title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Fast Counting in Machine Learning Applications
We propose scalable methods to execute counting queries in machine learning applications. To achieve memory and computational efficiency, we abstract counting queries and their context such that the counts can be aggregated as a stream. We demonstrate performance and scalability of the resulting approach on random queries, and through extensive experimentation using Bayesian networks learning and association rule mining. Our methods significantly outperform commonly used ADtrees and hash tables, and are practical alternatives for processing large-scale data.
Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Dendrite Suppression with Li Metal Anode
Next generation batteries based on lithium (Li) metal anodes have been plagued by the dendritic electrodeposition of Li metal on the anode during cycling, resulting in short circuit and capacity loss. Suppression of dendritic growth through the use of solid electrolytes has emerged as one of the most promising strategies for enabling the use of Li metal anodes. We perform a computational screening of over 12,000 inorganic solids based on their ability to suppress dendrite initiation in contact with Li metal anode. Properties for mechanically isotropic and anisotropic interfaces that can be used in stability criteria for determining the propensity of dendrite initiation are usually obtained from computationally expensive first-principles methods. In order to obtain a large dataset for screening, we use machine learning models to predict the mechanical properties of several new solid electrolytes. We train a convolutional neural network on the shear and bulk moduli purely on structural features of the material. We use AdaBoost, Lasso and Bayesian ridge regression to train the elastic constants, where the choice of the model depended on the size of the training data and the noise that it can handle. Our models give us direct interpretability by revealing the dominant structural features affecting the elastic constants. The stiffness is found to increase with a decrease in volume per atom, increase in minimum anion-anion separation, and increase in sublattice (all but Li) packing fraction. Cross-validation/test performance suggests our models generalize well. We predict over 20 mechanically anisotropic interfaces between Li metal and 6 solid electrolytes which can be used to suppress dendrite growth. Our screened candidates are generally soft and highly anisotropic, and present opportunities for simultaneously obtaining dendrite suppression and high ionic conductivity in solid electrolytes.
3D G-CNNs for Pulmonary Nodule Detection
Convolutional Neural Networks (CNNs) require a large amount of annotated data to learn from, which is often difficult to obtain in the medical domain. In this paper we show that the sample complexity of CNNs can be significantly improved by using 3D roto-translation group convolutions (G-Convs) instead of the more conventional translational convolutions. These 3D G-CNNs were applied to the problem of false positive reduction for pulmonary nodule detection, and proved to be substantially more effective in terms of performance, sensitivity to malignant nodules, and speed of convergence compared to a strong and comparable baseline architecture with regular convolutions, data augmentation and a similar number of parameters. For every dataset size tested, the G-CNN achieved a FROC score close to the CNN trained on ten times more data.
Asynch-SGBDT: Asynchronous Parallel Stochastic Gradient Boosting Decision Tree based on Parameters Server
In AI research and industry, machine learning is the most widely used tool. One of the most important machine learning algorithms is Gradient Boosting Decision Tree, i.e. GBDT whose training process needs considerable computational resources and time. To shorten GBDT training time, many works tried to apply GBDT on Parameter Server. However, those GBDT algorithms are synchronous parallel algorithms which fail to make full use of Parameter Server. In this paper, we examine the possibility of using asynchronous parallel methods to train GBDT model and name this algorithm as asynch-SGBDT (asynchronous parallel stochastic gradient boosting decision tree). Our theoretical and experimental results indicate that the scalability of asynch-SGBDT is influenced by the sample diversity of datasets, sampling rate, step length and the setting of GBDT tree. Experimental results also show asynch-SGBDT training process reaches a linear speedup in asynchronous parallel manner when datasets and GBDT trees meet high scalability requirements.
Efficient Model Identification for Tensegrity Locomotion
This paper aims to identify in a practical manner unknown physical parameters, such as mechanical models of actuated robot links, which are critical in dynamical robotic tasks. Key features include the use of an off-the-shelf physics engine and the Bayesian optimization framework. The task being considered is locomotion with a high-dimensional, compliant Tensegrity robot. A key insight, in this case, is the need to project the model identification challenge into an appropriate lower dimensional space for efficiency. Comparisons with alternatives indicate that the proposed method can identify the parameters more accurately within the given time budget, which also results in more precise locomotion control.
Network-based protein structural classification
Experimental determination of protein function is resource-consuming. As an alternative, computational prediction of protein function has received attention. In this context, protein structural classification (PSC) can help, by allowing for determining structural classes of currently unclassified proteins based on their features, and then relying on the fact that proteins with similar structures have similar functions. Existing PSC approaches rely on sequence-based or direct 3-dimensional (3D) structure-based protein features. In contrast, we first model 3D structures of proteins as protein structure networks (PSNs). Then, we use network-based features for PSC. We propose the use of graphlets, state-of-the-art features in many research areas of network science, in the task of PSC. Moreover, because graphlets can deal only with unweighted PSNs, and because accounting for edge weights when constructing PSNs could improve PSC accuracy, we also propose a deep learning framework that automatically learns network features from weighted PSNs. When evaluated on a large set of ~9,400 CATH and ~12,800 SCOP protein domains (spanning 36 PSN sets), our proposed approaches are superior to existing PSC approaches in terms of accuracy, with comparable running time.
Multimodal Unsupervised Image-to-Image Translation
Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any pairs of corresponding images. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to the state-of-the-art approaches further demonstrates the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at https://github.com/nvlabs/MUNIT
MOVI: A Model-Free Approach to Dynamic Fleet Management
Modern vehicle fleets, e.g., for ridesharing platforms and taxi companies, can reduce passengers' waiting times by proactively dispatching vehicles to locations where pickup requests are anticipated in the future. Yet it is unclear how to best do this: optimal dispatching requires optimizing over several sources of uncertainty, including vehicles' travel times to their dispatched locations, as well as coordinating between vehicles so that they do not attempt to pick up the same passenger. While prior works have developed models for this uncertainty and used them to optimize dispatch policies, in this work we introduce a model-free approach. Specifically, we propose MOVI, a Deep Q-network (DQN)-based framework that directly learns the optimal vehicle dispatch policy. Since DQNs scale poorly with a large number of possible dispatches, we streamline our DQN training and suppose that each individual vehicle independently learns its own optimal policy, ensuring scalability at the cost of less coordination between vehicles. We then formulate a centralized receding-horizon control (RHC) policy to compare with our DQN policies. To compare these policies, we design and build MOVI as a large-scale realistic simulator based on 15 million taxi trip records that simulates policy-agnostic responses to dispatch decisions. We show that the DQN dispatch policy reduces the number of unserviced requests by 76% compared to without dispatch and 20% compared to the RHC approach, emphasizing the benefits of a model-free approach and suggesting that there is limited value to coordinating vehicle actions. This finding may help to explain the success of ridesharing platforms, for which drivers make individual decisions.
RIPEx: Extracting malicious IP addresses from security forums using cross-forum learning
Is it possible to extract malicious IP addresses reported in security forums in an automatic way? This is the question at the heart of our work. We focus on security forums, where security professionals and hackers share knowledge and information, and often report misbehaving IP addresses. So far, there have only been a few efforts to extract information from such security forums. We propose RIPEx, a systematic approach to identify and label IP addresses in security forums by utilizing a cross-forum learning method. In more detail, the challenge is twofold: (a) identifying IP addresses from other numerical entities, such as software version numbers, and (b) classifying the IP address as benign or malicious. We propose an integrated solution that tackles both these problems. A novelty of our approach is that it does not require training data for each new forum. Our approach does knowledge transfer across forums: we use a classifier from our source forums to identify seed information for training a classifier on the target forum. We evaluate our method using data collected from five security forums with a total of 31K users and 542K posts. First, RIPEx can distinguish IP address from other numeric expressions with 95% precision and above 93% recall on average. Second, RIPEx identifies malicious IP addresses with an average precision of 88% and over 78% recall, using our cross-forum learning. Our work is a first step towards harnessing the wealth of useful information that can be found in security forums.
A Compact Network Learning Model for Distribution Regression
Despite the superior performance of deep learning in many applications, challenges remain in the area of regression on function spaces. In particular, neural networks are unable to encode function inputs compactly as each node encodes just a real value. We propose a novel idea to address this shortcoming: to encode an entire function in a single network node. To that end, we design a compact network representation that encodes and propagates functions in single nodes for the distribution regression task. Our proposed Distribution Regression Network (DRN) achieves higher prediction accuracies while being much more compact and uses fewer parameters than traditional neural networks.
Understanding Community Structure in Layered Neural Networks
A layered neural network is now one of the most common choices for the prediction of high-dimensional practical data sets, where the relationship between input and output data is complex and cannot be represented well by simple conventional models. Its effectiveness is shown in various tasks, however, the lack of interpretability of the trained result by a layered neural network has limited its application area. In our previous studies, we proposed methods for extracting a simplified global structure of a trained layered neural network by classifying the units into communities according to their connection patterns with adjacent layers. These methods provided us with knowledge about the strength of the relationship between communities from the existence of bundled connections, which are determined by threshold processing of the connection ratio between pairs of communities. However, it has been difficult to understand the role of each community quantitatively by observing the modular structure. We could only know to which sets of the input and output dimensions each community was mainly connected, by tracing the bundled connections from the community to the input and output layers. Another problem is that the finally obtained modular structure is changed greatly depending on the setting of the threshold hyperparameter used for determining bundled connections. In this paper, we propose a new method for interpreting quantitatively the role of each community in inference, by defining the effect of each input dimension on a community, and the effect of a community on each output dimension. We show experimentally that our proposed method can reveal the role of each part of a layered neural network by applying the neural networks to three types of data sets, extracting communities from the trained network, and applying the proposed method to the community structure.
Adversarial Clustering: A Grid Based Clustering Algorithm Against Active Adversaries
Nowadays more and more data are gathered for detecting and preventing cyber attacks. In cyber security applications, data analytics techniques have to deal with active adversaries that try to deceive the data analytics models and avoid being detected. The existence of such adversarial behavior motivates the development of robust and resilient adversarial learning techniques for various tasks. Most of the previous work focused on adversarial classification techniques, which assumed the existence of a reasonably large amount of carefully labeled data instances. However, in practice, labeling the data instances often requires costly and time-consuming human expertise and becomes a significant bottleneck. Meanwhile, a large number of unlabeled instances can also be used to understand the adversaries' behavior. To address the above mentioned challenges, in this paper, we develop a novel grid based adversarial clustering algorithm. Our adversarial clustering algorithm is able to identify the core normal regions, and to draw defensive walls around the centers of the normal objects utilizing game theoretic ideas. Our algorithm also identifies sub-clusters of attack objects, the overlapping areas within clusters, and outliers which may be potential anomalies.
