title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Conditions for Convergence in Regularized Machine Learning Objectives
Analysis of the convergence rates of modern convex optimization algorithms can be achived through binary means: analysis of emperical convergence, or analysis of theoretical convergence. These two pathways of capturing information diverge in efficacy when moving to the world of distributed computing, due to the introduction of non-intuitive, non-linear slowdowns associated with broadcasting, and in some cases, gathering operations. Despite these nuances in the rates of convergence, we can still show the existence of convergence, and lower bounds for the rates. This paper will serve as a helpful cheat-sheet for machine learning practitioners encountering this problem class in the field.
Machine learning on images using a string-distance
We present a new method for image feature-extraction which is based on representing an image by a finite-dimensional vector of distances that measure how different the image is from a set of image prototypes. We use the recently introduced Universal Image Distance (UID) \cite{RatsabyChesterIEEE2012} to compare the similarity between an image and a prototype image. The advantage in using the UID is the fact that no domain knowledge nor any image analysis need to be done. Each image is represented by a finite dimensional feature vector whose components are the UID values between the image and a finite set of image prototypes from each of the feature categories. The method is automatic since once the user selects the prototype images, the feature vectors are automatically calculated without the need to do any image analysis. The prototype images can be of different size, in particular, different than the image size. Based on a collection of such cases any supervised or unsupervised learning algorithm can be used to train and produce an image classifier or image cluster analysis. In this paper we present the image feature-extraction method and use it on several supervised and unsupervised learning experiments for satellite image data.
Horizon-Independent Optimal Prediction with Log-Loss in Exponential Families
We study online learning under logarithmic loss with regular parametric models. Hedayati and Bartlett (2012b) showed that a Bayesian prediction strategy with Jeffreys prior and sequential normalized maximum likelihood (SNML) coincide and are optimal if and only if the latter is exchangeable, and if and only if the optimal strategy can be calculated without knowing the time horizon in advance. They put forward the question what families have exchangeable SNML strategies. This paper fully answers this open problem for one-dimensional exponential families. The exchangeability can happen only for three classes of natural exponential family distributions, namely the Gaussian, Gamma, and the Tweedie exponential family of order 3/2. Keywords: SNML Exchangeability, Exponential Family, Online Learning, Logarithmic Loss, Bayesian Strategy, Jeffreys Prior, Fisher Information1
Generalized Centroid Estimators in Bioinformatics
In a number of estimation problems in bioinformatics, accuracy measures of the target problem are usually given, and it is important to design estimators that are suitable to those accuracy measures. However, there is often a discrepancy between an employed estimator and a given accuracy measure of the problem. In this study, we introduce a general class of efficient estimators for estimation problems on high-dimensional binary spaces, which representmany fundamental problems in bioinformatics. Theoretical analysis reveals that the proposed estimators generally fit with commonly-used accuracy measures (e.g. sensitivity, PPV, MCC and F-score) as well as it can be computed efficiently in many cases, and cover a wide range of problems in bioinformatics from the viewpoint of the principle of maximum expected accuracy (MEA). It is also shown that some important algorithms in bioinformatics can be interpreted in a unified manner. Not only the concept presented in this paper gives a useful framework to design MEA-based estimators but also it is highly extendable and sheds new light on many problems in bioinformatics.
Ensembles of Classifiers based on Dimensionality Reduction
We present a novel approach for the construction of ensemble classifiers based on dimensionality reduction. Dimensionality reduction methods represent datasets using a small number of attributes while preserving the information conveyed by the original dataset. The ensemble members are trained based on dimension-reduced versions of the training set. These versions are obtained by applying dimensionality reduction to the original training set using different values of the input parameters. This construction meets both the diversity and accuracy criteria which are required to construct an ensemble classifier where the former criterion is obtained by the various input parameter values and the latter is achieved due to the decorrelation and noise reduction properties of dimensionality reduction. In order to classify a test sample, it is first embedded into the dimension reduced space of each individual classifier by using an out-of-sample extension algorithm. Each classifier is then applied to the embedded sample and the classification is obtained via a voting scheme. We present three variations of the proposed approach based on the Random Projections, the Diffusion Maps and the Random Subspaces dimensionality reduction algorithms. We also present a multi-strategy ensemble which combines AdaBoost and Diffusion Maps. A comparison is made with the Bagging, AdaBoost, Rotation Forest ensemble classifiers and also with the base classifier which does not incorporate dimensionality reduction. Our experiments used seventeen benchmark datasets from the UCI repository. The results obtained by the proposed algorithms were superior in many cases to other algorithms.
Meta Path-Based Collective Classification in Heterogeneous Information Networks
Collective classification has been intensively studied due to its impact in many important applications, such as web mining, bioinformatics and citation analysis. Collective classification approaches exploit the dependencies of a group of linked objects whose class labels are correlated and need to be predicted simultaneously. In this paper, we focus on studying the collective classification problem in heterogeneous networks, which involves multiple types of data objects interconnected by multiple types of links. Intuitively, two objects are correlated if they are linked by many paths in the network. However, most existing approaches measure the dependencies among objects through directly links or indirect links without considering the different semantic meanings behind different paths. In this paper, we study the collective classification problem taht is defined among the same type of objects in heterogenous networks. Moreover, by considering different linkage paths in the network, one can capture the subtlety of different types of dependencies among objects. We introduce the concept of meta-path based dependencies among objects, where a meta path is a path consisting a certain sequence of linke types. We show that the quality of collective classification results strongly depends upon the meta paths used. To accommodate the large network size, a novel solution, called HCC (meta-path based Heterogenous Collective Classification), is developed to effectively assign labels to a group of instances that are interconnected through different meta-paths. The proposed HCC model can capture different types of dependencies among objects with respect to different meta paths. Empirical studies on real-world networks demonstrate that effectiveness of the proposed meta path-based collective classification approach.
Robustness of Random Forest-based gene selection methods
Gene selection is an important part of microarray data analysis because it provides information that can lead to a better mechanistic understanding of an investigated phenomenon. At the same time, gene selection is very difficult because of the noisy nature of microarray data. As a consequence, gene selection is often performed with machine learning methods. The Random Forest method is particularly well suited for this purpose. In this work, four state-of-the-art Random Forest-based feature selection methods were compared in a gene selection context. The analysis focused on the stability of selection because, although it is necessary for determining the significance of results, it is often ignored in similar studies. The comparison of post-selection accuracy in the validation of Random Forest classifiers revealed that all investigated methods were equivalent in this context. However, the methods substantially differed with respect to the number of selected genes and the stability of selection. Of the analysed methods, the Boruta algorithm predicted the most genes as potentially important. The post-selection classifier error rate, which is a frequently used measure, was found to be a potentially deceptive measure of gene selection quality. When the number of consistently selected genes was considered, the Boruta algorithm was clearly the best. Although it was also the most computationally intensive method, the Boruta algorithm's computational demands could be reduced to levels comparable to those of other algorithms by replacing the Random Forest importance with a comparable measure from Random Ferns (a similar but simplified classifier). Despite their design assumptions, the minimal optimal selection methods, were found to select a high fraction of false positives.
On the Complexity Analysis of Randomized Block-Coordinate Descent Methods
In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in [8,11] for minimizing the sum of a smooth convex function and a block-separable convex function. In particular, we extend Nesterov's technique developed in [8] for analyzing the RBCD method for minimizing a smooth convex function over a block-separable closed convex set to the aforementioned more general problem and obtain a sharper expected-value type of convergence rate than the one implied in [11]. Also, we obtain a better high-probability type of iteration complexity, which improves upon the one in [11] by at least the amount $O(n/\epsilon)$, where $\epsilon$ is the target solution accuracy and $n$ is the number of problem blocks. In addition, for unconstrained smooth convex minimization, we develop a new technique called {\it randomized estimate sequence} to analyze the accelerated RBCD method proposed by Nesterov [11] and establish a sharper expected-value type of convergence rate than the one given in [11].
Power to the Points: Validating Data Memberships in Clusterings
A clustering is an implicit assignment of labels of points, based on proximity to other points. It is these labels that are then used for downstream analysis (either focusing on individual clusters, or identifying representatives of clusters and so on). Thus, in order to trust a clustering as a first step in exploratory data analysis, we must trust the labels assigned to individual data. Without supervision, how can we validate this assignment? In this paper, we present a method to attach affinity scores to the implicit labels of individual points in a clustering. The affinity scores capture the confidence level of the cluster that claims to "own" the point. This method is very general: it can be used with clusterings derived from Euclidean data, kernelized data, or even data derived from information spaces. It smoothly incorporates importance functions on clusters, allowing us to eight different clusters differently. It is also efficient: assigning an affinity score to a point depends only polynomially on the number of clusters and is independent of the number of points in the data. The dimensionality of the underlying space only appears in preprocessing. We demonstrate the value of our approach with an experimental study that illustrates the use of these scores in different data analysis tasks, as well as the efficiency and flexibility of the method. We also demonstrate useful visualizations of these scores; these might prove useful within an interactive analytics framework.
Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture $\operatorname{maxmin}=\operatorname{lim}v_n$
Mertens [In Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986) (1987) 1528-1577 Amer. Math. Soc.] proposed two general conjectures about repeated games: the first one is that, in any two-person zero-sum repeated game, the asymptotic value exists, and the second one is that, when Player 1 is more informed than Player 2, in the long run Player 1 is able to guarantee the asymptotic value. We disprove these two long-standing conjectures by providing an example of a zero-sum repeated game with public signals and perfect observation of the actions, where the value of the $\lambda$-discounted game does not converge when $\lambda$ goes to 0. The aforementioned example involves seven states, two actions and two signals for each player. Remarkably, players observe the payoffs, and play in turn.
