title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Intel nGraph: An Intermediate Representation, Compiler, and Executor for Deep Learning
The Deep Learning (DL) community sees many novel topologies published each year. Achieving high performance on each new topology remains challenging, as each requires some level of manual effort. This issue is compounded by the proliferation of frameworks and hardware platforms. The current approach, which we call "direct optimization", requires deep changes within each framework to improve the training performance for each hardware backend (CPUs, GPUs, FPGAs, ASICs) and requires $\mathcal{O}(fp)$ effort; where $f$ is the number of frameworks and $p$ is the number of platforms. While optimized kernels for deep-learning primitives are provided via libraries like Intel Math Kernel Library for Deep Neural Networks (MKL-DNN), there are several compiler-inspired ways in which performance can be further optimized. Building on our experience creating neon (a fast deep learning library on GPUs), we developed Intel nGraph, a soon to be open-sourced C++ library to simplify the realization of optimized deep learning performance across frameworks and hardware platforms. Initially-supported frameworks include TensorFlow, MXNet, and Intel neon framework. Initial backends are Intel Architecture CPUs (CPU), the Intel(R) Nervana Neural Network Processor(R) (NNP), and NVIDIA GPUs. Currently supported compiler optimizations include efficient memory management and data layout abstraction. In this paper, we describe our overall architecture and its core components. In the future, we envision extending nGraph API support to a wider range of frameworks, hardware (including FPGAs and ASICs), and compiler optimizations (training versus inference optimizations, multi-node and multi-device scaling via efficient sub-graph partitioning, and HW-specific compounding of operations).
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Machine learning models are susceptible to adversarial perturbations: small changes to input that can cause large changes in output. It is also demonstrated that there exist input-agnostic perturbations, called universal adversarial perturbations, which can change the inference of target model on most of the data samples. However, existing methods to craft universal perturbations are (i) task specific, (ii) require samples from the training data distribution, and (iii) perform complex optimizations. Additionally, because of the data dependence, fooling ability of the crafted perturbations is proportional to the available training data. In this paper, we present a novel, generalizable and data-free approaches for crafting universal adversarial perturbations. Independent of the underlying task, our objective achieves fooling via corrupting the extracted features at multiple layers. Therefore, the proposed objective is generalizable to craft image-agnostic perturbations across multiple vision tasks such as object recognition, semantic segmentation, and depth estimation. In the practical setting of black-box attack scenario (when the attacker does not have access to the target model and it's training data), we show that our objective outperforms the data dependent objectives to fool the learned models. Further, via exploiting simple priors related to the data distribution, our objective remarkably boosts the fooling ability of the crafted perturbations. Significant fooling rates achieved by our objective emphasize that the current deep learning models are now at an increased risk, since our objective generalizes across multiple tasks without the requirement of training data for crafting the perturbations. To encourage reproducible research, we have released the codes for our proposed algorithm.
Learning Symmetric and Low-energy Locomotion
Learning locomotion skills is a challenging problem. To generate realistic and smooth locomotion, existing methods use motion capture, finite state machines or morphology-specific knowledge to guide the motion generation algorithms. Deep reinforcement learning (DRL) is a promising approach for the automatic creation of locomotion control. Indeed, a standard benchmark for DRL is to automatically create a running controller for a biped character from a simple reward function. Although several different DRL algorithms can successfully create a running controller, the resulting motions usually look nothing like a real runner. This paper takes a minimalist learning approach to the locomotion problem, without the use of motion examples, finite state machines, or morphology-specific knowledge. We introduce two modifications to the DRL approach that, when used together, produce locomotion behaviors that are symmetric, low-energy, and much closer to that of a real person. First, we introduce a new term to the loss function (not the reward function) that encourages symmetric actions. Second, we introduce a new curriculum learning method that provides modulated physical assistance to help the character with left/right balance and forward movement. The algorithm automatically computes appropriate assistance to the character and gradually relaxes this assistance, so that eventually the character learns to move entirely without help. Because our method does not make use of motion capture data, it can be applied to a variety of character morphologies. We demonstrate locomotion controllers for the lower half of a biped, a full humanoid, a quadruped, and a hexapod. Our results show that learned policies are able to produce symmetric, low-energy gaits. In addition, speed-appropriate gait patterns emerge without any guidance from motion examples or contact planning.
Adaptive Recurrent Neural Network Based on Mixture Layer
Although Recurrent Neural Network (RNN) has been a powerful tool for modeling sequential data, its performance is inadequate when processing sequences with multiple patterns. In this paper, we address this challenge by introducing a novel mixture layer and constructing an adaptive RNN. The mixture layer augmented RNN (termed as M-RNN) partitions patterns in training sequences into several clusters and stores the principle patterns as prototype vectors of components in a mixture model. By leveraging the mixture layer, the proposed method can adaptively update states according to the similarities between encoded inputs and prototype vectors, leading to a stronger capacity in assimilating sequences with multiple patterns. Moreover, our approach can be further extended by taking advantage of prior knowledge about data. Experiments on both synthetic and real datasets demonstrate the effectiveness of the proposed method.
Logically-Constrained Reinforcement Learning
We present the first model-free Reinforcement Learning (RL) algorithm to synthesise policies for an unknown Markov Decision Process (MDP), such that a linear time property is satisfied. The given temporal property is converted into a Limit Deterministic Buchi Automaton (LDBA) and a robust reward function is defined over the state-action pairs of the MDP according to the resulting LDBA. With this reward function, the policy synthesis procedure is "constrained" by the given specification. These constraints guide the MDP exploration so as to minimize the solution time by only considering the portion of the MDP that is relevant to satisfaction of the LTL property. This improves performance and scalability of the proposed method by avoiding an exhaustive update over the whole state space while the efficiency of standard methods such as dynamic programming is hindered by excessive memory requirements, caused by the need to store a full-model in memory. Additionally, we show that the RL procedure sets up a local value iteration method to efficiently calculate the maximum probability of satisfying the given property, at any given state of the MDP. We prove that our algorithm is guaranteed to find a policy whose traces probabilistically satisfy the LTL property if such a policy exists, and additionally we show that our method produces reasonable control policies even when the LTL property cannot be satisfied. The performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.
Incremental Eigenpair Computation for Graph Laplacian Matrices: Theory and Applications
The smallest eigenvalues and the associated eigenvectors (i.e., eigenpairs) of a graph Laplacian matrix have been widely used in spectral clustering and community detection. However, in real-life applications the number of clusters or communities (say, $K$) is generally unknown a-priori. Consequently, the majority of the existing methods either choose $K$ heuristically or they repeat the clustering method with different choices of $K$ and accept the best clustering result. The first option, more often, yields suboptimal result, while the second option is computationally expensive. In this work, we propose an incremental method for constructing the eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstructure of graph Laplacian matrix to obtain the $K$-th smallest eigenpair of the Laplacian matrix given a collection of all previously computed $K-1$ smallest eigenpairs. Our proposed method adapts the Laplacian matrix such that the batch eigenvalue decomposition problem transforms into an efficient sequential leading eigenpair computation problem. As a practical application, we consider user-guided spectral clustering. Specifically, we demonstrate that users can utilize the proposed incremental method for effective eigenpair computation and for determining the desired number of clusters based on multiple clustering metrics.
Active Neural Localization
Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize accurately and efficiently. The proposed model incorporates ideas of traditional filtering-based localization methods, by using a structured belief of the state with multiplicative interactions to propagate belief, and combines it with a policy model to localize accurately while minimizing the number of steps required for localization. Active Neural Localizer is trained end-to-end with reinforcement learning. We use a variety of simulation environments for our experiments which include random 2D mazes, random mazes in the Doom game engine and a photo-realistic environment in the Unreal game engine. The results on the 2D environments show the effectiveness of the learned policy in an idealistic setting while results on the 3D environments demonstrate the model's capability of learning the policy and perceptual model jointly from raw-pixel based RGB observations. We also show that a model trained on random textures in the Doom environment generalizes well to a photo-realistic office space environment in the Unreal engine.
DKN: Deep Knowledge-Aware Network for News Recommendation
Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users' interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users' diverse interests, we also design an attention module in DKN to dynamically aggregate a user's history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.
NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction
In this paper, we propose a novel Convolutional Neural Network (CNN) structure for general-purpose multi-task learning (MTL), which enables automatic feature fusing at every layer from different tasks. This is in contrast with the most widely used MTL CNN structures which empirically or heuristically share features on some specific layers (e.g., share all the features except the last convolutional layer). The proposed layerwise feature fusing scheme is formulated by combining existing CNN components in a novel way, with clear mathematical interpretability as discriminative dimensionality reduction, which is referred to as Neural Discriminative Dimensionality Reduction (NDDR). Specifically, we first concatenate features with the same spatial resolution from different tasks according to their channel dimension. Then, we show that the discriminative dimensionality reduction can be fulfilled by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN. The use of existing CNN components ensures the end-to-end training and the extensibility of the proposed NDDR layer to various state-of-the-art CNN architectures in a "plug-and-play" manner. The detailed ablation analysis shows that the proposed NDDR layer is easy to train and also robust to different hyperparameters. Experiments on different task sets with various base network architectures demonstrate the promising performance and desirable generalizability of our proposed method. The code of our paper is available at https://github.com/ethanygao/NDDR-CNN.
DeepWriting: Making Digital Ink Editable via Deep Generative Modeling
Digital ink promises to combine the flexibility and aesthetics of handwriting and the ability to process, search and edit digital text. Character recognition converts handwritten text into a digital representation, albeit at the cost of losing personalized appearance due to the technical difficulties of separating the interwoven components of content and style. In this paper, we propose a novel generative neural network architecture that is capable of disentangling style from content and thus making digital ink editable. Our model can synthesize arbitrary text, while giving users control over the visual appearance (style). For example, allowing for style transfer without changing the content, editing of digital ink at the word level and other application scenarios such as spell-checking and correction of handwritten text. We furthermore contribute a new dataset of handwritten text with fine-grained annotations at the character level and report results from an initial user evaluation.
Data-Driven Impulse Response Regularization via Deep Learning
We consider the problem of impulse response estimation of stable linear single-input single-output systems. It is a well-studied problem where flexible non-parametric models recently offered a leap in performance compared to the classical finite-dimensional model structures. Inspired by this development and the success of deep learning we propose a new flexible data-driven model. Our experiments indicate that the new model is capable of exploiting even more of the hidden patterns that are present in the input-output data as compared to the non-parametric models.
CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition
The popularity of ASR (automatic speech recognition) systems, like Google Voice, Cortana, brings in security concerns, as demonstrated by recent attacks. The impacts of such threats, however, are less clear, since they are either less stealthy (producing noise-like voice commands) or requiring the physical presence of an attack device (using ultrasound). In this paper, we demonstrate that not only are more practical and surreptitious attacks feasible but they can even be automatically constructed. Specifically, we find that the voice commands can be stealthily embedded into songs, which, when played, can effectively control the target system through ASR without being noticed. For this purpose, we developed novel techniques that address a key technical challenge: integrating the commands into a song in a way that can be effectively recognized by ASR through the air, in the presence of background noise, while not being detected by a human listener. Our research shows that this can be done automatically against real world ASR applications. We also demonstrate that such CommanderSongs can be spread through Internet (e.g., YouTube) and radio, potentially affecting millions of ASR users. We further present a new mitigation technique that controls this threat.
Deep Learning in Pharmacogenomics: From Gene Regulation to Patient Stratification
This Perspective provides examples of current and future applications of deep learning in pharmacogenomics, including: (1) identification of novel regulatory variants located in noncoding domains and their function as applied to pharmacoepigenomics; (2) patient stratification from medical records; and (3) prediction of drugs, targets, and their interactions. Deep learning encapsulates a family of machine learning algorithms that over the last decade has transformed many important subfields of artificial intelligence (AI) and has demonstrated breakthrough performance improvements on a wide range of tasks in biomedicine. We anticipate that in the future deep learning will be widely used to predict personalized drug response and optimize medication selection and dosing, using knowledge extracted from large and complex molecular, epidemiological, clinical, and demographic datasets.
Effective Building Block Design for Deep Convolutional Neural Networks using Search
Deep learning has shown promising results on many machine learning tasks but DL models are often complex networks with large number of neurons and layers, and recently, complex layer structures known as building blocks. Finding the best deep model requires a combination of finding both the right architecture and the correct set of parameters appropriate for that architecture. In addition, this complexity (in terms of layer types, number of neurons, and number of layers) also present problems with generalization since larger networks are easier to overfit to the data. In this paper, we propose a search framework for finding effective architectural building blocks for convolutional neural networks (CNN). Our approach is much faster at finding models that are close to state-of-the-art in performance. In addition, the models discovered by our approach are also smaller than models discovered by similar techniques. We achieve these twin advantages by designing our search space in such a way that it searches over a reduced set of state-of-the-art building blocks for CNNs including residual block, inception block, inception-residual block, ResNeXt block and many others. We apply this technique to generate models for multiple image datasets and show that these models achieve performance comparable to state-of-the-art (and even surpassing the state-of-the-art in one case). We also show that learned models are transferable between datasets.
JointDNN: An Efficient Training and Inference Engine for Intelligent Mobile Cloud Computing Services
Deep learning models are being deployed in many mobile intelligent applications. End-side services, such as intelligent personal assistants, autonomous cars, and smart home services often employ either simple local models on the mobile or complex remote models on the cloud. However, recent studies have shown that partitioning the DNN computations between the mobile and cloud can increase the latency and energy efficiencies. In this paper, we propose an efficient, adaptive, and practical engine, JointDNN, for collaborative computation between a mobile device and cloud for DNNs in both inference and training phase. JointDNN not only provides an energy and performance efficient method of querying DNNs for the mobile side but also benefits the cloud server by reducing the amount of its workload and communications compared to the cloud-only approach. Given the DNN architecture, we investigate the efficiency of processing some layers on the mobile device and some layers on the cloud server. We provide optimization formulations at layer granularity for forward- and backward-propagations in DNNs, which can adapt to mobile battery limitations and cloud server load constraints and quality of service. JointDNN achieves up to 18 and 32 times reductions on the latency and mobile energy consumption of querying DNNs compared to the status-quo approaches, respectively.
Quantization Error as a Metric for Dynamic Precision Scaling in Neural Net Training
Recent work has explored reduced numerical precision for parameters, activations, and gradients during neural network training as a way to reduce the computational cost of training (Na & Mukhopadhyay, 2016) (Courbariaux et al., 2014). We present a novel dynamic precision scaling (DPS) scheme. Using stochastic fixed-point rounding, a quantization-error based scaling scheme, and dynamic bit-widths during training, we achieve 98.8% test accuracy on the MNIST dataset using an average bit-width of just 16 bits for weights and 14 bits for activations, compared to the standard 32-bit floating point values used in deep learning frameworks.
Considerations When Learning Additive Explanations for Black-Box Models
Many methods to explain black-box models, whether local or global, are additive. In this paper, we study global additive explanations for non-additive models, focusing on four explanation methods: partial dependence, Shapley explanations adapted to a global setting, distilled additive explanations, and gradient-based explanations. We show that different explanation methods characterize non-additive components in a black-box model's prediction function in different ways. We use the concepts of main and total effects to anchor additive explanations, and quantitatively evaluate additive and non-additive explanations. Even though distilled explanations are generally the most accurate additive explanations, non-additive explanations such as tree explanations that explicitly model non-additive components tend to be even more accurate. Despite this, our user study showed that machine learning practitioners were better able to leverage additive explanations for various tasks. These considerations should be taken into account when considering which explanation to trust and use to explain black-box models.
Neural Algebra of Classifiers
The world is fundamentally compositional, so it is natural to think of visual recognition as the recognition of basic visually primitives that are composed according to well-defined rules. This strategy allows us to recognize unseen complex concepts from simple visual primitives. However, the current trend in visual recognition follows a data greedy approach where huge amounts of data are required to learn models for any desired visual concept. In this paper, we build on the compositionality principle and develop an "algebra" to compose classifiers for complex visual concepts. To this end, we learn neural network modules to perform boolean algebra operations on simple visual classifiers. Since these modules form a complete functional set, a classifier for any complex visual concept defined as a boolean expression of primitives can be obtained by recursively applying the learned modules, even if we do not have a single training sample. As our experiments show, using such a framework, we can compose classifiers for complex visual concepts outperforming standard baselines on two well-known visual recognition benchmarks. Finally, we present a qualitative analysis of our method and its properties.
PDNet: Semantic Segmentation integrated with a Primal-Dual Network for Document binarization
Binarization of digital documents is the task of classifying each pixel in an image of the document as belonging to the background (parchment/paper) or foreground (text/ink). Historical documents are often subjected to degradations, that make the task challenging. In the current work a deep neural network architecture is proposed that combines a fully convolutional network with an unrolled primal-dual network that can be trained end-to-end to achieve state of the art binarization on four out of seven datasets. Document binarization is formulated as an energy minimization problem. A fully convolutional neural network is trained for semantic segmentation of pixels that provides labeling cost associated with each pixel. This cost estimate is refined along the edges to compensate for any over or under estimation of the foreground class using a primal-dual approach. We provide necessary overview on proximal operator that facilitates theoretical underpinning required to train a primal-dual network using a gradient descent algorithm. Numerical instabilities encountered due to the recurrent nature of primal-dual approach are handled. We provide experimental results on document binarization competition dataset along with network changes and hyperparameter tuning required for stability and performance of the network. The network when pre-trained on synthetic dataset performs better as per the competition metrics.
Improving Bi-directional Generation between Different Modalities with Variational Autoencoders
We investigate deep generative models that can exchange multiple modalities bi-directionally, e.g., generating images from corresponding texts and vice versa. A major approach to achieve this objective is to train a model that integrates all the information of different modalities into a joint representation and then to generate one modality from the corresponding other modality via this joint representation. We simply applied this approach to variational autoencoders (VAEs), which we call a joint multimodal variational autoencoder (JMVAE). However, we found that when this model attempts to generate a large dimensional modality missing at the input, the joint representation collapses and this modality cannot be generated successfully. Furthermore, we confirmed that this difficulty cannot be resolved even using a known solution. Therefore, in this study, we propose two models to prevent this difficulty: JMVAE-kl and JMVAE-h. Results of our experiments demonstrate that these methods can prevent the difficulty above and that they generate modalities bi-directionally with equal or higher likelihood than conventional VAE methods, which generate in only one direction. Moreover, we confirm that these methods can obtain the joint representation appropriately, so that they can generate various variations of modality by moving over the joint representation or changing the value of another modality.
Classification of sparsely labeled spatio-temporal data through semi-supervised adversarial learning
In recent years, Generative Adversarial Networks (GAN) have emerged as a powerful method for learning the mapping from noisy latent spaces to realistic data samples in high-dimensional space. So far, the development and application of GANs have been predominantly focused on spatial data such as images. In this project, we aim at modeling of spatio-temporal sensor data instead, i.e. dynamic data over time. The main goal is to encode temporal data into a global and low-dimensional latent vector that captures the dynamics of the spatio-temporal signal. To this end, we incorporate auto-regressive RNNs, Wasserstein GAN loss, spectral norm weight constraints and a semi-supervised learning scheme into InfoGAN, a method for retrieval of meaningful latents in adversarial learning. To demonstrate the modeling capability of our method, we encode full-body skeletal human motion from a large dataset representing 60 classes of daily activities, recorded in a multi-Kinect setup. Initial results indicate competitive classification performance of the learned latent representations, compared to direct CNN/RNN inference. In future work, we plan to apply this method on a related problem in the medical domain, i.e. on recovery of meaningful latents in gait analysis of patients with vertigo and balance disorders.
Multivariate normal mixture modeling, clustering and classification with the rebmix package
The rebmix package provides R functions for random univariate and multivariate finite mixture model generation, estimation, clustering and classification. The paper is focused on multivariate normal mixture models with unrestricted variance-covariance matrices. The objective is to show how to generate datasets for a known number of components, numbers of observations and component parameters, how to estimate the number of components, component weights and component parameters and how to predict cluster and class membership based upon a model trained by the REBMIX algorithm. The accompanying plotting, bootstrapping and other features of the package are dealt with, too. For demonstration purpose a multivariate normal dataset with unrestricted variance-covariance matrices is studied.
