title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Query-Efficient Hard-label Black-box Attack:An Optimization-based Approach
We study the problem of attacking a machine learning model in the hard-label black-box setting, where no model information is revealed except that the attacker can make queries to probe the corresponding hard-label decisions. This is a very challenging problem since the direct extension of state-of-the-art white-box attacks (e.g., CW or PGD) to the hard-label black-box setting will require minimizing a non-continuous step function, which is combinatorial and cannot be solved by a gradient-based optimizer. The only current approach is based on random walk on the boundary, which requires lots of queries and lacks convergence guarantees. We propose a novel way to formulate the hard-label black-box attack as a real-valued optimization problem which is usually continuous and can be solved by any zeroth order optimization algorithm. For example, using the Randomized Gradient-Free method, we are able to bound the number of iterations needed for our algorithm to achieve stationary points. We demonstrate that our proposed method outperforms the previous random walk approach to attacking convolutional neural networks on MNIST, CIFAR, and ImageNet datasets. More interestingly, we show that the proposed algorithm can also be used to attack other discrete and non-continuous machine learning models, such as Gradient Boosting Decision Trees (GBDT).
Competitive Analysis System for Theatrical Movie Releases Based on Movie Trailer Deep Video Representation
Audience discovery is an important activity at major movie studios. Deep models that use convolutional networks to extract frame-by-frame features of a movie trailer and represent it in a form that is suitable for prediction are now possible thanks to the availability of pre-built feature extractors trained on large image datasets. Using these pre-built feature extractors, we are able to process hundreds of publicly available movie trailers, extract frame-by-frame low level features (e.g., a face, an object, etc) and create video-level representations. We use the video-level representations to train a hybrid Collaborative Filtering model that combines video features with historical movie attendance records. The trained model not only makes accurate attendance and audience prediction for existing movies, but also successfully profiles new movies six to eight months prior to their release.
Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models
Bayesian inference plays an important role in advancing machine learning, but faces computational challenges when applied to complex models such as deep neural networks. Variational inference circumvents these challenges by formulating Bayesian inference as an optimization problem and solving it using gradient-based optimization. In this paper, we argue in favor of natural-gradient approaches which, unlike their gradient-based counterparts, can improve convergence by exploiting the information geometry of the solutions. We show how to derive fast yet simple natural-gradient updates by using a duality associated with exponential-family distributions. An attractive feature of these methods is that, by using natural-gradients, they are able to extract accurate local approximations for individual model components. We summarize recent results for Bayesian deep learning showing the superiority of natural-gradient approaches over their gradient counterparts.
Training Neural Networks Using Features Replay
Training a neural network using backpropagation algorithm requires passing error gradients sequentially through the network. The backward locking prevents us from updating network layers in parallel and fully leveraging the computing resources. Recently, there are several works trying to decouple and parallelize the backpropagation algorithm. However, all of them suffer from severe accuracy loss or memory explosion when the neural network is deep. To address these challenging issues, we propose a novel parallel-objective formulation for the objective function of the neural network. After that, we introduce features replay algorithm and prove that it is guaranteed to converge to critical points for the non-convex problem under certain conditions. Finally, we apply our method to training deep convolutional neural networks, and the experimental results show that the proposed method achieves {faster} convergence, {lower} memory consumption, and {better} generalization error than compared methods.
A Constrained Randomized Shortest-Paths Framework for Optimal Exploration
The present work extends the randomized shortest-paths framework (RSP), interpolating between shortest-path and random-walk routing in a network, in three directions. First, it shows how to deal with equality constraints on a subset of transition probabilities and develops a generic algorithm for solving this constrained RSP problem using Lagrangian duality. Second, it derives a surprisingly simple iterative procedure to compute the optimal, randomized, routing policy generalizing the previously developed "soft" Bellman-Ford algorithm. The resulting algorithm allows balancing exploitation and exploration in an optimal way by interpolating between a pure random behavior and the deterministic, optimal, policy (least-cost paths) while satisfying the constraints. Finally, the two algorithms are applied to Markov decision problems by considering the process as a constrained RSP on a bipartite state-action graph. In this context, the derived "soft" value iteration algorithm appears to be closely related to dynamic policy programming as well as Kullback-Leibler and path integral control, and similar to a recently introduced reinforcement learning exploration strategy. This shows that this strategy is optimal in the RSP sense - it minimizes expected path cost subject to relative entropy constraint. Simulation results on illustrative examples show that the model behaves as expected.
Decentralized Clustering on Compressed Data without Prior Knowledge of the Number of Clusters
In sensor networks, it is not always practical to set up a fusion center. Therefore, there is need for fully decentralized clustering algorithms. Decentralized clustering algorithms should minimize the amount of data exchanged between sensors in order to reduce sensor energy consumption. In this respect, we propose one centralized and one decentralized clustering algorithm that work on compressed data without prior knowledge of the number of clusters. In the standard K-means clustering algorithm, the number of clusters is estimated by repeating the algorithm several times, which dramatically increases the amount of exchanged data, while our algorithm can estimate this number in one run. The proposed clustering algorithms derive from a theoretical framework establishing that, under asymptotic conditions, the cluster centroids are the only fixed-point of a cost function we introduce. This cost function depends on a weight function which we choose as the p-value of a Wald hypothesis test. This p-value measures the plausibility that a given measurement vector belongs to a given cluster. Experimental results show that our two algorithms are competitive in terms of clustering performance with respect to K-means and DB-Scan, while lowering by a factor at least $2$ the amount of data exchanged between sensors.
Deep Learning for Imbalance Data Classification using Class Expert Generative Adversarial Network
Without any specific way for imbalance data classification, artificial intelligence algorithm cannot recognize data from minority classes easily. In general, modifying the existing algorithm by assuming that the training data is imbalanced, is the only way to handle imbalance data. However, for a normal data handling, this way mostly produces a deficient result. In this research, we propose a class expert generative adversarial network (CE-GAN) as the solution for imbalance data classification. CE-GAN is a modification in deep learning algorithm architecture that does not have an assumption that the training data is imbalance data. Moreover, CE-GAN is designed to identify more detail about the character of each class before classification step. CE-GAN has been proved in this research to give a good performance for imbalance data classification.
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
The backpropagation of error algorithm (BP) is impossible to implement in a real brain. The recent success of deep networks in machine learning and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.
Fast Estimation of Causal Interactions using Wold Processes
We here focus on the task of learning Granger causality matrices for multivariate point processes. In order to accomplish this task, our work is the first to explore the use of Wold processes. By doing so, we are able to develop asymptotically fast MCMC learning algorithms. With $N$ being the total number of events and $K$ the number of processes, our learning algorithm has a $O(N(\,\log(N)\,+\,\log(K)))$ cost per iteration. This is much faster than the $O(N^3\,K^2)$ or $O(K^3)$ for the state of the art. Our approach, called GrangerBusca, is validated on nine datasets. This is an advance in relation to most prior efforts which focus mostly on subsets of the Memetracker data. Regarding accuracy, GrangerBusca is three times more accurate (in Precision@10) than the state of the art for the commonly explored subsets Memetracker. Due to GrangerBusca's much lower training complexity, our approach is the only one able to train models for larger, full, sets of data.
Rule Induction Partitioning Estimator
RIPE is a novel deterministic and easily understandable prediction algorithm developed for continuous and discrete ordered data. It infers a model, from a sample, to predict and to explain a real variable $Y$ given an input variable $X \in \mathcal X$ (features). The algorithm extracts a sparse set of hyperrectangles $\mathbf r \subset \mathcal X$, which can be thought of as rules of the form If-Then. This set is then turned into a partition of the features space $\mathcal X$ of which each cell is explained as a list of rules with satisfied their If conditions. The process of RIPE is illustrated on simulated datasets and its efficiency compared with that of other usual algorithms.
Learning Product Codebooks using Vector Quantized Autoencoders for Image Retrieval
Vector-Quantized Variational Autoencoders (VQ-VAE)[1] provide an unsupervised model for learning discrete representations by combining vector quantization and autoencoders. In this paper, we study the use of VQ-VAE for representation learning for downstream tasks, such as image retrieval. We first describe the VQ-VAE in the context of an information-theoretic framework. We show that the regularization term on the learned representation is determined by the size of the embedded codebook before the training and it affects the generalization ability of the model. As a result, we introduce a hyperparameter to balance the strength of the vector quantizer and the reconstruction error. By tuning the hyperparameter, the embedded bottleneck quantizer is used as a regularizer that forces the output of the encoder to share a constrained coding space such that learned latent features preserve the similarity relations of the data space. In addition, we provide a search range for finding the best hyperparameter. Finally, we incorporate the product quantization into the bottleneck stage of VQ-VAE and propose an end-to-end unsupervised learning model for the image retrieval task. The product quantizer has the advantage of generating large-size codebooks. Fast retrieval can be achieved by using the lookup tables that store the distance between any pair of sub-codewords. State-of-the-art retrieval results are achieved by the learned codebooks.
Moving Objects Analytics: Survey on Future Location & Trajectory Prediction Methods
The tremendous growth of positioning technologies and GPS enabled devices has produced huge volumes of tracking data during the recent years. This source of information constitutes a rich input for data analytics processes, either offline (e.g. cluster analysis, hot motion discovery) or online (e.g. short-term forecasting of forthcoming positions). This paper focuses on predictive analytics for moving objects (could be pedestrians, cars, vessels, planes, animals, etc.) and surveys the state-of-the-art in the context of future location and trajectory prediction. We provide an extensive review of over 50 works, also proposing a novel taxonomy of predictive algorithms over moving objects. We also list the properties of several real datasets used in the past for validation purposes of those works and, motivated by this, we discuss challenges that arise in the transition from conventional to Big Data applications. CCS Concepts: Information systems > Spatial-temporal systems; Information systems > Data analytics; Information systems > Data mining; Computing methodologies > Machine learning Additional Key Words and Phrases: mobility data, moving object trajectories, trajectory prediction, future location prediction.