A Data Mining Approach to Solve the Goal Scoring Problem
In soccer, scoring goals is a fundamental objective which depends on many conditions and constraints. Considering the RoboCup soccer 2D-simulator, this paper presents a data mining-based decision system to identify the best time and direction to kick the ball towards the goal to maximize the overall chances of scoring during a simulated soccer match. Following the CRISP-DM methodology, data for modeling were extracted from matches of major international tournaments (10691 kicks), knowledge about soccer was embedded via transformation of variables and a Multilayer Perceptron was used to estimate the scoring chance. Experimental performance assessment to compare this approach against previous LDA-based approach was conducted from 100 matches. Several statistical metrics were used to analyze the performance of the system and the results showed an increase of 7.7% in the number of kicks, producing an overall increase of 78% in the number of goals scored.
Robust Logistic Regression using Shift Parameters (Long Version)
Annotation errors can significantly hurt classifier performance, yet datasets are only growing noisier with the increased use of Amazon Mechanical Turk and techniques like distant supervision that automatically generate labels. In this paper, we present a robust extension of logistic regression that incorporates the possibility of mislabelling directly into the objective. Our model can be trained through nearly the same means as logistic regression, and retains its efficiency on high-dimensional datasets. Through named entity recognition experiments, we demonstrate that our approach can provide a significant improvement over the standard model when annotation errors are present.
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
We establish optimal convergence rates for a decomposition-based scalable approach to kernel ridge regression. The method is simple to describe: it randomly partitions a dataset of size N into m subsets of equal size, computes an independent kernel ridge regression estimator for each subset, then averages the local solutions into a global predictor. This partitioning leads to a substantial reduction in computation time versus the standard approach of performing kernel ridge regression on all N samples. Our two main theorems establish that despite the computational speed-up, statistical optimality is retained: as long as m is not too large, the partition-based estimator achieves the statistical minimax rate over all estimators using the set of N samples. As concrete examples, our theory guarantees that the number of processors m may grow nearly linearly for finite-rank kernels and Gaussian kernels and polynomially in N for Sobolev spaces, which in turn allows for substantial reductions in computational cost. We conclude with experiments on both simulated data and a music-prediction task that complement our theoretical results, exhibiting the computational and statistical benefits of our approach.
A Comparison of Random Forests and Ferns on Recognition of Instruments in Jazz Recordings
In this paper, we first apply random ferns for classification of real music recordings of a jazz band. No initial segmentation of audio data is assumed, i.e., no onset, offset, nor pitch data are needed. The notion of random ferns is described in the paper, to familiarize the reader with this classification algorithm, which was introduced quite recently and applied so far in image recognition tasks. The performance of random ferns is compared with random forests for the same data. The results of experiments are presented in the paper, and conclusions are drawn.
A Supervised Neural Autoregressive Topic Model for Simultaneous Image Classification and Annotation
Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to perform scene recognition and annotation. Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for document modeling. In this work, we show how to successfully apply and extend this model to the context of visual scene modeling. Specifically, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the hidden topic features by incorporating label information into the training objective of the model. We also describe how to leverage information about the spatial position of the visual words and how to embed additional image annotations, so as to simultaneously perform image classification and annotation. We test our model on the Scene15, LabelMe and UIUC-Sports datasets and show that it compares favorably to other topic models such as the supervised variant of LDA.
A Primal Condition for Approachability with Partial Monitoring
In approachability with full monitoring there are two types of conditions that are known to be equivalent for convex sets: a primal and a dual condition. The primal one is of the form: a set C is approachable if and only all containing half-spaces are approachable in the one-shot game; while the dual one is of the form: a convex set C is approachable if and only if it intersects all payoff sets of a certain form. We consider approachability in games with partial monitoring. In previous works (Perchet 2011; Mannor et al. 2011) we provided a dual characterization of approachable convex sets; we also exhibited efficient strategies in the case where C is a polytope. In this paper we provide primal conditions on a convex set to be approachable with partial monitoring. They depend on a modified reward function and lead to approachability strategies, based on modified payoff functions, that proceed by projections similarly to Blackwell's (1956) strategy; this is in contrast with previously studied strategies in this context that relied mostly on the signaling structure and aimed at estimating well the distributions of the signals received. Our results generalize classical results by Kohlberg 1975 (see also Mertens et al. 1994) and apply to games with arbitrary signaling structure as well as to arbitrary convex sets.
Characterizing A Database of Sequential Behaviors with Latent Dirichlet Hidden Markov Models
This paper proposes a generative model, the latent Dirichlet hidden Markov models (LDHMM), for characterizing a database of sequential behaviors (sequences). LDHMMs posit that each sequence is generated by an underlying Markov chain process, which are controlled by the corresponding parameters (i.e., the initial state vector, transition matrix and the emission matrix). These sequence-level latent parameters for each sequence are modeled as latent Dirichlet random variables and parameterized by a set of deterministic database-level hyper-parameters. Through this way, we expect to model the sequence in two levels: the database level by deterministic hyper-parameters and the sequence-level by latent parameters. To learn the deterministic hyper-parameters and approximate posteriors of parameters in LDHMMs, we propose an iterative algorithm under the variational EM framework, which consists of E and M steps. We examine two different schemes, the fully-factorized and partially-factorized forms, for the framework, based on different assumptions. We present empirical results of behavior modeling and sequence classification on three real-world data sets, and compare them to other related models. The experimental results prove that the proposed LDHMMs produce better generalization performance in terms of log-likelihood and deliver competitive results on the sequence classification problem.
Adapting the Stochastic Block Model to Edge-Weighted Networks
We generalize the stochastic block model to the important case in which edges are annotated with weights drawn from an exponential family distribution. This generalization introduces several technical difficulties for model estimation, which we solve using a Bayesian approach. We introduce a variational algorithm that efficiently approximates the model's posterior distribution for dense graphs. In specific numerical experiments on edge-weighted networks, this weighted stochastic block model outperforms the common approach of first applying a single threshold to all weights and then applying the classic stochastic block model, which can obscure latent block structure in networks. This model will enable the recovery of latent structure in a broader range of network data than was previously possible.
Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations
Gaussian processes (GP) are Bayesian non-parametric models that are widely used for probabilistic regression. Unfortunately, it cannot scale well with large data nor perform real-time predictions due to its cubic time cost in the data size. This paper presents two parallel GP regression methods that exploit low-rank covariance matrix approximations for distributing the computational load among parallel machines to achieve time efficiency and scalability. We theoretically guarantee the predictive performances of our proposed parallel GPs to be equivalent to that of some centralized approximate GP regression methods: The computation of their centralized counterparts can be distributed among parallel machines, hence achieving greater time efficiency and scalability. We analytically compare the properties of our parallel GPs such as time, space, and communication complexity. Empirical evaluation on two real-world datasets in a cluster of 20 computing nodes shows that our parallel GPs are significantly more time-efficient and scalable than their centralized counterparts and exact/full GP while achieving predictive performances comparable to full GP.
A Symmetric Rank-one Quasi Newton Method for Non-negative Matrix Factorization
As we all known, the nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used in image processing, text compressing and signal processing etc. In this paper, an algorithm for nonnegative matrix approximation is proposed. This method mainly bases on the active set and the quasi-Newton type algorithm, by using the symmetric rank-one and negative curvature direction technologies to approximate the Hessian matrix. Our method improves the recent results of those methods in [Pattern Recognition, 45(2012)3557-3565; SIAM J. Sci. Comput., 33(6)(2011)3261-3281; Neural Computation, 19(10)(2007)2756-2779, etc.]. Moreover, the object function decreases faster than many other NMF methods. In addition, some numerical experiments are presented in the synthetic data, imaging processing and text clustering. By comparing with the other six nonnegative matrix approximation methods, our experiments confirm to our analysis.
Supervised Feature Selection for Diagnosis of Coronary Artery Disease Based on Genetic Algorithm
Feature Selection (FS) has become the focus of much research on decision support systems areas for which data sets with tremendous number of variables are analyzed. In this paper we present a new method for the diagnosis of Coronary Artery Diseases (CAD) founded on Genetic Algorithm (GA) wrapped Bayes Naive (BN) based FS. Basically, CAD dataset contains two classes defined with 13 features. In GA BN algorithm, GA generates in each iteration a subset of attributes that will be evaluated using the BN in the second step of the selection procedure. The final set of attribute contains the most relevant feature model that increases the accuracy. The algorithm in this case produces 85.50% classification accuracy in the diagnosis of CAD. Thus, the asset of the Algorithm is then compared with the use of Support Vector Machine (SVM), MultiLayer Perceptron (MLP) and C4.5 decision tree Algorithm. The result of classification accuracy for those algorithms are respectively 83.5%, 83.16% and 80.85%. Consequently, the GA wrapped BN Algorithm is correspondingly compared with other FS algorithms. The Obtained results have shown very promising outcomes for the diagnosis of CAD.
Information-Theoretic Approach to Efficient Adaptive Path Planning for Mobile Robotic Environmental Sensing
Recent research in robot exploration and mapping has focused on sampling environmental hotspot fields. This exploration task is formalized by Low, Dolan, and Khosla (2008) in a sequential decision-theoretic planning under uncertainty framework called MASP. The time complexity of solving MASP approximately depends on the map resolution, which limits its use in large-scale, high-resolution exploration and mapping. To alleviate this computational difficulty, this paper presents an information-theoretic approach to MASP (iMASP) for efficient adaptive path planning; by reformulating the cost-minimizing iMASP as a reward-maximizing problem, its time complexity becomes independent of map resolution and is less sensitive to increasing robot team size as demonstrated both theoretically and empirically. Using the reward-maximizing dual, we derive a novel adaptive variant of maximum entropy sampling, thus improving the induced exploration policy performance. It also allows us to establish theoretical bounds quantifying the performance advantage of optimal adaptive over non-adaptive policies and the performance quality of approximately optimal vs. optimal adaptive policies. We show analytically and empirically the superior performance of iMASP-based policies for sampling the log-Gaussian process to that of policies for the widely-used Gaussian process in mapping the hotspot field. Lastly, we provide sufficient conditions that, when met, guarantee adaptivity has no benefit under an assumed environment model.
