title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Policy Gradient With Value Function Approximation For Collective Multiagent Planning
Decentralized (PO)MDPs provide an expressive framework for sequential decision making in a multiagent system. Given their computational complexity, recent research has focused on tractable yet practical subclasses of Dec-POMDPs. We address such a subclass called CDEC-POMDP where the collective behavior of a population of agents affects the joint-reward and environment dynamics. Our main contribution is an actor-critic (AC) reinforcement learning method for optimizing CDEC-POMDP policies. Vanilla AC has slow convergence for larger problems. To address this, we show how a particular decomposition of the approximate action-value function over agents leads to effective updates, and also derive a new way to train the critic based on local reward signals. Comparisons on a synthetic benchmark and a real-world taxi fleet optimization problem show that our new AC approach provides better quality solutions than previous best approaches.
Sample-Derived Disjunctive Rules for Secure Power System Operation
Machine learning techniques have been used in the past using Monte Carlo samples to construct predictors of the dynamic stability of power systems. In this paper we move beyond the task of prediction and propose a comprehensive approach to use predictors, such as Decision Trees (DT), within a standard optimization framework for pre- and post-fault control purposes. In particular, we present a generalizable method for embedding rules derived from DTs in an operation decision-making model. We begin by pointing out the specific challenges entailed when moving from a prediction to a control framework. We proceed with introducing the solution strategy based on generalized disjunctive programming (GDP) as well as a two-step search method for identifying optimal hyper-parameters for balancing cost and control accuracy. We showcase how the proposed approach constructs security proxies that cover multiple contingencies while facing high-dimensional uncertainty with respect to operating conditions with the use of a case study on the IEEE 39-bus system. The method is shown to achieve efficient system control at a marginal increase in system price compared to an oracle model.
Generative Adversarial Networks for Extreme Learned Image Compression
We present a learned image compression system based on GANs, operating at extremely low bitrates. Our proposed framework combines an encoder, decoder/generator and a multi-scale discriminator, which we train jointly for a generative learned compression objective. The model synthesizes details it cannot afford to store, obtaining visually pleasing results at bitrates where previous methods fail and show strong artifacts. Furthermore, if a semantic label map of the original image is available, our method can fully synthesize unimportant regions in the decoded image such as streets and trees from the label map, proportionally reducing the storage cost. A user study confirms that for low bitrates, our approach is preferred to state-of-the-art methods, even when they use more than double the bits.
Analysis and development of a novel algorithm for the in-vehicle hand-usage of a smartphone
Smartphone usage while driving is unanimously considered to be a really dangerous habit due to strong correlation with road accidents. In this paper, the problem of detecting whether the driver is using the phone during a trip is addressed. To do this, high-frequency data from the triaxial inertial measurement unit (IMU) integrated in almost all modern phone is processed without relying on external inputs so as to provide a self-contained approach. By resorting to a frequency-domain analysis, it is possible to extract from the raw signals the useful information needed to detect when the driver is using the phone, without being affected by the effects that vehicle motion has on the same signals. The selected features are used to train a Support Vector Machine (SVM) algorithm. The performance of the proposed approach are analyzed and tested on experimental data collected during mixed naturalistic driving scenarios, proving the effectiveness of the proposed approach.
A review of possible effects of cognitive biases on the interpretation of rule-based machine learning models
While the interpretability of machine learning models is often equated with their mere syntactic comprehensibility, we think that interpretability goes beyond that, and that human interpretability should also be investigated from the point of view of cognitive science. The goal of this paper is to discuss to what extent cognitive biases may affect human understanding of interpretable machine learning models, in particular of logical rules discovered from data. Twenty cognitive biases are covered, as are possible debiasing techniques that can be adopted by designers of machine learning algorithms and software. Our review transfers results obtained in cognitive psychology to the domain of machine learning, aiming to bridge the current gap between these two areas. It needs to be followed by empirical studies specifically focused on the machine learning domain.
Anomaly Detection for Industrial Big Data
As the Industrial Internet of Things (IIoT) grows, systems are increasingly being monitored by arrays of sensors returning time-series data at ever-increasing 'volume, velocity and variety' (i.e. Industrial Big Data). An obvious use for these data is real-time systems condition monitoring and prognostic time to failure analysis (remaining useful life, RUL). (e.g. See white papers by Senseye.io, and output of the NASA Prognostics Center of Excellence (PCoE).) However, as noted by Agrawal and Choudhary 'Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery.' In order to fully utilize the potential of Industrial Big Data we need data-driven techniques that operate at scales that process models cannot. Here we present a prototype technique for data-driven anomaly detection to operate at industrial scale. The method generalizes to application with almost any multivariate dataset based on independent ordinations of repeated (bootstrapped) partitions of the dataset and inspection of the joint distribution of ordinal distances.
Learning at the Ends: From Hand to Tool Affordances in Humanoid Robots
One of the open challenges in designing robots that operate successfully in the unpredictable human environment is how to make them able to predict what actions they can perform on objects, and what their effects will be, i.e., the ability to perceive object affordances. Since modeling all the possible world interactions is unfeasible, learning from experience is required, posing the challenge of collecting a large amount of experiences (i.e., training data). Typically, a manipulative robot operates on external objects by using its own hands (or similar end-effectors), but in some cases the use of tools may be desirable, nevertheless, it is reasonable to assume that while a robot can collect many sensorimotor experiences using its own hands, this cannot happen for all possible human-made tools. Therefore, in this paper we investigate the developmental transition from hand to tool affordances: what sensorimotor skills that a robot has acquired with its bare hands can be employed for tool use? By employing a visual and motor imagination mechanism to represent different hand postures compactly, we propose a probabilistic model to learn hand affordances, and we show how this model can generalize to estimate the affordances of previously unseen tools, ultimately supporting planning, decision-making and tool selection tasks in humanoid robots. We present experimental results with the iCub humanoid robot, and we publicly release the collected sensorimotor data in the form of a hand posture affordances dataset.
Clustrophile 2: Guided Visual Clustering Analysis
Data clustering is a common unsupervised learning method frequently used in exploratory data analysis. However, identifying relevant structures in unlabeled, high-dimensional data is nontrivial, requiring iterative experimentation with clustering parameters as well as data features and instances. The number of possible clusterings for a typical dataset is vast, and navigating in this vast space is also challenging. The absence of ground-truth labels makes it impossible to define an optimal solution, thus requiring user judgment to establish what can be considered a satisfiable clustering result. Data scientists need adequate interactive tools to effectively explore and navigate the large clustering space so as to improve the effectiveness of exploratory clustering analysis. We introduce \textit{Clustrophile~2}, a new interactive tool for guided clustering analysis. \textit{Clustrophile~2} guides users in clustering-based exploratory analysis, adapts user feedback to improve user guidance, facilitates the interpretation of clusters, and helps quickly reason about differences between clusterings. To this end, \textit{Clustrophile~2} contributes a novel feature, the Clustering Tour, to help users choose clustering parameters and assess the quality of different clustering results in relation to current analysis goals and user expectations. We evaluate \textit{Clustrophile~2} through a user study with 12 data scientists, who used our tool to explore and interpret sub-cohorts in a dataset of Parkinson's disease patients. Results suggest that \textit{Clustrophile~2} improves the speed and effectiveness of exploratory clustering analysis for both experts and non-experts.
Efficient Anomaly Detection via Matrix Sketching
We consider the problem of finding anomalies in high-dimensional data using popular PCA based anomaly scores. The naive algorithms for computing these scores explicitly compute the PCA of the covariance matrix which uses space quadratic in the dimensionality of the data. We give the first streaming algorithms that use space that is linear or sublinear in the dimension. We prove general results showing that \emph{any} sketch of a matrix that satisfies a certain operator norm guarantee can be used to approximate these scores. We instantiate these results with powerful matrix sketching techniques such as Frequent Directions and random projections to derive efficient and practical algorithms for these problems, which we validate over real-world data sets. Our main technical contribution is to prove matrix perturbation inequalities for operators arising in the computation of these measures.
A plug-in approach to maximising precision at the top and recall at the top
For information retrieval and binary classification, we show that precision at the top (or precision at k) and recall at the top (or recall at k) are maximised by thresholding the posterior probability of the positive class. This finding is a consequence of a result on constrained minimisation of the cost-sensitive expected classification error which generalises an earlier related result from the literature.
AMNet: Memorability Estimation with Attention
In this paper we present the design and evaluation of an end-to-end trainable, deep neural network with a visual attention mechanism for memorability estimation in still images. We analyze the suitability of transfer learning of deep models from image classification to the memorability task. Further on we study the impact of the attention mechanism on the memorability estimation and evaluate our network on the SUN Memorability and the LaMem datasets. Our network outperforms the existing state of the art models on both datasets in terms of the Spearman's rank correlation as well as the mean squared error, closely matching human consistency.
Data2Vis: Automatic Generation of Data Visualizations Using Sequence to Sequence Recurrent Neural Networks
Rapidly creating effective visualizations using expressive grammars is challenging for users who have limited time and limited skills in statistics and data visualization. Even high-level, dedicated visualization tools often require users to manually select among data attributes, decide which transformations to apply, and specify mappings between visual encoding variables and raw or transformed attributes. In this paper we introduce Data2Vis, a neural translation model for automatically generating visualizations from given datasets. We formulate visualization generation as a sequence to sequence translation problem where data specifications are mapped to visualization specifications in a declarative language (Vega-Lite). To this end, we train a multilayered attention-based recurrent neural network (RNN) with long short-term memory (LSTM) units on a corpus of visualization specifications. Qualitative results show that our model learns the vocabulary and syntax for a valid visualization specification, appropriate transformations (count, bins, mean) and how to use common data selection patterns that occur within data visualizations. Data2Vis generates visualizations that are comparable to manually-created visualizations in a fraction of the time, with potential to learn more complex visualization strategies at scale.
Cauchy noise loss for stochastic optimization of random matrix models via free deterministic equivalents
For random matrix models, the parameter estimation based on the traditional likelihood functions is not straightforward in particular when we have only one sample matrix. We introduce a new parameter optimization method for random matrix models which works even in such a case. The method is based on the spectral distribution instead of the traditional likelihood. In the method, the Cauchy noise has an essential role because the free deterministic equivalent, which is a tool in free probability theory, allows us to approximate the spectral distribution perturbed by Cauchy noises by a smooth and accessible density function. Moreover, we study an asymptotic property of determination gap, which has a similar role as generalization gap. Besides, we propose a new dimensionality recovery method for the signal-plus-noise model, and experimentally demonstrate that it recovers the rank of the signal part even if the true rank is not small. It is a simultaneous rank selection and parameter estimation procedure.
