title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Riemannian metrics for neural networks I: feedforward networks
We describe four algorithms for neural network training, each adapted to different scalability constraints. These algorithms are mathematically principled and invariant under a number of transformations in data and network representation, from which performance is thus independent. These algorithms are obtained from the setting of differential geometry, and are based on either the natural gradient using the Fisher information matrix, or on Hessian methods, scaled down in a specific way to allow for scalability while keeping some of their key mathematical properties.
GURLS: a Least Squares Library for Supervised Learning
We present GURLS, a least squares, modular, easy-to-extend software library for efficient supervised learning. GURLS is targeted to machine learning practitioners, as well as non-specialists. It offers a number state-of-the-art training strategies for medium and large-scale learning, and routines for efficient model selection. The library is particularly well suited for multi-output problems (multi-category/multi-label). GURLS is currently available in two independent implementations: Matlab and C++. It takes advantage of the favorable properties of regularized least squares algorithm to exploit advanced tools in linear algebra. Routines to handle computations with very large matrices by means of memory-mapped storage and distributed task execution are available. The package is distributed under the BSD licence and is available for download at https://github.com/CBCL/GURLS.
An Equivalence between the Lasso and Support Vector Machines
We investigate the relation of two fundamental tools in machine learning and signal processing, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are equivalent, in the following sense. Given any instance of an $\ell_2$-loss soft-margin (or hard-margin) SVM, we construct a Lasso instance having the same optimal solutions, and vice versa. As a consequence, many existing optimization algorithms for both SVMs and Lasso can also be applied to the respective other problem instances. Also, the equivalence allows for many known theoretical insights for SVM and Lasso to be translated between the two settings. One such implication gives a simple kernelized version of the Lasso, analogous to the kernels used in the SVM setting. Another consequence is that the sparsity of a Lasso solution is equal to the number of support vectors for the corresponding SVM instance, and that one can use screening rules to prune the set of support vectors. Furthermore, we can relate sublinear time algorithms for the two problems, and give a new such algorithm variant for the Lasso. We also study the regularization paths for both methods.
Classification with Asymmetric Label Noise: Consistency and Maximal Denoising
In many real-world classification problems, the labels of training examples are randomly corrupted. Most previous theoretical work on classification with label noise assumes that the two classes are separable, that the label noise is independent of the true class label, or that the noise proportions for each class are known. In this work, we give conditions that are necessary and sufficient for the true class-conditional distributions to be identifiable. These conditions are weaker than those analyzed previously, and allow for the classes to be nonseparable and the noise levels to be asymmetric and unknown. The conditions essentially state that a majority of the observed labels are correct and that the true class-conditional distributions are "mutually irreducible," a concept we introduce that limits the similarity of the two distributions. For any label noise problem, there is a unique pair of true class-conditional distributions satisfying the proposed conditions, and we argue that this pair corresponds in a certain sense to maximal denoising of the observed distributions. Our results are facilitated by a connection to "mixture proportion estimation," which is the problem of estimating the maximal proportion of one distribution that is present in another. We establish a novel rate of convergence result for mixture proportion estimation, and apply this to obtain consistency of a discrimination rule based on surrogate loss minimization. Experimental results on benchmark data and a nuclear particle classification problem demonstrate the efficacy of our approach.
Discovery of factors in matrices with grades
We present an approach to decomposition and factor analysis of matrices with ordinal data. The matrix entries are grades to which objects represented by rows satisfy attributes represented by columns, e.g. grades to which an image is red, a product has a given feature, or a person performs well in a test. We assume that the grades form a bounded scale equipped with certain aggregation operators and conforms to the structure of a complete residuated lattice. We present a greedy approximation algorithm for the problem of decomposition of such matrix in a product of two matrices with grades under the restriction that the number of factors be small. Our algorithm is based on a geometric insight provided by a theorem identifying particular rectangular-shaped submatrices as optimal factors for the decompositions. These factors correspond to formal concepts of the input data and allow an easy interpretation of the decomposition. We present illustrative examples and experimental evaluation.
Convex and Scalable Weakly Labeled SVMs
In this paper, we study the problem of learning from weakly labeled data, where labels of the training examples are incomplete. This includes, for example, (i) semi-supervised learning where labels are partially known; (ii) multi-instance learning where labels are implicitly known; and (iii) clustering where labels are completely unknown. Unlike supervised learning, learning with weak labels involves a difficult Mixed-Integer Programming (MIP) problem. Therefore, it can suffer from poor scalability and may also get stuck in local minimum. In this paper, we focus on SVMs and propose the WellSVM via a novel label generation strategy. This leads to a convex relaxation of the original MIP, which is at least as tight as existing convex Semi-Definite Programming (SDP) relaxations. Moreover, the WellSVM can be solved via a sequence of SVM subproblems that are much more scalable than previous convex SDP relaxations. Experiments on three weakly labeled learning tasks, namely, (i) semi-supervised learning; (ii) multi-instance learning for locating regions of interest in content-based information retrieval; and (iii) clustering, clearly demonstrate improved performance, and WellSVM is also readily applicable on large data sets.
Large-Margin Metric Learning for Partitioning Problems
In this paper, we consider unsupervised partitioning problems, such as clustering, image segmentation, video segmentation and other change-point detection problems. We focus on partitioning problems based explicitly or implicitly on the minimization of Euclidean distortions, which include mean-based change-point detection, K-means, spectral clustering and normalized cuts. Our main goal is to learn a Mahalanobis metric for these unsupervised problems, leading to feature weighting and/or selection. This is done in a supervised way by assuming the availability of several potentially partially labelled datasets that share the same metric. We cast the metric learning problem as a large-margin structured prediction problem, with proper definition of regularizers and losses, leading to a convex optimization problem which can be solved efficiently with iterative techniques. We provide experiments where we show how learning the metric may significantly improve the partitioning performance in synthetic examples, bioinformatics, video segmentation and image segmentation problems.
Multi-relational Learning Using Weighted Tensor Decomposition with Modular Loss
We propose a modular framework for multi-relational learning via tensor decomposition. In our learning setting, the training data contains multiple types of relationships among a set of objects, which we represent by a sparse three-mode tensor. The goal is to predict the values of the missing entries. To do so, we model each relationship as a function of a linear combination of latent factors. We learn this latent representation by computing a low-rank tensor decomposition, using quasi-Newton optimization of a weighted objective function. Sparsity in the observed data is captured by the weighted objective, leading to improved accuracy when training data is limited. Exploiting sparsity also improves efficiency, potentially up to an order of magnitude over unweighted approaches. In addition, our framework accommodates arbitrary combinations of smooth, task-specific loss functions, making it better suited for learning different types of relations. For the typical cases of real-valued functions and binary relations, we propose several loss functions and derive the associated parameter gradients. We evaluate our method on synthetic and real data, showing significant improvements in both accuracy and scalability over related factorization techniques.
Revisiting the Nystrom Method for Improved Large-Scale Machine Learning
We reconsider randomized algorithms for the low-rank approximation of symmetric positive semi-definite (SPSD) matrices such as Laplacian and kernel matrices that arise in data analysis and machine learning applications. Our main results consist of an empirical evaluation of the performance quality and running time of sampling and projection methods on a diverse suite of SPSD matrices. Our results highlight complementary aspects of sampling versus projection methods; they characterize the effects of common data preprocessing steps on the performance of these algorithms; and they point to important differences between uniform sampling and nonuniform sampling methods based on leverage scores. In addition, our empirical results illustrate that existing theory is so weak that it does not provide even a qualitative guide to practice. Thus, we complement our empirical results with a suite of worst-case theoretical bounds for both random sampling and random projection methods. These bounds are qualitatively superior to existing bounds---e.g. improved additive-error bounds for spectral and Frobenius norm error and relative-error bounds for trace norm error---and they point to future directions to make these algorithms useful in even larger-scale machine learning applications.
Mining Representative Unsubstituted Graph Patterns Using Prior Similarity Matrix
One of the most powerful techniques to study protein structures is to look for recurrent fragments (also called substructures or spatial motifs), then use them as patterns to characterize the proteins under study. An emergent trend consists in parsing proteins three-dimensional (3D) structures into graphs of amino acids. Hence, the search of recurrent spatial motifs is formulated as a process of frequent subgraph discovery where each subgraph represents a spatial motif. In this scope, several efficient approaches for frequent subgraph discovery have been proposed in the literature. However, the set of discovered frequent subgraphs is too large to be efficiently analyzed and explored in any further process. In this paper, we propose a novel pattern selection approach that shrinks the large number of discovered frequent subgraphs by selecting the representative ones. Existing pattern selection approaches do not exploit the domain knowledge. Yet, in our approach we incorporate the evolutionary information of amino acids defined in the substitution matrices in order to select the representative subgraphs. We show the effectiveness of our approach on a number of real datasets. The results issued from our experiments show that our approach is able to considerably decrease the number of motifs while enhancing their interestingness.
Transfer Learning for Voice Activity Detection: A Denoising Deep Neural Network Perspective
Mismatching problem between the source and target noisy corpora severely hinder the practical use of the machine-learning-based voice activity detection (VAD). In this paper, we try to address this problem in the transfer learning prospective. Transfer learning tries to find a common learning machine or a common feature subspace that is shared by both the source corpus and the target corpus. The denoising deep neural network is used as the learning machine. Three transfer techniques, which aim to learn common feature representations, are used for analysis. Experimental results demonstrate the effectiveness of the transfer learning schemes on the mismatch problem.
Convex Discriminative Multitask Clustering
Multitask clustering tries to improve the clustering performance of multiple tasks simultaneously by taking their relationship into account. Most existing multitask clustering algorithms fall into the type of generative clustering, and none are formulated as convex optimization problems. In this paper, we propose two convex Discriminative Multitask Clustering (DMTC) algorithms to address the problems. Specifically, we first propose a Bayesian DMTC framework. Then, we propose two convex DMTC objectives within the framework. The first one, which can be seen as a technical combination of the convex multitask feature learning and the convex Multiclass Maximum Margin Clustering (M3C), aims to learn a shared feature representation. The second one, which can be seen as a combination of the convex multitask relationship learning and M3C, aims to learn the task relationship. The two objectives are solved in a uniform procedure by the efficient cutting-plane algorithm. Experimental results on a toy problem and two benchmark datasets demonstrate the effectiveness of the proposed algorithms.
