and then edits it into a new sentence. Compared to traditional models that generate from scratch either left-to-right or by first sampling a latent sentence vector, our prototype-then-edit model improves perplexity on language modeling and generates higher quality outputs according to human evaluation. Furthermore, the model gives rise to a latent edit vector that captures interpretable semantics such as sentence similarity and sentence-level analogies.
On the regularization of Wasserstein GANs
Since their invention, generative adversarial networks (GANs) have become a popular approach for learning to model a distribution of real (unlabeled) data. Convergence problems during training are overcome by Wasserstein GANs which minimize the distance between the model and the empirical distribution in terms of a different metric, but thereby introduce a Lipschitz constraint into the optimization problem. A simple way to enforce the Lipschitz constraint on the class of functions, which can be modeled by the neural network, is weight clipping. It was proposed that training can be improved by instead augmenting the loss by a regularization term that penalizes the deviation of the gradient of the critic (as a function of the network's input) from one. We present theoretical arguments why using a weaker regularization term enforcing the Lipschitz constraint is preferable. These arguments are supported by experimental results on toy data sets.
A physical model for efficient ranking in networks
We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that interactions are more likely to occur between individuals with similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or direction of edges. The ranking is obtained by solving a linear system of equations, which is sparse if the network is; thus the resulting algorithm is extremely efficient and scalable. We illustrate these findings by analyzing real and synthetic data, including datasets from animal behavior, faculty hiring, social support networks, and sports tournaments. We show that our method often outperforms a variety of others, in both speed and accuracy, in recovering the underlying ranks and predicting edge directions.
AutoEncoder by Forest
Auto-encoding is an important task which is typically realized by deep neural networks (DNNs) such as convolutional neural networks (CNN). In this paper, we propose EncoderForest (abbrv. eForest), the first tree ensemble based auto-encoder. We present a procedure for enabling forests to do backward reconstruction by utilizing the equivalent classes defined by decision paths of the trees, and demonstrate its usage in both supervised and unsupervised setting. Experiments show that, compared with DNN autoencoders, eForest is able to obtain lower reconstruction error with fast training speed, while the model itself is reusable and damage-tolerable.
MDP environments for the OpenAI Gym
The OpenAI Gym provides researchers and enthusiasts with simple to use environments for reinforcement learning. Even the simplest environment have a level of complexity that can obfuscate the inner workings of RL approaches and make debugging difficult. This whitepaper describes a Python framework that makes it very easy to create simple Markov-Decision-Process environments programmatically by specifying state transitions and rewards of deterministic and non-deterministic MDPs in a domain-specific language in Python. It then presents results and visualizations created with this MDP framework.
Output Range Analysis for Deep Neural Networks
Deep neural networks (NN) are extensively used for machine learning tasks such as image classification, perception and control of autonomous systems. Increasingly, these deep NNs are also been deployed in high-assurance applications. Thus, there is a pressing need for developing techniques to verify neural networks to check whether certain user-expected properties are satisfied. In this paper, we study a specific verification problem of computing a guaranteed range for the output of a deep neural network given a set of inputs represented as a convex polyhedron. Range estimation is a key primitive for verifying deep NNs. We present an efficient range estimation algorithm that uses a combination of local search and linear programming problems to efficiently find the maximum and minimum values taken by the outputs of the NN over the given input set. In contrast to recently proposed "monolithic" optimization approaches, we use local gradient descent to repeatedly find and eliminate local minima of the function. The final global optimum is certified using a mixed integer programming instance. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate the effectiveness of the proposed approach for verification of NNs used in automated control as well as those used in classification.
EDEN: Evolutionary Deep Networks for Efficient Machine Learning
Deep neural networks continue to show improved performance with increasing depth, an encouraging trend that implies an explosion in the possible permutations of network architectures and hyperparameters for which there is little intuitive guidance. To address this increasing complexity, we propose Evolutionary DEep Networks (EDEN), a computationally efficient neuro-evolutionary algorithm which interfaces to any deep neural network platform, such as TensorFlow. We show that EDEN evolves simple yet successful architectures built from embedding, 1D and 2D convolutional, max pooling and fully connected layers along with their hyperparameters. Evaluation of EDEN across seven image and sentiment classification datasets shows that it reliably finds good networks -- and in three cases achieves state-of-the-art results -- even on a single GPU, in just 6-24 hours. Our study provides a first attempt at applying neuro-evolution to the creation of 1D convolutional networks for sentiment analysis including the optimisation of the embedding layer.
A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
With the advancement of treatment modalities in radiation therapy for cancer patients, outcomes have improved, but at the cost of increased treatment plan complexity and planning time. The accurate prediction of dose distributions would alleviate this issue by guiding clinical plan optimization to save time and maintain high quality plans. We have modified a convolutional deep network model, U-net (originally designed for segmentation purposes), for predicting dose from patient image contours of the planning target volume (PTV) and organs at risk (OAR). We show that, as an example, we are able to accurately predict the dose of intensity-modulated radiation therapy (IMRT) for prostate cancer patients, where the average Dice similarity coefficient is 0.91 when comparing the predicted vs. true isodose volumes between 0% and 100% of the prescription dose. The average value of the absolute differences in [max, mean] dose is found to be under 5% of the prescription dose, specifically for each structure is [1.80%, 1.03%](PTV), [1.94%, 4.22%](Bladder), [1.80%, 0.48%](Body), [3.87%, 1.79%](L Femoral Head), [5.07%, 2.55%](R Femoral Head), and [1.26%, 1.62%](Rectum) of the prescription dose. We thus managed to map a desired radiation dose distribution from a patient's PTV and OAR contours. As an additional advantage, relatively little data was used in the techniques and models described in this paper.
FSL-BM: Fuzzy Supervised Learning with Binary Meta-Feature for Classification
This paper introduces a novel real-time Fuzzy Supervised Learning with Binary Meta-Feature (FSL-BM) for big data classification task. The study of real-time algorithms addresses several major concerns, which are namely: accuracy, memory consumption, and ability to stretch assumptions and time complexity. Attaining a fast computational model providing fuzzy logic and supervised learning is one of the main challenges in the machine learning. In this research paper, we present FSL-BM algorithm as an efficient solution of supervised learning with fuzzy logic processing using binary meta-feature representation using Hamming Distance and Hash function to relax assumptions. While many studies focused on reducing time complexity and increasing accuracy during the last decade, the novel contribution of this proposed solution comes through integration of Hamming Distance, Hash function, binary meta-features, binary classification to provide real time supervised method. Hash Tables (HT) component gives a fast access to existing indices; and therefore, the generation of new indices in a constant time complexity, which supersedes existing fuzzy supervised algorithms with better or comparable results. To summarize, the main contribution of this technique for real-time Fuzzy Supervised Learning is to represent hypothesis through binary input as meta-feature space and creating the Fuzzy Supervised Hash table to train and validate model.
Cold-Start Reinforcement Learning with Softmax Policy Gradient
Policy-gradient approaches to reinforcement learning have two common and undesirable overhead procedures, namely warm-start training and sample variance reduction. In this paper, we describe a reinforcement learning method based on a softmax value function that requires neither of these procedures. Our method combines the advantages of policy-gradient methods with the efficiency and simplicity of maximum-likelihood approaches. We apply this new cold-start reinforcement learning method in training sequence generation models for structured output prediction problems. Empirical evidence validates this method on automatic summarization and image captioning tasks.
Slim-DP: A Light Communication Data Parallelism for DNN
Data parallelism has emerged as a necessary technique to accelerate the training of deep neural networks (DNN). In a typical data parallelism approach, the local workers push the latest updates of all the parameters to the parameter server and pull all merged parameters back periodically. However, with the increasing size of DNN models and the large number of workers in practice, this typical data parallelism cannot achieve satisfactory training acceleration, since it usually suffers from the heavy communication cost due to transferring huge amount of information between workers and the parameter server. In-depth understanding on DNN has revealed that it is usually highly redundant, that deleting a considerable proportion of the parameters will not significantly decline the model performance. This redundancy property exposes a great opportunity to reduce the communication cost by only transferring the information of those significant parameters during the parallel training. However, if we only transfer information of temporally significant parameters of the latest snapshot, we may miss the parameters that are insignificant now but have potential to become significant as the training process goes on. To this end, we design an Explore-Exploit framework to dynamically choose the subset to be communicated, which is comprised of the significant parameters in the latest snapshot together with a random explored set of other parameters. We propose to measure the significance of the parameter by the combination of its magnitude and gradient. Our experimental results demonstrate that our proposed Slim-DP can achieve better training acceleration than standard data parallelism and its communication-efficient version by saving communication time without loss of accuracy.
