title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Sparse Group Inductive Matrix Completion
We consider the problem of matrix completion with side information (\textit{inductive matrix completion}). In real-world applications many side-channel features are typically non-informative making feature selection an important part of the problem. We incorporate feature selection into inductive matrix completion by proposing a matrix factorization framework with group-lasso regularization on side feature parameter matrices. We demonstrate, that the theoretical sample complexity for the proposed method is much lower compared to its competitors in sparse problems, and propose an efficient optimization algorithm for the resulting low-rank matrix completion problem with sparsifying regularizers. Experiments on synthetic and real-world datasets show that the proposed approach outperforms other methods.
Decoupling Dynamics and Reward for Transfer Learning
Current reinforcement learning (RL) methods can successfully learn single tasks but often generalize poorly to modest perturbations in task domain or training procedure. In this work, we present a decoupled learning strategy for RL that creates a shared representation space where knowledge can be robustly transferred. We separate learning the task representation, the forward dynamics, the inverse dynamics and the reward function of the domain, and show that this decoupling improves performance within the task, transfers well to changes in dynamics and reward, and can be effectively used for online planning. Empirical results show good performance in both continuous and discrete RL domains.
Negative Log Likelihood Ratio Loss for Deep Neural Network Classification
In deep neural network, the cross-entropy loss function is commonly used for classification. Minimizing cross-entropy is equivalent to maximizing likelihood under assumptions of uniform feature and class distributions. It belongs to generative training criteria which does not directly discriminate correct class from competing classes. We propose a discriminative loss function with negative log likelihood ratio between correct and competing classes. It significantly outperforms the cross-entropy loss on the CIFAR-10 image classification task.
Novel Prediction Techniques Based on Clusterwise Linear Regression
In this paper we explore different regression models based on Clusterwise Linear Regression (CLR). CLR aims to find the partition of the data into $k$ clusters, such that linear regressions fitted to each of the clusters minimize overall mean squared error on the whole data. The main obstacle preventing to use found regression models for prediction on the unseen test points is the absence of a reasonable way to obtain CLR cluster labels when the values of target variable are unknown. In this paper we propose two novel approaches on how to solve this problem. The first approach, predictive CLR builds a separate classification model to predict test CLR labels. The second approach, constrained CLR utilizes a set of user-specified constraints that enforce certain points to go to the same clusters. Assuming the constraint values are known for the test points, they can be directly used to assign CLR labels. We evaluate these two approaches on three UCI ML datasets as well as on a large corpus of health insurance claims. We show that both of the proposed algorithms significantly improve over the known CLR-based regression methods. Moreover, predictive CLR consistently outperforms linear regression and random forest, and shows comparable performance to support vector regression on UCI ML datasets. The constrained CLR approach achieves the best performance on the health insurance dataset, while enjoying only $\approx 20$ times increased computational time over linear regression.
Generalizing Across Domains via Cross-Gradient Training
We present CROSSGRAD, a method to use multi-domain training data to learn a classifier that generalizes to new domains. CROSSGRAD does not need an adaptation phase via labeled or unlabeled data, or domain features in the new domain. Most existing domain adaptation methods attempt to erase domain signals using techniques like domain adversarial training. In contrast, CROSSGRAD is free to use domain signals for predicting labels, if it can prevent overfitting on training domains. We conceptualize the task in a Bayesian setting, in which a sampling step is implemented as data augmentation, based on domain-guided perturbations of input instances. CROSSGRAD parallelly trains a label and a domain classifier on examples perturbed by loss gradients of each other's objectives. This enables us to directly perturb inputs, without separating and re-mixing domain signals while making various distributional assumptions. Empirical evaluation on three different applications where this setting is natural establishes that (1) domain-guided perturbation provides consistently better generalization to unseen domains, compared to generic instance perturbation methods, and that (2) data augmentation is a more stable and accurate method than domain adversarial training.
Multi Layered-Parallel Graph Convolutional Network (ML-PGCN) for Disease Prediction
Structural data from Electronic Health Records as complementary information to imaging data for disease prediction. We incorporate novel weighting layer into the Graph Convolutional Networks, which weights every element of structural data by exploring its relation to the underlying disease. We demonstrate the superiority of our developed technique in terms of computational speed and obtained encouraging results where our method outperforms the state-of-the-art methods when applied to two publicly available datasets ABIDE and Chest X-ray in terms of relative performance for the accuracy of prediction by 5.31 % and 8.15 % and for the area under the ROC curve by 4.96 % and 10.36 % respectively. Additionally, the model is lightweight, fast and easily trainable.
A Cost-Sensitive Deep Belief Network for Imbalanced Classification
Imbalanced data with a skewed class distribution are common in many real-world applications. Deep Belief Network (DBN) is a machine learning technique that is effective in classification tasks. However, conventional DBN does not work well for imbalanced data classification because it assumes equal costs for each class. To deal with this problem, cost-sensitive approaches assign different misclassification costs for different classes without disrupting the true data sample distributions. However, due to lack of prior knowledge, the misclassification costs are usually unknown and hard to choose in practice. Moreover, it has not been well studied as to how cost-sensitive learning could improve DBN performance on imbalanced data problems. This paper proposes an evolutionary cost-sensitive deep belief network (ECS-DBN) for imbalanced classification. ECS-DBN uses adaptive differential evolution to optimize the misclassification costs based on training data, that presents an effective approach to incorporating the evaluation measure (i.e. G-mean) into the objective function. We first optimize the misclassification costs, then apply them to deep belief network. Adaptive differential evolution optimization is implemented as the optimization algorithm that automatically updates its corresponding parameters without the need of prior domain knowledge. The experiments have shown that the proposed approach consistently outperforms the state-of-the-art on both benchmark datasets and real-world dataset for fault diagnosis in tool condition monitoring.
On Convergence of Moments for Approximating Processes and Applications to Surrogate Models
We study critera for a pair $ (\{ X_n \} $, $ \{ Y_n \}) $ of approximating processes which guarantee closeness of moments by generalizing known results for the special case that $ Y_n = Y $ for all $n$ and $ X_n $ converges to $Y$ in probability. This problem especially arises when working with surrogate models, e.g. to enrich observed data by simulated data, where the surrogates $Y_n$'s are constructed to justify that they approximate the $ X_n $'s. The results of this paper deal with sequences of random variables. Since this framework does not cover many applications where surrogate models such as deep neural networks are used to approximate more general stochastic processes, we extend the results to the more general framework of random fields of stochastic processes. This framework especially covers image data and sequences of images. We show that uniform integrability is sufficient, and this holds even for the case of processes provided they satisfy a weak stationarity condition.
On Euclidean $k$-Means Clustering with $\alpha$-Center Proximity
$k$-means clustering is NP-hard in the worst case but previous work has shown efficient algorithms assuming the optimal $k$-means clusters are \emph{stable} under additive or multiplicative perturbation of data. This has two caveats. First, we do not know how to efficiently verify this property of optimal solutions that are NP-hard to compute in the first place. Second, the stability assumptions required for polynomial time $k$-means algorithms are often unreasonable when compared to the ground-truth clusters in real-world data. A consequence of multiplicative perturbation resilience is \emph{center proximity}, that is, every point is closer to the center of its own cluster than the center of any other cluster, by some multiplicative factor $\alpha > 1$. We study the problem of minimizing the Euclidean $k$-means objective only over clusterings that satisfy $\alpha$-center proximity. We give a simple algorithm to find the optimal $\alpha$-center-proximal $k$-means clustering in running time exponential in $k$ and $1/(\alpha - 1)$ but linear in the number of points and the dimension. We define an analogous $\alpha$-center proximity condition for outliers, and give similar algorithmic guarantees for $k$-means with outliers and $\alpha$-center proximity. On the hardness side we show that for any $\alpha' > 1$, there exists an $\alpha \leq \alpha'$, $(\alpha >1)$, and an $\varepsilon_0 > 0$ such that minimizing the $k$-means objective over clusterings that satisfy $\alpha$-center proximity is NP-hard to approximate within a multiplicative $(1+\varepsilon_0)$ factor.
A Unified Framework for Domain Adaptation using Metric Learning on Manifolds
We present a novel framework for domain adaptation, whereby both geometric and statistical differences between a labeled source domain and unlabeled target domain can be integrated by exploiting the curved Riemannian geometry of statistical manifolds. Our approach is based on formulating transfer from source to target as a problem of geometric mean metric learning on manifolds. Specifically, we exploit the curved Riemannian manifold geometry of symmetric positive definite (SPD) covariance matrices. We exploit a simple but important observation that as the space of covariance matrices is both a Riemannian space as well as a homogeneous space, the shortest path geodesic between two covariances on the manifold can be computed analytically. Statistics on the SPD matrix manifold, such as the geometric mean of two matrices can be reduced to solving the well-known Riccati equation. We show how the Ricatti-based solution can be constrained to not only reduce the statistical differences between the source and target domains, such as aligning second order covariances and minimizing the maximum mean discrepancy, but also the underlying geometry of the source and target domains using diffusions on the underlying source and target manifolds. A key strength of our proposed approach is that it enables integrating multiple sources of variation between source and target in a unified way, by reducing the combined objective function to a nested set of Ricatti equations where the solution can be represented by a cascaded series of geometric mean computations. In addition to showing the theoretical optimality of our solution, we present detailed experiments using standard transfer learning testbeds from computer vision comparing our proposed algorithms to past work in domain adaptation, showing improved results over a large variety of previous methods.
Learning from multivariate discrete sequential data using a restricted Boltzmann machine model
A restricted Boltzmann machine (RBM) is a generative neural-network model with many novel applications such as collaborative filtering and acoustic modeling. An RBM lacks the capacity to retain memory, making it inappropriate for dynamic data modeling as in time-series analysis. In this paper we address this issue by proposing the p-RBM model, a generalization of the regular RBM model, capable of retaining memory of p past states. We further show how to train the p-RBM model using contrastive divergence and test our model on the problem of predicting the stock market direction considering 100 stocks of the NASDAQ-100 index. Obtained results show that the p-RBM offer promising prediction potential.
