title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Bayesian nonparametric comorbidity analysis of psychiatric disorders
The analysis of comorbidity is an open and complex research field in the branch of psychiatry, where clinical experience and several studies suggest that the relation among the psychiatric disorders may have etiological and treatment implications. In this paper, we are interested in applying latent feature modeling to find the latent structure behind the psychiatric disorders that can help to examine and explain the relationships among them. To this end, we use the large amount of information collected in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) database and propose to model these data using a nonparametric latent model based on the Indian Buffet Process (IBP). Due to the discrete nature of the data, we first need to adapt the observation model for discrete random variables. We propose a generative model in which the observations are drawn from a multinomial-logit distribution given the IBP matrix. The implementation of an efficient Gibbs sampler is accomplished using the Laplace approximation, which allows integrating out the weighting factors of the multinomial-logit likelihood model. We also provide a variational inference algorithm for this model, which provides a complementary (and less expensive in terms of computational complexity) alternative to the Gibbs sampler allowing us to deal with a larger number of data. Finally, we use the model to analyze comorbidity among the psychiatric disorders diagnosed by experts from the NESARC database.
RES: Regularized Stochastic BFGS Algorithm
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Joint Inference of Multiple Label Types in Large Networks
We tackle the problem of inferring node labels in a partially labeled graph where each node in the graph has multiple label types and each label type has a large number of possible labels. Our primary example, and the focus of this paper, is the joint inference of label types such as hometown, current city, and employers, for users connected by a social network. Standard label propagation fails to consider the properties of the label types and the interactions between them. Our proposed method, called EdgeExplain, explicitly models these, while still enabling scalable inference under a distributed message-passing architecture. On a billion-node subset of the Facebook social network, EdgeExplain significantly outperforms label propagation for several label types, with lifts of up to 120% for recall@1 and 60% for recall@3.
Security Evaluation of Support Vector Machines in Adversarial Environments
Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.
Maximum Margin Multiclass Nearest Neighbors
We develop a general framework for margin-based multicategory classification in metric spaces. The basic work-horse is a margin-regularized version of the nearest-neighbor classifier. We prove generalization bounds that match the state of the art in sample size $n$ and significantly improve the dependence on the number of classes $k$. Our point of departure is a nearly Bayes-optimal finite-sample risk bound independent of $k$. Although $k$-free, this bound is unregularized and non-adaptive, which motivates our main result: Rademacher and scale-sensitive margin bounds with a logarithmic dependence on $k$. As the best previous risk estimates in this setting were of order $\sqrt k$, our bound is exponentially sharper. From the algorithmic standpoint, in doubling metric spaces our classifier may be trained on $n$ examples in $O(n^2\log n)$ time and evaluated on new points in $O(\log n)$ time.
Support vector comparison machines
In ranking problems, the goal is to learn a ranking function from labeled pairs of input points. In this paper, we consider the related comparison problem, where the label indicates which element of the pair is better, or if there is no significant difference. We cast the learning problem as a margin maximization, and show that it can be solved by converting it to a standard SVM. We use simulated nonlinear patterns, a real learning to rank sushi data set, and a chess data set to show that our proposed SVMcompare algorithm outperforms SVMrank when there are equality pairs.
Empirically Evaluating Multiagent Learning Algorithms
There exist many algorithms for learning how to play repeated bimatrix games. Most of these algorithms are justified in terms of some sort of theoretical guarantee. On the other hand, little is known about the empirical performance of these algorithms. Most such claims in the literature are based on small experiments, which has hampered understanding as well as the development of new multiagent learning (MAL) algorithms. We have developed a new suite of tools for running multiagent experiments: the MultiAgent Learning Testbed (MALT). These tools are designed to facilitate larger and more comprehensive experiments by removing the need to build one-off experimental code. MALT also provides baseline implementations of many MAL algorithms, hopefully eliminating or reducing differences between algorithm implementations and increasing the reproducibility of results. Using this test suite, we ran an experiment unprecedented in size. We analyzed the results according to a variety of performance metrics including reward, maxmin distance, regret, and several notions of equilibrium convergence. We confirmed several pieces of conventional wisdom, but also discovered some surprising results. For example, we found that single-agent $Q$-learning outperformed many more complicated and more modern MAL algorithms.
Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds
Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Human Activity Recognition using Smartphone
Human activity recognition has wide applications in medical research and human survey system. In this project, we design a robust activity recognition system based on a smartphone. The system uses a 3-dimentional smartphone accelerometer as the only sensor to collect time series signals, from which 31 features are generated in both time and frequency domain. Activities are classified using 4 different passive learning methods, i.e., quadratic classifier, k-nearest neighbor algorithm, support vector machine, and artificial neural networks. Dimensionality reduction is performed through both feature extraction and subset selection. Besides passive learning, we also apply active learning algorithms to reduce data labeling expense. Experiment results show that the classification rate of passive learning reaches 84.4% and it is robust to common positions and poses of cellphone. The results of active learning on real data demonstrate a reduction of labeling labor to achieve comparable performance with passive learning.
Online Clustering of Bandits
We introduce a novel algorithmic approach to content recommendation based on adaptive clustering of exploration-exploitation ("bandit") strategies. We provide a sharp regret analysis of this algorithm in a standard stochastic noise setting, demonstrate its scalability properties, and prove its effectiveness on a number of artificial and real-world datasets. Our experiments show a significant increase in prediction performance over state-of-the-art methods for bandit problems.
Experiments with Three Approaches to Recognizing Lexical Entailment
Inference in natural language often involves recognizing lexical entailment (RLE); that is, identifying whether one word entails another. For example, "buy" entails "own". Two general strategies for RLE have been proposed: One strategy is to manually construct an asymmetric similarity measure for context vectors (directional similarity) and another is to treat RLE as a problem of learning to recognize semantic relations using supervised machine learning techniques (relation classification). In this paper, we experiment with two recent state-of-the-art representatives of the two general strategies. The first approach is an asymmetric similarity measure (an instance of the directional similarity strategy), designed to capture the degree to which the contexts of a word, a, form a subset of the contexts of another word, b. The second approach (an instance of the relation classification strategy) represents a word pair, a:b, with a feature vector that is the concatenation of the context vectors of a and b, and then applies supervised learning to a training set of labeled feature vectors. Additionally, we introduce a third approach that is a new instance of the relation classification strategy. The third approach represents a word pair, a:b, with a feature vector in which the features are the differences in the similarities of a and b to a set of reference words. All three approaches use vector space models (VSMs) of semantics, based on word-context matrices. We perform an extensive evaluation of the three approaches using three different datasets. The proposed new approach (similarity differences) performs significantly better than the other two approaches on some datasets and there is no dataset for which it is significantly worse. Our results suggest it is beneficial to make connections between the research in lexical entailment and the research in semantic relation classification.
Neural Variational Inference and Learning in Belief Networks
Highly expressive directed latent variable models, such as sigmoid belief networks, are difficult to train on large datasets because exact inference in them is intractable and none of the approximate inference methods that have been applied to them scale well. We propose a fast non-iterative approximate inference method that uses a feedforward network to implement efficient exact sampling from the variational posterior. The model and this inference network are trained jointly by maximizing a variational lower bound on the log-likelihood. Although the naive estimator of the inference model gradient is too high-variance to be useful, we make it practical by applying several straightforward model-independent variance reduction techniques. Applying our approach to training sigmoid belief networks and deep autoregressive networks, we show that it outperforms the wake-sleep algorithm on MNIST and achieves state-of-the-art results on the Reuters RCV1 document dataset.
Dual-to-kernel learning with ideals
In this paper, we propose a theory which unifies kernel learning and symbolic algebraic methods. We show that both worlds are inherently dual to each other, and we use this duality to combine the structure-awareness of algebraic methods with the efficiency and generality of kernels. The main idea lies in relating polynomial rings to feature space, and ideals to manifolds, then exploiting this generative-discriminative duality on kernel matrices. We illustrate this by proposing two algorithms, IPCA and AVICA, for simultaneous manifold and feature learning, and test their accuracy on synthetic and real world data.
Markov Blanket Ranking using Kernel-based Conditional Dependence Measures
Developing feature selection algorithms that move beyond a pure correlational to a more causal analysis of observational data is an important problem in the sciences. Several algorithms attempt to do so by discovering the Markov blanket of a target, but they all contain a forward selection step which variables must pass in order to be included in the conditioning set. As a result, these algorithms may not consider all possible conditional multivariate combinations. We improve on this limitation by proposing a backward elimination method that uses a kernel-based conditional dependence measure to identify the Markov blanket in a fully multivariate fashion. The algorithm is easy to implement and compares favorably to other methods on synthetic and real datasets.
Randomized Nonlinear Component Analysis
Classical methods such as Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) are ubiquitous in statistics. However, these techniques are only able to reveal linear relationships in data. Although nonlinear variants of PCA and CCA have been proposed, these are computationally prohibitive in the large scale. In a separate strand of recent research, randomized methods have been proposed to construct features that help reveal nonlinear patterns in data. For basic tasks such as regression or classification, random features exhibit little or no loss in performance, while achieving drastic savings in computational requirements. In this paper we leverage randomness to design scalable new variants of nonlinear PCA and CCA; our ideas extend to key multivariate analysis tools such as spectral clustering or LDA. We demonstrate our algorithms through experiments on real-world data, on which we compare against the state-of-the-art. A simple R implementation of the presented algorithms is provided.
