title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Outperforming Good-Turing: Preliminary Report
Estimating a large alphabet probability distribution from a limited number of samples is a fundamental problem in machine learning and statistics. A variety of estimation schemes have been proposed over the years, mostly inspired by the early work of Laplace and the seminal contribution of Good and Turing. One of the basic assumptions shared by most commonly-used estimators is the unique correspondence between the symbol's sample frequency and its estimated probability. In this work we tackle this paradigmatic assumption; we claim that symbols with "similar" frequencies shall be assigned the same estimated probability value. This way we regulate the number of parameters and improve generalization. In this preliminary report we show that by applying an ensemble of such regulated estimators, we introduce a dramatic enhancement in the estimation accuracy (typically up to 50%), compared to currently known methods. An implementation of our suggested method is publicly available at the first author's web-page.
Differentially Private Online Submodular Optimization
In this paper we develop the first algorithms for online submodular minimization that preserve differential privacy under full information feedback and bandit feedback. A sequence of $T$ submodular functions over a collection of $n$ elements arrive online, and at each timestep the algorithm must choose a subset of $[n]$ before seeing the function. The algorithm incurs a cost equal to the function evaluated on the chosen set, and seeks to choose a sequence of sets that achieves low expected regret. Our first result is in the full information setting, where the algorithm can observe the entire function after making its decision at each timestep. We give an algorithm in this setting that is $\epsilon$-differentially private and achieves expected regret $\tilde{O}\left(\frac{n^{3/2}\sqrt{T}}{\epsilon}\right)$. This algorithm works by relaxing submodular function to a convex function using the Lovasz extension, and then simulating an algorithm for differentially private online convex optimization. Our second result is in the bandit setting, where the algorithm can only see the cost incurred by its chosen set, and does not have access to the entire function. This setting is significantly more challenging because the algorithm does not receive enough information to compute the Lovasz extension or its subgradients. Instead, we construct an unbiased estimate using a single-point estimation, and then simulate private online convex optimization using this estimate. Our algorithm using bandit feedback is $\epsilon$-differentially private and achieves expected regret $\tilde{O}\left(\frac{n^{3/2}T^{3/4}}{\epsilon}\right)$.
Combinatorial Bandits for Incentivizing Agents with Dynamic Preferences
The design of personalized incentives or recommendations to improve user engagement is gaining prominence as digital platform providers continually emerge. We propose a multi-armed bandit framework for matching incentives to users, whose preferences are unknown a priori and evolving dynamically in time, in a resource constrained environment. We design an algorithm that combines ideas from three distinct domains: (i) a greedy matching paradigm, (ii) the upper confidence bound algorithm (UCB) for bandits, and (iii) mixing times from the theory of Markov chains. For this algorithm, we provide theoretical bounds on the regret and demonstrate its performance via both synthetic and realistic (matching supply and demand in a bike-sharing platform) examples.
A survey on policy search algorithms for learning robot controllers in a handful of trials
Most policy search algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word "big-data", we refer to this challenge as "micro-data reinforcement learning". We show that a first strategy is to leverage prior knowledge on the policy structure (e.g., dynamic movement primitives), on the policy parameters (e.g., demonstrations), or on the dynamics (e.g., simulators). A second strategy is to create data-driven surrogate models of the expected reward (e.g., Bayesian optimization) or the dynamical model (e.g., model-based policy search), so that the policy optimizer queries the model instead of the real system. Overall, all successful micro-data algorithms combine these two strategies by varying the kind of model and prior knowledge. The current scientific challenges essentially revolve around scaling up to complex robots (e.g., humanoids), designing generic priors, and optimizing the computing time.
JUMPER: Learning When to Make Classification Decisions in Reading
In early years, text classification is typically accomplished by feature-based machine learning models; recently, deep neural networks, as a powerful learning machine, make it possible to work with raw input as the text stands. However, exiting end-to-end neural networks lack explicit interpretation of the prediction. In this paper, we propose a novel framework, JUMPER, inspired by the cognitive process of text reading, that models text classification as a sequential decision process. Basically, JUMPER is a neural system that scans a piece of text sequentially and makes classification decisions at the time it wishes. Both the classification result and when to make the classification are part of the decision process, which is controlled by a policy network and trained with reinforcement learning. Experimental results show that a properly trained JUMPER has the following properties: (1) It can make decisions whenever the evidence is enough, therefore reducing total text reading by 30-40% and often finding the key rationale of prediction. (2) It achieves classification accuracy better than or comparable to state-of-the-art models in several benchmark and industrial datasets.
Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing
We present Memory Augmented Policy Optimization (MAPO), a simple and novel way to leverage a memory buffer of promising trajectories to reduce the variance of policy gradient estimate. MAPO is applicable to deterministic environments with discrete actions, such as structured prediction and combinatorial optimization tasks. We express the expected return objective as a weighted sum of two terms: an expectation over the high-reward trajectories inside the memory buffer, and a separate expectation over trajectories outside the buffer. To make an efficient algorithm of MAPO, we propose: (1) memory weight clipping to accelerate and stabilize training; (2) systematic exploration to discover high-reward trajectories; (3) distributed sampling from inside and outside of the memory buffer to scale up training. MAPO improves the sample efficiency and robustness of policy gradient, especially on tasks with sparse rewards. We evaluate MAPO on weakly supervised program synthesis from natural language (semantic parsing). On the WikiTableQuestions benchmark, we improve the state-of-the-art by 2.6%, achieving an accuracy of 46.3%. On the WikiSQL benchmark, MAPO achieves an accuracy of 74.9% with only weak supervision, outperforming several strong baselines with full supervision. Our source code is available at https://github.com/crazydonkey200/neural-symbolic-machines
Sum-Product Networks for Sequence Labeling
We consider higher-order linear-chain conditional random fields (HO-LC-CRFs) for sequence modelling, and use sum-product networks (SPNs) for representing higher-order input- and output-dependent factors. SPNs are a recently introduced class of deep models for which exact and efficient inference can be performed. By combining HO-LC-CRFs with SPNs, expressive models over both the output labels and the hidden variables are instantiated while still enabling efficient exact inference. Furthermore, the use of higher-order factors allows us to capture relations of multiple input segments and multiple output labels as often present in real-world data. These relations can not be modelled by the commonly used first-order models and higher-order models with local factors including only a single output label. We demonstrate the effectiveness of our proposed models for sequence labeling. In extensive experiments, we outperform other state-of-the-art methods in optical character recognition and achieve competitive results in phone classification.
Cause-Effect Deep Information Bottleneck For Systematically Missing Covariates
Estimating the causal effects of an intervention from high-dimensional observational data is difficult due to the presence of confounding. The task is often complicated by the fact that we may have a systematic missingness in our data at test time. Our approach uses the information bottleneck to perform a low-dimensional compression of covariates by explicitly considering the relevance of information. Based on the sufficiently reduced covariate, we transfer the relevant information to cases where data is missing at test time, allowing us to reliably and accurately estimate the effects of an intervention, even where data is incomplete. Our results on causal inference benchmarks and a real application for treating sepsis show that our method achieves state-of-the art performance, without sacrificing interpretability.
A Variational Time Series Feature Extractor for Action Prediction
We propose a Variational Time Series Feature Extractor (VTSFE), inspired by the VAE-DMP model of Chen et al., to be used for action recognition and prediction. Our method is based on variational autoencoders. It improves VAE-DMP in that it has a better noise inference model, a simpler transition model constraining the acceleration in the trajectories of the latent space, and a tighter lower bound for the variational inference. We apply the method for classification and prediction of whole-body movements on a dataset with 7 tasks and 10 demonstrations per task, recorded with a wearable motion capture suit. The comparison with VAE and VAE-DMP suggests the better performance of our method for feature extraction. An open-source software implementation of each method with TensorFlow is also provided. In addition, a more detailed version of this work can be found in the indicated code repository. Although it was meant to, the VTSFE hasn't been tested for action prediction, due to a lack of time in the context of Maxime Chaveroche's Master thesis at INRIA.
Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes
While designing the state space of an MDP, it is common to include states that are transient or not reachable by any policy (e.g., in mountain car, the product space of speed and position contains configurations that are not physically reachable). This leads to defining weakly-communicating or multi-chain MDPs. In this paper, we introduce \tucrl, the first algorithm able to perform efficient exploration-exploitation in any finite Markov Decision Process (MDP) without requiring any form of prior knowledge. In particular, for any MDP with $S^{\texttt{C}}$ communicating states, $A$ actions and $\Gamma^{\texttt{C}} \leq S^{\texttt{C}}$ possible communicating next states, we derive a $\widetilde{O}(D^{\texttt{C}} \sqrt{\Gamma^{\texttt{C}} S^{\texttt{C}} AT})$ regret bound, where $D^{\texttt{C}}$ is the diameter (i.e., the longest shortest path) of the communicating part of the MDP. This is in contrast with optimistic algorithms (e.g., UCRL, Optimistic PSRL) that suffer linear regret in weakly-communicating MDPs, as well as posterior sampling or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias span of the optimal policy to bias the exploration to achieve sub-linear regret. We also prove that in weakly-communicating MDPs, no algorithm can ever achieve a logarithmic growth of the regret without first suffering a linear regret for a number of steps that is exponential in the parameters of the MDP. Finally, we report numerical simulations supporting our theoretical findings and showing how TUCRL overcomes the limitations of the state-of-the-art.
A Structured Prediction Approach for Label Ranking
We propose to solve a label ranking problem as a structured output regression task. We adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: the regression step in a well-chosen feature space and the pre-image step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. We also propose their natural extension to the case of partial rankings and prove their efficiency on real-world datasets.
Extracting Actionable Knowledge from Domestic Violence Discourses on Social Media
Domestic Violence (DV) is considered as big social issue and there exists a strong relationship between DV and health impacts of the public. Existing research studies have focused on social media to track and analyse real world events like emerging trends, natural disasters, user sentiment analysis, political opinions, and health care. However there is less attention given on social welfare issues like DV and its impact on public health. Recently, the victims of DV turned to social media platforms to express their feelings in the form of posts and seek the social and emotional support, for sympathetic encouragement, to show compassion and empathy among public. But, it is difficult to mine the actionable knowledge from large conversational datasets from social media due to the characteristics of high dimensions, short, noisy, huge volume, high velocity, and so on. Hence, this paper will propose a novel framework to model and discover the various themes related to DV from the public domain. The proposed framework would possibly provide unprecedentedly valuable information to the public health researchers, national family health organizations, government and public with data enrichment and consolidation to improve the social welfare of the community. Thus provides actionable knowledge by monitoring and analysing continuous and rich user generated content.
