title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment
We introduce a novel approach to Maximum A Posteriori inference based on discrete graphical models. By utilizing local Wasserstein distances for coupling assignment measures across edges of the underlying graph, a given discrete objective function is smoothly approximated and restricted to the assignment manifold. A corresponding multiplicative update scheme combines in a single process (i) geometric integration of the resulting Riemannian gradient flow and (ii) rounding to integral solutions that represent valid labelings. Throughout this process, local marginalization constraints known from the established LP relaxation are satisfied, whereas the smooth geometric setting results in rapidly converging iterations that can be carried out in parallel for every edge.
Constructing multi-modality and multi-classifier radiomics predictive models through reliable classifier fusion
Radiomics aims to extract and analyze large numbers of quantitative features from medical images and is highly promising in staging, diagnosing, and predicting outcomes of cancer treatments. Nevertheless, several challenges need to be addressed to construct an optimal radiomics predictive model. First, the predictive performance of the model may be reduced when features extracted from an individual imaging modality are blindly combined into a single predictive model. Second, because many different types of classifiers are available to construct a predictive model, selecting an optimal classifier for a particular application is still challenging. In this work, we developed multi-modality and multi-classifier radiomics predictive models that address the aforementioned issues in currently available models. Specifically, a new reliable classifier fusion strategy was proposed to optimally combine output from different modalities and classifiers. In this strategy, modality-specific classifiers were first trained, and an analytic evidential reasoning (ER) rule was developed to fuse the output score from each modality to construct an optimal predictive model. One public data set and two clinical case studies were performed to validate model performance. The experimental results indicated that the proposed ER rule based radiomics models outperformed the traditional models that rely on a single classifier or simply use combined features from different modalities.
On the Sample Complexity of the Linear Quadratic Regulator
This paper addresses the optimal control problem known as the Linear Quadratic Regulator in the case when the dynamics are unknown. We propose a multi-stage procedure, called Coarse-ID control, that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are nearly optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system.
Context Embedding Networks
Low dimensional embeddings that capture the main variations of interest in collections of data are important for many applications. One way to construct these embeddings is to acquire estimates of similarity from the crowd. However, similarity is a multi-dimensional concept that varies from individual to individual. Existing models for learning embeddings from the crowd typically make simplifying assumptions such as all individuals estimate similarity using the same criteria, the list of criteria is known in advance, or that the crowd workers are not influenced by the data that they see. To overcome these limitations we introduce Context Embedding Networks (CENs). In addition to learning interpretable embeddings from images, CENs also model worker biases for different attributes along with the visual context i.e. the visual attributes highlighted by a set of images. Experiments on two noisy crowd annotated datasets show that modeling both worker bias and visual context results in more interpretable embeddings compared to existing approaches.
IQ of Neural Networks
IQ tests are an accepted method for assessing human intelligence. The tests consist of several parts that must be solved under a time constraint. Of all the tested abilities, pattern recognition has been found to have the highest correlation with general intelligence. This is primarily because pattern recognition is the ability to find order in a noisy environment, a necessary skill for intelligent agents. In this paper, we propose a convolutional neural network (CNN) model for solving geometric pattern recognition problems. The CNN receives as input multiple ordered input images and outputs the next image according to the pattern. Our CNN is able to solve problems involving rotation, reflection, color, size and shape patterns and score within the top 5% of human performance.
Model-free prediction of noisy chaotic time series by deep learning
We present a deep neural network for a model-free prediction of a chaotic dynamical system from noisy observations. The proposed deep learning model aims to predict the conditional probability distribution of a state variable. The Long Short-Term Memory network (LSTM) is employed to model the nonlinear dynamics and a softmax layer is used to approximate a probability distribution. The LSTM model is trained by minimizing a regularized cross-entropy function. The LSTM model is validated against delay-time chaotic dynamical systems, Mackey-Glass and Ikeda equations. It is shown that the present LSTM makes a good prediction of the nonlinear dynamics by effectively filtering out the noise. It is found that the prediction uncertainty of a multiple-step forecast of the LSTM model is not a monotonic function of time; the predicted standard deviation may increase or decrease dynamically in time.
DeepTFP: Mobile Time Series Data Analytics based Traffic Flow Prediction
Traffic flow prediction is an important research issue to avoid traffic congestion in transportation systems. Traffic congestion avoiding can be achieved by knowing traffic flow and then conducting transportation planning. Achieving traffic flow prediction is challenging as the prediction is affected by many complex factors such as inter-region traffic, vehicles' relations, and sudden events. However, as the mobile data of vehicles has been widely collected by sensor-embedded devices in transportation systems, it is possible to predict the traffic flow by analysing mobile data. This study proposes a deep learning based prediction algorithm, DeepTFP, to collectively predict the traffic flow on each and every traffic road of a city. This algorithm uses three deep residual neural networks to model temporal closeness, period, and trend properties of traffic flow. Each residual neural network consists of a branch of residual convolutional units. DeepTFP aggregates the outputs of the three residual neural networks to optimize the parameters of a time series prediction model. Contrast experiments on mobile time series data from the transportation system of England demonstrate that the proposed DeepTFP outperforms the Long Short-Term Memory (LSTM) architecture based method in prediction accuracy.
Decomposition of Nonlinear Dynamical Systems Using Koopman Gramians
In this paper we propose a new Koopman operator approach to the decomposition of nonlinear dynamical systems using Koopman Gramians. We introduce the notion of an input-Koopman operator, and show how input-Koopman operators can be used to cast a nonlinear system into the classical state-space form, and identify conditions under which input and state observable functions are well separated. We then extend an existing method of dynamic mode decomposition for learning Koopman operators from data known as deep dynamic mode decomposition to systems with controls or disturbances. We illustrate the accuracy of the method in learning an input-state separable Koopman operator for an example system, even when the underlying system exhibits mixed state-input terms. We next introduce a nonlinear decomposition algorithm, based on Koopman Gramians, that maximizes internal subsystem observability and disturbance rejection from unwanted noise from other subsystems. We derive a relaxation based on Koopman Gramians and multi-way partitioning for the resulting NP-hard decomposition problem. We lastly illustrate the proposed algorithm with the swing dynamics for an IEEE 39-bus system.
Neural Task Programming: Learning to Generalize Across Hierarchical Tasks
In this work, we propose a novel robot learning framework called Neural Task Programming (NTP), which bridges the idea of few-shot learning from demonstration and neural program induction. NTP takes as input a task specification (e.g., video demonstration of a task) and recursively decomposes it into finer sub-task specifications. These specifications are fed to a hierarchical neural program, where bottom-level programs are callable subroutines that interact with the environment. We validate our method in three robot manipulation tasks. NTP achieves strong generalization across sequential tasks that exhibit hierarchal and compositional structures. The experimental results show that NTP learns to generalize well to- wards unseen tasks with increasing lengths, variable topologies, and changing objectives.
To prune, or not to prune: exploring the efficacy of pruning for model compression
Model pruning seeks to induce sparsity in a deep neural network's various connection matrices, thereby reducing the number of nonzero-valued parameters in the model. Recent reports (Han et al., 2015; Narang et al., 2017) prune deep networks at the cost of only a marginal loss in accuracy and achieve a sizable reduction in model size. This hints at the possibility that the baseline models in these experiments are perhaps severely over-parameterized at the outset and a viable alternative for model compression might be to simply reduce the number of hidden units while maintaining the model's dense connection structure, exposing a similar trade-off in model size and accuracy. We investigate these two distinct paths for model compression within the context of energy-efficient inference in resource-constrained environments and propose a new gradual pruning technique that is simple and straightforward to apply across a variety of models/datasets with minimal tuning and can be seamlessly incorporated within the training process. We compare the accuracy of large, but pruned models (large-sparse) and their smaller, but dense (small-dense) counterparts with identical memory footprint. Across a broad range of neural network architectures (deep CNNs, stacked LSTM, and seq2seq LSTM models), we find large-sparse models to consistently outperform small-dense models and achieve up to 10x reduction in number of non-zero parameters with minimal loss in accuracy.
Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics
Deep learning methods are used on spectroscopic data to predict drug content in tablets from near infrared (NIR) spectra. Using convolutional neural networks (CNNs), features are ex- tracted from the spectroscopic data. Extended multiplicative scatter correction (EMSC) and a novel spectral data augmentation method are benchmarked as preprocessing steps. The learned models perform better or on par with hypothetical optimal partial least squares (PLS) models for all combinations of preprocessing. Data augmentation with subsequent EMSC in combination gave the best results. The deep learning model CNNs also outperform the PLS models in an extrapolation chal- lenge created using data from a second instrument and from an analyte concentration not covered by the training data. Qualitative investigations of the CNNs kernel activations show their resemblance to wellknown data processing methods such as smoothing, slope/derivative, thresholds and spectral region selection.
Alternating Iteratively Reweighted Minimization Algorithms for Low-Rank Matrix Factorization
Nowadays, the availability of large-scale data in disparate application domains urges the deployment of sophisticated tools for extracting valuable knowledge out of this huge bulk of information. In that vein, low-rank representations (LRRs) which seek low-dimensional embeddings of data have naturally appeared. In an effort to reduce computational complexity and improve estimation performance, LRR has been viewed via a matrix factorization (MF) perspective. Recently, low-rank MF (LRMF) approaches have been proposed for tackling the inherent weakness of MF i.e., the unawareness of the dimension of the low-dimensional space where data reside. Herein, inspired by the merits of iterative reweighted schemes for rank minimization, we come up with a generic low-rank promoting regularization function. Then, focusing on a specific instance of it, we propose a regularizer that imposes column-sparsity jointly on the two matrix factors that result from MF, thus promoting low-rankness on the optimization problem. The problems of denoising, matrix completion and non-negative matrix factorization (NMF) are redefined according to the new LRMF formulation and solved via efficient Newton-type algorithms with proven theoretical guarantees as to their convergence and rates of convergence to stationary points. The effectiveness of the proposed algorithms is verified in diverse simulated and real data experiments.