A Benchmark Environment Motivated by Industrial Control Problems
In the research area of reinforcement learning (RL), frequently novel and promising methods are developed and introduced to the RL community. However, although many researchers are keen to apply their methods on real-world problems, implementing such methods in real industry environments often is a frustrating and tedious process. Generally, academic research groups have only limited access to real industrial data and applications. For this reason, new methods are usually developed, evaluated and compared by using artificial software benchmarks. On one hand, these benchmarks are designed to provide interpretable RL training scenarios and detailed insight into the learning process of the method on hand. On the other hand, they usually do not share much similarity with industrial real-world applications. For this reason we used our industry experience to design a benchmark which bridges the gap between freely available, documented, and motivated artificial benchmarks and properties of real industrial problems. The resulting industrial benchmark (IB) has been made publicly available to the RL community by publishing its Java and Python code, including an OpenAI Gym wrapper, on Github. In this paper we motivate and describe in detail the IB's dynamics and identify prototypic experimental settings that capture common situations in real-world industry control problems.
Neural networks for topology optimization
In this research, we propose a deep learning based approach for speeding up the topology optimization methods. The problem we seek to solve is the layout problem. The main novelty of this work is to state the problem as an image segmentation task. We leverage the power of deep learning methods as the efficient pixel-wise image labeling technique to perform the topology optimization. We introduce convolutional encoder-decoder architecture and the overall approach of solving the above-described problem with high performance. The conducted experiments demonstrate the significant acceleration of the optimization process. The proposed approach has excellent generalization properties. We demonstrate the ability of the application of the proposed model to other problems. The successful results, as well as the drawbacks of the current method, are discussed.
Connectivity Learning in Multi-Branch Networks
While much of the work in the design of convolutional networks over the last five years has revolved around the empirical investigation of the importance of depth, filter sizes, and number of feature channels, recent studies have shown that branching, i.e., splitting the computation along parallel but distinct threads and then aggregating their outputs, represents a new promising dimension for significant improvements in performance. To combat the complexity of design choices in multi-branch architectures, prior work has adopted simple strategies, such as a fixed branching factor, the same input being fed to all parallel branches, and an additive combination of the outputs produced by all branches at aggregation points. In this work we remove these predefined choices and propose an algorithm to learn the connections between branches in the network. Instead of being chosen a priori by the human designer, the multi-branch connectivity is learned simultaneously with the weights of the network by optimizing a single loss function defined with respect to the end task. We demonstrate our approach on the problem of multi-class image classification using three different datasets where it yields consistently higher accuracy compared to the state-of-the-art "ResNeXt" multi-branch network given the same learning capacity.
Riemannian approach to batch normalization
Batch Normalization (BN) has proven to be an effective algorithm for deep neural network training by normalizing the input to each neuron and reducing the internal covariate shift. The space of weight vectors in the BN layer can be naturally interpreted as a Riemannian manifold, which is invariant to linear scaling of weights. Following the intrinsic geometry of this manifold provides a new learning rule that is more efficient and easier to analyze. We also propose intuitive and effective gradient clipping and regularization methods for the proposed algorithm by utilizing the geometry of the manifold. The resulting algorithm consistently outperforms the original BN on various types of network architectures and datasets.
How regularization affects the critical points in linear networks
This paper is concerned with the problem of representing and learning a linear transformation using a linear neural network. In recent years, there has been a growing interest in the study of such networks in part due to the successes of deep learning. The main question of this body of research and also of this paper pertains to the existence and optimality properties of the critical points of the mean-squared loss function. The primary concern here is the robustness of the critical points with regularization of the loss function. An optimal control model is introduced for this purpose and a learning algorithm (regularized form of backprop) derived for the same using the Hamilton's formulation of optimal control. The formulation is used to provide a complete characterization of the critical points in terms of the solutions of a nonlinear matrix-valued equation, referred to as the characteristic equation. Analytical and numerical tools from bifurcation theory are used to compute the critical points via the solutions of the characteristic equation. The main conclusion is that the critical point diagram can be fundamentally different even with arbitrary small amounts of regularization.
Lower Bounds on the Bayes Risk of the Bayesian BTL Model with Applications to Comparison Graphs
We consider the problem of aggregating pairwise comparisons to obtain a consensus ranking order over a collection of objects. We use the popular Bradley-Terry-Luce (BTL) model which allows us to probabilistically describe pairwise comparisons between objects. In particular, we employ the Bayesian BTL model which allows for meaningful prior assumptions and to cope with situations where the number of objects is large and the number of comparisons between some objects is small or even zero. For the conventional Bayesian BTL model, we derive information-theoretic lower bounds on the Bayes risk of estimators for norm-based distortion functions. We compare the information-theoretic lower bound with the Bayesian Cram\'{e}r-Rao lower bound we derive for the case when the Bayes risk is the mean squared error. We illustrate the utility of the bounds through simulations by comparing them with the error performance of an expectation-maximization based inference algorithm proposed for the Bayesian BTL model. We draw parallels between pairwise comparisons in the BTL model and inter-player games represented as edges in a comparison graph and analyze the effect of various graph structures on the lower bounds. We also extend the information-theoretic and Bayesian Cram\'{e}r-Rao lower bounds to the more general Bayesian BTL model which takes into account home-field advantage.
KeyVec: Key-semantics Preserving Document Representations
Previous studies have demonstrated the empirical success of word embeddings in various applications. In this paper, we investigate the problem of learning distributed representations for text documents which many machine learning algorithms take as input for a number of NLP tasks. We propose a neural network model, KeyVec, which learns document representations with the goal of preserving key semantics of the input text. It enables the learned low-dimensional vectors to retain the topics and important information from the documents that will flow to downstream tasks. Our empirical evaluations show the superior quality of KeyVec representations in two different document understanding tasks.
Sampling Without Compromising Accuracy in Adaptive Data Analysis
In this work, we study how to use sampling to speed up mechanisms for answering adaptive queries into datasets without reducing the accuracy of those mechanisms. This is important to do when both the datasets and the number of queries asked are very large. In particular, we describe a mechanism that provides a polynomial speed-up per query over previous mechanisms, without needing to increase the total amount of data required to maintain the same generalization error as before. We prove that this speed-up holds for arbitrary statistical queries. We also provide an even faster method for achieving statistically-meaningful responses wherein the mechanism is only allowed to see a constant number of samples from the data per query. Finally, we show that our general results yield a simple, fast, and unified approach for adaptively optimizing convex and strongly convex functions over a dataset.
Generative Adversarial Mapping Networks
Generative Adversarial Networks (GANs) have shown impressive performance in generating photo-realistic images. They fit generative models by minimizing certain distance measure between the real image distribution and the generated data distribution. Several distance measures have been used, such as Jensen-Shannon divergence, $f$-divergence, and Wasserstein distance, and choosing an appropriate distance measure is very important for training the generative network. In this paper, we choose to use the maximum mean discrepancy (MMD) as the distance metric, which has several nice theoretical guarantees. In fact, generative moment matching network (GMMN) (Li, Swersky, and Zemel 2015) is such a generative model which contains only one generator network $G$ trained by directly minimizing MMD between the real and generated distributions. However, it fails to generate meaningful samples on challenging benchmark datasets, such as CIFAR-10 and LSUN. To improve on GMMN, we propose to add an extra network $F$, called mapper. $F$ maps both real data distribution and generated data distribution from the original data space to a feature representation space $\mathcal{R}$, and it is trained to maximize MMD between the two mapped distributions in $\mathcal{R}$, while the generator $G$ tries to minimize the MMD. We call the new model generative adversarial mapping networks (GAMNs). We demonstrate that the adversarial mapper $F$ can help $G$ to better capture the underlying data distribution. We also show that GAMN significantly outperforms GMMN, and is also superior to or comparable with other state-of-the-art GAN based methods on MNIST, CIFAR-10 and LSUN-Bedrooms datasets.