Improving Confidence Estimates for Unfamiliar Examples
Intuitively, unfamiliarity should lead to lack of confidence. In reality, current algorithms often make highly confident yet wrong predictions when faced with relevant but unfamiliar examples. A classifier we trained to recognize gender is 12 times more likely to be wrong with a 99% confident prediction if presented with a subject from a different age group than those seen during training. In this paper, we compare and evaluate several methods to improve confidence estimates for unfamiliar and familiar samples. We propose a testing methodology of splitting unfamiliar and familiar samples by attribute (age, breed, subcategory) or sampling (similar datasets collected by different people at different times). We evaluate methods including confidence calibration, ensembles, distillation, and a Bayesian model and use several metrics to analyze label, likelihood, and calibration error. While all methods reduce over-confident errors, the ensemble of calibrated models performs best overall, and T-scaling performs best among the approaches with fastest inference. Our code is available at https://github.com/lizhitwo/ConfidenceEstimates . $\color{red}{\text{Please see UPDATED ERRATA.}}$
Frank-Wolfe Splitting via Augmented Lagrangian Method
Minimizing a function over an intersection of convex sets is an important task in optimization that is often much more challenging than minimizing it over each individual constraint set. While traditional methods such as Frank-Wolfe (FW) or proximal gradient descent assume access to a linear or quadratic oracle on the intersection, splitting techniques take advantage of the structure of each sets, and only require access to the oracle on the individual constraints. In this work, we develop and analyze the Frank-Wolfe Augmented Lagrangian (FW-AL) algorithm, a method for minimizing a smooth function over convex compact sets related by a "linear consistency" constraint that only requires access to a linear minimization oracle over the individual constraints. It is based on the Augmented Lagrangian Method (ALM), also known as Method of Multipliers, but unlike most existing splitting methods, it only requires access to linear (instead of quadratic) minimization oracles. We use recent advances in the analysis of Frank-Wolfe and the alternating direction method of multipliers algorithms to prove a sublinear convergence rate for FW-AL over general convex compact sets and a linear convergence rate for polytopes.
Adversarial Time-to-Event Modeling
Modern health data science applications leverage abundant molecular and electronic health data, providing opportunities for machine learning to build statistical models to support clinical practice. Time-to-event analysis, also called survival analysis, stands as one of the most representative examples of such statistical models. We present a deep-network-based approach that leverages adversarial learning to address a key challenge in modern time-to-event modeling: nonparametric estimation of event-time distributions. We also introduce a principled cost function to exploit information from censored events (events that occur subsequent to the observation window). Unlike most time-to-event models, we focus on the estimation of time-to-event distributions, rather than time ordering. We validate our model on both benchmark and real datasets, demonstrating that the proposed formulation yields significant performance gains relative to a parametric alternative, which we also propose.
An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks
Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. In a successful adversarial attack, the targeted mis-classification should be achieved with the minimal distortion added. In the literature, the added distortions are usually measured by L0, L1, L2, and L infinity norms, namely, L0, L1, L2, and L infinity attacks, respectively. However, there lacks a versatile framework for all types of adversarial attacks. This work for the first time unifies the methods of generating adversarial examples by leveraging ADMM (Alternating Direction Method of Multipliers), an operator splitting optimization approach, such that L0, L1, L2, and L infinity attacks can be effectively implemented by this general framework with little modifications. Comparing with the state-of-the-art attacks in each category, our ADMM-based attacks are so far the strongest, achieving both the 100% attack success rate and the minimal distortion.
Human-Guided Data Exploration
The outcome of the explorative data analysis (EDA) phase is vital for successful data analysis. EDA is more effective when the user interacts with the system used to carry out the exploration. In the recently proposed paradigm of iterative data mining the user controls the exploration by inputting knowledge in the form of patterns observed during the process. The system then shows the user views of the data that are maximally informative given the user's current knowledge. Although this scheme is good at showing surprising views of the data to the user, there is a clear shortcoming: the user cannot steer the process. In many real cases we want to focus on investigating specific questions concerning the data. This paper presents the Human Guided Data Exploration framework, generalising previous research. This framework allows the user to incorporate existing knowledge into the exploration process, focus on exploring a subset of the data, and compare different complex hypotheses concerning relations in the data. The framework utilises a computationally efficient constrained randomisation scheme. To showcase the framework, we developed a free open-source tool, using which the empirical evaluation on real-world datasets was carried out. Our evaluation shows that the ability to focus on particular subsets and being able to compare hypotheses are important additions to the interactive iterative data mining process.
Contextual Search via Intrinsic Volumes
We study the problem of contextual search, a multidimensional generalization of binary search that captures many problems in contextual decision-making. In contextual search, a learner is trying to learn the value of a hidden vector $v \in [0,1]^d$. Every round the learner is provided an adversarially-chosen context $u_t \in \mathbb{R}^d$, submits a guess $p_t$ for the value of $\langle u_t, v\rangle$, learns whether $p_t < \langle u_t, v\rangle$, and incurs loss $\ell(\langle u_t, v\rangle, p_t)$ (for some loss function $\ell$). The learner's goal is to minimize their total loss over the course of $T$ rounds. We present an algorithm for the contextual search problem for the symmetric loss function $\ell(\theta, p) = |\theta - p|$ that achieves $O_{d}(1)$ total loss. We present a new algorithm for the dynamic pricing problem (which can be realized as a special case of the contextual search problem) that achieves $O_{d}(\log \log T)$ total loss, improving on the previous best known upper bounds of $O_{d}(\log T)$ and matching the known lower bounds (up to a polynomial dependence on $d$). Both algorithms make significant use of ideas from the field of integral geometry, most notably the notion of intrinsic volumes of a convex set. To the best of our knowledge this is the first application of intrinsic volumes to algorithm design.
Deep Learning Classification of Polygenic Obesity using Genome Wide Association Study SNPs
In this paper, association results from genome-wide association studies (GWAS) are combined with a deep learning framework to test the predictive capacity of statistically significant single nucleotide polymorphism (SNPs) associated with obesity phenotype. Our approach demonstrates the potential of deep learning as a powerful framework for GWAS analysis that can capture information about SNPs and the important interactions between them. Basic statistical methods and techniques for the analysis of genetic SNP data from population-based genome-wide studies have been considered. Statistical association testing between individual SNPs and obesity was conducted under an additive model using logistic regression. Four subsets of loci after quality-control (QC) and association analysis were selected: P-values lower than 1x10-5 (5 SNPs), 1x10-4 (32 SNPs), 1x10-3 (248 SNPs) and 1x10-2 (2465 SNPs). A deep learning classifier is initialised using these sets of SNPs and fine-tuned to classify obese and non-obese observations. Using a deep learning classifier model and genetic variants with P-value < 1x10-2 (2465 SNPs) it was possible to obtain results (SE=0.9604, SP=0.9712, Gini=0.9817, LogLoss=0.1150, AUC=0.9908 and MSE=0.0300). As the P-value increased, an evident deterioration in performance was observed. Results demonstrate that single SNP analysis fails to capture the cumulative effect of less significant variants and their overall contribution to the outcome in disease prediction, which is captured using a deep learning framework.
Scalable Factorized Hierarchical Variational Autoencoder Training
Deep generative models have achieved great success in unsupervised learning with the ability to capture complex nonlinear relationships between latent generating factors and observations. Among them, a factorized hierarchical variational autoencoder (FHVAE) is a variational inference-based model that formulates a hierarchical generative process for sequential data. Specifically, an FHVAE model can learn disentangled and interpretable representations, which have been proven useful for numerous speech applications, such as speaker verification, robust speech recognition, and voice conversion. However, as we will elaborate in this paper, the training algorithm proposed in the original paper is not scalable to datasets of thousands of hours, which makes this model less applicable on a larger scale. After identifying limitations in terms of runtime, memory, and hyperparameter optimization, we propose a hierarchical sampling training algorithm to address all three issues. Our proposed method is evaluated comprehensively on a wide variety of datasets, ranging from 3 to 1,000 hours and involving different types of generating factors, such as recording conditions and noise types. In addition, we also present a new visualization method for qualitatively evaluating the performance with respect to the interpretability and disentanglement. Models trained with our proposed algorithm demonstrate the desired characteristics on all the datasets.
Large scale distributed neural network training through online distillation
Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6\times 10^{11}$ tokens and based on the Common Crawl repository of web data.
Building Function Approximators on top of Haar Scattering Networks
In this article we propose building general-purpose function approximators on top of Haar Scattering Networks. We advocate that this architecture enables a better comprehension of feature extraction, in addition to its implementation simplicity and low computational costs. We show its approximation and feature extraction capabilities in a wide range of different problems, which can be applied on several phenomena in signal processing, system identification, econometrics and other potential fields.
Deep Attention Model for Triage of Emergency Department Patients
Optimization of patient throughput and wait time in emergency departments (ED) is an important task for hospital systems. For that reason, Emergency Severity Index (ESI) system for patient triage was introduced to help guide manual estimation of acuity levels, which is used by nurses to rank the patients and organize hospital resources. However, despite improvements that it brought to managing medical resources, such triage system greatly depends on nurse's subjective judgment and is thus prone to human errors. Here, we propose a novel deep model based on the word attention mechanism designed for predicting a number of resources an ED patient would need. Our approach incorporates routinely available continuous and nominal (structured) data with medical text (unstructured) data, including patient's chief complaint, past medical history, medication list, and nurse assessment collected for 338,500 ED visits over three years in a large urban hospital. Using both structured and unstructured data, the proposed approach achieves the AUC of $\sim 88\%$ for the task of identifying resource intensive patients (binary classification), and the accuracy of $\sim 44\%$ for predicting exact category of number of resources (multi-class classification task), giving an estimated lift over nurses' performance by 16\% in accuracy. Furthermore, the attention mechanism of the proposed model provides interpretability by assigning attention scores for nurses' notes which is crucial for decision making and implementation of such approaches in the real systems working on human health.
On the Supermodularity of Active Graph-based Semi-supervised Learning with Stieltjes Matrix Regularization
Active graph-based semi-supervised learning (AG-SSL) aims to select a small set of labeled examples and utilize their graph-based relation to other unlabeled examples to aid in machine learning tasks. It is also closely related to the sampling theory in graph signal processing. In this paper, we revisit the original formulation of graph-based SSL and prove the supermodularity of an AG-SSL objective function under a broad class of regularization functions parameterized by Stieltjes matrices. Under this setting, supermodularity yields a novel greedy label sampling algorithm with guaranteed performance relative to the optimal sampling set. Compared to three state-of-the-art graph signal sampling and recovery methods on two real-life community detection datasets, the proposed AG-SSL method attains superior classification accuracy given limited sample budgets.
