title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Efficient Embedding of MPI Collectives in MXNET DAGs for scaling Deep Learning
Availability of high performance computing infrastructures such as clusters of GPUs and CPUs have fueled the growth of distributed learning systems. Deep Learning frameworks express neural nets as DAGs and execute these DAGs on computation resources such as GPUs. In this paper, we propose efficient designs of embedding MPI collective operations into data parallel DAGs. Incorrect designs can easily lead to deadlocks or program crashes. In particular, we demonstrate three designs: Funneled, Concurrent communication and Dependency chaining of using MPI collectives with DAGs. These designs automatically enable overlap of computation with communication by allowing for concurrent execution with the other tasks. We directly implement these designs into the KVStore API of the MXNET. This allows us to directly leverage the rest of the infrastructure. Using ImageNet and CIFAR data sets, we show the potential of our designs. In particular, our designs scale to 256 GPUs with as low as 50 seconds of epoch times for ImageNet 1K datasets.
Neural Network Ensembles to Real-time Identification of Plug-level Appliance Measurements
The problem of identifying end-use electrical appliances from their individual consumption profiles, known as the appliance identification problem, is a primary stage in both Non-Intrusive Load Monitoring (NILM) and automated plug-wise metering. Therefore, appliance identification has received dedicated studies with various electric appliance signatures, classification models, and evaluation datasets. In this paper, we propose a neural network ensembles approach to address this problem using high resolution measurements. The models are trained on the raw current and voltage waveforms, and thus, eliminating the need for well engineered appliance signatures. We evaluate the proposed model on a publicly available appliance dataset from 55 residential buildings, 11 appliance categories, and over 1000 measurements. We further study the stability of the trained models with respect to training dataset, sampling frequency, and variations in the steady-state operation of appliances.
Constant Regret, Generalized Mixability, and Mirror Descent
We consider the setting of prediction with expert advice; a learner makes predictions by aggregating those of a group of experts. Under this setting, and for the right choice of loss function and "mixing" algorithm, it is possible for the learner to achieve a constant regret regardless of the number of prediction rounds. For example, a constant regret can be achieved for \emph{mixable} losses using the \emph{aggregating algorithm}. The \emph{Generalized Aggregating Algorithm} (GAA) is a name for a family of algorithms parameterized by convex functions on simplices (entropies), which reduce to the aggregating algorithm when using the \emph{Shannon entropy} $\operatorname{S}$. For a given entropy $\Phi$, losses for which a constant regret is possible using the \textsc{GAA} are called $\Phi$-mixable. Which losses are $\Phi$-mixable was previously left as an open question. We fully characterize $\Phi$-mixability and answer other open questions posed by \cite{Reid2015}. We show that the Shannon entropy $\operatorname{S}$ is fundamental in nature when it comes to mixability; any $\Phi$-mixable loss is necessarily $\operatorname{S}$-mixable, and the lowest worst-case regret of the \textsc{GAA} is achieved using the Shannon entropy. Finally, by leveraging the connection between the \emph{mirror descent algorithm} and the update step of the GAA, we suggest a new \emph{adaptive} generalized aggregating algorithm and analyze its performance in terms of the regret bound.
Fitting New Speakers Based on a Short Untranscribed Sample
Learning-based Text To Speech systems have the potential to generalize from one speaker to the next and thus require a relatively short sample of any new voice. However, this promise is currently largely unrealized. We present a method that is designed to capture a new speaker from a short untranscribed audio sample. This is done by employing an additional network that given an audio sample, places the speaker in the embedding space. This network is trained as part of the speech synthesis system using various consistency losses. Our results demonstrate a greatly improved performance on both the dataset speakers, and, more importantly, when fitting new voices, even from very short samples.
Traffic Graph Convolutional Recurrent Neural Network: A Deep Learning Framework for Network-Scale Traffic Learning and Forecasting
Traffic forecasting is a particularly challenging application of spatiotemporal forecasting, due to the time-varying traffic patterns and the complicated spatial dependencies on road networks. To address this challenge, we learn the traffic network as a graph and propose a novel deep learning framework, Traffic Graph Convolutional Long Short-Term Memory Neural Network (TGC-LSTM), to learn the interactions between roadways in the traffic network and forecast the network-wide traffic state. We define the traffic graph convolution based on the physical network topology. The relationship between the proposed traffic graph convolution and the spectral graph convolution is also discussed. An L1-norm on graph convolution weights and an L2-norm on graph convolution features are added to the model's loss function to enhance the interpretability of the proposed model. Experimental results show that the proposed model outperforms baseline methods on two real-world traffic state datasets. The visualization of the graph convolution weights indicates that the proposed framework can recognize the most influential road segments in real-world traffic networks.
Segmentation hi\'erarchique faiblement supervis\'ee
Image segmentation is the process of partitioning an image into a set of meaningful regions according to some criteria. Hierarchical segmentation has emerged as a major trend in this regard as it favors the emergence of important regions at different scales. On the other hand, many methods allow us to have prior information on the position of structures of interest in the images. In this paper, we present a versatile hierarchical segmentation method that takes into account any prior spatial information and outputs a hierarchical segmentation that emphasizes the contours or regions of interest while preserving the important structures in the image. An application of this method to the weakly-supervised segmentation problem is presented.
A Flexible and Adaptive Framework for Abstention Under Class Imbalance
In practical applications of machine learning, it is often desirable to identify and abstain on examples where the model's predictions are likely to be incorrect. Much of the prior work on this topic focused on out-of-distribution detection or performance metrics such as top-k accuracy. Comparatively little attention was given to metrics such as area-under-the-curve or Cohen's Kappa, which are extremely relevant for imbalanced datasets. Abstention strategies aimed at top-k accuracy can produce poor results on these metrics when applied to imbalanced datasets, even when all examples are in-distribution. We propose a framework to address this gap. Our framework leverages the insight that calibrated probability estimates can be used as a proxy for the true class labels, thereby allowing us to estimate the change in an arbitrary metric if an example were abstained on. Using this framework, we derive computationally efficient metric-specific abstention algorithms for optimizing the sensitivity at a target specificity level, the area under the ROC, and the weighted Cohen's Kappa. Because our method relies only on calibrated probability estimates, we further show that by leveraging recent work on domain adaptation under label shift, we can generalize to test-set distributions that may have a different class imbalance compared to the training set distribution. On various experiments involving medical imaging, natural language processing, computer vision and genomics, we demonstrate the effectiveness of our approach. Source code available at https://github.com/blindauth/abstention. Colab notebooks reproducing results available at https://github.com/blindauth/abstention_experiments.
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups
Bayesian optimization (BO) is a popular technique for sequential black-box function optimization, with applications including parameter tuning, robotics, environmental monitoring, and more. One of the most important challenges in BO is the development of algorithms that scale to high dimensions, which remains a key open problem despite recent progress. In this paper, we consider the approach of Kandasamy et al. (2015), in which the high-dimensional function decomposes as a sum of lower-dimensional functions on subsets of the underlying variables. In particular, we significantly generalize this approach by lifting the assumption that the subsets are disjoint, and consider additive models with arbitrary overlap among the subsets. By representing the dependencies via a graph, we deduce an efficient message passing algorithm for optimizing the acquisition function. In addition, we provide an algorithm for learning the graph from samples based on Gibbs sampling. We empirically demonstrate the effectiveness of our methods on both synthetic and real-world data.
The Description Length of Deep Learning Models
Solomonoff's general theory of inference and the Minimum Description Length principle formalize Occam's razor, and hold that a good model of data is a model that is good at losslessly compressing the data, including the cost of describing the model itself. Deep neural networks might seem to go against this principle given the large number of parameters to be encoded. We demonstrate experimentally the ability of deep neural networks to compress the training data even when accounting for parameter encoding. The compression viewpoint originally motivated the use of variational methods in neural networks. Unexpectedly, we found that these variational methods provide surprisingly poor compression bounds, despite being explicitly built to minimize such bounds. This might explain the relatively poor practical performance of variational methods in deep learning. On the other hand, simple incremental encoding methods yield excellent compression values on deep networks, vindicating Solomonoff's approach.
On Learning Causal Structures from Non-Experimental Data without Any Faithfulness Assumption
Consider the problem of learning, from non-experimental data, the causal (Markov equivalence) structure of the true, unknown causal Bayesian network (CBN) on a given, fixed set of (categorical) variables. This learning problem is known to be so hard that there is no learning algorithm that converges to the truth for all possible CBNs (on the given set of variables). So the convergence property has to be sacrificed for some CBNs---but for which? In response, the standard practice has been to design and employ learning algorithms that secure the convergence property for at least all the CBNs that satisfy the famous faithfulness condition, which implies sacrificing the convergence property for some CBNs that violate the faithfulness condition (Spirtes et al. 2000). This standard design practice can be justified by assuming---that is, accepting on faith---that the true, unknown CBN satisfies the faithfulness condition. But the real question is this: Is it possible to explain, without assuming the faithfulness condition or any of its weaker variants, why it is mandatory rather than optional to follow the standard design practice? This paper aims to answer the above question in the affirmative. We first define an array of modes of convergence to the truth as desiderata that might or might not be achieved by a causal learning algorithm. Those modes of convergence concern (i) how pervasive the domain of convergence is on the space of all possible CBNs and (ii) how uniformly the convergence happens. Then we prove a result to the following effect: for any learning algorithm that tackles the causal learning problem in question, if it achieves the best achievable mode of convergence (considered in this paper), then it must follow the standard design practice of converging to the truth for at least all CBNs that satisfy the faithfulness condition---it is a requirement, not an option.