Correlated Components Analysis - Extracting Reliable Dimensions in Multivariate Data
How does one find dimensions in multivariate data that are reliably expressed across repetitions? For example, in a brain imaging study one may want to identify combinations of neural signals that are reliably expressed across multiple trials or subjects. For a behavioral assessment with multiple ratings, one may want to identify an aggregate score that is reliably reproduced across raters. Correlated Components Analysis (CorrCA) addresses this problem by identifying components that are maximally correlated between repetitions (e.g. trials, subjects, raters). Here we formalize this as the maximization of the ratio of between-repetition to within-repetition covariance. We show that this criterion maximizes repeat-reliability, defined as mean over variance across repeats, and that it leads to CorrCA or to multi-set Canonical Correlation Analysis, depending on the constraints. Surprisingly, we also find that CorrCA is equivalent to Linear Discriminant Analysis for zero-mean signals, which provides an unexpected link between classic concepts of multivariate analysis. We present an exact parametric test of statistical significance based on the F-statistic for normally distributed independent samples, and present and validate shuffle statistics for the case of dependent samples. Regularization and extension to non-linear mappings using kernels are also presented. The algorithms are demonstrated on a series of data analysis applications, and we provide all code and data required to reproduce the results.
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
Meta-learning allows an intelligent agent to leverage prior learning episodes as a basis for quickly improving performance on a novel task. Bayesian hierarchical modeling provides a theoretical framework for formalizing meta-learning as inference for a set of parameters that are shared across tasks. Here, we reformulate the model-agnostic meta-learning algorithm (MAML) of Finn et al. (2017) as a method for probabilistic inference in a hierarchical Bayesian model. In contrast to prior methods for meta-learning via hierarchical Bayes, MAML is naturally applicable to complex function approximators through its use of a scalable gradient descent procedure for posterior inference. Furthermore, the identification of MAML as hierarchical Bayes provides a way to understand the algorithm's operation as a meta-learning procedure, as well as an opportunity to make use of computational strategies for efficient inference. We use this opportunity to propose an improvement to the MAML algorithm that makes use of techniques from approximate inference and curvature estimation.
Object category learning and retrieval with weak supervision
We consider the problem of retrieving objects from image data and learning to classify them into meaningful semantic categories with minimal supervision. To that end, we propose a fully differentiable unsupervised deep clustering approach to learn semantic classes in an end-to-end fashion without individual class labeling using only unlabeled object proposals. The key contributions of our work are 1) a kmeans clustering objective where the clusters are learned as parameters of the network and are represented as memory units, and 2) simultaneously building a feature representation, or embedding, while learning to cluster it. This approach shows promising results on two popular computer vision datasets: on CIFAR10 for clustering objects, and on the more complex and challenging Cityscapes dataset for semantically discovering classes which visually correspond to cars, people, and bicycles. Currently, the only supervision provided is segmentation objectness masks, but this method can be extended to use an unsupervised objectness-based object generation mechanism which will make the approach completely unsupervised.
Approximate Inference via Weighted Rademacher Complexity
Rademacher complexity is often used to characterize the learnability of a hypothesis class and is known to be related to the class size. We leverage this observation and introduce a new technique for estimating the size of an arbitrary weighted set, defined as the sum of weights of all elements in the set. Our technique provides upper and lower bounds on a novel generalization of Rademacher complexity to the weighted setting in terms of the weighted set size. This generalizes Massart's Lemma, a known upper bound on the Rademacher complexity in terms of the unweighted set size. We show that the weighted Rademacher complexity can be estimated by solving a randomly perturbed optimization problem, allowing us to derive high-probability bounds on the size of any weighted set. We apply our method to the problems of calculating the partition function of an Ising model and computing propositional model counts (#SAT). Our experiments demonstrate that we can produce tighter bounds than competing methods in both the weighted and unweighted settings.
Algorithmic Linearly Constrained Gaussian Processes
We algorithmically construct multi-output Gaussian process priors which satisfy linear differential equations. Our approach attempts to parametrize all solutions of the equations using Gr\"obner bases. If successful, a push forward Gaussian process along the paramerization is the desired prior. We consider several examples from physics, geomathematics and control, among them the full inhomogeneous system of Maxwell's equations. By bringing together stochastic learning and computer algebra in a novel way, we combine noisy observations with precise algebraic computations.
Less is more: sampling chemical space with active learning
The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach we develop the COMP6 benchmark (publicly available on GitHub), which contains a diverse set of organic molecules. Through the AL process, it is shown that the AL-based potentials perform as well as the ANI-1 potential on COMP6 with only 10% of the data, and vastly outperforms ANI-1 with 25% the amount of data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecule or materials, while remaining applicable to the general class of organic molecules comprised of the elements CHNO.
Document Image Classification with Intra-Domain Transfer Learning and Stacked Generalization of Deep Convolutional Neural Networks
In this work, a region-based Deep Convolutional Neural Network framework is proposed for document structure learning. The contribution of this work involves efficient training of region based classifiers and effective ensembling for document image classification. A primary level of `inter-domain' transfer learning is used by exporting weights from a pre-trained VGG16 architecture on the ImageNet dataset to train a document classifier on whole document images. Exploiting the nature of region based influence modelling, a secondary level of `intra-domain' transfer learning is used for rapid training of deep learning models for image segments. Finally, stacked generalization based ensembling is utilized for combining the predictions of the base deep neural network models. The proposed method achieves state-of-the-art accuracy of 92.2% on the popular RVL-CDIP document image dataset, exceeding benchmarks set by existing algorithms.
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks
It is desirable to train convolutional networks (CNNs) to run more efficiently during inference. In many cases however, the computational budget that the system has for inference cannot be known beforehand during training, or the inference budget is dependent on the changing real-time resource availability. Thus, it is inadequate to train just inference-efficient CNNs, whose inference costs are not adjustable and cannot adapt to varied inference budgets. We propose a novel approach for cost-adjustable inference in CNNs - Stochastic Downsampling Point (SDPoint). During training, SDPoint applies feature map downsampling to a random point in the layer hierarchy, with a random downsampling ratio. The different stochastic downsampling configurations known as SDPoint instances (of the same model) have computational costs different from each other, while being trained to minimize the same prediction loss. Sharing network parameters across different instances provides significant regularization boost. During inference, one may handpick a SDPoint instance that best fits the inference budget. The effectiveness of SDPoint, as both a cost-adjustable inference approach and a regularizer, is validated through extensive experiments on image classification.
Certified Defenses against Adversarial Examples
While neural networks have achieved high accuracy on standard image classification benchmarks, their accuracy drops to nearly zero in the presence of small adversarial perturbations to test inputs. Defenses based on regularization and adversarial training have been proposed, but often followed by new, stronger attacks that defeat these defenses. Can we somehow end this arms race? In this work, we study this problem for neural networks with one hidden layer. We first propose a method based on a semidefinite relaxation that outputs a certificate that for a given network and test input, no attack can force the error to exceed a certain value. Second, as this certificate is differentiable, we jointly optimize it with the network parameters, providing an adaptive regularizer that encourages robustness against all attacks. On MNIST, our approach produces a network and a certificate that no attack that perturbs each pixel by at most \epsilon = 0.1 can cause more than 35% test error.
On the Inter-relationships among Drift rate, Forgetting rate, Bias/variance profile and Error
We propose two general and falsifiable hypotheses about expectations on generalization error when learning in the context of concept drift. One posits that as drift rate increases, the forgetting rate that minimizes generalization error will also increase and vice versa. The other posits that as a learner's forgetting rate increases, the bias/variance profile that minimizes generalization error will have lower variance and vice versa. These hypotheses lead to the concept of the sweet path, a path through the 3-d space of alternative drift rates, forgetting rates and bias/variance profiles on which generalization error will be minimized, such that slow drift is coupled with low forgetting and low bias, while rapid drift is coupled with fast forgetting and low variance. We present experiments that support the existence of such a sweet path. We also demonstrate that simple learners that select appropriate forgetting rates and bias/variance profiles are highly competitive with the state-of-the-art in incremental learners for concept drift on real-world drift problems.
Nonlinear Dimensionality Reduction on Graphs
In this era of data deluge, many signal processing and machine learning tasks are faced with high-dimensional datasets, including images, videos, as well as time series generated from social, commercial and brain network interactions. Their efficient processing calls for dimensionality reduction techniques capable of properly compressing the data while preserving task-related characteristics, going beyond pairwise data correlations. The present paper puts forth a nonlinear dimensionality reduction framework that accounts for data lying on known graphs. The novel framework encompasses most of the existing dimensionality reduction methods, but it is also capable of capturing and preserving possibly nonlinear correlations that are ignored by linear methods. Furthermore, it can take into account information from multiple graphs. The proposed algorithms were tested on synthetic as well as real datasets to corroborate their effectiveness.
Learning Combinations of Activation Functions
In the last decade, an active area of research has been devoted to design novel activation functions that are able to help deep neural networks to converge, obtaining better performance. The training procedure of these architectures usually involves optimization of the weights of their layers only, while non-linearities are generally pre-specified and their (possible) parameters are usually considered as hyper-parameters to be tuned manually. In this paper, we introduce two approaches to automatically learn different combinations of base activation functions (such as the identity function, ReLU, and tanh) during the training phase. We present a thorough comparison of our novel approaches with well-known architectures (such as LeNet-5, AlexNet, and ResNet-56) on three standard datasets (Fashion-MNIST, CIFAR-10, and ILSVRC-2012), showing substantial improvements in the overall performance, such as an increase in the top-1 accuracy for AlexNet on ILSVRC-2012 of 3.01 percentage points.
A notion of stability for k-means clustering
In this paper, we define and study a new notion of stability for the $k$-means clustering scheme building upon the notion of quantization of a probability measure. We connect this notion of stability to a geometric feature of the underlying distribution of the data, named absolute margin condition, inspired by recent works on the subject.
Improving Active Learning in Systematic Reviews
Systematic reviews are essential to summarizing the results of different clinical and social science studies. The first step in a systematic review task is to identify all the studies relevant to the review. The task of identifying relevant studies for a given systematic review is usually performed manually, and as a result, involves substantial amounts of expensive human resource. Lately, there have been some attempts to reduce this manual effort using active learning. In this work, we build upon some such existing techniques, and validate by experimenting on a larger and comprehensive dataset than has been attempted until now. Our experiments provide insights on the use of different feature extraction models for different disciplines. More importantly, we identify that a naive active learning based screening process is biased in favour of selecting similar documents. We aimed to improve the performance of the screening process using a novel active learning algorithm with success. Additionally, we propose a mechanism to choose the best feature extraction method for a given review.