Heuristic Ternary Error-Correcting Output Codes Via Weight Optimization and Layered Clustering-Based Approach
One important classifier ensemble for multiclass classification problems is Error-Correcting Output Codes (ECOCs). It bridges multiclass problems and binary-class classifiers by decomposing multiclass problems to a serial binary-class problems. In this paper, we present a heuristic ternary code, named Weight Optimization and Layered Clustering-based ECOC (WOLC-ECOC). It starts with an arbitrary valid ECOC and iterates the following two steps until the training risk converges. The first step, named Layered Clustering based ECOC (LC-ECOC), constructs multiple strong classifiers on the most confusing binary-class problem. The second step adds the new classifiers to ECOC by a novel Optimized Weighted (OW) decoding algorithm, where the optimization problem of the decoding is solved by the cutting plane algorithm. Technically, LC-ECOC makes the heuristic training process not blocked by some difficult binary-class problem. OW decoding guarantees the non-increase of the training risk for ensuring a small code length. Results on 14 UCI datasets and a music genre classification problem demonstrate the effectiveness of WOLC-ECOC.
Complex Support Vector Machines for Regression and Quaternary Classification
The paper presents a new framework for complex Support Vector Regression as well as Support Vector Machines for quaternary classification. The method exploits the notion of widely linear estimation to model the input-out relation for complex-valued data and considers two cases: a) the complex data are split into their real and imaginary parts and a typical real kernel is employed to map the complex data to a complexified feature space and b) a pure complex kernel is used to directly map the data to the induced complex feature space. The recently developed Wirtinger's calculus on complex reproducing kernel Hilbert spaces (RKHS) is employed in order to compute the Lagrangian and derive the dual optimization problem. As one of our major results, we prove that any complex SVM/SVR task is equivalent with solving two real SVM/SVR tasks exploiting a specific real kernel which is generated by the chosen complex kernel. In particular, the case of pure complex kernels leads to the generation of new kernels, which have not been considered before. In the classification case, the proposed framework inherently splits the complex space into four parts. This leads naturally in solving the four class-task (quaternary classification), instead of the typical two classes of the real SVM. In turn, this rationale can be used in a multiclass problem as a split-class scenario based on four classes, as opposed to the one-versus-all method; this can lead to significant computational savings. Experiments demonstrate the effectiveness of the proposed framework for regression and classification tasks that involve complex data.
Clustering on Multi-Layer Graphs via Subspace Analysis on Grassmann Manifolds
Relationships between entities in datasets are often of multiple nature, like geographical distance, social relationships, or common interests among people in a social network, for example. This information can naturally be modeled by a set of weighted and undirected graphs that form a global multilayer graph, where the common vertex set represents the entities and the edges on different layers capture the similarities of the entities in term of the different modalities. In this paper, we address the problem of analyzing multi-layer graphs and propose methods for clustering the vertices by efficiently merging the information provided by the multiple modalities. To this end, we propose to combine the characteristics of individual graph layers using tools from subspace analysis on a Grassmann manifold. The resulting combination can then be viewed as a low dimensional representation of the original data which preserves the most important information from diverse relationships between entities. We use this information in new clustering methods and test our algorithm on several synthetic and real world datasets where we demonstrate superior or competitive performances compared to baseline and state-of-the-art techniques. Our generic framework further extends to numerous analysis and learning problems that involve different types of information on graphs.
Penalty-regulated dynamics and robust learning procedures in games
Starting from a heuristic learning scheme for N-person games, we derive a new class of continuous-time learning dynamics consisting of a replicator-like drift adjusted by a penalty term that renders the boundary of the game's strategy space repelling. These penalty-regulated dynamics are equivalent to players keeping an exponentially discounted aggregate of their on-going payoffs and then using a smooth best response to pick an action based on these performance scores. Owing to this inherent duality, the proposed dynamics satisfy a variant of the folk theorem of evolutionary game theory and they converge to (arbitrarily precise) approximations of Nash equilibria in potential games. Motivated by applications to traffic engineering, we exploit this duality further to design a discrete-time, payoff-based learning algorithm which retains these convergence properties and only requires players to observe their in-game payoffs: moreover, the algorithm remains robust in the presence of stochastic perturbations and observation errors, and it does not require any synchronization between players.
Mini-Batch Primal and Dual Methods for SVMs
We address the issue of using mini-batches in stochastic optimization of SVMs. We show that the same quantity, the spectral norm of the data, controls the parallelization speedup obtained for both primal stochastic subgradient descent (SGD) and stochastic dual coordinate ascent (SCDA) methods and use it to derive novel variants of mini-batched SDCA. Our guarantees for both methods are expressed in terms of the original nonsmooth primal problem based on the hinge-loss.
State estimation under non-Gaussian Levy noise: A modified Kalman filtering method
The Kalman filter is extensively used for state estimation for linear systems under Gaussian noise. When non-Gaussian L\'evy noise is present, the conventional Kalman filter may fail to be effective due to the fact that the non-Gaussian L\'evy noise may have infinite variance. A modified Kalman filter for linear systems with non-Gaussian L\'evy noise is devised. It works effectively with reasonable computational cost. Simulation results are presented to illustrate this non-Gaussian filtering method.
Linear NDCG and Pair-wise Loss
Linear NDCG is used for measuring the performance of the Web content quality assessment in ECML/PKDD Discovery Challenge 2010. In this paper, we will prove that the DCG error equals a new pair-wise loss.
Monte-Carlo utility estimates for Bayesian reinforcement learning
This paper introduces a set of algorithms for Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-Carlo estimation of upper bounds on the Bayes-optimal value function is employed to construct an optimistic policy. Secondly, gradient-based algorithms for approximate upper and lower bounds are introduced. Finally, we introduce a new class of gradient algorithms for Bayesian Bellman error minimisation. We theoretically show that the gradient methods are sound. Experimentally, we demonstrate the superiority of the upper bound method in terms of reward obtained. However, we also show that the Bayesian Bellman error method is a close second, despite its significant computational simplicity.
Revealing Cluster Structure of Graph by Path Following Replicator Dynamic
In this paper, we propose a path following replicator dynamic, and investigate its potentials in uncovering the underlying cluster structure of a graph. The proposed dynamic is a generalization of the discrete replicator dynamic. The replicator dynamic has been successfully used to extract dense clusters of graphs; however, it is often sensitive to the degree distribution of a graph, and usually biased by vertices with large degrees, thus may fail to detect the densest cluster. To overcome this problem, we introduce a dynamic parameter, called path parameter, into the evolution process. The path parameter can be interpreted as the maximal possible probability of a current cluster containing a vertex, and it monotonically increases as evolution process proceeds. By limiting the maximal probability, the phenomenon of some vertices dominating the early stage of evolution process is suppressed, thus making evolution process more robust. To solve the optimization problem with a fixed path parameter, we propose an efficient fixed point algorithm. The time complexity of the path following replicator dynamic is only linear in the number of edges of a graph, thus it can analyze graphs with millions of vertices and tens of millions of edges on a common PC in a few minutes. Besides, it can be naturally generalized to hypergraph and graph with edges of different orders. We apply it to four important problems: maximum clique problem, densest k-subgraph problem, structure fitting, and discovery of high-density regions. The extensive experimental results clearly demonstrate its advantages, in terms of robustness, scalability and flexility.
Hybrid Q-Learning Applied to Ubiquitous recommender system
Ubiquitous information access becomes more and more important nowadays and research is aimed at making it adapted to users. Our work consists in applying machine learning techniques in order to bring a solution to some of the problems concerning the acceptance of the system by users. To achieve this, we propose a fundamental shift in terms of how we model the learning of recommender system: inspired by models of human reasoning developed in robotic, we combine reinforcement learning and case-base reasoning to define a recommendation process that uses these two approaches for generating recommendations on different context dimensions (social, temporal, geographic). We describe an implementation of the recommender system based on this framework. We also present preliminary results from experiments with the system and show how our approach increases the recommendation quality.
Spectral Clustering with Epidemic Diffusion
Spectral clustering is widely used to partition graphs into distinct modules or communities. Existing methods for spectral clustering use the eigenvalues and eigenvectors of the graph Laplacian, an operator that is closely associated with random walks on graphs. We propose a new spectral partitioning method that exploits the properties of epidemic diffusion. An epidemic is a dynamic process that, unlike the random walk, simultaneously transitions to all the neighbors of a given node. We show that the replicator, an operator describing epidemic diffusion, is equivalent to the symmetric normalized Laplacian of a reweighted graph with edges reweighted by the eigenvector centralities of their incident nodes. Thus, more weight is given to edges connecting more central nodes. We describe a method that partitions the nodes based on the componentwise ratio of the replicator's second eigenvector to the first, and compare its performance to traditional spectral clustering techniques on synthetic graphs with known community structure. We demonstrate that the replicator gives preference to dense, clique-like structures, enabling it to more effectively discover communities that may be obscured by dense intercommunity linking.
Machine Learning for Bioclimatic Modelling
Many machine learning (ML) approaches are widely used to generate bioclimatic models for prediction of geographic range of organism as a function of climate. Applications such as prediction of range shift in organism, range of invasive species influenced by climate change are important parameters in understanding the impact of climate change. However, success of machine learning-based approaches depends on a number of factors. While it can be safely said that no particular ML technique can be effective in all applications and success of a technique is predominantly dependent on the application or the type of the problem, it is useful to understand their behavior to ensure informed choice of techniques. This paper presents a comprehensive review of machine learning-based bioclimatic model generation and analyses the factors influencing success of such models. Considering the wide use of statistical techniques, in our discussion we also include conventional statistical techniques used in bioclimatic modelling.
A Cooperative Q-learning Approach for Real-time Power Allocation in Femtocell Networks
In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells (primary user) using distributed multi-agent Q-learning. We formulate and solve three problems representing three different Q-learning algorithms: namely, centralized, distributed and partially distributed power control using Q-learning (CPC-Q, DPC-Q and PDPC-Q). CPCQ, although not of practical interest, characterizes the global optimum. Each of DPC-Q and PDPC-Q works in two different learning paradigms: Independent (IL) and Cooperative (CL). The former is considered the simplest form for applying Qlearning in multi-agent scenarios, where all the femtocells learn independently. The latter is the proposed scheme in which femtocells share partial information during the learning process in order to strike a balance between practical relevance and performance. In terms of performance, the simulation results showed that the CL paradigm outperforms the IL paradigm and achieves an aggregate femtocells capacity that is very close to the optimal one. For the practical relevance issue, we evaluate the robustness and scalability of DPC-Q, in real time, by deploying new femtocells in the system during the learning process, where we showed that DPC-Q in the CL paradigm is scalable to large number of femtocells and more robust to the network dynamics compared to the IL paradigm
Gaussian Processes for Nonlinear Signal Processing
Gaussian processes (GPs) are versatile tools that have been successfully employed to solve nonlinear estimation problems in machine learning, but that are rarely used in signal processing. In this tutorial, we present GPs for regression as a natural nonlinear extension to optimal Wiener filtering. After establishing their basic formulation, we discuss several important aspects and extensions, including recursive and adaptive algorithms for dealing with non-stationarity, low-complexity solutions, non-Gaussian noise models and classification scenarios. Furthermore, we provide a selection of relevant applications to wireless digital communications.
Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions
We study the problem of learning Markov decision processes with finite state and action spaces when the transition probability distributions and loss functions are chosen adversarially and are allowed to change with time. We introduce an algorithm whose regret with respect to any policy in a comparison class grows as the square root of the number of rounds of the game, provided the transition probabilities satisfy a uniform mixing condition. Our approach is efficient as long as the comparison class is polynomial and we can compute expectations over sample paths for each policy. Designing an efficient algorithm with small regret for the general case remains an open problem.
A Greedy Approximation of Bayesian Reinforcement Learning with Probably Optimistic Transition Model
Bayesian Reinforcement Learning (RL) is capable of not only incorporating domain knowledge, but also solving the exploration-exploitation dilemma in a natural way. As Bayesian RL is intractable except for special cases, previous work has proposed several approximation methods. However, these methods are usually too sensitive to parameter values, and finding an acceptable parameter setting is practically impossible in many applications. In this paper, we propose a new algorithm that greedily approximates Bayesian RL to achieve robustness in parameter space. We show that for a desired learning behavior, our proposed algorithm has a polynomial sample complexity that is lower than those of existing algorithms. We also demonstrate that the proposed algorithm naturally outperforms other existing algorithms when the prior distributions are not significantly misleading. On the other hand, the proposed algorithm cannot handle greatly misspecified priors as well as the other algorithms can. This is a natural consequence of the fact that the proposed algorithm is greedier than the other algorithms. Accordingly, we discuss a way to select an appropriate algorithm for different tasks based on the algorithms' greediness. We also introduce a new way of simplifying Bayesian planning, based on which future work would be able to derive new algorithms.
Toggling a Genetic Switch Using Reinforcement Learning
In this paper, we consider the problem of optimal exogenous control of gene regulatory networks. Our approach consists in adapting an established reinforcement learning algorithm called the fitted Q iteration. This algorithm infers the control law directly from the measurements of the system's response to external control inputs without the use of a mathematical model of the system. The measurement data set can either be collected from wet-lab experiments or artificially created by computer simulations of dynamical models of the system. The algorithm is applicable to a wide range of biological systems due to its ability to deal with nonlinear and stochastic system dynamics. To illustrate the application of the algorithm to a gene regulatory network, the regulation of the toggle switch system is considered. The control objective of this problem is to drive the concentrations of two specific proteins to a target region in the state space.
Group-Sparse Model Selection: Hardness and Relaxations
Group-based sparsity models are proven instrumental in linear regression problems for recovering signals from much fewer measurements than standard compressive sensing. The main promise of these models is the recovery of "interpretable" signals through the identification of their constituent groups. In this paper, we establish a combinatorial framework for group-model selection problems and highlight the underlying tractability issues. In particular, we show that the group-model selection problem is equivalent to the well-known NP-hard weighted maximum coverage problem (WMC). Leveraging a graph-based understanding of group models, we describe group structures which enable correct model selection in polynomial time via dynamic programming. Furthermore, group structures that lead to totally unimodular constraints have tractable discrete as well as convex relaxations. We also present a generalization of the group-model that allows for within group sparsity, which can be used to model hierarchical sparsity. Finally, we study the Pareto frontier of group-sparse approximations for two tractable models, among which the tree sparsity model, and illustrate selection and computation trade-offs between our framework and the existing convex relaxations.
A Unified Framework for Probabilistic Component Analysis
We present a unifying framework which reduces the construction of probabilistic component analysis techniques to a mere selection of the latent neighbourhood, thus providing an elegant and principled framework for creating novel component analysis models as well as constructing probabilistic equivalents of deterministic component analysis methods. Under our framework, we unify many very popular and well-studied component analysis algorithms, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), some of which have no probabilistic equivalents in literature thus far. We firstly define the Markov Random Fields (MRFs) which encapsulate the latent connectivity of the aforementioned component analysis techniques; subsequently, we show that the projection directions produced by all PCA, LDA, LPP and SFA are also produced by the Maximum Likelihood (ML) solution of a single joint probability density function, composed by selecting one of the defined MRF priors while utilising a simple observation model. Furthermore, we propose novel Expectation Maximization (EM) algorithms, exploiting the proposed joint PDF, while we generalize the proposed methodologies to arbitrary connectivities via parameterizable MRF products. Theoretical analysis and experiments on both simulated and real world data show the usefulness of the proposed framework, by deriving methods which well outperform state-of-the-art equivalents.
Ranking and combining multiple predictors without labeled data
In a broad range of classification and decision making problems, one is given the advice or predictions of several classifiers, of unknown reliability, over multiple questions or queries. This scenario is different from the standard supervised setting, where each classifier accuracy can be assessed using available labeled data, and raises two questions: given only the predictions of several classifiers over a large set of unlabeled test data, is it possible to a) reliably rank them; and b) construct a meta-classifier more accurate than most classifiers in the ensemble? Here we present a novel spectral approach to address these questions. First, assuming conditional independence between classifiers, we show that the off-diagonal entries of their covariance matrix correspond to a rank-one matrix. Moreover, the classifiers can be ranked using the leading eigenvector of this covariance matrix, as its entries are proportional to their balanced accuracies. Second, via a linear approximation to the maximum likelihood estimator, we derive the Spectral Meta-Learner (SML), a novel ensemble classifier whose weights are equal to this eigenvector entries. On both simulated and real data, SML typically achieves a higher accuracy than most classifiers in the ensemble and can provide a better starting point than majority voting, for estimating the maximum likelihood solution. Furthermore, SML is robust to the presence of small malicious groups of classifiers designed to veer the ensemble prediction away from the (unknown) ground truth.
Iterative MapReduce for Large Scale Machine Learning
Large datasets ("Big Data") are becoming ubiquitous because the potential value in deriving insights from data, across a wide range of business and scientific applications, is increasingly recognized. In particular, machine learning - one of the foundational disciplines for data analysis, summarization and inference - on Big Data has become routine at most organizations that operate large clouds, usually based on systems such as Hadoop that support the MapReduce programming paradigm. It is now widely recognized that while MapReduce is highly scalable, it suffers from a critical weakness for machine learning: it does not support iteration. Consequently, one has to program around this limitation, leading to fragile, inefficient code. Further, reliance on the programmer is inherently flawed in a multi-tenanted cloud environment, since the programmer does not have visibility into the state of the system when his or her program executes. Prior work has sought to address this problem by either developing specialized systems aimed at stylized applications, or by augmenting MapReduce with ad hoc support for saving state across iterations (driven by an external loop). In this paper, we advocate support for looping as a first-class construct, and propose an extension of the MapReduce programming paradigm called {\em Iterative MapReduce}. We then develop an optimizer for a class of Iterative MapReduce programs that cover most machine learning techniques, provide theoretical justifications for the key optimization steps, and empirically demonstrate that system-optimized programs for significant machine learning tasks are competitive with state-of-the-art specialized solutions.
A survey on sensing methods and feature extraction algorithms for SLAM problem
This paper is a survey work for a bigger project for designing a Visual SLAM robot to generate 3D dense map of an unknown unstructured environment. A lot of factors have to be considered while designing a SLAM robot. Sensing method of the SLAM robot should be determined by considering the kind of environment to be modeled. Similarly the type of environment determines the suitable feature extraction method. This paper goes through the sensing methods used in some recently published papers. The main objective of this survey is to conduct a comparative study among the current sensing methods and feature extraction algorithms and to extract out the best for our work.
Statistical Regression to Predict Total Cumulative CPU Usage of MapReduce Jobs
Recently, businesses have started using MapReduce as a popular computation framework for processing large amount of data, such as spam detection, and different data mining tasks, in both public and private clouds. Two of the challenging questions in such environments are (1) choosing suitable values for MapReduce configuration parameters e.g., number of mappers, number of reducers, and DFS block size, and (2) predicting the amount of resources that a user should lease from the service provider. Currently, the tasks of both choosing configuration parameters and estimating required resources are solely the users responsibilities. In this paper, we present an approach to provision the total CPU usage in clock cycles of jobs in MapReduce environment. For a MapReduce job, a profile of total CPU usage in clock cycles is built from the job past executions with different values of two configuration parameters e.g., number of mappers, and number of reducers. Then, a polynomial regression is used to model the relation between these configuration parameters and total CPU usage in clock cycles of the job. We also briefly study the influence of input data scaling on measured total CPU usage in clock cycles. This derived model along with the scaling result can then be used to provision the total CPU usage in clock cycles of the same jobs with different input data size. We validate the accuracy of our models using three realistic applications (WordCount, Exim MainLog parsing, and TeraSort). Results show that the predicted total CPU usage in clock cycles of generated resource provisioning options are less than 8% of the measured total CPU usage in clock cycles in our 20-node virtual Hadoop cluster.
Topic Discovery through Data Dependent and Random Projections
We present algorithms for topic modeling based on the geometry of cross-document word-frequency patterns. This perspective gains significance under the so called separability condition. This is a condition on existence of novel-words that are unique to each topic. We present a suite of highly efficient algorithms based on data-dependent and random projections of word-frequency patterns to identify novel words and associated topics. We will also discuss the statistical guarantees of the data-dependent projections method based on two mild assumptions on the prior density of topic document matrix. Our key insight here is that the maximum and minimum values of cross-document frequency patterns projected along any direction are associated with novel words. While our sample complexity bounds for topic recovery are similar to the state-of-art, the computational complexity of our random projection scheme scales linearly with the number of documents and the number of words per document. We present several experiments on synthetic and real-world datasets to demonstrate qualitative and quantitative merits of our scheme.
Subspace Clustering via Thresholding and Spectral Clustering
We consider the problem of clustering a set of high-dimensional data points into sets of low-dimensional linear subspaces. The number of subspaces, their dimensions, and their orientations are unknown. We propose a simple and low-complexity clustering algorithm based on thresholding the correlations between the data points followed by spectral clustering. A probabilistic performance analysis shows that this algorithm succeeds even when the subspaces intersect, and when the dimensions of the subspaces scale (up to a log-factor) linearly in the ambient dimension. Moreover, we prove that the algorithm also succeeds for data points that are subject to erasures with the number of erasures scaling (up to a log-factor) linearly in the ambient dimension. Finally, we propose a simple scheme that provably detects outliers.
A Last-Step Regression Algorithm for Non-Stationary Online Learning
The goal of a learner in standard online learning is to maintain an average loss close to the loss of the best-performing single function in some class. In many real-world problems, such as rating or ranking items, there is no single best target function during the runtime of the algorithm, instead the best (local) target function is drifting over time. We develop a novel last-step minmax optimal algorithm in context of a drift. We analyze the algorithm in the worst-case regret framework and show that it maintains an average loss close to that of the best slowly changing sequence of linear functions, as long as the total of drift is sublinear. In some situations, our bound improves over existing bounds, and additionally the algorithm suffers logarithmic regret when there is no drift. We also build on the H_infinity filter and its bound, and develop and analyze a second algorithm for drifting setting. Synthetic simulations demonstrate the advantages of our algorithms in a worst-case constant drift setting.
