title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Augmenting Recurrent Neural Networks with High-Order User-Contextual Preference for Session-Based Recommendation
The recent adoption of recurrent neural networks (RNNs) for session modeling has yielded substantial performance gains compared to previous approaches. In terms of context-aware session modeling, however, the existing RNN-based models are limited in that they are not designed to explicitly model rich static user-side contexts (e.g., age, gender, location). Therefore, in this paper, we explore the utility of explicit user-side context modeling for RNN session models. Specifically, we propose an augmented RNN (ARNN) model that extracts high-order user-contextual preference using the product-based neural network (PNN) in order to augment any existing RNN session model. Evaluation results show that our proposed model outperforms the baseline RNN session model by a large margin when rich user-side contexts are available.
Differential Equations for Modeling Asynchronous Algorithms
Asynchronous stochastic gradient descent (ASGD) is a popular parallel optimization algorithm in machine learning. Most theoretical analysis on ASGD take a discrete view and prove upper bounds for their convergence rates. However, the discrete view has its intrinsic limitations: there is no characterization of the optimization path and the proof techniques are induction-based and thus usually complicated. Inspired by the recent successful adoptions of stochastic differential equations (SDE) to the theoretical analysis of SGD, in this paper, we study the continuous approximation of ASGD by using stochastic differential delay equations (SDDE). We introduce the approximation method and study the approximation error. Then we conduct theoretical analysis on the convergence rates of ASGD algorithm based on the continuous approximation. There are two methods: moment estimation and energy function minimization can be used to analyze the convergence rates. Moment estimation depends on the specific form of the loss function, while energy function minimization only leverages the convex property of the loss function, and does not depend on its specific form. In addition to the convergence analysis, the continuous view also helps us derive better convergence rates. All of this clearly shows the advantage of taking the continuous view in gradient descent algorithms.
Efficient online learning for large-scale peptide identification
Motivation: Post-database searching is a key procedure in peptide dentification with tandem mass spectrometry (MS/MS) strategies for refining peptide-spectrum matches (PSMs) generated by database search engines. Although many statistical and machine learning-based methods have been developed to improve the accuracy of peptide identification, the challenge remains on large-scale datasets and datasets with an extremely large proportion of false positives (hard datasets). A more efficient learning strategy is required for improving the performance of peptide identification on challenging datasets. Results: In this work, we present an online learning method to conquer the challenges remained for exiting peptide identification algorithms. We propose a cost-sensitive learning model by using different loss functions for decoy and target PSMs respectively. A larger penalty for wrongly selecting decoy PSMs than that for target PSMs, and thus the new model can reduce its false discovery rate on hard datasets. Also, we design an online learning algorithm, OLCS-Ranker, to solve the proposed learning model. Rather than taking all training data samples all at once, OLCS-Ranker iteratively feeds in only one training sample into the learning model at each round. As a result, the memory requirement is significantly reduced for large-scale problems. Experimental studies show that OLCS-Ranker outperforms benchmark methods, such as CRanker and Batch-CS-Ranker, in terms of accuracy and stability. Furthermore, OLCS-Ranker is 15--85 times faster than CRanker method on large datasets. Availability and implementation: OLCS-Ranker software is available at no charge for non-commercial use at https://github.com/Isaac-QiXing/CRanker.
Efficient Design of Hardware-Enabled Reservoir Computing in FPGAs
In this work, we propose a new approach towards the efficient optimization and implementation of reservoir computing hardware reducing the required domain expert knowledge and optimization effort. First, we adapt the reservoir input mask to the structure of the data via linear autoencoders. We therefore incorporate the advantages of dimensionality reduction and dimensionality expansion achieved by conventional algorithmically efficient linear algebra procedures of principal component analysis. Second, we employ evolutionary-inspired genetic algorithm techniques resulting in a highly efficient optimization of reservoir dynamics with dramatically reduced number of evaluations comparing to exhaustive search. We illustrate the method on the so-called single-node reservoir computing architecture, especially suitable for implementation in ultrahigh-speed hardware. The combination of both methods and the resulting reduction of time required for performance optimization of a hardware system establish a strategy towards machine learning hardware capable of self-adaption to optimally solve specific problems. We confirm the validity of those principles building reservoir computing hardware based on a field-programmable gate array.
Fast Feature Extraction with CNNs with Pooling Layers
In recent years, many publications showed that convolutional neural network based features can have a superior performance to engineered features. However, not much effort was taken so far to extract local features efficiently for a whole image. In this paper, we present an approach to compute patch-based local feature descriptors efficiently in presence of pooling and striding layers for whole images at once. Our approach is generic and can be applied to nearly all existing network architectures. This includes networks for all local feature extraction tasks like camera calibration, Patchmatching, optical flow estimation and stereo matching. In addition, our approach can be applied to other patch-based approaches like sliding window object detection and recognition. We complete our paper with a speed benchmark of popular CNN based feature extraction approaches applied on a whole image, with and without our speedup, and example code (for Torch) that shows how an arbitrary CNN architecture can be easily converted by our approach.
Local, algebraic simplifications of Gaussian random fields
Many applications of Gaussian random fields and Gaussian random processes are limited by the computational complexity of evaluating the probability density function, which involves inverting the relevant covariance matrix. In this work, we show how that problem can be completely circumvented for the local Taylor coefficients of a Gaussian random field with a Gaussian (or `square exponential') covariance function. Our results hold for any dimension of the field and to any order in the Taylor expansion. We present two applications. First, we show that this method can be used to explicitly generate non-trivial potential energy landscapes with many fields. This application is particularly useful when one is concerned with the field locally around special points (e.g.~maxima or minima), as we exemplify by the problem of cosmic `manyfield' inflation in the early universe. Second, we show that this method has applications in machine learning, and greatly simplifies the regression problem of determining the hyperparameters of the covariance function given a training data set consisting of local Taylor coefficients at single point. An accompanying Mathematica notebook is available at https://doi.org/10.17863/CAM.22859 .
Polite Dialogue Generation Without Parallel Data
Stylistic dialogue response generation, with valuable applications in personality-based conversational agents, is a challenging task because the response needs to be fluent, contextually-relevant, as well as paralinguistically accurate. Moreover, parallel datasets for regular-to-stylistic pairs are usually unavailable. We present three weakly-supervised models that can generate diverse polite (or rude) dialogue responses without parallel data. Our late fusion model (Fusion) merges the decoder of an encoder-attention-decoder dialogue model with a language model trained on stand-alone polite utterances. Our label-fine-tuning (LFT) model prepends to each source sequence a politeness-score scaled label (predicted by our state-of-the-art politeness classifier) during training, and at test time is able to generate polite, neutral, and rude responses by simply scaling the label embedding by the corresponding score. Our reinforcement learning model (Polite-RL) encourages politeness generation by assigning rewards proportional to the politeness classifier score of the sampled response. We also present two retrieval-based polite dialogue model baselines. Human evaluation validates that while the Fusion and the retrieval-based models achieve politeness with poorer context-relevance, the LFT and Polite-RL models can produce significantly more polite responses without sacrificing dialogue quality.
Fully Automated Segmentation of Hyperreflective Foci in Optical Coherence Tomography Images
The automatic detection of disease related entities in retinal imaging data is relevant for disease- and treatment monitoring. It enables the quantitative assessment of large amounts of data and the corresponding study of disease characteristics. The presence of hyperreflective foci (HRF) is related to disease progression in various retinal diseases. Manual identification of HRF in spectral-domain optical coherence tomography (SD-OCT) scans is error-prone and tedious. We present a fully automated machine learning approach for segmenting HRF in SD-OCT scans. Evaluation on annotated OCT images of the retina demonstrates that a residual U-Net allows to segment HRF with high accuracy. As our dataset comprised data from different retinal diseases including age-related macular degeneration, diabetic macular edema and retinal vein occlusion, the algorithm can safely be applied in all of them though different pathophysiological origins are known.
Improved training of end-to-end attention models for speech recognition
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h and LibriSpeech 1000h tasks. In particular, we report the state-of-the-art word error rates (WER) of 3.54% on the dev-clean and 3.82% on the test-clean evaluation subsets of LibriSpeech. We introduce a new pretraining scheme by starting with a high time reduction factor and lowering it during training, which is crucial both for convergence and final performance. In some experiments, we also use an auxiliary CTC loss function to help the convergence. In addition, we train long short-term memory (LSTM) language models on subword units. By shallow fusion, we report up to 27% relative improvements in WER over the attention baseline without a language model.
The Effectiveness of Instance Normalization: a Strong Baseline for Single Image Dehazing
We propose a novel deep neural network architecture for the challenging problem of single image dehazing, which aims to recover the clear image from a degraded hazy image. Instead of relying on hand-crafted image priors or explicitly estimating the components of the widely used atmospheric scattering model, our end-to-end system directly generates the clear image from an input hazy image. The proposed network has an encoder-decoder architecture with skip connections and instance normalization. We adopt the convolutional layers of the pre-trained VGG network as encoder to exploit the representation power of deep features, and demonstrate the effectiveness of instance normalization for image dehazing. Our simple yet effective network outperforms the state-of-the-art methods by a large margin on the benchmark datasets.
Network Enhancement: a general method to denoise weighted biological networks
Networks are ubiquitous in biology where they encode connectivity patterns at all scales of organization, from molecular to the biome. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper discovery of network patterns and dynamics. We propose Network Enhancement (NE), a method for improving the signal-to-noise ratio of undirected, weighted networks. NE uses a doubly stochastic matrix operator that induces sparsity and provides a closed-form solution that increases spectral eigengap of the input network. As a result, NE removes weak edges, enhances real connections, and leads to better downstream performance. Experiments show that NE improves gene function prediction by denoising tissue-specific interaction networks, alleviates interpretation of noisy Hi-C contact maps from the human genome, and boosts fine-grained identification accuracy of species. Our results indicate that NE is widely applicable for denoising biological networks.
Reward Estimation for Variance Reduction in Deep Reinforcement Learning
Reinforcement Learning (RL) agents require the specification of a reward signal for learning behaviours. However, introduction of corrupt or stochastic rewards can yield high variance in learning. Such corruption may be a direct result of goal misspecification, randomness in the reward signal, or correlation of the reward with external factors that are not known to the agent. Corruption or stochasticity of the reward signal can be especially problematic in robotics, where goal specification can be particularly difficult for complex tasks. While many variance reduction techniques have been studied to improve the robustness of the RL process, handling such stochastic or corrupted reward structures remains difficult. As an alternative for handling this scenario in model-free RL methods, we suggest using an estimator for both rewards and value functions. We demonstrate that this improves performance under corrupted stochastic rewards in both the tabular and non-linear function approximation settings for a variety of noise types and environments. The use of reward estimation is a robust and easy-to-implement improvement for handling corrupted reward signals in model-free RL.