A Deep Active Survival Analysis Approach for Precision Treatment Recommendations: Application of Prostate Cancer
Survival analysis has been developed and applied in the number of areas including manufacturing, finance, economics and healthcare. In healthcare domain, usually clinical data are high-dimensional, sparse and complex and sometimes there exists few amount of time-to-event (labeled) instances. Therefore building an accurate survival model from electronic health records is challenging. With this motivation, we address this issue and provide a new survival analysis framework using deep learning and active learning with a novel sampling strategy. First, our approach provides better representation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled (censored) instances and then actively trains the survival model by labeling the censored data using an oracle. As a clinical assistive tool, we introduce a simple effective treatment recommendation approach based on our survival model. In the experimental study, we apply our approach on SEER-Medicare data related to prostate cancer among African-Americans and white patients. The results indicate that our approach outperforms significantly than baseline models.
On the Robustness of the CVPR 2018 White-Box Adversarial Example Defenses
Neural networks are known to be vulnerable to adversarial examples. In this note, we evaluate the two white-box defenses that appeared at CVPR 2018 and find they are ineffective: when applying existing techniques, we can reduce the accuracy of the defended models to 0%.
A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers
Weight pruning methods for deep neural networks (DNNs) have been investigated recently, but prior work in this area is mainly heuristic, iterative pruning, thereby lacking guarantees on the weight reduction ratio and convergence time. To mitigate these limitations, we present a systematic weight pruning framework of DNNs using the alternating direction method of multipliers (ADMM). We first formulate the weight pruning problem of DNNs as a nonconvex optimization problem with combinatorial constraints specifying the sparsity requirements, and then adopt the ADMM framework for systematic weight pruning. By using ADMM, the original nonconvex optimization problem is decomposed into two subproblems that are solved iteratively. One of these subproblems can be solved using stochastic gradient descent, the other can be solved analytically. Besides, our method achieves a fast convergence rate. The weight pruning results are very promising and consistently outperform the prior work. On the LeNet-5 model for the MNIST data set, we achieve 71.2 times weight reduction without accuracy loss. On the AlexNet model for the ImageNet data set, we achieve 21 times weight reduction without accuracy loss. When we focus on the convolutional layer pruning for computation reductions, we can reduce the total computation by five times compared with the prior work (achieving a total of 13.4 times weight reduction in convolutional layers). Our models and codes are released at https://github.com/KaiqiZhang/admm-pruning
Adversarial Training Versus Weight Decay
Performance-critical machine learning models should be robust to input perturbations not seen during training. Adversarial training is a method for improving a model's robustness to some perturbations by including them in the training process, but this tends to exacerbate other vulnerabilities of the model. The adversarial training framework has the effect of translating the data with respect to the cost function, while weight decay has a scaling effect. Although weight decay could be considered a crude regularization technique, it appears superior to adversarial training as it remains stable over a broader range of regimes and reduces all generalization errors. Equipped with these abstractions, we provide key baseline results and methodology for characterizing robustness. The two approaches can be combined to yield one small model that demonstrates good robustness to several white-box attacks associated with different metrics.
Cortex Neural Network: learning with Neural Network groups
Neural Network has been successfully applied to many real-world problems, such as image recognition and machine translation. However, for the current architecture of neural networks, it is hard to perform complex cognitive tasks, for example, to process the image and audio inputs together. Cortex, as an important architecture in the brain, is important for animals to perform the complex cognitive task. We view the architecture of Cortex in the brain as a missing part in the design of the current artificial neural network. In this paper, we purpose Cortex Neural Network (CrtxNN). The Cortex Neural Network is an upper architecture of neural networks which motivated from cerebral cortex in the brain to handle different tasks in the same learning system. It is able to identify different tasks and solve them with different methods. In our implementation, the Cortex Neural Network is able to process different cognitive tasks and perform reflection to get a higher accuracy. We provide a series of experiments to examine the capability of the cortex architecture on traditional neural networks. Our experiments proved its ability on the Cortex Neural Network can reach accuracy by 98.32% on MNIST and 62% on CIFAR10 at the same time, which can promisingly reduce the loss by 40%.
Question Answering over Freebase via Attentive RNN with Similarity Matrix based CNN
With the rapid growth of knowledge bases (KBs), question answering over knowledge base, a.k.a. KBQA has drawn huge attention in recent years. Most of the existing KBQA methods follow so called encoder-compare framework. They map the question and the KB facts to a common embedding space, in which the similarity between the question vector and the fact vectors can be conveniently computed. This, however, inevitably loses original words interaction information. To preserve more original information, we propose an attentive recurrent neural network with similarity matrix based convolutional neural network (AR-SMCNN) model, which is able to capture comprehensive hierarchical information utilizing the advantages of both RNN and CNN. We use RNN to capture semantic-level correlation by its sequential modeling nature, and use an attention mechanism to keep track of the entities and relations simultaneously. Meanwhile, we use a similarity matrix based CNN with two-directions pooling to extract literal-level words interaction matching utilizing CNNs strength of modeling spatial correlation among data. Moreover, we have developed a new heuristic extension method for entity detection, which significantly decreases the effect of noise. Our method has outperformed the state-of-the-arts on SimpleQuestion benchmark in both accuracy and efficiency.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
TIDBD: Adapting Temporal-difference Step-sizes Through Stochastic Meta-descent
In this paper, we introduce a method for adapting the step-sizes of temporal difference (TD) learning. The performance of TD methods often depends on well chosen step-sizes, yet few algorithms have been developed for setting the step-size automatically for TD learning. An important limitation of current methods is that they adapt a single step-size shared by all the weights of the learning system. A vector step-size enables greater optimization by specifying parameters on a per-feature basis. Furthermore, adapting parameters at different rates has the added benefit of being a simple form of representation learning. We generalize Incremental Delta Bar Delta (IDBD)---a vectorized adaptive step-size method for supervised learning---to TD learning, which we name TIDBD. We demonstrate that TIDBD is able to find appropriate step-sizes in both stationary and non-stationary prediction tasks, outperforming ordinary TD methods and TD methods with scalar step-size adaptation; we demonstrate that it can differentiate between features which are relevant and irrelevant for a given task, performing representation learning; and we show on a real-world robot prediction task that TIDBD is able to outperform ordinary TD methods and TD methods augmented with AlphaBound and RMSprop.
Learning Latent Events from Network Message Logs
We consider the problem of separating error messages generated in large distributed data center networks into error events. In such networks, each error event leads to a stream of messages generated by hardware and software components affected by the event. These messages are stored in a giant message log. We consider the unsupervised learning problem of identifying the signatures of events that generated these messages; here, the signature of an error event refers to the mixture of messages generated by the event. One of the main contributions of the paper is a novel mapping of our problem which transforms it into a problem of topic discovery in documents. Events in our problem correspond to topics and messages in our problem correspond to words in the topic discovery problem. However, there is no direct analog of documents. Therefore, we use a non-parametric change-point detection algorithm, which has linear computational complexity in the number of messages, to divide the message log into smaller subsets called episodes, which serve as the equivalents of documents. After this mapping has been done, we use a well-known algorithm for topic discovery, called LDA, to solve our problem. We theoretically analyze the change-point detection algorithm, and show that it is consistent and has low sample complexity. We also demonstrate the scalability of our algorithm on a real data set consisting of $97$ million messages collected over a period of $15$ days, from a distributed data center network which supports the operations of a large wireless service provider.
Learning Pose Specific Representations by Predicting Different Views
The labeled data required to learn pose estimation for articulated objects is difficult to provide in the desired quantity, realism, density, and accuracy. To address this issue, we develop a method to learn representations, which are very specific for articulated poses, without the need for labeled training data. We exploit the observation that the object pose of a known object is predictive for the appearance in any known view. That is, given only the pose and shape parameters of a hand, the hand's appearance from any viewpoint can be approximated. To exploit this observation, we train a model that -- given input from one view -- estimates a latent representation, which is trained to be predictive for the appearance of the object when captured from another viewpoint. Thus, the only necessary supervision is the second view. The training process of this model reveals an implicit pose representation in the latent space. Importantly, at test time the pose representation can be inferred using only a single view. In qualitative and quantitative experiments we show that the learned representations capture detailed pose information. Moreover, when training the proposed method jointly with labeled and unlabeled data, it consistently surpasses the performance of its fully supervised counterpart, while reducing the amount of needed labeled samples by at least one order of magnitude.
Roto-Translation Covariant Convolutional Networks for Medical Image Analysis
We propose a framework for rotation and translation covariant deep learning using $SE(2)$ group convolutions. The group product of the special Euclidean motion group $SE(2)$ describes how a concatenation of two roto-translations results in a net roto-translation. We encode this geometric structure into convolutional neural networks (CNNs) via $SE(2)$ group convolutional layers, which fit into the standard 2D CNN framework, and which allow to generically deal with rotated input samples without the need for data augmentation. We introduce three layers: a lifting layer which lifts a 2D (vector valued) image to an $SE(2)$-image, i.e., 3D (vector valued) data whose domain is $SE(2)$; a group convolution layer from and to an $SE(2)$-image; and a projection layer from an $SE(2)$-image to a 2D image. The lifting and group convolution layers are $SE(2)$ covariant (the output roto-translates with the input). The final projection layer, a maximum intensity projection over rotations, makes the full CNN rotation invariant. We show with three different problems in histopathology, retinal imaging, and electron microscopy that with the proposed group CNNs, state-of-the-art performance can be achieved, without the need for data augmentation by rotation and with increased performance compared to standard CNNs that do rely on augmentation.
A Hierarchical Latent Structure for Variational Conversation Modeling
Variational autoencoders (VAE) combined with hierarchical RNNs have emerged as a powerful framework for conversation modeling. However, they suffer from the notorious degeneration problem, where the decoders learn to ignore latent variables and reduce to vanilla RNNs. We empirically show that this degeneracy occurs mostly due to two reasons. First, the expressive power of hierarchical RNN decoders is often high enough to model the data using only its decoding distributions without relying on the latent variables. Second, the conditional VAE structure whose generation process is conditioned on a context, makes the range of training targets very sparse; that is, the RNN decoders can easily overfit to the training data ignoring the latent variables. To solve the degeneration problem, we propose a novel model named Variational Hierarchical Conversation RNNs (VHCR), involving two key ideas of (1) using a hierarchical structure of latent variables, and (2) exploiting an utterance drop regularization. With evaluations on two datasets of Cornell Movie Dialog and Ubuntu Dialog Corpus, we show that our VHCR successfully utilizes latent variables and outperforms state-of-the-art models for conversation generation. Moreover, it can perform several new utterance control tasks, thanks to its hierarchical latent structure.