Fast and accurate sentiment classification using an enhanced Naive Bayes model
We have explored different methods of improving the accuracy of a Naive Bayes classifier for sentiment analysis. We observed that a combination of methods like negation handling, word n-grams and feature selection by mutual information results in a significant improvement in accuracy. This implies that a highly accurate and fast sentiment classifier can be built using a simple Naive Bayes model that has linear training and testing time complexities. We achieved an accuracy of 88.80% on the popular IMDB movie reviews dataset.
Optimal rates of convergence for persistence diagrams in Topological Data Analysis
Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results.
Reinforcement Learning for the Soccer Dribbling Task
We propose a reinforcement learning solution to the \emph{soccer dribbling task}, a scenario in which a soccer agent has to go from the beginning to the end of a region keeping possession of the ball, as an adversary attempts to gain possession. While the adversary uses a stationary policy, the dribbler learns the best action to take at each decision point. After defining meaningful variables to represent the state space, and high-level macro-actions to incorporate domain knowledge, we describe our application of the reinforcement learning algorithm \emph{Sarsa} with CMAC for function approximation. Our experiments show that, after the training period, the dribbler is able to accomplish its task against a strong adversary around 58% of the time.
Normalized Online Learning
We introduce online learning algorithms which are independent of feature scales, proving regret bounds dependent on the ratio of scales existent in the data rather than the absolute scale. This has several useful effects: there is no need to pre-normalize data, the test-time and test-space complexity are reduced, and the algorithms are more robust.
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture
This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The algorithm is derived via a low-variance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering with convergence guarantees similar to those of the k-means algorithm. Empirical results from a synthetic test with moving Gaussian clusters and a test with real ADS-B aircraft trajectory data demonstrate that the algorithm requires orders of magnitude less computational time than contemporary probabilistic and hard clustering algorithms, while providing higher accuracy on the examined datasets.
Generalized Denoising Auto-Encoders as Generative Models
Recent work has shown how denoising and contractive autoencoders implicitly capture the structure of the data-generating density, in the case where the corruption noise is Gaussian, the reconstruction error is the squared error, and the data is continuous-valued. This has led to various proposals for sampling from this implicitly learned density function, using Langevin and Metropolis-Hastings MCMC. However, it remained unclear how to connect the training procedure of regularized auto-encoders to the implicit estimation of the underlying data-generating distribution when the data are discrete, or using other forms of corruption process and reconstruction errors. Another issue is the mathematical justification which is only valid in the limit of small corruption noise. We propose here a different attack on the problem, which deals with all these issues: arbitrary (but noisy enough) corruption, arbitrary reconstruction loss (seen as a log-likelihood), handling both discrete and continuous-valued variables, and removing the bias due to non-infinitesimal corruption noise (or non-infinitesimal contractive penalty).
Predicting the Severity of Breast Masses with Data Mining Methods
Mammography is the most effective and available tool for breast cancer screening. However, the low positive predictive value of breast biopsy resulting from mammogram interpretation leads to approximately 70% unnecessary biopsies with benign outcomes. Data mining algorithms could be used to help physicians in their decisions to perform a breast biopsy on a suspicious lesion seen in a mammogram image or to perform a short term follow-up examination instead. In this research paper data mining classification algorithms; Decision Tree (DT), Artificial Neural Network (ANN), and Support Vector Machine (SVM) are analyzed on mammographic masses data set. The purpose of this study is to increase the ability of physicians to determine the severity (benign or malignant) of a mammographic mass lesion from BI-RADS attributes and the patient,s age. The whole data set is divided for training the models and test them by the ratio of 70:30% respectively and the performances of classification algorithms are compared through three statistical measures; sensitivity, specificity, and classification accuracy. Accuracy of DT, ANN and SVM are 78.12%, 80.56% and 81.25% of test samples respectively. Our analysis shows that out of these three classification models SVM predicts severity of breast cancer with least error rate and highest accuracy.
Test cost and misclassification cost trade-off using reframing
Many solutions to cost-sensitive classification (and regression) rely on some or all of the following assumptions: we have complete knowledge about the cost context at training time, we can easily re-train whenever the cost context changes, and we have technique-specific methods (such as cost-sensitive decision trees) that can take advantage of that information. In this paper we address the problem of selecting models and minimising joint cost (integrating both misclassification cost and test costs) without any of the above assumptions. We introduce methods and plots (such as the so-called JROC plots) that can work with any off-the-shelf predictive technique, including ensembles, such that we reframe the model to use the appropriate subset of attributes (the feature configuration) during deployment time. In other words, models are trained with the available attributes (once and for all) and then deployed by setting missing values on the attributes that are deemed ineffective for reducing the joint cost. As the number of feature configuration combinations grows exponentially with the number of features we introduce quadratic methods that are able to approximate the optimal configuration and model choices, as shown by the experimental results.
Alternating Decision trees for early diagnosis of dengue fever
Dengue fever is a flu-like illness spread by the bite of an infected mosquito which is fast emerging as a major health problem. Timely and cost effective diagnosis using clinical and laboratory features would reduce the mortality rates besides providing better grounds for clinical management and disease surveillance. We wish to develop a robust and effective decision tree based approach for predicting dengue disease. Our analysis is based on the clinical characteristics and laboratory measurements of the diseased individuals. We have developed and trained an alternating decision tree with boosting and compared its performance with C4.5 algorithm for dengue disease diagnosis. Of the 65 patient records a diagnosis establishes that 53 individuals have been confirmed to have dengue fever. An alternating decision tree based algorithm was able to differentiate the dengue fever using the clinical and laboratory data with number of correctly classified instances as 89%, F-measure of 0.86 and receiver operator characteristics (ROC) of 0.826 as compared to C4.5 having correctly classified instances as 78%,h F-measure of 0.738 and ROC of 0.617 respectively. Alternating decision tree based approach with boosting has been able to predict dengue fever with a higher degree of accuracy than C4.5 based decision tree using simple clinical and laboratory features. Further analysis on larger data sets is required to improve the sensitivity and specificity of the alternating decision trees.
Privileged Information for Data Clustering
Many machine learning algorithms assume that all input samples are independently and identically distributed from some common distribution on either the input space X, in the case of unsupervised learning, or the input and output space X x Y in the case of supervised and semi-supervised learning. In the last number of years the relaxation of this assumption has been explored and the importance of incorporation of additional information within machine learning algorithms became more apparent. Traditionally such fusion of information was the domain of semi-supervised learning. More recently the inclusion of knowledge from separate hypothetical spaces has been proposed by Vapnik as part of the supervised setting. In this work we are interested in exploring Vapnik's idea of master-class learning and the associated learning using privileged information, however within the unsupervised setting. Adoption of the advanced supervised learning paradigm for the unsupervised setting instigates investigation into the difference between privileged and technical data. By means of our proposed aRi-MAX method stability of the KMeans algorithm is improved and identification of the best clustering solution is achieved on an artificial dataset. Subsequently an information theoretic dot product based algorithm called P-Dot is proposed. This method has the ability to utilize a wide variety of clustering techniques, individually or in combination, while fusing privileged and technical data for improved clustering. Application of the P-Dot method to the task of digit recognition confirms our findings in a real-world scenario.
On model selection consistency of regularized M-estimators
Regularized M-estimators are used in diverse areas of science and engineering to fit high-dimensional models with some low-dimensional structure. Usually the low-dimensional structure is encoded by the presence of the (unknown) parameters in some low-dimensional model subspace. In such settings, it is desirable for estimates of the model parameters to be \emph{model selection consistent}: the estimates also fall in the model subspace. We develop a general framework for establishing consistency and model selection consistency of regularized M-estimators and show how it applies to some special cases of interest in statistical learning. Our analysis identifies two key properties of regularized M-estimators, referred to as geometric decomposability and irrepresentability, that ensure the estimators are consistent and model selection consistent.
Understanding ACT-R - an Outsider's Perspective
The ACT-R theory of cognition developed by John Anderson and colleagues endeavors to explain how humans recall chunks of information and how they solve problems. ACT-R also serves as a theoretical basis for "cognitive tutors", i.e., automatic tutoring systems that help students learn mathematics, computer programming, and other subjects. The official ACT-R definition is distributed across a large body of literature spanning many articles and monographs, and hence it is difficult for an "outsider" to learn the most important aspects of the theory. This paper aims to provide a tutorial to the core components of the ACT-R theory.
Dynamic Ad Allocation: Bandits with Budgets
We consider an application of multi-armed bandits to internet advertising (specifically, to dynamic ad allocation in the pay-per-click model, with uncertainty on the click probabilities). We focus on an important practical issue that advertisers are constrained in how much money they can spend on their ad campaigns. This issue has not been considered in the prior work on bandit-based approaches for ad allocation, to the best of our knowledge. We define a simple, stylized model where an algorithm picks one ad to display in each round, and each ad has a \emph{budget}: the maximal amount of money that can be spent on this ad. This model admits a natural variant of UCB1, a well-known algorithm for multi-armed bandits with stochastic rewards. We derive strong provable guarantees for this algorithm.
