title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
We identify obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples. While defenses that cause obfuscated gradients appear to defeat iterative optimization-based attacks, we find defenses relying on this effect can be circumvented. We describe characteristic behaviors of defenses exhibiting the effect, and for each of the three types of obfuscated gradients we discover, we develop attack techniques to overcome it. In a case study, examining non-certified white-box-secure defenses at ICLR 2018, we find obfuscated gradients are a common occurrence, with 7 of 9 defenses relying on obfuscated gradients. Our new attacks successfully circumvent 6 completely, and 1 partially, in the original threat model each paper considers.
Nearly Optimal Dynamic $k$-Means Clustering for High-Dimensional Data
We consider the $k$-means clustering problem in the dynamic streaming setting, where points from a discrete Euclidean space $\{1, 2, \ldots, \Delta\}^d$ can be dynamically inserted to or deleted from the dataset. For this problem, we provide a one-pass coreset construction algorithm using space $\tilde{O}(k\cdot \mathrm{poly}(d, \log\Delta))$, where $k$ is the target number of centers. To our knowledge, this is the first dynamic geometric data stream algorithm for $k$-means using space polynomial in dimension and nearly optimal (linear) in $k$.
Analysis of Fast Alternating Minimization for Structured Dictionary Learning
Methods exploiting sparsity have been popular in imaging and signal processing applications including compression, denoising, and imaging inverse problems. Data-driven approaches such as dictionary learning and transform learning enable one to discover complex image features from datasets and provide promising performance over analytical models. Alternating minimization algorithms have been particularly popular in dictionary or transform learning. In this work, we study the properties of alternating minimization for structured (unitary) sparsifying operator learning. While the algorithm converges to the stationary points of the non-convex problem in general, we prove rapid local linear convergence to the underlying generative model under mild assumptions. Our experiments show that the unitary operator learning algorithm is robust to initialization.
Scalable L\'evy Process Priors for Spectral Kernel Learning
Gaussian processes are rich distributions over functions, with generalization properties determined by a kernel function. When used for long-range extrapolation, predictions are particularly sensitive to the choice of kernel parameters. It is therefore critical to account for kernel uncertainty in our predictive distributions. We propose a distribution over kernels formed by modelling a spectral mixture density with a L\'evy process. The resulting distribution has support for all stationary covariances--including the popular RBF, periodic, and Mat\'ern kernels--combined with inductive biases which enable automatic and data efficient learning, long-range extrapolation, and state of the art predictive performance. The proposed model also presents an approach to spectral regularization, as the L\'evy process introduces a sparsity-inducing prior over mixture components, allowing automatic selection over model order and pruning of extraneous components. We exploit the algebraic structure of the proposed process for $\mathcal{O}(n)$ training and $\mathcal{O}(1)$ predictions. We perform extrapolations having reasonable uncertainty estimates on several benchmarks, show that the proposed model can recover flexible ground truth covariances and that it is robust to errors in initialization.
Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations
Deep neural networks are complex and opaque. As they enter application in a variety of important and safety critical domains, users seek methods to explain their output predictions. We develop an approach to explaining deep neural networks by constructing causal models on salient concepts contained in a CNN. We develop methods to extract salient concepts throughout a target network by using autoencoders trained to extract human-understandable representations of network activations. We then build a bayesian causal model using these extracted concepts as variables in order to explain image classification. Finally, we use this causal model to identify and visualize features with significant causal influence on final classification.
Modeling polypharmacy side effects with graph convolutional networks
The use of drug combinations, termed polypharmacy, is common to treat patients with complex diseases and co-existing conditions. However, a major consequence of polypharmacy is a much higher risk of adverse side effects for the patient. Polypharmacy side effects emerge because of drug-drug interactions, in which activity of one drug may change if taken with another drug. The knowledge of drug interactions is limited because these complex relationships are rare, and are usually not observed in relatively small clinical testing. Discovering polypharmacy side effects thus remains an important challenge with significant implications for patient mortality. Here, we present Decagon, an approach for modeling polypharmacy side effects. The approach constructs a multimodal graph of protein-protein interactions, drug-protein target interactions, and the polypharmacy side effects, which are represented as drug-drug interactions, where each side effect is an edge of a different type. Decagon is developed specifically to handle such multimodal graphs with a large number of edge types. Our approach develops a new graph convolutional neural network for multirelational link prediction in multimodal networks. Decagon predicts the exact side effect, if any, through which a given drug combination manifests clinically. Decagon accurately predicts polypharmacy side effects, outperforming baselines by up to 69%. We find that it automatically learns representations of side effects indicative of co-occurrence of polypharmacy in patients. Furthermore, Decagon models particularly well side effects with a strong molecular basis, while on predominantly non-molecular side effects, it achieves good performance because of effective sharing of model parameters across edge types. Decagon creates opportunities to use large pharmacogenomic and patient data to flag and prioritize side effects for follow-up analysis.
Interpretable Deep Convolutional Neural Networks via Meta-learning
Model interpretability is a requirement in many applications in which crucial decisions are made by users relying on a model's outputs. The recent movement for "algorithmic fairness" also stipulates explainability, and therefore interpretability of learning models. And yet the most successful contemporary Machine Learning approaches, the Deep Neural Networks, produce models that are highly non-interpretable. We attempt to address this challenge by proposing a technique called CNN-INTE to interpret deep Convolutional Neural Networks (CNN) via meta-learning. In this work, we interpret a specific hidden layer of the deep CNN model on the MNIST image dataset. We use a clustering algorithm in a two-level structure to find the meta-level training data and Random Forest as base learning algorithms to generate the meta-level test data. The interpretation results are displayed visually via diagrams, which clearly indicates how a specific test instance is classified. Our method achieves global interpretation for all the test instances without sacrificing the accuracy obtained by the original deep CNN model. This means our model is faithful to the deep CNN model, which leads to reliable interpretations.
Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning
One of the core tasks in multi-view learning is to capture relations among views. For sequential data, the relations not only span across views, but also extend throughout the view length to form long-term intra-view and inter-view interactions. In this paper, we present a new memory augmented neural network model that aims to model these complex interactions between two asynchronous sequential views. Our model uses two encoders for reading from and writing to two external memories for encoding input views. The intra-view interactions and the long-term dependencies are captured by the use of memories during this encoding process. There are two modes of memory accessing in our system: late-fusion and early-fusion, corresponding to late and early inter-view interactions. In the late-fusion mode, the two memories are separated, containing only view-specific contents. In the early-fusion mode, the two memories share the same addressing space, allowing cross-memory accessing. In both cases, the knowledge from the memories will be combined by a decoder to make predictions over the output space. The resulting dual memory neural computer is demonstrated on a comprehensive set of experiments, including a synthetic task of summing two sequences and the tasks of drug prescription and disease progression in healthcare. The results demonstrate competitive performance over both traditional algorithms and deep learning methods designed for multi-view problems.
Representation Learning for Resource Usage Prediction
Creating a model of a computer system that can be used for tasks such as predicting future resource usage and detecting anomalies is a challenging problem. Most current systems rely on heuristics and overly simplistic assumptions about the workloads and system statistics. These heuristics are typically a one-size-fits-all solution so as to be applicable in a wide range of applications and systems environments. With this paper, we present our ongoing work of integrating systems telemetry ranging from standard resource usage statistics to kernel and library calls of applications into a machine learning model. Intuitively, such a ML model approximates, at any point in time, the state of a system and allows us to solve tasks such as resource usage prediction and anomaly detection. To achieve this goal, we leverage readily-available information that does not require any changes to the applications run on the system. We train recurrent neural networks to learn a model of the system under consideration. As a proof of concept, we train models specifically to predict future resource usage of running applications.
A Generative Model for Natural Sounds Based on Latent Force Modelling
Recent advances in analysis of subband amplitude envelopes of natural sounds have resulted in convincing synthesis, showing subband amplitudes to be a crucial component of perception. Probabilistic latent variable analysis is particularly revealing, but existing approaches don't incorporate prior knowledge about the physical behaviour of amplitude envelopes, such as exponential decay and feedback. We use latent force modelling, a probabilistic learning paradigm that incorporates physical knowledge into Gaussian process regression, to model correlation across spectral subband envelopes. We augment the standard latent force model approach by explicitly modelling correlations over multiple time steps. Incorporating this prior knowledge strengthens the interpretation of the latent functions as the source that generated the signal. We examine this interpretation via an experiment which shows that sounds generated by sampling from our probabilistic model are perceived to be more realistic than those generated by similar models based on nonnegative matrix factorisation, even in cases where our model is outperformed from a reconstruction error perspective.
Hierarchical Aggregation Approach for Distributed clustering of spatial datasets
In this paper, we present a new approach of distributed clustering for spatial datasets, based on an innovative and efficient aggregation technique. This distributed approach consists of two phases: 1) local clustering phase, where each node performs a clustering on its local data, 2) aggregation phase, where the local clusters are aggregated to produce global clusters. This approach is characterised by the fact that the local clusters are represented in a simple and efficient way. And The aggregation phase is designed in such a way that the final clusters are compact and accurate while the overall process is efficient in both response time and memory allocation. We evaluated the approach with different datasets and compared it to well-known clustering techniques. The experimental results show that our approach is very promising and outperforms all those algorithms
Short-term Memory of Deep RNN
The extension of deep learning towards temporal data processing is gaining an increasing research interest. In this paper we investigate the properties of state dynamics developed in successive levels of deep recurrent neural networks (RNNs) in terms of short-term memory abilities. Our results reveal interesting insights that shed light on the nature of layering as a factor of RNN design. Noticeably, higher layers in a hierarchically organized RNN architecture results to be inherently biased towards longer memory spans even prior to training of the recurrent connections. Moreover, in the context of Reservoir Computing framework, our analysis also points out the benefit of a layered recurrent organization as an efficient approach to improve the memory skills of reservoir models.
Deep Learning for Genomics: A Concise Overview
Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.
VIBNN: Hardware Acceleration of Bayesian Neural Networks
Bayesian Neural Networks (BNNs) have been proposed to address the problem of model uncertainty in training and inference. By introducing weights associated with conditioned probability distributions, BNNs are capable of resolving the overfitting issue commonly seen in conventional neural networks and allow for small-data training, through the variational inference process. Frequent usage of Gaussian random variables in this process requires a properly optimized Gaussian Random Number Generator (GRNG). The high hardware cost of conventional GRNG makes the hardware implementation of BNNs challenging. In this paper, we propose VIBNN, an FPGA-based hardware accelerator design for variational inference on BNNs. We explore the design space for massive amount of Gaussian variable sampling tasks in BNNs. Specifically, we introduce two high performance Gaussian (pseudo) random number generators: the RAM-based Linear Feedback Gaussian Random Number Generator (RLF-GRNG), which is inspired by the properties of binomial distribution and linear feedback logics; and the Bayesian Neural Network-oriented Wallace Gaussian Random Number Generator. To achieve high scalability and efficient memory access, we propose a deep pipelined accelerator architecture with fast execution and good hardware utilization. Experimental results demonstrate that the proposed VIBNN implementations on an FPGA can achieve throughput of 321,543.4 Images/s and energy efficiency upto 52,694.8 Images/J while maintaining similar accuracy as its software counterpart.
