title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Online Machine Learning in Big Data Streams
The area of online machine learning in big data streams covers algorithms that are (1) distributed and (2) work from data streams with only a limited possibility to store past data. The first requirement mostly concerns software architectures and efficient algorithms. The second one also imposes nontrivial theoretical restrictions on the modeling methods: In the data stream model, older data is no longer available to revise earlier suboptimal modeling decisions as the fresh data arrives. In this article, we provide an overview of distributed software architectures and libraries as well as machine learning models for online learning. We highlight the most important ideas for classification, regression, recommendation, and unsupervised modeling from streaming data, and we show how they are implemented in various distributed data stream processing systems. This article is a reference material and not a survey. We do not attempt to be comprehensive in describing all existing methods and solutions; rather, we give pointers to the most important resources in the field. All related sub-fields, online algorithms, online learning, and distributed data processing are hugely dominant in current research and development with conceptually new research results and software components emerging at the time of writing. In this article, we refer to several survey results, both for distributed data processing and for online machine learning. Compared to past surveys, our article is different because we discuss recommender systems in extended detail.
Constrained Convolutional-Recurrent Networks to Improve Speech Quality with Low Impact on Recognition Accuracy
For a speech-enhancement algorithm, it is highly desirable to simultaneously improve perceptual quality and recognition rate. Thanks to computational costs and model complexities, it is challenging to train a model that effectively optimizes both metrics at the same time. In this paper, we propose a method for speech enhancement that combines local and global contextual structures information through convolutional-recurrent neural networks that improves perceptual quality. At the same time, we introduce a new constraint on the objective function using a language model/decoder that limits the impact on recognition rate. Based on experiments conducted with real user data, we demonstrate that our new context-augmented machine-learning approach for speech enhancement improves PESQ and WER by an additional 24.5% and 51.3%, respectively, when compared to the best-performing methods in the literature.
Combining Linear Non-Gaussian Acyclic Model with Logistic Regression Model for Estimating Causal Structure from Mixed Continuous and Discrete Data
Estimating causal models from observational data is a crucial task in data analysis. For continuous-valued data, Shimizu et al. have proposed a linear acyclic non-Gaussian model to understand the data generating process, and have shown that their model is identifiable when the number of data is sufficiently large. However, situations in which continuous and discrete variables coexist in the same problem are common in practice. Most existing causal discovery methods either ignore the discrete data and apply a continuous-valued algorithm or discretize all the continuous data and then apply a discrete Bayesian network approach. These methods possibly loss important information when we ignore discrete data or introduce the approximation error due to discretization. In this paper, we define a novel hybrid causal model which consists of both continuous and discrete variables. The model assumes: (1) the value of a continuous variable is a linear function of its parent variables plus a non-Gaussian noise, and (2) each discrete variable is a logistic variable whose distribution parameters depend on the values of its parent variables. In addition, we derive the BIC scoring function for model selection. The new discovery algorithm can learn causal structures from mixed continuous and discrete data without discretization. We empirically demonstrate the power of our method through thorough simulations.
Pattern Localization in Time Series through Signal-To-Model Alignment in Latent Space
In this paper, we study the problem of locating a predefined sequence of patterns in a time series. In particular, the studied scenario assumes a theoretical model is available that contains the expected locations of the patterns. This problem is found in several contexts, and it is commonly solved by first synthesizing a time series from the model, and then aligning it to the true time series through dynamic time warping. We propose a technique that increases the similarity of both time series before aligning them, by mapping them into a latent correlation space. The mapping is learned from the data through a machine-learning setup. Experiments on data from non-destructive testing demonstrate that the proposed approach shows significant improvements over the state of the art.
Spectral Normalization for Generative Adversarial Networks
One of the challenges in the study of generative adversarial networks is the instability of its training. In this paper, we propose a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator. Our new normalization technique is computationally light and easy to incorporate into existing implementations. We tested the efficacy of spectral normalization on CIFAR10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed that spectrally normalized GANs (SN-GANs) is capable of generating images of better or equal quality relative to the previous training stabilization techniques.
WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models
Learning sparse linear models with two-way interactions is desirable in many application domains such as genomics. l1-regularised linear models are popular to estimate sparse models, yet standard implementations fail to address specifically the quadratic explosion of candidate two-way interactions in high dimensions, and typically do not scale to genetic data with hundreds of thousands of features. Here we present WHInter, a working set algorithm to solve large l1-regularised problems with two-way interactions for binary design matrices. The novelty of WHInter stems from a new bound to efficiently identify working sets while avoiding to scan all features, and on fast computations inspired from solutions to the maximum inner product search problem. We apply WHInter to simulated and real genetic data and show that it is more scalable and two orders of magnitude faster than the state of the art.
Tensor-based Nonlinear Classifier for High-Order Data Analysis
In this paper we propose a tensor-based nonlinear model for high-order data classification. The advantages of the proposed scheme are that (i) it significantly reduces the number of weight parameters, and hence of required training samples, and (ii) it retains the spatial structure of the input samples. The proposed model, called \textit{Rank}-1 FNN, is based on a modification of a feedforward neural network (FNN), such that its weights satisfy the {\it rank}-1 canonical decomposition. We also introduce a new learning algorithm to train the model, and we evaluate the \textit{Rank}-1 FNN on third-order hyperspectral data. Experimental results and comparisons indicate that the proposed model outperforms state of the art classification methods, including deep learning based ones, especially in cases with small numbers of available training samples.
Disentangling by Factorising
We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon $\beta$-VAE by providing a better trade-off between disentanglement and reconstruction quality. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.
Improved GQ-CNN: Deep Learning Model for Planning Robust Grasps
Recent developments in the field of robot grasping have shown great improvements in the grasp success rates when dealing with unknown objects. In this work we improve on one of the most promising approaches, the Grasp Quality Convolutional Neural Network (GQ-CNN) trained on the DexNet 2.0 dataset. We propose a new architecture for the GQ-CNN and describe practical improvements that increase the model validation accuracy from 92.2% to 95.8% and from 85.9% to 88.0% on respectively image-wise and object-wise training and validation splits.
Neural Voice Cloning with a Few Samples
Voice cloning is a highly desired feature for personalized speech interfaces. Neural network based speech synthesis has been shown to generate high quality speech for a large number of speakers. In this paper, we introduce a neural voice cloning system that takes a few audio samples as input. We study two approaches: speaker adaptation and speaker encoding. Speaker adaptation is based on fine-tuning a multi-speaker generative model with a few cloning samples. Speaker encoding is based on training a separate model to directly infer a new speaker embedding from cloning audios and to be used with a multi-speaker generative model. In terms of naturalness of the speech and its similarity to original speaker, both approaches can achieve good performance, even with very few cloning audios. While speaker adaptation can achieve better naturalness and similarity, the cloning time or required memory for the speaker encoding approach is significantly less, making it favorable for low-resource deployment.
WebEye - Automated Collection of Malicious HTTP Traffic
With malware detection techniques increasingly adopting machine learning approaches, the creation of precise training sets becomes more and more important. Large data sets of realistic web traffic, correctly classified as benign or malicious are needed, not only to train classic and deep learning algorithms, but also to serve as evaluation benchmarks for existing malware detection products. Interestingly, despite the vast number and versatility of threats a user may encounter when browsing the web, actual malicious content is often hard to come by, since prerequisites such as browser and operating system type and version must be met in order to receive the payload from a malware distributing server. In combination with privacy constraints on data sets of actual user traffic, it is difficult for researchers and product developers to evaluate anti-malware solutions against large-scale data sets of realistic web traffic. In this paper we present WebEye, a framework that autonomously creates realistic HTTP traffic, enriches recorded traffic with additional information, and classifies records as malicious or benign, using different classifiers. We are using WebEye to collect malicious HTML and JavaScript and show how datasets created with WebEye can be used to train machine learning based malware detection algorithms. We regard WebEye and the data sets it creates as a tool for researchers and product developers to evaluate and improve their AI-based anti-malware solutions against large-scale benchmarks.
Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis
Distance metric learning (DML), which learns a distance metric from labeled "similar" and "dissimilar" data pairs, is widely utilized. Recently, several works investigate orthogonality-promoting regularization (OPR), which encourages the projection vectors in DML to be close to being orthogonal, to achieve three effects: (1) high balancedness -- achieving comparable performance on both frequent and infrequent classes; (2) high compactness -- using a small number of projection vectors to achieve a "good" metric; (3) good generalizability -- alleviating overfitting to training data. While showing promising results, these approaches suffer three problems. First, they involve solving non-convex optimization problems where achieving the global optimal is NP-hard. Second, it lacks a theoretical understanding why OPR can lead to balancedness. Third, the current generalization error analysis of OPR is not directly on the regularizer. In this paper, we address these three issues by (1) seeking convex relaxations of the original nonconvex problems so that the global optimal is guaranteed to be achievable; (2) providing a formal analysis on OPR's capability of promoting balancedness; (3) providing a theoretical analysis that directly reveals the relationship between OPR and generalization performance. Experiments on various datasets demonstrate that our convex methods are more effective in promoting balancedness, compactness, and generalization, and are computationally more efficient, compared with the nonconvex methods.
Policy Evaluation and Optimization with Continuous Treatments
We study the problem of policy evaluation and learning from batched contextual bandit data when treatments are continuous, going beyond previous work on discrete treatments. Previous work for discrete treatment/action spaces focuses on inverse probability weighting (IPW) and doubly robust (DR) methods that use a rejection sampling approach for evaluation and the equivalent weighted classification problem for learning. In the continuous setting, this reduction fails as we would almost surely reject all observations. To tackle the case of continuous treatments, we extend the IPW and DR approaches to the continuous setting using a kernel function that leverages treatment proximity to attenuate discrete rejection. Our policy estimator is consistent and we characterize the optimal bandwidth. The resulting continuous policy optimizer (CPO) approach using our estimator achieves convergent regret and approaches the best-in-class policy for learnable policy classes. We demonstrate that the estimator performs well and, in particular, outperforms a discretization-based benchmark. We further study the performance of our policy optimizer in a case study on personalized dosing based on a dataset of Warfarin patients, their covariates, and final therapeutic doses. Our learned policy outperforms benchmarks and nears the oracle-best linear policy.