Collaborative Receptive Field Learning
The challenge of object categorization in images is largely due to arbitrary translations and scales of the foreground objects. To attack this difficulty, we propose a new approach called collaborative receptive field learning to extract specific receptive fields (RF's) or regions from multiple images, and the selected RF's are supposed to focus on the foreground objects of a common category. To this end, we solve the problem by maximizing a submodular function over a similarity graph constructed by a pool of RF candidates. However, measuring pairwise distance of RF's for building the similarity graph is a nontrivial problem. Hence, we introduce a similarity metric called pyramid-error distance (PED) to measure their pairwise distances through summing up pyramid-like matching errors over a set of low-level features. Besides, in consistent with the proposed PED, we construct a simple nonparametric classifier for classification. Experimental results show that our method effectively discovers the foreground objects in images, and improves classification performance.
Principled Graph Matching Algorithms for Integrating Multiple Data Sources
This paper explores combinatorial optimization for problems of max-weight graph matching on multi-partite graphs, which arise in integrating multiple data sources. Entity resolution-the data integration problem of performing noisy joins on structured data-typically proceeds by first hashing each record into zero or more blocks, scoring pairs of records that are co-blocked for similarity, and then matching pairs of sufficient similarity. In the most common case of matching two sources, it is often desirable for the final matching to be one-to-one (a record may be matched with at most one other); members of the database and statistical record linkage communities accomplish such matchings in the final stage by weighted bipartite graph matching on similarity scores. Such matchings are intuitively appealing: they leverage a natural global property of many real-world entity stores-that of being nearly deduped-and are known to provide significant improvements to precision and recall. Unfortunately unlike the bipartite case, exact max-weight matching on multi-partite graphs is known to be NP-hard. Our two-fold algorithmic contributions approximate multi-partite max-weight matching: our first algorithm borrows optimization techniques common to Bayesian probabilistic inference; our second is a greedy approximation algorithm. In addition to a theoretical guarantee on the latter, we present comparisons on a real-world ER problem from Bing significantly larger than typically found in the literature, publication data, and on a series of synthetic problems. Our results quantify significant improvements due to exploiting multiple sources, which are made possible by global one-to-one constraints linking otherwise independent matching sub-problems. We also discover that our algorithms are complementary: one being much more robust under noise, and the other being simple to implement and very fast to run.
Transductive Learning with Multi-class Volume Approximation
Given a hypothesis space, the large volume principle by Vladimir Vapnik prioritizes equivalence classes according to their volume in the hypothesis space. The volume approximation has hitherto been successfully applied to binary learning problems. In this paper, we extend it naturally to a more general definition which can be applied to several transductive problem settings, such as multi-class, multi-label and serendipitous learning. Even though the resultant learning method involves a non-convex optimization problem, the globally optimal solution is almost surely unique and can be obtained in O(n^3) time. We theoretically provide stability and error analyses for the proposed method, and then experimentally show that it is promising.
A high-reproducibility and high-accuracy method for automated topic classification
Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent search, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state-of-the-art in topic classification. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results which are not accurate in inferring the most suitable model parameters. Adapting approaches for community detection in networks, we propose a new algorithm which displays high-reproducibility and high-accuracy, and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure. Our algorithm promises to make "big data" text analysis systems more reliable.
A Lower Bound for the Variance of Estimators for Nakagami m Distribution
Recently, we have proposed a maximum likelihood iterative algorithm for estimation of the parameters of the Nakagami-m distribution. This technique performs better than state of art estimation techniques for this distribution. This could be of particular use in low data or block based estimation problems. In these scenarios, the estimator should be able to give accurate estimates in the mean square sense with less amounts of data. Also, the estimates should improve with the increase in number of blocks received. In this paper, we see through our simulations, that our proposal is well designed for such requirements. Further, it is well known in the literature that an efficient estimator does not exist for Nakagami-m distribution. In this paper, we derive a theoretical expression for the variance of our proposed estimator. We find that this expression clearly fits the experimental curve for the variance of the proposed estimator. This expression is pretty close to the cramer-rao lower bound(CRLB).
Fine-Grained Visual Categorization via Multi-stage Metric Learning
Fine-grained visual categorization (FGVC) is to categorize objects into subordinate classes instead of basic classes. One major challenge in FGVC is the co-occurrence of two issues: 1) many subordinate classes are highly correlated and are difficult to distinguish, and 2) there exists the large intra-class variation (e.g., due to object pose). This paper proposes to explicitly address the above two issues via distance metric learning (DML). DML addresses the first issue by learning an embedding so that data points from the same class will be pulled together while those from different classes should be pushed apart from each other; and it addresses the second issue by allowing the flexibility that only a portion of the neighbors (not all data points) from the same class need to be pulled together. However, feature representation of an image is often high dimensional, and DML is known to have difficulty in dealing with high dimensional feature vectors since it would require $\mathcal{O}(d^2)$ for storage and $\mathcal{O}(d^3)$ for optimization. To this end, we proposed a multi-stage metric learning framework that divides the large-scale high dimensional learning problem to a series of simple subproblems, achieving $\mathcal{O}(d)$ computational complexity. The empirical study with FVGC benchmark datasets verifies that our method is both effective and efficient compared to the state-of-the-art FGVC approaches.
Applying Supervised Learning Algorithms and a New Feature Selection Method to Predict Coronary Artery Disease
From a fresh data science perspective, this thesis discusses the prediction of coronary artery disease based on genetic variations at the DNA base pair level, called Single-Nucleotide Polymorphisms (SNPs), collected from the Ontario Heart Genomics Study (OHGS). First, the thesis explains two commonly used supervised learning algorithms, the k-Nearest Neighbour (k-NN) and Random Forest classifiers, and includes a complete proof that the k-NN classifier is universally consistent in any finite dimensional normed vector space. Second, the thesis introduces two dimensionality reduction steps, Random Projections, a known feature extraction technique based on the Johnson-Lindenstrauss lemma, and a new method termed Mass Transportation Distance (MTD) Feature Selection for discrete domains. Then, this thesis compares the performance of Random Projections with the k-NN classifier against MTD Feature Selection and Random Forest, for predicting artery disease based on accuracy, the F-Measure, and area under the Receiver Operating Characteristic (ROC) curve. The comparative results demonstrate that MTD Feature Selection with Random Forest is vastly superior to Random Projections and k-NN. The Random Forest classifier is able to obtain an accuracy of 0.6660 and an area under the ROC curve of 0.8562 on the OHGS genetic dataset, when 3335 SNPs are selected by MTD Feature Selection for classification. This area is considerably better than the previous high score of 0.608 obtained by Davies et al. in 2010 on the same dataset.
Efficient Gradient-Based Inference through Transformations between Bayes Nets and Neural Nets
Hierarchical Bayesian networks and neural networks with stochastic hidden units are commonly perceived as two separate types of models. We show that either of these types of models can often be transformed into an instance of the other, by switching between centered and differentiable non-centered parameterizations of the latent variables. The choice of parameterization greatly influences the efficiency of gradient-based posterior inference; we show that they are often complementary to eachother, we clarify when each parameterization is preferred and show how inference can be made robust. In the non-centered form, a simple Monte Carlo estimator of the marginal likelihood can be used for learning the parameters. Theoretical results are supported by experiments.
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits
We present a new algorithm for the contextual bandit learning problem, where the learner repeatedly takes one of $K$ actions in response to the observed context, and observes the reward only for that chosen action. Our method assumes access to an oracle for solving fully supervised cost-sensitive classification problems and achieves the statistically optimal regret guarantee with only $\tilde{O}(\sqrt{KT/\log N})$ oracle calls across all $T$ rounds, where $N$ is the number of policies in the policy class we compete against. By doing so, we obtain the most practical contextual bandit learning algorithm amongst approaches that work for general policy classes. We further conduct a proof-of-concept experiment which demonstrates the excellent computational and prediction performance of (an online variant of) our algorithm relative to several baselines.
Parameterized Complexity Results for Exact Bayesian Network Structure Learning
Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a natural generalization of its undirected counterpart. Our results apply to several variants of score-based Bayesian network structure learning where the score of a network decomposes into local scores of its nodes. Results: We show that exact Bayesian network structure learning can be carried out in non-uniform polynomial time if the super-structure has bounded treewidth, and in linear time if in addition the super-structure has bounded maximum degree. Furthermore, we show that if the directed super-structure is acyclic, then exact Bayesian network structure learning can be carried out in quadratic time. We complement these positive results with a number of hardness results. We show that both restrictions (treewidth and degree) are essential and cannot be dropped without loosing uniform polynomial time tractability (subject to a complexity-theoretic assumption). Similarly, exact Bayesian network structure learning remains NP-hard for "almost acyclic" directed super-structures. Furthermore, we show that the restrictions remain essential if we do not search for a globally optimal network but aim to improve a given network by means of at most k arc additions, arc deletions, or arc reversals (k-neighborhood local search).
Safe Exploration of State and Action Spaces in Reinforcement Learning
In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some states may result in damage to the learning system (or any other system). Consequently, when an agent begins an interaction with a dangerous and high-dimensional state-action space, an important question arises; namely, that of how to avoid (or at least minimize) damage caused by the exploration of the state-action space. We introduce the PI-SRL algorithm which safely improves suboptimal albeit robust behaviors for continuous state and action control tasks and which efficiently learns from the experience gained from the environment. We evaluate the proposed method in four complex tasks: automatic car parking, pole-balancing, helicopter hovering, and business management.