Automatically Composing Representation Transformations as a Means for Generalization
A generally intelligent learner should generalize to more complex tasks than it has previously encountered, but the two common paradigms in machine learning -- either training a separate learner per task or training a single learner for all tasks -- both have difficulty with such generalization because they do not leverage the compositional structure of the task distribution. This paper introduces the compositional problem graph as a broadly applicable formalism to relate tasks of different complexity in terms of problems with shared subproblems. We propose the compositional generalization problem for measuring how readily old knowledge can be reused and hence built upon. As a first step for tackling compositional generalization, we introduce the compositional recursive learner, a domain-general framework for learning algorithmic procedures for composing representation transformations, producing a learner that reasons about what computation to execute by making analogies to previously seen problems. We show on a symbolic and a high-dimensional domain that our compositional approach can generalize to more complex problems than the learner has previously encountered, whereas baselines that are not explicitly compositional do not.
Algorithms that Remember: Model Inversion Attacks and Data Protection Law
Many individuals are concerned about the governance of machine learning systems and the prevention of algorithmic harms. The EU's recent General Data Protection Regulation (GDPR) has been seen as a core tool for achieving better governance of this area. While the GDPR does apply to the use of models in some limited situations, most of its provisions relate to the governance of personal data, while models have traditionally been seen as intellectual property. We present recent work from the information security literature around `model inversion' and `membership inference' attacks, which indicate that the process of turning training data into machine learned systems is not one-way, and demonstrate how this could lead some models to be legally classified as personal data. Taking this as a probing experiment, we explore the different rights and obligations this would trigger and their utility, and posit future directions for algorithmic governance and regulation.
Scikit-Multiflow: A Multi-output Streaming Framework
Scikit-multiflow is a multi-output/multi-label and stream data mining framework for the Python programming language. Conceived to serve as a platform to encourage democratization of stream learning research, it provides multiple state of the art methods for stream learning, stream generators and evaluators. scikit-multiflow builds upon popular open source frameworks including scikit-learn, MOA and MEKA. Development follows the FOSS principles and quality is enforced by complying with PEP8 guidelines and using continuous integration and automatic testing. The source code is publicly available at https://github.com/scikit-multiflow/scikit-multiflow.
Online Heart Rate Prediction using Acceleration from a Wrist Worn Wearable
In this paper we study the prediction of heart rate from acceleration using a wrist worn wearable. Although existing photoplethysmography (PPG) heart rate sensors provide reliable measurements, they use considerably more energy than accelerometers and have a major impact on battery life of wearable devices. By using energy-efficient accelerometers to predict heart rate, significant energy savings can be made. Further, we are interested in understanding patient recovery after a heart rate intervention, where we expect a variation in heart rate over time. Therefore, we propose an online approach to tackle the concept as time passes. We evaluate the methods on approximately 4 weeks of free living data from three patients over a number of months. We show that our approach can achieve good predictive performance (e.g., 2.89 Mean Absolute Error) while using the PPG heart rate sensor infrequently (e.g., 20.25% of the samples).
A Library for Constraint Consistent Learning
This paper introduces the first, open source software library for Constraint Consistent Learning (CCL). It implements a family of data-driven methods that are capable of (i) learning state-independent and -dependent constraints, (ii) decomposing the behaviour of redundant systems into task- and null-space parts, and (iii) uncovering the underlying null space control policy. It is a tool to analyse and decompose many everyday tasks, such as wiping, reaching and drawing. The library also includes several tutorials that demonstrate its use with both simulated and real world data in a systematic way. This paper documents the implementation of the library, tutorials and associated helper methods. The software is made freely available to the community, to enable code reuse and allow users to gain in-depth experience in statistical learning in this area.
Unseeded low-rank graph matching by transform-based unsupervised point registration
The problem of learning a correspondence relationship between nodes of two networks has drawn much attention of the computer science community and recently that of statisticians. The unseeded version of this problem, in which we do not know any part of the true correspondence, is a long-standing challenge. For low-rank networks, the problem can be translated into an unsupervised point registration problem, in which two point sets generated from the same distribution are matchable by an unknown orthonormal transformation. Conventional methods generally lack consistency guarantee and are usually computationally costly. In this paper, we propose a novel approach to this problem. Instead of simultaneously estimating the unknown correspondence and orthonormal transformation to match up the two point sets, we match their distributions via minimizing our designed loss function capturing the discrepancy between their Laplace transforms, thus avoiding the optimization over all possible correspondences. This dramatically reduces the dimension of the optimization problem from $\Omega(n^2)$ parameters to $O(d^2)$ parameters, where $d$ is the fixed rank, and enables convenient theoretical analysis. In this paper, we provide arguably the first consistency guarantee and explicit error rate for general low-rank models. Our method provides control over the computational complexity ranging from $\omega(n)$ (any growth rate faster than $n$) to $O(n^2)$ while pertaining consistency. We demonstrate the effectiveness of our method through several numerical examples.
Making Efficient Use of a Domain Expert's Time in Relation Extraction
Scarcity of labeled data is one of the most frequent problems faced in machine learning. This is particularly true in relation extraction in text mining, where large corpora of texts exists in many application domains, while labeling of text data requires an expert to invest much time to read the documents. Overall, state-of-the art models, like the convolutional neural network used in this paper, achieve great results when trained on large enough amounts of labeled data. However, from a practical point of view the question arises whether this is the most efficient approach when one takes the manual effort of the expert into account. In this paper, we report on an alternative approach where we first construct a relation extraction model using distant supervision, and only later make use of a domain expert to refine the results. Distant supervision provides a mean of labeling data given known relations in a knowledge base, but it suffers from noisy labeling. We introduce an active learning based extension, that allows our neural network to incorporate expert feedback and report on first results on a complex data set.
Explorations in Homeomorphic Variational Auto-Encoding
The manifold hypothesis states that many kinds of high-dimensional data are concentrated near a low-dimensional manifold. If the topology of this data manifold is non-trivial, a continuous encoder network cannot embed it in a one-to-one manner without creating holes of low density in the latent space. This is at odds with the Gaussian prior assumption typically made in Variational Auto-Encoders (VAEs), because the density of a Gaussian concentrates near a blob-like manifold. In this paper we investigate the use of manifold-valued latent variables. Specifically, we focus on the important case of continuously differentiable symmetry groups (Lie groups), such as the group of 3D rotations $\operatorname{SO}(3)$. We show how a VAE with $\operatorname{SO}(3)$-valued latent variables can be constructed, by extending the reparameterization trick to compact connected Lie groups. Our experiments show that choosing manifold-valued latent variables that match the topology of the latent data manifold, is crucial to preserve the topological structure and learn a well-behaved latent space.
Inferring Multidimensional Rates of Aging from Cross-Sectional Data
Modeling how individuals evolve over time is a fundamental problem in the natural and social sciences. However, existing datasets are often cross-sectional with each individual observed only once, making it impossible to apply traditional time-series methods. Motivated by the study of human aging, we present an interpretable latent-variable model that learns temporal dynamics from cross-sectional data. Our model represents each individual's features over time as a nonlinear function of a low-dimensional, linearly-evolving latent state. We prove that when this nonlinear function is constrained to be order-isomorphic, the model family is identifiable solely from cross-sectional data provided the distribution of time-independent variation is known. On the UK Biobank human health dataset, our model reconstructs the observed data while learning interpretable rates of aging associated with diseases, mortality, and aging risk factors.
Orthogonal Matching Pursuit for Text Classification
In text classification, the problem of overfitting arises due to the high dimensionality, making regularization essential. Although classic regularizers provide sparsity, they fail to return highly accurate models. On the contrary, state-of-the-art group-lasso regularizers provide better results at the expense of low sparsity. In this paper, we apply a greedy variable selection algorithm, called Orthogonal Matching Pursuit, for the text classification task. We also extend standard group OMP by introducing overlapping Group OMP to handle overlapping groups of features. Empirical analysis verifies that both OMP and overlapping GOMP constitute powerful regularizers, able to produce effective and very sparse models. Code and data are available online: https://github.com/y3nk0/OMP-for-Text-Classification .
A Large-Scale Study on Regularization and Normalization in GANs
Generative adversarial networks (GANs) are a class of deep generative models which aim to learn a target distribution in an unsupervised fashion. While they were successfully applied to many problems, training a GAN is a notoriously challenging task and requires a significant number of hyperparameter tuning, neural architecture engineering, and a non-trivial amount of "tricks". The success in many practical applications coupled with the lack of a measure to quantify the failure modes of GANs resulted in a plethora of proposed losses, regularization and normalization schemes, as well as neural architectures. In this work we take a sober view of the current state of GANs from a practical perspective. We discuss and evaluate common pitfalls and reproducibility issues, open-source our code on Github, and provide pre-trained models on TensorFlow Hub.
The Bottleneck Simulator: A Model-based Deep Reinforcement Learning Approach
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.
Scalable Convolutional Dictionary Learning with Constrained Recurrent Sparse Auto-encoders
Given a convolutional dictionary underlying a set of observed signals, can a carefully designed auto-encoder recover the dictionary in the presence of noise? We introduce an auto-encoder architecture, termed constrained recurrent sparse auto-encoder (CRsAE), that answers this question in the affirmative. Given an input signal and an approximate dictionary, the encoder finds a sparse approximation using FISTA. The decoder reconstructs the signal by applying the dictionary to the output of the encoder. The encoder and decoder in CRsAE parallel the sparse-coding and dictionary update steps in optimization-based alternating-minimization schemes for dictionary learning. As such, the parameters of the encoder and decoder are not independent, a constraint which we enforce for the first time. We derive the back-propagation algorithm for CRsAE. CRsAE is a framework for blind source separation that, only knowing the number of sources (dictionary elements), and assuming sparsely-many can overlap, is able to separate them. We demonstrate its utility in the context of spike sorting, a source separation problem in computational neuroscience. We demonstrate the ability of CRsAE to recover the underlying dictionary and characterize its sensitivity as a function of SNR.
When deep learning meets security
Deep learning is an emerging research field that has proven its effectiveness towards deploying more efficient intelligent systems. Security, on the other hand, is one of the most essential issues in modern communication systems. Recently many papers have shown that using deep learning models can achieve promising results when applied to the security domain. In this work, we provide an overview for the recent studies that apply deep learning techniques to the field of security.