Robust Maximization of Non-Submodular Objectives
We study the problem of maximizing a monotone set function subject to a cardinality constraint $k$ in the setting where some number of elements $\tau$ is deleted from the returned set. The focus of this work is on the worst-case adversarial setting. While there exist constant-factor guarantees when the function is submodular, there are no guarantees for non-submodular objectives. In this work, we present a new algorithm Oblivious-Greedy and prove the first constant-factor approximation guarantees for a wider class of non-submodular objectives. The obtained theoretical bounds are the first constant-factor bounds that also hold in the linear regime, i.e. when the number of deletions $\tau$ is linear in $k$. Our bounds depend on established parameters such as the submodularity ratio and some novel ones such as the inverse curvature. We bound these parameters for two important objectives including support selection and variance reduction. Finally, we numerically demonstrate the robust performance of Oblivious-Greedy for these two objectives on various datasets.
i-RevNet: Deep Invertible Networks
It is widely believed that the success of deep convolutional networks is based on progressively discarding uninformative variability about the input with respect to the problem at hand. This is supported empirically by the difficulty of recovering images from their hidden representations, in most commonly used network architectures. In this paper we show via a one-to-one mapping that this loss of information is not a necessary condition to learn representations that generalize well on complicated problems, such as ImageNet. Via a cascade of homeomorphic layers, we build the i-RevNet, a network that can be fully inverted up to the final projection onto the classes, i.e. no information is discarded. Building an invertible architecture is difficult, for one, because the local inversion is ill-conditioned, we overcome this by providing an explicit inverse. An analysis of i-RevNets learned representations suggests an alternative explanation for the success of deep networks by a progressive contraction and linear separation with depth. To shed light on the nature of the model learned by the i-RevNet we reconstruct linear interpolations between natural image representations.
Attentive Tensor Product Learning
This paper proposes a new architecture - Attentive Tensor Product Learning (ATPL) - to represent grammatical structures in deep learning models. ATPL is a new architecture to bridge this gap by exploiting Tensor Product Representations (TPR), a structured neural-symbolic model developed in cognitive science, aiming to integrate deep learning with explicit language structures and rules. The key ideas of ATPL are: 1) unsupervised learning of role-unbinding vectors of words via TPR-based deep neural network; 2) employing attention modules to compute TPR; and 3) integration of TPR with typical deep learning architectures including Long Short-Term Memory (LSTM) and Feedforward Neural Network (FFNN). The novelty of our approach lies in its ability to extract the grammatical structure of a sentence by using role-unbinding vectors, which are obtained in an unsupervised manner. This ATPL approach is applied to 1) image captioning, 2) part of speech (POS) tagging, and 3) constituency parsing of a sentence. Experimental results demonstrate the effectiveness of the proposed approach.
An Efficient Semismooth Newton Based Algorithm for Convex Clustering
Clustering may be the most fundamental problem in unsupervised learning which is still active in machine learning research because its importance in many applications. Popular methods like K-means, may suffer from instability as they are prone to get stuck in its local minima. Recently, the sum-of-norms (SON) model (also known as clustering path), which is a convex relaxation of hierarchical clustering model, has been proposed in [7] and [5] Although numerical algorithms like ADMM and AMA are proposed to solve convex clustering model [2], it is known to be very challenging to solve large-scale problems. In this paper, we propose a semi-smooth Newton based augmented Lagrangian method for large-scale convex clustering problems. Extensive numerical experiments on both simulated and real data demonstrate that our algorithm is highly efficient and robust for solving large-scale problems. Moreover, the numerical results also show the superior performance and scalability of our algorithm compared to existing first-order methods.
Do Less, Get More: Streaming Submodular Maximization with Subsampling
In this paper, we develop the first one-pass streaming algorithm for submodular maximization that does not evaluate the entire stream even once. By carefully subsampling each element of data stream, our algorithm enjoys the tightest approximation guarantees in various settings while having the smallest memory footprint and requiring the lowest number of function evaluations. More specifically, for a monotone submodular function and a $p$-matchoid constraint, our randomized algorithm achieves a $4p$ approximation ratio (in expectation) with $O(k)$ memory and $O(km/p)$ queries per element ($k$ is the size of the largest feasible solution and $m$ is the number of matroids used to define the constraint). For the non-monotone case, our approximation ratio increases only slightly to $4p+2-o(1)$. To the best or our knowledge, our algorithm is the first that combines the benefits of streaming and subsampling in a novel way in order to truly scale submodular maximization to massive machine learning problems. To showcase its practicality, we empirically evaluated the performance of our algorithm on a video summarization application and observed that it outperforms the state-of-the-art algorithm by up to fifty fold, while maintaining practically the same utility.
Learning of Optimal Forecast Aggregation in Partial Evidence Environments
We consider the forecast aggregation problem in repeated settings, where the forecasts are done on a binary event. At each period multiple experts provide forecasts about an event. The goal of the aggregator is to aggregate those forecasts into a subjective accurate forecast. We assume that experts are Bayesian; namely they share a common prior, each expert is exposed to some evidence, and each expert applies Bayes rule to deduce his forecast. The aggregator is ignorant with respect to the information structure (i.e., distribution over evidence) according to which experts make their prediction. The aggregator observes the experts' forecasts only. At the end of each period the actual state is realized. We focus on the question whether the aggregator can learn to aggregate optimally the forecasts of the experts, where the optimal aggregation is the Bayesian aggregation that takes into account all the information (evidence) in the system. We consider the class of partial evidence information structures, where each expert is exposed to a different subset of conditionally independent signals. Our main results are positive; We show that optimal aggregation can be learned in polynomial time in a quite wide range of instances of the partial evidence environments. We provide a tight characterization of the instances where learning is possible and impossible.
Out-distribution training confers robustness to deep neural networks
The easiness at which adversarial instances can be generated in deep neural networks raises some fundamental questions on their functioning and concerns on their use in critical systems. In this paper, we draw a connection between over-generalization and adversaries: a possible cause of adversaries lies in models designed to make decisions all over the input space, leading to inappropriate high-confidence decisions in parts of the input space not represented in the training set. We empirically show an augmented neural network, which is not trained on any types of adversaries, can increase the robustness by detecting black-box one-step adversaries, i.e. assimilated to out-distribution samples, and making generation of white-box one-step adversaries harder.
On Estimating Multi-Attribute Choice Preferences using Private Signals and Matrix Factorization
Revealed preference theory studies the possibility of modeling an agent's revealed preferences and the construction of a consistent utility function. However, modeling agent's choices over preference orderings is not always practical and demands strong assumptions on human rationality and data-acquisition abilities. Therefore, we propose a simple generative choice model where agents are assumed to generate the choice probabilities based on latent factor matrices that capture their choice evaluation across multiple attributes. Since the multi-attribute evaluation is typically hidden within the agent's psyche, we consider a signaling mechanism where agents are provided with choice information through private signals, so that the agent's choices provide more insight about his/her latent evaluation across multiple attributes. We estimate the choice model via a novel multi-stage matrix factorization algorithm that minimizes the average deviation of the factor estimates from choice data. Simulation results are presented to validate the estimation performance of our proposed algorithm.
Local Differential Privacy for Evolving Data
There are now several large scale deployments of differential privacy used to collect statistical information about users. However, these deployments periodically recollect the data and recompute the statistics using algorithms designed for a single use. As a result, these systems do not provide meaningful privacy guarantees over long time scales. Moreover, existing techniques to mitigate this effect do not apply in the "local model" of differential privacy that these systems use. In this paper, we introduce a new technique for local differential privacy that makes it possible to maintain up-to-date statistics over time, with privacy guarantees that degrade only in the number of changes in the underlying distribution rather than the number of collection periods. We use our technique for tracking a changing statistic in the setting where users are partitioned into an unknown collection of groups, and at every time period each user draws a single bit from a common (but changing) group-specific distribution. We also provide an application to frequency and heavy-hitter estimation.
Deep BCD-Net Using Identical Encoding-Decoding CNN Structures for Iterative Image Recovery
In "extreme" computational imaging that collects extremely undersampled or noisy measurements, obtaining an accurate image within a reasonable computing time is challenging. Incorporating image mapping convolutional neural networks (CNN) into iterative image recovery has great potential to resolve this issue. This paper 1) incorporates image mapping CNN using identical convolutional kernels in both encoders and decoders into a block coordinate descent (BCD) signal recovery method and 2) applies alternating direction method of multipliers to train the aforementioned image mapping CNN. We refer to the proposed recurrent network as BCD-Net using identical encoding-decoding CNN structures. Numerical experiments show that, for a) denoising low signal-to-noise-ratio images and b) extremely undersampled magnetic resonance imaging, the proposed BCD-Net achieves significantly more accurate image recovery, compared to BCD-Net using distinct encoding-decoding structures and/or the conventional image recovery model using both wavelets and total variation.
Adaptive Sampling for Coarse Ranking
We consider the problem of active coarse ranking, where the goal is to sort items according to their means into clusters of pre-specified sizes, by adaptively sampling from their reward distributions. This setting is useful in many social science applications involving human raters and the approximate rank of every item is desired. Approximate or coarse ranking can significantly reduce the number of ratings required in comparison to the number needed to find an exact ranking. We propose a computationally efficient PAC algorithm LUCBRank for coarse ranking, and derive an upper bound on its sample complexity. We also derive a nearly matching distribution-dependent lower bound. Experiments on synthetic as well as real-world data show that LUCBRank performs better than state-of-the-art baseline methods, even when these methods have the advantage of knowing the underlying parametric model.
Neural Architecture Search with Bayesian Optimisation and Optimal Transport
Bayesian Optimisation (BO) refers to a class of methods for global optimisation of a function $f$ which is only accessible via point evaluations. It is typically used in settings where $f$ is expensive to evaluate. A common use case for BO in machine learning is model selection, where it is not possible to analytically model the generalisation performance of a statistical model, and we resort to noisy and expensive training and validation procedures to choose the best model. Conventional BO methods have focused on Euclidean and categorical domains, which, in the context of model selection, only permits tuning scalar hyper-parameters of machine learning algorithms. However, with the surge of interest in deep learning, there is an increasing demand to tune neural network \emph{architectures}. In this work, we develop NASBOT, a Gaussian process based BO framework for neural architecture search. To accomplish this, we develop a distance metric in the space of neural network architectures which can be computed efficiently via an optimal transport program. This distance might be of independent interest to the deep learning community as it may find applications outside of BO. We demonstrate that NASBOT outperforms other alternatives for architecture search in several cross validation based model selection tasks on multi-layer perceptrons and convolutional neural networks.
AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning
Clinical prognostic models derived from largescale healthcare data can inform critical diagnostic and therapeutic decisions. To enable off-theshelf usage of machine learning (ML) in prognostic research, we developed AUTOPROGNOSIS: a system for automating the design of predictive modeling pipelines tailored for clinical prognosis. AUTOPROGNOSIS optimizes ensembles of pipeline configurations efficiently using a novel batched Bayesian optimization (BO) algorithm that learns a low-dimensional decomposition of the pipelines high-dimensional hyperparameter space in concurrence with the BO procedure. This is achieved by modeling the pipelines performances as a black-box function with a Gaussian process prior, and modeling the similarities between the pipelines baseline algorithms via a sparse additive kernel with a Dirichlet prior. Meta-learning is used to warmstart BO with external data from similar patient cohorts by calibrating the priors using an algorithm that mimics the empirical Bayes method. The system automatically explains its predictions by presenting the clinicians with logical association rules that link patients features to predicted risk strata. We demonstrate the utility of AUTOPROGNOSIS using 10 major patient cohorts representing various aspects of cardiovascular patient care.
Actively Avoiding Nonsense in Generative Models
A generative model may generate utter nonsense when it is fit to maximize the likelihood of observed data. This happens due to "model error," i.e., when the true data generating distribution does not fit within the class of generative models being learned. To address this, we propose a model of active distribution learning using a binary invalidity oracle that identifies some examples as clearly invalid, together with random positive examples sampled from the true distribution. The goal is to maximize the likelihood of the positive examples subject to the constraint of (almost) never generating examples labeled invalid by the oracle. Guarantees are agnostic compared to a class of probability distributions. We show that, while proper learning often requires exponentially many queries to the invalidity oracle, improper distribution learning can be done using polynomially many queries.
Continual Reinforcement Learning with Complex Synapses
Unlike humans, who are capable of continual learning over their lifetimes, artificial neural networks have long been known to suffer from a phenomenon known as catastrophic forgetting, whereby new learning can lead to abrupt erasure of previously acquired knowledge. Whereas in a neural network the parameters are typically modelled as scalar values, an individual synapse in the brain comprises a complex network of interacting biochemical components that evolve at different timescales. In this paper, we show that by equipping tabular and deep reinforcement learning agents with a synaptic model that incorporates this biological complexity (Benna & Fusi, 2016), catastrophic forgetting can be mitigated at multiple timescales. In particular, we find that as well as enabling continual learning across sequential training of two simple tasks, it can also be used to overcome within-task forgetting by reducing the need for an experience replay database.
Steering Social Activity: A Stochastic Optimal Control Point Of View
User engagement in online social networking depends critically on the level of social activity in the corresponding platform--the number of online actions, such as posts, shares or replies, taken by their users. Can we design data-driven algorithms to increase social activity? At a user level, such algorithms may increase activity by helping users decide when to take an action to be more likely to be noticed by their peers. At a network level, they may increase activity by incentivizing a few influential users to take more actions, which in turn will trigger additional actions by other users. In this paper, we model social activity using the framework of marked temporal point processes, derive an alternate representation of these processes using stochastic differential equations (SDEs) with jumps and, exploiting this alternate representation, develop two efficient online algorithms with provable guarantees to steer social activity both at a user and at a network level. In doing so, we establish a previously unexplored connection between optimal control of jump SDEs and doubly stochastic marked temporal point processes, which is of independent interest. Finally, we experiment both with synthetic and real data gathered from Twitter and show that our algorithms consistently steer social activity more effectively than the state of the art.
Meta-Reinforcement Learning of Structured Exploration Strategies
Exploration is a fundamental challenge in reinforcement learning (RL). Many of the current exploration methods for deep RL use task-agnostic objectives, such as information gain or bonuses based on state visitation. However, many practical applications of RL involve learning more than a single task, and prior tasks can be used to inform how exploration should be performed in new tasks. In this work, we explore how prior tasks can inform an agent about how to explore effectively in new situations. We introduce a novel gradient-based fast adaptation algorithm -- model agnostic exploration with structured noise (MAESN) -- to learn exploration strategies from prior experience. The prior experience is used both to initialize a policy and to acquire a latent exploration space that can inject structured stochasticity into a policy, producing exploration strategies that are informed by prior knowledge and are more effective than random action-space noise. We show that MAESN is more effective at learning exploration strategies when compared to prior meta-RL methods, RL without learned exploration strategies, and task-agnostic exploration methods. We evaluate our method on a variety of simulated tasks: locomotion with a wheeled robot, locomotion with a quadrupedal walker, and object manipulation.
Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning
As the prevalence and everyday use of machine learning algorithms, along with our reliance on these algorithms grow dramatically, so do the efforts to attack and undermine these algorithms with malicious intent, resulting in a growing interest in adversarial machine learning. A number of approaches have been developed that can render a machine learning algorithm ineffective through poisoning or other types of attacks. Most attack algorithms typically use sophisticated optimization approaches, whose objective function is designed to cause maximum damage with respect to accuracy and performance of the algorithm with respect to some task. In this effort, we show that while such an objective function is indeed brutally effective in causing maximum damage on an embedded feature selection task, it often results in an attack mechanism that can be easily detected with an embarrassingly simple novelty or outlier detection algorithm. We then propose an equally simple yet elegant solution by adding a regularization term to the attacker's objective function that penalizes outlying attack points.
On the Connection Between Learning Two-Layers Neural Networks and Tensor Decomposition
We establish connections between the problem of learning a two-layer neural network and tensor decomposition. We consider a model with feature vectors $\boldsymbol x \in \mathbb R^d$, $r$ hidden units with weights $\{\boldsymbol w_i\}_{1\le i \le r}$ and output $y\in \mathbb R$, i.e., $y=\sum_{i=1}^r \sigma( \boldsymbol w_i^{\mathsf T}\boldsymbol x)$, with activation functions given by low-degree polynomials. In particular, if $\sigma(x) = a_0+a_1x+a_3x^3$, we prove that no polynomial-time learning algorithm can outperform the trivial predictor that assigns to each example the response variable $\mathbb E(y)$, when $d^{3/2}\ll r\ll d^2$. Our conclusion holds for a `natural data distribution', namely standard Gaussian feature vectors $\boldsymbol x$, and output distributed according to a two-layer neural network with random isotropic weights, and under a certain complexity-theoretic assumption on tensor decomposition. Roughly speaking, we assume that no polynomial-time algorithm can substantially outperform current methods for tensor decomposition based on the sum-of-squares hierarchy. We also prove generalizations of this statement for higher degree polynomial activations, and non-random weight vectors. Remarkably, several existing algorithms for learning two-layer networks with rigorous guarantees are based on tensor decomposition. Our results support the idea that this is indeed the core computational difficulty in learning such networks, under the stated generative model for the data. As a side result, we show that under this model learning the network requires accurate learning of its weights, a property that does not hold in a more general setting.
Bayesian Incremental Learning for Deep Neural Networks
In industrial machine learning pipelines, data often arrive in parts. Particularly in the case of deep neural networks, it may be too expensive to train the model from scratch each time, so one would rather use a previously learned model and the new data to improve performance. However, deep neural networks are prone to getting stuck in a suboptimal solution when trained on only new data as compared to the full dataset. Our work focuses on a continuous learning setup where the task is always the same and new parts of data arrive sequentially. We apply a Bayesian approach to update the posterior approximation with each new piece of data and find this method to outperform the traditional approach in our experiments.
On the Statistical Challenges of Echo State Networks and Some Potential Remedies
Echo state networks are powerful recurrent neural networks. However, they are often unstable and shaky, making the process of finding an good ESN for a specific dataset quite hard. Obtaining a superb accuracy by using the Echo State Network is a challenging task. We create, develop and implement a family of predictably optimal robust and stable ensemble of Echo State Networks via regularizing the training and perturbing the input. Furthermore, several distributions of weights have been tried based on the shape to see if the shape of the distribution has the impact for reducing the error. We found ESN can track in short term for most dataset, but it collapses in the long run. Short-term tracking with large size reservoir enables ESN to perform strikingly with superior prediction. Based on this scenario, we go a further step to aggregate many of ESNs into an ensemble to lower the variance and stabilize the system by stochastic replications and bootstrapping of input data.
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Cubic regularization (CR) is an optimization method with emerging popularity due to its capability to escape saddle points and converge to second-order stationary solutions for nonconvex optimization. However, CR encounters a high sample complexity issue for finite-sum problems with a large data size. %Various inexact variants of CR have been proposed to improve the sample complexity. In this paper, we propose a stochastic variance-reduced cubic-regularization (SVRC) method under random sampling, and study its convergence guarantee as well as sample complexity. We show that the iteration complexity of SVRC for achieving a second-order stationary solution within $\epsilon$ accuracy is $O(\epsilon^{-3/2})$, which matches the state-of-art result on CR types of methods. Moreover, our proposed variance reduction scheme significantly reduces the per-iteration sample complexity. The resulting total Hessian sample complexity of our SVRC is ${\Oc}(N^{2/3} \epsilon^{-3/2})$, which outperforms the state-of-art result by a factor of $O(N^{2/15})$. We also study our SVRC under random sampling without replacement scheme, which yields a lower per-iteration sample complexity, and hence justifies its practical applicability.
Scalable Label Propagation for Multi-relational Learning on the Tensor Product of Graphs
Multi-relational learning on knowledge graphs infers high-order relations among the entities across the graphs. This learning task can be solved by label propagation on the tensor product of the knowledge graphs to learn the high-order relations as a tensor. In this paper, we generalize a widely used label propagation model to the normalized tensor product graph, and propose an optimization formulation and a scalable Low-rank Tensor-based Label Propagation algorithm (LowrankTLP) to infer multi-relations for two learning tasks, hyperlink prediction and multiple graph alignment. The optimization formulation minimizes the upper bound of the noisy tensor estimation error for multiple graph alignment, by learning with a subset of the eigen-pairs in the spectrum of the normalized tensor product graph. We also provide a data-dependent transductive Rademacher bound for binary hyperlink prediction. We accelerate LowrankTLP with parallel tensor computation which enables label propagation on a tensor product of 100 graphs each of size 1000 in less than half hour in the simulation. LowrankTLP was also applied to predicting the author-paper-venue hyperlinks in publication records, alignment of segmented regions across up to 26 CT-scan images and alignment of protein-protein interaction networks across multiple species. The experiments demonstrate that LowrankTLP indeed well approximates the original label propagation with better scalability and accuracy.
Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more
Coreset (or core-set) is a small weighted \emph{subset} $Q$ of an input set $P$ with respect to a given \emph{monotonic} function $f:\mathbb{R}\to\mathbb{R}$ that \emph{provably} approximates its fitting loss $\sum_{p\in P}f(p\cdot x)$ to \emph{any} given $x\in\mathbb{R}^d$. Using $Q$ we can obtain approximation of $x^*$ that minimizes this loss, by running \emph{existing} optimization algorithms on $Q$. In this work we provide: (i) A lower bound which proves that there are sets with no coresets smaller than $n=|P|$ for general monotonic loss functions. (ii) A proof that, under a natural assumption that holds e.g. for logistic regression and the sigmoid activation functions, a small coreset exists for \emph{any} input $P$. (iii) A generic coreset construction algorithm that computes such a small coreset $Q$ in $O(nd+n\log n)$ time, and (iv) Experimental results which demonstrate that our coresets are effective and are much smaller in practice than predicted in theory.
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
We present a new algorithm to generate minimal, stable, and symbolic corrections to an input that will cause a neural network with ReLU activations to change its output. We argue that such a correction is a useful way to provide feedback to a user when the network's output is different from a desired output. Our algorithm generates such a correction by solving a series of linear constraint satisfaction problems. The technique is evaluated on three neural network models: one predicting whether an applicant will pay a mortgage, one predicting whether a first-order theorem can be proved efficiently by a solver using certain heuristics, and the final one judging whether a drawing is an accurate rendition of a canonical drawing of a cat.
3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning
The performance and efficiency of distributed machine learning (ML) depends significantly on how long it takes for nodes to exchange state changes. Overly-aggressive attempts to reduce communication often sacrifice final model accuracy and necessitate additional ML techniques to compensate for this loss, limiting their generality. Some attempts to reduce communication incur high computation overhead, which makes their performance benefits visible only over slow networks. We present 3LC, a lossy compression scheme for state change traffic that strikes balance between multiple goals: traffic reduction, accuracy, computation overhead, and generality. It combines three new techniques---3-value quantization with sparsity multiplication, quartic encoding, and zero-run encoding---to leverage strengths of quantization and sparsification techniques and avoid their drawbacks. It achieves a data compression ratio of up to 39--107X, almost the same test accuracy of trained models, and high compression speed. Distributed ML frameworks can employ 3LC without modifications to existing ML algorithms. Our experiments show that 3LC reduces wall-clock training time of ResNet-110--based image classifiers for CIFAR-10 on a 10-GPU cluster by up to 16--23X compared to TensorFlow's baseline design.
Direct Learning to Rank and Rerank
Learning-to-rank techniques have proven to be extremely useful for prioritization problems, where we rank items in order of their estimated probabilities, and dedicate our limited resources to the top-ranked items. This work exposes a serious problem with the state of learning-to-rank algorithms, which is that they are based on convex proxies that lead to poor approximations. We then discuss the possibility of "exact" reranking algorithms based on mathematical programming. We prove that a relaxed version of the "exact" problem has the same optimal solution, and provide an empirical analysis.
A Study into the similarity in generator and discriminator in GAN architecture
One popular generative model that has high-quality results is the Generative Adversarial Networks(GAN). This type of architecture consists of two separate networks that play against each other. The generator creates an output from the input noise that is given to it. The discriminator has the task of determining if the input to it is real or fake. This takes place constantly eventually leads to the generator modeling the target distribution. This paper includes a study into the actual weights learned by the network and a study into the similarity of the discriminator and generator networks. The paper also tries to leverage the similarity between these networks and shows that indeed both the networks may have a similar structure with experimental evidence with a novel shared architecture.
Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms
Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE including the EM algorithm, and gradient descent are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating paramters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines.
Generalization in Machine Learning via Analytical Learning Theory
This paper introduces a novel measure-theoretic theory for machine learning that does not require statistical assumptions. Based on this theory, a new regularization method in deep learning is derived and shown to outperform previous methods in CIFAR-10, CIFAR-100, and SVHN. Moreover, the proposed theory provides a theoretical basis for a family of practically successful regularization methods in deep learning. We discuss several consequences of our results on one-shot learning, representation learning, deep learning, and curriculum learning. Unlike statistical learning theory, the proposed learning theory analyzes each problem instance individually via measure theory, rather than a set of problem instances via statistics. As a result, it provides different types of results and insights when compared to statistical learning theory.
Active Learning with Partial Feedback
While many active learning papers assume that the learner can simply ask for a label and receive it, real annotation often presents a mismatch between the form of a label (say, one among many classes), and the form of an annotation (typically yes/no binary feedback). To annotate examples corpora for multiclass classification, we might need to ask multiple yes/no questions, exploiting a label hierarchy if one is available. To address this more realistic setting, we propose active learning with partial feedback (ALPF), where the learner must actively choose both which example to label and which binary question to ask. At each step, the learner selects an example, asking if it belongs to a chosen (possibly composite) class. Each answer eliminates some classes, leaving the learner with a partial label. The learner may then either ask more questions about the same example (until an exact label is uncovered) or move on immediately, leaving the first example partially labeled. Active learning with partial labels requires (i) a sampling strategy to choose (example, class) pairs, and (ii) learning from partial labels between rounds. Experiments on Tiny ImageNet demonstrate that our most effective method improves 26% (relative) in top-1 classification accuracy compared to i.i.d. baselines and standard active learners given 30% of the annotation budget that would be required (naively) to annotate the dataset. Moreover, ALPF-learners fully annotate TinyImageNet at 42% lower cost. Surprisingly, we observe that accounting for per-example annotation costs can alter the conventional wisdom that active learners should solicit labels for hard examples.
Learning to Play with Intrinsically-Motivated Self-Aware Agents
Infants are experts at playing, with an amazing ability to generate novel structured behaviors in unstructured environments that lack clear extrinsic reward signals. We seek to mathematically formalize these abilities using a neural network that implements curiosity-driven intrinsic motivation. Using a simple but ecologically naturalistic simulated environment in which an agent can move and interact with objects it sees, we propose a "world-model" network that learns to predict the dynamic consequences of the agent's actions. Simultaneously, we train a separate explicit "self-model" that allows the agent to track the error map of its own world-model, and then uses the self-model to adversarially challenge the developing world-model. We demonstrate that this policy causes the agent to explore novel and informative interactions with its environment, leading to the generation of a spectrum of complex behaviors, including ego-motion prediction, object attention, and object gathering. Moreover, the world-model that the agent learns supports improved performance on object dynamics prediction, detection, localization and recognition tasks. Taken together, our results are initial steps toward creating flexible autonomous agents that self-supervise in complex novel physical environments.
Scaling-up Split-Merge MCMC with Locality Sensitive Sampling (LSS)
Split-Merge MCMC (Monte Carlo Markov Chain) is one of the essential and popular variants of MCMC for problems when an MCMC state consists of an unknown number of components. It is well known that state-of-the-art methods for split-merge MCMC do not scale well. Strategies for rapid mixing requires smart and informative proposals to reduce the rejection rate. However, all known smart proposals involve expensive operations to suggest informative transitions. As a result, the cost of each iteration is prohibitive for massive scale datasets. It is further known that uninformative but computationally efficient proposals, such as random split-merge, leads to extremely slow convergence. This tradeoff between mixing time and per update cost seems hard to get around. In this paper, we show a sweet spot. We leverage some unique properties of weighted MinHash, which is a popular LSH, to design a novel class of split-merge proposals which are significantly more informative than random sampling but at the same time efficient to compute. Overall, we obtain a superior tradeoff between convergence and per update cost. As a direct consequence, our proposals are around 6X faster than the state-of-the-art sampling methods on two large real datasets KDDCUP and PubMed with several millions of entities and thousands of clusters.
Emergence of Structured Behaviors from Curiosity-Based Intrinsic Motivation
Infants are experts at playing, with an amazing ability to generate novel structured behaviors in unstructured environments that lack clear extrinsic reward signals. We seek to replicate some of these abilities with a neural network that implements curiosity-driven intrinsic motivation. Using a simple but ecologically naturalistic simulated environment in which the agent can move and interact with objects it sees, the agent learns a world model predicting the dynamic consequences of its actions. Simultaneously, the agent learns to take actions that adversarially challenge the developing world model, pushing the agent to explore novel and informative interactions with its environment. We demonstrate that this policy leads to the self-supervised emergence of a spectrum of complex behaviors, including ego motion prediction, object attention, and object gathering. Moreover, the world model that the agent learns supports improved performance on object dynamics prediction and localization tasks. Our results are a proof-of-principle that computational models of intrinsic motivation might account for key features of developmental visuomotor learning in infants.
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks
We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.
Spectrally approximating large graphs with smaller graphs
How does coarsening affect the spectrum of a general graph? We provide conditions such that the principal eigenvalues and eigenspaces of a coarsened and original graph Laplacian matrices are close. The achieved approximation is shown to depend on standard graph-theoretic properties, such as the degree and eigenvalue distributions, as well as on the ratio between the coarsened and actual graph sizes. Our results carry implications for learning methods that utilize coarsening. For the particular case of spectral clustering, they imply that coarse eigenvectors can be used to derive good quality assignments even without refinement---this phenomenon was previously observed, but lacked formal justification.
Adversarial classification: An adversarial risk analysis approach
Classification problems in security settings are usually contemplated as confrontations in which one or more adversaries try to fool a classifier to obtain a benefit. Most approaches to such adversarial classification problems have focused on game theoretical ideas with strong underlying common knowledge assumptions, which are actually not realistic in security domains. We provide an alternative framework to such problem based on adversarial risk analysis, which we illustrate with several examples. Computational and implementation issues are discussed.
Learning Integral Representations of Gaussian Processes
We propose a representation of Gaussian processes (GPs) based on powers of the integral operator defined by a kernel function, we call these stochastic processes integral Gaussian processes (IGPs). Sample paths from IGPs are functions contained within the reproducing kernel Hilbert space (RKHS) defined by the kernel function, in contrast sample paths from the standard GP are not functions within the RKHS. We develop computationally efficient non-parametric regression models based on IGPs. The main innovation in our regression algorithm is the construction of a low dimensional subspace that captures the information most relevant to explaining variation in the response. We use ideas from supervised dimension reduction to compute this subspace. The result of using the construction we propose involves significant improvements in the computational complexity of estimating kernel hyper-parameters as well as reducing the prediction variance.