A Quorum Sensing Inspired Algorithm for Dynamic Clustering
Quorum sensing is a decentralized biological process, through which a community of cells with no global awareness coordinate their functional behaviors based solely on cell-medium interactions and local decisions. This paper draws inspirations from quorum sensing and colony competition to derive a new algorithm for data clustering. The algorithm treats each data as a single cell, and uses knowledge of local connectivity to cluster cells into multiple colonies simultaneously. It simulates auto-inducers secretion in quorum sensing to tune the influence radius for each cell. At the same time, sparsely distributed core cells spread their influences to form colonies, and interactions between colonies eventually determine each cell's identity. The algorithm has the flexibility to analyze not only static but also time-varying data, which surpasses the capacity of many existing algorithms. Its stability and convergence properties are established. The algorithm is tested on several applications, including both synthetic and real benchmarks data sets, alleles clustering, community detection, image segmentation. In particular, the algorithm's distinctive capability to deal with time-varying data allows us to experiment it on novel applications such as robotic swarms grouping and switching model identification. We believe that the algorithm's promising performance would stimulate many more exciting applications.
$l_{2,p}$ Matrix Norm and Its Application in Feature Selection
Recently, $l_{2,1}$ matrix norm has been widely applied to many areas such as computer vision, pattern recognition, biological study and etc. As an extension of $l_1$ vector norm, the mixed $l_{2,1}$ matrix norm is often used to find jointly sparse solutions. Moreover, an efficient iterative algorithm has been designed to solve $l_{2,1}$-norm involved minimizations. Actually, computational studies have showed that $l_p$-regularization ($0<p<1$) is sparser than $l_1$-regularization, but the extension to matrix norm has been seldom considered. This paper presents a definition of mixed $l_{2,p}$ $(p\in (0, 1])$ matrix pseudo norm which is thought as both generalizations of $l_p$ vector norm to matrix and $l_{2,1}$-norm to nonconvex cases $(0<p<1)$. Fortunately, an efficient unified algorithm is proposed to solve the induced $l_{2,p}$-norm $(p\in (0, 1])$ optimization problems. The convergence can also be uniformly demonstrated for all $p\in (0, 1]$. Typical $p\in (0,1]$ are applied to select features in computational biology and the experimental results show that some choices of $0<p<1$ do improve the sparse pattern of using $p=1$.
On multi-class learning through the minimization of the confusion matrix norm
In imbalanced multi-class classification problems, the misclassification rate as an error measure may not be a relevant choice. Several methods have been developed where the performance measure retained richer information than the mere misclassification rate: misclassification costs, ROC-based information, etc. Following this idea of dealing with alternate measures of performance, we propose to address imbalanced classification problems by using a new measure to be optimized: the norm of the confusion matrix. Indeed, recent results show that using the norm of the confusion matrix as an error measure can be quite interesting due to the fine-grain informations contained in the matrix, especially in the case of imbalanced classes. Our first contribution then consists in showing that optimizing criterion based on the confusion matrix gives rise to a common background for cost-sensitive methods aimed at dealing with imbalanced classes learning problems. As our second contribution, we propose an extension of a recent multi-class boosting method --- namely AdaBoost.MM --- to the imbalanced class problem, by greedily minimizing the empirical norm of the confusion matrix. A theoretical analysis of the properties of the proposed method is presented, while experimental results illustrate the behavior of the algorithm and show the relevancy of the approach compared to other methods.
Markov Chain Monte Carlo for Arrangement of Hyperplanes in Locality-Sensitive Hashing
Since Hamming distances can be calculated by bitwise computations, they can be calculated with less computational load than L2 distances. Similarity searches can therefore be performed faster in Hamming distance space. The elements of Hamming distance space are bit strings. On the other hand, the arrangement of hyperplanes induce the transformation from the feature vectors into feature bit strings. This transformation method is a type of locality-sensitive hashing that has been attracting attention as a way of performing approximate similarity searches at high speed. Supervised learning of hyperplane arrangements allows us to obtain a method that transforms them into feature bit strings reflecting the information of labels applied to higher-dimensional feature vectors. In this p aper, we propose a supervised learning method for hyperplane arrangements in feature space that uses a Markov chain Monte Carlo (MCMC) method. We consider the probability density functions used during learning, and evaluate their performance. We also consider the sampling method for learning data pairs needed in learning, and we evaluate its performance. We confirm that the accuracy of this learning method when using a suitable probability density function and sampling method is greater than the accuracy of existing learning methods.
Margins, Shrinkage, and Boosting
This manuscript shows that AdaBoost and its immediate variants can produce approximate maximum margin classifiers simply by scaling step size choices with a fixed small constant. In this way, when the unscaled step size is an optimal choice, these results provide guarantees for Friedman's empirically successful "shrinkage" procedure for gradient boosting (Friedman, 2000). Guarantees are also provided for a variety of other step sizes, affirming the intuition that increasingly regularized line searches provide improved margin guarantees. The results hold for the exponential loss and similar losses, most notably the logistic loss.
Improving CUR Matrix Decomposition and the Nystr\"{o}m Approximation via Adaptive Sampling
The CUR matrix decomposition and the Nystr\"{o}m approximation are two important low-rank matrix approximation techniques. The Nystr\"{o}m method approximates a symmetric positive semidefinite matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an extension of the Nystr\"{o}m approximation. In this paper we establish a more general error bound for the adaptive column/row sampling algorithm, based on which we propose more accurate CUR and Nystr\"{o}m algorithms with expected relative-error bounds. The proposed CUR and Nystr\"{o}m algorithms also have low time complexity and can avoid maintaining the whole data matrix in RAM. In addition, we give theoretical analysis for the lower error bounds of the standard Nystr\"{o}m method and the ensemble Nystr\"{o}m method. The main theoretical results established in this paper are novel, and our analysis makes no special assumption on the data matrices.
A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems
Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse learning. Recent theoretical investigations have demonstrated their superiority over the convex counterparts in several sparse learning settings. However, solving the non-convex optimization problems associated with non-convex penalties remains a big challenge. A commonly used approach is the Multi-Stage (MS) convex relaxation (or DC programming), which relaxes the original non-convex problem to a sequence of convex problems. This approach is usually not very practical for large-scale problems because its computational cost is a multiple of solving a single convex problem. In this paper, we propose a General Iterative Shrinkage and Thresholding (GIST) algorithm to solve the nonconvex optimization problem for a large class of non-convex penalties. The GIST algorithm iteratively solves a proximal operator problem, which in turn has a closed-form solution for many commonly used penalties. At each outer iteration of the algorithm, we use a line search initialized by the Barzilai-Borwein (BB) rule that allows finding an appropriate step size quickly. The paper also presents a detailed convergence analysis of the GIST algorithm. The efficiency of the proposed algorithm is demonstrated by extensive experiments on large-scale data sets.
On Improving Energy Efficiency within Green Femtocell Networks: A Hierarchical Reinforcement Learning Approach
One of the efficient solutions of improving coverage and increasing capacity in cellular networks is the deployment of femtocells. As the cellular networks are becoming more complex, energy consumption of whole network infrastructure is becoming important in terms of both operational costs and environmental impacts. This paper investigates energy efficiency of two-tier femtocell networks through combining game theory and stochastic learning. With the Stackelberg game formulation, a hierarchical reinforcement learning framework is applied for studying the joint expected utility maximization of macrocells and femtocells subject to the minimum signal-to-interference-plus-noise-ratio requirements. In the learning procedure, the macrocells act as leaders and the femtocells are followers. At each time step, the leaders commit to dynamic strategies based on the best responses of the followers, while the followers compete against each other with no further information but the leaders' transmission parameters. In this paper, we propose two reinforcement learning based intelligent algorithms to schedule each cell's stochastic power levels. Numerical experiments are presented to validate the investigations. The results show that the two learning algorithms substantially improve the energy efficiency of the femtocell networks.
Large-Scale Learning with Less RAM via Randomization
We reduce the memory footprint of popular large-scale online learning methods by projecting our weight vector onto a coarse discrete set using randomized rounding. Compared to standard 32-bit float encodings, this reduces RAM usage by more than 50% during training and by up to 95% when making predictions from a fixed model, with almost no loss in accuracy. We also show that randomized counting can be used to implement per-coordinate learning rates, improving model quality with little additional RAM. We prove these memory-saving methods achieve regret guarantees similar to their exact variants. Empirical evaluation confirms excellent performance, dominating standard approaches across memory versus accuracy tradeoffs.
Recovering Non-negative and Combined Sparse Representations
The non-negative solution to an underdetermined linear system can be uniquely recovered sometimes, even without imposing any additional sparsity constraints. In this paper, we derive conditions under which a unique non-negative solution for such a system can exist, based on the theory of polytopes. Furthermore, we develop the paradigm of combined sparse representations, where only a part of the coefficient vector is constrained to be non-negative, and the rest is unconstrained (general). We analyze the recovery of the unique, sparsest solution, for combined representations, under three different cases of coefficient support knowledge: (a) the non-zero supports of non-negative and general coefficients are known, (b) the non-zero support of general coefficients alone is known, and (c) both the non-zero supports are unknown. For case (c), we propose the combined orthogonal matching pursuit algorithm for coefficient recovery and derive the deterministic sparsity threshold under which recovery of the unique, sparsest coefficient vector is possible. We quantify the order complexity of the algorithms, and examine their performance in exact and approximate recovery of coefficients under various conditions of noise. Furthermore, we also obtain their empirical phase transition characteristics. We show that the basis pursuit algorithm, with partial non-negative constraints, and the proposed greedy algorithm perform better in recovering the unique sparse representation when compared to their unconstrained counterparts. Finally, we demonstrate the utility of the proposed methods in recovering images corrupted by saturation noise.
Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
We consider distributed estimation of the inverse covariance matrix, also called the concentration or precision matrix, in Gaussian graphical models. Traditional centralized estimation often requires global inference of the covariance matrix, which can be computationally intensive in large dimensions. Approximate inference based on message-passing algorithms, on the other hand, can lead to unstable and biased estimation in loopy graphical models. In this paper, we propose a general framework for distributed estimation based on a maximum marginal likelihood (MML) approach. This approach computes local parameter estimates by maximizing marginal likelihoods defined with respect to data collected from local neighborhoods. Due to the non-convexity of the MML problem, we introduce and solve a convex relaxation. The local estimates are then combined into a global estimate without the need for iterative message-passing between neighborhoods. The proposed algorithm is naturally parallelizable and computationally efficient, thereby making it suitable for high-dimensional problems. In the classical regime where the number of variables $p$ is fixed and the number of samples $T$ increases to infinity, the proposed estimator is shown to be asymptotically consistent and to improve monotonically as the local neighborhood size increases. In the high-dimensional scaling regime where both $p$ and $T$ increase to infinity, the convergence rate to the true parameters is derived and is seen to be comparable to centralized maximum likelihood estimation. Extensive numerical experiments demonstrate the improved performance of the two-hop version of the proposed estimator, which suffices to almost close the gap to the centralized maximum likelihood estimator at a reduced computational cost.