Learning a Representation Map for Robot Navigation using Deep Variational Autoencoder
The aim of this work is to use Variational Autoencoder (VAE) to learn a representation of an indoor environment that can be used for robot navigation. We use images extracted from a video, in which a camera takes a tour around a house, for training the VAE model with a 4 dimensional latent space. After the model is trained, each real frame has a corresponding representation point on manifold in the latent space, and each representation point has corresponding reconstructed image. For the navigation problem, we map the starting image and destination image to the latent space, then optimize a path on the learned manifold connecting the two points, and finally map the path back through decoder to a sequence of images. The ideal sequence of images should correspond to a route that is spatially continuous - i.e. neighbor images in the route should correspond to neighbor locations in physical space. Such a route could be used for navigation with computer vision techniques, i.e. a robot could follow the image sequence from starting location to destination in the environment step by step. We implement this algorithm, but find in our experimental results that the resulting route is not satisfactory. The route consist of several discontinuous image frames along the ideal routes, so that the route could not be followed by a robot with computer vision techniques in practice. In our evaluation, we propose two reasons for our failure to automatically find continuous routes: (1) The VAE tends to capture global structures, but discard the details; (2) the Euclidean similarity metric used for measuring continuity between house images is sub-optimal. For further work, we propose: trying other generative models like VAE-GANs which may be better at reconstructing the details to learn the representation map, and adjusting the similarity metric in the path selecting algorithm.
Multi-Task Learning with Incomplete Data for Healthcare
Multi-task learning is a type of transfer learning that trains multiple tasks simultaneously and leverages the shared information between related tasks to improve the generalization performance. However, missing features in the input matrix is a much more difficult problem which needs to be carefully addressed. Removing records with missing values can significantly reduce the sample size, which is impractical for datasets with large percentage of missing values. Popular imputation methods often distort the covariance structure of the data, which causes inaccurate inference. In this paper we propose using plug-in covariance matrix estimators to tackle the challenge of missing features. Specifically, we analyze the plug-in estimators under the framework of robust multi-task learning with LASSO and graph regularization, which captures the relatedness between tasks via graph regularization. We use the Alzheimer's disease progression dataset as an example to show how the proposed framework is effective for prediction and model estimation when missing data is present.
A Review of Different Word Embeddings for Sentiment Classification using Deep Learning
The web is loaded with textual content, and Natural Language Processing is a standout amongst the most vital fields in Machine Learning. But when data is huge simple Machine Learning algorithms are not able to handle it and that is when Deep Learning comes into play which based on Neural Networks. However since neural networks cannot process raw text, we have to change over them through some diverse strategies of word embedding. This paper demonstrates those distinctive word embedding strategies implemented on an Amazon Review Dataset, which has two sentiments to be classified: Happy and Unhappy based on numerous customer reviews. Moreover we demonstrate the distinction in accuracy with a discourse about which word embedding to apply when.
Deep Multiple Instance Feature Learning via Variational Autoencoder
We describe a novel weakly supervised deep learning framework that combines both the discriminative and generative models to learn meaningful representation in the multiple instance learning (MIL) setting. MIL is a weakly supervised learning problem where labels are associated with groups of instances (referred as bags) instead of individual instances. To address the essential challenge in MIL problems raised from the uncertainty of positive instances label, we use a discriminative model regularized by variational autoencoders (VAEs) to maximize the differences between latent representations of all instances and negative instances. As a result, the hidden layer of the variational autoencoder learns meaningful representation. This representation can effectively be used for MIL problems as illustrated by better performance on the standard benchmark datasets comparing to the state-of-the-art approaches. More importantly, unlike most related studies, the proposed framework can be easily scaled to large dataset problems, as illustrated by the audio event detection and segmentation task. Visualization also confirms the effectiveness of the latent representation in discriminating positive and negative classes.
Blockchain as a Service: A Decentralized and Secure Computing Paradigm
Thanks to the advances in machine learning, data-driven analysis tools have become valuable solutions for various applications. However, there still remain essential challenges to develop effective data-driven methods because of the need to acquire a large amount of data and to have sufficient computing power to handle the data. In many instances these challenges are addressed by relying on a dominant cloud computing vendor, but, although commercial cloud vendors provide valuable platforms for data analytics, they can suffer from a lack of transparency, security, and privacy-perservation. Furthermore, reliance on cloud servers prevents applying big data analytics in environments where the computing power is scattered. To address these challenges, a decentralize, secure, and privacy-preserving computing paradigm is proposed to enable an asynchronized cooperative computing process amongst scattered and untrustworthy computing nodes that may have limited computing power and computing intelligence. This paradigm is designed by exploring blockchain, decentralized learning, homomorphic encryption, and software defined networking(SDN) techniques. The performance of the proposed paradigm is evaluated via different scenarios in the simulation section.
Fully Scalable Gaussian Processes using Subspace Inducing Inputs
We introduce fully scalable Gaussian processes, an implementation scheme that tackles the problem of treating a high number of training instances together with high dimensional input data. Our key idea is a representation trick over the inducing variables called subspace inducing inputs. This is combined with certain matrix-preconditioning based parametrizations of the variational distributions that lead to simplified and numerically stable variational lower bounds. Our illustrative applications are based on challenging extreme multi-label classification problems with the extra burden of the very large number of class labels. We demonstrate the usefulness of our approach by presenting predictive performances together with low computational times in datasets with extremely large number of instances and input dimensions.
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
We present a convolutional network that is equivariant to rigid body motions. The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to represent data, and equivariant convolutions to map between such representations. These SE(3)-equivariant convolutions utilize kernels which are parameterized as a linear combination of a complete steerable kernel basis, which is derived analytically in this paper. We prove that equivariant convolutions are the most general equivariant linear maps between fields over R^3. Our experimental results confirm the effectiveness of 3D Steerable CNNs for the problem of amino acid propensity prediction and protein structure classification, both of which have inherent SE(3) symmetry.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
Unsupervised domain adaptation techniques have been successful for a wide range of problems where supervised labels are limited. The task is to classify an unlabeled `target' dataset by leveraging a labeled `source' dataset that comes from a slightly similar distribution. We propose metric-based adversarial discriminative domain adaptation (M-ADDA) which performs two main steps. First, it uses a metric learning approach to train the source model on the source dataset by optimizing the triplet loss function. This results in clusters where embeddings of the same label are close to each other and those with different labels are far from one another. Next, it uses the adversarial approach (as that used in ADDA \cite{2017arXiv170205464T}) to make the extracted features from the source and target datasets indistinguishable. Simultaneously, we optimize a novel loss function that encourages the target dataset's embeddings to form clusters. While ADDA and M-ADDA use similar architectures, we show that M-ADDA performs significantly better on the digits adaptation datasets of MNIST and USPS. This suggests that using metric-learning for domain adaptation can lead to large improvements in classification accuracy for the domain adaptation task. The code is available at \url{https://github.com/IssamLaradji/M-ADDA}.
Deep Learning for Launching and Mitigating Wireless Jamming Attacks
An adversarial machine learning approach is introduced to launch jamming attacks on wireless communications and a defense strategy is presented. A cognitive transmitter uses a pre-trained classifier to predict the current channel status based on recent sensing results and decides whether to transmit or not, whereas a jammer collects channel status and ACKs to build a deep learning classifier that reliably predicts the next successful transmissions and effectively jams them. This jamming approach is shown to reduce the transmitter's performance much more severely compared with random or sensing-based jamming. The deep learning classification scores are used by the jammer for power control subject to an average power constraint. Next, a generative adversarial network (GAN) is developed for the jammer to reduce the time to collect the training dataset by augmenting it with synthetic samples. As a defense scheme, the transmitter deliberately takes a small number of wrong actions in spectrum access (in form of a causative attack against the jammer) and therefore prevents the jammer from building a reliable classifier. The transmitter systematically selects when to take wrong actions and adapts the level of defense to mislead the jammer into making prediction errors and consequently increase its throughput.
The Goldilocks zone: Towards better understanding of neural network loss landscapes
We explore the loss landscape of fully-connected and convolutional neural networks using random, low-dimensional hyperplanes and hyperspheres. Evaluating the Hessian, $H$, of the loss function on these hypersurfaces, we observe 1) an unusual excess of the number of positive eigenvalues of $H$, and 2) a large value of $\mathrm{Tr}(H) / ||H||$ at a well defined range of configuration space radii, corresponding to a thick, hollow, spherical shell we refer to as the \textit{Goldilocks zone}. We observe this effect for fully-connected neural networks over a range of network widths and depths on MNIST and CIFAR-10 datasets with the $\mathrm{ReLU}$ and $\tanh$ non-linearities, and a similar effect for convolutional networks. Using our observations, we demonstrate a close connection between the Goldilocks zone, measures of local convexity/prevalence of positive curvature, and the suitability of a network initialization. We show that the high and stable accuracy reached when optimizing on random, low-dimensional hypersurfaces is directly related to the overlap between the hypersurface and the Goldilocks zone, and as a corollary demonstrate that the notion of intrinsic dimension is initialization-dependent. We note that common initialization techniques initialize neural networks in this particular region of unusually high convexity/prevalence of positive curvature, and offer a geometric intuition for their success. Furthermore, we demonstrate that initializing a neural network at a number of points and selecting for high measures of local convexity such as $\mathrm{Tr}(H) / ||H||$, number of positive eigenvalues of $H$, or low initial loss, leads to statistically significantly faster training on MNIST. Based on our observations, we hypothesize that the Goldilocks zone contains an unusually high density of suitable initialization configurations.
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
This paper is an attempt to bridge the conceptual gaps between researchers working on the two widely used approaches based on positive definite kernels: Bayesian learning or inference using Gaussian processes on the one side, and frequentist kernel methods based on reproducing kernel Hilbert spaces on the other. It is widely known in machine learning that these two formalisms are closely related; for instance, the estimator of kernel ridge regression is identical to the posterior mean of Gaussian process regression. However, they have been studied and developed almost independently by two essentially separate communities, and this makes it difficult to seamlessly transfer results between them. Our aim is to overcome this potential difficulty. To this end, we review several old and new results and concepts from either side, and juxtapose algorithmic quantities from each framework to highlight close similarities. We also provide discussions on subtle philosophical and theoretical differences between the two approaches.