Online Continuous Submodular Maximization
In this paper, we consider an online optimization process, where the objective functions are not convex (nor concave) but instead belong to a broad class of continuous submodular functions. We first propose a variant of the Frank-Wolfe algorithm that has access to the full gradient of the objective functions. We show that it achieves a regret bound of $O(\sqrt{T})$ (where $T$ is the horizon of the online optimization problem) against a $(1-1/e)$-approximation to the best feasible solution in hindsight. However, in many scenarios, only an unbiased estimate of the gradients are available. For such settings, we then propose an online stochastic gradient ascent algorithm that also achieves a regret bound of $O(\sqrt{T})$ regret, albeit against a weaker $1/2$-approximation to the best feasible solution in hindsight. We also generalize our results to $\gamma$-weakly submodular functions and prove the same sublinear regret bounds. Finally, we demonstrate the efficiency of our algorithms on a few problem instances, including non-convex/non-concave quadratic programs, multilinear extensions of submodular set functions, and D-optimal design.
Variance-based Gradient Compression for Efficient Distributed Deep Learning
Due to the substantial computational cost, training state-of-the-art deep neural networks for large-scale datasets often requires distributed training using multiple computation workers. However, by nature, workers need to frequently communicate gradients, causing severe bottlenecks, especially on lower bandwidth connections. A few methods have been proposed to compress gradient for efficient communication, but they either suffer a low compression ratio or significantly harm the resulting model accuracy, particularly when applied to convolutional neural networks. To address these issues, we propose a method to reduce the communication overhead of distributed deep learning. Our key observation is that gradient updates can be delayed until an unambiguous (high amplitude, low variance) gradient has been calculated. We also present an efficient algorithm to compute the variance with negligible additional cost. We experimentally show that our method can achieve very high compression ratio while maintaining the result model accuracy. We also analyze the efficiency using computation and communication cost models and provide the evidence that this method enables distributed deep learning for many scenarios with commodity environments.
Bridging Cognitive Programs and Machine Learning
While great advances are made in pattern recognition and machine learning, the successes of such fields remain restricted to narrow applications and seem to break down when training data is scarce, a shift in domain occurs, or when intelligent reasoning is required for rapid adaptation to new environments. In this work, we list several of the shortcomings of modern machine-learning solutions, specifically in the contexts of computer vision and in reinforcement learning and suggest directions to explore in order to try to ameliorate these weaknesses.
Gradient descent with identity initialization efficiently learns positive definite linear transformations by deep residual networks
We analyze algorithms for approximating a function $f(x) = \Phi x$ mapping $\Re^d$ to $\Re^d$ using deep linear neural networks, i.e. that learn a function $h$ parameterized by matrices $\Theta_1,...,\Theta_L$ and defined by $h(x) = \Theta_L \Theta_{L-1} ... \Theta_1 x$. We focus on algorithms that learn through gradient descent on the population quadratic loss in the case that the distribution over the inputs is isotropic. We provide polynomial bounds on the number of iterations for gradient descent to approximate the least squares matrix $\Phi$, in the case where the initial hypothesis $\Theta_1 = ... = \Theta_L = I$ has excess loss bounded by a small enough constant. On the other hand, we show that gradient descent fails to converge for $\Phi$ whose distance from the identity is a larger constant, and we show that some forms of regularization toward the identity in each layer do not help. If $\Phi$ is symmetric positive definite, we show that an algorithm that initializes $\Theta_i = I$ learns an $\epsilon$-approximation of $f$ using a number of updates polynomial in $L$, the condition number of $\Phi$, and $\log(d/\epsilon)$. In contrast, we show that if the least squares matrix $\Phi$ is symmetric and has a negative eigenvalue, then all members of a class of algorithms that perform gradient descent with identity initialization, and optionally regularize toward the identity in each layer, fail to converge. We analyze an algorithm for the case that $\Phi$ satisfies $u^{\top} \Phi u > 0$ for all $u$, but may not be symmetric. This algorithm uses two regularizers: one that maintains the invariant $u^{\top} \Theta_L \Theta_{L-1} ... \Theta_1 u > 0$ for all $u$, and another that "balances" $\Theta_1, ..., \Theta_L$ so that they have the same singular values.
Mining Sub-Interval Relationships In Time Series Data
Time-series data is being increasingly collected and stud- ied in several areas such as neuroscience, climate science, transportation, and social media. Discovery of complex patterns of relationships between individual time-series, using data-driven approaches can improve our understanding of real-world systems. While traditional approaches typically study relationships between two entire time series, many interesting relationships in real-world applications exist in small sub-intervals of time while remaining absent or feeble during other sub-intervals. In this paper, we define the notion of a sub-interval relationship (SIR) to capture inter- actions between two time series that are prominent only in certain sub-intervals of time. We propose a novel and efficient approach to find most interesting SIR in a pair of time series. We evaluate our proposed approach on two real-world datasets from climate science and neuroscience domain and demonstrated the scalability and computational efficiency of our proposed approach. We further evaluated our discovered SIRs based on a randomization based procedure. Our results indicated the existence of several such relationships that are statistically significant, some of which were also found to have physical interpretation.
Information-theoretic Limits for Community Detection in Network Models
We analyze the information-theoretic limits for the recovery of node labels in several network models. This includes the Stochastic Block Model, the Exponential Random Graph Model, the Latent Space Model, the Directed Preferential Attachment Model, and the Directed Small-world Model. For the Stochastic Block Model, the non-recoverability condition depends on the probabilities of having edges inside a community, and between different communities. For the Latent Space Model, the non-recoverability condition depends on the dimension of the latent space, and how far and spread are the communities in the latent space. For the Directed Preferential Attachment Model and the Directed Small-world Model, the non-recoverability condition depends on the ratio between homophily and neighborhood size. We also consider dynamic versions of the Stochastic Block Model and the Latent Space Model.
The Mean-Field Approximation: Information Inequalities, Algorithms, and Complexity
The mean field approximation to the Ising model is a canonical variational tool that is used for analysis and inference in Ising models. We provide a simple and optimal bound for the KL error of the mean field approximation for Ising models on general graphs, and extend it to higher order Markov random fields. Our bound improves on previous bounds obtained in work in the graph limit literature by Borgs, Chayes, Lov\'asz, S\'os, and Vesztergombi and another recent work by Basak and Mukherjee. Our bound is tight up to lower order terms. Building on the methods used to prove the bound, along with techniques from combinatorics and optimization, we study the algorithmic problem of estimating the (variational) free energy for Ising models and general Markov random fields. For a graph $G$ on $n$ vertices and interaction matrix $J$ with Frobenius norm $\| J \|_F$, we provide algorithms that approximate the free energy within an additive error of $\epsilon n \|J\|_F$ in time $\exp(poly(1/\epsilon))$. We also show that approximation within $(n \|J\|_F)^{1-\delta}$ is NP-hard for every $\delta > 0$. Finally, we provide more efficient approximation algorithms, which find the optimal mean field approximation, for ferromagnetic Ising models and for Ising models satisfying Dobrushin's condition.
The Vertex Sample Complexity of Free Energy is Polynomial
We study the following question: given a massive Markov random field on $n$ nodes, can a small sample from it provide a rough approximation to the free energy $\mathcal{F}_n = \log{Z_n}$? Results in graph limit literature by Borgs, Chayes, Lov\'asz, S\'os, and Vesztergombi show that for Ising models on $n$ nodes and interactions of strength $\Theta(1/n)$, an $\epsilon$ approximation to $\log Z_n / n$ can be achieved by sampling a randomly induced model on $2^{O(1/\epsilon^2)}$ nodes. We show that the sampling complexity of this problem is {\em polynomial in} $1/\epsilon$. We further show a polynomial dependence on $\epsilon$ cannot be avoided. Our results are very general as they apply to higher order Markov random fields. For Markov random fields of order $r$, we obtain an algorithm that achieves $\epsilon$ approximation using a number of samples polynomial in $r$ and $1/\epsilon$ and running time that is $2^{O(1/\epsilon^2)}$ up to polynomial factors in $r$ and $\epsilon$. For ferromagnetic Ising models, the running time is polynomial in $1/\epsilon$. Our results are intimately connected to recent research on the regularity lemma and property testing, where the interest is in finding which properties can tested within $\epsilon$ error in time polynomial in $1/\epsilon$. In particular, our proofs build on results from a recent work by Alon, de la Vega, Kannan and Karpinski, who also introduced the notion of polynomial vertex sample complexity. Another critical ingredient of the proof is an effective bound by the authors of the paper relating the variational free energy and the free energy.
Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks
Motivated by the pursuit of a systematic computational and algorithmic understanding of Generative Adversarial Networks (GANs), we present a simple yet unified non-asymptotic local convergence theory for smooth two-player games, which subsumes several discrete-time gradient-based saddle point dynamics. The analysis reveals the surprising nature of the off-diagonal interaction term as both a blessing and a curse. On the one hand, this interaction term explains the origin of the slow-down effect in the convergence of Simultaneous Gradient Ascent (SGA) to stable Nash equilibria. On the other hand, for the unstable equilibria, exponential convergence can be proved thanks to the interaction term, for four modified dynamics proposed to stabilize GAN training: Optimistic Mirror Descent (OMD), Consensus Optimization (CO), Implicit Updates (IU) and Predictive Method (PM). The analysis uncovers the intimate connections among these stabilizing techniques, and provides detailed characterization on the choice of learning rate. As a by-product, we present a new analysis for OMD proposed in Daskalakis, Ilyas, Syrgkanis, and Zeng [2017] with improved rates.
Detecting Social Influence in Event Cascades by Comparing Discriminative Rankers
The global dynamics of event cascades are often governed by the local dynamics of peer influence. However, detecting social influence from observational data is challenging due to confounds like homophily and practical issues like missing data. We propose a simple discriminative method to detect influence from observational data. The core of the approach is to train a ranking algorithm to predict the source of the next event in a cascade, and compare its out-of-sample accuracy against a competitive baseline which lacks access to features corresponding to social influence. We analyze synthetically generated data to show that this method correctly identifies influence in the presence of confounds, and is robust to both missing data and misspecification --- unlike well-known alternatives. We apply the method to two real-world datasets: (1) the co-sponsorship of legislation in the U.S. House of Representatives on a social network of shared campaign donors; (2) rumors about the Higgs boson discovery on a follower network of $10^5$ Twitter accounts. Our model identifies the role of social influence in these scenarios and uses it to make more accurate predictions about the future trajectory of cascades.