Greedy Feature Selection for Subspace Clustering
Unions of subspaces provide a powerful generalization to linear subspace models for collections of high-dimensional data. To learn a union of subspaces from a collection of data, sets of signals in the collection that belong to the same subspace must be identified in order to obtain accurate estimates of the subspace structures present in the data. Recently, sparse recovery methods have been shown to provide a provable and robust strategy for exact feature selection (EFS)--recovering subsets of points from the ensemble that live in the same subspace. In parallel with recent studies of EFS with L1-minimization, in this paper, we develop sufficient conditions for EFS with a greedy method for sparse signal recovery known as orthogonal matching pursuit (OMP). Following our analysis, we provide an empirical study of feature selection strategies for signals living on unions of subspaces and characterize the gap between sparse recovery methods and nearest neighbor (NN)-based approaches. In particular, we demonstrate that sparse recovery methods provide significant advantages over NN methods and the gap between the two approaches is particularly pronounced when the sampling of subspaces in the dataset is sparse. Our results suggest that OMP may be employed to reliably recover exact feature sets in a number of regimes where NN approaches fail to reveal the subspace membership of points in the ensemble.
Node-Based Learning of Multiple Gaussian Graphical Models
We consider the problem of estimating high-dimensional Gaussian graphical models corresponding to a single set of variables under several distinct conditions. This problem is motivated by the task of recovering transcriptional regulatory networks on the basis of gene expression data {containing heterogeneous samples, such as different disease states, multiple species, or different developmental stages}. We assume that most aspects of the conditional dependence networks are shared, but that there are some structured differences between them. Rather than assuming that similarities and differences between networks are driven by individual edges, we take a node-based approach, which in many cases provides a more intuitive interpretation of the network differences. We consider estimation under two distinct assumptions: (1) differences between the K networks are due to individual nodes that are perturbed across conditions, or (2) similarities among the K networks are due to the presence of common hub nodes that are shared across all K networks. Using a row-column overlap norm penalty function, we formulate two convex optimization problems that correspond to these two assumptions. We solve these problems using an alternating direction method of multipliers algorithm, and we derive a set of necessary and sufficient conditions that allows us to decompose the problem into independent subproblems so that our algorithm can be scaled to high-dimensional settings. Our proposal is illustrated on synthetic data, a webpage data set, and a brain cancer gene expression data set.
Estimating Confusions in the ASR Channel for Improved Topic-based Language Model Adaptation
Human language is a combination of elemental languages/domains/styles that change across and sometimes within discourses. Language models, which play a crucial role in speech recognizers and machine translation systems, are particularly sensitive to such changes, unless some form of adaptation takes place. One approach to speech language model adaptation is self-training, in which a language model's parameters are tuned based on automatically transcribed audio. However, transcription errors can misguide self-training, particularly in challenging settings such as conversational speech. In this work, we propose a model that considers the confusions (errors) of the ASR channel. By modeling the likely confusions in the ASR output instead of using just the 1-best, we improve self-training efficacy by obtaining a more reliable reference transcription estimate. We demonstrate improved topic-based language modeling adaptation results over both 1-best and lattice self-training using our ASR channel confusion estimates on telephone conversations.
Separable Dictionary Learning
Many techniques in computer vision, machine learning, and statistics rely on the fact that a signal of interest admits a sparse representation over some dictionary. Dictionaries are either available analytically, or can be learned from a suitable training set. While analytic dictionaries permit to capture the global structure of a signal and allow a fast implementation, learned dictionaries often perform better in applications as they are more adapted to the considered class of signals. In imagery, unfortunately, the numerical burden for (i) learning a dictionary and for (ii) employing the dictionary for reconstruction tasks only allows to deal with relatively small image patches that only capture local image information. The approach presented in this paper aims at overcoming these drawbacks by allowing a separable structure on the dictionary throughout the learning process. On the one hand, this permits larger patch-sizes for the learning phase, on the other hand, the dictionary is applied efficiently in reconstruction tasks. The learning procedure is based on optimizing over a product of spheres which updates the dictionary as a whole, thus enforces basic dictionary properties such as mutual coherence explicitly during the learning procedure. In the special case where no separable structure is enforced, our method competes with state-of-the-art dictionary learning methods like K-SVD.
An Entropy-based Learning Algorithm of Bayesian Conditional Trees
This article offers a modification of Chow and Liu's learning algorithm in the context of handwritten digit recognition. The modified algorithm directs the user to group digits into several classes consisting of digits that are hard to distinguish and then constructing an optimal conditional tree representation for each class of digits instead of for each single digit as done by Chow and Liu (1968). Advantages and extensions of the new method are discussed. Related works of Wong and Wang (1977) and Wong and Poon (1989) which offer a different entropy-based learning algorithm are shown to rest on inappropriate assumptions.
Sparse Projections of Medical Images onto Manifolds
Manifold learning has been successfully applied to a variety of medical imaging problems. Its use in real-time applications requires fast projection onto the low-dimensional space. To this end, out-of-sample extensions are applied by constructing an interpolation function that maps from the input space to the low-dimensional manifold. Commonly used approaches such as the Nystr\"{o}m extension and kernel ridge regression require using all training points. We propose an interpolation function that only depends on a small subset of the input training data. Consequently, in the testing phase each new point only needs to be compared against a small number of input training data in order to project the point onto the low-dimensional space. We interpret our method as an out-of-sample extension that approximates kernel ridge regression. Our method involves solving a simple convex optimization problem and has the attractive property of guaranteeing an upper bound on the approximation error, which is crucial for medical applications. Tuning this error bound controls the sparsity of the resulting interpolation function. We illustrate our method in two clinical applications that require fast mapping of input images onto a low-dimensional space.
Network Detection Theory and Performance
Network detection is an important capability in many areas of applied research in which data can be represented as a graph of entities and relationships. Oftentimes the object of interest is a relatively small subgraph in an enormous, potentially uninteresting background. This aspect characterizes network detection as a "big data" problem. Graph partitioning and network discovery have been major research areas over the last ten years, driven by interest in internet search, cyber security, social networks, and criminal or terrorist activities. The specific problem of network discovery is addressed as a special case of graph partitioning in which membership in a small subgraph of interest must be determined. Algebraic graph theory is used as the basis to analyze and compare different network detection methods. A new Bayesian network detection framework is introduced that partitions the graph based on prior information and direct observations. The new approach, called space-time threat propagation, is proved to maximize the probability of detection and is therefore optimum in the Neyman-Pearson sense. This optimality criterion is compared to spectral community detection approaches which divide the global graph into subsets or communities with optimal connectivity properties. We also explore a new generative stochastic model for covert networks and analyze using receiver operating characteristics the detection performance of both classes of optimal detection techniques.
Sparse Factor Analysis for Learning and Content Analytics
We develop a new model and algorithms for machine learning-based learning analytics, which estimate a learner's knowledge of the concepts underlying a domain, and content analytics, which estimate the relationships among a collection of questions and those concepts. Our model represents the probability that a learner provides the correct response to a question in terms of three factors: their understanding of a set of underlying concepts, the concepts involved in each question, and each question's intrinsic difficulty. We estimate these factors given the graded responses to a collection of questions. The underlying estimation problem is ill-posed in general, especially when only a subset of the questions are answered. The key observation that enables a well-posed solution is the fact that typical educational domains of interest involve only a small number of key concepts. Leveraging this observation, we develop both a bi-convex maximum-likelihood and a Bayesian solution to the resulting SPARse Factor Analysis (SPARFA) problem. We also incorporate user-defined tags on questions to facilitate the interpretability of the estimated factors. Experiments with synthetic and real-world data demonstrate the efficacy of our approach. Finally, we make a connection between SPARFA and noisy, binary-valued (1-bit) dictionary learning that is of independent interest.
A Diffusion Process on Riemannian Manifold for Visual Tracking
Robust visual tracking for long video sequences is a research area that has many important applications. The main challenges include how the target image can be modeled and how this model can be updated. In this paper, we model the target using a covariance descriptor, as this descriptor is robust to problems such as pixel-pixel misalignment, pose and illumination changes, that commonly occur in visual tracking. We model the changes in the template using a generative process. We introduce a new dynamical model for the template update using a random walk on the Riemannian manifold where the covariance descriptors lie in. This is done using log-transformed space of the manifold to free the constraints imposed inherently by positive semidefinite matrices. Modeling template variations and poses kinetics together in the state space enables us to jointly quantify the uncertainties relating to the kinematic states and the template in a principled way. Finally, the sequential inference of the posterior distribution of the kinematic states and the template is done using a particle filter. Our results shows that this principled approach can be robust to changes in illumination, poses and spatial affine transformation. In the experiments, our method outperformed the current state-of-the-art algorithm - the incremental Principal Component Analysis method, particularly when a target underwent fast poses changes and also maintained a comparable performance in stable target tracking cases.
On Learnability, Complexity and Stability
We consider the fundamental question of learnability of a hypotheses class in the supervised learning setting and in the general learning setting introduced by Vladimir Vapnik. We survey classic results characterizing learnability in term of suitable notions of complexity, as well as more recent results that establish the connection between learnability and stability of a learning algorithm.
Efficient Reinforcement Learning for High Dimensional Linear Quadratic Systems
We study the problem of adaptive control of a high dimensional linear quadratic (LQ) system. Previous work established the asymptotic convergence to an optimal controller for various adaptive control schemes. More recently, for the average cost LQ problem, a regret bound of ${O}(\sqrt{T})$ was shown, apart form logarithmic factors. However, this bound scales exponentially with $p$, the dimension of the state space. In this work we consider the case where the matrices describing the dynamic of the LQ system are sparse and their dimensions are large. We present an adaptive control scheme that achieves a regret bound of ${O}(p \sqrt{T})$, apart from logarithmic factors. In particular, our algorithm has an average cost of $(1+\eps)$ times the optimum cost after $T = \polylog(p) O(1/\eps^2)$. This is in comparison to previous work on the dense dynamics where the algorithm requires time that scales exponentially with dimension in order to achieve regret of $\eps$ times the optimal cost. We believe that our result has prominent applications in the emerging area of computational advertising, in particular targeted online advertising and advertising in social networks.