Distance-based Confidence Score for Neural Network Classifiers
The reliable measurement of confidence in classifiers' predictions is very important for many applications and is, therefore, an important part of classifier design. Yet, although deep learning has received tremendous attention in recent years, not much progress has been made in quantifying the prediction confidence of neural network classifiers. Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with prohibitive computational costs. In this paper we propose a simple, scalable method to achieve a reliable confidence score, based on the data embedding derived from the penultimate layer of the network. We investigate two ways to achieve desirable embeddings, by using either a distance-based loss or Adversarial Training. We then test the benefits of our method when used for classification error prediction, weighting an ensemble of classifiers, and novelty detection. In all tasks we show significant improvement over traditional, commonly used confidence scores.
A Generative Model for Score Normalization in Speaker Recognition
We propose a theoretical framework for thinking about score normalization, which confirms that normalization is not needed under (admittedly fragile) ideal conditions. If, however, these conditions are not met, e.g. under data-set shift between training and runtime, our theory reveals dependencies between scores that could be exploited by strategies such as score normalization. Indeed, it has been demonstrated over and over experimentally, that various ad-hoc score normalization recipes do work. We present a first attempt at using probability theory to design a generative score-space normalization model which gives similar improvements to ZT-norm on the text-dependent RSR 2015 database.
Are we done with object recognition? The iCub robot's perspective
We report on an extensive study of the benefits and limitations of current deep learning approaches to object recognition in robot vision scenarios, introducing a novel dataset used for our investigation. To avoid the biases in currently available datasets, we consider a natural human-robot interaction setting to design a data-acquisition protocol for visual object recognition on the iCub humanoid robot. Analyzing the performance of off-the-shelf models trained off-line on large-scale image retrieval datasets, we show the necessity for knowledge transfer. We evaluate different ways in which this last step can be done, and identify the major bottlenecks affecting robotic scenarios. By studying both object categorization and identification problems, we highlight key differences between object recognition in robotics applications and in image retrieval tasks, for which the considered deep learning approaches have been originally designed. In a nutshell, our results confirm the remarkable improvements yield by deep learning in this setting, while pointing to specific open challenges that need be addressed for seamless deployment in robotics.
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom GRU-based detector and developed a method for the detector parameters selection. Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the 231 MB dataset composed of the signals acquired from HiLumi magnets was intended for real-life experiments and model training. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art OC-SVM reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties. It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the best_length setup of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.
SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine
Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variables
Premise Selection for Theorem Proving by Deep Graph Embedding
We propose a deep learning-based approach to the problem of premise selection: selecting mathematical statements relevant for proving a given conjecture. We represent a higher-order logic formula as a graph that is invariant to variable renaming but still fully preserves syntactic and semantic information. We then embed the graph into a vector via a novel embedding method that preserves the information of edge ordering. Our approach achieves state-of-the-art results on the HolStep dataset, improving the classification accuracy from 83% to 90.3%.
Sparse Hierarchical Regression with Polynomials
We present a novel method for exact hierarchical sparse polynomial regression. Our regressor is that degree $r$ polynomial which depends on at most $k$ inputs, counting at most $\ell$ monomial terms, which minimizes the sum of the squares of its prediction errors. The previous hierarchical sparse specification aligns well with modern big data settings where many inputs are not relevant for prediction purposes and the functional complexity of the regressor needs to be controlled as to avoid overfitting. We present a two-step approach to this hierarchical sparse regression problem. First, we discard irrelevant inputs using an extremely fast input ranking heuristic. Secondly, we take advantage of modern cutting plane methods for integer optimization to solve our resulting reduced hierarchical $(k, \ell)$-sparse problem exactly. The ability of our method to identify all $k$ relevant inputs and all $\ell$ monomial terms is shown empirically to experience a phase transition. Crucially, the same transition also presents itself in our ability to reject all irrelevant features and monomials as well. In the regime where our method is statistically powerful, its computational complexity is interestingly on par with Lasso based heuristics. The presented work fills a void in terms of a lack of powerful disciplined nonlinear sparse regression methods in high-dimensional settings. Our method is shown empirically to scale to regression problems with $n\approx 10,000$ observations for input dimension $p\approx 1,000$.
Introducing DeepBalance: Random Deep Belief Network Ensembles to Address Class Imbalance
Class imbalance problems manifest in domains such as financial fraud detection or network intrusion analysis, where the prevalence of one class is much higher than another. Typically, practitioners are more interested in predicting the minority class than the majority class as the minority class may carry a higher misclassification cost. However, classifier performance deteriorates in the face of class imbalance as oftentimes classifiers may predict every point as the majority class. Methods for dealing with class imbalance include cost-sensitive learning or resampling techniques. In this paper, we introduce DeepBalance, an ensemble of deep belief networks trained with balanced bootstraps and random feature selection. We demonstrate that our proposed method outperforms baseline resampling methods such as SMOTE and under- and over-sampling in metrics such as AUC and sensitivity when applied to a highly imbalanced financial transaction data. Additionally, we explore performance and training time implications of various model parameters. Furthermore, we show that our model is easily parallelizable, which can reduce training times. Finally, we present an implementation of DeepBalance in R.
Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning
Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots' states and intents. While other distributed multi-robot collision avoidance systems exist, they often require extracting agent-level features to plan a local collision-free action, which can be computationally prohibitive and not robust. More importantly, in practice the performance of these methods are much lower than their centralized counterparts. We present a decentralized sensor-level collision avoidance policy for multi-robot systems, which directly maps raw sensor measurements to an agent's steering commands in terms of movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to find an optimal policy which is trained over a large number of robots on rich, complex environments simultaneously using a policy gradient based reinforcement learning algorithm. We validate the learned sensor-level collision avoidance policy in a variety of simulated scenarios with thorough performance evaluations and show that the final learned policy is able to find time efficient, collision-free paths for a large-scale robot system. We also demonstrate that the learned policy can be well generalized to new scenarios that do not appear in the entire training period, including navigating a heterogeneous group of robots and a large-scale scenario with 100 robots. Videos are available at https://sites.google.com/view/drlmaca
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
Dexterous multi-fingered hands are extremely versatile and provide a generic way to perform a multitude of tasks in human-centric environments. However, effectively controlling them remains challenging due to their high dimensionality and large number of potential contacts. Deep reinforcement learning (DRL) provides a model-agnostic approach to control complex dynamical systems, but has not been shown to scale to high-dimensional dexterous manipulation. Furthermore, deployment of DRL on physical systems remains challenging due to sample inefficiency. Consequently, the success of DRL in robotics has thus far been limited to simpler manipulators and tasks. In this work, we show that model-free DRL can effectively scale up to complex manipulation tasks with a high-dimensional 24-DoF hand, and solve them from scratch in simulated experiments. Furthermore, with the use of a small number of human demonstrations, the sample complexity can be significantly reduced, which enables learning with sample sizes equivalent to a few hours of robot experience. The use of demonstrations result in policies that exhibit very natural movements and, surprisingly, are also substantially more robust.
Overcoming Exploration in Reinforcement Learning with Demonstrations
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
Online Learning with Randomized Feedback Graphs for Optimal PUE Attacks in Cognitive Radio Networks
In a cognitive radio network, a secondary user learns the spectrum environment and dynamically accesses the channel where the primary user is inactive. At the same time, a primary user emulation (PUE) attacker can send falsified primary user signals and prevent the secondary user from utilizing the available channel. The best attacking strategies that an attacker can apply have not been well studied. In this paper, for the first time, we study optimal PUE attack strategies by formulating an online learning problem where the attacker needs to dynamically decide the attacking channel in each time slot based on its attacking experience. The challenge in our problem is that since the PUE attack happens in the spectrum sensing phase, the attacker cannot observe the reward on the attacked channel. To address this challenge, we utilize the attacker's observation capability. We propose online learning-based attacking strategies based on the attacker's observation capabilities. Through our analysis, we show that with no observation within the attacking slot, the attacker loses on the regret order, and with the observation of at least one channel, there is a significant improvement on the attacking performance. Observation of multiple channels does not give additional benefit to the attacker (only a constant scaling) though it gives insight on the number of observations required to achieve the minimum constant factor. Our proposed algorithms are optimal in the sense that their regret upper bounds match their corresponding regret lower-bounds. We show consistency between simulation and analytical results under various system parameters.