Fast, Parameter free Outlier Identification for Robust PCA
Robust PCA, the problem of PCA in the presence of outliers has been extensively investigated in the last few years. Here we focus on Robust PCA in the column sparse outlier model. The existing methods for column sparse outlier model assumes either the knowledge of the dimension of the lower dimensional subspace or the fraction of outliers in the system. However in many applications knowledge of these parameters is not available. Motivated by this we propose a parameter free outlier identification method for robust PCA which a) does not require the knowledge of outlier fraction, b) does not require the knowledge of the dimension of the underlying subspace, c) is computationally simple and fast. Further, analytical guarantees are derived for outlier identification and the performance of the algorithm is compared with the existing state of the art methods.
{\mu}-cuDNN: Accelerating Deep Learning Frameworks with Micro-Batching
NVIDIA cuDNN is a low-level library that provides GPU kernels frequently used in deep learning. Specifically, cuDNN implements several equivalent convolution algorithms, whose performance and memory footprint may vary considerably, depending on the layer dimensions. When an algorithm is automatically selected by cuDNN, the decision is performed on a per-layer basis, and thus it often resorts to slower algorithms that fit the workspace size constraints. We present {\mu}-cuDNN, a transparent wrapper library for cuDNN, which divides layers' mini-batch computation into several micro-batches. Based on Dynamic Programming and Integer Linear Programming, {\mu}-cuDNN enables faster algorithms by decreasing the workspace requirements. At the same time, {\mu}-cuDNN keeps the computational semantics unchanged, so that it decouples statistical efficiency from the hardware efficiency safely. We demonstrate the effectiveness of {\mu}-cuDNN over two frameworks, Caffe and TensorFlow, achieving speedups of 1.63x for AlexNet and 1.21x for ResNet-18 on P100-SXM2 GPU. These results indicate that using micro-batches can seamlessly increase the performance of deep learning, while maintaining the same memory footprint.
The unreasonable effectiveness of the forget gate
Given the success of the gated recurrent unit, a natural question is whether all the gates of the long short-term memory (LSTM) network are necessary. Previous research has shown that the forget gate is one of the most important gates in the LSTM. Here we show that a forget-gate-only version of the LSTM with chrono-initialized biases, not only provides computational savings but outperforms the standard LSTM on multiple benchmark datasets and competes with some of the best contemporary models. Our proposed network, the JANET, achieves accuracies of 99% and 92.5% on the MNIST and pMNIST datasets, outperforming the standard LSTM which yields accuracies of 98.5% and 91%.
Learning Contracting Vector Fields For Stable Imitation Learning
We propose a new non-parametric framework for learning incrementally stable dynamical systems x' = f(x) from a set of sampled trajectories. We construct a rich family of smooth vector fields induced by certain classes of matrix-valued kernels, whose equilibria are placed exactly at a desired set of locations and whose local contraction and curvature properties at various points can be explicitly controlled using convex optimization. With curl-free kernels, our framework may also be viewed as a mechanism to learn potential fields and gradient flows. We develop large-scale techniques using randomized kernel approximations in this context. We demonstrate our approach, called contracting vector fields (CVF), on imitation learning tasks involving complex point-to-point human handwriting motions.
Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features
One-class support vector machine (OC-SVM) for a long time has been one of the most effective anomaly detection methods and extensively adopted in both research as well as industrial applications. The biggest issue for OC-SVM is yet the capability to operate with large and high-dimensional datasets due to optimization complexity. Those problems might be mitigated via dimensionality reduction techniques such as manifold learning or autoencoder. However, previous work often treats representation learning and anomaly prediction separately. In this paper, we propose autoencoder based one-class support vector machine (AE-1SVM) that brings OC-SVM, with the aid of random Fourier features to approximate the radial basis kernel, into deep learning context by combining it with a representation learning architecture and jointly exploit stochastic gradient descent to obtain end-to-end training. Interestingly, this also opens up the possible use of gradient-based attribution methods to explain the decision making for anomaly detection, which has ever been challenging as a result of the implicit mappings between the input space and the kernel space. To the best of our knowledge, this is the first work to study the interpretability of deep learning in anomaly detection. We evaluate our method on a wide range of unsupervised anomaly detection tasks in which our end-to-end training architecture achieves a performance significantly better than the previous work using separate training.
Distributed Collaborative Hashing and Its Applications in Ant Financial
Collaborative filtering, especially latent factor model, has been popularly used in personalized recommendation. Latent factor model aims to learn user and item latent factors from user-item historic behaviors. To apply it into real big data scenarios, efficiency becomes the first concern, including offline model training efficiency and online recommendation efficiency. In this paper, we propose a Distributed Collaborative Hashing (DCH) model which can significantly improve both efficiencies. Specifically, we first propose a distributed learning framework, following the state-of-the-art parameter server paradigm, to learn the offline collaborative model. Our model can be learnt efficiently by distributedly computing subgradients in minibatches on workers and updating model parameters on servers asynchronously. We then adopt hashing technique to speedup the online recommendation procedure. Recommendation can be quickly made through exploiting lookup hash tables. We conduct thorough experiments on two real large-scale datasets. The experimental results demonstrate that, comparing with the classic and state-of-the-art (distributed) latent factor models, DCH has comparable performance in terms of recommendation accuracy but has both fast convergence speed in offline model training procedure and realtime efficiency in online recommendation procedure. Furthermore, the encouraging performance of DCH is also shown for several real-world applications in Ant Financial.
DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its "wide" and "deep" components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its "deep" component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.
Online Fall Detection using Recurrent Neural Networks
Unintentional falls can cause severe injuries and even death, especially if no immediate assistance is given. The aim of Fall Detection Systems (FDSs) is to detect an occurring fall. This information can be used to trigger the necessary assistance in case of injury. This can be done by using either ambient-based sensors, e.g. cameras, or wearable devices. The aim of this work is to study the technical aspects of FDSs based on wearable devices and artificial intelligence techniques, in particular Deep Learning (DL), to implement an effective algorithm for on-line fall detection. The proposed classifier is based on a Recurrent Neural Network (RNN) model with underlying Long Short-Term Memory (LSTM) blocks. The method is tested on the publicly available SisFall dataset, with extended annotation, and compared with the results obtained by the SisFall authors.
Roster Evaluation Based on Classifiers for the Nurse Rostering Problem
The personnel scheduling problem is a well-known NP-hard combinatorial problem. Due to the complexity of this problem and the size of the real-world instances, it is not possible to use exact methods, and thus heuristics, meta-heuristics, or hyper-heuristics must be employed. The majority of heuristic approaches are based on iterative search, where the quality of intermediate solutions must be calculated. Unfortunately, this is computationally highly expensive because these problems have many constraints and some are very complex. In this study, we propose a machine learning technique as a tool to accelerate the evaluation phase in heuristic approaches. The solution is based on a simple classifier, which is able to determine whether the changed solution (more precisely, the changed part of the solution) is better than the original or not. This decision is made much faster than a standard cost-oriented evaluation process. However, the classification process cannot guarantee 100% correctness. Therefore, our approach, which is illustrated using a tabu search algorithm in this study, includes a filtering mechanism, where the classifier rejects the majority of the potentially bad solutions and the remaining solutions are then evaluated in a standard manner. We also show how the boosting algorithms can improve the quality of the final solution compared with a simple classifier. We verified our proposed approach and premises, based on standard and real-world benchmark instances, to demonstrate the significant speedup obtained with comparable solution quality.
Representing smooth functions as compositions of near-identity functions with implications for deep network optimization
We show that any smooth bi-Lipschitz $h$ can be represented exactly as a composition $h_m \circ ... \circ h_1$ of functions $h_1,...,h_m$ that are close to the identity in the sense that each $\left(h_i-\mathrm{Id}\right)$ is Lipschitz, and the Lipschitz constant decreases inversely with the number $m$ of functions composed. This implies that $h$ can be represented to any accuracy by a deep residual network whose nonlinear layers compute functions with a small Lipschitz constant. Next, we consider nonlinear regression with a composition of near-identity nonlinear maps. We show that, regarding Fr\'echet derivatives with respect to the $h_1,...,h_m$, any critical point of a quadratic criterion in this near-identity region must be a global minimizer. In contrast, if we consider derivatives with respect to parameters of a fixed-size residual network with sigmoid activation functions, we show that there are near-identity critical points that are suboptimal, even in the realizable case. Informally, this means that functional gradient methods for residual networks cannot get stuck at suboptimal critical points corresponding to near-identity layers, whereas parametric gradient methods for sigmoidal residual networks suffer from suboptimal critical points in the near-identity region.
Connectivity in Random Annulus Graphs and the Geometric Block Model
We provide new connectivity results for {\em vertex-random graphs} or {\em random annulus graphs} which are significant generalizations of random geometric graphs. Random geometric graphs (RGG) are one of the most basic models of random graphs for spatial networks proposed by Gilbert in 1961, shortly after the introduction of the Erd\H{o}s-R\'{en}yi random graphs. They resemble social networks in many ways (e.g. by spontaneously creating cluster of nodes with high modularity). The connectivity properties of RGG have been studied since its introduction, and analyzing them has been significantly harder than their Erd\H{o}s-R\'{en}yi counterparts due to correlated edge formation. Our next contribution is in using the connectivity of random annulus graphs to provide necessary and sufficient conditions for efficient recovery of communities for {\em the geometric block model} (GBM). The GBM is a probabilistic model for community detection defined over an RGG in a similar spirit as the popular {\em stochastic block model}, which is defined over an Erd\H{o}s-R\'{en}yi random graph. The geometric block model inherits the transitivity properties of RGGs and thus models communities better than a stochastic block model. However, analyzing them requires fresh perspectives as all prior tools fail due to correlation in edge formation. We provide a simple and efficient algorithm that can recover communities in GBM exactly with high probability in the regime of connectivity.
Comparatives, Quantifiers, Proportions: A Multi-Task Model for the Learning of Quantities from Vision
The present work investigates whether different quantification mechanisms (set comparison, vague quantification, and proportional estimation) can be jointly learned from visual scenes by a multi-task computational model. The motivation is that, in humans, these processes underlie the same cognitive, non-symbolic ability, which allows an automatic estimation and comparison of set magnitudes. We show that when information about lower-complexity tasks is available, the higher-level proportional task becomes more accurate than when performed in isolation. Moreover, the multi-task model is able to generalize to unseen combinations of target/non-target objects. Consistently with behavioral evidence showing the interference of absolute number in the proportional task, the multi-task model no longer works when asked to provide the number of target objects in the scene.
A Deep Learning Approach to Fast, Format-Agnostic Detection of Malicious Web Content
Malicious web content is a serious problem on the Internet today. In this paper we propose a deep learning approach to detecting malevolent web pages. While past work on web content detection has relied on syntactic parsing or on emulation of HTML and Javascript to extract features, our approach operates directly on a language-agnostic stream of tokens extracted directly from static HTML files with a simple regular expression. This makes it fast enough to operate in high-frequency data contexts like firewalls and web proxies, and allows it to avoid the attack surface exposure of complex parsing and emulation code. Unlike well-known approaches such as bag-of-words models, which ignore spatial information, our neural network examines content at hierarchical spatial scales, allowing our model to capture locality and yielding superior accuracy compared to bag-of-words baselines. Our proposed architecture achieves a 97.5% detection rate at a 0.1% false positive rate, and classifies small-batched web pages at a rate of over 100 per second on commodity hardware. The speed and accuracy of our approach makes it appropriate for deployment to endpoints, firewalls, and web proxies.