Generalizing k-means for an arbitrary distance matrix
The original k-means clustering method works only if the exact vectors representing the data points are known. Therefore calculating the distances from the centroids needs vector operations, since the average of abstract data points is undefined. Existing algorithms can be extended for those cases when the sole input is the distance matrix, and the exact representing vectors are unknown. This extension may be named relational k-means after a notation for a similar algorithm invented for fuzzy clustering. A method is then proposed for generalizing k-means for scenarios when the data points have absolutely no connection with a Euclidean space.
On Sparsity Inducing Regularization Methods for Machine Learning
During the past years there has been an explosion of interest in learning methods based on sparsity regularization. In this paper, we discuss a general class of such methods, in which the regularizer can be expressed as the composition of a convex function $\omega$ with a linear function. This setting includes several methods such the group Lasso, the Fused Lasso, multi-task learning and many more. We present a general approach for solving regularization problems of this kind, under the assumption that the proximity operator of the function $\omega$ is available. Furthermore, we comment on the application of this approach to support vector machines, a technique pioneered by the groundbreaking work of Vladimir Vapnik.
Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression
In this paper, we consider supervised learning problems such as logistic regression and study the stochastic gradient method with averaging, in the usual stochastic approximation setting where observations are used only once. We show that after $N$ iterations, with a constant step-size proportional to $1/R^2 \sqrt{N}$ where $N$ is the number of observations and $R$ is the maximum norm of the observations, the convergence rate is always of order $O(1/\sqrt{N})$, and improves to $O(R^2 / \mu N)$ where $\mu$ is the lowest eigenvalue of the Hessian at the global optimum (when this eigenvalue is greater than $R^2/\sqrt{N}$). Since $\mu$ does not need to be known in advance, this shows that averaged stochastic gradient is adaptive to \emph{unknown local} strong convexity of the objective function. Our proof relies on the generalized self-concordance properties of the logistic loss and thus extends to all generalized linear models with uniformly bounded features.
Machine learning of hierarchical clustering to segment 2D and 3D images
We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images.
Convex Tensor Decomposition via Structured Schatten Norm Regularization
We discuss structured Schatten norms for tensor decomposition that includes two recently proposed norms ("overlapped" and "latent") for convex-optimization-based tensor decomposition, and connect tensor decomposition with wider literature on structured sparsity. Based on the properties of the structured Schatten norms, we mathematically analyze the performance of "latent" approach for tensor decomposition, which was empirically found to perform better than the "overlapped" approach in some settings. We show theoretically that this is indeed the case. In particular, when the unknown true tensor is low-rank in a specific mode, this approach performs as good as knowing the mode with the smallest rank. Along the way, we show a novel duality result for structures Schatten norms, establish the consistency, and discuss the identifiability of this approach. We confirm through numerical simulations that our theoretical prediction can precisely predict the scaling behavior of the mean squared error.
A Note on k-support Norm Regularized Risk Minimization
The k-support norm has been recently introduced to perform correlated sparsity regularization. Although Argyriou et al. only reported experiments using squared loss, here we apply it to several other commonly used settings resulting in novel machine learning algorithms with interesting and familiar limit cases. Source code for the algorithms described here is available.
Exploiting correlation and budget constraints in Bayesian multi-armed bandit optimization
We address the problem of finding the maximizer of a nonlinear smooth function, that can only be evaluated point-wise, subject to constraints on the number of permitted function evaluations. This problem is also known as fixed-budget best arm identification in the multi-armed bandit literature. We introduce a Bayesian approach for this problem and show that it empirically outperforms both the existing frequentist counterpart and other Bayesian optimization methods. The Bayesian approach places emphasis on detailed modelling, including the modelling of correlations among the arms. As a result, it can perform well in situations where the number of arms is much larger than the number of allowed function evaluation, whereas the frequentist counterpart is inapplicable. This feature enables us to develop and deploy practical applications, such as automatic machine learning toolboxes. The paper presents comprehensive comparisons of the proposed approach, Thompson sampling, classical Bayesian optimization techniques, more recent Bayesian bandit approaches, and state-of-the-art best arm identification methods. This is the first comparison of many of these methods in the literature and allows us to examine the relative merits of their different features.
Sequential testing over multiple stages and performance analysis of data fusion
We describe a methodology for modeling the performance of decision-level data fusion between different sensor configurations, implemented as part of the JIEDDO Analytic Decision Engine (JADE). We first discuss a Bayesian network formulation of classical probabilistic data fusion, which allows elementary fusion structures to be stacked and analyzed efficiently. We then present an extension of the Wald sequential test for combining the outputs of the Bayesian network over time. We discuss an algorithm to compute its performance statistics and illustrate the approach on some examples. This variant of the sequential test involves multiple, distinct stages, where the evidence accumulated from each stage is carried over into the next one, and is motivated by a need to keep certain sensors in the network inactive unless triggered by other sensors.
Efficiently Using Second Order Information in Large l1 Regularization Problems
We propose a novel general algorithm LHAC that efficiently uses second-order information to train a class of large-scale l1-regularized problems. Our method executes cheap iterations while achieving fast local convergence rate by exploiting the special structure of a low-rank matrix, constructed via quasi-Newton approximation of the Hessian of the smooth loss function. A greedy active-set strategy, based on the largest violations in the dual constraints, is employed to maintain a working set that iteratively estimates the complement of the optimal active set. This allows for smaller size of subproblems and eventually identifies the optimal active set. Empirical comparisons confirm that LHAC is highly competitive with several recently proposed state-of-the-art specialized solvers for sparse logistic regression and sparse inverse covariance matrix selection.
ABC Reinforcement Learning
This paper introduces a simple, general framework for likelihood-free Bayesian reinforcement learning, through Approximate Bayesian Computation (ABC). The main advantage is that we only require a prior distribution on a class of simulators (generative models). This is useful in domains where an analytical probabilistic model of the underlying process is too complex to formulate, but where detailed simulation models are available. ABC-RL allows the use of any Bayesian reinforcement learning technique, even in this case. In addition, it can be seen as an extension of rollout algorithms to the case where we do not know what the correct model to draw rollouts from is. We experimentally demonstrate the potential of this approach in a comparison with LSPI. Finally, we introduce a theorem showing that ABC is a sound methodology in principle, even when non-sufficient statistics are used.
Inductive Hashing on Manifolds
Learning based hashing methods have attracted considerable attention due to their ability to greatly increase the scale at which existing algorithms may operate. Most of these methods are designed to generate binary codes that preserve the Euclidean distance in the original space. Manifold learning techniques, in contrast, are better able to model the intrinsic structure embedded in the original high-dimensional data. The complexity of these models, and the problems with out-of-sample data, have previously rendered them unsuitable for application to large-scale embedding, however. In this work, we consider how to learn compact binary embeddings on their intrinsic manifolds. In order to address the above-mentioned difficulties, we describe an efficient, inductive solution to the out-of-sample data problem, and a process by which non-parametric manifold learning may be used as the basis of a hashing method. Our proposed approach thus allows the development of a range of new hashing techniques exploiting the flexibility of the wide variety of manifold learning approaches available. We particularly show that hashing on the basis of t-SNE .
Relevance As a Metric for Evaluating Machine Learning Algorithms
In machine learning, the choice of a learning algorithm that is suitable for the application domain is critical. The performance metric used to compare different algorithms must also reflect the concerns of users in the application domain under consideration. In this work, we propose a novel probability-based performance metric called Relevance Score for evaluating supervised learning algorithms. We evaluate the proposed metric through empirical analysis on a dataset gathered from an intelligent lighting pilot installation. In comparison to the commonly used Classification Accuracy metric, the Relevance Score proves to be more appropriate for a certain class of applications.
Confidence sets for persistence diagrams
Persistent homology is a method for probing topological properties of point clouds and functions. The method involves tracking the birth and death of topological features (2000) as one varies a tuning parameter. Features with short lifetimes are informally considered to be "topological noise," and those with a long lifetime are considered to be "topological signal." In this paper, we bring some statistical ideas to persistent homology. In particular, we derive confidence sets that allow us to separate topological signal from topological noise.
Detecting Overlapping Temporal Community Structure in Time-Evolving Networks
We present a principled approach for detecting overlapping temporal community structure in dynamic networks. Our method is based on the following framework: find the overlapping temporal community structure that maximizes a quality function associated with each snapshot of the network subject to a temporal smoothness constraint. A novel quality function and a smoothness constraint are proposed to handle overlaps, and a new convex relaxation is used to solve the resulting combinatorial optimization problem. We provide theoretical guarantees as well as experimental results that reveal community structure in real and synthetic networks. Our main insight is that certain structures can be identified only when temporal correlation is considered and when communities are allowed to overlap. In general, discovering such overlapping temporal community structure can enhance our understanding of real-world complex networks by revealing the underlying stability behind their seemingly chaotic evolution.
Scalable Text and Link Analysis with Mixed-Topic Link Models
Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.
On the symmetrical Kullback-Leibler Jeffreys centroids
Due to the success of the bag-of-word modeling paradigm, clustering histograms has become an important ingredient of modern information processing. Clustering histograms can be performed using the celebrated $k$-means centroid-based algorithm. From the viewpoint of applications, it is usually required to deal with symmetric distances. In this letter, we consider the Jeffreys divergence that symmetrizes the Kullback-Leibler divergence, and investigate the computation of Jeffreys centroids. We first prove that the Jeffreys centroid can be expressed analytically using the Lambert $W$ function for positive histograms. We then show how to obtain a fast guaranteed approximation when dealing with frequency histograms. Finally, we conclude with some remarks on the $k$-means histogram clustering.
Universal Approximation Depth and Errors of Narrow Belief Networks with Discrete Units
We generalize recent theoretical work on the minimal number of layers of narrow deep belief networks that can approximate any probability distribution on the states of their visible units arbitrarily well. We relax the setting of binary units (Sutskever and Hinton, 2008; Le Roux and Bengio, 2008, 2010; Mont\'ufar and Ay, 2011) to units with arbitrary finite state spaces, and the vanishing approximation error to an arbitrary approximation error tolerance. For example, we show that a $q$-ary deep belief network with $L\geq 2+\frac{q^{\lceil m-\delta \rceil}-1}{q-1}$ layers of width $n \leq m + \log_q(m) + 1$ for some $m\in \mathbb{N}$ can approximate any probability distribution on $\{0,1,\ldots,q-1\}^n$ without exceeding a Kullback-Leibler divergence of $\delta$. Our analysis covers discrete restricted Boltzmann machines and na\"ive Bayes models as special cases.
