title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Guaranteed Deterministic Bounds on the Total Variation Distance between Univariate Mixtures
The total variation distance is a core statistical distance between probability measures that satisfies the metric axioms, with value always falling in $[0,1]$. This distance plays a fundamental role in machine learning and signal processing: It is a member of the broader class of $f$-divergences, and it is related to the probability of error in Bayesian hypothesis testing. Since the total variation distance does not admit closed-form expressions for statistical mixtures (like Gaussian mixture models), one often has to rely in practice on costly numerical integrations or on fast Monte Carlo approximations that however do not guarantee deterministic lower and upper bounds. In this work, we consider two methods for bounding the total variation of univariate mixture models: The first method is based on the information monotonicity property of the total variation to design guaranteed nested deterministic lower bounds. The second method relies on computing the geometric lower and upper envelopes of weighted mixture components to derive deterministic bounds based on density ratio. We demonstrate the tightness of our bounds in a series of experiments on Gaussian, Gamma and Rayleigh mixture models.
Unsupervised Detection and Explanation of Latent-class Contextual Anomalies
Detecting and explaining anomalies is a challenging effort. This holds especially true when data exhibits strong dependencies and single measurements need to be assessed and analyzed in their respective context. In this work, we consider scenarios where measurements are non-i.i.d, i.e. where samples are dependent on corresponding discrete latent variables which are connected through some given dependency structure, the contextual information. Our contribution is twofold: (i) Building atop of support vector data description (SVDD), we derive a method able to cope with latent-class dependency structure that can still be optimized efficiently. We further show that our approach neatly generalizes vanilla SVDD as well as k-means and conditional random fields (CRF) and provide a corresponding probabilistic interpretation. (ii) In unsupervised scenarios where it is not possible to quantify the accuracy of an anomaly detector, having an human-interpretable solution is the key to success. Based on deep Taylor decomposition and a reformulation of our trained anomaly detector as a neural network, we are able to backpropagate predictions to pixel-domain and thus identify features and regions of high relevance. We demonstrate the usefulness of our novel approach on toy data with known spatio-temporal structure and successfully validate on synthetic as well as real world off-shore data from the oil industry.
Knowledge-Based Distant Regularization in Learning Probabilistic Models
Exploiting the appropriate inductive bias based on the knowledge of data is essential for achieving good performance in statistical machine learning. In practice, however, the domain knowledge of interest often provides information on the relationship of data attributes only distantly, which hinders direct utilization of such domain knowledge in popular regularization methods. In this paper, we propose the knowledge-based distant regularization framework, in which we utilize the distant information encoded in a knowledge graph for regularization of probabilistic model estimation. In particular, we propose to impose prior distributions on model parameters specified by knowledge graph embeddings. As an instance of the proposed framework, we present the factor analysis model with the knowledge-based distant regularization. We show the results of preliminary experiments on the improvement of the generalization capability of such model.
Measuring the quality of Synthetic data for use in competitions
Machine learning has the potential to assist many communities in using the large datasets that are becoming more and more available. Unfortunately, much of that potential is not being realized because it would require sharing data in a way that compromises privacy. In order to overcome this hurdle, several methods have been proposed that generate synthetic data while preserving the privacy of the real data. In this paper we consider a key characteristic that synthetic data should have in order to be useful for machine learning researchers - the relative performance of two algorithms (trained and tested) on the synthetic dataset should be the same as their relative performance (when trained and tested) on the original dataset.
Learning from graphs with structural variation
We study the effect of structural variation in graph data on the predictive performance of graph kernels. To this end, we introduce a novel, noise-robust adaptation of the GraphHopper kernel and validate it on benchmark data, obtaining modestly improved predictive performance on a range of datasets. Next, we investigate the performance of the state-of-the-art Weisfeiler-Lehman graph kernel under increasing synthetic structural errors and find that the effect of introducing errors depends strongly on the dataset.
Theory IIIb: Generalization in Deep Networks
A main puzzle of deep neural networks (DNNs) revolves around the apparent absence of "overfitting", defined in this paper as follows: the expected error does not get worse when increasing the number of neurons or of iterations of gradient descent. This is surprising because of the large capacity demonstrated by DNNs to fit randomly labeled data and the absence of explicit regularization. Recent results by Srebro et al. provide a satisfying solution of the puzzle for linear networks used in binary classification. They prove that minimization of loss functions such as the logistic, the cross-entropy and the exp-loss yields asymptotic, "slow" convergence to the maximum margin solution for linearly separable datasets, independently of the initial conditions. Here we prove a similar result for nonlinear multilayer DNNs near zero minima of the empirical loss. The result holds for exponential-type losses but not for the square loss. In particular, we prove that the weight matrix at each layer of a deep network converges to a minimum norm solution up to a scale factor (in the separable case). Our analysis of the dynamical system corresponding to gradient descent of a multilayer network suggests a simple criterion for ranking the generalization performance of different zero minimizers of the empirical loss.
Convergence Problems with Generative Adversarial Networks (GANs)
Generative adversarial networks (GANs) are a novel approach to generative modelling, a task whose goal it is to learn a distribution of real data points. They have often proved difficult to train: GANs are unlike many techniques in machine learning, in that they are best described as a two-player game between a discriminator and generator. This has yielded both unreliability in the training process, and a general lack of understanding as to how GANs converge, and if so, to what. The purpose of this dissertation is to provide an account of the theory of GANs suitable for the mathematician, highlighting both positive and negative results. This involves identifying the problems when training GANs, and how topological and game-theoretic perspectives of GANs have contributed to our understanding and improved our techniques in recent years.
A Comparative Study of Distributional and Symbolic Paradigms for Relational Learning
Many real-world domains can be expressed as graphs and, more generally, as multi-relational knowledge graphs. Though reasoning and learning with knowledge graphs has traditionally been addressed by symbolic approaches, recent methods in (deep) representation learning has shown promising results for specialized tasks such as knowledge base completion. These approaches abandon the traditional symbolic paradigm by replacing symbols with vectors in Euclidean space. With few exceptions, symbolic and distributional approaches are explored in different communities and little is known about their respective strengths and weaknesses. In this work, we compare representation learning and relational learning on various relational classification and clustering tasks and analyse the complexity of the rules used implicitly by these approaches. Preliminary results reveal possible indicators that could help in choosing one approach over the other for particular knowledge graphs.
Bounds on the Approximation Power of Feedforward Neural Networks
The approximation power of general feedforward neural networks with piecewise linear activation functions is investigated. First, lower bounds on the size of a network are established in terms of the approximation error and network depth and width. These bounds improve upon state-of-the-art bounds for certain classes of functions, such as strongly convex functions. Second, an upper bound is established on the difference of two neural networks with identical weights but different activation functions.
Discourse-Wizard: Discovering Deep Discourse Structure in your Conversation with RNNs
Spoken language understanding is one of the key factors in a dialogue system, and a context in a conversation plays an important role to understand the current utterance. In this work, we demonstrate the importance of context within the dialogue for neural network models through an online web interface live demo. We developed two different neural models: a model that does not use context and a context-based model. The no-context model classifies dialogue acts at an utterance-level whereas the context-based model takes some preceding utterances into account. We make these trained neural models available as a live demo called Discourse-Wizard using a modular server architecture. The live demo provides an easy to use interface for conversational analysis and for discovering deep discourse structures in a conversation.
Certifying Global Optimality of Graph Cuts via Semidefinite Relaxation: A Performance Guarantee for Spectral Clustering
Spectral clustering has become one of the most widely used clustering techniques when the structure of the individual clusters is non-convex or highly anisotropic. Yet, despite its immense popularity, there exists fairly little theory about performance guarantees for spectral clustering. This issue is partly due to the fact that spectral clustering typically involves two steps which complicated its theoretical analysis: first, the eigenvectors of the associated graph Laplacian are used to embed the dataset, and second, k-means clustering algorithm is applied to the embedded dataset to get the labels. This paper is devoted to the theoretical foundations of spectral clustering and graph cuts. We consider a convex relaxation of graph cuts, namely ratio cuts and normalized cuts, that makes the usual two-step approach of spectral clustering obsolete and at the same time gives rise to a rigorous theoretical analysis of graph cuts and spectral clustering. We derive deterministic bounds for successful spectral clustering via a spectral proximity condition that naturally depends on the algebraic connectivity of each cluster and the inter-cluster connectivity. Moreover, we demonstrate by means of some popular examples that our bounds can achieve near-optimality. Our findings are also fundamental for the theoretical understanding of kernel k-means. Numerical simulations confirm and complement our analysis.
Play Duration based User-Entity Affinity Modeling in Spoken Dialog System
Multimedia streaming services over spoken dialog systems have become ubiquitous. User-entity affinity modeling is critical for the system to understand and disambiguate user intents and personalize user experiences. However, fully voice-based interaction demands quantification of novel behavioral cues to determine user affinities. In this work, we propose using play duration cues to learn a matrix factorization based collaborative filtering model. We first binarize play durations to obtain implicit positive and negative affinity labels. The Bayesian Personalized Ranking objective and learning algorithm are employed in our low-rank matrix factorization approach. To cope with uncertainties in the implicit affinity labels, we propose to apply a weighting function that emphasizes the importance of high confidence samples. Based on a large-scale database of Alexa music service records, we evaluate the affinity models by computing Spearman correlation between play durations and predicted affinities. Comparing different data utilizations and weighting functions, we find that employing both positive and negative affinity samples with a convex weighting function yields the best performance. Further analysis demonstrates the model's effectiveness on individual entity level and provides insights on the temporal dynamics of observed affinities.
Comparing Graph Clusterings: Set partition measures vs. Graph-aware measures
In this paper, we propose a family of graph partition similarity measures that take the topology of the graph into account. These graph-aware measures are alternatives to using set partition similarity measures that are not specifically designed for graph partitions. The two types of measures, graph-aware and set partition measures, are shown to have opposite behaviors with respect to resolution issues and provide complementary information necessary to assess that two graph partitions are similar.
Bayesian Counterfactual Risk Minimization
We present a Bayesian view of counterfactual risk minimization (CRM) for offline learning from logged bandit feedback. Using PAC-Bayesian analysis, we derive a new generalization bound for the truncated inverse propensity score estimator. We apply the bound to a class of Bayesian policies, which motivates a novel, potentially data-dependent, regularization technique for CRM. Experimental results indicate that this technique outperforms standard $L_2$ regularization, and that it is competitive with variance regularization while being both simpler to implement and more computationally efficient.