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Novelty detection is the problem of identifying whether a new data point is considered to be an inlier or an outlier. We assume that training data is available to describe only the inlier distribution. Recent approaches primarily leverage deep encoder-decoder network architectures to compute a reconstruction error that is used to either compute a novelty score or to train a one-class classifier. While we too leverage a novel network of that kind, we take a probabilistic approach and effectively compute how likely is that a sample was generated by the inlier distribution. We achieve this with two main contributions. First, we make the computation of the novelty probability feasible because we linearize the parameterized manifold capturing the underlying structure of the inlier distribution, and show how the probability factorizes and can be computed with respect to local coordinates of the manifold tangent space. Second, we improved the training of the autoencoder network. An extensive set of results show that the approach achieves state-of-the-art results on several benchmark datasets.
From Text to Topics in Healthcare Records: An Unsupervised Graph Partitioning Methodology
Electronic Healthcare Records contain large volumes of unstructured data, including extensive free text. Yet this source of detailed information often remains under-used because of a lack of methodologies to extract interpretable content in a timely manner. Here we apply network-theoretical tools to analyse free text in Hospital Patient Incident reports from the National Health Service, to find clusters of documents with similar content in an unsupervised manner at different levels of resolution. We combine deep neural network paragraph vector text-embedding with multiscale Markov Stability community detection applied to a sparsified similarity graph of document vectors, and showcase the approach on incident reports from Imperial College Healthcare NHS Trust, London. The multiscale community structure reveals different levels of meaning in the topics of the dataset, as shown by descriptive terms extracted from the clusters of records. We also compare a posteriori against hand-coded categories assigned by healthcare personnel, and show that our approach outperforms LDA-based models. Our content clusters exhibit good correspondence with two levels of hand-coded categories, yet they also provide further medical detail in certain areas and reveal complementary descriptors of incidents beyond the external classification taxonomy.
Synthetic Sampling for Multi-Class Malignancy Prediction
We explore several oversampling techniques for an imbalanced multi-label classification problem, a setting often encountered when developing models for Computer-Aided Diagnosis (CADx) systems. While most CADx systems aim to optimize classifiers for overall accuracy without considering the relative distribution of each class, we look into using synthetic sampling to increase per-class performance when predicting the degree of malignancy. Using low-level image features and a random forest classifier, we show that using synthetic oversampling techniques increases the sensitivity of the minority classes by an average of 7.22% points, with as much as a 19.88% point increase in sensitivity for a particular minority class. Furthermore, the analysis of low-level image feature distributions for the synthetic nodules reveals that these nodules can provide insights on how to preprocess image data for better classification performance or how to supplement the original datasets when more data acquisition is feasible.
Anytime Neural Prediction via Slicing Networks Vertically
The pioneer deep neural networks (DNNs) have emerged to be deeper or wider for improving their accuracy in various applications of artificial intelligence. However, DNNs are often too heavy to deploy in practice, and it is often required to control their architectures dynamically given computing resource budget, i.e., anytime prediction. While most existing approaches have focused on training multiple shallow sub-networks jointly, we study training thin sub-networks instead. To this end, we first build many inclusive thin sub-networks (of the same depth) under a minor modification of existing multi-branch DNNs, and found that they can significantly outperform the state-of-art dense architecture for anytime prediction. This is remarkable due to their simplicity and effectiveness, but training many thin sub-networks jointly faces a new challenge on training complexity. To address the issue, we also propose a novel DNN architecture by forcing a certain sparsity pattern on multi-branch network parameters, making them train efficiently for the purpose of anytime prediction. In our experiments on the ImageNet dataset, its sub-networks have up to $43.3\%$ smaller sizes (FLOPs) compared to those of the state-of-art anytime model with respect to the same accuracy. Finally, we also propose an alternative task under the proposed architecture using a hierarchical taxonomy, which brings a new angle for anytime prediction.
Gradient Hyperalignment for multi-subject fMRI data alignment
Multi-subject fMRI data analysis is an interesting and challenging problem in human brain decoding studies. The inherent anatomical and functional variability across subjects make it necessary to do both anatomical and functional alignment before classification analysis. Besides, when it comes to big data, time complexity becomes a problem that cannot be ignored. This paper proposes Gradient Hyperalignment (Gradient-HA) as a gradient-based functional alignment method that is suitable for multi-subject fMRI datasets with large amounts of samples and voxels. The advantage of Gradient-HA is that it can solve independence and high dimension problems by using Independent Component Analysis (ICA) and Stochastic Gradient Ascent (SGA). Validation using multi-classification tasks on big data demonstrates that Gradient-HA method has less time complexity and better or comparable performance compared with other state-of-the-art functional alignment methods.
Predicting Infant Motor Development Status using Day Long Movement Data from Wearable Sensors
Infants with a variety of complications at or before birth are classified as being at risk for developmental delays (AR). As they grow older, they are followed by healthcare providers in an effort to discern whether they are on a typical or impaired developmental trajectory. Often, it is difficult to make an accurate determination early in infancy as infants with typical development (TD) display high variability in their developmental trajectories both in content and timing. Studies have shown that spontaneous movements have the potential to differentiate typical and atypical trajectories early in life using sensors and kinematic analysis systems. In this study, machine learning classification algorithms are used to take inertial movement from wearable sensors placed on an infant for a day and predict if the infant is AR or TD, thus further establishing the connection between early spontaneous movement and developmental trajectory.
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
Owing to their connection with generative adversarial networks (GANs), saddle-point problems have recently attracted considerable interest in machine learning and beyond. By necessity, most theoretical guarantees revolve around convex-concave (or even linear) problems; however, making theoretical inroads towards efficient GAN training depends crucially on moving beyond this classic framework. To make piecemeal progress along these lines, we analyze the behavior of mirror descent (MD) in a class of non-monotone problems whose solutions coincide with those of a naturally associated variational inequality - a property which we call coherence. We first show that ordinary, "vanilla" MD converges under a strict version of this condition, but not otherwise; in particular, it may fail to converge even in bilinear models with a unique solution. We then show that this deficiency is mitigated by optimism: by taking an "extra-gradient" step, optimistic mirror descent (OMD) converges in all coherent problems. Our analysis generalizes and extends the results of Daskalakis et al. (2018) for optimistic gradient descent (OGD) in bilinear problems, and makes concrete headway for establishing convergence beyond convex-concave games. We also provide stochastic analogues of these results, and we validate our analysis by numerical experiments in a wide array of GAN models (including Gaussian mixture models, as well as the CelebA and CIFAR-10 datasets).
When Work Matters: Transforming Classical Network Structures to Graph CNN
Numerous pattern recognition applications can be formed as learning from graph-structured data, including social network, protein-interaction network, the world wide web data, knowledge graph, etc. While convolutional neural network (CNN) facilitates great advances in gridded image/video understanding tasks, very limited attention has been devoted to transform these successful network structures (including Inception net, Residual net, Dense net, etc.) to establish convolutional networks on graph, due to its irregularity and complexity geometric topologies (unordered vertices, unfixed number of adjacent edges/vertices). In this paper, we aim to give a comprehensive analysis of when work matters by transforming different classical network structures to graph CNN, particularly in the basic graph recognition problem. Specifically, we firstly review the general graph CNN methods, especially in its spectral filtering operation on the irregular graph data. We then introduce the basic structures of ResNet, Inception and DenseNet into graph CNN and construct these network structures on graph, named as G_ResNet, G_Inception, G_DenseNet. In particular, it seeks to help graph CNNs by shedding light on how these classical network structures work and providing guidelines for choosing appropriate graph network frameworks. Finally, we comprehensively evaluate the performance of these different network structures on several public graph datasets (including social networks and bioinformatic datasets), and demonstrate how different network structures work on graph CNN in the graph recognition task.
Robust and Scalable Differentiable Neural Computer for Question Answering
Deep learning models are often not easily adaptable to new tasks and require task-specific adjustments. The differentiable neural computer (DNC), a memory-augmented neural network, is designed as a general problem solver which can be used in a wide range of tasks. But in reality, it is hard to apply this model to new tasks. We analyze the DNC and identify possible improvements within the application of question answering. This motivates a more robust and scalable DNC (rsDNC). The objective precondition is to keep the general character of this model intact while making its application more reliable and speeding up its required training time. The rsDNC is distinguished by a more robust training, a slim memory unit and a bidirectional architecture. We not only achieve new state-of-the-art performance on the bAbI task, but also minimize the performance variance between different initializations. Furthermore, we demonstrate the simplified applicability of the rsDNC to new tasks with passable results on the CNN RC task without adaptions.
A Supervised Geometry-Aware Mapping Approach for Classification of Hyperspectral Images
The lack of proper class discrimination among the Hyperspectral (HS) data points poses a potential challenge in HS classification. To address this issue, this paper proposes an optimal geometry-aware transformation for enhancing the classification accuracy. The underlying idea of this method is to obtain a linear projection matrix by solving a nonlinear objective function based on the intrinsic geometrical structure of the data. The objective function is constructed to quantify the discrimination between the points from dissimilar classes on the projected data space. Then the obtained projection matrix is used to linearly map the data to more discriminative space. The effectiveness of the proposed transformation is illustrated with three benchmark real-world HS data sets. The experiments reveal that the classification and dimensionality reduction methods on the projected discriminative space outperform their counterpart in the original space.
VFPred: A Fusion of Signal Processing and Machine Learning techniques in Detecting Ventricular Fibrillation from ECG Signals
Ventricular Fibrillation (VF), one of the most dangerous arrhythmias, is responsible for sudden cardiac arrests. Thus, various algorithms have been developed to predict VF from Electrocardiogram (ECG), which is a binary classification problem. In the literature, we find a number of algorithms based on signal processing, where, after some robust mathematical operations the decision is given based on a predefined threshold over a single value. On the other hand, some machine learning based algorithms are also reported in the literature; however, these algorithms merely combine some parameters and make a prediction using those as features. Both the approaches have their perks and pitfalls; thus our motivation was to coalesce them to get the best out of the both worlds. Hence we have developed, VFPred that, in addition to employing a signal processing pipeline, namely, Empirical Mode Decomposition and Discrete Time Fourier Transform for useful feature extraction, uses a Support Vector Machine for efficient classification. VFPred turns out to be a robust algorithm as it is able to successfully segregate the two classes with equal confidence (Sensitivity = 99.99%, Specificity = 98.40%) even from a short signal of 5 seconds long, whereas existing works though requires longer signals, flourishes in one but fails in the other.
Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions
Consider the following class of learning schemes: $$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}}\;\sum_{j=1}^n \ell(\boldsymbol{x}_j^\top\boldsymbol{\beta}; y_j) + \lambda R(\boldsymbol{\beta}),\qquad\qquad (1) $$ where $\boldsymbol{x}_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$ denote the $i^{\text{th}}$ feature and response variable respectively. Let $\ell$ and $R$ be the loss function and regularizer, $\boldsymbol{\beta}$ denote the unknown weights, and $\lambda$ be a regularization parameter. Finding the optimal choice of $\lambda$ is a challenging problem in high-dimensional regimes where both $n$ and $p$ are large. We propose two frameworks to obtain a computationally efficient approximation ALO of the leave-one-out cross validation (LOOCV) risk for nonsmooth losses and regularizers. Our two frameworks are based on the primal and dual formulations of (1). We prove the equivalence of the two approaches under smoothness conditions. This equivalence enables us to justify the accuracy of both methods under such conditions. We use our approaches to obtain a risk estimate for several standard problems, including generalized LASSO, nuclear norm regularization, and support vector machines. We empirically demonstrate the effectiveness of our results for non-differentiable cases.
DeepSource: Point Source Detection using Deep Learning
Point source detection at low signal-to-noise is challenging for astronomical surveys, particularly in radio interferometry images where the noise is correlated. Machine learning is a promising solution, allowing the development of algorithms tailored to specific telescope arrays and science cases. We present DeepSource - a deep learning solution - that uses convolutional neural networks to achieve these goals. DeepSource enhances the Signal-to-Noise Ratio (SNR) of the original map and then uses dynamic blob detection to detect sources. Trained and tested on two sets of 500 simulated 1 deg x 1 deg MeerKAT images with a total of 300,000 sources, DeepSource is essentially perfect in both purity and completeness down to SNR = 4 and outperforms PyBDSF in all metrics. For uniformly-weighted images it achieves a Purity x Completeness (PC) score at SNR = 3 of 0.73, compared to 0.31 for the best PyBDSF model. For natural-weighting we find a smaller improvement of ~40% in the PC score at SNR = 3. If instead we ask where either of the purity or completeness first drop to 90%, we find that DeepSource reaches this value at SNR = 3.6 compared to the 4.3 of PyBDSF (natural-weighting). A key advantage of DeepSource is that it can learn to optimally trade off purity and completeness for any science case under consideration. Our results show that deep learning is a promising approach to point source detection in astronomical images.
Improving DNN-based Music Source Separation using Phase Features
Music source separation with deep neural networks typically relies only on amplitude features. In this paper we show that additional phase features can improve the separation performance. Using the theoretical relationship between STFT phase and amplitude, we conjecture that derivatives of the phase are a good feature representation opposed to the raw phase. We verify this conjecture experimentally and propose a new DNN architecture which combines amplitude and phase. This joint approach achieves a better signal-to distortion ratio on the DSD100 dataset for all instruments compared to a network that uses only amplitude features. Especially, the bass instrument benefits from the phase information.
A Deep-Learning-Based Geological Parameterization for History Matching Complex Models
A new low-dimensional parameterization based on principal component analysis (PCA) and convolutional neural networks (CNN) is developed to represent complex geological models. The CNN-PCA method is inspired by recent developments in computer vision using deep learning. CNN-PCA can be viewed as a generalization of an existing optimization-based PCA (O-PCA) method. Both CNN-PCA and O-PCA entail post-processing a PCA model to better honor complex geological features. In CNN-PCA, rather than use a histogram-based regularization as in O-PCA, a new regularization involving a set of metrics for multipoint statistics is introduced. The metrics are based on summary statistics of the nonlinear filter responses of geological models to a pre-trained deep CNN. In addition, in the CNN-PCA formulation presented here, a convolutional neural network is trained as an explicit transform function that can post-process PCA models quickly. CNN-PCA is shown to provide both unconditional and conditional realizations that honor the geological features present in reference SGeMS geostatistical realizations for a binary channelized system. Flow statistics obtained through simulation of random CNN-PCA models closely match results for random SGeMS models for a demanding case in which O-PCA models lead to significant discrepancies. Results for history matching are also presented. In this assessment CNN-PCA is applied with derivative-free optimization, and a subspace randomized maximum likelihood method is used to provide multiple posterior models. Data assimilation and significant uncertainty reduction are achieved for existing wells, and physically reasonable predictions are also obtained for new wells. Finally, the CNN-PCA method is extended to a more complex non-stationary bimodal deltaic fan system, and is shown to provide high-quality realizations for this challenging example.
Data-driven Upsampling of Point Clouds
High quality upsampling of sparse 3D point clouds is critically useful for a wide range of geometric operations such as reconstruction, rendering, meshing, and analysis. In this paper, we propose a data-driven algorithm that enables an upsampling of 3D point clouds without the need for hard-coded rules. Our approach uses a deep network with Chamfer distance as the loss function, capable of learning the latent features in point clouds belonging to different object categories. We evaluate our algorithm across different amplification factors, with upsampling learned and performed on objects belonging to the same category as well as different categories. We also explore the desirable characteristics of input point clouds as a function of the distribution of the point samples. Finally, we demonstrate the performance of our algorithm in single-category training versus multi-category training scenarios. The final proposed model is compared against a baseline, optimization-based upsampling method. Results indicate that our algorithm is capable of generating more uniform and accurate upsamplings.
Financial Trading as a Game: A Deep Reinforcement Learning Approach
An automatic program that generates constant profit from the financial market is lucrative for every market practitioner. Recent advance in deep reinforcement learning provides a framework toward end-to-end training of such trading agent. In this paper, we propose an Markov Decision Process (MDP) model suitable for the financial trading task and solve it with the state-of-the-art deep recurrent Q-network (DRQN) algorithm. We propose several modifications to the existing learning algorithm to make it more suitable under the financial trading setting, namely 1. We employ a substantially small replay memory (only a few hundreds in size) compared to ones used in modern deep reinforcement learning algorithms (often millions in size.) 2. We develop an action augmentation technique to mitigate the need for random exploration by providing extra feedback signals for all actions to the agent. This enables us to use greedy policy over the course of learning and shows strong empirical performance compared to more commonly used epsilon-greedy exploration. However, this technique is specific to financial trading under a few market assumptions. 3. We sample a longer sequence for recurrent neural network training. A side product of this mechanism is that we can now train the agent for every T steps. This greatly reduces training time since the overall computation is down by a factor of T. We combine all of the above into a complete online learning algorithm and validate our approach on the spot foreign exchange market.
BALSON: Bayesian Least Squares Optimization with Nonnegative L1-Norm Constraint
A Bayesian approach termed BAyesian Least Squares Optimization with Nonnegative L1-norm constraint (BALSON) is proposed. The error distribution of data fitting is described by Gaussian likelihood. The parameter distribution is assumed to be a Dirichlet distribution. With the Bayes rule, searching for the optimal parameters is equivalent to finding the mode of the posterior distribution. In order to explicitly characterize the nonnegative L1-norm constraint of the parameters, we further approximate the true posterior distribution by a Dirichlet distribution. We estimate the statistics of the approximating Dirichlet posterior distribution by sampling methods. Four sampling methods have been introduced. With the estimated posterior distributions, the original parameters can be effectively reconstructed in polynomial fitting problems, and the BALSON framework is found to perform better than conventional methods.
Distillation Techniques for Pseudo-rehearsal Based Incremental Learning
The ability to learn from incrementally arriving data is essential for any life-long learning system. However, standard deep neural networks forget the knowledge about the old tasks, a phenomenon called catastrophic forgetting, when trained on incrementally arriving data. We discuss the biases in current Generative Adversarial Networks (GAN) based approaches that learn the classifier by knowledge distillation from previously trained classifiers. These biases cause the trained classifier to perform poorly. We propose an approach to remove these biases by distilling knowledge from the classifier of AC-GAN. Experiments on MNIST and CIFAR10 show that this method is comparable to current state of the art rehearsal based approaches. The code for this paper is available at https://bit.ly/incremental-learning
Revisiting Distillation and Incremental Classifier Learning
One of the key differences between the learning mechanism of humans and Artificial Neural Networks (ANNs) is the ability of humans to learn one task at a time. ANNs, on the other hand, can only learn multiple tasks simultaneously. Any attempts at learning new tasks incrementally cause them to completely forget about previous tasks. This lack of ability to learn incrementally, called Catastrophic Forgetting, is considered a major hurdle in building a true AI system. In this paper, our goal is to isolate the truly effective existing ideas for incremental learning from those that only work under certain conditions. To this end, we first thoroughly analyze the current state of the art (iCaRL) method for incremental learning and demonstrate that the good performance of the system is not because of the reasons presented in the existing literature. We conclude that the success of iCaRL is primarily due to knowledge distillation and recognize a key limitation of knowledge distillation, i.e, it often leads to bias in classifiers. Finally, we propose a dynamic threshold moving algorithm that is able to successfully remove this bias. We demonstrate the effectiveness of our algorithm on CIFAR100 and MNIST datasets showing near-optimal results. Our implementation is available at https://github.com/Khurramjaved96/incremental-learning.
A Tutorial on Bayesian Optimization
Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.
Improving Deep Learning through Automatic Programming
Deep learning and deep architectures are emerging as the best machine learning methods so far in many practical applications such as reducing the dimensionality of data, image classification, speech recognition or object segmentation. In fact, many leading technology companies such as Google, Microsoft or IBM are researching and using deep architectures in their systems to replace other traditional models. Therefore, improving the performance of these models could make a strong impact in the area of machine learning. However, deep learning is a very fast-growing research domain with many core methodologies and paradigms just discovered over the last few years. This thesis will first serve as a short summary of deep learning, which tries to include all of the most important ideas in this research area. Based on this knowledge, we suggested, and conducted some experiments to investigate the possibility of improving the deep learning based on automatic programming (ADATE). Although our experiments did produce good results, there are still many more possibilities that we could not try due to limited time as well as some limitations of the current ADATE version. I hope that this thesis can promote future work on this topic, especially when the next version of ADATE comes out. This thesis also includes a short analysis of the power of ADATE system, which could be useful for other researchers who want to know what it is capable of.
Hierarchical stochastic graphlet embedding for graph-based pattern recognition
Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes, and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the Stochastic Graphlet Embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low to high order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.
Replicated Siamese LSTM in Ticketing System for Similarity Learning and Retrieval in Asymmetric Texts
The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by matching with historical tickets stored in knowledge base. A query is comprised of subject and description, while a historical ticket consists of subject, description and solution. To retrieve a relevant solution, we use textual similarity paradigm to learn similarity in the query and historical tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of asymmetric lengths, where subject is a short text but description and solution are multi-sentence texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text pairs, that gives 22% and 7% gain (Accuracy@10) for retrieval task, respectively over unsupervised and supervised baselines. We also show that the topic and distributed semantic features for short and long texts improved both similarity learning and retrieval.