The Many Faces of Exponential Weights in Online Learning
A standard introduction to online learning might place Online Gradient Descent at its center and then proceed to develop generalizations and extensions like Online Mirror Descent and second-order methods. Here we explore the alternative approach of putting Exponential Weights (EW) first. We show that many standard methods and their regret bounds then follow as a special case by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses, and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint, and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW interpretation is that it opens up the possibility of sampling from the EW posterior distribution instead of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate in Online Bandit Linear Optimization.
Clipped Action Policy Gradient
Many continuous control tasks have bounded action spaces. When policy gradient methods are applied to such tasks, out-of-bound actions need to be clipped before execution, while policies are usually optimized as if the actions are not clipped. We propose a policy gradient estimator that exploits the knowledge of actions being clipped to reduce the variance in estimation. We prove that our estimator, named clipped action policy gradient (CAPG), is unbiased and achieves lower variance than the conventional estimator that ignores action bounds. Experimental results demonstrate that CAPG generally outperforms the conventional estimator, indicating that it is a better policy gradient estimator for continuous control tasks. The source code is available at https://github.com/pfnet-research/capg.
Continual Lifelong Learning with Neural Networks: A Review
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
Information Theoretic Co-Training
This paper introduces an information theoretic co-training objective for unsupervised learning. We consider the problem of predicting the future. Rather than predict future sensations (image pixels or sound waves) we predict "hypotheses" to be confirmed by future sensations. More formally, we assume a population distribution on pairs $(x,y)$ where we can think of $x$ as a past sensation and $y$ as a future sensation. We train both a predictor model $P_\Phi(z|x)$ and a confirmation model $P_\Psi(z|y)$ where we view $z$ as hypotheses (when predicted) or facts (when confirmed). For a population distribution on pairs $(x,y)$ we focus on the problem of measuring the mutual information between $x$ and $y$. By the data processing inequality this mutual information is at least as large as the mutual information between $x$ and $z$ under the distribution on triples $(x,z,y)$ defined by the confirmation model $P_\Psi(z|y)$. The information theoretic training objective for $P_\Phi(z|x)$ and $P_\Psi(z|y)$ can be viewed as a form of co-training where we want the prediction from $x$ to match the confirmation from $y$.
Universal Hypothesis Testing with Kernels: Asymptotically Optimal Tests for Goodness of Fit
We characterize the asymptotic performance of nonparametric goodness of fit testing. The exponential decay rate of the type-II error probability is used as the asymptotic performance metric, and a test is optimal if it achieves the maximum rate subject to a constant level constraint on the type-I error probability. We show that two classes of Maximum Mean Discrepancy (MMD) based tests attain this optimality on $\mathbb R^d$, while the quadratic-time Kernel Stein Discrepancy (KSD) based tests achieve the maximum exponential decay rate under a relaxed level constraint. Under the same performance metric, we proceed to show that the quadratic-time MMD based two-sample tests are also optimal for general two-sample problems, provided that kernels are bounded continuous and characteristic. Key to our approach are Sanov's theorem from large deviation theory and the weak metrizable properties of the MMD and KSD.
Smooth Loss Functions for Deep Top-k Classification
The top-k error is a common measure of performance in machine learning and computer vision. In practice, top-k classification is typically performed with deep neural networks trained with the cross-entropy loss. Theoretical results indeed suggest that cross-entropy is an optimal learning objective for such a task in the limit of infinite data. In the context of limited and noisy data however, the use of a loss function that is specifically designed for top-k classification can bring significant improvements. Our empirical evidence suggests that the loss function must be smooth and have non-sparse gradients in order to work well with deep neural networks. Consequently, we introduce a family of smoothed loss functions that are suited to top-k optimization via deep learning. The widely used cross-entropy is a special case of our family. Evaluating our smooth loss functions is computationally challenging: a na\"ive algorithm would require $\mathcal{O}(\binom{n}{k})$ operations, where n is the number of classes. Thanks to a connection to polynomial algebra and a divide-and-conquer approach, we provide an algorithm with a time complexity of $\mathcal{O}(k n)$. Furthermore, we present a novel approximation to obtain fast and stable algorithms on GPUs with single floating point precision. We compare the performance of the cross-entropy loss and our margin-based losses in various regimes of noise and data size, for the predominant use case of k=5. Our investigation reveals that our loss is more robust to noise and overfitting than cross-entropy.
Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making
In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
In this paper we propose a novel method that provides contrastive explanations justifying the classification of an input by a black box classifier such as a deep neural network. Given an input we find what should be %necessarily and minimally and sufficiently present (viz. important object pixels in an image) to justify its classification and analogously what should be minimally and necessarily \emph{absent} (viz. certain background pixels). We argue that such explanations are natural for humans and are used commonly in domains such as health care and criminology. What is minimally but critically \emph{absent} is an important part of an explanation, which to the best of our knowledge, has not been explicitly identified by current explanation methods that explain predictions of neural networks. We validate our approach on three real datasets obtained from diverse domains; namely, a handwritten digits dataset MNIST, a large procurement fraud dataset and a brain activity strength dataset. In all three cases, we witness the power of our approach in generating precise explanations that are also easy for human experts to understand and evaluate.
Stochastic Video Generation with a Learned Prior
Generating video frames that accurately predict future world states is challenging. Existing approaches either fail to capture the full distribution of outcomes, or yield blurry generations, or both. In this paper we introduce an unsupervised video generation model that learns a prior model of uncertainty in a given environment. Video frames are generated by drawing samples from this prior and combining them with a deterministic estimate of the future frame. The approach is simple and easily trained end-to-end on a variety of datasets. Sample generations are both varied and sharp, even many frames into the future, and compare favorably to those from existing approaches.
Approximation Algorithms for Cascading Prediction Models
We present an approximation algorithm that takes a pool of pre-trained models as input and produces from it a cascaded model with similar accuracy but lower average-case cost. Applied to state-of-the-art ImageNet classification models, this yields up to a 2x reduction in floating point multiplications, and up to a 6x reduction in average-case memory I/O. The auto-generated cascades exhibit intuitive properties, such as using lower-resolution input for easier images and requiring higher prediction confidence when using a computationally cheaper model.
Detecting Learning vs Memorization in Deep Neural Networks using Shared Structure Validation Sets
The roles played by learning and memorization represent an important topic in deep learning research. Recent work on this subject has shown that the optimization behavior of DNNs trained on shuffled labels is qualitatively different from DNNs trained with real labels. Here, we propose a novel permutation approach that can differentiate memorization from learning in deep neural networks (DNNs) trained as usual (i.e., using the real labels to guide the learning, rather than shuffled labels). The evaluation of weather the DNN has learned and/or memorized, happens in a separate step where we compare the predictive performance of a shallow classifier trained with the features learned by the DNN, against multiple instances of the same classifier, trained on the same input, but using shuffled labels as outputs. By evaluating these shallow classifiers in validation sets that share structure with the training set, we are able to tell apart learning from memorization. Application of our permutation approach to multi-layer perceptrons and convolutional neural networks trained on image data corroborated many findings from other groups. Most importantly, our illustrations also uncovered interesting dynamic patterns about how DNNs memorize over increasing numbers of training epochs, and support the surprising result that DNNs are still able to learn, rather than only memorize, when trained with pure Gaussian noise as input.
Determining the best classifier for predicting the value of a boolean field on a blood donor database using genetic algorithms
Motivation: Thanks to digitization, we often have access to large databases, consisting of various fields of information, ranging from numbers to texts and even boolean values. Such databases lend themselves especially well to machine learning, classification and big data analysis tasks. We are able to train classifiers, using already existing data and use them for predicting the values of a certain field, given that we have information regarding the other fields. Most specifically, in this study, we look at the Electronic Health Records (EHRs) that are compiled by hospitals. These EHRs are convenient means of accessing data of individual patients, but there processing as a whole still remains a task. However, EHRs that are composed of coherent, well-tabulated structures lend themselves quite well to the application to machine language, via the usage of classifiers. In this study, we look at a Blood Transfusion Service Center Data Set (Data taken from the Blood Transfusion Service Center in Hsin-Chu City in Taiwan). We used scikit-learn machine learning in python. From Support Vector Machines(SVM), we use Support Vector Classification(SVC), from the linear model we import Perceptron. We also used the K.neighborsclassifier and the decision tree classifiers. Furthermore, we use the TPOT library to find an optimized pipeline using genetic algorithms. Using the above classifiers, we score each one of them using k fold cross-validation. Contact: [email protected] GitHub Repository: https://github.com/ritabratamaiti/Blooddonorprediction
Continuous Relaxation of MAP Inference: A Nonconvex Perspective
In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can be easily reached by a simple block coordinate descent algorithm. In addition, we study the resolution of this relaxation using popular gradient methods, and further propose a more effective solution using a multilinear decomposition framework based on the alternating direction method of multipliers (ADMM). Experiments on many real-world problems demonstrate that the proposed ADMM significantly outperforms other nonconvex relaxation based methods, and compares favorably with state of the art MRF optimization algorithms in different settings.
Protecting Sensory Data against Sensitive Inferences
There is growing concern about how personal data are used when users grant applications direct access to the sensors of their mobile devices. In fact, high resolution temporal data generated by motion sensors reflect directly the activities of a user and indirectly physical and demographic attributes. In this paper, we propose a feature learning architecture for mobile devices that provides flexible and negotiable privacy-preserving sensor data transmission by appropriately transforming raw sensor data. The objective is to move from the current binary setting of granting or not permission to an application, toward a model that allows users to grant each application permission over a limited range of inferences according to the provided services. The internal structure of each component of the proposed architecture can be flexibly changed and the trade-off between privacy and utility can be negotiated between the constraints of the user and the underlying application. We validated the proposed architecture in an activity recognition application using two real-world datasets, with the objective of recognizing an activity without disclosing gender as an example of private information. Results show that the proposed framework maintains the usefulness of the transformed data for activity recognition, with an average loss of only around three percentage points, while reducing the possibility of gender classification to around 50\%, the target random guess, from more than 90\% when using raw sensor data. We also present and distribute MotionSense, a new dataset for activity and attribute recognition collected from motion sensors.
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
We introduce instancewise feature selection as a methodology for model interpretation. Our method is based on learning a function to extract a subset of features that are most informative for each given example. This feature selector is trained to maximize the mutual information between selected features and the response variable, where the conditional distribution of the response variable given the input is the model to be explained. We develop an efficient variational approximation to the mutual information, and show the effectiveness of our method on a variety of synthetic and real data sets using both quantitative metrics and human evaluation.