Machine Learning in Astronomy: A Case Study in Quasar-Star Classification
We present the results of various automated classification methods, based on machine learning (ML), of objects from data releases 6 and 7 (DR6 and DR7) of the Sloan Digital Sky Survey (SDSS), primarily distinguishing stars from quasars. We provide a careful scrutiny of approaches available in the literature and have highlighted the pitfalls in those approaches based on the nature of data used for the study. The aim is to investigate the appropriateness of the application of certain ML methods. The manuscript argues convincingly in favor of the efficacy of asymmetric AdaBoost to classify photometric data. The paper presents a critical review of existing study and puts forward an application of asymmetric AdaBoost, as an offspring of that exercise.
Regularized Singular Value Decomposition and Application to Recommender System
Singular value decomposition (SVD) is the mathematical basis of principal component analysis (PCA). Together, SVD and PCA are one of the most widely used mathematical formalism/decomposition in machine learning, data mining, pattern recognition, artificial intelligence, computer vision, signal processing, etc. In recent applications, regularization becomes an increasing trend. In this paper, we present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although RSVD is non-convex, it has a closed-form global optimal solution. Finally, we apply RSVD to the application of recommender system and experimental result show that RSVD outperforms SVD significantly.
A new robust feature selection method using variance-based sensitivity analysis
Excluding irrelevant features in a pattern recognition task plays an important role in maintaining a simpler machine learning model and optimizing the computational efficiency. Nowadays with the rise of large scale datasets, feature selection is in great demand as it becomes a central issue when facing high-dimensional datasets. The present study provides a new measure of saliency for features by employing a Sensitivity Analysis (SA) technique called the extended Fourier amplitude sensitivity test, and a well-trained Feedforward Neural Network (FNN) model, which ultimately leads to the selection of a promising optimal feature subset. Ideas of the paper are mainly demonstrated based on adopting FNN model for feature selection in classification problems. But in the end, a generalization framework is discussed in order to give insights into the usage in regression problems as well as expressing how other function approximate models can be deployed. Effectiveness of the proposed method is verified by result analysis and data visualization for a series of experiments over several well-known datasets drawn from UCI machine learning repository.
Robust Dual View Deep Agent
Motivated by recent advance of machine learning using Deep Reinforcement Learning this paper proposes a modified architecture that produces more robust agents and speeds up the training process. Our architecture is based on Asynchronous Advantage Actor-Critic (A3C) algorithm where the total input dimensionality is halved by dividing the input into two independent streams. We use ViZDoom, 3D world software that is based on the classical first person shooter video game, Doom, as a test case. The experiments show that in comparison to single input agents, the proposed architecture succeeds to have the same playing performance and shows more robust behavior, achieving significant reduction in the number of training parameters of almost 30%.
A comparison of methods for model selection when estimating individual treatment effects
Practitioners in medicine, business, political science, and other fields are increasingly aware that decisions should be personalized to each patient, customer, or voter. A given treatment (e.g. a drug or advertisement) should be administered only to those who will respond most positively, and certainly not to those who will be harmed by it. Individual-level treatment effects can be estimated with tools adapted from machine learning, but different models can yield contradictory estimates. Unlike risk prediction models, however, treatment effect models cannot be easily evaluated against each other using a held-out test set because the true treatment effect itself is never directly observed. Besides outcome prediction accuracy, several metrics that can leverage held-out data to evaluate treatment effects models have been proposed, but they are not widely used. We provide a didactic framework that elucidates the relationships between the different approaches and compare them all using a variety of simulations of both randomized and observational data. Our results show that researchers estimating heterogenous treatment effects need not limit themselves to a single model-fitting algorithm. Instead of relying on a single method, multiple models fit by a diverse set of algorithms should be evaluated against each other using an objective function learned from the validation set. The model minimizing that objective should be used for estimating the individual treatment effect for future individuals.
Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System
In this paper, we explore the encoding/pooling layer and loss function in the end-to-end speaker and language recognition system. First, a unified and interpretable end-to-end system for both speaker and language recognition is developed. It accepts variable-length input and produces an utterance level result. In the end-to-end system, the encoding layer plays a role in aggregating the variable-length input sequence into an utterance level representation. Besides the basic temporal average pooling, we introduce a self-attentive pooling layer and a learnable dictionary encoding layer to get the utterance level representation. In terms of loss function for open-set speaker verification, to get more discriminative speaker embedding, center loss and angular softmax loss is introduced in the end-to-end system. Experimental results on Voxceleb and NIST LRE 07 datasets show that the performance of end-to-end learning system could be significantly improved by the proposed encoding layer and loss function.
Model-Free Information Extraction in Enriched Nonlinear Phase-Space
Detecting anomalies and discovering driving signals is an essential component of scientific research and industrial practice. Often the underlying mechanism is highly complex, involving hidden evolving nonlinear dynamics and noise contamination. When representative physical models and large labeled data sets are unavailable, as is the case with most real-world applications, model-dependent Bayesian approaches would yield misleading results, and most supervised learning machines would also fail to reliably resolve the intricately evolving systems. Here, we propose an unsupervised machine-learning approach that operates in a well-constructed function space, whereby the evolving nonlinear dynamics are captured through a linear functional representation determined by the Koopman operator. This breakthrough leverages on the time-feature embedding and the ensuing reconstruction of a phase-space representation of the dynamics, thereby permitting the reliable identification of critical global signatures from the whole trajectory. This dramatically improves over commonly used static local features, which are vulnerable to unknown transitions or noise. Thanks to its data-driven nature, our method excludes any prior models and training corpus. We benchmark the astonishing accuracy of our method on three diverse and challenging problems in: biology, medicine, and engineering. In all cases, it outperforms existing state-of-the-art methods. As a new unsupervised information processing paradigm, it is suitable for ubiquitous nonlinear dynamical systems or end-users with little expertise, which permits an unbiased excavation of underlying working principles or intrinsic correlations submerged in unlabeled data flows.
Motion-based Object Segmentation based on Dense RGB-D Scene Flow
Given two consecutive RGB-D images, we propose a model that estimates a dense 3D motion field, also known as scene flow. We take advantage of the fact that in robot manipulation scenarios, scenes often consist of a set of rigidly moving objects. Our model jointly estimates (i) the segmentation of the scene into an unknown but finite number of objects, (ii) the motion trajectories of these objects and (iii) the object scene flow. We employ an hourglass, deep neural network architecture. In the encoding stage, the RGB and depth images undergo spatial compression and correlation. In the decoding stage, the model outputs three images containing a per-pixel estimate of the corresponding object center as well as object translation and rotation. This forms the basis for inferring the object segmentation and final object scene flow. To evaluate our model, we generated a new and challenging, large-scale, synthetic dataset that is specifically targeted at robotic manipulation: It contains a large number of scenes with a very diverse set of simultaneously moving 3D objects and is recorded with a simulated, static RGB-D camera. In quantitative experiments, we show that we outperform state-of-the-art scene flow and motion-segmentation methods on this data set. In qualitative experiments, we show how our learned model transfers to challenging real-world scenes, visually generating better results than existing methods.
Fast Optimal Bandwidth Selection for RBF Kernel using Reproducing Kernel Hilbert Space Operators for Kernel Based Classifiers
Kernel based methods have shown effective performance in many remote sensing classification tasks. However their performance significantly depend on its hyper-parameters. The conventional technique to estimate the parameter comes with high computational complexity. Thus, the objective of this letter is to propose an fast and efficient method to select the bandwidth parameter of the Gaussian kernel in the kernel based classification methods. The proposed method is developed based on the operators in the reproducing kernel Hilbert space and it is evaluated on Support vector machines and PerTurbo classification method. Experiments conducted with hyperspectral datasets show that our proposed method outperforms the state-of-art method in terms in computational time and classification performance.
An interpretable LSTM neural network for autoregressive exogenous model
In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is developed to learn variable specific representations, which give rise to both temporal and variable level attention. Preliminary experiments demonstrate comparable prediction performance of multi-variable LSTM w.r.t. encoder-decoder based baselines. More interestingly, variable importance in real datasets characterized by the variable attention is highly in line with that determined by statistical Granger causality test, which exhibits the prospect of multi-variable LSTM as a simple and uniform end-to-end framework for both forecasting and knowledge discovery.
ClassiNet -- Predicting Missing Features for Short-Text Classification
The fundamental problem in short-text classification is \emph{feature sparseness} -- the lack of feature overlap between a trained model and a test instance to be classified. We propose \emph{ClassiNet} -- a network of classifiers trained for predicting missing features in a given instance, to overcome the feature sparseness problem. Using a set of unlabeled training instances, we first learn binary classifiers as feature predictors for predicting whether a particular feature occurs in a given instance. Next, each feature predictor is represented as a vertex $v_i$ in the ClassiNet where a one-to-one correspondence exists between feature predictors and vertices. The weight of the directed edge $e_{ij}$ connecting a vertex $v_i$ to a vertex $v_j$ represents the conditional probability that given $v_i$ exists in an instance, $v_j$ also exists in the same instance. We show that ClassiNets generalize word co-occurrence graphs by considering implicit co-occurrences between features. We extract numerous features from the trained ClassiNet to overcome feature sparseness. In particular, for a given instance $\vec{x}$, we find similar features from ClassiNet that did not appear in $\vec{x}$, and append those features in the representation of $\vec{x}$. Moreover, we propose a method based on graph propagation to find features that are indirectly related to a given short-text. We evaluate ClassiNets on several benchmark datasets for short-text classification. Our experimental results show that by using ClassiNet, we can statistically significantly improve the accuracy in short-text classification tasks, without having to use any external resources such as thesauri for finding related features.
Low-Precision Floating-Point Schemes for Neural Network Training
The use of low-precision fixed-point arithmetic along with stochastic rounding has been proposed as a promising alternative to the commonly used 32-bit floating point arithmetic to enhance training neural networks training in terms of performance and energy efficiency. In the first part of this paper, the behaviour of the 12-bit fixed-point arithmetic when training a convolutional neural network with the CIFAR-10 dataset is analysed, showing that such arithmetic is not the most appropriate for the training phase. After that, the paper presents and evaluates, under the same conditions, alternative low-precision arithmetics, starting with the 12-bit floating-point arithmetic. These two representations are then leveraged using local scaling in order to increase accuracy and get closer to the baseline 32-bit floating-point arithmetic. Finally, the paper introduces a simplified model in which both the outputs and the gradients of the neural networks are constrained to power-of-two values, just using 7 bits for their representation. The evaluation demonstrates a minimal loss in accuracy for the proposed Power-of-Two neural network, avoiding the use of multiplications and divisions and thereby, significantly reducing the training time as well as the energy consumption and memory requirements during the training and inference phases.