Independent Vector Analysis: Identification Conditions and Performance Bounds
Recently, an extension of independent component analysis (ICA) from one to multiple datasets, termed independent vector analysis (IVA), has been the subject of significant research interest. IVA has also been shown to be a generalization of Hotelling's canonical correlation analysis. In this paper, we provide the identification conditions for a general IVA formulation, which accounts for linear, nonlinear, and sample-to-sample dependencies. The identification conditions are a generalization of previous results for ICA and for IVA when samples are independently and identically distributed. Furthermore, a principal aim of IVA is the identification of dependent sources between datasets. Thus, we provide the additional conditions for when the arbitrary ordering of the sources within each dataset is common. Performance bounds in terms of the Cramer-Rao lower bound are also provided for the demixing matrices and interference to source ratio. The performance of two IVA algorithms are compared to the theoretical bounds.
Translation-Invariant Shrinkage/Thresholding of Group Sparse Signals
This paper addresses signal denoising when large-amplitude coefficients form clusters (groups). The L1-norm and other separable sparsity models do not capture the tendency of coefficients to cluster (group sparsity). This work develops an algorithm, called 'overlapping group shrinkage' (OGS), based on the minimization of a convex cost function involving a group-sparsity promoting penalty function. The groups are fully overlapping so the denoising method is translation-invariant and blocking artifacts are avoided. Based on the principle of majorization-minimization (MM), we derive a simple iterative minimization algorithm that reduces the cost function monotonically. A procedure for setting the regularization parameter, based on attenuating the noise to a specified level, is also described. The proposed approach is illustrated on speech enhancement, wherein the OGS approach is applied in the short-time Fourier transform (STFT) domain. The denoised speech produced by OGS does not suffer from musical noise.
Parallel Computation Is ESS
There are enormous amount of examples of Computation in nature, exemplified across multiple species in biology. One crucial aim for these computations across all life forms their ability to learn and thereby increase the chance of their survival. In the current paper a formal definition of autonomous learning is proposed. From that definition we establish a Turing Machine model for learning, where rule tables can be added or deleted, but can not be modified. Sequential and parallel implementations of this model are discussed. It is found that for general purpose learning based on this model, the implementations capable of parallel execution would be evolutionarily stable. This is proposed to be of the reasons why in Nature parallelism in computation is found in abundance.
Sparse Signal Processing with Linear and Nonlinear Observations: A Unified Shannon-Theoretic Approach
We derive fundamental sample complexity bounds for recovering sparse and structured signals for linear and nonlinear observation models including sparse regression, group testing, multivariate regression and problems with missing features. In general, sparse signal processing problems can be characterized in terms of the following Markovian property. We are given a set of $N$ variables $X_1,X_2,\ldots,X_N$, and there is an unknown subset of variables $S \subset \{1,\ldots,N\}$ that are relevant for predicting outcomes $Y$. More specifically, when $Y$ is conditioned on $\{X_n\}_{n\in S}$ it is conditionally independent of the other variables, $\{X_n\}_{n \not \in S}$. Our goal is to identify the set $S$ from samples of the variables $X$ and the associated outcomes $Y$. We characterize this problem as a version of the noisy channel coding problem. Using asymptotic information theoretic analyses, we establish mutual information formulas that provide sufficient and necessary conditions on the number of samples required to successfully recover the salient variables. These mutual information expressions unify conditions for both linear and nonlinear observations. We then compute sample complexity bounds for the aforementioned models, based on the mutual information expressions in order to demonstrate the applicability and flexibility of our results in general sparse signal processing models.
Improved Performance of Unsupervised Method by Renovated K-Means
Clustering is a separation of data into groups of similar objects. Every group called cluster consists of objects that are similar to one another and dissimilar to objects of other groups. In this paper, the K-Means algorithm is implemented by three distance functions and to identify the optimal distance function for clustering methods. The proposed K-Means algorithm is compared with K-Means, Static Weighted K-Means (SWK-Means) and Dynamic Weighted K-Means (DWK-Means) algorithm by using Davis Bouldin index, Execution Time and Iteration count methods. Experimental results show that the proposed K-Means algorithm performed better on Iris and Wine dataset when compared with other three clustering methods.
Representation, Approximation and Learning of Submodular Functions Using Low-rank Decision Trees
We study the complexity of approximate representation and learning of submodular functions over the uniform distribution on the Boolean hypercube $\{0,1\}^n$. Our main result is the following structural theorem: any submodular function is $\epsilon$-close in $\ell_2$ to a real-valued decision tree (DT) of depth $O(1/\epsilon^2)$. This immediately implies that any submodular function is $\epsilon$-close to a function of at most $2^{O(1/\epsilon^2)}$ variables and has a spectral $\ell_1$ norm of $2^{O(1/\epsilon^2)}$. It also implies the closest previous result that states that submodular functions can be approximated by polynomials of degree $O(1/\epsilon^2)$ (Cheraghchi et al., 2012). Our result is proved by constructing an approximation of a submodular function by a DT of rank $4/\epsilon^2$ and a proof that any rank-$r$ DT can be $\epsilon$-approximated by a DT of depth $\frac{5}{2}(r+\log(1/\epsilon))$. We show that these structural results can be exploited to give an attribute-efficient PAC learning algorithm for submodular functions running in time $\tilde{O}(n^2) \cdot 2^{O(1/\epsilon^{4})}$. The best previous algorithm for the problem requires $n^{O(1/\epsilon^{2})}$ time and examples (Cheraghchi et al., 2012) but works also in the agnostic setting. In addition, we give improved learning algorithms for a number of related settings. We also prove that our PAC and agnostic learning algorithms are essentially optimal via two lower bounds: (1) an information-theoretic lower bound of $2^{\Omega(1/\epsilon^{2/3})}$ on the complexity of learning monotone submodular functions in any reasonable model; (2) computational lower bound of $n^{\Omega(1/\epsilon^{2/3})}$ based on a reduction to learning of sparse parities with noise, widely-believed to be intractable. These are the first lower bounds for learning of submodular functions over the uniform distribution.
O(logT) Projections for Stochastic Optimization of Smooth and Strongly Convex Functions
Traditional algorithms for stochastic optimization require projecting the solution at each iteration into a given domain to ensure its feasibility. When facing complex domains, such as positive semi-definite cones, the projection operation can be expensive, leading to a high computational cost per iteration. In this paper, we present a novel algorithm that aims to reduce the number of projections for stochastic optimization. The proposed algorithm combines the strength of several recent developments in stochastic optimization, including mini-batch, extra-gradient, and epoch gradient descent, in order to effectively explore the smoothness and strong convexity. We show, both in expectation and with a high probability, that when the objective function is both smooth and strongly convex, the proposed algorithm achieves the optimal $O(1/T)$ rate of convergence with only $O(\log T)$ projections. Our empirical study verifies the theoretical result.
A Fast Semidefinite Approach to Solving Binary Quadratic Problems
Many computer vision problems can be formulated as binary quadratic programs (BQPs). Two classic relaxation methods are widely used for solving BQPs, namely, spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high for large scale problems. We present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. Extensive experiments on various applications including clustering, image segmentation, co-segmentation and registration demonstrate the usefulness of our SDP formulation for solving large-scale BQPs.
A Novel Frank-Wolfe Algorithm. Analysis and Applications to Large-Scale SVM Training
Recently, there has been a renewed interest in the machine learning community for variants of a sparse greedy approximation procedure for concave optimization known as {the Frank-Wolfe (FW) method}. In particular, this procedure has been successfully applied to train large-scale instances of non-linear Support Vector Machines (SVMs). Specializing FW to SVM training has allowed to obtain efficient algorithms but also important theoretical results, including convergence analysis of training algorithms and new characterizations of model sparsity. In this paper, we present and analyze a novel variant of the FW method based on a new way to perform away steps, a classic strategy used to accelerate the convergence of the basic FW procedure. Our formulation and analysis is focused on a general concave maximization problem on the simplex. However, the specialization of our algorithm to quadratic forms is strongly related to some classic methods in computational geometry, namely the Gilbert and MDM algorithms. On the theoretical side, we demonstrate that the method matches the guarantees in terms of convergence rate and number of iterations obtained by using classic away steps. In particular, the method enjoys a linear rate of convergence, a result that has been recently proved for MDM on quadratic forms. On the practical side, we provide experiments on several classification datasets, and evaluate the results using statistical tests. Experiments show that our method is faster than the FW method with classic away steps, and works well even in the cases in which classic away steps slow down the algorithm. Furthermore, these improvements are obtained without sacrificing the predictive accuracy of the obtained SVM model.
Estimating Phoneme Class Conditional Probabilities from Raw Speech Signal using Convolutional Neural Networks
In hybrid hidden Markov model/artificial neural networks (HMM/ANN) automatic speech recognition (ASR) system, the phoneme class conditional probabilities are estimated by first extracting acoustic features from the speech signal based on prior knowledge such as, speech perception or/and speech production knowledge, and, then modeling the acoustic features with an ANN. Recent advances in machine learning techniques, more specifically in the field of image processing and text processing, have shown that such divide and conquer strategy (i.e., separating feature extraction and modeling steps) may not be necessary. Motivated from these studies, in the framework of convolutional neural networks (CNNs), this paper investigates a novel approach, where the input to the ANN is raw speech signal and the output is phoneme class conditional probability estimates. On TIMIT phoneme recognition task, we study different ANN architectures to show the benefit of CNNs and compare the proposed approach against conventional approach where, spectral-based feature MFCC is extracted and modeled by a multilayer perceptron. Our studies show that the proposed approach can yield comparable or better phoneme recognition performance when compared to the conventional approach. It indicates that CNNs can learn features relevant for phoneme classification automatically from the raw speech signal.
Efficient Distance Metric Learning by Adaptive Sampling and Mini-Batch Stochastic Gradient Descent (SGD)
Distance metric learning (DML) is an important task that has found applications in many domains. The high computational cost of DML arises from the large number of variables to be determined and the constraint that a distance metric has to be a positive semi-definite (PSD) matrix. Although stochastic gradient descent (SGD) has been successfully applied to improve the efficiency of DML, it can still be computationally expensive because in order to ensure that the solution is a PSD matrix, it has to, at every iteration, project the updated distance metric onto the PSD cone, an expensive operation. We address this challenge by developing two strategies within SGD, i.e. mini-batch and adaptive sampling, to effectively reduce the number of updates (i.e., projections onto the PSD cone) in SGD. We also develop hybrid approaches that combine the strength of adaptive sampling with that of mini-batch online learning techniques to further improve the computational efficiency of SGD for DML. We prove the theoretical guarantees for both adaptive sampling and mini-batch based approaches for DML. We also conduct an extensive empirical study to verify the effectiveness of the proposed algorithms for DML.