Sparse Three-parameter Restricted Indian Buffet Process for Understanding International Trade
This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data. We perform a non-negative doubly sparse matrix factorization that has two main advantages: not only we are able to better approximate the row input distributions, but the inferred topics are also easier to interpret. By combining the three-parameter and restricted Indian buffet processes into a single prior, we increase the model flexibility, allowing for a full spectrum of sparse solutions in the latent space. We demonstrate the usefulness of our approach in the analysis of countries' economic structure. Compared to other approaches, empirical results show our model's ability to give easy-to-interpret information and better capture the underlying sparsity structure of data.
Counting to Explore and Generalize in Text-based Games
We propose a recurrent RL agent with an episodic exploration mechanism that helps discovering good policies in text-based game environments. We show promising results on a set of generated text-based games of varying difficulty where the goal is to collect a coin located at the end of a chain of rooms. In contrast to previous text-based RL approaches, we observe that our agent learns policies that generalize to unseen games of greater difficulty.
TextWorld: A Learning Environment for Text-based Games
We introduce TextWorld, a sandbox learning environment for the training and evaluation of RL agents on text-based games. TextWorld is a Python library that handles interactive play-through of text games, as well as backend functions like state tracking and reward assignment. It comes with a curated list of games whose features and challenges we have analyzed. More significantly, it enables users to handcraft or automatically generate new games. Its generative mechanisms give precise control over the difficulty, scope, and language of constructed games, and can be used to relax challenges inherent to commercial text games like partial observability and sparse rewards. By generating sets of varied but similar games, TextWorld can also be used to study generalization and transfer learning. We cast text-based games in the Reinforcement Learning formalism, use our framework to develop a set of benchmark games, and evaluate several baseline agents on this set and the curated list.
End-to-end Learning of Multi-sensor 3D Tracking by Detection
In this paper we propose a novel approach to tracking by detection that can exploit both cameras as well as LIDAR data to produce very accurate 3D trajectories. Towards this goal, we formulate the problem as a linear program that can be solved exactly, and learn convolutional networks for detection as well as matching in an end-to-end manner. We evaluate our model in the challenging KITTI dataset and show very competitive results.
An Exact Quantized Decentralized Gradient Descent Algorithm
We consider the problem of decentralized consensus optimization, where the sum of $n$ smooth and strongly convex functions are minimized over $n$ distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization. We propose the Quantized Decentralized Gradient Descent (QDGD) algorithm, in which nodes update their local decision variables by combining the quantized information received from their neighbors with their local information. We prove that under standard strong convexity and smoothness assumptions for the objective function, QDGD achieves a vanishing mean solution error under customary conditions for quantizers. To the best of our knowledge, this is the first algorithm that achieves vanishing consensus error in the presence of quantization noise. Moreover, we provide simulation results that show tight agreement between our derived theoretical convergence rate and the numerical results.
High Dimensional Discrete Integration over the Hypergrid
Recently Ermon et al. (2013) pioneered a way to practically compute approximations to large scale counting or discrete integration problems by using random hashes. The hashes are used to reduce the counting problem into many separate discrete optimization problems. The optimization problems then can be solved by an NP-oracle such as commercial SAT solvers or integer linear programming (ILP) solvers. In particular, Ermon et al. showed that if the domain of integration is $\{0,1\}^n$ then it is possible to obtain a solution within a factor of $16$ of the optimal (a 16-approximation) by this technique. In many crucial counting tasks, such as computation of partition function of ferromagnetic Potts model, the domain of integration is naturally $\{0,1,\dots, q-1\}^n, q>2$, the hypergrid. The straightforward extension of Ermon et al.'s method allows a $q^2$-approximation for this problem. For large values of $q$, this is undesirable. In this paper, we show an improved technique to obtain an approximation factor of $4+O(1/q^2)$ to this problem. We are able to achieve this by using an idea of optimization over multiple bins of the hash functions, that can be easily implemented by inequality constraints, or even in unconstrained way. Also the burden on the NP-oracle is not increased by our method (an ILP solver can still be used). We provide experimental simulation results to support the theoretical guarantees of our algorithms.
Nonparametric learning from Bayesian models with randomized objective functions
Bayesian learning is built on an assumption that the model space contains a true reflection of the data generating mechanism. This assumption is problematic, particularly in complex data environments. Here we present a Bayesian nonparametric approach to learning that makes use of statistical models, but does not assume that the model is true. Our approach has provably better properties than using a parametric model and admits a Monte Carlo sampling scheme that can afford massive scalability on modern computer architectures. The model-based aspect of learning is particularly attractive for regularizing nonparametric inference when the sample size is small, and also for correcting approximate approaches such as variational Bayes (VB). We demonstrate the approach on a number of examples including VB classifiers and Bayesian random forests.
Single Index Latent Variable Models for Network Topology Inference
A semi-parametric, non-linear regression model in the presence of latent variables is applied towards learning network graph structure. These latent variables can correspond to unmodeled phenomena or unmeasured agents in a complex system of interacting entities. This formulation jointly estimates non-linearities in the underlying data generation, the direct interactions between measured entities, and the indirect effects of unmeasured processes on the observed data. The learning is posed as regularized empirical risk minimization. Details of the algorithm for learning the model are outlined. Experiments demonstrate the performance of the learned model on real data.
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
Classifiers can be trained with data-dependent constraints to satisfy fairness goals, reduce churn, achieve a targeted false positive rate, or other policy goals. We study the generalization performance for such constrained optimization problems, in terms of how well the constraints are satisfied at evaluation time, given that they are satisfied at training time. To improve generalization performance, we frame the problem as a two-player game where one player optimizes the model parameters on a training dataset, and the other player enforces the constraints on an independent validation dataset. We build on recent work in two-player constrained optimization to show that if one uses this two-dataset approach, then constraint generalization can be significantly improved. As we illustrate experimentally, this approach works not only in theory, but also in practice.
Neural Networks Trained to Solve Differential Equations Learn General Representations
We introduce a technique based on the singular vector canonical correlation analysis (SVCCA) for measuring the generality of neural network layers across a continuously-parametrized set of tasks. We illustrate this method by studying generality in neural networks trained to solve parametrized boundary value problems based on the Poisson partial differential equation. We find that the first hidden layer is general, and that deeper layers are successively more specific. Next, we validate our method against an existing technique that measures layer generality using transfer learning experiments. We find excellent agreement between the two methods, and note that our method is much faster, particularly for continuously-parametrized problems. Finally, we visualize the general representations of the first layers, and interpret them as generalized coordinates over the input domain.
It All Matters: Reporting Accuracy, Inference Time and Power Consumption for Face Emotion Recognition on Embedded Systems
While several approaches to face emotion recognition task are proposed in literature, none of them reports on power consumption nor inference time required to run the system in an embedded environment. Without adequate knowledge about these factors it is not clear whether we are actually able to provide accurate face emotion recognition in the embedded environment or not, and if not, how far we are from making it feasible and what are the biggest bottlenecks we face. The main goal of this paper is to answer these questions and to convey the message that instead of reporting only detection accuracy also power consumption and inference time should be reported as real usability of the proposed systems and their adoption in human computer interaction strongly depends on it. In this paper, we identify the state-of-the art face emotion recognition methods that are potentially suitable for embedded environment and the most frequently used datasets for this task. Our study shows that most of the performed experiments use datasets with posed expressions or in a particular experimental setup with special conditions for image collection. Since our goal is to evaluate the performance of the identified promising methods in the realistic scenario, we collect a new dataset with non-exaggerated emotions and we use it, in addition to the publicly available datasets, for the evaluation of detection accuracy, power consumption and inference time on three frequently used embedded devices with different computational capabilities. Our results show that gray images are still more suitable for embedded environment than color ones and that for most of the analyzed systems either inference time or energy consumption or both are limiting factor for their adoption in real-life embedded applications.
Adversarial Examples in Deep Learning: Characterization and Divergence
The burgeoning success of deep learning has raised the security and privacy concerns as more and more tasks are accompanied with sensitive data. Adversarial attacks in deep learning have emerged as one of the dominating security threat to a range of mission-critical deep learning systems and applications. This paper takes a holistic and principled approach to perform statistical characterization of adversarial examples in deep learning. We provide a general formulation of adversarial examples and elaborate on the basic principle for adversarial attack algorithm design. We introduce easy and hard categorization of adversarial attacks to analyze the effectiveness of adversarial examples in terms of attack success rate, degree of change in adversarial perturbation, average entropy of prediction qualities, and fraction of adversarial examples that lead to successful attacks. We conduct extensive experimental study on adversarial behavior in easy and hard attacks under deep learning models with different hyperparameters and different deep learning frameworks. We show that the same adversarial attack behaves differently under different hyperparameters and across different frameworks due to the different features learned under different deep learning model training process. Our statistical characterization with strong empirical evidence provides a transformative enlightenment on mitigation strategies towards effective countermeasures against present and future adversarial attacks.
Task-Driven Convolutional Recurrent Models of the Visual System
Feed-forward convolutional neural networks (CNNs) are currently state-of-the-art for object classification tasks such as ImageNet. Further, they are quantitatively accurate models of temporally-averaged responses of neurons in the primate brain's visual system. However, biological visual systems have two ubiquitous architectural features not shared with typical CNNs: local recurrence within cortical areas, and long-range feedback from downstream areas to upstream areas. Here we explored the role of recurrence in improving classification performance. We found that standard forms of recurrence (vanilla RNNs and LSTMs) do not perform well within deep CNNs on the ImageNet task. In contrast, novel cells that incorporated two structural features, bypassing and gating, were able to boost task accuracy substantially. We extended these design principles in an automated search over thousands of model architectures, which identified novel local recurrent cells and long-range feedback connections useful for object recognition. Moreover, these task-optimized ConvRNNs matched the dynamics of neural activity in the primate visual system better than feedforward networks, suggesting a role for the brain's recurrent connections in performing difficult visual behaviors.