Reactive Reinforcement Learning in Asynchronous Environments
The relationship between a reinforcement learning (RL) agent and an asynchronous environment is often ignored. Frequently used models of the interaction between an agent and its environment, such as Markov Decision Processes (MDP) or Semi-Markov Decision Processes (SMDP), do not capture the fact that, in an asynchronous environment, the state of the environment may change during computation performed by the agent. In an asynchronous environment, minimizing reaction time---the time it takes for an agent to react to an observation---also minimizes the time in which the state of the environment may change following observation. In many environments, the reaction time of an agent directly impacts task performance by permitting the environment to transition into either an undesirable terminal state or a state where performing the chosen action is inappropriate. We propose a class of reactive reinforcement learning algorithms that address this problem of asynchronous environments by immediately acting after observing new state information. We compare a reactive SARSA learning algorithm with the conventional SARSA learning algorithm on two asynchronous robotic tasks (emergency stopping and impact prevention), and show that the reactive RL algorithm reduces the reaction time of the agent by approximately the duration of the algorithm's learning update. This new class of reactive algorithms may facilitate safer control and faster decision making without any change to standard learning guarantees.
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
An explosion of high-throughput DNA sequencing in the past decade has led to a surge of interest in population-scale inference with whole-genome data. Recent work in population genetics has centered on designing inference methods for relatively simple model classes, and few scalable general-purpose inference techniques exist for more realistic, complex models. To achieve this, two inferential challenges need to be addressed: (1) population data are exchangeable, calling for methods that efficiently exploit the symmetries of the data, and (2) computing likelihoods is intractable as it requires integrating over a set of correlated, extremely high-dimensional latent variables. These challenges are traditionally tackled by likelihood-free methods that use scientific simulators to generate datasets and reduce them to hand-designed, permutation-invariant summary statistics, often leading to inaccurate inference. In this work, we develop an exchangeable neural network that performs summary statistic-free, likelihood-free inference. Our framework can be applied in a black-box fashion across a variety of simulation-based tasks, both within and outside biology. We demonstrate the power of our approach on the recombination hotspot testing problem, outperforming the state-of-the-art.
CapsuleGAN: Generative Adversarial Capsule Network
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on MNIST and CIFAR-10 datasets, evaluated on the generative adversarial metric and at semi-supervised image classification.
An Alternative View: When Does SGD Escape Local Minima?
Stochastic gradient descent (SGD) is widely used in machine learning. Although being commonly viewed as a fast but not accurate version of gradient descent (GD), it always finds better solutions than GD for modern neural networks. In order to understand this phenomenon, we take an alternative view that SGD is working on the convolved (thus smoothed) version of the loss function. We show that, even if the function $f$ has many bad local minima or saddle points, as long as for every point $x$, the weighted average of the gradients of its neighborhoods is one point convex with respect to the desired solution $x^*$, SGD will get close to, and then stay around $x^*$ with constant probability. More specifically, SGD will not get stuck at "sharp" local minima with small diameters, as long as the neighborhoods of these regions contain enough gradient information. The neighborhood size is controlled by step size and gradient noise. Our result identifies a set of functions that SGD provably works, which is much larger than the set of convex functions. Empirically, we observe that the loss surface of neural networks enjoys nice one point convexity properties locally, therefore our theorem helps explain why SGD works so well for neural networks.
Learning to Race through Coordinate Descent Bayesian Optimisation
In the automation of many kinds of processes, the observable outcome can often be described as the combined effect of an entire sequence of actions, or controls, applied throughout its execution. In these cases, strategies to optimise control policies for individual stages of the process might not be applicable, and instead the whole policy might have to be optimised at once. On the other hand, the cost to evaluate the policy's performance might also be high, being desirable that a solution can be found with as few interactions as possible with the real system. We consider the problem of optimising control policies to allow a robot to complete a given race track within a minimum amount of time. We assume that the robot has no prior information about the track or its own dynamical model, just an initial valid driving example. Localisation is only applied to monitor the robot and to provide an indication of its position along the track's centre axis. We propose a method for finding a policy that minimises the time per lap while keeping the vehicle on the track using a Bayesian optimisation (BO) approach over a reproducing kernel Hilbert space. We apply an algorithm to search more efficiently over high-dimensional policy-parameter spaces with BO, by iterating over each dimension individually, in a sequential coordinate descent-like scheme. Experiments demonstrate the performance of the algorithm against other methods in a simulated car racing environment.
Semi-supervised multi-task learning for lung cancer diagnosis
Early detection of lung nodules is of great importance in lung cancer screening. Existing research recognizes the critical role played by CAD systems in early detection and diagnosis of lung nodules. However, many CAD systems, which are used as cancer detection tools, produce a lot of false positives (FP) and require a further FP reduction step. Furthermore, guidelines for early diagnosis and treatment of lung cancer are consist of different shape and volume measurements of abnormalities. Segmentation is at the heart of our understanding of nodules morphology making it a major area of interest within the field of computer aided diagnosis systems. This study set out to test the hypothesis that joint learning of false positive (FP) nodule reduction and nodule segmentation can improve the computer aided diagnosis (CAD) systems' performance on both tasks. To support this hypothesis we propose a 3D deep multi-task CNN to tackle these two problems jointly. We tested our system on LUNA16 dataset and achieved an average dice similarity coefficient (DSC) of 91% as segmentation accuracy and a score of nearly 92% for FP reduction. As a proof of our hypothesis, we showed improvements of segmentation and FP reduction tasks over two baselines. Our results support that joint training of these two tasks through a multi-task learning approach improves system performance on both. We also showed that a semi-supervised approach can be used to overcome the limitation of lack of labeled data for the 3D segmentation task.
CREPE: A Convolutional Representation for Pitch Estimation
The task of estimating the fundamental frequency of a monophonic sound recording, also known as pitch tracking, is fundamental to audio processing with multiple applications in speech processing and music information retrieval. To date, the best performing techniques, such as the pYIN algorithm, are based on a combination of DSP pipelines and heuristics. While such techniques perform very well on average, there remain many cases in which they fail to correctly estimate the pitch. In this paper, we propose a data-driven pitch tracking algorithm, CREPE, which is based on a deep convolutional neural network that operates directly on the time-domain waveform. We show that the proposed model produces state-of-the-art results, performing equally or better than pYIN. Furthermore, we evaluate the model's generalizability in terms of noise robustness. A pre-trained version of CREPE is made freely available as an open-source Python module for easy application.
Optimal Single Sample Tests for Structured versus Unstructured Network Data
We study the problem of testing, using only a single sample, between mean field distributions (like Curie-Weiss, Erd\H{o}s-R\'enyi) and structured Gibbs distributions (like Ising model on sparse graphs and Exponential Random Graphs). Our goal is to test without knowing the parameter values of the underlying models: only the \emph{structure} of dependencies is known. We develop a new approach that applies to both the Ising and Exponential Random Graph settings based on a general and natural statistical test. The test can distinguish the hypotheses with high probability above a certain threshold in the (inverse) temperature parameter, and is optimal in that below the threshold no test can distinguish the hypotheses. The thresholds do not correspond to the presence of long-range order in the models. By aggregating information at a global scale, our test works even at very high temperatures. The proofs are based on distributional approximation and sharp concentration of quadratic forms, when restricted to Hamming spheres. The restriction to Hamming spheres is necessary, since otherwise any scalar statistic is useless without explicit knowledge of the temperature parameter. At the same time, this restriction radically changes the behavior of the functions under consideration, resulting in a much smaller variance than in the independent setting; this makes it hard to directly apply standard methods (i.e., Stein's method) for concentration of weakly dependent variables. Instead, we carry out an additional tensorization argument using a Markov chain that respects the symmetry of the Hamming sphere.
Efficient GAN-Based Anomaly Detection
Generative adversarial networks (GANs) are able to model the complex highdimensional distributions of real-world data, which suggests they could be effective for anomaly detection. However, few works have explored the use of GANs for the anomaly detection task. We leverage recently developed GAN models for anomaly detection, and achieve state-of-the-art performance on image and network intrusion datasets, while being several hundred-fold faster at test time than the only published GAN-based method.
A Deep Q-Learning Agent for the L-Game with Variable Batch Training
We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while self-learning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and significantly accelerate training. Despite the large action space due to the number of possible moves, the low-dimensional state space and the rarity of rewards, which only come at the end of a game, DQL is successful in training an agent capable of strong play without the use of any search methods or domain knowledge.
A Collaborative Computer Aided Diagnosis (C-CAD) System with Eye-Tracking, Sparse Attentional Model, and Deep Learning
There are at least two categories of errors in radiology screening that can lead to suboptimal diagnostic decisions and interventions:(i)human fallibility and (ii)complexity of visual search. Computer aided diagnostic (CAD) tools are developed to help radiologists to compensate for some of these errors. However, despite their significant improvements over conventional screening strategies, most CAD systems do not go beyond their use as second opinion tools due to producing a high number of false positives, which human interpreters need to correct. In parallel with efforts in computerized analysis of radiology scans, several researchers have examined behaviors of radiologists while screening medical images to better understand how and why they miss tumors, how they interact with the information in an image, and how they search for unknown pathology in the images. Eye-tracking tools have been instrumental in exploring answers to these fundamental questions. In this paper, we aim to develop a paradigm shift CAD system, called collaborative CAD (C-CAD), that unifies both of the above mentioned research lines: CAD and eye-tracking. We design an eye-tracking interface providing radiologists with a real radiology reading room experience. Then, we propose a novel algorithm that unifies eye-tracking data and a CAD system. Specifically, we present a new graph based clustering and sparsification algorithm to transform eye-tracking data (gaze) into a signal model to interpret gaze patterns quantitatively and qualitatively. The proposed C-CAD collaborates with radiologists via eye-tracking technology and helps them to improve diagnostic decisions. The C-CAD learns radiologists' search efficiency by processing their gaze patterns. To do this, the C-CAD uses a deep learning algorithm in a newly designed multi-task learning platform to segment and diagnose cancers simultaneously.
An analysis of training and generalization errors in shallow and deep networks
This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation function. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization error in approximation of compositional functions in order to take full advantage of the compositional structure. Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error. We give estimates on exactly how many parameters ensure both zero training error as well as a good generalization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error as well as a good generalization error and estimate how much error to expect at which test data.
Nonconvex Matrix Factorization from Rank-One Measurements
We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descent, following a tailored spectral initialization. When the true rank is small, this algorithm is guaranteed to converge to the ground truth (up to global ambiguity) with near-optimal sample complexity and computational complexity. To the best of our knowledge, this is the first guarantee that achieves near-optimality in both metrics. In particular, the key enabler of near-optimal computational guarantees is an implicit regularization phenomenon: without explicit regularization, both spectral initialization and the gradient descent iterates automatically stay within a region incoherent with the measurement vectors. This feature allows one to employ much more aggressive step sizes compared with the ones suggested in prior literature, without the need of sample splitting.