Data science is science's second chance to get causal inference right: A classification of data science tasks
Causal inference from observational data is the goal of many data analyses in the health and social sciences. However, academic statistics has often frowned upon data analyses with a causal objective. The introduction of the term "data science" provides a historic opportunity to redefine data analysis in such a way that it naturally accommodates causal inference from observational data. Like others before, we organize the scientific contributions of data science into three classes of tasks: Description, prediction, and counterfactual prediction (which includes causal inference). An explicit classification of data science tasks is necessary to discuss the data, assumptions, and analytics required to successfully accomplish each task. We argue that a failure to adequately describe the role of subject-matter expert knowledge in data analysis is a source of widespread misunderstandings about data science. Specifically, causal analyses typically require not only good data and algorithms, but also domain expert knowledge. We discuss the implications for the use of data science to guide decision-making in the real world and to train data scientists.
Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders
Drug similarity has been studied to support downstream clinical tasks such as inferring novel properties of drugs (e.g. side effects, indications, interactions) from known properties. The growing availability of new types of drug features brings the opportunity of learning a more comprehensive and accurate drug similarity that represents the full spectrum of underlying drug relations. However, it is challenging to integrate these heterogeneous, noisy, nonlinear-related information to learn accurate similarity measures especially when labels are scarce. Moreover, there is a trade-off between accuracy and interpretability. In this paper, we propose to learn accurate and interpretable similarity measures from multiple types of drug features. In particular, we model the integration using multi-view graph auto-encoders, and add attentive mechanism to determine the weights for each view with respect to corresponding tasks and features for better interpretability. Our model has flexible design for both semi-supervised and unsupervised settings. Experimental results demonstrated significant predictive accuracy improvement. Case studies also showed better model capacity (e.g. embed node features) and interpretability.
Dense Adaptive Cascade Forest: A Self Adaptive Deep Ensemble for Classification Problems
Recent researches have shown that deep forest ensemble achieves a considerable increase in classification accuracy compared with the general ensemble learning methods, especially when the training set is small. In this paper, we take advantage of deep forest ensemble and introduce the Dense Adaptive Cascade Forest (daForest). Our model has a better performance than the original Cascade Forest with three major features: first, we apply SAMME.R boosting algorithm to improve the performance of the model. It guarantees the improvement as the number of layers increases. Second, our model connects each layer to the subsequent ones in a feed-forward fashion, which enhances the capability of the model to resist performance degeneration. Third, we add a hyper-parameters optimization layer before the first classification layer, making our model spend less time to set up and find the optimal hyper-parameters. Experimental results show that daForest performs significantly well, and in some cases, even outperforms neural networks and achieves state-of-the-art results.
An Investigation on Support Vector Clustering for Big Data in Quantum Paradigm
The support vector clustering algorithm is a well-known clustering algorithm based on support vector machines using Gaussian or polynomial kernels. The classical support vector clustering algorithm works well in general, but its performance degrades when applied on big data. In this paper, we have investigated the performance of support vector clustering algorithm implemented in a quantum paradigm for possible run-time improvements. We have developed and analyzed a quantum version of the support vector clustering algorithm. The proposed approach is based on the quantum support vector machine and quantum kernels (i.e., Gaussian and polynomial). The proposed quantum version of the SVM clustering method demonstrates a significant speed-up gain on the overall run-time complexity as compared to the classical counterpart.
Learning Data Dependency with Communication Cost
In this paper, we consider the problem of recovering a graph that represents the statistical data dependency among nodes for a set of data samples generated by nodes, which provides the basic structure to perform an inference task, such as MAP (maximum a posteriori). This problem is referred to as structure learning. When nodes are spatially separated in different locations, running an inference algorithm requires a non-negligible amount of message passing, incurring some communication cost. We inevitably have the trade-off between the accuracy of structure learning and the cost we need to pay to perform a given message-passing based inference task because the learnt edge structures of data dependency and physical connectivity graph are often highly different. In this paper, we formalize this trade-off in an optimization problem which outputs the data dependency graph that jointly considers learning accuracy and message-passing costs. We focus on a distributed MAP as the target inference task, and consider two different implementations, ASYNC-MAP and SYNC-MAP that have different message-passing mechanisms and thus different cost structures. In ASYNC- MAP, we propose a polynomial time learning algorithm that is optimal, motivated by the problem of finding a maximum weight spanning tree. In SYNC-MAP, we first prove that it is NP-hard and propose a greedy heuristic. For both implementations, we then quantify how the probability that the resulting data graphs from those learning algorithms differ from the ideal data graph decays as the number of data samples grows, using the large deviation principle, where the decaying rate is characterized by some topological structures of both original data dependency and physical connectivity graphs as well as the degree of the trade-off. We validate our theoretical findings through extensive simulations, which confirms that it has a good match.
Simultaneous Parameter Learning and Bi-Clustering for Multi-Response Models
We consider multi-response and multitask regression models, where the parameter matrix to be estimated is expected to have an unknown grouping structure. The groupings can be along tasks, or features, or both, the last one indicating a bi-cluster or "checkerboard" structure. Discovering this grouping structure along with parameter inference makes sense in several applications, such as multi-response Genome-Wide Association Studies. This additional structure can not only can be leveraged for more accurate parameter estimation, but it also provides valuable information on the underlying data mechanisms (e.g. relationships among genotypes and phenotypes in GWAS). In this paper, we propose two formulations to simultaneously learn the parameter matrix and its group structures, based on convex regularization penalties. We present optimization approaches to solve the resulting problems and provide numerical convergence guarantees. Our approaches are validated on extensive simulations and real datasets concerning phenotypes and genotypes of plant varieties.
UNIQ: Uniform Noise Injection for Non-Uniform Quantization of Neural Networks
We present a novel method for neural network quantization that emulates a non-uniform $k$-quantile quantizer, which adapts to the distribution of the quantized parameters. Our approach provides a novel alternative to the existing uniform quantization techniques for neural networks. We suggest to compare the results as a function of the bit-operations (BOPS) performed, assuming a look-up table availability for the non-uniform case. In this setup, we show the advantages of our strategy in the low computational budget regime. While the proposed solution is harder to implement in hardware, we believe it sets a basis for new alternatives to neural networks quantization.
From Credit Assignment to Entropy Regularization: Two New Algorithms for Neural Sequence Prediction
In this work, we study the credit assignment problem in reward augmented maximum likelihood (RAML) learning, and establish a theoretical equivalence between the token-level counterpart of RAML and the entropy regularized reinforcement learning. Inspired by the connection, we propose two sequence prediction algorithms, one extending RAML with fine-grained credit assignment and the other improving Actor-Critic with a systematic entropy regularization. On two benchmark datasets, we show the proposed algorithms outperform RAML and Actor-Critic respectively, providing new alternatives to sequence prediction.
SHADE: Information Based Regularization for Deep Learning
Regularization is a big issue for training deep neural networks. In this paper, we propose a new information-theory-based regularization scheme named SHADE for SHAnnon DEcay. The originality of the approach is to define a prior based on conditional entropy, which explicitly decouples the learning of invariant representations in the regularizer and the learning of correlations between inputs and labels in the data fitting term. Our second contribution is to derive a stochastic version of the regularizer compatible with deep learning, resulting in a tractable training scheme. We empirically validate the efficiency of our approach to improve classification performances compared to common regularization schemes on several standard architectures.
Semi-parametric Image Synthesis
We present a semi-parametric approach to photographic image synthesis from semantic layouts. The approach combines the complementary strengths of parametric and nonparametric techniques. The nonparametric component is a memory bank of image segments constructed from a training set of images. Given a novel semantic layout at test time, the memory bank is used to retrieve photographic references that are provided as source material to a deep network. The synthesis is performed by a deep network that draws on the provided photographic material. Experiments on multiple semantic segmentation datasets show that the presented approach yields considerably more realistic images than recent purely parametric techniques. The results are shown in the supplementary video at https://youtu.be/U4Q98lenGLQ
On the Effect of Suboptimal Estimation of Mutual Information in Feature Selection and Classification
This paper introduces a new property of estimators of the strength of statistical association, which helps characterize how well an estimator will perform in scenarios where dependencies between continuous and discrete random variables need to be rank ordered. The new property, termed the estimator response curve, is easily computable and provides a marginal distribution agnostic way to assess an estimator's performance. It overcomes notable drawbacks of current metrics of assessment, including statistical power, bias, and consistency. We utilize the estimator response curve to test various measures of the strength of association that satisfy the data processing inequality (DPI), and show that the CIM estimator's performance compares favorably to kNN, vME, AP, and H_{MI} estimators of mutual information. The estimators which were identified to be suboptimal, according to the estimator response curve, perform worse than the more optimal estimators when tested with real-world data from four different areas of science, all with varying dimensionalities and sizes.
Equivalent Lipschitz surrogates for zero-norm and rank optimization problems
This paper proposes a mechanism to produce equivalent Lipschitz surrogates for zero-norm and rank optimization problems by means of the global exact penalty for their equivalent mathematical programs with an equilibrium constraint (MPECs). Specifically, we reformulate these combinatorial problems as equivalent MPECs by the variational characterization of the zero-norm and rank function, show that their penalized problems, yielded by moving the equilibrium constraint into the objective, are the global exact penalization, and obtain the equivalent Lipschitz surrogates by eliminating the dual variable in the global exact penalty. These surrogates, including the popular SCAD function in statistics, are also difference of two convex functions (D.C.) if the function and constraint set involved in zero-norm and rank optimization problems are convex. We illustrate an application by designing a multi-stage convex relaxation approach to the rank plus zero-norm regularized minimization problem.
Staircase Network: structural language identification via hierarchical attentive units
Language recognition system is typically trained directly to optimize classification error on the target language labels, without using the external, or meta-information in the estimation of the model parameters. However labels are not independent of each other, there is a dependency enforced by, for example, the language family, which affects negatively on classification. The other external information sources (e.g. audio encoding, telephony or video speech) can also decrease classification accuracy. In this paper, we attempt to solve these issues by constructing a deep hierarchical neural network, where different levels of meta-information are encapsulated by attentive prediction units and also embedded into the training progress. The proposed method learns auxiliary tasks to obtain robust internal representation and to construct a variant of attentive units within the hierarchical model. The final result is the structural prediction of the target language and a closely related language family. The algorithm reflects a "staircase" way of learning in both its architecture and training, advancing from the fundamental audio encoding to the language family level and finally to the target language level. This process not only improves generalization but also tackles the issues of imbalanced class priors and channel variability in the deep neural network model. Our experimental findings show that the proposed architecture outperforms the state-of-the-art i-vector approaches on both small and big language corpora by a significant margin.