A Symbolic Approach to Explaining Bayesian Network Classifiers
We propose an approach for explaining Bayesian network classifiers, which is based on compiling such classifiers into decision functions that have a tractable and symbolic form. We introduce two types of explanations for why a classifier may have classified an instance positively or negatively and suggest algorithms for computing these explanations. The first type of explanation identifies a minimal set of the currently active features that is responsible for the current classification, while the second type of explanation identifies a minimal set of features whose current state (active or not) is sufficient for the classification. We consider in particular the compilation of Naive and Latent-Tree Bayesian network classifiers into Ordered Decision Diagrams (ODDs), providing a context for evaluating our proposal using case studies and experiments based on classifiers from the literature.
Opinion Fraud Detection via Neural Autoencoder Decision Forest
Online reviews play an important role in influencing buyers' daily purchase decisions. However, fake and meaningless reviews, which cannot reflect users' genuine purchase experience and opinions, widely exist on the Web and pose great challenges for users to make right choices. Therefore,it is desirable to build a fair model that evaluates the quality of products by distinguishing spamming reviews. We present an end-to-end trainable unified model to leverage the appealing properties from Autoencoder and random forest. A stochastic decision tree model is implemented to guide the global parameter learning process. Extensive experiments were conducted on a large Amazon review dataset. The proposed model consistently outperforms a series of compared methods.
N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders
The proliferation of IoT devices which can be more easily compromised than desktop computers has led to an increase in the occurrence of IoT based botnet attacks. In order to mitigate this new threat there is a need to develop new methods for detecting attacks launched from compromised IoT devices and differentiate between hour and millisecond long IoTbased attacks. In this paper we propose and empirically evaluate a novel network based anomaly detection method which extracts behavior snapshots of the network and uses deep autoencoders to detect anomalous network traffic emanating from compromised IoT devices. To evaluate our method, we infected nine commercial IoT devices in our lab with two of the most widely known IoT based botnets, Mirai and BASHLITE. Our evaluation results demonstrated our proposed method's ability to accurately and instantly detect the attacks as they were being launched from the compromised IoT devices which were part of a botnet.
Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks
Experimental evidence indicates that simple models outperform complex deep networks on many unsupervised similarity tasks. We provide a simple yet rigorous explanation for this behaviour by introducing the concept of an optimal representation space, in which semantically close symbols are mapped to representations that are close under a similarity measure induced by the model's objective function. In addition, we present a straightforward procedure that, without any retraining or architectural modifications, allows deep recurrent models to perform equally well (and sometimes better) when compared to shallow models. To validate our analysis, we conduct a set of consistent empirical evaluations and introduce several new sentence embedding models in the process. Even though this work is presented within the context of natural language processing, the insights are readily applicable to other domains that rely on distributed representations for transfer tasks.
Machine Learning in Compiler Optimisation
In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements.
Controlling the privacy loss with the input feature maps of the layers in convolutional neural networks
We propose the method to sanitize the privacy of the IFM(Input Feature Map)s that are fed into the layers of CNN(Convolutional Neural Network)s. The method introduces the degree of the sanitization that makes the application using a CNN be able to control the privacy loss represented as the ratio of the probabilistic accuracies for original IFM and sanitized IFM. For the sanitization of an IFM, the sample-and-hold based approximation scheme is devised to satisfy an application-specific degree of the sanitization. The scheme approximates an IFM by replacing all the samples in a window with the non-zero sample closest to the mean of the sampling window. It also removes the dependency on CNN configuration by unfolding multi-dimensional IFM tensors into one-dimensional streams to be approximated.
Dealing with Categorical and Integer-valued Variables in Bayesian Optimization with Gaussian Processes
Bayesian Optimization (BO) methods are useful for optimizing functions that are expen- sive to evaluate, lack an analytical expression and whose evaluations can be contaminated by noise. These methods rely on a probabilistic model of the objective function, typically a Gaussian process (GP), upon which an acquisition function is built. The acquisition function guides the optimization process and measures the expected utility of performing an evaluation of the objective at a new point. GPs assume continous input variables. When this is not the case, for example when some of the input variables take categorical or integer values, one has to introduce extra approximations. Consider a suggested input location taking values in the real line. Before doing the evaluation of the objective, a common approach is to use a one hot encoding approximation for categorical variables, or to round to the closest integer, in the case of integer-valued variables. We show that this can lead to problems in the optimization process and describe a more principled approach to account for input variables that are categorical or integer-valued. We illustrate in both synthetic and a real experiments the utility of our approach, which significantly improves the results of standard BO methods using Gaussian processes on problems with categorical or integer-valued variables.
Diffusion Based Network Embedding
In network embedding, random walks play a fundamental role in preserving network structures. However, random walk based embedding methods have two limitations. First, random walk methods are fragile when the sampling frequency or the number of node sequences changes. Second, in disequilibrium networks such as highly biases networks, random walk methods often perform poorly due to the lack of global network information. In order to solve the limitations, we propose in this paper a network diffusion based embedding method. To solve the first limitation, our method employs a diffusion driven process to capture both depth information and breadth information. The time dimension is also attached to node sequences that can strengthen information preserving. To solve the second limitation, our method uses the network inference technique based on cascades to capture the global network information. To verify the performance, we conduct experiments on node classification tasks using the learned representations. Results show that compared with random walk based methods, diffusion based models are more robust when samplings under each node is rare. We also conduct experiments on a highly imbalanced network. Results shows that the proposed model are more robust under the biased network structure.
A Unified Framework of Deep Neural Networks by Capsules
With the growth of deep learning, how to describe deep neural networks unifiedly is becoming an important issue. We first formalize neural networks mathematically with their directed graph representations, and prove a generation theorem about the induced networks of connected directed acyclic graphs. Then, we set up a unified framework for deep learning with capsule networks. This capsule framework could simplify the description of existing deep neural networks, and provide a theoretical basis of graphic designing and programming techniques for deep learning models, thus would be of great significance to the advancement of deep learning.
On Visual Hallmarks of Robustness to Adversarial Malware
A central challenge of adversarial learning is to interpret the resulting hardened model. In this contribution, we ask how robust generalization can be visually discerned and whether a concise view of the interactions between a hardened decision map and input samples is possible. We first provide a means of visually comparing a hardened model's loss behavior with respect to the adversarial variants generated during training versus loss behavior with respect to adversarial variants generated from other sources. This allows us to confirm that the association of observed flatness of a loss landscape with generalization that is seen with naturally trained models extends to adversarially hardened models and robust generalization. To complement these means of interpreting model parameter robustness we also use self-organizing maps to provide a visual means of superimposing adversarial and natural variants on a model's decision space, thus allowing the model's global robustness to be comprehensively examined.
Policy Optimization with Second-Order Advantage Information
Policy optimization on high-dimensional continuous control tasks exhibits its difficulty caused by the large variance of the policy gradient estimators. We present the action subspace dependent gradient (ASDG) estimator which incorporates the Rao-Blackwell theorem (RB) and Control Variates (CV) into a unified framework to reduce the variance. To invoke RB, our proposed algorithm (POSA) learns the underlying factorization structure among the action space based on the second-order advantage information. POSA captures the quadratic information explicitly and efficiently by utilizing the wide & deep architecture. Empirical studies show that our proposed approach demonstrates the performance improvements on high-dimensional synthetic settings and OpenAI Gym's MuJoCo continuous control tasks.
Secure Mobile Edge Computing in IoT via Collaborative Online Learning
To accommodate heterogeneous tasks in Internet of Things (IoT), a new communication and computing paradigm termed mobile edge computing emerges that extends computing services from the cloud to edge, but at the same time exposes new challenges on security. The present paper studies online security-aware edge computing under jamming attacks. Leveraging online learning tools, novel algorithms abbreviated as SAVE-S and SAVE-A are developed to cope with the stochastic and adversarial forms of jamming, respectively. Without utilizing extra resources such as spectrum and transmission power to evade jamming attacks, SAVE-S and SAVE-A can select the most reliable server to offload computing tasks with minimal privacy and security concerns. It is analytically established that without any prior information on future jamming and server security risks, the proposed schemes can achieve ${\cal O}\big(\sqrt{T}\big)$ regret. Information sharing among devices can accelerate the security-aware computing tasks. Incorporating the information shared by other devices, SAVE-S and SAVE-A offer impressive improvements on the sublinear regret, which is guaranteed by what is termed "value of cooperation." Effectiveness of the proposed schemes is tested on both synthetic and real datasets.
A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization
In this paper, we propose a deep learning approach to tackle the automatic summarization tasks by incorporating topic information into the convolutional sequence-to-sequence (ConvS2S) model and using self-critical sequence training (SCST) for optimization. Through jointly attending to topics and word-level alignment, our approach can improve coherence, diversity, and informativeness of generated summaries via a biased probability generation mechanism. On the other hand, reinforcement training, like SCST, directly optimizes the proposed model with respect to the non-differentiable metric ROUGE, which also avoids the exposure bias during inference. We carry out the experimental evaluation with state-of-the-art methods over the Gigaword, DUC-2004, and LCSTS datasets. The empirical results demonstrate the superiority of our proposed method in the abstractive summarization.
On the Limitations of Unsupervised Bilingual Dictionary Induction
Unsupervised machine translation---i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora---seems impossible, but nevertheless, Lample et al. (2018) recently proposed a fully unsupervised machine translation (MT) model. The model relies heavily on an adversarial, unsupervised alignment of word embedding spaces for bilingual dictionary induction (Conneau et al., 2018), which we examine here. Our results identify the limitations of current unsupervised MT: unsupervised bilingual dictionary induction performs much worse on morphologically rich languages that are not dependent marking, when monolingual corpora from different domains or different embedding algorithms are used. We show that a simple trick, exploiting a weak supervision signal from identical words, enables more robust induction, and establish a near-perfect correlation between unsupervised bilingual dictionary induction performance and a previously unexplored graph similarity metric.