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradient-descent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
OmicsMapNet: Transforming omics data to take advantage of Deep Convolutional Neural Network for discovery
We developed OmicsMapNet approach to take advantage of existing deep leaning frameworks to analyze high-dimensional omics data as 2-dimensional images. The omics data of individual samples were first rearranged into 2D images in which molecular features related in functions, ontologies, or other relationships were organized in spatially adjacent and patterned locations. Deep learning neural networks were trained to classify the images. Molecular features informative of classes of different phenotypes were subsequently identified. As an example, we used the KEGG BRITE database to rearrange RNA-Seq expression data of TCGA diffuse glioma samples as treemaps to capture the functional hierarchical structure of genes in 2D images. Deep Convolutional Neural Networks (CNN) were derived using tools from TensorFlow to learn the grade of TCGA LGG and GBM samples with relatively high accuracy. The most contributory features in the trained CNN were confirmed in pathway analysis for their plausible functional involvement.
Adversarial Attacks Against Medical Deep Learning Systems
The discovery of adversarial examples has raised concerns about the practical deployment of deep learning systems. In this paper, we demonstrate that adversarial examples are capable of manipulating deep learning systems across three clinical domains. For each of our representative medical deep learning classifiers, both white and black box attacks were highly successful. Our models are representative of the current state of the art in medical computer vision and, in some cases, directly reflect architectures already seeing deployment in real world clinical settings. In addition to the technical contribution of our paper, we synthesize a large body of knowledge about the healthcare system to argue that medicine may be uniquely susceptible to adversarial attacks, both in terms of monetary incentives and technical vulnerability. To this end, we outline the healthcare economy and the incentives it creates for fraud and provide concrete examples of how and why such attacks could be realistically carried out. We urge practitioners to be aware of current vulnerabilities when deploying deep learning systems in clinical settings, and encourage the machine learning community to further investigate the domain-specific characteristics of medical learning systems.
From CDF to PDF --- A Density Estimation Method for High Dimensional Data
CDF2PDF is a method of PDF estimation by approximating CDF. The original idea of it was previously proposed in [1] called SIC. However, SIC requires additional hyper-parameter tunning, and no algorithms for computing higher order derivative from a trained NN are provided in [1]. CDF2PDF improves SIC by avoiding the time-consuming hyper-parameter tuning part and enabling higher order derivative computation to be done in polynomial time. Experiments of this method for one-dimensional data shows promising results.
Generative Adversarial Network based Autoencoder: Application to fault detection problem for closed loop dynamical systems
Fault detection problem for closed loop uncertain dynamical systems, is investigated in this paper, using different deep learning based methods. Traditional classifier based method does not perform well, because of the inherent difficulty of detecting system level faults for closed loop dynamical system. Specifically, acting controller in any closed loop dynamical system, works to reduce the effect of system level faults. A novel Generative Adversarial based deep Autoencoder is designed to classify datasets under normal and faulty operating conditions. This proposed network performs significantly well when compared to any available classifier based methods, and moreover, does not require labeled fault incorporated datasets for training purpose. Finally, this aforementioned network's performance is tested on a high complexity building energy system dataset.
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
We present an efficient coresets-based neural network compression algorithm that sparsifies the parameters of a trained fully-connected neural network in a manner that provably approximates the network's output. Our approach is based on an importance sampling scheme that judiciously defines a sampling distribution over the neural network parameters, and as a result, retains parameters of high importance while discarding redundant ones. We leverage a novel, empirical notion of sensitivity and extend traditional coreset constructions to the application of compressing parameters. Our theoretical analysis establishes guarantees on the size and accuracy of the resulting compressed network and gives rise to generalization bounds that may provide new insights into the generalization properties of neural networks. We demonstrate the practical effectiveness of our algorithm on a variety of neural network configurations and real-world data sets.
Twin Regularization for online speech recognition
Online speech recognition is crucial for developing natural human-machine interfaces. This modality, however, is significantly more challenging than off-line ASR, since real-time/low-latency constraints inevitably hinder the use of future information, that is known to be very helpful to perform robust predictions. A popular solution to mitigate this issue consists of feeding neural acoustic models with context windows that gather some future frames. This introduces a latency which depends on the number of employed look-ahead features. This paper explores a different approach, based on estimating the future rather than waiting for it. Our technique encourages the hidden representations of a unidirectional recurrent network to embed some useful information about the future. Inspired by a recently proposed technique called Twin Networks, we add a regularization term that forces forward hidden states to be as close as possible to cotemporal backward ones, computed by a "twin" neural network running backwards in time. The experiments, conducted on a number of datasets, recurrent architectures, input features, and acoustic conditions, have shown the effectiveness of this approach. One important advantage is that our method does not introduce any additional computation at test time if compared to standard unidirectional recurrent networks.
Approximating the covariance ellipsoid
We explore ways in which the covariance ellipsoid ${\cal B}=\{v \in \mathbb{R}^d : \mathbb{E} <X,v>^2 \leq 1\}$ of a centred random vector $X$ in $\mathbb{R}^d$ can be approximated by a simple set. The data one is given for constructing the approximating set consists of $X_1,...,X_N$ that are independent and distributed as $X$. We present a general method that can be used to construct such approximations and implement it for two types of approximating sets. We first construct a (random) set ${\cal K}$ defined by a union of intersections of slabs $H_{z,\alpha}=\{v \in \mathbb{R}^d : |<z,v>| \leq \alpha\}$ (and therefore ${\cal K}$ is actually the output of a neural network with two hidden layers). The slabs are generated using $X_1,...,X_N$, and under minimal assumptions on $X$ (e.g., $X$ can be heavy-tailed) it suffices that $N = c_1d \eta^{-4}\log(2/\eta)$ to ensure that $(1-\eta) {\cal K} \subset {\cal B} \subset (1+\eta){\cal K}$. In some cases (e.g., if $X$ is rotation invariant and has marginals that are well behaved in some weak sense), a smaller sample size suffices: $N = c_1d\eta^{-2}\log(2/\eta)$. We then show that if the slabs are replaced by randomly generated ellipsoids defined using $X_1,...,X_N$, the same degree of approximation is true when $N \geq c_2d\eta^{-2}\log(2/\eta)$. The construction we use is based on the small-ball method.
Adaptivity for Regularized Kernel Methods by Lepskii's Principle
We address the problem of {\it adaptivity} in the framework of reproducing kernel Hilbert space (RKHS) regression. More precisely, we analyze estimators arising from a linear regularization scheme $g_\lam$. In practical applications, an important task is to choose the regularization parameter $\lam$ appropriately, i.e. based only on the given data and independently on unknown structural assumptions on the regression function. An attractive approach avoiding data-splitting is the {\it Lepskii Principle} (LP), also known as the {\it Balancing Principle} is this setting. We show that a modified parameter choice based on (LP) is minimax optimal adaptive, up to $\log\log(n)$. A convenient result is the fact that balancing in $L^2(\nu)-$ norm, which is easiest, automatically gives optimal balancing in all stronger norms, interpolating between $L^2(\nu)$ and the RKHS. An analogous result is open for other classical approaches to data dependent choices of the regularization parameter, e.g. for Hold-Out.
A refinement of Bennett's inequality with applications to portfolio optimization
A refinement of Bennett's inequality is introduced which is strictly tighter than the classical bound. The new bound establishes the convergence of the average of independent random variables to its expected value. It also carefully exploits information about the potentially heterogeneous mean, variance, and ceiling of each random variable. The bound is strictly sharper in the homogeneous setting and very often significantly sharper in the heterogeneous setting. The improved convergence rates are obtained by leveraging Lambert's W function. We apply the new bound in a portfolio optimization setting to allocate a budget across investments with heterogeneous returns.
On Gradient-Based Learning in Continuous Games
We formulate a general framework for competitive gradient-based learning that encompasses a wide breadth of multi-agent learning algorithms, and analyze the limiting behavior of competitive gradient-based learning algorithms using dynamical systems theory. For both general-sum and potential games, we characterize a non-negligible subset of the local Nash equilibria that will be avoided if each agent employs a gradient-based learning algorithm. We also shed light on the issue of convergence to non-Nash strategies in general- and zero-sum games, which may have no relevance to the underlying game, and arise solely due to the choice of algorithm. The existence and frequency of such strategies may explain some of the difficulties encountered when using gradient descent in zero-sum games as, e.g., in the training of generative adversarial networks. To reinforce the theoretical contributions, we provide empirical results that highlight the frequency of linear quadratic dynamic games (a benchmark for multi-agent reinforcement learning) that admit global Nash equilibria that are almost surely avoided by policy gradient.
Composable Unpaired Image to Image Translation
There has been remarkable recent work in unpaired image-to-image translation. However, they're restricted to translation on single pairs of distributions, with some exceptions. In this study, we extend one of these works to a scalable multidistribution translation mechanism. Our translation models not only converts from one distribution to another but can be stacked to create composite translation functions. We show that this composite property makes it possible to generate images with characteristics not seen in the training set. We also propose a decoupled training mechanism to train multiple distributions separately, which we show, generates better samples than isolated joint training. Further, we do a qualitative and quantitative analysis to assess the plausibility of the samples. The code is made available at https://github.com/lgraesser/im2im2im.
A Direct Sum Result for the Information Complexity of Learning
How many bits of information are required to PAC learn a class of hypotheses of VC dimension $d$? The mathematical setting we follow is that of Bassily et al. (2018), where the value of interest is the mutual information $\mathrm{I}(S;A(S))$ between the input sample $S$ and the hypothesis outputted by the learning algorithm $A$. We introduce a class of functions of VC dimension $d$ over the domain $\mathcal{X}$ with information complexity at least $\Omega\left(d\log \log \frac{|\mathcal{X}|}{d}\right)$ bits for any consistent and proper algorithm (deterministic or random). Bassily et al. proved a similar (but quantitatively weaker) result for the case $d=1$. The above result is in fact a special case of a more general phenomenon we explore. We define the notion of information complexity of a given class of functions $\mathcal{H}$. Intuitively, it is the minimum amount of information that an algorithm for $\mathcal{H}$ must retain about its input to ensure consistency and properness. We prove a direct sum result for information complexity in this context; roughly speaking, the information complexity sums when combining several classes.
Binary Matrix Factorization via Dictionary Learning
Matrix factorization is a key tool in data analysis; its applications include recommender systems, correlation analysis, signal processing, among others. Binary matrices are a particular case which has received significant attention for over thirty years, especially within the field of data mining. Dictionary learning refers to a family of methods for learning overcomplete basis (also called frames) in order to efficiently encode samples of a given type; this area, now also about twenty years old, was mostly developed within the signal processing field. In this work we propose two binary matrix factorization methods based on a binary adaptation of the dictionary learning paradigm to binary matrices. The proposed algorithms focus on speed and scalability; they work with binary factors combined with bit-wise operations and a few auxiliary integer ones. Furthermore, the methods are readily applicable to online binary matrix factorization. Another important issue in matrix factorization is the choice of rank for the factors; we address this model selection problem with an efficient method based on the Minimum Description Length principle. Our preliminary results show that the proposed methods are effective at producing interpretable factorizations of various data types of different nature.