McDiarmid Drift Detection Methods for Evolving Data Streams
Increasingly, Internet of Things (IoT) domains, such as sensor networks, smart cities, and social networks, generate vast amounts of data. Such data are not only unbounded and rapidly evolving. Rather, the content thereof dynamically evolves over time, often in unforeseen ways. These variations are due to so-called concept drifts, caused by changes in the underlying data generation mechanisms. In a classification setting, concept drift causes the previously learned models to become inaccurate, unsafe and even unusable. Accordingly, concept drifts need to be detected, and handled, as soon as possible. In medical applications and emergency response settings, for example, change in behaviours should be detected in near real-time, to avoid potential loss of life. To this end, we introduce the McDiarmid Drift Detection Method (MDDM), which utilizes McDiarmid's inequality in order to detect concept drift. The MDDM approach proceeds by sliding a window over prediction results, and associate window entries with weights. Higher weights are assigned to the most recent entries, in order to emphasize their importance. As instances are processed, the detection algorithm compares a weighted mean of elements inside the sliding window with the maximum weighted mean observed so far. A significant difference between the two weighted means, upper-bounded by the McDiarmid inequality, implies a concept drift. Our extensive experimentation against synthetic and real-world data streams show that our novel method outperforms the state-of-the-art. Specifically, MDDM yields shorter detection delays as well as lower false negative rates, while maintaining high classification accuracies.
Reliable Clustering of Bernoulli Mixture Models
A Bernoulli Mixture Model (BMM) is a finite mixture of random binary vectors with independent dimensions. The problem of clustering BMM data arises in a variety of real-world applications, ranging from population genetics to activity analysis in social networks. In this paper, we analyze the clusterability of BMMs from a theoretical perspective, when the number of clusters is unknown. In particular, we stipulate a set of conditions on the sample complexity and dimension of the model in order to guarantee the Probably Approximately Correct (PAC)-clusterability of a dataset. To the best of our knowledge, these findings are the first non-asymptotic bounds on the sample complexity of learning or clustering BMMs.
Learning Graphical Models from a Distributed Stream
A current challenge for data management systems is to support the construction and maintenance of machine learning models over data that is large, multi-dimensional, and evolving. While systems that could support these tasks are emerging, the need to scale to distributed, streaming data requires new models and algorithms. In this setting, as well as computational scalability and model accuracy, we also need to minimize the amount of communication between distributed processors, which is the chief component of latency. We study Bayesian networks, the workhorse of graphical models, and present a communication-efficient method for continuously learning and maintaining a Bayesian network model over data that is arriving as a distributed stream partitioned across multiple processors. We show a strategy for maintaining model parameters that leads to an exponential reduction in communication when compared with baseline approaches to maintain the exact MLE (maximum likelihood estimation). Meanwhile, our strategy provides similar prediction errors for the target distribution and for classification tasks.
A study of Thompson Sampling with Parameter h
Thompson Sampling algorithm is a well known Bayesian algorithm for solving stochastic multi-armed bandit. At each time step the algorithm chooses each arm with probability proportional to it being the current best arm. We modify the strategy by introducing a paramter h which alters the importance of the probability of an arm being the current best arm. We show that the optimality of Thompson sampling is robust to this perturbation within a range of parameter values for two arm bandits.
Porcupine Neural Networks: (Almost) All Local Optima are Global
Neural networks have been used prominently in several machine learning and statistics applications. In general, the underlying optimization of neural networks is non-convex which makes their performance analysis challenging. In this paper, we take a novel approach to this problem by asking whether one can constrain neural network weights to make its optimization landscape have good theoretical properties while at the same time, be a good approximation for the unconstrained one. For two-layer neural networks, we provide affirmative answers to these questions by introducing Porcupine Neural Networks (PNNs) whose weight vectors are constrained to lie over a finite set of lines. We show that most local optima of PNN optimizations are global while we have a characterization of regions where bad local optimizers may exist. Moreover, our theoretical and empirical results suggest that an unconstrained neural network can be approximated using a polynomially-large PNN.
Stacked Structure Learning for Lifted Relational Neural Networks
Lifted Relational Neural Networks (LRNNs) describe relational domains using weighted first-order rules which act as templates for constructing feed-forward neural networks. While previous work has shown that using LRNNs can lead to state-of-the-art results in various ILP tasks, these results depended on hand-crafted rules. In this paper, we extend the framework of LRNNs with structure learning, thus enabling a fully automated learning process. Similarly to many ILP methods, our structure learning algorithm proceeds in an iterative fashion by top-down searching through the hypothesis space of all possible Horn clauses, considering the predicates that occur in the training examples as well as invented soft concepts entailed by the best weighted rules found so far. In the experiments, we demonstrate the ability to automatically induce useful hierarchical soft concepts leading to deep LRNNs with a competitive predictive power.
Dilated Recurrent Neural Networks
Learning with recurrent neural networks (RNNs) on long sequences is a notoriously difficult task. There are three major challenges: 1) complex dependencies, 2) vanishing and exploding gradients, and 3) efficient parallelization. In this paper, we introduce a simple yet effective RNN connection structure, the DilatedRNN, which simultaneously tackles all of these challenges. The proposed architecture is characterized by multi-resolution dilated recurrent skip connections and can be combined flexibly with diverse RNN cells. Moreover, the DilatedRNN reduces the number of parameters needed and enhances training efficiency significantly, while matching state-of-the-art performance (even with standard RNN cells) in tasks involving very long-term dependencies. To provide a theory-based quantification of the architecture's advantages, we introduce a memory capacity measure, the mean recurrent length, which is more suitable for RNNs with long skip connections than existing measures. We rigorously prove the advantages of the DilatedRNN over other recurrent neural architectures. The code for our method is publicly available at https://github.com/code-terminator/DilatedRNN
How Much Chemistry Does a Deep Neural Network Need to Know to Make Accurate Predictions?
The meteoric rise of deep learning models in computer vision research, having achieved human-level accuracy in image recognition tasks is firm evidence of the impact of representation learning of deep neural networks. In the chemistry domain, recent advances have also led to the development of similar CNN models, such as Chemception, that is trained to predict chemical properties using images of molecular drawings. In this work, we investigate the effects of systematically removing and adding localized domain-specific information to the image channels of the training data. By augmenting images with only 3 additional basic information, and without introducing any architectural changes, we demonstrate that an augmented Chemception (AugChemception) outperforms the original model in the prediction of toxicity, activity, and solvation free energy. Then, by altering the information content in the images, and examining the resulting model's performance, we also identify two distinct learning patterns in predicting toxicity/activity as compared to solvation free energy. These patterns suggest that Chemception is learning about its tasks in the manner that is consistent with established knowledge. Thus, our work demonstrates that advanced chemical knowledge is not a pre-requisite for deep learning models to accurately predict complex chemical properties.
Solving differential equations with unknown constitutive relations as recurrent neural networks
We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and we use recurrent neural network to "learn" the reaction rate from this data. This is achieved by including a discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow's recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differences in design and function require modifications to the conventional wisdom about training such networks.
Linear-Time Sequence Classification using Restricted Boltzmann Machines
Classification of sequence data is the topic of interest for dynamic Bayesian models and Recurrent Neural Networks (RNNs). While the former can explicitly model the temporal dependencies between class variables, the latter have a capability of learning representations. Several attempts have been made to improve performance by combining these two approaches or increasing the processing capability of the hidden units in RNNs. This often results in complex models with a large number of learning parameters. In this paper, a compact model is proposed which offers both representation learning and temporal inference of class variables by rolling Restricted Boltzmann Machines (RBMs) and class variables over time. We address the key issue of intractability in this variant of RBMs by optimising a conditional distribution, instead of a joint distribution. Experiments reported in the paper on melody modelling and optical character recognition show that the proposed model can outperform the state-of-the-art. Also, the experimental results on optical character recognition, part-of-speech tagging and text chunking demonstrate that our model is comparable to recurrent neural networks with complex memory gates while requiring far fewer parameters.
Learnable Explicit Density for Continuous Latent Space and Variational Inference
In this paper, we study two aspects of the variational autoencoder (VAE): the prior distribution over the latent variables and its corresponding posterior. First, we decompose the learning of VAEs into layerwise density estimation, and argue that having a flexible prior is beneficial to both sample generation and inference. Second, we analyze the family of inverse autoregressive flows (inverse AF) and show that with further improvement, inverse AF could be used as universal approximation to any complicated posterior. Our analysis results in a unified approach to parameterizing a VAE, without the need to restrict ourselves to use factorial Gaussians in the latent real space.
Lattice Recurrent Unit: Improving Convergence and Statistical Efficiency for Sequence Modeling
Recurrent neural networks have shown remarkable success in modeling sequences. However low resource situations still adversely affect the generalizability of these models. We introduce a new family of models, called Lattice Recurrent Units (LRU), to address the challenge of learning deep multi-layer recurrent models with limited resources. LRU models achieve this goal by creating distinct (but coupled) flow of information inside the units: a first flow along time dimension and a second flow along depth dimension. It also offers a symmetry in how information can flow horizontally and vertically. We analyze the effects of decoupling three different components of our LRU model: Reset Gate, Update Gate and Projected State. We evaluate this family on new LRU models on computational convergence rates and statistical efficiency. Our experiments are performed on four publicly-available datasets, comparing with Grid-LSTM and Recurrent Highway networks. Our results show that LRU has better empirical computational convergence rates and statistical efficiency values, along with learning more accurate language models.
Discovering Playing Patterns: Time Series Clustering of Free-To-Play Game Data
The classification of time series data is a challenge common to all data-driven fields. However, there is no agreement about which are the most efficient techniques to group unlabeled time-ordered data. This is because a successful classification of time series patterns depends on the goal and the domain of interest, i.e. it is application-dependent. In this article, we study free-to-play game data. In this domain, clustering similar time series information is increasingly important due to the large amount of data collected by current mobile and web applications. We evaluate which methods cluster accurately time series of mobile games, focusing on player behavior data. We identify and validate several aspects of the clustering: the similarity measures and the representation techniques to reduce the high dimensionality of time series. As a robustness test, we compare various temporal datasets of player activity from two free-to-play video-games. With these techniques we extract temporal patterns of player behavior relevant for the evaluation of game events and game-business diagnosis. Our experiments provide intuitive visualizations to validate the results of the clustering and to determine the optimal number of clusters. Additionally, we assess the common characteristics of the players belonging to the same group. This study allows us to improve the understanding of player dynamics and churn behavior.