Graphical Generative Adversarial Networks
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing the dependency structures among random variables and that of generative adversarial networks on learning expressive dependency functions. We introduce a structured recognition model to infer the posterior distribution of latent variables given observations. We generalize the Expectation Propagation (EP) algorithm to learn the generative model and recognition model jointly. Finally, we present two important instances of Graphical-GAN, i.e. Gaussian Mixture GAN (GMGAN) and State Space GAN (SSGAN), which can successfully learn the discrete and temporal structures on visual datasets, respectively.
Hyperparameters and Tuning Strategies for Random Forest
The random forest algorithm (RF) has several hyperparameters that have to be set by the user, e.g., the number of observations drawn randomly for each tree and whether they are drawn with or without replacement, the number of variables drawn randomly for each split, the splitting rule, the minimum number of samples that a node must contain and the number of trees. In this paper, we first provide a literature review on the parameters' influence on the prediction performance and on variable importance measures. It is well known that in most cases RF works reasonably well with the default values of the hyperparameters specified in software packages. Nevertheless, tuning the hyperparameters can improve the performance of RF. In the second part of this paper, after a brief overview of tuning strategies we demonstrate the application of one of the most established tuning strategies, model-based optimization (MBO). To make it easier to use, we provide the tuneRanger R package that tunes RF with MBO automatically. In a benchmark study on several datasets, we compare the prediction performance and runtime of tuneRanger with other tuning implementations in R and RF with default hyperparameters.
Towards Training Probabilistic Topic Models on Neuromorphic Multi-chip Systems
Probabilistic topic models are popular unsupervised learning methods, including probabilistic latent semantic indexing (pLSI) and latent Dirichlet allocation (LDA). By now, their training is implemented on general purpose computers (GPCs), which are flexible in programming but energy-consuming. Towards low-energy implementations, this paper investigates their training on an emerging hardware technology called the neuromorphic multi-chip systems (NMSs). NMSs are very effective for a family of algorithms called spiking neural networks (SNNs). We present three SNNs to train topic models. The first SNN is a batch algorithm combining the conventional collapsed Gibbs sampling (CGS) algorithm and an inference SNN to train LDA. The other two SNNs are online algorithms targeting at both energy- and storage-limited environments. The two online algorithms are equivalent with training LDA by using maximum-a-posterior estimation and maximizing the semi-collapsed likelihood, respectively. They use novel, tailored ordinary differential equations for stochastic optimization. We simulate the new algorithms and show that they are comparable with the GPC algorithms, while being suitable for NMS implementation. We also propose an extension to train pLSI and a method to prune the network to obey the limited fan-in of some NMSs.
Understanding disentangling in $\beta$-VAE
We present new intuitions and theoretical assessments of the emergence of disentangled representation in variational autoencoders. Taking a rate-distortion theory perspective, we show the circumstances under which representations aligned with the underlying generative factors of variation of data emerge when optimising the modified ELBO bound in $\beta$-VAE, as training progresses. From these insights, we propose a modification to the training regime of $\beta$-VAE, that progressively increases the information capacity of the latent code during training. This modification facilitates the robust learning of disentangled representations in $\beta$-VAE, without the previous trade-off in reconstruction accuracy.
Imagine This! Scripts to Compositions to Videos
Imagining a scene described in natural language with realistic layout and appearance of entities is the ultimate test of spatial, visual, and semantic world knowledge. Towards this goal, we present the Composition, Retrieval, and Fusion Network (CRAFT), a model capable of learning this knowledge from video-caption data and applying it while generating videos from novel captions. CRAFT explicitly predicts a temporal-layout of mentioned entities (characters and objects), retrieves spatio-temporal entity segments from a video database and fuses them to generate scene videos. Our contributions include sequential training of components of CRAFT while jointly modeling layout and appearances, and losses that encourage learning compositional representations for retrieval. We evaluate CRAFT on semantic fidelity to caption, composition consistency, and visual quality. CRAFT outperforms direct pixel generation approaches and generalizes well to unseen captions and to unseen video databases with no text annotations. We demonstrate CRAFT on FLINTSTONES, a new richly annotated video-caption dataset with over 25000 videos. For a glimpse of videos generated by CRAFT, see https://youtu.be/688Vv86n0z8.
Subsampled Optimization: Statistical Guarantees, Mean Squared Error Approximation, and Sampling Method
For optimization on large-scale data, exactly calculating its solution may be computationally difficulty because of the large size of the data. In this paper we consider subsampled optimization for fast approximating the exact solution. In this approach, one gets a surrogate dataset by sampling from the full data, and then obtains an approximate solution by solving the subsampled optimization based on the surrogate. One main theoretical contributions are to provide the asymptotic properties of the approximate solution with respect to the exact solution as statistical guarantees, and to rigorously derive an accurate approximation of the mean squared error (MSE) and an approximately unbiased MSE estimator. These results help us better diagnose the subsampled optimization in the context that a confidence region on the exact solution is provided using the approximate solution. The other consequence of our results is to propose an optimal sampling method, Hessian-based sampling, whose probabilities are proportional to the norms of Newton directions. Numerical experiments with least-squares and logistic regression show promising performance, in line with our results.
Probabilistic Prediction of Vehicle Semantic Intention and Motion
Accurately predicting the possible behaviors of traffic participants is an essential capability for future autonomous vehicles. The majority of current researches fix the number of driving intentions by considering only a specific scenario. However, distinct driving environments usually contain various possible driving maneuvers. Therefore, a intention prediction method that can adapt to different traffic scenarios is needed. To further improve the overall vehicle prediction performance, motion information is usually incorporated with classified intentions. As suggested in some literature, the methods that directly predict possible goal locations can achieve better performance for long-term motion prediction than other approaches due to their automatic incorporation of environment constraints. Moreover, by obtaining the temporal information of the predicted destinations, the optimal trajectories for predicted vehicles as well as the desirable path for ego autonomous vehicle could be easily generated. In this paper, we propose a Semantic-based Intention and Motion Prediction (SIMP) method, which can be adapted to any driving scenarios by using semantic-defined vehicle behaviors. It utilizes a probabilistic framework based on deep neural network to estimate the intentions, final locations, and the corresponding time information for surrounding vehicles. An exemplar real-world scenario was used to implement and examine the proposed method.
Testing Identity of Multidimensional Histograms
We investigate the problem of identity testing for multidimensional histogram distributions. A distribution $p: D \rightarrow \mathbb{R}_+$, where $D \subseteq \mathbb{R}^d$, is called a $k$-histogram if there exists a partition of the domain into $k$ axis-aligned rectangles such that $p$ is constant within each such rectangle. Histograms are one of the most fundamental nonparametric families of distributions and have been extensively studied in computer science and statistics. We give the first identity tester for this problem with {\em sub-learning} sample complexity in any fixed dimension and a nearly-matching sample complexity lower bound. In more detail, let $q$ be an unknown $d$-dimensional $k$-histogram distribution in fixed dimension $d$, and $p$ be an explicitly given $d$-dimensional $k$-histogram. We want to correctly distinguish, with probability at least $2/3$, between the case that $p = q$ versus $\|p-q\|_1 \geq \epsilon$. We design an algorithm for this hypothesis testing problem with sample complexity $O((\sqrt{k}/\epsilon^2) 2^{d/2} \log^{2.5 d}(k/\epsilon))$ that runs in sample-polynomial time. Our algorithm is robust to model misspecification, i.e., succeeds even if $q$ is only promised to be {\em close} to a $k$-histogram. Moreover, for $k = 2^{\Omega(d)}$, we show a sample complexity lower bound of $(\sqrt{k}/\epsilon^2) \cdot \Omega(\log(k)/d)^{d-1}$ when $d\geq 2$. That is, for any fixed dimension $d$, our upper and lower bounds are nearly matching. Prior to our work, the sample complexity of the $d=1$ case was well-understood, but no algorithm with sub-learning sample complexity was known, even for $d=2$. Our new upper and lower bounds have interesting conceptual implications regarding the relation between learning and testing in this setting.
A Tamper-Free Semi-Universal Communication System for Deletion Channels
We investigate the problem of reliable communication between two legitimate parties over deletion channels under an active eavesdropping (aka jamming) adversarial model. To this goal, we develop a theoretical framework based on probabilistic finite-state automata to define novel encoding and decoding schemes that ensure small error probability in both message decoding as well as tamper detecting. We then experimentally verify the reliability and tamper-detection property of our scheme.
Gotta Learn Fast: A New Benchmark for Generalization in RL
In this report, we present a new reinforcement learning (RL) benchmark based on the Sonic the Hedgehog (TM) video game franchise. This benchmark is intended to measure the performance of transfer learning and few-shot learning algorithms in the RL domain. We also present and evaluate some baseline algorithms on the new benchmark.
Tensor Robust Principal Component Analysis with A New Tensor Nuclear Norm
In this paper, we consider the Tensor Robust Principal Component Analysis (TRPCA) problem, which aims to exactly recover the low-rank and sparse components from their sum. Our model is based on the recently proposed tensor-tensor product (or t-product). Induced by the t-product, we first rigorously deduce the tensor spectral norm, tensor nuclear norm, and tensor average rank, and show that the tensor nuclear norm is the convex envelope of the tensor average rank within the unit ball of the tensor spectral norm. These definitions, their relationships and properties are consistent with matrix cases. Equipped with the new tensor nuclear norm, we then solve the TRPCA problem by solving a convex program and provide the theoretical guarantee for the exact recovery. Our TRPCA model and recovery guarantee include matrix RPCA as a special case. Numerical experiments verify our results, and the applications to image recovery and background modeling problems demonstrate the effectiveness of our method.