Block Mean Approximation for Efficient Second Order Optimization
Advanced optimization algorithms such as Newton method and AdaGrad benefit from second order derivative or second order statistics to achieve better descent directions and faster convergence rates. At their heart, such algorithms need to compute the inverse or inverse square root of a matrix whose size is quadratic of the dimensionality of the search space. For high dimensional search spaces, the matrix inversion or inversion of square root becomes overwhelming which in turn demands for approximate methods. In this work, we propose a new matrix approximation method which divides a matrix into blocks and represents each block by one or two numbers. The method allows efficient computation of matrix inverse and inverse square root. We apply our method to AdaGrad in training deep neural networks. Experiments show encouraging results compared to the diagonal approximation.
conformalClassification: A Conformal Prediction R Package for Classification
The conformalClassification package implements Transductive Conformal Prediction (TCP) and Inductive Conformal Prediction (ICP) for classification problems. Conformal Prediction (CP) is a framework that complements the predictions of machine learning algorithms with reliable measures of confidence. TCP gives results with higher validity than ICP, however ICP is computationally faster than TCP. The package conformalClassification is built upon the random forest method, where votes of the random forest for each class are considered as the conformity scores for each data point. Although the main aim of the conformalClassification package is to generate CP errors (p-values) for classification problems, the package also implements various diagnostic measures such as deviation from validity, error rate, efficiency, observed fuzziness and calibration plots. In future releases, we plan to extend the package to use other machine learning algorithms, (e.g. support vector machines) for model fitting.
Deep Learning on Key Performance Indicators for Predictive Maintenance in SAP HANA
With a new era of cloud and big data, Database Management Systems (DBMSs) have become more crucial in numerous enterprise business applications in all the industries. Accordingly, the importance of their proactive and preventive maintenance has also increased. However, detecting problems by predefined rules or stochastic modeling has limitations, particularly when analyzing the data on high-dimensional Key Performance Indicators (KPIs) from a DBMS. In recent years, Deep Learning (DL) has opened new opportunities for this complex analysis. In this paper, we present two complementary DL approaches to detect anomalies in SAP HANA. A temporal learning approach is used to detect abnormal patterns based on unlabeled historical data, whereas a spatial learning approach is used to classify known anomalies based on labeled data. We implement a system in SAP HANA integrated with Google TensorFlow. The experimental results with real-world data confirm the effectiveness of the system and models.
Learning Simple Thresholded Features with Sparse Support Recovery
The thresholded feature has recently emerged as an extremely efficient, yet rough empirical approximation, of the time-consuming sparse coding inference process. Such an approximation has not yet been rigorously examined, and standard dictionaries often lead to non-optimal performance when used for computing thresholded features. In this paper, we first present two theoretical recovery guarantees for the thresholded feature to exactly recover the nonzero support of the sparse code. Motivated by them, we then formulate the Dictionary Learning for Thresholded Features (DLTF) model, which learns an optimized dictionary for applying the thresholded feature. In particular, for the $(k, 2)$ norm involved, a novel proximal operator with log-linear time complexity $O(m\log m)$ is derived. We evaluate the performance of DLTF on a vast range of synthetic and real-data tasks, where DLTF demonstrates remarkable efficiency, effectiveness and robustness in all experiments. In addition, we briefly discuss the potential link between DLTF and deep learning building blocks.
Building robust prediction models for defective sensor data using Artificial Neural Networks
Predicting the health of components in complex dynamic systems such as an automobile poses numerous challenges. The primary aim of such predictive systems is to use the high-dimensional data acquired from different sensors and predict the state-of-health of a particular component, e.g., brake pad. The classical approach involves selecting a smaller set of relevant sensor signals using feature selection and using them to train a machine learning algorithm. However, this fails to address two prominent problems: (1) sensors are susceptible to failure when exposed to extreme conditions over a long periods of time; (2) sensors are electrical devices that can be affected by noise or electrical interference. Using the failed and noisy sensor signals as inputs largely reduce the prediction accuracy. To tackle this problem, it is advantageous to use the information from all sensor signals, so that the failure of one sensor can be compensated by another. In this work, we propose an Artificial Neural Network (ANN) based framework to exploit the information from a large number of signals. Secondly, our framework introduces a data augmentation approach to perform accurate predictions in spite of noisy signals. The plausibility of our framework is validated on real life industrial application from Robert Bosch GmbH.
Constant Step Size Stochastic Gradient Descent for Probabilistic Modeling
Stochastic gradient methods enable learning probabilistic models from large amounts of data. While large step-sizes (learning rates) have shown to be best for least-squares (e.g., Gaussian noise) once combined with parameter averaging, these are not leading to convergent algorithms in general. In this paper, we consider generalized linear models, that is, conditional models based on exponential families. We propose averaging moment parameters instead of natural parameters for constant-step-size stochastic gradient descent. For finite-dimensional models, we show that this can sometimes (and surprisingly) lead to better predictions than the best linear model. For infinite-dimensional models, we show that it always converges to optimal predictions, while averaging natural parameters never does. We illustrate our findings with simulations on synthetic data and classical benchmarks with many observations.
SPSA-FSR: Simultaneous Perturbation Stochastic Approximation for Feature Selection and Ranking
This manuscript presents the following: (1) an improved version of the Binary Simultaneous Perturbation Stochastic Approximation (SPSA) Method for feature selection in machine learning (Aksakalli and Malekipirbazari, Pattern Recognition Letters, Vol. 75, 2016) based on non-monotone iteration gains computed via the Barzilai and Borwein (BB) method, (2) its adaptation for feature ranking, and (3) comparison against popular methods on public benchmark datasets. The improved method, which we call SPSA-FSR, dramatically reduces the number of iterations required for convergence without impacting solution quality. SPSA-FSR can be used for feature ranking and feature selection both for classification and regression problems. After a review of the current state-of-the-art, we discuss our improvements in detail and present three sets of computational experiments: (1) comparison of SPSA-FS as a (wrapper) feature selection method against sequential methods as well as genetic algorithms, (2) comparison of SPSA-FS as a feature ranking method in a classification setting against random forest importance, chi-squared, and information main methods, and (3) comparison of SPSA-FS as a feature ranking method in a regression setting against minimum redundancy maximum relevance (MRMR), RELIEF, and linear correlation methods. The number of features in the datasets we use range from a few dozens to a few thousands. Our results indicate that SPSA-FS converges to a good feature set in no more than 100 iterations and therefore it is quite fast for a wrapper method. SPSA-FS also outperforms popular feature selection as well as feature ranking methods in majority of test cases, sometimes by a large margin, and it stands as a promising new feature selection and ranking method.
Developing Synthesis Flows Without Human Knowledge
Design flows are the explicit combinations of design transformations, primarily involved in synthesis, placement and routing processes, to accomplish the design of Integrated Circuits (ICs) and System-on-Chip (SoC). Mostly, the flows are developed based on the knowledge of the experts. However, due to the large search space of design flows and the increasing design complexity, developing Intellectual Property (IP)-specific synthesis flows providing high Quality of Result (QoR) is extremely challenging. This work presents a fully autonomous framework that artificially produces design-specific synthesis flows without human guidance and baseline flows, using Convolutional Neural Network (CNN). The demonstrations are made by successfully designing logic synthesis flows of three large scaled designs.
RFCDE: Random Forests for Conditional Density Estimation
Random forests is a common non-parametric regression technique which performs well for mixed-type data and irrelevant covariates, while being robust to monotonic variable transformations. Existing random forest implementations target regression or classification. We introduce the RFCDE package for fitting random forest models optimized for nonparametric conditional density estimation, including joint densities for multiple responses. This enables analysis of conditional probability distributions which is useful for propagating uncertainty and of joint distributions that describe relationships between multiple responses and covariates. RFCDE is released under the MIT open-source license and can be accessed at https://github.com/tpospisi/rfcde . Both R and Python versions, which call a common C++ library, are available.
BELIEF: A distance-based redundancy-proof feature selection method for Big Data
With the advent of Big Data era, data reduction methods are highly demanded given its ability to simplify huge data, and ease complex learning processes. Concretely, algorithms that are able to filter relevant dimensions from a set of millions are of huge importance. Although effective, these techniques suffer from the "scalability" curse as well. In this work, we propose a distributed feature weighting algorithm, which is able to rank millions of features in parallel using large samples. This method, inspired by the well-known RELIEF algorithm, introduces a novel redundancy elimination measure that provides similar schemes to those based on entropy at a much lower cost. It also allows smooth scale up when more instances are demanded in feature estimations. Empirical tests performed on our method show its estimation ability in manifold huge sets --both in number of features and instances--, as well as its simplified runtime cost (specially, at the redundancy detection step).
Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for the $L_0$ Norm
Deployment of deep neural networks (DNNs) in safety- or security-critical systems requires provable guarantees on their correct behaviour. A common requirement is robustness to adversarial perturbations in a neighbourhood around an input. In this paper we focus on the $L_0$ norm and aim to compute, for a trained DNN and an input, the maximal radius of a safe norm ball around the input within which there are no adversarial examples. Then we define global robustness as an expectation of the maximal safe radius over a test data set. We first show that the problem is NP-hard, and then propose an approximate approach to iteratively compute lower and upper bounds on the network's robustness. The approach is \emph{anytime}, i.e., it returns intermediate bounds and robustness estimates that are gradually, but strictly, improved as the computation proceeds; \emph{tensor-based}, i.e., the computation is conducted over a set of inputs simultaneously, instead of one by one, to enable efficient GPU computation; and has \emph{provable guarantees}, i.e., both the bounds and the robustness estimates can converge to their optimal values. Finally, we demonstrate the utility of the proposed approach in practice to compute tight bounds by applying and adapting the anytime algorithm to a set of challenging problems, including global robustness evaluation, competitive $L_0$ attacks, test case generation for DNNs, and local robustness evaluation on large-scale ImageNet DNNs. We release the code of all case studies via GitHub.
Deep Embedding Kernel
In this paper, we propose a novel supervised learning method that is called Deep Embedding Kernel (DEK). DEK combines the advantages of deep learning and kernel methods in a unified framework. More specifically, DEK is a learnable kernel represented by a newly designed deep architecture. Compared with pre-defined kernels, this kernel can be explicitly trained to map data to an optimized high-level feature space where data may have favorable features toward the application. Compared with typical deep learning using SoftMax or logistic regression as the top layer, DEK is expected to be more generalizable to new data. Experimental results show that DEK has superior performance than typical machine learning methods in identity detection, classification, regression, dimension reduction, and transfer learning.
ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
Given the ability to directly manipulate image pixels in the digital input space, an adversary can easily generate imperceptible perturbations to fool a Deep Neural Network (DNN) image classifier, as demonstrated in prior work. In this work, we propose ShapeShifter, an attack that tackles the more challenging problem of crafting physical adversarial perturbations to fool image-based object detectors like Faster R-CNN. Attacking an object detector is more difficult than attacking an image classifier, as it needs to mislead the classification results in multiple bounding boxes with different scales. Extending the digital attack to the physical world adds another layer of difficulty, because it requires the perturbation to be robust enough to survive real-world distortions due to different viewing distances and angles, lighting conditions, and camera limitations. We show that the Expectation over Transformation technique, which was originally proposed to enhance the robustness of adversarial perturbations in image classification, can be successfully adapted to the object detection setting. ShapeShifter can generate adversarially perturbed stop signs that are consistently mis-detected by Faster R-CNN as other objects, posing a potential threat to autonomous vehicles and other safety-critical computer vision systems.
Models for Capturing Temporal Smoothness in Evolving Networks for Learning Latent Representation of Nodes
In a dynamic network, the neighborhood of the vertices evolve across different temporal snapshots of the network. Accurate modeling of this temporal evolution can help solve complex tasks involving real-life social and interaction networks. However, existing models for learning latent representation are inadequate for obtaining the representation vectors of the vertices for different time-stamps of a dynamic network in a meaningful way. In this paper, we propose latent representation learning models for dynamic networks which overcome the above limitation by considering two different kinds of temporal smoothness: (i) retrofitted, and (ii) linear transformation. The retrofitted model tracks the representation vector of a vertex over time, facilitating vertex-based temporal analysis of a network. On the other hand, linear transformation based model provides a smooth transition operator which maps the representation vectors of all vertices from one temporal snapshot to the next (unobserved) snapshot-this facilitates prediction of the state of a network in a future time-stamp. We validate the performance of our proposed models by employing them for solving the temporal link prediction task. Experiments on 9 real-life networks from various domains validate that the proposed models are significantly better than the existing models for predicting the dynamics of an evolving network.
CytonRL: an Efficient Reinforcement Learning Open-source Toolkit Implemented in C++
This paper presents an open-source enforcement learning toolkit named CytonRL (https://github.com/arthurxlw/cytonRL). The toolkit implements four recent advanced deep Q-learning algorithms from scratch using C++ and NVIDIA's GPU-accelerated libraries. The code is simple and elegant, owing to an open-source general-purpose neural network library named CytonLib. Benchmark shows that the toolkit achieves competitive performances on the popular Atari game of Breakout.
Walk-Steered Convolution for Graph Classification
Graph classification is a fundamental but challenging issue for numerous real-world applications. Despite recent great progress in image/video classification, convolutional neural networks (CNNs) cannot yet cater to graphs well because of graphical non-Euclidean topology. In this work, we propose a walk-steered convolutional (WSC) network to assemble the essential success of standard convolutional neural networks as well as the powerful representation ability of random walk. Instead of deterministic neighbor searching used in previous graphical CNNs, we construct multi-scale walk fields (a.k.a. local receptive fields) with random walk paths to depict subgraph structures and advocate graph scalability. To express the internal variations of a walk field, Gaussian mixture models are introduced to encode principal components of walk paths therein. As an analogy to a standard convolution kernel on image, Gaussian models implicitly coordinate those unordered vertices/nodes and edges in a local receptive field after projecting to the gradient space of Gaussian parameters. We further stack graph coarsening upon Gaussian encoding by using dynamic clustering, such that high-level semantics of graph can be well learned like the conventional pooling on image. The experimental results on several public datasets demonstrate the superiority of our proposed WSC method over many state-of-the-arts for graph classification.
BigDL: A Distributed Deep Learning Framework for Big Data
This paper presents BigDL (a distributed deep learning framework for Apache Spark), which has been used by a variety of users in the industry for building deep learning applications on production big data platforms. It allows deep learning applications to run on the Apache Hadoop/Spark cluster so as to directly process the production data, and as a part of the end-to-end data analysis pipeline for deployment and management. Unlike existing deep learning frameworks, BigDL implements distributed, data parallel training directly on top of the functional compute model (with copy-on-write and coarse-grained operations) of Spark. We also share real-world experience and "war stories" of users that have adopted BigDL to address their challenges(i.e., how to easily build end-to-end data analysis and deep learning pipelines for their production data).
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Modern neural networks are highly overparameterized, with capacity to substantially overfit to training data. Nevertheless, these networks often generalize well in practice. It has also been observed that trained networks can often be "compressed" to much smaller representations. The purpose of this paper is to connect these two empirical observations. Our main technical result is a generalization bound for compressed networks based on the compressed size. Combined with off-the-shelf compression algorithms, the bound leads to state of the art generalization guarantees; in particular, we provide the first non-vacuous generalization guarantees for realistic architectures applied to the ImageNet classification problem. As additional evidence connecting compression and generalization, we show that compressibility of models that tend to overfit is limited: We establish an absolute limit on expected compressibility as a function of expected generalization error, where the expectations are over the random choice of training examples. The bounds are complemented by empirical results that show an increase in overfitting implies an increase in the number of bits required to describe a trained network.
Neural Models for Reasoning over Multiple Mentions using Coreference
Many problems in NLP require aggregating information from multiple mentions of the same entity which may be far apart in the text. Existing Recurrent Neural Network (RNN) layers are biased towards short-term dependencies and hence not suited to such tasks. We present a recurrent layer which is instead biased towards coreferent dependencies. The layer uses coreference annotations extracted from an external system to connect entity mentions belonging to the same cluster. Incorporating this layer into a state-of-the-art reading comprehension model improves performance on three datasets -- Wikihop, LAMBADA and the bAbi AI tasks -- with large gains when training data is scarce.
UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits
In this work, we address the open problem of finding low-complexity near-optimal multi-armed bandit algorithms for sequential decision making problems. Existing bandit algorithms are either sub-optimal and computationally simple (e.g., UCB1) or optimal and computationally complex (e.g., kl-UCB). We propose a boosting approach to Upper Confidence Bound based algorithms for stochastic bandits, that we call UCBoost. Specifically, we propose two types of UCBoost algorithms. We show that UCBoost($D$) enjoys $O(1)$ complexity for each arm per round as well as regret guarantee that is $1/e$-close to that of the kl-UCB algorithm. We propose an approximation-based UCBoost algorithm, UCBoost($\epsilon$), that enjoys a regret guarantee $\epsilon$-close to that of kl-UCB as well as $O(\log(1/\epsilon))$ complexity for each arm per round. Hence, our algorithms provide practitioners a practical way to trade optimality with computational complexity. Finally, we present numerical results which show that UCBoost($\epsilon$) can achieve the same regret performance as the standard kl-UCB while incurring only $1\%$ of the computational cost of kl-UCB.
MaxGain: Regularisation of Neural Networks by Constraining Activation Magnitudes
Effective regularisation of neural networks is essential to combat overfitting due to the large number of parameters involved. We present an empirical analogue to the Lipschitz constant of a feed-forward neural network, which we refer to as the maximum gain. We hypothesise that constraining the gain of a network will have a regularising effect, similar to how constraining the Lipschitz constant of a network has been shown to improve generalisation. A simple algorithm is provided that involves rescaling the weight matrix of each layer after each parameter update. We conduct a series of studies on common benchmark datasets, and also a novel dataset that we introduce to enable easier significance testing for experiments using convolutional networks. Performance on these datasets compares favourably with other common regularisation techniques.
A Univariate Bound of Area Under ROC
Area under ROC (AUC) is an important metric for binary classification and bipartite ranking problems. However, it is difficult to directly optimizing AUC as a learning objective, so most existing algorithms are based on optimizing a surrogate loss to AUC. One significant drawback of these surrogate losses is that they require pairwise comparisons among training data, which leads to slow running time and increasing local storage for online learning. In this work, we describe a new surrogate loss based on a reformulation of the AUC risk, which does not require pairwise comparison but rankings of the predictions. We further show that the ranking operation can be avoided, and the learning objective obtained based on this surrogate enjoys linear complexity in time and storage. We perform experiments to demonstrate the effectiveness of the online and batch algorithms for AUC optimization based on the proposed surrogate loss.
Model-Free Linear Quadratic Control via Reduction to Expert Prediction
Model-free approaches for reinforcement learning (RL) and continuous control find policies based only on past states and rewards, without fitting a model of the system dynamics. They are appealing as they are general purpose and easy to implement; however, they also come with fewer theoretical guarantees than model-based RL. In this work, we present a new model-free algorithm for controlling linear quadratic (LQ) systems, and show that its regret scales as $O(T^{\xi+2/3})$ for any small $\xi>0$ if time horizon satisfies $T>C^{1/\xi}$ for a constant $C$. The algorithm is based on a reduction of control of Markov decision processes to an expert prediction problem. In practice, it corresponds to a variant of policy iteration with forced exploration, where the policy in each phase is greedy with respect to the average of all previous value functions. This is the first model-free algorithm for adaptive control of LQ systems that provably achieves sublinear regret and has a polynomial computation cost. Empirically, our algorithm dramatically outperforms standard policy iteration, but performs worse than a model-based approach.
A Boosting Framework of Factorization Machine
Recently, Factorization Machines (FM) has become more and more popular for recommendation systems, due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions is learnt as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank can help improve the generalization ability of Factorization Machines. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machines (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will adaptively gradually increases its rank according to its performance until the performance does not grow, using boosting strategy. To verify the performance of our proposed framework, we conduct an extensive set of experiments on many real-world datasets. Encouraging empirical results shows that the proposed algorithms are generally more effective than state-of-the-art other Factorization Machines.
Deep Learning on Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows
Distributed computing platforms provide a robust mechanism to perform large-scale computations by splitting the task and data among multiple locations, possibly located thousands of miles apart geographically. Although such distribution of resources can lead to benefits, it also comes with its associated problems such as rampant duplication of file transfers increasing congestion, long job completion times, unexpected site crashing, suboptimal data transfer rates, unpredictable reliability in a time range, and suboptimal usage of storage elements. In addition, each sub-system becomes a potential failure node that can trigger system wide disruptions. In this vision paper, we outline our approach to leveraging Deep Learning algorithms to discover solutions to unique problems that arise in a system with computational infrastructure that is spread over a wide area. The presented vision, motivated by a real scientific use case from Belle II experiments, is to develop multilayer neural networks to tackle forecasting, anomaly detection and optimization challenges in a complex and distributed data movement environment. Through this vision based on Deep Learning principles, we aim to achieve reduced congestion events, faster file transfer rates, and enhanced site reliability.
Parametric Models for Mutual Kernel Matrix Completion
Recent studies utilize multiple kernel learning to deal with incomplete-data problem. In this study, we introduce new methods that do not only complete multiple incomplete kernel matrices simultaneously, but also allow control of the flexibility of the model by parameterizing the model matrix. By imposing restrictions on the model covariance, overfitting of the data is avoided. A limitation of kernel matrix estimations done via optimization of an objective function is that the positive definiteness of the result is not guaranteed. In view of this limitation, our proposed methods employ the LogDet divergence, which ensures the positive definiteness of the resulting inferred kernel matrix. We empirically show that our proposed restricted covariance models, employed with LogDet divergence, yield significant improvements in the generalization performance of previous completion methods.