Negative Momentum for Improved Game Dynamics
Games generalize the single-objective optimization paradigm by introducing different objective functions for different players. Differentiable games often proceed by simultaneous or alternating gradient updates. In machine learning, games are gaining new importance through formulations like generative adversarial networks (GANs) and actor-critic systems. However, compared to single-objective optimization, game dynamics are more complex and less understood. In this paper, we analyze gradient-based methods with momentum on simple games. We prove that alternating updates are more stable than simultaneous updates. Next, we show both theoretically and empirically that alternating gradient updates with a negative momentum term achieves convergence in a difficult toy adversarial problem, but also on the notoriously difficult to train saturating GANs.
Visual Reinforcement Learning with Imagined Goals
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques.
Improving on Q & A Recurrent Neural Networks Using Noun-Tagging
Often, more time is spent on finding a model that works well, rather than tuning the model and working directly with the dataset. Our research began as an attempt to improve upon a simple Recurrent Neural Network for answering "simple" first-order questions (QA-RNN), developed by Ferhan Ture and Oliver Jojic, from Comcast Labs, using the SimpleQuestions dataset. Their baseline model, a bidirectional, 2-layer LSTM RNN and a GRU RNN, have accuracies of 0.94 and 0.90, for entity detection and relation prediction, respectively. We fine tuned these models by doing substantial hyper-parameter tuning, getting resulting accuracies of 0.70 and 0.80, for entity detection and relation prediction, respectively. An accuracy of 0.984 was obtained on entity detection using a 1-layer LSTM, where preprocessing was done by removing all words not part of a noun chunk from the question. 100% of the dataset was available for relation prediction, but only 20% of the dataset, was available for entity detection, which we believe to be much of the reason for our initial difficulties in replicating their result, despite the fact we were able to improve on their entity detection results.
Feature Selection for Gender Classification in TUIK Life Satisfaction Survey
As known, attribute selection is a method that is used before the classification of data mining. In this study, a new data set has been created by using attributes expressing overall satisfaction in Turkey Statistical Institute (TSI) Life Satisfaction Survey dataset. Attributes are sorted by Ranking search method using attribute selection algorithms in a data mining application. These selected attributes were subjected to a classification test with Naive Bayes and Random Forest from machine learning algorithms. The feature selection algorithms are compared according to the number of attributes selected and the classification accuracy rates achievable with them. In this study, which is aimed at reducing the dataset volume, the best classification result comes up with 3 attributes selected by the Chi2 algorithm. The best classification rate was 73% with the Random Forest classification algorithm.
Practical Obstacles to Deploying Active Learning
Active learning (AL) is a widely-used training strategy for maximizing predictive performance subject to a fixed annotation budget. In AL one iteratively selects training examples for annotation, often those for which the current model is most uncertain (by some measure). The hope is that active sampling leads to better performance than would be achieved under independent and identically distributed (i.i.d.) random samples. While AL has shown promise in retrospective evaluations, these studies often ignore practical obstacles to its use. In this paper we show that while AL may provide benefits when used with specific models and for particular domains, the benefits of current approaches do not generalize reliably across models and tasks. This is problematic because in practice one does not have the opportunity to explore and compare alternative AL strategies. Moreover, AL couples the training dataset with the model used to guide its acquisition. We find that subsequently training a successor model with an actively-acquired dataset does not consistently outperform training on i.i.d. sampled data. Our findings raise the question of whether the downsides inherent to AL are worth the modest and inconsistent performance gains it tends to afford.
DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures
We present a non-parametric Bayesian latent variable model capable of learning dependency structures across dimensions in a multivariate setting. Our approach is based on flexible Gaussian process priors for the generative mappings and interchangeable Dirichlet process priors to learn the structure. The introduction of the Dirichlet process as a specific structural prior allows our model to circumvent issues associated with previous Gaussian process latent variable models. Inference is performed by deriving an efficient variational bound on the marginal log-likelihood on the model.
A feature agnostic approach for glaucoma detection in OCT volumes
Optical coherence tomography (OCT) based measurements of retinal layer thickness, such as the retinal nerve fibre layer (RNFL) and the ganglion cell with inner plexiform layer (GCIPL) are commonly used for the diagnosis and monitoring of glaucoma. Previously, machine learning techniques have utilized segmentation-based imaging features such as the peripapillary RNFL thickness and the cup-to-disc ratio. Here, we propose a deep learning technique that classifies eyes as healthy or glaucomatous directly from raw, unsegmented OCT volumes of the optic nerve head (ONH) using a 3D Convolutional Neural Network (CNN). We compared the accuracy of this technique with various feature-based machine learning algorithms and demonstrated the superiority of the proposed deep learning based method. Logistic regression was found to be the best performing classical machine learning technique with an AUC of 0.89. In direct comparison, the deep learning approach achieved a substantially higher AUC of 0.94 with the additional advantage of providing insight into which regions of an OCT volume are important for glaucoma detection. Computing Class Activation Maps (CAM), we found that the CNN identified neuroretinal rim and optic disc cupping as well as the lamina cribrosa (LC) and its surrounding areas as the regions significantly associated with the glaucoma classification. These regions anatomically correspond to the well established and commonly used clinical markers for glaucoma diagnosis such as increased cup volume, cup diameter, and neuroretinal rim thinning at the superior and inferior segments.
Avoiding Latent Variable Collapse With Generative Skip Models
Variational autoencoders learn distributions of high-dimensional data. They model data with a deep latent-variable model and then fit the model by maximizing a lower bound of the log marginal likelihood. VAEs can capture complex distributions, but they can also suffer from an issue known as "latent variable collapse," especially if the likelihood model is powerful. Specifically, the lower bound involves an approximate posterior of the latent variables; this posterior "collapses" when it is set equal to the prior, i.e., when the approximate posterior is independent of the data. While VAEs learn good generative models, latent variable collapse prevents them from learning useful representations. In this paper, we propose a simple new way to avoid latent variable collapse by including skip connections in our generative model; these connections enforce strong links between the latent variables and the likelihood function. We study generative skip models both theoretically and empirically. Theoretically, we prove that skip models increase the mutual information between the observations and the inferred latent variables. Empirically, we study images (MNIST and Omniglot) and text (Yahoo). Compared to existing VAE architectures, we show that generative skip models maintain similar predictive performance but lead to less collapse and provide more meaningful representations of the data.
Algorithms for metric learning via contrastive embeddings
We study the problem of supervised learning a metric space under discriminative constraints. Given a universe $X$ and sets ${\cal S}, {\cal D}\subset {X \choose 2}$ of similar and dissimilar pairs, we seek to find a mapping $f:X\to Y$, into some target metric space $M=(Y,\rho)$, such that similar objects are mapped to points at distance at most $u$, and dissimilar objects are mapped to points at distance at least $\ell$. More generally, the goal is to find a mapping of maximum accuracy (that is, fraction of correctly classified pairs). We propose approximation algorithms for various versions of this problem, for the cases of Euclidean and tree metric spaces. For both of these target spaces, we obtain fully polynomial-time approximation schemes (FPTAS) for the case of perfect information. In the presence of imperfect information we present approximation algorithms that run in quasipolynomial time (QPTAS). Our algorithms use a combination of tools from metric embeddings and graph partitioning, that could be of independent interest.
Ultra-Fine Entity Typing
We introduce a new entity typing task: given a sentence with an entity mention, the goal is to predict a set of free-form phrases (e.g. skyscraper, songwriter, or criminal) that describe appropriate types for the target entity. This formulation allows us to use a new type of distant supervision at large scale: head words, which indicate the type of the noun phrases they appear in. We show that these ultra-fine types can be crowd-sourced, and introduce new evaluation sets that are much more diverse and fine-grained than existing benchmarks. We present a model that can predict open types, and is trained using a multitask objective that pools our new head-word supervision with prior supervision from entity linking. Experimental results demonstrate that our model is effective in predicting entity types at varying granularity; it achieves state of the art performance on an existing fine-grained entity typing benchmark, and sets baselines for our newly-introduced datasets. Our data and model can be downloaded from: http://nlp.cs.washington.edu/entity_type
TequilaGAN: How to easily identify GAN samples
In this paper we show strategies to easily identify fake samples generated with the Generative Adversarial Network framework. One strategy is based on the statistical analysis and comparison of raw pixel values and features extracted from them. The other strategy learns formal specifications from the real data and shows that fake samples violate the specifications of the real data. We show that fake samples produced with GANs have a universal signature that can be used to identify fake samples. We provide results on MNIST, CIFAR10, music and speech data.
Sequential sampling of Gaussian process latent variable models
We consider the problem of inferring a latent function in a probabilistic model of data. When dependencies of the latent function are specified by a Gaussian process and the data likelihood is complex, efficient computation often involve Markov chain Monte Carlo sampling with limited applicability to large data sets. We extend some of these techniques to scale efficiently when the problem exhibits a sequential structure. We propose an approximation that enables sequential sampling of both latent variables and associated parameters. We demonstrate strong performance in growing-data settings that would otherwise be unfeasible with naive, non-sequential sampling.
Non-Gaussian Component Analysis using Entropy Methods
Non-Gaussian component analysis (NGCA) is a problem in multidimensional data analysis which, since its formulation in 2006, has attracted considerable attention in statistics and machine learning. In this problem, we have a random variable $X$ in $n$-dimensional Euclidean space. There is an unknown subspace $\Gamma$ of the $n$-dimensional Euclidean space such that the orthogonal projection of $X$ onto $\Gamma$ is standard multidimensional Gaussian and the orthogonal projection of $X$ onto $\Gamma^{\perp}$, the orthogonal complement of $\Gamma$, is non-Gaussian, in the sense that all its one-dimensional marginals are different from the Gaussian in a certain metric defined in terms of moments. The NGCA problem is to approximate the non-Gaussian subspace $\Gamma^{\perp}$ given samples of $X$. Vectors in $\Gamma^{\perp}$ correspond to `interesting' directions, whereas vectors in $\Gamma$ correspond to the directions where data is very noisy. The most interesting applications of the NGCA model is for the case when the magnitude of the noise is comparable to that of the true signal, a setting in which traditional noise reduction techniques such as PCA don't apply directly. NGCA is also related to dimension reduction and to other data analysis problems such as ICA. NGCA-like problems have been studied in statistics for a long time using techniques such as projection pursuit. We give an algorithm that takes polynomial time in the dimension $n$ and has an inverse polynomial dependence on the error parameter measuring the angle distance between the non-Gaussian subspace and the subspace output by the algorithm. Our algorithm is based on relative entropy as the contrast function and fits under the projection pursuit framework. The techniques we develop for analyzing our algorithm maybe of use for other related problems.