Multimodal Sparse Bayesian Dictionary Learning
This paper addresses the problem of learning dictionaries for multimodal datasets, i.e. datasets collected from multiple data sources. We present an algorithm called multimodal sparse Bayesian dictionary learning (MSBDL). MSBDL leverages information from all available data modalities through a joint sparsity constraint. The underlying framework offers a considerable amount of flexibility to practitioners and addresses many of the shortcomings of existing multimodal dictionary learning approaches. In particular, the procedure includes the automatic tuning of hyperparameters and is unique in that it allows the dictionaries for each data modality to have different cardinality, a significant feature in cases when the dimensionality of data differs across modalities. MSBDL is scalable and can be used in supervised learning settings. Theoretical results relating to the convergence of MSBDL are presented and the numerical results provide evidence of the superior performance of MSBDL on synthetic and real datasets compared to existing methods.
Universal Successor Representations for Transfer Reinforcement Learning
The objective of transfer reinforcement learning is to generalize from a set of previous tasks to unseen new tasks. In this work, we focus on the transfer scenario where the dynamics among tasks are the same, but their goals differ. Although general value function (Sutton et al., 2011) has been shown to be useful for knowledge transfer, learning a universal value function can be challenging in practice. To attack this, we propose (1) to use universal successor representations (USR) to represent the transferable knowledge and (2) a USR approximator (USRA) that can be trained by interacting with the environment. Our experiments show that USR can be effectively applied to new tasks, and the agent initialized by the trained USRA can achieve the goal considerably faster than random initialization.
Derivative free optimization via repeated classification
We develop an algorithm for minimizing a function using $n$ batched function value measurements at each of $T$ rounds by using classifiers to identify a function's sublevel set. We show that sufficiently accurate classifiers can achieve linear convergence rates, and show that the convergence rate is tied to the difficulty of active learning sublevel sets. Further, we show that the bootstrap is a computationally efficient approximation to the necessary classification scheme. The end result is a computationally efficient derivative-free algorithm requiring no tuning that consistently outperforms other approaches on simulations, standard benchmarks, real-world DNA binding optimization, and airfoil design problems whenever batched function queries are natural.
CoT: Cooperative Training for Generative Modeling of Discrete Data
In this paper, we study the generative models of sequential discrete data. To tackle the exposure bias problem inherent in maximum likelihood estimation (MLE), generative adversarial networks (GANs) are introduced to penalize the unrealistic generated samples. To exploit the supervision signal from the discriminator, most previous models leverage REINFORCE to address the non-differentiable problem of sequential discrete data. However, because of the unstable property of the training signal during the dynamic process of adversarial training, the effectiveness of REINFORCE, in this case, is hardly guaranteed. To deal with such a problem, we propose a novel approach called Cooperative Training (CoT) to improve the training of sequence generative models. CoT transforms the min-max game of GANs into a joint maximization framework and manages to explicitly estimate and optimize Jensen-Shannon divergence. Moreover, CoT works without the necessity of pre-training via MLE, which is crucial to the success of previous methods. In the experiments, compared to existing state-of-the-art methods, CoT shows superior or at least competitive performance on sample quality, diversity, as well as training stability.
Differentially Private Confidence Intervals for Empirical Risk Minimization
The process of data mining with differential privacy produces results that are affected by two types of noise: sampling noise due to data collection and privacy noise that is designed to prevent the reconstruction of sensitive information. In this paper, we consider the problem of designing confidence intervals for the parameters of a variety of differentially private machine learning models. The algorithms can provide confidence intervals that satisfy differential privacy (as well as the more recently proposed concentrated differential privacy) and can be used with existing differentially private mechanisms that train models using objective perturbation and output perturbation.
Dynamic Multivariate Functional Data Modeling via Sparse Subspace Learning
Multivariate functional data from a complex system are naturally high-dimensional and have complex cross-correlation structure. The complexity of data structure can be observed as that (1) some functions are strongly correlated with similar features, while some others may have almost no cross-correlations with quite diverse features; and (2) the cross-correlation structure may also change over time due to the system evolution. With this regard, this paper presents a dynamic subspace learning method for multivariate functional data modeling. In particular, we consider different functions come from different subspaces, and only functions of the same subspace have cross-correlations with each other. The subspaces can be automatically formulated and learned by reformatting the problem as a sparse regression. By allowing but regularizing the regression change over time, we can describe the cross-correlation dynamics. The model can be efficiently estimated by the fast iterative shrinkage-thresholding algorithm (FISTA), and the features of every subspace can be extracted using the smooth multi-channel functional PCA. Numerical studies together with case studies demonstrate the efficiency and applicability of the proposed methodology.
Estimating Time-Varying Graphical Models
In this paper, we study time-varying graphical models based on data measured over a temporal grid. Such models are motivated by the needs to describe and understand evolving interacting relationships among a set of random variables in many real applications, for instance the study of how stocks interact with each other and how such interactions change over time. We propose a new model, LOcal Group Graphical Lasso Estimation (loggle), under the assumption that the graph topology changes gradually over time. Specifically, loggle uses a novel local group-lasso type penalty to efficiently incorporate information from neighboring time points and to impose structural smoothness of the graphs. We implement an ADMM based algorithm to fit the loggle model. This algorithm utilizes blockwise fast computation and pseudo-likelihood approximation to improve computational efficiency. An R package loggle has also been developed. We evaluate the performance of loggle by simulation experiments. We also apply loggle to S&P 500 stock price data and demonstrate that loggle is able to reveal the interacting relationships among stocks and among industrial sectors in a time period that covers the recent global financial crisis.
E-commerce Anomaly Detection: A Bayesian Semi-Supervised Tensor Decomposition Approach using Natural Gradients
Anomaly Detection has several important applications. In this paper, our focus is on detecting anomalies in seller-reviewer data using tensor decomposition. While tensor-decomposition is mostly unsupervised, we formulate Bayesian semi-supervised tensor decomposition to take advantage of sparse labeled data. In addition, we use Polya-Gamma data augmentation for the semi-supervised Bayesian tensor decomposition. Finally, we show that the P\'olya-Gamma formulation simplifies calculation of the Fisher information matrix for partial natural gradient learning. Our experimental results show that our semi-supervised approach outperforms state of the art unsupervised baselines. And that the partial natural gradient learning outperforms stochastic gradient learning and Online-EM with sufficient statistics.
Interdependent Gibbs Samplers
Gibbs sampling, as a model learning method, is known to produce the most accurate results available in a variety of domains, and is a de facto standard in these domains. Yet, it is also well known that Gibbs random walks usually have bottlenecks, sometimes termed "local maxima", and thus samplers often return suboptimal solutions. In this paper we introduce a variation of the Gibbs sampler which yields high likelihood solutions significantly more often than the regular Gibbs sampler. Specifically, we show that combining multiple samplers, with certain dependence (coupling) between them, results in higher likelihood solutions. This side-steps the well known issue of identifiability, which has been the obstacle to combining samplers in previous work. We evaluate the approach on a Latent Dirichlet Allocation model, and also on HMM's, where precise computation of likelihoods and comparisons to the standard EM algorithm are possible.
Emergent Communication through Negotiation
Multi-agent reinforcement learning offers a way to study how communication could emerge in communities of agents needing to solve specific problems. In this paper, we study the emergence of communication in the negotiation environment, a semi-cooperative model of agent interaction. We introduce two communication protocols -- one grounded in the semantics of the game, and one which is \textit{a priori} ungrounded and is a form of cheap talk. We show that self-interested agents can use the pre-grounded communication channel to negotiate fairly, but are unable to effectively use the ungrounded channel. However, prosocial agents do learn to use cheap talk to find an optimal negotiating strategy, suggesting that cooperation is necessary for language to emerge. We also study communication behaviour in a setting where one agent interacts with agents in a community with different levels of prosociality and show how agent identifiability can aid negotiation.
Emergence of Linguistic Communication from Referential Games with Symbolic and Pixel Input
The ability of algorithms to evolve or learn (compositional) communication protocols has traditionally been studied in the language evolution literature through the use of emergent communication tasks. Here we scale up this research by using contemporary deep learning methods and by training reinforcement-learning neural network agents on referential communication games. We extend previous work, in which agents were trained in symbolic environments, by developing agents which are able to learn from raw pixel data, a more challenging and realistic input representation. We find that the degree of structure found in the input data affects the nature of the emerged protocols, and thereby corroborate the hypothesis that structured compositional language is most likely to emerge when agents perceive the world as being structured.
Analysis on the Nonlinear Dynamics of Deep Neural Networks: Topological Entropy and Chaos
The theoretical explanation for deep neural network (DNN) is still an open problem. In this paper DNN is considered as a discrete-time dynamical system due to its layered structure. The complexity provided by the nonlinearity in the dynamics is analyzed in terms of topological entropy and chaos characterized by Lyapunov exponents. The properties revealed for the dynamics of DNN are applied to analyze the corresponding capabilities of classification and generalization.
DORA The Explorer: Directed Outreaching Reinforcement Action-Selection
Exploration is a fundamental aspect of Reinforcement Learning, typically implemented using stochastic action-selection. Exploration, however, can be more efficient if directed toward gaining new world knowledge. Visit-counters have been proven useful both in practice and in theory for directed exploration. However, a major limitation of counters is their locality. While there are a few model-based solutions to this shortcoming, a model-free approach is still missing. We propose $E$-values, a generalization of counters that can be used to evaluate the propagating exploratory value over state-action trajectories. We compare our approach to commonly used RL techniques, and show that using $E$-values improves learning and performance over traditional counters. We also show how our method can be implemented with function approximation to efficiently learn continuous MDPs. We demonstrate this by showing that our approach surpasses state of the art performance in the Freeway Atari 2600 game.
Flexible and Scalable Deep Learning with MMLSpark
In this work we detail a novel open source library, called MMLSpark, that combines the flexible deep learning library Cognitive Toolkit, with the distributed computing framework Apache Spark. To achieve this, we have contributed Java Language bindings to the Cognitive Toolkit, and added several new components to the Spark ecosystem. In addition, we also integrate the popular image processing library OpenCV with Spark, and present a tool for the automated generation of PySpark wrappers from any SparkML estimator and use this tool to expose all work to the PySpark ecosystem. Finally, we provide a large library of tools for working and developing within the Spark ecosystem. We apply this work to the automated classification of Snow Leopards from camera trap images, and provide an end to end solution for the non-profit conservation organization, the Snow Leopard Trust.