Variational Inference for Policy Gradient
Inspired by the seminal work on Stein Variational Inference and Stein Variational Policy Gradient, we derived a method to generate samples from the posterior variational parameter distribution by \textit{explicitly} minimizing the KL divergence to match the target distribution in an amortize fashion. Consequently, we applied this varational inference technique into vanilla policy gradient, TRPO and PPO with Bayesian Neural Network parameterizations for reinforcement learning problems.
Learning to Gather without Communication
A standard belief on emerging collective behavior is that it emerges from simple individual rules. Most of the mathematical research on such collective behavior starts from imperative individual rules, like always go to the center. But how could an (optimal) individual rule emerge during a short period within the group lifetime, especially if communication is not available. We argue that such rules can actually emerge in a group in a short span of time via collective (multi-agent) reinforcement learning, i.e learning via rewards and punishments. We consider the gathering problem: several agents (social animals, swarming robots...) must gather around a same position, which is not determined in advance. They must do so without communication on their planned decision, just by looking at the position of other agents. We present the first experimental evidence that a gathering behavior can be learned without communication in a partially observable environment. The learned behavior has the same properties as a self-stabilizing distributed algorithm, as processes can gather from any initial state (and thus tolerate any transient failure). Besides, we show that it is possible to tolerate the brutal loss of up to 90\% of agents without significant impact on the behavior.
Federated Meta-Learning with Fast Convergence and Efficient Communication
Statistical and systematic challenges in collaboratively training machine learning models across distributed networks of mobile devices have been the bottlenecks in the real-world application of federated learning. In this work, we show that meta-learning is a natural choice to handle these issues, and propose a federated meta-learning framework FedMeta, where a parameterized algorithm (or meta-learner) is shared, instead of a global model in previous approaches. We conduct an extensive empirical evaluation on LEAF datasets and a real-world production dataset, and demonstrate that FedMeta achieves a reduction in required communication cost by 2.82-4.33 times with faster convergence, and an increase in accuracy by 3.23%-14.84% as compared to Federated Averaging (FedAvg) which is a leading optimization algorithm in federated learning. Moreover, FedMeta preserves user privacy since only the parameterized algorithm is transmitted between mobile devices and central servers, and no raw data is collected onto the servers.
Pooling homogeneous ensembles to build heterogeneous ones
In ensemble methods, the outputs of a collection of diverse classifiers are combined in the expectation that the global prediction be more accurate than the individual ones. Heterogeneous ensembles consist of predictors of different types, which are likely to have different biases. If these biases are complementary, the combination of their decisions is beneficial. In this work, a family of heterogeneous ensembles is built by pooling classifiers from M homogeneous ensembles of different types of size T. Depending on the fraction of base classifiers of each type, a particular heterogeneous combination in this family is represented by a point in a regular simplex in M dimensions. The M vertices of this simplex represent the different homogeneous ensembles. A displacement away from one of these vertices effects a smooth transformation of the corresponding homogeneous ensemble into a heterogeneous one. The optimal composition of such heterogeneous ensemble can be determined using cross-validation or, if bootstrap samples are used to build the individual classifiers, out-of-bag data. An empirical analysis of such combinations of bootstraped ensembles composed of neural networks, SVMs, and random trees (i.e. from a standard random forest) illustrates the gains that can be achieved by this heterogeneous ensemble creation method.
Diversity regularization in deep ensembles
Calibrating the confidence of supervised learning models is important for a variety of contexts where the certainty over predictions should be reliable. However, it has been reported that deep neural network models are often too poorly calibrated for achieving complex tasks requiring reliable uncertainty estimates in their prediction. In this work, we are proposing a strategy for training deep ensembles with a diversity function regularization, which improves the calibration property while maintaining a similar prediction accuracy.
Nonlinear Online Learning with Adaptive Nystr\"{o}m Approximation
Use of nonlinear feature maps via kernel approximation has led to success in many online learning tasks. As a popular kernel approximation method, Nystr\"{o}m approximation, has been well investigated, and various landmark points selection methods have been proposed to improve the approximation quality. However, these improved Nystr\"{o}m methods cannot be directly applied to the online learning setting as they need to access the entire dataset to learn the landmark points, while we need to update model on-the-fly in the online setting. To address this challenge, we propose Adaptive Nystr\"{o}m approximation for solving nonlinear online learning problems. The key idea is to adaptively modify the landmark points via online kmeans and adjust the model accordingly via solving least square problem followed by a gradient descent step. We show that the resulting algorithm outperforms state-of-the-art online learning methods under the same budget.
Entropy Rate Estimation for Markov Chains with Large State Space
Estimating the entropy based on data is one of the prototypical problems in distribution property testing and estimation. For estimating the Shannon entropy of a distribution on $S$ elements with independent samples, [Paninski2004] showed that the sample complexity is sublinear in $S$, and [Valiant--Valiant2011] showed that consistent estimation of Shannon entropy is possible if and only if the sample size $n$ far exceeds $\frac{S}{\log S}$. In this paper we consider the problem of estimating the entropy rate of a stationary reversible Markov chain with $S$ states from a sample path of $n$ observations. We show that: (1) As long as the Markov chain mixes not too slowly, i.e., the relaxation time is at most $O(\frac{S}{\ln^3 S})$, consistent estimation is achievable when $n \gg \frac{S^2}{\log S}$. (2) As long as the Markov chain has some slight dependency, i.e., the relaxation time is at least $1+\Omega(\frac{\ln^2 S}{\sqrt{S}})$, consistent estimation is impossible when $n \lesssim \frac{S^2}{\log S}$. Under both assumptions, the optimal estimation accuracy is shown to be $\Theta(\frac{S^2}{n \log S})$. In comparison, the empirical entropy rate requires at least $\Omega(S^2)$ samples to be consistent, even when the Markov chain is memoryless. In addition to synthetic experiments, we also apply the estimators that achieve the optimal sample complexity to estimate the entropy rate of the English language in the Penn Treebank and the Google One Billion Words corpora, which provides a natural benchmark for language modeling and relates it directly to the widely used perplexity measure.
Learning Mixtures of Linear Regressions with Nearly Optimal Complexity
Mixtures of Linear Regressions (MLR) is an important mixture model with many applications. In this model, each observation is generated from one of the several unknown linear regression components, where the identity of the generated component is also unknown. Previous works either assume strong assumptions on the data distribution or have high complexity. This paper proposes a fixed parameter tractable algorithm for the problem under general conditions, which achieves global convergence and the sample complexity scales nearly linearly in the dimension. In particular, different from previous works that require the data to be from the standard Gaussian, the algorithm allows the data from Gaussians with different covariances. When the conditional number of the covariances and the number of components are fixed, the algorithm has nearly optimal sample complexity $N = \tilde{O}(d)$ as well as nearly optimal computational complexity $\tilde{O}(Nd)$, where $d$ is the dimension of the data space. To the best of our knowledge, this approach provides the first such recovery guarantee for this general setting.
L2-Nonexpansive Neural Networks
This paper proposes a class of well-conditioned neural networks in which a unit amount of change in the inputs causes at most a unit amount of change in the outputs or any of the internal layers. We develop the known methodology of controlling Lipschitz constants to realize its full potential in maximizing robustness, with a new regularization scheme for linear layers, new ways to adapt nonlinearities and a new loss function. With MNIST and CIFAR-10 classifiers, we demonstrate a number of advantages. Without needing any adversarial training, the proposed classifiers exceed the state of the art in robustness against white-box L2-bounded adversarial attacks. They generalize better than ordinary networks from noisy data with partially random labels. Their outputs are quantitatively meaningful and indicate levels of confidence and generalization, among other desirable properties.
Regional Multi-Armed Bandits
We consider a variant of the classic multi-armed bandit problem where the expected reward of each arm is a function of an unknown parameter. The arms are divided into different groups, each of which has a common parameter. Therefore, when the player selects an arm at each time slot, information of other arms in the same group is also revealed. This regional bandit model naturally bridges the non-informative bandit setting where the player can only learn the chosen arm, and the global bandit model where sampling one arms reveals information of all arms. We propose an efficient algorithm, UCB-g, that solves the regional bandit problem by combining the Upper Confidence Bound (UCB) and greedy principles. Both parameter-dependent and parameter-free regret upper bounds are derived. We also establish a matching lower bound, which proves the order-optimality of UCB-g. Moreover, we propose SW-UCB-g, which is an extension of UCB-g for a non-stationary environment where the parameters slowly vary over time.
The Hidden Vulnerability of Distributed Learning in Byzantium
While machine learning is going through an era of celebrated success, concerns have been raised about the vulnerability of its backbone: stochastic gradient descent (SGD). Recent approaches have been proposed to ensure the robustness of distributed SGD against adversarial (Byzantine) workers sending poisoned gradients during the training phase. Some of these approaches have been proven Byzantine-resilient: they ensure the convergence of SGD despite the presence of a minority of adversarial workers. We show in this paper that convergence is not enough. In high dimension $d \gg 1$, an adver\-sary can build on the loss function's non-convexity to make SGD converge to ineffective models. More precisely, we bring to light that existing Byzantine-resilient schemes leave a margin of poisoning of $\Omega\left(f(d)\right)$, where $f(d)$ increases at least like $\sqrt{d~}$. Based on this leeway, we build a simple attack, and experimentally show its strong to utmost effectivity on CIFAR-10 and MNIST. We introduce Bulyan, and prove it significantly reduces the attackers leeway to a narrow $O( \frac{1}{\sqrt{d~}})$ bound. We empirically show that Bulyan does not suffer the fragility of existing aggregation rules and, at a reasonable cost in terms of required batch size, achieves convergence as if only non-Byzantine gradients had been used to update the model.