A Support Tensor Train Machine
There has been growing interest in extending traditional vector-based machine learning techniques to their tensor forms. An example is the support tensor machine (STM) that utilizes a rank-one tensor to capture the data structure, thereby alleviating the overfitting and curse of dimensionality problems in the conventional support vector machine (SVM). However, the expressive power of a rank-one tensor is restrictive for many real-world data. To overcome this limitation, we introduce a support tensor train machine (STTM) by replacing the rank-one tensor in an STM with a tensor train. Experiments validate and confirm the superiority of an STTM over the SVM and STM.
VC-Dimension Based Generalization Bounds for Relational Learning
In many applications of relational learning, the available data can be seen as a sample from a larger relational structure (e.g. we may be given a small fragment from some social network). In this paper we are particularly concerned with scenarios in which we can assume that (i) the domain elements appearing in the given sample have been uniformly sampled without replacement from the (unknown) full domain and (ii) the sample is complete for these domain elements (i.e. it is the full substructure induced by these elements). Within this setting, we study bounds on the error of sufficient statistics of relational models that are estimated on the available data. As our main result, we prove a bound based on a variant of the Vapnik-Chervonenkis dimension which is suitable for relational data.
MetaBags: Bagged Meta-Decision Trees for Regression
Ensembles are popular methods for solving practical supervised learning problems. They reduce the risk of having underperforming models in production-grade software. Although critical, methods for learning heterogeneous regression ensembles have not been proposed at large scale, whereas in classical ML literature, stacking, cascading and voting are mostly restricted to classification problems. Regression poses distinct learning challenges that may result in poor performance, even when using well established homogeneous ensemble schemas such as bagging or boosting. In this paper, we introduce MetaBags, a novel, practically useful stacking framework for regression. MetaBags is a meta-learning algorithm that learns a set of meta-decision trees designed to select one base model (i.e. expert) for each query, and focuses on inductive bias reduction. A set of meta-decision trees are learned using different types of meta-features, specially created for this purpose - to then be bagged at meta-level. This procedure is designed to learn a model with a fair bias-variance trade-off, and its improvement over base model performance is correlated with the prediction diversity of different experts on specific input space subregions. The proposed method and meta-features are designed in such a way that they enable good predictive performance even in subregions of space which are not adequately represented in the available training data. An exhaustive empirical testing of the method was performed, evaluating both generalization error and scalability of the approach on synthetic, open and real-world application datasets. The obtained results show that our method significantly outperforms existing state-of-the-art approaches.
Learning Sparse Latent Representations with the Deep Copula Information Bottleneck
Deep latent variable models are powerful tools for representation learning. In this paper, we adopt the deep information bottleneck model, identify its shortcomings and propose a model that circumvents them. To this end, we apply a copula transformation which, by restoring the invariance properties of the information bottleneck method, leads to disentanglement of the features in the latent space. Building on that, we show how this transformation translates to sparsity of the latent space in the new model. We evaluate our method on artificial and real data.
Hierarchical correlation reconstruction with missing data, for example for biology-inspired neuron
Machine learning often needs to model density from a multidimensional data sample, including correlations between coordinates. Additionally, we often have missing data case: that data points can miss values for some of coordinates. This article adapts rapid parametric density estimation approach for this purpose: modelling density as a linear combination of orthonormal functions, for which $L^2$ optimization says that (independently) estimated coefficient for a given function is just average over the sample of value of this function. Hierarchical correlation reconstruction first models probability density for each separate coordinate using all its appearances in data sample, then adds corrections from independently modelled pairwise correlations using all samples having both coordinates, and so on independently adding correlations for growing numbers of variables using often decreasing evidence in data sample. A basic application of such modelled multidimensional density can be imputation of missing coordinates: by inserting known coordinates to the density, and taking expected values for the missing coordinates, or even their entire joint probability distribution. Presented method can be compared with cascade correlations approach, offering several advantages in flexibility and accuracy. It can be also used as artificial neuron: maximizing prediction capabilities for only local behavior - modelling and predicting local connections.
A Comparison of Machine Learning Algorithms for the Surveillance of Autism Spectrum Disorder
The Centers for Disease Control and Prevention (CDC) coordinates a labor-intensive process to measure the prevalence of autism spectrum disorder (ASD) among children in the United States. Random forests methods have shown promise in speeding up this process, but they lag behind human classification accuracy by about 5%. We explore whether more recently available document classification algorithms can close this gap. We applied 8 supervised learning algorithms to predict whether children meet the case definition for ASD based solely on the words in their evaluations. We compared the algorithms' performance across 10 random train-test splits of the data, using classification accuracy, F1 score, and number of positive calls to evaluate their potential use for surveillance. Across the 10 train-test cycles, the random forest and support vector machine with Naive Bayes features (NB-SVM) each achieved slightly more than 87% mean accuracy. The NB-SVM produced significantly more false negatives than false positives (P = 0.027), but the random forest did not, making its prevalence estimates very close to the true prevalence in the data. The best-performing neural network performed similarly to the random forest on both measures. The random forest performed as well as more recently available models like the NB-SVM and the neural network, and it also produced good prevalence estimates. NB-SVM may not be a good candidate for use in a fully-automated surveillance workflow due to increased false negatives. More sophisticated algorithms, like hierarchical convolutional neural networks, may not be feasible to train due to characteristics of the data. Current algorithms might perform better if the data are abstracted and processed differently and if they take into account information about the children in addition to their evaluations.
Cluster Analysis on Locally Asymptotically Self-similar Processes with Known Number of Clusters
We conduct cluster analysis on a class of locally asymptotically self-similar stochastic processes, which includes multifractional Brownian motion as a representative. When the true number of clusters is supposed to be known, a new covariance-based dissimilarity measure is introduced, from which we obtain the approximately asymptotically consistent clustering algorithms. In simulation studies, clustering data sampled from multifractional Brownian motions with distinct functional Hurst parameters illustrates the approximated asymptotic consistency of the proposed algorithms. Clustering global financial markets' equity indexes returns and sovereign CDS spreads provides a successful real world application.
Analysis of Extremely Obese Individuals Using Deep Learning Stacked Autoencoders and Genome-Wide Genetic Data
The aetiology of polygenic obesity is multifactorial, which indicates that life-style and environmental factors may influence multiples genes to aggravate this disorder. Several low-risk single nucleotide polymorphisms (SNPs) have been associated with BMI. However, identified loci only explain a small proportion of the variation ob-served for this phenotype. The linear nature of genome wide association studies (GWAS) used to identify associations between genetic variants and the phenotype have had limited success in explaining the heritability variation of BMI and shown low predictive capacity in classification studies. GWAS ignores the epistatic interactions that less significant variants have on the phenotypic outcome. In this paper we utilise a novel deep learning-based methodology to reduce the high dimensional space in GWAS and find epistatic interactions between SNPs for classification purposes. SNPs were filtered based on the effects associations have with BMI. Since Bonferroni adjustment for multiple testing is highly conservative, an important proportion of SNPs involved in SNP-SNP interactions are ignored. Therefore, only SNPs with p-values < 1x10-2 were considered for subsequent epistasis analysis using stacked auto encoders (SAE). This allows the nonlinearity present in SNP-SNP interactions to be discovered through progressively smaller hidden layer units and to initialise a multi-layer feedforward artificial neural network (ANN) classifier. The classifier is fine-tuned to classify extremely obese and non-obese individuals. The best results were obtained with 2000 compressed units (SE=0.949153, SP=0.933014, Gini=0.949936, Lo-gloss=0.1956, AUC=0.97497 and MSE=0.054057). Using 50 compressed units it was possible to achieve (SE=0.785311, SP=0.799043, Gini=0.703566, Logloss=0.476864, AUC=0.85178 and MSE=0.156315).
PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning
We present PredRNN++, an improved recurrent network for video predictive learning. In pursuit of a greater spatiotemporal modeling capability, our approach increases the transition depth between adjacent states by leveraging a novel recurrent unit, which is named Causal LSTM for re-organizing the spatial and temporal memories in a cascaded mechanism. However, there is still a dilemma in video predictive learning: increasingly deep-in-time models have been designed for capturing complex variations, while introducing more difficulties in the gradient back-propagation. To alleviate this undesirable effect, we propose a Gradient Highway architecture, which provides alternative shorter routes for gradient flows from outputs back to long-range inputs. This architecture works seamlessly with causal LSTMs, enabling PredRNN++ to capture short-term and long-term dependencies adaptively. We assess our model on both synthetic and real video datasets, showing its ability to ease the vanishing gradient problem and yield state-of-the-art prediction results even in a difficult objects occlusion scenario.
On Improving Deep Reinforcement Learning for POMDPs
Deep Reinforcement Learning (RL) recently emerged as one of the most competitive approaches for learning in sequential decision making problems with fully observable environments, e.g., computer Go. However, very little work has been done in deep RL to handle partially observable environments. We propose a new architecture called Action-specific Deep Recurrent Q-Network (ADRQN) to enhance learning performance in partially observable domains. Actions are encoded by a fully connected layer and coupled with a convolutional observation to form an action-observation pair. The time series of action-observation pairs are then integrated by an LSTM layer that learns latent states based on which a fully connected layer computes Q-values as in conventional Deep Q-Networks (DQNs). We demonstrate the effectiveness of our new architecture in several partially observable domains, including flickering Atari games.
High Dimensional Time Series Generators
Multidimensional time series are sequences of real valued vectors. They occur in different areas, for example handwritten characters, GPS tracking, and gestures of modern virtual reality motion controllers. Within these areas, a common task is to search for similar time series. Dynamic Time Warping (DTW) is a common distance function to compare two time series. The Edit Distance with Real Penalty (ERP) and the Dog Keeper Distance (DK) are two more distance functions on time series. Their behaviour has been analyzed on 1-dimensional time series. However, it is not easy to evaluate their behaviour in relation to growing dimensionality. For this reason we propose two new data synthesizers generating multidimensional time series. The first synthesizer extends the well known cylinder-bell-funnel (CBF) dataset to multidimensional time series. Here, each time series has an arbitrary type (cylinder, bell, or funnel) in each dimension, thus for $d$-dimensional time series there are $3^{d}$ different classes. The second synthesizer (RAM) creates time series with ideas adapted from Brownian motions which is a common model of movement in physics. Finally, we evaluate the applicability of a 1-nearest neighbor classifier using DTW on datasets generated by our synthesizers.