Fully Nonparametric Bayesian Additive Regression Trees
Bayesian Additive Regression Trees (BART) is a fully Bayesian approach to modeling with ensembles of trees. BART can uncover complex regression functions with high dimensional regressors in a fairly automatic way and provide Bayesian quantification of the uncertainty through the posterior. However, BART assumes IID normal errors. This strong parametric assumption can lead to misleading inference and uncertainty quantification. In this paper, we use the classic Dirichlet process mixture (DPM) mechanism to nonparametrically model the error distribution. A key strength of BART is that default prior settings work reasonably well in a variety of problems. The challenge in extending BART is to choose the parameters of the DPM so that the strengths of the standard BART approach is not lost when the errors are close to normal, but the DPM has the ability to adapt to non-normal errors.
Topology classification with deep learning to improve real-time event selection at the LHC
We show how event topology classification based on deep learning could be used to improve the purity of data samples selected in real time at at the Large Hadron Collider. We consider different data representations, on which different kinds of multi-class classifiers are trained. Both raw data and high-level features are utilized. In the considered examples, a filter based on the classifier's score can be trained to retain ~99% of the interesting events and reduce the false-positive rate by as much as one order of magnitude for certain background processes. By operating such a filter as part of the online event selection infrastructure of the LHC experiments, one could benefit from a more flexible and inclusive selection strategy while reducing the amount of downstream resources wasted in processing false positives. The saved resources could be translated into a reduction of the detector operation cost or into an effective increase of storage and processing capabilities, which could be reinvested to extend the physics reach of the LHC experiments.
A Learning Theory in Linear Systems under Compositional Models
We present a learning theory for the training of a linear system operator having an input compositional variable and propose a Bayesian inversion method for inferring the unknown variable from an output of a noisy linear system. We assume that we have partial or even no knowledge of the operator but have training data of input and ouput. A compositional variable satisfies the constraints that the elements of the variable are all non-negative and sum to unity. We quantified the uncertainty in the trained operator and present the convergence rates of training in explicit forms for several interesting cases under stochastic compositional models. The trained linear operator with the covariance matrix, estimated from the training set of pairs of ground-truth input and noisy output data, is further used in evaluation of posterior uncertainty of the solution. This posterior uncertainty clearly demonstrates uncertainty propagation from noisy training data and addresses possible mismatch between the true operator and the estimated one in the final solution.
Probabilistic Bisection with Spatial Metamodels
Probabilistic Bisection Algorithm performs root finding based on knowledge acquired from noisy oracle responses. We consider the generalized PBA setting (G-PBA) where the statistical distribution of the oracle is unknown and location-dependent, so that model inference and Bayesian knowledge updating must be performed simultaneously. To this end, we propose to leverage the spatial structure of a typical oracle by constructing a statistical surrogate for the underlying logistic regression step. We investigate several non-parametric surrogates, including Binomial Gaussian Processes (B-GP), Polynomial, Kernel, and Spline Logistic Regression. In parallel, we develop sampling policies that adaptively balance learning the oracle distribution and learning the root. One of our proposals mimics active learning with B-GPs and provides a novel look-ahead predictive variance formula. The resulting gains of our Spatial PBA algorithm relative to earlier G-PBA models are illustrated with synthetic examples and a challenging stochastic root finding problem from Bermudan option pricing.
Generating Titles for Web Tables
Descriptive titles provide crucial context for interpreting tables that are extracted from web pages and are a key component of table-based web applications. Prior approaches have attempted to produce titles by selecting existing text snippets associated with the table. These approaches, however, are limited by their dependence on suitable titles existing a priori. In our user study, we observe that the relevant information for the title tends to be scattered across the page, and often--more than 80% of the time--does not appear verbatim anywhere in the page. We propose instead the application of a sequence-to-sequence neural network model as a more generalizable means of generating high-quality titles. This is accomplished by extracting many text snippets that have potentially relevant information to the table, encoding them into an input sequence, and using both copy and generation mechanisms in the decoder to balance relevance and readability of the generated title. We validate this approach with human evaluation on sample web tables and report that while sequence models with only a copy mechanism or only a generation mechanism are easily outperformed by simple selection-based baselines, the model with both capabilities outperforms them all, approaching the quality of crowdsourced titles while training on fewer than ten thousand examples. To the best of our knowledge, the proposed technique is the first to consider text generation methods for table titles and establishes a new state of the art.
A Constrained Coupled Matrix-Tensor Factorization for Learning Time-evolving and Emerging Topics
Topic discovery has witnessed a significant growth as a field of data mining at large. In particular, time-evolving topic discovery, where the evolution of a topic is taken into account has been instrumental in understanding the historical context of an emerging topic in a dynamic corpus. Traditionally, time-evolving topic discovery has focused on this notion of time. However, especially in settings where content is contributed by a community or a crowd, an orthogonal notion of time is the one that pertains to the level of expertise of the content creator: the more experienced the creator, the more advanced the topic. In this paper, we propose a novel time-evolving topic discovery method which, in addition to the extracted topics, is able to identify the evolution of that topic over time, as well as the level of difficulty of that topic, as it is inferred by the level of expertise of its main contributors. Our method is based on a novel formulation of Constrained Coupled Matrix-Tensor Factorization, which adopts constraints well-motivated for, and, as we demonstrate, are essential for high-quality topic discovery. We qualitatively evaluate our approach using real data from the Physics and also Programming Stack Exchange forum, and we were able to identify topics of varying levels of difficulty which can be linked to external events, such as the announcement of gravitational waves by the LIGO lab in Physics forum. We provide a quantitative evaluation of our method by conducting a user study where experts were asked to judge the coherence and quality of the extracted topics. Finally, our proposed method has implications for automatic curriculum design using the extracted topics, where the notion of the level of difficulty is necessary for the proper modeling of prerequisites and advanced concepts.
Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities
New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions. These dimensions include a myriad of properties describing genome, epigenome, transcriptome, microbiome, phenotype, and lifestyle. No single data type, however, can capture the complexity of all the factors relevant to understanding a phenomenon such as a disease. Integrative methods that combine data from multiple technologies have thus emerged as critical statistical and computational approaches. The key challenge in developing such approaches is the identification of effective models to provide a comprehensive and relevant systems view. An ideal method can answer a biological or medical question, identifying important features and predicting outcomes, by harnessing heterogeneous data across several dimensions of biological variation. In this Review, we describe the principles of data integration and discuss current methods and available implementations. We provide examples of successful data integration in biology and medicine. Finally, we discuss current challenges in biomedical integrative methods and our perspective on the future development of the field.
A New Benchmark and Progress Toward Improved Weakly Supervised Learning
Knowledge Matters: Importance of Prior Information for Optimization [7], by Gulcehre et. al., sought to establish the limits of current black-box, deep learning techniques by posing problems which are difficult to learn without engineering knowledge into the model or training procedure. In our work, we completely solve the previous Knowledge Matters problem using a generic model, pose a more difficult and scalable problem, All-Pairs, and advance this new problem by introducing a new learned, spatially-varying histogram model called TypeNet which outperforms conventional models on the problem. We present results on All-Pairs where our model achieves 100% test accuracy while the best ResNet models achieve 79% accuracy. In addition, our model is more than an order of magnitude smaller than Resnet-34. The challenge of solving larger-scale All-Pairs problems with high accuracy is presented to the community for investigation.
Game-Theoretic Interpretability for Temporal Modeling
Interpretability has arisen as a key desideratum of machine learning models alongside performance. Approaches so far have been primarily concerned with fixed dimensional inputs emphasizing feature relevance or selection. In contrast, we focus on temporal modeling and the problem of tailoring the predictor, functionally, towards an interpretable family. To this end, we propose a co-operative game between the predictor and an explainer without any a priori restrictions on the functional class of the predictor. The goal of the explainer is to highlight, locally, how well the predictor conforms to the chosen interpretable family of temporal models. Our co-operative game is setup asymmetrically in terms of information sets for efficiency reasons. We develop and illustrate the framework in the context of temporal sequence models with examples.
Algorithms for solving optimization problems arising from deep neural net models: smooth problems
Machine Learning models incorporating multiple layered learning networks have been seen to provide effective models for various classification problems. The resulting optimization problem to solve for the optimal vector minimizing the empirical risk is, however, highly nonlinear. This presents a challenge to application and development of appropriate optimization algorithms for solving the problem. In this paper, we summarize the primary challenges involved and present the case for a Newton-based method incorporating directions of negative curvature, including promising numerical results on data arising from security anomally deetection.
Algorithms for solving optimization problems arising from deep neural net models: nonsmooth problems
Machine Learning models incorporating multiple layered learning networks have been seen to provide effective models for various classification problems. The resulting optimization problem to solve for the optimal vector minimizing the empirical risk is, however, highly nonconvex. This alone presents a challenge to application and development of appropriate optimization algorithms for solving the problem. However, in addition, there are a number of interesting problems for which the objective function is non- smooth and nonseparable. In this paper, we summarize the primary challenges involved, the state of the art, and present some numerical results on an interesting and representative class of problems.
Achieving Fairness through Adversarial Learning: an Application to Recidivism Prediction
Recidivism prediction scores are used across the USA to determine sentencing and supervision for hundreds of thousands of inmates. One such generator of recidivism prediction scores is Northpointe's Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) score, used in states like California and Florida, which past research has shown to be biased against black inmates according to certain measures of fairness. To counteract this racial bias, we present an adversarially-trained neural network that predicts recidivism and is trained to remove racial bias. When comparing the results of our model to COMPAS, we gain predictive accuracy and get closer to achieving two out of three measures of fairness: parity and equality of odds. Our model can be generalized to any prediction and demographic. This piece of research contributes an example of scientific replication and simplification in a high-stakes real-world application like recidivism prediction.
Improved Techniques for Learning to Dehaze and Beyond: A Collective Study
Here we explore two related but important tasks based on the recently released REalistic Single Image DEhazing (RESIDE) benchmark dataset: (i) single image dehazing as a low-level image restoration problem; and (ii) high-level visual understanding (e.g., object detection) of hazy images. For the first task, we investigated a variety of loss functions and show that perception-driven loss significantly improves dehazing performance. In the second task, we provide multiple solutions including using advanced modules in the dehazing-detection cascade and domain-adaptive object detectors. In both tasks, our proposed solutions significantly improve performance. GitHub repository URL is: https://github.com/guanlongzhao/dehaze
Advanced Methods for the Optical Quality Assurance of Silicon Sensors
We describe a setup for optical quality assurance of silicon microstrip sensors. Pattern recognition algorithms were developed to analyze microscopic scans of the sensors for defects. It is shown that the software has a recognition and classification rate of $>$~90\% for defects like scratches, shorts, broken metal lines etc. We have demonstrated that advanced image processing based on neural network techniques is able to further improve the recognition and defect classification rate.