Asynchronous Byzantine Machine Learning (the case of SGD)
Asynchronous distributed machine learning solutions have proven very effective so far, but always assuming perfectly functioning workers. In practice, some of the workers can however exhibit Byzantine behavior, caused by hardware failures, software bugs, corrupt data, or even malicious attacks. We introduce \emph{Kardam}, the first distributed asynchronous stochastic gradient descent (SGD) algorithm that copes with Byzantine workers. Kardam consists of two complementary components: a filtering and a dampening component. The first is scalar-based and ensures resilience against $\frac{1}{3}$ Byzantine workers. Essentially, this filter leverages the Lipschitzness of cost functions and acts as a self-stabilizer against Byzantine workers that would attempt to corrupt the progress of SGD. The dampening component bounds the convergence rate by adjusting to stale information through a generic gradient weighting scheme. We prove that Kardam guarantees almost sure convergence in the presence of asynchrony and Byzantine behavior, and we derive its convergence rate. We evaluate Kardam on the CIFAR-100 and EMNIST datasets and measure its overhead with respect to non Byzantine-resilient solutions. We empirically show that Kardam does not introduce additional noise to the learning procedure but does induce a slowdown (the cost of Byzantine resilience) that we both theoretically and empirically show to be less than $f/n$, where $f$ is the number of Byzantine failures tolerated and $n$ the total number of workers. Interestingly, we also empirically observe that the dampening component is interesting in its own right for it enables to build an SGD algorithm that outperforms alternative staleness-aware asynchronous competitors in environments with honest workers.
Actigraphy-based Sleep/Wake Pattern Detection using Convolutional Neural Networks
Common medical conditions are often associated with sleep abnormalities. Patients with medical disorders often suffer from poor sleep quality compared to healthy individuals, which in turn may worsen the symptoms of the disorder. Accurate detection of sleep/wake patterns is important in developing personalized digital markers, which can be used for objective measurements and efficient disease management. Big Data technologies and advanced analytics methods hold the promise to revolutionize clinical research processes, enabling the effective blending of digital data into clinical trials. Actigraphy, a non-invasive activity monitoring method is heavily used to detect and evaluate activities and movement disorders, and assess sleep/wake behavior. In order to study the connection between sleep/wake patterns and a cluster headache disorder, activity data was collected using a wearable device in the course of a clinical trial. This study presents two novel modeling schemes that utilize Deep Convolutional Neural Networks (CNN) to identify sleep/wake states. The proposed methods are a sequential CNN, reminiscent of the bi-directional CNN for slot filling, and a Multi-Task Learning (MTL) based model. Furthermore, we expand standard "Sleep" and "Wake" activity states space by adding the "Falling asleep" and "Siesta" states. We show that the proposed methods provide promising results in accurate detection of the expanded sleep/wake states. Finally, we explore the relations between the detected sleep/wake patterns and onset of cluster headache attacks, and present preliminary observations.
The State of the Art in Integrating Machine Learning into Visual Analytics
Visual analytics systems combine machine learning or other analytic techniques with interactive data visualization to promote sensemaking and analytical reasoning. It is through such techniques that people can make sense of large, complex data. While progress has been made, the tactful combination of machine learning and data visualization is still under-explored. This state-of-the-art report presents a summary of the progress that has been made by highlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance the synergy between machine learning and visual analytics for impactful future research directions.
Incremental and Iterative Learning of Answer Set Programs from Mutually Distinct Examples
Over the years the Artificial Intelligence (AI) community has produced several datasets which have given the machine learning algorithms the opportunity to learn various skills across various domains. However, a subclass of these machine learning algorithms that aimed at learning logic programs, namely the Inductive Logic Programming algorithms, have often failed at the task due to the vastness of these datasets. This has impacted the usability of knowledge representation and reasoning techniques in the development of AI systems. In this research, we try to address this scalability issue for the algorithms that learn answer set programs. We present a sound and complete algorithm which takes the input in a slightly different manner and performs an efficient and more user controlled search for a solution. We show via experiments that our algorithm can learn from two popular datasets from machine learning community, namely bAbl (a question answering dataset) and MNIST (a dataset for handwritten digit recognition), which to the best of our knowledge was not previously possible. The system is publicly available at https://goo.gl/KdWAcV. This paper is under consideration for acceptance in TPLP.
Robustness of classifiers to uniform $\ell\_p$ and Gaussian noise
We study the robustness of classifiers to various kinds of random noise models. In particular, we consider noise drawn uniformly from the $\ell\_p$ ball for $p \in [1, \infty]$ and Gaussian noise with an arbitrary covariance matrix. We characterize this robustness to random noise in terms of the distance to the decision boundary of the classifier. This analysis applies to linear classifiers as well as classifiers with locally approximately flat decision boundaries, a condition which is satisfied by state-of-the-art deep neural networks. The predicted robustness is verified experimentally.
Learning to Route with Sparse Trajectory Sets---Extended Version
Motivated by the increasing availability of vehicle trajectory data, we propose learn-to-route, a comprehensive trajectory-based routing solution. Specifically, we first construct a graph-like structure from trajectories as the routing infrastructure. Second, we enable trajectory-based routing given an arbitrary (source, destination) pair. In the first step, given a road network and a collection of trajectories, we propose a trajectory-based clustering method that identifies regions in a road network. If a pair of regions are connected by trajectories, we maintain the paths used by these trajectories and learn a routing preference for travel between the regions. As trajectories are skewed and sparse, many region pairs are not connected by trajectories. We thus transfer routing preferences from region pairs with sufficient trajectories to such region pairs and then use the transferred preferences to identify paths between the regions. In the second step, we exploit the above graph-like structure to achieve a comprehensive trajectory-based routing solution. Empirical studies with two substantial trajectory data sets offer insight into the proposed solution, indicating that it is practical. A comparison with a leading routing service offers evidence that the paper's proposal is able to enhance routing quality. This is an extended version of "Learning to Route with Sparse Trajectory Sets" [1], to appear in IEEE ICDE 2018.
Sounderfeit: Cloning a Physical Model with Conditional Adversarial Autoencoders
An adversarial autoencoder conditioned on known parameters of a physical modeling bowed string synthesizer is evaluated for use in parameter estimation and resynthesis tasks. Latent dimensions are provided to capture variance not explained by the conditional parameters. Results are compared with and without the adversarial training, and a system capable of "copying" a given parameter-signal bidirectional relationship is examined. A real-time synthesis system built on a generative, conditioned and regularized neural network is presented, allowing to construct engaging sound synthesizers based purely on recorded data.
Iterate averaging as regularization for stochastic gradient descent
We propose and analyze a variant of the classic Polyak-Ruppert averaging scheme, broadly used in stochastic gradient methods. Rather than a uniform average of the iterates, we consider a weighted average, with weights decaying in a geometric fashion. In the context of linear least squares regression, we show that this averaging scheme has a the same regularizing effect, and indeed is asymptotically equivalent, to ridge regression. In particular, we derive finite-sample bounds for the proposed approach that match the best known results for regularized stochastic gradient methods.
Learning Topic Models by Neighborhood Aggregation
Topic models are frequently used in machine learning owing to their high interpretability and modular structure. However, extending a topic model to include a supervisory signal, to incorporate pre-trained word embedding vectors and to include a nonlinear output function is not an easy task because one has to resort to a highly intricate approximate inference procedure. The present paper shows that topic modeling with pre-trained word embedding vectors can be viewed as implementing a neighborhood aggregation algorithm where messages are passed through a network defined over words. From the network view of topic models, nodes correspond to words in a document and edges correspond to either a relationship describing co-occurring words in a document or a relationship describing the same word in the corpus. The network view allows us to extend the model to include supervisory signals, incorporate pre-trained word embedding vectors and include a nonlinear output function in a simple manner. In experiments, we show that our approach outperforms the state-of-the-art supervised Latent Dirichlet Allocation implementation in terms of held-out document classification tasks.
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks
Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.
VBALD - Variational Bayesian Approximation of Log Determinants
Evaluating the log determinant of a positive definite matrix is ubiquitous in machine learning. Applications thereof range from Gaussian processes, minimum-volume ellipsoids, metric learning, kernel learning, Bayesian neural networks, Determinental Point Processes, Markov random fields to partition functions of discrete graphical models. In order to avoid the canonical, yet prohibitive, Cholesky $\mathcal{O}(n^{3})$ computational cost, we propose a novel approach, with complexity $\mathcal{O}(n^{2})$, based on a constrained variational Bayes algorithm. We compare our method to Taylor, Chebyshev and Lanczos approaches and show state of the art performance on both synthetic and real-world datasets.
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
We study sampling as optimization in the space of measures. We focus on gradient flow-based optimization with the Langevin dynamics as a case study. We investigate the source of the bias of the unadjusted Langevin algorithm (ULA) in discrete time, and consider how to remove or reduce the bias. We point out the difficulty is that the heat flow is exactly solvable, but neither its forward nor backward method is implementable in general, except for Gaussian data. We propose the symmetrized Langevin algorithm (SLA), which should have a smaller bias than ULA, at the price of implementing a proximal gradient step in space. We show SLA is in fact consistent for Gaussian target measure, whereas ULA is not. We also illustrate various algorithms explicitly for Gaussian target measure, including gradient descent, proximal gradient, and Forward-Backward, and show they are all consistent.
Sliding Bidirectional Recurrent Neural Networks for Sequence Detection in Communication Systems
The design and analysis of communication systems typically rely on the development of mathematical models that describe the underlying communication channel. However, in some systems, such as molecular communication systems where chemical signals are used for transfer of information, the underlying channel models are unknown. In these scenarios, a completely new approach to design and analysis is required. In this work, we focus on one important aspect of communication systems, the detection algorithms, and demonstrate that by using tools from deep learning, it is possible to train detectors that perform well without any knowledge of the underlying channel models. We propose a technique we call sliding bidirectional recurrent neural network (SBRNN) for real-time sequence detection. We evaluate this algorithm using experimental data that is collected by a chemical communication platform, where the channel model is unknown and difficult to model analytically. We show that deep learning algorithms perform significantly better than a detector proposed in previous works, and the SBRNN outperforms other techniques considered in this work.