Unsupervised vehicle recognition using incremental reseeding of acoustic signatures
Vehicle recognition and classification have broad applications, ranging from traffic flow management to military target identification. We demonstrate an unsupervised method for automated identification of moving vehicles from roadside audio sensors. Using a short-time Fourier transform to decompose audio signals, we treat the frequency signature in each time window as an individual data point. We then use a spectral embedding for dimensionality reduction. Based on the leading eigenvectors, we relate the performance of an incremental reseeding algorithm to that of spectral clustering. We find that incremental reseeding accurately identifies individual vehicles using their acoustic signatures.
Nonparametric Estimation of Low Rank Matrix Valued Function
Let $A:[0,1]\rightarrow\mathbb{H}_m$ (the space of Hermitian matrices) be a matrix valued function which is low rank with entries in H\"{o}lder class $\Sigma(\beta,L)$. The goal of this paper is to study statistical estimation of $A$ based on the regression model $\mathbb{E}(Y_j|\tau_j,X_j) = \langle A(\tau_j), X_j \rangle,$ where $\tau_j$ are i.i.d. uniformly distributed in $[0,1]$, $X_j$ are i.i.d. matrix completion sampling matrices, $Y_j$ are independent bounded responses. We propose an innovative nuclear norm penalized local polynomial estimator and establish an upper bound on its point-wise risk measured by Frobenius norm. Then we extend this estimator globally and prove an upper bound on its integrated risk measured by $L_2$-norm. We also propose another new estimator based on bias-reducing kernels to study the case when $A$ is not necessarily low rank and establish an upper bound on its risk measured by $L_{\infty}$-norm. We show that the obtained rates are all optimal up to some logarithmic factor in minimax sense. Finally, we propose an adaptive estimation procedure based on Lepskii's method and model selection with data splitting which is computationally efficient and can be easily implemented and parallelized.
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces
We introduce several new black-box reductions that significantly improve the design of adaptive and parameter-free online learning algorithms by simplifying analysis, improving regret guarantees, and sometimes even improving runtime. We reduce parameter-free online learning to online exp-concave optimization, we reduce optimization in a Banach space to one-dimensional optimization, and we reduce optimization over a constrained domain to unconstrained optimization. All of our reductions run as fast as online gradient descent. We use our new techniques to improve upon the previously best regret bounds for parameter-free learning, and do so for arbitrary norms.
Exact and Robust Conformal Inference Methods for Predictive Machine Learning With Dependent Data
We extend conformal inference to general settings that allow for time series data. Our proposal is developed as a randomization method and accounts for potential serial dependence by including block structures in the permutation scheme. As a result, the proposed method retains the exact, model-free validity when the data are i.i.d. or more generally exchangeable, similar to usual conformal inference methods. When exchangeability fails, as is the case for common time series data, the proposed approach is approximately valid under weak assumptions on the conformity score.
Machine learning for Internet of Things data analysis: A survey
Rapid developments in hardware, software, and communication technologies have allowed the emergence of Internet-connected sensory devices that provide observation and data measurement from the physical world. By 2020, it is estimated that the total number of Internet-connected devices being used will be between 25 and 50 billion. As the numbers grow and technologies become more mature, the volume of data published will increase. Internet-connected devices technology, referred to as Internet of Things (IoT), continues to extend the current Internet by providing connectivity and interaction between the physical and cyber worlds. In addition to increased volume, the IoT generates Big Data characterized by velocity in terms of time and location dependency, with a variety of multiple modalities and varying data quality. Intelligent processing and analysis of this Big Data is the key to developing smart IoT applications. This article assesses the different machine learning methods that deal with the challenges in IoT data by considering smart cities as the main use case. The key contribution of this study is presentation of a taxonomy of machine learning algorithms explaining how different techniques are applied to the data in order to extract higher level information. The potential and challenges of machine learning for IoT data analytics will also be discussed. A use case of applying Support Vector Machine (SVM) on Aarhus Smart City traffic data is presented for a more detailed exploration.
Learning Data-Driven Objectives to Optimize Interactive Systems
Effective optimization is essential for interactive systems to provide a satisfactory user experience. However, it is often challenging to find an objective to optimize for. Generally, such objectives are manually crafted and rarely capture complex user needs in an accurate manner. We propose an approach that infers the objective directly from observed user interactions. These inferences can be made regardless of prior knowledge and across different types of user behavior. We introduce interactive system optimization, a novel algorithm that uses these inferred objectives for optimization. Our main contribution is a new general principled approach to optimizing interactive systems using data-driven objectives. We demonstrate the high effectiveness of interactive system optimization over several simulations.
Learning Adversarially Fair and Transferable Representations
In this paper, we advocate for representation learning as the key to mitigating unfair prediction outcomes downstream. Motivated by a scenario where learned representations are used by third parties with unknown objectives, we propose and explore adversarial representation learning as a natural method of ensuring those parties act fairly. We connect group fairness (demographic parity, equalized odds, and equal opportunity) to different adversarial objectives. Through worst-case theoretical guarantees and experimental validation, we show that the choice of this objective is crucial to fair prediction. Furthermore, we present the first in-depth experimental demonstration of fair transfer learning and demonstrate empirically that our learned representations admit fair predictions on new tasks while maintaining utility, an essential goal of fair representation learning.
Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture
In this paper, we propose a deep learning based vehicle trajectory prediction technique which can generate the future trajectory sequence of surrounding vehicles in real time. We employ the encoder-decoder architecture which analyzes the pattern underlying in the past trajectory using the long short-term memory (LSTM) based encoder and generates the future trajectory sequence using the LSTM based decoder. This structure produces the $K$ most likely trajectory candidates over occupancy grid map by employing the beam search technique which keeps the $K$ locally best candidates from the decoder output. The experiments conducted on highway traffic scenarios show that the prediction accuracy of the proposed method is significantly higher than the conventional trajectory prediction techniques.
Stochastic Chebyshev Gradient Descent for Spectral Optimization
A large class of machine learning techniques requires the solution of optimization problems involving spectral functions of parametric matrices, e.g. log-determinant and nuclear norm. Unfortunately, computing the gradient of a spectral function is generally of cubic complexity, as such gradient descent methods are rather expensive for optimizing objectives involving the spectral function. Thus, one naturally turns to stochastic gradient methods in hope that they will provide a way to reduce or altogether avoid the computation of full gradients. However, here a new challenge appears: there is no straightforward way to compute unbiased stochastic gradients for spectral functions. In this paper, we develop unbiased stochastic gradients for spectral-sums, an important subclass of spectral functions. Our unbiased stochastic gradients are based on combining randomized trace estimators with stochastic truncation of the Chebyshev expansions. A careful design of the truncation distribution allows us to offer distributions that are variance-optimal, which is crucial for fast and stable convergence of stochastic gradient methods. We further leverage our proposed stochastic gradients to devise stochastic methods for objective functions involving spectral-sums, and rigorously analyze their convergence rate. The utility of our methods is demonstrated in numerical experiments.
Convergence of Online Mirror Descent
In this paper we consider online mirror descent (OMD) algorithms, a class of scalable online learning algorithms exploiting data geometric structures through mirror maps. Necessary and sufficient conditions are presented in terms of the step size sequence $\{\eta_t\}_{t}$ for the convergence of an OMD algorithm with respect to the expected Bregman distance induced by the mirror map. The condition is $\lim_{t\to\infty}\eta_t=0, \sum_{t=1}^{\infty}\eta_t=\infty$ in the case of positive variances. It is reduced to $\sum_{t=1}^{\infty}\eta_t=\infty$ in the case of zero variances for which the linear convergence may be achieved by taking a constant step size sequence. A sufficient condition on the almost sure convergence is also given. We establish tight error bounds under mild conditions on the mirror map, the loss function, and the regularizer. Our results are achieved by some novel analysis on the one-step progress of the OMD algorithm using smoothness and strong convexity of the mirror map and the loss function.
Anomaly Detection using One-Class Neural Networks
We propose a one-class neural network (OC-NN) model to detect anomalies in complex data sets. OC-NN combines the ability of deep networks to extract a progressively rich representation of data with the one-class objective of creating a tight envelope around normal data. The OC-NN approach breaks new ground for the following crucial reason: data representation in the hidden layer is driven by the OC-NN objective and is thus customized for anomaly detection. This is a departure from other approaches which use a hybrid approach of learning deep features using an autoencoder and then feeding the features into a separate anomaly detection method like one-class SVM (OC-SVM). The hybrid OC-SVM approach is sub-optimal because it is unable to influence representational learning in the hidden layers. A comprehensive set of experiments demonstrate that on complex data sets (like CIFAR and GTSRB), OC-NN performs on par with state-of-the-art methods and outperformed conventional shallow methods in some scenarios.
Efficient Sparse-Winograd Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are computationally intensive, which limits their application on mobile devices. Their energy is dominated by the number of multiplies needed to perform the convolutions. Winograd's minimal filtering algorithm (Lavin, 2015) and network pruning (Han et al., 2015) can reduce the operation count, but these two methods cannot be directly combined $-$ applying the Winograd transform fills in the sparsity in both the weights and the activations. We propose two modifications to Winograd-based CNNs to enable these methods to exploit sparsity. First, we move the ReLU operation into the Winograd domain to increase the sparsity of the transformed activations. Second, we prune the weights in the Winograd domain to exploit static weight sparsity. For models on CIFAR-10, CIFAR-100 and ImageNet datasets, our method reduces the number of multiplications by $10.4\times$, $6.8\times$ and $10.8\times$ respectively with loss of accuracy less than $0.1\%$, outperforming previous baselines by $2.0\times$-$3.0\times$. We also show that moving ReLU to the Winograd domain allows more aggressive pruning.
Node Centralities and Classification Performance for Characterizing Node Embedding Algorithms
Embedding graph nodes into a vector space can allow the use of machine learning to e.g. predict node classes, but the study of node embedding algorithms is immature compared to the natural language processing field because of a diverse nature of graphs. We examine the performance of node embedding algorithms with respect to graph centrality measures that characterize diverse graphs, through systematic experiments with four node embedding algorithms, four or five graph centralities, and six datasets. Experimental results give insights into the properties of node embedding algorithms, which can be a basis for further research on this topic.
Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information
Low rank tensor completion is a well studied problem and has applications in various fields. However, in many real world applications the data is dynamic, i.e., new data arrives at different time intervals. As a result, the tensors used to represent the data grow in size. Besides the tensors, in many real world scenarios, side information is also available in the form of matrices which also grow in size with time. The problem of predicting missing values in the dynamically growing tensor is called dynamic tensor completion. Most of the previous work in dynamic tensor completion make an assumption that the tensor grows only in one mode. To the best of our Knowledge, there is no previous work which incorporates side information with dynamic tensor completion. We bridge this gap in this paper by proposing a dynamic tensor completion framework called Side Information infused Incremental Tensor Analysis (SIITA), which incorporates side information and works for general incremental tensors. We also show how non-negative constraints can be incorporated with SIITA, which is essential for mining interpretable latent clusters. We carry out extensive experiments on multiple real world datasets to demonstrate the effectiveness of SIITA in various different settings.