Adversarial Contrastive Estimation
Learning by contrasting positive and negative samples is a general strategy adopted by many methods. Noise contrastive estimation (NCE) for word embeddings and translating embeddings for knowledge graphs are examples in NLP employing this approach. In this work, we view contrastive learning as an abstraction of all such methods and augment the negative sampler into a mixture distribution containing an adversarially learned sampler. The resulting adaptive sampler finds harder negative examples, which forces the main model to learn a better representation of the data. We evaluate our proposal on learning word embeddings, order embeddings and knowledge graph embeddings and observe both faster convergence and improved results on multiple metrics.
Learning to Teach
Teaching plays a very important role in our society, by spreading human knowledge and educating our next generations. A good teacher will select appropriate teaching materials, impact suitable methodologies, and set up targeted examinations, according to the learning behaviors of the students. In the field of artificial intelligence, however, one has not fully explored the role of teaching, and pays most attention to machine \emph{learning}. In this paper, we argue that equal attention, if not more, should be paid to teaching, and furthermore, an optimization framework (instead of heuristics) should be used to obtain good teaching strategies. We call this approach `learning to teach'. In the approach, two intelligent agents interact with each other: a student model (which corresponds to the learner in traditional machine learning algorithms), and a teacher model (which determines the appropriate data, loss function, and hypothesis space to facilitate the training of the student model). The teacher model leverages the feedback from the student model to optimize its own teaching strategies by means of reinforcement learning, so as to achieve teacher-student co-evolution. To demonstrate the practical value of our proposed approach, we take the training of deep neural networks (DNN) as an example, and show that by using the learning to teach techniques, we are able to use much less training data and fewer iterations to achieve almost the same accuracy for different kinds of DNN models (e.g., multi-layer perceptron, convolutional neural networks and recurrent neural networks) under various machine learning tasks (e.g., image classification and text understanding).
Improving GAN Training via Binarized Representation Entropy (BRE) Regularization
We propose a novel regularizer to improve the training of Generative Adversarial Networks (GANs). The motivation is that when the discriminator D spreads out its model capacity in the right way, the learning signals given to the generator G are more informative and diverse. These in turn help G to explore better and discover the real data manifold while avoiding large unstable jumps due to the erroneous extrapolation made by D. Our regularizer guides the rectifier discriminator D to better allocate its model capacity, by encouraging the binary activation patterns on selected internal layers of D to have a high joint entropy. Experimental results on both synthetic data and real datasets demonstrate improvements in stability and convergence speed of the GAN training, as well as higher sample quality. The approach also leads to higher classification accuracies in semi-supervised learning.
End-to-End Polyphonic Sound Event Detection Using Convolutional Recurrent Neural Networks with Learned Time-Frequency Representation Input
Sound event detection systems typically consist of two stages: extracting hand-crafted features from the raw audio waveform, and learning a mapping between these features and the target sound events using a classifier. Recently, the focus of sound event detection research has been mostly shifted to the latter stage using standard features such as mel spectrogram as the input for classifiers such as deep neural networks. In this work, we utilize end-to-end approach and propose to combine these two stages in a single deep neural network classifier. The feature extraction over the raw waveform is conducted by a feedforward layer block, whose parameters are initialized to extract the time-frequency representations. The feature extraction parameters are updated during training, resulting with a representation that is optimized for the specific task. This feature extraction block is followed by (and jointly trained with) a convolutional recurrent network, which has recently given state-of-the-art results in many sound recognition tasks. The proposed system does not outperform a convolutional recurrent network with fixed hand-crafted features. The final magnitude spectrum characteristics of the feature extraction block parameters indicate that the most relevant information for the given task is contained in 0 - 3 kHz frequency range, and this is also supported by the empirical results on the SED performance.
Statistical Analysis on E-Commerce Reviews, with Sentiment Classification using Bidirectional Recurrent Neural Network (RNN)
Understanding customer sentiments is of paramount importance in marketing strategies today. Not only will it give companies an insight as to how customers perceive their products and/or services, but it will also give them an idea on how to improve their offers. This paper attempts to understand the correlation of different variables in customer reviews on a women clothing e-commerce, and to classify each review whether it recommends the reviewed product or not and whether it consists of positive, negative, or neutral sentiment. To achieve these goals, we employed univariate and multivariate analyses on dataset features except for review titles and review texts, and we implemented a bidirectional recurrent neural network (RNN) with long-short term memory unit (LSTM) for recommendation and sentiment classification. Results have shown that a recommendation is a strong indicator of a positive sentiment score, and vice-versa. On the other hand, ratings in product reviews are fuzzy indicators of sentiment scores. We also found out that the bidirectional LSTM was able to reach an F1-score of 0.88 for recommendation classification, and 0.93 for sentiment classification.
Foundations of Sequence-to-Sequence Modeling for Time Series
The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practitioners choosing between different modeling methodologies.
Long Short-Term Memory as a Dynamically Computed Element-wise Weighted Sum
LSTMs were introduced to combat vanishing gradients in simple RNNs by augmenting them with gated additive recurrent connections. We present an alternative view to explain the success of LSTMs: the gates themselves are versatile recurrent models that provide more representational power than previously appreciated. We do this by decoupling the LSTM's gates from the embedded simple RNN, producing a new class of RNNs where the recurrence computes an element-wise weighted sum of context-independent functions of the input. Ablations on a range of problems demonstrate that the gating mechanism alone performs as well as an LSTM in most settings, strongly suggesting that the gates are doing much more in practice than just alleviating vanishing gradients.
Sequence Aggregation Rules for Anomaly Detection in Computer Network Traffic
We evaluate methods for applying unsupervised anomaly detection to cybersecurity applications on computer network traffic data, or flow. We borrow from the natural language processing literature and conceptualize flow as a sort of "language" spoken between machines. Five sequence aggregation rules are evaluated for their efficacy in flagging multiple attack types in a labeled flow dataset, CICIDS2017. For sequence modeling, we rely on long short-term memory (LSTM) recurrent neural networks (RNN). Additionally, a simple frequency-based model is described and its performance with respect to attack detection is compared to the LSTM models. We conclude that the frequency-based model tends to perform as well as or better than the LSTM models for the tasks at hand, with a few notable exceptions.
Graph Neural Networks for Learning Robot Team Coordination
This paper shows how Graph Neural Networks can be used for learning distributed coordination mechanisms in connected teams of robots. We capture the relational aspect of robot coordination by modeling the robot team as a graph, where each robot is a node, and edges represent communication links. During training, robots learn how to pass messages and update internal states, so that a target behavior is reached. As a proxy for more complex problems, this short paper considers the problem where each robot must locally estimate the algebraic connectivity of the team's network topology.
k-Space Deep Learning for Accelerated MRI
The annihilating filter-based low-rank Hankel matrix approach (ALOHA) is one of the state-of-the-art compressed sensing approaches that directly interpolates the missing k-space data using low-rank Hankel matrix completion. The success of ALOHA is due to the concise signal representation in the k-space domain thanks to the duality between structured low-rankness in the k-space domain and the image domain sparsity. Inspired by the recent mathematical discovery that links convolutional neural networks to Hankel matrix decomposition using data-driven framelet basis, here we propose a fully data-driven deep learning algorithm for k-space interpolation. Our network can be also easily applied to non-Cartesian k-space trajectories by simply adding an additional regridding layer. Extensive numerical experiments show that the proposed deep learning method consistently outperforms the existing image-domain deep learning approaches.
Scaling associative classification for very large datasets
Supervised learning algorithms are nowadays successfully scaling up to datasets that are very large in volume, leveraging the potential of in-memory cluster-computing Big Data frameworks. Still, massive datasets with a number of large-domain categorical features are a difficult challenge for any classifier. Most off-the-shelf solutions cannot cope with this problem. In this work we introduce DAC, a Distributed Associative Classifier. DAC exploits ensemble learning to distribute the training of an associative classifier among parallel workers and improve the final quality of the model. Furthermore, it adopts several novel techniques to reach high scalability without sacrificing quality, among which a preventive pruning of classification rules in the extraction phase based on Gini impurity. We ran experiments on Apache Spark, on a real large-scale dataset with more than 4 billion records and 800 million distinct categories. The results showed that DAC improves on a state-of-the-art solution in both prediction quality and execution time. Since the generated model is human-readable, it can not only classify new records, but also allow understanding both the logic behind the prediction and the properties of the model, becoming a useful aid for decision makers.
Loss-Calibrated Approximate Inference in Bayesian Neural Networks
Current approaches in approximate inference for Bayesian neural networks minimise the Kullback-Leibler divergence to approximate the true posterior over the weights. However, this approximation is without knowledge of the final application, and therefore cannot guarantee optimal predictions for a given task. To make more suitable task-specific approximations, we introduce a new loss-calibrated evidence lower bound for Bayesian neural networks in the context of supervised learning, informed by Bayesian decision theory. By introducing a lower bound that depends on a utility function, we ensure that our approximation achieves higher utility than traditional methods for applications that have asymmetric utility functions. Furthermore, in using dropout inference, we highlight that our new objective is identical to that of standard dropout neural networks, with an additional utility-dependent penalty term. We demonstrate our new loss-calibrated model with an illustrative medical example and a restricted model capacity experiment, and highlight failure modes of the comparable weighted cross entropy approach. Lastly, we demonstrate the scalability of our method to real world applications with per-pixel semantic segmentation on an autonomous driving data set.
Towards a universal neural network encoder for time series
We study the use of a time series encoder to learn representations that are useful on data set types with which it has not been trained on. The encoder is formed of a convolutional neural network whose temporal output is summarized by a convolutional attention mechanism. This way, we obtain a compact, fixed-length representation from longer, variable-length time series. We evaluate the performance of the proposed approach on a well-known time series classification benchmark, considering full adaptation, partial adaptation, and no adaptation of the encoder to the new data type. Results show that such strategies are competitive with the state-of-the-art, often outperforming conceptually-matching approaches. Besides accuracy scores, the facility of adaptation and the efficiency of pre-trained encoders make them an appealing option for the processing of scarcely- or non-labeled time series.
Labelling as an unsupervised learning problem
Unravelling hidden patterns in datasets is a classical problem with many potential applications. In this paper, we present a challenge whose objective is to discover nonlinear relationships in noisy cloud of points. If a set of point satisfies a nonlinear relationship that is unlikely to be due to randomness, we will label the set with this relationship. Since points can satisfy one, many or no such nonlinear relationships, cloud of points will typically have one, multiple or no labels at all. This introduces the labelling problem that will be studied in this paper. The objective of this paper is to develop a framework for the labelling problem. We introduce a precise notion of a label, and we propose an algorithm to discover such labels in a given dataset, which is then tested in synthetic datasets. We also analyse, using tools from random matrix theory, the problem of discovering false labels in the dataset.