Learning The Sequential Temporal Information with Recurrent Neural Networks
Recurrent Networks are one of the most powerful and promising artificial neural network algorithms to processing the sequential data such as natural languages, sound, time series data. Unlike traditional feed-forward network, Recurrent Network has a inherent feed back loop that allows to store the temporal context information and pass the state of information to the entire sequences of the events. This helps to achieve the state of art performance in many important tasks such as language modeling, stock market prediction, image captioning, speech recognition, machine translation and object tracking etc., However, training the fully connected RNN and managing the gradient flow are the complicated process. Many studies are carried out to address the mentioned limitation. This article is intent to provide the brief details about recurrent neurons, its variances and trips & tricks to train the fully recurrent neural network. This review work is carried out as a part of our IPO studio software module 'Multiple Object Tracking'.
Large Margin Few-Shot Learning
The key issue of few-shot learning is learning to generalize. This paper proposes a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning methods, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.
Separability is not the best goal for machine learning
Neural networks use their hidden layers to transform input data into linearly separable data clusters, with a linear or a perceptron type output layer making the final projection on the line perpendicular to the discriminating hyperplane. For complex data with multimodal distributions this transformation is difficult to learn. Projection on $k\geq 2$ line segments is the simplest extension of linear separability, defining much easier goal for the learning process. Simple problems are 2-separable, but problems with inherent complex logic may be solved in a simple way by $k$-separable projections. The difficulty of learning non-linear data distributions is shifted to separation of line intervals, simplifying the transformation of data by hidden network layers. For classification of difficult Boolean problems, such as the parity problem, linear projection combined with \ksep is sufficient and provides a powerful new target for learning. More complex targets may also be defined, changing the goal of learning from linear discrimination to creation of data distributions that can easily be handled by specialized models selected to analyze output distributions. This approach can replace many layers of transformation required by deep learning models.
Machine Learning in High Energy Physics Community White Paper
Machine learning has been applied to several problems in particle physics research, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas for machine learning in particle physics. We detail a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.
Stochastic Block Model for Hypergraphs: Statistical limits and a semidefinite programming approach
We study the problem of community detection in a random hypergraph model which we call the stochastic block model for $k$-uniform hypergraphs ($k$-SBM). We investigate the exact recovery problem in $k$-SBM and show that a sharp phase transition occurs around a threshold: below the threshold it is impossible to recover the communities with non-vanishing probability, yet above the threshold there is an estimator which recovers the communities almost asymptotically surely. We also consider a simple, efficient algorithm for the exact recovery problem which is based on a semidefinite relaxation technique.
Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure
Model-based compression is an effective, facilitating, and expanded model of neural network models with limited computing and low power. However, conventional models of compression techniques utilize crafted features [2,3,12] and explore specialized areas for exploration and design of large spaces in terms of size, speed, and accuracy, which usually have returns Less and time is up. This paper will effectively analyze deep auto compression (ADC) and reinforcement learning strength in an effective sample and space design, and improve the compression quality of the model. The results of compression of the advanced model are obtained without any human effort and in a completely automated way. With a 4- fold reduction in FLOP, the accuracy of 2.8% is higher than the manual compression model for VGG-16 in ImageNet.
Automated labeling of bugs and tickets using attention-based mechanisms in recurrent neural networks
We explore solutions for automated labeling of content in bug trackers and customer support systems. In order to do that, we classify content in terms of several criteria, such as priority or product area. In the first part of the paper, we provide an overview of existing methods used for text classification. These methods fall into two categories - the ones that rely on neural networks and the ones that don't. We evaluate results of several solutions of both kinds. In the second part of the paper we present our own recurrent neural network solution based on hierarchical attention paradigm. It consists of several Hierarchical Attention network blocks with varying Gated Recurrent Unit cell sizes and a complementary shallow network that goes alongside. Lastly, we evaluate above-mentioned methods when predicting fields from two datasets - Arch Linux bug tracker and Chromium bug tracker. Our contributions include a comprehensive benchmark between a variety of methods on relevant datasets; a novel solution that outperforms previous generation methods; and two new datasets that are made public for further research.
Partial Policy-based Reinforcement Learning for Anatomical Landmark Localization in 3D Medical Images
Deploying the idea of long-term cumulative return, reinforcement learning has shown remarkable performance in various fields. We propose a formulation of the landmark localization in 3D medical images as a reinforcement learning problem. Whereas value-based methods have been widely used to solve similar problems, we adopt an actor-critic based direct policy search method framed in a temporal difference learning approach. Successful behavior learning is challenging in large state and/or action spaces, requiring many trials. We introduce a partial policy-based reinforcement learning to enable solving the large problem of localization by learning the optimal policy on smaller partial domains. Independent actors efficiently learn the corresponding partial policies, each utilizing their own independent critic. The proposed policy reconstruction from the partial policies ensures a robust and efficient localization utilizing the sub-agents solving simple binary decision problems in their corresponding partial action spaces. The proposed reinforcement learning requires a small number of trials to learn the optimal behavior compared with the original behavior learning scheme.
Model Agnostic Supervised Local Explanations
Model interpretability is an increasingly important component of practical machine learning. Some of the most common forms of interpretability systems are example-based, local, and global explanations. One of the main challenges in interpretability is designing explanation systems that can capture aspects of each of these explanation types, in order to develop a more thorough understanding of the model. We address this challenge in a novel model called MAPLE that uses local linear modeling techniques along with a dual interpretation of random forests (both as a supervised neighborhood approach and as a feature selection method). MAPLE has two fundamental advantages over existing interpretability systems. First, while it is effective as a black-box explanation system, MAPLE itself is a highly accurate predictive model that provides faithful self explanations, and thus sidesteps the typical accuracy-interpretability trade-off. Specifically, we demonstrate, on several UCI datasets, that MAPLE is at least as accurate as random forests and that it produces more faithful local explanations than LIME, a popular interpretability system. Second, MAPLE provides both example-based and local explanations and can detect global patterns, which allows it to diagnose limitations in its local explanations.
Domain2Vec: Deep Domain Generalization
We address the problem of domain generalization where a decision function is learned from the data of several related domains, and the goal is to apply it on an unseen domain successfully. It is assumed that there is plenty of labeled data available in source domains (also called as training domain), but no labeled data is available for the unseen domain (also called a target domain or test domain). We propose a novel neural network architecture, Domain2Vec (D2V) that learns domain-specific embedding and then uses this embedding to generalize the learning across related domains. The proposed algorithm, D2V extends the idea of distribution regression and kernelized domain generalization to the neural networks setting. We propose a neural network architecture to learn domain-specific embedding and then use this embedding along with the data point specific features to label it. We show the effectiveness of the architecture by accurately estimating domain to domain similarity. We evaluate our algorithm against standard domain generalization datasets for image classification and outperform other state of the art algorithms.
Zero-shot Domain Adaptation without Domain Semantic Descriptors
We propose a method to infer domain-specific models such as classifiers for unseen domains, from which no data are given in the training phase, without domain semantic descriptors. When training and test distributions are different, standard supervised learning methods perform poorly. Zero-shot domain adaptation attempts to alleviate this problem by inferring models that generalize well to unseen domains by using training data in multiple source domains. Existing methods use observed semantic descriptors characterizing domains such as time information to infer the domain-specific models for the unseen domains. However, it cannot always be assumed that such metadata can be used in real-world applications. The proposed method can infer appropriate domain-specific models without any semantic descriptors by introducing the concept of latent domain vectors, which are latent representations for the domains and are used for inferring the models. The latent domain vector for the unseen domain is inferred from the set of the feature vectors in the corresponding domain, which is given in the testing phase. The domain-specific models consist of two components: the first is for extracting a representation of a feature vector to be predicted, and the second is for inferring model parameters given the latent domain vector. The posterior distributions of the latent domain vectors and the domain-specific models are parametrized by neural networks, and are optimized by maximizing the variational lower bound using stochastic gradient descent. The effectiveness of the proposed method was demonstrated through experiments using one regression and two classification tasks.
Jointly learning relevant subgraph patterns and nonlinear models of their indicators
Classification and regression in which the inputs are graphs of arbitrary size and shape have been paid attention in various fields such as computational chemistry and bioinformatics. Subgraph indicators are often used as the most fundamental features, but the number of possible subgraph patterns are intractably large due to the combinatorial explosion. We propose a novel efficient algorithm to jointly learn relevant subgraph patterns and nonlinear models of their indicators. Previous methods for such joint learning of subgraph features and models are based on search for single best subgraph features with specific pruning and boosting procedures of adding their indicators one by one, which result in linear models of subgraph indicators. In contrast, the proposed approach is based on directly learning regression trees for graph inputs using a newly derived bound of the total sum of squares for data partitions by a given subgraph feature, and thus can learn nonlinear models through standard gradient boosting. An illustrative example we call the Graph-XOR problem to consider nonlinearity, numerical experiments with real datasets, and scalability comparisons to naive approaches using explicit pattern enumeration are also presented.
Decreasing the size of the Restricted Boltzmann machine
We propose a method to decrease the number of hidden units of the restricted Boltzmann machine while avoiding decrease of the performance measured by the Kullback-Leibler divergence. Then, we demonstrate our algorithm by using numerical simulations.
XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary Neural Network Inference
Binary Neural Networks (BNNs) are promising to deliver accuracy comparable to conventional deep neural networks at a fraction of the cost in terms of memory and energy. In this paper, we introduce the XNOR Neural Engine (XNE), a fully digital configurable hardware accelerator IP for BNNs, integrated within a microcontroller unit (MCU) equipped with an autonomous I/O subsystem and hybrid SRAM / standard cell memory. The XNE is able to fully compute convolutional and dense layers in autonomy or in cooperation with the core in the MCU to realize more complex behaviors. We show post-synthesis results in 65nm and 22nm technology for the XNE IP and post-layout results in 22nm for the full MCU indicating that this system can drop the energy cost per binary operation to 21.6fJ per operation at 0.4V, and at the same time is flexible and performant enough to execute state-of-the-art BNN topologies such as ResNet-34 in less than 2.2mJ per frame at 8.9 fps.
Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders
We address the problem of causal discovery from data, making use of the recently proposed causal modeling framework of modular structural causal models (mSCM) to handle cycles, latent confounders and non-linearities. We introduce {\sigma}-connection graphs ({\sigma}-CG), a new class of mixed graphs (containing undirected, bidirected and directed edges) with additional structure, and extend the concept of {\sigma}-separation, the appropriate generalization of the well-known notion of d-separation in this setting, to apply to {\sigma}-CGs. We prove the closedness of {\sigma}-separation under marginalisation and conditioning and exploit this to implement a test of {\sigma}-separation on a {\sigma}-CG. This then leads us to the first causal discovery algorithm that can handle non-linear functional relations, latent confounders, cyclic causal relationships, and data from different (stochastic) perfect interventions. As a proof of concept, we show on synthetic data how well the algorithm recovers features of the causal graph of modular structural causal models.
Pioneer Networks: Progressively Growing Generative Autoencoder
We introduce a novel generative autoencoder network model that learns to encode and reconstruct images with high quality and resolution, and supports smooth random sampling from the latent space of the encoder. Generative adversarial networks (GANs) are known for their ability to simulate random high-quality images, but they cannot reconstruct existing images. Previous works have attempted to extend GANs to support such inference but, so far, have not delivered satisfactory high-quality results. Instead, we propose the Progressively Growing Generative Autoencoder (PIONEER) network which achieves high-quality reconstruction with $128{\times}128$ images without requiring a GAN discriminator. We merge recent techniques for progressively building up the parts of the network with the recently introduced adversarial encoder-generator network. The ability to reconstruct input images is crucial in many real-world applications, and allows for precise intelligent manipulation of existing images. We show promising results in image synthesis and inference, with state-of-the-art results in CelebA inference tasks.
Glow: Generative Flow with Invertible 1x1 Convolutions
Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using an invertible 1x1 convolution. Using our method we demonstrate a significant improvement in log-likelihood on standard benchmarks. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient realistic-looking synthesis and manipulation of large images. The code for our model is available at https://github.com/openai/glow
Deep Learning for Singing Processing: Achievements, Challenges and Impact on Singers and Listeners
This paper summarizes some recent advances on a set of tasks related to the processing of singing using state-of-the-art deep learning techniques. We discuss their achievements in terms of accuracy and sound quality, and the current challenges, such as availability of data and computing resources. We also discuss the impact that these advances do and will have on listeners and singers when they are integrated in commercial applications.
Position-aware Self-attention with Relative Positional Encodings for Slot Filling
This paper describes how to apply self-attention with relative positional encodings to the task of relation extraction. We propose to use the self-attention encoder layer together with an additional position-aware attention layer that takes into account positions of the query and the object in the sentence. The self-attention encoder also uses a custom implementation of relative positional encodings which allow each word in the sentence to take into account its left and right context. The evaluation of the model is done on the TACRED dataset. The proposed model relies only on attention (no recurrent or convolutional layers are used), while improving performance w.r.t. the previous state of the art.
Temporal Difference Learning with Neural Networks - Study of the Leakage Propagation Problem
Temporal-Difference learning (TD) [Sutton, 1988] with function approximation can converge to solutions that are worse than those obtained by Monte-Carlo regression, even in the simple case of on-policy evaluation. To increase our understanding of the problem, we investigate the issue of approximation errors in areas of sharp discontinuities of the value function being further propagated by bootstrap updates. We show empirical evidence of this leakage propagation, and show analytically that it must occur, in a simple Markov chain, when function approximation errors are present. For reversible policies, the result can be interpreted as the tension between two terms of the loss function that TD minimises, as recently described by [Ollivier, 2018]. We show that the upper bounds from [Tsitsiklis and Van Roy, 1997] hold, but they do not imply that leakage propagation occurs and under what conditions. Finally, we test whether the problem could be mitigated with a better state representation, and whether it can be learned in an unsupervised manner, without rewards or privileged information.
Mammography Assessment using Multi-Scale Deep Classifiers
Applying deep learning methods to mammography assessment has remained a challenging topic. Dense noise with sparse expressions, mega-pixel raw data resolution, lack of diverse examples have all been factors affecting performance. The lack of pixel-level ground truths have especially limited segmentation methods in pushing beyond approximately bounding regions. We propose a classification approach grounded in high performance tissue assessment as an alternative to all-in-one localization and assessment models that is also capable of pinpointing the causal pixels. First, the objective of the mammography assessment task is formalized in the context of local tissue classifiers. Then, the accuracy of a convolutional neural net is evaluated on classifying patches of tissue with suspicious findings at varying scales, where highest obtained AUC is above $0.9$. The local evaluations of one such expert tissue classifier is used to augment the results of a heatmap regression model and additionally recover the exact causal regions at high resolution as a saliency image suitable for clinical settings.
Robust Text-to-SQL Generation with Execution-Guided Decoding
We consider the problem of neural semantic parsing, which translates natural language questions into executable SQL queries. We introduce a new mechanism, execution guidance, to leverage the semantics of SQL. It detects and excludes faulty programs during the decoding procedure by conditioning on the execution of partially generated program. The mechanism can be used with any autoregressive generative model, which we demonstrate on four state-of-the-art recurrent or template-based semantic parsing models. We demonstrate that execution guidance universally improves model performance on various text-to-SQL datasets with different scales and query complexity: WikiSQL, ATIS, and GeoQuery. As a result, we achieve new state-of-the-art execution accuracy of 83.8% on WikiSQL.
Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks
Empirical evidence suggests that heavy-tailed degree distributions occurring in many real networks are well-approximated by power laws with exponents $\eta$ that may take values either less than and greater than two. Models based on various forms of exchangeability are able to capture power laws with $\eta < 2$, and admit tractable inference algorithms; we draw on previous results to show that $\eta > 2$ cannot be generated by the forms of exchangeability used in existing random graph models. Preferential attachment models generate power law exponents greater than two, but have been of limited use as statistical models due to the inherent difficulty of performing inference in non-exchangeable models. Motivated by this gap, we design and implement inference algorithms for a recently proposed class of models that generates $\eta$ of all possible values. We show that although they are not exchangeable, these models have probabilistic structure amenable to inference. Our methods make a large class of previously intractable models useful for statistical inference.
Deep Global-Connected Net With The Generalized Multi-Piecewise ReLU Activation in Deep Learning
Recent Progress has shown that exploitation of hidden layer neurons in convolution neural networks incorporating with a carefully designed activation function can yield better classification results in the field of computer vision. The paper firstly introduces a novel deep learning architecture aiming to mitigate the gradient-vanishing problem, in which the earlier hidden layer neurons could be directly connected with the last hidden layer and feed into the last layer for classification. We then design a generalized linear rectifier function as the activation function that can approximate arbitrary complex functions via training of the parameters. We will show that our design can achieve similar performance in a number of object recognition and video action benchmark tasks, under significantly less number of parameters and shallower network infrastructure, which is not only promising in training in terms of computation burden and memory usage, but is also applicable to low-computation, low-memory mobile scenarios.
Deep Semantic Segmentation in an AUV for Online Posidonia Oceanica Meadows identification
Recent studies have shown evidence of a significant decline of the Posidonia oceanica (P.O.) meadows on a global scale. The monitoring and mapping of these meadows are fundamental tools for measuring their status. We present an approach based on a deep neural network to automatically perform a high-precision semantic segmentation of P.O. meadows in sea-floor images, offering several improvements over the state of the art techniques. Our network demonstrates outstanding performance over diverse test sets, reaching a precision of 96.57% and an accuracy of 96.81%, surpassing the reliability of labelling the images manually. Also, the network is implemented in an Autonomous Underwater Vehicle (AUV), performing an online P.O. segmentation, which will be used to generate real-time semantic coverage maps.
Towards Radiologist-Level Accurate Deep Learning System for Pulmonary Screening
In this work, we propose advanced pneumonia and Tuberculosis grading system for X-ray images. The proposed system is a very deep fully convolutional classification network with online augmentation that outputs confidence values for diseases prevalence. Its a fully automated system capable of disease feature understanding without any offline preprocessing step or manual feature extraction. We have achieved state- of-the- art performance on the public databases such as ChestXray-14, Mendeley, Shenzhen Hospital X-ray and Belarus X-ray set.
Estimating Bicycle Route Attractivity from Image Data
This master thesis focuses on practical application of Convolutional Neural Network models on the task of road labeling with bike attractivity score. We start with an abstraction of real world locations into nodes and scored edges in partially annotated dataset. We enhance information available about each edge with photographic data from Google Street View service and with additional neighborhood information from Open Street Map database. We teach a model on this enhanced dataset and experiment with ImageNet Large Scale Visual Recognition Competition. We try different dataset enhancing techniques as well as various model architectures to improve road scoring. We also make use of transfer learning to use features from a task with rich dataset of ImageNet into our task with smaller number of images, to prevent model overfitting.
Fast Dynamic Convolutional Neural Networks for Visual Tracking
Most of the existing tracking methods based on CNN(convolutional neural networks) are too slow for real-time application despite the excellent tracking precision compared with the traditional ones. In this paper, a fast dynamic visual tracking algorithm combining CNN based MDNet(Multi-Domain Network) and RoIAlign was developed. The major problem of MDNet also lies in the time efficiency. Considering the computational complexity of MDNet is mainly caused by the large amount of convolution operations and fine-tuning of the network during tracking, a RoIPool layer which could conduct the convolution over the whole image instead of each RoI is added to accelerate the convolution and a new strategy of fine-tuning the fully-connected layers is used to accelerate the update. With RoIPool employed, the computation speed has been increased but the tracking precision has dropped simultaneously. RoIPool could lose some positioning precision because it can not handle locations represented by floating numbers. So RoIAlign, instead of RoIPool, which can process floating numbers of locations by bilinear interpolation has been added to the network. The results show the target localization precision has been improved and it hardly increases the computational cost. These strategies can accelerate the processing and make it 7x faster than MDNet with very low impact on precision and it can run at around 7 fps. The proposed algorithm has been evaluated on two benchmarks: OTB100 and VOT2016, on which high precision and speed have been obtained. The influence of the network structure and training data are also discussed with experiments.