Space-efficient Feature Maps for String Alignment Kernels
String kernels are attractive data analysis tools for analyzing string data. Among them, alignment kernels are known for their high prediction accuracies in string classifications when tested in combination with SVM in various applications. However, alignment kernels have a crucial drawback in that they scale poorly due to their quadratic computation complexity in the number of input strings, which limits large-scale applications in practice. We address this need by presenting the first approximation for string alignment kernels, which we call space-efficient feature maps for edit distance with moves (SFMEDM), by leveraging a metric embedding named edit sensitive parsing (ESP) and feature maps (FMs) of random Fourier features (RFFs) for large-scale string analyses. The original FMs for RFFs consume a huge amount of memory proportional to the dimension d of input vectors and the dimension D of output vectors, which prohibits its large-scale applications. We present novel space-efficient feature maps (SFMs) of RFFs for a space reduction from O(dD) of the original FMs to O(d) of SFMs with a theoretical guarantee with respect to concentration bounds. We experimentally test SFMEDM on its ability to learn SVM for large-scale string classifications with various massive string data, and we demonstrate the superior performance of SFMEDM with respect to prediction accuracy, scalability and computation efficiency.
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
We propose a scalable stochastic variational approach to GP classification building on Polya-Gamma data augmentation and inducing points. Unlike former approaches, we obtain closed-form updates based on natural gradients that lead to efficient optimization. We evaluate the algorithm on real-world datasets containing up to 11 million data points and demonstrate that it is up to two orders of magnitude faster than the state-of-the-art while being competitive in terms of prediction performance.
Spurious Valleys in Two-layer Neural Network Optimization Landscapes
Neural networks provide a rich class of high-dimensional, non-convex optimization problems. Despite their non-convexity, gradient-descent methods often successfully optimize these models. This has motivated a recent spur in research attempting to characterize properties of their loss surface that may explain such success. In this paper, we address this phenomenon by studying a key topological property of the loss: the presence or absence of spurious valleys, defined as connected components of sub-level sets that do not include a global minimum. Focusing on a class of two-layer neural networks defined by smooth (but generally non-linear) activation functions, we identify a notion of intrinsic dimension and show that it provides necessary and sufficient conditions for the absence of spurious valleys. More concretely, finite intrinsic dimension guarantees that for sufficiently overparametrised models no spurious valleys exist, independently of the data distribution. Conversely, infinite intrinsic dimension implies that spurious valleys do exist for certain data distributions, independently of model overparametrisation. Besides these positive and negative results, we show that, although spurious valleys may exist in general, they are confined to low risk levels and avoided with high probability on overparametrised models.
Training Big Random Forests with Little Resources
Without access to large compute clusters, building random forests on large datasets is still a challenging problem. This is, in particular, the case if fully-grown trees are desired. We propose a simple yet effective framework that allows to efficiently construct ensembles of huge trees for hundreds of millions or even billions of training instances using a cheap desktop computer with commodity hardware. The basic idea is to consider a multi-level construction scheme, which builds top trees for small random subsets of the available data and which subsequently distributes all training instances to the top trees' leaves for further processing. While being conceptually simple, the overall efficiency crucially depends on the particular implementation of the different phases. The practical merits of our approach are demonstrated using dense datasets with hundreds of millions of training instances.
HybridSVD: When Collaborative Information is Not Enough
We propose a new hybrid algorithm that allows incorporating both user and item side information within the standard collaborative filtering technique. One of its key features is that it naturally extends a simple PureSVD approach and inherits its unique advantages, such as highly efficient Lanczos-based optimization procedure, simplified hyper-parameter tuning and a quick folding-in computation for generating recommendations instantly even in highly dynamic online environments. The algorithm utilizes a generalized formulation of the singular value decomposition, which adds flexibility to the solution and allows imposing the desired structure on its latent space. Conveniently, the resulting model also admits an efficient and straightforward solution for the cold start scenario. We evaluate our approach on a diverse set of datasets and show its superiority over similar classes of hybrid models.
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework
Hardware accelerations of deep learning systems have been extensively investigated in industry and academia. The aim of this paper is to achieve ultra-high energy efficiency and performance for hardware implementations of deep neural networks (DNNs). An algorithm-hardware co-optimization framework is developed, which is applicable to different DNN types, sizes, and application scenarios. The algorithm part adopts the general block-circulant matrices to achieve a fine-grained tradeoff between accuracy and compression ratio. It applies to both fully-connected and convolutional layers and contains a mathematically rigorous proof of the effectiveness of the method. The proposed algorithm reduces computational complexity per layer from O($n^2$) to O($n\log n$) and storage complexity from O($n^2$) to O($n$), both for training and inference. The hardware part consists of highly efficient Field Programmable Gate Array (FPGA)-based implementations using effective reconfiguration, batch processing, deep pipelining, resource re-using, and hierarchical control. Experimental results demonstrate that the proposed framework achieves at least 152X speedup and 71X energy efficiency gain compared with IBM TrueNorth processor under the same test accuracy. It achieves at least 31X energy efficiency gain compared with the reference FPGA-based work.
RadialGAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks
Training complex machine learning models for prediction often requires a large amount of data that is not always readily available. Leveraging these external datasets from related but different sources is therefore an important task if good predictive models are to be built for deployment in settings where data can be rare. In this paper we propose a novel approach to the problem in which we use multiple GAN architectures to learn to translate from one dataset to another, thereby allowing us to effectively enlarge the target dataset, and therefore learn better predictive models than if we simply used the target dataset. We show the utility of such an approach, demonstrating that our method improves the prediction performance on the target domain over using just the target dataset and also show that our framework outperforms several other benchmarks on a collection of real-world medical datasets.
Sim-to-Real Optimization of Complex Real World Mobile Network with Imperfect Information via Deep Reinforcement Learning from Self-play
Mobile network that millions of people use every day is one of the most complex systems in the world. Optimization of mobile network to meet exploding customer demand and reduce capital/operation expenditures poses great challenges. Despite recent progress, application of deep reinforcement learning (DRL) to complex real world problem still remains unsolved, given data scarcity, partial observability, risk and complex rules/dynamics in real world, as well as the huge reality gap between simulation and real world. To bridge the reality gap, we introduce a Sim-to-Real framework to directly transfer learning from simulation to real world via graph convolutional neural network (CNN) - by abstracting partially observable mobile network into graph, then distilling domain-variant irregular graph into domain-invariant tensor in locally Euclidean space as input to CNN -, domain randomization and multi-task learning. We use a novel self-play mechanism to encourage competition among DRL agents for best record on multiple tasks via simulated annealing, just like athletes compete for world record in decathlon. We also propose a decentralized multi-agent, competitive and cooperative DRL method to coordinate the actions of multi-cells to maximize global reward and minimize negative impact to neighbor cells. Using 6 field trials on commercial mobile networks, we demonstrate for the first time that a DRL agent can successfully transfer learning from simulation to complex real world problem with imperfect information, complex rules/dynamics, huge state/action space, and multi-agent interactions, without any training in the real world.
Improving Mild Cognitive Impairment Prediction via Reinforcement Learning and Dialogue Simulation
Mild cognitive impairment (MCI) is a prodromal phase in the progression from normal aging to dementia, especially Alzheimers disease. Even though there is mild cognitive decline in MCI patients, they have normal overall cognition and thus is challenging to distinguish from normal aging. Using transcribed data obtained from recorded conversational interactions between participants and trained interviewers, and applying supervised learning models to these data, a recent clinical trial has shown a promising result in differentiating MCI from normal aging. However, the substantial amount of interactions with medical staff can still incur significant medical care expenses in practice. In this paper, we propose a novel reinforcement learning (RL) framework to train an efficient dialogue agent on existing transcripts from clinical trials. Specifically, the agent is trained to sketch disease-specific lexical probability distribution, and thus to converse in a way that maximizes the diagnosis accuracy and minimizes the number of conversation turns. We evaluate the performance of the proposed reinforcement learning framework on the MCI diagnosis from a real clinical trial. The results show that while using only a few turns of conversation, our framework can significantly outperform state-of-the-art supervised learning approaches.
Music Genre Classification using Masked Conditional Neural Networks
The ConditionaL Neural Networks (CLNN) and the Masked ConditionaL Neural Networks (MCLNN) exploit the nature of multi-dimensional temporal signals. The CLNN captures the conditional temporal influence between the frames in a window and the mask in the MCLNN enforces a systematic sparseness that follows a filterbank-like pattern over the network links. The mask induces the network to learn about time-frequency representations in bands, allowing the network to sustain frequency shifts. Additionally, the mask in the MCLNN automates the exploration of a range of feature combinations, usually done through an exhaustive manual search. We have evaluated the MCLNN performance using the Ballroom and Homburg datasets of music genres. MCLNN has achieved accuracies that are competitive to state-of-the-art handcrafted attempts in addition to models based on Convolutional Neural Networks.
Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability
We study the detailed path-wise behavior of the discrete-time Langevin algorithm for non-convex Empirical Risk Minimization (ERM) through the lens of metastability, adopting some techniques from Berglund and Gentz (2003. For a particular local optimum of the empirical risk, with an arbitrary initialization, we show that, with high probability, at least one of the following two events will occur: (1) the Langevin trajectory ends up somewhere outside the $\varepsilon$-neighborhood of this particular optimum within a short recurrence time; (2) it enters this $\varepsilon$-neighborhood by the recurrence time and stays there until a potentially exponentially long escape time. We call this phenomenon empirical metastability. This two-timescale characterization aligns nicely with the existing literature in the following two senses. First, the effective recurrence time (i.e., number of iterations multiplied by stepsize) is dimension-independent, and resembles the convergence time of continuous-time deterministic Gradient Descent (GD). However unlike GD, the Langevin algorithm does not require strong conditions on local initialization, and has the possibility of eventually visiting all optima. Second, the scaling of the escape time is consistent with the Eyring-Kramers law, which states that the Langevin scheme will eventually visit all local minima, but it will take an exponentially long time to transit among them. We apply this path-wise concentration result in the context of statistical learning to examine local notions of generalization and optimality.