Deep Learning Angiography (DLA): Three-dimensional C-arm Cone Beam CT Angiography Using Deep Learning
Background and Purpose: Our purpose was to develop a deep learning angiography (DLA) method to generate 3D cerebral angiograms from a single contrast-enhanced acquisition. Material and Methods: Under an approved IRB protocol 105 3D-DSA exams were randomly selected from an internal database. All were acquired using a clinical system (Axiom Artis zee, Siemens Healthineers) in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35 subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into three tissue types (vasculature, bone and soft tissue). The trained DLA model was then applied for tissue classification in a validation cohort of 8 subjects and a final testing cohort consisting of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D-DLA images. To quantify the generalization error of the trained model, accuracy, sensitivity, precision and F1-scores were calculated for vasculature classification in relevant anatomy. The 3D-DLA and clinical 3D-DSA images were subject to a qualitative assessment for the presence of inter-sweep motion artifacts. Results: Vasculature classification accuracy and 95% CI in the testing dataset was 98.7% ([98.3, 99.1] %). No residual signal from osseous structures was observed for all 3D-DLA testing cases except for small regions in the otic capsule and nasal cavity compared to 37% (23/62) of the 3D-DSAs. Conclusion: DLA accurately recreated the vascular anatomy of the 3D-DSA reconstructions without mask. DLA reduced mis-registration artifacts induced by inter-sweep motion. DLA reduces radiation exposure required to obtain clinically useful 3D-DSA
Multichannel Sound Event Detection Using 3D Convolutional Neural Networks for Learning Inter-channel Features
In this paper, we propose a stacked convolutional and recurrent neural network (CRNN) with a 3D convolutional neural network (CNN) in the first layer for the multichannel sound event detection (SED) task. The 3D CNN enables the network to simultaneously learn the inter- and intra-channel features from the input multichannel audio. In order to evaluate the proposed method, multichannel audio datasets with different number of overlapping sound sources are synthesized. Each of this dataset has a four-channel first-order Ambisonic, binaural, and single-channel versions, on which the performance of SED using the proposed method are compared to study the potential of SED using multichannel audio. A similar study is also done with the binaural and single-channel versions of the real-life recording TUT-SED 2017 development dataset. The proposed method learns to recognize overlapping sound events from multichannel features faster and performs better SED with a fewer number of training epochs. The results show that on using multichannel Ambisonic audio in place of single-channel audio we improve the overall F-score by 7.5%, overall error rate by 10% and recognize 15.6% more sound events in time frames with four overlapping sound sources.
21 Million Opportunities: A 19 Facility Investigation of Factors Affecting Hand Hygiene Compliance via Linear Predictive Models
This large-scale study, consisting of 21.3 million hand hygiene opportunities from 19 distinct facilities in 10 different states, uses linear predictive models to expose factors that may affect hand hygiene compliance. We examine the use of features such as temperature, relative humidity, influenza severity, day/night shift, federal holidays and the presence of new medical residents in predicting daily hand hygiene compliance; the investigation is undertaken using both a "global" model to glean general trends, and facility-specific models to elicit facility-specific insights. The results suggest that colder temperatures and federal holidays have an adverse effect on hand hygiene compliance rates, and that individual cultures and attitudes regarding hand hygiene exist among facilities.
DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification
In this work, we present a fully automated lung computed tomography (CT) cancer diagnosis system, DeepLung. DeepLung consists of two components, nodule detection (identifying the locations of candidate nodules) and classification (classifying candidate nodules into benign or malignant). Considering the 3D nature of lung CT data and the compactness of dual path networks (DPN), two deep 3D DPN are designed for nodule detection and classification respectively. Specifically, a 3D Faster Regions with Convolutional Neural Net (R-CNN) is designed for nodule detection with 3D dual path blocks and a U-net-like encoder-decoder structure to effectively learn nodule features. For nodule classification, gradient boosting machine (GBM) with 3D dual path network features is proposed. The nodule classification subnetwork was validated on a public dataset from LIDC-IDRI, on which it achieved better performance than state-of-the-art approaches and surpassed the performance of experienced doctors based on image modality. Within the DeepLung system, candidate nodules are detected first by the nodule detection subnetwork, and nodule diagnosis is conducted by the classification subnetwork. Extensive experimental results demonstrate that DeepLung has performance comparable to experienced doctors both for the nodule-level and patient-level diagnosis on the LIDC-IDRI dataset.\footnote{https://github.com/uci-cbcl/DeepLung.git}
Deep Learning Approach for Very Similar Objects Recognition Application on Chihuahua and Muffin Problem
We address the problem to tackle the very similar objects like Chihuahua or muffin problem to recognize at least in human vision level. Our regular deep structured machine learning still does not solve it. We saw many times for about year in our community the problem. Today we proposed the state-of-the-art solution for it. Our approach is quite tricky to get the very high accuracy. We propose the deep transfer learning method which could be tackled all this type of problems not limited to just Chihuahua or muffin problem. It is the best method to train with small data set not like require huge amount data.
Learning the Reward Function for a Misspecified Model
In model-based reinforcement learning it is typical to decouple the problems of learning the dynamics model and learning the reward function. However, when the dynamics model is flawed, it may generate erroneous states that would never occur in the true environment. It is not clear a priori what value the reward function should assign to such states. This paper presents a novel error bound that accounts for the reward model's behavior in states sampled from the model. This bound is used to extend the existing Hallucinated DAgger-MC algorithm, which offers theoretical performance guarantees in deterministic MDPs that do not assume a perfect model can be learned. Empirically, this approach to reward learning can yield dramatic improvements in control performance when the dynamics model is flawed.
Barrier-Certified Adaptive Reinforcement Learning with Applications to Brushbot Navigation
This paper presents a safe learning framework that employs an adaptive model learning algorithm together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique. We use the learned model in combination with control barrier certificates which constrain policies (feedback controllers) in order to maintain safety, which refers to avoiding particular undesirable regions of the state space. Under certain conditions, recovery of safety in the sense of Lyapunov stability after violations of safety due to the nonstationarity is guaranteed. In addition, we reformulate an action-value function approximation to make any kernel-based nonlinear function estimation method applicable to our adaptive learning framework. Lastly, solutions to the barrier-certified policy optimization are guaranteed to be globally optimal, ensuring the greedy policy improvement under mild conditions. The resulting framework is validated via simulations of a quadrotor, which has previously been used under stationarity assumptions in the safe learnings literature, and is then tested on a real robot, the brushbot, whose dynamics is unknown, highly complex and nonstationary.
Matrix Completion for Structured Observations
The need to predict or fill-in missing data, often referred to as matrix completion, is a common challenge in today's data-driven world. Previous strategies typically assume that no structural difference between observed and missing entries exists. Unfortunately, this assumption is woefully unrealistic in many applications. For example, in the classic Netflix challenge, in which one hopes to predict user-movie ratings for unseen films, the fact that the viewer has not watched a given movie may indicate a lack of interest in that movie, thus suggesting a lower rating than otherwise expected. We propose adjusting the standard nuclear norm minimization strategy for matrix completion to account for such structural differences between observed and unobserved entries by regularizing the values of the unobserved entries. We show that the proposed method outperforms nuclear norm minimization in certain settings.
tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow
We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows. Our work represents a first approach to synthesize four-dimensional physics fields with neural networks. Based on a conditional generative adversarial network that is designed for the inference of three-dimensional volumetric data, our model generates consistent and detailed results by using a novel temporal discriminator, in addition to the commonly used spatial one. Our experiments show that the generator is able to infer more realistic high-resolution details by using additional physical quantities, such as low-resolution velocities or vorticities. Besides improvements in the training process and in the generated outputs, these inputs offer means for artistic control as well. We additionally employ a physics-aware data augmentation step, which is crucial to avoid overfitting and to reduce memory requirements. In this way, our network learns to generate advected quantities with highly detailed, realistic, and temporally coherent features. Our method works instantaneously, using only a single time-step of low-resolution fluid data. We demonstrate the abilities of our method using a variety of complex inputs and applications in two and three dimensions.
A Generalized Circuit for the Hamiltonian Dynamics Through the Truncated Series
In this paper, we present a method for the Hamiltonian simulation in the context of eigenvalue estimation problems which improves earlier results dealing with Hamiltonian simulation through the truncated Taylor series. In particular, we present a fixed-quantum circuit design for the simulation of the Hamiltonian dynamics, $H(t)$, through the truncated Taylor series method described by Berry et al. \cite{berry2015simulating}. The circuit is general and can be used to simulate any given matrix in the phase estimation algorithm by only changing the angle values of the quantum gates implementing the time variable $t$ in the series. The circuit complexity depends on the number of summation terms composing the Hamiltonian and requires $O(Ln)$ number of quantum gates for the simulation of a molecular Hamiltonian. Here, $n$ is the number of states of a spin orbital, and $L$ is the number of terms in the molecular Hamiltonian and generally bounded by $O(n^4)$. We also discuss how to use the circuit in adaptive processes and eigenvalue related problems along with a slight modified version of the iterative phase estimation algorithm. In addition, a simple divide and conquer method is presented for mapping a matrix which are not given as sums of unitary matrices into the circuit. The complexity of the circuit is directly related to the structure of the matrix and can be bounded by $O(poly(n))$ for a matrix with $poly(n)-$sparsity.
Evaluating approaches for supervised semantic labeling
Relational data sources are still one of the most popular ways to store enterprise or Web data, however, the issue with relational schema is the lack of a well-defined semantic description. A common ontology provides a way to represent the meaning of a relational schema and can facilitate the integration of heterogeneous data sources within a domain. Semantic labeling is achieved by mapping attributes from the data sources to the classes and properties in the ontology. We formulate this problem as a multi-class classification problem where previously labeled data sources are used to learn rules for labeling new data sources. The majority of existing approaches for semantic labeling have focused on data integration challenges such as naming conflicts and semantic heterogeneity. In addition, machine learning approaches typically have issues around class imbalance, lack of labeled instances and relative importance of attributes. To address these issues, we develop a new machine learning model with engineered features as well as two deep learning models which do not require extensive feature engineering. We evaluate our new approaches with the state-of-the-art.
Discrete Autoencoders for Sequence Models
Recurrent models for sequences have been recently successful at many tasks, especially for language modeling and machine translation. Nevertheless, it remains challenging to extract good representations from these models. For instance, even though language has a clear hierarchical structure going from characters through words to sentences, it is not apparent in current language models. We propose to improve the representation in sequence models by augmenting current approaches with an autoencoder that is forced to compress the sequence through an intermediate discrete latent space. In order to propagate gradients though this discrete representation we introduce an improved semantic hashing technique. We show that this technique performs well on a newly proposed quantitative efficiency measure. We also analyze latent codes produced by the model showing how they correspond to words and phrases. Finally, we present an application of the autoencoder-augmented model to generating diverse translations.