Fast SVM training using approximate extreme points
Applications of non-linear kernel Support Vector Machines (SVMs) to large datasets is seriously hampered by its excessive training time. We propose a modification, called the approximate extreme points support vector machine (AESVM), that is aimed at overcoming this burden. Our approach relies on conducting the SVM optimization over a carefully selected subset, called the representative set, of the training dataset. We present analytical results that indicate the similarity of AESVM and SVM solutions. A linear time algorithm based on convex hulls and extreme points is used to compute the representative set in kernel space. Extensive computational experiments on nine datasets compared AESVM to LIBSVM \citep{LIBSVM}, CVM \citep{Tsang05}, BVM \citep{Tsang07}, LASVM \citep{Bordes05}, $\text{SVM}^{\text{perf}}$ \citep{Joachims09}, and the random features method \citep{rahimi07}. Our AESVM implementation was found to train much faster than the other methods, while its classification accuracy was similar to that of LIBSVM in all cases. In particular, for a seizure detection dataset, AESVM training was almost $10^3$ times faster than LIBSVM and LASVM and more than forty times faster than CVM and BVM. Additionally, AESVM also gave competitively fast classification times.
Generalization Bounds for Domain Adaptation
In this paper, we provide a new framework to obtain the generalization bounds of the learning process for domain adaptation, and then apply the derived bounds to analyze the asymptotical convergence of the learning process. Without loss of generality, we consider two kinds of representative domain adaptation: one is with multiple sources and the other is combining source and target data. In particular, we use the integral probability metric to measure the difference between two domains. For either kind of domain adaptation, we develop a related Hoeffding-type deviation inequality and a symmetrization inequality to achieve the corresponding generalization bound based on the uniform entropy number. We also generalized the classical McDiarmid's inequality to a more general setting where independent random variables can take values from different domains. By using this inequality, we then obtain generalization bounds based on the Rademacher complexity. Afterwards, we analyze the asymptotic convergence and the rate of convergence of the learning process for such kind of domain adaptation. Meanwhile, we discuss the factors that affect the asymptotic behavior of the learning process and the numerical experiments support our theoretical findings as well.
Bug Classification: Feature Extraction and Comparison of Event Model using Na\"ive Bayes Approach
In software industries, individuals at different levels from customer to an engineer apply diverse mechanisms to detect to which class a particular bug should be allocated. Sometimes while a simple search in Internet might help, in many other cases a lot of effort is spent in analyzing the bug report to classify the bug. So there is a great need of a structured mining algorithm - where given a crash log, the existing bug database could be mined to find out the class to which the bug should be allocated. This would involve Mining patterns and applying different classification algorithms. This paper focuses on the feature extraction, noise reduction in data and classification of network bugs using probabilistic Na\"ive Bayes approach. Different event models like Bernoulli and Multinomial are applied on the extracted features. When new, unseen bugs are given as input to the algorithms, the performance comparison of different algorithms is done on the basis of accuracy and recall parameters.
Image Retrieval using Histogram Factorization and Contextual Similarity Learning
Image retrieval has been a top topic in the field of both computer vision and machine learning for a long time. Content based image retrieval, which tries to retrieve images from a database visually similar to a query image, has attracted much attention. Two most important issues of image retrieval are the representation and ranking of the images. Recently, bag-of-words based method has shown its power as a representation method. Moreover, nonnegative matrix factorization is also a popular way to represent the data samples. In addition, contextual similarity learning has also been studied and proven to be an effective method for the ranking problem. However, these technologies have never been used together. In this paper, we developed an effective image retrieval system by representing each image using the bag-of-words method as histograms, and then apply the nonnegative matrix factorization to factorize the histograms, and finally learn the ranking score using the contextual similarity learning method. The proposed novel system is evaluated on a large scale image database and the effectiveness is shown.
A General Framework for Interacting Bayes-Optimally with Self-Interested Agents using Arbitrary Parametric Model and Model Prior
Recent advances in Bayesian reinforcement learning (BRL) have shown that Bayes-optimality is theoretically achievable by modeling the environment's latent dynamics using Flat-Dirichlet-Multinomial (FDM) prior. In self-interested multi-agent environments, the transition dynamics are mainly controlled by the other agent's stochastic behavior for which FDM's independence and modeling assumptions do not hold. As a result, FDM does not allow the other agent's behavior to be generalized across different states nor specified using prior domain knowledge. To overcome these practical limitations of FDM, we propose a generalization of BRL to integrate the general class of parametric models and model priors, thus allowing practitioners' domain knowledge to be exploited to produce a fine-grained and compact representation of the other agent's behavior. Empirical evaluation shows that our approach outperforms existing multi-agent reinforcement learning algorithms.
Learning Coverage Functions and Private Release of Marginals
We study the problem of approximating and learning coverage functions. A function $c: 2^{[n]} \rightarrow \mathbf{R}^{+}$ is a coverage function, if there exists a universe $U$ with non-negative weights $w(u)$ for each $u \in U$ and subsets $A_1, A_2, \ldots, A_n$ of $U$ such that $c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u)$. Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any $\gamma,\delta>0$, given random and uniform examples of an unknown coverage function $c$, finds a function $h$ that approximates $c$ within factor $1+\gamma$ on all but $\delta$-fraction of the points in time $poly(n,1/\gamma,1/\delta)$. This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess $\ell_1$-error $\epsilon$ over all product and symmetric distributions in time $n^{\log(1/\epsilon)}$. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time $2^{\tilde{O}(n^{1/3})}$ (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any $k \leq n$, we obtain private release of $k$-way marginals with average error $\bar{\alpha}$ in time $n^{O(\log(1/\bar{\alpha}))}$.
ClusterCluster: Parallel Markov Chain Monte Carlo for Dirichlet Process Mixtures
The Dirichlet process (DP) is a fundamental mathematical tool for Bayesian nonparametric modeling, and is widely used in tasks such as density estimation, natural language processing, and time series modeling. Although MCMC inference methods for the DP often provide a gold standard in terms asymptotic accuracy, they can be computationally expensive and are not obviously parallelizable. We propose a reparameterization of the Dirichlet process that induces conditional independencies between the atoms that form the random measure. This conditional independence enables many of the Markov chain transition operators for DP inference to be simulated in parallel across multiple cores. Applied to mixture modeling, our approach enables the Dirichlet process to simultaneously learn clusters that describe the data and superclusters that define the granularity of parallelization. Unlike previous approaches, our technique does not require alteration of the model and leaves the true posterior distribution invariant. It also naturally lends itself to a distributed software implementation in terms of Map-Reduce, which we test in cluster configurations of over 50 machines and 100 cores. We present experiments exploring the parallel efficiency and convergence properties of our approach on both synthetic and real-world data, including runs on 1MM data vectors in 256 dimensions.
The PAV algorithm optimizes binary proper scoring rules
There has been much recent interest in application of the pool-adjacent-violators (PAV) algorithm for the purpose of calibrating the probabilistic outputs of automatic pattern recognition and machine learning algorithms. Special cost functions, known as proper scoring rules form natural objective functions to judge the goodness of such calibration. We show that for binary pattern classifiers, the non-parametric optimization of calibration, subject to a monotonicity constraint, can be solved by PAV and that this solution is optimal for all regular binary proper scoring rules. This extends previous results which were limited to convex binary proper scoring rules. We further show that this result holds not only for calibration of probabilities, but also for calibration of log-likelihood-ratios, in which case optimality holds independently of the prior probabilities of the pattern classes.
Multiple decision trees
This paper describes experiments, on two domains, to investigate the effect of averaging over predictions of multiple decision trees, instead of using a single tree. Other authors have pointed out theoretical and commonsense reasons for preferring the multiple tree approach. Ideally, we would like to consider predictions from all trees, weighted by their probability. However, there is a vast number of different trees, and it is difficult to estimate the probability of each tree. We sidestep the estimation problem by using a modified version of the ID3 algorithm to build good trees, and average over only these trees. Our results are encouraging. For each domain, we managed to produce a small number of good trees. We find that it is best to average across sets of trees with different structure; this usually gives better performance than any of the constituent trees, including the ID3 tree.
Kernel Reconstruction ICA for Sparse Representation
Independent Component Analysis (ICA) is an effective unsupervised tool to learn statistically independent representation. However, ICA is not only sensitive to whitening but also difficult to learn an over-complete basis. Consequently, ICA with soft Reconstruction cost(RICA) was presented to learn sparse representations with over-complete basis even on unwhitened data. Whereas RICA is infeasible to represent the data with nonlinear structure due to its intrinsic linearity. In addition, RICA is essentially an unsupervised method and can not utilize the class information. In this paper, we propose a kernel ICA model with reconstruction constraint (kRICA) to capture the nonlinear features. To bring in the class information, we further extend the unsupervised kRICA to a supervised one by introducing a discrimination constraint, namely d-kRICA. This constraint leads to learn a structured basis consisted of basis vectors from different basis subsets corresponding to different class labels. Then each subset will sparsely represent well for its own class but not for the others. Furthermore, data samples belonging to the same class will have similar representations, and thereby the learned sparse representations can take more discriminative power. Experimental results validate the effectiveness of kRICA and d-kRICA for image classification.
Entropy landscape of solutions in the binary perceptron problem
The statistical picture of the solution space for a binary perceptron is studied. The binary perceptron learns a random classification of input random patterns by a set of binary synaptic weights. The learning of this network is difficult especially when the pattern (constraint) density is close to the capacity, which is supposed to be intimately related to the structure of the solution space. The geometrical organization is elucidated by the entropy landscape from a reference configuration and of solution-pairs separated by a given Hamming distance in the solution space. We evaluate the entropy at the annealed level as well as replica symmetric level and the mean field result is confirmed by the numerical simulations on single instances using the proposed message passing algorithms. From the first landscape (a random configuration as a reference), we see clearly how the solution space shrinks as more constraints are added. From the second landscape of solution-pairs, we deduce the coexistence of clustering and freezing in the solution space.
The BOSARIS Toolkit: Theory, Algorithms and Code for Surviving the New DCF
The change of two orders of magnitude in the 'new DCF' of NIST's SRE'10, relative to the 'old DCF' evaluation criterion, posed a difficult challenge for participants and evaluator alike. Initially, participants were at a loss as to how to calibrate their systems, while the evaluator underestimated the required number of evaluation trials. After the fact, it is now obvious that both calibration and evaluation require very large sets of trials. This poses the challenges of (i) how to decide what number of trials is enough, and (ii) how to process such large data sets with reasonable memory and CPU requirements. After SRE'10, at the BOSARIS Workshop, we built solutions to these problems into the freely available BOSARIS Toolkit. This paper explains the principles and algorithms behind this toolkit. The main contributions of the toolkit are: 1. The Normalized Bayes Error-Rate Plot, which analyses likelihood- ratio calibration over a wide range of DCF operating points. These plots also help in judging the adequacy of the sizes of calibration and evaluation databases. 2. Efficient algorithms to compute DCF and minDCF for large score files, over the range of operating points required by these plots. 3. A new score file format, which facilitates working with very large trial lists. 4. A faster logistic regression optimizer for fusion and calibration. 5. A principled way to define EER (equal error rate), which is of practical interest when the absolute error count is small.