Intriguing Properties of Randomly Weighted Networks: Generalizing While Learning Next to Nothing
Training deep neural networks results in strong learned representations that show good generalization capabilities. In most cases, training involves iterative modification of all weights inside the network via back-propagation. In Extreme Learning Machines, it has been suggested to set the first layer of a network to fixed random values instead of learning it. In this paper, we propose to take this approach a step further and fix almost all layers of a deep convolutional neural network, allowing only a small portion of the weights to be learned. As our experiments show, fixing even the majority of the parameters of the network often results in performance which is on par with the performance of learning all of them. The implications of this intriguing property of deep neural networks are discussed and we suggest ways to harness it to create more robust representations.
Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
State-of-the-art computer codes for simulating real physical systems are often characterized by a vast number of input parameters. Performing uncertainty quantification (UQ) tasks with Monte Carlo (MC) methods is almost always infeasible because of the need to perform hundreds of thousands or even millions of forward model evaluations in order to obtain convergent statistics. One, thus, tries to construct a cheap-to-evaluate surrogate model to replace the forward model solver. For systems with large numbers of input parameters, one has to deal with the curse of dimensionality - the exponential increase in the volume of the input space, as the number of parameters increases linearly. In this work, we demonstrate the use of deep neural networks (DNN) to construct surrogate models for numerical simulators. We parameterize the structure of the DNN in a manner that lends the DNN surrogate the interpretation of recovering a low dimensional nonlinear manifold. The model response is a parameterized nonlinear function of the low dimensional projections of the input. We think of this low dimensional manifold as a nonlinear generalization of the notion of the active subspace. Our approach is demonstrated with a problem on uncertainty propagation in a stochastic elliptic partial differential equation (SPDE) with uncertain diffusion coefficient. We deviate from traditional formulations of the SPDE problem by not imposing a specific covariance structure on the random diffusion coefficient. Instead, we attempt to solve a more challenging problem of learning a map between an arbitrary snapshot of the diffusion field and the response.
Bayesian Renewables Scenario Generation via Deep Generative Networks
We present a method to generate renewable scenarios using Bayesian probabilities by implementing the Bayesian generative adversarial network~(Bayesian GAN), which is a variant of generative adversarial networks based on two interconnected deep neural networks. By using a Bayesian formulation, generators can be constructed and trained to produce scenarios that capture different salient modes in the data, allowing for better diversity and more accurate representation of the underlying physical process. Compared to conventional statistical models that are often hard to scale or sample from, this method is model-free and can generate samples extremely efficiently. For validation, we use wind and solar times-series data from NREL integration data sets to train the Bayesian GAN. We demonstrate that proposed method is able to generate clusters of wind scenarios with different variance and mean value, and is able to distinguish and generate wind and solar scenarios simultaneously even if the historical data are intentionally mixed.
Joint Binary Neural Network for Multi-label Learning with Applications to Emotion Classification
Recently the deep learning techniques have achieved success in multi-label classification due to its automatic representation learning ability and the end-to-end learning framework. Existing deep neural networks in multi-label classification can be divided into two kinds: binary relevance neural network (BRNN) and threshold dependent neural network (TDNN). However, the former needs to train a set of isolate binary networks which ignore dependencies between labels and have heavy computational load, while the latter needs an additional threshold function mechanism to transform the multi-class probabilities to multi-label outputs. In this paper, we propose a joint binary neural network (JBNN), to address these shortcomings. In JBNN, the representation of the text is fed to a set of logistic functions instead of a softmax function, and the multiple binary classifications are carried out synchronously in one neural network framework. Moreover, the relations between labels are captured via training on a joint binary cross entropy (JBCE) loss. To better meet multi-label emotion classification, we further proposed to incorporate the prior label relations into the JBCE loss. The experimental results on the benchmark dataset show that our model performs significantly better than the state-of-the-art multi-label emotion classification methods, in both classification performance and computational efficiency.
Learning Parametric Closed-Loop Policies for Markov Potential Games
Multiagent systems where agents interact among themselves and with a stochastic environment can be formalized as stochastic games. We study a subclass named Markov potential games (MPGs) that appear often in economic and engineering applications when the agents share a common resource. We consider MPGs with continuous state-action variables, coupled constraints and nonconvex rewards. Previous analysis followed a variational approach that is only valid for very simple cases (convex rewards, invertible dynamics, and no coupled constraints); or considered deterministic dynamics and provided open-loop (OL) analysis, studying strategies that consist in predefined action sequences, which are not optimal for stochastic environments. We present a closed-loop (CL) analysis for MPGs and consider parametric policies that depend on the current state. We provide easily verifiable, sufficient and necessary conditions for a stochastic game to be an MPG, even for complex parametric functions (e.g., deep neural networks); and show that a closed-loop Nash equilibrium (NE) can be found (or at least approximated) by solving a related optimal control problem (OCP). This is useful since solving an OCP--which is a single-objective problem--is usually much simpler than solving the original set of coupled OCPs that form the game--which is a multiobjective control problem. This is a considerable improvement over the previously standard approach for the CL analysis of MPGs, which gives no approximate solution if no NE belongs to the chosen parametric family, and which is practical only for simple parametric forms. We illustrate the theoretical contributions with an example by applying our approach to a noncooperative communications engineering game. We then solve the game with a deep reinforcement learning algorithm that learns policies that closely approximates an exact variational NE of the game.
GeniePath: Graph Neural Networks with Adaptive Receptive Paths
We present, GeniePath, a scalable approach for learning adaptive receptive fields of neural networks defined on permutation invariant graph data. In GeniePath, we propose an adaptive path layer consists of two complementary functions designed for breadth and depth exploration respectively, where the former learns the importance of different sized neighborhoods, while the latter extracts and filters signals aggregated from neighbors of different hops away. Our method works in both transductive and inductive settings, and extensive experiments compared with competitive methods show that our approaches yield state-of-the-art results on large graphs.
Active, Continual Fine Tuning of Convolutional Neural Networks for Reducing Annotation Efforts
The splendid success of convolutional neural networks (CNNs) in computer vision is largely attributable to the availability of massive annotated datasets, such as ImageNet and Places. However, in medical imaging, it is challenging to create such large annotated datasets, as annotating medical images is not only tedious, laborious, and time consuming, but it also demands costly, specialty-oriented skills, which are not easily accessible. To dramatically reduce annotation cost, this paper presents a novel method to naturally integrate active learning and transfer learning (fine-tuning) into a single framework, which starts directly with a pre-trained CNN to seek "worthy" samples for annotation and gradually enhances the (fine-tuned) CNN via continual fine-tuning. We have evaluated our method using three distinct medical imaging applications, demonstrating that it can reduce annotation efforts by at least half compared with random selection.
Multi-attention Recurrent Network for Human Communication Comprehension
Human face-to-face communication is a complex multimodal signal. We use words (language modality), gestures (vision modality) and changes in tone (acoustic modality) to convey our intentions. Humans easily process and understand face-to-face communication, however, comprehending this form of communication remains a significant challenge for Artificial Intelligence (AI). AI must understand each modality and the interactions between them that shape human communication. In this paper, we present a novel neural architecture for understanding human communication called the Multi-attention Recurrent Network (MARN). The main strength of our model comes from discovering interactions between modalities through time using a neural component called the Multi-attention Block (MAB) and storing them in the hybrid memory of a recurrent component called the Long-short Term Hybrid Memory (LSTHM). We perform extensive comparisons on six publicly available datasets for multimodal sentiment analysis, speaker trait recognition and emotion recognition. MARN shows state-of-the-art performance on all the datasets.
Multimodal Sentiment Analysis with Word-Level Fusion and Reinforcement Learning
With the increasing popularity of video sharing websites such as YouTube and Facebook, multimodal sentiment analysis has received increasing attention from the scientific community. Contrary to previous works in multimodal sentiment analysis which focus on holistic information in speech segments such as bag of words representations and average facial expression intensity, we develop a novel deep architecture for multimodal sentiment analysis that performs modality fusion at the word level. In this paper, we propose the Gated Multimodal Embedding LSTM with Temporal Attention (GME-LSTM(A)) model that is composed of 2 modules. The Gated Multimodal Embedding alleviates the difficulties of fusion when there are noisy modalities. The LSTM with Temporal Attention performs word level fusion at a finer fusion resolution between input modalities and attends to the most important time steps. As a result, the GME-LSTM(A) is able to better model the multimodal structure of speech through time and perform better sentiment comprehension. We demonstrate the effectiveness of this approach on the publicly-available Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis (CMU-MOSI) dataset by achieving state-of-the-art sentiment classification and regression results. Qualitative analysis on our model emphasizes the importance of the Temporal Attention Layer in sentiment prediction because the additional acoustic and visual modalities are noisy. We also demonstrate the effectiveness of the Gated Multimodal Embedding in selectively filtering these noisy modalities out. Our results and analysis open new areas in the study of sentiment analysis in human communication and provide new models for multimodal fusion.
Memory Fusion Network for Multi-view Sequential Learning
Multi-view sequential learning is a fundamental problem in machine learning dealing with multi-view sequences. In a multi-view sequence, there exists two forms of interactions between different views: view-specific interactions and cross-view interactions. In this paper, we present a new neural architecture for multi-view sequential learning called the Memory Fusion Network (MFN) that explicitly accounts for both interactions in a neural architecture and continuously models them through time. The first component of the MFN is called the System of LSTMs, where view-specific interactions are learned in isolation through assigning an LSTM function to each view. The cross-view interactions are then identified using a special attention mechanism called the Delta-memory Attention Network (DMAN) and summarized through time with a Multi-view Gated Memory. Through extensive experimentation, MFN is compared to various proposed approaches for multi-view sequential learning on multiple publicly available benchmark datasets. MFN outperforms all the existing multi-view approaches. Furthermore, MFN outperforms all current state-of-the-art models, setting new state-of-the-art results for these multi-view datasets.
Mixed Precision Training of Convolutional Neural Networks using Integer Operations
The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has also happened in the domain of low and mixed-precision Integer training, these works either present results for non-SOTA networks (for instance only AlexNet for ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train state-of-the-art visual understanding neural networks on the ImageNet-1K dataset, with Integer operations on General Purpose (GP) hardware. In particular, we focus on Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs of INT16 operands and accumulate results into an INT32 output.We propose a shared exponent representation of tensors and develop a Dynamic Fixed Point (DFP) scheme suitable for common neural network operations. The nuances of developing an efficient integer convolution kernel is examined, including methods to handle overflow of the INT32 accumulator. We implement CNN training for ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve or exceed SOTA accuracy within the same number of iterations as their FP32 counterparts without any change in hyper-parameters and with a 1.8X improvement in end-to-end training throughput. To the best of our knowledge these results represent the first INT16 training results on GP hardware for ImageNet-1K dataset using SOTA CNNs and achieve highest reported accuracy using half-precision
Contextual Bandit with Adaptive Feature Extraction
We consider an online decision making setting known as contextual bandit problem, and propose an approach for improving contextual bandit performance by using an adaptive feature extraction (representation learning) based on online clustering. Our approach starts with an off-line pre-training on unlabeled history of contexts (which can be exploited by our approach, but not by the standard contextual bandit), followed by an online selection and adaptation of encoders. Specifically, given an input sample (context), the proposed approach selects the most appropriate encoding function to extract a feature vector which becomes an input for a contextual bandit, and updates both the bandit and the encoding function based on the context and on the feedback (reward). Our experiments on a variety of datasets, and both in stationary and non-stationary environments of several kinds demonstrate clear advantages of the proposed adaptive representation learning over the standard contextual bandit based on "raw" input contexts.
Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making
Calls for heightened consideration of fairness and accountability in algorithmically-informed public decisions---like taxation, justice, and child protection---are now commonplace. How might designers support such human values? We interviewed 27 public sector machine learning practitioners across 5 OECD countries regarding challenges understanding and imbuing public values into their work. The results suggest a disconnect between organisational and institutional realities, constraints and needs, and those addressed by current research into usable, transparent and 'discrimination-aware' machine learning---absences likely to undermine practical initiatives unless addressed. We see design opportunities in this disconnect, such as in supporting the tracking of concept drift in secondary data sources, and in building usable transparency tools to identify risks and incorporate domain knowledge, aimed both at managers and at the 'street-level bureaucrats' on the frontlines of public service. We conclude by outlining ethical challenges and future directions for collaboration in these high-stakes applications.
Multi-task Learning for Continuous Control
Reliable and effective multi-task learning is a prerequisite for the development of robotic agents that can quickly learn to accomplish related, everyday tasks. However, in the reinforcement learning domain, multi-task learning has not exhibited the same level of success as in other domains, such as computer vision. In addition, most reinforcement learning research on multi-task learning has been focused on discrete action spaces, which are not used for robotic control in the real-world. In this work, we apply multi-task learning methods to continuous action spaces and benchmark their performance on a series of simulated continuous control tasks. Most notably, we show that multi-task learning outperforms our baselines and alternative knowledge sharing methods.
Deep Temporal Clustering : Fully Unsupervised Learning of Time-Domain Features
Unsupervised learning of time series data, also known as temporal clustering, is a challenging problem in machine learning. Here we propose a novel algorithm, Deep Temporal Clustering (DTC), to naturally integrate dimensionality reduction and temporal clustering into a single end-to-end learning framework, fully unsupervised. The algorithm utilizes an autoencoder for temporal dimensionality reduction and a novel temporal clustering layer for cluster assignment. Then it jointly optimizes the clustering objective and the dimensionality reduction objec tive. Based on requirement and application, the temporal clustering layer can be customized with any temporal similarity metric. Several similarity metrics and state-of-the-art algorithms are considered and compared. To gain insight into temporal features that the network has learned for its clustering, we apply a visualization method that generates a region of interest heatmap for the time series. The viability of the algorithm is demonstrated using time series data from diverse domains, ranging from earthquakes to spacecraft sensor data. In each case, we show that the proposed algorithm outperforms traditional methods. The superior performance is attributed to the fully integrated temporal dimensionality reduction and clustering criterion.
Hierarchical Adversarially Learned Inference
We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with different levels of fidelity. Furthermore, we show that minimizing the Jensen-Shanon divergence between the generative and inference network is enough to minimize the reconstruction error. The resulting semantically meaningful hierarchical latent structure discovery is exemplified on the CelebA dataset. There, we show that the features learned by our model in an unsupervised way outperform the best handcrafted features. Furthermore, the extracted features remain competitive when compared to several recent deep supervised approaches on an attribute prediction task on CelebA. Finally, we leverage the model's inference network to achieve state-of-the-art performance on a semi-supervised variant of the MNIST digit classification task.
Software Engineers vs. Machine Learning Algorithms: An Empirical Study Assessing Performance and Reuse Tasks
Several papers have recently contained reports on applying machine learning (ML) to the automation of software engineering (SE) tasks, such as project management, modeling and development. However, there appear to be no approaches comparing how software engineers fare against machine-learning algorithms as applied to specific software development tasks. Such a comparison is essential to gain insight into which tasks are better performed by humans and which by machine learning and how cooperative work or human-in-the-loop processes can be implemented more effectively. In this paper, we present an empirical study that compares how software engineers and machine-learning algorithms perform and reuse tasks. The empirical study involves the synthesis of the control structure of an autonomous streetlight application. Our approach consists of four steps. First, we solved the problem using machine learning to determine specific performance and reuse tasks. Second, we asked software engineers with different domain knowledge levels to provide a solution to the same tasks. Third, we compared how software engineers fare against machine-learning algorithms when accomplishing the performance and reuse tasks based on criteria such as energy consumption and safety. Finally, we analyzed the results to understand which tasks are better performed by either humans or algorithms so that they can work together more effectively. Such an understanding and the resulting human-in-the-loop approaches, which take into account the strengths and weaknesses of humans and machine-learning algorithms, are fundamental not only to provide a basis for cooperative work in support of software engineering, but also, in other areas.
Non-Gaussian information from weak lensing data via deep learning
Weak lensing maps contain information beyond two-point statistics on small scales. Much recent work has tried to extract this information through a range of different observables or via nonlinear transformations of the lensing field. Here we train and apply a 2D convolutional neural network to simulated noiseless lensing maps covering 96 different cosmological models over a range of {$\Omega_m,\sigma_8$}. Using the area of the confidence contour in the {$\Omega_m,\sigma_8$} plane as a figure-of-merit, derived from simulated convergence maps smoothed on a scale of 1.0 arcmin, we show that the neural network yields $\approx 5 \times$ tighter constraints than the power spectrum, and $\approx 4 \times$ tighter than the lensing peaks. Such gains illustrate the extent to which weak lensing data encode cosmological information not accessible to the power spectrum or even other, non-Gaussian statistics such as lensing peaks.
Learning Compact Neural Networks with Regularization
Proper regularization is critical for speeding up training, improving generalization performance, and learning compact models that are cost efficient. We propose and analyze regularized gradient descent algorithms for learning shallow neural networks. Our framework is general and covers weight-sharing (convolutional networks), sparsity (network pruning), and low-rank constraints among others. We first introduce covering dimension to quantify the complexity of the constraint set and provide insights on the generalization properties. Then, we show that proposed algorithms become well-behaved and local linear convergence occurs once the amount of data exceeds the covering dimension. Overall, our results demonstrate that near-optimal sample complexity is sufficient for efficient learning and illustrate how regularization can be beneficial to learn over-parameterized networks.
Counting and Sampling from Markov Equivalent DAGs Using Clique Trees
A directed acyclic graph (DAG) is the most common graphical model for representing causal relationships among a set of variables. When restricted to using only observational data, the structure of the ground truth DAG is identifiable only up to Markov equivalence, based on conditional independence relations among the variables. Therefore, the number of DAGs equivalent to the ground truth DAG is an indicator of the causal complexity of the underlying structure--roughly speaking, it shows how many interventions or how much additional information is further needed to recover the underlying DAG. In this paper, we propose a new technique for counting the number of DAGs in a Markov equivalence class. Our approach is based on the clique tree representation of chordal graphs. We show that in the case of bounded degree graphs, the proposed algorithm is polynomial time. We further demonstrate that this technique can be utilized for uniform sampling from a Markov equivalence class, which provides a stochastic way to enumerate DAGs in the equivalence class and may be needed for finding the best DAG or for causal inference given the equivalence class as input. We also extend our counting and sampling method to the case where prior knowledge about the underlying DAG is available, and present applications of this extension in causal experiment design and estimating the causal effect of joint interventions.
Enhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces
Both neural networks and decision trees are popular machine learning methods and are widely used to solve problems from diverse domains. These two classifiers are commonly used base classifiers in an ensemble framework. In this paper, we first present a new variant of oblique decision tree based on a linear classifier, then construct an ensemble classifier based on the fusion of a fast neural network, random vector functional link network and oblique decision trees. Random Vector Functional Link Network has an elegant closed form solution with extremely short training time. The neural network partitions each training bag (obtained using bagging) at the root level into C subsets where C is the number of classes in the dataset and subsequently, C oblique decision trees are trained on such partitions. The proposed method provides a rich insight into the data by grouping the confusing or hard to classify samples for each class and thus, provides an opportunity to employ fine-grained classification rule over the data. The performance of the ensemble classifier is evaluated on several multi-class datasets where it demonstrates a superior performance compared to other state-of- the-art classifiers.
Task-Aware Compressed Sensing with Generative Adversarial Networks
In recent years, neural network approaches have been widely adopted for machine learning tasks, with applications in computer vision. More recently, unsupervised generative models based on neural networks have been successfully applied to model data distributions via low-dimensional latent spaces. In this paper, we use Generative Adversarial Networks (GANs) to impose structure in compressed sensing problems, replacing the usual sparsity constraint. We propose to train the GANs in a task-aware fashion, specifically for reconstruction tasks. We also show that it is possible to train our model without using any (or much) non-compressed data. Finally, we show that the latent space of the GAN carries discriminative information and can further be regularized to generate input features for general inference tasks. We demonstrate the effectiveness of our method on a variety of reconstruction and classification problems.
Online Compact Convexified Factorization Machine
Factorization Machine (FM) is a supervised learning approach with a powerful capability of feature engineering. It yields state-of-the-art performance in various batch learning tasks where all the training data is made available prior to the training. However, in real-world applications where the data arrives sequentially in a streaming manner, the high cost of re-training with batch learning algorithms has posed formidable challenges in the online learning scenario. The initial challenge is that no prior formulations of FM could fulfill the requirements in Online Convex Optimization (OCO) -- the paramount framework for online learning algorithm design. To address the aforementioned challenge, we invent a new convexification scheme leading to a Compact Convexified FM (CCFM) that seamlessly meets the requirements in OCO. However for learning Compact Convexified FM (CCFM) in the online learning setting, most existing algorithms suffer from expensive projection operations. To address this subsequent challenge, we follow the general projection-free algorithmic framework of Online Conditional Gradient and propose an Online Compact Convex Factorization Machine (OCCFM) algorithm that eschews the projection operation with efficient linear optimization steps. In support of the proposed OCCFM in terms of its theoretical foundation, we prove that the developed algorithm achieves a sub-linear regret bound. To evaluate the empirical performance of OCCFM, we conduct extensive experiments on 6 real-world datasets for online recommendation and binary classification tasks. The experimental results show that OCCFM outperforms the state-of-art online learning algorithms.