The Intriguing Properties of Model Explanations
Linear approximations to the decision boundary of a complex model have become one of the most popular tools for interpreting predictions. In this paper, we study such linear explanations produced either post-hoc by a few recent methods or generated along with predictions with contextual explanation networks (CENs). We focus on two questions: (i) whether linear explanations are always consistent or can be misleading, and (ii) when integrated into the prediction process, whether and how explanations affect the performance of the model. Our analysis sheds more light on certain properties of explanations produced by different methods and suggests that learning models that explain and predict jointly is often advantageous.
Personalized Survival Prediction with Contextual Explanation Networks
Accurate and transparent prediction of cancer survival times on the level of individual patients can inform and improve patient care and treatment practices. In this paper, we design a model that concurrently learns to accurately predict patient-specific survival distributions and to explain its predictions in terms of patient attributes such as clinical tests or assessments. Our model is flexible and based on a recurrent network, can handle various modalities of data including temporal measurements, and yet constructs and uses simple explanations in the form of patient- and time-specific linear regression. For analysis, we use two publicly available datasets and show that our networks outperform a number of baselines in prediction while providing a way to inspect the reasons behind each prediction.
Learning to Emulate an Expert Projective Cone Scheduler
Projective cone scheduling defines a large class of rate-stabilizing policies for queueing models relevant to several applications. While there exists considerable theory on the properties of projective cone schedulers, there is little practical guidance on choosing the parameters that define them. In this paper, we propose an algorithm for designing an automated projective cone scheduling system based on observations of an expert projective cone scheduler. We show that the estimated scheduling policy is able to emulate the expert in the sense that the average loss realized by the learned policy will converge to zero. Specifically, for a system with $n$ queues observed over a time horizon $T$, the average loss for the algorithm is $O(\ln(T)\sqrt{\ln(n)/T})$. This upper bound holds regardless of the statistical characteristics of the system. The algorithm uses the multiplicative weights update method and can be applied online so that additional observations of the expert scheduler can be used to improve an existing estimate of the policy. This provides a data-driven method for designing a scheduling policy based on observations of a human expert. We demonstrate the efficacy of the algorithm with a simple numerical example and discuss several extensions.
Robustness of classification ability of spiking neural networks
It is well-known that the robustness of artificial neural networks (ANNs) is important for their wide ranges of applications. In this paper, we focus on the robustness of the classification ability of a spiking neural network which receives perturbed inputs. Actually, the perturbation is allowed to be arbitrary styles. However, Gaussian perturbation and other regular ones have been rarely investigated. For classification problems, the closer to the desired point, the more perturbed points there are in the input space. In addition, the perturbation may be periodic. Based on these facts, we only consider sinusoidal and Gaussian perturbations in this paper. With the SpikeProp algorithm, we perform extensive experiments on the classical XOR problem and other three benchmark datasets. The numerical results show that there is not significant reduction in the classification ability of the network if the input signals are subject to sinusoidal and Gaussian perturbations.
ReNN: Rule-embedded Neural Networks
The artificial neural network shows powerful ability of inference, but it is still criticized for lack of interpretability and prerequisite needs of big dataset. This paper proposes the Rule-embedded Neural Network (ReNN) to overcome the shortages. ReNN first makes local-based inferences to detect local patterns, and then uses rules based on domain knowledge about the local patterns to generate rule-modulated map. After that, ReNN makes global-based inferences that synthesizes the local patterns and the rule-modulated map. To solve the optimization problem caused by rules, we use a two-stage optimization strategy to train the ReNN model. By introducing rules into ReNN, we can strengthen traditional neural networks with long-term dependencies which are difficult to learn with limited empirical dataset, thus improving inference accuracy. The complexity of neural networks can be reduced since long-term dependencies are not modeled with neural connections, and thus the amount of data needed to optimize the neural networks can be reduced. Besides, inferences from ReNN can be analyzed with both local patterns and rules, and thus have better interpretability. In this paper, ReNN has been validated with a time-series detection problem.
Accelerating recurrent neural network language model based online speech recognition system
This paper presents methods to accelerate recurrent neural network based language models (RNNLMs) for online speech recognition systems. Firstly, a lossy compression of the past hidden layer outputs (history vector) with caching is introduced in order to reduce the number of LM queries. Next, RNNLM computations are deployed in a CPU-GPU hybrid manner, which computes each layer of the model on a more advantageous platform. The added overhead by data exchanges between CPU and GPU is compensated through a frame-wise batching strategy. The performance of the proposed methods evaluated on LibriSpeech test sets indicates that the reduction in history vector precision improves the average recognition speed by 1.23 times with minimum degradation in accuracy. On the other hand, the CPU-GPU hybrid parallelization enables RNNLM based real-time recognition with a four times improvement in speed.
Fast Power system security analysis with Guided Dropout
We propose a new method to efficiently compute load-flows (the steady-state of the power-grid for given productions, consumptions and grid topology), substituting conventional simulators based on differential equation solvers. We use a deep feed-forward neural network trained with load-flows precomputed by simulation. Our architecture permits to train a network on so-called "n-1" problems, in which load flows are evaluated for every possible line disconnection, then generalize to "n-2" problems without retraining (a clear advantage because of the combinatorial nature of the problem). To that end, we developed a technique bearing similarity with "dropout", which we named "guided dropout".
Binary Compressive Sensing via Smoothed $\ell_0$ Gradient Descent
We present a Compressive Sensing algorithm for reconstructing binary signals from its linear measurements. The proposed algorithm minimizes a non-convex cost function expressed as a weighted sum of smoothed $\ell_0$ norms which takes into account the binariness of signals. We show that for binary signals the proposed algorithm outperforms other existing algorithms in recovery rate while requiring a short run time.
COBRA: A Fast and Simple Method for Active Clustering with Pairwise Constraints
Clustering is inherently ill-posed: there often exist multiple valid clusterings of a single dataset, and without any additional information a clustering system has no way of knowing which clustering it should produce. This motivates the use of constraints in clustering, as they allow users to communicate their interests to the clustering system. Active constraint-based clustering algorithms select the most useful constraints to query, aiming to produce a good clustering using as few constraints as possible. We propose COBRA, an active method that first over-clusters the data by running K-means with a $K$ that is intended to be too large, and subsequently merges the resulting small clusters into larger ones based on pairwise constraints. In its merging step, COBRA is able to keep the number of pairwise queries low by maximally exploiting constraint transitivity and entailment. We experimentally show that COBRA outperforms the state of the art in terms of clustering quality and runtime, without requiring the number of clusters in advance.
Cardiac Arrhythmia Detection from ECG Combining Convolutional and Long Short-Term Memory Networks
Objectives: Atrial fibrillation (AF) is a common heart rhythm disorder associated with deadly and debilitating consequences including heart failure, stroke, poor mental health, reduced quality of life and death. Having an automatic system that diagnoses various types of cardiac arrhythmias would assist cardiologists to initiate appropriate preventive measures and to improve the analysis of cardiac disease. To this end, this paper introduces a new approach to detect and classify automatically cardiac arrhythmias in electrocardiograms (ECG) recordings. Methods: The proposed approach used a combination of Convolution Neural Networks (CNNs) and a sequence of Long Short-Term Memory (LSTM) units, with pooling, dropout and normalization techniques to improve their accuracy. The network predicted a classification at every 18th input sample and we selected the final prediction for classification. Results were cross-validated on the Physionet Challenge 2017 training dataset, which contains 8,528 single lead ECG recordings lasting from 9s to just over 60s. Results: Using the proposed structure and no explicit feature selection, 10-fold stratified cross-validation gave an overall F-measure of 0.83.10-0.015 on the held-out test data (mean-standard deviation over all folds) and 0.80 on the hidden dataset of the Challenge entry server.
Rigorous Restricted Isometry Property of Low-Dimensional Subspaces
Dimensionality reduction is in demand to reduce the complexity of solving large-scale problems with data lying in latent low-dimensional structures in machine learning and computer version. Motivated by such need, in this work we study the Restricted Isometry Property (RIP) of Gaussian random projections for low-dimensional subspaces in $\mathbb{R}^N$, and rigorously prove that the projection Frobenius norm distance between any two subspaces spanned by the projected data in $\mathbb{R}^n$ ($n<N$) remain almost the same as the distance between the original subspaces with probability no less than $1 - {\rm e}^{-\mathcal{O}(n)}$. Previously the well-known Johnson-Lindenstrauss (JL) Lemma and RIP for sparse vectors have been the foundation of sparse signal processing including Compressed Sensing. As an analogy to JL Lemma and RIP for sparse vectors, this work allows the use of random projections to reduce the ambient dimension with the theoretical guarantee that the distance between subspaces after compression is well preserved.
Anomaly detection in wide area network mesh using two machine learning anomaly detection algorithms
Anomaly detection is the practice of identifying items or events that do not conform to an expected behavior or do not correlate with other items in a dataset. It has previously been applied to areas such as intrusion detection, system health monitoring, and fraud detection in credit card transactions. In this paper, we describe a new method for detecting anomalous behavior over network performance data, gathered by perfSONAR, using two machine learning algorithms: Boosted Decision Trees (BDT) and Simple Feedforward Neural Network. The effectiveness of each algorithm was evaluated and compared. Both have shown sufficient performance and sensitivity.
An Incremental Path-Following Splitting Method for Linearly Constrained Nonconvex Nonsmooth Programs
The stationary point of Problem 2 is NOT the stationary point of Problem 1. We are sorry and we are working on fixing this error.
Links: A High-Dimensional Online Clustering Method
We present a novel algorithm, called Links, designed to perform online clustering on unit vectors in a high-dimensional Euclidean space. The algorithm is appropriate when it is necessary to cluster data efficiently as it streams in, and is to be contrasted with traditional batch clustering algorithms that have access to all data at once. For example, Links has been successfully applied to embedding vectors generated from face images or voice recordings for the purpose of recognizing people, thereby providing real-time identification during video or audio capture.
Spherical CNNs
Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined to fail, because the space-varying distortions introduced by such a projection will make translational weight sharing ineffective. In this paper we introduce the building blocks for constructing spherical CNNs. We propose a definition for the spherical cross-correlation that is both expressive and rotation-equivariant. The spherical correlation satisfies a generalized Fourier theorem, which allows us to compute it efficiently using a generalized (non-commutative) Fast Fourier Transform (FFT) algorithm. We demonstrate the computational efficiency, numerical accuracy, and effectiveness of spherical CNNs applied to 3D model recognition and atomization energy regression.