Deep Learning in the Wild
Deep learning with neural networks is applied by an increasing number of people outside of classic research environments, due to the vast success of the methodology on a wide range of machine perception tasks. While this interest is fueled by beautiful success stories, practical work in deep learning on novel tasks without existing baselines remains challenging. This paper explores the specific challenges arising in the realm of real world tasks, based on case studies from research \& development in conjunction with industry, and extracts lessons learned from them. It thus fills a gap between the publication of latest algorithmic and methodical developments, and the usually omitted nitty-gritty of how to make them work. Specifically, we give insight into deep learning projects on face matching, print media monitoring, industrial quality control, music scanning, strategy game playing, and automated machine learning, thereby providing best practices for deep learning in practice.
Are generative deep models for novelty detection truly better?
Many deep models have been recently proposed for anomaly detection. This paper presents comparison of selected generative deep models and classical anomaly detection methods on an extensive number of non--image benchmark datasets. We provide statistical comparison of the selected models, in many configurations, architectures and hyperparamaters. We arrive to conclusion that performance of the generative models is determined by the process of selection of their hyperparameters. Specifically, performance of the deep generative models deteriorates with decreasing amount of anomalous samples used in hyperparameter selection. In practical scenarios of anomaly detection, none of the deep generative models systematically outperforms the kNN.
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-generalizing, flat regions of the weight space, as indicated by small eigenvalues of the Hessian of the training loss. However, the curvature along the SGD trajectory is poorly understood. An empirical investigation shows that initially SGD visits increasingly sharp regions, reaching a maximum sharpness determined by both the learning rate and the batch-size of SGD. When studying the SGD dynamics in relation to the sharpest directions in this initial phase, we find that the SGD step is large compared to the curvature and commonly fails to minimize the loss along the sharpest directions. Furthermore, using a reduced learning rate along these directions can improve training speed while leading to both sharper and better generalizing solutions compared to vanilla SGD. In summary, our analysis of the dynamics of SGD in the subspace of the sharpest directions shows that they influence the regions that SGD steers to (where larger learning rate or smaller batch size result in wider regions visited), the overall training speed, and the generalization ability of the final model.
CascadeCNN: Pushing the Performance Limits of Quantisation in Convolutional Neural Networks
This work presents CascadeCNN, an automated toolflow that pushes the quantisation limits of any given CNN model, aiming to perform high-throughput inference. A two-stage architecture tailored for any given CNN-FPGA pair is generated, consisting of a low- and high-precision unit in a cascade. A confidence evaluation unit is employed to identify misclassified cases from the excessively low-precision unit and forward them to the high-precision unit for re-processing. Experiments demonstrate that the proposed toolflow can achieve a performance boost up to 55% for VGG-16 and 48% for AlexNet over the baseline design for the same resource budget and accuracy, without the need of retraining the model or accessing the training data.
AI Reasoning Systems: PAC and Applied Methods
Learning and logic are distinct and remarkable approaches to prediction. Machine learning has experienced a surge in popularity because it is robust to noise and achieves high performance; however, ML experiences many issues with knowledge transfer and extrapolation. In contrast, logic is easily intepreted, and logical rules are easy to chain and transfer between systems; however, inductive logic is brittle to noise. We then explore the premise of combining learning with inductive logic into AI Reasoning Systems. Specifically, we summarize findings from PAC learning (conceptual graphs, robust logics, knowledge infusion) and deep learning (DSRL, $\partial$ILP, DeepLogic) by reproducing proofs of tractability, presenting algorithms in pseudocode, highlighting results, and synthesizing between fields. We conclude with suggestions for integrated models by combining the modules listed above and with a list of unsolved (likely intractable) problems.
Metalearning with Hebbian Fast Weights
We unify recent neural approaches to one-shot learning with older ideas of associative memory in a model for metalearning. Our model learns jointly to represent data and to bind class labels to representations in a single shot. It builds representations via slow weights, learned across tasks through SGD, while fast weights constructed by a Hebbian learning rule implement one-shot binding for each new task. On the Omniglot, Mini-ImageNet, and Penn Treebank one-shot learning benchmarks, our model achieves state-of-the-art results.
Maximizing Invariant Data Perturbation with Stochastic Optimization
Feature attribution methods, or saliency maps, are one of the most popular approaches for explaining the decisions of complex machine learning models such as deep neural networks. In this study, we propose a stochastic optimization approach for the perturbation-based feature attribution method. While the original optimization problem of the perturbation-based feature attribution is difficult to solve because of the complex constraints, we propose to reformulate the problem as the maximization of a differentiable function, which can be solved using gradient-based algorithms. In particular, stochastic optimization is well-suited for the proposed reformulation, and we can solve the problem using popular algorithms such as SGD, RMSProp, and Adam. The experiment on the image classification with VGG16 shows that the proposed method could identify relevant parts of the images effectively.
Learning Graph Representations by Dendrograms
Hierarchical graph clustering is a common technique to reveal the multi-scale structure of complex networks. We propose a novel metric for assessing the quality of a hierarchical clustering. This metric reflects the ability to reconstruct the graph from the dendrogram, which encodes the hierarchy. The optimal representation of the graph defines a class of reducible linkages leading to regular dendrograms by greedy agglomerative clustering.
Tune: A Research Platform for Distributed Model Selection and Training
Modern machine learning algorithms are increasingly computationally demanding, requiring specialized hardware and distributed computation to achieve high performance in a reasonable time frame. Many hyperparameter search algorithms have been proposed for improving the efficiency of model selection, however their adaptation to the distributed compute environment is often ad-hoc. We propose Tune, a unified framework for model selection and training that provides a narrow-waist interface between training scripts and search algorithms. We show that this interface meets the requirements for a broad range of hyperparameter search algorithms, allows straightforward scaling of search to large clusters, and simplifies algorithm implementation. We demonstrate the implementation of several state-of-the-art hyperparameter search algorithms in Tune. Tune is available at http://ray.readthedocs.io/en/latest/tune.html.
Deep Enhanced Representation for Implicit Discourse Relation Recognition
Implicit discourse relation recognition is a challenging task as the relation prediction without explicit connectives in discourse parsing needs understanding of text spans and cannot be easily derived from surface features from the input sentence pairs. Thus, properly representing the text is very crucial to this task. In this paper, we propose a model augmented with different grained text representations, including character, subword, word, sentence, and sentence pair levels. The proposed deeper model is evaluated on the benchmark treebank and achieves state-of-the-art accuracy with greater than 48% in 11-way and $F_1$ score greater than 50% in 4-way classifications for the first time according to our best knowledge.
Large-Scale Visual Speech Recognition
This work presents a scalable solution to open-vocabulary visual speech recognition. To achieve this, we constructed the largest existing visual speech recognition dataset, consisting of pairs of text and video clips of faces speaking (3,886 hours of video). In tandem, we designed and trained an integrated lipreading system, consisting of a video processing pipeline that maps raw video to stable videos of lips and sequences of phonemes, a scalable deep neural network that maps the lip videos to sequences of phoneme distributions, and a production-level speech decoder that outputs sequences of words. The proposed system achieves a word error rate (WER) of 40.9% as measured on a held-out set. In comparison, professional lipreaders achieve either 86.4% or 92.9% WER on the same dataset when having access to additional types of contextual information. Our approach significantly improves on other lipreading approaches, including variants of LipNet and of Watch, Attend, and Spell (WAS), which are only capable of 89.8% and 76.8% WER respectively.
Model Reconstruction from Model Explanations
We show through theory and experiment that gradient-based explanations of a model quickly reveal the model itself. Our results speak to a tension between the desire to keep a proprietary model secret and the ability to offer model explanations. On the theoretical side, we give an algorithm that provably learns a two-layer ReLU network in a setting where the algorithm may query the gradient of the model with respect to chosen inputs. The number of queries is independent of the dimension and nearly optimal in its dependence on the model size. Of interest not only from a learning-theoretic perspective, this result highlights the power of gradients rather than labels as a learning primitive. Complementing our theory, we give effective heuristics for reconstructing models from gradient explanations that are orders of magnitude more query-efficient than reconstruction attacks relying on prediction interfaces.
Parametric generation of conditional geological realizations using generative neural networks
Deep learning techniques are increasingly being considered for geological applications where -- much like in computer vision -- the challenges are characterized by high-dimensional spatial data dominated by multipoint statistics. In particular, a novel technique called generative adversarial networks has been recently studied for geological parametrization and synthesis, obtaining very impressive results that are at least qualitatively competitive with previous methods. The method obtains a neural network parametrization of the geology -- so-called a generator -- that is capable of reproducing very complex geological patterns with dimensionality reduction of several orders of magnitude. Subsequent works have addressed the conditioning task, i.e. using the generator to generate realizations honoring spatial observations (hard data). The current approaches, however, do not provide a parametrization of the conditional generation process. In this work, we propose a method to obtain a parametrization for direct generation of conditional realizations. The main idea is to simply extend the existing generator network by stacking a second inference network that learns to perform the conditioning. This inference network is a neural network trained to sample a posterior distribution derived using a Bayesian formulation of the conditioning task. The resulting extended neural network thus provides the conditional parametrization. Our method is assessed on a benchmark image of binary channelized subsurface, obtaining very promising results for a wide variety of conditioning configurations.
irbasis: Open-source database and software for intermediate-representation basis functions of imaginary-time Green's function
The open-source library, irbasis, provides easy-to-use tools for two sets of orthogonal functions named intermediate representation (IR). The IR basis enables a compact representation of the Matsubara Green's function and efficient calculations of quantum models. The IR basis functions are defined as the solution of an integral equation whose analytical solution is not available for this moment. The library consists of a database of pre-computed high-precision numerical solutions and computational code for evaluating the functions from the database. This paper describes technical details and demonstrates how to use the library.