To understand deep learning we need to understand kernel learning
Generalization performance of classifiers in deep learning has recently become a subject of intense study. Deep models, typically over-parametrized, tend to fit the training data exactly. Despite this "overfitting", they perform well on test data, a phenomenon not yet fully understood. The first point of our paper is that strong performance of overfitted classifiers is not a unique feature of deep learning. Using six real-world and two synthetic datasets, we establish experimentally that kernel machines trained to have zero classification or near zero regression error perform very well on test data, even when the labels are corrupted with a high level of noise. We proceed to give a lower bound on the norm of zero loss solutions for smooth kernels, showing that they increase nearly exponentially with data size. We point out that this is difficult to reconcile with the existing generalization bounds. Moreover, none of the bounds produce non-trivial results for interpolating solutions. Second, we show experimentally that (non-smooth) Laplacian kernels easily fit random labels, a finding that parallels results for ReLU neural networks. In contrast, fitting noisy data requires many more epochs for smooth Gaussian kernels. Similar performance of overfitted Laplacian and Gaussian classifiers on test, suggests that generalization is tied to the properties of the kernel function rather than the optimization process. Certain key phenomena of deep learning are manifested similarly in kernel methods in the modern "overfitted" regime. The combination of the experimental and theoretical results presented in this paper indicates a need for new theoretical ideas for understanding properties of classical kernel methods. We argue that progress on understanding deep learning will be difficult until more tractable "shallow" kernel methods are better understood.
A Learning-based Approach to Joint Content Caching and Recommendation at Base Stations
Recommendation system is able to shape user demands, which can be used for boosting caching gain. In this paper, we jointly optimize content caching and recommendation at base stations to maximize the caching gain meanwhile not compromising the user preference. We first propose a model to capture the impact of recommendation on user demands, which is controlled by a user-specific psychological threshold. We then formulate a joint caching and recommendation problem maximizing the successful offloading probability, which is a mixed integer programming problem. We develop a hierarchical iterative algorithm to solve the problem when the threshold is known. Since the user threshold is unknown in practice, we proceed to propose an $\varepsilon$-greedy algorithm to find the solution by learning the threshold via interactions with users. Simulation results show that the proposed algorithms improve the successful offloading probability compared with prior works with/without recommendation. The $\varepsilon$-greedy algorithm learns the user threshold quickly, and achieves more than $1-\varepsilon$ of the performance obtained by the algorithm with known threshold.
First-order Adversarial Vulnerability of Neural Networks and Input Dimension
Over the past few years, neural networks were proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients of the training objective when viewed as a function of the inputs. Surprisingly, vulnerability does not depend on network topology: for many standard network architectures, we prove that at initialization, the $\ell_1$-norm of these gradients grows as the square root of the input dimension, leaving the networks increasingly vulnerable with growing image size. We empirically show that this dimension dependence persists after either usual or robust training, but gets attenuated with higher regularization.
Interactive Grounded Language Acquisition and Generalization in a 2D World
We build a virtual agent for learning language in a 2D maze-like world. The agent sees images of the surrounding environment, listens to a virtual teacher, and takes actions to receive rewards. It interactively learns the teacher's language from scratch based on two language use cases: sentence-directed navigation and question answering. It learns simultaneously the visual representations of the world, the language, and the action control. By disentangling language grounding from other computational routines and sharing a concept detection function between language grounding and prediction, the agent reliably interpolates and extrapolates to interpret sentences that contain new word combinations or new words missing from training sentences. The new words are transferred from the answers of language prediction. Such a language ability is trained and evaluated on a population of over 1.6 million distinct sentences consisting of 119 object words, 8 color words, 9 spatial-relation words, and 50 grammatical words. The proposed model significantly outperforms five comparison methods for interpreting zero-shot sentences. In addition, we demonstrate human-interpretable intermediate outputs of the model in the appendix.
Hardening Deep Neural Networks via Adversarial Model Cascades
Deep neural networks (DNNs) are vulnerable to malicious inputs crafted by an adversary to produce erroneous outputs. Works on securing neural networks against adversarial examples achieve high empirical robustness on simple datasets such as MNIST. However, these techniques are inadequate when empirically tested on complex data sets such as CIFAR-10 and SVHN. Further, existing techniques are designed to target specific attacks and fail to generalize across attacks. We propose the Adversarial Model Cascades (AMC) as a way to tackle the above inadequacies. Our approach trains a cascade of models sequentially where each model is optimized to be robust towards a mixture of multiple attacks. Ultimately, it yields a single model which is secure against a wide range of attacks; namely FGSM, Elastic, Virtual Adversarial Perturbations and Madry. On an average, AMC increases the model's empirical robustness against various attacks simultaneously, by a significant margin (of 6.225% for MNIST, 5.075% for SVHN and 2.65% for CIFAR10). At the same time, the model's performance on non-adversarial inputs is comparable to the state-of-the-art models.
Explicit Inductive Bias for Transfer Learning with Convolutional Networks
In inductive transfer learning, fine-tuning pre-trained convolutional networks substantially outperforms training from scratch. When using fine-tuning, the underlying assumption is that the pre-trained model extracts generic features, which are at least partially relevant for solving the target task, but would be difficult to extract from the limited amount of data available on the target task. However, besides the initialization with the pre-trained model and the early stopping, there is no mechanism in fine-tuning for retaining the features learned on the source task. In this paper, we investigate several regularization schemes that explicitly promote the similarity of the final solution with the initial model. We show the benefit of having an explicit inductive bias towards the initial model, and we eventually recommend a simple $L^2$ penalty with the pre-trained model being a reference as the baseline of penalty for transfer learning tasks.
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
We consider the convex-concave saddle point problem $\min_{x}\max_{y} f(x)+y^\top A x-g(y)$ where $f$ is smooth and convex and $g$ is smooth and strongly convex. We prove that if the coupling matrix $A$ has full column rank, the vanilla primal-dual gradient method can achieve linear convergence even if $f$ is not strongly convex. Our result generalizes previous work which either requires $f$ and $g$ to be quadratic functions or requires proximal mappings for both $f$ and $g$. We adopt a novel analysis technique that in each iteration uses a "ghost" update as a reference, and show that the iterates in the primal-dual gradient method converge to this "ghost" sequence. Using the same technique we further give an analysis for the primal-dual stochastic variance reduced gradient (SVRG) method for convex-concave saddle point problems with a finite-sum structure.
Background subtraction using the factored 3-way restricted Boltzmann machines
In this paper, we proposed a method for reconstructing the 3D model based on continuous sensory input. The robot can draw on extremely large data from the real world using various sensors. However, the sensory inputs are usually too noisy and high-dimensional data. It is very difficult and time consuming for robot to process using such raw data when the robot tries to construct 3D model. Hence, there needs to be a method that can extract useful information from such sensory inputs. To address this problem our method utilizes the concept of Object Semantic Hierarchy (OSH). Different from the previous work that used this hierarchy framework, we extract the motion information using the Deep Belief Network technique instead of applying classical computer vision approaches. We have trained on two large sets of random dot images (10,000) which are translated and rotated, respectively, and have successfully extracted several bases that explain the translation and rotation motion. Based on this translation and rotation bases, background subtraction have become possible using Object Semantic Hierarchy.
The Matrix Calculus You Need For Deep Learning
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at http://explained.ai
Real-time Prediction of Intermediate-Horizon Automotive Collision Risk
Advanced collision avoidance and driver hand-off systems can benefit from the ability to accurately predict, in real time, the probability a vehicle will be involved in a collision within an intermediate horizon of 10 to 20 seconds. The rarity of collisions in real-world data poses a significant challenge to developing this capability because, as we demonstrate empirically, intermediate-horizon risk prediction depends heavily on high-dimensional driver behavioral features. As a result, a large amount of data is required to fit an effective predictive model. In this paper, we assess whether simulated data can help alleviate this issue. Focusing on highway driving, we present a three-step approach for generating data and fitting a predictive model capable of real-time prediction. First, high-risk automotive scenes are generated using importance sampling on a learned Bayesian network scene model. Second, collision risk is estimated through Monte Carlo simulation. Third, a neural network domain adaptation model is trained on real and simulated data to address discrepancies between the two domains. Experiments indicate that simulated data can mitigate issues resulting from collision rarity, thereby improving risk prediction in real-world data.
Blind Pre-Processing: A Robust Defense Method Against Adversarial Examples
Deep learning algorithms and networks are vulnerable to perturbed inputs which is known as the adversarial attack. Many defense methodologies have been investigated to defend against such adversarial attack. In this work, we propose a novel methodology to defend the existing powerful attack model. We for the first time introduce a new attacking scheme for the attacker and set a practical constraint for white box attack. Under this proposed attacking scheme, we present the best defense ever reported against some of the recent strong attacks. It consists of a set of nonlinear function to process the input data which will make it more robust over the adversarial attack. However, we make this processing layer completely hidden from the attacker. Blind pre-processing improves the white box attack accuracy of MNIST from 94.3\% to 98.7\%. Even with increasing defense when others defenses completely fail, blind pre-processing remains one of the strongest ever reported. Another strength of our defense is that it eliminates the need for adversarial training as it can significantly increase the MNIST accuracy without adversarial training as well. Additionally, blind pre-processing can also increase the inference accuracy in the face of a powerful attack on CIFAR-10 and SVHN data set as well without much sacrificing clean data accuracy.
One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning
Humans and animals are capable of learning a new behavior by observing others perform the skill just once. We consider the problem of allowing a robot to do the same -- learning from a raw video pixels of a human, even when there is substantial domain shift in the perspective, environment, and embodiment between the robot and the observed human. Prior approaches to this problem have hand-specified how human and robot actions correspond and often relied on explicit human pose detection systems. In this work, we present an approach for one-shot learning from a video of a human by using human and robot demonstration data from a variety of previous tasks to build up prior knowledge through meta-learning. Then, combining this prior knowledge and only a single video demonstration from a human, the robot can perform the task that the human demonstrated. We show experiments on both a PR2 arm and a Sawyer arm, demonstrating that after meta-learning, the robot can learn to place, push, and pick-and-place new objects using just one video of a human performing the manipulation.
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
In this work we aim to solve a large collection of tasks using a single reinforcement learning agent with a single set of parameters. A key challenge is to handle the increased amount of data and extended training time. We have developed a new distributed agent IMPALA (Importance Weighted Actor-Learner Architecture) that not only uses resources more efficiently in single-machine training but also scales to thousands of machines without sacrificing data efficiency or resource utilisation. We achieve stable learning at high throughput by combining decoupled acting and learning with a novel off-policy correction method called V-trace. We demonstrate the effectiveness of IMPALA for multi-task reinforcement learning on DMLab-30 (a set of 30 tasks from the DeepMind Lab environment (Beattie et al., 2016)) and Atari-57 (all available Atari games in Arcade Learning Environment (Bellemare et al., 2013a)). Our results show that IMPALA is able to achieve better performance than previous agents with less data, and crucially exhibits positive transfer between tasks as a result of its multi-task approach.
Selective Sampling and Mixture Models in Generative Adversarial Networks
In this paper, we propose a multi-generator extension to the adversarial training framework, in which the objective of each generator is to represent a unique component of a target mixture distribution. In the training phase, the generators cooperate to represent, as a mixture, the target distribution while maintaining distinct manifolds. As opposed to traditional generative models, inference from a particular generator after training resembles selective sampling from a unique component in the target distribution. We demonstrate the feasibility of the proposed architecture both analytically and with basic Multi-Layer Perceptron (MLP) models trained on the MNIST dataset.
Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization
Humans and most animals can learn new tasks without forgetting old ones. However, training artificial neural networks (ANNs) on new tasks typically cause it to forget previously learned tasks. This phenomenon is the result of "catastrophic forgetting", in which training an ANN disrupts connection weights that were important for solving previous tasks, degrading task performance. Several recent studies have proposed methods to stabilize connection weights of ANNs that are deemed most important for solving a task, which helps alleviate catastrophic forgetting. Here, drawing inspiration from algorithms that are believed to be implemented in vivo, we propose a complementary method: adding a context-dependent gating signal, such that only sparse, mostly non-overlapping patterns of units are active for any one task. This method is easy to implement, requires little computational overhead, and allows ANNs to maintain high performance across large numbers of sequentially presented tasks when combined with weight stabilization. This work provides another example of how neuroscience-inspired algorithms can benefit ANN design and capability.
MotifNet: a motif-based Graph Convolutional Network for directed graphs
Deep learning on graphs and in particular, graph convolutional neural networks, have recently attracted significant attention in the machine learning community. Many of such techniques explore the analogy between the graph Laplacian eigenvectors and the classical Fourier basis, allowing to formulate the convolution as a multiplication in the spectral domain. One of the key drawback of spectral CNNs is their explicit assumption of an undirected graph, leading to a symmetric Laplacian matrix with orthogonal eigendecomposition. In this work we propose MotifNet, a graph CNN capable of dealing with directed graphs by exploiting local graph motifs. We present experimental evidence showing the advantage of our approach on real data.
Re-Weighted Learning for Sparsifying Deep Neural Networks
This paper addresses the topic of sparsifying deep neural networks (DNN's). While DNN's are powerful models that achieve state-of-the-art performance on a large number of tasks, the large number of model parameters poses serious storage and computational challenges. To combat these difficulties, a growing line of work focuses on pruning network weights without sacrificing performance. We propose a general affine scaling transformation (AST) algorithm to sparsify DNN's. Our approach follows in the footsteps of popular sparse recovery techniques, which have yet to be explored in the context of DNN's. We describe a principled framework for transforming densely connected DNN's into sparsely connected ones without sacrificing network performance. Unlike existing methods, our approach is able to learn sparse connections at each layer simultaneously, and achieves comparable pruning results on the architecture tested.
Deep Learning with a Rethinking Structure for Multi-label Classification
Multi-label classification (MLC) is an important class of machine learning problems that come with a wide spectrum of applications, each demanding a possibly different evaluation criterion. When solving the MLC problems, we generally expect the learning algorithm to take the hidden correlation of the labels into account to improve the prediction performance. Extracting the hidden correlation is generally a challenging task. In this work, we propose a novel deep learning framework to better extract the hidden correlation with the help of the memory structure within recurrent neural networks. The memory stores the temporary guesses on the labels and effectively allows the framework to rethink about the goodness and correlation of the guesses before making the final prediction. Furthermore, the rethinking process makes it easy to adapt to different evaluation criteria to match real-world application needs. In particular, the framework can be trained in an end-to-end style with respect to any given MLC evaluation criteria. The end-to-end design can be seamlessly combined with other deep learning techniques to conquer challenging MLC problems like image tagging. Experimental results across many real-world data sets justify that the rethinking framework indeed improves MLC performance across different evaluation criteria and leads to superior performance over state-of-the-art MLC algorithms.
Weakly-supervised Dictionary Learning
We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly learning a dictionary and corresponding sparse coefficients to provide accurate data representation. This approach is useful for denoising and signal restoration, but may lead to sub-optimal classification performance. By contrast, analysis dictionary learning provides a transform that maps data to a sparse discriminative representation suitable for classification. We consider the problem of analysis dictionary learning for time-series data under a weak supervision setting in which signals are assigned with a global label instead of an instantaneous label signal. We propose a discriminative probabilistic model that incorporates both label information and sparsity constraints on the underlying latent instantaneous label signal using cardinality control. We present the expectation maximization (EM) procedure for maximum likelihood estimation (MLE) of the proposed model. To facilitate a computationally efficient E-step, we propose both a chain and a novel tree graph reformulation of the graphical model. The performance of the proposed model is demonstrated on both synthetic and real-world data.
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Coherent uncertainty quantification is a key strength of Bayesian methods. But modern algorithms for approximate Bayesian posterior inference often sacrifice accurate posterior uncertainty estimation in the pursuit of scalability. This work shows that previous Bayesian coreset construction algorithms---which build a small, weighted subset of the data that approximates the full dataset---are no exception. We demonstrate that these algorithms scale the coreset log-likelihood suboptimally, resulting in underestimated posterior uncertainty. To address this shortcoming, we develop greedy iterative geodesic ascent (GIGA), a novel algorithm for Bayesian coreset construction that scales the coreset log-likelihood optimally. GIGA provides geometric decay in posterior approximation error as a function of coreset size, and maintains the fast running time of its predecessors. The paper concludes with validation of GIGA on both synthetic and real datasets, demonstrating that it reduces posterior approximation error by orders of magnitude compared with previous coreset constructions.
Shared Autonomy via Deep Reinforcement Learning
In shared autonomy, user input is combined with semi-autonomous control to achieve a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer the goal from user input and assist with the task. Such methods tend to assume some combination of knowledge of the dynamics of the environment, the user's policy given their goal, and the set of possible goals the user might target, which limits their application to real-world scenarios. We propose a deep reinforcement learning framework for model-free shared autonomy that lifts these assumptions. We use human-in-the-loop reinforcement learning with neural network function approximation to learn an end-to-end mapping from environmental observation and user input to agent action values, with task reward as the only form of supervision. This approach poses the challenge of following user commands closely enough to provide the user with real-time action feedback and thereby ensure high-quality user input, but also deviating from the user's actions when they are suboptimal. We balance these two needs by discarding actions whose values fall below some threshold, then selecting the remaining action closest to the user's input. Controlled studies with users (n = 12) and synthetic pilots playing a video game, and a pilot study with users (n = 4) flying a real quadrotor, demonstrate the ability of our algorithm to assist users with real-time control tasks in which the agent cannot directly access the user's private information through observations, but receives a reward signal and user input that both depend on the user's intent. The agent learns to assist the user without access to this private information, implicitly inferring it from the user's input. This paper is a proof of concept that illustrates the potential for deep reinforcement learning to enable flexible and practical assistive systems.
Near-Optimal Coresets of Kernel Density Estimates
We construct near-optimal coresets for kernel density estimates for points in $\mathbb{R}^d$ when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size $O(\sqrt{d}/\varepsilon\cdot \sqrt{\log 1/\varepsilon} )$, and we show a near-matching lower bound of size $\Omega(\min\{\sqrt{d}/\varepsilon, 1/\varepsilon^2\})$. When $d\geq 1/\varepsilon^2$, it is known that the size of coreset can be $O(1/\varepsilon^2)$. The upper bound is a polynomial-in-$(1/\varepsilon)$ improvement when $d \in [3,1/\varepsilon^2)$ and the lower bound is the first known lower bound to depend on $d$ for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide-variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.
Training Generative Adversarial Networks via Primal-Dual Subgradient Methods: A Lagrangian Perspective on GAN
We relate the minimax game of generative adversarial networks (GANs) to finding the saddle points of the Lagrangian function for a convex optimization problem, where the discriminator outputs and the distribution of generator outputs play the roles of primal variables and dual variables, respectively. This formulation shows the connection between the standard GAN training process and the primal-dual subgradient methods for convex optimization. The inherent connection does not only provide a theoretical convergence proof for training GANs in the function space, but also inspires a novel objective function for training. The modified objective function forces the distribution of generator outputs to be updated along the direction according to the primal-dual subgradient methods. A toy example shows that the proposed method is able to resolve mode collapse, which in this case cannot be avoided by the standard GAN or Wasserstein GAN. Experiments on both Gaussian mixture synthetic data and real-world image datasets demonstrate the performance of the proposed method on generating diverse samples.
Decomposition Methods with Deep Corrections for Reinforcement Learning
Decomposition methods have been proposed to approximate solutions to large sequential decision making problems. In contexts where an agent interacts with multiple entities, utility decomposition can be used to separate the global objective into local tasks considering each individual entity independently. An arbitrator is then responsible for combining the individual utilities and selecting an action in real time to solve the global problem. Although these techniques can perform well empirically, they rely on strong assumptions of independence between the local tasks and sacrifice the optimality of the global solution. This paper proposes an approach that improves upon such approximate solutions by learning a correction term represented by a neural network. We demonstrate this approach on a fisheries management problem where multiple boats must coordinate to maximize their catch over time as well as on a pedestrian avoidance problem for autonomous driving. In each problem, decomposition methods can scale to multiple boats or pedestrians by using strategies involving one entity. We verify empirically that the proposed correction method significantly improves the decomposition method and outperforms a policy trained on the full scale problem without utility decomposition.
Mixed Link Networks
Basing on the analysis by revealing the equivalence of modern networks, we find that both ResNet and DenseNet are essentially derived from the same "dense topology", yet they only differ in the form of connection -- addition (dubbed "inner link") vs. concatenation (dubbed "outer link"). However, both two forms of connections have the superiority and insufficiency. To combine their advantages and avoid certain limitations on representation learning, we present a highly efficient and modularized Mixed Link Network (MixNet) which is equipped with flexible inner link and outer link modules. Consequently, ResNet, DenseNet and Dual Path Network (DPN) can be regarded as a special case of MixNet, respectively. Furthermore, we demonstrate that MixNets can achieve superior efficiency in parameter over the state-of-the-art architectures on many competitive datasets like CIFAR-10/100, SVHN and ImageNet.
Decoding-History-Based Adaptive Control of Attention for Neural Machine Translation
Attention-based sequence-to-sequence model has proved successful in Neural Machine Translation (NMT). However, the attention without consideration of decoding history, which includes the past information in the decoder and the attention mechanism, often causes much repetition. To address this problem, we propose the decoding-history-based Adaptive Control of Attention (ACA) for the NMT model. ACA learns to control the attention by keeping track of the decoding history and the current information with a memory vector, so that the model can take the translated contents and the current information into consideration. Experiments on Chinese-English translation and the English-Vietnamese translation have demonstrated that our model significantly outperforms the strong baselines. The analysis shows that our model is capable of generating translation with less repetition and higher accuracy. The code will be available at https://github.com/lancopku
Texygen: A Benchmarking Platform for Text Generation Models
We introduce Texygen, a benchmarking platform to support research on open-domain text generation models. Texygen has not only implemented a majority of text generation models, but also covered a set of metrics that evaluate the diversity, the quality and the consistency of the generated texts. The Texygen platform could help standardize the research on text generation and facilitate the sharing of fine-tuned open-source implementations among researchers for their work. As a consequence, this would help in improving the reproductivity and reliability of future research work in text generation.