Cost-Aware Learning and Optimization for Opportunistic Spectrum Access
In this paper, we investigate cost-aware joint learning and optimization for multi-channel opportunistic spectrum access in a cognitive radio system. We investigate a discrete time model where the time axis is partitioned into frames. Each frame consists of a sensing phase, followed by a transmission phase. During the sensing phase, the user is able to sense a subset of channels sequentially before it decides to use one of them in the following transmission phase. We assume the channel states alternate between busy and idle according to independent Bernoulli random processes from frame to frame. To capture the inherent uncertainty in channel sensing, we assume the reward of each transmission when the channel is idle is a random variable. We also associate random costs with sensing and transmission actions. Our objective is to understand how the costs and reward of the actions would affect the optimal behavior of the user in both offline and online settings, and design the corresponding opportunistic spectrum access strategies to maximize the expected cumulative net reward (i.e., reward-minus-cost). We start with an offline setting where the statistics of the channel status, costs and reward are known beforehand. We show that the the optimal policy exhibits a recursive double threshold structure, and the user needs to compare the channel statistics with those thresholds sequentially in order to decide its actions. With such insights, we then study the online setting, where the statistical information of the channels, costs and reward are unknown a priori. We judiciously balance exploration and exploitation, and show that the cumulative regret scales in O(log T). We also establish a matched lower bound, which implies that our online algorithm is order-optimal. Simulation results corroborate our theoretical analysis.
EmoRL: Continuous Acoustic Emotion Classification using Deep Reinforcement Learning
Acoustically expressed emotions can make communication with a robot more efficient. Detecting emotions like anger could provide a clue for the robot indicating unsafe/undesired situations. Recently, several deep neural network-based models have been proposed which establish new state-of-the-art results in affective state evaluation. These models typically start processing at the end of each utterance, which not only requires a mechanism to detect the end of an utterance but also makes it difficult to use them in a real-time communication scenario, e.g. human-robot interaction. We propose the EmoRL model that triggers an emotion classification as soon as it gains enough confidence while listening to a person speaking. As a result, we minimize the need for segmenting the audio signal for classification and achieve lower latency as the audio signal is processed incrementally. The method is competitive with the accuracy of a strong baseline model, while allowing much earlier prediction.
Analyzing Self-Driving Cars on Twitter
This paper studies users' perception regarding a controversial product, namely self-driving (autonomous) cars. To find people's opinion regarding this new technology, we used an annotated Twitter dataset, and extracted the topics in positive and negative tweets using an unsupervised, probabilistic model known as topic modeling. We later used the topics, as well as linguist and Twitter specific features to classify the sentiment of the tweets. Regarding the opinions, the result of our analysis shows that people are optimistic and excited about the future technology, but at the same time they find it dangerous and not reliable. For the classification task, we found Twitter specific features, such as hashtags as well as linguistic features such as emphatic words among top attributes in classifying the sentiment of the tweets.
Detail-Preserving Pooling in Deep Networks
Most convolutional neural networks use some method for gradually downscaling the size of the hidden layers. This is commonly referred to as pooling, and is applied to reduce the number of parameters, improve invariance to certain distortions, and increase the receptive field size. Since pooling by nature is a lossy process, it is crucial that each such layer maintains the portion of the activations that is most important for the network's discriminability. Yet, simple maximization or averaging over blocks, max or average pooling, or plain downsampling in the form of strided convolutions are the standard. In this paper, we aim to leverage recent results on image downscaling for the purposes of deep learning. Inspired by the human visual system, which focuses on local spatial changes, we propose detail-preserving pooling (DPP), an adaptive pooling method that magnifies spatial changes and preserves important structural detail. Importantly, its parameters can be learned jointly with the rest of the network. We analyze some of its theoretical properties and show its empirical benefits on several datasets and networks, where DPP consistently outperforms previous pooling approaches.
Natural Language Statistical Features of LSTM-generated Texts
Long Short-Term Memory (LSTM) networks have recently shown remarkable performance in several tasks dealing with natural language generation, such as image captioning or poetry composition. Yet, only few works have analyzed text generated by LSTMs in order to quantitatively evaluate to which extent such artificial texts resemble those generated by humans. We compared the statistical structure of LSTM-generated language to that of written natural language, and to those produced by Markov models of various orders. In particular, we characterized the statistical structure of language by assessing word-frequency statistics, long-range correlations, and entropy measures. Our main finding is that while both LSTM and Markov-generated texts can exhibit features similar to real ones in their word-frequency statistics and entropy measures, LSTM-texts are shown to reproduce long-range correlations at scales comparable to those found in natural language. Moreover, for LSTM networks a temperature-like parameter controlling the generation process shows an optimal value---for which the produced texts are closest to real language---consistent across all the different statistical features investigated.
Personalized Dynamics Models for Adaptive Assistive Navigation Systems
Consider an assistive system that guides visually impaired users through speech and haptic feedback to their destination. Existing robotic and ubiquitous navigation technologies (e.g., portable, ground, or wearable systems) often operate in a generic, user-agnostic manner. However, to minimize confusion and navigation errors, our real-world analysis reveals a crucial need to adapt the instructional guidance across different end-users with diverse mobility skills. To address this practical issue in scalable system design, we propose a novel model-based reinforcement learning framework for personalizing the system-user interaction experience. When incrementally adapting the system to new users, we propose to use a weighted experts model for addressing data-efficiency limitations in transfer learning with deep models. A real-world dataset of navigation by blind users is used to show that the proposed approach allows for (1) more accurate long-term human behavior prediction (up to 20 seconds into the future) through improved reasoning over personal mobility characteristics, interaction with surrounding obstacles, and the current navigation goal, and (2) quick adaptation at the onset of learning, when data is limited.
Machine Learning DDoS Detection for Consumer Internet of Things Devices
An increasing number of Internet of Things (IoT) devices are connecting to the Internet, yet many of these devices are fundamentally insecure, exposing the Internet to a variety of attacks. Botnets such as Mirai have used insecure consumer IoT devices to conduct distributed denial of service (DDoS) attacks on critical Internet infrastructure. This motivates the development of new techniques to automatically detect consumer IoT attack traffic. In this paper, we demonstrate that using IoT-specific network behaviors (e.g. limited number of endpoints and regular time intervals between packets) to inform feature selection can result in high accuracy DDoS detection in IoT network traffic with a variety of machine learning algorithms, including neural networks. These results indicate that home gateway routers or other network middleboxes could automatically detect local IoT device sources of DDoS attacks using low-cost machine learning algorithms and traffic data that is flow-based and protocol-agnostic.
Differentiable Learning of Quantum Circuit Born Machine
Quantum circuit Born machines are generative models which represent the probability distribution of classical dataset as quantum pure states. Computational complexity considerations of the quantum sampling problem suggest that the quantum circuits exhibit stronger expressibility compared to classical neural networks. One can efficiently draw samples from the quantum circuits via projective measurements on qubits. However, similar to the leading implicit generative models in deep learning, such as the generative adversarial networks, the quantum circuits cannot provide the likelihood of the generated samples, which poses a challenge to the training. We devise an efficient gradient-based learning algorithm for the quantum circuit Born machine by minimizing the kerneled maximum mean discrepancy loss. We simulated generative modeling of the Bars-and-Stripes dataset and Gaussian mixture distributions using deep quantum circuits. Our experiments show the importance of circuit depth and gradient-based optimization algorithm. The proposed learning algorithm is runnable on near-term quantum device and can exhibit quantum advantages for generative modeling.
KS(conf ): A Light-Weight Test if a ConvNet Operates Outside of Its Specifications
Computer vision systems for automatic image categorization have become accurate and reliable enough that they can run continuously for days or even years as components of real-world commercial applications. A major open problem in this context, however, is quality control. Good classification performance can only be expected if systems run under the specific conditions, in particular data distributions, that they were trained for. Surprisingly, none of the currently used deep network architectures has a built-in functionality that could detect if a network operates on data from a distribution that it was not trained for and potentially trigger a warning to the human users. In this work, we describe KS(conf), a procedure for detecting such outside of the specifications operation. Building on statistical insights, its main step is the applications of a classical Kolmogorov-Smirnov test to the distribution of predicted confidence values. We show by extensive experiments using ImageNet, AwA2 and DAVIS data on a variety of ConvNets architectures that KS(conf) reliably detects out-of-specs situations. It furthermore has a number of properties that make it an excellent candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with all networks, including pretrained ones, and requires no a priori knowledge about how the data distribution could change.
Peeking the Impact of Points of Interests on Didi
Recently, the online car-hailing service, Didi, has emerged as a leader in the sharing economy. Used by passengers and drivers extensive, it becomes increasingly important for the car-hailing service providers to minimize the waiting time of passengers and optimize the vehicle utilization, thus to improve the overall user experience. Therefore, the supply-demand estimation is an indispensable ingredient of an efficient online car-hailing service. To improve the accuracy of the estimation results, we analyze the implicit relationships between the points of Interest (POI) and the supply-demand gap in this paper. The different categories of POIs have positive or negative effects on the estimation, we propose a POI selection scheme and incorporate it into XGBoost [1] to achieve more accurate estimation results. Our experiment demonstrates our method provides more accurate estimation results and more stable estimation results than the existing methods.
Learning Topics using Semantic Locality
The topic modeling discovers the latent topic probability of the given text documents. To generate the more meaningful topic that better represents the given document, we proposed a new feature extraction technique which can be used in the data preprocessing stage. The method consists of three steps. First, it generates the word/word-pair from every single document. Second, it applies a two-way TF-IDF algorithm to word/word-pair for semantic filtering. Third, it uses the K-means algorithm to merge the word pairs that have the similar semantic meaning. Experiments are carried out on the Open Movie Database (OMDb), Reuters Dataset and 20NewsGroup Dataset. The mean Average Precision score is used as the evaluation metric. Comparing our results with other state-of-the-art topic models, such as Latent Dirichlet allocation and traditional Restricted Boltzmann Machines. Our proposed data preprocessing can improve the generated topic accuracy by up to 12.99\%.
Multi-scale Neural Networks for Retinal Blood Vessels Segmentation
Existing supervised approaches didn't make use of the low-level features which are actually effective to this task. And another deficiency is that they didn't consider the relation between pixels, which means effective features are not extracted. In this paper, we proposed a novel convolutional neural network which make sufficient use of low-level features together with high-level features and involves atrous convolution to get multi-scale features which should be considered as effective features. Our model is tested on three standard benchmarks - DRIVE, STARE, and CHASE databases. The results presents that our model significantly outperforms existing approaches in terms of accuracy, sensitivity, specificity, the area under the ROC curve and the highest prediction speed. Our work provides evidence of the power of wide and deep neural networks in retinal blood vessels segmentation task which could be applied on other medical images tasks.