A Simple and Fast Algorithm for L1-norm Kernel PCA
We present an algorithm for L1-norm kernel PCA and provide a convergence analysis for it. While an optimal solution of L2-norm kernel PCA can be obtained through matrix decomposition, finding that of L1-norm kernel PCA is not trivial due to its non-convexity and non-smoothness. We provide a novel reformulation through which an equivalent, geometrically interpretable problem is obtained. Based on the geometric interpretation of the reformulated problem, we present a fixed-point type algorithm that iteratively computes a binary weight for each observation. As the algorithm requires only inner products of data vectors, it is computationally efficient and the kernel trick is applicable. In the convergence analysis, we show that the algorithm converges to a local optimal solution in a finite number of steps. Moreover, we provide a rate of convergence analysis, which has been never done for any L1-norm PCA algorithm, proving that the sequence of objective values converges at a linear rate. In numerical experiments, we show that the algorithm is robust in the presence of entry-wise perturbations and computationally scalable, especially in a large-scale setting. Lastly, we introduce an application to outlier detection where the model based on the proposed algorithm outperforms the benchmark algorithms.
Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces
While recent advances in deep reinforcement learning have allowed autonomous learning agents to succeed at a variety of complex tasks, existing algorithms generally require a lot of training data. One way to increase the speed at which agents are able to learn to perform tasks is by leveraging the input of human trainers. Although such input can take many forms, real-time, scalar-valued feedback is especially useful in situations where it proves difficult or impossible for humans to provide expert demonstrations. Previous approaches have shown the usefulness of human input provided in this fashion (e.g., the TAMER framework), but they have thus far not considered high-dimensional state spaces or employed the use of deep learning. In this paper, we do both: we propose Deep TAMER, an extension of the TAMER framework that leverages the representational power of deep neural networks in order to learn complex tasks in just a short amount of time with a human trainer. We demonstrate Deep TAMER's success by using it and just 15 minutes of human-provided feedback to train an agent that performs better than humans on the Atari game of Bowling - a task that has proven difficult for even state-of-the-art reinforcement learning methods.
A Neural Comprehensive Ranker (NCR) for Open-Domain Question Answering
This paper proposes a novel neural machine reading model for open-domain question answering at scale. Existing machine comprehension models typically assume that a short piece of relevant text containing answers is already identified and given to the models, from which the models are designed to extract answers. This assumption, however, is not realistic for building a large-scale open-domain question answering system which requires both deep text understanding and identifying relevant text from corpus simultaneously. In this paper, we introduce Neural Comprehensive Ranker (NCR) that integrates both passage ranking and answer extraction in one single framework. A Q&A system based on this framework allows users to issue an open-domain question without needing to provide a piece of text that must contain the answer. Experiments show that the unified NCR model is able to outperform the states-of-the-art in both retrieval of relevant text and answer extraction.
Provably Minimally-Distorted Adversarial Examples
The ability to deploy neural networks in real-world, safety-critical systems is severely limited by the presence of adversarial examples: slightly perturbed inputs that are misclassified by the network. In recent years, several techniques have been proposed for increasing robustness to adversarial examples --- and yet most of these have been quickly shown to be vulnerable to future attacks. For example, over half of the defenses proposed by papers accepted at ICLR 2018 have already been broken. We propose to address this difficulty through formal verification techniques. We show how to construct provably minimally distorted adversarial examples: given an arbitrary neural network and input sample, we can construct adversarial examples which we prove are of minimal distortion. Using this approach, we demonstrate that one of the recent ICLR defense proposals, adversarial retraining, provably succeeds at increasing the distortion required to construct adversarial examples by a factor of 4.2.
Comparison of PCA with ICA from data distribution perspective
We performed an empirical comparison of ICA and PCA algorithms by applying them on two simulated noisy time series with varying distribution parameters and level of noise. In general, ICA shows better results than PCA because it takes into account higher moments of data distribution. On the other hand, PCA remains quite sensitive to the level of correlations among signals.
DAGGER: A sequential algorithm for FDR control on DAGs
We propose a linear-time, single-pass, top-down algorithm for multiple testing on directed acyclic graphs (DAGs), where nodes represent hypotheses and edges specify a partial ordering in which hypotheses must be tested. The procedure is guaranteed to reject a sub-DAG with bounded false discovery rate (FDR) while satisfying the logical constraint that a rejected node's parents must also be rejected. It is designed for sequential testing settings, when the DAG structure is known a priori, but the $p$-values are obtained selectively (such as in a sequence of experiments), but the algorithm is also applicable in non-sequential settings when all $p$-values can be calculated in advance (such as variable/model selection). Our DAGGER algorithm, shorthand for Greedily Evolving Rejections on DAGs, provably controls the false discovery rate under independence, positive dependence or arbitrary dependence of the $p$-values. The DAGGER procedure specializes to known algorithms in the special cases of trees and line graphs, and simplifies to the classical Benjamini-Hochberg procedure when the DAG has no edges. We explore the empirical performance of DAGGER using simulations, as well as a real dataset corresponding to a gene ontology, showing favorable performance in terms of time and power.
Privacy Preserving Identification Using Sparse Approximation with Ambiguization
In this paper, we consider a privacy preserving encoding framework for identification applications covering biometrics, physical object security and the Internet of Things (IoT). The proposed framework is based on a sparsifying transform, which consists of a trained linear map, an element-wise nonlinearity, and privacy amplification. The sparsifying transform and privacy amplification are not symmetric for the data owner and data user. We demonstrate that the proposed approach is closely related to sparse ternary codes (STC), a recent information-theoretic concept proposed for fast approximate nearest neighbor (ANN) search in high dimensional feature spaces that being machine learning in nature also offers significant benefits in comparison to sparse approximation and binary embedding approaches. We demonstrate that the privacy of the database outsourced to a server as well as the privacy of the data user are preserved at a low computational cost, storage and communication burdens.
A Nonlinear Orthogonal Non-Negative Matrix Factorization Approach to Subspace Clustering
A recent theoretical analysis shows the equivalence between non-negative matrix factorization (NMF) and spectral clustering based approach to subspace clustering. As NMF and many of its variants are essentially linear, we introduce a nonlinear NMF with explicit orthogonality and derive general kernel-based orthogonal multiplicative update rules to solve the subspace clustering problem. In nonlinear orthogonal NMF framework, we propose two subspace clustering algorithms, named kernel-based non-negative subspace clustering KNSC-Ncut and KNSC-Rcut and establish their connection with spectral normalized cut and ratio cut clustering. We further extend the nonlinear orthogonal NMF framework and introduce a graph regularization to obtain a factorization that respects a local geometric structure of the data after the nonlinear mapping. The proposed NMF-based approach to subspace clustering takes into account the nonlinear nature of the manifold, as well as its intrinsic local geometry, which considerably improves the clustering performance when compared to the several recently proposed state-of-the-art methods.
Structured Embedding Models for Grouped Data
Word embeddings are a powerful approach for analyzing language, and exponential family embeddings (EFE) extend them to other types of data. Here we develop structured exponential family embeddings (S-EFE), a method for discovering embeddings that vary across related groups of data. We study how the word usage of U.S. Congressional speeches varies across states and party affiliation, how words are used differently across sections of the ArXiv, and how the co-purchase patterns of groceries can vary across seasons. Key to the success of our method is that the groups share statistical information. We develop two sharing strategies: hierarchical modeling and amortization. We demonstrate the benefits of this approach in empirical studies of speeches, abstracts, and shopping baskets. We show how S-EFE enables group-specific interpretation of word usage, and outperforms EFE in predicting held-out data.