Embedding Models for Episodic Knowledge Graphs
In recent years a number of large-scale triple-oriented knowledge graphs have been generated and various models have been proposed to perform learning in those graphs. Most knowledge graphs are static and reflect the world in its current state. In reality, of course, the state of the world is changing: a healthy person becomes diagnosed with a disease and a new president is inaugurated. In this paper, we extend models for static knowledge graphs to temporal knowledge graphs. This enables us to store episodic data and to generalize to new facts (inductive learning). We generalize leading learning models for static knowledge graphs (i.e., Tucker, RESCAL, HolE, ComplEx, DistMult) to temporal knowledge graphs. In particular, we introduce a new tensor model, ConT, with superior generalization performance. The performances of all proposed models are analyzed on two different datasets: the Global Database of Events, Language, and Tone (GDELT) and the database for Integrated Conflict Early Warning System (ICEWS). We argue that temporal knowledge graph embeddings might be models also for cognitive episodic memory (facts we remember and can recollect) and that a semantic memory (current facts we know) can be generated from episodic memory by a marginalization operation. We validate this episodic-to-semantic projection hypothesis with the ICEWS dataset.
chemmodlab: A Cheminformatics Modeling Laboratory for Fitting and Assessing Machine Learning Models
The goal of chemmodlab is to streamline the fitting and assessment pipeline for many machine learning models in R, making it easy for researchers to compare the utility of new models. While focused on implementing methods for model fitting and assessment that have been accepted by experts in the cheminformatics field, all of the methods in chemmodlab have broad utility for the machine learning community. chemmodlab contains several assessment utilities including a plotting function that constructs accumulation curves and a function that computes many performance measures. The most novel feature of chemmodlab is the ease with which statistically significant performance differences for many machine learning models is presented by means of the multiple comparisons similarity plot. Differences are assessed using repeated k-fold cross validation where blocking increases precision and multiplicity adjustments are applied.
Automatic Identification of Twin Zygosity in Resting-State Functional MRI
A key strength of twin studies arises from the fact that there are two types of twins, monozygotic and dizygotic, that share differing amounts of genetic information. Accurate differentiation of twin types allows efficient inference on genetic influences in a population. However, identification of zygosity is often prone to errors without genotying. In this study, we propose a novel pairwise feature representation to classify the zygosity of twin pairs of resting state functional magnetic resonance images (rs-fMRI). For this, we project an fMRI signal to a set of basis functions and use the projection coefficients as the compact and discriminative feature representation of noisy fMRI. We encode the relationship between twins as the correlation between the new feature representations across brain regions. We employ hill climbing variable selection to identify brain regions that are the most genetically affected. The proposed framework was applied to 208 twin pairs and achieved 94.19% classification accuracy in automatically identifying the zygosity of paired images.
Trust-Region Algorithms for Training Responses: Machine Learning Methods Using Indefinite Hessian Approximations
Machine learning (ML) problems are often posed as highly nonlinear and nonconvex unconstrained optimization problems. Methods for solving ML problems based on stochastic gradient descent are easily scaled for very large problems but may involve fine-tuning many hyper-parameters. Quasi-Newton approaches based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) update typically do not require manually tuning hyper-parameters but suffer from approximating a potentially indefinite Hessian with a positive-definite matrix. Hessian-free methods leverage the ability to perform Hessian-vector multiplication without needing the entire Hessian matrix, but each iteration's complexity is significantly greater than quasi-Newton methods. In this paper we propose an alternative approach for solving ML problems based on a quasi-Newton trust-region framework for solving large-scale optimization problems that allow for indefinite Hessian approximations. Numerical experiments on a standard testing data set show that with a fixed computational time budget, the proposed methods achieve better results than the traditional limited-memory BFGS and the Hessian-free methods.
Stochastic model-based minimization under high-order growth
Given a nonsmooth, nonconvex minimization problem, we consider algorithms that iteratively sample and minimize stochastic convex models of the objective function. Assuming that the one-sided approximation quality and the variation of the models is controlled by a Bregman divergence, we show that the scheme drives a natural stationarity measure to zero at the rate $O(k^{-1/4})$. Under additional convexity and relative strong convexity assumptions, the function values converge to the minimum at the rate of $O(k^{-1/2})$ and $\widetilde{O}(k^{-1})$, respectively. We discuss consequences for stochastic proximal point, mirror descent, regularized Gauss-Newton, and saddle point algorithms.
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Methods for reasoning under uncertainty are a key building block of accurate and reliable machine learning systems. Bayesian methods provide a general framework to quantify uncertainty. However, because of model misspecification and the use of approximate inference, Bayesian uncertainty estimates are often inaccurate -- for example, a 90% credible interval may not contain the true outcome 90% of the time. Here, we propose a simple procedure for calibrating any regression algorithm; when applied to Bayesian and probabilistic models, it is guaranteed to produce calibrated uncertainty estimates given enough data. Our procedure is inspired by Platt scaling and extends previous work on classification. We evaluate this approach on Bayesian linear regression, feedforward, and recurrent neural networks, and find that it consistently outputs well-calibrated credible intervals while improving performance on time series forecasting and model-based reinforcement learning tasks.
Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera
Depth completion, the technique of estimating a dense depth image from sparse depth measurements, has a variety of applications in robotics and autonomous driving. However, depth completion faces 3 main challenges: the irregularly spaced pattern in the sparse depth input, the difficulty in handling multiple sensor modalities (when color images are available), as well as the lack of dense, pixel-level ground truth depth labels. In this work, we address all these challenges. Specifically, we develop a deep regression model to learn a direct mapping from sparse depth (and color images) to dense depth. We also propose a self-supervised training framework that requires only sequences of color and sparse depth images, without the need for dense depth labels. Our experiments demonstrate that our network, when trained with semi-dense annotations, attains state-of-the- art accuracy and is the winning approach on the KITTI depth completion benchmark at the time of submission. Furthermore, the self-supervised framework outperforms a number of existing solutions trained with semi- dense annotations.
Autonomous Deep Learning: A Genetic DCNN Designer for Image Classification
Recent years have witnessed the breakthrough success of deep convolutional neural networks (DCNNs) in image classification and other vision applications. Although freeing users from the troublesome handcrafted feature extraction by providing a uniform feature extraction-classification framework, DCNNs still require a handcrafted design of their architectures. In this paper, we propose the genetic DCNN designer, an autonomous learning algorithm can generate a DCNN architecture automatically based on the data available for a specific image classification problem. We first partition a DCNN into multiple stacked meta convolutional blocks and fully connected blocks, each containing the operations of convolution, pooling, fully connection, batch normalization, activation and drop out, and thus convert the architecture into an integer vector. Then, we use refined evolutionary operations, including selection, mutation and crossover to evolve a population of DCNN architectures. Our results on the MNIST, Fashion-MNIST, EMNISTDigit, EMNIST-Letter, CIFAR10 and CIFAR100 datasets suggest that the proposed genetic DCNN designer is able to produce automatically DCNN architectures, whose performance is comparable to, if not better than, that of stateof- the-art DCNN models
Exponential Convergence of the Deep Neural Network Approximation for Analytic Functions
We prove that for analytic functions in low dimension, the convergence rate of the deep neural network approximation is exponential.
Multi-Task Generative Adversarial Nets with Shared Memory for Cross-Domain Coordination Control
Generating sequential decision process from huge amounts of measured process data is a future research direction for collaborative factory automation, making full use of those online or offline process data to directly design flexible make decisions policy, and evaluate performance. The key challenges for the sequential decision process is to online generate sequential decision-making policy directly, and transferring knowledge across tasks domain. Most multi-task policy generating algorithms often suffer from insufficient generating cross-task sharing structure at discrete-time nonlinear systems with applications. This paper proposes the multi-task generative adversarial nets with shared memory for cross-domain coordination control, which can generate sequential decision policy directly from raw sensory input of all of tasks, and online evaluate performance of system actions in discrete-time nonlinear systems. Experiments have been undertaken using a professional flexible manufacturing testbed deployed within a smart factory of Weichai Power in China. Results on three groups of discrete-time nonlinear control tasks show that our proposed model can availably improve the performance of task with the help of other related tasks.
Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data
User response prediction is a crucial component for personalized information retrieval and filtering scenarios, such as recommender system and web search. The data in user response prediction is mostly in a multi-field categorical format and transformed into sparse representations via one-hot encoding. Due to the sparsity problems in representation and optimization, most research focuses on feature engineering and shallow modeling. Recently, deep neural networks have attracted research attention on such a problem for their high capacity and end-to-end training scheme. In this paper, we study user response prediction in the scenario of click prediction. We first analyze a coupled gradient issue in latent vector-based models and propose kernel product to learn field-aware feature interactions. Then we discuss an insensitive gradient issue in DNN-based models and propose Product-based Neural Network (PNN) which adopts a feature extractor to explore feature interactions. Generalizing the kernel product to a net-in-net architecture, we further propose Product-network In Network (PIN) which can generalize previous models. Extensive experiments on 4 industrial datasets and 1 contest dataset demonstrate that our models consistently outperform 8 baselines on both AUC and log loss. Besides, PIN makes great CTR improvement (relatively 34.67%) in online A/B test.
Towards Adversarial Training with Moderate Performance Improvement for Neural Network Classification
It has been demonstrated that deep neural networks are prone to noisy examples particular adversarial samples during inference process. The gap between robust deep learning systems in real world applications and vulnerable neural networks is still large. Current adversarial training strategies improve the robustness against adversarial samples. However, these methods lead to accuracy reduction when the input examples are clean thus hinders the practicability. In this paper, we investigate an approach that protects the neural network classification from the adversarial samples and improves its accuracy when the input examples are clean. We demonstrate the versatility and effectiveness of our proposed approach on a variety of different networks and datasets.