Outfit Generation and Style Extraction via Bidirectional LSTM and Autoencoder
When creating an outfit, style is a criterion in selecting each fashion item. This means that style can be regarded as a feature of the overall outfit. However, in various previous studies on outfit generation, there have been few methods focusing on global information obtained from an outfit. To address this deficiency, we have incorporated an unsupervised style extraction module into a model to learn outfits. Using the style information of an outfit as a whole, the proposed model succeeded in generating outfits more flexibly without requiring additional information. Moreover, the style information extracted by the proposed model is easy to interpret. The proposed model was evaluated on two human-generated outfit datasets. In a fashion item prediction task (missing prediction task), the proposed model outperformed a baseline method. In a style extraction task, the proposed model extracted some easily distinguishable styles. In an outfit generation task, the proposed model generated an outfit while controlling its styles. This capability allows us to generate fashionable outfits according to various preferences.
Deep Networks with Shape Priors for Nucleus Detection
Detection of cell nuclei in microscopic images is a challenging research topic, because of limitations in cellular image quality and diversity of nuclear morphology, i.e. varying nuclei shapes, sizes, and overlaps between multiple cell nuclei. This has been a topic of enduring interest with promising recent success shown by deep learning methods. These methods train for example convolutional neural networks (CNNs) with a training set of input images and known, labeled nuclei locations. Many of these methods are supplemented by spatial or morphological processing. We develop a new approach that we call Shape Priors with Convolutional Neural Networks (SP-CNN) to perform significantly enhanced nuclei detection. A set of canonical shapes is prepared with the help of a domain expert. Subsequently, we present a new network structure that can incorporate `expected behavior' of nucleus shapes via two components: {\em learnable} layers that perform the nucleus detection and a {\em fixed} processing part that guides the learning with prior information. Analytically, we formulate a new regularization term that is targeted at penalizing false positives while simultaneously encouraging detection inside cell nucleus boundary. Experimental results on a challenging dataset reveal that SP-CNN is competitive with or outperforms several state-of-the-art methods.
Faster Bounding Box Annotation for Object Detection in Indoor Scenes
This paper proposes an approach for rapid bounding box annotation for object detection datasets. The procedure consists of two stages: The first step is to annotate a part of the dataset manually, and the second step proposes annotations for the remaining samples using a model trained with the first stage annotations. We experimentally study which first/second stage split minimizes to total workload. In addition, we introduce a new fully labeled object detection dataset collected from indoor scenes. Compared to other indoor datasets, our collection has more class categories, different backgrounds, lighting conditions, occlusion and high intra-class differences. We train deep learning based object detectors with a number of state-of-the-art models and compare them in terms of speed and accuracy. The fully annotated dataset is released freely available for the research community.
Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning
This paper presents KeypointNet, an end-to-end geometric reasoning framework to learn an optimal set of category-specific 3D keypoints, along with their detectors. Given a single image, KeypointNet extracts 3D keypoints that are optimized for a downstream task. We demonstrate this framework on 3D pose estimation by proposing a differentiable objective that seeks the optimal set of keypoints for recovering the relative pose between two views of an object. Our model discovers geometrically and semantically consistent keypoints across viewing angles and instances of an object category. Importantly, we find that our end-to-end framework using no ground-truth keypoint annotations outperforms a fully supervised baseline using the same neural network architecture on the task of pose estimation. The discovered 3D keypoints on the car, chair, and plane categories of ShapeNet are visualized at http://keypointnet.github.io/.
Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
In this work we introduce a time- and memory-efficient method for structured prediction that couples neuron decisions across both space at time. We show that we are able to perform exact and efficient inference on a densely connected spatio-temporal graph by capitalizing on recent advances on deep Gaussian Conditional Random Fields (GCRFs). Our method, called VideoGCRF is (a) efficient, (b) has a unique global minimum, and (c) can be trained end-to-end alongside contemporary deep networks for video understanding. We experiment with multiple connectivity patterns in the temporal domain, and present empirical improvements over strong baselines on the tasks of both semantic and instance segmentation of videos.
Learning models for visual 3D localization with implicit mapping
We consider learning based methods for visual localization that do not require the construction of explicit maps in the form of point clouds or voxels. The goal is to learn an implicit representation of the environment at a higher, more abstract level. We propose to use a generative approach based on Generative Query Networks (GQNs, Eslami et al. 2018), asking the following questions: 1) Can GQN capture more complex scenes than those it was originally demonstrated on? 2) Can GQN be used for localization in those scenes? To study this approach we consider procedurally generated Minecraft worlds, for which we can generate images of complex 3D scenes along with camera pose coordinates. We first show that GQNs, enhanced with a novel attention mechanism can capture the structure of 3D scenes in Minecraft, as evidenced by their samples. We then apply the models to the localization problem, comparing the results to a discriminative baseline, and comparing the ways each approach captures the task uncertainty.
Jigsaw Puzzle Solving Using Local Feature Co-Occurrences in Deep Neural Networks
Archaeologists are in dire need of automated object reconstruction methods. Fragments reassembly is close to puzzle problems, which may be solved by computer vision algorithms. As they are often beaten on most image related tasks by deep learning algorithms, we study a classification method that can solve jigsaw puzzles. In this paper, we focus on classifying the relative position: given a couple of fragments, we compute their local relation (e.g. on top). We propose several enhancements over the state of the art in this domain, which is outperformed by our method by 25\%. We propose an original dataset composed of pictures from the Metropolitan Museum of Art. We propose a greedy reconstruction method based on the predicted relative positions.
Forecasting Disease Trajectories in Alzheimer's Disease Using Deep Learning
Joint models for longitudinal and time-to-event data are commonly used in longitudinal studies to forecast disease trajectories over time. Despite the many advantages of joint modeling, the standard forms suffer from limitations that arise from a fixed model specification and computational difficulties when applied to large datasets. We adopt a deep learning approach to address these limitations, enhancing existing methods with the flexibility and scalability of deep neural networks while retaining the benefits of joint modeling. Using data from the Alzheimer's Disease Neuroimaging Institute, we show improvements in performance and scalability compared to traditional methods.
Deep Learning Based Sphere Decoding
In this paper, a deep learning (DL)-based sphere decoding algorithm is proposed, where the radius of the decoding hypersphere is learnt by a deep neural network (DNN). The performance achieved by the proposed algorithm is very close to the optimal maximum likelihood decoding (MLD) over a wide range of signal-to-noise ratios (SNRs), while the computational complexity, compared to existing sphere decoding variants, is significantly reduced. This improvement is attributed to DNN's ability of intelligently learning the radius of the hypersphere used in decoding. The expected complexity of the proposed DL-based algorithm is analytically derived and compared with existing ones. It is shown that the number of lattice points inside the decoding hypersphere drastically reduces in the DL- based algorithm in both the average and worst-case senses. The effectiveness of the proposed algorithm is shown through simulation for high-dimensional multiple-input multiple-output (MIMO) systems, using high-order modulations.
Sparse Deep Neural Network Exact Solutions
Deep neural networks (DNNs) have emerged as key enablers of machine learning. Applying larger DNNs to more diverse applications is an important challenge. The computations performed during DNN training and inference are dominated by operations on the weight matrices describing the DNN. As DNNs incorporate more layers and more neurons per layers, these weight matrices may be required to be sparse because of memory limitations. Sparse DNNs are one possible approach, but the underlying theory is in the early stages of development and presents a number of challenges, including determining the accuracy of inference and selecting nonzero weights for training. Associative array algebra has been developed by the big data community to combine and extend database, matrix, and graph/network concepts for use in large, sparse data problems. Applying this mathematics to DNNs simplifies the formulation of DNN mathematics and reveals that DNNs are linear over oscillating semirings. This work uses associative array DNNs to construct exact solutions and corresponding perturbation models to the rectified linear unit (ReLU) DNN equations that can be used to construct test vectors for sparse DNN implementations over various precisions. These solutions can be used for DNN verification, theoretical explorations of DNN properties, and a starting point for the challenge of sparse training.
Data Augmentation for Detection of Architectural Distortion in Digital Mammography using Deep Learning Approach
Early detection of breast cancer can increase treatment efficiency. Architectural Distortion (AD) is a very subtle contraction of the breast tissue and may represent the earliest sign of cancer. Since it is very likely to be unnoticed by radiologists, several approaches have been proposed over the years but none using deep learning techniques. To train a Convolutional Neural Network (CNN), which is a deep neural architecture, is necessary a huge amount of data. To overcome this problem, this paper proposes a data augmentation approach applied to clinical image dataset to properly train a CNN. Results using receiver operating characteristic analysis showed that with a very limited dataset we could train a CNN to detect AD in digital mammography with area under the curve (AUC = 0.74).
NAPS: Natural Program Synthesis Dataset
We present a program synthesis-oriented dataset consisting of human written problem statements and solutions for these problems. The problem statements were collected via crowdsourcing and the program solutions were extracted from human-written solutions in programming competitions, accompanied by input/output examples. We propose using this dataset for the program synthesis tasks aimed for working with real user-generated data. As a baseline we present few models, with the best model achieving 8.8% accuracy, showcasing both the complexity of the dataset and large room for future research.
Graph of brain structures grading for early detection of Alzheimer's disease
Alzheimer's disease is the most common dementia leading to an irreversible neurodegenerative process. To date, subject revealed advanced brain structural alterations when the diagnosis is established. Therefore, an earlier diagnosis of this dementia is crucial although it is a challenging task. Recently, many studies have proposed biomarkers to perform early detection of Alzheimer's disease. Some of them have proposed methods based on inter-subject similarity while other approaches have investigated framework using intra-subject variability. In this work, we propose a novel framework combining both approaches within an efficient graph of brain structures grading. Subsequently, we demonstrate the competitive performance of the proposed method compared to state-of-the-art methods.
YouTube for Patient Education: A Deep Learning Approach for Understanding Medical Knowledge from User-Generated Videos
YouTube presents an unprecedented opportunity to explore how machine learning methods can improve healthcare information dissemination. We propose an interdisciplinary lens that synthesizes machine learning methods with healthcare informatics themes to address the critical issue of developing a scalable algorithmic solution to evaluate videos from a health literacy and patient education perspective. We develop a deep learning method to understand the level of medical knowledge encoded in YouTube videos. Preliminary results suggest that we can extract medical knowledge from YouTube videos and classify videos according to the embedded knowledge with satisfying performance. Deep learning methods show great promise in knowledge extraction, natural language understanding, and image classification, especially in an era of patient-centric care and precision medicine.
Approximate k-space models and Deep Learning for fast photoacoustic reconstruction
We present a framework for accelerated iterative reconstructions using a fast and approximate forward model that is based on k-space methods for photoacoustic tomography. The approximate model introduces aliasing artefacts in the gradient information for the iterative reconstruction, but these artefacts are highly structured and we can train a CNN that can use the approximate information to perform an iterative reconstruction. We show feasibility of the method for human in-vivo measurements in a limited-view geometry. The proposed method is able to produce superior results to total variation reconstructions with a speed-up of 32 times.