A Generative Modeling Approach to Limited Channel ECG Classification
Processing temporal sequences is central to a variety of applications in health care, and in particular multi-channel Electrocardiogram (ECG) is a highly prevalent diagnostic modality that relies on robust sequence modeling. While Recurrent Neural Networks (RNNs) have led to significant advances in automated diagnosis with time-series data, they perform poorly when models are trained using a limited set of channels. A crucial limitation of existing solutions is that they rely solely on discriminative models, which tend to generalize poorly in such scenarios. In order to combat this limitation, we develop a generative modeling approach to limited channel ECG classification. This approach first uses a Seq2Seq model to implicitly generate the missing channel information, and then uses the latent representation to perform the actual supervisory task. This decoupling enables the use of unsupervised data and also provides highly robust metric spaces for subsequent discriminative learning. Our experiments with the Physionet dataset clearly evidence the effectiveness of our approach over standard RNNs in disease prediction.
Guaranteed Recovery of One-Hidden-Layer Neural Networks via Cross Entropy
We study model recovery for data classification, where the training labels are generated from a one-hidden-layer neural network with sigmoid activations, also known as a single-layer feedforward network, and the goal is to recover the weights of the neural network. We consider two network models, the fully-connected network (FCN) and the non-overlapping convolutional neural network (CNN). We prove that with Gaussian inputs, the empirical risk based on cross entropy exhibits strong convexity and smoothness {\em uniformly} in a local neighborhood of the ground truth, as soon as the sample complexity is sufficiently large. This implies that if initialized in this neighborhood, gradient descent converges linearly to a critical point that is provably close to the ground truth. Furthermore, we show such an initialization can be obtained via the tensor method. This establishes the global convergence guarantee for empirical risk minimization using cross entropy via gradient descent for learning one-hidden-layer neural networks, at the near-optimal sample and computational complexity with respect to the network input dimension without unrealistic assumptions such as requiring a fresh set of samples at each iteration.
Recurrent Binary Embedding for GPU-Enabled Exhaustive Retrieval from Billion-Scale Semantic Vectors
Rapid advances in GPU hardware and multiple areas of Deep Learning open up a new opportunity for billion-scale information retrieval with exhaustive search. Building on top of the powerful concept of semantic learning, this paper proposes a Recurrent Binary Embedding (RBE) model that learns compact representations for real-time retrieval. The model has the unique ability to refine a base binary vector by progressively adding binary residual vectors to meet the desired accuracy. The refined vector enables efficient implementation of exhaustive similarity computation with bit-wise operations, followed by a near- lossless k-NN selection algorithm, also proposed in this paper. The proposed algorithms are integrated into an end-to-end multi-GPU system that retrieves thousands of top items from over a billion candidates in real-time. The RBE model and the retrieval system were evaluated with data from a major paid search engine. When measured against the state-of-the-art model for binary representation and the full precision model for semantic embedding, RBE significantly outperformed the former, and filled in over 80% of the AUC gap in-between. Experiments comparing with our production retrieval system also demonstrated superior performance. While the primary focus of this paper is to build RBE based on a particular class of semantic models, generalizing to other types is straightforward, as exemplified by two different models at the end of the paper.
Memorize or generalize? Searching for a compositional RNN in a haystack
Neural networks are very powerful learning systems, but they do not readily generalize from one task to the other. This is partly due to the fact that they do not learn in a compositional way, that is, by discovering skills that are shared by different tasks, and recombining them to solve new problems. In this paper, we explore the compositional generalization capabilities of recurrent neural networks (RNNs). We first propose the lookup table composition domain as a simple setup to test compositional behaviour and show that it is theoretically possible for a standard RNN to learn to behave compositionally in this domain when trained with standard gradient descent and provided with additional supervision. We then remove this additional supervision and perform a search over a large number of model initializations to investigate the proportion of RNNs that can still converge to a compositional solution. We discover that a small but non-negligible proportion of RNNs do reach partial compositional solutions even without special architectural constraints. This suggests that a combination of gradient descent and evolutionary strategies directly favouring the minority models that developed more compositional approaches might suffice to lead standard RNNs towards compositional solutions.
Online convex optimization for cumulative constraints
We propose the algorithms for online convex optimization which lead to cumulative squared constraint violations of the form $\sum\limits_{t=1}^T\big([g(x_t)]_+\big)^2=O(T^{1-\beta})$, where $\beta\in(0,1)$. Previous literature has focused on long-term constraints of the form $\sum\limits_{t=1}^Tg(x_t)$. There, strictly feasible solutions can cancel out the effects of violated constraints. In contrast, the new form heavily penalizes large constraint violations and cancellation effects cannot occur. Furthermore, useful bounds on the single step constraint violation $[g(x_t)]_+$ are derived. For convex objectives, our regret bounds generalize existing bounds, and for strongly convex objectives we give improved regret bounds. In numerical experiments, we show that our algorithm closely follows the constraint boundary leading to low cumulative violation.
Simultaneous Modeling of Multiple Complications for Risk Profiling in Diabetes Care
Type 2 diabetes mellitus (T2DM) is a chronic disease that often results in multiple complications. Risk prediction and profiling of T2DM complications is critical for healthcare professionals to design personalized treatment plans for patients in diabetes care for improved outcomes. In this paper, we study the risk of developing complications after the initial T2DM diagnosis from longitudinal patient records. We propose a novel multi-task learning approach to simultaneously model multiple complications where each task corresponds to the risk modeling of one complication. Specifically, the proposed method strategically captures the relationships (1) between the risks of multiple T2DM complications, (2) between the different risk factors, and (3) between the risk factor selection patterns. The method uses coefficient shrinkage to identify an informative subset of risk factors from high-dimensional data, and uses a hierarchical Bayesian framework to allow domain knowledge to be incorporated as priors. The proposed method is favorable for healthcare applications because in additional to improved prediction performance, relationships among the different risks and risk factors are also identified. Extensive experimental results on a large electronic medical claims database show that the proposed method outperforms state-of-the-art models by a significant margin. Furthermore, we show that the risk associations learned and the risk factors identified lead to meaningful clinical insights.
Accelerated Primal-Dual Policy Optimization for Safe Reinforcement Learning
Constrained Markov Decision Process (CMDP) is a natural framework for reinforcement learning tasks with safety constraints, where agents learn a policy that maximizes the long-term reward while satisfying the constraints on the long-term cost. A canonical approach for solving CMDPs is the primal-dual method which updates parameters in primal and dual spaces in turn. Existing methods for CMDPs only use on-policy data for dual updates, which results in sample inefficiency and slow convergence. In this paper, we propose a policy search method for CMDPs called Accelerated Primal-Dual Optimization (APDO), which incorporates an off-policy trained dual variable in the dual update procedure while updating the policy in primal space with on-policy likelihood ratio gradient. Experimental results on a simulated robot locomotion task show that APDO achieves better sample efficiency and faster convergence than state-of-the-art approaches for CMDPs.
Robust Estimation via Robust Gradient Estimation
We provide a new computationally-efficient class of estimators for risk minimization. We show that these estimators are robust for general statistical models: in the classical Huber epsilon-contamination model and in heavy-tailed settings. Our workhorse is a novel robust variant of gradient descent, and we provide conditions under which our gradient descent variant provides accurate estimators in a general convex risk minimization problem. We provide specific consequences of our theory for linear regression, logistic regression and for estimation of the canonical parameters in an exponential family. These results provide some of the first computationally tractable and provably robust estimators for these canonical statistical models. Finally, we study the empirical performance of our proposed methods on synthetic and real datasets, and find that our methods convincingly outperform a variety of baselines.
Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedback. Users' feedback can be positive and negative and both types of feedback have great potentials to boost recommendations. However, the number of negative feedback is much larger than that of positive one; thus incorporating them simultaneously is challenging since positive feedback could be buried by negative one. In this paper, we develop a novel approach to incorporate them into the proposed deep recommender system (DEERS) framework. The experimental results based on real-world e-commerce data demonstrate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of both positive and negative feedback in recommendations.
EA-CG: An Approximate Second-Order Method for Training Fully-Connected Neural Networks
For training fully-connected neural networks (FCNNs), we propose a practical approximate second-order method including: 1) an approximation of the Hessian matrix and 2) a conjugate gradient (CG) based method. Our proposed approximate Hessian matrix is memory-efficient and can be applied to any FCNNs where the activation and criterion functions are twice differentiable. We devise a CG-based method incorporating one-rank approximation to derive Newton directions for training FCNNs, which significantly reduces both space and time complexity. This CG-based method can be employed to solve any linear equation where the coefficient matrix is Kronecker-factored, symmetric and positive definite. Empirical studies show the efficacy and efficiency of our proposed method.
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Conventional wisdom in deep learning states that increasing depth improves expressiveness but complicates optimization. This paper suggests that, sometimes, increasing depth can speed up optimization. The effect of depth on optimization is decoupled from expressiveness by focusing on settings where additional layers amount to overparameterization - linear neural networks, a well-studied model. Theoretical analysis, as well as experiments, show that here depth acts as a preconditioner which may accelerate convergence. Even on simple convex problems such as linear regression with $\ell_p$ loss, $p>2$, gradient descent can benefit from transitioning to a non-convex overparameterized objective, more than it would from some common acceleration schemes. We also prove that it is mathematically impossible to obtain the acceleration effect of overparametrization via gradients of any regularizer.
Subspace Network: Deep Multi-Task Censored Regression for Modeling Neurodegenerative Diseases
Over the past decade a wide spectrum of machine learning models have been developed to model the neurodegenerative diseases, associating biomarkers, especially non-intrusive neuroimaging markers, with key clinical scores measuring the cognitive status of patients. Multi-task learning (MTL) has been commonly utilized by these studies to address high dimensionality and small cohort size challenges. However, most existing MTL approaches are based on linear models and suffer from two major limitations: 1) they cannot explicitly consider upper/lower bounds in these clinical scores; 2) they lack the capability to capture complicated non-linear interactions among the variables. In this paper, we propose Subspace Network, an efficient deep modeling approach for non-linear multi-task censored regression. Each layer of the subspace network performs a multi-task censored regression to improve upon the predictions from the last layer via sketching a low-dimensional subspace to perform knowledge transfer among learning tasks. Under mild assumptions, for each layer the parametric subspace can be recovered using only one pass of training data. Empirical results demonstrate that the proposed subspace network quickly picks up the correct parameter subspaces, and outperforms state-of-the-arts in predicting neurodegenerative clinical scores using information in brain imaging.