The steerable graph Laplacian and its application to filtering image data-sets
In recent years, improvements in various image acquisition techniques gave rise to the need for adaptive processing methods, aimed particularly for large datasets corrupted by noise and deformations. In this work, we consider datasets of images sampled from a low-dimensional manifold (i.e. an image-valued manifold), where the images can assume arbitrary planar rotations. To derive an adaptive and rotation-invariant framework for processing such datasets, we introduce a graph Laplacian (GL)-like operator over the dataset, termed ${\textit{steerable graph Laplacian}}$. Essentially, the steerable GL extends the standard GL by accounting for all (infinitely-many) planar rotations of all images. As it turns out, similarly to the standard GL, a properly normalized steerable GL converges to the Laplace-Beltrami operator on the low-dimensional manifold. However, the steerable GL admits an improved convergence rate compared to the GL, where the improved convergence behaves as if the intrinsic dimension of the underlying manifold is lower by one. Moreover, it is shown that the steerable GL admits eigenfunctions of the form of Fourier modes (along the orbits of the images' rotations) multiplied by eigenvectors of certain matrices, which can be computed efficiently by the FFT. For image datasets corrupted by noise, we employ a subset of these eigenfunctions to "filter" the dataset via a Fourier-like filtering scheme, essentially using all images and their rotations simultaneously. We demonstrate our filtering framework by de-noising simulated single-particle cryo-EM image datasets.
A Survey Of Methods For Explaining Black Box Models
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
Improving Variational Encoder-Decoders in Dialogue Generation
Variational encoder-decoders (VEDs) have shown promising results in dialogue generation. However, the latent variable distributions are usually approximated by a much simpler model than the powerful RNN structure used for encoding and decoding, yielding the KL-vanishing problem and inconsistent training objective. In this paper, we separate the training step into two phases: The first phase learns to autoencode discrete texts into continuous embeddings, from which the second phase learns to generalize latent representations by reconstructing the encoded embedding. In this case, latent variables are sampled by transforming Gaussian noise through multi-layer perceptrons and are trained with a separate VED model, which has the potential of realizing a much more flexible distribution. We compare our model with current popular models and the experiment demonstrates substantial improvement in both metric-based and human evaluations.
Neural Network Detection of Data Sequences in Communication Systems
We consider detection based on deep learning, and show it is possible to train detectors that perform well without any knowledge of the underlying channel models. Moreover, when the channel model is known, we demonstrate that it is possible to train detectors that do not require channel state information (CSI). In particular, a technique we call a sliding bidirectional recurrent neural network (SBRNN) is proposed for detection where, after training, the detector estimates the data in real-time as the signal stream arrives at the receiver. We evaluate this algorithm, as well as other neural network (NN) architectures, using the Poisson channel model, which is applicable to both optical and molecular communication systems. In addition, we also evaluate the performance of this detection method applied to data sent over a molecular communication platform, where the channel model is difficult to model analytically. We show that SBRNN is computationally efficient, and can perform detection under various channel conditions without knowing the underlying channel model. We also demonstrate that the bit error rate (BER) performance of the proposed SBRNN detector is better than that of a Viterbi detector with imperfect CSI as well as that of other NN detectors that have been previously proposed. Finally, we show that the SBRNN can perform well in rapidly changing channels, where the coherence time is on the order of a single symbol duration.
Syst\`eme de traduction automatique statistique Anglais-Arabe
Machine translation (MT) is the process of translating text written in a source language into text in a target language. In this article, we present our English-Arabic statistical machine translation system. First, we present the general process for setting up a statistical machine translation system, then we describe the tools as well as the different corpora we used to build our MT system. Our system was evaluated in terms of the BLUE score (24.51%)
On the Feasibility of Generic Deep Disaggregation for Single-Load Extraction
Recently, and with the growing development of big energy datasets, data-driven learning techniques began to represent a potential solution to the energy disaggregation problem outperforming engineered and hand-crafted models. However, most proposed deep disaggregation models are load-dependent in the sense that either expert knowledge or a hyper-parameter optimization stage is required prior to training and deployment (normally for each load category) even upon acquisition and cleansing of aggregate and sub-metered data. In this paper, we present a feasibility study on the development of a generic disaggregation model based on data-driven learning. Specifically, we present a generic deep disaggregation model capable of achieving state-of-art performance in load monitoring for a variety of load categories. The developed model is evaluated on the publicly available UK-DALE dataset with a moderately low sampling frequency and various domestic loads.
DeepTravel: a Neural Network Based Travel Time Estimation Model with Auxiliary Supervision
Estimating the travel time of a path is of great importance to smart urban mobility. Existing approaches are either based on estimating the time cost of each road segment which are not able to capture many cross-segment complex factors, or designed heuristically in a non-learning-based way which fail to utilize the existing abundant temporal labels of the data, i.e., the time stamp of each trajectory point. In this paper, we leverage on new development of deep neural networks and propose a novel auxiliary supervision model, namely DeepTravel, that can automatically and effectively extract different features, as well as make full use of the temporal labels of the trajectory data. We have conducted comprehensive experiments on real datasets to demonstrate the out-performance of DeepTravel over existing approaches.
FastNet
Inception and the Resnet family of Convolutional Neural Network archi-tectures have broken records in the past few years, but recent state of the art models have also incurred very high computational cost in terms of training, inference and model size. Making the deployment of these models on Edge devices, impractical. In light of this, we present a new novel architecture that is designed for high computational efficiency on both GPUs and CPUs, and is highly suited for deployment on Mobile Applications, Smart Cameras, Iot devices and controllers as well as low cost drones. Our architecture boasts competitive accuracies on standard Datasets even out-performing the original Resnet. We present below the motivation for this research, the architecture of the network, single test accuracies on CIFAR 10 and CIFAR 100 , a detailed comparison with other well-known architectures and link to an implementation in Keras.
Granger-causal Attentive Mixtures of Experts: Learning Important Features with Neural Networks
Knowledge of the importance of input features towards decisions made by machine-learning models is essential to increase our understanding of both the models and the underlying data. Here, we present a new approach to estimating feature importance with neural networks based on the idea of distributing the features of interest among experts in an attentive mixture of experts (AME). AMEs use attentive gating networks trained with a Granger-causal objective to learn to jointly produce accurate predictions as well as estimates of feature importance in a single model. Our experiments show (i) that the feature importance estimates provided by AMEs compare favourably to those provided by state-of-the-art methods, (ii) that AMEs are significantly faster at estimating feature importance than existing methods, and (iii) that the associations discovered by AMEs are consistent with those reported by domain experts.
Automatic construction of Chinese herbal prescription from tongue image via CNNs and auxiliary latent therapy topics
The tongue image provides important physical information of humans. It is of great importance for diagnoses and treatments in clinical medicine. Herbal prescriptions are simple, noninvasive and have low side effects. Thus, they are widely applied in China. Studies on the automatic construction technology of herbal prescriptions based on tongue images have great significance for deep learning to explore the relevance of tongue images for herbal prescriptions, it can be applied to healthcare services in mobile medical systems. In order to adapt to the tongue image in a variety of photographic environments and construct herbal prescriptions, a neural network framework for prescription construction is designed. It includes single/double convolution channels and fully connected layers. Furthermore, it proposes the auxiliary therapy topic loss mechanism to model the therapy of Chinese doctors and alleviate the interference of sparse output labels on the diversity of results. The experiment use the real world tongue images and the corresponding prescriptions and the results can generate prescriptions that are close to the real samples, which verifies the feasibility of the proposed method for the automatic construction of herbal prescriptions from tongue images. Also, it provides a reference for automatic herbal prescription construction from more physical information.
Automated dataset generation for image recognition using the example of taxonomy
This master thesis addresses the subject of automatically generating a dataset for image recognition, which takes a lot of time when being done manually. As the thesis was written with motivation from the context of the biodiversity workgroup at the City University of Applied Sciences Bremen, the classification of taxonomic entries was chosen as an exemplary use case. In order to automate the dataset creation, a prototype was conceptualized and implemented after working out knowledge basics and analyzing requirements for it. It makes use of an pre-trained abstract artificial intelligence which is able to sort out images that do not contain the desired content. Subsequent to the implementation and the automated dataset creation resulting from it, an evaluation was performed. Other, manually collected datasets were compared to the one the prototype produced in means of specifications and accuracy. The results were more than satisfactory and showed that automatically generating a dataset for image recognition is not only possible, but also might be a decent alternative to spending time and money in doing this task manually. At the very end of this work, an idea of how to use the principle of employing abstract artificial intelligences for step-by-step classification of deeper taxonomic layers in a productive system is presented and discussed.
Classification and Disease Localization in Histopathology Using Only Global Labels: A Weakly-Supervised Approach
Analysis of histopathology slides is a critical step for many diagnoses, and in particular in oncology where it defines the gold standard. In the case of digital histopathological analysis, highly trained pathologists must review vast whole-slide-images of extreme digital resolution ($100,000^2$ pixels) across multiple zoom levels in order to locate abnormal regions of cells, or in some cases single cells, out of millions. The application of deep learning to this problem is hampered not only by small sample sizes, as typical datasets contain only a few hundred samples, but also by the generation of ground-truth localized annotations for training interpretable classification and segmentation models. We propose a method for disease localization in the context of weakly supervised learning, where only image-level labels are available during training. Even without pixel-level annotations, we are able to demonstrate performance comparable with models trained with strong annotations on the Camelyon-16 lymph node metastases detection challenge. We accomplish this through the use of pre-trained deep convolutional networks, feature embedding, as well as learning via top instances and negative evidence, a multiple instance learning technique from the field of semantic segmentation and object detection.
A machine learning approach to reconstruction of heart surface potentials from body surface potentials
Invasive cardiac catheterisation is a common procedure that is carried out before surgical intervention. Yet, invasive cardiac diagnostics are full of risks, especially for young children. Decades of research has been conducted on the so called inverse problem of electrocardiography, which can be used to reconstruct Heart Surface Potentials (HSPs) from Body Surface Potentials (BSPs), for non-invasive diagnostics. State of the art solutions to the inverse problem are unsatisfactory, since the inverse problem is known to be ill-posed. In this paper we propose a novel approach to reconstructing HSPs from BSPs using a Time-Delay Artificial Neural Network (TDANN). We first design the TDANN architecture, and then develop an iterative search space algorithm to find the parameters of the TDANN, which results in the best overall HSP prediction. We use real-world recorded BSPs and HSPs from individuals suffering from serious cardiac conditions to validate our TDANN. The results are encouraging, in that coefficients obtained by correlating the predicted HSP with the recorded patient' HSP approach ideal values.
Seismic-Net: A Deep Densely Connected Neural Network to Detect Seismic Events
One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including seismic. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning detection package, named "Seismic-Net", which is based on the deep densely connected neural network. To validate the performance of our proposed leakage detection method, we employ our method to a natural analog site at Chimay\'o, New Mexico. The seismic events in the data sets are generated because of the eruptions of geysers, which is due to the leakage of $\mathrm{CO}_\mathrm{2}$. In particular, we demonstrate the efficacy of our Seismic-Net by formulating our detection problem as an event detection problem with time series data. A fixed-length window is slid throughout the time series data and we build a deep densely connected network to classify each window to determine if a geyser event is included. Through our numerical tests, we show that our model achieves precision/recall as high as 0.889/0.923. Therefore, our Seismic-Net has a great potential for detection of $\mathrm{CO}_\mathrm{2}$ leakage.