The CodRep Machine Learning on Source Code Competition
CodRep is a machine learning competition on source code data. It is carefully designed so that anybody can enter the competition, whether professional researchers, students or independent scholars, without specific knowledge in machine learning or program analysis. In particular, it aims at being a common playground on which the machine learning and the software engineering research communities can interact. The competition has started on April 14th 2018 and has ended on October 14th 2018. The CodRep data is hosted at https://github.com/KTH/CodRep-competition/.
Bandit Online Learning with Unknown Delays
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved that become available through feedback, and are used to estimate the gradient appearing in the corresponding iterative algorithms. Since the challenging case of feedback with \emph{unknown} delays prevents one from constructing the sought gradient estimates, existing MAB and BCO algorithms become intractable. For such challenging setups, delayed exploration, exploitation, and exponential (DEXP3) iterations, along with delayed bandit gradient descent (DBGD) iterations are developed for MAB and BCO, respectively. Leveraging a unified analysis framework, it is established that the regret of DEXP3 and DBGD are ${\cal O}\big( \sqrt{K\bar{d}(T+D)} \big)$ and ${\cal O}\big( \sqrt{K(T+D)} \big)$, respectively, where $\bar{d}$ is the maximum delay and $D$ denotes the delay accumulated over $T$ slots. Numerical tests using both synthetic and real data validate the performance of DEXP3 and DBGD.
Efficient Decentralized Deep Learning by Dynamic Model Averaging
We propose an efficient protocol for decentralized training of deep neural networks from distributed data sources. The proposed protocol allows to handle different phases of model training equally well and to quickly adapt to concept drifts. This leads to a reduction of communication by an order of magnitude compared to periodically communicating state-of-the-art approaches. Moreover, we derive a communication bound that scales well with the hardness of the serialized learning problem. The reduction in communication comes at almost no cost, as the predictive performance remains virtually unchanged. Indeed, the proposed protocol retains loss bounds of periodically averaging schemes. An extensive empirical evaluation validates major improvement of the trade-off between model performance and communication which could be beneficial for numerous decentralized learning applications, such as autonomous driving, or voice recognition and image classification on mobile phones.
A New ECOC Algorithm for Multiclass Microarray Data Classification
The classification of multi-class microarray datasets is a hard task because of the small samples size in each class and the heavy overlaps among classes. To effectively solve these problems, we propose novel Error Correcting Output Code (ECOC) algorithm by Enhance Class Separability related Data Complexity measures during encoding process, named as ECOCECS. In this algorithm, two nearest neighbor related DC measures are deployed to extract the intrinsic overlapping information from microarray data. Our ECOC algorithm aims to search an optimal class split scheme by minimizing these measures. The class splitting process ends when each class is separated from others, and then the class assignment scheme is mapped as a coding matrix. Experiments are carried out on five microarray datasets, and results demonstrate the effectiveness and robustness of our method in comparison with six state-of-art ECOC methods. In short, our work confirm the probability of applying DC to ECOC framework.
An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution
Few ideas have enjoyed as large an impact on deep learning as convolution. For any problem involving pixels or spatial representations, common intuition holds that convolutional neural networks may be appropriate. In this paper we show a striking counterexample to this intuition via the seemingly trivial coordinate transform problem, which simply requires learning a mapping between coordinates in (x,y) Cartesian space and one-hot pixel space. Although convolutional networks would seem appropriate for this task, we show that they fail spectacularly. We demonstrate and carefully analyze the failure first on a toy problem, at which point a simple fix becomes obvious. We call this solution CoordConv, which works by giving convolution access to its own input coordinates through the use of extra coordinate channels. Without sacrificing the computational and parametric efficiency of ordinary convolution, CoordConv allows networks to learn either complete translation invariance or varying degrees of translation dependence, as required by the end task. CoordConv solves the coordinate transform problem with perfect generalization and 150 times faster with 10--100 times fewer parameters than convolution. This stark contrast raises the question: to what extent has this inability of convolution persisted insidiously inside other tasks, subtly hampering performance from within? A complete answer to this question will require further investigation, but we show preliminary evidence that swapping convolution for CoordConv can improve models on a diverse set of tasks. Using CoordConv in a GAN produced less mode collapse as the transform between high-level spatial latents and pixels becomes easier to learn. A Faster R-CNN detection model trained on MNIST showed 24% better IOU when using CoordConv, and in the RL domain agents playing Atari games benefit significantly from the use of CoordConv layers.
Data Efficient Lithography Modeling with Transfer Learning and Active Data Selection
Lithography simulation is one of the key steps in physical verification, enabled by the substantial optical and resist models. A resist model bridges the aerial image simulation to printed patterns. While the effectiveness of learning-based solutions for resist modeling has been demonstrated, they are considerably data-demanding. Meanwhile, a set of manufactured data for a specific lithography configuration is only valid for the training of one single model, indicating low data efficiency. Due to the complexity of the manufacturing process, obtaining enough data for acceptable accuracy becomes very expensive in terms of both time and cost, especially during the evolution of technology generations when the design space is intensively explored. In this work, we propose a new resist modeling framework for contact layers, utilizing existing data from old technology nodes and active selection of data in a target technology node, to reduce the amount of data required from the target lithography configuration. Our framework based on transfer learning and active learning techniques is effective within a competitive range of accuracy, i.e., 3-10X reduction on the amount of training data with comparable accuracy to the state-of-the-art learning approach.
A Comparative Study on using Principle Component Analysis with Different Text Classifiers
Text categorization (TC) is the task of automatically organizing a set of documents into a set of pre-defined categories. Over the last few years, increased attention has been paid to the use of documents in digital form and this makes text categorization becomes a challenging issue. The most significant problem of text categorization is its huge number of features. Most of these features are redundant, noisy and irrelevant that cause over fitting with most of the classifiers. Hence, feature extraction is an important step to improve the overall accuracy and the performance of the text classifiers. In this paper, we will provide an overview of using principle component analysis (PCA) as a feature extraction with various classifiers. It was observed that the performance rate of the classifiers after using PCA to reduce the dimension of data improved. Experiments are conducted on three UCI data sets, Classic03, CNAE-9 and DBWorld e-mails. We compare the classification performance results of using PCA with popular and well-known text classifiers. Results show that using PCA encouragingly enhances classification performance on most of the classifiers.
Dynamic Pricing with Finitely Many Unknown Valuations
Motivated by posted price auctions where buyers are grouped in an unknown number of latent types characterized by their private values for the good on sale, we investigate revenue maximization in stochastic dynamic pricing when the distribution of buyers' private values is supported on an unknown set of points in [0,1] of unknown cardinality $K$. This setting can be viewed as an instance of a stochastic $K$-armed bandit problem where the location of the arms (the $K$ unknown valuations) must be learned as well. In the distribution-free case, we prove that our setting is just as hard as $K$-armed stochastic bandits: no algorithm can achieve a regret significantly better than $\sqrt{KT}$, (where T is the time horizon); we present an efficient algorithm matching this lower bound up to logarithmic factors. In the distribution-dependent case, we show that for all $K>2$ our setting is strictly harder than $K$-armed stochastic bandits by proving that it is impossible to obtain regret bounds that grow logarithmically in time or slower. On the other hand, when a lower bound $\gamma>0$ on the smallest drop in the demand curve is known, we prove an upper bound on the regret of order $(1/\Delta+(\log \log T)/\gamma^2)(K\log T)$. This is a significant improvement on previously known regret bounds for discontinuous demand curves, that are at best of order $(K^{12}/\gamma^8)\sqrt{T}$. When $K=2$ in the distribution-dependent case, the hardness of our setting reduces to that of a stochastic $2$-armed bandit: we prove that an upper bound of order $(\log T)/\Delta$ (up to $\log\log$ factors) on the regret can be achieved with no information on the demand curve. Finally, we show a $O(\sqrt{T})$ upper bound on the regret for the setting in which the buyers' decisions are nonstochastic, and the regret is measured with respect to the best between two fixed valuations one of which is known to the seller.
Optimization of a SSP's Header Bidding Strategy using Thompson Sampling
Over the last decade, digital media (web or app publishers) generalized the use of real time ad auctions to sell their ad spaces. Multiple auction platforms, also called Supply-Side Platforms (SSP), were created. Because of this multiplicity, publishers started to create competition between SSPs. In this setting, there are two successive auctions: a second price auction in each SSP and a secondary, first price auction, called header bidding auction, between SSPs.In this paper, we consider an SSP competing with other SSPs for ad spaces. The SSP acts as an intermediary between an advertiser wanting to buy ad spaces and a web publisher wanting to sell its ad spaces, and needs to define a bidding strategy to be able to deliver to the advertisers as many ads as possible while spending as little as possible. The revenue optimization of this SSP can be written as a contextual bandit problem, where the context consists of the information available about the ad opportunity, such as properties of the internet user or of the ad placement.Using classical multi-armed bandit strategies (such as the original versions of UCB and EXP3) is inefficient in this setting and yields a low convergence speed, as the arms are very correlated. In this paper we design and experiment a version of the Thompson Sampling algorithm that easily takes this correlation into account. We combine this bayesian algorithm with a particle filter, which permits to handle non-stationarity by sequentially estimating the distribution of the highest bid to beat in order to win an auction. We apply this methodology on two real auction datasets, and show that it significantly outperforms more classical approaches.The strategy defined in this paper is being developed to be deployed on thousands of publishers worldwide.
Adaptive Adversarial Attack on Scene Text Recognition
Recent studies have shown that state-of-the-art deep learning models are vulnerable to the inputs with small perturbations (adversarial examples). We observe two critical obstacles in adversarial examples: (i) Strong adversarial attacks (e.g., C&W attack) require manually tuning hyper-parameters and take a long time to construct an adversarial example, making it impractical to attack real-time systems; (ii) Most of the studies focus on non-sequential tasks, such as image classification, yet only a few consider sequential tasks. In this work, we speed up adversarial attacks, especially on sequential learning tasks. By leveraging the uncertainty of each task, we directly learn the adaptive multi-task weightings, without manually searching hyper-parameters. A unified architecture is developed and evaluated for both non-sequential tasks and sequential ones. To validate the effectiveness, we take the scene text recognition task as a case study. To our best knowledge, our proposed method is the first attempt to adversarial attack for scene text recognition. Adaptive Attack achieves over 99.9\% success rate with 3-6X speedup compared to state-of-the-art adversarial attacks.