Efficient K-Shot Learning with Regularized Deep Networks
Feature representations from pre-trained deep neural networks have been known to exhibit excellent generalization and utility across a variety of related tasks. Fine-tuning is by far the simplest and most widely used approach that seeks to exploit and adapt these feature representations to novel tasks with limited data. Despite the effectiveness of fine-tuning, itis often sub-optimal and requires very careful optimization to prevent severe over-fitting to small datasets. The problem of sub-optimality and over-fitting, is due in part to the large number of parameters used in a typical deep convolutional neural network. To address these problems, we propose a simple yet effective regularization method for fine-tuning pre-trained deep networks for the task of k-shot learning. To prevent overfitting, our key strategy is to cluster the model parameters while ensuring intra-cluster similarity and inter-cluster diversity of the parameters, effectively regularizing the dimensionality of the parameter search space. In particular, we identify groups of neurons within each layer of a deep network that shares similar activation patterns. When the network is to be fine-tuned for a classification task using only k examples, we propagate a single gradient to all of the neuron parameters that belong to the same group. The grouping of neurons is non-trivial as neuron activations depend on the distribution of the input data. To efficiently search for optimal groupings conditioned on the input data, we propose a reinforcement learning search strategy using recurrent networks to learn the optimal group assignments for each network layer. Experimental results show that our method can be easily applied to several popular convolutional neural networks and improve upon other state-of-the-art fine-tuning based k-shot learning strategies by more than10%
Deep Convolutional Neural Networks as Generic Feature Extractors
Recognizing objects in natural images is an intricate problem involving multiple conflicting objectives. Deep convolutional neural networks, trained on large datasets, achieve convincing results and are currently the state-of-the-art approach for this task. However, the long time needed to train such deep networks is a major drawback. We tackled this problem by reusing a previously trained network. For this purpose, we first trained a deep convolutional network on the ILSVRC2012 dataset. We then maintained the learned convolution kernels and only retrained the classification part on different datasets. Using this approach, we achieved an accuracy of 67.68 % on CIFAR-100, compared to the previous state-of-the-art result of 65.43 %. Furthermore, our findings indicate that convolutional networks are able to learn generic feature extractors that can be used for different tasks.
Rainbow: Combining Improvements in Deep Reinforcement Learning
The deep reinforcement learning community has made several independent improvements to the DQN algorithm. However, it is unclear which of these extensions are complementary and can be fruitfully combined. This paper examines six extensions to the DQN algorithm and empirically studies their combination. Our experiments show that the combination provides state-of-the-art performance on the Atari 2600 benchmark, both in terms of data efficiency and final performance. We also provide results from a detailed ablation study that shows the contribution of each component to overall performance.
Projection Based Weight Normalization for Deep Neural Networks
Optimizing deep neural networks (DNNs) often suffers from the ill-conditioned problem. We observe that the scaling-based weight space symmetry property in rectified nonlinear network will cause this negative effect. Therefore, we propose to constrain the incoming weights of each neuron to be unit-norm, which is formulated as an optimization problem over Oblique manifold. A simple yet efficient method referred to as projection based weight normalization (PBWN) is also developed to solve this problem. PBWN executes standard gradient updates, followed by projecting the updated weight back to Oblique manifold. This proposed method has the property of regularization and collaborates well with the commonly used batch normalization technique. We conduct comprehensive experiments on several widely-used image datasets including CIFAR-10, CIFAR-100, SVHN and ImageNet for supervised learning over the state-of-the-art convolutional neural networks, such as Inception, VGG and residual networks. The results show that our method is able to improve the performance of DNNs with different architectures consistently. We also apply our method to Ladder network for semi-supervised learning on permutation invariant MNIST dataset, and our method outperforms the state-of-the-art methods: we obtain test errors as 2.52%, 1.06%, and 0.91% with only 20, 50, and 100 labeled samples, respectively.
Accumulated Gradient Normalization
This work addresses the instability in asynchronous data parallel optimization. It does so by introducing a novel distributed optimizer which is able to efficiently optimize a centralized model under communication constraints. The optimizer achieves this by pushing a normalized sequence of first-order gradients to a parameter server. This implies that the magnitude of a worker delta is smaller compared to an accumulated gradient, and provides a better direction towards a minimum compared to first-order gradients, which in turn also forces possible implicit momentum fluctuations to be more aligned since we make the assumption that all workers contribute towards a single minima. As a result, our approach mitigates the parameter staleness problem more effectively since staleness in asynchrony induces (implicit) momentum, and achieves a better convergence rate compared to other optimizers such as asynchronous EASGD and DynSGD, which we show empirically.
End-to-end Driving via Conditional Imitation Learning
Deep networks trained on demonstrations of human driving have learned to follow roads and avoid obstacles. However, driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive to high-level navigational commands. The supplementary video can be viewed at https://youtu.be/cFtnflNe5fM
Machine Learning for Drug Overdose Surveillance
We describe two recently proposed machine learning approaches for discovering emerging trends in fatal accidental drug overdoses. The Gaussian Process Subset Scan enables early detection of emerging patterns in spatio-temporal data, accounting for both the non-iid nature of the data and the fact that detecting subtle patterns requires integration of information across multiple spatial areas and multiple time steps. We apply this approach to 17 years of county-aggregated data for monthly opioid overdose deaths in the New York City metropolitan area, showing clear advantages in the utility of discovered patterns as compared to typical anomaly detection approaches. To detect and characterize emerging overdose patterns that differentially affect a subpopulation of the data, including geographic, demographic, and behavioral patterns (e.g., which combinations of drugs are involved), we apply the Multidimensional Tensor Scan to 8 years of case-level overdose data from Allegheny County, PA. We discover previously unidentified overdose patterns which reveal unusual demographic clusters, show impacts of drug legislation, and demonstrate potential for early detection and targeted intervention. These approaches to early detection of overdose patterns can inform prevention and response efforts, as well as understanding the effects of policy changes.
Socially Compliant Navigation through Raw Depth Inputs with Generative Adversarial Imitation Learning
We present an approach for mobile robots to learn to navigate in dynamic environments with pedestrians via raw depth inputs, in a socially compliant manner. To achieve this, we adopt a generative adversarial imitation learning (GAIL) strategy, which improves upon a pre-trained behavior cloning policy. Our approach overcomes the disadvantages of previous methods, as they heavily depend on the full knowledge of the location and velocity information of nearby pedestrians, which not only requires specific sensors, but also the extraction of such state information from raw sensory input could consume much computation time. In this paper, our proposed GAIL-based model performs directly on raw depth inputs and plans in real-time. Experiments show that our GAIL-based approach greatly improves the safety and efficiency of the behavior of mobile robots from pure behavior cloning. The real-world deployment also shows that our method is capable of guiding autonomous vehicles to navigate in a socially compliant manner directly through raw depth inputs. In addition, we release a simulation plugin for modeling pedestrian behaviors based on the social force model.
Real-Time Illegal Parking Detection System Based on Deep Learning
The increasing illegal parking has become more and more serious. Nowadays the methods of detecting illegally parked vehicles are based on background segmentation. However, this method is weakly robust and sensitive to environment. Benefitting from deep learning, this paper proposes a novel illegal vehicle parking detection system. Illegal vehicles captured by camera are firstly located and classified by the famous Single Shot MultiBox Detector (SSD) algorithm. To improve the performance, we propose to optimize SSD by adjusting the aspect ratio of default box to accommodate with our dataset better. After that, a tracking and analysis of movement is adopted to judge the illegal vehicles in the region of interest (ROI). Experiments show that the system can achieve a 99% accuracy and real-time (25FPS) detection with strong robustness in complex environments.
An Optimization Approach to Learning Falling Rule Lists
A falling rule list is a probabilistic decision list for binary classification, consisting of a series of if-then rules with antecedents in the if clauses and probabilities of the desired outcome ("1") in the then clauses. Just as in a regular decision list, the order of rules in a falling rule list is important -- each example is classified by the first rule whose antecedent it satisfies. Unlike a regular decision list, a falling rule list requires the probabilities of the desired outcome ("1") to be monotonically decreasing down the list. We propose an optimization approach to learning falling rule lists and "softly" falling rule lists, along with Monte-Carlo search algorithms that use bounds on the optimal solution to prune the search space.
Ranking and Selection as Stochastic Control
Under a Bayesian framework, we formulate the fully sequential sampling and selection decision in statistical ranking and selection as a stochastic control problem, and derive the associated Bellman equation. Using value function approximation, we derive an approximately optimal allocation policy. We show that this policy is not only computationally efficient but also possesses both one-step-ahead and asymptotic optimality for independent normal sampling distributions. Moreover, the proposed allocation policy is easily generalizable in the approximate dynamic programming paradigm.
Topic Modeling based on Keywords and Context
Current topic models often suffer from discovering topics not matching human intuition, unnatural switching of topics within documents and high computational demands. We address these concerns by proposing a topic model and an inference algorithm based on automatically identifying characteristic keywords for topics. Keywords influence topic-assignments of nearby words. Our algorithm learns (key)word-topic scores and it self-regulates the number of topics. Inference is simple and easily parallelizable. Qualitative analysis yields comparable results to state-of-the-art models (eg. LDA), but with different strengths and weaknesses. Quantitative analysis using 9 datasets shows gains in terms of classification accuracy, PMI score, computational performance and consistency of topic assignments within documents, while most often using less topics.
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
A key task in Bayesian statistics is sampling from distributions that are only specified up to a partition function (i.e., constant of proportionality). However, without any assumptions, sampling (even approximately) can be #P-hard, and few works have provided "beyond worst-case" guarantees for such settings. For log-concave distributions, classical results going back to Bakry and \'Emery (1985) show that natural continuous-time Markov chains called Langevin diffusions mix in polynomial time. The most salient feature of log-concavity violated in practice is uni-modality: commonly, the distributions we wish to sample from are multi-modal. In the presence of multiple deep and well-separated modes, Langevin diffusion suffers from torpid mixing. We address this problem by combining Langevin diffusion with simulated tempering. The result is a Markov chain that mixes more rapidly by transitioning between different temperatures of the distribution. We analyze this Markov chain for the canonical multi-modal distribution: a mixture of gaussians (of equal variance). The algorithm based on our Markov chain provably samples from distributions that are close to mixtures of gaussians, given access to the gradient of the log-pdf. For the analysis, we use a spectral decomposition theorem for graphs (Gharan and Trevisan, 2014) and a Markov chain decomposition technique (Madras and Randall, 2002).
A New Spectral Clustering Algorithm
We present a new clustering algorithm that is based on searching for natural gaps in the components of the lowest energy eigenvectors of the Laplacian of a graph. In comparing the performance of the proposed method with a set of other popular methods (KMEANS, spectral-KMEANS, and an agglomerative method) in the context of the Lancichinetti-Fortunato-Radicchi (LFR) Benchmark for undirected weighted overlapping networks, we find that the new method outperforms the other spectral methods considered in certain parameter regimes. Finally, in an application to climate data involving one of the most important modes of interannual climate variability, the El Nino Southern Oscillation phenomenon, we demonstrate the ability of the new algorithm to readily identify different flavors of the phenomenon.