An Empirical Evaluation of Rule Extraction from Recurrent Neural Networks
Rule extraction from black-box models is critical in domains that require model validation before implementation, as can be the case in credit scoring and medical diagnosis. Though already a challenging problem in statistical learning in general, the difficulty is even greater when highly non-linear, recursive models, such as recurrent neural networks (RNNs), are fit to data. Here, we study the extraction of rules from second-order recurrent neural networks trained to recognize the Tomita grammars. We show that production rules can be stably extracted from trained RNNs and that in certain cases the rules outperform the trained RNNs.
Learning how to learn: an adaptive dialogue agent for incrementally learning visually grounded word meanings
We present an optimised multi-modal dialogue agent for interactive learning of visually grounded word meanings from a human tutor, trained on real human-human tutoring data. Within a life-long interactive learning period, the agent, trained using Reinforcement Learning (RL), must be able to handle natural conversations with human users and achieve good learning performance (accuracy) while minimising human effort in the learning process. We train and evaluate this system in interaction with a simulated human tutor, which is built on the BURCHAK corpus -- a Human-Human Dialogue dataset for the visual learning task. The results show that: 1) The learned policy can coherently interact with the simulated user to achieve the goal of the task (i.e. learning visual attributes of objects, e.g. colour and shape); and 2) it finds a better trade-off between classifier accuracy and tutoring costs than hand-crafted rule-based policies, including ones with dynamic policies.
Training an adaptive dialogue policy for interactive learning of visually grounded word meanings
We present a multi-modal dialogue system for interactive learning of perceptually grounded word meanings from a human tutor. The system integrates an incremental, semantic parsing/generation framework - Dynamic Syntax and Type Theory with Records (DS-TTR) - with a set of visual classifiers that are learned throughout the interaction and which ground the meaning representations that it produces. We use this system in interaction with a simulated human tutor to study the effects of different dialogue policies and capabilities on the accuracy of learned meanings, learning rates, and efforts/costs to the tutor. We show that the overall performance of the learning agent is affected by (1) who takes initiative in the dialogues; (2) the ability to express/use their confidence level about visual attributes; and (3) the ability to process elliptical and incrementally constructed dialogue turns. Ultimately, we train an adaptive dialogue policy which optimises the trade-off between classifier accuracy and tutoring costs.
The BURCHAK corpus: a Challenge Data Set for Interactive Learning of Visually Grounded Word Meanings
We motivate and describe a new freely available human-human dialogue dataset for interactive learning of visually grounded word meanings through ostensive definition by a tutor to a learner. The data has been collected using a novel, character-by-character variant of the DiET chat tool (Healey et al., 2003; Mills and Healey, submitted) with a novel task, where a Learner needs to learn invented visual attribute words (such as " burchak " for square) from a tutor. As such, the text-based interactions closely resemble face-to-face conversation and thus contain many of the linguistic phenomena encountered in natural, spontaneous dialogue. These include self-and other-correction, mid-sentence continuations, interruptions, overlaps, fillers, and hedges. We also present a generic n-gram framework for building user (i.e. tutor) simulations from this type of incremental data, which is freely available to researchers. We show that the simulations produce outputs that are similar to the original data (e.g. 78% turn match similarity). Finally, we train and evaluate a Reinforcement Learning dialogue control agent for learning visually grounded word meanings, trained from the BURCHAK corpus. The learned policy shows comparable performance to a rule-based system built previously.
Convergence Analysis of Distributed Stochastic Gradient Descent with Shuffling
When using stochastic gradient descent to solve large-scale machine learning problems, a common practice of data processing is to shuffle the training data, partition the data across multiple machines if needed, and then perform several epochs of training on the re-shuffled (either locally or globally) data. The above procedure makes the instances used to compute the gradients no longer independently sampled from the training data set. Then does the distributed SGD method have desirable convergence properties in this practical situation? In this paper, we give answers to this question. First, we give a mathematical formulation for the practical data processing procedure in distributed machine learning, which we call data partition with global/local shuffling. We observe that global shuffling is equivalent to without-replacement sampling if the shuffling operations are independent. We prove that SGD with global shuffling has convergence guarantee in both convex and non-convex cases. An interesting finding is that, the non-convex tasks like deep learning are more suitable to apply shuffling comparing to the convex tasks. Second, we conduct the convergence analysis for SGD with local shuffling. The convergence rate for local shuffling is slower than that for global shuffling, since it will lose some information if there's no communication between partitioned data. Finally, we consider the situation when the permutation after shuffling is not uniformly distributed (insufficient shuffling), and discuss the condition under which this insufficiency will not influence the convergence rate. Our theoretical results provide important insights to large-scale machine learning, especially in the selection of data processing methods in order to achieve faster convergence and good speedup. Our theoretical findings are verified by extensive experiments on logistic regression and deep neural networks.
A representer theorem for deep kernel learning
In this paper we provide a finite-sample and an infinite-sample representer theorem for the concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. These results serve as mathematical foundation for the analysis of machine learning algorithms based on compositions of functions. As a direct consequence in the finite-sample case, the corresponding infinite-dimensional minimization problems can be recast into (nonlinear) finite-dimensional minimization problems, which can be tackled with nonlinear optimization algorithms. Moreover, we show how concatenated machine learning problems can be reformulated as neural networks and how our representer theorem applies to a broad class of state-of-the-art deep learning methods.
Improving image generative models with human interactions
GANs provide a framework for training generative models which mimic a data distribution. However, in many cases we wish to train these generative models to optimize some auxiliary objective function within the data it generates, such as making more aesthetically pleasing images. In some cases, these objective functions are difficult to evaluate, e.g. they may require human interaction. Here, we develop a system for efficiently improving a GAN to target an objective involving human interaction, specifically generating images that increase rates of positive user interactions. To improve the generative model, we build a model of human behavior in the targeted domain from a relatively small set of interactions, and then use this behavioral model as an auxiliary loss function to improve the generative model. We show that this system is successful at improving positive interaction rates, at least on simulated data, and characterize some of the factors that affect its performance.
Self-supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation
Enabling robots to autonomously navigate complex environments is essential for real-world deployment. Prior methods approach this problem by having the robot maintain an internal map of the world, and then use a localization and planning method to navigate through the internal map. However, these approaches often include a variety of assumptions, are computationally intensive, and do not learn from failures. In contrast, learning-based methods improve as the robot acts in the environment, but are difficult to deploy in the real-world due to their high sample complexity. To address the need to learn complex policies with few samples, we propose a generalized computation graph that subsumes value-based model-free methods and model-based methods, with specific instantiations interpolating between model-free and model-based. We then instantiate this graph to form a navigation model that learns from raw images and is sample efficient. Our simulated car experiments explore the design decisions of our navigation model, and show our approach outperforms single-step and $N$-step double Q-learning. We also evaluate our approach on a real-world RC car and show it can learn to navigate through a complex indoor environment with a few hours of fully autonomous, self-supervised training. Videos of the experiments and code can be found at github.com/gkahn13/gcg
A generalization of the Jensen divergence: The chord gap divergence
We introduce a novel family of distances, called the chord gap divergences, that generalizes the Jensen divergences (also called the Burbea-Rao distances), and study its properties. It follows a generalization of the celebrated statistical Bhattacharyya distance that is frequently met in applications. We report an iterative concave-convex procedure for computing centroids, and analyze the performance of the $k$-means++ clustering with respect to that new dissimilarity measure by introducing the Taylor-Lagrange remainder form of the skew Jensen divergences.
Unsupervised Domain Adaptation with Copula Models
We study the task of unsupervised domain adaptation, where no labeled data from the target domain is provided during training time. To deal with the potential discrepancy between the source and target distributions, both in features and labels, we exploit a copula-based regression framework. The benefits of this approach are two-fold: (a) it allows us to model a broader range of conditional predictive densities beyond the common exponential family, (b) we show how to leverage Sklar's theorem, the essence of the copula formulation relating the joint density to the copula dependency functions, to find effective feature mappings that mitigate the domain mismatch. By transforming the data to a copula domain, we show on a number of benchmark datasets (including human emotion estimation), and using different regression models for prediction, that we can achieve a more robust and accurate estimation of target labels, compared to recently proposed feature transformation (adaptation) methods.