Heron Inference for Bayesian Graphical Models
Bayesian graphical models have been shown to be a powerful tool for discovering uncertainty and causal structure from real-world data in many application fields. Current inference methods primarily follow different kinds of trade-offs between computational complexity and predictive accuracy. At one end of the spectrum, variational inference approaches perform well in computational efficiency, while at the other end, Gibbs sampling approaches are known to be relatively accurate for prediction in practice. In this paper, we extend an existing Gibbs sampling method, and propose a new deterministic Heron inference (Heron) for a family of Bayesian graphical models. In addition to the support for nontrivial distributability, one more benefit of Heron is that it is able to not only allow us to easily assess the convergence status but also largely improve the running efficiency. We evaluate Heron against the standard collapsed Gibbs sampler and state-of-the-art state augmentation method in inference for well-known graphical models. Experimental results using publicly available real-life data have demonstrated that Heron significantly outperforms the baseline methods for inferring Bayesian graphical models.
Are Generative Classifiers More Robust to Adversarial Attacks?
There is a rising interest in studying the robustness of deep neural network classifiers against adversaries, with both advanced attack and defence techniques being actively developed. However, most recent work focuses on discriminative classifiers, which only model the conditional distribution of the labels given the inputs. In this paper, we propose and investigate the deep Bayes classifier, which improves classical naive Bayes with conditional deep generative models. We further develop detection methods for adversarial examples, which reject inputs with low likelihood under the generative model. Experimental results suggest that deep Bayes classifiers are more robust than deep discriminative classifiers, and that the proposed detection methods are effective against many recently proposed attacks.
Robustness of Rotation-Equivariant Networks to Adversarial Perturbations
Deep neural networks have been shown to be vulnerable to adversarial examples: very small perturbations of the input having a dramatic impact on the predictions. A wealth of adversarial attacks and distance metrics to quantify the similarity between natural and adversarial images have been proposed, recently enlarging the scope of adversarial examples with geometric transformations beyond pixel-wise attacks. In this context, we investigate the robustness to adversarial attacks of new Convolutional Neural Network architectures providing equivariance to rotations. We found that rotation-equivariant networks are significantly less vulnerable to geometric-based attacks than regular networks on the MNIST, CIFAR-10, and ImageNet datasets.
Finding Influential Training Samples for Gradient Boosted Decision Trees
We address the problem of finding influential training samples for a particular case of tree ensemble-based models, e.g., Random Forest (RF) or Gradient Boosted Decision Trees (GBDT). A natural way of formalizing this problem is studying how the model's predictions change upon leave-one-out retraining, leaving out each individual training sample. Recent work has shown that, for parametric models, this analysis can be conducted in a computationally efficient way. We propose several ways of extending this framework to non-parametric GBDT ensembles under the assumption that tree structures remain fixed. Furthermore, we introduce a general scheme of obtaining further approximations to our method that balance the trade-off between performance and computational complexity. We evaluate our approaches on various experimental setups and use-case scenarios and demonstrate both the quality of our approach to finding influential training samples in comparison to the baselines and its computational efficiency.
Degeneration in VAE: in the Light of Fisher Information Loss
While enormous progress has been made to Variational Autoencoder (VAE) in recent years, similar to other deep networks, VAE with deep networks suffers from the problem of degeneration, which seriously weakens the correlation between the input and the corresponding latent codes, deviating from the goal of the representation learning. To investigate how degeneration affects VAE from a theoretical perspective, we illustrate the information transmission in VAE and analyze the intermediate layers of the encoders/decoders. Specifically, we propose a Fisher Information measure for the layer-wise analysis. With such measure, we demonstrate that information loss is ineluctable in feed-forward networks and causes the degeneration in VAE. We show that skip connections in VAE enable the preservation of information without changing the model architecture. We call this class of VAE equipped with skip connections as SCVAE and perform a range of experiments to show its advantages in information preservation and degeneration mitigation.
Deep Echo State Networks for Diagnosis of Parkinson's Disease
In this paper, we introduce a novel approach for diagnosis of Parkinson's Disease (PD) based on deep Echo State Networks (ESNs). The identification of PD is performed by analyzing the whole time-series collected from a tablet device during the sketching of spiral tests, without the need for feature extraction and data preprocessing. We evaluated the proposed approach on a public dataset of spiral tests. The results of experimental analysis show that DeepESNs perform significantly better than shallow ESN model. Overall, the proposed approach obtains state-of-the-art results in the identification of PD on this kind of temporal data.
Differentially Private Generative Adversarial Network
Generative Adversarial Network (GAN) and its variants have recently attracted intensive research interests due to their elegant theoretical foundation and excellent empirical performance as generative models. These tools provide a promising direction in the studies where data availability is limited. One common issue in GANs is that the density of the learned generative distribution could concentrate on the training data points, meaning that they can easily remember training samples due to the high model complexity of deep networks. This becomes a major concern when GANs are applied to private or sensitive data such as patient medical records, and the concentration of distribution may divulge critical patient information. To address this issue, in this paper we propose a differentially private GAN (DPGAN) model, in which we achieve differential privacy in GANs by adding carefully designed noise to gradients during the learning procedure. We provide rigorous proof for the privacy guarantee, as well as comprehensive empirical evidence to support our analysis, where we demonstrate that our method can generate high quality data points at a reasonable privacy level.
Leveraged volume sampling for linear regression
Suppose an $n \times d$ design matrix in a linear regression problem is given, but the response for each point is hidden unless explicitly requested. The goal is to sample only a small number $k \ll n$ of the responses, and then produce a weight vector whose sum of squares loss over all points is at most $1+\epsilon$ times the minimum. When $k$ is very small (e.g., $k=d$), jointly sampling diverse subsets of points is crucial. One such method called volume sampling has a unique and desirable property that the weight vector it produces is an unbiased estimate of the optimum. It is therefore natural to ask if this method offers the optimal unbiased estimate in terms of the number of responses $k$ needed to achieve a $1+\epsilon$ loss approximation. Surprisingly we show that volume sampling can have poor behavior when we require a very accurate approximation -- indeed worse than some i.i.d. sampling techniques whose estimates are biased, such as leverage score sampling. We then develop a new rescaled variant of volume sampling that produces an unbiased estimate which avoids this bad behavior and has at least as good a tail bound as leverage score sampling: sample size $k=O(d\log d + d/\epsilon)$ suffices to guarantee total loss at most $1+\epsilon$ times the minimum with high probability. Thus, we improve on the best previously known sample size for an unbiased estimator, $k=O(d^2/\epsilon)$. Our rescaling procedure leads to a new efficient algorithm for volume sampling which is based on a determinantal rejection sampling technique with potentially broader applications to determinantal point processes. Other contributions include introducing the combinatorics needed for rescaled volume sampling and developing tail bounds for sums of dependent random matrices which arise in the process.
Interpretable VAEs for nonlinear group factor analysis
Deep generative models have recently yielded encouraging results in producing subjectively realistic samples of complex data. Far less attention has been paid to making these generative models interpretable. In many scenarios, ranging from scientific applications to finance, the observed variables have a natural grouping. It is often of interest to understand systems of interaction amongst these groups, and latent factor models (LFMs) are an attractive approach. However, traditional LFMs are limited by assuming a linear correlation structure. We present an output interpretable VAE (oi-VAE) for grouped data that models complex, nonlinear latent-to-observed relationships. We combine a structured VAE comprised of group-specific generators with a sparsity-inducing prior. We demonstrate that oi-VAE yields meaningful notions of interpretability in the analysis of motion capture and MEG data. We further show that in these situations, the regularization inherent to oi-VAE can actually lead to improved generalization and learned generative processes.
Bayes-optimal Hierarchical Classification over Asymmetric Tree-Distance Loss
Hierarchical classification is supervised multi-class classification problem over the set of class labels organized according to a hierarchy. In this report, we study the work by Ramaswamy et. al. on hierarchical classification over symmetric tree distance loss. We extend the consistency of hierarchical classification algorithm over asymmetric tree distance loss. We design a $\mathcal{O}(nk\log{}n)$ algorithm to find Bayes optimal classification for a k-ary tree as a hierarchy. We show that under reasonable assumptions over asymmetric loss function, the Bayes optimal classification over this asymmetric loss can be found in $\mathcal{O}(k\log{}n)$. We exploit this insight and attempt to extend the Ova-Cascade algorithm \citet{ramaswamy2015convex} for hierarchical classification over the asymmetric loss.
Entropy-Isomap: Manifold Learning for High-dimensional Dynamic Processes
Scientific and engineering processes deliver massive high-dimensional data sets that are generated as non-linear transformations of an initial state and few process parameters. Mapping such data to a low-dimensional manifold facilitates better understanding of the underlying processes, and enables their optimization. In this paper, we first show that off-the-shelf non-linear spectral dimensionality reduction methods, e.g., Isomap, fail for such data, primarily due to the presence of strong temporal correlations. Then, we propose a novel method, Entropy-Isomap, to address the issue. The proposed method is successfully applied to large data describing a fabrication process of organic materials. The resulting low-dimensional representation correctly captures process control variables, allows for low-dimensional visualization of the material morphology evolution, and provides key insights to improve the process.
Multi-resolution Tensor Learning for Large-Scale Spatial Data
High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models.
Deep Learning for Joint Source-Channel Coding of Text
We consider the problem of joint source and channel coding of structured data such as natural language over a noisy channel. The typical approach to this problem in both theory and practice involves performing source coding to first compress the text and then channel coding to add robustness for the transmission across the channel. This approach is optimal in terms of minimizing end-to-end distortion with arbitrarily large block lengths of both the source and channel codes when transmission is over discrete memoryless channels. However, the optimality of this approach is no longer ensured for documents of finite length and limitations on the length of the encoding. We will show in this scenario that we can achieve lower word error rates by developing a deep learning based encoder and decoder. While the approach of separate source and channel coding would minimize bit error rates, our approach preserves semantic information of sentences by first embedding sentences in a semantic space where sentences closer in meaning are located closer together, and then performing joint source and channel coding on these embeddings.
Distribution Matching in Variational Inference
With the increasingly widespread deployment of generative models, there is a mounting need for a deeper understanding of their behaviors and limitations. In this paper, we expose the limitations of Variational Autoencoders (VAEs), which consistently fail to learn marginal distributions in both latent and visible spaces. We show this to be a consequence of learning by matching conditional distributions, and the limitations of explicit model and posterior distributions. It is popular to consider Generative Adversarial Networks (GANs) as a means of overcoming these limitations, leading to hybrids of VAEs and GANs. We perform a large-scale evaluation of several VAE-GAN hybrids and analyze the implications of class probability estimation for learning distributions. While promising, we conclude that at present, VAE-GAN hybrids have limited applicability: they are harder to scale, evaluate, and use for inference compared to VAEs; and they do not improve over the generation quality of GANs.