Heuristic Framework for Multi-Scale Testing of the Multi-Manifold Hypothesis
When analyzing empirical data, we often find that global linear models overestimate the number of parameters required. In such cases, we may ask whether the data lies on or near a manifold or a set of manifolds (a so-called multi-manifold) of lower dimension than the ambient space. This question can be phrased as a (multi-) manifold hypothesis. The identification of such intrinsic multiscale features is a cornerstone of data analysis and representation and has given rise to a large body of work on manifold learning. In this work, we review key results on multi-scale data analysis and intrinsic dimension followed by the introduction of a heuristic, multiscale framework for testing the multi-manifold hypothesis. Our method implements a hypothesis test on a set of spline-interpolated manifolds constructed from variance-based intrinsic dimensions. The workflow is suitable for empirical data analysis as we demonstrate on two use cases.
Beyond Winning and Losing: Modeling Human Motivations and Behaviors Using Inverse Reinforcement Learning
In recent years, reinforcement learning (RL) methods have been applied to model gameplay with great success, achieving super-human performance in various environments, such as Atari, Go, and Poker. However, those studies mostly focus on winning the game and have largely ignored the rich and complex human motivations, which are essential for understanding different players' diverse behaviors. In this paper, we present a novel method called Multi-Motivation Behavior Modeling (MMBM) that takes the multifaceted human motivations into consideration and models the underlying value structure of the players using inverse RL. Our approach does not require the access to the dynamic of the system, making it feasible to model complex interactive environments such as massively multiplayer online games. MMBM is tested on the World of Warcraft Avatar History dataset, which recorded over 70,000 users' gameplay spanning three years period. Our model reveals the significant difference of value structures among different player groups. Using the results of motivation modeling, we also predict and explain their diverse gameplay behaviors and provide a quantitative assessment of how the redesign of the game environment impacts players' behaviors.
New Heuristics for Parallel and Scalable Bayesian Optimization
Bayesian optimization has emerged as a strong candidate tool for global optimization of functions with expensive evaluation costs. However, due to the dynamic nature of research in Bayesian approaches, and the evolution of computing technology, using Bayesian optimization in a parallel computing environment remains a challenge for the non-expert. In this report, I review the state-of-the-art in parallel and scalable Bayesian optimization methods. In addition, I propose practical ways to avoid a few of the pitfalls of Bayesian optimization, such as oversampling of edge parameters and over-exploitation of high performance parameters. Finally, I provide relatively simple, heuristic algorithms, along with their open source software implementations, that can be immediately and easily deployed in any computing environment.
Augmented Cyclic Adversarial Learning for Low Resource Domain Adaptation
Training a model to perform a task typically requires a large amount of data from the domains in which the task will be applied. However, it is often the case that data are abundant in some domains but scarce in others. Domain adaptation deals with the challenge of adapting a model trained from a data-rich source domain to perform well in a data-poor target domain. In general, this requires learning plausible mappings between domains. CycleGAN is a powerful framework that efficiently learns to map inputs from one domain to another using adversarial training and a cycle-consistency constraint. However, the conventional approach of enforcing cycle-consistency via reconstruction may be overly restrictive in cases where one or more domains have limited training data. In this paper, we propose an augmented cyclic adversarial learning model that enforces the cycle-consistency constraint via an external task specific model, which encourages the preservation of task-relevant content as opposed to exact reconstruction. We explore digit classification in a low-resource setting in supervised, semi and unsupervised situation, as well as high resource unsupervised. In low-resource supervised setting, the results show that our approach improves absolute performance by 14% and 4% when adapting SVHN to MNIST and vice versa, respectively, which outperforms unsupervised domain adaptation methods that require high-resource unlabeled target domain. Moreover, using only few unsupervised target data, our approach can still outperforms many high-resource unsupervised models. In speech domains, we similarly adopt a speech recognition model from each domain as the task specific model. Our approach improves absolute performance of speech recognition by 2% for female speakers in the TIMIT dataset, where the majority of training samples are from male voices.
Model-based Exception Mining for Object-Relational Data
This paper is based on a previous publication [29]. Our work extends exception mining and outlier detection to the case of object-relational data. Object-relational data represent a complex heterogeneous network [12], which comprises objects of different types, links among these objects, also of different types, and attributes of these links. This special structure prohibits a direct vectorial data representation. We follow the well-established Exceptional Model Mining framework, which leverages machine learning models for exception mining: A object is exceptional to the extent that a model learned for the object data differs from a model learned for the general population. Exceptional objects can be viewed as outliers. We apply state of-the-art probabilistic modelling techniques for object-relational data that construct a graphical model (Bayesian network), which compactly represents probabilistic associations in the data. A new metric, derived from the learned object-relational model, quantifies the extent to which the individual association pattern of a potential outlier deviates from that of the whole population. The metric is based on the likelihood ratio of two parameter vectors: One that represents the population associations, and another that represents the individual associations. Our method is validated on synthetic datasets and on real-world data sets about soccer matches and movies. Compared to baseline methods, our novel transformed likelihood ratio achieved the best detection accuracy on all datasets.
Gradient Reversal Against Discrimination
No methods currently exist for making arbitrary neural networks fair. In this work we introduce GRAD, a new and simplified method to producing fair neural networks that can be used for auto-encoding fair representations or directly with predictive networks. It is easy to implement and add to existing architectures, has only one (insensitive) hyper-parameter, and provides improved individual and group fairness. We use the flexibility of GRAD to demonstrate multi-attribute protection.
Antithetic and Monte Carlo kernel estimators for partial rankings
In the modern age, rankings data is ubiquitous and it is useful for a variety of applications such as recommender systems, multi-object tracking and preference learning. However, most rankings data encountered in the real world is incomplete, which prevents the direct application of existing modelling tools for complete rankings. Our contribution is a novel way to extend kernel methods for complete rankings to partial rankings, via consistent Monte Carlo estimators for Gram matrices: matrices of kernel values between pairs of observations. We also present a novel variance reduction scheme based on an antithetic variate construction between permutations to obtain an improved estimator for the Mallows kernel. The corresponding antithetic kernel estimator has lower variance and we demonstrate empirically that it has a better performance in a variety of Machine Learning tasks. Both kernel estimators are based on extending kernel mean embeddings to the embedding of a set of full rankings consistent with an observed partial ranking. They form a computationally tractable alternative to previous approaches for partial rankings data. An overview of the existing kernels and metrics for permutations is also provided.
Towards Mixed Optimization for Reinforcement Learning with Program Synthesis
Deep reinforcement learning has led to several recent breakthroughs, though the learned policies are often based on black-box neural networks. This makes them difficult to interpret and to impose desired specification constraints during learning. We present an iterative framework, MORL, for improving the learned policies using program synthesis. Concretely, we propose to use synthesis techniques to obtain a symbolic representation of the learned policy, which can then be debugged manually or automatically using program repair. After the repair step, we use behavior cloning to obtain the policy corresponding to the repaired program, which is then further improved using gradient descent. This process continues until the learned policy satisfies desired constraints. We instantiate MORL for the simple CartPole problem and show that the programmatic representation allows for high-level modifications that in turn lead to improved learning of the policies.
Learning to Drive in a Day
We demonstrate the first application of deep reinforcement learning to autonomous driving. From randomly initialised parameters, our model is able to learn a policy for lane following in a handful of training episodes using a single monocular image as input. We provide a general and easy to obtain reward: the distance travelled by the vehicle without the safety driver taking control. We use a continuous, model-free deep reinforcement learning algorithm, with all exploration and optimisation performed on-vehicle. This demonstrates a new framework for autonomous driving which moves away from reliance on defined logical rules, mapping, and direct supervision. We discuss the challenges and opportunities to scale this approach to a broader range of autonomous driving tasks.
Optimization of neural networks via finite-value quantum fluctuations
We numerically test an optimization method for deep neural networks (DNNs) using quantum fluctuations inspired by quantum annealing. For efficient optimization, our method utilizes the quantum tunneling effect beyond the potential barriers. The path integral formulation of the DNN optimization generates an attracting force to simulate the quantum tunneling effect. In the standard quantum annealing method, the quantum fluctuations will vanish at the last stage of optimization. In this study, we propose a learning protocol that utilizes a finite value for quantum fluctuations strength to obtain higher generalization performance, which is a type of robustness. We demonstrate the performance of our method using two well-known open datasets: the MNIST dataset and the Olivetti face dataset. Although computational costs prevent us from testing our method on large datasets with high-dimensional data, results show that our method can enhance generalization performance by induction of the finite value for quantum fluctuations.
Dynamic Prediction Length for Time Series with Sequence to Sequence Networks
Recurrent neural networks and sequence to sequence models require a predetermined length for prediction output length. Our model addresses this by allowing the network to predict a variable length output in inference. A new loss function with a tailored gradient computation is developed that trades off prediction accuracy and output length. The model utilizes a function to determine whether a particular output at a time should be evaluated or not given a predetermined threshold. We evaluate the model on the problem of predicting the prices of securities. We find that the model makes longer predictions for more stable securities and it naturally balances prediction accuracy and length.
Confounding variables can degrade generalization performance of radiological deep learning models
Early results in using convolutional neural networks (CNNs) on x-rays to diagnose disease have been promising, but it has not yet been shown that models trained on x-rays from one hospital or one group of hospitals will work equally well at different hospitals. Before these tools are used for computer-aided diagnosis in real-world clinical settings, we must verify their ability to generalize across a variety of hospital systems. A cross-sectional design was used to train and evaluate pneumonia screening CNNs on 158,323 chest x-rays from NIH (n=112,120 from 30,805 patients), Mount Sinai (42,396 from 12,904 patients), and Indiana (n=3,807 from 3,683 patients). In 3 / 5 natural comparisons, performance on chest x-rays from outside hospitals was significantly lower than on held-out x-rays from the original hospital systems. CNNs were able to detect where an x-ray was acquired (hospital system, hospital department) with extremely high accuracy and calibrate predictions accordingly. The performance of CNNs in diagnosing diseases on x-rays may reflect not only their ability to identify disease-specific imaging findings on x-rays, but also their ability to exploit confounding information. Estimates of CNN performance based on test data from hospital systems used for model training may overstate their likely real-world performance.