Phase Retrieval using Alternating Minimization
Phase retrieval problems involve solving linear equations, but with missing sign (or phase, for complex numbers) information. More than four decades after it was first proposed, the seminal error reduction algorithm of (Gerchberg and Saxton 1972) and (Fienup 1982) is still the popular choice for solving many variants of this problem. The algorithm is based on alternating minimization; i.e. it alternates between estimating the missing phase information, and the candidate solution. Despite its wide usage in practice, no global convergence guarantees for this algorithm are known. In this paper, we show that a (resampling) variant of this approach converges geometrically to the solution of one such problem -- finding a vector $\mathbf{x}$ from $\mathbf{y},\mathbf{A}$, where $\mathbf{y} = \left|\mathbf{A}^{\top}\mathbf{x}\right|$ and $|\mathbf{z}|$ denotes a vector of element-wise magnitudes of $\mathbf{z}$ -- under the assumption that $\mathbf{A}$ is Gaussian. Empirically, we demonstrate that alternating minimization performs similar to recently proposed convex techniques for this problem (which are based on "lifting" to a convex matrix problem) in sample complexity and robustness to noise. However, it is much more efficient and can scale to large problems. Analytically, for a resampling version of alternating minimization, we show geometric convergence to the solution, and sample complexity that is off by log factors from obvious lower bounds. We also establish close to optimal scaling for the case when the unknown vector is sparse. Our work represents the first theoretical guarantee for alternating minimization (albeit with resampling) for any variant of phase retrieval problems in the non-convex setting.
RNADE: The real-valued neural autoregressive density-estimator
We introduce RNADE, a new model for joint density estimation of real-valued vectors. Our model calculates the density of a datapoint as the product of one-dimensional conditionals modeled using mixture density networks with shared parameters. RNADE learns a distributed representation of the data, while having a tractable expression for the calculation of densities. A tractable likelihood allows direct comparison with other methods and training by standard gradient-based optimizers. We compare the performance of RNADE on several datasets of heterogeneous and perceptual data, finding it outperforms mixture models in all but one case.
Guided Random Forest in the RRF Package
Random Forest (RF) is a powerful supervised learner and has been popularly used in many applications such as bioinformatics. In this work we propose the guided random forest (GRF) for feature selection. Similar to a feature selection method called guided regularized random forest (GRRF), GRF is built using the importance scores from an ordinary RF. However, the trees in GRRF are built sequentially, are highly correlated and do not allow for parallel computing, while the trees in GRF are built independently and can be implemented in parallel. Experiments on 10 high-dimensional gene data sets show that, with a fixed parameter value (without tuning the parameter), RF applied to features selected by GRF outperforms RF applied to all features on 9 data sets and 7 of them have significant differences at the 0.05 level. Therefore, both accuracy and interpretability are significantly improved. GRF selects more features than GRRF, however, leads to better classification accuracy. Note in this work the guided random forest is guided by the importance scores from an ordinary random forest, however, it can also be guided by other methods such as human insights (by specifying $\lambda_i$). GRF can be used in "RRF" v1.4 (and later versions), a package that also includes the regularized random forest methods.
Deep Learning using Linear Support Vector Machines
Recently, fully-connected and convolutional neural networks have been trained to achieve state-of-the-art performance on a wide variety of tasks such as speech recognition, image classification, natural language processing, and bioinformatics. For classification tasks, most of these "deep learning" models employ the softmax activation function for prediction and minimize cross-entropy loss. In this paper, we demonstrate a small but consistent advantage of replacing the softmax layer with a linear support vector machine. Learning minimizes a margin-based loss instead of the cross-entropy loss. While there have been various combinations of neural nets and SVMs in prior art, our results using L2-SVMs show that by simply replacing softmax with linear SVMs gives significant gains on popular deep learning datasets MNIST, CIFAR-10, and the ICML 2013 Representation Learning Workshop's face expression recognition challenge.
KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles
We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four criteria that represent high quality topical keyphrases (coverage, purity, phraseness, and completeness). The effectiveness of our approach is demonstrated on two collections of content-representative titles in the domains of Computer Science and Physics.
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.
Learning from networked examples in a k-partite graph
Many machine learning algorithms are based on the assumption that training examples are drawn independently. However, this assumption does not hold anymore when learning from a networked sample where two or more training examples may share common features. We propose an efficient weighting method for learning from networked examples and show the sample error bound which is better than previous work.
Riemannian metrics for neural networks II: recurrent networks and learning symbolic data sequences
Recurrent neural networks are powerful models for sequential data, able to represent complex dependencies in the sequence that simpler models such as hidden Markov models cannot handle. Yet they are notoriously hard to train. Here we introduce a training procedure using a gradient ascent in a Riemannian metric: this produces an algorithm independent from design choices such as the encoding of parameters and unit activities. This metric gradient ascent is designed to have an algorithmic cost close to backpropagation through time for sparsely connected networks. We use this procedure on gated leaky neural networks (GLNNs), a variant of recurrent neural networks with an architecture inspired by finite automata and an evolution equation inspired by continuous-time networks. GLNNs trained with a Riemannian gradient are demonstrated to effectively capture a variety of structures in synthetic problems: basic block nesting as in context-free grammars (an important feature of natural languages, but difficult to learn), intersections of multiple independent Markov-type relations, or long-distance relationships such as the distant-XOR problem. This method does not require adjusting the network structure or initial parameters: the network used is a sparse random graph and the initialization is identical for all problems considered.
On the Performance Bounds of some Policy Search Dynamic Programming Algorithms
We consider the infinite-horizon discounted optimal control problem formalized by Markov Decision Processes. We focus on Policy Search algorithms, that compute an approximately optimal policy by following the standard Policy Iteration (PI) scheme via an -approximate greedy operator (Kakade and Langford, 2002; Lazaric et al., 2010). We describe existing and a few new performance bounds for Direct Policy Iteration (DPI) (Lagoudakis and Parr, 2003; Fern et al., 2006; Lazaric et al., 2010) and Conservative Policy Iteration (CPI) (Kakade and Langford, 2002). By paying a particular attention to the concentrability constants involved in such guarantees, we notably argue that the guarantee of CPI is much better than that of DPI, but this comes at the cost of a relative--exponential in $\frac{1}{\epsilon}$-- increase of time complexity. We then describe an algorithm, Non-Stationary Direct Policy Iteration (NSDPI), that can either be seen as 1) a variation of Policy Search by Dynamic Programming by Bagnell et al. (2003) to the infinite horizon situation or 2) a simplified version of the Non-Stationary PI with growing period of Scherrer and Lesner (2012). We provide an analysis of this algorithm, that shows in particular that it enjoys the best of both worlds: its performance guarantee is similar to that of CPI, but within a time complexity similar to that of DPI.
Identifying Pairs in Simulated Bio-Medical Time-Series
The paper presents a time-series-based classification approach to identify similarities in pairs of simulated human-generated patterns. An example for a pattern is a time-series representing a heart rate during a specific time-range, wherein the time-series is a sequence of data points that represent the changes in the heart rate values. A bio-medical simulator system was developed to acquire a collection of 7,871 price patterns of financial instruments. The financial instruments traded in real-time on three American stock exchanges, NASDAQ, NYSE, and AMEX, simulate bio-medical measurements. The system simulates a human in which each price pattern represents one bio-medical sensor. Data provided during trading hours from the stock exchanges allowed real-time classification. Classification is based on new machine learning techniques: self-labeling, which allows the application of supervised learning methods on unlabeled time-series and similarity ranking, which applied on a decision tree learning algorithm to classify time-series regardless of type and quantity.
Predicting Parameters in Deep Learning
We demonstrate that there is significant redundancy in the parameterization of several deep learning models. Given only a few weight values for each feature it is possible to accurately predict the remaining values. Moreover, we show that not only can the parameter values be predicted, but many of them need not be learned at all. We train several different architectures by learning only a small number of weights and predicting the rest. In the best case we are able to predict more than 95% of the weights of a network without any drop in accuracy.
Distributed k-Means and k-Median Clustering on General Topologies
This paper provides new algorithms for distributed clustering for two popular center-based objectives, k-median and k-means. These algorithms have provable guarantees and improve communication complexity over existing approaches. Following a classic approach in clustering by \cite{har2004coresets}, we reduce the problem of finding a clustering with low cost to the problem of finding a coreset of small size. We provide a distributed method for constructing a global coreset which improves over the previous methods by reducing the communication complexity, and which works over general communication topologies. Experimental results on large scale data sets show that this approach outperforms other coreset-based distributed clustering algorithms.
Prediction with Missing Data via Bayesian Additive Regression Trees
We present a method for incorporating missing data in non-parametric statistical learning without the need for imputation. We focus on a tree-based method, Bayesian Additive Regression Trees (BART), enhanced with "Missingness Incorporated in Attributes," an approach recently proposed incorporating missingness into decision trees (Twala, 2008). This procedure takes advantage of the partitioning mechanisms found in tree-based models. Simulations on generated models and real data indicate that our proposed method can forecast well on complicated missing-at-random and not-missing-at-random models as well as models where missingness itself influences the response. Our procedure has higher predictive performance and is more stable than competitors in many cases. We also illustrate BART's abilities to incorporate missingness into uncertainty intervals and to detect the influence of missingness on the model fit.
Provable Inductive Matrix Completion
Consider a movie recommendation system where apart from the ratings information, side information such as user's age or movie's genre is also available. Unlike standard matrix completion, in this setting one should be able to predict inductively on new users/movies. In this paper, we study the problem of inductive matrix completion in the exact recovery setting. That is, we assume that the ratings matrix is generated by applying feature vectors to a low-rank matrix and the goal is to recover back the underlying matrix. Furthermore, we generalize the problem to that of low-rank matrix estimation using rank-1 measurements. We study this generic problem and provide conditions that the set of measurements should satisfy so that the alternating minimization method (which otherwise is a non-convex method with no convergence guarantees) is able to recover back the {\em exact} underlying low-rank matrix. In addition to inductive matrix completion, we show that two other low-rank estimation problems can be studied in our framework: a) general low-rank matrix sensing using rank-1 measurements, and b) multi-label regression with missing labels. For both the problems, we provide novel and interesting bounds on the number of measurements required by alternating minimization to provably converges to the {\em exact} low-rank matrix. In particular, our analysis for the general low rank matrix sensing problem significantly improves the required storage and computational cost than that required by the RIP-based matrix sensing methods \cite{RechtFP2007}. Finally, we provide empirical validation of our approach and demonstrate that alternating minimization is able to recover the true matrix for the above mentioned problems using a small number of measurements.