Competitive Training of Mixtures of Independent Deep Generative Models
A common assumption in causal modeling posits that the data is generated by a set of independent mechanisms, and algorithms should aim to recover this structure. Standard unsupervised learning, however, is often concerned with training a single model to capture the overall distribution or aspects thereof. Inspired by clustering approaches, we consider mixtures of implicit generative models that ``disentangle'' the independent generative mechanisms underlying the data. Relying on an additional set of discriminators, we propose a competitive training procedure in which the models only need to capture the portion of the data distribution from which they can produce realistic samples. As a by-product, each model is simpler and faster to train. We empirically show that our approach splits the training distribution in a sensible way and increases the quality of the generated samples.
A Centralized Multi-stage Non-parametric Learning Algorithm for Opportunistic Spectrum Access
Owing to the ever-increasing demand in wireless spectrum, Cognitive Radio (CR) was introduced as a technique to attain high spectral efficiency. As the number of secondary users (SUs) connecting to the cognitive radio network is on the rise, there is an imminent need for centralized algorithms that provide high throughput and energy efficiency of the SUs while ensuring minimum interference to the licensed users. In this work, we propose a multi-stage algorithm that - 1) effectively assigns the available channel to the SUs, 2) employs a non-parametric learning framework to estimate the primary traffic distribution to minimize sensing, and 3) proposes an adaptive framework to ensure that the collision to the primary user is below the specified threshold. We provide comprehensive empirical validation of the method with other approaches.
From Social to Individuals: a Parsimonious Path of Multi-level Models for Crowdsourced Preference Aggregation
In crowdsourced preference aggregation, it is often assumed that all the annotators are subject to a common preference or social utility function which generates their comparison behaviors in experiments. However, in reality annotators are subject to variations due to multi-criteria, abnormal, or a mixture of such behaviors. In this paper, we propose a parsimonious mixed-effects model, which takes into account both the fixed effect that the majority of annotators follows a common linear utility model, and the random effect that some annotators might deviate from the common significantly and exhibit strongly personalized preferences. The key algorithm in this paper establishes a dynamic path from the social utility to individual variations, with different levels of sparsity on personalization. The algorithm is based on the Linearized Bregman Iterations, which leads to easy parallel implementations to meet the need of large-scale data analysis. In this unified framework, three kinds of random utility models are presented, including the basic linear model with L2 loss, Bradley-Terry model, and Thurstone-Mosteller model. The validity of these multi-level models are supported by experiments with both simulated and real-world datasets, which shows that the parsimonious multi-level models exhibit improvements in both interpretability and predictive precision compared with traditional HodgeRank.
Can recurrent neural networks warp time?
Successful recurrent models such as long short-term memories (LSTMs) and gated recurrent units (GRUs) use ad hoc gating mechanisms. Empirically these models have been found to improve the learning of medium to long term temporal dependencies and to help with vanishing gradient issues. We prove that learnable gates in a recurrent model formally provide quasi- invariance to general time transformations in the input data. We recover part of the LSTM architecture from a simple axiomatic approach. This result leads to a new way of initializing gate biases in LSTMs and GRUs. Ex- perimentally, this new chrono initialization is shown to greatly improve learning of long term dependencies, with minimal implementation effort.
Revealing patterns in HIV viral load data and classifying patients via a novel machine learning cluster summarization method
HIV RNA viral load (VL) is an important outcome variable in studies of HIV infected persons. There exists only a handful of methods which classify patients by viral load patterns. Most methods place limits on the use of viral load measurements, are often specific to a particular study design, and do not account for complex, temporal variation. To address this issue, we propose a set of four unambiguous computable characteristics (features) of time-varying HIV viral load patterns, along with a novel centroid-based classification algorithm, which we use to classify a population of 1,576 HIV positive clinic patients into one of five different viral load patterns (clusters) often found in the literature: durably suppressed viral load (DSVL), sustained low viral load (SLVL), sustained high viral load (SHVL), high viral load suppression (HVLS), and rebounding viral load (RVL). The centroid algorithm summarizes these clusters in terms of their centroids and radii. We show that this allows new viral load patterns to be assigned pattern membership based on the distance from the centroid relative to its radius, which we term radial normalization classification. This method has the benefit of providing an objective and quantitative method to assign viral load pattern membership with a concise and interpretable model that aids clinical decision making. This method also facilitates meta-analyses by providing computably distinct HIV categories. Finally we propose that this novel centroid algorithm could also be useful in the areas of cluster comparison for outcomes research and data reduction in machine learning.
k-Nearest Neighbors by Means of Sequence to Sequence Deep Neural Networks and Memory Networks
k-Nearest Neighbors is one of the most fundamental but effective classification models. In this paper, we propose two families of models built on a sequence to sequence model and a memory network model to mimic the k-Nearest Neighbors model, which generate a sequence of labels, a sequence of out-of-sample feature vectors and a final label for classification, and thus they could also function as oversamplers. We also propose 'out-of-core' versions of our models which assume that only a small portion of data can be loaded into memory. Computational experiments show that our models on structured datasets outperform k-Nearest Neighbors, a feed-forward neural network, XGBoost, lightGBM, random forest and a memory network, due to the fact that our models must produce additional output and not just the label. On image and text datasets, the performance of our model is close to many state-of-the-art deep models. As an oversampler on imbalanced datasets, the sequence to sequence kNN model often outperforms Synthetic Minority Over-sampling Technique and Adaptive Synthetic Sampling.
Deep learning improved by biological activation functions
`Biologically inspired' activation functions, such as the logistic sigmoid, have been instrumental in the historical advancement of machine learning. However in the field of deep learning, they have been largely displaced by rectified linear units (ReLU) or similar functions, such as its exponential linear unit (ELU) variant, to mitigate the effects of vanishing gradients associated with error back-propagation. The logistic sigmoid however does not represent the true input-output relation in neuronal cells under physiological conditions. Here, bionodal root unit (BRU) activation functions are introduced, exhibiting input-output non-linearities that are substantially more biologically plausible since their functional form is based on known biophysical properties of neuronal cells. In order to evaluate the learning performance of BRU activations, deep networks are constructed with identical architectures except differing in their transfer functions (ReLU, ELU, and BRU). Multilayer perceptrons, stacked auto-encoders, and convolutional networks are used to test supervised and unsupervised learning based on the MNIST and CIFAR-10/100 datasets. Comparisons of learning performance, quantified using loss and error measurements, demonstrate that bionodal networks both train faster than their ReLU and ELU counterparts and result in the best generalised models even in the absence of formal regularisation. These results therefore suggest that revisiting the detailed properties of biological neurones and their circuitry might prove invaluable in the field of deep learning for the future.
Privacy Preserving Machine Learning: Threats and Solutions
For privacy concerns to be addressed adequately in current machine learning systems, the knowledge gap between the machine learning and privacy communities must be bridged. This article aims to provide an introduction to the intersection of both fields with special emphasis on the techniques used to protect the data.
Structured Weight Matrices-Based Hardware Accelerators in Deep Neural Networks: FPGAs and ASICs
Both industry and academia have extensively investigated hardware accelerations. In this work, to address the increasing demands in computational capability and memory requirement, we propose structured weight matrices (SWM)-based compression techniques for both \emph{field programmable gate array} (FPGA) and \emph{application-specific integrated circuit} (ASIC) implementations. In algorithm part, SWM-based framework adopts block-circulant matrices to achieve a fine-grained tradeoff between accuracy and compression ratio. The SWM-based technique can reduce computational complexity from O($n^2$) to O($n\log n$) and storage complexity from O($n^2$) to O($n$) for each layer and both training and inference phases. For FPGA implementations on deep convolutional neural networks (DCNNs), we achieve at least 152X and 72X improvement in performance and energy efficiency, respectively using the SWM-based framework, compared with the baseline of IBM TrueNorth processor under same accuracy constraints using the data set of MNIST, SVHN, and CIFAR-10. For FPGA implementations on long short term memory (LSTM) networks, the proposed SWM-based LSTM can achieve up to 21X enhancement in performance and 33.5X gains in energy efficiency compared with the baseline accelerator. For ASIC implementations, the SWM-based ASIC design exhibits impressive advantages in terms of power, throughput, and energy efficiency. Experimental results indicate that this method is greatly suitable for applying DNNs onto both FPGAs and mobile/IoT devices.
Toward Diverse Text Generation with Inverse Reinforcement Learning
Text generation is a crucial task in NLP. Recently, several adversarial generative models have been proposed to improve the exposure bias problem in text generation. Though these models gain great success, they still suffer from the problems of reward sparsity and mode collapse. In order to address these two problems, in this paper, we employ inverse reinforcement learning (IRL) for text generation. Specifically, the IRL framework learns a reward function on training data, and then an optimal policy to maximum the expected total reward. Similar to the adversarial models, the reward and policy function in IRL are optimized alternately. Our method has two advantages: (1) the reward function can produce more dense reward signals. (2) the generation policy, trained by "entropy regularized" policy gradient, encourages to generate more diversified texts. Experiment results demonstrate that our proposed method can generate higher quality texts than the previous methods.
Interpreting weight maps in terms of cognitive or clinical neuroscience: nonsense?
Since machine learning models have been applied to neuroimaging data, researchers have drawn conclusions from the derived weight maps. In particular, weight maps of classifiers between two conditions are often described as a proxy for the underlying signal differences between the conditions. Recent studies have however suggested that such weight maps could not reliably recover the source of the neural signals and even led to false positives (FP). In this work, we used semi-simulated data from ElectroCorticoGraphy (ECoG) to investigate how the signal-to-noise ratio and sparsity of the neural signal affect the similarity between signal and weights. We show that not all cases produce FP and that it is unlikely for FP features to have a high weight in most cases.