Word2Vec applied to Recommendation: Hyperparameters Matter
Skip-gram with negative sampling, a popular variant of Word2vec originally designed and tuned to create word embeddings for Natural Language Processing, has been used to create item embeddings with successful applications in recommendation. While these fields do not share the same type of data, neither evaluate on the same tasks, recommendation applications tend to use the same already tuned hyperparameters values, even if optimal hyperparameters values are often known to be data and task dependent. We thus investigate the marginal importance of each hyperparameter in a recommendation setting through large hyperparameter grid searches on various datasets. Results reveal that optimizing neglected hyperparameters, namely negative sampling distribution, number of epochs, subsampling parameter and window-size, significantly improves performance on a recommendation task, and can increase it by an order of magnitude. Importantly, we find that optimal hyperparameters configurations for Natural Language Processing tasks and Recommendation tasks are noticeably different.
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
In several recently proposed stochastic optimization methods (e.g. RMSProp, Adam, Adadelta), parameter updates are scaled by the inverse square roots of exponential moving averages of squared past gradients. Maintaining these per-parameter second-moment estimators requires memory equal to the number of parameters. For the case of neural network weight matrices, we propose maintaining only the per-row and per-column sums of these moving averages, and estimating the per-parameter second moments based on these sums. We demonstrate empirically that this method produces similar results to the baseline. Secondly, we show that adaptive methods can produce larger-than-desired updates when the decay rate of the second moment accumulator is too slow. We propose update clipping and a gradually increasing decay rate scheme as remedies. Combining these methods and dropping momentum, we achieve comparable results to the published Adam regime in training the Transformer model on the WMT 2014 English-German machine translation task, while using very little auxiliary storage in the optimizer. Finally, we propose scaling the parameter updates based on the scale of the parameters themselves.
Capsules for Object Segmentation
Convolutional neural networks (CNNs) have shown remarkable results over the last several years for a wide range of computer vision tasks. A new architecture recently introduced by Sabour et al., referred to as a capsule networks with dynamic routing, has shown great initial results for digit recognition and small image classification. The success of capsule networks lies in their ability to preserve more information about the input by replacing max-pooling layers with convolutional strides and dynamic routing, allowing for preservation of part-whole relationships in the data. This preservation of the input is demonstrated by reconstructing the input from the output capsule vectors. Our work expands the use of capsule networks to the task of object segmentation for the first time in the literature. We extend the idea of convolutional capsules with locally-connected routing and propose the concept of deconvolutional capsules. Further, we extend the masked reconstruction to reconstruct the positive input class. The proposed convolutional-deconvolutional capsule network, called SegCaps, shows strong results for the task of object segmentation with substantial decrease in parameter space. As an example application, we applied the proposed SegCaps to segment pathological lungs from low dose CT scans and compared its accuracy and efficiency with other U-Net-based architectures. SegCaps is able to handle large image sizes (512 x 512) as opposed to baseline capsules (typically less than 32 x 32). The proposed SegCaps reduced the number of parameters of U-Net architecture by 95.4% while still providing a better segmentation accuracy.
Deep Neural Networks Motivated by Partial Differential Equations
Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the infinite dimensional setting provides powerful tools for their analysis and solution. Over the last few decades, the reinterpretation of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish a new PDE-interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning. Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and demonstrate the competitiveness of three new CNN architectures using numerical experiments.
Model identification for ARMA time series through convolutional neural networks
In this paper, we use convolutional neural networks to address the problem of model identification for autoregressive moving average time series models. We compare the performance of several neural network architectures, trained on simulated time series, with likelihood based methods, in particular the Akaike and Bayesian information criteria. We find that our neural networks can significantly outperform these likelihood based methods in terms of accuracy and, by orders of magnitude, in terms of speed.
Exact Reconstruction of Euclidean Distance Geometry Problem Using Low-rank Matrix Completion
The Euclidean distance geometry problem arises in a wide variety of applications, from determining molecular conformations in computational chemistry to localization in sensor networks. When the distance information is incomplete, the problem can be formulated as a nuclear norm minimization problem. In this paper, this minimization program is recast as a matrix completion problem of a low-rank $r$ Gram matrix with respect to a suitable basis. The well known restricted isometry property can not be satisfied in this scenario. Instead, a dual basis approach is introduced to theoretically analyze the reconstruction problem. If the Gram matrix satisfies certain coherence conditions with parameter $\nu$, the main result shows that the underlying configuration of $n$ points can be recovered with very high probability from $O(nr\nu\log^{2}(n))$ uniformly random samples. Computationally, simple and fast algorithms are designed to solve the Euclidean distance geometry problem. Numerical tests on different three dimensional data and protein molecules validate effectiveness and efficiency of the proposed algorithms.
Local reservoir model for choice-based learning
Decision making based on behavioral and neural observations of living systems has been extensively studied in brain science, psychology, and other disciplines. Decision-making mechanisms have also been experimentally implemented in physical processes, such as single photons and chaotic lasers. The findings of these experiments suggest that there is a certain common basis in describing decision making, regardless of its physical realizations. In this study, we propose a local reservoir model to account for choice-based learning (CBL). CBL describes decision consistency as a phenomenon where making a certain decision increases the possibility of making that same decision again later, which has been intensively investigated in neuroscience, psychology, etc. Our proposed model is inspired by the viewpoint that a decision is affected by its local environment, which is referred to as a local reservoir. If the size of the local reservoir is large enough, consecutive decision making will not be affected by previous decisions, thus showing lower degrees of decision consistency in CBL. In contrast, if the size of the local reservoir decreases, a biased distribution occurs within it, which leads to higher degrees of decision consistency in CBL. In this study, an analytical approach on local reservoirs is presented, as well as several numerical demonstrations. Furthermore, a physical architecture for CBL based on single photons is discussed, and the effects of local reservoirs is numerically demonstrated. Decision consistency in human decision-making tasks and in recruiting empirical data are evaluated based on local reservoir. In summary, the proposed local reservoir model paves a path toward establishing a foundation for computational mechanisms and the systematic analysis of decision making on different levels.
Causal Generative Domain Adaptation Networks
An essential problem in domain adaptation is to understand and make use of distribution changes across domains. For this purpose, we first propose a flexible Generative Domain Adaptation Network (G-DAN) with specific latent variables to capture changes in the generating process of features across domains. By explicitly modeling the changes, one can even generate data in new domains using the generating process with new values for the latent variables in G-DAN. In practice, the process to generate all features together may involve high-dimensional latent variables, requiring dealing with distributions in high dimensions and making it difficult to learn domain changes from few source domains. Interestingly, by further making use of the causal representation of joint distributions, we then decompose the joint distribution into separate modules, each of which involves different low-dimensional latent variables and can be learned separately, leading to a Causal G-DAN (CG-DAN). This improves both statistical and computational efficiency of the learning procedure. Finally, by matching the feature distribution in the target domain, we can recover the target-domain joint distribution and derive the learning machine for the target domain. We demonstrate the efficacy of both G-DAN and CG-DAN in domain generation and cross-domain prediction on both synthetic and real data experiments.
Regularisation of Neural Networks by Enforcing Lipschitz Continuity
We investigate the effect of explicitly enforcing the Lipschitz continuity of neural networks with respect to their inputs. To this end, we provide a simple technique for computing an upper bound to the Lipschitz constant---for multiple $p$-norms---of a feed forward neural network composed of commonly used layer types. Our technique is then used to formulate training a neural network with a bounded Lipschitz constant as a constrained optimisation problem that can be solved using projected stochastic gradient methods. Our evaluation study shows that the performance of the resulting models exceeds that of models trained with other common regularisers. We also provide evidence that the hyperparameters are intuitive to tune, demonstrate how the choice of norm for computing the Lipschitz constant impacts the resulting model, and show that the performance gains provided by our method are particularly noticeable when only a small amount of training data is available.
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs
Parameter identification and comparison of dynamical systems is a challenging task in many fields. Bayesian approaches based on Gaussian process regression over time-series data have been successfully applied to infer the parameters of a dynamical system without explicitly solving it. While the benefits in computational cost are well established, a rigorous mathematical framework has been missing. We offer a novel interpretation which leads to a better understanding and improvements in state-of-the-art performance in terms of accuracy for nonlinear dynamical systems.
Regularized Greedy Column Subset Selection
The Column Subset Selection Problem provides a natural framework for unsupervised feature selection. Despite being a hard combinatorial optimization problem, there exist efficient algorithms that provide good approximations. The drawback of the problem formulation is that it incorporates no form of regularization, and is therefore very sensitive to noise when presented with scarce data. In this paper we propose a regularized formulation of this problem, and derive a correct greedy algorithm that is similar in efficiency to existing greedy methods for the unregularized problem. We study its adequacy for feature selection and propose suitable formulations. Additionally, we derive a lower bound for the error of the proposed problems. Through various numerical experiments on real and synthetic data, we demonstrate the significantly increased robustness and stability of our method, as well as the improved conditioning of its output, all while remaining efficient for practical use.
Variational Composite Autoencoders
Learning in the latent variable model is challenging in the presence of the complex data structure or the intractable latent variable. Previous variational autoencoders can be low effective due to the straightforward encoder-decoder structure. In this paper, we propose a variational composite autoencoder to sidestep this issue by amortizing on top of the hierarchical latent variable model. The experimental results confirm the advantages of our model.
Pooling is neither necessary nor sufficient for appropriate deformation stability in CNNs
Many of our core assumptions about how neural networks operate remain empirically untested. One common assumption is that convolutional neural networks need to be stable to small translations and deformations to solve image recognition tasks. For many years, this stability was baked into CNN architectures by incorporating interleaved pooling layers. Recently, however, interleaved pooling has largely been abandoned. This raises a number of questions: Are our intuitions about deformation stability right at all? Is it important? Is pooling necessary for deformation invariance? If not, how is deformation invariance achieved in its absence? In this work, we rigorously test these questions, and find that deformation stability in convolutional networks is more nuanced than it first appears: (1) Deformation invariance is not a binary property, but rather that different tasks require different degrees of deformation stability at different layers. (2) Deformation stability is not a fixed property of a network and is heavily adjusted over the course of training, largely through the smoothness of the convolutional filters. (3) Interleaved pooling layers are neither necessary nor sufficient for achieving the optimal form of deformation stability for natural image classification. (4) Pooling confers too much deformation stability for image classification at initialization, and during training, networks have to learn to counteract this inductive bias. Together, these findings provide new insights into the role of interleaved pooling and deformation invariance in CNNs, and demonstrate the importance of rigorous empirical testing of even our most basic assumptions about the working of neural networks.