Sometimes You Want to Go Where Everybody Knows your Name
We introduce a new metric for measuring how well a model personalizes to a user's specific preferences. We define personalization as a weighting between performance on user specific data and performance on a more general global dataset that represents many different users. This global term serves as a form of regularization that forces us to not overfit to individual users who have small amounts of data. In order to protect user privacy, we add the constraint that we may not centralize or share user data. We also contribute a simple experiment in which we simulate classifying sentiment for users with very distinct vocabularies. This experiment functions as an example of the tension between doing well globally on all users, and doing well on any specific individual user. It also provides a concrete example of how to employ our new metric to help reason about and resolve this tension. We hope this work can help frame and ground future work into personalization.
DeepDTA: Deep Drug-Target Binding Affinity Prediction
The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called binding affinity and predicting this value still remains a challenge. The increase in the affinity data available in DT knowledge-bases allows the use of advanced learning techniques such as deep learning architectures in the prediction of binding affinities. In this study, we propose a deep-learning based model that uses only sequence information of both targets and drugs to predict DT interaction binding affinities. The few studies that focus on DT binding affinity prediction use either 3D structures of protein-ligand complexes or 2D features of compounds. One novel approach used in this work is the modeling of protein sequences and compound 1D representations with convolutional neural networks (CNNs). The results show that the proposed deep learning based model that uses the 1D representations of targets and drugs is an effective approach for drug target binding affinity prediction. The model in which high-level representations of a drug and a target are constructed via CNNs achieved the best Concordance Index (CI) performance in one of our larger benchmark data sets, outperforming the KronRLS algorithm and SimBoost, a state-of-the-art method for DT binding affinity prediction.
Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing
We consider dynamic pricing with many products under an evolving but low-dimensional demand model. Assuming the temporal variation in cross-elasticities exhibits low-rank structure based on fixed (latent) features of the products, we show that the revenue maximization problem reduces to an online bandit convex optimization with side information given by the observed demands. We design dynamic pricing algorithms whose revenue approaches that of the best fixed price vector in hindsight, at a rate that only depends on the intrinsic rank of the demand model and not the number of products. Our approach applies a bandit convex optimization algorithm in a projected low-dimensional space spanned by the latent product features, while simultaneously learning this span via online singular value decomposition of a carefully-crafted matrix containing the observed demands.
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
The graph convolutional networks (GCN) recently proposed by Kipf and Welling are an effective graph model for semi-supervised learning. This model, however, was originally designed to be learned with the presence of both training and test data. Moreover, the recursive neighborhood expansion across layers poses time and memory challenges for training with large, dense graphs. To relax the requirement of simultaneous availability of test data, we interpret graph convolutions as integral transforms of embedding functions under probability measures. Such an interpretation allows for the use of Monte Carlo approaches to consistently estimate the integrals, which in turn leads to a batched training scheme as we propose in this work---FastGCN. Enhanced with importance sampling, FastGCN not only is efficient for training but also generalizes well for inference. We show a comprehensive set of experiments to demonstrate its effectiveness compared with GCN and related models. In particular, training is orders of magnitude more efficient while predictions remain comparably accurate.
Kernel Distillation for Fast Gaussian Processes Prediction
Gaussian processes (GPs) are flexible models that can capture complex structure in large-scale dataset due to their non-parametric nature. However, the usage of GPs in real-world application is limited due to their high computational cost at inference time. In this paper, we introduce a new framework, \textit{kernel distillation}, to approximate a fully trained teacher GP model with kernel matrix of size $n\times n$ for $n$ training points. We combine inducing points method with sparse low-rank approximation in the distillation procedure. The distilled student GP model only costs $O(m^2)$ storage for $m$ inducing points where $m \ll n$ and improves the inference time complexity. We demonstrate empirically that kernel distillation provides better trade-off between the prediction time and the test performance compared to the alternatives.
Nested LSTMs
We propose Nested LSTMs (NLSTM), a novel RNN architecture with multiple levels of memory. Nested LSTMs add depth to LSTMs via nesting as opposed to stacking. The value of a memory cell in an NLSTM is computed by an LSTM cell, which has its own inner memory cell. Specifically, instead of computing the value of the (outer) memory cell as $c^{outer}_t = f_t \odot c_{t-1} + i_t \odot g_t$, NLSTM memory cells use the concatenation $(f_t \odot c_{t-1}, i_t \odot g_t)$ as input to an inner LSTM (or NLSTM) memory cell, and set $c^{outer}_t$ = $h^{inner}_t$. Nested LSTMs outperform both stacked and single-layer LSTMs with similar numbers of parameters in our experiments on various character-level language modeling tasks, and the inner memories of an LSTM learn longer term dependencies compared with the higher-level units of a stacked LSTM.
From BoW to CNN: Two Decades of Texture Representation for Texture Classification
Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.
Deep Multi-view Learning to Rank
We study the problem of learning to rank from multiple information sources. Though multi-view learning and learning to rank have been studied extensively leading to a wide range of applications, multi-view learning to rank as a synergy of both topics has received little attention. The aim of the paper is to propose a composite ranking method while keeping a close correlation with the individual rankings simultaneously. We present a generic framework for multi-view subspace learning to rank (MvSL2R), and two novel solutions are introduced under the framework. The first solution captures information of feature mappings from within each view as well as across views using autoencoder-like networks. Novel feature embedding methods are formulated in the optimization of multi-view unsupervised and discriminant autoencoders. Moreover, we introduce an end-to-end solution to learning towards both the joint ranking objective and the individual rankings. The proposed solution enhances the joint ranking with minimum view-specific ranking loss, so that it can achieve the maximum global view agreements in a single optimization process. The proposed method is evaluated on three different ranking problems, i.e. university ranking, multi-view lingual text ranking and image data ranking, providing superior results compared to related methods.
Pretraining Deep Actor-Critic Reinforcement Learning Algorithms With Expert Demonstrations
Pretraining with expert demonstrations have been found useful in speeding up the training process of deep reinforcement learning algorithms since less online simulation data is required. Some people use supervised learning to speed up the process of feature learning, others pretrain the policies by imitating expert demonstrations. However, these methods are unstable and not suitable for actor-critic reinforcement learning algorithms. Also, some existing methods rely on the global optimum assumption, which is not true in most scenarios. In this paper, we employ expert demonstrations in a actor-critic reinforcement learning framework, and meanwhile ensure that the performance is not affected by the fact that expert demonstrations are not global optimal. We theoretically derive a method for computing policy gradients and value estimators with only expert demonstrations. Our method is theoretically plausible for actor-critic reinforcement learning algorithms that pretrains both policy and value functions. We apply our method to two of the typical actor-critic reinforcement learning algorithms, DDPG and ACER, and demonstrate with experiments that our method not only outperforms the RL algorithms without pretraining process, but also is more simulation efficient.
Learning from Informants: Relations between Learning Success Criteria
Learning from positive and negative information, so-called \emph{informants}, being one of the models for human and machine learning introduced by E.~M.~Gold, is investigated. Particularly, naturally arising questions about this learning setting, originating in results on learning from solely positive information, are answered. By a carefully arranged argument learners can be assumed to only change their hypothesis in case it is inconsistent with the data (such a learning behavior is called \emph{conservative}). The deduced main theorem states the relations between the most important delayable learning success criteria, being the ones not ruined by a delayed in time hypothesis output. Additionally, our investigations concerning the non-delayable requirement of consistent learning underpin the claim for \emph{delayability} being the right structural property to gain a deeper understanding concerning the nature of learning success criteria. Moreover, we obtain an anomalous \emph{hierarchy} when allowing for an increasing finite number of \emph{anomalies} of the hypothesized language by the learner compared with the language to be learned. In contrast to the vacillatory hierarchy for learning from solely positive information, we observe a \emph{duality} depending on whether infinitely many \emph{vacillations} between different (almost) correct hypotheses are still considered a successful learning behavior.
Naive Bayes Entrapment Detection for Planetary Rovers
Entrapment detection is a prerequisite for planetary rovers to perform autonomous rescue procedure. In this study, rover entrapment and approximated entrapment criteria are formally defined. Entrapment detection using Naive Bayes classifiers is proposed and discussed along with results from experiments where the Naive Bayes entrapment detector is applied to AutoKralwer rovers. And final conclusions and further discussions are presented in the final section.
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
The robustness of neural networks to adversarial examples has received great attention due to security implications. Despite various attack approaches to crafting visually imperceptible adversarial examples, little has been developed towards a comprehensive measure of robustness. In this paper, we provide a theoretical justification for converting robustness analysis into a local Lipschitz constant estimation problem, and propose to use the Extreme Value Theory for efficient evaluation. Our analysis yields a novel robustness metric called CLEVER, which is short for Cross Lipschitz Extreme Value for nEtwork Robustness. The proposed CLEVER score is attack-agnostic and computationally feasible for large neural networks. Experimental results on various networks, including ResNet, Inception-v3 and MobileNet, show that (i) CLEVER is aligned with the robustness indication measured by the $\ell_2$ and $\ell_\infty$ norms of adversarial examples from powerful attacks, and (ii) defended networks using defensive distillation or bounded ReLU indeed achieve better CLEVER scores. To the best of our knowledge, CLEVER is the first attack-independent robustness metric that can be applied to any neural network classifier.
DxNAT - Deep Neural Networks for Explaining Non-Recurring Traffic Congestion
Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year from Nashville, TN to train a multi-layered deep neural network. The traffic dataset contains over 900 million data records. The network is thereafter used to classify the real-time data and identify anomalous operations. Compared with traditional approaches of using statistical or machine learning techniques, our model reaches an accuracy of 98.73 percent when identifying traffic congestion caused by football games. Our approach first encodes the traffic across a region as a scaled image. After that the image data from different timestamps is fused with event- and time-related data. Then a crossover operator is used as a data augmentation method to generate training datasets with more balanced classes. Finally, we use the receiver operating characteristic (ROC) analysis to tune the sensitivity of the classifier. We present the analysis of the training time and the inference time separately.
Deep Learning of Nonnegativity-Constrained Autoencoders for Enhanced Understanding of Data
Unsupervised feature extractors are known to perform an efficient and discriminative representation of data. Insight into the mappings they perform and human ability to understand them, however, remain very limited. This is especially prominent when multilayer deep learning architectures are used. This paper demonstrates how to remove these bottlenecks within the architecture of Nonnegativity Constrained Autoencoder (NCSAE). It is shown that by using both L1 and L2 regularization that induce nonnegativity of weights, most of the weights in the network become constrained to be nonnegative thereby resulting into a more understandable structure with minute deterioration in classification accuracy. Also, this proposed approach extracts features that are more sparse and produces additional output layer sparsification. The method is analyzed for accuracy and feature interpretation on the MNIST data, the NORB normalized uniform object data, and the Reuters text categorization dataset.