Online Stochastic Optimization under Correlated Bandit Feedback
In this paper we consider the problem of online stochastic optimization of a locally smooth function under bandit feedback. We introduce the high-confidence tree (HCT) algorithm, a novel any-time $\mathcal{X}$-armed bandit algorithm, and derive regret bounds matching the performance of existing state-of-the-art in terms of dependency on number of steps and smoothness factor. The main advantage of HCT is that it handles the challenging case of correlated rewards, whereas existing methods require that the reward-generating process of each arm is an identically and independent distributed (iid) random process. HCT also improves on the state-of-the-art in terms of its memory requirement as well as requiring a weaker smoothness assumption on the mean-reward function in compare to the previous anytime algorithms. Finally, we discuss how HCT can be applied to the problem of policy search in reinforcement learning and we report preliminary empirical results.
A Feature Subset Selection Algorithm Automatic Recommendation Method
Many feature subset selection (FSS) algorithms have been proposed, but not all of them are appropriate for a given feature selection problem. At the same time, so far there is rarely a good way to choose appropriate FSS algorithms for the problem at hand. Thus, FSS algorithm automatic recommendation is very important and practically useful. In this paper, a meta learning based FSS algorithm automatic recommendation method is presented. The proposed method first identifies the data sets that are most similar to the one at hand by the k-nearest neighbor classification algorithm, and the distances among these data sets are calculated based on the commonly-used data set characteristics. Then, it ranks all the candidate FSS algorithms according to their performance on these similar data sets, and chooses the algorithms with best performance as the appropriate ones. The performance of the candidate FSS algorithms is evaluated by a multi-criteria metric that takes into account not only the classification accuracy over the selected features, but also the runtime of feature selection and the number of selected features. The proposed recommendation method is extensively tested on 115 real world data sets with 22 well-known and frequently-used different FSS algorithms for five representative classifiers. The results show the effectiveness of our proposed FSS algorithm recommendation method.
A Survey on Latent Tree Models and Applications
In data analysis, latent variables play a central role because they help provide powerful insights into a wide variety of phenomena, ranging from biological to human sciences. The latent tree model, a particular type of probabilistic graphical models, deserves attention. Its simple structure - a tree - allows simple and efficient inference, while its latent variables capture complex relationships. In the past decade, the latent tree model has been subject to significant theoretical and methodological developments. In this review, we propose a comprehensive study of this model. First we summarize key ideas underlying the model. Second we explain how it can be efficiently learned from data. Third we illustrate its use within three types of applications: latent structure discovery, multidimensional clustering, and probabilistic inference. Finally, we conclude and give promising directions for future researches in this field.
Generalization and Exploration via Randomized Value Functions
We propose randomized least-squares value iteration (RLSVI) -- a new reinforcement learning algorithm designed to explore and generalize efficiently via linearly parameterized value functions. We explain why versions of least-squares value iteration that use Boltzmann or epsilon-greedy exploration can be highly inefficient, and we present computational results that demonstrate dramatic efficiency gains enjoyed by RLSVI. Further, we establish an upper bound on the expected regret of RLSVI that demonstrates near-optimality in a tabula rasa learning context. More broadly, our results suggest that randomized value functions offer a promising approach to tackling a critical challenge in reinforcement learning: synthesizing efficient exploration and effective generalization.
Local Gaussian Regression
Locally weighted regression was created as a nonparametric learning method that is computationally efficient, can learn from very large amounts of data and add data incrementally. An interesting feature of locally weighted regression is that it can work with spatially varying length scales, a beneficial property, for instance, in control problems. However, it does not provide a generative model for function values and requires training and test data to be generated identically, independently. Gaussian (process) regression, on the other hand, provides a fully generative model without significant formal requirements on the distribution of training data, but has much higher computational cost and usually works with one global scale per input dimension. Using a localising function basis and approximate inference techniques, we take Gaussian (process) regression to increasingly localised properties and toward the same computational complexity class as locally weighted regression.
UNLocBoX: A MATLAB convex optimization toolbox for proximal-splitting methods
Convex optimization is an essential tool for machine learning, as many of its problems can be formulated as minimization problems of specific objective functions. While there is a large variety of algorithms available to solve convex problems, we can argue that it becomes more and more important to focus on efficient, scalable methods that can deal with big data. When the objective function can be written as a sum of "simple" terms, proximal splitting methods are a good choice. UNLocBoX is a MATLAB library that implements many of these methods, designed to solve convex optimization problems of the form $\min_{x \in \mathbb{R}^N} \sum_{n=1}^K f_n(x).$ It contains the most recent solvers such as FISTA, Douglas-Rachford, SDMM as well a primal dual techniques such as Chambolle-Pock and forward-backward-forward. It also includes an extensive list of common proximal operators that can be combined, allowing for a quick implementation of a large variety of convex problems.
Sequential Model-Based Ensemble Optimization
One of the most tedious tasks in the application of machine learning is model selection, i.e. hyperparameter selection. Fortunately, recent progress has been made in the automation of this process, through the use of sequential model-based optimization (SMBO) methods. This can be used to optimize a cross-validation performance of a learning algorithm over the value of its hyperparameters. However, it is well known that ensembles of learned models almost consistently outperform a single model, even if properly selected. In this paper, we thus propose an extension of SMBO methods that automatically constructs such ensembles. This method builds on a recently proposed ensemble construction paradigm known as agnostic Bayesian learning. In experiments on 22 regression and 39 classification data sets, we confirm the success of this proposed approach, which is able to outperform model selection with SMBO.
The Informed Sampler: A Discriminative Approach to Bayesian Inference in Generative Computer Vision Models
Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the image signal is non-additive due to occlusion. Generative models promised to account for this variability by accurately modelling the image formation process as a function of latent variables with prior beliefs. Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing, generative models for computer vision have largely failed to deliver on that promise due to the difficulty of posterior inference. As a result the community has favoured efficient discriminative approaches. We still believe in the usefulness of generative models in computer vision, but argue that we need to leverage existing discriminative or even heuristic computer vision methods. We implement this idea in a principled way with an "informed sampler" and in careful experiments demonstrate it on challenging generative models which contain renderer programs as their components. We concentrate on the problem of inverting an existing graphics rendering engine, an approach that can be understood as "Inverse Graphics". The informed sampler, using simple discriminative proposals based on existing computer vision technology, achieves significant improvements of inference.
Discovering Latent Network Structure in Point Process Data
Networks play a central role in modern data analysis, enabling us to reason about systems by studying the relationships between their parts. Most often in network analysis, the edges are given. However, in many systems it is difficult or impossible to measure the network directly. Examples of latent networks include economic interactions linking financial instruments and patterns of reciprocity in gang violence. In these cases, we are limited to noisy observations of events associated with each node. To enable analysis of these implicit networks, we develop a probabilistic model that combines mutually-exciting point processes with random graph models. We show how the Poisson superposition principle enables an elegant auxiliary variable formulation and a fully-Bayesian, parallel inference algorithm. We evaluate this new model empirically on several datasets.
Learning Ordered Representations with Nested Dropout
In this paper, we study ordered representations of data in which different dimensions have different degrees of importance. To learn these representations we introduce nested dropout, a procedure for stochastically removing coherent nested sets of hidden units in a neural network. We first present a sequence of theoretical results in the simple case of a semi-linear autoencoder. We rigorously show that the application of nested dropout enforces identifiability of the units, which leads to an exact equivalence with PCA. We then extend the algorithm to deep models and demonstrate the relevance of ordered representations to a number of applications. Specifically, we use the ordered property of the learned codes to construct hash-based data structures that permit very fast retrieval, achieving retrieval in time logarithmic in the database size and independent of the dimensionality of the representation. This allows codes that are hundreds of times longer than currently feasible for retrieval. We therefore avoid the diminished quality associated with short codes, while still performing retrieval that is competitive in speed with existing methods. We also show that ordered representations are a promising way to learn adaptive compression for efficient online data reconstruction.
Input Warping for Bayesian Optimization of Non-stationary Functions
Bayesian optimization has proven to be a highly effective methodology for the global optimization of unknown, expensive and multimodal functions. The ability to accurately model distributions over functions is critical to the effectiveness of Bayesian optimization. Although Gaussian processes provide a flexible prior over functions which can be queried efficiently, there are various classes of functions that remain difficult to model. One of the most frequently occurring of these is the class of non-stationary functions. The optimization of the hyperparameters of machine learning algorithms is a problem domain in which parameters are often manually transformed a priori, for example by optimizing in "log-space," to mitigate the effects of spatially-varying length scale. We develop a methodology for automatically learning a wide family of bijective transformations or warpings of the input space using the Beta cumulative distribution function. We further extend the warping framework to multi-task Bayesian optimization so that multiple tasks can be warped into a jointly stationary space. On a set of challenging benchmark optimization tasks, we observe that the inclusion of warping greatly improves on the state-of-the-art, producing better results faster and more reliably.
Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition
Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture that has been designed to address the vanishing and exploding gradient problems of conventional RNNs. Unlike feedforward neural networks, RNNs have cyclic connections making them powerful for modeling sequences. They have been successfully used for sequence labeling and sequence prediction tasks, such as handwriting recognition, language modeling, phonetic labeling of acoustic frames. However, in contrast to the deep neural networks, the use of RNNs in speech recognition has been limited to phone recognition in small scale tasks. In this paper, we present novel LSTM based RNN architectures which make more effective use of model parameters to train acoustic models for large vocabulary speech recognition. We train and compare LSTM, RNN and DNN models at various numbers of parameters and configurations. We show that LSTM models converge quickly and give state of the art speech recognition performance for relatively small sized models.