Online Learning under Delayed Feedback
Online learning with delayed feedback has received increasing attention recently due to its several applications in distributed, web-based learning problems. In this paper we provide a systematic study of the topic, and analyze the effect of delay on the regret of online learning algorithms. Somewhat surprisingly, it turns out that delay increases the regret in a multiplicative way in adversarial problems, and in an additive way in stochastic problems. We give meta-algorithms that transform, in a black-box fashion, algorithms developed for the non-delayed case into ones that can handle the presence of delays in the feedback loop. Modifications of the well-known UCB algorithm are also developed for the bandit problem with delayed feedback, with the advantage over the meta-algorithms that they can be implemented with lower complexity.
Fast Gradient-Based Inference with Continuous Latent Variable Models in Auxiliary Form
We propose a technique for increasing the efficiency of gradient-based inference and learning in Bayesian networks with multiple layers of continuous latent vari- ables. We show that, in many cases, it is possible to express such models in an auxiliary form, where continuous latent variables are conditionally deterministic given their parents and a set of independent auxiliary variables. Variables of mod- els in this auxiliary form have much larger Markov blankets, leading to significant speedups in gradient-based inference, e.g. rapid mixing Hybrid Monte Carlo and efficient gradient-based optimization. The relative efficiency is confirmed in ex- periments.
A Gang of Bandits
Multi-armed bandit problems are receiving a great deal of attention because they adequately formalize the exploration-exploitation trade-offs arising in several industrially relevant applications, such as online advertisement and, more generally, recommendation systems. In many cases, however, these applications have a strong social component, whose integration in the bandit algorithm could lead to a dramatic performance increase. For instance, we may want to serve content to a group of users by taking advantage of an underlying network of social relationships among them. In this paper, we introduce novel algorithmic approaches to the solution of such networked bandit problems. More specifically, we design and analyze a global strategy which allocates a bandit algorithm to each network node (user) and allows it to "share" signals (contexts and payoffs) with the neghboring nodes. We then derive two more scalable variants of this strategy based on different ways of clustering the graph nodes. We experimentally compare the algorithm and its variants to state-of-the-art methods for contextual bandits that do not use the relational information. Our experiments, carried out on synthetic and real-world datasets, show a marked increase in prediction performance obtained by exploiting the network structure.
Kernel Mean Estimation and Stein's Effect
A mean function in reproducing kernel Hilbert space, or a kernel mean, is an important part of many applications ranging from kernel principal component analysis to Hilbert-space embedding of distributions. Given finite samples, an empirical average is the standard estimate for the true kernel mean. We show that this estimator can be improved via a well-known phenomenon in statistics called Stein's phenomenon. After consideration, our theoretical analysis reveals the existence of a wide class of estimators that are better than the standard. Focusing on a subset of this class, we propose efficient shrinkage estimators for the kernel mean. Empirical evaluations on several benchmark applications clearly demonstrate that the proposed estimators outperform the standard kernel mean estimator.
$\propto$SVM for learning with label proportions
We study the problem of learning with label proportions in which the training data is provided in groups and only the proportion of each class in each group is known. We propose a new method called proportion-SVM, or $\propto$SVM, which explicitly models the latent unknown instance labels together with the known group label proportions in a large-margin framework. Unlike the existing works, our approach avoids making restrictive assumptions about the data. The $\propto$SVM model leads to a non-convex integer programming problem. In order to solve it efficiently, we propose two algorithms: one based on simple alternating optimization and the other based on a convex relaxation. Extensive experiments on standard datasets show that $\propto$SVM outperforms the state-of-the-art, especially for larger group sizes.
(More) Efficient Reinforcement Learning via Posterior Sampling
Most provably-efficient learning algorithms introduce optimism about poorly-understood states and actions to encourage exploration. We study an alternative approach for efficient exploration, posterior sampling for reinforcement learning (PSRL). This algorithm proceeds in repeated episodes of known duration. At the start of each episode, PSRL updates a prior distribution over Markov decision processes and takes one sample from this posterior. PSRL then follows the policy that is optimal for this sample during the episode. The algorithm is conceptually simple, computationally efficient and allows an agent to encode prior knowledge in a natural way. We establish an $\tilde{O}(\tau S \sqrt{AT})$ bound on the expected regret, where $T$ is time, $\tau$ is the episode length and $S$ and $A$ are the cardinalities of the state and action spaces. This bound is one of the first for an algorithm not based on optimism, and close to the state of the art for any reinforcement learning algorithm. We show through simulation that PSRL significantly outperforms existing algorithms with similar regret bounds.
Bayesian Differential Privacy through Posterior Sampling
Differential privacy formalises privacy-preserving mechanisms that provide access to a database. We pose the question of whether Bayesian inference itself can be used directly to provide private access to data, with no modification. The answer is affirmative: under certain conditions on the prior, sampling from the posterior distribution can be used to achieve a desired level of privacy and utility. To do so, we generalise differential privacy to arbitrary dataset metrics, outcome spaces and distribution families. This allows us to also deal with non-i.i.d or non-tabular datasets. We prove bounds on the sensitivity of the posterior to the data, which gives a measure of robustness. We also show how to use posterior sampling to provide differentially private responses to queries, within a decision-theoretic framework. Finally, we provide bounds on the utility and on the distinguishability of datasets. The latter are complemented by a novel use of Le Cam's method to obtain lower bounds. All our general results hold for arbitrary database metrics, including those for the common definition of differential privacy. For specific choices of the metric, we give a number of examples satisfying our assumptions.
Discriminative Parameter Estimation for Random Walks Segmentation: Technical Report
The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Speci cally, they provide a hard segmentation of the images, instead of a proba-bilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach signi cantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Deep Generative Stochastic Networks Trainable by Backprop
We introduce a novel training principle for probabilistic models that is an alternative to maximum likelihood. The proposed Generative Stochastic Networks (GSN) framework is based on learning the transition operator of a Markov chain whose stationary distribution estimates the data distribution. The transition distribution of the Markov chain is conditional on the previous state, generally involving a small move, so this conditional distribution has fewer dominant modes, being unimodal in the limit of small moves. Thus, it is easier to learn because it is easier to approximate its partition function, more like learning to perform supervised function approximation, with gradients that can be obtained by backprop. We provide theorems that generalize recent work on the probabilistic interpretation of denoising autoencoders and obtain along the way an interesting justification for dependency networks and generalized pseudolikelihood, along with a definition of an appropriate joint distribution and sampling mechanism even when the conditionals are not consistent. GSNs can be used with missing inputs and can be used to sample subsets of variables given the rest. We validate these theoretical results with experiments on two image datasets using an architecture that mimics the Deep Boltzmann Machine Gibbs sampler but allows training to proceed with simple backprop, without the need for layerwise pretraining.
Multiclass Total Variation Clustering
Ideas from the image processing literature have recently motivated a new set of clustering algorithms that rely on the concept of total variation. While these algorithms perform well for bi-partitioning tasks, their recursive extensions yield unimpressive results for multiclass clustering tasks. This paper presents a general framework for multiclass total variation clustering that does not rely on recursion. The results greatly outperform previous total variation algorithms and compare well with state-of-the-art NMF approaches.
Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization
We present a graph-based variational algorithm for classification of high-dimensional data, generalizing the binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the method involves minimizing an energy functional made up of three terms. The first two terms promote a stepwise continuous classification function with sharp transitions between classes, while preserving symmetry among the class labels. The third term is a data fidelity term, allowing us to incorporate prior information into the model in a semi-supervised framework. The performance of the algorithm on synthetic data, as well as on the COIL and MNIST benchmark datasets, is competitive with state-of-the-art graph-based multiclass segmentation methods.
Verdict Accuracy of Quick Reduct Algorithm using Clustering and Classification Techniques for Gene Expression Data
In most gene expression data, the number of training samples is very small compared to the large number of genes involved in the experiments. However, among the large amount of genes, only a small fraction is effective for performing a certain task. Furthermore, a small subset of genes is desirable in developing gene expression based diagnostic tools for delivering reliable and understandable results. With the gene selection results, the cost of biological experiment and decision can be greatly reduced by analyzing only the marker genes. An important application of gene expression data in functional genomics is to classify samples according to their gene expression profiles. Feature selection (FS) is a process which attempts to select more informative features. It is one of the important steps in knowledge discovery. Conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. This paper studies a feature selection method based on rough set theory. Further K-Means, Fuzzy C-Means (FCM) algorithm have implemented for the reduced feature set without considering class labels. Then the obtained results are compared with the original class labels. Back Propagation Network (BPN) has also been used for classification. Then the performance of K-Means, FCM, and BPN are analyzed through the confusion matrix. It is found that the BPN is performing well comparatively.
Performance analysis of unsupervised feature selection methods
Feature selection (FS) is a process which attempts to select more informative features. In some cases, too many redundant or irrelevant features may overpower main features for classification. Feature selection can remedy this problem and therefore improve the prediction accuracy and reduce the computational overhead of classification algorithms. The main aim of feature selection is to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. In this paper, Principal Component Analysis (PCA), Rough PCA, Unsupervised Quick Reduct (USQR) algorithm and Empirical Distribution Ranking (EDR) approaches are applied to discover discriminative features that will be the most adequate ones for classification. Efficiency of the approaches is evaluated using standard classification metrics.