A New Backpropagation Algorithm without Gradient Descent
The backpropagation algorithm, which had been originally introduced in the 1970s, is the workhorse of learning in neural networks. This backpropagation algorithm makes use of the famous machine learning algorithm known as Gradient Descent, which is a first-order iterative optimization algorithm for finding the minimum of a function. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point. In this paper, we develop an alternative to the backpropagation without the use of the Gradient Descent Algorithm, but instead we are going to devise a new algorithm to find the error in the weights and biases of an artificial neuron using Moore-Penrose Pseudo Inverse. The numerical studies and the experiments performed on various datasets are used to verify the working of this alternative algorithm.
Fusarium Damaged Kernels Detection Using Transfer Learning on Deep Neural Network Architecture
The present work shows the application of transfer learning for a pre-trained deep neural network (DNN), using a small image dataset ($\approx$ 12,000) on a single workstation with enabled NVIDIA GPU card that takes up to 1 hour to complete the training task and archive an overall average accuracy of $94.7\%$. The DNN presents a $20\%$ score of misclassification for an external test dataset. The accuracy of the proposed methodology is equivalent to ones using HSI methodology $(81\%-91\%)$ used for the same task, but with the advantage of being independent on special equipment to classify wheat kernel for FHB symptoms.
Incremental kernel PCA and the Nystr\"om method
Incremental versions of batch algorithms are often desired, for increased time efficiency in the streaming data setting, or increased memory efficiency in general. In this paper we present a novel algorithm for incremental kernel PCA, based on rank one updates to the eigendecomposition of the kernel matrix, which is more computationally efficient than comparable existing algorithms. We extend our algorithm to incremental calculation of the Nystr\"om approximation to the kernel matrix, the first such algorithm proposed. Incremental calculation of the Nystr\"om approximation leads to further gains in memory efficiency, and allows for empirical evaluation of when a subset of sufficient size has been obtained.
Matrix completion with deterministic pattern - a geometric perspective
We consider the matrix completion problem with a deterministic pattern of observed entries. In this setting, we aim to answer the question: under what condition there will be (at least locally) unique solution to the matrix completion problem, i.e., the underlying true matrix is identifiable. We answer the question from a certain point of view and outline a geometric perspective. We give an algebraically verifiable sufficient condition, which we call the well-posedness condition, for the local uniqueness of MRMC solutions. We argue that this condition is necessary for local stability of MRMC solutions, and we show that the condition is generic using the characteristic rank. We also argue that the low-rank approximation approaches are more stable than MRMC and further propose a sequential statistical testing procedure to determine the "true" rank from observed entries. Finally, we provide numerical examples aimed at verifying validity of the presented theory.
Leveraging Adiabatic Quantum Computation for Election Forecasting
Accurate, reliable sampling from fully-connected graphs with arbitrary correlations is a difficult problem. Such sampling requires knowledge of the probabilities of observing every possible state of a graph. As graph size grows, the number of model states becomes intractably large and efficient computation requires full sampling be replaced with heuristics and algorithms that are only approximations of full sampling. This work investigates the potential impact of adiabatic quantum computation for sampling purposes, building on recent successes training Boltzmann machines using a quantum device. We investigate the use case of quantum computation to train Boltzmann machines for predicting the 2016 Presidential election.
Optimizing Non-decomposable Measures with Deep Networks
We present a class of algorithms capable of directly training deep neural networks with respect to large families of task-specific performance measures such as the F-measure and the Kullback-Leibler divergence that are structured and non-decomposable. This presents a departure from standard deep learning techniques that typically use squared or cross-entropy loss functions (that are decomposable) to train neural networks. We demonstrate that directly training with task-specific loss functions yields much faster and more stable convergence across problems and datasets. Our proposed algorithms and implementations have several novel features including (i) convergence to first order stationary points despite optimizing complex objective functions; (ii) use of fewer training samples to achieve a desired level of convergence, (iii) a substantial reduction in training time, and (iv) a seamless integration of our implementation into existing symbolic gradient frameworks. We implement our techniques on a variety of deep architectures including multi-layer perceptrons and recurrent neural networks and show that on a variety of benchmark and real data sets, our algorithms outperform traditional approaches to training deep networks, as well as some recent approaches to task-specific training of neural networks.
A Modified Sigma-Pi-Sigma Neural Network with Adaptive Choice of Multinomials
Sigma-Pi-Sigma neural networks (SPSNNs) as a kind of high-order neural networks can provide more powerful mapping capability than the traditional feedforward neural networks (Sigma-Sigma neural networks). In the existing literature, in order to reduce the number of the Pi nodes in the Pi layer, a special multinomial P_s is used in SPSNNs. Each monomial in P_s is linear with respect to each particular variable sigma_i when the other variables are taken as constants. Therefore, the monomials like sigma_i^n or sigma_i^n sigma_j with n>1 are not included. This choice may be somehow intuitive, but is not necessarily the best. We propose in this paper a modified Sigma-Pi-Sigma neural network (MSPSNN) with an adaptive approach to find a better multinomial for a given problem. To elaborate, we start from a complete multinomial with a given order. Then we employ a regularization technique in the learning process for the given problem to reduce the number of monomials used in the multinomial, and end up with a new SPSNN involving the same number of monomials (= the number of nodes in the Pi-layer) as in P_s. Numerical experiments on some benchmark problems show that our MSPSNN behaves better than the traditional SPSNN with P_s.
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers
Model pruning has become a useful technique that improves the computational efficiency of deep learning, making it possible to deploy solutions in resource-limited scenarios. A widely-used practice in relevant work assumes that a smaller-norm parameter or feature plays a less informative role at the inference time. In this paper, we propose a channel pruning technique for accelerating the computations of deep convolutional neural networks (CNNs) that does not critically rely on this assumption. Instead, it focuses on direct simplification of the channel-to-channel computation graph of a CNN without the need of performing a computationally difficult and not-always-useful task of making high-dimensional tensors of CNN structured sparse. Our approach takes two stages: first to adopt an end-to- end stochastic training method that eventually forces the outputs of some channels to be constant, and then to prune those constant channels from the original neural network by adjusting the biases of their impacting layers such that the resulting compact model can be quickly fine-tuned. Our approach is mathematically appealing from an optimization perspective and easy to reproduce. We experimented our approach through several image learning benchmarks and demonstrate its interesting aspects and competitive performance.
Distributed Newton Methods for Deep Neural Networks
Deep learning involves a difficult non-convex optimization problem with a large number of weights between any two adjacent layers of a deep structure. To handle large data sets or complicated networks, distributed training is needed, but the calculation of function, gradient, and Hessian is expensive. In particular, the communication and the synchronization cost may become a bottleneck. In this paper, we focus on situations where the model is distributedly stored, and propose a novel distributed Newton method for training deep neural networks. By variable and feature-wise data partitions, and some careful designs, we are able to explicitly use the Jacobian matrix for matrix-vector products in the Newton method. Some techniques are incorporated to reduce the running time as well as the memory consumption. First, to reduce the communication cost, we propose a diagonalization method such that an approximate Newton direction can be obtained without communication between machines. Second, we consider subsampled Gauss-Newton matrices for reducing the running time as well as the communication cost. Third, to reduce the synchronization cost, we terminate the process of finding an approximate Newton direction even though some nodes have not finished their tasks. Details of some implementation issues in distributed environments are thoroughly investigated. Experiments demonstrate that the proposed method is effective for the distributed training of deep neural networks. In compared with stochastic gradient methods, it is more robust and may give better test accuracy.
Alternating Multi-bit Quantization for Recurrent Neural Networks
Recurrent neural networks have achieved excellent performance in many applications. However, on portable devices with limited resources, the models are often too large to deploy. For applications on the server with large scale concurrent requests, the latency during inference can also be very critical for costly computing resources. In this work, we address these problems by quantizing the network, both weights and activations, into multiple binary codes {-1,+1}. We formulate the quantization as an optimization problem. Under the key observation that once the quantization coefficients are fixed the binary codes can be derived efficiently by binary search tree, alternating minimization is then applied. We test the quantization for two well-known RNNs, i.e., long short term memory (LSTM) and gated recurrent unit (GRU), on the language models. Compared with the full-precision counter part, by 2-bit quantization we can achieve ~16x memory saving and ~6x real inference acceleration on CPUs, with only a reasonable loss in the accuracy. By 3-bit quantization, we can achieve almost no loss in the accuracy or even surpass the original model, with ~10.5x memory saving and ~3x real inference acceleration. Both results beat the exiting quantization works with large margins. We extend our alternating quantization to image classification tasks. In both RNNs and feedforward neural networks, the method also achieves excellent performance.
Bootstrapping and Multiple Imputation Ensemble Approaches for Missing Data
Presence of missing values in a dataset can adversely affect the performance of a classifier. Single and Multiple Imputation are normally performed to fill in the missing values. In this paper, we present several variants of combining single and multiple imputation with bootstrapping to create ensembles that can model uncertainty and diversity in the data, and that are robust to high missingness in the data. We present three ensemble strategies: bootstrapping on incomplete data followed by (i) single imputation and (ii) multiple imputation, and (iii) multiple imputation ensemble without bootstrapping. We perform an extensive evaluation of the performance of the these ensemble strategies on 8 datasets by varying the missingness ratio. Our results show that bootstrapping followed by multiple imputation using expectation maximization is the most robust method even at high missingness ratio (up to 30%). For small missingness ratio (up to 10%) most of the ensemble methods perform quivalently but better than single imputation. Kappa-error plots suggest that accurate classifiers with reasonable diversity is the reason for this behaviour. A consistent observation in all the datasets suggests that for small missingness (up to 10%), bootstrapping on incomplete data without any imputation produces equivalent results to other ensemble methods.
Deep Neural Nets with Interpolating Function as Output Activation
We replace the output layer of deep neural nets, typically the softmax function, by a novel interpolating function. And we propose end-to-end training and testing algorithms for this new architecture. Compared to classical neural nets with softmax function as output activation, the surrogate with interpolating function as output activation combines advantages of both deep and manifold learning. The new framework demonstrates the following major advantages: First, it is better applicable to the case with insufficient training data. Second, it significantly improves the generalization accuracy on a wide variety of networks. The algorithm is implemented in PyTorch, and code will be made publicly available.