Universal Deep Neural Network Compression
In this paper, we investigate lossy compression of deep neural networks (DNNs) by weight quantization and lossless source coding for memory-efficient deployment. Whereas the previous work addressed non-universal scalar quantization and entropy coding of DNN weights, we for the first time introduce universal DNN compression by universal vector quantization and universal source coding. In particular, we examine universal randomized lattice quantization of DNNs, which randomizes DNN weights by uniform random dithering before lattice quantization and can perform near-optimally on any source without relying on knowledge of its probability distribution. Moreover, we present a method of fine-tuning vector quantized DNNs to recover the performance loss after quantization. Our experimental results show that the proposed universal DNN compression scheme compresses the 32-layer ResNet (trained on CIFAR-10) and the AlexNet (trained on ImageNet) with compression ratios of $47.1$ and $42.5$, respectively.
From Game-theoretic Multi-agent Log Linear Learning to Reinforcement Learning
The main focus of this paper is on enhancement of two types of game-theoretic learning algorithms: log-linear learning and reinforcement learning. The standard analysis of log-linear learning needs a highly structured environment, i.e. strong assumptions about the game from an implementation perspective. In this paper, we introduce a variant of log-linear learning that provides asymptotic guarantees while relaxing the structural assumptions to include synchronous updates and limitations in information available to the players. On the other hand, model-free reinforcement learning is able to perform even under weaker assumptions on players' knowledge about the environment and other players' strategies. We propose a reinforcement algorithm that uses a double-aggregation scheme in order to deepen players' insight about the environment and constant learning step-size which achieves a higher convergence rate. Numerical experiments are conducted to verify each algorithm's robustness and performance.
Spectral Image Visualization Using Generative Adversarial Networks
Spectral images captured by satellites and radio-telescopes are analyzed to obtain information about geological compositions distributions, distant asters as well as undersea terrain. Spectral images usually contain tens to hundreds of continuous narrow spectral bands and are widely used in various fields. But the vast majority of those image signals are beyond the visible range, which calls for special visualization technique. The visualizations of spectral images shall convey as much information as possible from the original signal and facilitate image interpretation. However, most of the existing visualizatio methods display spectral images in false colors, which contradict with human's experience and expectation. In this paper, we present a novel visualization generative adversarial network (GAN) to display spectral images in natural colors. To achieve our goal, we propose a loss function which consists of an adversarial loss and a structure loss. The adversarial loss pushes our solution to the natural image distribution using a discriminator network that is trained to differentiate between false-color images and natural-color images. We also use a cycle loss as the structure constraint to guarantee structure consistency. Experimental results show that our method is able to generate structure-preserved and natural-looking visualizations.
Machine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps
It is common practice for developers of user-facing software to transform a mock-up of a graphical user interface (GUI) into code. This process takes place both at an application's inception and in an evolutionary context as GUI changes keep pace with evolving features. Unfortunately, this practice is challenging and time-consuming. In this paper, we present an approach that automates this process by enabling accurate prototyping of GUIs via three tasks: detection, classification, and assembly. First, logical components of a GUI are detected from a mock-up artifact using either computer vision techniques or mock-up metadata. Then, software repository mining, automated dynamic analysis, and deep convolutional neural networks are utilized to accurately classify GUI-components into domain-specific types (e.g., toggle-button). Finally, a data-driven, K-nearest-neighbors algorithm generates a suitable hierarchical GUI structure from which a prototype application can be automatically assembled. We implemented this approach for Android in a system called ReDraw. Our evaluation illustrates that ReDraw achieves an average GUI-component classification accuracy of 91% and assembles prototype applications that closely mirror target mock-ups in terms of visual affinity while exhibiting reasonable code structure. Interviews with industrial practitioners illustrate ReDraw's potential to improve real development workflows.
Improved Oracle Complexity of Variance Reduced Methods for Nonsmooth Convex Stochastic Composition Optimization
We consider the nonsmooth convex composition optimization problem where the objective is a composition of two finite-sum functions and analyze stochastic compositional variance reduced gradient (SCVRG) methods for them. SCVRG and its variants have recently drawn much attention given their edge over stochastic compositional gradient descent (SCGD); but the theoretical analysis exclusively assumes strong convexity of the objective, which excludes several important examples such as Lasso, logistic regression, principle component analysis and deep neural nets. In contrast, we prove non-asymptotic incremental first-order oracle (IFO) complexity of SCVRG or its novel variants for nonsmooth convex composition optimization and show that they are provably faster than SCGD and gradient descent. More specifically, our method achieves the total IFO complexity of $O\left((m+n)\log\left(1/\epsilon\right)+1/\epsilon^3\right)$ which improves that of $O\left(1/\epsilon^{3.5}\right)$ and $O\left((m+n)/\sqrt{\epsilon}\right)$ obtained by SCGD and accelerated gradient descent (AGD) respectively. Experimental results confirm that our methods outperform several existing methods, e.g., SCGD and AGD, on sparse mean-variance optimization problem.
Stochastic Deconvolutional Neural Network Ensemble Training on Generative Pseudo-Adversarial Networks
The training of Generative Adversarial Networks is a difficult task mainly due to the nature of the networks. One such issue is when the generator and discriminator start oscillating, rather than converging to a fixed point. Another case can be when one agent becomes more adept than the other which results in the decrease of the other agent's ability to learn, reducing the learning capacity of the system as a whole. Additionally, there exists the problem of Mode Collapse which involves the generators output collapsing to a single sample or a small set of similar samples. To train GANs a careful selection of the architecture that is used along with a variety of other methods to improve training. Even when applying these methods there is low stability of training in relation to the parameters that are chosen. Stochastic ensembling is suggested as a method for improving the stability while training GANs.
Spectral Learning of Binomial HMMs for DNA Methylation Data
We consider learning parameters of Binomial Hidden Markov Models, which may be used to model DNA methylation data. The standard algorithm for the problem is EM, which is computationally expensive for sequences of the scale of the mammalian genome. Recently developed spectral algorithms can learn parameters of latent variable models via tensor decomposition, and are highly efficient for large data. However, these methods have only been applied to categorial HMMs, and the main challenge is how to extend them to Binomial HMMs while still retaining computational efficiency. We address this challenge by introducing a new feature-map based approach that exploits specific properties of Binomial HMMs. We provide theoretical performance guarantees for our algorithm and evaluate it on real DNA methylation data.
Cadre Modeling: Simultaneously Discovering Subpopulations and Predictive Models
We consider the problem in regression analysis of identifying subpopulations that exhibit different patterns of response, where each subpopulation requires a different underlying model. Unlike statistical cohorts, these subpopulations are not known a priori; thus, we refer to them as cadres. When the cadres and their associated models are interpretable, modeling leads to insights about the subpopulations and their associations with the regression target. We introduce a discriminative model that simultaneously learns cadre assignment and target-prediction rules. Sparsity-inducing priors are placed on the model parameters, under which independent feature selection is performed for both the cadre assignment and target-prediction processes. We learn models using adaptive step size stochastic gradient descent, and we assess cadre quality with bootstrapped sample analysis. We present simulated results showing that, when the true clustering rule does not depend on the entire set of features, our method significantly outperforms methods that learn subpopulation-discovery and target-prediction rules separately. In a materials-by-design case study, our model provides state-of-the-art prediction of polymer glass transition temperature. Importantly, the method identifies cadres of polymers that respond differently to structural perturbations, thus providing design insight for targeting or avoiding specific transition temperature ranges. It identifies chemically meaningful cadres, each with interpretable models. Further experimental results show that cadre methods have generalization that is competitive with linear and nonlinear regression models and can identify robust subpopulations.
DeepHeart: Semi-Supervised Sequence Learning for Cardiovascular Risk Prediction
We train and validate a semi-supervised, multi-task LSTM on 57,675 person-weeks of data from off-the-shelf wearable heart rate sensors, showing high accuracy at detecting multiple medical conditions, including diabetes (0.8451), high cholesterol (0.7441), high blood pressure (0.8086), and sleep apnea (0.8298). We compare two semi-supervised train- ing methods, semi-supervised sequence learning and heuristic pretraining, and show they outperform hand-engineered biomarkers from the medical literature. We believe our work suggests a new approach to patient risk stratification based on cardiovascular risk scores derived from popular wearables such as Fitbit, Apple Watch, or Android Wear.
A Spatial Mapping Algorithm with Applications in Deep Learning-Based Structure Classification
Convolutional Neural Network (CNN)-based machine learning systems have made breakthroughs in feature extraction and image recognition tasks in two dimensions (2D). Although there is significant ongoing work to apply CNN technology to domains involving complex 3D data, the success of such efforts has been constrained, in part, by limitations in data representation techniques. Most current approaches rely upon low-resolution 3D models, strategic limitation of scope in the 3D space, or the application of lossy projection techniques to allow for the use of 2D CNNs. To address this issue, we present a mapping algorithm that converts 3D structures to 2D and 1D data grids by mapping a traversal of a 3D space-filling curve to the traversal of corresponding 2D and 1D curves. We explore the performance of 2D and 1D CNNs trained on data encoded with our method versus comparable volumetric CNNs operating upon raw 3D data from a popular benchmarking dataset. Our experiments demonstrate that both 2D and 1D representations of 3D data generated via our method preserve a significant proportion of the 3D data's features in forms learnable by CNNs. Furthermore, we demonstrate that our method of encoding 3D data into lower-dimensional representations allows for decreased CNN training time cost, increased original 3D model rendering resolutions, and supports increased numbers of data channels when compared to purely volumetric approaches. This demonstration is accomplished in the context of a structural biology classification task wherein we train 3D, 2D, and 1D CNNs on examples of two homologous branches within the Ras protein family. The essential contribution of this paper is the introduction of a dimensionality-reduction method that may ease the application of powerful deep learning tools to domains characterized by complex structural data.
Directly and Efficiently Optimizing Prediction Error and AUC of Linear Classifiers
The predictive quality of machine learning models is typically measured in terms of their (approximate) expected prediction error or the so-called Area Under the Curve (AUC) for a particular data distribution. However, when the models are constructed by the means of empirical risk minimization, surrogate functions such as the logistic loss are optimized instead. This is done because the empirical approximations of the expected error and AUC functions are nonconvex and nonsmooth, and more importantly have zero derivative almost everywhere. In this work, we show that in the case of linear predictors, and under the assumption that the data has normal distribution, the expected error and the expected AUC are not only smooth, but have closed form expressions, which depend on the first and second moments of the normal distribution. Hence, we derive derivatives of these two functions and use these derivatives in an optimization algorithm to directly optimize the expected error and the AUC. In the case of real data sets, the derivatives can be approximated using empirical moments. We show that even when data is not normally distributed, computed derivatives are sufficiently useful to render an efficient optimization method and high quality solutions. Thus, we propose a gradient-based optimization method for direct optimization of the prediction error and AUC. Moreover, the per-iteration complexity of the proposed algorithm has no dependence on the size of the data set, unlike those for optimizing logistic regression and all other well known empirical risk minimization problems.