Protein identification with deep learning: from abc to xyz
Proteins are the main workhorses of biological functions in a cell, a tissue, or an organism. Identification and quantification of proteins in a given sample, e.g. a cell type under normal/disease conditions, are fundamental tasks for the understanding of human health and disease. In this paper, we present DeepNovo, a deep learning-based tool to address the problem of protein identification from tandem mass spectrometry data. The idea was first proposed in the context of de novo peptide sequencing [1] in which convolutional neural networks and recurrent neural networks were applied to predict the amino acid sequence of a peptide from its spectrum, a similar task to generating a caption from an image. We further develop DeepNovo to perform sequence database search, the main technique for peptide identification that greatly benefits from numerous existing protein databases. We combine two modules de novo sequencing and database search into a single deep learning framework for peptide identification, and integrate de Bruijn graph assembly technique to offer a complete solution to reconstruct protein sequences from tandem mass spectrometry data. This paper describes a comprehensive protocol of DeepNovo for protein identification, including training neural network models, dynamic programming search, database querying, estimation of false discovery rate, and de Bruijn graph assembly. Training and testing data, model implementations, and comprehensive tutorials in form of IPython notebooks are available in our GitHub repository (https://github.com/nh2tran/DeepNovo).
Bayesian Alignments of Warped Multi-Output Gaussian Processes
We propose a novel Bayesian approach to modelling nonlinear alignments of time series based on latent shared information. We apply the method to the real-world problem of finding common structure in the sensor data of wind turbines introduced by the underlying latent and turbulent wind field. The proposed model allows for both arbitrary alignments of the inputs and non-parametric output warpings to transform the observations. This gives rise to multiple deep Gaussian process models connected via latent generating processes. We present an efficient variational approximation based on nested variational compression and show how the model can be used to extract shared information between dependent time series, recovering an interpretable functional decomposition of the learning problem. We show results for an artificial data set and real-world data of two wind turbines.
Structural Feature Selection for Event Logs
We consider the problem of classifying business process instances based on structural features derived from event logs. The main motivation is to provide machine learning based techniques with quick response times for interactive computer assisted root cause analysis. In particular, we create structural features from process mining such as activity and transition occurrence counts, and ordering of activities to be evaluated as potential features for classification. We show that adding such structural features increases the amount of information thus potentially increasing classification accuracy. However, there is an inherent trade-off as using too many features leads to too long run-times for machine learning classification models. One way to improve the machine learning algorithms' run-time is to only select a small number of features by a feature selection algorithm. However, the run-time required by the feature selection algorithm must also be taken into account. Also, the classification accuracy should not suffer too much from the feature selection. The main contributions of this paper are as follows: First, we propose and compare six different feature selection algorithms by means of an experimental setup comparing their classification accuracy and achievable response times. Second, we discuss the potential use of feature selection results for computer assisted root cause analysis as well as the properties of different types of structural features in the context of feature selection.
RUM: network Representation learning throUgh Multi-level structural information preservation
We have witnessed the discovery of many techniques for network representation learning in recent years, ranging from encoding the context in random walks to embedding the lower order connections, to finding latent space representations with auto-encoders. However, existing techniques are looking mostly into the local structures in a network, while higher-level properties such as global community structures are often neglected. We propose a novel network representations learning model framework called RUM (network Representation learning throUgh Multi-level structural information preservation). In RUM, we incorporate three essential aspects of a node that capture a network's characteristics in multiple levels: a node's affiliated local triads, its neighborhood relationships, and its global community affiliations. Therefore the framework explicitly and comprehensively preserves the structural information of a network, extending the encoding process both to the local end of the structural information spectrum and to the global end. The framework is also flexible enough to take various community discovery algorithms as its preprocessor. Empirical results show that the representations learned by RUM have demonstrated substantial performance advantages in real-life tasks.
Reconstruction of Hidden Representation for Robust Feature Extraction
This paper aims to develop a new and robust approach to feature representation. Motivated by the success of Auto-Encoders, we first theoretical summarize the general properties of all algorithms that are based on traditional Auto-Encoders: 1) The reconstruction error of the input can not be lower than a lower bound, which can be viewed as a guiding principle for reconstructing the input. Additionally, when the input is corrupted with noises, the reconstruction error of the corrupted input also can not be lower than a lower bound. 2) The reconstruction of a hidden representation achieving its ideal situation is the necessary condition for the reconstruction of the input to reach the ideal state. 3) Minimizing the Frobenius norm of the Jacobian matrix of the hidden representation has a deficiency and may result in a much worse local optimum value. We believe that minimizing the reconstruction error of the hidden representation is more robust than minimizing the Frobenius norm of the Jacobian matrix of the hidden representation. Based on the above analysis, we propose a new model termed Double Denoising Auto-Encoders (DDAEs), which uses corruption and reconstruction on both the input and the hidden representation. We demonstrate that the proposed model is highly flexible and extensible and has a potentially better capability to learn invariant and robust feature representations. We also show that our model is more robust than Denoising Auto-Encoders (DAEs) for dealing with noises or inessential features. Furthermore, we detail how to train DDAEs with two different pre-training methods by optimizing the objective function in a combined and separate manner, respectively. Comparative experiments illustrate that the proposed model is significantly better for representation learning than the state-of-the-art models.
An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits
In this paper, we propose an information-theoretic exploration strategy for stochastic, discrete multi-armed bandits that achieves optimal regret. Our strategy is based on the value of information criterion. This criterion measures the trade-off between policy information and obtainable rewards. High amounts of policy information are associated with exploration-dominant searches of the space and yield high rewards. Low amounts of policy information favor the exploitation of existing knowledge. Information, in this criterion, is quantified by a parameter that can be varied during search. We demonstrate that a simulated-annealing-like update of this parameter, with a sufficiently fast cooling schedule, leads to an optimal regret that is logarithmic with respect to the number of episodes.
Recurrent Deterministic Policy Gradient Method for Bipedal Locomotion on Rough Terrain Challenge
This paper presents a deep learning framework that is capable of solving partially observable locomotion tasks based on our novel interpretation of Recurrent Deterministic Policy Gradient (RDPG). We study on bias of sampled error measure and its variance induced by the partial observability of environment and subtrajectory sampling, respectively. Three major improvements are introduced in our RDPG based learning framework: tail-step bootstrap of interpolated temporal difference, initialisation of hidden state using past trajectory scanning, and injection of external experiences learned by other agents. The proposed learning framework was implemented to solve the Bipedal-Walker challenge in OpenAI's gym simulation environment where only partial state information is available. Our simulation study shows that the autonomous behaviors generated by the RDPG agent are highly adaptive to a variety of obstacles and enables the agent to effectively traverse rugged terrains for long distance with higher success rate than leading contenders.
Enhancing Interpretability of Black-box Soft-margin SVM by Integrating Data-based Priors
The lack of interpretability often makes black-box models difficult to be applied to many practical domains. For this reason, the current work, from the black-box model input port, proposes to incorporate data-based prior information into the black-box soft-margin SVM model to enhance its interpretability. The concept and incorporation mechanism of data-based prior information are successively developed, based on which the interpretable or partly interpretable SVM optimization model is designed and then solved through handily rewriting the optimization problem as a nonlinear quadratic programming problem. An algorithm for mining data-based linear prior information from data set is also proposed, which generates a linear expression with respect to two appropriate inputs identified from all inputs of system. At last, the proposed interpretability enhancement strategy is applied to eight benchmark examples for effectiveness exhibition.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
Since the invention of word2vec, the skip-gram model has significantly advanced the research of network embedding, such as the recent emergence of the DeepWalk, LINE, PTE, and node2vec approaches. In this work, we show that all of the aforementioned models with negative sampling can be unified into the matrix factorization framework with closed forms. Our analysis and proofs reveal that: (1) DeepWalk empirically produces a low-rank transformation of a network's normalized Laplacian matrix; (2) LINE, in theory, is a special case of DeepWalk when the size of vertices' context is set to one; (3) As an extension of LINE, PTE can be viewed as the joint factorization of multiple networks' Laplacians; (4) node2vec is factorizing a matrix related to the stationary distribution and transition probability tensor of a 2nd-order random walk. We further provide the theoretical connections between skip-gram based network embedding algorithms and the theory of graph Laplacian. Finally, we present the NetMF method as well as its approximation algorithm for computing network embedding. Our method offers significant improvements over DeepWalk and LINE for conventional network mining tasks. This work lays the theoretical foundation for skip-gram based network embedding methods, leading to a better understanding of latent network representation learning.
SGD for robot motion? The effectiveness of stochastic optimization on a new benchmark for biped locomotion tasks
Trajectory optimization and posture generation are hard problems in robot locomotion, which can be non-convex and have multiple local optima. Progress on these problems is further hindered by a lack of open benchmarks, since comparisons of different solutions are difficult to make. In this paper we introduce a new benchmark for trajectory optimization and posture generation of legged robots, using a pre-defined scenario, robot and constraints, as well as evaluation criteria. We evaluate state-of-the-art trajectory optimization algorithms based on sequential quadratic programming (SQP) on the benchmark, as well as new stochastic and incremental optimization methods borrowed from the large-scale machine learning literature. Interestingly we show that some of these stochastic and incremental methods, which are based on stochastic gradient descent (SGD), achieve higher success rates than SQP on tough initializations. Inspired by this observation we also propose a new incremental variant of SQP which updates only a random subset of the costs and constraints at each iteration. The algorithm is the best performing in both success rate and convergence speed, improving over SQP by up to 30% in both criteria. The benchmark's resources and a solution evaluation script are made openly available.
Unifying Local and Global Change Detection in Dynamic Networks
Many real-world networks are complex dynamical systems, where both local (e.g., changing node attributes) and global (e.g., changing network topology) processes unfold over time. Local dynamics may provoke global changes in the network, and the ability to detect such effects could have profound implications for a number of real-world problems. Most existing techniques focus individually on either local or global aspects of the problem or treat the two in isolation from each other. In this paper we propose a novel network model that simultaneously accounts for both local and global dynamics. To the best of our knowledge, this is the first attempt at modeling and detecting local and global change points on dynamic networks via a unified generative framework. Our model is built upon the popular mixed membership stochastic blockmodels (MMSB) with sparse co-evolving patterns. We derive an efficient stochastic gradient Langevin dynamics (SGLD) sampler for our proposed model, which allows it to scale to potentially very large networks. Finally, we validate our model on both synthetic and real-world data and demonstrate its superiority over several baselines.