Diffusion map for clustering fMRI spatial maps extracted by independent component analysis
Functional magnetic resonance imaging (fMRI) produces data about activity inside the brain, from which spatial maps can be extracted by independent component analysis (ICA). In datasets, there are n spatial maps that contain p voxels. The number of voxels is very high compared to the number of analyzed spatial maps. Clustering of the spatial maps is usually based on correlation matrices. This usually works well, although such a similarity matrix inherently can explain only a certain amount of the total variance contained in the high-dimensional data where n is relatively small but p is large. For high-dimensional space, it is reasonable to perform dimensionality reduction before clustering. In this research, we used the recently developed diffusion map for dimensionality reduction in conjunction with spectral clustering. This research revealed that the diffusion map based clustering worked as well as the more traditional methods, and produced more compact clusters when needed.
Tight Lower Bound on the Probability of a Binomial Exceeding its Expectation
We give the proof of a tight lower bound on the probability that a binomial random variable exceeds its expected value. The inequality plays an important role in a variety of contexts, including the analysis of relative deviation bounds in learning theory and generalization bounds for unbounded loss functions.
Highly Scalable, Parallel and Distributed AdaBoost Algorithm using Light Weight Threads and Web Services on a Network of Multi-Core Machines
AdaBoost is an important algorithm in machine learning and is being widely used in object detection. AdaBoost works by iteratively selecting the best amongst weak classifiers, and then combines several weak classifiers to obtain a strong classifier. Even though AdaBoost has proven to be very effective, its learning execution time can be quite large depending upon the application e.g., in face detection, the learning time can be several days. Due to its increasing use in computer vision applications, the learning time needs to be drastically reduced so that an adaptive near real time object detection system can be incorporated. In this paper, we develop a hybrid parallel and distributed AdaBoost algorithm that exploits the multiple cores in a CPU via light weight threads, and also uses multiple machines via a web service software architecture to achieve high scalability. We present a novel hierarchical web services based distributed architecture and achieve nearly linear speedup up to the number of processors available to us. In comparison with the previously published work, which used a single level master-slave parallel and distributed implementation [1] and only achieved a speedup of 2.66 on four nodes, we achieve a speedup of 95.1 on 31 workstations each having a quad-core processor, resulting in a learning time of only 4.8 seconds per feature.
Gaussian Process-Based Decentralized Data Fusion and Active Sensing for Mobility-on-Demand System
Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. In this paper, we enhance the capability of a MoD system by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge to managing the MoD system effectively is that of real-time, fine-grained mobility demand sensing and prediction. This paper presents a novel decentralized data fusion and active sensing algorithm for real-time, fine-grained mobility demand sensing and prediction with a fleet of autonomous robotic vehicles in a MoD system. Our Gaussian process (GP)-based decentralized data fusion algorithm can achieve a fine balance between predictive power and time efficiency. We theoretically guarantee its predictive performance to be equivalent to that of a sophisticated centralized sparse approximation for the GP model: The computation of such a sparse approximate GP model can thus be distributed among the MoD vehicles, hence achieving efficient and scalable demand prediction. Though our decentralized active sensing strategy is devised to gather the most informative demand data for demand prediction, it can achieve a dual effect of fleet rebalancing to service the mobility demands. Empirical evaluation on real-world mobility demand data shows that our proposed algorithm can achieve a better balance between predictive accuracy and time efficiency than state-of-the-art algorithms.
Policy Search: Any Local Optimum Enjoys a Global Performance Guarantee
Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a paramet erized policy space in order to maximize the associated value function averaged over some predefined distribution. It is probably commonly b elieved that the best one can hope in general from such an approach is to get a local optimum of this criterion. In this article, we show th e following surprising result: \emph{any} (approximate) \emph{local optimum} enjoys a \emph{global performance guarantee}. We compare this g uarantee with the one that is satisfied by Direct Policy Iteration, an approximate dynamic programming algorithm that does some form of Poli cy Search: if the approximation error of Local Policy Search may generally be bigger (because local search requires to consider a space of s tochastic policies), we argue that the concentrability coefficient that appears in the performance bound is much nicer. Finally, we discuss several practical and theoretical consequences of our analysis.
Fast greedy algorithm for subspace clustering from corrupted and incomplete data
We describe the Fast Greedy Sparse Subspace Clustering (FGSSC) algorithm providing an efficient method for clustering data belonging to a few low-dimensional linear or affine subspaces. The main difference of our algorithm from predecessors is its ability to work with noisy data having a high rate of erasures (missed entries with the known coordinates) and errors (corrupted entries with unknown coordinates). We discuss here how to implement the fast version of the greedy algorithm with the maximum efficiency whose greedy strategy is incorporated into iterations of the basic algorithm. We provide numerical evidences that, in the subspace clustering capability, the fast greedy algorithm outperforms not only the existing state-of-the art SSC algorithm taken by the authors as a basic algorithm but also the recent GSSC algorithm. At the same time, its computational cost is only slightly higher than the cost of SSC. The numerical evidence of the algorithm significant advantage is presented for a few synthetic models as well as for the Extended Yale B dataset of facial images. In particular, the face recognition misclassification rate turned out to be 6-20 times lower than for the SSC algorithm. We provide also the numerical evidence that the FGSSC algorithm is able to perform clustering of corrupted data efficiently even when the sum of subspace dimensions significantly exceeds the dimension of the ambient space.
Loss-Proportional Subsampling for Subsequent ERM
We propose a sampling scheme suitable for reducing a data set prior to selecting a hypothesis with minimum empirical risk. The sampling only considers a subset of the ultimate (unknown) hypothesis set, but can nonetheless guarantee that the final excess risk will compare favorably with utilizing the entire original data set. We demonstrate the practical benefits of our approach on a large dataset which we subsample and subsequently fit with boosted trees.
Emotional Expression Classification using Time-Series Kernels
Estimation of facial expressions, as spatio-temporal processes, can take advantage of kernel methods if one considers facial landmark positions and their motion in 3D space. We applied support vector classification with kernels derived from dynamic time-warping similarity measures. We achieved over 99% accuracy - measured by area under ROC curve - using only the 'motion pattern' of the PCA compressed representation of the marker point vector, the so-called shape parameters. Beyond the classification of full motion patterns, several expressions were recognized with over 90% accuracy in as few as 5-6 frames from their onset, about 200 milliseconds.
Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation
While several papers have investigated computationally and statistically efficient methods for learning Gaussian mixtures, precise minimax bounds for their statistical performance as well as fundamental limits in high-dimensional settings are not well-understood. In this paper, we provide precise information theoretic bounds on the clustering accuracy and sample complexity of learning a mixture of two isotropic Gaussians in high dimensions under small mean separation. If there is a sparse subset of relevant dimensions that determine the mean separation, then the sample complexity only depends on the number of relevant dimensions and mean separation, and can be achieved by a simple computationally efficient procedure. Our results provide the first step of a theoretical basis for recent methods that combine feature selection and clustering.
Logistic Tensor Factorization for Multi-Relational Data
Tensor factorizations have become increasingly popular approaches for various learning tasks on structured data. In this work, we extend the RESCAL tensor factorization, which has shown state-of-the-art results for multi-relational learning, to account for the binary nature of adjacency tensors. We study the improvements that can be gained via this approach on various benchmark datasets and show that the logistic extension can improve the prediction results significantly.
Predicting Risk-of-Readmission for Congestive Heart Failure Patients: A Multi-Layer Approach
Mitigating risk-of-readmission of Congestive Heart Failure (CHF) patients within 30 days of discharge is important because such readmissions are not only expensive but also critical indicator of provider care and quality of treatment. Accurately predicting the risk-of-readmission may allow hospitals to identify high-risk patients and eventually improve quality of care by identifying factors that contribute to such readmissions in many scenarios. In this paper, we investigate the problem of predicting risk-of-readmission as a supervised learning problem, using a multi-layer classification approach. Earlier contributions inadequately attempted to assess a risk value for 30 day readmission by building a direct predictive model as opposed to our approach. We first split the problem into various stages, (a) at risk in general (b) risk within 60 days (c) risk within 30 days, and then build suitable classifiers for each stage, thereby increasing the ability to accurately predict the risk using multiple layers of decision. The advantage of our approach is that we can use different classification models for the subtasks that are more suited for the respective problems. Moreover, each of the subtasks can be solved using different features and training data leading to a highly confident diagnosis or risk compared to a one-shot single layer approach. An experimental evaluation on actual hospital patient record data from Multicare Health Systems shows that our model is significantly better at predicting risk-of-readmission of CHF patients within 30 days after discharge compared to prior attempts.
A Novel Approach for Single Gene Selection Using Clustering and Dimensionality Reduction
We extend the standard rough set-based approach to deal with huge amounts of numeric attributes versus small amount of available objects. Here, a novel approach of clustering along with dimensionality reduction; Hybrid Fuzzy C Means-Quick Reduct (FCMQR) algorithm is proposed for single gene selection. Gene selection is a process to select genes which are more informative. It is one of the important steps in knowledge discovery. The problem is that all genes are not important in gene expression data. Some of the genes may be redundant, and others may be irrelevant and noisy. In this study, the entire dataset is divided in proper grouping of similar genes by applying Fuzzy C Means (FCM) algorithm. A high class discriminated genes has been selected based on their degree of dependence by applying Quick Reduct algorithm based on Rough Set Theory to all the resultant clusters. Average Correlation Value (ACV) is calculated for the high class discriminated genes. The clusters which have the ACV value a s 1 is determined as significant clusters, whose classification accuracy will be equal or high when comparing to the accuracy of the entire dataset. The proposed algorithm is evaluated using WEKA classifiers and compared. Finally, experimental results related to the leukemia cancer data confirm that our approach is quite promising, though it surely requires further research.
Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)
We consider the stochastic approximation problem where a convex function has to be minimized, given only the knowledge of unbiased estimates of its gradients at certain points, a framework which includes machine learning methods based on the minimization of the empirical risk. We focus on problems without strong convexity, for which all previously known algorithms achieve a convergence rate for function values of O(1/n^{1/2}). We consider and analyze two algorithms that achieve a rate of O(1/n) for classical supervised learning problems. For least-squares regression, we show that averaged stochastic gradient descent with constant step-size achieves the desired rate. For logistic regression, this is achieved by a simple novel stochastic gradient algorithm that (a) constructs successive local quadratic approximations of the loss functions, while (b) preserving the same running time complexity as stochastic gradient descent. For these algorithms, we provide a non-asymptotic analysis of the generalization error (in expectation, and also in high probability for least-squares), and run extensive experiments on standard machine learning benchmarks showing that they often outperform existing approaches.
Asymptotically Optimal Sequential Estimation of the Mean Based on Inclusion Principle
A large class of problems in sciences and engineering can be formulated as the general problem of constructing random intervals with pre-specified coverage probabilities for the mean. Wee propose a general approach for statistical inference of mean values based on accumulated observational data. We show that the construction of such random intervals can be accomplished by comparing the endpoints of random intervals with confidence sequences for the mean. Asymptotic results are obtained for such sequential methods.
Markov random fields factorization with context-specific independences
Markov random fields provide a compact representation of joint probability distributions by representing its independence properties in an undirected graph. The well-known Hammersley-Clifford theorem uses these conditional independences to factorize a Gibbs distribution into a set of factors. However, an important issue of using a graph to represent independences is that it cannot encode some types of independence relations, such as the context-specific independences (CSIs). They are a particular case of conditional independences that is true only for a certain assignment of its conditioning set; in contrast to conditional independences that must hold for all its assignments. This work presents a method for factorizing a Markov random field according to CSIs present in a distribution, and formally guarantees that this factorization is correct. This is presented in our main contribution, the context-specific Hammersley-Clifford theorem, a generalization to CSIs of the Hammersley-Clifford theorem that applies for conditional independences.
Generative Model Selection Using a Scalable and Size-Independent Complex Network Classifier
Real networks exhibit nontrivial topological features such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks" (GMSCN), outperforms existing methods with respect to accuracy, scalability and size-independence.
Auditing: Active Learning with Outcome-Dependent Query Costs
We propose a learning setting in which unlabeled data is free, and the cost of a label depends on its value, which is not known in advance. We study binary classification in an extreme case, where the algorithm only pays for negative labels. Our motivation are applications such as fraud detection, in which investigating an honest transaction should be avoided if possible. We term the setting auditing, and consider the auditing complexity of an algorithm: the number of negative labels the algorithm requires in order to learn a hypothesis with low relative error. We design auditing algorithms for simple hypothesis classes (thresholds and rectangles), and show that with these algorithms, the auditing complexity can be significantly lower than the active label complexity. We also discuss a general competitive approach for auditing and possible modifications to the framework.
DISCOMAX: A Proximity-Preserving Distance Correlation Maximization Algorithm
In a regression setting we propose algorithms that reduce the dimensionality of the features while simultaneously maximizing a statistical measure of dependence known as distance correlation between the low-dimensional features and a response variable. This helps in solving the prediction problem with a low-dimensional set of features. Our setting is different from subset-selection algorithms where the problem is to choose the best subset of features for regression. Instead, we attempt to generate a new set of low-dimensional features as in a feature-learning setting. We attempt to keep our proposed approach as model-free and our algorithm does not assume the application of any specific regression model in conjunction with the low-dimensional features that it learns. The algorithm is iterative and is fomulated as a combination of the majorization-minimization and concave-convex optimization procedures. We also present spectral radius based convergence results for the proposed iterations.
Efficient Classification for Metric Data
Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].
The association problem in wireless networks: a Policy Gradient Reinforcement Learning approach
The purpose of this paper is to develop a self-optimized association algorithm based on PGRL (Policy Gradient Reinforcement Learning), which is both scalable, stable and robust. The term robust means that performance degradation in the learning phase should be forbidden or limited to predefined thresholds. The algorithm is model-free (as opposed to Value Iteration) and robust (as opposed to Q-Learning). The association problem is modeled as a Markov Decision Process (MDP). The policy space is parameterized. The parameterized family of policies is then used as expert knowledge for the PGRL. The PGRL converges towards a local optimum and the average cost decreases monotonically during the learning process. The properties of the solution make it a good candidate for practical implementation. Furthermore, the robustness property allows to use the PGRL algorithm in an "always-on" learning mode.
Concentration bounds for temporal difference learning with linear function approximation: The case of batch data and uniform sampling
We propose a stochastic approximation (SA) based method with randomization of samples for policy evaluation using the least squares temporal difference (LSTD) algorithm. Our proposed scheme is equivalent to running regular temporal difference learning with linear function approximation, albeit with samples picked uniformly from a given dataset. Our method results in an $O(d)$ improvement in complexity in comparison to LSTD, where $d$ is the dimension of the data. We provide non-asymptotic bounds for our proposed method, both in high probability and in expectation, under the assumption that the matrix underlying the LSTD solution is positive definite. The latter assumption can be easily satisfied for the pathwise LSTD variant proposed in [23]. Moreover, we also establish that using our method in place of LSTD does not impact the rate of convergence of the approximate value function to the true value function. These rate results coupled with the low computational complexity of our method make it attractive for implementation in big data settings, where $d$ is large. A similar low-complexity alternative for least squares regression is well-known as the stochastic gradient descent (SGD) algorithm. We provide finite-time bounds for SGD. We demonstrate the practicality of our method as an efficient alternative for pathwise LSTD empirically by combining it with the least squares policy iteration (LSPI) algorithm in a traffic signal control application. We also conduct another set of experiments that combines the SA based low-complexity variant for least squares regression with the LinUCB algorithm for contextual bandits, using the large scale news recommendation dataset from Yahoo.
Large Margin Low Rank Tensor Analysis
Other than vector representations, the direct objects of human cognition are generally high-order tensors, such as 2D images and 3D textures. From this fact, two interesting questions naturally arise: How does the human brain represent these tensor perceptions in a "manifold" way, and how can they be recognized on the "manifold"? In this paper, we present a supervised model to learn the intrinsic structure of the tensors embedded in a high dimensional Euclidean space. With the fixed point continuation procedures, our model automatically and jointly discovers the optimal dimensionality and the representations of the low dimensional embeddings. This makes it an effective simulation of the cognitive process of human brain. Furthermore, the generalization of our model based on similarity between the learned low dimensional embeddings can be viewed as counterpart of recognition of human brain. Experiments on applications for object recognition and face recognition demonstrate the superiority of our proposed model over state-of-the-art approaches.
Precisely Verifying the Null Space Conditions in Compressed Sensing: A Sandwiching Algorithm
In this paper, we propose new efficient algorithms to verify the null space condition in compressed sensing (CS). Given an $(n-m) \times n$ ($m>0$) CS matrix $A$ and a positive $k$, we are interested in computing $\displaystyle \alpha_k = \max_{\{z: Az=0,z\neq 0\}}\max_{\{K: |K|\leq k\}}$ ${\|z_K \|_{1}}{\|z\|_{1}}$, where $K$ represents subsets of $\{1,2,...,n\}$, and $|K|$ is the cardinality of $K$. In particular, we are interested in finding the maximum $k$ such that $\alpha_k < {1}{2}$. However, computing $\alpha_k$ is known to be extremely challenging. In this paper, we first propose a series of new polynomial-time algorithms to compute upper bounds on $\alpha_k$. Based on these new polynomial-time algorithms, we further design a new sandwiching algorithm, to compute the \emph{exact} $\alpha_k$ with greatly reduced complexity. When needed, this new sandwiching algorithm also achieves a smooth tradeoff between computational complexity and result accuracy. Empirical results show the performance improvements of our algorithm over existing known methods; and our algorithm outputs precise values of $\alpha_k$, with much lower complexity than exhaustive search.
R3MC: A Riemannian three-factor algorithm for low-rank matrix completion
We exploit the versatile framework of Riemannian optimization on quotient manifolds to develop R3MC, a nonlinear conjugate-gradient method for low-rank matrix completion. The underlying search space of fixed-rank matrices is endowed with a novel Riemannian metric that is tailored to the least-squares cost. Numerical comparisons suggest that R3MC robustly outperforms state-of-the-art algorithms across different problem instances, especially those that combine scarcely sampled and ill-conditioned data.
Flexible sampling of discrete data correlations without the marginal distributions
Learning the joint dependence of discrete variables is a fundamental problem in machine learning, with many applications including prediction, clustering and dimensionality reduction. More recently, the framework of copula modeling has gained popularity due to its modular parametrization of joint distributions. Among other properties, copulas provide a recipe for combining flexible models for univariate marginal distributions with parametric families suitable for potentially high dimensional dependence structures. More radically, the extended rank likelihood approach of Hoff (2007) bypasses learning marginal models completely when such information is ancillary to the learning task at hand as in, e.g., standard dimensionality reduction problems or copula parameter estimation. The main idea is to represent data by their observable rank statistics, ignoring any other information from the marginals. Inference is typically done in a Bayesian framework with Gaussian copulas, and it is complicated by the fact this implies sampling within a space where the number of constraints increases quadratically with the number of data points. The result is slow mixing when using off-the-shelf Gibbs sampling. We present an efficient algorithm based on recent advances on constrained Hamiltonian Markov chain Monte Carlo that is simple to implement and does not require paying for a quadratic cost in sample size.