Learning the Exact Topology of Undirected Consensus Networks
In this article, we present a method to learn the interaction topology of a network of agents undergoing linear consensus updates in a non invasive manner. Our approach is based on multivariate Wiener filtering, which is known to recover spurious edges apart from the true edges in the topology. The main contribution of this work is to show that in the case of undirected consensus networks, all spurious links obtained using Wiener filtering can be identified using frequency response of the Wiener filters. Thus, the exact interaction topology of the agents is unveiled. The method presented requires time series measurements of the state of the agents and does not require any knowledge of link weights. To the best of our knowledge this is the first approach that provably reconstructs the structure of undirected consensus networks with correlated noise. We illustrate the effectiveness of the method developed through numerical simulations as well as experiments on a five node network of Raspberry Pis.
Language-depedent I-Vectors for LRE15
A standard recipe for spoken language recognition is to apply a Gaussian back-end to i-vectors. This ignores the uncertainty in the i-vector extraction, which could be important especially for short utterances. A recent paper by Cumani, Plchot and Fer proposes a solution to propagate that uncertainty into the backend. We propose an alternative method of propagating the uncertainty.
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
In this paper, we study the problem of sampling from a given probability density function that is known to be smooth and strongly log-concave. We analyze several methods of approximate sampling based on discretizations of the (highly overdamped) Langevin diffusion and establish guarantees on its error measured in the Wasserstein-2 distance. Our guarantees improve or extend the state-of-the-art results in three directions. First, we provide an upper bound on the error of the first-order Langevin Monte Carlo (LMC) algorithm with optimized varying step-size. This result has the advantage of being horizon free (we do not need to know in advance the target precision) and to improve by a logarithmic factor the corresponding result for the constant step-size. Second, we study the case where accurate evaluations of the gradient of the log-density are unavailable, but one can have access to approximations of the aforementioned gradient. In such a situation, we consider both deterministic and stochastic approximations of the gradient and provide an upper bound on the sampling error of the first-order LMC that quantifies the impact of the gradient evaluation inaccuracies. Third, we establish upper bounds for two versions of the second-order LMC, which leverage the Hessian of the log-density. We nonasymptotic guarantees on the sampling error of these second-order LMCs. These guarantees reveal that the second-order LMC algorithms improve on the first-order LMC in ill-conditioned settings.
Toward Scalable Machine Learning and Data Mining: the Bioinformatics Case
In an effort to overcome the data deluge in computational biology and bioinformatics and to facilitate bioinformatics research in the era of big data, we identify some of the most influential algorithms that have been widely used in the bioinformatics community. These top data mining and machine learning algorithms cover classification, clustering, regression, graphical model-based learning, and dimensionality reduction. The goal of this study is to guide the focus of scalable computing experts in the endeavor of applying new storage and scalable computation designs to bioinformatics algorithms that merit their attention most, following the engineering maxim of "optimize the common case".
Improved Training for Self-Training by Confidence Assessments
It is well known that for some tasks, labeled data sets may be hard to gather. Therefore, we wished to tackle here the problem of having insufficient training data. We examined learning methods from unlabeled data after an initial training on a limited labeled data set. The suggested approach can be used as an online learning method on the unlabeled test set. In the general classification task, whenever we predict a label with high enough confidence, we treat it as a true label and train the data accordingly. For the semantic segmentation task, a classic example for an expensive data labeling process, we do so pixel-wise. Our suggested approaches were applied on the MNIST data-set as a proof of concept for a vision classification task and on the ADE20K data-set in order to tackle the semi-supervised semantic segmentation problem.
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
We propose a deep learning based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in deep learning. We illustrate the method on several problems including some eigenvalue problems.
Bayesian estimation from few samples: community detection and related problems
We propose an efficient meta-algorithm for Bayesian estimation problems that is based on low-degree polynomials, semidefinite programming, and tensor decomposition. The algorithm is inspired by recent lower bound constructions for sum-of-squares and related to the method of moments. Our focus is on sample complexity bounds that are as tight as possible (up to additive lower-order terms) and often achieve statistical thresholds or conjectured computational thresholds. Our algorithm recovers the best known bounds for community detection in the sparse stochastic block model, a widely-studied class of estimation problems for community detection in graphs. We obtain the first recovery guarantees for the mixed-membership stochastic block model (Airoldi et el.) in constant average degree graphs---up to what we conjecture to be the computational threshold for this model. We show that our algorithm exhibits a sharp computational threshold for the stochastic block model with multiple communities beyond the Kesten--Stigum bound---giving evidence that this task may require exponential time. The basic strategy of our algorithm is strikingly simple: we compute the best-possible low-degree approximation for the moments of the posterior distribution of the parameters and use a robust tensor decomposition algorithm to recover the parameters from these approximate posterior moments.
A Versatile Approach to Evaluating and Testing Automated Vehicles based on Kernel Methods
Evaluation and validation of complicated control systems are crucial to guarantee usability and safety. Usually, failure happens in some very rarely encountered situations, but once triggered, the consequence is disastrous. Accelerated Evaluation is a methodology that efficiently tests those rarely-occurring yet critical failures via smartly-sampled test cases. The distribution used in sampling is pivotal to the performance of the method, but building a suitable distribution requires case-by-case analysis. This paper proposes a versatile approach for constructing sampling distribution using kernel method. The approach uses statistical learning tools to approximate the critical event sets and constructs distributions based on the unique properties of Gaussian distributions. We applied the method to evaluate the automated vehicles. Numerical experiments show proposed approach can robustly identify the rare failures and significantly reduce the evaluation time.
libact: Pool-based Active Learning in Python
libact is a Python package designed to make active learning easier for general users. The package not only implements several popular active learning strategies, but also features the active-learning-by-learning meta-algorithm that assists the users to automatically select the best strategy on the fly. Furthermore, the package provides a unified interface for implementing more strategies, models and application-specific labelers. The package is open-source on Github, and can be easily installed from Python Package Index repository.
Privacy with Estimation Guarantees
We study the central problem in data privacy: how to share data with an analyst while providing both privacy and utility guarantees to the user that owns the data. In this setting, we present an estimation-theoretic analysis of the privacy-utility trade-off (PUT). Here, an analyst is allowed to reconstruct (in a mean-squared error sense) certain functions of the data (utility), while other private functions should not be reconstructed with distortion below a certain threshold (privacy). We demonstrate how chi-square information captures the fundamental PUT in this case and provide bounds for the best PUT. We propose a convex program to compute privacy-assuring mappings when the functions to be disclosed and hidden are known a priori and the data distribution is known. We derive lower bounds on the minimum mean-squared error of estimating a target function from the disclosed data and evaluate the robustness of our approach when an empirical distribution is used to compute the privacy-assuring mappings instead of the true data distribution. We illustrate the proposed approach through two numerical experiments.
Asymptotic Allocation Rules for a Class of Dynamic Multi-armed Bandit Problems
This paper presents a class of Dynamic Multi-Armed Bandit problems where the reward can be modeled as the noisy output of a time varying linear stochastic dynamic system that satisfies some boundedness constraints. The class allows many seemingly different problems with time varying option characteristics to be considered in a single framework. It also opens up the possibility of considering many new problems of practical importance. For instance it affords the simultaneous consideration of temporal option unavailabilities and the depen- dencies between options with time varying option characteristics in a seamless manner. We show that, for this class of problems, the combination of any Upper Confidence Bound type algorithm with any efficient reward estimator for the expected reward ensures the logarithmic bounding of the expected cumulative regret. We demonstrate the versatility of the approach by the explicit consideration of a new example of practical interest.