Localized epidemic detection in networks with overwhelming noise
We consider the problem of detecting an epidemic in a population where individual diagnoses are extremely noisy. The motivation for this problem is the plethora of examples (influenza strains in humans, or computer viruses in smartphones, etc.) where reliable diagnoses are scarce, but noisy data plentiful. In flu/phone-viruses, exceedingly few infected people/phones are professionally diagnosed (only a small fraction go to a doctor) but less reliable secondary signatures (e.g., people staying home, or greater-than-typical upload activity) are more readily available. These secondary data are often plagued by unreliability: many people with the flu do not stay home, and many people that stay home do not have the flu. This paper identifies the precise regime where knowledge of the contact network enables finding the needle in the haystack: we provide a distributed, efficient and robust algorithm that can correctly identify the existence of a spreading epidemic from highly unreliable local data. Our algorithm requires only local-neighbor knowledge of this graph, and in a broad array of settings that we describe, succeeds even when false negatives and false positives make up an overwhelming fraction of the data available. Our results show it succeeds in the presence of partial information about the contact network, and also when there is not a single "patient zero", but rather many (hundreds, in our examples) of initial patient-zeroes, spread across the graph.
Phase transitions and sample complexity in Bayes-optimal matrix factorization
We analyse the matrix factorization problem. Given a noisy measurement of a product of two matrices, the problem is to estimate back the original matrices. It arises in many applications such as dictionary learning, blind matrix calibration, sparse principal component analysis, blind source separation, low rank matrix completion, robust principal component analysis or factor analysis. It is also important in machine learning: unsupervised representation learning can often be studied through matrix factorization. We use the tools of statistical mechanics - the cavity and replica methods - to analyze the achievability and computational tractability of the inference problems in the setting of Bayes-optimal inference, which amounts to assuming that the two matrices have random independent elements generated from some known distribution, and this information is available to the inference algorithm. In this setting, we compute the minimal mean-squared-error achievable in principle in any computational time, and the error that can be achieved by an efficient approximate message passing algorithm. The computation is based on the asymptotic state-evolution analysis of the algorithm. The performance that our analysis predicts, both in terms of the achieved mean-squared-error, and in terms of sample complexity, is extremely promising and motivating for a further development of the algorithm.
Dissimilarity-based Ensembles for Multiple Instance Learning
In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Gaussian processes (GPs) are a powerful tool for probabilistic inference over functions. They have been applied to both regression and non-linear dimensionality reduction, and offer desirable properties such as uncertainty estimates, robustness to over-fitting, and principled ways for tuning hyper-parameters. However the scalability of these models to big datasets remains an active topic of research. We introduce a novel re-parametrisation of variational inference for sparse GP regression and latent variable models that allows for an efficient distributed algorithm. This is done by exploiting the decoupling of the data given the inducing points to re-formulate the evidence lower bound in a Map-Reduce setting. We show that the inference scales well with data and computational resources, while preserving a balanced distribution of the load among the nodes. We further demonstrate the utility in scaling Gaussian processes to big data. We show that GP performance improves with increasing amounts of data in regression (on flight data with 2 million records) and latent variable modelling (on MNIST). The results show that GPs perform better than many common models often used for big data.
An Autoencoder Approach to Learning Bilingual Word Representations
Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are aligned between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. Since training autoencoders on word observations presents certain computational issues, we propose and compare different variations adapted to this setting. We also propose an explicit correlation maximizing regularizer that leads to significant improvement in the performance. We empirically investigate the success of our approach on the problem of cross-language test classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German). These experiments demonstrate that our approaches are competitive with the state-of-the-art, achieving up to 10-14 percentage point improvements over the best reported results on this task.
Near-Optimal Joint Object Matching via Convex Relaxation
Joint matching over a collection of objects aims at aggregating information from a large collection of similar instances (e.g. images, graphs, shapes) to improve maps between pairs of them. Given multiple matches computed between a few object pairs in isolation, the goal is to recover an entire collection of maps that are (1) globally consistent, and (2) close to the provided maps --- and under certain conditions provably the ground-truth maps. Despite recent advances on this problem, the best-known recovery guarantees are limited to a small constant barrier --- none of the existing methods find theoretical support when more than $50\%$ of input correspondences are corrupted. Moreover, prior approaches focus mostly on fully similar objects, while it is practically more demanding to match instances that are only partially similar to each other. In this paper, we develop an algorithm to jointly match multiple objects that exhibit only partial similarities, given a few pairwise matches that are densely corrupted. Specifically, we propose to recover the ground-truth maps via a parameter-free convex program called MatchLift, following a spectral method that pre-estimates the total number of distinct elements to be matched. Encouragingly, MatchLift exhibits near-optimal error-correction ability, i.e. in the asymptotic regime it is guaranteed to work even when a dominant fraction $1-\Theta\left(\frac{\log^{2}n}{\sqrt{n}}\right)$ of the input maps behave like random outliers. Furthermore, MatchLift succeeds with minimal input complexity, namely, perfect matching can be achieved as soon as the provided maps form a connected map graph. We evaluate the proposed algorithm on various benchmark data sets including synthetic examples and real-world examples, all of which confirm the practical applicability of MatchLift.
Dictionary Learning over Distributed Models
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in Big Data scenarios where large dictionary models may be spread over different spatial locations and it is not feasible to aggregate all dictionaries in one location due to communication and privacy considerations. We first show that the dual function of the inference problem is an aggregation of individual cost functions associated with different agents, which can then be minimized efficiently by means of diffusion strategies. The collaborative inference step generates dual variables that are used by the agents to update their dictionaries without the need to share these dictionaries or even the coefficient models for the training data. This is a powerful property that leads to an effective distributed procedure for learning dictionaries over large networks (e.g., hundreds of agents in our experiments). Furthermore, the proposed learning strategy operates in an online manner and is able to respond to streaming data, where each data sample is presented to the network once.
Dual Query: Practical Private Query Release for High Dimensional Data
We present a practical, differentially private algorithm for answering a large number of queries on high dimensional datasets. Like all algorithms for this task, ours necessarily has worst-case complexity exponential in the dimension of the data. However, our algorithm packages the computationally hard step into a concisely defined integer program, which can be solved non-privately using standard solvers. We prove accuracy and privacy theorems for our algorithm, and then demonstrate experimentally that our algorithm performs well in practice. For example, our algorithm can efficiently and accurately answer millions of queries on the Netflix dataset, which has over 17,000 attributes; this is an improvement on the state of the art by multiple orders of magnitude.
Two-stage Sampled Learning Theory on Distributions
We focus on the distribution regression problem: regressing to a real-valued response from a probability distribution. Although there exist a large number of similarity measures between distributions, very little is known about their generalization performance in specific learning tasks. Learning problems formulated on distributions have an inherent two-stage sampled difficulty: in practice only samples from sampled distributions are observable, and one has to build an estimate on similarities computed between sets of points. To the best of our knowledge, the only existing method with consistency guarantees for distribution regression requires kernel density estimation as an intermediate step (which suffers from slow convergence issues in high dimensions), and the domain of the distributions to be compact Euclidean. In this paper, we provide theoretical guarantees for a remarkably simple algorithmic alternative to solve the distribution regression problem: embed the distributions to a reproducing kernel Hilbert space, and learn a ridge regressor from the embeddings to the outputs. Our main contribution is to prove the consistency of this technique in the two-stage sampled setting under mild conditions (on separable, topological domains endowed with kernels). For a given total number of observations, we derive convergence rates as an explicit function of the problem difficulty. As a special case, we answer a 15-year-old open question: we establish the consistency of the classical set kernel [Haussler, 1999; Gartner et. al, 2002] in regression, and cover more recent kernels on distributions, including those due to [Christmann and Steinwart, 2010].
Active Clustering with Model-Based Uncertainty Reduction
Semi-supervised clustering seeks to augment traditional clustering methods by incorporating side information provided via human expertise in order to increase the semantic meaningfulness of the resulting clusters. However, most current methods are \emph{passive} in the sense that the side information is provided beforehand and selected randomly. This may require a large number of constraints, some of which could be redundant, unnecessary, or even detrimental to the clustering results. Thus in order to scale such semi-supervised algorithms to larger problems it is desirable to pursue an \emph{active} clustering method---i.e. an algorithm that maximizes the effectiveness of the available human labor by only requesting human input where it will have the greatest impact. Here, we propose a novel online framework for active semi-supervised spectral clustering that selects pairwise constraints as clustering proceeds, based on the principle of uncertainty reduction. Using a first-order Taylor expansion, we decompose the expected uncertainty reduction problem into a gradient and a step-scale, computed via an application of matrix perturbation theory and cluster-assignment entropy, respectively. The resulting model is used to estimate the uncertainty reduction potential of each sample in the dataset. We then present the human user with pairwise queries with respect to only the best candidate sample. We evaluate our method using three different image datasets (faces, leaves and dogs), a set of common UCI machine learning datasets and a gene dataset. The results validate our decomposition formulation and show that our method is consistently superior to existing state-of-the-art techniques, as well as being robust to noise and to unknown numbers of clusters.
Binary Excess Risk for Smooth Convex Surrogates
In statistical learning theory, convex surrogates of the 0-1 loss are highly preferred because of the computational and theoretical virtues that convexity brings in. This is of more importance if we consider smooth surrogates as witnessed by the fact that the smoothness is further beneficial both computationally- by attaining an {\it optimal} convergence rate for optimization, and in a statistical sense- by providing an improved {\it optimistic} rate for generalization bound. In this paper we investigate the smoothness property from the viewpoint of statistical consistency and show how it affects the binary excess risk. We show that in contrast to optimization and generalization errors that favor the choice of smooth surrogate loss, the smoothness of loss function may degrade the binary excess risk. Motivated by this negative result, we provide a unified analysis that integrates optimization error, generalization bound, and the error in translating convex excess risk into a binary excess risk when examining the impact of smoothness on the binary excess risk. We show that under favorable conditions appropriate choice of smooth convex loss will result in a binary excess risk that is better than $O(1/\sqrt{n})$.
An Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning
From concentration inequalities for the suprema of Gaussian or Rademacher processes an inequality is derived. It is applied to sharpen existing and to derive novel bounds on the empirical Rademacher complexities of unit balls in various norms appearing in the context of structured sparsity and multitask dictionary learning or matrix factorization. A key role is played by the largest eigenvalue of the data covariance matrix.
On the Number of Linear Regions of Deep Neural Networks
We study the complexity of functions computable by deep feedforward neural networks with piecewise linear activations in terms of the symmetries and the number of linear regions that they have. Deep networks are able to sequentially map portions of each layer's input-space to the same output. In this way, deep models compute functions that react equally to complicated patterns of different inputs. The compositional structure of these functions enables them to re-use pieces of computation exponentially often in terms of the network's depth. This paper investigates the complexity of such compositional maps and contributes new theoretical results regarding the advantage of depth for neural networks with piecewise linear activation functions. In particular, our analysis is not specific to a single family of models, and as an example, we employ it for rectifier and maxout networks. We improve complexity bounds from pre-existing work and investigate the behavior of units in higher layers.
Thresholding Classifiers to Maximize F1 Score
This paper provides new insight into maximizing F1 scores in the context of binary classification and also in the context of multilabel classification. The harmonic mean of precision and recall, F1 score is widely used to measure the success of a binary classifier when one class is rare. Micro average, macro average, and per instance average F1 scores are used in multilabel classification. For any classifier that produces a real-valued output, we derive the relationship between the best achievable F1 score and the decision-making threshold that achieves this optimum. As a special case, if the classifier outputs are well-calibrated conditional probabilities, then the optimal threshold is half the optimal F1 score. As another special case, if the classifier is completely uninformative, then the optimal behavior is to classify all examples as positive. Since the actual prevalence of positive examples typically is low, this behavior can be considered undesirable. As a case study, we discuss the results, which can be surprising, of applying this procedure when predicting 26,853 labels for Medline documents.
A Hybrid Loss for Multiclass and Structured Prediction
We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of a log loss for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between labels--specifically, the gap between the probabilities of the best label and the second best label. We also prove Fisher consistency is necessary for parametric consistency when learning models such as CRFs. We demonstrate empirically that the hybrid loss typically performs least as well as--and often better than--both of its constituent losses on a variety of tasks, such as human action recognition. In doing so we also provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and structured prediction.
Classification Tree Diagrams in Health Informatics Applications
Health informatics deal with the methods used to optimize the acquisition, storage and retrieval of medical data, and classify information in healthcare applications. Healthcare analysts are particularly interested in various computer informatics areas such as; knowledge representation from data, anomaly detection, outbreak detection methods and syndromic surveillance applications. Although various parametric and non-parametric approaches are being proposed to classify information from data, classification tree diagrams provide an interactive visualization to analysts as compared to other methods. In this work we discuss application of classification tree diagrams to classify information from medical data in healthcare applications.
Better Optimism By Bayes: Adaptive Planning with Rich Models
The computational costs of inference and planning have confined Bayesian model-based reinforcement learning to one of two dismal fates: powerful Bayes-adaptive planning but only for simplistic models, or powerful, Bayesian non-parametric models but using simple, myopic planning strategies such as Thompson sampling. We ask whether it is feasible and truly beneficial to combine rich probabilistic models with a closer approximation to fully Bayesian planning. First, we use a collection of counterexamples to show formal problems with the over-optimism inherent in Thompson sampling. Then we leverage state-of-the-art techniques in efficient Bayes-adaptive planning and non-parametric Bayesian methods to perform qualitatively better than both existing conventional algorithms and Thompson sampling on two contextual bandit-like problems.
Dictionary learning for fast classification based on soft-thresholding
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits the applicability of these methods in large-scale problems, or in scenarios where computational power is restricted. We consider in this paper a simple yet efficient alternative to sparse coding for feature extraction. We study a classification scheme that applies the soft-thresholding nonlinear mapping in a dictionary, followed by a linear classifier. A novel supervised dictionary learning algorithm tailored for this low complexity classification architecture is proposed. The dictionary learning problem, which jointly learns the dictionary and linear classifier, is cast as a difference of convex (DC) program and solved efficiently with an iterative DC solver. We conduct experiments on several datasets, and show that our learning algorithm that leverages the structure of the classification problem outperforms generic learning procedures. Our simple classifier based on soft-thresholding also competes with the recent sparse coding classifiers, when the dictionary is learned appropriately. The adopted classification scheme further requires less computational time at the testing stage, compared to other classifiers. The proposed scheme shows the potential of the adequately trained soft-thresholding mapping for classification and paves the way towards the development of very efficient classification methods for vision problems.
Deeply Coupled Auto-encoder Networks for Cross-view Classification
The comparison of heterogeneous samples extensively exists in many applications, especially in the task of image classification. In this paper, we propose a simple but effective coupled neural network, called Deeply Coupled Autoencoder Networks (DCAN), which seeks to build two deep neural networks, coupled with each other in every corresponding layers. In DCAN, each deep structure is developed via stacking multiple discriminative coupled auto-encoders, a denoising auto-encoder trained with maximum margin criterion consisting of intra-class compactness and inter-class penalty. This single layer component makes our model simultaneously preserve the local consistency and enhance its discriminative capability. With increasing number of layers, the coupled networks can gradually narrow the gap between the two views. Extensive experiments on cross-view image classification tasks demonstrate the superiority of our method over state-of-the-art methods.
Approachability in unknown games: Online learning meets multi-objective optimization
In the standard setting of approachability there are two players and a target set. The players play repeatedly a known vector-valued game where the first player wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude it from this set. We revisit this setting in the spirit of online learning and do not assume that the first player knows the game structure: she receives an arbitrary vector-valued reward vector at every round. She wishes to approach the smallest ("best") possible set given the observed average payoffs in hindsight. This extension of the standard setting has implications even when the original target set is not approachable and when it is not obvious which expansion of it should be approached instead. We show that it is impossible, in general, to approach the best target set in hindsight and propose achievable though ambitious alternative goals. We further propose a concrete strategy to approach these goals. Our method does not require projection onto a target set and amounts to switching between scalar regret minimization algorithms that are performed in episodes. Applications to global cost minimization and to approachability under sample path constraints are considered.
A Second-order Bound with Excess Losses
We study online aggregation of the predictions of experts, and first show new second-order regret bounds in the standard setting, which are obtained via a version of the Prod algorithm (and also a version of the polynomially weighted average algorithm) with multiple learning rates. These bounds are in terms of excess losses, the differences between the instantaneous losses suffered by the algorithm and the ones of a given expert. We then demonstrate the interest of these bounds in the context of experts that report their confidences as a number in the interval [0,1] using a generic reduction to the standard setting. We conclude by two other applications in the standard setting, which improve the known bounds in case of small excess losses and show a bounded regret against i.i.d. sequences of losses.
Probabilistic Interpretation of Linear Solvers
This manuscript proposes a probabilistic framework for algorithms that iteratively solve unconstrained linear problems $Bx = b$ with positive definite $B$ for $x$. The goal is to replace the point estimates returned by existing methods with a Gaussian posterior belief over the elements of the inverse of $B$, which can be used to estimate errors. Recent probabilistic interpretations of the secant family of quasi-Newton optimization algorithms are extended. Combined with properties of the conjugate gradient algorithm, this leads to uncertainty-calibrated methods with very limited cost overhead over conjugate gradients, a self-contained novel interpretation of the quasi-Newton and conjugate gradient algorithms, and a foundation for new nonlinear optimization methods.
Near-Optimally Teaching the Crowd to Classify
How should we present training examples to learners to teach them classification rules? This is a natural problem when training workers for crowdsourcing labeling tasks, and is also motivated by challenges in data-driven online education. We propose a natural stochastic model of the learners, modeling them as randomly switching among hypotheses based on observed feedback. We then develop STRICT, an efficient algorithm for selecting examples to teach to workers. Our solution greedily maximizes a submodular surrogate objective function in order to select examples to show to the learners. We prove that our strategy is competitive with the optimal teaching policy. Moreover, for the special case of linear separators, we prove that an exponential reduction in error probability can be achieved. Our experiments on simulated workers as well as three real image annotation tasks on Amazon Mechanical Turk show the effectiveness of our teaching algorithm.
Characterizing the Sample Complexity of Private Learners
In 2008, Kasiviswanathan et al. defined private learning as a combination of PAC learning and differential privacy. Informally, a private learner is applied to a collection of labeled individual information and outputs a hypothesis while preserving the privacy of each individual. Kasiviswanathan et al. gave a generic construction of private learners for (finite) concept classes, with sample complexity logarithmic in the size of the concept class. This sample complexity is higher than what is needed for non-private learners, hence leaving open the possibility that the sample complexity of private learning may be sometimes significantly higher than that of non-private learning. We give a combinatorial characterization of the sample size sufficient and necessary to privately learn a class of concepts. This characterization is analogous to the well known characterization of the sample complexity of non-private learning in terms of the VC dimension of the concept class. We introduce the notion of probabilistic representation of a concept class, and our new complexity measure RepDim corresponds to the size of the smallest probabilistic representation of the concept class. We show that any private learning algorithm for a concept class C with sample complexity m implies RepDim(C)=O(m), and that there exists a private learning algorithm with sample complexity m=O(RepDim(C)). We further demonstrate that a similar characterization holds for the database size needed for privately computing a large class of optimization problems and also for the well studied problem of private data release.