Monotone Learning with Rectified Wire Networks
We introduce a new neural network model, together with a tractable and monotone online learning algorithm. Our model describes feed-forward networks for classification, with one output node for each class. The only nonlinear operation is rectification using a ReLU function with a bias. However, there is a rectifier on every edge rather than at the nodes of the network. There are also weights, but these are positive, static, and associated with the nodes. Our "rectified wire" networks are able to represent arbitrary Boolean functions. Only the bias parameters, on the edges of the network, are learned. Another departure in our approach, from standard neural networks, is that the loss function is replaced by a constraint. This constraint is simply that the value of the output node associated with the correct class should be zero. Our model has the property that the exact norm-minimizing parameter update, required to correctly classify a training item, is the solution to a quadratic program that can be computed with a few passes through the network. We demonstrate a training algorithm using this update, called sequential deactivation (SDA), on MNIST and some synthetic datasets. Upon adopting a natural choice for the nodal weights, SDA has no hyperparameters other than those describing the network structure. Our experiments explore behavior with respect to network size and depth in a family of sparse expander networks.
Global Encoding for Abstractive Summarization
In neural abstractive summarization, the conventional sequence-to-sequence (seq2seq) model often suffers from repetition and semantic irrelevance. To tackle the problem, we propose a global encoding framework, which controls the information flow from the encoder to the decoder based on the global information of the source context. It consists of a convolutional gated unit to perform global encoding to improve the representations of the source-side information. Evaluations on the LCSTS and the English Gigaword both demonstrate that our model outperforms the baseline models, and the analysis shows that our model is capable of reducing repetition.
Supervising Nystr\"om Methods via Negative Margin Support Vector Selection
The Nystr\"om methods have been popular techniques for scalable kernel based learning. They approximate explicit, low-dimensional feature mappings for kernel functions from the pairwise comparisons with the training data. However, Nystr\"om methods are generally applied without the supervision provided by the training labels in the classification/regression problems. This leads to pairwise comparisons with randomly chosen training samples in the model. Conversely, this work studies a supervised Nystr\"om method that chooses the critical subsets of samples for the success of the Machine Learning model. Particularly, we select the Nystr\"om support vectors via the negative margin criterion, and create explicit feature maps that are more suitable for the classification task on the data. Experimental results on six datasets show that, without increasing the complexity over unsupervised techniques, our method can significantly improve the classification performance achieved via kernel approximation methods and reduce the number of features needed to reach or exceed the performance of the full-dimensional kernel machines.
Deep Nets: What have they ever done for Vision?
This is an opinion paper about the strengths and weaknesses of Deep Nets for vision. They are at the heart of the enormous recent progress in artificial intelligence and are of growing importance in cognitive science and neuroscience. They have had many successes but also have several limitations and there is limited understanding of their inner workings. At present Deep Nets perform very well on specific visual tasks with benchmark datasets but they are much less general purpose, flexible, and adaptive than the human visual system. We argue that Deep Nets in their current form are unlikely to be able to overcome the fundamental problem of computer vision, namely how to deal with the combinatorial explosion, caused by the enormous complexity of natural images, and obtain the rich understanding of visual scenes that the human visual achieves. We argue that this combinatorial explosion takes us into a regime where "big data is not enough" and where we need to rethink our methods for benchmarking performance and evaluating vision algorithms. We stress that, as vision algorithms are increasingly used in real world applications, that performance evaluation is not merely an academic exercise but has important consequences in the real world. It is impractical to review the entire Deep Net literature so we restrict ourselves to a limited range of topics and references which are intended as entry points into the literature. The views expressed in this paper are our own and do not necessarily represent those of anybody else in the computer vision community.
Boosting up Scene Text Detectors with Guided CNN
Deep CNNs have achieved great success in text detection. Most of existing methods attempt to improve accuracy with sophisticated network design, while paying less attention on speed. In this paper, we propose a general framework for text detection called Guided CNN to achieve the two goals simultaneously. The proposed model consists of one guidance subnetwork, where a guidance mask is learned from the input image itself, and one primary text detector, where every convolution and non-linear operation are conducted only in the guidance mask. On the one hand, the guidance subnetwork filters out non-text regions coarsely, greatly reduces the computation complexity. On the other hand, the primary text detector focuses on distinguishing between text and hard non-text regions and regressing text bounding boxes, achieves a better detection accuracy. A training strategy, called background-aware block-wise random synthesis, is proposed to further boost up the performance. We demonstrate that the proposed Guided CNN is not only effective but also efficient with two state-of-the-art methods, CTPN and EAST, as backbones. On the challenging benchmark ICDAR 2013, it speeds up CTPN by 2.9 times on average, while improving the F-measure by 1.5%. On ICDAR 2015, it speeds up EAST by 2.0 times while improving the F-measure by 1.0%.
Unifying Data, Model and Hybrid Parallelism in Deep Learning via Tensor Tiling
Deep learning systems have become vital tools across many fields, but the increasing model sizes mean that training must be accelerated to maintain such systems' utility. Current systems like Tensorflow and MXNet focus on one specific parallelization strategy, data parallelism, which requires large training batch sizes in order to scale. We cast the problem of finding the best parallelization strategy as the problem of finding the best tiling to partition tensors with the least overall communication. We propose an algorithm that can find the optimal tiling. Our resulting parallelization solution is a hybrid of data parallelism and model parallelism. We build the SoyBean system that performs automatic parallelization. SoyBean automatically transforms a serial dataflow graph captured by an existing deep learning system frontend into a parallel dataflow graph based on the optimal tiling it has found. Our evaluations show that SoyBean is 1.5x-4x faster than pure data parallelism for AlexNet and VGG. We present this automatic tiling in a new system, SoyBean, that can act as a backend for Tensorflow, MXNet, and others.
Joint Embedding of Words and Labels for Text Classification
Word embeddings are effective intermediate representations for capturing semantic regularities between words, when learning the representations of text sequences. We propose to view text classification as a label-word joint embedding problem: each label is embedded in the same space with the word vectors. We introduce an attention framework that measures the compatibility of embeddings between text sequences and labels. The attention is learned on a training set of labeled samples to ensure that, given a text sequence, the relevant words are weighted higher than the irrelevant ones. Our method maintains the interpretability of word embeddings, and enjoys a built-in ability to leverage alternative sources of information, in addition to input text sequences. Extensive results on the several large text datasets show that the proposed framework outperforms the state-of-the-art methods by a large margin, in terms of both accuracy and speed.
An Unsupervised Clustering-Based Short-Term Solar Forecasting Methodology Using Multi-Model Machine Learning Blending
Solar forecasting accuracy is affected by weather conditions, and weather awareness forecasting models are expected to improve the performance. However, it may not be available and reliable to classify different forecasting tasks by using only meteorological weather categorization. In this paper, an unsupervised clustering-based (UC-based) solar forecasting methodology is developed for short-term (1-hour-ahead) global horizontal irradiance (GHI) forecasting. This methodology consists of three parts: GHI time series unsupervised clustering, pattern recognition, and UC-based forecasting. The daily GHI time series is first clustered by an Optimized Cross-validated ClUsteRing (OCCUR) method, which determines the optimal number of clusters and best clustering results. Then, support vector machine pattern recognition (SVM-PR) is adopted to recognize the category of a certain day using the first few hours' data in the forecasting stage. GHI forecasts are generated by the most suitable models in different clusters, which are built by a two-layer Machine learning based Multi-Model (M3) forecasting framework. The developed UC-based methodology is validated by using 1-year of data with six solar features. Numerical results show that (i) UC-based models outperform non-UC (all-in-one) models with the same M3 architecture by approximately 20%; (ii) M3-based models also outperform the single-algorithm machine learning (SAML) models by approximately 20%.
Human-Machine Collaborative Optimization via Apprenticeship Scheduling
Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.
Distributed Deep Forest and its Application to Automatic Detection of Cash-out Fraud
Internet companies are facing the need for handling large-scale machine learning applications on a daily basis and distributed implementation of machine learning algorithms which can handle extra-large scale tasks with great performance is widely needed. Deep forest is a recently proposed deep learning framework which uses tree ensembles as its building blocks and it has achieved highly competitive results on various domains of tasks. However, it has not been tested on extremely large scale tasks. In this work, based on our parameter server system, we developed the distributed version of deep forest. To meet the need for real-world tasks, many improvements are introduced to the original deep forest model, including MART (Multiple Additive Regression Tree) as base learners for efficiency and effectiveness consideration, the cost-based method for handling prevalent class-imbalanced data, MART based feature selection for high dimension data and different evaluation metrics for automatically determining of the cascade level. We tested the deep forest model on an extra-large scale task, i.e., automatic detection of cash-out fraud, with more than 100 millions of training samples. Experimental results showed that the deep forest model has the best performance according to the evaluation metrics from different perspectives even with very little effort for parameter tuning. This model can block fraud transactions in a large amount of money each day. Even compared with the best-deployed model, the deep forest model can additionally bring into a significant decrease in economic loss each day.
Convex Programming Based Spectral Clustering
Clustering is a fundamental task in data analysis, and spectral clustering has been recognized as a promising approach to it. Given a graph describing the relationship between data, spectral clustering explores the underlying cluster structure in two stages. The first stage embeds the nodes of the graph in real space, and the second stage groups the embedded nodes into several clusters. The use of the $k$-means method in the grouping stage is currently standard practice. We present a spectral clustering algorithm that uses convex programming in the grouping stage and study how well it works. This algorithm is designed based on the following observation. If a graph is well-clustered, then the nodes with the largest degree in each cluster can be found by computing an enclosing ellipsoid of the nodes embedded in real space, and the clusters can be identified by using those nodes. We show that, for well-clustered graphs, the algorithm can find clusters of nodes with minimal conductance. We also give an experimental assessment of the algorithm's performance.