Learning Graph Representations with Embedding Propagation
We propose Embedding Propagation (EP), an unsupervised learning framework for graph-structured data. EP learns vector representations of graphs by passing two types of messages between neighboring nodes. Forward messages consist of label representations such as representations of words and other attributes associated with the nodes. Backward messages consist of gradients that result from aggregating the label representations and applying a reconstruction loss. Node representations are finally computed from the representation of their labels. With significantly fewer parameters and hyperparameters an instance of EP is competitive with and often outperforms state of the art unsupervised and semi-supervised learning methods on a range of benchmark data sets.
full-FORCE: A Target-Based Method for Training Recurrent Networks
Trained recurrent networks are powerful tools for modeling dynamic neural computations. We present a target-based method for modifying the full connectivity matrix of a recurrent network to train it to perform tasks involving temporally complex input/output transformations. The method introduces a second network during training to provide suitable "target" dynamics useful for performing the task. Because it exploits the full recurrent connectivity, the method produces networks that perform tasks with fewer neurons and greater noise robustness than traditional least-squares (FORCE) approaches. In addition, we show how introducing additional input signals into the target-generating network, which act as task hints, greatly extends the range of tasks that can be learned and provides control over the complexity and nature of the dynamics of the trained, task-performing network.
Verification of Binarized Neural Networks via Inter-Neuron Factoring
We study the problem of formal verification of Binarized Neural Networks (BNN), which have recently been proposed as a energy-efficient alternative to traditional learning networks. The verification of BNNs, using the reduction to hardware verification, can be even more scalable by factoring computations among neurons within the same layer. By proving the NP-hardness of finding optimal factoring as well as the hardness of PTAS approximability, we design polynomial-time search heuristics to generate factoring solutions. The overall framework allows applying verification techniques to moderately-sized BNNs for embedded devices with thousands of neurons and inputs.
Toward Multidiversified Ensemble Clustering of High-Dimensional Data: From Subspaces to Metrics and Beyond
The rapid emergence of high-dimensional data in various areas has brought new challenges to current ensemble clustering research. To deal with the curse of dimensionality, recently considerable efforts in ensemble clustering have been made by means of different subspace-based techniques. However, besides the emphasis on subspaces, rather limited attention has been paid to the potential diversity in similarity/dissimilarity metrics. It remains a surprisingly open problem in ensemble clustering how to create and aggregate a large population of diversified metrics, and furthermore, how to jointly investigate the multi-level diversity in the large populations of metrics, subspaces, and clusters in a unified framework. To tackle this problem, this paper proposes a novel multidiversified ensemble clustering approach. In particular, we create a large number of diversified metrics by randomizing a scaled exponential similarity kernel, which are then coupled with random subspaces to form a large set of metric-subspace pairs. Based on the similarity matrices derived from these metric-subspace pairs, an ensemble of diversified base clusterings can thereby be constructed. Further, an entropy-based criterion is utilized to explore the cluster-wise diversity in ensembles, based on which three specific ensemble clustering algorithms are presented by incorporating three types of consensus functions. Extensive experiments are conducted on 30 high-dimensional datasets, including 18 cancer gene expression datasets and 12 image/speech datasets, which demonstrate the superiority of our algorithms over the state-of-the-art. The source code is available at https://github.com/huangdonghere/MDEC.
Random Projection and Its Applications
Random Projection is a foundational research topic that connects a bunch of machine learning algorithms under a similar mathematical basis. It is used to reduce the dimensionality of the dataset by projecting the data points efficiently to a smaller dimensions while preserving the original relative distance between the data points. In this paper, we are intended to explain random projection method, by explaining its mathematical background and foundation, the applications that are currently adopting it, and an overview on its current research perspective.
On Formalizing Fairness in Prediction with Machine Learning
Machine learning algorithms for prediction are increasingly being used in critical decisions affecting human lives. Various fairness formalizations, with no firm consensus yet, are employed to prevent such algorithms from systematically discriminating against people based on certain attributes protected by law. The aim of this article is to survey how fairness is formalized in the machine learning literature for the task of prediction and present these formalizations with their corresponding notions of distributive justice from the social sciences literature. We provide theoretical as well as empirical critiques of these notions from the social sciences literature and explain how these critiques limit the suitability of the corresponding fairness formalizations to certain domains. We also suggest two notions of distributive justice which address some of these critiques and discuss avenues for prospective fairness formalizations.
Forecasting Across Time Series Databases using Recurrent Neural Networks on Groups of Similar Series: A Clustering Approach
With the advent of Big Data, nowadays in many applications databases containing large quantities of similar time series are available. Forecasting time series in these domains with traditional univariate forecasting procedures leaves great potentials for producing accurate forecasts untapped. Recurrent neural networks (RNNs), and in particular Long Short-Term Memory (LSTM) networks, have proven recently that they are able to outperform state-of-the-art univariate time series forecasting methods in this context when trained across all available time series. However, if the time series database is heterogeneous, accuracy may degenerate, so that on the way towards fully automatic forecasting methods in this space, a notion of similarity between the time series needs to be built into the methods. To this end, we present a prediction model that can be used with different types of RNN models on subgroups of similar time series, which are identified by time series clustering techniques. We assess our proposed methodology using LSTM networks, a widely popular RNN variant. Our method achieves competitive results on benchmarking datasets under competition evaluation procedures. In particular, in terms of mean sMAPE accuracy, it consistently outperforms the baseline LSTM model and outperforms all other methods on the CIF2016 forecasting competition dataset.
Function space analysis of deep learning representation layers
In this paper we propose a function space approach to Representation Learning and the analysis of the representation layers in deep learning architectures. We show how to compute a weak-type Besov smoothness index that quantifies the geometry of the clustering in the feature space. This approach was already applied successfully to improve the performance of machine learning algorithms such as the Random Forest and tree-based Gradient Boosting. Our experiments demonstrate that in well-known and well-performing trained networks, the Besov smoothness of the training set, measured in the corresponding hidden layer feature map representation, increases from layer to layer. We also contribute to the understanding of generalization by showing how the Besov smoothness of the representations, decreases as we add more mis-labeling to the training data. We hope this approach will contribute to the de-mystification of some aspects of deep learning.
Checkpoint Ensembles: Ensemble Methods from a Single Training Process
We present the checkpoint ensembles method that can learn ensemble models on a single training process. Although checkpoint ensembles can be applied to any parametric iterative learning technique, here we focus on neural networks. Neural networks' composable and simple neurons make it possible to capture many individual and interaction effects among features. However, small sample sizes and sampling noise may result in patterns in the training data that are not representative of the true relationship between the features and the outcome. As a solution, regularization during training is often used (e.g. dropout). However, regularization is no panacea -- it does not perfectly address overfitting. Even with methods like dropout, two methodologies are commonly used in practice. First is to utilize a validation set independent to the training set as a way to decide when to stop training. Second is to use ensemble methods to further reduce overfitting and take advantage of local optima (i.e. averaging over the predictions of several models). In this paper, we explore checkpoint ensembles -- a simple technique that combines these two ideas in one training process. Checkpoint ensembles improve performance by averaging the predictions from "checkpoints" of the best models within single training process. We use three real-world data sets -- text, image, and electronic health record data -- using three prediction models: a vanilla neural network, a convolutional neural network, and a long short term memory network to show that checkpoint ensembles outperform existing methods: a method that selects a model by minimum validation score, and two methods that average models by weights. Our results also show that checkpoint ensembles capture a portion of the performance gains that traditional ensembles provide.
Coresets for Dependency Networks
Many applications infer the structure of a probabilistic graphical model from data to elucidate the relationships between variables. But how can we train graphical models on a massive data set? In this paper, we show how to construct coresets -compressed data sets which can be used as proxy for the original data and have provably bounded worst case error- for Gaussian dependency networks (DNs), i.e., cyclic directed graphical models over Gaussians, where the parents of each variable are its Markov blanket. Specifically, we prove that Gaussian DNs admit coresets of size independent of the size of the data set. Unfortunately, this does not extend to DNs over members of the exponential family in general. As we will prove, Poisson DNs do not admit small coresets. Despite this worst-case result, we will provide an argument why our coreset construction for DNs can still work well in practice on count data. To corroborate our theoretical results, we empirically evaluated the resulting Core DNs on real data sets. The results
Sum-Product Networks for Hybrid Domains
While all kinds of mixed data -from personal data, over panel and scientific data, to public and commercial data- are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leave distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-R\'enyi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any continuous distribution and permits efficient learning and inference. Our empirical evidence shows that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.
Massive Open Online Courses Temporal Profiling for Dropout Prediction
Massive Open Online Courses (MOOCs) are attracting the attention of people all over the world. Regardless the platform, numbers of registrants for online courses are impressive but in the same time, completion rates are disappointing. Understanding the mechanisms of dropping out based on the learner profile arises as a crucial task in MOOCs, since it will allow intervening at the right moment in order to assist the learner in completing the course. In this paper, the dropout behaviour of learners in a MOOC is thoroughly studied by first extracting features that describe the behavior of learners within the course and then by comparing three classifiers (Logistic Regression, Random Forest and AdaBoost) in two tasks: predicting which users will have dropped out by a certain week and predicting which users will drop out on a specific week. The former has showed to be considerably easier, with all three classifiers performing equally well. However, the accuracy for the second task is lower, and Logistic Regression tends to perform slightly better than the other two algorithms. We found that features that reflect an active attitude of the user towards the MOOC, such as submitting their assignment, posting on the Forum and filling their Profile, are strong indicators of persistence.
Energy-efficient Amortized Inference with Cascaded Deep Classifiers
Deep neural networks have been remarkable successful in various AI tasks but often cast high computation and energy cost for energy-constrained applications such as mobile sensing. We address this problem by proposing a novel framework that optimizes the prediction accuracy and energy cost simultaneously, thus enabling effective cost-accuracy trade-off at test time. In our framework, each data instance is pushed into a cascade of deep neural networks with increasing sizes, and a selection module is used to sequentially determine when a sufficiently accurate classifier can be used for this data instance. The cascade of neural networks and the selection module are jointly trained in an end-to-end fashion by the REINFORCE algorithm to optimize a trade-off between the computational cost and the predictive accuracy. Our method is able to simultaneously improve the accuracy and efficiency by learning to assign easy instances to fast yet sufficiently accurate classifiers to save computation and energy cost, while assigning harder instances to deeper and more powerful classifiers to ensure satisfiable accuracy. With extensive experiments on several image classification datasets using cascaded ResNet classifiers, we demonstrate that our method outperforms the standard well-trained ResNets in accuracy but only requires less than 20% and 50% FLOPs cost on the CIFAR-10/100 datasets and 66% on the ImageNet dataset, respectively.