Collaboratively Learning the Best Option, Using Bounded Memory
We consider multi-armed bandit problems in social groups wherein each individual has bounded memory and shares the common goal of learning the best arm/option. We say an individual learns the best option if eventually (as $t \to \infty$) it pulls only the arm with the highest average reward. While this goal is provably impossible for an isolated individual, we show that, in social groups, this goal can be achieved easily with the aid of social persuasion, i.e., communication. Specifically, we study the learning dynamics wherein an individual sequentially decides on which arm to pull next based on not only its private reward feedback but also the suggestions provided by randomly chosen peers. Our learning dynamics are hard to analyze via explicit probabilistic calculations due to the stochastic dependency induced by social interaction. Instead, we employ the mean-field approximation method from statistical physics and we show: (1) With probability $\to 1$ as the social group size $N \to \infty $, every individual in the social group learns the best option. (2) Over an arbitrary finite time horizon $[0, T]$, with high probability (in $N$), the fraction of individuals that prefer the best option grows to 1 exponentially fast as $t$ increases ($t\in [0, T]$). A major innovation of our mean-filed analysis is a simple yet powerful technique to deal with absorbing states in the interchange of limits $N \to \infty$ and $t \to \infty $. The mean-field approximation method allows us to approximate the probabilistic sample paths of our learning dynamics by a deterministic and smooth trajectory that corresponds to the unique solution of a well-behaved system of ordinary differential equations (ODEs). Such an approximation is desired because the analysis of a system of ODEs is relatively easier than that of the original stochastic system.
Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity
Online optimization has been a successful framework for solving large-scale problems under computational constraints and partial information. Current methods for online convex optimization require either a projection or exact gradient computation at each step, both of which can be prohibitively expensive for large-scale applications. At the same time, there is a growing trend of non-convex optimization in machine learning community and a need for online methods. Continuous DR-submodular functions, which exhibit a natural diminishing returns condition, have recently been proposed as a broad class of non-convex functions which may be efficiently optimized. Although online methods have been introduced, they suffer from similar problems. In this work, we propose Meta-Frank-Wolfe, the first online projection-free algorithm that uses stochastic gradient estimates. The algorithm relies on a careful sampling of gradients in each round and achieves the optimal $O( \sqrt{T})$ adversarial regret bounds for convex and continuous submodular optimization. We also propose One-Shot Frank-Wolfe, a simpler algorithm which requires only a single stochastic gradient estimate in each round and achieves an $O(T^{2/3})$ stochastic regret bound for convex and continuous submodular optimization. We apply our methods to develop a novel "lifting" framework for the online discrete submodular maximization and also see that they outperform current state-of-the-art techniques on various experiments.
Adversarial Examples that Fool both Computer Vision and Time-Limited Humans
Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich. However, it is still an open question whether humans are prone to similar mistakes. Here, we address this question by leveraging recent techniques that transfer adversarial examples from computer vision models with known parameters and architecture to other models with unknown parameters and architecture, and by matching the initial processing of the human visual system. We find that adversarial examples that strongly transfer across computer vision models influence the classifications made by time-limited human observers.
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
We introduce tensor field neural networks, which are locally equivariant to 3D rotations, translations, and permutations of points at every layer. 3D rotation equivariance removes the need for data augmentation to identify features in arbitrary orientations. Our network uses filters built from spherical harmonics; due to the mathematical consequences of this filter choice, each layer accepts as input (and guarantees as output) scalars, vectors, and higher-order tensors, in the geometric sense of these terms. We demonstrate the capabilities of tensor field networks with tasks in geometry, physics, and chemistry.
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
This paper describes a testing methodology for quantitatively assessing the risk that rare or unique training-data sequences are unintentionally memorized by generative sequence models---a common type of machine-learning model. Because such models are sometimes trained on sensitive data (e.g., the text of users' private messages), this methodology can benefit privacy by allowing deep-learning practitioners to select means of training that minimize such memorization. In experiments, we show that unintended memorization is a persistent, hard-to-avoid issue that can have serious consequences. Specifically, for models trained without consideration of memorization, we describe new, efficient procedures that can extract unique, secret sequences, such as credit card numbers. We show that our testing strategy is a practical and easy-to-use first line of defense, e.g., by describing its application to quantitatively limit data exposure in Google's Smart Compose, a commercial text-completion neural network trained on millions of users' email messages.
Vector Field Based Neural Networks
A novel Neural Network architecture is proposed using the mathematically and physically rich idea of vector fields as hidden layers to perform nonlinear transformations in the data. The data points are interpreted as particles moving along a flow defined by the vector field which intuitively represents the desired movement to enable classification. The architecture moves the data points from their original configuration to anew one following the streamlines of the vector field with the objective of achieving a final configuration where classes are separable. An optimization problem is solved through gradient descent to learn this vector field.
Hessian-based Analysis of Large Batch Training and Robustness to Adversaries
Large batch size training of Neural Networks has been shown to incur accuracy loss when trained with the current methods. The exact underlying reasons for this are still not completely understood. Here, we study large batch size training through the lens of the Hessian operator and robust optimization. In particular, we perform a Hessian based study to analyze exactly how the landscape of the loss function changes when training with large batch size. We compute the true Hessian spectrum, without approximation, by back-propagating the second derivative. Extensive experiments on multiple networks show that saddle-points are not the cause for generalization gap of large batch size training, and the results consistently show that large batch converges to points with noticeably higher Hessian spectrum. Furthermore, we show that robust training allows one to favor flat areas, as points with large Hessian spectrum show poor robustness to adversarial perturbation. We further study this relationship, and provide empirical and theoretical proof that the inner loop for robust training is a saddle-free optimization problem \textit{almost everywhere}. We present detailed experiments with five different network architectures, including a residual network, tested on MNIST, CIFAR-10, and CIFAR-100 datasets. We have open sourced our method which can be accessed at [1].
Characterizing Implicit Bias in Terms of Optimization Geometry
We study the implicit bias of generic optimization methods, such as mirror descent, natural gradient descent, and steepest descent with respect to different potentials and norms, when optimizing underdetermined linear regression or separable linear classification problems. We explore the question of whether the specific global minimum (among the many possible global minima) reached by an algorithm can be characterized in terms of the potential or norm of the optimization geometry, and independently of hyperparameter choices such as step-size and momentum.
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Generative Adversarial Networks (GANs) are one of the most practical methods for learning data distributions. A popular GAN formulation is based on the use of Wasserstein distance as a metric between probability distributions. Unfortunately, minimizing the Wasserstein distance between the data distribution and the generative model distribution is a computationally challenging problem as its objective is non-convex, non-smooth, and even hard to compute. In this work, we show that obtaining gradient information of the smoothed Wasserstein GAN formulation, which is based on regularized Optimal Transport (OT), is computationally effortless and hence one can apply first order optimization methods to minimize this objective. Consequently, we establish theoretical convergence guarantee to stationarity for a proposed class of GAN optimization algorithms. Unlike the original non-smooth formulation, our algorithm only requires solving the discriminator to approximate optimality. We apply our method to learning MNIST digits as well as CIFAR-10images. Our experiments show that our method is computationally efficient and generates images comparable to the state of the art algorithms given the same architecture and computational power.
SeNA-CNN: Overcoming Catastrophic Forgetting in Convolutional Neural Networks by Selective Network Augmentation
Lifelong learning aims to develop machine learning systems that can learn new tasks while preserving the performance on previous learned tasks. In this paper we present a method to overcome catastrophic forgetting on convolutional neural networks, that learns new tasks and preserves the performance on old tasks without accessing the data of the original model, by selective network augmentation. The experiment results showed that SeNA-CNN, in some scenarios, outperforms the state-of-art Learning without Forgetting algorithm. Results also showed that in some situations it is better to use SeNA-CNN instead of training a neural network using isolated learning.
Confidential Boosting with Random Linear Classifiers for Outsourced User-generated Data
User-generated data is crucial to predictive modeling in many applications. With a web/mobile/wearable interface, a data owner can continuously record data generated by distributed users and build various predictive models from the data to improve their operations, services, and revenue. Due to the large size and evolving nature of users data, data owners may rely on public cloud service providers (Cloud) for storage and computation scalability. Exposing sensitive user-generated data and advanced analytic models to Cloud raises privacy concerns. We present a confidential learning framework, SecureBoost, for data owners that want to learn predictive models from aggregated user-generated data but offload the storage and computational burden to Cloud without having to worry about protecting the sensitive data. SecureBoost allows users to submit encrypted or randomly masked data to designated Cloud directly. Our framework utilizes random linear classifiers (RLCs) as the base classifiers in the boosting framework to dramatically simplify the design of the proposed confidential boosting protocols, yet still preserve the model quality. A Cryptographic Service Provider (CSP) is used to assist the Cloud's processing, reducing the complexity of the protocol constructions. We present two constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of homomorphic encryption, garbled circuits, and random masking to achieve both security and efficiency. For a boosted model, Cloud learns only the RLCs and the CSP learns only the weights of the RLCs. Finally, the data owner collects the two parts to get the complete model. We conduct extensive experiments to understand the quality of the RLC-based boosting and the cost distribution of the constructions. Our results show that SecureBoost can efficiently learn high-quality boosting models from protected user-generated data.
Locally Adaptive Learning Loss for Semantic Image Segmentation
We propose a novel locally adaptive learning estimator for enhancing the inter- and intra- discriminative capabilities of Deep Neural Networks, which can be used as improved loss layer for semantic image segmentation tasks. Most loss layers compute pixel-wise cost between feature maps and ground truths, ignoring spatial layouts and interactions between neighboring pixels with same object category, and thus networks cannot be effectively sensitive to intra-class connections. Stride by stride, our method firstly conducts adaptive pooling filter operating over predicted feature maps, aiming to merge predicted distributions over a small group of neighboring pixels with same category, and then it computes cost between the merged distribution vector and their category label. Such design can make groups of neighboring predictions from same category involved into estimations on predicting correctness with respect to their category, and hence train networks to be more sensitive to regional connections between adjacent pixels based on their categories. In the experiments on Pascal VOC 2012 segmentation datasets, the consistently improved results show that our proposed approach achieves better segmentation masks against previous counterparts.
Unicorn: Continual Learning with a Universal, Off-policy Agent
Some real-world domains are best characterized as a single task, but for others this perspective is limiting. Instead, some tasks continually grow in complexity, in tandem with the agent's competence. In continual learning, also referred to as lifelong learning, there are no explicit task boundaries or curricula. As learning agents have become more powerful, continual learning remains one of the frontiers that has resisted quick progress. To test continual learning capabilities we consider a challenging 3D domain with an implicit sequence of tasks and sparse rewards. We propose a novel agent architecture called Unicorn, which demonstrates strong continual learning and outperforms several baseline agents on the proposed domain. The agent achieves this by jointly representing and learning multiple policies efficiently, using a parallel off-policy learning setup.