Feature and Variable Selection in Classification
The amount of information in the form of features and variables avail- able to machine learning algorithms is ever increasing. This can lead to classifiers that are prone to overfitting in high dimensions, high di- mensional models do not lend themselves to interpretable results, and the CPU and memory resources necessary to run on high-dimensional datasets severly limit the applications of the approaches. Variable and feature selection aim to remedy this by finding a subset of features that in some way captures the information provided best. In this paper we present the general methodology and highlight some specific approaches.
Universal Matrix Completion
The problem of low-rank matrix completion has recently generated a lot of interest leading to several results that offer exact solutions to the problem. However, in order to do so, these methods make assumptions that can be quite restrictive in practice. More specifically, the methods assume that: a) the observed indices are sampled uniformly at random, and b) for every new matrix, the observed indices are sampled afresh. In this work, we address these issues by providing a universal recovery guarantee for matrix completion that works for a variety of sampling schemes. In particular, we show that if the set of sampled indices come from the edges of a bipartite graph with large spectral gap (i.e. gap between the first and the second singular value), then the nuclear norm minimization based method exactly recovers all low-rank matrices that satisfy certain incoherence properties. Moreover, we also show that under certain stricter incoherence conditions, $O(nr^2)$ uniformly sampled entries are enough to recover any rank-$r$ $n\times n$ matrix, in contrast to the $O(nr\log n)$ sample complexity required by other matrix completion algorithms as well as existing analyses of the nuclear norm method.
Computational Limits for Matrix Completion
Matrix Completion is the problem of recovering an unknown real-valued low-rank matrix from a subsample of its entries. Important recent results show that the problem can be solved efficiently under the assumption that the unknown matrix is incoherent and the subsample is drawn uniformly at random. Are these assumptions necessary? It is well known that Matrix Completion in its full generality is NP-hard. However, little is known if make additional assumptions such as incoherence and permit the algorithm to output a matrix of slightly higher rank. In this paper we prove that Matrix Completion remains computationally intractable even if the unknown matrix has rank $4$ but we are allowed to output any constant rank matrix, and even if additionally we assume that the unknown matrix is incoherent and are shown $90%$ of the entries. This result relies on the conjectured hardness of the $4$-Coloring problem. We also consider the positive semidefinite Matrix Completion problem. Here we show a similar hardness result under the standard assumption that $\mathrm{P}\ne \mathrm{NP}.$ Our results greatly narrow the gap between existing feasibility results and computational lower bounds. In particular, we believe that our results give the first complexity-theoretic justification for why distributional assumptions are needed beyond the incoherence assumption in order to obtain positive results. On the technical side, we contribute several new ideas on how to encode hard combinatorial problems in low-rank optimization problems. We hope that these techniques will be helpful in further understanding the computational limits of Matrix Completion and related problems.
Modeling sequential data using higher-order relational features and predictive training
Bi-linear feature learning models, like the gated autoencoder, were proposed as a way to model relationships between frames in a video. By minimizing reconstruction error of one frame, given the previous frame, these models learn "mapping units" that encode the transformations inherent in a sequence, and thereby learn to encode motion. In this work we extend bi-linear models by introducing "higher-order mapping units" that allow us to encode transformations between frames and transformations between transformations. We show that this makes it possible to encode temporal structure that is more complex and longer-range than the structure captured within standard bi-linear models. We also show that a natural way to train the model is by replacing the commonly used reconstruction objective with a prediction objective which forces the model to correctly predict the evolution of the input multiple steps into the future. Learning can be achieved by back-propagating the multi-step prediction through time. We test the model on various temporal prediction tasks, and show that higher-order mappings and predictive training both yield a significant improvement over bi-linear models in terms of prediction accuracy.
Machine Learner for Automated Reasoning 0.4 and 0.5
Machine Learner for Automated Reasoning (MaLARea) is a learning and reasoning system for proving in large formal libraries where thousands of theorems are available when attacking a new conjecture, and a large number of related problems and proofs can be used to learn specific theorem-proving knowledge. The last version of the system has by a large margin won the 2013 CASC LTB competition. This paper describes the motivation behind the methods used in MaLARea, discusses the general approach and the issues arising in evaluation of such system, and describes the Mizar@Turing100 and CASC'24 versions of MaLARea.
A comparison of linear and non-linear calibrations for speaker recognition
In recent work on both generative and discriminative score to log-likelihood-ratio calibration, it was shown that linear transforms give good accuracy only for a limited range of operating points. Moreover, these methods required tailoring of the calibration training objective functions in order to target the desired region of best accuracy. Here, we generalize the linear recipes to non-linear ones. We experiment with a non-linear, non-parametric, discriminative PAV solution, as well as parametric, generative, maximum-likelihood solutions that use Gaussian, Student's T and normal-inverse-Gaussian score distributions. Experiments on NIST SRE'12 scores suggest that the non-linear methods provide wider ranges of optimal accuracy and can be trained without having to resort to objective function tailoring.
Online Nonparametric Regression
We establish optimal rates for online regression for arbitrary classes of regression functions in terms of the sequential entropy introduced in (Rakhlin, Sridharan, Tewari, 2010). The optimal rates are shown to exhibit a phase transition analogous to the i.i.d./statistical learning case, studied in (Rakhlin, Sridharan, Tsybakov 2013). In the frequently encountered situation when sequential entropy and i.i.d. empirical entropy match, our results point to the interesting phenomenon that the rates for statistical learning with squared loss and online nonparametric regression are the same. In addition to a non-algorithmic study of minimax regret, we exhibit a generic forecaster that enjoys the established optimal rates. We also provide a recipe for designing online regression algorithms that can be computationally efficient. We illustrate the techniques by deriving existing and new forecasters for the case of finite experts and for online linear regression.
On Zeroth-Order Stochastic Convex Optimization via Random Walks
We propose a method for zeroth order stochastic convex optimization that attains the suboptimality rate of $\tilde{\mathcal{O}}(n^{7}T^{-1/2})$ after $T$ queries for a convex bounded function $f:{\mathbb R}^n\to{\mathbb R}$. The method is based on a random walk (the \emph{Ball Walk}) on the epigraph of the function. The randomized approach circumvents the problem of gradient estimation, and appears to be less sensitive to noisy function evaluations compared to noiseless zeroth order methods.
Ranking via Robust Binary Classification and Parallel Parameter Estimation in Large-Scale Data
We propose RoBiRank, a ranking algorithm that is motivated by observing a close connection between evaluation metrics for learning to rank and loss functions for robust classification. The algorithm shows a very competitive performance on standard benchmark datasets against other representative algorithms in the literature. On the other hand, in large scale problems where explicit feature vectors and scores are not given, our algorithm can be efficiently parallelized across a large number of machines; for a task that requires 386,133 x 49,824,519 pairwise interactions between items to be ranked, our algorithm finds solutions that are of dramatically higher quality than that can be found by a state-of-the-art competitor algorithm, given the same amount of wall-clock time for computation.
Regularization for Multiple Kernel Learning via Sum-Product Networks
In this paper, we are interested in constructing general graph-based regularizers for multiple kernel learning (MKL) given a structure which is used to describe the way of combining basis kernels. Such structures are represented by sum-product networks (SPNs) in our method. Accordingly we propose a new convex regularization method for MLK based on a path-dependent kernel weighting function which encodes the entire SPN structure in our method. Under certain conditions and from the view of probability, this function can be considered to follow multinomial distributions over the weights associated with product nodes in SPNs. We also analyze the convexity of our regularizer and the complexity of our induced classifiers, and further propose an efficient wrapper algorithm to optimize our formulation. In our experiments, we apply our method to ......
Squeezing bottlenecks: exploring the limits of autoencoder semantic representation capabilities
We present a comprehensive study on the use of autoencoders for modelling text data, in which (differently from previous studies) we focus our attention on the following issues: i) we explore the suitability of two different models bDA and rsDA for constructing deep autoencoders for text data at the sentence level; ii) we propose and evaluate two novel metrics for better assessing the text-reconstruction capabilities of autoencoders; and iii) we propose an automatic method to find the critical bottleneck dimensionality for text language representations (below which structural information is lost).
A Robust Ensemble Approach to Learn From Positive and Unlabeled Data Using SVM Base Models
We present a novel approach to learn binary classifiers when only positive and unlabeled instances are available (PU learning). This problem is routinely cast as a supervised task with label noise in the negative set. We use an ensemble of SVM models trained on bootstrap resamples of the training data for increased robustness against label noise. The approach can be considered in a bagging framework which provides an intuitive explanation for its mechanics in a semi-supervised setting. We compared our method to state-of-the-art approaches in simulations using multiple public benchmark data sets. The included benchmark comprises three settings with increasing label noise: (i) fully supervised, (ii) PU learning and (iii) PU learning with false positives. Our approach shows a marginal improvement over existing methods in the second setting and a significant improvement in the third.
Zero-bias autoencoders and the benefits of co-adapting features
Regularized training of an autoencoder typically results in hidden unit biases that take on large negative values. We show that negative biases are a natural result of using a hidden layer whose responsibility is to both represent the input data and act as a selection mechanism that ensures sparsity of the representation. We then show that negative biases impede the learning of data distributions whose intrinsic dimensionality is high. We also propose a new activation function that decouples the two roles of the hidden layer and that allows us to learn representations on data with very high intrinsic dimensionality, where standard autoencoders typically fail. Since the decoupled activation function acts like an implicit regularizer, the model can be trained by minimizing the reconstruction error of training data, without requiring any additional regularization.