Gaussian Process Behaviour in Wide Deep Neural Networks
Whilst deep neural networks have shown great empirical success, there is still much work to be done to understand their theoretical properties. In this paper, we study the relationship between random, wide, fully connected, feedforward networks with more than one hidden layer and Gaussian processes with a recursive kernel definition. We show that, under broad conditions, as we make the architecture increasingly wide, the implied random function converges in distribution to a Gaussian process, formalising and extending existing results by Neal (1996) to deep networks. To evaluate convergence rates empirically, we use maximum mean discrepancy. We then compare finite Bayesian deep networks from the literature to Gaussian processes in terms of the key predictive quantities of interest, finding that in some cases the agreement can be very close. We discuss the desirability of Gaussian process behaviour and review non-Gaussian alternative models from the literature.
Simple Distances for Trajectories via Landmarks
We develop a new class of distances for objects including lines, hyperplanes, and trajectories, based on the distance to a set of landmarks. These distances easily and interpretably map objects to a Euclidean space, are simple to compute, and perform well in data analysis tasks. For trajectories, they match and in some cases significantly out-perform all state-of-the-art other metrics, can effortlessly be used in k-means clustering, and directly plugged into approximate nearest neighbor approaches which immediately out-perform the best recent advances in trajectory similarity search by several orders of magnitude. These distances do not require a geometry distorting dual (common in the line or halfspace case) or complicated alignment (common in trajectory case). We show reasonable and often simple conditions under which these distances are metrics.
Adversarially Robust Generalization Requires More Data
Machine learning models are often susceptible to adversarial perturbations of their inputs. Even small perturbations can cause state-of-the-art classifiers with high "standard" accuracy to produce an incorrect prediction with high confidence. To better understand this phenomenon, we study adversarially robust learning from the viewpoint of generalization. We show that already in a simple natural data model, the sample complexity of robust learning can be significantly larger than that of "standard" learning. This gap is information theoretic and holds irrespective of the training algorithm or the model family. We complement our theoretical results with experiments on popular image classification datasets and show that a similar gap exists here as well. We postulate that the difficulty of training robust classifiers stems, at least partially, from this inherently larger sample complexity.
Sampling strategies in Siamese Networks for unsupervised speech representation learning
Recent studies have investigated siamese network architectures for learning invariant speech representations using same-different side information at the word level. Here we investigate systematically an often ignored component of siamese networks: the sampling procedure (how pairs of same vs. different tokens are selected). We show that sampling strategies taking into account Zipf's Law, the distribution of speakers and the proportions of same and different pairs of words significantly impact the performance of the network. In particular, we show that word frequency compression improves learning across a large range of variations in number of training pairs. This effect does not apply to the same extent to the fully unsupervised setting, where the pairs of same-different words are obtained by spoken term discovery. We apply these results to pairs of words discovered using an unsupervised algorithm and show an improvement on state-of-the-art in unsupervised representation learning using siamese networks.
Adversarial Semantic Alignment for Improved Image Captions
In this paper we study image captioning as a conditional GAN training, proposing both a context-aware LSTM captioner and co-attentive discriminator, which enforces semantic alignment between images and captions. We empirically focus on the viability of two training methods: Self-critical Sequence Training (SCST) and Gumbel Straight-Through (ST) and demonstrate that SCST shows more stable gradient behavior and improved results over Gumbel ST, even without accessing discriminator gradients directly. We also address the problem of automatic evaluation for captioning models and introduce a new semantic score, and show its correlation to human judgement. As an evaluation paradigm, we argue that an important criterion for a captioner is the ability to generalize to compositions of objects that do not usually co-occur together. To this end, we introduce a small captioned Out of Context (OOC) test set. The OOC set, combined with our semantic score, are the proposed new diagnosis tools for the captioning community. When evaluated on OOC and MS-COCO benchmarks, we show that SCST-based training has a strong performance in both semantic score and human evaluation, promising to be a valuable new approach for efficient discrete GAN training.
A General Framework for Counterfactual Learning-to-Rank
Implicit feedback (e.g., click, dwell time) is an attractive source of training data for Learning-to-Rank, but its naive use leads to learning results that are distorted by presentation bias. For the special case of optimizing average rank for linear ranking functions, however, the recently developed SVM-PropRank method has shown that counterfactual inference techniques can be used to provably overcome the distorting effect of presentation bias. Going beyond this special case, this paper provides a general and theoretically rigorous framework for counterfactual learning-to-rank that enables unbiased training for a broad class of additive ranking metrics (e.g., Discounted Cumulative Gain (DCG)) as well as a broad class of models (e.g., deep networks). Specifically, we derive a relaxation for propensity-weighted rank-based metrics which is subdifferentiable and thus suitable for gradient-based optimization. We demonstrate the effectiveness of this general approach by instantiating two new learning methods. One is a new type of unbiased SVM that optimizes DCG -- called SVM PropDCG --, and we show how the resulting optimization problem can be solved via the Convex Concave Procedure (CCP). The other is Deep PropDCG, where the ranking function can be an arbitrary deep network. In addition to the theoretical support, we empirically find that SVM PropDCG significantly outperforms existing linear rankers in terms of DCG. Moreover, the ability to train non-linear ranking functions via Deep PropDCG further improves performance.
Understanding Regularization to Visualize Convolutional Neural Networks
Variational methods for revealing visual concepts learned by convolutional neural networks have gained significant attention during the last years. Being based on noisy gradients obtained via back-propagation such methods require the application of regularization strategies. We present a mathematical framework unifying previously employed regularization methods. Within this framework, we propose a novel technique based on Sobolev gradients which can be implemented via convolutions and does not require specialized numerical treatment, such as total variation regularization. The experiments performed on feature inversion and activation maximization demonstrate the benefit of a unified approach to regularization, such as sharper reconstructions via the proposed Sobolev filters and a better control over reconstructed scales.
Concolic Testing for Deep Neural Networks
Concolic testing combines program execution and symbolic analysis to explore the execution paths of a software program. This paper presents the first concolic testing approach for Deep Neural Networks (DNNs). More specifically, we formalise coverage criteria for DNNs that have been studied in the literature, and then develop a coherent method for performing concolic testing to increase test coverage. Our experimental results show the effectiveness of the concolic testing approach in both achieving high coverage and finding adversarial examples.
Conditional molecular design with deep generative models
Although machine learning has been successfully used to propose novel molecules that satisfy desired properties, it is still challenging to explore a large chemical space efficiently. In this paper, we present a conditional molecular design method that facilitates generating new molecules with desired properties. The proposed model, which simultaneously performs both property prediction and molecule generation, is built as a semi-supervised variational autoencoder trained on a set of existing molecules with only a partial annotation. We generate new molecules with desired properties by sampling from the generative distribution estimated by the model. We demonstrate the effectiveness of the proposed model by evaluating it on drug-like molecules. The model improves the performance of property prediction by exploiting unlabeled molecules, and efficiently generates novel molecules fulfilling various target conditions.
Risk-Averse Classification
We develop a new approach to solving classification problems, which is bases on the theory of coherent measures of risk and risk sharing ideas. The proposed approach aims at designing a risk-averse classifier. The new approach allows for associating distinct risk functional to each classes. The risk may be measured by different (non-linear in probability) measures, We analyze the structure of the new classifier design problem and establish its theoretical relation to known risk-neutral design problems. In particular, we show that the risk-sharing classification problem is equivalent to an implicitly defined optimization problem with unequal, implicitly defined but unknown, weights for each data point. We implement our methodology in a binary classification scenario on several different data sets and carry out numerical comparison with classifiers which are obtained using the Huber loss function and other loss functions known in the literature. We formulate specific risk-averse support vector machines in order to demonstrate the viability of our method.
A Missing Information Loss function for implicit feedback datasets
Latent factor models for Recommender Systems with implicit feedback typically treat unobserved user-item interactions (i.e. missing information) as negative feedback. This is frequently done either through negative sampling (point--wise loss) or with a ranking loss function (pair-- or list--wise estimation). Since a zero preference recommendation is a valid solution for most common objective functions, regarding unknown values as actual zeros results in users having a zero preference recommendation for most of the available items. In this paper we propose a novel objective function, the \emph{Missing Information Loss} (MIL), that explicitly forbids treating unobserved user-item interactions as positive or negative feedback. We apply this loss to both traditional Matrix Factorization and user--based Denoising Autoencoder, and compare it with other established objective functions such as cross-entropy (both point- and pair-wise) or the recently proposed multinomial log-likelihood. MIL achieves competitive performance in ranking-aware metrics when applied to three datasets. Furthermore, we show that such a relevance in the recommendation is obtained while displaying popular items less frequently (up to a $20 \%$ decrease with respect to the best competing method). This debiasing from the recommendation of popular items favours the appearance of infrequent items (up to a $50 \%$ increase of long-tail recommendations), a valuable feature for Recommender Systems with a large catalogue of products.
Convolutional Neural Network Architectures for Signals Supported on Graphs
Two architectures that generalize convolutional neural networks (CNNs) for the processing of signals supported on graphs are introduced. We start with the selection graph neural network (GNN), which replaces linear time invariant filters with linear shift invariant graph filters to generate convolutional features and reinterprets pooling as a possibly nonlinear subsampling stage where nearby nodes pool their information in a set of preselected sample nodes. A key component of the architecture is to remember the position of sampled nodes to permit computation of convolutional features at deeper layers. The second architecture, dubbed aggregation GNN, diffuses the signal through the graph and stores the sequence of diffused components observed by a designated node. This procedure effectively aggregates all components into a stream of information having temporal structure to which the convolution and pooling stages of regular CNNs can be applied. A multinode version of aggregation GNNs is further introduced for operation in large scale graphs. An important property of selection and aggregation GNNs is that they reduce to conventional CNNs when particularized to time signals reinterpreted as graph signals in a circulant graph. Comparative numerical analyses are performed in a source localization application over synthetic and real-world networks. Performance is also evaluated for an authorship attribution problem and text category classification. Multinode aggregation GNNs are consistently the best performing GNN architecture.
Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding
In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.