Policy Optimization With Penalized Point Probability Distance: An Alternative To Proximal Policy Optimization
As the most successful variant and improvement for Trust Region Policy Optimization (TRPO), proximal policy optimization (PPO) has been widely applied across various domains with several advantages: efficient data utilization, easy implementation, and good parallelism. In this paper, a first-order gradient reinforcement learning algorithm called Policy Optimization with Penalized Point Probability Distance (POP3D), which is a lower bound to the square of total variance divergence is proposed as another powerful variant. Firstly, we talk about the shortcomings of several commonly used algorithms, by which our method is partly motivated. Secondly, we address to overcome these shortcomings by applying POP3D. Thirdly, we dive into its mechanism from the perspective of solution manifold. Finally, we make quantitative comparisons among several state-of-the-art algorithms based on common benchmarks. Simulation results show that POP3D is highly competitive compared with PPO. Besides, our code is released in https://github.com/paperwithcode/pop3d.
Speeding up the Metabolism in E-commerce by Reinforcement Mechanism Design
In a large E-commerce platform, all the participants compete for impressions under the allocation mechanism of the platform. Existing methods mainly focus on the short-term return based on the current observations instead of the long-term return. In this paper, we formally establish the lifecycle model for products, by defining the introduction, growth, maturity and decline stages and their transitions throughout the whole life period. Based on such model, we further propose a reinforcement learning based mechanism design framework for impression allocation, which incorporates the first principal component based permutation and the novel experiences generation method, to maximize short-term as well as long-term return of the platform. With the power of trial-and-error, it is possible to optimize impression allocation strategies globally which is contribute to the healthy development of participants and the platform itself. We evaluate our algorithm on a simulated environment built based on one of the largest E-commerce platforms, and a significant improvement has been achieved in comparison with the baseline solutions.
Multi-distance Support Matrix Machines
Real-world data such as digital images, MRI scans and electroencephalography signals are naturally represented as matrices with structural information. Most existing classifiers aim to capture these structures by regularizing the regression matrix to be low-rank or sparse. Some other methodologies introduce factorization technique to explore nonlinear relationships of matrix data in kernel space. In this paper, we propose a multi-distance support matrix machine (MDSMM), which provides a principled way of solving matrix classification problems. The multi-distance is introduced to capture the correlation within matrix data, by means of intrinsic information in rows and columns of input data. A complex hyperplane is established upon these values to separate distinct classes. We further study the generalization bounds for i.i.d. processes and non i.i.d. process based on both SVM and SMM classifiers. For typical hypothesis classes where matrix norms are constrained, MDSMM achieves a faster learning rate than traditional classifiers. We also provide a more general approach for samples without prior knowledge. We demonstrate the merits of the proposed method by conducting exhaustive experiments on both simulation study and a number of real-word datasets.
Evenly Cascaded Convolutional Networks
We introduce Evenly Cascaded convolutional Network (ECN), a neural network taking inspiration from the cascade algorithm of wavelet analysis. ECN employs two feature streams - a low-level and high-level steam. At each layer these streams interact, such that low-level features are modulated using advanced perspectives from the high-level stream. ECN is evenly structured through resizing feature map dimensions by a consistent ratio, which removes the burden of ad-hoc specification of feature map dimensions. ECN produces easily interpretable features maps, a result whose intuition can be understood in the context of scale-space theory. We demonstrate that ECN's design facilitates the training process through providing easily trainable shortcuts. We report new state-of-the-art results for small networks, without the need for additional treatment such as pruning or compression - a consequence of ECN's simple structure and direct training. A 6-layered ECN design with under 500k parameters achieves 95.24% and 78.99% accuracy on CIFAR-10 and CIFAR-100 datasets, respectively, outperforming the current state-of-the-art on small parameter networks, and a 3 million parameter ECN produces results competitive to the state-of-the-art.
Adversarial Perturbations Against Real-Time Video Classification Systems
Recent research has demonstrated the brittleness of machine learning systems to adversarial perturbations. However, the studies have been mostly limited to perturbations on images and more generally, classification that does not deal with temporally varying inputs. In this paper we ask "Are adversarial perturbations possible in real-time video classification systems and if so, what properties must they satisfy?" Such systems find application in surveillance applications, smart vehicles, and smart elderly care and thus, misclassification could be particularly harmful (e.g., a mishap at an elderly care facility may be missed). We show that accounting for temporal structure is key to generating adversarial examples in such systems. We exploit recent advances in generative adversarial network (GAN) architectures to account for temporal correlations and generate adversarial samples that can cause misclassification rates of over 80% for targeted activities. More importantly, the samples also leave other activities largely unaffected making them extremely stealthy. Finally, we also surprisingly find that in many scenarios, the same perturbation can be applied to every frame in a video clip that makes the adversary's ability to achieve misclassification relatively easy.
How To Backdoor Federated Learning
Federated learning enables thousands of participants to construct a deep learning model without sharing their private training data with each other. For example, multiple smartphones can jointly train a next-word predictor for keyboards without revealing what individual users type. We demonstrate that any participant in federated learning can introduce hidden backdoor functionality into the joint global model, e.g., to ensure that an image classifier assigns an attacker-chosen label to images with certain features, or that a word predictor completes certain sentences with an attacker-chosen word. We design and evaluate a new model-poisoning methodology based on model replacement. An attacker selected in a single round of federated learning can cause the global model to immediately reach 100% accuracy on the backdoor task. We evaluate the attack under different assumptions for the standard federated-learning tasks and show that it greatly outperforms data poisoning. Our generic constrain-and-scale technique also evades anomaly detection-based defenses by incorporating the evasion into the attacker's loss function during training.
ColdRoute: Effective Routing of Cold Questions in Stack Exchange Sites
Routing questions in Community Question Answer services (CQAs) such as Stack Exchange sites is a well-studied problem. Yet, cold-start -- a phenomena observed when a new question is posted is not well addressed by existing approaches. Additionally, cold questions posted by new askers present significant challenges to state-of-the-art approaches. We propose ColdRoute to address these challenges. ColdRoute is able to handle the task of routing cold questions posted by new or existing askers to matching experts. Specifically, we use Factorization Machines on the one-hot encoding of critical features such as question tags and compare our approach to well-studied techniques such as CQARank and semantic matching (LDA, BoW, and Doc2Vec). Using data from eight stack exchange sites, we are able to improve upon the routing metrics (Precision$@1$, Accuracy, MRR) over the state-of-the-art models such as semantic matching by $159.5\%$,$31.84\%$, and $40.36\%$ for cold questions posted by existing askers, and $123.1\%$, $27.03\%$, and $34.81\%$ for cold questions posted by new askers respectively.
Automated Directed Fairness Testing
Fairness is a critical trait in decision making. As machine-learning models are increasingly being used in sensitive application domains (e.g. education and employment) for decision making, it is crucial that the decisions computed by such models are free of unintended bias. But how can we automatically validate the fairness of arbitrary machine-learning models? For a given machine-learning model and a set of sensitive input parameters, our AEQUITAS approach automatically discovers discriminatory inputs that highlight fairness violation. At the core of AEQUITAS are three novel strategies to employ probabilistic search over the input space with the objective of uncovering fairness violation. Our AEQUITAS approach leverages inherent robustness property in common machine-learning models to design and implement scalable test generation methodologies. An appealing feature of our generated test inputs is that they can be systematically added to the training set of the underlying model and improve its fairness. To this end, we design a fully automated module that guarantees to improve the fairness of the underlying model. We implemented AEQUITAS and we have evaluated it on six state-of-the-art classifiers, including a classifier that was designed with fairness constraints. We show that AEQUITAS effectively generates inputs to uncover fairness violation in all the subject classifiers and systematically improves the fairness of the respective models using the generated test inputs. In our evaluation, AEQUITAS generates up to 70% discriminatory inputs (w.r.t. the total number of inputs generated) and leverages these inputs to improve the fairness up to 94%.
FATE: Fast and Accurate Timing Error Prediction Framework for Low Power DNN Accelerator Design
Deep neural networks (DNN) are increasingly being accelerated on application-specific hardware such as the Google TPU designed especially for deep learning. Timing speculation is a promising approach to further increase the energy efficiency of DNN accelerators. Architectural exploration for timing speculation requires detailed gate-level timing simulations that can be time-consuming for large DNNs that execute millions of multiply-and-accumulate (MAC) operations. In this paper we propose FATE, a new methodology for fast and accurate timing simulations of DNN accelerators like the Google TPU. FATE proposes two novel ideas: (i) DelayNet, a DNN based timing model for MAC units; and (ii) a statistical sampling methodology that reduces the number of MAC operations for which timing simulations are performed. We show that FATE results in between 8 times-58 times speed-up in timing simulations, while introducing less than 2% error in classification accuracy estimates. We demonstrate the use of FATE by comparing to conventional DNN accelerator that uses 2's complement (2C) arithmetic with an alternative implementation that uses signed magnitude representations (SMR). We show that that the SMR implementation provides 18% more energy savings for the same classification accuracy than 2C, a result that might be of independent interest.
Tap-based User Authentication for Smartwatches
This paper presents TapMeIn, an eyes-free, two-factor authentication method for smartwatches. It allows users to tap a memorable melody (tap-password) of their choice anywhere on the touchscreen to unlock their watch. A user is verified based on the tap-password as well as her physiological and behavioral characteristics when tapping. Results from preliminary experiments with 41 participants show that TapMeIn could achieve an accuracy of 98.7% with a False Positive Rate of only 0.98%. In addition, TapMeIn retains its performance in different conditions such as sitting and walking. In terms of speed, TapMeIn has an average authentication time of 2 seconds. A user study with the System Usability Scale (SUS) tool suggests that TapMeIn has a high usability score.
COSMO: Contextualized Scene Modeling with Boltzmann Machines
Scene modeling is very crucial for robots that need to perceive, reason about and manipulate the objects in their environments. In this paper, we adapt and extend Boltzmann Machines (BMs) for contextualized scene modeling. Although there are many models on the subject, ours is the first to bring together objects, relations, and affordances in a highly-capable generative model. For this end, we introduce a hybrid version of BMs where relations and affordances are introduced with shared, tri-way connections into the model. Moreover, we contribute a dataset for relation estimation and modeling studies. We evaluate our method in comparison with several baselines on object estimation, out-of-context object detection, relation estimation, and affordance estimation tasks. Moreover, to illustrate the generative capability of the model, we show several example scenes that the model is able to generate.