Copula Mixed-Membership Stochastic Blockmodel for Intra-Subgroup Correlations
The \emph{Mixed-Membership Stochastic Blockmodel (MMSB)} is a popular framework for modeling social network relationships. It can fully exploit each individual node's participation (or membership) in a social structure. Despite its powerful representations, this model makes an assumption that the distributions of relational membership indicators between two nodes are independent. Under many social network settings, however, it is possible that certain known subgroups of people may have high or low correlations in terms of their membership categories towards each other, and such prior information should be incorporated into the model. To this end, we introduce a \emph{Copula Mixed-Membership Stochastic Blockmodel (cMMSB)} where an individual Copula function is employed to jointly model the membership pairs of those nodes within the subgroup of interest. The model enables the use of various Copula functions to suit the scenario, while maintaining the membership's marginal distribution, as needed, for modeling membership indicators with other nodes outside of the subgroup of interest. We describe the proposed model and its inference algorithm in detail for both the finite and infinite cases. In the experiment section, we compare our algorithms with other popular models in terms of link prediction, using both synthetic and real world data.
Horizontal and Vertical Ensemble with Deep Representation for Classification
Representation learning, especially which by using deep learning, has been widely applied in classification. However, how to use limited size of labeled data to achieve good classification performance with deep neural network, and how can the learned features further improve classification remain indefinite. In this paper, we propose Horizontal Voting Vertical Voting and Horizontal Stacked Ensemble methods to improve the classification performance of deep neural networks. In the ICML 2013 Black Box Challenge, via using these methods independently, Bing Xu achieved 3rd in public leaderboard, and 7th in private leaderboard; Jingjing Xie achieved 4th in public leaderboard, and 5th in private leaderboard.
Understanding Dropout: Training Multi-Layer Perceptrons with Auxiliary Independent Stochastic Neurons
In this paper, a simple, general method of adding auxiliary stochastic neurons to a multi-layer perceptron is proposed. It is shown that the proposed method is a generalization of recently successful methods of dropout (Hinton et al., 2012), explicit noise injection (Vincent et al., 2010; Bishop, 1995) and semantic hashing (Salakhutdinov & Hinton, 2009). Under the proposed framework, an extension of dropout which allows using separate dropping probabilities for different hidden neurons, or layers, is found to be available. The use of different dropping probabilities for hidden layers separately is empirically investigated.
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC
State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference \emph{and learning} (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.
Robust Support Vector Machines for Speaker Verification Task
An important step in speaker verification is extracting features that best characterize the speaker voice. This paper investigates a front-end processing that aims at improving the performance of speaker verification based on the SVMs classifier, in text independent mode. This approach combines features based on conventional Mel-cepstral Coefficients (MFCCs) and Line Spectral Frequencies (LSFs) to constitute robust multivariate feature vectors. To reduce the high dimensionality required for training these feature vectors, we use a dimension reduction method called principal component analysis (PCA). In order to evaluate the robustness of these systems, different noisy environments have been used. The obtained results using TIMIT database showed that, using the paradigm that combines these spectral cues leads to a significant improvement in verification accuracy, especially with PCA reduction for low signal-to-noise ratio noisy environment.
Reinforcement learning with restrictions on the action set
Consider a 2-player normal-form game repeated over time. We introduce an adaptive learning procedure, where the players only observe their own realized payoff at each stage. We assume that agents do not know their own payoff function, and have no information on the other player. Furthermore, we assume that they have restrictions on their own action set such that, at each stage, their choice is limited to a subset of their action set. We prove that the empirical distributions of play converge to the set of Nash equilibria for zero-sum and potential games, and games where one player has two actions.
Completing Any Low-rank Matrix, Provably
Matrix completion, i.e., the exact and provable recovery of a low-rank matrix from a small subset of its elements, is currently only known to be possible if the matrix satisfies a restrictive structural constraint---known as {\em incoherence}---on its row and column spaces. In these cases, the subset of elements is sampled uniformly at random. In this paper, we show that {\em any} rank-$ r $ $ n$-by-$ n $ matrix can be exactly recovered from as few as $O(nr \log^2 n)$ randomly chosen elements, provided this random choice is made according to a {\em specific biased distribution}: the probability of any element being sampled should be proportional to the sum of the leverage scores of the corresponding row, and column. Perhaps equally important, we show that this specific form of sampling is nearly necessary, in a natural precise sense; this implies that other perhaps more intuitive sampling schemes fail. We further establish three ways to use the above result for the setting when leverage scores are not known \textit{a priori}: (a) a sampling strategy for the case when only one of the row or column spaces are incoherent, (b) a two-phase sampling procedure for general matrices that first samples to estimate leverage scores followed by sampling for exact recovery, and (c) an analysis showing the advantages of weighted nuclear/trace-norm minimization over the vanilla un-weighted formulation for the case of non-uniform sampling.
Dynamic Infinite Mixed-Membership Stochastic Blockmodel
Directional and pairwise measurements are often used to model inter-relationships in a social network setting. The Mixed-Membership Stochastic Blockmodel (MMSB) was a seminal work in this area, and many of its capabilities were extended since then. In this paper, we propose the \emph{Dynamic Infinite Mixed-Membership stochastic blockModel (DIM3)}, a generalised framework that extends the existing work to a potentially infinite number of communities and mixture memberships for each of the network's nodes. This model is in a dynamic setting, where additional model parameters are introduced to reflect the degree of persistence between one's memberships at consecutive times. Accordingly, two effective posterior sampling strategies and their results are presented using both synthetic and real data.
A Convergence Theorem for the Graph Shift-type Algorithms
Graph Shift (GS) algorithms are recently focused as a promising approach for discovering dense subgraphs in noisy data. However, there are no theoretical foundations for proving the convergence of the GS Algorithm. In this paper, we propose a generic theoretical framework consisting of three key GS components: simplex of generated sequence set, monotonic and continuous objective function and closed mapping. We prove that GS algorithms with such components can be transformed to fit the Zangwill's convergence theorem, and the sequence set generated by the GS procedures always terminates at a local maximum, or at worst, contains a subsequence which converges to a local maximum of the similarity measure function. The framework is verified by expanding it to other GS-type algorithms and experimental results.
Non-parametric Power-law Data Clustering
It has always been a great challenge for clustering algorithms to automatically determine the cluster numbers according to the distribution of datasets. Several approaches have been proposed to address this issue, including the recent promising work which incorporate Bayesian Nonparametrics into the $k$-means clustering procedure. This approach shows simplicity in implementation and solidity in theory, while it also provides a feasible way to inference in large scale datasets. However, several problems remains unsolved in this pioneering work, including the power-law data applicability, mechanism to merge centers to avoid the over-fitting problem, clustering order problem, e.t.c.. To address these issues, the Pitman-Yor Process based k-means (namely \emph{pyp-means}) is proposed in this paper. Taking advantage of the Pitman-Yor Process, \emph{pyp-means} treats clusters differently by dynamically and adaptively changing the threshold to guarantee the generation of power-law clustering results. Also, one center agglomeration procedure is integrated into the implementation to be able to merge small but close clusters and then adaptively determine the cluster number. With more discussion on the clustering order, the convergence proof, complexity analysis and extension to spectral clustering, our approach is compared with traditional clustering algorithm and variational inference methods. The advantages and properties of pyp-means are validated by experiments on both synthetic datasets and real world datasets.
Physeter catodon localization by sparse coding
This paper presents a spermwhale' localization architecture using jointly a bag-of-features (BoF) approach and machine learning framework. BoF methods are known, especially in computer vision, to produce from a collection of local features a global representation invariant to principal signal transformations. Our idea is to regress supervisely from these local features two rough estimates of the distance and azimuth thanks to some datasets where both acoustic events and ground-truth position are now available. Furthermore, these estimates can feed a particle filter system in order to obtain a precise spermwhale' position even in mono-hydrophone configuration. Anti-collision system and whale watching are considered applications of this work.
Guaranteed Classification via Regularized Similarity Learning
Learning an appropriate (dis)similarity function from the available data is a central problem in machine learning, since the success of many machine learning algorithms critically depends on the choice of a similarity function to compare examples. Despite many approaches for similarity metric learning have been proposed, there is little theoretical study on the links between similarity met- ric learning and the classification performance of the result classifier. In this paper, we propose a regularized similarity learning formulation associated with general matrix-norms, and establish their generalization bounds. We show that the generalization error of the resulting linear separator can be bounded by the derived generalization bound of similarity learning. This shows that a good gen- eralization of the learnt similarity function guarantees a good classification of the resulting linear classifier. Our results extend and improve those obtained by Bellet at al. [3]. Due to the techniques dependent on the notion of uniform stability [6], the bound obtained there holds true only for the Frobenius matrix- norm regularization. Our techniques using the Rademacher complexity [5] and its related Khinchin-type inequality enable us to establish bounds for regularized similarity learning formulations associated with general matrix-norms including sparse L 1 -norm and mixed (2,1)-norm.
Learning Using Privileged Information: SVM+ and Weighted SVM
Prior knowledge can be used to improve predictive performance of learning algorithms or reduce the amount of data required for training. The same goal is pursued within the learning using privileged information paradigm which was recently introduced by Vapnik et al. and is aimed at utilizing additional information available only at training time -- a framework implemented by SVM+. We relate the privileged information to importance weighting and show that the prior knowledge expressible with privileged features can also be encoded by weights associated with every training example. We show that a weighted SVM can always replicate an SVM+ solution, while the converse is not true and we construct a counterexample highlighting the limitations of SVM+. Finally, we touch on the problem of choosing weights for weighted SVMs when privileged features are not available.