Compact Factorization of Matrices Using Generalized Round-Rank
Matrix factorization is a well-studied task in machine learning for compactly representing large, noisy data. In our approach, instead of using the traditional concept of matrix rank, we define a new notion of link-rank based on a non-linear link function used within factorization. In particular, by applying the round function on a factorization to obtain ordinal-valued matrices, we introduce generalized round-rank (GRR). We show that not only are there many full-rank matrices that are low GRR, but further, that these matrices cannot be approximated well by low-rank linear factorization. We provide uniqueness conditions of this formulation and provide gradient descent-based algorithms. Finally, we present experiments on real-world datasets to demonstrate that the GRR-based factorization is significantly more accurate than linear factorization, while converging faster and using lower rank representations.
Falsification of Cyber-Physical Systems Using Deep Reinforcement Learning
With the rapid development of software and distributed computing, Cyber-Physical Systems (CPS) are widely adopted in many application areas, e.g., smart grid, autonomous automobile. It is difficult to detect defects in CPS models due to the complexities involved in the software and physical systems. To find defects in CPS models efficiently, robustness guided falsification of CPS is introduced. Existing methods use several optimization techniques to generate counterexamples, which falsify the given properties of a CPS. However those methods may require a large number of simulation runs to find the counterexample and is far from practical. In this work, we explore state-of-the-art Deep Reinforcement Learning (DRL) techniques to reduce the number of simulation runs required to find such counterexamples. We report our method and the preliminary evaluation results.
Internal node bagging
We introduce a novel view to understand how dropout works as an inexplicit ensemble learning method, which doesn't point out how many and which nodes to learn a certain feature. We propose a new training method named internal node bagging, it explicitly forces a group of nodes to learn a certain feature in training time, and combine those nodes to be one node in inference time. It means we can use much more parameters to improve model's fitting ability in training time while keeping model small in inference time. We test our method on several benchmark datasets and find it performs significantly better than dropout on small models.
Privately Learning High-Dimensional Distributions
We present novel, computationally efficient, and differentially private algorithms for two fundamental high-dimensional learning problems: learning a multivariate Gaussian and learning a product distribution over the Boolean hypercube in total variation distance. The sample complexity of our algorithms nearly matches the sample complexity of the optimal non-private learners for these tasks in a wide range of parameters, showing that privacy comes essentially for free for these problems. In particular, in contrast to previous approaches, our algorithm for learning Gaussians does not require strong a priori bounds on the range of the parameters. Our algorithms introduce a novel technical approach to reducing the sensitivity of the estimation procedure that we call recursive private preconditioning.
Adaptive Scaling for Sparse Detection in Information Extraction
This paper focuses on detection tasks in information extraction, where positive instances are sparsely distributed and models are usually evaluated using F-measure on positive classes. These characteristics often result in deficient performance of neural network based detection models. In this paper, we propose adaptive scaling, an algorithm which can handle the positive sparsity problem and directly optimize over F-measure via dynamic cost-sensitive learning. To this end, we borrow the idea of marginal utility from economics and propose a theoretical framework for instance importance measuring without introducing any additional hyper-parameters. Experiments show that our algorithm leads to a more effective and stable training of neural network based detection models.
Joint Bootstrapping Machines for High Confidence Relation Extraction
Semi-supervised bootstrapping techniques for relationship extraction from text iteratively expand a set of initial seed instances. Due to the lack of labeled data, a key challenge in bootstrapping is semantic drift: if a false positive instance is added during an iteration, then all following iterations are contaminated. We introduce BREX, a new bootstrapping method that protects against such contamination by highly effective confidence assessment. This is achieved by using entity and template seeds jointly (as opposed to just one as in previous work), by expanding entities and templates in parallel and in a mutually constraining fashion in each iteration and by introducing higherquality similarity measures for templates. Experimental results show that BREX achieves an F1 that is 0.13 (0.87 vs. 0.74) better than the state of the art for four relationships.
An Universal Image Attractiveness Ranking Framework
We propose a new framework to rank image attractiveness using a novel pairwise deep network trained with a large set of side-by-side multi-labeled image pairs from a web image index. The judges only provide relative ranking between two images without the need to directly assign an absolute score, or rate any predefined image attribute, thus making the rating more intuitive and accurate. We investigate a deep attractiveness rank net (DARN), a combination of deep convolutional neural network and rank net, to directly learn an attractiveness score mean and variance for each image and the underlying criteria the judges use to label each pair. The extension of this model (DARN-V2) is able to adapt to individual judge's personal preference. We also show the attractiveness of search results are significantly improved by using this attractiveness information in a real commercial search engine. We evaluate our model against other state-of-the-art models on our side-by-side web test data and another public aesthetic data set. With much less judgments (1M vs 50M), our model outperforms on side-by-side labeled data, and is comparable on data labeled by absolute score.
On the Limitation of MagNet Defense against $L_1$-based Adversarial Examples
In recent years, defending adversarial perturbations to natural examples in order to build robust machine learning models trained by deep neural networks (DNNs) has become an emerging research field in the conjunction of deep learning and security. In particular, MagNet consisting of an adversary detector and a data reformer is by far one of the strongest defenses in the black-box oblivious attack setting, where the attacker aims to craft transferable adversarial examples from an undefended DNN model to bypass an unknown defense module deployed on the same DNN model. Under this setting, MagNet can successfully defend a variety of attacks in DNNs, including the high-confidence adversarial examples generated by the Carlini and Wagner's attack based on the $L_2$ distortion metric. However, in this paper, under the same attack setting we show that adversarial examples crafted based on the $L_1$ distortion metric can easily bypass MagNet and mislead the target DNN image classifiers on MNIST and CIFAR-10. We also provide explanations on why the considered approach can yield adversarial examples with superior attack performance and conduct extensive experiments on variants of MagNet to verify its lack of robustness to $L_1$ distortion based attacks. Notably, our results substantially weaken the assumption of effective threat models on MagNet that require knowing the deployed defense technique when attacking DNNs (i.e., the gray-box attack setting).
Head Mounted Pupil Tracking Using Convolutional Neural Network
Pupil tracking is an important branch of object tracking which require high precision. We investigate head mounted pupil tracking which is often more convenient and precise than remote pupil tracking, but also more challenging. When pupil tracking suffers from noise like bad illumination, detection precision dramatically decreases. Due to the appearance of head mounted recording device and public benchmark image datasets, head mounted tracking algorithms have become easier to design and evaluate. In this paper, we propose a robust head mounted pupil detection algorithm which uses a Convolutional Neural Network (CNN) to combine different features of pupil. Here we consider three features of pupil. Firstly, we use three pupil feature-based algorithms to find pupil center independently. Secondly, we use a CNN to evaluate the quality of each result. Finally, we select the best result as output. The experimental results show that our proposed algorithm performs better than the present state-of-art.
Versatile Auxiliary Classifier with Generative Adversarial Network (VAC+GAN)
One of the most interesting challenges in Artificial Intelligence is to train conditional generators which are able to provide labeled adversarial samples drawn from a specific distribution. In this work, a new framework is presented to train a deep conditional generator by placing a classifier in parallel with the discriminator and back propagate the classification error through the generator network. The method is versatile and is applicable to any variations of Generative Adversarial Network (GAN) implementation, and also gives superior results compared to similar methods.
Occluded object reconstruction for first responders with augmented reality glasses using conditional generative adversarial networks
Firefighters suffer a variety of life-threatening risks, including line-of-duty deaths, injuries, and exposures to hazardous substances. Support for reducing these risks is important. We built a partially occluded object reconstruction method on augmented reality glasses for first responders. We used a deep learning based on conditional generative adversarial networks to train associations between the various images of flammable and hazardous objects and their partially occluded counterparts. Our system then reconstructed an image of a new flammable object. Finally, the reconstructed image was superimposed on the input image to provide "transparency". The system imitates human learning about the laws of physics through experience by learning the shape of flammable objects and the flame characteristics.
A Taxonomy for Neural Memory Networks
In this paper, a taxonomy for memory networks is proposed based on their memory organization. The taxonomy includes all the popular memory networks: vanilla recurrent neural network (RNN), long short term memory (LSTM ), neural stack and neural Turing machine and their variants. The taxonomy puts all these networks under a single umbrella and shows their relative expressive power , i.e. vanilla RNN <=LSTM<=neural stack<=neural RAM. The differences and commonality between these networks are analyzed. These differences are also connected to the requirements of different tasks which can give the user instructions of how to choose or design an appropriate memory network for a specific task. As a conceptual simplified class of problems, four tasks of synthetic symbol sequences: counting, counting with interference, reversing and repeat counting are developed and tested to verify our arguments. And we use two natural language processing problems to discuss how this taxonomy helps choosing the appropriate neural memory networks for real world problem.
OMG - Emotion Challenge Solution
This short paper describes our solution to the 2018 IEEE World Congress on Computational Intelligence One-Minute Gradual-Emotional Behavior Challenge, whose goal was to estimate continuous arousal and valence values from short videos. We designed four base regression models using visual and audio features, and then used a spectral approach to fuse them to obtain improved performance.
Word2Vec and Doc2Vec in Unsupervised Sentiment Analysis of Clinical Discharge Summaries
In this study, we explored application of Word2Vec and Doc2Vec for sentiment analysis of clinical discharge summaries. We applied unsupervised learning since the data sets did not have sentiment annotations. Note that unsupervised learning is a more realistic scenario than supervised learning which requires an access to a training set of sentiment-annotated data. We aim to detect if there exists any underlying bias towards or against a certain disease. We used SentiWordNet to establish a gold sentiment standard for the data sets and evaluate performance of Word2Vec and Doc2Vec methods. We have shown that the Word2vec and Doc2Vec methods complement each other results in sentiment analysis of the data sets.
Sample-to-Sample Correspondence for Unsupervised Domain Adaptation
The assumption that training and testing samples are generated from the same distribution does not always hold for real-world machine-learning applications. The procedure of tackling this discrepancy between the training (source) and testing (target) domains is known as domain adaptation. We propose an unsupervised version of domain adaptation that considers the presence of only unlabelled data in the target domain. Our approach centers on finding correspondences between samples of each domain. The correspondences are obtained by treating the source and target samples as graphs and using a convex criterion to match them. The criteria used are first-order and second-order similarities between the graphs as well as a class-based regularization. We have also developed a computationally efficient routine for the convex optimization, thus allowing the proposed method to be used widely. To verify the effectiveness of the proposed method, computer simulations were conducted on synthetic, image classification and sentiment classification datasets. Results validated that the proposed local sample-to-sample matching method out-performs traditional moment-matching methods and is competitive with respect to current local domain-adaptation methods.