Graph-based Selective Outlier Ensembles
An ensemble technique is characterized by the mechanism that generates the components and by the mechanism that combines them. A common way to achieve the consensus is to enable each component to equally participate in the aggregation process. A problem with this approach is that poor components are likely to negatively affect the quality of the consensus result. To address this issue, alternatives have been explored in the literature to build selective classifier and cluster ensembles, where only a subset of the components contributes to the computation of the consensus. Of the family of ensemble methods, outlier ensembles are the least studied. Only recently, the selection problem for outlier ensembles has been discussed. In this work we define a new graph-based class of ranking selection methods. A method in this class is characterized by two main steps: (1) Mapping the rankings onto a graph structure; and (2) Mining the resulting graph to identify a subset of rankings. We define a specific instance of the graph-based ranking selection class. Specifically, we map the problem of selecting ensemble components onto a mining problem in a graph. An extensive evaluation was conducted on a variety of heterogeneous data and methods. Our empirical results show that our approach outperforms state-of-the-art selective outlier ensemble techniques.
Multi-Reward Reinforced Summarization with Saliency and Entailment
Abstractive text summarization is the task of compressing and rewriting a long document into a short summary while maintaining saliency, directed logical entailment, and non-redundancy. In this work, we address these three important aspects of a good summary via a reinforcement learning approach with two novel reward functions: ROUGESal and Entail, on top of a coverage-based baseline. The ROUGESal reward modifies the ROUGE metric by up-weighting the salient phrases/words detected via a keyphrase classifier. The Entail reward gives high (length-normalized) scores to logically-entailed summaries using an entailment classifier. Further, we show superior performance improvement when these rewards are combined with traditional metric (ROUGE) based rewards, via our novel and effective multi-reward approach of optimizing multiple rewards simultaneously in alternate mini-batches. Our method achieves the new state-of-the-art results (including human evaluation) on the CNN/Daily Mail dataset as well as strong improvements in a test-only transfer setup on DUC-2002.
On Learning Intrinsic Rewards for Policy Gradient Methods
In many sequential decision making tasks, it is challenging to design reward functions that help an RL agent efficiently learn behavior that is considered good by the agent designer. A number of different formulations of the reward-design problem, or close variants thereof, have been proposed in the literature. In this paper we build on the Optimal Rewards Framework of Singh et.al. that defines the optimal intrinsic reward function as one that when used by an RL agent achieves behavior that optimizes the task-specifying or extrinsic reward function. Previous work in this framework has shown how good intrinsic reward functions can be learned for lookahead search based planning agents. Whether it is possible to learn intrinsic reward functions for learning agents remains an open problem. In this paper we derive a novel algorithm for learning intrinsic rewards for policy-gradient based learning agents. We compare the performance of an augmented agent that uses our algorithm to provide additive intrinsic rewards to an A2C-based policy learner (for Atari games) and a PPO-based policy learner (for Mujoco domains) with a baseline agent that uses the same policy learners but with only extrinsic rewards. Our results show improved performance on most but not all of the domains.
An Adaptive Clipping Approach for Proximal Policy Optimization
Very recently proximal policy optimization (PPO) algorithms have been proposed as first-order optimization methods for effective reinforcement learning. While PPO is inspired by the same learning theory that justifies trust region policy optimization (TRPO), PPO substantially simplifies algorithm design and improves data efficiency by performing multiple epochs of \emph{clipped policy optimization} from sampled data. Although clipping in PPO stands for an important new mechanism for efficient and reliable policy update, it may fail to adaptively improve learning performance in accordance with the importance of each sampled state. To address this issue, a new surrogate learning objective featuring an adaptive clipping mechanism is proposed in this paper, enabling us to develop a new algorithm, known as PPO-$\lambda$. PPO-$\lambda$ optimizes policies repeatedly based on a theoretical target for adaptive policy improvement. Meanwhile, destructively large policy update can be effectively prevented through both clipping and adaptive control of a hyperparameter $\lambda$ in PPO-$\lambda$, ensuring high learning reliability. PPO-$\lambda$ enjoys the same simple and efficient design as PPO. Empirically on several Atari game playing tasks and benchmark control tasks, PPO-$\lambda$ also achieved clearly better performance than PPO.
Unlearn What You Have Learned: Adaptive Crowd Teaching with Exponentially Decayed Memory Learners
With the increasing demand for large amount of labeled data, crowdsourcing has been used in many large-scale data mining applications. However, most existing works in crowdsourcing mainly focus on label inference and incentive design. In this paper, we address a different problem of adaptive crowd teaching, which is a sub-area of machine teaching in the context of crowdsourcing. Compared with machines, human beings are extremely good at learning a specific target concept (e.g., classifying the images into given categories) and they can also easily transfer the learned concepts into similar learning tasks. Therefore, a more effective way of utilizing crowdsourcing is by supervising the crowd to label in the form of teaching. In order to perform the teaching and expertise estimation simultaneously, we propose an adaptive teaching framework named JEDI to construct the personalized optimal teaching set for the crowdsourcing workers. In JEDI teaching, the teacher assumes that each learner has an exponentially decayed memory. Furthermore, it ensures comprehensiveness in the learning process by carefully balancing teaching diversity and learner's accurate learning in terms of teaching usefulness. Finally, we validate the effectiveness and efficacy of JEDI teaching in comparison with the state-of-the-art techniques on multiple data sets with both synthetic learners and real crowdsourcing workers.
Deep Multimodal Subspace Clustering Networks
We present convolutional neural network (CNN) based approaches for unsupervised multimodal subspace clustering. The proposed framework consists of three main stages - multimodal encoder, self-expressive layer, and multimodal decoder. The encoder takes multimodal data as input and fuses them to a latent space representation. The self-expressive layer is responsible for enforcing the self-expressiveness property and acquiring an affinity matrix corresponding to the data points. The decoder reconstructs the original input data. The network uses the distance between the decoder's reconstruction and the original input in its training. We investigate early, late and intermediate fusion techniques and propose three different encoders corresponding to them for spatial fusion. The self-expressive layers and multimodal decoders are essentially the same for different spatial fusion-based approaches. In addition to various spatial fusion-based methods, an affinity fusion-based network is also proposed in which the self-expressive layer corresponding to different modalities is enforced to be the same. Extensive experiments on three datasets show that the proposed methods significantly outperform the state-of-the-art multimodal subspace clustering methods.
Two-Player Games for Efficient Non-Convex Constrained Optimization
In recent years, constrained optimization has become increasingly relevant to the machine learning community, with applications including Neyman-Pearson classification, robust optimization, and fair machine learning. A natural approach to constrained optimization is to optimize the Lagrangian, but this is not guaranteed to work in the non-convex setting, and, if using a first-order method, cannot cope with non-differentiable constraints (e.g. constraints on rates or proportions). The Lagrangian can be interpreted as a two-player game played between a player who seeks to optimize over the model parameters, and a player who wishes to maximize over the Lagrange multipliers. We propose a non-zero-sum variant of the Lagrangian formulation that can cope with non-differentiable--even discontinuous--constraints, which we call the "proxy-Lagrangian". The first player minimizes external regret in terms of easy-to-optimize "proxy constraints", while the second player enforces the original constraints by minimizing swap regret. For this new formulation, as for the Lagrangian in the non-convex setting, the result is a stochastic classifier. For both the proxy-Lagrangian and Lagrangian formulations, however, we prove that this classifier, instead of having unbounded size, can be taken to be a distribution over no more than m+1 models (where m is the number of constraints). This is a significant improvement in practical terms.
UCNN: Exploiting Computational Reuse in Deep Neural Networks via Weight Repetition
Convolutional Neural Networks (CNNs) have begun to permeate all corners of electronic society (from voice recognition to scene generation) due to their high accuracy and machine efficiency per operation. At their core, CNN computations are made up of multi-dimensional dot products between weight and input vectors. This paper studies how weight repetition ---when the same weight occurs multiple times in or across weight vectors--- can be exploited to save energy and improve performance during CNN inference. This generalizes a popular line of work to improve efficiency from CNN weight sparsity, as reducing computation due to repeated zero weights is a special case of reducing computation due to repeated weights. To exploit weight repetition, this paper proposes a new CNN accelerator called the Unique Weight CNN Accelerator (UCNN). UCNN uses weight repetition to reuse CNN sub-computations (e.g., dot products) and to reduce CNN model size when stored in off-chip DRAM ---both of which save energy. UCNN further improves performance by exploiting sparsity in weights. We evaluate UCNN with an accelerator-level cycle and energy model and with an RTL implementation of the UCNN processing element. On three contemporary CNNs, UCNN improves throughput-normalized energy consumption by 1.2x - 4x, relative to a similarly provisioned baseline accelerator that uses Eyeriss-style sparsity optimizations. At the same time, the UCNN processing element adds only 17-24% area overhead relative to the same baseline.
Fast Weight Long Short-Term Memory
Associative memory using fast weights is a short-term memory mechanism that substantially improves the memory capacity and time scale of recurrent neural networks (RNNs). As recent studies introduced fast weights only to regular RNNs, it is unknown whether fast weight memory is beneficial to gated RNNs. In this work, we report a significant synergy between long short-term memory (LSTM) networks and fast weight associative memories. We show that this combination, in learning associative retrieval tasks, results in much faster training and lower test error, a performance boost most prominent at high memory task difficulties.
Online Non-Additive Path Learning under Full and Partial Information
We study the problem of online path learning with non-additive gains, which is a central problem appearing in several applications, including ensemble structured prediction. We present new online algorithms for path learning with non-additive count-based gains for the three settings of full information, semi-bandit and full bandit with very favorable regret guarantees. A key component of our algorithms is the definition and computation of an intermediate context-dependent automaton that enables us to use existing algorithms designed for additive gains. We further apply our methods to the important application of ensemble structured prediction. Finally, beyond count-based gains, we give an efficient implementation of the EXP3 algorithm for the full bandit setting with an arbitrary (non-additive) gain.
Understanding Convolutional Neural Networks with Information Theory: An Initial Exploration
The matrix-based Renyi's \alpha-entropy functional and its multivariate extension were recently developed in terms of the normalized eigenspectrum of a Hermitian matrix of the projected data in a reproducing kernel Hilbert space (RKHS). However, the utility and possible applications of these new estimators are rather new and mostly unknown to practitioners. In this paper, we first show that our estimators enable straightforward measurement of information flow in realistic convolutional neural networks (CNN) without any approximation. Then, we introduce the partial information decomposition (PID) framework and develop three quantities to analyze the synergy and redundancy in convolutional layer representations. Our results validate two fundamental data processing inequalities and reveal some fundamental properties concerning the training of CNN.
Deep Generative Networks For Sequence Prediction
This thesis investigates unsupervised time series representation learning for sequence prediction problems, i.e. generating nice-looking input samples given a previous history, for high dimensional input sequences by decoupling the static input representation from the recurrent sequence representation. We introduce three models based on Generative Stochastic Networks (GSN) for unsupervised sequence learning and prediction. Experimental results for these three models are presented on pixels of sequential handwritten digit (MNIST) data, videos of low-resolution bouncing balls, and motion capture data. The main contribution of this thesis is to provide evidence that GSNs are a viable framework to learn useful representations of complex sequential input data, and to suggest a new framework for deep generative models to learn complex sequences by decoupling static input representations from dynamic time dependency representations.