Global Pose Estimation with an Attention-based Recurrent Network
The ability for an agent to localize itself within an environment is crucial for many real-world applications. For unknown environments, Simultaneous Localization and Mapping (SLAM) enables incremental and concurrent building of and localizing within a map. We present a new, differentiable architecture, Neural Graph Optimizer, progressing towards a complete neural network solution for SLAM by designing a system composed of a local pose estimation model, a novel pose selection module, and a novel graph optimization process. The entire architecture is trained in an end-to-end fashion, enabling the network to automatically learn domain-specific features relevant to the visual odometry and avoid the involved process of feature engineering. We demonstrate the effectiveness of our system on a simulated 2D maze and the 3D ViZ-Doom environment.
LSALSA: Accelerated Source Separation via Learned Sparse Coding
We propose an efficient algorithm for the generalized sparse coding (SC) inference problem. The proposed framework applies to both the single dictionary setting, where each data point is represented as a sparse combination of the columns of one dictionary matrix, as well as the multiple dictionary setting as given in morphological component analysis (MCA), where the goal is to separate a signal into additive parts such that each part has distinct sparse representation within a corresponding dictionary. Both the SC task and its generalization via MCA have been cast as $\ell_1$-regularized least-squares optimization problems. To accelerate traditional acquisition of sparse codes, we propose a deep learning architecture that constitutes a trainable time-unfolded version of the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), a special case of the Alternating Direction Method of Multipliers (ADMM). We empirically validate both variants of the algorithm, that we refer to as LSALSA (learned-SALSA), on image vision tasks and demonstrate that at inference our networks achieve vast improvements in terms of the running time, the quality of estimated sparse codes, and visual clarity on both classic SC and MCA problems. Finally, we present a theoretical framework for analyzing LSALSA network: we show that the proposed approach exactly implements a truncated ADMM applied to a new, learned cost function with curvature modified by one of the learned parameterized matrices. We extend a very recent Stochastic Alternating Optimization analysis framework to show that a gradient descent step along this learned loss landscape is equivalent to a modified gradient descent step along the original loss landscape. In this framework, the acceleration achieved by LSALSA could potentially be explained by the network's ability to learn a correction to the gradient direction of steeper descent.
Fourier Policy Gradients
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the low variance benefits of EPG in a broad range of settings. For the critic, we treat trigonometric and radial basis functions, two function families with the universal approximation property. The choice of policy can be almost arbitrary, including mixtures or hybrid continuous-discrete probability distributions. Moreover, we derive a general family of sample-based estimators for stochastic policy gradients, which unifies existing results on sample-based approximation. We believe that this technique has the potential to shape the next generation of policy gradient approaches, powered by analytical results.
Learning Word Vectors for 157 Languages
Distributed word representations, or word vectors, have recently been applied to many tasks in natural language processing, leading to state-of-the-art performance. A key ingredient to the successful application of these representations is to train them on very large corpora, and use these pre-trained models in downstream tasks. In this paper, we describe how we trained such high quality word representations for 157 languages. We used two sources of data to train these models: the free online encyclopedia Wikipedia and data from the common crawl project. We also introduce three new word analogy datasets to evaluate these word vectors, for French, Hindi and Polish. Finally, we evaluate our pre-trained word vectors on 10 languages for which evaluation datasets exists, showing very strong performance compared to previous models.
Learning Hidden Markov Models from Pairwise Co-occurrences with Application to Topic Modeling
We present a new algorithm for identifying the transition and emission probabilities of a hidden Markov model (HMM) from the emitted data. Expectation-maximization becomes computationally prohibitive for long observation records, which are often required for identification. The new algorithm is particularly suitable for cases where the available sample size is large enough to accurately estimate second-order output probabilities, but not higher-order ones. We show that if one is only able to obtain a reliable estimate of the pairwise co-occurrence probabilities of the emissions, it is still possible to uniquely identify the HMM if the emission probability is \emph{sufficiently scattered}. We apply our method to hidden topic Markov modeling, and demonstrate that we can learn topics with higher quality if documents are modeled as observations of HMMs sharing the same emission (topic) probability, compared to the simple but widely used bag-of-words model.
Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement
We propose a conditional non-autoregressive neural sequence model based on iterative refinement. The proposed model is designed based on the principles of latent variable models and denoising autoencoders, and is generally applicable to any sequence generation task. We extensively evaluate the proposed model on machine translation (En-De and En-Ro) and image caption generation, and observe that it significantly speeds up decoding while maintaining the generation quality comparable to the autoregressive counterpart.
Generalization Error Bounds with Probabilistic Guarantee for SGD in Nonconvex Optimization
The success of deep learning has led to a rising interest in the generalization property of the stochastic gradient descent (SGD) method, and stability is one popular approach to study it. Existing works based on stability have studied nonconvex loss functions, but only considered the generalization error of the SGD in expectation. In this paper, we establish various generalization error bounds with probabilistic guarantee for the SGD. Specifically, for both general nonconvex loss functions and gradient dominant loss functions, we characterize the on-average stability of the iterates generated by SGD in terms of the on-average variance of the stochastic gradients. Such characterization leads to improved bounds for the generalization error for SGD. We then study the regularized risk minimization problem with strongly convex regularizers, and obtain improved generalization error bounds for proximal SGD. With strongly convex regularizers, we further establish the generalization error bounds for nonconvex loss functions under proximal SGD with high-probability guarantee, i.e., exponential concentration in probability.
Teaching Categories to Human Learners with Visual Explanations
We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods.
On Lyapunov exponents and adversarial perturbation
In this paper, we would like to disseminate a serendipitous discovery involving Lyapunov exponents of a 1-D time series and their use in serving as a filtering defense tool against a specific kind of deep adversarial perturbation. To this end, we use the state-of-the-art CleverHans library to generate adversarial perturbations against a standard Convolutional Neural Network (CNN) architecture trained on the MNIST as well as the Fashion-MNIST datasets. We empirically demonstrate how the Lyapunov exponents computed on the flattened 1-D vector representations of the images served as highly discriminative features that could be to pre-classify images as adversarial or legitimate before feeding the image into the CNN for classification. We also explore the issue of possible false-alarms when the input images are noisy in a non-adversarial sense.
Online Learning with an Unknown Fairness Metric
We consider the problem of online learning in the linear contextual bandits setting, but in which there are also strong individual fairness constraints governed by an unknown similarity metric. These constraints demand that we select similar actions or individuals with approximately equal probability (arXiv:1104.3913), which may be at odds with optimizing reward, thus modeling settings where profit and social policy are in tension. We assume we learn about an unknown Mahalanobis similarity metric from only weak feedback that identifies fairness violations, but does not quantify their extent. This is intended to represent the interventions of a regulator who "knows unfairness when he sees it" but nevertheless cannot enunciate a quantitative fairness metric over individuals. Our main result is an algorithm in the adversarial context setting that has a number of fairness violations that depends only logarithmically on $T$, while obtaining an optimal $O(\sqrt{T})$ regret bound to the best fair policy.
Estimator of Prediction Error Based on Approximate Message Passing for Penalized Linear Regression
We propose an estimator of prediction error using an approximate message passing (AMP) algorithm that can be applied to a broad range of sparse penalties. Following Stein's lemma, the estimator of the generalized degrees of freedom, which is a key quantity for the construction of the estimator of the prediction error, is calculated at the AMP fixed point. The resulting form of the AMP-based estimator does not depend on the penalty function, and its value can be further improved by considering the correlation between predictors. The proposed estimator is asymptotically unbiased when the components of the predictors and response variables are independently generated according to a Gaussian distribution. We examine the behaviour of the estimator for real data under nonconvex sparse penalties, where Akaike's information criterion does not correspond to an unbiased estimator of the prediction error. The model selected by the proposed estimator is close to that which minimizes the true prediction error.
Comparison Based Learning from Weak Oracles
There is increasing interest in learning algorithms that involve interaction between human and machine. Comparison-based queries are among the most natural ways to get feedback from humans. A challenge in designing comparison-based interactive learning algorithms is coping with noisy answers. The most common fix is to submit a query several times, but this is not applicable in many situations due to its prohibitive cost and due to the unrealistic assumption of independent noise in different repetitions of the same query. In this paper, we introduce a new weak oracle model, where a non-malicious user responds to a pairwise comparison query only when she is quite sure about the answer. This model is able to mimic the behavior of a human in noise-prone regions. We also consider the application of this weak oracle model to the problem of content search (a variant of the nearest neighbor search problem) through comparisons. More specifically, we aim at devising efficient algorithms to locate a target object in a database equipped with a dissimilarity metric via invocation of the weak comparison oracle. We propose two algorithms termed WORCS-I and WORCS-II (Weak-Oracle Comparison-based Search), which provably locate the target object in a number of comparisons close to the entropy of the target distribution. While WORCS-I provides better theoretical guarantees, WORCS-II is applicable to more technically challenging scenarios where the algorithm has limited access to the ranking dissimilarity between objects. A series of experiments validate the performance of our proposed algorithms.
DeepThin: A Self-Compressing Library for Deep Neural Networks
As the industry deploys increasingly large and complex neural networks to mobile devices, more pressure is put on the memory and compute resources of those devices. Deep compression, or compression of deep neural network weight matrices, is a technique to stretch resources for such scenarios. Existing compression methods cannot effectively compress models smaller than 1-2% of their original size. We develop a new compression technique, DeepThin, building on existing research in the area of low rank factorization. We identify and break artificial constraints imposed by low rank approximations by combining rank factorization with a reshaping process that adds nonlinearity to the approximation function. We deploy DeepThin as a plug-gable library integrated with TensorFlow that enables users to seamlessly compress models at different granularities. We evaluate DeepThin on two state-of-the-art acoustic models, TFKaldi and DeepSpeech, comparing it to previous compression work (Pruning, HashNet, and Rank Factorization), empirical limit study approaches, and hand-tuned models. For TFKaldi, our DeepThin networks show better word error rates (WER) than competing methods at practically all tested compression rates, achieving an average of 60% relative improvement over rank factorization, 57% over pruning, 23% over hand-tuned same-size networks, and 6% over the computationally expensive HashedNets. For DeepSpeech, DeepThin-compressed networks achieve better test loss than all other compression methods, reaching a 28% better result than rank factorization, 27% better than pruning, 20% better than hand-tuned same-size networks, and 12% better than HashedNets. DeepThin also provide inference performance benefits ranging from 2X to 14X speedups, depending on the compression ratio and platform cache sizes.