Deep Factorization Machines for Knowledge Tracing
This paper introduces our solution to the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (SLAM). We used deep factorization machines, a wide and deep learning model of pairwise relationships between users, items, skills, and other entities considered. Our solution (AUC 0.815) hopefully managed to beat the logistic regression baseline (AUC 0.774) but not the top performing model (AUC 0.861) and reveals interesting strategies to build upon item response theory models.
Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound
Segmentation of the left atrium and deriving its size can help to predict and detect various cardiovascular conditions. Automation of this process in 3D Ultrasound image data is desirable, since manual delineations are time-consuming, challenging and observer-dependent. Convolutional neural networks have made improvements in computer vision and in medical image analysis. They have successfully been applied to segmentation tasks and were extended to work on volumetric data. In this paper we introduce a combined deep-learning based approach on volumetric segmentation in Ultrasound acquisitions with incorporation of prior knowledge about left atrial shape and imaging device. The results show, that including a shape prior helps the domain adaptation and the accuracy of segmentation is further increased with adversarial learning.
Ultra Power-Efficient CNN Domain Specific Accelerator with 9.3TOPS/Watt for Mobile and Embedded Applications
Computer vision performances have been significantly improved in recent years by Convolutional Neural Networks(CNN). Currently, applications using CNN algorithms are deployed mainly on general purpose hardwares, such as CPUs, GPUs or FPGAs. However, power consumption, speed, accuracy, memory footprint, and die size should all be taken into consideration for mobile and embedded applications. Domain Specific Architecture (DSA) for CNN is the efficient and practical solution for CNN deployment and implementation. We designed and produced a 28nm Two-Dimensional CNN-DSA accelerator with an ultra power-efficient performance of 9.3TOPS/Watt and with all processing done in the internal memory instead of outside DRAM. It classifies 224x224 RGB image inputs at more than 140fps with peak power consumption at less than 300mW and an accuracy comparable to the VGG benchmark. The CNN-DSA accelerator is reconfigurable to support CNN model coefficients of various layer sizes and layer types, including convolution, depth-wise convolution, short-cut connections, max pooling, and ReLU. Furthermore, in order to better support real-world deployment for various application scenarios, especially with low-end mobile and embedded platforms and MCUs (Microcontroller Units), we also designed algorithms to fully utilize the CNN-DSA accelerator efficiently by reducing the dependency on external accelerator computation resources, including implementation of Fully-Connected (FC) layers within the accelerator and compression of extracted features from the CNN-DSA accelerator. Live demos with our CNN-DSA accelerator on mobile and embedded systems show its capabilities to be widely and practically applied in the real world.
A Multi-State Diagnosis and Prognosis Framework with Feature Learning for Tool Condition Monitoring
In this paper, a multi-state diagnosis and prognosis (MDP) framework is proposed for tool condition monitoring via a deep belief network based multi-state approach (DBNMS). For fault diagnosis, a cost-sensitive deep belief network (namely ECS-DBN) is applied to deal with the imbalanced data problem for tool state estimation. An appropriate prognostic degradation model is then applied for tool wear estimation based on the different tool states. The proposed framework has the advantage of automatic feature representation learning and shows better performance in accuracy and robustness. The effectiveness of the proposed DBNMS is validated using a real-world dataset obtained from the gun drilling process. This dataset contains a large amount of measured signals involving different tool geometries under various operating conditions. The DBNMS is examined for both the tool state estimation and tool wear estimation tasks. In the experimental studies, the prediction results are evaluated and compared with popular machine learning approaches, which show the superior performance of the proposed DBNMS approach.
Real-time Air Pollution prediction model based on Spatiotemporal Big data
Air pollution is one of the most concerns for urban areas. Many countries have constructed monitoring stations to hourly collect pollution values. Recently, there is a research in Daegu city, Korea for real-time air quality monitoring via sensors installed on taxis running across the whole city. The collected data is huge (1-second interval) and in both Spatial and Temporal format. In this paper, based on this spatiotemporal Big data, we propose a real-time air pollution prediction model based on Convolutional Neural Network (CNN) algorithm for image-like Spatial distribution of air pollution. Regarding to Temporal information in the data, we introduce a combination of a Long Short-Term Memory (LSTM) unit for time series data and a Neural Network model for other air pollution impact factors such as weather conditions to build a hybrid prediction model. This model is simple in architecture but still brings good prediction ability.
Adapting Mask-RCNN for Automatic Nucleus Segmentation
Automatic segmentation of microscopy images is an important task in medical image processing and analysis. Nucleus detection is an important example of this task. Mask-RCNN is a recently proposed state-of-the-art algorithm for object detection, object localization, and object instance segmentation of natural images. In this paper we demonstrate that Mask-RCNN can be used to perform highly effective and efficient automatic segmentations of a wide range of microscopy images of cell nuclei, for a variety of cells acquired under a variety of conditions.
Machine Learning for Exam Triage
In this project, we extend the state-of-the-art CheXNet (Rajpurkar et al. [2017]) by making use of the additional non-image features in the dataset. Our model produced better AUROC scores than the original CheXNet.
Direct Runge-Kutta Discretization Achieves Acceleration
We study gradient-based optimization methods obtained by directly discretizing a second-order ordinary differential equation (ODE) related to the continuous limit of Nesterov's accelerated gradient method. When the function is smooth enough, we show that acceleration can be achieved by a stable discretization of this ODE using standard Runge-Kutta integrators. Specifically, we prove that under Lipschitz-gradient, convexity and order-$(s+2)$ differentiability assumptions, the sequence of iterates generated by discretizing the proposed second-order ODE converges to the optimal solution at a rate of $\mathcal{O}({N^{-2\frac{s}{s+1}}})$, where $s$ is the order of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local flatness condition on the objective, under which rates even faster than $\mathcal{O}(N^{-2})$ can be achieved with low-order integrators and only gradient information. Notably, this flatness condition is satisfied by several standard loss functions used in machine learning. We provide numerical experiments that verify the theoretical rates predicted by our results.
Reconstruction of Simulation-Based Physical Field by Reconstruction Neural Network Method
A variety of modeling techniques have been developed in the past decade to reduce the computational expense and improve the accuracy of modeling. In this study, a new framework of modeling is suggested. Compared with other popular methods, a distinctive characteristic is "from image based model to analysis based model (e.g. stress, strain, and deformation)". In such a framework, a reconstruction neural network (ReConNN) model designed for simulation-based physical field's reconstruction is proposed. The ReConNN contains two submodels that are convolutional neural network (CNN) and generative adversarial net-work (GAN). The CNN is employed to construct the mapping between contour images of physical field and objective function. Subsequently, the GAN is utilized to generate more images which are similar to the existing contour images. Finally, Lagrange polynomial is applied to complete the reconstruction. However, the existing CNN models are commonly applied to the classification tasks, which seem to be difficult to handle with regression tasks of images. Meanwhile, the existing GAN architectures are insufficient to generate high-accuracy "pseudo contour images". Therefore, a ReConNN model based on a Convolution in Convolution (CIC) and a Convolutional AutoEncoder based on Wasserstein Generative Adversarial Network (WGAN-CAE) is suggested. To evaluate the performance of the proposed model representatively, a classical topology optimization procedure is considered. Then the ReConNN is utilized to the reconstruction of heat transfer process of a pin fin heat sink. It demonstrates that the proposed ReConNN model is proved to be a potential capability to reconstruct physical field for multidisciplinary, such as structural optimization.
Sign-Full Random Projections
The method of 1-bit ("sign-sign") random projections has been a popular tool for efficient search and machine learning on large datasets. Given two $D$-dim data vectors $u$, $v\in\mathbb{R}^D$, one can generate $x = \sum_{i=1}^D u_i r_i$, and $y = \sum_{i=1}^D v_i r_i$, where $r_i\sim N(0,1)$ iid. The "collision probability" is ${Pr}\left(sgn(x)=sgn(y)\right) = 1-\frac{\cos^{-1}\rho}{\pi}$, where $\rho = \rho(u,v)$ is the cosine similarity. We develop "sign-full" random projections by estimating $\rho$ from (e.g.,) the expectation $E(sgn(x)y)=\sqrt{\frac{2}{\pi}} \rho$, which can be further substantially improved by normalizing $y$. For nonnegative data, we recommend an interesting estimator based on $E\left(y_- 1_{x\geq 0} + y_+ 1_{x<0}\right)$ and its normalized version. The recommended estimator almost matches the accuracy of the (computationally expensive) maximum likelihood estimator. At high similarity ($\rho\rightarrow1$), the asymptotic variance of recommended estimator is only $\frac{4}{3\pi} \approx 0.4$ of the estimator for sign-sign projections. At small $k$ and high similarity, the improvement would be even much more substantial.
Decision Tree Design for Classification in Crowdsourcing Systems
In this paper, we present a novel sequential paradigm for classification in crowdsourcing systems. Considering that workers are unreliable and they perform the tests with errors, we study the construction of decision trees so as to minimize the probability of mis-classification. By exploiting the connection between probability of mis-classification and entropy at each level of the decision tree, we propose two algorithms for decision tree design. Furthermore, the worker assignment problem is studied when workers can be assigned to different tests of the decision tree to provide a trade-off between classification cost and resulting error performance. Numerical results are presented for illustration.
Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory. Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multi-linear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state of the art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable.
Convolutional-Recurrent Neural Networks for Speech Enhancement
We propose an end-to-end model based on convolutional and recurrent neural networks for speech enhancement. Our model is purely data-driven and does not make any assumptions about the type or the stationarity of the noise. In contrast to existing methods that use multilayer perceptrons (MLPs), we employ both convolutional and recurrent neural network architectures. Thus, our approach allows us to exploit local structures in both the frequency and temporal domains. By incorporating prior knowledge of speech signals into the design of model structures, we build a model that is more data-efficient and achieves better generalization on both seen and unseen noise. Based on experiments with synthetic data, we demonstrate that our model outperforms existing methods, improving PESQ by up to 0.6 on seen noise and 0.64 on unseen noise.