Augmented Space Linear Model
The linear model uses the space defined by the input to project the target or desired signal and find the optimal set of model parameters. When the problem is nonlinear, the adaption requires nonlinear models for good performance, but it becomes slower and more cumbersome. In this paper, we propose a linear model called Augmented Space Linear Model (ASLM), which uses the full joint space of input and desired signal as the projection space and approaches the performance of nonlinear models. This new algorithm takes advantage of the linear solution, and corrects the estimate for the current testing phase input with the error assigned to the input space neighborhood in the training phase. This algorithm can solve the nonlinear problem with the computational efficiency of linear methods, which can be regarded as a trade off between accuracy and computational complexity. Making full use of the training data, the proposed augmented space model may provide a new way to improve many modeling tasks.
Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations
Clustering is essential to many tasks in pattern recognition and computer vision. With the advent of deep learning, there is an increasing interest in learning deep unsupervised representations for clustering analysis. Many works on this domain rely on variants of auto-encoders and use the encoder outputs as representations/features for clustering. In this paper, we show that an l2 normalization constraint on these representations during auto-encoder training, makes the representations more separable and compact in the Euclidean space after training. This greatly improves the clustering accuracy when k-means clustering is employed on the representations. We also propose a clustering based unsupervised anomaly detection method using l2 normalized deep auto-encoder representations. We show the effect of l2 normalization on anomaly detection accuracy. We further show that the proposed anomaly detection method greatly improves accuracy compared to previously proposed deep methods such as reconstruction error based anomaly detection.
Training Neural Networks by Using Power Linear Units (PoLUs)
In this paper, we introduce "Power Linear Unit" (PoLU) which increases the nonlinearity capacity of a neural network and thus helps improving its performance. PoLU adopts several advantages of previously proposed activation functions. First, the output of PoLU for positive inputs is designed to be identity to avoid the gradient vanishing problem. Second, PoLU has a non-zero output for negative inputs such that the output mean of the units is close to zero, hence reducing the bias shift effect. Thirdly, there is a saturation on the negative part of PoLU, which makes it more noise-robust for negative inputs. Furthermore, we prove that PoLU is able to map more portions of every layer's input to the same space by using the power function and thus increases the number of response regions of the neural network. We use image classification for comparing our proposed activation function with others. In the experiments, MNIST, CIFAR-10, CIFAR-100, Street View House Numbers (SVHN) and ImageNet are used as benchmark datasets. The neural networks we implemented include widely-used ELU-Network, ResNet-50, and VGG16, plus a couple of shallow networks. Experimental results show that our proposed activation function outperforms other state-of-the-art models with most networks.
On Polynomial time Constructions of Minimum Height Decision Tree
In this paper we study a polynomial time algorithms that for an input $A\subseteq {B_m}$ outputs a decision tree for $A$ of minimum depth. This problem has many applications that include, to name a few, computer vision, group testing, exact learning from membership queries and game theory. Arkin et al. and Moshkov gave a polynomial time $(\ln |A|)$- approximation algorithm (for the depth). The result of Dinur and Steurer for set cover implies that this problem cannot be approximated with ratio $(1-o(1))\cdot \ln |A|$, unless P=NP. Moskov the combinatorial measure of extended teaching dimension of $A$, $ETD(A)$. He showed that $ETD(A)$ is a lower bound for the depth of the decision tree for $A$ and then gave an {\it exponential time} $ETD(A)/\log(ETD(A))$-approximation algorithm. In this paper we further study the $ETD(A)$ measure and a new combinatorial measure, $DEN(A)$, that we call the density of the set $A$. We show that $DEN(A)\le ETD(A)+1$. We then give two results. The first result is that the lower bound $ETD(A)$ of Moshkov for the depth of the decision tree for $A$ is greater than the bounds that are obtained by the classical technique used in the literature. The second result is a polynomial time $(\ln 2) DEN(A)$-approximation (and therefore $(\ln 2) ETD(A)$-approximation) algorithm for the depth of the decision tree of $A$. We also show that a better approximation ratio implies P=NP. We then apply the above results to learning the class of disjunctions of predicates from membership queries. We show that the $ETD$ of this class is bounded from above by the degree $d$ of its Hasse diagram. We then show that Moshkov algorithm can be run in polynomial time and is $(d/\log d)$-approximation algorithm. This gives optimal algorithms when the degree is constant. For example, learning axis parallel rays over constant dimension space.
A Nonparametric Delayed Feedback Model for Conversion Rate Prediction
Predicting conversion rates (CVRs) in display advertising (e.g., predicting the proportion of users who purchase an item (i.e., a conversion) after its corresponding ad is clicked) is important when measuring the effects of ads shown to users and to understanding the interests of the users. There is generally a time delay (i.e., so-called {\it delayed feedback}) between the ad click and conversion. Owing to the delayed feedback, samples that are converted after an observation period may be treated as negative. To overcome this drawback, CVR prediction assuming that the time delay follows an exponential distribution has been proposed. In practice, however, there is no guarantee that the delay is generated from the exponential distribution, and the best distribution with which to represent the delay depends on the data. In this paper, we propose a nonparametric delayed feedback model for CVR prediction that represents the distribution of the time delay without assuming a parametric distribution, such as an exponential or Weibull distribution. Because the distribution of the time delay is modeled depending on the content of an ad and the features of a user, various shapes of the distribution can be represented potentially. In experiments, we show that the proposed model can capture the distribution for the time delay on a synthetic dataset, even when the distribution is complicated. Moreover, on a real dataset, we show that the proposed model outperforms the existing method that assumes an exponential distribution for the time delay in terms of conversion rate prediction.
VR-Goggles for Robots: Real-to-sim Domain Adaptation for Visual Control
In this paper, we deal with the reality gap from a novel perspective, targeting transferring Deep Reinforcement Learning (DRL) policies learned in simulated environments to the real-world domain for visual control tasks. Instead of adopting the common solutions to the problem by increasing the visual fidelity of synthetic images output from simulators during the training phase, we seek to tackle the problem by translating the real-world image streams back to the synthetic domain during the deployment phase, to make the robot feel at home. We propose this as a lightweight, flexible, and efficient solution for visual control, as 1) no extra transfer steps are required during the expensive training of DRL agents in simulation; 2) the trained DRL agents will not be constrained to being deployable in only one specific real-world environment; 3) the policy training and the transfer operations are decoupled, and can be conducted in parallel. Besides this, we propose a simple yet effective shift loss that is agnostic to the downstream task, to constrain the consistency between subsequent frames which is important for consistent policy outputs. We validate the shift loss for artistic style transfer for videos and domain adaptation, and validate our visual control approach in indoor and outdoor robotics experiments.
ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification
Brain-related disorders such as epilepsy can be diagnosed by analyzing electroencephalograms (EEG). However, manual analysis of EEG data requires highly trained clinicians, and is a procedure that is known to have relatively low inter-rater agreement (IRA). Moreover, the volume of the data and the rate at which new data becomes available make manual interpretation a time-consuming, resource-hungry, and expensive process. In contrast, automated analysis of EEG data offers the potential to improve the quality of patient care by shortening the time to diagnosis and reducing manual error. In this paper, we focus on one of the first steps in interpreting an EEG session - identifying whether the brain activity is abnormal or normal. To solve this task, we propose a novel recurrent neural network (RNN) architecture termed ChronoNet which is inspired by recent developments from the field of image classification and designed to work efficiently with EEG data. ChronoNet is formed by stacking multiple 1D convolution layers followed by deep gated recurrent unit (GRU) layers where each 1D convolution layer uses multiple filters of exponentially varying lengths and the stacked GRU layers are densely connected in a feed-forward manner. We used the recently released TUH Abnormal EEG Corpus dataset for evaluating the performance of ChronoNet. Unlike previous studies using this dataset, ChronoNet directly takes time-series EEG as input and learns meaningful representations of brain activity patterns. ChronoNet outperforms the previously reported best results by 7.79% thereby setting a new benchmark for this dataset. Furthermore, we demonstrate the domain-independent nature of ChronoNet by successfully applying it to classify speech commands.
One-class Collective Anomaly Detection based on Long Short-Term Memory Recurrent Neural Networks
Intrusion detection for computer network systems has been becoming one of the most critical tasks for network administrators today. It has an important role for organizations, governments and our society due to the valuable resources hosted on computer networks. Traditional misuse detection strategies are unable to detect new and unknown intrusion types. In contrast, anomaly detection in network security aims to distinguish between illegal or malicious events and normal behavior of network systems. Anomaly detection can be considered as a classification problem where it builds models of normal network behavior, of which it uses to detect new patterns that significantly deviate from the model. Most of the current approaches on anomaly detection is based on the learning of normal behavior and anomalous actions. They do not include memory that is they do not take into account previous events classify new ones. In this paper, we propose a one class collective anomaly detection model based on neural network learning. Normally a Long Short Term Memory Recurrent Neural Network (LSTM RNN) is trained only on normal data, and it is capable of predicting several time steps ahead of an input. In our approach, a LSTM RNN is trained on normal time series data before performing a prediction for each time step. Instead of considering each time-step separately, the observation of prediction errors from a certain number of time-steps is now proposed as a new idea for detecting collective anomalies. The prediction errors of a certain number of the latest time-steps above a threshold will indicate a collective anomaly. The model is evaluated on a time series version of the KDD 1999 dataset. The experiments demonstrate that the proposed model is capable to detect collective anomaly efficiently
Elements of Effective Deep Reinforcement Learning towards Tactical Driving Decision Making
Tactical driving decision making is crucial for autonomous driving systems and has attracted considerable interest in recent years. In this paper, we propose several practical components that can speed up deep reinforcement learning algorithms towards tactical decision making tasks: 1) non-uniform action skipping as a more stable alternative to action-repetition frame skipping, 2) a counter-based penalty for lanes on which ego vehicle has less right-of-road, and 3) heuristic inference-time action masking for apparently undesirable actions. We evaluate the proposed components in a realistic driving simulator and compare them with several baselines. Results show that the proposed scheme provides superior performance in terms of safety, efficiency, and comfort.
Classifying medical notes into standard disease codes using Machine Learning
We investigate the automatic classification of patient discharge notes into standard disease labels. We find that Convolutional Neural Networks with Attention outperform previous algorithms used in this task, and suggest further areas for improvement.
Dense 3D Object Reconstruction from a Single Depth View
In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.