Deep Abstract Q-Networks
We examine the problem of learning and planning on high-dimensional domains with long horizons and sparse rewards. Recent approaches have shown great successes in many Atari 2600 domains. However, domains with long horizons and sparse rewards, such as Montezuma's Revenge and Venture, remain challenging for existing methods. Methods using abstraction (Dietterich 2000; Sutton, Precup, and Singh 1999) have shown to be useful in tackling long-horizon problems. We combine recent techniques of deep reinforcement learning with existing model-based approaches using an expert-provided state abstraction. We construct toy domains that elucidate the problem of long horizons, sparse rewards and high-dimensional inputs, and show that our algorithm significantly outperforms previous methods on these domains. Our abstraction-based approach outperforms Deep Q-Networks (Mnih et al. 2015) on Montezuma's Revenge and Venture, and exhibits backtracking behavior that is absent from previous methods.
Weighted-SVD: Matrix Factorization with Weights on the Latent Factors
The Matrix Factorization models, sometimes called the latent factor models, are a family of methods in the recommender system research area to (1) generate the latent factors for the users and the items and (2) predict users' ratings on items based on their latent factors. However, current Matrix Factorization models presume that all the latent factors are equally weighted, which may not always be a reasonable assumption in practice. In this paper, we propose a new model, called Weighted-SVD, to integrate the linear regression model with the SVD model such that each latent factor accompanies with a corresponding weight parameter. This mechanism allows the latent factors have different weights to influence the final ratings. The complexity of the Weighted-SVD model is slightly larger than the SVD model but much smaller than the SVD++ model. We compared the Weighted-SVD model with several latent factor models on five public datasets based on the Root-Mean-Squared-Errors (RMSEs). The results show that the Weighted-SVD model outperforms the baseline methods in all the experimental datasets under almost all settings.
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
Deep neural networks have become widely used, obtaining remarkable results in domains such as computer vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, and bio-informatics, where they have produced results comparable to human experts. However, these networks can be easily fooled by adversarial perturbations: minimal changes to correctly-classified inputs, that cause the network to mis-classify them. This phenomenon represents a concern for both safety and security, but it is currently unclear how to measure a network's robustness against such perturbations. Existing techniques are limited to checking robustness around a few individual input points, providing only very limited guarantees. We propose a novel approach for automatically identifying safe regions of the input space, within which the network is robust against adversarial perturbations. The approach is data-guided, relying on clustering to identify well-defined geometric regions as candidate safe regions. We then utilize verification techniques to confirm that these regions are safe or to provide counter-examples showing that they are not safe. We also introduce the notion of targeted robustness which, for a given target label and region, ensures that a NN does not map any input in the region to the target label. We evaluated our technique on the MNIST dataset and on a neural network implementation of a controller for the next-generation Airborne Collision Avoidance System for unmanned aircraft (ACAS Xu). For these networks, our approach identified multiple regions which were completely safe as well as some which were only safe for specific labels. It also discovered several adversarial perturbations of interest.
Online control of the false discovery rate with decaying memory
In the online multiple testing problem, p-values corresponding to different null hypotheses are observed one by one, and the decision of whether or not to reject the current hypothesis must be made immediately, after which the next p-value is observed. Alpha-investing algorithms to control the false discovery rate (FDR), formulated by Foster and Stine, have been generalized and applied to many settings, including quality-preserving databases in science and multiple A/B or multi-armed bandit tests for internet commerce. This paper improves the class of generalized alpha-investing algorithms (GAI) in four ways: (a) we show how to uniformly improve the power of the entire class of monotone GAI procedures by awarding more alpha-wealth for each rejection, giving a win-win resolution to a recent dilemma raised by Javanmard and Montanari, (b) we demonstrate how to incorporate prior weights to indicate domain knowledge of which hypotheses are likely to be non-null, (c) we allow for differing penalties for false discoveries to indicate that some hypotheses may be more important than others, (d) we define a new quantity called the decaying memory false discovery rate (mem-FDR) that may be more meaningful for truly temporal applications, and which alleviates problems that we describe and refer to as "piggybacking" and "alpha-death". Our GAI++ algorithms incorporate all four generalizations simultaneously, and reduce to more powerful variants of earlier algorithms when the weights and decay are all set to unity. Finally, we also describe a simple method to derive new online FDR rules based on an estimated false discovery proportion.
Remote Sensing Image Classification with Large Scale Gaussian Processes
Current remote sensing image classification problems have to deal with an unprecedented amount of heterogeneous and complex data sources. Upcoming missions will soon provide large data streams that will make land cover/use classification difficult. Machine learning classifiers can help at this, and many methods are currently available. A popular kernel classifier is the Gaussian process classifier (GPC), since it approaches the classification problem with a solid probabilistic treatment, thus yielding confidence intervals for the predictions as well as very competitive results to state-of-the-art neural networks and support vector machines. However, its computational cost is prohibitive for large scale applications, and constitutes the main obstacle precluding wide adoption. This paper tackles this problem by introducing two novel efficient methodologies for Gaussian Process (GP) classification. We first include the standard random Fourier features approximation into GPC, which largely decreases its computational cost and permits large scale remote sensing image classification. In addition, we propose a model which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones within a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery and infrared sounding data. Excellent empirical results support the proposal in both computational cost and accuracy.
Improving speech recognition by revising gated recurrent units
Speech recognition is largely taking advantage of deep learning, showing that substantial benefits can be obtained by modern Recurrent Neural Networks (RNNs). The most popular RNNs are Long Short-Term Memory (LSTMs), which typically reach state-of-the-art performance in many tasks thanks to their ability to learn long-term dependencies and robustness to vanishing gradients. Nevertheless, LSTMs have a rather complex design with three multiplicative gates, that might impair their efficient implementation. An attempt to simplify LSTMs has recently led to Gated Recurrent Units (GRUs), which are based on just two multiplicative gates. This paper builds on these efforts by further revising GRUs and proposing a simplified architecture potentially more suitable for speech recognition. The contribution of this work is two-fold. First, we suggest to remove the reset gate in the GRU design, resulting in a more efficient single-gate architecture. Second, we propose to replace tanh with ReLU activations in the state update equations. Results show that, in our implementation, the revised architecture reduces the per-epoch training time with more than 30% and consistently improves recognition performance across different tasks, input features, and noisy conditions when compared to a standard GRU.
Scalable Nonlinear AUC Maximization Methods
The area under the ROC curve (AUC) is a measure of interest in various machine learning and data mining applications. It has been widely used to evaluate classification performance on heavily imbalanced data. The kernelized AUC maximization machines have established a superior generalization ability compared to linear AUC machines because of their capability in modeling the complex nonlinear structure underlying most real-world data. However, the high training complexity renders the kernelized AUC machines infeasible for large-scale data. In this paper, we present two nonlinear AUC maximization algorithms that optimize pairwise linear classifiers over a finite-dimensional feature space constructed via the k-means Nystr\"{o}m method. Our first algorithm maximize the AUC metric by optimizing a pairwise squared hinge loss function using the truncated Newton method. However, the second-order batch AUC maximization method becomes expensive to optimize for extremely massive datasets. This motivate us to develop a first-order stochastic AUC maximization algorithm that incorporates a scheduled regularization update and scheduled averaging techniques to accelerate the convergence of the classifier. Experiments on several benchmark datasets demonstrate that the proposed AUC classifiers are more efficient than kernelized AUC machines while they are able to surpass or at least match the AUC performance of the kernelized AUC machines. The experiments also show that the proposed stochastic AUC classifier outperforms the state-of-the-art online AUC maximization methods in terms of AUC classification accuracy.
Deep Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams
Analysis of an organization's computer network activity is a key component of early detection and mitigation of insider threat, a growing concern for many organizations. Raw system logs are a prototypical example of streaming data that can quickly scale beyond the cognitive power of a human analyst. As a prospective filter for the human analyst, we present an online unsupervised deep learning approach to detect anomalous network activity from system logs in real time. Our models decompose anomaly scores into the contributions of individual user behavior features for increased interpretability to aid analysts reviewing potential cases of insider threat. Using the CERT Insider Threat Dataset v6.2 and threat detection recall as our performance metric, our novel deep and recurrent neural network models outperform Principal Component Analysis, Support Vector Machine and Isolation Forest based anomaly detection baselines. For our best model, the events labeled as insider threat activity in our dataset had an average anomaly score in the 95.53 percentile, demonstrating our approach's potential to greatly reduce analyst workloads.