$\ell_1$-regression with Heavy-tailed Distributions
In this paper, we consider the problem of linear regression with heavy-tailed distributions. Different from previous studies that use the squared loss to measure the performance, we choose the absolute loss, which is capable of estimating the conditional median. To address the challenge that both the input and output could be heavy-tailed, we propose a truncated minimization problem, and demonstrate that it enjoys an $\widetilde{O}(\sqrt{d/n})$ excess risk, where $d$ is the dimensionality and $n$ is the number of samples. Compared with traditional work on $\ell_1$-regression, the main advantage of our result is that we achieve a high-probability risk bound without exponential moment conditions on the input and output. Furthermore, if the input is bounded, we show that the classical empirical risk minimization is competent for $\ell_1$-regression even when the output is heavy-tailed.
Compressed Dictionary Learning
In this paper we show that the computational complexity of the Iterative Thresholding and K-residual-Means (ITKrM) algorithm for dictionary learning can be significantly reduced by using dimensionality-reduction techniques based on the Johnson-Lindenstrauss lemma. The dimensionality reduction is efficiently carried out with the fast Fourier transform. We introduce the Iterative compressed-Thresholding and K-Means (IcTKM) algorithm for fast dictionary learning and study its convergence properties. We show that IcTKM can locally recover an incoherent, overcomplete generating dictionary of $K$ atoms from training signals of sparsity level $S$ with high probability. Fast dictionary learning is achieved by embedding the training data and the dictionary into $m < d$ dimensions, and recovery is shown to be locally stable with an embedding dimension which scales as low as $m = O(S \log^4 S \log^3 K)$. The compression effectively shatters the data dimension bottleneck in the computational cost of ITKrM, reducing it by a factor $O(m/d)$. Our theoretical results are complemented with numerical simulations which demonstrate that IcTKM is a powerful, low-cost algorithm for learning dictionaries from high-dimensional data sets.
Utilizing Device-level Demand Forecasting for Flexibility Markets - Full Version
The uncertainty in the power supply due to fluctuating Renewable Energy Sources (RES) has severe (financial and other) implications for energy market players. In this paper, we present a device-level Demand Response (DR) scheme that captures the atomic (all available) flexibilities in energy demand and provides the largest possible solution space to generate demand/supply schedules that minimize market imbalances. We evaluate the effectiveness and feasibility of widely used forecasting models for device-level flexibility analysis. In a typical device-level flexibility forecast, a market player is more concerned with the \textit{utility} that the demand flexibility brings to the market, rather than the intrinsic forecast accuracy. In this regard, we provide comprehensive predictive modeling and scheduling of demand flexibility from household appliances to demonstrate the (financial and otherwise) viability of introducing flexibility-based DR in the Danish/Nordic market. Further, we investigate the correlation between the potential utility and the accuracy of the demand forecast model. Furthermore, we perform a number of experiments to determine the data granularity that provides the best financial reward to market players for adopting the proposed DR scheme. A cost-benefit analysis of forecast results shows that even with somewhat low forecast accuracy, market players can achieve regulation cost savings of 54% of the theoretically optimal.
Investigating Audio, Visual, and Text Fusion Methods for End-to-End Automatic Personality Prediction
We propose a tri-modal architecture to predict Big Five personality trait scores from video clips with different channels for audio, text, and video data. For each channel, stacked Convolutional Neural Networks are employed. The channels are fused both on decision-level and by concatenating their respective fully connected layers. It is shown that a multimodal fusion approach outperforms each single modality channel, with an improvement of 9.4\% over the best individual modality (video). Full backpropagation is also shown to be better than a linear combination of modalities, meaning complex interactions between modalities can be leveraged to build better models. Furthermore, we can see the prediction relevance of each modality for each trait. The described model can be used to increase the emotional intelligence of virtual agents.
Adversarial adaptive 1-D convolutional neural networks for bearing fault diagnosis under varying working condition
Traditional intelligent fault diagnosis of rolling bearings work well only under a common assumption that the labeled training data (source domain) and unlabeled testing data (target domain) are drawn from the same distribution. However, in many real-world applications, this assumption does not hold, especially when the working condition varies. In this paper, a new adversarial adaptive 1-D CNN called A2CNN is proposed to address this problem. A2CNN consists of four parts, namely, a source feature extractor, a target feature extractor, a label classifier and a domain discriminator. The layers between the source and target feature extractor are partially untied during the training stage to take both training efficiency and domain adaptation into consideration. Experiments show that A2CNN has strong fault-discriminative and domain-invariant capacity, and therefore can achieve high accuracy under different working conditions. We also visualize the learned features and the networks to explore the reasons behind the high performance of our proposed model.
COBRAS-TS: A new approach to Semi-Supervised Clustering of Time Series
Clustering is ubiquitous in data analysis, including analysis of time series. It is inherently subjective: different users may prefer different clusterings for a particular dataset. Semi-supervised clustering addresses this by allowing the user to provide examples of instances that should (not) be in the same cluster. This paper studies semi-supervised clustering in the context of time series. We show that COBRAS, a state-of-the-art semi-supervised clustering method, can be adapted to this setting. We refer to this approach as COBRAS-TS. An extensive experimental evaluation supports the following claims: (1) COBRAS-TS far outperforms the current state of the art in semi-supervised clustering for time series, and thus presents a new baseline for the field; (2) COBRAS-TS can identify clusters with separated components; (3) COBRAS-TS can identify clusters that are characterized by small local patterns; (4) a small amount of semi-supervision can greatly improve clustering quality for time series; (5) the choice of the clustering algorithm matters (contrary to earlier claims in the literature).
Markov Chain Neural Networks
In this work we present a modified neural network model which is capable to simulate Markov Chains. We show how to express and train such a network, how to ensure given statistical properties reflected in the training data and we demonstrate several applications where the network produces non-deterministic outcomes. One example is a random walker model, e.g. useful for simulation of Brownian motions or a natural Tic-Tac-Toe network which ensures non-deterministic game behavior.
Cognition in Dynamical Systems, Second Edition
Cognition is the process of knowing. As carried out by a dynamical system, it is the process by which the system absorbs information into its state. A complex network of agents cognizes knowledge about its environment, internal dynamics and initial state by forming emergent, macro-level patterns. Such patterns require each agent to find its place while partially aware of the whole pattern. Such partial awareness can be achieved by separating the system dynamics into two parts by timescale: the propagation dynamics and the pattern dynamics. The fast propagation dynamics describe the spread of signals across the network. If they converge to a fixed point for any quasi-static state of the slow pattern dynamics, that fixed point represents an aggregate of macro-level information. On longer timescales, agents coordinate via positive feedback to form patterns, which are defined using closed walks in the graph of agents. Patterns can be coherent, in that every part of the pattern depends on every other part for context. Coherent patterns are acausal, in that (a) they cannot be predicted and (b) no part of the stored knowledge can be mapped to any part of the pattern, or vice versa. A cognitive network's knowledge is encoded or embodied by the selection of patterns which emerge. The theory of cognition summarized here can model autocatalytic reaction-diffusion systems, artificial neural networks, market economies and ant colony optimization, among many other real and virtual systems. This theory suggests a new understanding of complexity as a lattice of contexts rather than a single measure.
ECG Heartbeat Classification: A Deep Transferable Representation
Electrocardiogram (ECG) can be reliably used as a measure to monitor the functionality of the cardiovascular system. Recently, there has been a great attention towards accurate categorization of heartbeats. While there are many commonalities between different ECG conditions, the focus of most studies has been classifying a set of conditions on a dataset annotated for that task rather than learning and employing a transferable knowledge between different tasks. In this paper, we propose a method based on deep convolutional neural networks for the classification of heartbeats which is able to accurately classify five different arrhythmias in accordance with the AAMI EC57 standard. Furthermore, we suggest a method for transferring the knowledge acquired on this task to the myocardial infarction (MI) classification task. We evaluated the proposed method on PhysionNet's MIT-BIH and PTB Diagnostics datasets. According to the results, the suggested method is able to make predictions with the average accuracies of 93.4% and 95.9% on arrhythmia classification and MI classification, respectively.
Credit risk prediction in an imbalanced social lending environment
Credit risk prediction is an effective way of evaluating whether a potential borrower will repay a loan, particularly in peer-to-peer lending where class imbalance problems are prevalent. However, few credit risk prediction models for social lending consider imbalanced data and, further, the best resampling technique to use with imbalanced data is still controversial. In an attempt to address these problems, this paper presents an empirical comparison of various combinations of classifiers and resampling techniques within a novel risk assessment methodology that incorporates imbalanced data. The credit predictions from each combination are evaluated with a G-mean measure to avoid bias towards the majority class, which has not been considered in similar studies. The results reveal that combining random forest and random under-sampling may be an effective strategy for calculating the credit risk associated with loan applicants in social lending markets.
An Evaluation of Classification and Outlier Detection Algorithms
This paper evaluates algorithms for classification and outlier detection accuracies in temporal data. We focus on algorithms that train and classify rapidly and can be used for systems that need to incorporate new data regularly. Hence, we compare the accuracy of six fast algorithms using a range of well-known time-series datasets. The analyses demonstrate that the choice of algorithm is task and data specific but that we can derive heuristics for choosing. Gradient Boosting Machines are generally best for classification but there is no single winner for outlier detection though Gradient Boosting Machines (again) and Random Forest are better. Hence, we recommend running evaluations of a number of algorithms using our heuristics.
Modelling cross-dependencies between Spain's regional tourism markets with an extension of the Gaussian process regression model
This study presents an extension of the Gaussian process regression model for multiple-input multiple-output forecasting. This approach allows modelling the cross-dependencies between a given set of input variables and generating a vectorial prediction. Making use of the existing correlations in international tourism demand to all seventeen regions of Spain, the performance of the proposed model is assessed in a multiple-step-ahead forecasting comparison. The results of the experiment in a multivariate setting show that the Gaussian process regression model significantly improves the forecasting accuracy of a multi-layer perceptron neural network used as a benchmark. The results reveal that incorporating the connections between different markets in the modelling process may prove very useful to refine predictions at a regional level.