On- and Off-Policy Monotonic Policy Improvement
Monotonic policy improvement and off-policy learning are two main desirable properties for reinforcement learning algorithms. In this paper, by lower bounding the performance difference of two policies, we show that the monotonic policy improvement is guaranteed from on- and off-policy mixture samples. An optimization procedure which applies the proposed bound can be regarded as an off-policy natural policy gradient method. In order to support the theoretical result, we provide a trust region policy optimization method using experience replay as a naive application of our bound, and evaluate its performance in two classical benchmark problems.
Safe Semi-Supervised Learning of Sum-Product Networks
In several domains obtaining class annotations is expensive while at the same time unlabelled data are abundant. While most semi-supervised approaches enforce restrictive assumptions on the data distribution, recent work has managed to learn semi-supervised models in a non-restrictive regime. However, so far such approaches have only been proposed for linear models. In this work, we introduce semi-supervised parameter learning for Sum-Product Networks (SPNs). SPNs are deep probabilistic models admitting inference in linear time in number of network edges. Our approach has several advantages, as it (1) allows generative and discriminative semi-supervised learning, (2) guarantees that adding unlabelled data can increase, but not degrade, the performance (safe), and (3) is computationally efficient and does not enforce restrictive assumptions on the data distribution. We show on a variety of data sets that safe semi-supervised learning with SPNs is competitive compared to state-of-the-art and can lead to a better generative and discriminative objective value than a purely supervised approach.
Learning to Generalize: Meta-Learning for Domain Generalization
Domain shift refers to the well known problem that a model trained in one source domain performs poorly when applied to a target domain with different statistics. {Domain Generalization} (DG) techniques attempt to alleviate this issue by producing models which by design generalize well to novel testing domains. We propose a novel {meta-learning} method for domain generalization. Rather than designing a specific model that is robust to domain shift as in most previous DG work, we propose a model agnostic training procedure for DG. Our algorithm simulates train/test domain shift during training by synthesizing virtual testing domains within each mini-batch. The meta-optimization objective requires that steps to improve training domain performance should also improve testing domain performance. This meta-learning procedure trains models with good generalization ability to novel domains. We evaluate our method and achieve state of the art results on a recent cross-domain image classification benchmark, as well demonstrating its potential on two classic reinforcement learning tasks.
An Analysis of Dropout for Matrix Factorization
Dropout is a simple yet effective algorithm for regularizing neural networks by randomly dropping out units through Bernoulli multiplicative noise, and for some restricted problem classes, such as linear or logistic regression, several theoretical studies have demonstrated the equivalence between dropout and a fully deterministic optimization problem with data-dependent Tikhonov regularization. This work presents a theoretical analysis of dropout for matrix factorization, where Bernoulli random variables are used to drop a factor, thereby attempting to control the size of the factorization. While recent work has demonstrated the empirical effectiveness of dropout for matrix factorization, a theoretical understanding of the regularization properties of dropout in this context remains elusive. This work demonstrates the equivalence between dropout and a fully deterministic model for matrix factorization in which the factors are regularized by the sum of the product of the norms of the columns. While the resulting regularizer is closely related to a variational form of the nuclear norm, suggesting that dropout may limit the size of the factorization, we show that it is possible to trivially lower the objective value by doubling the size of the factorization. We show that this problem is caused by the use of a fixed dropout rate, which motivates the use of a rate that increases with the size of the factorization. Synthetic experiments validate our theoretical findings.
Underestimated cost of targeted attacks on complex networks
The robustness of complex networks under targeted attacks is deeply connected to the resilience of complex systems, i.e., the ability to make appropriate responses to the attacks. In this article, we investigated the state-of-the-art targeted node attack algorithms and demonstrate that they become very inefficient when the cost of the attack is taken into consideration. In this paper, we made explicit assumption that the cost of removing a node is proportional to the number of adjacent links that are removed, i.e., higher degree nodes have higher cost. Finally, for the case when it is possible to attack links, we propose a simple and efficient edge removal strategy named Hierarchical Power Iterative Normalized cut (HPI-Ncut).The results on real and artificial networks show that the HPI-Ncut algorithm outperforms all the node removal and link removal attack algorithms when the cost of the attack is taken into consideration. In addition, we show that on sparse networks, the complexity of this hierarchical power iteration edge removal algorithm is only $O(n\log^{2+\epsilon}(n))$.
Fast and Strong Convergence of Online Learning Algorithms
In this paper, we study the online learning algorithm without explicit regularization terms. This algorithm is essentially a stochastic gradient descent scheme in a reproducing kernel Hilbert space (RKHS). The polynomially decaying step size in each iteration can play a role of regularization to ensure the generalization ability of online learning algorithm. We develop a novel capacity dependent analysis on the performance of the last iterate of online learning algorithm. The contribution of this paper is two-fold. First, our nice analysis can lead to the convergence rate in the standard mean square distance which is the best so far. Second, we establish, for the first time, the strong convergence of the last iterate with polynomially decaying step sizes in the RKHS norm. We demonstrate that the theoretical analysis established in this paper fully exploits the fine structure of the underlying RKHS, and thus can lead to sharp error estimates of online learning algorithm.
CTD: Fast, Accurate, and Interpretable Method for Static and Dynamic Tensor Decompositions
How can we find patterns and anomalies in a tensor, or multi-dimensional array, in an efficient and directly interpretable way? How can we do this in an online environment, where a new tensor arrives each time step? Finding patterns and anomalies in a tensor is a crucial problem with many applications, including building safety monitoring, patient health monitoring, cyber security, terrorist detection, and fake user detection in social networks. Standard PARAFAC and Tucker decomposition results are not directly interpretable. Although a few sampling-based methods have previously been proposed towards better interpretability, they need to be made faster, more memory efficient, and more accurate. In this paper, we propose CTD, a fast, accurate, and directly interpretable tensor decomposition method based on sampling. CTD-S, the static version of CTD, provably guarantees a high accuracy that is 17 ~ 83x more accurate than that of the state-of-the-art method. Also, CTD-S is made 5 ~ 86x faster, and 7 ~ 12x more memory-efficient than the state-of-the-art method by removing redundancy. CTD-D, the dynamic version of CTD, is the first interpretable dynamic tensor decomposition method ever proposed. Also, it is made 2 ~ 3x faster than already fast CTD-S by exploiting factors at previous time step and by reordering operations. With CTD, we demonstrate how the results can be effectively interpreted in the online distributed denial of service (DDoS) attack detection.
LinXGBoost: Extension of XGBoost to Generalized Local Linear Models
XGBoost is often presented as the algorithm that wins every ML competition. Surprisingly, this is true even though predictions are piecewise constant. This might be justified in high dimensional input spaces, but when the number of features is low, a piecewise linear model is likely to perform better. XGBoost was extended into LinXGBoost that stores at each leaf a linear model. This extension, equivalent to piecewise regularized least-squares, is particularly attractive for regression of functions that exhibits jumps or discontinuities. Those functions are notoriously hard to regress. Our extension is compared to the vanilla XGBoost and Random Forest in experiments on both synthetic and real-world data sets.
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Ability to continuously learn and adapt from limited experience in nonstationary environments is an important milestone on the path towards general intelligence. In this paper, we cast the problem of continuous adaptation into the learning-to-learn framework. We develop a simple gradient-based meta-learning algorithm suitable for adaptation in dynamically changing and adversarial scenarios. Additionally, we design a new multi-agent competitive environment, RoboSumo, and define iterated adaptation games for testing various aspects of continuous adaptation strategies. We demonstrate that meta-learning enables significantly more efficient adaptation than reactive baselines in the few-shot regime. Our experiments with a population of agents that learn and compete suggest that meta-learners are the fittest.
High-dimensional dynamics of generalization error in neural networks
We perform an average case analysis of the generalization dynamics of large neural networks trained using gradient descent. We study the practically-relevant "high-dimensional" regime where the number of free parameters in the network is on the order of or even larger than the number of examples in the dataset. Using random matrix theory and exact solutions in linear models, we derive the generalization error and training error dynamics of learning and analyze how they depend on the dimensionality of data and signal to noise ratio of the learning problem. We find that the dynamics of gradient descent learning naturally protect against overtraining and overfitting in large networks. Overtraining is worst at intermediate network sizes, when the effective number of free parameters equals the number of samples, and thus can be reduced by making a network smaller or larger. Additionally, in the high-dimensional regime, low generalization error requires starting with small initial weights. We then turn to non-linear neural networks, and show that making networks very large does not harm their generalization performance. On the contrary, it can in fact reduce overtraining, even without early stopping or regularization of any sort. We identify two novel phenomena underlying this behavior in overcomplete models: first, there is a frozen subspace of the weights in which no learning occurs under gradient descent; and second, the statistical properties of the high-dimensional regime yield better-conditioned input correlations which protect against overtraining. We demonstrate that naive application of worst-case theories such as Rademacher complexity are inaccurate in predicting the generalization performance of deep neural networks, and derive an alternative bound which incorporates the frozen subspace and conditioning effects and qualitatively matches the behavior observed in simulation.
Fast and Safe: Accelerated gradient methods with optimality certificates and underestimate sequences
In this work we introduce the concept of an Underestimate Sequence (UES), which is motivated by Nesterov's estimate sequence. Our definition of a UES utilizes three sequences, one of which is a lower bound (or under-estimator) of the objective function. The question of how to construct an appropriate sequence of lower bounds is addressed, and we present lower bounds for strongly convex smooth functions and for strongly convex composite functions, which adhere to the UES framework. Further, we propose several first order methods for minimizing strongly convex functions in both the smooth and composite cases. The algorithms, based on efficiently updating lower bounds on the objective functions, have natural stopping conditions that provide the user with a certificate of optimality. Convergence of all algorithms is guaranteed through the UES framework, and we show that all presented algorithms converge linearly, with the accelerated variants enjoying the optimal linear rate of convergence.