Adaptive Selection of Deep Learning Models on Embedded Systems
The recent ground-breaking advances in deep learning networks ( DNNs ) make them attractive for embedded systems. However, it can take a long time for DNNs to make an inference on resource-limited embedded devices. Offloading the computation into the cloud is often infeasible due to privacy concerns, high latency, or the lack of connectivity. As such, there is a critical need to find a way to effectively execute the DNN models locally on the devices. This paper presents an adaptive scheme to determine which DNN model to use for a given input, by considering the desired accuracy and inference time. Our approach employs machine learning to develop a predictive model to quickly select a pre-trained DNN to use for a given input and the optimization constraint. We achieve this by first training off-line a predictive model, and then use the learnt model to select a DNN model to use for new, unseen inputs. We apply our approach to the image classification task and evaluate it on a Jetson TX2 embedded deep learning platform using the ImageNet ILSVRC 2012 validation dataset. We consider a range of influential DNN models. Experimental results show that our approach achieves a 7.52% improvement in inference accuracy, and a 1.8x reduction in inference time over the most-capable single DNN model.
An $O(N)$ Sorting Algorithm: Machine Learning Sort
We propose an $O(N\cdot M)$ sorting algorithm by Machine Learning method, which shows a huge potential sorting big data. This sorting algorithm can be applied to parallel sorting and is suitable for GPU or TPU acceleration. Furthermore, we discuss the application of this algorithm to sparse hash table.
Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
Program synthesis is the task of automatically generating a program consistent with a specification. Recent years have seen proposal of a number of neural approaches for program synthesis, many of which adopt a sequence generation paradigm similar to neural machine translation, in which sequence-to-sequence models are trained to maximize the likelihood of known reference programs. While achieving impressive results, this strategy has two key limitations. First, it ignores Program Aliasing: the fact that many different programs may satisfy a given specification (especially with incomplete specifications such as a few input-output examples). By maximizing the likelihood of only a single reference program, it penalizes many semantically correct programs, which can adversely affect the synthesizer performance. Second, this strategy overlooks the fact that programs have a strict syntax that can be efficiently checked. To address the first limitation, we perform reinforcement learning on top of a supervised model with an objective that explicitly maximizes the likelihood of generating semantically correct programs. For addressing the second limitation, we introduce a training procedure that directly maximizes the probability of generating syntactically correct programs that fulfill the specification. We show that our contributions lead to improved accuracy of the models, especially in cases where the training data is limited.
Quantitative Projection Coverage for Testing ML-enabled Autonomous Systems
Systematically testing models learned from neural networks remains a crucial unsolved barrier to successfully justify safety for autonomous vehicles engineered using data-driven approach. We propose quantitative k-projection coverage as a metric to mediate combinatorial explosion while guiding the data sampling process. By assuming that domain experts propose largely independent environment conditions and by associating elements in each condition with weights, the product of these conditions forms scenarios, and one may interpret weights associated with each equivalence class as relative importance. Achieving full k-projection coverage requires that the data set, when being projected to the hyperplane formed by arbitrarily selected k-conditions, covers each class with number of data points no less than the associated weight. For the general case where scenario composition is constrained by rules, precisely computing k-projection coverage remains in NP. In terms of finding minimum test cases to achieve full coverage, we present theoretical complexity for important sub-cases and an encoding to 0-1 integer programming. We have implemented a research prototype that generates test cases for a visual object defection unit in automated driving, demonstrating the technological feasibility of our proposed coverage criterion.
A Sensorimotor Perspective on Grounding the Semantic of Simple Visual Features
In Machine Learning and Robotics, the semantic content of visual features is usually provided to the system by a human who interprets its content. On the contrary, strictly unsupervised approaches have difficulties relating the statistics of sensory inputs to their semantic content without also relying on prior knowledge introduced in the system. We proposed in this paper to tackle this problem from a sensorimotor perspective. In line with the Sensorimotor Contingencies Theory, we make the fundamental assumption that the semantic content of sensory inputs at least partially stems from the way an agent can actively transform it. We illustrate our approach by formalizing how simple visual features can induce invariants in a naive agent's sensorimotor experience, and evaluate it on a simple simulated visual system. Without any a priori knowledge about the way its sensorimotor information is encoded, we show how an agent can characterize the uniformity and edge-ness of the visual features it interacts with.
Novel Deep Learning Model for Traffic Sign Detection Using Capsule Networks
Convolutional neural networks are the most widely used deep learning algorithms for traffic signal classification till date but they fail to capture pose, view, orientation of the images because of the intrinsic inability of max pooling layer.This paper proposes a novel method for Traffic sign detection using deep learning architecture called capsule networks that achieves outstanding performance on the German traffic sign dataset.Capsule network consists of capsules which are a group of neurons representing the instantiating parameters of an object like the pose and orientation by using the dynamic routing and route by agreement algorithms.unlike the previous approaches of manual feature extraction,multiple deep neural networks with many parameters,our method eliminates the manual effort and provides resistance to the spatial variances.CNNs can be fooled easily using various adversary attacks and capsule networks can overcome such attacks from the intruders and can offer more reliability in traffic sign detection for autonomous vehicles.Capsule network have achieved the state-of-the-art accuracy of 97.6% on German Traffic Sign Recognition Benchmark dataset (GTSRB).
Laconic Deep Learning Computing
We motivate a method for transparently identifying ineffectual computations in unmodified Deep Learning models and without affecting accuracy. Specifically, we show that if we decompose multiplications down to the bit level the amount of work performed during inference for image classification models can be consistently reduced by two orders of magnitude. In the best case studied of a sparse variant of AlexNet, this approach can ideally reduce computation work by more than 500x. We present Laconic a hardware accelerator that implements this approach to improve execution time, and energy efficiency for inference with Deep Learning Networks. Laconic judiciously gives up some of the work reduction potential to yield a low-cost, simple, and energy efficient design that outperforms other state-of-the-art accelerators. For example, a Laconic configuration that uses a weight memory interface with just 128 wires outperforms a conventional accelerator with a 2K-wire weight memory interface by 2.3x on average while being 2.13x more energy efficient on average. A Laconic configuration that uses a 1K-wire weight memory interface, outperforms the 2K-wire conventional accelerator by 15.4x and is 1.95x more energy efficient. Laconic does not require but rewards advances in model design such as a reduction in precision, the use of alternate numeric representations that reduce the number of bits that are "1", or an increase in weight or activation sparsity.
Metatrace Actor-Critic: Online Step-size Tuning by Meta-gradient Descent for Reinforcement Learning Control
Reinforcement learning (RL) has had many successes in both "deep" and "shallow" settings. In both cases, significant hyperparameter tuning is often required to achieve good performance. Furthermore, when nonlinear function approximation is used, non-stationarity in the state representation can lead to learning instability. A variety of techniques exist to combat this --- most notably large experience replay buffers or the use of multiple parallel actors. These techniques come at the cost of moving away from the online RL problem as it is traditionally formulated (i.e., a single agent learning online without maintaining a large database of training examples). Meta-learning can potentially help with both these issues by tuning hyperparameters online and allowing the algorithm to more robustly adjust to non-stationarity in a problem. This paper applies meta-gradient descent to derive a set of step-size tuning algorithms specifically for online RL control with eligibility traces. Our novel technique, Metatrace, makes use of an eligibility trace analogous to methods like $TD(\lambda)$. We explore tuning both a single scalar step-size and a separate step-size for each learned parameter. We evaluate Metatrace first for control with linear function approximation in the classic mountain car problem and then in a noisy, non-stationary version. Finally, we apply Metatrace for control with nonlinear function approximation in 5 games in the Arcade Learning Environment where we explore how it impacts learning speed and robustness to initial step-size choice. Results show that the meta-step-size parameter of Metatrace is easy to set, Metatrace can speed learning, and Metatrace can allow an RL algorithm to deal with non-stationarity in the learning task.
Learning-induced categorical perception in a neural network model
In human cognition, the expansion of perceived between-category distances and compression of within-category distances is known as categorical perception (CP). There are several hypotheses about the causes of CP (e.g., language, learning, evolution) but no functional model. Whether CP is essential to categorisation or simply a by-product of it is not yet clear, but evidence is accumulating that CP can be induced by category learning. We provide a model for learning-induced CP as expansion and compression of distances in hidden-unit space in neural nets. Basic conditions from which the current model predicts CP are described, and clues as to how these conditions might generalize to more complex kinds of categorization begin to emerge.
Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions
Error bound conditions (EBC) are properties that characterize the growth of an objective function when a point is moved away from the optimal set. They have recently received increasing attention in the field of optimization for developing optimization algorithms with fast convergence. However, the studies of EBC in statistical learning are hitherto still limited. The main contributions of this paper are two-fold. First, we develop fast and intermediate rates of empirical risk minimization (ERM) under EBC for risk minimization with Lipschitz continuous, and smooth convex random functions. Second, we establish fast and intermediate rates of an efficient stochastic approximation (SA) algorithm for risk minimization with Lipschitz continuous random functions, which requires only one pass of $n$ samples and adapts to EBC. For both approaches, the convergence rates span a full spectrum between $\widetilde O(1/\sqrt{n})$ and $\widetilde O(1/n)$ depending on the power constant in EBC, and could be even faster than $O(1/n)$ in special cases for ERM. Moreover, these convergence rates are automatically adaptive without using any knowledge of EBC. Overall, this work not only strengthens the understanding of ERM for statistical learning but also brings new fast stochastic algorithms for solving a broad range of statistical learning problems.
TensOrMachine: Probabilistic Boolean Tensor Decomposition
Boolean tensor decomposition approximates data of multi-way binary relationships as product of interpretable low-rank binary factors, following the rules of Boolean algebra. Here, we present its first probabilistic treatment. We facilitate scalable sampling-based posterior inference by exploitation of the combinatorial structure of the factor conditionals. Maximum a posteriori decompositions feature higher accuracies than existing techniques throughout a wide range of simulated conditions. Moreover, the probabilistic approach facilitates the treatment of missing data and enables model selection with much greater accuracy. We investigate three real-world data-sets. First, temporal interaction networks in a hospital ward and behavioural data of university students demonstrate the inference of instructive latent patterns. Next, we decompose a tensor with more than 10 billion data points, indicating relations of gene expression in cancer patients. Not only does this demonstrate scalability, it also provides an entirely novel perspective on relational properties of continuous data and, in the present example, on the molecular heterogeneity of cancer. Our implementation is available on GitHub: https://github.com/TammoR/LogicalFactorisationMachines.