Learning One Convolutional Layer with Overlapping Patches
We give the first provably efficient algorithm for learning a one hidden layer convolutional network with respect to a general class of (potentially overlapping) patches. Additionally, our algorithm requires only mild conditions on the underlying distribution. We prove that our framework captures commonly used schemes from computer vision, including one-dimensional and two-dimensional "patch and stride" convolutions. Our algorithm-- $Convotron$ -- is inspired by recent work applying isotonic regression to learning neural networks. Convotron uses a simple, iterative update rule that is stochastic in nature and tolerant to noise (requires only that the conditional mean function is a one layer convolutional network, as opposed to the realizable setting). In contrast to gradient descent, Convotron requires no special initialization or learning-rate tuning to converge to the global optimum. We also point out that learning one hidden convolutional layer with respect to a Gaussian distribution and just $one$ disjoint patch $P$ (the other patches may be arbitrary) is $easy$ in the following sense: Convotron can efficiently recover the hidden weight vector by updating $only$ in the direction of $P$.
Predicting Hurricane Trajectories using a Recurrent Neural Network
Hurricanes are cyclones circulating about a defined center whose closed wind speeds exceed 75 mph originating over tropical and subtropical waters. At landfall, hurricanes can result in severe disasters. The accuracy of predicting their trajectory paths is critical to reduce economic loss and save human lives. Given the complexity and nonlinearity of weather data, a recurrent neural network (RNN) could be beneficial in modeling hurricane behavior. We propose the application of a fully connected RNN to predict the trajectory of hurricanes. We employed the RNN over a fine grid to reduce typical truncation errors. We utilized their latitude, longitude, wind speed, and pressure publicly provided by the National Hurricane Center (NHC) to predict the trajectory of a hurricane at 6-hour intervals. Results show that this proposed technique is competitive to methods currently employed by the NHC and can predict up to approximately 120 hours of hurricane path.
Semi-Amortized Variational Autoencoders
Amortized variational inference (AVI) replaces instance-specific local inference with a global inference network. While AVI has enabled efficient training of deep generative models such as variational autoencoders (VAE), recent empirical work suggests that inference networks can produce suboptimal variational parameters. We propose a hybrid approach, to use AVI to initialize the variational parameters and run stochastic variational inference (SVI) to refine them. Crucially, the local SVI procedure is itself differentiable, so the inference network and generative model can be trained end-to-end with gradient-based optimization. This semi-amortized approach enables the use of rich generative models without experiencing the posterior-collapse phenomenon common in training VAEs for problems like text generation. Experiments show this approach outperforms strong autoregressive and variational baselines on standard text and image datasets.
Intentional Control of Type I Error over Unconscious Data Distortion: a Neyman-Pearson Approach to Text Classification
This paper addresses the challenges in classifying textual data obtained from open online platforms, which are vulnerable to distortion. Most existing classification methods minimize the overall classification error and may yield an undesirably large type I error (relevant textual messages are classified as irrelevant), particularly when available data exhibit an asymmetry between relevant and irrelevant information. Data distortion exacerbates this situation and often leads to fallacious prediction. To deal with inestimable data distortion, we propose the use of the Neyman-Pearson (NP) classification paradigm, which minimizes type II error under a user-specified type I error constraint. Theoretically, we show that the NP oracle is unaffected by data distortion when the class conditional distributions remain the same. Empirically, we study a case of classifying posts about worker strikes obtained from a leading Chinese microblogging platform, which are frequently prone to extensive, unpredictable and inestimable censorship. We demonstrate that, even though the training and test data are susceptible to different distortion and therefore potentially follow different distributions, our proposed NP methods control the type I error on test data at the targeted level. The methods and implementation pipeline proposed in our case study are applicable to many other problems involving data distortion.
Applying Cooperative Machine Learning to Speed Up the Annotation of Social Signals in Large Multi-modal Corpora
Scientific disciplines, such as Behavioural Psychology, Anthropology and recently Social Signal Processing are concerned with the systematic exploration of human behaviour. A typical work-flow includes the manual annotation (also called coding) of social signals in multi-modal corpora of considerable size. For the involved annotators this defines an exhausting and time-consuming task. In the article at hand we present a novel method and also provide the tools to speed up the coding procedure. To this end, we suggest and evaluate the use of Cooperative Machine Learning (CML) techniques to reduce manual labelling efforts by combining the power of computational capabilities and human intelligence. The proposed CML strategy starts with a small number of labelled instances and concentrates on predicting local parts first. Afterwards, a session-independent classification model is created to finish the remaining parts of the database. Confidence values are computed to guide the manual inspection and correction of the predictions. To bring the proposed approach into application we introduce NOVA - an open-source tool for collaborative and machine-aided annotations. In particular, it gives labellers immediate access to CML strategies and directly provides visual feedback on the results. Our experiments show that the proposed method has the potential to significantly reduce human labelling efforts.
VISER: Visual Self-Regularization
In this work, we propose the use of large set of unlabeled images as a source of regularization data for learning robust visual representation. Given a visual model trained by a labeled dataset in a supervised fashion, we augment our training samples by incorporating large number of unlabeled data and train a semi-supervised model. We demonstrate that our proposed learning approach leverages an abundance of unlabeled images and boosts the visual recognition performance which alleviates the need to rely on large labeled datasets for learning robust representation. To increment the number of image instances needed to learn robust visual models in our approach, each labeled image propagates its label to its nearest unlabeled image instances. These retrieved unlabeled images serve as local perturbations of each labeled image to perform Visual Self-Regularization (VISER). To retrieve such visual self regularizers, we compute the cosine similarity in a semantic space defined by the penultimate layer in a fully convolutional neural network. We use the publicly available Yahoo Flickr Creative Commons 100M dataset as the source of our unlabeled image set and propose a distributed approximate nearest neighbor algorithm to make retrieval practical at that scale. Using the labeled instances and their regularizer samples we show that we significantly improve object categorization and localization performance on the MS COCO and Visual Genome datasets where objects appear in context.
Recognition of Acoustic Events Using Masked Conditional Neural Networks
Automatic feature extraction using neural networks has accomplished remarkable success for images, but for sound recognition, these models are usually modified to fit the nature of the multi-dimensional temporal representation of the audio signal in spectrograms. This may not efficiently harness the time-frequency representation of the signal. The ConditionaL Neural Network (CLNN) takes into consideration the interrelation between the temporal frames, and the Masked ConditionaL Neural Network (MCLNN) extends upon the CLNN by forcing a systematic sparseness over the network's weights using a binary mask. The masking allows the network to learn about frequency bands rather than bins, mimicking a filterbank used in signal transformations such as MFCC. Additionally, the Mask is designed to consider various combinations of features, which automates the feature hand-crafting process. We applied the MCLNN for the Environmental Sound Recognition problem using the Urbansound8k, YorNoise, ESC-10 and ESC-50 datasets. The MCLNN have achieved competitive performance compared to state-of-the-art Convolutional Neural Networks and hand-crafted attempts.
Tight Lower Bounds for Locally Differentially Private Selection
We prove a tight lower bound (up to constant factors) on the sample complexity of any non-interactive local differentially private protocol for optimizing a linear function over the simplex. This lower bound also implies a tight lower bound (again, up to constant factors) on the sample complexity of any non-interactive local differentially private protocol implementing the exponential mechanism. These results reveal that any local protocol for these problems has exponentially worse dependence on the dimension than corresponding algorithms in the central model. Previously, Kasiviswanathan et al. (FOCS 2008) proved an exponential separation between local and central model algorithms for PAC learning the class of parity functions. In contrast, our lower bound are quantitatively tight, apply to a simple and natural class of linear optimization problems, and our techniques are arguably simpler.
Gradient conjugate priors and multi-layer neural networks
The paper deals with learning probability distributions of observed data by artificial neural networks. We suggest a so-called gradient conjugate prior (GCP) update appropriate for neural networks, which is a modification of the classical Bayesian update for conjugate priors. We establish a connection between the gradient conjugate prior update and the maximization of the log-likelihood of the predictive distribution. Unlike for the Bayesian neural networks, we use deterministic weights of neural networks, but rather assume that the ground truth distribution is normal with unknown mean and variance and learn by the neural networks the parameters of a prior (normal-gamma distribution) for these unknown mean and variance. The update of the parameters is done, using the gradient that, at each step, directs towards minimizing the Kullback--Leibler divergence from the prior to the posterior distribution (both being normal-gamma). We obtain a corresponding dynamical system for the prior's parameters and analyze its properties. In particular, we study the limiting behavior of all the prior's parameters and show how it differs from the case of the classical full Bayesian update. The results are validated on synthetic and real world data sets.
Geometry Score: A Method For Comparing Generative Adversarial Networks
One of the biggest challenges in the research of generative adversarial networks (GANs) is assessing the quality of generated samples and detecting various levels of mode collapse. In this work, we construct a novel measure of performance of a GAN by comparing geometrical properties of the underlying data manifold and the generated one, which provides both qualitative and quantitative means for evaluation. Our algorithm can be applied to datasets of an arbitrary nature and is not limited to visual data. We test the obtained metric on various real-life models and datasets and demonstrate that our method provides new insights into properties of GANs.
Biological Mechanisms for Learning: A Computational Model of Olfactory Learning in the Manduca sexta Moth, with Applications to Neural Nets
The insect olfactory system, which includes the antennal lobe (AL), mushroom body (MB), and ancillary structures, is a relatively simple neural system capable of learning. Its structural features, which are widespread in biological neural systems, process olfactory stimuli through a cascade of networks where large dimension shifts occur from stage to stage and where sparsity and randomness play a critical role in coding. Learning is partly enabled by a neuromodulatory reward mechanism of octopamine stimulation of the AL, whose increased activity induces rewiring of the MB through Hebbian plasticity. Enforced sparsity in the MB focuses Hebbian growth on neurons that are the most important for the representation of the learned odor. Based upon current biophysical knowledge, we have constructed an end-to-end computational model of the Manduca sexta moth olfactory system which includes the interaction of the AL and MB under octopamine stimulation. Our model is able to robustly learn new odors, and our simulations of integrate-and-fire neurons match the statistical features of in-vivo firing rate data. From a biological perspective, the model provides a valuable tool for examining the role of neuromodulators, like octopamine, in learning, and gives insight into critical interactions between sparsity, Hebbian growth, and stimulation during learning. Our simulations also inform predictions about structural details of the olfactory system that are not currently well-characterized. From a machine learning perspective, the model yields bio-inspired mechanisms that are potentially useful in constructing neural nets for rapid learning from very few samples. These mechanisms include high-noise layers, sparse layers as noise filters, and a biologically-plausible optimization method to train the network based on octopamine stimulation, sparse layers, and Hebbian growth.