Mixed Precision Training
Deep neural networks have enabled progress in a wide variety of applications. Growing the size of the neural network typically results in improved accuracy. As model sizes grow, the memory and compute requirements for training these models also increases. We introduce a technique to train deep neural networks using half precision floating point numbers. In our technique, weights, activations and gradients are stored in IEEE half-precision format. Half-precision floating numbers have limited numerical range compared to single-precision numbers. We propose two techniques to handle this loss of information. Firstly, we recommend maintaining a single-precision copy of the weights that accumulates the gradients after each optimizer step. This single-precision copy is rounded to half-precision format during training. Secondly, we propose scaling the loss appropriately to handle the loss of information with half-precision gradients. We demonstrate that this approach works for a wide variety of models including convolution neural networks, recurrent neural networks and generative adversarial networks. This technique works for large scale models with more than 100 million parameters trained on large datasets. Using this approach, we can reduce the memory consumption of deep learning models by nearly 2x. In future processors, we can also expect a significant computation speedup using half-precision hardware units.
End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies
Steering a car through traffic is a complex task that is difficult to cast into algorithms. Therefore, researchers turn to training artificial neural networks from front-facing camera data stream along with the associated steering angles. Nevertheless, most existing solutions consider only the visual camera frames as input, thus ignoring the temporal relationship between frames. In this work, we propose a Convolutional Long Short-Term Memory Recurrent Neural Network (C-LSTM), that is end-to-end trainable, to learn both visual and dynamic temporal dependencies of driving. Additionally, We introduce posing the steering angle regression problem as classification while imposing a spatial relationship between the output layer neurons. Such method is based on learning a sinusoidal function that encodes steering angles. To train and validate our proposed methods, we used the publicly available Comma.ai dataset. Our solution improved steering root mean square error by 35% over recent methods, and led to a more stable steering by 87%.
Inference on Auctions with Weak Assumptions on Information
Given a sample of bids from independent auctions, this paper examines the question of inference on auction fundamentals (e.g. valuation distributions, welfare measures) under weak assumptions on information structure. The question is important as it allows us to learn about the valuation distribution in a robust way, i.e., without assuming that a particular information structure holds across observations. We leverage the recent contributions of \cite{Bergemann2013} in the robust mechanism design literature that exploit the link between Bayesian Correlated Equilibria and Bayesian Nash Equilibria in incomplete information games to construct an econometrics framework for learning about auction fundamentals using observed data on bids. We showcase our construction of identified sets in private value and common value auctions. Our approach for constructing these sets inherits the computational simplicity of solving for correlated equilibria: checking whether a particular valuation distribution belongs to the identified set is as simple as determining whether a {\it linear} program is feasible. A similar linear program can be used to construct the identified set on various welfare measures and counterfactual objects. For inference and to summarize statistical uncertainty, we propose novel finite sample methods using tail inequalities that are used to construct confidence regions on sets. We also highlight methods based on Bayesian bootstrap and subsampling. A set of Monte Carlo experiments show adequate finite sample properties of our inference procedures. We illustrate our methods using data from OCS auctions.
Disentangled Representations via Synergy Minimization
Scientists often seek simplified representations of complex systems to facilitate prediction and understanding. If the factors comprising a representation allow us to make accurate predictions about our system, but obscuring any subset of the factors destroys our ability to make predictions, we say that the representation exhibits informational synergy. We argue that synergy is an undesirable feature in learned representations and that explicitly minimizing synergy can help disentangle the true factors of variation underlying data. We explore different ways of quantifying synergy, deriving new closed-form expressions in some cases, and then show how to modify learning to produce representations that are minimally synergistic. We introduce a benchmark task to disentangle separate characters from images of words. We demonstrate that Minimally Synergistic (MinSyn) representations correctly disentangle characters while methods relying on statistical independence fail.
Using Task Descriptions in Lifelong Machine Learning for Improved Performance and Zero-Shot Transfer
Knowledge transfer between tasks can improve the performance of learned models, but requires an accurate estimate of the inter-task relationships to identify the relevant knowledge to transfer. These inter-task relationships are typically estimated based on training data for each task, which is inefficient in lifelong learning settings where the goal is to learn each consecutive task rapidly from as little data as possible. To reduce this burden, we develop a lifelong learning method based on coupled dictionary learning that utilizes high-level task descriptions to model the inter-task relationships. We show that using task descriptors improves the performance of the learned task policies, providing both theoretical justification for the benefit and empirical demonstration of the improvement across a variety of learning problems. Given only the descriptor for a new task, the lifelong learner is also able to accurately predict a model for the new task through zero-shot learning using the coupled dictionary, eliminating the need to gather training data before addressing the task.
On Estimation of $L_{r}$-Norms in Gaussian White Noise Models
We provide a complete picture of asymptotically minimax estimation of $L_r$-norms (for any $r\ge 1$) of the mean in Gaussian white noise model over Nikolskii-Besov spaces. In this regard, we complement the work of Lepski, Nemirovski and Spokoiny (1999), who considered the cases of $r=1$ (with poly-logarithmic gap between upper and lower bounds) and $r$ even (with asymptotically sharp upper and lower bounds) over H\"{o}lder spaces. We additionally consider the case of asymptotically adaptive minimax estimation and demonstrate a difference between even and non-even $r$ in terms of an investigator's ability to produce asymptotically adaptive minimax estimators without paying a penalty.
Learning Task Specifications from Demonstrations
Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.
PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning
We present PRM-RL, a hierarchical method for long-range navigation task completion that combines sampling based path planning with reinforcement learning (RL). The RL agents learn short-range, point-to-point navigation policies that capture robot dynamics and task constraints without knowledge of the large-scale topology. Next, the sampling-based planners provide roadmaps which connect robot configurations that can be successfully navigated by the RL agent. The same RL agents are used to control the robot under the direction of the planning, enabling long-range navigation. We use the Probabilistic Roadmaps (PRMs) for the sampling-based planner. The RL agents are constructed using feature-based and deep neural net policies in continuous state and action spaces. We evaluate PRM-RL, both in simulation and on-robot, on two navigation tasks with non-trivial robot dynamics: end-to-end differential drive indoor navigation in office environments, and aerial cargo delivery in urban environments with load displacement constraints. Our results show improvement in task completion over both RL agents on their own and traditional sampling-based planners. In the indoor navigation task, PRM-RL successfully completes up to 215 m long trajectories under noisy sensor conditions, and the aerial cargo delivery completes flights over 1000 m without violating the task constraints in an environment 63 million times larger than used in training.
When is Network Lasso Accurate: The Vector Case
A recently proposed learning algorithm for massive network-structured data sets (big data over networks) is the network Lasso (nLasso), which extends the well- known Lasso estimator from sparse models to network-structured datasets. Efficient implementations of the nLasso have been presented using modern convex optimization methods. In this paper, we provide sufficient conditions on the network structure and available label information such that nLasso accurately learns a vector-valued graph signal (representing label information) from the information provided by the labels of a few data points.
Adaptive multi-penalty regularization based on a generalized Lasso path
For many algorithms, parameter tuning remains a challenging and critical task, which becomes tedious and infeasible in a multi-parameter setting. Multi-penalty regularization, successfully used for solving undetermined sparse regression of problems of unmixing type where signal and noise are additively mixed, is one of such examples. In this paper, we propose a novel algorithmic framework for an adaptive parameter choice in multi-penalty regularization with a focus on the correct support recovery. Building upon the theory of regularization paths and algorithms for single-penalty functionals, we extend these ideas to a multi-penalty framework by providing an efficient procedure for the construction of regions containing structurally similar solutions, i.e., solutions with the same sparsity and sign pattern, over the whole range of parameters. Combining this with a model selection criterion, we can choose regularization parameters in a data-adaptive manner. Another advantage of our algorithm is that it provides an overview on the solution stability over the whole range of parameters. This can be further exploited to obtain additional insights into the problem of interest. We provide a numerical analysis of our method and compare it to the state-of-the-art single-penalty algorithms for compressed sensing problems in order to demonstrate the robustness and power of the proposed algorithm.
An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists
Topological Data Analysis is a recent and fast growing field providing a set of new topological and geometric tools to infer relevant features for possibly complex data. This paper is a brief introduction, through a few selected topics, to basic fundamental and practical aspects of \tda\ for non experts.
Decentralized Online Learning with Kernels
We consider multi-agent stochastic optimization problems over reproducing kernel Hilbert spaces (RKHS). In this setting, a network of interconnected agents aims to learn decision functions, i.e., nonlinear statistical models, that are optimal in terms of a global convex functional that aggregates data across the network, with only access to locally and sequentially observed samples. We propose solving this problem by allowing each agent to learn a local regression function while enforcing consensus constraints. We use a penalized variant of functional stochastic gradient descent operating simultaneously with low-dimensional subspace projections. These subspaces are constructed greedily by applying orthogonal matching pursuit to the sequence of kernel dictionaries and weights. By tuning the projection-induced bias, we propose an algorithm that allows for each individual agent to learn, based upon its locally observed data stream and message passing with its neighbors only, a regression function that is close to the globally optimal regression function. That is, we establish that with constant step-size selections agents' functions converge to a neighborhood of the globally optimal one while satisfying the consensus constraints as the penalty parameter is increased. Moreover, the complexity of the learned regression functions is guaranteed to remain finite. On both multi-class kernel logistic regression and multi-class kernel support vector classification with data generated from class-dependent Gaussian mixture models, we observe stable function estimation and state of the art performance for distributed online multi-class classification. Experiments on the Brodatz textures further substantiate the empirical validity of this approach.
Quantized Minimum Error Entropy Criterion
Comparing with traditional learning criteria, such as mean square error (MSE), the minimum error entropy (MEE) criterion is superior in nonlinear and non-Gaussian signal processing and machine learning. The argument of the logarithm in Renyis entropy estimator, called information potential (IP), is a popular MEE cost in information theoretic learning (ITL). The computational complexity of IP is however quadratic in terms of sample number due to double summation. This creates computational bottlenecks especially for large-scale datasets. To address this problem, in this work we propose an efficient quantization approach to reduce the computational burden of IP, which decreases the complexity from O(N*N) to O (MN) with M << N. The new learning criterion is called the quantized MEE (QMEE). Some basic properties of QMEE are presented. Illustrative examples are provided to verify the excellent performance of QMEE.
Wembedder: Wikidata entity embedding web service
I present a web service for querying an embedding of entities in the Wikidata knowledge graph. The embedding is trained on the Wikidata dump using Gensim's Word2Vec implementation and a simple graph walk. A REST API is implemented. Together with the Wikidata API the web service exposes a multilingual resource for over 600'000 Wikidata items and properties.