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Deep reinforcement learning has shown promising results in learning control policies for complex sequential decision-making tasks. However, these neural network-based policies are known to be vulnerable to adversarial examples. This vulnerability poses a potentially serious threat to safety-critical systems such as autonomous vehicles. In this paper, we propose a defense mechanism to defend reinforcement learning agents from adversarial attacks by leveraging an action-conditioned frame prediction module. Our core idea is that the adversarial examples targeting at a neural network-based policy are not effective for the frame prediction model. By comparing the action distribution produced by a policy from processing the current observed frame to the action distribution produced by the same policy from processing the predicted frame from the action-conditioned frame prediction module, we can detect the presence of adversarial examples. Beyond detecting the presence of adversarial examples, our method allows the agent to continue performing the task using the predicted frame when the agent is under attack. We evaluate the performance of our algorithm using five games in Atari 2600. Our results demonstrate that the proposed defense mechanism achieves favorable performance against baseline algorithms in detecting adversarial examples and in earning rewards when the agents are under attack.
Continuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks
Online social networks, World Wide Web, media and technological networks, and other types of so-called information networks are ubiquitous nowadays. These information networks are inherently heterogeneous and dynamic. They are heterogeneous as they consist of multi-typed objects and relations, and they are dynamic as they are constantly evolving over time. One of the challenging issues in such heterogeneous and dynamic environments is to forecast those relationships in the network that will appear in the future. In this paper, we try to solve the problem of continuous-time relationship prediction in dynamic and heterogeneous information networks. This implies predicting the time it takes for a relationship to appear in the future, given its features that have been extracted by considering both heterogeneity and temporal dynamics of the underlying network. To this end, we first introduce a feature extraction framework that combines the power of meta-path-based modeling and recurrent neural networks to effectively extract features suitable for relationship prediction regarding heterogeneity and dynamicity of the networks. Next, we propose a supervised non-parametric approach, called Non-Parametric Generalized Linear Model (NP-GLM), which infers the hidden underlying probability distribution of the relationship building time given its features. We then present a learning algorithm to train NP-GLM and an inference method to answer time-related queries. Extensive experiments conducted on synthetic data and three real-world datasets, namely Delicious, MovieLens, and DBLP, demonstrate the effectiveness of NP-GLM in solving continuous-time relationship prediction problem vis-a-vis competitive baselines
R\'enyi Differential Privacy Mechanisms for Posterior Sampling
Using a recently proposed privacy definition of R\'enyi Differential Privacy (RDP), we re-examine the inherent privacy of releasing a single sample from a posterior distribution. We exploit the impact of the prior distribution in mitigating the influence of individual data points. In particular, we focus on sampling from an exponential family and specific generalized linear models, such as logistic regression. We propose novel RDP mechanisms as well as offering a new RDP analysis for an existing method in order to add value to the RDP framework. Each method is capable of achieving arbitrary RDP privacy guarantees, and we offer experimental results of their efficacy.
Online and Distributed Robust Regressions under Adversarial Data Corruption
In today's era of big data, robust least-squares regression becomes a more challenging problem when considering the adversarial corruption along with explosive growth of datasets. Traditional robust methods can handle the noise but suffer from several challenges when applied in huge dataset including 1) computational infeasibility of handling an entire dataset at once, 2) existence of heterogeneously distributed corruption, and 3) difficulty in corruption estimation when data cannot be entirely loaded. This paper proposes online and distributed robust regression approaches, both of which can concurrently address all the above challenges. Specifically, the distributed algorithm optimizes the regression coefficients of each data block via heuristic hard thresholding and combines all the estimates in a distributed robust consolidation. Furthermore, an online version of the distributed algorithm is proposed to incrementally update the existing estimates with new incoming data. We also prove that our algorithms benefit from strong robustness guarantees in terms of regression coefficient recovery with a constant upper bound on the error of state-of-the-art batch methods. Extensive experiments on synthetic and real datasets demonstrate that our approaches are superior to those of existing methods in effectiveness, with competitive efficiency.
Facial Key Points Detection using Deep Convolutional Neural Network - NaimishNet
Facial Key Points (FKPs) Detection is an important and challenging problem in the fields of computer vision and machine learning. It involves predicting the co-ordinates of the FKPs, e.g. nose tip, center of eyes, etc, for a given face. In this paper, we propose a LeNet adapted Deep CNN model - NaimishNet, to operate on facial key points data and compare our model's performance against existing state of the art approaches.
Training Feedforward Neural Networks with Standard Logistic Activations is Feasible
Training feedforward neural networks with standard logistic activations is considered difficult because of the intrinsic properties of these sigmoidal functions. This work aims at showing that these networks can be trained to achieve generalization performance comparable to those based on hyperbolic tangent activations. The solution consists on applying a set of conditions in parameter initialization, which have been derived from the study of the properties of a single neuron from an information-theoretic perspective. The proposed initialization is validated through an extensive experimental analysis.
Learning Affinity via Spatial Propagation Networks
In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be the output from a deep CNN, but (b) results in a dense affinity matrix that effectively models any task-specific pairwise similarity matrix. Instead of designing the similarity kernels according to image features of two points, we can directly output all the similarities in a purely data-driven manner. The spatial propagation network is a generic framework that can be applied to many affinity-related tasks, including but not limited to image matting, segmentation and colorization, to name a few. Essentially, the model can learn semantically-aware affinity values for high-level vision tasks due to the powerful learning capability of the deep neural network classifier. We validate the framework on the task of refinement for image segmentation boundaries. Experiments on the HELEN face parsing and PASCAL VOC-2012 semantic segmentation tasks show that the spatial propagation network provides a general, effective and efficient solution for generating high-quality segmentation results.
A Fully Convolutional Network for Semantic Labeling of 3D Point Clouds
When classifying point clouds, a large amount of time is devoted to the process of engineering a reliable set of features which are then passed to a classifier of choice. Generally, such features - usually derived from the 3D-covariance matrix - are computed using the surrounding neighborhood of points. While these features capture local information, the process is usually time-consuming, and requires the application at multiple scales combined with contextual methods in order to adequately describe the diversity of objects within a scene. In this paper we present a 1D-fully convolutional network that consumes terrain-normalized points directly with the corresponding spectral data,if available, to generate point-wise labeling while implicitly learning contextual features in an end-to-end fashion. Our method uses only the 3D-coordinates and three corresponding spectral features for each point. Spectral features may either be extracted from 2D-georeferenced images, as shown here for Light Detection and Ranging (LiDAR) point clouds, or extracted directly for passive-derived point clouds,i.e. from muliple-view imagery. We train our network by splitting the data into square regions, and use a pooling layer that respects the permutation-invariance of the input points. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6%. We ranked third place with a mean F1-score of 63.32%, surpassing the F1-score of the method with highest accuracy by 1.69%. In addition to labeling 3D-point clouds, we also show that our method can be easily extended to 2D-semantic segmentation tasks, with promising initial results.
Usable & Scalable Learning Over Relational Data With Automatic Language Bias
Relational databases are valuable resources for learning novel and interesting relations and concepts. In order to constraint the search through the large space of candidate definitions, users must tune the algorithm by specifying a language bias. Unfortunately, specifying the language bias is done via trial and error and is guided by the expert's intuitions. We propose AutoBias, a system that leverages information in the schema and content of the database to automatically induce the language bias used by popular relational learning systems. We show that AutoBias delivers the same accuracy as using manually-written language bias by imposing only a slight overhead on the running time of the learning algorithm.
Mechanisms of dimensionality reduction and decorrelation in deep neural networks
Deep neural networks are widely used in various domains. However, the nature of computations at each layer of the deep networks is far from being well understood. Increasing the interpretability of deep neural networks is thus important. Here, we construct a mean-field framework to understand how compact representations are developed across layers, not only in deterministic deep networks with random weights but also in generative deep networks where an unsupervised learning is carried out. Our theory shows that the deep computation implements a dimensionality reduction while maintaining a finite level of weak correlations between neurons for possible feature extraction. Mechanisms of dimensionality reduction and decorrelation are unified in the same framework. This work may pave the way for understanding how a sensory hierarchy works.