A Dynamic Model for Traffic Flow Prediction Using Improved DRN
Real-time traffic flow prediction can not only provide travelers with reliable traffic information so that it can save people's time, but also assist the traffic management agency to manage traffic system. It can greatly improve the efficiency of the transportation system. Traditional traffic flow prediction approaches usually need a large amount of data but still give poor performances. With the development of deep learning, researchers begin to pay attention to artificial neural networks (ANNs) such as RNN and LSTM. However, these ANNs are very time-consuming. In our research, we improve the Deep Residual Network and build a dynamic model which previous researchers hardly use. We firstly integrate the input and output of the $i^{th}$ layer to the input of the $i+1^{th}$ layer and prove that each layer will fit a simpler function so that the error rate will be much smaller. Then, we use the concept of online learning in our model to update pre-trained model during prediction. Our result shows that our model has higher accuracy than some state-of-the-art models. In addition, our dynamic model can perform better in practical applications.
Approximate Temporal Difference Learning is a Gradient Descent for Reversible Policies
In reinforcement learning, temporal difference (TD) is the most direct algorithm to learn the value function of a policy. For large or infinite state spaces, exact representations of the value function are usually not available, and it must be approximated by a function in some parametric family. However, with \emph{nonlinear} parametric approximations (such as neural networks), TD is not guaranteed to converge to a good approximation of the true value function within the family, and is known to diverge even in relatively simple cases. TD lacks an interpretation as a stochastic gradient descent of an error between the true and approximate value functions, which would provide such guarantees. We prove that approximate TD is a gradient descent provided the current policy is \emph{reversible}. This holds even with nonlinear approximations. A policy with transition probabilities $P(s,s')$ between states is reversible if there exists a function $\mu$ over states such that $\frac{P(s,s')}{P(s',s)}=\frac{\mu(s')}{\mu(s)}$. In particular, every move can be undone with some probability. This condition is restrictive; it is satisfied, for instance, for a navigation problem in any unoriented graph. In this case, approximate TD is exactly a gradient descent of the \emph{Dirichlet norm}, the norm of the difference of \emph{gradients} between the true and approximate value functions. The Dirichlet norm also controls the bias of approximate policy gradient. These results hold even with no decay factor ($\gamma=1$) and do not rely on contractivity of the Bellman operator, thus proving stability of TD even with $\gamma=1$ for reversible policies.
Modelling tourism demand to Spain with machine learning techniques. The impact of forecast horizon on model selection
This study assesses the influence of the forecast horizon on the forecasting performance of several machine learning techniques. We compare the fo recast accuracy of Support Vector Regression (SVR) to Neural Network (NN) models, using a linear model as a benchmark. We focus on international tourism demand to all seventeen regions of Spain. The SVR with a Gaussian radial basis function kernel outperforms the rest of the models for the longest forecast horizons. We also find that machine learning methods improve their forecasting accuracy with respect to linear models as forecast horizons increase. This result shows the suitability of SVR for medium and long term forecasting.
AI safety via debate
To make AI systems broadly useful for challenging real-world tasks, we need them to learn complex human goals and preferences. One approach to specifying complex goals asks humans to judge during training which agent behaviors are safe and useful, but this approach can fail if the task is too complicated for a human to directly judge. To help address this concern, we propose training agents via self play on a zero sum debate game. Given a question or proposed action, two agents take turns making short statements up to a limit, then a human judges which of the agents gave the most true, useful information. In an analogy to complexity theory, debate with optimal play can answer any question in PSPACE given polynomial time judges (direct judging answers only NP questions). In practice, whether debate works involves empirical questions about humans and the tasks we want AIs to perform, plus theoretical questions about the meaning of AI alignment. We report results on an initial MNIST experiment where agents compete to convince a sparse classifier, boosting the classifier's accuracy from 59.4% to 88.9% given 6 pixels and from 48.2% to 85.2% given 4 pixels. Finally, we discuss theoretical and practical aspects of the debate model, focusing on potential weaknesses as the model scales up, and we propose future human and computer experiments to test these properties.
Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review
The framework of reinforcement learning or optimal control provides a mathematical formalization of intelligent decision making that is powerful and broadly applicable. While the general form of the reinforcement learning problem enables effective reasoning about uncertainty, the connection between reinforcement learning and inference in probabilistic models is not immediately obvious. However, such a connection has considerable value when it comes to algorithm design: formalizing a problem as probabilistic inference in principle allows us to bring to bear a wide array of approximate inference tools, extend the model in flexible and powerful ways, and reason about compositionality and partial observability. In this article, we will discuss how a generalization of the reinforcement learning or optimal control problem, which is sometimes termed maximum entropy reinforcement learning, is equivalent to exact probabilistic inference in the case of deterministic dynamics, and variational inference in the case of stochastic dynamics. We will present a detailed derivation of this framework, overview prior work that has drawn on this and related ideas to propose new reinforcement learning and control algorithms, and describe perspectives on future research.
Trainability and Accuracy of Neural Networks: An Interacting Particle System Approach
Neural networks, a central tool in machine learning, have demonstrated remarkable, high fidelity performance on image recognition and classification tasks. These successes evince an ability to accurately represent high dimensional functions, but rigorous results about the approximation error of neural networks after training are few. Here we establish conditions for global convergence of the standard optimization algorithm used in machine learning applications, stochastic gradient descent (SGD), and quantify the scaling of its error with the size of the network. This is done by reinterpreting SGD as the evolution of a particle system with interactions governed by a potential related to the objective or "loss" function used to train the network. We show that, when the number $n$ of units is large, the empirical distribution of the particles descends on a convex landscape towards the global minimum at a rate independent of $n$, with a resulting approximation error that universally scales as $O(n^{-1})$. These properties are established in the form of a Law of Large Numbers and a Central Limit Theorem for the empirical distribution. Our analysis also quantifies the scale and nature of the noise introduced by SGD and provides guidelines for the step size and batch size to use when training a neural network. We illustrate our findings on examples in which we train neural networks to learn the energy function of the continuous 3-spin model on the sphere. The approximation error scales as our analysis predicts in as high a dimension as $d=25$.
A Scalable Discrete-Time Survival Model for Neural Networks
There is currently great interest in applying neural networks to prediction tasks in medicine. It is important for predictive models to be able to use survival data, where each patient has a known follow-up time and event/censoring indicator. This avoids information loss when training the model and enables generation of predicted survival curves. In this paper, we describe a discrete-time survival model that is designed to be used with neural networks, which we refer to as Nnet-survival. The model is trained with the maximum likelihood method using minibatch stochastic gradient descent (SGD). The use of SGD enables rapid convergence and application to large datasets that do not fit in memory. The model is flexible, so that the baseline hazard rate and the effect of the input data on hazard probability can vary with follow-up time. It has been implemented in the Keras deep learning framework, and source code for the model and several examples is available online. We demonstrate the performance of the model on both simulated and real data and compare it to existing models Cox-nnet and Deepsurv.
Lidar Cloud Detection with Fully Convolutional Networks
In this contribution, we present a novel approach for segmenting laser radar (lidar) imagery into geometric time-height cloud locations with a fully convolutional network (FCN). We describe a semi-supervised learning method to train the FCN by: pre-training the classification layers of the FCN with image-level annotations, pre-training the entire FCN with the cloud locations of the MPLCMASK cloud mask algorithm, and fully supervised learning with hand-labeled cloud locations. We show the model achieves higher levels of cloud identification compared to the cloud mask algorithm implementation.
modAL: A modular active learning framework for Python
modAL is a modular active learning framework for Python, aimed to make active learning research and practice simpler. Its distinguishing features are (i) clear and modular object oriented design (ii) full compatibility with scikit-learn models and workflows. These features make fast prototyping and easy extensibility possible, aiding the development of real-life active learning pipelines and novel algorithms as well. modAL is fully open source, hosted on GitHub at https://github.com/cosmic-cortex/modAL. To assure code quality, extensive unit tests are provided and continuous integration is applied. In addition, a detailed documentation with several tutorials are also available for ease of use. The framework is available in PyPI and distributed under the MIT license.
SaaS: Speed as a Supervisor for Semi-supervised Learning
We introduce the SaaS Algorithm for semi-supervised learning, which uses learning speed during stochastic gradient descent in a deep neural network to measure the quality of an iterative estimate of the posterior probability of unknown labels. Training speed in supervised learning correlates strongly with the percentage of correct labels, so we use it as an inference criterion for the unknown labels, without attempting to infer the model parameters at first. Despite its simplicity, SaaS achieves state-of-the-art results in semi-supervised learning benchmarks.
k-SVRG: Variance Reduction for Large Scale Optimization
Variance reduced stochastic gradient (SGD) methods converge significantly faster than the vanilla SGD counterpart. However, these methods are not very practical on large scale problems, as they either i) require frequent passes over the full data to recompute gradients---without making any progress during this time (like for SVRG), or ii)~they require additional memory that can surpass the size of the input problem (like for SAGA). In this work, we propose $k$-SVRG that addresses these issues by making best use of the \emph{available} memory and minimizes the stalling phases without progress. We prove linear convergence of $k$-SVRG on strongly convex problems and convergence to stationary points on non-convex problems. Numerical experiments show the effectiveness of our method.
Automatic Inference of Cross-modal Connection Topologies for X-CNNs
This paper introduces a way to learn cross-modal convolutional neural network (X-CNN) architectures from a base convolutional network (CNN) and the training data to reduce the design cost and enable applying cross-modal networks in sparse data environments. Two approaches for building X-CNNs are presented. The base approach learns the topology in a data-driven manner, by using measurements performed on the base CNN and supplied data. The iterative approach performs further optimisation of the topology through a combined learning procedure, simultaneously learning the topology and training the network. The approaches were evaluated agains examples of hand-designed X-CNNs and their base variants, showing superior performance and, in some cases, gaining an additional 9% of accuracy. From further considerations, we conclude that the presented methodology takes less time than any manual approach would, whilst also significantly reducing the design complexity. The application of the methods is fully automated and implemented in Xsertion library.