Combining Learned and Analytical Models for Predicting Action Effects from Sensory Data
One of the most basic skills a robot should possess is predicting the effect of physical interactions with objects in the environment. This enables optimal action selection to reach a certain goal state. Traditionally, dynamics are approximated by physics-based analytical models. These models rely on specific state representations that may be hard to obtain from raw sensory data, especially if no knowledge of the object shape is assumed. More recently, we have seen learning approaches that can predict the effect of complex physical interactions directly from sensory input. It is however an open question how far these models generalize beyond their training data. In this work, we investigate the advantages and limitations of neural network based learning approaches for predicting the effects of actions based on sensory input and show how analytical and learned models can be combined to leverage the best of both worlds. As physical interaction task, we use planar pushing, for which there exists a well-known analytical model and a large real-world dataset. We propose to use a convolutional neural network to convert raw depth images or organized point clouds into a suitable representation for the analytical model and compare this approach to using neural networks for both, perception and prediction. A systematic evaluation of the proposed approach on a very large real-world dataset shows two main advantages of the hybrid architecture. Compared to a pure neural network, it significantly (i) reduces required training data and (ii) improves generalization to novel physical interaction.
Discrete Event, Continuous Time RNNs
We investigate recurrent neural network architectures for event-sequence processing. Event sequences, characterized by discrete observations stamped with continuous-valued times of occurrence, are challenging due to the potentially wide dynamic range of relevant time scales as well as interactions between time scales. We describe four forms of inductive bias that should benefit architectures for event sequences: temporal locality, position and scale homogeneity, and scale interdependence. We extend the popular gated recurrent unit (GRU) architecture to incorporate these biases via intrinsic temporal dynamics, obtaining a continuous-time GRU. The CT-GRU arises by interpreting the gates of a GRU as selecting a time scale of memory, and the CT-GRU generalizes the GRU by incorporating multiple time scales of memory and performing context-dependent selection of time scales for information storage and retrieval. Event time-stamps drive decay dynamics of the CT-GRU, whereas they serve as generic additional inputs to the GRU. Despite the very different manner in which the two models consider time, their performance on eleven data sets we examined is essentially identical. Our surprising results point both to the robustness of GRU and LSTM architectures for handling continuous time, and to the potency of incorporating continuous dynamics into neural architectures.
Driving Behavior Analysis through CAN Bus Data in an Uncontrolled Environment
Cars can nowadays record several thousands of signals through the CAN bus technology and potentially provide real-time information on the car, the driver and the surrounding environment. This paper proposes a new method for the analysis and classification of driver behavior using a selected subset of CAN bus signals, specifically gas pedal position, brake pedal pressure, steering wheel angle, steering wheel momentum, velocity, RPM, frontal and lateral acceleration. Data has been collected in a completely uncontrolled experiment, where 64 people drove 10 cars for or a total of over 2000 driving trips without any type of pre-determined driving instruction on a wide variety of road scenarios. We propose an unsupervised learning technique that clusters drivers in different groups, and offers a validation method to test the robustness of clustering in a wide range of experimental settings. The minimal amount of data needed to preserve robust driver clustering is also computed. The presented study provides a new methodology for near-real-time classification of driver behavior in uncontrolled environments.
Synkhronos: a Multi-GPU Theano Extension for Data Parallelism
We present Synkhronos, an extension to Theano for multi-GPU computations leveraging data parallelism. Our framework provides automated execution and synchronization across devices, allowing users to continue to write serial programs without risk of race conditions. The NVIDIA Collective Communication Library is used for high-bandwidth inter-GPU communication. Further enhancements to the Theano function interface include input slicing (with aggregation) and input indexing, which perform common data-parallel computation patterns efficiently. One example use case is synchronous SGD, which has recently been shown to scale well for a growing set of deep learning problems. When training ResNet-50, we achieve a near-linear speedup of 7.5x on an NVIDIA DGX-1 using 8 GPUs, relative to Theano-only code running a single GPU in isolation. Yet Synkhronos remains general to any data-parallel computation programmable in Theano. By implementing parallelism at the level of individual Theano functions, our framework uniquely addresses a niche between manual multi-device programming and prescribed multi-GPU training routines.
Concentration of Multilinear Functions of the Ising Model with Applications to Network Data
We prove near-tight concentration of measure for polynomial functions of the Ising model under high temperature. For any degree $d$, we show that a degree-$d$ polynomial of a $n$-spin Ising model exhibits exponential tails that scale as $\exp(-r^{2/d})$ at radius $r=\tilde{\Omega}_d(n^{d/2})$. Our concentration radius is optimal up to logarithmic factors for constant $d$, improving known results by polynomial factors in the number of spins. We demonstrate the efficacy of polynomial functions as statistics for testing the strength of interactions in social networks in both synthetic and real world data.
StackSeq2Seq: Dual Encoder Seq2Seq Recurrent Networks
A widely studied non-deterministic polynomial time (NP) hard problem lies in finding a route between the two nodes of a graph. Often meta-heuristics algorithms such as $A^{*}$ are employed on graphs with a large number of nodes. Here, we propose a deep recurrent neural network architecture based on the Sequence-2-Sequence (Seq2Seq) model, widely used, for instance in text translation. Particularly, we illustrate that utilising a context vector that has been learned from two different recurrent networks enables increased accuracies in learning the shortest route of a graph. Additionally, we show that one can boost the performance of the Seq2Seq network by smoothing the loss function using a homotopy continuation of the decoder's loss function.
Maximum Margin Interval Trees
Learning a regression function using censored or interval-valued output data is an important problem in fields such as genomics and medicine. The goal is to learn a real-valued prediction function, and the training output labels indicate an interval of possible values. Whereas most existing algorithms for this task are linear models, in this paper we investigate learning nonlinear tree models. We propose to learn a tree by minimizing a margin-based discriminative objective function, and we provide a dynamic programming algorithm for computing the optimal solution in log-linear time. We show empirically that this algorithm achieves state-of-the-art speed and prediction accuracy in a benchmark of several data sets.
Regression-aware decompositions
Linear least-squares regression with a "design" matrix A approximates a given matrix B via minimization of the spectral- or Frobenius-norm discrepancy ||AX-B|| over every conformingly sized matrix X. Another popular approximation is low-rank approximation via principal component analysis (PCA) -- which is essentially singular value decomposition (SVD) -- or interpolative decomposition (ID). Classically, PCA/SVD and ID operate solely with the matrix B being approximated, not supervised by any auxiliary matrix A. However, linear least-squares regression models can inform the ID, yielding regression-aware ID. As a bonus, this provides an interpretation as regression-aware PCA for a kind of canonical correlation analysis between A and B. The regression-aware decompositions effectively enable supervision to inform classical dimensionality reduction, which classically has been totally unsupervised. The regression-aware decompositions reveal the structure inherent in B that is relevant to regression against A.
Local Convergence of Proximal Splitting Methods for Rank Constrained Problems
We analyze the local convergence of proximal splitting algorithms to solve optimization problems that are convex besides a rank constraint. For this, we show conditions under which the proximal operator of a function involving the rank constraint is locally identical to the proximal operator of its convex envelope, hence implying local convergence. The conditions imply that the non-convex algorithms locally converge to a solution whenever a convex relaxation involving the convex envelope can be expected to solve the non-convex problem.
Improved Coresets for Kernel Density Estimates
We study the construction of coresets for kernel density estimates. That is we show how to approximate the kernel density estimate described by a large point set with another kernel density estimate with a much smaller point set. For characteristic kernels (including Gaussian and Laplace kernels), our approximation preserves the $L_\infty$ error between kernel density estimates within error $\epsilon$, with coreset size $2/\epsilon^2$, but no other aspects of the data, including the dimension, the diameter of the point set, or the bandwidth of the kernel common to other approximations. When the dimension is unrestricted, we show this bound is tight for these kernels as well as a much broader set. This work provides a careful analysis of the iterative Frank-Wolfe algorithm adapted to this context, an algorithm called \emph{kernel herding}. This analysis unites a broad line of work that spans statistics, machine learning, and geometry. When the dimension $d$ is constant, we demonstrate much tighter bounds on the size of the coreset specifically for Gaussian kernels, showing that it is bounded by the size of the coreset for axis-aligned rectangles. Currently the best known constructive bound is $O(\frac{1}{\epsilon} \log^d \frac{1}{\epsilon})$, and non-constructively, this can be improved by $\sqrt{\log \frac{1}{\epsilon}}$. This improves the best constant dimension bounds polynomially for $d \geq 3$.
Efficient Data-Driven Geologic Feature Detection from Pre-stack Seismic Measurements using Randomized Machine-Learning Algorithm
Conventional seismic techniques for detecting the subsurface geologic features are challenged by limited data coverage, computational inefficiency, and subjective human factors. We developed a novel data-driven geological feature detection approach based on pre-stack seismic measurements. Our detection method employs an efficient and accurate machine-learning detection approach to extract useful subsurface geologic features automatically. Specifically, our method is based on kernel ridge regression model. The conventional kernel ridge regression can be computationally prohibited because of the large volume of seismic measurements. We employ a data reduction technique in combination with the conventional kernel ridge regression method to improve the computational efficiency and reduce memory usage. In particular, we utilize a randomized numerical linear algebra technique, named Nystr\"om method, to effectively reduce the dimensionality of the feature space without compromising the information content required for accurate detection. We provide thorough computational cost analysis to show efficiency of our new geological feature detection methods. We further validate the performance of our new subsurface geologic feature detection method using synthetic surface seismic data for 2D acoustic and elastic velocity models. Our numerical examples demonstrate that our new detection method significantly improves the computational efficiency while maintaining comparable accuracy. Interestingly, we show that our method yields a speed-up ratio on the order of $\sim10^2$ to $\sim 10^3$ in a multi-core computational environment.
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Spectral decomposition of the Koopman operator is attracting attention as a tool for the analysis of nonlinear dynamical systems. Dynamic mode decomposition is a popular numerical algorithm for Koopman spectral analysis; however, we often need to prepare nonlinear observables manually according to the underlying dynamics, which is not always possible since we may not have any a priori knowledge about them. In this paper, we propose a fully data-driven method for Koopman spectral analysis based on the principle of learning Koopman invariant subspaces from observed data. To this end, we propose minimization of the residual sum of squares of linear least-squares regression to estimate a set of functions that transforms data into a form in which the linear regression fits well. We introduce an implementation with neural networks and evaluate performance empirically using nonlinear dynamical systems and applications.