Temporal Interpolation via Motion Field Prediction
Navigated 2D multi-slice dynamic Magnetic Resonance (MR) imaging enables high contrast 4D MR imaging during free breathing and provides in-vivo observations for treatment planning and guidance. Navigator slices are vital for retrospective stacking of 2D data slices in this method. However, they also prolong the acquisition sessions. Temporal interpolation of navigator slices an be used to reduce the number of navigator acquisitions without degrading specificity in stacking. In this work, we propose a convolutional neural network (CNN) based method for temporal interpolation via motion field prediction. The proposed formulation incorporates the prior knowledge that a motion field underlies changes in the image intensities over time. Previous approaches that interpolate directly in the intensity space are prone to produce blurry images or even remove structures in the images. Our method avoids such problems and faithfully preserves the information in the image. Further, an important advantage of our formulation is that it provides an unsupervised estimation of bi-directional motion fields. We show that these motion fields can be used to halve the number of registrations required during 4D reconstruction, thus substantially reducing the reconstruction time.
Adversarial Alignment of Class Prediction Uncertainties for Domain Adaptation
We consider unsupervised domain adaptation: given labelled examples from a source domain and unlabelled examples from a related target domain, the goal is to infer the labels of target examples. Under the assumption that features from pre-trained deep neural networks are transferable across related domains, domain adaptation reduces to aligning source and target domain at class prediction uncertainty level. We tackle this problem by introducing a method based on adversarial learning which forces the label uncertainty predictions on the target domain to be indistinguishable from those on the source domain. Pre-trained deep neural networks are used to generate deep features having high transferability across related domains. We perform an extensive experimental analysis of the proposed method over a wide set of publicly available pre-trained deep neural networks. Results of our experiments on domain adaptation tasks for image classification show that class prediction uncertainty alignment with features extracted from pre-trained deep neural networks provides an efficient, robust and effective method for domain adaptation.
Solving Bongard Problems with a Visual Language and Pragmatic Reasoning
More than 50 years ago Bongard introduced 100 visual concept learning problems as a testbed for intelligent vision systems. These problems are now known as Bongard problems. Although they are well known in the cognitive science and AI communities only moderate progress has been made towards building systems that can solve a substantial subset of them. In the system presented here, visual features are extracted through image processing and then translated into a symbolic visual vocabulary. We introduce a formal language that allows representing complex visual concepts based on this vocabulary. Using this language and Bayesian inference, complex visual concepts can be induced from the examples that are provided in each Bongard problem. Contrary to other concept learning problems the examples from which concepts are induced are not random in Bongard problems, instead they are carefully chosen to communicate the concept, hence requiring pragmatic reasoning. Taking pragmatic reasoning into account we find good agreement between the concepts with high posterior probability and the solutions formulated by Bongard himself. While this approach is far from solving all Bongard problems, it solves the biggest fraction yet.
CubeNet: Equivariance to 3D Rotation and Translation
3D Convolutional Neural Networks are sensitive to transformations applied to their input. This is a problem because a voxelized version of a 3D object, and its rotated clone, will look unrelated to each other after passing through to the last layer of a network. Instead, an idealized model would preserve a meaningful representation of the voxelized object, while explaining the pose-difference between the two inputs. An equivariant representation vector has two components: the invariant identity part, and a discernable encoding of the transformation. Models that can't explain pose-differences risk "diluting" the representation, in pursuit of optimizing a classification or regression loss function. We introduce a Group Convolutional Neural Network with linear equivariance to translations and right angle rotations in three dimensions. We call this network CubeNet, reflecting its cube-like symmetry. By construction, this network helps preserve a 3D shape's global and local signature, as it is transformed through successive layers. We apply this network to a variety of 3D inference problems, achieving state-of-the-art on the ModelNet10 classification challenge, and comparable performance on the ISBI 2012 Connectome Segmentation Benchmark. To the best of our knowledge, this is the first 3D rotation equivariant CNN for voxel representations.
Unleashing Linear Optimizers for Group-Fair Learning and Optimization
Most systems and learning algorithms optimize average performance or average loss -- one reason being computational complexity. However, many objectives of practical interest are more complex than simply average loss. This arises, for example, when balancing performance or loss with fairness across people. We prove that, from a computational perspective, optimizing arbitrary objectives that take into account performance over a small number of groups is not significantly harder to optimize than average performance. Our main result is a polynomial-time reduction that uses a linear optimizer to optimize an arbitrary (Lipschitz continuous) function of performance over a (constant) number of possibly-overlapping groups. This includes fairness objectives over small numbers of groups, and we further point out that other existing notions of fairness such as individual fairness can be cast as convex optimization and hence more standard convex techniques can be used. Beyond learning, our approach applies to multi-objective optimization, more generally.
DLL: A Blazing Fast Deep Neural Network Library
Deep Learning Library (DLL) is a new library for machine learning with deep neural networks that focuses on speed. It supports feed-forward neural networks such as fully-connected Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs). It also has very comprehensive support for Restricted Boltzmann Machines (RBMs) and Convolutional RBMs. Our main motivation for this work was to propose and evaluate novel software engineering strategies with potential to accelerate runtime for training and inference. Such strategies are mostly independent of the underlying deep learning algorithms. On three different datasets and for four different neural network models, we compared DLL to five popular deep learning frameworks. Experimentally, it is shown that the proposed framework is systematically and significantly faster on CPU and GPU. In terms of classification performance, similar accuracies as the other frameworks are reported.
Online convex optimization and no-regret learning: Algorithms, guarantees and applications
Spurred by the enthusiasm surrounding the "Big Data" paradigm, the mathematical and algorithmic tools of online optimization have found widespread use in problems where the trade-off between data exploration and exploitation plays a predominant role. This trade-off is of particular importance to several branches and applications of signal processing, such as data mining, statistical inference, multimedia indexing and wireless communications (to name but a few). With this in mind, the aim of this tutorial paper is to provide a gentle introduction to online optimization and learning algorithms that are asymptotically optimal in hindsight - i.e., they approach the performance of a virtual algorithm with unlimited computational power and full knowledge of the future, a property known as no-regret. Particular attention is devoted to identifying the algorithms' theoretical performance guarantees and to establish links with classic optimization paradigms (both static and stochastic). To allow a better understanding of this toolbox, we provide several examples throughout the tutorial ranging from metric learning to wireless resource allocation problems.
Latent Geometry Inspired Graph Dissimilarities Enhance Affinity Propagation Community Detection in Complex Networks
Affinity propagation is one of the most effective unsupervised pattern recognition algorithms for data clustering in high-dimensional feature space. However, the numerous attempts to test its performance for community detection in complex networks have been attaining results very far from the state of the art methods such as Infomap and Louvain. Yet, all these studies agreed that the crucial problem is to convert the unweighted network topology in a 'smart-enough' node dissimilarity matrix that is able to properly address the message passing procedure behind affinity propagation clustering. Here we introduce a conceptual innovation and we discuss how to leverage network latent geometry notions in order to design dissimilarity matrices for affinity propagation community detection. Our results demonstrate that the latent geometry inspired dissimilarity measures we design bring affinity propagation to equal or outperform current state of the art methods for community detection. These findings are solidly proven considering both synthetic 'realistic' networks (with known ground-truth communities) and real networks (with community metadata), even when the data structure is corrupted by noise artificially induced by missing or spurious connectivity.
Feature-Based Aggregation and Deep Reinforcement Learning: A Survey and Some New Implementations
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with feature construction using deep neural networks or other calculations. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by neural network-based reinforcement learning, thereby potentially leading to more effective policy improvement.
Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling
We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.
A Comprehensive Study on the Applications of Machine Learning for the Medical Diagnosis and Prognosis of Asthma
An estimated 300 million people worldwide suffer from asthma, and this number is expected to increase to 400 million by 2025. Approximately 250,000 people die prematurely each year from asthma out of which, almost all deaths are avoidable. Most of these deaths occur because the patients are unaware of their asthmatic morbidity. If detected early, asthmatic mortality rate can be reduced by 78%, provided that the patients carry appropriate medication for the same and/or are in lose vicinity to medical equipment like nebulizers. This study focuses on the development and valuation of algorithms to diagnose asthma through symptom intensive questionary, clinical data and medical reports. Machine Learning Algorithms like Back-propagation model, Context Sensitive Auto-Associative Memory Neural Network Model, C4.5 Algorithm, Bayesian Network and Particle Swarm Optimization have been employed for the diagnosis of asthma and later a comparison is made between their respective prospects. All algorithms received an accuracy of over 80%. However, the use of Auto Associative Memory Model (on a layered Artificial Neural Network) displayed much better results. It reached to an accuracy of over 90% and an inconclusive diagnosis rate of less than 1% when trained with adequate data. In the end, na\"ive mobile based applications were developed on Android and iOS that made use of the self-training auto associative memory model to achieve an accuracy of nearly 94.2%.
Impulsive Noise Robust Sparse Recovery via Continuous Mixed Norm
This paper investigates the problem of sparse signal recovery in the presence of additive impulsive noise. The heavytailed impulsive noise is well modelled with stable distributions. Since there is no explicit formulation for the probability density function of $S\alpha S$ distribution, alternative approximations like Generalized Gaussian Distribution (GGD) are used which impose $\ell_p$-norm fidelity on the residual error. In this paper, we exploit a Continuous Mixed Norm (CMN) for robust sparse recovery instead of $\ell_p$-norm. We show that in blind conditions, i.e., in case where the parameters of noise distribution are unknown, incorporating CMN can lead to near optimal recovery. We apply Alternating Direction Method of Multipliers (ADMM) for solving the problem induced by utilizing CMN for robust sparse recovery. In this approach, CMN is replaced with a surrogate function and Majorization-Minimization technique is incorporated to solve the problem. Simulation results confirm the efficiency of the proposed method compared to some recent algorithms in the literature for impulsive noise robust sparse recovery.
Causal Inference via Kernel Deviance Measures
Discovering the causal structure among a set of variables is a fundamental problem in many areas of science. In this paper, we propose Kernel Conditional Deviance for Causal Inference (KCDC) a fully nonparametric causal discovery method based on purely observational data. From a novel interpretation of the notion of asymmetry between cause and effect, we derive a corresponding asymmetry measure using the framework of reproducing kernel Hilbert spaces. Based on this, we propose three decision rules for causal discovery. We demonstrate the wide applicability of our method across a range of diverse synthetic datasets. Furthermore, we test our method on real-world time series data and the real-world benchmark dataset Tubingen Cause-Effect Pairs where we outperform existing state-of-the-art methods.