Neural Networks Regularization Through Representation Learning
Neural network models and deep models are one of the leading and state of the art models in machine learning. Most successful deep neural models are the ones with many layers which highly increases their number of parameters. Training such models requires a large number of training samples which is not always available. One of the fundamental issues in neural networks is overfitting which is the issue tackled in this thesis. Such problem often occurs when the training of large models is performed using few training samples. Many approaches have been proposed to prevent the network from overfitting and improve its generalization performance such as data augmentation, early stopping, parameters sharing, unsupervised learning, dropout, batch normalization, etc. In this thesis, we tackle the neural network overfitting issue from a representation learning perspective by considering the situation where few training samples are available which is the case of many real world applications. We propose three contributions. The first one presented in chapter 2 is dedicated to dealing with structured output problems to perform multivariate regression when the output variable y contains structural dependencies between its components. The second contribution described in chapter 3 deals with the classification task where we propose to exploit prior knowledge about the internal representation of the hidden layers in neural networks. Our last contribution presented in chapter 4 showed the interest of transfer learning in applications where only few samples are available. In this contribution, we provide an automatic system based on such learning scheme with an application to medical domain. In this application, the task consists in localizing the third lumbar vertebra in a 3D CT scan. This work has been done in collaboration with the clinic Rouen Henri Becquerel Center who provided us with data.
Generative Adversarial Privacy
We present a data-driven framework called generative adversarial privacy (GAP). Inspired by recent advancements in generative adversarial networks (GANs), GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. We show that for appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. We also evaluate GAP's performance on the GENKI face database.
How Do Classifiers Induce Agents To Invest Effort Strategically?
Algorithms are often used to produce decision-making rules that classify or evaluate individuals. When these individuals have incentives to be classified a certain way, they may behave strategically to influence their outcomes. We develop a model for how strategic agents can invest effort in order to change the outcomes they receive, and we give a tight characterization of when such agents can be incentivized to invest specified forms of effort into improving their outcomes as opposed to "gaming" the classifier. We show that whenever any "reasonable" mechanism can do so, a simple linear mechanism suffices.
LeFlow: Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks
Recent work has shown that Field-Programmable Gate Arrays (FPGAs) play an important role in the acceleration of Machine Learning applications. Initial specification of machine learning applications are often done using a high-level Python-oriented framework such as Tensorflow, followed by a manual translation to either C or RTL for synthesis using vendor tools. This manual translation step is time-consuming and requires expertise that limit the applicability of FPGAs in this important domain. In this paper, we present an open-source tool-flow that maps numerical computation models written in Tensorflow to synthesizable hardware. Unlike other tools, which are often constrained by a small number of inflexible templates, our flow uses Google's XLA compiler which emits LLVM code directly from a Tensorflow specification. This LLVM code can then be used with a high-level synthesis tool to automatically generate hardware. We show that our flow allows users to generate Deep Neural Networks with very few lines of Python code.
On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches
This paper proposes a framework of L-BFGS based on the (approximate) second-order information with stochastic batches, as a novel approach to the finite-sum minimization problems. Different from the classical L-BFGS where stochastic batches lead to instability, we use a smooth estimate for the evaluations of the gradient differences while achieving acceleration by well-scaling the initial Hessians. We provide theoretical analyses for both convex and nonconvex cases. In addition, we demonstrate that within the popular applications of least-square and cross-entropy losses, the algorithm admits a simple implementation in the distributed environment. Numerical experiments support the efficiency of our algorithms.
Generalization in quasi-periodic environments
By and large the behavior of stochastic gradient is regarded as a challenging problem, and it is often presented in the framework of statistical machine learning. This paper offers a novel view on the analysis of on-line models of learning that arises when dealing with a generalized version of stochastic gradient that is based on dissipative dynamics. In order to face the complex evolution of these models, a systematic treatment is proposed which is based on energy balance equations that are derived by means of the Caldirola-Kanai (CK) Hamiltonian. According to these equations, learning can be regarded as an ordering process which corresponds with the decrement of the loss function. Finally, the main results established in this paper is that in the case of quasi-periodic environments, where the pattern novelty is progressively limited as time goes by, the system dynamics yields an asymptotically consistent solution in the weight space, that is the solution maps similar patterns to the same decision.
Adversarially Learned Mixture Model
The Adversarially Learned Mixture Model (AMM) is a generative model for unsupervised or semi-supervised data clustering. The AMM is the first adversarially optimized method to model the conditional dependence between inferred continuous and categorical latent variables. Experiments on the MNIST and SVHN datasets show that the AMM allows for semantic separation of complex data when little or no labeled data is available. The AMM achieves a state-of-the-art unsupervised clustering error rate of 2.86% on the MNIST dataset. A semi-supervised extension of the AMM yields competitive results on the SVHN dataset.
ML-Schema: Exposing the Semantics of Machine Learning with Schemas and Ontologies
The ML-Schema, proposed by the W3C Machine Learning Schema Community Group, is a top-level ontology that provides a set of classes, properties, and restrictions for representing and interchanging information on machine learning algorithms, datasets, and experiments. It can be easily extended and specialized and it is also mapped to other more domain-specific ontologies developed in the area of machine learning and data mining. In this paper we overview existing state-of-the-art machine learning interchange formats and present the first release of ML-Schema, a canonical format resulted of more than seven years of experience among different research institutions. We argue that exposing semantics of machine learning algorithms, models, and experiments through a canonical format may pave the way to better interpretability and to realistically achieve the full interoperability of experiments regardless of platform or adopted workflow solution.
A Unified Framework for Sparse Relaxed Regularized Regression: SR3
Regularized regression problems are ubiquitous in statistical modeling, signal processing, and machine learning. Sparse regression in particular has been instrumental in scientific model discovery, including compressed sensing applications, variable selection, and high-dimensional analysis. We propose a broad framework for sparse relaxed regularized regression, called SR3. The key idea is to solve a relaxation of the regularized problem, which has three advantages over the state-of-the-art: (1) solutions of the relaxed problem are superior with respect to errors, false positives, and conditioning, (2) relaxation allows extremely fast algorithms for both convex and nonconvex formulations, and (3) the methods apply to composite regularizers such as total variation (TV) and its nonconvex variants. We demonstrate the advantages of SR3 (computational efficiency, higher accuracy, faster convergence rates, greater flexibility) across a range of regularized regression problems with synthetic and real data, including applications in compressed sensing, LASSO, matrix completion, TV regularization, and group sparsity. To promote reproducible research, we also provide a companion MATLAB package that implements these examples.
Multi-time-horizon Solar Forecasting Using Recurrent Neural Network
The non-stationarity characteristic of the solar power renders traditional point forecasting methods to be less useful due to large prediction errors. This results in increased uncertainties in the grid operation, thereby negatively affecting the reliability and increased cost of operation. This research paper proposes a unified architecture for multi-time-horizon predictions for short and long-term solar forecasting using Recurrent Neural Networks (RNN). The paper describes an end-to-end pipeline to implement the architecture along with the methods to test and validate the performance of the prediction model. The results demonstrate that the proposed method based on the unified architecture is effective for multi-horizon solar forecasting and achieves a lower root-mean-squared prediction error compared to the previous best-performing methods which use one model for each time-horizon. The proposed method enables multi-horizon forecasts with real-time inputs, which have a high potential for practical applications in the evolving smart grid.
Tractable Querying and Learning in Hybrid Domains via Sum-Product Networks
Probabilistic representations, such as Bayesian and Markov networks, are fundamental to much of statistical machine learning. Thus, learning probabilistic representations directly from data is a deep challenge, the main computational bottleneck being inference that is intractable. Tractable learning is a powerful new paradigm that attempts to learn distributions that support efficient probabilistic querying. By leveraging local structure, representations such as sum-product networks (SPNs) can capture high tree-width models with many hidden layers, essentially a deep architecture, while still admitting a range of probabilistic queries to be computable in time polynomial in the network size. The leaf nodes in SPNs, from which more intricate mixtures are formed, are tractable univariate distributions, and so the literature has focused on Bernoulli and Gaussian random variables. This is clearly a restriction for handling mixed discrete-continuous data, especially if the continuous features are generated from non-parametric and non-Gaussian distribution families. In this work, we present a framework that systematically integrates SPN structure learning with weighted model integration, a recently introduced computational abstraction for performing inference in hybrid domains, by means of piecewise polynomial approximations of density functions of arbitrary shape. Our framework is instantiated by exploiting the notion of propositional abstractions, thus minimally interfering with the SPN structure learning module, and supports a powerful query interface for conditioning on interval constraints. Our empirical results show that our approach is effective, and allows a study of the trade off between the granularity of the learned model and its predictive power.
Semi-supervised Feature Learning For Improving Writer Identification
Data augmentation is usually used by supervised learning approaches for offline writer identification, but such approaches require extra training data and potentially lead to overfitting errors. In this study, a semi-supervised feature learning pipeline was proposed to improve the performance of writer identification by training with extra unlabeled data and the original labeled data simultaneously. Specifically, we proposed a weighted label smoothing regularization (WLSR) method for data augmentation, which assigned the weighted uniform label distribution to the extra unlabeled data. The WLSR method could regularize the convolutional neural network (CNN) baseline to allow more discriminative features to be learned to represent the properties of different writing styles. The experimental results on well-known benchmark datasets (ICDAR2013 and CVL) showed that our proposed semi-supervised feature learning approach could significantly improve the baseline measurement and perform competitively with existing writer identification approaches. Our findings provide new insights into offline write identification.