Robust and Scalable Models of Microbiome Dynamics
Microbes are everywhere, including in and on our bodies, and have been shown to play key roles in a variety of prevalent human diseases. Consequently, there has been intense interest in the design of bacteriotherapies or "bugs as drugs," which are communities of bacteria administered to patients for specific therapeutic applications. Central to the design of such therapeutics is an understanding of the causal microbial interaction network and the population dynamics of the organisms. In this work we present a Bayesian nonparametric model and associated efficient inference algorithm that addresses the key conceptual and practical challenges of learning microbial dynamics from time series microbe abundance data. These challenges include high-dimensional (300+ strains of bacteria in the gut) but temporally sparse and non-uniformly sampled data; high measurement noise; and, nonlinear and physically non-negative dynamics. Our contributions include a new type of dynamical systems model for microbial dynamics based on what we term interaction modules, or learned clusters of latent variables with redundant interaction structure (reducing the expected number of interaction coefficients from $O(n^2)$ to $O((\log n)^2)$); a fully Bayesian formulation of the stochastic dynamical systems model that propagates measurement and latent state uncertainty throughout the model; and introduction of a temporally varying auxiliary variable technique to enable efficient inference by relaxing the hard non-negativity constraint on states. We apply our method to simulated and real data, and demonstrate the utility of our technique for system identification from limited data and gaining new biological insights into bacteriotherapy design.
Textual Membership Queries
Human labeling of data can be very time-consuming and expensive, yet, in many cases it is critical for the success of the learning process. In order to minimize human labeling efforts, we propose a novel active learning solution that does not rely on existing sources of unlabeled data. It uses a small amount of labeled data as the core set for the synthesis of useful membership queries (MQs) - unlabeled instances generated by an algorithm for human labeling. Our solution uses modification operators, functions that modify instances to some extent. We apply the operators on a small set of instances (core set), creating a set of new membership queries. Using this framework, we look at the instance space as a search space and apply search algorithms in order to generate new examples highly relevant to the learner. We implement this framework in the textual domain and test it on several text classification tasks and show improved classifier performance as more MQs are labeled and incorporated into the training set. To the best of our knowledge, this is the first work on membership queries in the textual domain.
Twitter User Geolocation using Deep Multiview Learning
Predicting the geographical location of users on social networks like Twitter is an active research topic with plenty of methods proposed so far. Most of the existing work follows either a content-based or a network-based approach. The former is based on user-generated content while the latter exploits the structure of the network of users. In this paper, we propose a more generic approach, which incorporates not only both content-based and network-based features, but also other available information into a unified model. Our approach, named Multi-Entry Neural Network (MENET), leverages the latest advances in deep learning and multiview learning. A realization of MENET with textual, network and metadata features results in an effective method for Twitter user geolocation, achieving the state of the art on two well-known datasets.
Breaking Transferability of Adversarial Samples with Randomness
We investigate the role of transferability of adversarial attacks in the observed vulnerabilities of Deep Neural Networks (DNNs). We demonstrate that introducing randomness to the DNN models is sufficient to defeat adversarial attacks, given that the adversary does not have an unlimited attack budget. Instead of making one specific DNN model robust to perfect knowledge attacks (a.k.a, white box attacks), creating randomness within an army of DNNs completely eliminates the possibility of perfect knowledge acquisition, resulting in a significantly more robust DNN ensemble against the strongest form of attacks. We also show that when the adversary has an unlimited budget of data perturbation, all defensive techniques would eventually break down as the budget increases. Therefore, it is important to understand the game saddle point where the adversary would not further pursue this endeavor. Furthermore, we explore the relationship between attack severity and decision boundary robustness in the version space. We empirically demonstrate that by simply adding a small Gaussian random noise to the learned weights, a DNN model can increase its resilience to adversarial attacks by as much as 74.2%. More importantly, we show that by randomly activating/revealing a model from a pool of pre-trained DNNs at each query request, we can put a tremendous strain on the adversary's attack strategies. We compare our randomization techniques to the Ensemble Adversarial Training technique and show that our randomization techniques are superior under different attack budget constraints.
AdvEntuRe: Adversarial Training for Textual Entailment with Knowledge-Guided Examples
We consider the problem of learning textual entailment models with limited supervision (5K-10K training examples), and present two complementary approaches for it. First, we propose knowledge-guided adversarial example generators for incorporating large lexical resources in entailment models via only a handful of rule templates. Second, to make the entailment model - a discriminator - more robust, we propose the first GAN-style approach for training it using a natural language example generator that iteratively adjusts based on the discriminator's performance. We demonstrate effectiveness using two entailment datasets, where the proposed methods increase accuracy by 4.7% on SciTail and by 2.8% on a 1% training sub-sample of SNLI. Notably, even a single hand-written rule, negate, improves the accuracy on the negation examples in SNLI by 6.1%.
Task Transfer by Preference-Based Cost Learning
The goal of task transfer in reinforcement learning is migrating the action policy of an agent to the target task from the source task. Given their successes on robotic action planning, current methods mostly rely on two requirements: exactly-relevant expert demonstrations or the explicitly-coded cost function on target task, both of which, however, are inconvenient to obtain in practice. In this paper, we relax these two strong conditions by developing a novel task transfer framework where the expert preference is applied as a guidance. In particular, we alternate the following two steps: Firstly, letting experts apply pre-defined preference rules to select related expert demonstrates for the target task. Secondly, based on the selection result, we learn the target cost function and trajectory distribution simultaneously via enhanced Adversarial MaxEnt IRL and generate more trajectories by the learned target distribution for the next preference selection. The theoretical analysis on the distribution learning and convergence of the proposed algorithm are provided. Extensive simulations on several benchmarks have been conducted for further verifying the effectiveness of the proposed method.
Gaussian Mixture Latent Vector Grammars
We introduce Latent Vector Grammars (LVeGs), a new framework that extends latent variable grammars such that each nonterminal symbol is associated with a continuous vector space representing the set of (infinitely many) subtypes of the nonterminal. We show that previous models such as latent variable grammars and compositional vector grammars can be interpreted as special cases of LVeGs. We then present Gaussian Mixture LVeGs (GM-LVeGs), a new special case of LVeGs that uses Gaussian mixtures to formulate the weights of production rules over subtypes of nonterminals. A major advantage of using Gaussian mixtures is that the partition function and the expectations of subtype rules can be computed using an extension of the inside-outside algorithm, which enables efficient inference and learning. We apply GM-LVeGs to part-of-speech tagging and constituency parsing and show that GM-LVeGs can achieve competitive accuracies. Our code is available at https://github.com/zhaoyanpeng/lveg.
Do Outliers Ruin Collaboration?
We consider the problem of learning a binary classifier from $n$ different data sources, among which at most an $\eta$ fraction are adversarial. The overhead is defined as the ratio between the sample complexity of learning in this setting and that of learning the same hypothesis class on a single data distribution. We present an algorithm that achieves an $O(\eta n + \ln n)$ overhead, which is proved to be worst-case optimal. We also discuss the potential challenges to the design of a computationally efficient learning algorithm with a small overhead.
Pool-Based Sequential Active Learning for Regression
Active learning is a machine learning approach for reducing the data labeling effort. Given a pool of unlabeled samples, it tries to select the most useful ones to label so that a model built from them can achieve the best possible performance. This paper focuses on pool-based sequential active learning for regression (ALR). We first propose three essential criteria that an ALR approach should consider in selecting the most useful unlabeled samples: informativeness, representativeness, and diversity, and compare four existing ALR approaches against them. We then propose a new ALR approach using passive sampling, which considers both the representativeness and the diversity in both the initialization and subsequent iterations. Remarkably, this approach can also be integrated with other existing ALR approaches in the literature to further improve the performance. Extensive experiments on 11 UCI, CMU StatLib, and UFL Media Core datasets from various domains verified the effectiveness of our proposed ALR approaches.
Offline EEG-Based Driver Drowsiness Estimation Using Enhanced Batch-Mode Active Learning (EBMAL) for Regression
There are many important regression problems in real-world brain-computer interface (BCI) applications, e.g., driver drowsiness estimation from EEG signals. This paper considers offline analysis: given a pool of unlabeled EEG epochs recorded during driving, how do we optimally select a small number of them to label so that an accurate regression model can be built from them to label the rest? Active learning is a promising solution to this problem, but interestingly, to our best knowledge, it has not been used for regression problems in BCI so far. This paper proposes a novel enhanced batch-mode active learning (EBMAL) approach for regression, which improves upon a baseline active learning algorithm by increasing the reliability, representativeness and diversity of the selected samples to achieve better regression performance. We validate its effectiveness using driver drowsiness estimation from EEG signals. However, EBMAL is a general approach that can also be applied to many other offline regression problems beyond BCI.
Agreement Rate Initialized Maximum Likelihood Estimator for Ensemble Classifier Aggregation and Its Application in Brain-Computer Interface
Ensemble learning is a powerful approach to construct a strong learner from multiple base learners. The most popular way to aggregate an ensemble of classifiers is majority voting, which assigns a sample to the class that most base classifiers vote for. However, improved performance can be obtained by assigning weights to the base classifiers according to their accuracy. This paper proposes an agreement rate initialized maximum likelihood estimator (ARIMLE) to optimally fuse the base classifiers. ARIMLE first uses a simplified agreement rate method to estimate the classification accuracy of each base classifier from the unlabeled samples, then employs the accuracies to initialize a maximum likelihood estimator (MLE), and finally uses the expectation-maximization algorithm to refine the MLE. Extensive experiments on visually evoked potential classification in a brain-computer interface application show that ARIMLE outperforms majority voting, and also achieves better or comparable performance with several other state-of-the-art classifier combination approaches.
Towards Autonomous Reinforcement Learning: Automatic Setting of Hyper-parameters using Bayesian Optimization
With the increase of machine learning usage by industries and scientific communities in a variety of tasks such as text mining, image recognition and self-driving cars, automatic setting of hyper-parameter in learning algorithms is a key factor for achieving satisfactory performance regardless of user expertise in the inner workings of the techniques and methodologies. In particular, for a reinforcement learning algorithm, the efficiency of an agent learning a control policy in an uncertain environment is heavily dependent on the hyper-parameters used to balance exploration with exploitation. In this work, an autonomous learning framework that integrates Bayesian optimization with Gaussian process regression to optimize the hyper-parameters of a reinforcement learning algorithm, is proposed. Also, a bandits-based approach to achieve a balance between computational costs and decreasing uncertainty about the Q-values, is presented. A gridworld example is used to highlight how hyper-parameter configurations of a learning algorithm (SARSA) are iteratively improved based on two performance functions.