Balanced Distribution Adaptation for Transfer Learning
Transfer learning has achieved promising results by leveraging knowledge from the source domain to annotate the target domain which has few or none labels. Existing methods often seek to minimize the distribution divergence between domains, such as the marginal distribution, the conditional distribution or both. However, these two distances are often treated equally in existing algorithms, which will result in poor performance in real applications. Moreover, existing methods usually assume that the dataset is balanced, which also limits their performances on imbalanced tasks that are quite common in real problems. To tackle the distribution adaptation problem, in this paper, we propose a novel transfer learning approach, named as Balanced Distribution \underline{A}daptation~(BDA), which can adaptively leverage the importance of the marginal and conditional distribution discrepancies, and several existing methods can be treated as special cases of BDA. Based on BDA, we also propose a novel Weighted Balanced Distribution Adaptation~(W-BDA) algorithm to tackle the class imbalance issue in transfer learning. W-BDA not only considers the distribution adaptation between domains but also adaptively changes the weight of each class. To evaluate the proposed methods, we conduct extensive experiments on several transfer learning tasks, which demonstrate the effectiveness of our proposed algorithms over several state-of-the-art methods.
Clustering with Temporal Constraints on Spatio-Temporal Data of Human Mobility
Extracting significant places or places of interest (POIs) using individuals' spatio-temporal data is of fundamental importance for human mobility analysis. Classical clustering methods have been used in prior work for detecting POIs, but without considering temporal constraints. Usually, the involved parameters for clustering are difficult to determine, e.g., the optimal cluster number in hierarchical clustering. Currently, researchers either choose heuristic values or use spatial distance-based optimization to determine an appropriate parameter set. We argue that existing research does not optimally address temporal information and thus leaves much room for improvement. Considering temporal constraints in human mobility, we introduce an effective clustering approach - namely POI clustering with temporal constraints (PC-TC) - to extract POIs from spatio-temporal data of human mobility. Following human mobility nature in modern society, our approach aims to extract both global POIs (e.g., workplace or university) and local POIs (e.g., library, lab, and canteen). Based on two publicly available datasets including 193 individuals, our evaluation results show that PC-TC has much potential for next place prediction in terms of granularity (i.e., the number of extracted POIs) and predictability.
A Broader View on Bias in Automated Decision-Making: Reflecting on Epistemology and Dynamics
Machine learning (ML) is increasingly deployed in real world contexts, supplying actionable insights and forming the basis of automated decision-making systems. While issues resulting from biases pre-existing in training data have been at the center of the fairness debate, these systems are also affected by technical and emergent biases, which often arise as context-specific artifacts of implementation. This position paper interprets technical bias as an epistemological problem and emergent bias as a dynamical feedback phenomenon. In order to stimulate debate on how to change machine learning practice to effectively address these issues, we explore this broader view on bias, stress the need to reflect on epistemology, and point to value-sensitive design methodologies to revisit the design and implementation process of automated decision-making systems.
Relational Constraints for Metric Learning on Relational Data
Most of metric learning approaches are dedicated to be applied on data described by feature vectors, with some notable exceptions such as times series, trees or graphs. The objective of this paper is to propose a metric learning algorithm that specifically considers relational data. The proposed approach can take benefit from both the topological structure of the data and supervised labels. For selecting relative constraints representing the relational information, we introduce a link-strength function that measures the strength of relationship links between entities by the side-information of their common parents. We show the performance of the proposed method with two different classical metric learning algorithms, which are ITML (Information Theoretic Metric Learning) and LSML (Least Squares Metric Learning), and test on several real-world datasets. Experimental results show that using relational information improves the quality of the learned metric.
Weight-importance sparse training in keyword spotting
Large size models are implemented in recently ASR system to deal with complex speech recognition problems. The num- ber of parameters in these models makes them hard to deploy, especially on some resource-short devices such as car tablet. Besides this, at most of time, ASR system is used to deal with real-time problem such as keyword spotting (KWS). It is contradictory to the fact that large model requires long com- putation time. To deal with this problem, we apply some sparse algo- rithms to reduces number of parameters in some widely used models, Deep Neural Network (DNN) KWS, which requires real short computation time. We can prune more than 90 % even 95% of parameters in the model with tiny effect decline. And the sparse model performs better than baseline models which has same order number of parameters. Besides this, sparse algorithm can lead us to find rational model size au- tomatically for certain problem without concerning choosing an original model size.
Sample Efficient Semantic Segmentation using Rotation Equivariant Convolutional Networks
We propose a semantic segmentation model that exploits rotation and reflection symmetries. We demonstrate significant gains in sample efficiency due to increased weight sharing, as well as improvements in robustness to symmetry transformations. The group equivariant CNN framework is extended for segmentation by introducing a new equivariant (G->Z2)-convolution that transforms feature maps on a group to planar feature maps. Also, equivariant transposed convolution is formulated for up-sampling in an encoder-decoder network. To demonstrate improvements in sample efficiency we evaluate on multiple data regimes of a rotation-equivariant segmentation task: cancer metastases detection in histopathology images. We further show the effectiveness of exploiting more symmetries by varying the size of the group.
Logical Explanations for Deep Relational Machines Using Relevance Information
Our interest in this paper is in the construction of symbolic explanations for predictions made by a deep neural network. We will focus attention on deep relational machines (DRMs, first proposed by H. Lodhi). A DRM is a deep network in which the input layer consists of Boolean-valued functions (features) that are defined in terms of relations provided as domain, or background, knowledge. Our DRMs differ from those proposed by Lodhi, which use an Inductive Logic Programming (ILP) engine to first select features (we use random selections from a space of features that satisfies some approximate constraints on logical relevance and non-redundancy). But why do the DRMs predict what they do? One way of answering this is the LIME setting, in which readable proxies for a black-box predictor. The proxies are intended only to model the predictions of the black-box in local regions of the instance-space. But readability alone may not enough: to be understandable, the local models must use relevant concepts in an meaningful manner. We investigate the use of a Bayes-like approach to identify logical proxies for local predictions of a DRM. We show: (a) DRM's with our randomised propositionalization method achieve state-of-the-art predictive performance; (b) Models in first-order logic can approximate the DRM's prediction closely in a small local region; and (c) Expert-provided relevance information can play the role of a prior to distinguish between logical explanations that perform equivalently on prediction alone.
Adaptation to Easy Data in Prediction with Limited Advice
We derive an online learning algorithm with improved regret guarantees for `easy' loss sequences. We consider two types of `easiness': (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a number of algorithms have been proposed for exploiting small effective range in the full information setting, Gerchinovitz and Lattimore [2016] have shown the impossibility of regret scaling with the effective range of the losses in the bandit setting. We show that just one additional observation per round is sufficient to circumvent the impossibility result. The proposed Second Order Difference Adjustments (SODA) algorithm requires no prior knowledge of the effective range of the losses, $\varepsilon$, and achieves an $O(\varepsilon \sqrt{KT \ln K}) + \tilde{O}(\varepsilon K \sqrt[4]{T})$ expected regret guarantee, where $T$ is the time horizon and $K$ is the number of actions. The scaling with the effective loss range is achieved under significantly weaker assumptions than those made by Cesa-Bianchi and Shamir [2018] in an earlier attempt to circumvent the impossibility result. We also provide a regret lower bound of $\Omega(\varepsilon\sqrt{T K})$, which almost matches the upper bound. In addition, we show that in the stochastic setting SODA achieves an $O\left(\sum_{a:\Delta_a>0} \frac{K^3 \varepsilon^2}{\Delta_a}\right)$ pseudo-regret bound that holds simultaneously with the adversarial regret guarantee. In other words, SODA is safe against an unrestricted oblivious adversary and provides improved regret guarantees for at least two different types of `easiness' simultaneously.
Grapevine: A Wine Prediction Algorithm Using Multi-dimensional Clustering Methods
We present a method for a wine recommendation system that employs multidimensional clustering and unsupervised learning methods. Our algorithm first performs clustering on a large corpus of wine reviews. It then uses the resulting wine clusters as an approximation of the most common flavor palates, recommending a user a wine by optimizing over a price-quality ratio within clusters that they demonstrated a preference for.
Introducing the Simulated Flying Shapes and Simulated Planar Manipulator Datasets
We release two artificial datasets, Simulated Flying Shapes and Simulated Planar Manipulator that allow to test the learning ability of video processing systems. In particular, the dataset is meant as a tool which allows to easily assess the sanity of deep neural network models that aim to encode, reconstruct or predict video frame sequences. The datasets each consist of 90000 videos. The Simulated Flying Shapes dataset comprises scenes showing two objects of equal shape (rectangle, triangle and circle) and size in which one object approaches its counterpart. The Simulated Planar Manipulator shows a 3-DOF planar manipulator that executes a pick-and-place task in which it has to place a size-varying circle on a squared platform. Different from other widely used datasets such as moving MNIST [1], [2], the two presented datasets involve goal-oriented tasks (e.g. the manipulator grasping an object and placing it on a platform), rather than showing random movements. This makes our datasets more suitable for testing prediction capabilities and the learning of sophisticated motions by a machine learning model. This technical document aims at providing an introduction into the usage of both datasets.
The relativistic discriminator: a key element missing from standard GAN
In standard generative adversarial network (SGAN), the discriminator estimates the probability that the input data is real. The generator is trained to increase the probability that fake data is real. We argue that it should also simultaneously decrease the probability that real data is real because 1) this would account for a priori knowledge that half of the data in the mini-batch is fake, 2) this would be observed with divergence minimization, and 3) in optimal settings, SGAN would be equivalent to integral probability metric (IPM) GANs. We show that this property can be induced by using a relativistic discriminator which estimate the probability that the given real data is more realistic than a randomly sampled fake data. We also present a variant in which the discriminator estimate the probability that the given real data is more realistic than fake data, on average. We generalize both approaches to non-standard GAN loss functions and we refer to them respectively as Relativistic GANs (RGANs) and Relativistic average GANs (RaGANs). We show that IPM-based GANs are a subset of RGANs which use the identity function. Empirically, we observe that 1) RGANs and RaGANs are significantly more stable and generate higher quality data samples than their non-relativistic counterparts, 2) Standard RaGAN with gradient penalty generate data of better quality than WGAN-GP while only requiring a single discriminator update per generator update (reducing the time taken for reaching the state-of-the-art by 400%), and 3) RaGANs are able to generate plausible high resolutions images (256x256) from a very small sample (N=2011), while GAN and LSGAN cannot; these images are of significantly better quality than the ones generated by WGAN-GP and SGAN with spectral normalization.