Geometry and Expressive Power of Conditional Restricted Boltzmann Machines
Conditional restricted Boltzmann machines are undirected stochastic neural networks with a layer of input and output units connected bipartitely to a layer of hidden units. These networks define models of conditional probability distributions on the states of the output units given the states of the input units, parametrized by interaction weights and biases. We address the representational power of these models, proving results their ability to represent conditional Markov random fields and conditional distributions with restricted supports, the minimal size of universal approximators, the maximal model approximation errors, and on the dimension of the set of representable conditional distributions. We contribute new tools for investigating conditional probability models, which allow us to improve the results that can be derived from existing work on restricted Boltzmann machine probability models.
Indian Buffet Process Deep Generative Models for Semi-Supervised Classification
Deep generative models (DGMs) have brought about a major breakthrough, as well as renewed interest, in generative latent variable models. However, DGMs do not allow for performing data-driven inference of the number of latent features needed to represent the observed data. Traditional linear formulations address this issue by resorting to tools from the field of nonparametric statistics. Indeed, linear latent variable models imposed an Indian Buffet Process (IBP) prior have been extensively studied by the machine learning community; inference for such models can been performed either via exact sampling or via approximate variational techniques. Based on this inspiration, in this paper we examine whether similar ideas from the field of Bayesian nonparametrics can be utilized in the context of modern DGMs in order to address the latent variable dimensionality inference problem. To this end, we propose a novel DGM formulation, based on the imposition of an IBP prior. We devise an efficient Black-Box Variational inference algorithm for our model, and exhibit its efficacy in a number of semi-supervised classification experiments. In all cases, we use popular benchmark datasets, and compare to state-of-the-art DGMs.
A Clockwork RNN
Sequence prediction and classification are ubiquitous and challenging problems in machine learning that can require identifying complex dependencies between temporally distant inputs. Recurrent Neural Networks (RNNs) have the ability, in theory, to cope with these temporal dependencies by virtue of the short-term memory implemented by their recurrent (feedback) connections. However, in practice they are difficult to train successfully when the long-term memory is required. This paper introduces a simple, yet powerful modification to the standard RNN architecture, the Clockwork RNN (CW-RNN), in which the hidden layer is partitioned into separate modules, each processing inputs at its own temporal granularity, making computations only at its prescribed clock rate. Rather than making the standard RNN models more complex, CW-RNN reduces the number of RNN parameters, improves the performance significantly in the tasks tested, and speeds up the network evaluation. The network is demonstrated in preliminary experiments involving two tasks: audio signal generation and TIMIT spoken word classification, where it outperforms both RNN and LSTM networks.
Learning-assisted Theorem Proving with Millions of Lemmas
Large formal mathematical libraries consist of millions of atomic inference steps that give rise to a corresponding number of proved statements (lemmas). Analogously to the informal mathematical practice, only a tiny fraction of such statements is named and re-used in later proofs by formal mathematicians. In this work, we suggest and implement criteria defining the estimated usefulness of the HOL Light lemmas for proving further theorems. We use these criteria to mine the large inference graph of the lemmas in the HOL Light and Flyspeck libraries, adding up to millions of the best lemmas to the pool of statements that can be re-used in later proofs. We show that in combination with learning-based relevance filtering, such methods significantly strengthen automated theorem proving of new conjectures over large formal mathematical libraries such as Flyspeck.
Privately Solving Linear Programs
In this paper, we initiate the systematic study of solving linear programs under differential privacy. The first step is simply to define the problem: to this end, we introduce several natural classes of private linear programs that capture different ways sensitive data can be incorporated into a linear program. For each class of linear programs we give an efficient, differentially private solver based on the multiplicative weights framework, or we give an impossibility result.
word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method
The word2vec software of Tomas Mikolov and colleagues (https://code.google.com/p/word2vec/ ) has gained a lot of traction lately, and provides state-of-the-art word embeddings. The learning models behind the software are described in two research papers. We found the description of the models in these papers to be somewhat cryptic and hard to follow. While the motivations and presentation may be obvious to the neural-networks language-modeling crowd, we had to struggle quite a bit to figure out the rationale behind the equations. This note is an attempt to explain equation (4) (negative sampling) in "Distributed Representations of Words and Phrases and their Compositionality" by Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado and Jeffrey Dean.
Scalable Kernel Clustering: Approximate Kernel k-means
Kernel-based clustering algorithms have the ability to capture the non-linear structure in real world data. Among various kernel-based clustering algorithms, kernel k-means has gained popularity due to its simple iterative nature and ease of implementation. However, its run-time complexity and memory footprint increase quadratically in terms of the size of the data set, and hence, large data sets cannot be clustered efficiently. In this paper, we propose an approximation scheme based on randomization, called the Approximate Kernel k-means. We approximate the cluster centers using the kernel similarity between a few sampled points and all the points in the data set. We show that the proposed method achieves better clustering performance than the traditional low rank kernel approximation based clustering schemes. We also demonstrate that its running time and memory requirements are significantly lower than those of kernel k-means, with only a small reduction in the clustering quality on several public domain large data sets. We then employ ensemble clustering techniques to further enhance the performance of our algorithm.
Performance Evaluation of Machine Learning Classifiers in Sentiment Mining
In recent years, the use of machine learning classifiers is of great value in solving a variety of problems in text classification. Sentiment mining is a kind of text classification in which, messages are classified according to sentiment orientation such as positive or negative. This paper extends the idea of evaluating the performance of various classifiers to show their effectiveness in sentiment mining of online product reviews. The product reviews are collected from Amazon reviews. To evaluate the performance of classifiers various evaluation methods like random sampling, linear sampling and bootstrap sampling are used. Our results shows that support vector machine with bootstrap sampling method outperforms others classifiers and sampling methods in terms of misclassification rate.
Sparse Polynomial Learning and Graph Sketching
Let $f:\{-1,1\}^n$ be a polynomial with at most $s$ non-zero real coefficients. We give an algorithm for exactly reconstructing f given random examples from the uniform distribution on $\{-1,1\}^n$ that runs in time polynomial in $n$ and $2s$ and succeeds if the function satisfies the unique sign property: there is one output value which corresponds to a unique set of values of the participating parities. This sufficient condition is satisfied when every coefficient of f is perturbed by a small random noise, or satisfied with high probability when s parity functions are chosen randomly or when all the coefficients are positive. Learning sparse polynomials over the Boolean domain in time polynomial in $n$ and $2s$ is considered notoriously hard in the worst-case. Our result shows that the problem is tractable for almost all sparse polynomials. Then, we show an application of this result to hypergraph sketching which is the problem of learning a sparse (both in the number of hyperedges and the size of the hyperedges) hypergraph from uniformly drawn random cuts. We also provide experimental results on a real world dataset.
Selective Sampling with Drift
Recently there has been much work on selective sampling, an online active learning setting, in which algorithms work in rounds. On each round an algorithm receives an input and makes a prediction. Then, it can decide whether to query a label, and if so to update its model, otherwise the input is discarded. Most of this work is focused on the stationary case, where it is assumed that there is a fixed target model, and the performance of the algorithm is compared to a fixed model. However, in many real-world applications, such as spam prediction, the best target function may drift over time, or have shifts from time to time. We develop a novel selective sampling algorithm for the drifting setting, analyze it under no assumptions on the mechanism generating the sequence of instances, and derive new mistake bounds that depend on the amount of drift in the problem. Simulations on synthetic and real-world datasets demonstrate the superiority of our algorithms as a selective sampling algorithm in the drifting setting.
Stochastic Gradient Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.
A Bayesian Model of node interaction in networks
We are concerned with modeling the strength of links in networks by taking into account how often those links are used. Link usage is a strong indicator of how closely two nodes are related, but existing network models in Bayesian Statistics and Machine Learning are able to predict only wether a link exists at all. As priors for latent attributes of network nodes we explore the Chinese Restaurant Process (CRP) and a multivariate Gaussian with fixed dimensionality. The model is applied to a social network dataset and a word coocurrence dataset.
Discretization of Temporal Data: A Survey
In real world, the huge amount of temporal data is to be processed in many application areas such as scientific, financial, network monitoring, sensor data analysis. Data mining techniques are primarily oriented to handle discrete features. In the case of temporal data the time plays an important role on the characteristics of data. To consider this effect, the data discretization techniques have to consider the time while processing to resolve the issue by finding the intervals of data which are more concise and precise with respect to time. Here, this research is reviewing different data discretization techniques used in temporal data applications according to the inclusion or exclusion of: class label, temporal order of the data and handling of stream data to open the research direction for temporal data discretization to improve the performance of data mining technique.
The Random Forest Kernel and other kernels for big data from random partitions
We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
This paper presents the beginnings of an automatic statistician, focusing on regression problems. Our system explores an open-ended space of statistical models to discover a good explanation of a data set, and then produces a detailed report with figures and natural-language text. Our approach treats unknown regression functions nonparametrically using Gaussian processes, which has two important consequences. First, Gaussian processes can model functions in terms of high-level properties (e.g. smoothness, trends, periodicity, changepoints). Taken together with the compositional structure of our language of models this allows us to automatically describe functions in simple terms. Second, the use of flexible nonparametric models and a rich language for composing them in an open-ended manner also results in state-of-the-art extrapolation performance evaluated over 13 real time series data sets from various domains.