Magnitude Bounded Matrix Factorisation for Recommender Systems
Low rank matrix factorisation is often used in recommender systems as a way of extracting latent features. When dealing with large and sparse datasets, traditional recommendation algorithms face the problem of acquiring large, unrestrained, fluctuating values over predictions especially for users/items with very few corresponding observations. Although the problem has been somewhat solved by imposing bounding constraints over its objectives, and/or over all entries to be within a fixed range, in terms of gaining better recommendations, these approaches have two major shortcomings that we aim to mitigate in this work: one is they can only deal with one pair of fixed bounds for all entries, and the other one is they are very time-consuming when applied on large scale recommender systems. In this paper, we propose a novel algorithm named Magnitude Bounded Matrix Factorisation (MBMF), which allows different bounds for individual users/items and performs very fast on large scale datasets. The key idea of our algorithm is to construct a model by constraining the magnitudes of each individual user/item feature vector. We achieve this by converting from the Cartesian to Spherical coordinate system with radii set as the corresponding magnitudes, which allows the above constrained optimisation problem to become an unconstrained one. The Stochastic Gradient Descent (SGD) method is then applied to solve the unconstrained task efficiently. Experiments on synthetic and real datasets demonstrate that in most cases the proposed MBMF is superior over all existing algorithms in terms of accuracy and time complexity.
Learning Probabilistic Logic Programs in Continuous Domains
The field of statistical relational learning aims at unifying logic and probability to reason and learn from data. Perhaps the most successful paradigm in the field is probabilistic logic programming: the enabling of stochastic primitives in logic programming, which is now increasingly seen to provide a declarative background to complex machine learning applications. While many systems offer inference capabilities, the more significant challenge is that of learning meaningful and interpretable symbolic representations from data. In that regard, inductive logic programming and related techniques have paved much of the way for the last few decades. Unfortunately, a major limitation of this exciting landscape is that much of the work is limited to finite-domain discrete probability distributions. Recently, a handful of systems have been extended to represent and perform inference with continuous distributions. The problem, of course, is that classical solutions for inference are either restricted to well-known parametric families (e.g., Gaussians) or resort to sampling strategies that provide correct answers only in the limit. When it comes to learning, moreover, inducing representations remains entirely open, other than "data-fitting" solutions that force-fit points to aforementioned parametric families. In this paper, we take the first steps towards inducing probabilistic logic programs for continuous and mixed discrete-continuous data, without being pigeon-holed to a fixed set of distribution families. Our key insight is to leverage techniques from piecewise polynomial function approximation theory, yielding a principled way to learn and compositionally construct density functions. We test the framework and discuss the learned representations.
DeepInf: Social Influence Prediction with Deep Learning
Social and information networking activities such as on Facebook, Twitter, WeChat, and Weibo have become an indispensable part of our everyday life, where we can easily access friends' behaviors and are in turn influenced by them. Consequently, an effective social influence prediction for each user is critical for a variety of applications such as online recommendation and advertising. Conventional social influence prediction approaches typically design various hand-crafted rules to extract user- and network-specific features. However, their effectiveness heavily relies on the knowledge of domain experts. As a result, it is usually difficult to generalize them into different domains. Inspired by the recent success of deep neural networks in a wide range of computing applications, we design an end-to-end framework, DeepInf, to learn users' latent feature representation for predicting social influence. In general, DeepInf takes a user's local network as the input to a graph neural network for learning her latent social representation. We design strategies to incorporate both network structures and user-specific features into convolutional neural and attention networks. Extensive experiments on Open Academic Graph, Twitter, Weibo, and Digg, representing different types of social and information networks, demonstrate that the proposed end-to-end model, DeepInf, significantly outperforms traditional feature engineering-based approaches, suggesting the effectiveness of representation learning for social applications.
Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian Process Priors
This paper introduces a new sparse spatio-temporal structured Gaussian process regression framework for online and offline Bayesian inference. This is the first framework that gives a time-evolving representation of the interdependencies between the components of the sparse signal of interest. A hierarchical Gaussian process describes such structure and the interdependencies are represented via the covariance matrices of the prior distributions. The inference is based on the expectation propagation method and the theoretical derivation of the posterior distribution is provided in the paper. The inference framework is thoroughly evaluated over synthetic, real video and electroencephalography (EEG) data where the spatio-temporal evolving patterns need to be reconstructed with high accuracy. It is shown that it achieves 15% improvement of the F-measure compared with the alternating direction method of multipliers, spatio-temporal sparse Bayesian learning method and one-level Gaussian process model. Additionally, the required memory for the proposed algorithm is less than in the one-level Gaussian process model. This structured sparse regression framework is of broad applicability to source localisation and object detection problems with sparse signals.
Global Optimality in Separable Dictionary Learning with Applications to the Analysis of Diffusion MRI
Sparse dictionary learning is a popular method for representing signals as linear combinations of a few elements from a dictionary that is learned from the data. In the classical setting, signals are represented as vectors and the dictionary learning problem is posed as a matrix factorization problem where the data matrix is approximately factorized into a dictionary matrix and a sparse matrix of coefficients. However, in many applications in computer vision and medical imaging, signals are better represented as matrices or tensors (e.g. images or videos), where it may be beneficial to exploit the multi-dimensional structure of the data to learn a more compact representation. One such approach is separable dictionary learning, where one learns separate dictionaries for different dimensions of the data. However, typical formulations involve solving a non-convex optimization problem; thus guaranteeing global optimality remains a challenge. In this work, we propose a framework that builds upon recent developments in matrix factorization to provide theoretical and numerical guarantees of global optimality for separable dictionary learning. We propose an algorithm to find such a globally optimal solution, which alternates between following local descent steps and checking a certificate for global optimality. We illustrate our approach on diffusion magnetic resonance imaging (dMRI) data, a medical imaging modality that measures water diffusion along multiple angular directions in every voxel of an MRI volume. State-of-the-art methods in dMRI either learn dictionaries only for the angular domain of the signals or in some cases learn spatial and angular dictionaries independently. In this work, we apply the proposed separable dictionary learning framework to learn spatial and angular dMRI dictionaries jointly and provide preliminary validation on denoising phantom and real dMRI brain data.
Deep Learning for Semantic Segmentation on Minimal Hardware
Deep learning has revolutionised many fields, but it is still challenging to transfer its success to small mobile robots with minimal hardware. Specifically, some work has been done to this effect in the RoboCup humanoid football domain, but results that are performant and efficient and still generally applicable outside of this domain are lacking. We propose an approach conceptually different from those taken previously. It is based on semantic segmentation and does achieve these desired properties. In detail, it is being able to process full VGA images in real-time on a low-power mobile processor. It can further handle multiple image dimensions without retraining, it does not require specific domain knowledge for achieving a high frame rate and it is applicable on a minimal mobile hardware.
NEUZZ: Efficient Fuzzing with Neural Program Smoothing
Fuzzing has become the de facto standard technique for finding software vulnerabilities. However, even state-of-the-art fuzzers are not very efficient at finding hard-to-trigger software bugs. Most popular fuzzers use evolutionary guidance to generate inputs that can trigger different bugs. Such evolutionary algorithms, while fast and simple to implement, often get stuck in fruitless sequences of random mutations. Gradient-guided optimization presents a promising alternative to evolutionary guidance. Gradient-guided techniques have been shown to significantly outperform evolutionary algorithms at solving high-dimensional structured optimization problems in domains like machine learning by efficiently utilizing gradients or higher-order derivatives of the underlying function. However, gradient-guided approaches are not directly applicable to fuzzing as real-world program behaviors contain many discontinuities, plateaus, and ridges where the gradient-based methods often get stuck. We observe that this problem can be addressed by creating a smooth surrogate function approximating the discrete branching behavior of target program. In this paper, we propose a novel program smoothing technique using surrogate neural network models that can incrementally learn smooth approximations of a complex, real-world program's branching behaviors. We further demonstrate that such neural network models can be used together with gradient-guided input generation schemes to significantly improve the fuzzing efficiency. Our extensive evaluations demonstrate that NEUZZ significantly outperforms 10 state-of-the-art graybox fuzzers on 10 real-world programs both at finding new bugs and achieving higher edge coverage. NEUZZ found 31 unknown bugs that other fuzzers failed to find in 10 real world programs and achieved 3X more edge coverage than all of the tested graybox fuzzers for 24 hours running.
Cross Pixel Optical Flow Similarity for Self-Supervised Learning
We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks.
Time Series Deinterleaving of DNS Traffic
Stream deinterleaving is an important problem with various applications in the cybersecurity domain. In this paper, we consider the specific problem of deinterleaving DNS data streams using machine-learning techniques, with the objective of automating the extraction of malware domain sequences. We first develop a generative model for user request generation and DNS stream interleaving. Based on these we evaluate various inference strategies for deinterleaving including augmented HMMs and LSTMs on synthetic datasets. Our results demonstrate that state-of-the-art LSTMs outperform more traditional augmented HMMs in this application domain.
Scene Learning: Deep Convolutional Networks For Wind Power Prediction by Embedding Turbines into Grid Space
Wind power prediction is of vital importance in wind power utilization. There have been a lot of researches based on the time series of the wind power or speed, but In fact, these time series cannot express the temporal and spatial changes of wind, which fundamentally hinders the advance of wind power prediction. In this paper, a new kind of feature that can describe the process of temporal and spatial variation is proposed, namely, Spatio-Temporal Features. We first map the data collected at each moment from the wind turbine to the plane to form the state map, namely, the scene, according to the relative positions. The scene time series over a period of time is a multi-channel image, i.e. the Spatio-Temporal Features. Based on the Spatio-Temporal Features, the deep convolutional network is applied to predict the wind power, achieving a far better accuracy than the existing methods. Compared with the starge-of-the-art method, the mean-square error (MSE) in our method is reduced by 49.83%, and the average time cost for training models can be shortened by a factor of more than 150.
Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks
The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.
BRIEF: Backward Reduction of CNNs with Information Flow Analysis
This paper proposes BRIEF, a backward reduction algorithm that explores compact CNN-model designs from the information flow perspective. This algorithm can remove substantial non-zero weighting parameters (redundant neural channels) of a network by considering its dynamic behavior, which traditional model-compaction techniques cannot achieve. With the aid of our proposed algorithm, we achieve significant model reduction on ResNet-34 in the ImageNet scale (32.3% reduction), which is 3X better than the previous result (10.8%). Even for highly optimized models such as SqueezeNet and MobileNet, we can achieve additional 10.81% and 37.56% reduction, respectively, with negligible performance degradation.
Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching
We introduce a novel paradigm for learning non-parametric drift and diffusion functions for stochastic differential equation (SDE). The proposed model learns to simulate path distributions that match observations with non-uniform time increments and arbitrary sparseness, which is in contrast with gradient matching that does not optimize simulated responses. We formulate sensitivity equations for learning and demonstrate that our general stochastic distribution optimisation leads to robust and efficient learning of SDE systems.
Deep Generative Model using Unregularized Score for Anomaly Detection with Heterogeneous Complexity
Accurate and automated detection of anomalous samples in a natural image dataset can be accomplished with a probabilistic model for end-to-end modeling of images. Such images have heterogeneous complexity, however, and a probabilistic model overlooks simply shaped objects with small anomalies. This is because the probabilistic model assigns undesirably lower likelihoods to complexly shaped objects that are nevertheless consistent with set standards. To overcome this difficulty, we propose an unregularized score for deep generative models (DGMs), which are generative models leveraging deep neural networks. We found that the regularization terms of the DGMs considerably influence the anomaly score depending on the complexity of the samples. By removing these terms, we obtain an unregularized score, which we evaluated on a toy dataset and real-world manufacturing datasets. Empirical results demonstrate that the unregularized score is robust to the inherent complexity of samples and can be used to better detect anomalies.
Remember and Forget for Experience Replay
Experience replay (ER) is a fundamental component of off-policy deep reinforcement learning (RL). ER recalls experiences from past iterations to compute gradient estimates for the current policy, increasing data-efficiency. However, the accuracy of such updates may deteriorate when the policy diverges from past behaviors and can undermine the performance of ER. Many algorithms mitigate this issue by tuning hyper-parameters to slow down policy changes. An alternative is to actively enforce the similarity between policy and the experiences in the replay memory. We introduce Remember and Forget Experience Replay (ReF-ER), a novel method that can enhance RL algorithms with parameterized policies. ReF-ER (1) skips gradients computed from experiences that are too unlikely with the current policy and (2) regulates policy changes within a trust region of the replayed behaviors. We couple ReF-ER with Q-learning, deterministic policy gradient and off-policy gradient methods. We find that ReF-ER consistently improves the performance of continuous-action, off-policy RL on fully observable benchmarks and partially observable flow control problems.
Manifold Adversarial Learning
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output. Despite their success, we argue that such setting may be in lack of generalization, since the output space (or label space) is apparently less informative.In this paper, we propose a novel method, called Manifold Adversarial Training (MAT). MAT manages to build an adversarial framework based on how the worst perturbation could affect the distributional manifold rather than the output space. Particularly, a latent data space with the Gaussian Mixture Model (GMM) will be first derived.On one hand, MAT tries to perturb the input samples in the way that would rough the distributional manifold the worst. On the other hand, the deep learning model is trained trying to promote in the latent space the manifold smoothness, measured by the variation of Gaussian mixtures (given the local perturbation around the data point). Importantly, since the latent space is more informative than the output space, the proposed MAT can learn better a robust and compact data representation, leading to further performance improvement. The proposed MAT is important in that it can be considered as a superset of one recently-proposed discriminative feature learning approach called center loss. We conducted a series of experiments in both supervised and semi-supervised learning on three benchmark data sets, showing that the proposed MAT can achieve remarkable performance, much better than those of the state-of-the-art adversarial approaches. We also present a series of visualization which could generate further understanding or explanation on adversarial examples.
Forecasting market states
We propose a novel methodology to define, analyze and forecast market states. In our approach market states are identified by a reference sparse precision matrix and a vector of expectation values. In our procedure, each multivariate observation is associated with a given market state accordingly to a minimization of a penalized Mahalanobis distance. The procedure is made computationally very efficient and can be used with a large number of assets. We demonstrate that this procedure is successful at clustering different states of the markets in an unsupervised manner. In particular, we describe an experiment with one hundred log-returns and two states in which the methodology automatically associates states prevalently to pre- and post- crisis periods with one state gathering periods with average positive returns and the other state periods with average negative returns, therefore discovering spontaneously the common classification of `bull' and `bear' markets. In another experiment, with again one hundred log-returns and two states, we demonstrate that this procedure can be efficiently used to forecast off-sample future market states with significant prediction accuracy. This methodology opens the way to a range of applications in risk management and trading strategies in the context where the correlation structure plays a central role.
Assessing fish abundance from underwater video using deep neural networks
Uses of underwater videos to assess diversity and abundance of fish are being rapidly adopted by marine biologists. Manual processing of videos for quantification by human analysts is time and labour intensive. Automatic processing of videos can be employed to achieve the objectives in a cost and time-efficient way. The aim is to build an accurate and reliable fish detection and recognition system, which is important for an autonomous robotic platform. However, there are many challenges involved in this task (e.g. complex background, deformation, low resolution and light propagation). Recent advancement in the deep neural network has led to the development of object detection and recognition in real time scenarios. An end-to-end deep learning-based architecture is introduced which outperformed the state of the art methods and first of its kind on fish assessment task. A Region Proposal Network (RPN) introduced by an object detector termed as Faster R-CNN was combined with three classification networks for detection and recognition of fish species obtained from Remote Underwater Video Stations (RUVS). An accuracy of 82.4% (mAP) obtained from the experiments are much higher than previously proposed methods.
Neural Chinese Word Segmentation with Dictionary Knowledge
Chinese word segmentation (CWS) is an important task for Chinese NLP. Recently, many neural network based methods have been proposed for CWS. However, these methods require a large number of labeled sentences for model training, and usually cannot utilize the useful information in Chinese dictionary. In this paper, we propose two methods to exploit the dictionary information for CWS. The first one is based on pseudo labeled data generation, and the second one is based on multi-task learning. The experimental results on two benchmark datasets validate that our approach can effectively improve the performance of Chinese word segmentation, especially when training data is insufficient.
Machine Learning with Membership Privacy using Adversarial Regularization
Machine learning models leak information about the datasets on which they are trained. An adversary can build an algorithm to trace the individual members of a model's training dataset. As a fundamental inference attack, he aims to distinguish between data points that were part of the model's training set and any other data points from the same distribution. This is known as the tracing (and also membership inference) attack. In this paper, we focus on such attacks against black-box models, where the adversary can only observe the output of the model, but not its parameters. This is the current setting of machine learning as a service in the Internet. We introduce a privacy mechanism to train machine learning models that provably achieve membership privacy: the model's predictions on its training data are indistinguishable from its predictions on other data points from the same distribution. We design a strategic mechanism where the privacy mechanism anticipates the membership inference attacks. The objective is to train a model such that not only does it have the minimum prediction error (high utility), but also it is the most robust model against its corresponding strongest inference attack (high privacy). We formalize this as a min-max game optimization problem, and design an adversarial training algorithm that minimizes the classification loss of the model as well as the maximum gain of the membership inference attack against it. This strategy, which guarantees membership privacy (as prediction indistinguishability), acts also as a strong regularizer and significantly generalizes the model. We evaluate our privacy mechanism on deep neural networks using different benchmark datasets. We show that our min-max strategy can mitigate the risk of membership inference attacks (close to the random guess) with a negligible cost in terms of the classification error.
Toward Interpretable Deep Reinforcement Learning with Linear Model U-Trees
Deep Reinforcement Learning (DRL) has achieved impressive success in many applications. A key component of many DRL models is a neural network representing a Q function, to estimate the expected cumulative reward following a state-action pair. The Q function neural network contains a lot of implicit knowledge about the RL problems, but often remains unexamined and uninterpreted. To our knowledge, this work develops the first mimic learning framework for Q functions in DRL. We introduce Linear Model U-trees (LMUTs) to approximate neural network predictions. An LMUT is learned using a novel on-line algorithm that is well-suited for an active play setting, where the mimic learner observes an ongoing interaction between the neural net and the environment. Empirical evaluation shows that an LMUT mimics a Q function substantially better than five baseline methods. The transparent tree structure of an LMUT facilitates understanding the network's learned knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels in image inputs.
Bipedal Walking Robot using Deep Deterministic Policy Gradient
Machine learning algorithms have found several applications in the field of robotics and control systems. The control systems community has started to show interest towards several machine learning algorithms from the sub-domains such as supervised learning, imitation learning and reinforcement learning to achieve autonomous control and intelligent decision making. Amongst many complex control problems, stable bipedal walking has been the most challenging problem. In this paper, we present an architecture to design and simulate a planar bipedal walking robot(BWR) using a realistic robotics simulator, Gazebo. The robot demonstrates successful walking behaviour by learning through several of its trial and errors, without any prior knowledge of itself or the world dynamics. The autonomous walking of the BWR is achieved using reinforcement learning algorithm called Deep Deterministic Policy Gradient(DDPG). DDPG is one of the algorithms for learning controls in continuous action spaces. After training the model in simulation, it was observed that, with a proper shaped reward function, the robot achieved faster walking or even rendered a running gait with an average speed of 0.83 m/s. The gait pattern of the bipedal walker was compared with the actual human walking pattern. The results show that the bipedal walking pattern had similar characteristics to that of a human walking pattern. The video presenting our experiment is available at https://goo.gl/NHXKqR.
Novel Feature-Based Clustering of Micro-Panel Data (CluMP)
Micro-panel data are collected and analysed in many research and industry areas. Cluster analysis of micro-panel data is an unsupervised learning exploratory method identifying subgroup clusters in a data set which include homogeneous objects in terms of the development dynamics of monitored variables. The supply of clustering methods tailored to micro-panel data is limited. The present paper focuses on a feature-based clustering method, introducing a novel two-step characteristic-based approach designed for this type of data. The proposed CluMP method aims to identify clusters that are at least as internally homogeneous and externally heterogeneous as those obtained by alternative methods already implemented in the statistical system R. We compare the clustering performance of the devised algorithm with two extant methods using simulated micro-panel data sets. Our approach has yielded similar or better outcomes than the other methods, the advantage of the proposed algorithm being time efficiency which makes it applicable for large data sets.