Learning Goal-Oriented Visual Dialog via Tempered Policy Gradient
Learning goal-oriented dialogues by means of deep reinforcement learning has recently become a popular research topic. However, commonly used policy-based dialogue agents often end up focusing on simple utterances and suboptimal policies. To mitigate this problem, we propose a class of novel temperature-based extensions for policy gradient methods, which are referred to as Tempered Policy Gradients (TPGs). On a recent AI-testbed, i.e., the GuessWhat?! game, we achieve significant improvements with two innovations. The first one is an extension of the state-of-the-art solutions with Seq2Seq and Memory Network structures that leads to an improvement of 7%. The second one is the application of our newly developed TPG methods, which improves the performance additionally by around 5% and, even more importantly, helps produce more convincing utterances.
Training a Neural Network in a Low-Resource Setting on Automatically Annotated Noisy Data
Manually labeled corpora are expensive to create and often not available for low-resource languages or domains. Automatic labeling approaches are an alternative way to obtain labeled data in a quicker and cheaper way. However, these labels often contain more errors which can deteriorate a classifier's performance when trained on this data. We propose a noise layer that is added to a neural network architecture. This allows modeling the noise and train on a combination of clean and noisy data. We show that in a low-resource NER task we can improve performance by up to 35% by using additional, noisy data and handling the noise.
Understanding the Effectiveness of Lipschitz-Continuity in Generative Adversarial Nets
In this paper, we investigate the underlying factor that leads to failure and success in the training of GANs. We study the property of the optimal discriminative function and show that in many GANs, the gradient from the optimal discriminative function is not reliable, which turns out to be the fundamental cause of failure in training of GANs. We further demonstrate that a well-defined distance metric does not necessarily guarantee the convergence of GANs. Finally, we prove in this paper that Lipschitz-continuity condition is a general solution to make the gradient of the optimal discriminative function reliable, and characterized the necessary condition where Lipschitz-continuity ensures the convergence, which leads to a broad family of valid GAN objectives under Lipschitz-continuity condition, where Wasserstein distance is one special case. We experiment with several new objectives, which are sound according to our theorems, and we found that, compared with Wasserstein distance, the outputs of the discriminator with new objectives are more stable and the final qualities of generated samples are also consistently higher than those produced by Wasserstein distance.
LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration
We consider the problem of configuring general-purpose solvers to run efficiently on problem instances drawn from an unknown distribution. The goal of the configurator is to find a configuration that runs fast on average on most instances, and do so with the least amount of total work. It can run a chosen solver on a random instance until the solver finishes or a timeout is reached. We propose LeapsAndBounds, an algorithm that tests configurations on randomly selected problem instances for longer and longer time. We prove that the capped expected runtime of the configuration returned by LeapsAndBounds is close to the optimal expected runtime, while our algorithm's running time is near-optimal. Our results show that LeapsAndBounds is more efficient than the recent algorithm of Kleinberg et al. (2017), which, to our knowledge, is the only other algorithm configuration method with non-trivial theoretical guarantees. Experimental results on configuring a public SAT solver on a new benchmark dataset also stand witness to the superiority of our method.
Ambient Hidden Space of Generative Adversarial Networks
Generative adversarial models are powerful tools to model structure in complex distributions for a variety of tasks. Current techniques for learning generative models require an access to samples which have high quality, and advanced generative models are applied to generate samples from noisy training data through ambient modules. However, the modules are only practical for the output space of the generator, and their application in the hidden space is not well studied. In this paper, we extend the ambient module to the hidden space of the generator, and provide the uniqueness condition and the corresponding strategy for the ambient hidden generator in the adversarial training process. We report the practicality of the proposed method on the benchmark dataset.
A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality Indices
Discrimination via algorithmic decision making has received considerable attention. Prior work largely focuses on defining conditions for fairness, but does not define satisfactory measures of algorithmic unfairness. In this paper, we focus on the following question: Given two unfair algorithms, how should we determine which of the two is more unfair? Our core idea is to use existing inequality indices from economics to measure how unequally the outcomes of an algorithm benefit different individuals or groups in a population. Our work offers a justified and general framework to compare and contrast the (un)fairness of algorithmic predictors. This unifying approach enables us to quantify unfairness both at the individual and the group level. Further, our work reveals overlooked tradeoffs between different fairness notions: using our proposed measures, the overall individual-level unfairness of an algorithm can be decomposed into a between-group and a within-group component. Earlier methods are typically designed to tackle only between-group unfairness, which may be justified for legal or other reasons. However, we demonstrate that minimizing exclusively the between-group component may, in fact, increase the within-group, and hence the overall unfairness. We characterize and illustrate the tradeoffs between our measures of (un)fairness and the prediction accuracy.
Deepcode: Feedback Codes via Deep Learning
The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly beats state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.
Classifying Data with Local Hamiltonians
The goal of this work is to define a notion of a quantum neural network to classify data, which exploits the low energy spectrum of a local Hamiltonian. As a concrete application, we build a binary classifier, train it on some actual data and then test its performance on a simple classification task. More specifically, we use Microsoft's quantum simulator, Liquid, to construct local Hamiltonians that can encode trained classifier functions in their ground space, and which can be probed by measuring the overlap with test states corresponding to the data to be classified. To obtain such a classifier Hamiltonian, we further propose a training scheme based on quantum annealing which is completely closed-off to the environment and which does not depend on external measurements until the very end, avoiding unnecessary decoherence during the annealing procedure. For a network of size n, the trained network can be stored as a list of O(n) coupling strengths. We address the question of which interactions are most suitable for a given classification task, and develop a qubit-saving optimization for the training procedure on a simulated annealing device. Furthermore, a small neural network to classify colors into red vs. blue is trained and tested, and benchmarked against the annealing parameters.
Improving part-of-speech tagging via multi-task learning and character-level word representations
In this paper, we explore the ways to improve POS-tagging using various types of auxiliary losses and different word representations. As a baseline, we utilized a BiLSTM tagger, which is able to achieve state-of-the-art results on the sequence labelling tasks. We developed a new method for character-level word representation using feedforward neural network. Such representation gave us better results in terms of speed and performance of the model. We also applied a novel technique of pretraining such word representations with existing word vectors. Finally, we designed a new variant of auxiliary loss for sequence labelling tasks: an additional prediction of the neighbour labels. Such loss forces a model to learn the dependencies in-side a sequence of labels and accelerates the process of training. We test these methods on English and Russian languages.
Make (Nearly) Every Neural Network Better: Generating Neural Network Ensembles by Weight Parameter Resampling
Deep Neural Networks (DNNs) have become increasingly popular in computer vision, natural language processing, and other areas. However, training and fine-tuning a deep learning model is computationally intensive and time-consuming. We propose a new method to improve the performance of nearly every model including pre-trained models. The proposed method uses an ensemble approach where the networks in the ensemble are constructed by reassigning model parameter values based on the probabilistic distribution of these parameters, calculated towards the end of the training process. For pre-trained models, this approach results in an additional training step (usually less than one epoch). We perform a variety of analysis using the MNIST dataset and validate the approach with a number of DNN models using pre-trained models on the ImageNet dataset.
Multi-User Multi-Armed Bandits for Uncoordinated Spectrum Access
A multi-user multi-armed bandit (MAB) framework is used to develop algorithms for uncoordinated spectrum access. The number of users is assumed to be unknown to each user. A stochastic setting is first considered, where the rewards on a channel are the same for each user. In contrast to prior work, it is assumed that the number of users can possibly exceed the number of channels, and that rewards can be non-zero even under collisions. The proposed algorithm consists of an estimation phase and an allocation phase. It is shown that if every user adopts the algorithm, the system wide regret is constant with time with high probability. The regret guarantees hold for any number of users and channels, in particular, even when the number of users is less than the number of channels. Next, an adversarial multi-user MAB framework is considered, where the rewards on the channels are user-dependent. It is assumed that the number of users is less than the number of channels, and that the users receive zero reward on collision. The proposed algorithm combines the Exp3.P algorithm developed in prior work for single user adversarial bandits with a collision resolution mechanism to achieve sub-linear regret. It is shown that if every user employs the proposed algorithm, the system wide regret is of the order $O(T^\frac{3}{4})$ over a horizon of time $T$. The algorithms in both stochastic and adversarial scenarios are extended to the dynamic case where the number of users in the system evolves over time and are shown to lead to sub-linear regret.
Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media
Surrogate strategies are used widely for uncertainty quantification of groundwater models in order to improve computational efficiency. However, their application to dynamic multiphase flow problems is hindered by the curse of dimensionality, the saturation discontinuity due to capillarity effects, and the time-dependence of the multi-output responses. In this paper, we propose a deep convolutional encoder-decoder neural network methodology to tackle these issues. The surrogate modeling task is transformed to an image-to-image regression strategy. This approach extracts high-level coarse features from the high-dimensional input permeability images using an encoder, and then refines the coarse features to provide the output pressure/saturation images through a decoder. A training strategy combining a regression loss and a segmentation loss is proposed in order to better approximate the discontinuous saturation field. To characterize the high-dimensional time-dependent outputs of the dynamic system, time is treated as an additional input to the network that is trained using pairs of input realizations and of the corresponding system outputs at a limited number of time instances. The proposed method is evaluated using a geological carbon storage process-based multiphase flow model with a 2500-dimensional stochastic permeability field. With a relatively small number of training data, the surrogate model is capable of accurately characterizing the spatio-temporal evolution of the pressure and discontinuous CO2 saturation fields and can be used efficiently to compute the statistics of the system responses.
Learning under selective labels in the presence of expert consistency
We explore the problem of learning under selective labels in the context of algorithm-assisted decision making. Selective labels is a pervasive selection bias problem that arises when historical decision making blinds us to the true outcome for certain instances. Examples of this are common in many applications, ranging from predicting recidivism using pre-trial release data to diagnosing patients. In this paper we discuss why selective labels often cannot be effectively tackled by standard methods for adjusting for sample selection bias, even if there are no unobservables. We propose a data augmentation approach that can be used to either leverage expert consistency to mitigate the partial blindness that results from selective labels, or to empirically validate whether learning under such framework may lead to unreliable models prone to systemic discrimination.