Incremental Learning Framework Using Cloud Computing
High volume of data, perceived as either challenge or opportunity. Deep learning architecture demands high volume of data to effectively back propagate and train the weights without bias. At the same time, large volume of data demands higher capacity of the machine where it could be executed seamlessly. Budding data scientist along with many research professionals face frequent disconnection issue with cloud computing framework (working without dedicated connection) due to free subscription to the platform. Similar issues also visible while working on local computer where computer may run out of resource or power sometimes and researcher has to start training the models all over again. In this paper, we intend to provide a way to resolve this issue and progressively training the neural network even after having frequent disconnection or resource outage without loosing much of the progress
A Simple and Effective Model-Based Variable Importance Measure
In the era of "big data", it is becoming more of a challenge to not only build state-of-the-art predictive models, but also gain an understanding of what's really going on in the data. For example, it is often of interest to know which, if any, of the predictors in a fitted model are relatively influential on the predicted outcome. Some modern algorithms---like random forests and gradient boosted decision trees---have a natural way of quantifying the importance or relative influence of each feature. Other algorithms---like naive Bayes classifiers and support vector machines---are not capable of doing so and model-free approaches are generally used to measure each predictor's importance. In this paper, we propose a standardized, model-based approach to measuring predictor importance across the growing spectrum of supervised learning algorithms. Our proposed method is illustrated through both simulated and real data examples. The R code to reproduce all of the figures in this paper is available in the supplementary materials.
Improving Predictive Uncertainty Estimation using Dropout -- Hamiltonian Monte Carlo
Estimating predictive uncertainty is crucial for many computer vision tasks, from image classification to autonomous driving systems. Hamiltonian Monte Carlo (HMC) is an sampling method for performing Bayesian inference. On the other hand, Dropout regularization has been proposed as an approximate model averaging technique that tends to improve generalization in large scale models such as deep neural networks. Although, HMC provides convergence guarantees for most standard Bayesian models, it does not handle discrete parameters arising from Dropout regularization. In this paper, we present a robust methodology for improving predictive uncertainty in classification problems, based on Dropout and Hamiltonian Monte Carlo. Even though Dropout induces a non-smooth energy function with no such convergence guarantees, the resulting discretization of the Hamiltonian proves empirical success. The proposed method allows to effectively estimate the predictive accuracy and to provide better generalization for difficult test examples.
Born Again Neural Networks
Knowledge distillation (KD) consists of transferring knowledge from one machine learning model (the teacher}) to another (the student). Commonly, the teacher is a high-capacity model with formidable performance, while the student is more compact. By transferring knowledge, one hopes to benefit from the student's compactness. %we desire a compact model with performance close to the teacher's. We study KD from a new perspective: rather than compressing models, we train students parameterized identically to their teachers. Surprisingly, these {Born-Again Networks (BANs), outperform their teachers significantly, both on computer vision and language modeling tasks. Our experiments with BANs based on DenseNets demonstrate state-of-the-art performance on the CIFAR-10 (3.5%) and CIFAR-100 (15.5%) datasets, by validation error. Additional experiments explore two distillation objectives: (i) Confidence-Weighted by Teacher Max (CWTM) and (ii) Dark Knowledge with Permuted Predictions (DKPP). Both methods elucidate the essential components of KD, demonstrating a role of the teacher outputs on both predicted and non-predicted classes. We present experiments with students of various capacities, focusing on the under-explored case where students overpower teachers. Our experiments show significant advantages from transferring knowledge between DenseNets and ResNets in either direction.
Nonlinear Metric Learning through Geodesic Interpolation within Lie Groups
In this paper, we propose a nonlinear distance metric learning scheme based on the fusion of component linear metrics. Instead of merging displacements at each data point, our model calculates the velocities induced by the component transformations, via a geodesic interpolation on a Lie transfor- mation group. Such velocities are later summed up to produce a global transformation that is guaranteed to be diffeomorphic. Consequently, pair-wise distances computed this way conform to a smooth and spatially varying metric, which can greatly benefit k-NN classification. Experiments on synthetic and real datasets demonstrate the effectiveness of our model.
An Optimal Policy for Dynamic Assortment Planning Under Uncapacitated Multinomial Logit Models
We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Since all the utility parameters of MNL are unknown, the seller needs to simultaneously learn customers' choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products $N$. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model---MNL model is still open. By carefully analyzing a revenue potential function, we develop a trisection based policy combined with adaptive confidence bound construction, which achieves an {item-independent} regret bound of $O(\sqrt{T})$, where $T$ is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on $N$. Second, our policies are almost assumption free: there is no assumption on mean utility nor any "separability" condition on the expected revenues for different assortments. Our result also extends the unimodal bandit literature.
Curriculum Adversarial Training
Recently, deep learning has been applied to many security-sensitive applications, such as facial authentication. The existence of adversarial examples hinders such applications. The state-of-the-art result on defense shows that adversarial training can be applied to train a robust model on MNIST against adversarial examples; but it fails to achieve a high empirical worst-case accuracy on a more complex task, such as CIFAR-10 and SVHN. In our work, we propose curriculum adversarial training (CAT) to resolve this issue. The basic idea is to develop a curriculum of adversarial examples generated by attacks with a wide range of strengths. With two techniques to mitigate the forgetting and the generalization issues, we demonstrate that CAT can improve the prior art's empirical worst-case accuracy by a large margin of 25% on CIFAR-10 and 35% on SVHN. At the same, the model's performance on non-adversarial inputs is comparable to the state-of-the-art models.
Spatial Uncertainty Sampling for End-to-End Control
End-to-end trained neural networks (NNs) are a compelling approach to autonomous vehicle control because of their ability to learn complex tasks without manual engineering of rule-based decisions. However, challenging road conditions, ambiguous navigation situations, and safety considerations require reliable uncertainty estimation for the eventual adoption of full-scale autonomous vehicles. Bayesian deep learning approaches provide a way to estimate uncertainty by approximating the posterior distribution of weights given a set of training data. Dropout training in deep NNs approximates Bayesian inference in a deep Gaussian process and can thus be used to estimate model uncertainty. In this paper, we propose a Bayesian NN for end-to-end control that estimates uncertainty by exploiting feature map correlation during training. This approach achieves improved model fits, as well as tighter uncertainty estimates, than traditional element-wise dropout. We evaluate our algorithms on a challenging dataset collected over many different road types, times of day, and weather conditions, and demonstrate how uncertainties can be used in conjunction with a human controller in a parallel autonomous setting.
GAN Q-learning
Distributional reinforcement learning (distributional RL) has seen empirical success in complex Markov Decision Processes (MDPs) in the setting of nonlinear function approximation. However, there are many different ways in which one can leverage the distributional approach to reinforcement learning. In this paper, we propose GAN Q-learning, a novel distributional RL method based on generative adversarial networks (GANs) and analyze its performance in simple tabular environments, as well as OpenAI Gym. We empirically show that our algorithm leverages the flexibility and blackbox approach of deep learning models while providing a viable alternative to traditional methods.
On the Practical Computational Power of Finite Precision RNNs for Language Recognition
While Recurrent Neural Networks (RNNs) are famously known to be Turing complete, this relies on infinite precision in the states and unbounded computation time. We consider the case of RNNs with finite precision whose computation time is linear in the input length. Under these limitations, we show that different RNN variants have different computational power. In particular, we show that the LSTM and the Elman-RNN with ReLU activation are strictly stronger than the RNN with a squashing activation and the GRU. This is achieved because LSTMs and ReLU-RNNs can easily implement counting behavior. We show empirically that the LSTM does indeed learn to effectively use the counting mechanism.
Extendable Neural Matrix Completion
Matrix completion is one of the key problems in signal processing and machine learning, with applications ranging from image pro- cessing and data gathering to classification and recommender sys- tems. Recently, deep neural networks have been proposed as la- tent factor models for matrix completion and have achieved state- of-the-art performance. Nevertheless, a major problem with existing neural-network-based models is their limited capabilities to extend to samples unavailable at the training stage. In this paper, we propose a deep two-branch neural network model for matrix completion. The proposed model not only inherits the predictive power of neural net- works, but is also capable of extending to partially observed samples outside the training set, without the need of retraining or fine-tuning. Experimental studies on popular movie rating datasets prove the ef- fectiveness of our model compared to the state of the art, in terms of both accuracy and extendability.
Lehmer Transform and its Theoretical Properties
We propose a new class of transforms that we call {\it Lehmer Transform} which is motivated by the {\it Lehmer mean function}. The proposed {\it Lehmer transform} decomposes a function of a sample into their constituting statistical moments. Theoretical properties of the proposed transform are presented. This transform could be very useful to provide an alternative method in analyzing non-stationary signals such as brain wave EEG.
Doing the impossible: Why neural networks can be trained at all
As deep neural networks grow in size, from thousands to millions to billions of weights, the performance of those networks becomes limited by our ability to accurately train them. A common naive question arises: if we have a system with billions of degrees of freedom, don't we also need billions of samples to train it? Of course, the success of deep learning indicates that reliable models can be learned with reasonable amounts of data. Similar questions arise in protein folding, spin glasses and biological neural networks. With effectively infinite potential folding/spin/wiring configurations, how does the system find the precise arrangement that leads to useful and robust results? Simple sampling of the possible configurations until an optimal one is reached is not a viable option even if one waited for the age of the universe. On the contrary, there appears to be a mechanism in the above phenomena that forces them to achieve configurations that live on a low-dimensional manifold, avoiding the curse of dimensionality. In the current work we use the concept of mutual information between successive layers of a deep neural network to elucidate this mechanism and suggest possible ways of exploiting it to accelerate training. We show that adding structure to the neural network that enforces higher mutual information between layers speeds training and leads to more accurate results. High mutual information between layers implies that the effective number of free parameters is exponentially smaller than the raw number of tunable weights.
Dyna: A Method of Momentum for Stochastic Optimization
An algorithm is presented for momentum gradient descent optimization based on the first-order differential equation of the Newtonian dynamics. The fictitious mass is introduced to the dynamics of momentum for regularizing the adaptive stepsize of each individual parameter. The dynamic relaxation is adapted for stochastic optimization of nonlinear objective functions through an explicit time integration with varying damping ratio. The adaptive stepsize is optimized for each individual neural network layer based on the number of inputs. The adaptive stepsize for every parameter over the entire neural network is uniformly optimized with one upper bound, independent of sparsity, for better overall convergence rate. The numerical implementation of the algorithm is similar to the Adam Optimizer, possessing computational efficiency, similar memory requirements, etc. There are three hyper-parameters in the algorithm with clear physical interpretation. Preliminary trials show promise in performance and convergence.
The Global Optimization Geometry of Shallow Linear Neural Networks
We examine the squared error loss landscape of shallow linear neural networks. We show---with significantly milder assumptions than previous works---that the corresponding optimization problems have benign geometric properties: there are no spurious local minima and the Hessian at every saddle point has at least one negative eigenvalue. This means that at every saddle point there is a directional negative curvature which algorithms can utilize to further decrease the objective value. These geometric properties imply that many local search algorithms (such as the gradient descent which is widely utilized for training neural networks) can provably solve the training problem with global convergence.
Low-pass Recurrent Neural Networks - A memory architecture for longer-term correlation discovery
Reinforcement learning (RL) agents performing complex tasks must be able to remember observations and actions across sizable time intervals. This is especially true during the initial learning stages, when exploratory behaviour can increase the delay between specific actions and their effects. Many new or popular approaches for learning these distant correlations employ backpropagation through time (BPTT), but this technique requires storing observation traces long enough to span the interval between cause and effect. Besides memory demands, learning dynamics like vanishing gradients and slow convergence due to infrequent weight updates can reduce BPTT's practicality; meanwhile, although online recurrent network learning is a developing topic, most approaches are not efficient enough to use as replacements. We propose a simple, effective memory strategy that can extend the window over which BPTT can learn without requiring longer traces. We explore this approach empirically on a few tasks and discuss its implications.
Accelerating Message Passing for MAP with Benders Decomposition
We introduce a novel mechanism to tighten the local polytope relaxation for MAP inference in Markov random fields with low state space variables. We consider a surjection of the variables to a set of hyper-variables and apply the local polytope relaxation over these hyper-variables. The state space of each individual hyper-variable is constructed to be enumerable while the vector product of pairs is not easily enumerable making message passing inference intractable. To circumvent the difficulty of enumerating the vector product of state spaces of hyper-variables we introduce a novel Benders decomposition approach. This produces an upper envelope describing the message constructed from affine functions of the individual variables that compose the hyper-variable receiving the message. The envelope is tight at the minimizers which are shared by the true message. Benders rows are constructed to be Pareto optimal and are generated using an efficient procedure targeted for binary problems.
Index Set Fourier Series Features for Approximating Multi-dimensional Periodic Kernels
Periodicity is often studied in timeseries modelling with autoregressive methods but is less popular in the kernel literature, particularly for higher dimensional problems such as in textures, crystallography, and quantum mechanics. Large datasets often make modelling periodicity untenable for otherwise powerful non-parametric methods like Gaussian Processes (GPs) which typically incur an $\mathcal{O}(N^3)$ computational burden and, consequently, are unable to scale to larger datasets. To this end we introduce a method termed \emph{Index Set Fourier Series Features} to tractably exploit multivariate Fourier series and efficiently decompose periodic kernels on higher-dimensional data into a series of basis functions. We show that our approximation produces significantly less predictive error than alternative approaches such as those based on random Fourier features and achieves better generalisation on regression problems with periodic data.
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Recently, it has been shown that deep neural networks (DNN) are subject to attacks through adversarial samples. Adversarial samples are often crafted through adversarial perturbation, i.e., manipulating the original sample with minor modifications so that the DNN model labels the sample incorrectly. Given that it is almost impossible to train perfect DNN, adversarial samples are shown to be easy to generate. As DNN are increasingly used in safety-critical systems like autonomous cars, it is crucial to develop techniques for defending such attacks. Existing defense mechanisms which aim to make adversarial perturbation challenging have been shown to be ineffective. In this work, we propose an alternative approach. We first observe that adversarial samples are much more sensitive to perturbations than normal samples. That is, if we impose random perturbations on a normal and an adversarial sample respectively, there is a significant difference between the ratio of label change due to the perturbations. Observing this, we design a statistical adversary detection algorithm called nMutant (inspired by mutation testing from software engineering community). Our experiments show that nMutant effectively detects most of the adversarial samples generated by recently proposed attacking methods. Furthermore, we provide an error bound with certain statistical significance along with the detection.
A One-Class Classification Decision Tree Based on Kernel Density Estimation
One-class Classification (OCC) is an area of machine learning which addresses prediction based on unbalanced datasets. Basically, OCC algorithms achieve training by means of a single class sample, with potentially some additional counter-examples. The current OCC models give satisfaction in terms of performance, but there is an increasing need for the development of interpretable models. In the present work, we propose a one-class model which addresses concerns of both performance and interpretability. Our hybrid OCC method relies on density estimation as part of a tree-based learning algorithm, called One-Class decision Tree (OC-Tree). Within a greedy and recursive approach, our proposal rests on kernel density estimation to split a data subset on the basis of one or several intervals of interest. Thus, the OC-Tree encloses data within hyper-rectangles of interest which can be described by a set of rules. Against state-of-the-art methods such as Cluster Support Vector Data Description (ClusterSVDD), One-Class Support Vector Machine (OCSVM) and isolation Forest (iForest), the OC-Tree performs favorably on a range of benchmark datasets. Furthermore, we propose a real medical application for which the OC-Tree has demonstrated its effectiveness, through the ability to tackle interpretable diagnosis aid based on unbalanced datasets.
A Deep Learning Approach with an Attention Mechanism for Automatic Sleep Stage Classification
Automatic sleep staging is a challenging problem and state-of-the-art algorithms have not yet reached satisfactory performance to be used instead of manual scoring by a sleep technician. Much research has been done to find good feature representations that extract the useful information to correctly classify each epoch into the correct sleep stage. While many useful features have been discovered, the amount of features have grown to an extent that a feature reduction step is necessary in order to avoid the curse of dimensionality. One reason for the need of such a large feature set is that many features are good for discriminating only one of the sleep stages and are less informative during other stages. This paper explores how a second feature representation over a large set of pre-defined features can be learned using an auto-encoder with a selective attention for the current sleep stage in the training batch. This selective attention allows the model to learn feature representations that focuses on the more relevant inputs without having to perform any dimensionality reduction of the input data. The performance of the proposed algorithm is evaluated on a large data set of polysomnography (PSG) night recordings of patients with sleep-disordered breathing. The performance of the auto-encoder with selective attention is compared with a regular auto-encoder and previous works using a deep belief network (DBN).
Machine Learning: The Basics
Machine learning (ML) has become a commodity in our every-day lives. We routinely ask ML empowered smartphones to suggest lovely food places or to guide us through a strange place. ML methods have also become standard tools in many fields of science and engineering. A plethora of ML applications transform human lives at unprecedented pace and scale. This book portrays ML as the combination of three basic components: data, model and loss. ML methods combine these three components within computationally efficient implementations of the basic scientific principle "trial and error". This principle consists of the continuous adaptation of a hypothesis about a phenomenon that generates data. ML methods use a hypothesis to compute predictions for future events. We believe that thinking about ML as combinations of three components given by data, model, and loss helps to navigate the steadily growing offer for ready-to-use ML methods. Our three-component picture of ML allows a unified treatment of a wide range of concepts and techniques which seem quite unrelated at first sight. The regularization effect of early stopping in iterative methods is due to the shrinking of the effective hypothesis space. Privacy-preserving ML is obtained by particular choices for the features of data points. Explainable ML methods are characterized by particular choices for the hypothesis space. To make good use of ML tools it is instrumental to understand its underlying principles at different levels of detail. On a lower level, this tutorial helps ML engineers to choose suitable methods for the application at hand. The book also offers a higher-level view on the implementation of ML methods which is typically required to manage a team of ML engineers and data scientists.
KL-UCB-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints
In the context of K-armed stochastic bandits with distribution only assumed to be supported by [0,1], we introduce the first algorithm, called KL-UCB-switch, that enjoys simultaneously a distribution-free regret bound of optimal order $\sqrt{KT}$ and a distribution-dependent regret bound of optimal order as well, that is, matching the $\kappa\ln T$ lower bound by Lai & Robbins (1985) and Burnetas & Katehakis (1996). This self-contained contribution simultaneously presents state-of-the-art techniques for regret minimization in bandit models, and an elementary construction of non-asymptotic confidence bounds based on the empirical likelihood method for bounded distributions.
Domain Adaptation with Adversarial Training and Graph Embeddings
The success of deep neural networks (DNNs) is heavily dependent on the availability of labeled data. However, obtaining labeled data is a big challenge in many real-world problems. In such scenarios, a DNN model can leverage labeled and unlabeled data from a related domain, but it has to deal with the shift in data distributions between the source and the target domains. In this paper, we study the problem of classifying social media posts during a crisis event (e.g., Earthquake). For that, we use labeled and unlabeled data from past similar events (e.g., Flood) and unlabeled data for the current event. We propose a novel model that performs adversarial learning based domain adaptation to deal with distribution drifts and graph based semi-supervised learning to leverage unlabeled data within a single unified deep learning framework. Our experiments with two real-world crisis datasets collected from Twitter demonstrate significant improvements over several baselines.
Generative Adversarial Forests for Better Conditioned Adversarial Learning
In recent times, many of the breakthroughs in various vision-related tasks have revolved around improving learning of deep models; these methods have ranged from network architectural improvements such as Residual Networks, to various forms of regularisation such as Batch Normalisation. In essence, many of these techniques revolve around better conditioning, allowing for deeper and deeper models to be successfully learned. In this paper, we look towards better conditioning Generative Adversarial Networks (GANs) in an unsupervised learning setting. Our method embeds the powerful discriminating capabilities of a decision forest into the discriminator of a GAN. This results in a better conditioned model which learns in an extremely stable way. We demonstrate empirical results which show both clear qualitative and quantitative evidence of the effectiveness of our approach, gaining significant performance improvements over several popular GAN-based approaches on the Oxford Flowers and Aligned Celebrity Faces datasets.
Randomized Smoothing SVRG for Large-scale Nonsmooth Convex Optimization
In this paper, we consider the problem of minimizing the average of a large number of nonsmooth and convex functions. Such problems often arise in typical machine learning problems as empirical risk minimization, but are computationally very challenging. We develop and analyze a new algorithm that achieves robust linear convergence rate, and both its time complexity and gradient complexity are superior than state-of-art nonsmooth algorithms and subgradient-based schemes. Besides, our algorithm works without any extra error bound conditions on the objective function as well as the common strongly-convex condition. We show that our algorithm has wide applications in optimization and machine learning problems, and demonstrate experimentally that it performs well on a large-scale ranking problem.