Siamese Survival Analysis with Competing Risks
Survival analysis in the presence of multiple possible adverse events, i.e., competing risks, is a pervasive problem in many industries (healthcare, finance, etc.). Since only one event is typically observed, the incidence of an event of interest is often obscured by other related competing events. This nonidentifiability, or inability to estimate true cause-specific survival curves from empirical data, further complicates competing risk survival analysis. We introduce Siamese Survival Prognosis Network (SSPN), a novel deep learning architecture for estimating personalized risk scores in the presence of competing risks. SSPN circumvents the nonidentifiability problem by avoiding the estimation of cause-specific survival curves and instead determines pairwise concordant time-dependent risks, where longer event times are assigned lower risks. Furthermore, SSPN is able to directly optimize an approximation to the C-discrimination index, rather than relying on well-known metrics which are unable to capture the unique requirements of survival analysis with competing risks.
Variational Inference: A Unified Framework of Generative Models and Some Revelations
We reinterpreting the variational inference in a new perspective. Via this way, we can easily prove that EM algorithm, VAE, GAN, AAE, ALI(BiGAN) are all special cases of variational inference. The proof also reveals the loss of standard GAN is incomplete and it explains why we need to train GAN cautiously. From that, we find out a regularization term to improve stability of GAN training.
Meta-Learning with Latent Embedding Optimization
Gradient-based meta-learning techniques are both widely applicable and proficient at solving challenging few-shot learning and fast adaptation problems. However, they have practical difficulties when operating on high-dimensional parameter spaces in extreme low-data regimes. We show that it is possible to bypass these limitations by learning a data-dependent latent generative representation of model parameters, and performing gradient-based meta-learning in this low-dimensional latent space. The resulting approach, latent embedding optimization (LEO), decouples the gradient-based adaptation procedure from the underlying high-dimensional space of model parameters. Our evaluation shows that LEO can achieve state-of-the-art performance on the competitive miniImageNet and tieredImageNet few-shot classification tasks. Further analysis indicates LEO is able to capture uncertainty in the data, and can perform adaptation more effectively by optimizing in latent space.
A deep learning architecture to detect events in EEG signals during sleep
Electroencephalography (EEG) during sleep is used by clinicians to evaluate various neurological disorders. In sleep medicine, it is relevant to detect macro-events (> 10s) such as sleep stages, and micro-events (<2s) such as spindles and K-complexes. Annotations of such events require a trained sleep expert, a time consuming and tedious process with a large inter-scorer variability. Automatic algorithms have been developed to detect various types of events but these are event-specific. We propose a deep learning method that jointly predicts locations, durations and types of events in EEG time series. It relies on a convolutional neural network that builds a feature representation from raw EEG signals. Numerical experiments demonstrate efficiency of this new approach on various event detection tasks compared to current state-of-the-art, event specific, algorithms.
Pangloss: Fast Entity Linking in Noisy Text Environments
Entity linking is the task of mapping potentially ambiguous terms in text to their constituent entities in a knowledge base like Wikipedia. This is useful for organizing content, extracting structured data from textual documents, and in machine learning relevance applications like semantic search, knowledge graph construction, and question answering. Traditionally, this work has focused on text that has been well-formed, like news articles, but in common real world datasets such as messaging, resumes, or short-form social media, non-grammatical, loosely-structured text adds a new dimension to this problem. This paper presents Pangloss, a production system for entity disambiguation on noisy text. Pangloss combines a probabilistic linear-time key phrase identification algorithm with a semantic similarity engine based on context-dependent document embeddings to achieve better than state-of-the-art results (>5% in F1) compared to other research or commercially available systems. In addition, Pangloss leverages a local embedded database with a tiered architecture to house its statistics and metadata, which allows rapid disambiguation in streaming contexts and on-device disambiguation in low-memory environments such as mobile phones.
Zap: Making Predictions Based on Online User Behavior
This paper introduces Zap, a generic machine learning pipeline for making predictions based on online user behavior. Zap combines well known techniques for processing sequential data with more obscure techniques such as Bloom filters, bucketing, and model calibration into an end-to-end solution. The pipeline creates website- and task-specific models without knowing anything about the structure of the website. It is designed to minimize the amount of website-specific code, which is realized by factoring all website-specific logic into example generators. New example generators can typically be written up in a few lines of code.
On the Information Theoretic Distance Measures and Bidirectional Helmholtz Machines
By establishing a connection between bi-directional Helmholtz machines and information theory, we propose a generalized Helmholtz machine. Theoretical and experimental results show that given \textit{shallow} architectures, the generalized model outperforms the previous ones substantially.
Online Robust Policy Learning in the Presence of Unknown Adversaries
The growing prospect of deep reinforcement learning (DRL) being used in cyber-physical systems has raised concerns around safety and robustness of autonomous agents. Recent work on generating adversarial attacks have shown that it is computationally feasible for a bad actor to fool a DRL policy into behaving sub optimally. Although certain adversarial attacks with specific attack models have been addressed, most studies are only interested in off-line optimization in the data space (e.g., example fitting, distillation). This paper introduces a Meta-Learned Advantage Hierarchy (MLAH) framework that is attack model-agnostic and more suited to reinforcement learning, via handling the attacks in the decision space (as opposed to data space) and directly mitigating learned bias introduced by the adversary. In MLAH, we learn separate sub-policies (nominal and adversarial) in an online manner, as guided by a supervisory master agent that detects the presence of the adversary by leveraging the advantage function for the sub-policies. We demonstrate that the proposed algorithm enables policy learning with significantly lower bias as compared to the state-of-the-art policy learning approaches even in the presence of heavy state information attacks. We present algorithm analysis and simulation results using popular OpenAI Gym environments.
Automated Data Slicing for Model Validation:A Big data - AI Integration Approach
As machine learning systems become democratized, it becomes increasingly important to help users easily debug their models. However, current data tools are still primitive when it comes to helping users trace model performance problems all the way to the data. We focus on the particular problem of slicing data to identify subsets of the validation data where the model performs poorly. This is an important problem in model validation because the overall model performance can fail to reflect that of the smaller subsets, and slicing allows users to analyze the model performance on a more granular-level. Unlike general techniques (e.g., clustering) that can find arbitrary slices, our goal is to find interpretable slices (which are easier to take action compared to arbitrary subsets) that are problematic and large. We propose Slice Finder, which is an interactive framework for identifying such slices using statistical techniques. Applications include diagnosing model fairness and fraud detection, where identifying slices that are interpretable to humans is crucial. This research is part of a larger trend of Big data and Artificial Intelligence (AI) integration and opens many opportunities for new research.
Leveraging Pre-Trained 3D Object Detection Models For Fast Ground Truth Generation
Training 3D object detectors for autonomous driving has been limited to small datasets due to the effort required to generate annotations. Reducing both task complexity and the amount of task switching done by annotators is key to reducing the effort and time required to generate 3D bounding box annotations. This paper introduces a novel ground truth generation method that combines human supervision with pretrained neural networks to generate per-instance 3D point cloud segmentation, 3D bounding boxes, and class annotations. The annotators provide object anchor clicks which behave as a seed to generate instance segmentation results in 3D. The points belonging to each instance are then used to regress object centroids, bounding box dimensions, and object orientation. Our proposed annotation scheme requires 30x lower human annotation time. We use the KITTI 3D object detection dataset to evaluate the efficiency and the quality of our annotation scheme. We also test the the proposed scheme on previously unseen data from the Autonomoose self-driving vehicle to demonstrate generalization capabilities of the network.
Dynamic Visual Analytics for Elicitation Meetings with ELICA
Requirements elicitation can be very challenging in projects that require deep domain knowledge about the system at hand. As analysts have the full control over the elicitation process, their lack of knowledge about the system under study inhibits them from asking related questions and reduces the accuracy of requirements provided by stakeholders. We present ELICA, a generic interactive visual analytics tool to assist analysts during requirements elicitation process. ELICA uses a novel information extraction algorithm based on a combination of Weighted Finite State Transducers (WFSTs) (generative model) and SVMs (discriminative model). ELICA presents the extracted relevant information in an interactive GUI (including zooming, panning, and pinching) that allows analysts to explore which parts of the ongoing conversation (or specification document) match with the extracted information. In this demonstration, we show that ELICA is usable and effective in practice, and is able to extract the related information in real-time. We also demonstrate how carefully designed features in ELICA facilitate the interactive and dynamic process of information extraction.
A Dataset of Laryngeal Endoscopic Images with Comparative Study on Convolution Neural Network Based Semantic Segmentation
Purpose Automated segmentation of anatomical structures in medical image analysis is a prerequisite for autonomous diagnosis as well as various computer and robot aided interventions. Recent methods based on deep convolutional neural networks (CNN) have outperformed former heuristic methods. However, those methods were primarily evaluated on rigid, real-world environments. In this study, existing segmentation methods were evaluated for their use on a new dataset of transoral endoscopic exploration. Methods Four machine learning based methods SegNet, UNet, ENet and ErfNet were trained with supervision on a novel 7-class dataset of the human larynx. The dataset contains 536 manually segmented images from two patients during laser incisions. The Intersection-over-Union (IoU) evaluation metric was used to measure the accuracy of each method. Data augmentation and network ensembling were employed to increase segmentation accuracy. Stochastic inference was used to show uncertainties of the individual models. Patient-to-patient transfer was investigated using patient-specific fine-tuning. Results In this study, a weighted average ensemble network of UNet and ErfNet was best suited for the segmentation of laryngeal soft tissue with a mean IoU of 84.7 %. The highest efficiency was achieved by ENet with a mean inference time of 9.22 ms per image. It is shown that 10 additional images from a new patient are sufficient for patient-specific fine-tuning. Conclusion CNN-based methods for semantic segmentation are applicable to endoscopic images of laryngeal soft tissue. The segmentation can be used for active constraints or to monitor morphological changes and autonomously detect pathologies. Further improvements could be achieved by using a larger dataset or training the models in a self-supervised manner on additional unlabeled data.