Student-t Processes as Alternatives to Gaussian Processes
We investigate the Student-t process as an alternative to the Gaussian process as a nonparametric prior over functions. We derive closed form expressions for the marginal likelihood and predictive distribution of a Student-t process, by integrating away an inverse Wishart process prior over the covariance kernel of a Gaussian process model. We show surprising equivalences between different hierarchical Gaussian process models leading to Student-t processes, and derive a new sampling scheme for the inverse Wishart process, which helps elucidate these equivalences. Overall, we show that a Student-t process can retain the attractive properties of a Gaussian process -- a nonparametric representation, analytic marginal and predictive distributions, and easy model selection through covariance kernels -- but has enhanced flexibility, and predictive covariances that, unlike a Gaussian process, explicitly depend on the values of training observations. We verify empirically that a Student-t process is especially useful in situations where there are changes in covariance structure, or in applications like Bayesian optimization, where accurate predictive covariances are critical for good performance. These advantages come at no additional computational cost over Gaussian processes.
On the properties of $\alpha$-unchaining single linkage hierarchical clustering
In the election of a hierarchical clustering method, theoretic properties may give some insight to determine which method is the most suitable to treat a clustering problem. Herein, we study some basic properties of two hierarchical clustering methods: $\alpha$-unchaining single linkage or $SL(\alpha)$ and a modified version of this one, $SL^*(\alpha)$. We compare the results with the properties satisfied by the classical linkage-based hierarchical clustering methods.
Hybrid SRL with Optimization Modulo Theories
Generally speaking, the goal of constructive learning could be seen as, given an example set of structured objects, to generate novel objects with similar properties. From a statistical-relational learning (SRL) viewpoint, the task can be interpreted as a constraint satisfaction problem, i.e. the generated objects must obey a set of soft constraints, whose weights are estimated from the data. Traditional SRL approaches rely on (finite) First-Order Logic (FOL) as a description language, and on MAX-SAT solvers to perform inference. Alas, FOL is unsuited for con- structive problems where the objects contain a mixture of Boolean and numerical variables. It is in fact difficult to implement, e.g. linear arithmetic constraints within the language of FOL. In this paper we propose a novel class of hybrid SRL methods that rely on Satisfiability Modulo Theories, an alternative class of for- mal languages that allow to describe, and reason over, mixed Boolean-numerical objects and constraints. The resulting methods, which we call Learning Mod- ulo Theories, are formulated within the structured output SVM framework, and employ a weighted SMT solver as an optimization oracle to perform efficient in- ference and discriminative max margin weight learning. We also present a few examples of constructive learning applications enabled by our method.
A convergence proof of the split Bregman method for regularized least-squares problems
The split Bregman (SB) method [T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2 (2009), pp. 323-43] is a fast splitting-based algorithm that solves image reconstruction problems with general l1, e.g., total-variation (TV) and compressed sensing (CS), regularizations by introducing a single variable split to decouple the data-fitting term and the regularization term, yielding simple subproblems that are separable (or partially separable) and easy to minimize. Several convergence proofs have been proposed, and these proofs either impose a "full column rank" assumption to the split or assume exact updates in all subproblems. However, these assumptions are impractical in many applications such as the X-ray computed tomography (CT) image reconstructions, where the inner least-squares problem usually cannot be solved efficiently due to the highly shift-variant Hessian. In this paper, we show that when the data-fitting term is quadratic, the SB method is a convergent alternating direction method of multipliers (ADMM), and a straightforward convergence proof with inexact updates is given using [J. Eckstein and D. P. Bertsekas, Mathematical Programming, 55 (1992), pp. 293-318, Theorem 8]. Furthermore, since the SB method is just a special case of an ADMM algorithm, it seems likely that the ADMM algorithm will be faster than the SB method if the augmented Largangian (AL) penalty parameters are selected appropriately. To have a concrete example, we conduct a convergence rate analysis of the ADMM algorithm using two splits for image restoration problems with quadratic data-fitting term and regularization term. According to our analysis, we can show that the two-split ADMM algorithm can be faster than the SB method if the AL penalty parameter of the SB method is suboptimal. Numerical experiments were conducted to verify our analysis.
Fast X-ray CT image reconstruction using the linearized augmented Lagrangian method with ordered subsets
The augmented Lagrangian (AL) method that solves convex optimization problems with linear constraints has drawn more attention recently in imaging applications due to its decomposable structure for composite cost functions and empirical fast convergence rate under weak conditions. However, for problems such as X-ray computed tomography (CT) image reconstruction and large-scale sparse regression with "big data", where there is no efficient way to solve the inner least-squares problem, the AL method can be slow due to the inevitable iterative inner updates. In this paper, we focus on solving regularized (weighted) least-squares problems using a linearized variant of the AL method that replaces the quadratic AL penalty term in the scaled augmented Lagrangian with its separable quadratic surrogate (SQS) function, thus leading to a much simpler ordered-subsets (OS) accelerable splitting-based algorithm, OS-LALM, for X-ray CT image reconstruction. To further accelerate the proposed algorithm, we use a second-order recursive system analysis to design a deterministic downward continuation approach that avoids tedious parameter tuning and provides fast convergence. Experimental results show that the proposed algorithm significantly accelerates the "convergence" of X-ray CT image reconstruction with negligible overhead and greatly reduces the OS artifacts in the reconstructed image when using many subsets for OS acceleration.
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Majorization-minimization algorithms consist of successively minimizing a sequence of upper bounds of the objective function. These upper bounds are tight at the current estimate, and each iteration monotonically drives the objective function downhill. Such a simple principle is widely applicable and has been very popular in various scientific fields, especially in signal processing and statistics. In this paper, we propose an incremental majorization-minimization scheme for minimizing a large sum of continuous functions, a problem of utmost importance in machine learning. We present convergence guarantees for non-convex and convex optimization when the upper bounds approximate the objective up to a smooth error; we call such upper bounds "first-order surrogate functions". More precisely, we study asymptotic stationary point guarantees for non-convex problems, and for convex ones, we provide convergence rates for the expected objective function value. We apply our scheme to composite optimization and obtain a new incremental proximal gradient algorithm with linear convergence rate for strongly convex functions. In our experiments, we show that our method is competitive with the state of the art for solving machine learning problems such as logistic regression when the number of training samples is large enough, and we demonstrate its usefulness for sparse estimation with non-convex penalties.
Learning the Irreducible Representations of Commutative Lie Groups
We present a new probabilistic model of compact commutative Lie groups that produces invariant-equivariant and disentangled representations of data. To define the notion of disentangling, we borrow a fundamental principle from physics that is used to derive the elementary particles of a system from its symmetries. Our model employs a newfound Bayesian conjugacy relation that enables fully tractable probabilistic inference over compact commutative Lie groups -- a class that includes the groups that describe the rotation and cyclic translation of images. We train the model on pairs of transformed image patches, and show that the learned invariant representation is highly effective for classification.
Classification with Sparse Overlapping Groups
Classification with a sparsity constraint on the solution plays a central role in many high dimensional machine learning applications. In some cases, the features can be grouped together so that entire subsets of features can be selected or not selected. In many applications, however, this can be too restrictive. In this paper, we are interested in a less restrictive form of structured sparse feature selection: we assume that while features can be grouped according to some notion of similarity, not all features in a group need be selected for the task at hand. When the groups are comprised of disjoint sets of features, this is sometimes referred to as the "sparse group" lasso, and it allows for working with a richer class of models than traditional group lasso methods. Our framework generalizes conventional sparse group lasso further by allowing for overlapping groups, an additional flexiblity needed in many applications and one that presents further challenges. The main contribution of this paper is a new procedure called Sparse Overlapping Group (SOG) lasso, a convex optimization program that automatically selects similar features for classification in high dimensions. We establish model selection error bounds for SOGlasso classification problems under a fairly general setting. In particular, the error bounds are the first such results for classification using the sparse group lasso. Furthermore, the general SOGlasso bound specializes to results for the lasso and the group lasso, some known and some new. The SOGlasso is motivated by multi-subject fMRI studies in which functional activity is classified using brain voxels as features, source localization problems in Magnetoencephalography (MEG), and analyzing gene activation patterns in microarray data analysis. Experiments with real and synthetic data demonstrate the advantages of SOGlasso compared to the lasso and group lasso.
Unsupervised Ranking of Multi-Attribute Objects Based on Principal Curves
Unsupervised ranking faces one critical challenge in evaluation applications, that is, no ground truth is available. When PageRank and its variants show a good solution in related subjects, they are applicable only for ranking from link-structure data. In this work, we focus on unsupervised ranking from multi-attribute data which is also common in evaluation tasks. To overcome the challenge, we propose five essential meta-rules for the design and assessment of unsupervised ranking approaches: scale and translation invariance, strict monotonicity, linear/nonlinear capacities, smoothness, and explicitness of parameter size. These meta-rules are regarded as high level knowledge for unsupervised ranking tasks. Inspired by the works in [8] and [14], we propose a ranking principal curve (RPC) model, which learns a one-dimensional manifold function to perform unsupervised ranking tasks on multi-attribute observations. Furthermore, the RPC is modeled to be a cubic B\'ezier curve with control points restricted in the interior of a hypercube, thereby complying with all the five meta-rules to infer a reasonable ranking list. With control points as the model parameters, one is able to understand the learned manifold and to interpret the ranking list semantically. Numerical experiments of the presented RPC model are conducted on two open datasets of different ranking applications. In comparison with the state-of-the-art approaches, the new model is able to show more reasonable ranking lists.
Transduction on Directed Graphs via Absorbing Random Walks
In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications. Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs. In particular, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and interestingly, spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically our algorithm is systematically evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods.