title
stringlengths
7
246
abstract
stringlengths
6
3.31k
A Survey on Semi-Supervised Learning Techniques
Semisupervised learning is a learning standard which deals with the study of how computers and natural systems such as human beings acquire knowledge in the presence of both labeled and unlabeled data. Semisupervised learning based methods are preferred when compared to the supervised and unsupervised learning because of the improved performance shown by the semisupervised approaches in the presence of large volumes of data. Labels are very hard to attain while unlabeled data are surplus, therefore semisupervised learning is a noble indication to shrink human labor and improve accuracy. There has been a large spectrum of ideas on semisupervised learning. In this paper we bring out some of the key approaches for semisupervised learning.
Retrieval of Experiments by Efficient Estimation of Marginal Likelihood
We study the task of retrieving relevant experiments given a query experiment. By experiment, we mean a collection of measurements from a set of `covariates' and the associated `outcomes'. While similar experiments can be retrieved by comparing available `annotations', this approach ignores the valuable information available in the measurements themselves. To incorporate this information in the retrieval task, we suggest employing a retrieval metric that utilizes probabilistic models learned from the measurements. We argue that such a metric is a sensible measure of similarity between two experiments since it permits inclusion of experiment-specific prior knowledge. However, accurate models are often not analytical, and one must resort to storing posterior samples which demands considerable resources. Therefore, we study strategies to select informative posterior samples to reduce the computational load while maintaining the retrieval performance. We demonstrate the efficacy of our approach on simulated data with simple linear regression as the models, and real world datasets.
Efficient Inference of Gaussian Process Modulated Renewal Processes with Application to Medical Event Data
The episodic, irregular and asynchronous nature of medical data render them difficult substrates for standard machine learning algorithms. We would like to abstract away this difficulty for the class of time-stamped categorical variables (or events) by modeling them as a renewal process and inferring a probability density over continuous, longitudinal, nonparametric intensity functions modulating that process. Several methods exist for inferring such a density over intensity functions, but either their constraints and assumptions prevent their use with our potentially bursty event streams, or their time complexity renders their use intractable on our long-duration observations of high-resolution events, or both. In this paper we present a new and efficient method for inferring a distribution over intensity functions that uses direct numeric integration and smooth interpolation over Gaussian processes. We demonstrate that our direct method is up to twice as accurate and two orders of magnitude more efficient than the best existing method (thinning). Importantly, the direct method can infer intensity functions over the full range of bursty to memoryless to regular events, which thinning and many other methods cannot. Finally, we apply the method to clinical event data and demonstrate the face-validity of the abstraction, which is now amenable to standard learning algorithms.
Near-optimal-sample estimators for spherical Gaussian mixtures
Statistical and machine-learning algorithms are frequently applied to high-dimensional data. In many of these applications data is scarce, and often much more costly than computation time. We provide the first sample-efficient polynomial-time estimator for high-dimensional spherical Gaussian mixtures. For mixtures of any $k$ $d$-dimensional spherical Gaussians, we derive an intuitive spectral-estimator that uses $\mathcal{O}_k\bigl(\frac{d\log^2d}{\epsilon^4}\bigr)$ samples and runs in time $\mathcal{O}_{k,\epsilon}(d^3\log^5 d)$, both significantly lower than previously known. The constant factor $\mathcal{O}_k$ is polynomial for sample complexity and is exponential for the time complexity, again much smaller than what was previously known. We also show that $\Omega_k\bigl(\frac{d}{\epsilon^2}\bigr)$ samples are needed for any algorithm. Hence the sample complexity is near-optimal in the number of dimensions. We also derive a simple estimator for one-dimensional mixtures that uses $\mathcal{O}\bigl(\frac{k \log \frac{k}{\epsilon} }{\epsilon^2} \bigr)$ samples and runs in time $\widetilde{\mathcal{O}}\left(\bigl(\frac{k}{\epsilon}\bigr)^{3k+1}\right)$. Our other technical contributions include a faster algorithm for choosing a density estimate from a set of distributions, that minimizes the $\ell_1$ distance to an unknown underlying distribution.
Subspace Learning with Partial Information
The goal of subspace learning is to find a $k$-dimensional subspace of $\mathbb{R}^d$, such that the expected squared distance between instance vectors and the subspace is as small as possible. In this paper we study subspace learning in a partial information setting, in which the learner can only observe $r \le d$ attributes from each instance vector. We propose several efficient algorithms for this task, and analyze their sample complexity
Diffusion Least Mean Square: Simulations
In this technical report we analyse the performance of diffusion strategies applied to the Least-Mean-Square adaptive filter. We configure a network of cooperative agents running adaptive filters and discuss their behaviour when compared with a non-cooperative agent which represents the average of the network. The analysis provides conditions under which diversity in the filter parameters is beneficial in terms of convergence and stability. Simulations drive and support the analysis.
A Quasi-Newton Method for Large Scale Support Vector Machines
This paper adapts a recently developed regularized stochastic version of the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton method for the solution of support vector machine classification problems. The proposed method is shown to converge almost surely to the optimal classifier at a rate that is linear in expectation. Numerical results show that the proposed method exhibits a convergence rate that degrades smoothly with the dimensionality of the feature vectors.
Learning the Parameters of Determinantal Point Process Kernels
Determinantal point processes (DPPs) are well-suited for modeling repulsion and have proven useful in many applications where diversity is desired. While DPPs have many appealing properties, such as efficient sampling, learning the parameters of a DPP is still considered a difficult problem due to the non-convex nature of the likelihood function. In this paper, we propose using Bayesian methods to learn the DPP kernel parameters. These methods are applicable in large-scale and continuous DPP settings even when the exact form of the eigendecomposition is unknown. We demonstrate the utility of our DPP learning methods in studying the progression of diabetic neuropathy based on spatial distribution of nerve fibers, and in studying human perception of diversity in images.
Survey on Sparse Coded Features for Content Based Face Image Retrieval
Content based image retrieval, a technique which uses visual contents of image to search images from large scale image databases according to users' interests. This paper provides a comprehensive survey on recent technology used in the area of content based face image retrieval. Nowadays digital devices and photo sharing sites are getting more popularity, large human face photos are available in database. Multiple types of facial features are used to represent discriminality on large scale human facial image database. Searching and mining of facial images are challenging problems and important research issues. Sparse representation on features provides significant improvement in indexing related images to query image.
Group-sparse Matrix Recovery
We apply the OSCAR (octagonal selection and clustering algorithms for regression) in recovering group-sparse matrices (two-dimensional---2D---arrays) from compressive measurements. We propose a 2D version of OSCAR (2OSCAR) consisting of the $\ell_1$ norm and the pair-wise $\ell_{\infty}$ norm, which is convex but non-differentiable. We show that the proximity operator of 2OSCAR can be computed based on that of OSCAR. The 2OSCAR problem can thus be efficiently solved by state-of-the-art proximal splitting algorithms. Experiments on group-sparse 2D array recovery show that 2OSCAR regularization solved by the SpaRSA algorithm is the fastest choice, while the PADMM algorithm (with debiasing) yields the most accurate results.
Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Noisy Matrix Decomposition
We propose an efficient ADMM method with guarantees for high-dimensional problems. We provide explicit bounds for the sparse optimization problem and the noisy matrix decomposition problem. For sparse optimization, we establish that the modified ADMM method has an optimal convergence rate of $\mathcal{O}(s\log d/T)$, where $s$ is the sparsity level, $d$ is the data dimension and $T$ is the number of steps. This matches with the minimax lower bounds for sparse estimation. For matrix decomposition into sparse and low rank components, we provide the first guarantees for any online method, and prove a convergence rate of $\tilde{\mathcal{O}}((s+r)\beta^2(p) /T) + \mathcal{O}(1/p)$ for a $p\times p$ matrix, where $s$ is the sparsity level, $r$ is the rank and $\Theta(\sqrt{p})\leq \beta(p)\leq \Theta(p)$. Our guarantees match the minimax lower bound with respect to $s,r$ and $T$. In addition, we match the minimax lower bound with respect to the matrix dimension $p$, i.e. $\beta(p)=\Theta(\sqrt{p})$, for many important statistical models including the independent noise model, the linear Bayesian network and the latent Gaussian graphical model under some conditions. Our ADMM method is based on epoch-based annealing and consists of inexpensive steps which involve projections on to simple norm balls. Experiments show that for both sparse optimization and matrix decomposition problems, our algorithm outperforms the state-of-the-art methods. In particular, we reach higher accuracy with same time complexity.
Distribution-Independent Reliable Learning
We study several questions in the reliable agnostic learning framework of Kalai et al. (2009), which captures learning tasks in which one type of error is costlier than others. A positive reliable classifier is one that makes no false positive errors. The goal in the positive reliable agnostic framework is to output a hypothesis with the following properties: (i) its false positive error rate is at most $\epsilon$, (ii) its false negative error rate is at most $\epsilon$ more than that of the best positive reliable classifier from the class. A closely related notion is fully reliable agnostic learning, which considers partial classifiers that are allowed to predict "unknown" on some inputs. The best fully reliable partial classifier is one that makes no errors and minimizes the probability of predicting "unknown", and the goal in fully reliable learning is to output a hypothesis that is almost as good as the best fully reliable partial classifier from a class. For distribution-independent learning, the best known algorithms for PAC learning typically utilize polynomial threshold representations, while the state of the art agnostic learning algorithms use point-wise polynomial approximations. We show that one-sided polynomial approximations, an intermediate notion between polynomial threshold representations and point-wise polynomial approximations, suffice for learning in the reliable agnostic settings. We then show that majorities can be fully reliably learned and disjunctions of majorities can be positive reliably learned, through constructions of appropriate one-sided polynomial approximations. Our fully reliable algorithm for majorities provides the first evidence that fully reliable learning may be strictly easier than agnostic learning. Our algorithms also satisfy strong attribute-efficiency properties, and provide smooth tradeoffs between sample complexity and running time.
Pareto-depth for Multiple-query Image Retrieval
Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method (PFM) with efficient manifold ranking (EMR). We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts.
Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-$1$ Updates
In this paper, we provide local and global convergence guarantees for recovering CP (Candecomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple alternating rank-$1$ update which is the alternating version of the tensor power iteration adapted for asymmetric tensors. Local convergence guarantees are established for third order tensors of rank $k$ in $d$ dimensions, when $k=o \bigl( d^{1.5} \bigr)$ and the tensor components are incoherent. Thus, we can recover overcomplete tensor decomposition. We also strengthen the results to global convergence guarantees under stricter rank condition $k \le \beta d$ (for arbitrary constant $\beta > 1$) through a simple initialization procedure where the algorithm is initialized by top singular vectors of random tensor slices. Furthermore, the approximate local convergence guarantees for $p$-th order tensors are also provided under rank condition $k=o \bigl( d^{p/2} \bigr)$. The guarantees also include tight perturbation analysis given noisy tensor.
Convergence results for projected line-search methods on varieties of low-rank matrices via \L{}ojasiewicz inequality
The aim of this paper is to derive convergence results for projected line-search methods on the real-algebraic variety $\mathcal{M}_{\le k}$ of real $m \times n$ matrices of rank at most $k$. Such methods extend Riemannian optimization methods, which are successfully used on the smooth manifold $\mathcal{M}_k$ of rank-$k$ matrices, to its closure by taking steps along gradient-related directions in the tangent cone, and afterwards projecting back to $\mathcal{M}_{\le k}$. Considering such a method circumvents the difficulties which arise from the nonclosedness and the unbounded curvature of $\mathcal{M}_k$. The pointwise convergence is obtained for real-analytic functions on the basis of a \L{}ojasiewicz inequality for the projection of the antigradient to the tangent cone. If the derived limit point lies on the smooth part of $\mathcal{M}_{\le k}$, i.e. in $\mathcal{M}_k$, this boils down to more or less known results, but with the benefit that asymptotic convergence rate estimates (for specific step-sizes) can be obtained without an a priori curvature bound, simply from the fact that the limit lies on a smooth manifold. At the same time, one can give a convincing justification for assuming critical points to lie in $\mathcal{M}_k$: if $X$ is a critical point of $f$ on $\mathcal{M}_{\le k}$, then either $X$ has rank $k$, or $\nabla f(X) = 0$.
Important Molecular Descriptors Selection Using Self Tuned Reweighted Sampling Method for Prediction of Antituberculosis Activity
In this paper, a new descriptor selection method for selecting an optimal combination of important descriptors of sulfonamide derivatives data, named self tuned reweighted sampling (STRS), is developed. descriptors are defined as the descriptors with large absolute coefficients in a multivariate linear regression model such as partial least squares(PLS). In this study, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each descriptor Then, based on the importance level of each descriptor, STRS sequentially selects N subsets of descriptors from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a regresson model. Next, based on the regression coefficients, a two-step procedure including rapidly decreasing function (RDF) based enforced descriptor selection and self tuned sampling (STS) based competitive descriptor selection is adopted to select the important descriptorss. After running the loops, a number of subsets of descriptors are obtained and root mean squared error of cross validation (RMSECV) of PLS models established with subsets of descriptors is computed. The subset of descriptors with the lowest RMSECV is considered as the optimal descriptor subset. The performance of the proposed algorithm is evaluated by sulfanomide derivative dataset. The results reveal an good characteristic of STRS that it can usually locate an optimal combination of some important descriptors which are interpretable to the biologically of interest. Additionally, our study shows that better prediction is obtained by STRS when compared to full descriptor set PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE).
From Predictive to Prescriptive Analytics
In this paper, we combine ideas from machine learning (ML) and operations research and management science (OR/MS) in developing a framework, along with specific methods, for using data to prescribe optimal decisions in OR/MS problems. In a departure from other work on data-driven optimization and reflecting our practical experience with the data available in applications of OR/MS, we consider data consisting, not only of observations of quantities with direct effect on costs/revenues, such as demand or returns, but predominantly of observations of associated auxiliary quantities. The main problem of interest is a conditional stochastic optimization problem, given imperfect observations, where the joint probability distributions that specify the problem are unknown. We demonstrate that our proposed solution methods, which are inspired by ML methods such as local regression, CART, and random forests, are generally applicable to a wide range of decision problems. We prove that they are tractable and asymptotically optimal even when data is not iid and may be censored. We extend this to the case where decision variables may directly affect uncertainty in unknown ways, such as pricing's effect on demand. As an analogue to R^2, we develop a metric P termed the coefficient of prescriptiveness to measure the prescriptive content of data and the efficacy of a policy from an operations perspective. To demonstrate the power of our approach in a real-world setting we study an inventory management problem faced by the distribution arm of an international media conglomerate, which ships an average of 1bil units per year. We leverage internal data and public online data harvested from IMDb, Rotten Tomatoes, and Google to prescribe operational decisions that outperform baseline measures. Specifically, the data we collect, leveraged by our methods, accounts for an 88\% improvement as measured by our P.
Efficient Semidefinite Spectral Clustering via Lagrange Duality
We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.
Semi-Supervised Nonlinear Distance Metric Learning via Forests of Max-Margin Cluster Hierarchies
Metric learning is a key problem for many data mining and machine learning applications, and has long been dominated by Mahalanobis methods. Recent advances in nonlinear metric learning have demonstrated the potential power of non-Mahalanobis distance functions, particularly tree-based functions. We propose a novel nonlinear metric learning method that uses an iterative, hierarchical variant of semi-supervised max-margin clustering to construct a forest of cluster hierarchies, where each individual hierarchy can be interpreted as a weak metric over the data. By introducing randomness during hierarchy training and combining the output of many of the resulting semi-random weak hierarchy metrics, we can obtain a powerful and robust nonlinear metric model. This method has two primary contributions: first, it is semi-supervised, incorporating information from both constrained and unconstrained points. Second, we take a relaxed approach to constraint satisfaction, allowing the method to satisfy different subsets of the constraints at different levels of the hierarchy rather than attempting to simultaneously satisfy all of them. This leads to a more robust learning algorithm. We compare our method to a number of state-of-the-art benchmarks on $k$-nearest neighbor classification, large-scale image retrieval and semi-supervised clustering problems, and find that our algorithm yields results comparable or superior to the state-of-the-art, and is significantly more robust to noise.
Exact Post Model Selection Inference for Marginal Screening
We develop a framework for post model selection inference, via marginal screening, in linear regression. At the core of this framework is a result that characterizes the exact distribution of linear functions of the response $y$, conditional on the model being selected (``condition on selection" framework). This allows us to construct valid confidence intervals and hypothesis tests for regression coefficients that account for the selection procedure. In contrast to recent work in high-dimensional statistics, our results are exact (non-asymptotic) and require no eigenvalue-like assumptions on the design matrix $X$. Furthermore, the computational cost of marginal regression, constructing confidence intervals and hypothesis testing is negligible compared to the cost of linear regression, thus making our methods particularly suitable for extremely large datasets. Although we focus on marginal screening to illustrate the applicability of the condition on selection framework, this framework is much more broadly applicable. We show how to apply the proposed framework to several other selection procedures including orthogonal matching pursuit, non-negative least squares, and marginal screening+Lasso.
To go deep or wide in learning?
To achieve acceptable performance for AI tasks, one can either use sophisticated feature extraction methods as the first layer in a two-layered supervised learning model, or learn the features directly using a deep (multi-layered) model. While the first approach is very problem-specific, the second approach has computational overheads in learning multiple layers and fine-tuning of the model. In this paper, we propose an approach called wide learning based on arc-cosine kernels, that learns a single layer of infinite width. We propose exact and inexact learning strategies for wide learning and show that wide learning with single layer outperforms single layer as well as deep architectures of finite width for some benchmark datasets.
Dynamic Rate and Channel Selection in Cognitive Radio Systems
In this paper, we investigate dynamic channel and rate selection in cognitive radio systems which exploit a large number of channels free from primary users. In such systems, transmitters may rapidly change the selected (channel, rate) pair to opportunistically learn and track the pair offering the highest throughput. We formulate the problem of sequential channel and rate selection as an online optimization problem, and show its equivalence to a {\it structured} Multi-Armed Bandit problem. The structure stems from inherent properties of the achieved throughput as a function of the selected channel and rate. We derive fundamental performance limits satisfied by {\it any} channel and rate adaptation algorithm, and propose algorithms that achieve (or approach) these limits. In turn, the proposed algorithms optimally exploit the inherent structure of the throughput. We illustrate the efficiency of our algorithms using both test-bed and simulation experiments, in both stationary and non-stationary radio environments. In stationary environments, the packet successful transmission probabilities at the various channel and rate pairs do not evolve over time, whereas in non-stationary environments, they may evolve. In practical scenarios, the proposed algorithms are able to track the best channel and rate quite accurately without the need of any explicit measurement and feedback of the quality of the various channels.
Discriminative Functional Connectivity Measures for Brain Decoding
We propose a statistical learning model for classifying cognitive processes based on distributed patterns of neural activation in the brain, acquired via functional magnetic resonance imaging (fMRI). In the proposed learning method, local meshes are formed around each voxel. The distance between voxels in the mesh is determined by using a functional neighbourhood concept. In order to define the functional neighbourhood, the similarities between the time series recorded for voxels are measured and functional connectivity matrices are constructed. Then, the local mesh for each voxel is formed by including the functionally closest neighbouring voxels in the mesh. The relationship between the voxels within a mesh is estimated by using a linear regression model. These relationship vectors, called Functional Connectivity aware Local Relational Features (FC-LRF) are then used to train a statistical learning machine. The proposed method was tested on a recognition memory experiment, including data pertaining to encoding and retrieval of words belonging to ten different semantic categories. Two popular classifiers, namely k-nearest neighbour (k-nn) and Support Vector Machine (SVM), are trained in order to predict the semantic category of the item being retrieved, based on activation patterns during encoding. The classification performance of the Functional Mesh Learning model, which range in 62%-71% is superior to the classical multi-voxel pattern analysis (MVPA) methods, which range in 40%-48%, for ten semantic categories.
Variational Particle Approximations
Approximate inference in high-dimensional, discrete probabilistic models is a central problem in computational statistics and machine learning. This paper describes discrete particle variational inference (DPVI), a new approach that combines key strengths of Monte Carlo, variational and search-based techniques. DPVI is based on a novel family of particle-based variational approximations that can be fit using simple, fast, deterministic search techniques. Like Monte Carlo, DPVI can handle multiple modes, and yields exact results in a well-defined limit. Like unstructured mean-field, DPVI is based on optimizing a lower bound on the partition function; when this quantity is not of intrinsic interest, it facilitates convergence assessment and debugging. Like both Monte Carlo and combinatorial search, DPVI can take advantage of factorization, sequential structure, and custom search operators. This paper defines DPVI particle-based approximation family and partition function lower bounds, along with the sequential DPVI and local DPVI algorithm templates for optimizing them. DPVI is illustrated and evaluated via experiments on lattice Markov Random Fields, nonparametric Bayesian mixtures and block-models, and parametric as well as non-parametric hidden Markov models. Results include applications to real-world spike-sorting and relational modeling problems, and show that DPVI can offer appealing time/accuracy trade-offs as compared to multiple alternatives.
Machine Learning Methods in the Computational Biology of Cancer
The objectives of this "perspective" paper are to review some recent advances in sparse feature selection for regression and classification, as well as compressed sensing, and to discuss how these might be used to develop tools to advance personalized cancer therapy. As an illustration of the possibilities, a new algorithm for sparse regression is presented, and is applied to predict the time to tumor recurrence in ovarian cancer. A new algorithm for sparse feature selection in classification problems is presented, and its validation in endometrial cancer is briefly discussed. Some open problems are also presented.
Information-Theoretic Bounds for Adaptive Sparse Recovery
We derive an information-theoretic lower bound for sample complexity in sparse recovery problems where inputs can be chosen sequentially and adaptively. This lower bound is in terms of a simple mutual information expression and unifies many different linear and nonlinear observation models. Using this formula we derive bounds for adaptive compressive sensing (CS), group testing and 1-bit CS problems. We show that adaptivity cannot decrease sample complexity in group testing, 1-bit CS and CS with linear sparsity. In contrast, we show there might be mild performance gains for CS in the sublinear regime. Our unified analysis also allows characterization of gains due to adaptivity from a wider perspective on sparse problems.
Bandits with concave rewards and convex knapsacks
In this paper, we consider a very general model for exploration-exploitation tradeoff which allows arbitrary concave rewards and convex constraints on the decisions across time, in addition to the customary limitation on the time horizon. This model subsumes the classic multi-armed bandit (MAB) model, and the Bandits with Knapsacks (BwK) model of Badanidiyuru et al.[2013]. We also consider an extension of this model to allow linear contexts, similar to the linear contextual extension of the MAB model. We demonstrate that a natural and simple extension of the UCB family of algorithms for MAB provides a polynomial time algorithm that has near-optimal regret guarantees for this substantially more general model, and matches the bounds provided by Badanidiyuru et al.[2013] for the special case of BwK, which is quite surprising. We also provide computationally more efficient algorithms by establishing interesting connections between this problem and other well studied problems/algorithms such as the Blackwell approachability problem, online convex optimization, and the Frank-Wolfe technique for convex optimization. We give examples of several concrete applications, where this more general model of bandits allows for richer and/or more efficient formulations of the problem.
No more meta-parameter tuning in unsupervised sparse feature learning
We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on STL-10 show that the method presents state-of-the-art performance and provides discriminative features that generalize well.
Sparse phase retrieval via group-sparse optimization
This paper deals with sparse phase retrieval, i.e., the problem of estimating a vector from quadratic measurements under the assumption that few components are nonzero. In particular, we consider the problem of finding the sparsest vector consistent with the measurements and reformulate it as a group-sparse optimization problem with linear constraints. Then, we analyze the convex relaxation of the latter based on the minimization of a block l1-norm and show various exact recovery and stability results in the real and complex cases. Invariance to circular shifts and reflections are also discussed for real vectors measured via complex matrices.
Avoiding pathologies in very deep networks
Choosing appropriate architectures and regularization strategies for deep networks is crucial to good predictive performance. To shed light on this problem, we analyze the analogous problem of constructing useful priors on compositions of functions. Specifically, we study the deep Gaussian process, a type of infinitely-wide, deep neural network. We show that in standard architectures, the representational capacity of the network tends to capture fewer degrees of freedom as the number of layers increases, retaining only a single degree of freedom in the limit. We propose an alternate network architecture which does not suffer from this pathology. We also examine deep covariance functions, obtained by composing infinitely many feature transforms. Lastly, we characterize the class of models obtained by performing dropout on Gaussian processes.
Predictive Interval Models for Non-parametric Regression
Having a regression model, we are interested in finding two-sided intervals that are guaranteed to contain at least a desired proportion of the conditional distribution of the response variable given a specific combination of predictors. We name such intervals predictive intervals. This work presents a new method to find two-sided predictive intervals for non-parametric least squares regression without the homoscedasticity assumption. Our predictive intervals are built by using tolerance intervals on prediction errors in the query point's neighborhood. We proposed a predictive interval model test and we also used it as a constraint in our hyper-parameter tuning algorithm. This gives an algorithm that finds the smallest reliable predictive intervals for a given dataset. We also introduce a measure for comparing different interval prediction methods yielding intervals having different size and coverage. These experiments show that our methods are more reliable, effective and precise than other interval prediction methods.
Manifold Gaussian Processes for Regression
Off-the-shelf Gaussian Process (GP) covariance functions encode smoothness assumptions on the structure of the function to be modeled. To model complex and non-differentiable functions, these smoothness assumptions are often too restrictive. One way to alleviate this limitation is to find a different representation of the data by introducing a feature space. This feature space is often learned in an unsupervised way, which might lead to data representations that are not useful for the overall regression task. In this paper, we propose Manifold Gaussian Processes, a novel supervised method that jointly learns a transformation of the data into a feature space and a GP regression from the feature space to observed space. The Manifold GP is a full GP and allows to learn data representations, which are useful for the overall regression task. As a proof-of-concept, we evaluate our approach on complex non-smooth functions where standard GPs perform poorly, such as step functions and robotics tasks with contacts.
Near Optimal Bayesian Active Learning for Decision Making
How should we gather information to make effective decisions? We address Bayesian active learning and experimental design problems, where we sequentially select tests to reduce uncertainty about a set of hypotheses. Instead of minimizing uncertainty per se, we consider a set of overlapping decision regions of these hypotheses. Our goal is to drive uncertainty into a single decision region as quickly as possible. We identify necessary and sufficient conditions for correctly identifying a decision region that contains all hypotheses consistent with observations. We develop a novel Hyperedge Cutting (HEC) algorithm for this problem, and prove that is competitive with the intractable optimal policy. Our efficient implementation of the algorithm relies on computing subsets of the complete homogeneous symmetric polynomials. Finally, we demonstrate its effectiveness on two practical applications: approximate comparison-based learning and active localization using a robot manipulator.
On Learning from Label Proportions
Learning from Label Proportions (LLP) is a learning setting, where the training data is provided in groups, or "bags", and only the proportion of each class in each bag is known. The task is to learn a model to predict the class labels of the individual instances. LLP has broad applications in political science, marketing, healthcare, and computer vision. This work answers the fundamental question, when and why LLP is possible, by introducing a general framework, Empirical Proportion Risk Minimization (EPRM). EPRM learns an instance label classifier to match the given label proportions on the training data. Our result is based on a two-step analysis. First, we provide a VC bound on the generalization error of the bag proportions. We show that the bag sample complexity is only mildly sensitive to the bag size. Second, we show that under some mild assumptions, good bag proportion prediction guarantees good instance label prediction. The results together provide a formal guarantee that the individual labels can indeed be learned in the LLP setting. We discuss applications of the analysis, including justification of LLP algorithms, learning with population proportions, and a paradigm for learning algorithms with privacy guarantees. We also demonstrate the feasibility of LLP based on a case study in real-world setting: predicting income based on census data.
Incremental Learning of Event Definitions with Inductive Logic Programming
Event recognition systems rely on properly engineered knowledge bases of event definitions to infer occurrences of events in time. The manual development of such knowledge is a tedious and error-prone task, thus event-based applications may benefit from automated knowledge construction techniques, such as Inductive Logic Programming (ILP), which combines machine learning with the declarative and formal semantics of First-Order Logic. However, learning temporal logical formalisms, which are typically utilized by logic-based Event Recognition systems is a challenging task, which most ILP systems cannot fully undertake. In addition, event-based data is usually massive and collected at different times and under various circumstances. Ideally, systems that learn from temporal data should be able to operate in an incremental mode, that is, revise prior constructed knowledge in the face of new evidence. Most ILP systems are batch learners, in the sense that in order to account for new evidence they have no alternative but to forget past knowledge and learn from scratch. Given the increased inherent complexity of ILP and the volumes of real-life temporal data, this results to algorithms that scale poorly. In this work we present an incremental method for learning and revising event-based knowledge, in the form of Event Calculus programs. The proposed algorithm relies on abductive-inductive learning and comprises a scalable clause refinement methodology, based on a compressive summarization of clause coverage in a stream of examples. We present an empirical evaluation of our approach on real and synthetic data from activity recognition and city transport applications.
Open science in machine learning
We present OpenML and mldata, open science platforms that provides easy access to machine learning data, software and results to encourage further study and application. They go beyond the more traditional repositories for data sets and software packages in that they allow researchers to also easily share the results they obtained in experiments and to compare their solutions with those of others.
Algorithms for multi-armed bandit problems
Although many algorithms for the multi-armed bandit problem are well-understood theoretically, empirical confirmation of their effectiveness is generally scarce. This paper presents a thorough empirical study of the most popular multi-armed bandit algorithms. Three important observations can be made from our results. Firstly, simple heuristics such as epsilon-greedy and Boltzmann exploration outperform theoretically sound algorithms on most settings by a significant margin. Secondly, the performance of most algorithms varies dramatically with the parameters of the bandit problem. Our study identifies for each algorithm the settings where it performs well, and the settings where it performs poorly. Thirdly, the algorithms' performance relative each to other is affected only by the number of bandit arms and the variance of the rewards. This finding may guide the design of subsequent empirical evaluations. In the second part of the paper, we turn our attention to an important area of application of bandit algorithms: clinical trials. Although the design of clinical trials has been one of the principal practical problems motivating research on multi-armed bandits, bandit algorithms have never been evaluated as potential treatment allocation strategies. Using data from a real study, we simulate the outcome that a 2001-2002 clinical trial would have had if bandit algorithms had been used to allocate patients to treatments. We find that an adaptive trial would have successfully treated at least 50% more patients, while significantly reducing the number of adverse effects and increasing patient retention. At the end of the trial, the best treatment could have still been identified with a high level of statistical confidence. Our findings demonstrate that bandit algorithms are attractive alternatives to current adaptive treatment allocation strategies.
Machine Learning at Scale
It takes skill to build a meaningful predictive model even with the abundance of implementations of modern machine learning algorithms and readily available computing resources. Building a model becomes challenging if hundreds of terabytes of data need to be processed to produce the training data set. In a digital advertising technology setting, we are faced with the need to build thousands of such models that predict user behavior and power advertising campaigns in a 24/7 chaotic real-time production environment. As data scientists, we also have to convince other internal departments critical to implementation success, our management, and our customers that our machine learning system works. In this paper, we present the details of the design and implementation of an automated, robust machine learning platform that impacts billions of advertising impressions monthly. This platform enables us to continuously optimize thousands of campaigns over hundreds of millions of users, on multiple continents, against varying performance objectives.
Inductive Logic Boosting
Recent years have seen a surge of interest in Probabilistic Logic Programming (PLP) and Statistical Relational Learning (SRL) models that combine logic with probabilities. Structure learning of these systems is an intersection area of Inductive Logic Programming (ILP) and statistical learning (SL). However, ILP cannot deal with probabilities, SL cannot model relational hypothesis. The biggest challenge of integrating these two machine learning frameworks is how to estimate the probability of a logic clause only from the observation of grounded logic atoms. Many current methods models a joint probability by representing clause as graphical model and literals as vertices in it. This model is still too complicate and only can be approximate by pseudo-likelihood. We propose Inductive Logic Boosting framework to transform the relational dataset into a feature-based dataset, induces logic rules by boosting Problog Rule Trees and relaxes the independence constraint of pseudo-likelihood. Experimental evaluation on benchmark datasets demonstrates that the AUC-PR and AUC-ROC value of ILP learned rules are higher than current state-of-the-art SRL methods.
Bayesian Sample Size Determination of Vibration Signals in Machine Learning Approach to Fault Diagnosis of Roller Bearings
Sample size determination for a data set is an important statistical process for analyzing the data to an optimum level of accuracy and using minimum computational work. The applications of this process are credible in every domain which deals with large data sets and high computational work. This study uses Bayesian analysis for determination of minimum sample size of vibration signals to be considered for fault diagnosis of a bearing using pre-defined parameters such as the inverse standard probability and the acceptable margin of error. Thus an analytical formula for sample size determination is introduced. The fault diagnosis of the bearing is done using a machine learning approach using an entropy-based J48 algorithm. The following method will help researchers involved in fault diagnosis to determine minimum sample size of data for analysis for a good statistical stability and precision.
Improving Collaborative Filtering based Recommenders using Topic Modelling
Standard Collaborative Filtering (CF) algorithms make use of interactions between users and items in the form of implicit or explicit ratings alone for generating recommendations. Similarity among users or items is calculated purely based on rating overlap in this case,without considering explicit properties of users or items involved, limiting their applicability in domains with very sparse rating spaces. In many domains such as movies, news or electronic commerce recommenders, considerable contextual data in text form describing item properties is available along with the rating data, which could be utilized to improve recommendation quality.In this paper, we propose a novel approach to improve standard CF based recommenders by utilizing latent Dirichlet allocation (LDA) to learn latent properties of items, expressed in terms of topic proportions, derived from their textual description. We infer user's topic preferences or persona in the same latent space,based on her historical ratings. While computing similarity between users, we make use of a combined similarity measure involving rating overlap as well as similarity in the latent topic space. This approach alleviates sparsity problem as it allows calculation of similarity between users even if they have not rated any items in common. Our experiments on multiple public datasets indicate that the proposed hybrid approach significantly outperforms standard user Based and item Based CF recommenders in terms of classification accuracy metrics such as precision, recall and f-measure.
Sample Complexity Bounds on Differentially Private Learning via Communication Complexity
In this work we analyze the sample complexity of classification by differentially private algorithms. Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006) that ensures that the output of an algorithm leaks little information about the data point provided by any of the participating individuals. Sample complexity of private PAC and agnostic learning was studied in a number of prior works starting with (Kasiviswanathan et al., 2008) but a number of basic questions still remain open, most notably whether learning with privacy requires more samples than learning without privacy. We show that the sample complexity of learning with (pure) differential privacy can be arbitrarily higher than the sample complexity of learning without the privacy constraint or the sample complexity of learning with approximate differential privacy. Our second contribution and the main tool is an equivalence between the sample complexity of (pure) differentially private learning of a concept class $C$ (or $SCDP(C)$) and the randomized one-way communication complexity of the evaluation problem for concepts from $C$. Using this equivalence we prove the following bounds: 1. $SCDP(C) = \Omega(LDim(C))$, where $LDim(C)$ is the Littlestone's (1987) dimension characterizing the number of mistakes in the online-mistake-bound learning model. Known bounds on $LDim(C)$ then imply that $SCDP(C)$ can be much higher than the VC-dimension of $C$. 2. For any $t$, there exists a class $C$ such that $LDim(C)=2$ but $SCDP(C) \geq t$. 3. For any $t$, there exists a class $C$ such that the sample complexity of (pure) $\alpha$-differentially private PAC learning is $\Omega(t/\alpha)$ but the sample complexity of the relaxed $(\alpha,\beta)$-differentially private PAC learning is $O(\log(1/\beta)/\alpha)$. This resolves an open problem of Beimel et al. (2013b).
Oracle-Based Robust Optimization via Online Learning
Robust optimization is a common framework in optimization under uncertainty when the problem parameters are not known, but it is rather known that the parameters belong to some given uncertainty set. In the robust optimization framework the problem solved is a min-max problem where a solution is judged according to its performance on the worst possible realization of the parameters. In many cases, a straightforward solution of the robust optimization problem of a certain type requires solving an optimization problem of a more complicated type, and in some cases even NP-hard. For example, solving a robust conic quadratic program, such as those arising in robust SVM, ellipsoidal uncertainty leads in general to a semidefinite program. In this paper we develop a method for approximately solving a robust optimization problem using tools from online convex optimization, where in every stage a standard (non-robust) optimization program is solved. Our algorithms find an approximate robust solution using a number of calls to an oracle that solves the original (non-robust) problem that is inversely proportional to the square of the target accuracy.
Renewable Energy Prediction using Weather Forecasts for Optimal Scheduling in HPC Systems
The objective of the GreenPAD project is to use green energy (wind, solar and biomass) for powering data-centers that are used to run HPC jobs. As a part of this it is important to predict the Renewable (Wind) energy for efficient scheduling (executing jobs that require higher energy when there is more green energy available and vice-versa). For predicting the wind energy we first analyze the historical data to find a statistical model that gives relation between wind energy and weather attributes. Then we use this model based on the weather forecast data to predict the green energy availability in the future. Using the green energy prediction obtained from the statistical model we are able to precompute job schedules for maximizing the green energy utilization in the future. We propose a model which uses live weather data in addition to machine learning techniques (which can predict future deviations in weather conditions based on current deviations from the forecast) to make on-the-fly changes to the precomputed schedule (based on green energy prediction). For this we first analyze the data using histograms and simple statistical tools such as correlation. In addition we build (correlation) regression model for finding the relation between wind energy availability and weather attributes (temperature, cloud cover, air pressure, wind speed / direction, precipitation and sunshine). We also analyze different algorithms and machine learning techniques for optimizing the job schedules for maximizing the green energy utilization.
Resourceful Contextual Bandits
We study contextual bandits with ancillary constraints on resources, which are common in real-world applications such as choosing ads or dynamic pricing of items. We design the first algorithm for solving these problems that handles constrained resources other than time, and improves over a trivial reduction to the non-contextual case. We consider very general settings for both contextual bandits (arbitrary policy sets, e.g. Dudik et al. (UAI'11)) and bandits with resource constraints (bandits with knapsacks, Badanidiyuru et al. (FOCS'13)), and prove a regret guarantee with near-optimal statistical properties.
Outlier Detection using Improved Genetic K-means
The outlier detection problem in some cases is similar to the classification problem. For example, the main concern of clustering-based outlier detection algorithms is to find clusters and outliers, which are often regarded as noise that should be removed in order to make more reliable clustering. In this article, we present an algorithm that provides outlier detection and data clustering simultaneously. The algorithmimprovesthe estimation of centroids of the generative distribution during the process of clustering and outlier discovery. The proposed algorithm consists of two stages. The first stage consists of improved genetic k-means algorithm (IGK) process, while the second stage iteratively removes the vectors which are far from their cluster centroids.
Sequential Complexity as a Descriptor for Musical Similarity
We propose string compressibility as a descriptor of temporal structure in audio, for the purpose of determining musical similarity. Our descriptors are based on computing track-wise compression rates of quantised audio features, using multiple temporal resolutions and quantisation granularities. To verify that our descriptors capture musically relevant information, we incorporate our descriptors into similarity rating prediction and song year prediction tasks. We base our evaluation on a dataset of 15500 track excerpts of Western popular music, for which we obtain 7800 web-sourced pairwise similarity ratings. To assess the agreement among similarity ratings, we perform an evaluation under controlled conditions, obtaining a rank correlation of 0.33 between intersected sets of ratings. Combined with bag-of-features descriptors, we obtain performance gains of 31.1% and 10.9% for similarity rating prediction and song year prediction. For both tasks, analysis of selected descriptors reveals that representing features at multiple time scales benefits prediction accuracy.
Scalable methods for nonnegative matrix factorizations of near-separable tall-and-skinny matrices
Numerous algorithms are used for nonnegative matrix factorization under the assumption that the matrix is nearly separable. In this paper, we show how to make these algorithms efficient for data matrices that have many more rows than columns, so-called "tall-and-skinny matrices". One key component to these improved methods is an orthogonal matrix transformation that preserves the separability of the NMF problem. Our final methods need a single pass over the data matrix and are suitable for streaming, multi-core, and MapReduce architectures. We demonstrate the efficacy of these algorithms on terabyte-sized synthetic matrices and real-world matrices from scientific computing and bioinformatics.
Marginalizing Corrupted Features
The goal of machine learning is to develop predictors that generalize well to test data. Ideally, this is achieved by training on an almost infinitely large training data set that captures all variations in the data distribution. In practical learning settings, however, we do not have infinite data and our predictors may overfit. Overfitting may be combatted, for example, by adding a regularizer to the training objective or by defining a prior over the model parameters and performing Bayesian inference. In this paper, we propose a third, alternative approach to combat overfitting: we extend the training set with infinitely many artificial training examples that are obtained by corrupting the original training data. We show that this approach is practical and efficient for a range of predictors and corruption models. Our approach, called marginalized corrupted features (MCF), trains robust predictors by minimizing the expected value of the loss function under the corruption model. We show empirically on a variety of data sets that MCF classifiers can be trained efficiently, may generalize substantially better to test data, and are also more robust to feature deletion at test time.
Bayesian Multi-Scale Optimistic Optimization
Bayesian optimization is a powerful global optimization technique for expensive black-box functions. One of its shortcomings is that it requires auxiliary optimization of an acquisition function at each iteration. This auxiliary optimization can be costly and very hard to carry out in practice. Moreover, it creates serious theoretical concerns, as most of the convergence results assume that the exact optimum of the acquisition function can be found. In this paper, we introduce a new technique for efficient global optimization that combines Gaussian process confidence bounds and treed simultaneous optimistic optimization to eliminate the need for auxiliary optimization of acquisition functions. The experiments with global optimization benchmarks and a novel application to automatic information extraction demonstrate that the resulting technique is more efficient than the two approaches from which it draws inspiration. Unlike most theoretical analyses of Bayesian optimization with Gaussian processes, our finite-time convergence rate proofs do not require exact optimization of an acquisition function. That is, our approach eliminates the unsatisfactory assumption that a difficult, potentially NP-hard, problem has to be solved in order to obtain vanishing regret rates.
Data-driven HRF estimation for encoding and decoding models
Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF using a rank constraint causing the estimated HRF to be equal across events/conditions, yet permitting it to be different across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding score in two different datasets. Our results show that the R1-GLM model significantly outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.
Exploiting the Statistics of Learning and Inference
When dealing with datasets containing a billion instances or with simulations that require a supercomputer to execute, computational resources become part of the equation. We can improve the efficiency of learning and inference by exploiting their inherent statistical nature. We propose algorithms that exploit the redundancy of data relative to a model by subsampling data-cases for every update and reasoning about the uncertainty created in this process. In the context of learning we propose to test for the probability that a stochastically estimated gradient points more than 180 degrees in the wrong direction. In the context of MCMC sampling we use stochastic gradients to improve the efficiency of MCMC updates, and hypothesis tests based on adaptive mini-batches to decide whether to accept or reject a proposed parameter update. Finally, we argue that in the context of likelihood free MCMC one needs to store all the information revealed by all simulations, for instance in a Gaussian process. We conclude that Bayesian methods will remain to play a crucial role in the era of big data and big simulations, but only if we overcome a number of computational challenges.
An Incidence Geometry approach to Dictionary Learning
We study the Dictionary Learning (aka Sparse Coding) problem of obtaining a sparse representation of data points, by learning \emph{dictionary vectors} upon which the data points can be written as sparse linear combinations. We view this problem from a geometry perspective as the spanning set of a subspace arrangement, and focus on understanding the case when the underlying hypergraph of the subspace arrangement is specified. For this Fitted Dictionary Learning problem, we completely characterize the combinatorics of the associated subspace arrangements (i.e.\ their underlying hypergraphs). Specifically, a combinatorial rigidity-type theorem is proven for a type of geometric incidence system. The theorem characterizes the hypergraphs of subspace arrangements that generically yield (a) at least one dictionary (b) a locally unique dictionary (i.e.\ at most a finite number of isolated dictionaries) of the specified size. We are unaware of prior application of combinatorial rigidity techniques in the setting of Dictionary Learning, or even in machine learning. We also provide a systematic classification of problems related to Dictionary Learning together with various algorithms, their assumptions and performance.
Real-time Topic-aware Influence Maximization Using Preprocessing
Influence maximization is the task of finding a set of seed nodes in a social network such that the influence spread of these seed nodes based on certain influence diffusion model is maximized. Topic-aware influence diffusion models have been recently proposed to address the issue that influence between a pair of users are often topic-dependent and information, ideas, innovations etc. being propagated in networks (referred collectively as items in this paper) are typically mixtures of topics. In this paper, we focus on the topic-aware influence maximization task. In particular, we study preprocessing methods for these topics to avoid redoing influence maximization for each item from scratch. We explore two preprocessing algorithms with theoretical justifications. Our empirical results on data obtained in a couple of existing studies demonstrate that one of our algorithms stands out as a strong candidate providing microsecond online response time and competitive influence spread, with reasonable preprocessing effort.
Sleep Analytics and Online Selective Anomaly Detection
We introduce a new problem, the Online Selective Anomaly Detection (OSAD), to model a specific scenario emerging from research in sleep science. Scientists have segmented sleep into several stages and stage two is characterized by two patterns (or anomalies) in the EEG time series recorded on sleep subjects. These two patterns are sleep spindle (SS) and K-complex. The OSAD problem was introduced to design a residual system, where all anomalies (known and unknown) are detected but the system only triggers an alarm when non-SS anomalies appear. The solution of the OSAD problem required us to combine techniques from both machine learning and control theory. Experiments on data from real subjects attest to the effectiveness of our approach.
Network Traffic Decomposition for Anomaly Detection
In this paper we focus on the detection of network anomalies like Denial of Service (DoS) attacks and port scans in a unified manner. While there has been an extensive amount of research in network anomaly detection, current state of the art methods are only able to detect one class of anomalies at the cost of others. The key tool we will use is based on the spectral decomposition of a trajectory/hankel matrix which is able to detect deviations from both between and within correlation present in the observed network traffic data. Detailed experiments on synthetic and real network traces shows a significant improvement in detection capability over competing approaches. In the process we also address the issue of robustness of anomaly detection systems in a principled fashion.
Cascading Randomized Weighted Majority: A New Online Ensemble Learning Algorithm
With the increasing volume of data in the world, the best approach for learning from this data is to exploit an online learning algorithm. Online ensemble methods are online algorithms which take advantage of an ensemble of classifiers to predict labels of data. Prediction with expert advice is a well-studied problem in the online ensemble learning literature. The Weighted Majority algorithm and the randomized weighted majority (RWM) are the most well-known solutions to this problem, aiming to converge to the best expert. Since among some expert, the best one does not necessarily have the minimum error in all regions of data space, defining specific regions and converging to the best expert in each of these regions will lead to a better result. In this paper, we aim to resolve this defect of RWM algorithms by proposing a novel online ensemble algorithm to the problem of prediction with expert advice. We propose a cascading version of RWM to achieve not only better experimental results but also a better error bound for sufficiently large datasets.
Support Vector Machine Model for Currency Crisis Discrimination
Support Vector Machine (SVM) is powerful classification technique based on the idea of structural risk minimization. Use of kernel function enables curse of dimensionality to be addressed. However, proper kernel function for certain problem is dependent on specific dataset and as such there is no good method on choice of kernel function. In this paper, SVM is used to build empirical models of currency crisis in Argentina. An estimation technique is developed by training model on real life data set which provides reasonably accurate model outputs and helps policy makers to identify situations in which currency crisis may happen. The third and fourth order polynomial kernel is generally best choice to achieve high generalization of classifier performance. SVM has high level of maturity with algorithms that are simple, easy to implement, tolerates curse of dimensionality and good empirical performance. The satisfactory results show that currency crisis situation is properly emulated using only small fraction of database and could be used as an evaluation tool as well as an early warning system. To the best of knowledge this is the first work on SVM approach for currency crisis evaluation of Argentina.
The Structurally Smoothed Graphlet Kernel
A commonly used paradigm for representing graphs is to use a vector that contains normalized frequencies of occurrence of certain motifs or sub-graphs. This vector representation can be used in a variety of applications, such as, for computing similarity between graphs. The graphlet kernel of Shervashidze et al. [32] uses induced sub-graphs of k nodes (christened as graphlets by Przulj [28]) as motifs in the vector representation, and computes the kernel via a dot product between these vectors. One can easily show that this is a valid kernel between graphs. However, such a vector representation suffers from a few drawbacks. As k becomes larger we encounter the sparsity problem; most higher order graphlets will not occur in a given graph. This leads to diagonal dominance, that is, a given graph is similar to itself but not to any other graph in the dataset. On the other hand, since lower order graphlets tend to be more numerous, using lower values of k does not provide enough discrimination ability. We propose a smoothing technique to tackle the above problems. Our method is based on a novel extension of Kneser-Ney and Pitman-Yor smoothing techniques from natural language processing to graphs. We use the relationships between lower order and higher order graphlets in order to derive our method. Consequently, our smoothing algorithm not only respects the dependency between sub-graphs but also tackles the diagonal dominance problem by distributing the probability mass across graphlets. In our experiments, the smoothed graphlet kernel outperforms graph kernels based on raw frequency counts.
Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations
We study algorithms for online linear optimization in Hilbert spaces, focusing on the case where the player is unconstrained. We develop a novel characterization of a large class of minimax algorithms, recovering, and even improving, several previous results as immediate corollaries. Moreover, using our tools, we develop an algorithm that provides a regret bound of $\mathcal{O}\Big(U \sqrt{T \log(U \sqrt{T} \log^2 T +1)}\Big)$, where $U$ is the $L_2$ norm of an arbitrary comparator and both $T$ and $U$ are unknown to the player. This bound is optimal up to $\sqrt{\log \log T}$ terms. When $T$ is known, we derive an algorithm with an optimal regret bound (up to constant factors). For both the known and unknown $T$ case, a Normal approximation to the conditional value of the game proves to be the key analysis tool.
Multi-period Trading Prediction Markets with Connections to Machine Learning
We present a new model for prediction markets, in which we use risk measures to model agents and introduce a market maker to describe the trading process. This specific choice on modelling tools brings us mathematical convenience. The analysis shows that the whole market effectively approaches a global objective, despite that the market is designed such that each agent only cares about its own goal. Additionally, the market dynamics provides a sensible algorithm for optimising the global objective. An intimate connection between machine learning and our markets is thus established, such that we could 1) analyse a market by applying machine learning methods to the global objective, and 2) solve machine learning problems by setting up and running certain markets.
The Hidden Convexity of Spectral Clustering
In recent years, spectral clustering has become a standard method for data analysis used in a broad range of applications. In this paper we propose a new class of algorithms for multiway spectral clustering based on optimization of a certain "contrast function" over the unit sphere. These algorithms, partly inspired by certain Independent Component Analysis techniques, are simple, easy to implement and efficient. Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization. We give a complete characterization of the contrast functions admissible for provable basis recovery. We show how these conditions can be interpreted as a "hidden convexity" of our optimization problem on the sphere; interestingly, we use efficient convex maximization rather than the more common convex minimization. We also show encouraging experimental results on real and simulated data.
Fast Prediction with SVM Models Containing RBF Kernels
We present an approximation scheme for support vector machine models that use an RBF kernel. A second-order Maclaurin series approximation is used for exponentials of inner products between support vectors and test instances. The approximation is applicable to all kernel methods featuring sums of kernel evaluations and makes no assumptions regarding data normalization. The prediction speed of approximated models no longer relates to the amount of support vectors but is quadratic in terms of the number of input dimensions. If the number of input dimensions is small compared to the amount of support vectors, the approximated model is significantly faster in prediction and has a smaller memory footprint. An optimized C++ implementation was made to assess the gain in prediction speed in a set of practical tests. We additionally provide a method to verify the approximation accuracy, prior to training models or during run-time, to ensure the loss in accuracy remains acceptable and within known bounds.
EnsembleSVM: A Library for Ensemble Learning Using Support Vector Machines
EnsembleSVM is a free software package containing efficient routines to perform ensemble learning with support vector machine (SVM) base models. It currently offers ensemble methods based on binary SVM models. Our implementation avoids duplicate storage and evaluation of support vectors which are shared between constituent models. Experimental results show that using ensemble approaches can drastically reduce training complexity while maintaining high predictive accuracy. The EnsembleSVM software package is freely available online at http://esat.kuleuven.be/stadius/ensemblesvm.
Multiview Hessian regularized logistic regression for action recognition
With the rapid development of social media sharing, people often need to manage the growing volume of multimedia data such as large scale video classification and annotation, especially to organize those videos containing human activities. Recently, manifold regularized semi-supervised learning (SSL), which explores the intrinsic data probability distribution and then improves the generalization ability with only a small number of labeled data, has emerged as a promising paradigm for semiautomatic video classification. In addition, human action videos often have multi-modal content and different representations. To tackle the above problems, in this paper we propose multiview Hessian regularized logistic regression (mHLR) for human action recognition. Compared with existing work, the advantages of mHLR lie in three folds: (1) mHLR combines multiple Hessian regularization, each of which obtained from a particular representation of instance, to leverage the exploring of local geometry; (2) mHLR naturally handle multi-view instances with multiple representations; (3) mHLR employs a smooth loss function and then can be effectively optimized. We carefully conduct extensive experiments on the unstructured social activity attribute (USAA) dataset and the experimental results demonstrate the effectiveness of the proposed multiview Hessian regularized logistic regression for human action recognition.
Matroid Regression
We propose an algebraic combinatorial method for solving large sparse linear systems of equations locally - that is, a method which can compute single evaluations of the signal without computing the whole signal. The method scales only in the sparsity of the system and not in its size, and allows to provide error estimates for any solution method. At the heart of our approach is the so-called regression matroid, a combinatorial object associated to sparsity patterns, which allows to replace inversion of the large matrix with the inversion of a kernel matrix that is constant size. We show that our method provides the best linear unbiased estimator (BLUE) for this setting and the minimum variance unbiased estimator (MVUE) under Gaussian noise assumptions, and furthermore we show that the size of the kernel matrix which is to be inverted can be traded off with accuracy.
Dynamic stochastic blockmodels for time-evolving social networks
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we present a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We fit the model in a near-optimal manner using an extended Kalman filter (EKF) augmented with a local search. We demonstrate that the EKF-based algorithm performs competitively with a state-of-the-art algorithm based on Markov chain Monte Carlo sampling but is significantly less computationally demanding.
On learning to localize objects with minimal supervision
Learning to localize objects with minimal supervision is an important problem in computer vision, since large fully annotated datasets are extremely costly to obtain. In this paper, we propose a new method that achieves this goal with only image-level labels of whether the objects are present or not. Our approach combines a discriminative submodular cover problem for automatically discovering a set of positive object windows with a smoothed latent SVM formulation. The latter allows us to leverage efficient quasi-Newton optimization techniques. Our experiments demonstrate that the proposed approach provides a 50% relative improvement in mean average precision over the current state-of-the-art on PASCAL VOC 2007 detection.
Estimating complex causal effects from incomplete observational data
Despite the major advances taken in causal modeling, causality is still an unfamiliar topic for many statisticians. In this paper, it is demonstrated from the beginning to the end how causal effects can be estimated from observational data assuming that the causal structure is known. To make the problem more challenging, the causal effects are highly nonlinear and the data are missing at random. The tools used in the estimation include causal models with design, causal calculus, multiple imputation and generalized additive models. The main message is that a trained statistician can estimate causal effects by judiciously combining existing tools.
Inducing Language Networks from Continuous Space Word Representations
Recent advancements in unsupervised feature learning have developed powerful latent representations of words. However, it is still not clear what makes one representation better than another and how we can learn the ideal representation. Understanding the structure of latent spaces attained is key to any future advancement in unsupervised learning. In this work, we introduce a new view of continuous space word representations as language networks. We explore two techniques to create language networks from learned features by inducing them for two popular word representation methods and examining the properties of their resulting networks. We find that the induced networks differ from other methods of creating language networks, and that they contain meaningful community structure.
Integer Programming Relaxations for Integrated Clustering and Outlier Detection
In this paper we present methods for exemplar based clustering with outlier selection based on the facility location formulation. Given a distance function and the number of outliers to be found, the methods automatically determine the number of clusters and outliers. We formulate the problem as an integer program to which we present relaxations that allow for solutions that scale to large data sets. The advantages of combining clustering and outlier selection include: (i) the resulting clusters tend to be compact and semantically coherent (ii) the clusters are more robust against data perturbations and (iii) the outliers are contextualised by the clusters and more interpretable, i.e. it is easier to distinguish between outliers which are the result of data errors from those that may be indicative of a new pattern emergent in the data. We present and contrast three relaxations to the integer program formulation: (i) a linear programming formulation (LP) (ii) an extension of affinity propagation to outlier detection (APOC) and (iii) a Lagrangian duality based formulation (LD). Evaluation on synthetic as well as real data shows the quality and scalability of these different methods.
An Extensive Repot on the Efficiency of AIS-INMACA (A Novel Integrated MACA based Clonal Classifier for Protein Coding and Promoter Region Prediction)
This paper exclusively reports the efficiency of AIS-INMACA. AIS-INMACA has created good impact on solving major problems in bioinformatics like protein region identification and promoter region prediction with less time (Pokkuluri Kiran Sree, 2014). This AIS-INMACA is now came with several variations (Pokkuluri Kiran Sree, 2014) towards projecting it as a tool in bioinformatics for solving many problems in bioinformatics. So this paper will be very much useful for so many researchers who are working in the domain of bioinformatics with cellular automata.
Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction
Predicting protein secondary structure is a fundamental problem in protein structure prediction. Here we present a new supervised generative stochastic network (GSN) based method to predict local secondary structure with deep hierarchical representations. GSN is a recently proposed deep learning technique (Bengio & Thibodeau-Laufer, 2013) to globally train deep generative model. We present the supervised extension of GSN, which learns a Markov chain to sample from a conditional distribution, and applied it to protein structure prediction. To scale the model to full-sized, high-dimensional data, like protein sequences with hundreds of amino acids, we introduce a convolutional architecture, which allows efficient learning across multiple layers of hierarchical representations. Our architecture uniquely focuses on predicting structured low-level labels informed with both low and high-level representations learned by the model. In our application this corresponds to labeling the secondary structure state of each amino-acid residue. We trained and tested the model on separate sets of non-homologous proteins sharing less than 30% sequence identity. Our model achieves 66.4% Q8 accuracy on the CB513 dataset, better than the previously reported best performance 64.9% (Wang et al., 2011) for this challenging secondary structure prediction problem.
Collaborative Representation for Classification, Sparse or Non-sparse?
Sparse representation based classification (SRC) has been proved to be a simple, effective and robust solution to face recognition. As it gets popular, doubts on the necessity of enforcing sparsity starts coming up, and primary experimental results showed that simply changing the $l_1$-norm based regularization to the computationally much more efficient $l_2$-norm based non-sparse version would lead to a similar or even better performance. However, that's not always the case. Given a new classification task, it's still unclear which regularization strategy (i.e., making the coefficients sparse or non-sparse) is a better choice without trying both for comparison. In this paper, we present as far as we know the first study on solving this issue, based on plenty of diverse classification experiments. We propose a scoring function for pre-selecting the regularization strategy using only the dataset size, the feature dimensionality and a discrimination score derived from a given feature representation. Moreover, we show that when dictionary learning is taking into account, non-sparse representation has a more significant superiority to sparse representation. This work is expected to enrich our understanding of sparse/non-sparse collaborative representation for classification and motivate further research activities.
Rate Prediction and Selection in LTE systems using Modified Source Encoding Techniques
In current wireless systems, the base-Station (eNodeB) tries to serve its user-equipment (UE) at the highest possible rate that the UE can reliably decode. The eNodeB obtains this rate information as a quantized feedback from the UE at time n and uses this, for rate selection till the next feedback is received at time n + {\delta}. The feedback received at n can become outdated before n + {\delta}, because of a) Doppler fading, and b) Change in the set of active interferers for a UE. Therefore rate prediction becomes essential. Since, the rates belong to a discrete set, we propose a discrete sequence prediction approach, wherein, frequency trees for the discrete sequences are built using source encoding algorithms like Prediction by Partial Match (PPM). Finding the optimal depth of the frequency tree used for prediction is cast as a model order selection problem. The rate sequence complexity is analysed to provide an upper bound on model order. Information-theoretic criteria are then used to solve the model order problem. Finally, two prediction algorithms are proposed, using the PPM with optimal model order and system level simulations demonstrate the improvement in packet loss and throughput due to these algorithms.
Sparse Principal Component Analysis via Rotation and Truncation
Sparse principal component analysis (sparse PCA) aims at finding a sparse basis to improve the interpretability over the dense basis of PCA, meanwhile the sparse basis should cover the data subspace as much as possible. In contrast to most of existing work which deal with the problem by adding some sparsity penalties on various objectives of PCA, in this paper, we propose a new method SPCArt, whose motivation is to find a rotation matrix and a sparse basis such that the sparse basis approximates the basis of PCA after the rotation. The algorithm of SPCArt consists of three alternating steps: rotate PCA basis, truncate small entries, and update the rotation matrix. Its performance bounds are also given. SPCArt is efficient, with each iteration scaling linearly with the data dimension. It is easy to choose parameters in SPCArt, due to its explicit physical explanations. Besides, we give a unified view to several existing sparse PCA methods and discuss the connection with SPCArt. Some ideas in SPCArt are extended to GPower, a popular sparse PCA algorithm, to overcome its drawback. Experimental results demonstrate that SPCArt achieves the state-of-the-art performance. It also achieves a good tradeoff among various criteria, including sparsity, explained variance, orthogonality, balance of sparsity among loadings, and computational speed.
Collaborative Filtering with Information-Rich and Information-Sparse Entities
In this paper, we consider a popular model for collaborative filtering in recommender systems where some users of a website rate some items, such as movies, and the goal is to recover the ratings of some or all of the unrated items of each user. In particular, we consider both the clustering model, where only users (or items) are clustered, and the co-clustering model, where both users and items are clustered, and further, we assume that some users rate many items (information-rich users) and some users rate only a few items (information-sparse users). When users (or items) are clustered, our algorithm can recover the rating matrix with $\omega(MK \log M)$ noisy entries while $MK$ entries are necessary, where $K$ is the number of clusters and $M$ is the number of items. In the case of co-clustering, we prove that $K^2$ entries are necessary for recovering the rating matrix, and our algorithm achieves this lower bound within a logarithmic factor when $K$ is sufficiently large. We compare our algorithms with a well-known algorithms called alternating minimization (AM), and a similarity score-based algorithm known as the popularity-among-friends (PAF) algorithm by applying all three to the MovieLens and Netflix data sets. Our co-clustering algorithm and AM have similar overall error rates when recovering the rating matrix, both of which are lower than the error rate under PAF. But more importantly, the error rate of our co-clustering algorithm is significantly lower than AM and PAF in the scenarios of interest in recommender systems: when recommending a few items to each user or when recommending items to users who only rated a few items (these users are the majority of the total user population). The performance difference increases even more when noise is added to the datasets.
Statistical Structure Learning, Towards a Robust Smart Grid
Robust control and maintenance of the grid relies on accurate data. Both PMUs and state estimators are prone to false data injection attacks. Thus, it is crucial to have a mechanism for fast and accurate detection of an agent maliciously tampering with the data---for both preventing attacks that may lead to blackouts, and for routine monitoring and control tasks of current and future grids. We propose a decentralized false data injection detection scheme based on Markov graph of the bus phase angles. We utilize the Conditional Covariance Test (CCT) to learn the structure of the grid. Using the DC power flow model, we show that under normal circumstances, and because of walk-summability of the grid graph, the Markov graph of the voltage angles can be determined by the power grid graph. Therefore, a discrepancy between calculated Markov graph and learned structure should trigger the alarm. Local grid topology is available online from the protection system and we exploit it to check for mismatch. Should a mismatch be detected, we use correlation anomaly score to detect the set of attacked nodes. Our method can detect the most recent stealthy deception attack on the power grid that assumes knowledge of bus-branch model of the system and is capable of deceiving the state estimator, damaging power network observatory, control, monitoring, demand response and pricing schemes. Specifically, under the stealthy deception attack, the Markov graph of phase angles changes. In addition to detect a state of attack, our method can detect the set of attacked nodes. To the best of our knowledge, our remedy is the first to comprehensively detect this sophisticated attack and it does not need additional hardware. Moreover, our detection scheme is successful no matter the size of the attacked subset. Simulation of various power networks confirms our claims.
Counterfactual Estimation and Optimization of Click Metrics for Search Engines
Optimizing an interactive system against a predefined online metric is particularly challenging, when the metric is computed from user feedback such as clicks and payments. The key challenge is the counterfactual nature: in the case of Web search, any change to a component of the search engine may result in a different search result page for the same query, but we normally cannot infer reliably from search log how users would react to the new result page. Consequently, it appears impossible to accurately estimate online metrics that depend on user feedback, unless the new engine is run to serve users and compared with a baseline in an A/B test. This approach, while valid and successful, is unfortunately expensive and time-consuming. In this paper, we propose to address this problem using causal inference techniques, under the contextual-bandit framework. This approach effectively allows one to run (potentially infinitely) many A/B tests offline from search log, making it possible to estimate and optimize online metrics quickly and inexpensively. Focusing on an important component in a commercial search engine, we show how these ideas can be instantiated and applied, and obtain very promising results that suggest the wide applicability of these techniques.
Becoming More Robust to Label Noise with Classifier Diversity
It is widely known in the machine learning community that class noise can be (and often is) detrimental to inducing a model of the data. Many current approaches use a single, often biased, measurement to determine if an instance is noisy. A biased measure may work well on certain data sets, but it can also be less effective on a broader set of data sets. In this paper, we present noise identification using classifier diversity (NICD) -- a method for deriving a less biased noise measurement and integrating it into the learning process. To lessen the bias of the noise measure, NICD selects a diverse set of classifiers (based on their predictions of novel instances) to determine which instances are noisy. We examine NICD as a technique for filtering, instance weighting, and selecting the base classifiers of a voting ensemble. We compare NICD with several other noise handling techniques that do not consider classifier diversity on a set of 54 data sets and 5 learning algorithms. NICD significantly increases the classification accuracy over the other considered approaches and is effective across a broad set of data sets and learning algorithms.
Predictive Overlapping Co-Clustering
In the past few years co-clustering has emerged as an important data mining tool for two way data analysis. Co-clustering is more advantageous over traditional one dimensional clustering in many ways such as, ability to find highly correlated sub-groups of rows and columns. However, one of the overlooked benefits of co-clustering is that, it can be used to extract meaningful knowledge for various other knowledge extraction purposes. For example, building predictive models with high dimensional data and heterogeneous population is a non-trivial task. Co-clusters extracted from such data, which shows similar pattern in both the dimension, can be used for a more accurate predictive model building. Several applications such as finding patient-disease cohorts in health care analysis, finding user-genre groups in recommendation systems and community detection problems can benefit from co-clustering technique that utilizes the predictive power of the data to generate co-clusters for improved data analysis. In this paper, we present the novel idea of Predictive Overlapping Co-Clustering (POCC) as an optimization problem for a more effective and improved predictive analysis. Our algorithm generates optimal co-clusters by maximizing predictive power of the co-clusters subject to the constraints on the number of row and column clusters. In this paper precision, recall and f-measure have been used as evaluation measures of the resulting co-clusters. Results of our algorithm has been compared with two other well-known techniques - K-means and Spectral co-clustering, over four real data set namely, Leukemia, Internet-Ads, Ovarian cancer and MovieLens data set. The results demonstrate the effectiveness and utility of our algorithm POCC in practice.
Multi-label ensemble based on variable pairwise constraint projection
Multi-label classification has attracted an increasing amount of attention in recent years. To this end, many algorithms have been developed to classify multi-label data in an effective manner. However, they usually do not consider the pairwise relations indicated by sample labels, which actually play important roles in multi-label classification. Inspired by this, we naturally extend the traditional pairwise constraints to the multi-label scenario via a flexible thresholding scheme. Moreover, to improve the generalization ability of the classifier, we adopt a boosting-like strategy to construct a multi-label ensemble from a group of base classifiers. To achieve these goals, this paper presents a novel multi-label classification framework named Variable Pairwise Constraint projection for Multi-label Ensemble (VPCME). Specifically, we take advantage of the variable pairwise constraint projection to learn a lower-dimensional data representation, which preserves the correlations between samples and labels. Thereafter, the base classifiers are trained in the new data space. For the boosting-like strategy, we employ both the variable pairwise constraints and the bootstrap steps to diversify the base classifiers. Empirical studies have shown the superiority of the proposed method in comparison with other approaches.
Improving Performance of a Group of Classification Algorithms Using Resampling and Feature Selection
In recent years the importance of finding a meaningful pattern from huge datasets has become more challenging. Data miners try to adopt innovative methods to face this problem by applying feature selection methods. In this paper we propose a new hybrid method in which we use a combination of resampling, filtering the sample domain and wrapper subset evaluation method with genetic search to reduce dimensions of Lung-Cancer dataset that we received from UCI Repository of Machine Learning databases. Finally, we apply some well- known classification algorithms (Na\"ive Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) to the resulting dataset and compare the results and prediction rates before and after the application of our feature selection method on that dataset. The results show a substantial progress in the average performance of five classification algorithms simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods with a lower cost.
Combination of PCA with SMOTE Resampling to Boost the Prediction Rate in Lung Cancer Dataset
Classification algorithms are unable to make reliable models on the datasets with huge sizes. These datasets contain many irrelevant and redundant features that mislead the classifiers. Furthermore, many huge datasets have imbalanced class distribution which leads to bias over majority class in the classification process. In this paper combination of unsupervised dimensionality reduction methods with resampling is proposed and the results are tested on Lung-Cancer dataset. In the first step PCA is applied on Lung-Cancer dataset to compact the dataset and eliminate irrelevant features and in the second step SMOTE resampling is carried out to balance the class distribution and increase the variety of sample domain. Finally, Naive Bayes classifier is applied on the resulting dataset and the results are compared and evaluation metrics are calculated. The experiments show the effectiveness of the proposed method across four evaluation metrics: Overall accuracy, False Positive Rate, Precision, Recall.
Categorization Axioms for Clustering Results
Cluster analysis has attracted more and more attention in the field of machine learning and data mining. Numerous clustering algorithms have been proposed and are being developed due to diverse theories and various requirements of emerging applications. Therefore, it is very worth establishing an unified axiomatic framework for data clustering. In the literature, it is an open problem and has been proved very challenging. In this paper, clustering results are axiomatized by assuming that an proper clustering result should satisfy categorization axioms. The proposed axioms not only introduce classification of clustering results and inequalities of clustering results, but also are consistent with prototype theory and exemplar theory of categorization models in cognitive science. Moreover, the proposed axioms lead to three principles of designing clustering algorithm and cluster validity index, which follow many popular clustering algorithms and cluster validity indices.
Sublinear Models for Graphs
This contribution extends linear models for feature vectors to sublinear models for graphs and analyzes their properties. The results are (i) a geometric interpretation of sublinear classifiers, (ii) a generic learning rule based on the principle of empirical risk minimization, (iii) a convergence theorem for the margin perceptron in the sublinearly separable case, and (iv) the VC-dimension of sublinear functions. Empirical results on graph data show that sublinear models on graphs have similar properties as linear models for feature vectors.
A Hybrid Feature Selection Method to Improve Performance of a Group of Classification Algorithms
In this paper a hybrid feature selection method is proposed which takes advantages of wrapper subset evaluation with a lower cost and improves the performance of a group of classifiers. The method uses combination of sample domain filtering and resampling to refine the sample domain and two feature subset evaluation methods to select reliable features. This method utilizes both feature space and sample domain in two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure by information gain, wrapper subset evaluation and genetic search to find the optimal feature space. Experiments carried out on different types of datasets from UCI Repository of Machine Learning databases and the results show a rise in the average performance of five classifiers (Naive Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods with a lower cost.
Generalised Mixability, Constant Regret, and Bayesian Updating
Mixability of a loss is known to characterise when constant regret bounds are achievable in games of prediction with expert advice through the use of Vovk's aggregating algorithm. We provide a new interpretation of mixability via convex analysis that highlights the role of the Kullback-Leibler divergence in its definition. This naturally generalises to what we call $\Phi$-mixability where the Bregman divergence $D_\Phi$ replaces the KL divergence. We prove that losses that are $\Phi$-mixable also enjoy constant regret bounds via a generalised aggregating algorithm that is similar to mirror descent.
Transfer Learning across Networks for Collective Classification
This paper addresses the problem of transferring useful knowledge from a source network to predict node labels in a newly formed target network. While existing transfer learning research has primarily focused on vector-based data, in which the instances are assumed to be independent and identically distributed, how to effectively transfer knowledge across different information networks has not been well studied, mainly because networks may have their distinct node features and link relationships between nodes. In this paper, we propose a new transfer learning algorithm that attempts to transfer common latent structure features across the source and target networks. The proposed algorithm discovers these latent features by constructing label propagation matrices in the source and target networks, and mapping them into a shared latent feature space. The latent features capture common structure patterns shared by two networks, and serve as domain-independent features to be transferred between networks. Together with domain-dependent node features, we thereafter propose an iterative classification algorithm that leverages label correlations to predict node labels in the target network. Experiments on real-world networks demonstrate that our proposed algorithm can successfully achieve knowledge transfer between networks to help improve the accuracy of classifying nodes in the target network.
Optimal interval clustering: Application to Bregman clustering and statistical mixture learning
We present a generic dynamic programming method to compute the optimal clustering of $n$ scalar elements into $k$ pairwise disjoint intervals. This case includes 1D Euclidean $k$-means, $k$-medoids, $k$-medians, $k$-centers, etc. We extend the method to incorporate cluster size constraints and show how to choose the appropriate $k$ by model selection. Finally, we illustrate and refine the method on two case studies: Bregman clustering and statistical mixture learning maximizing the complete likelihood.
Flying Insect Classification with Inexpensive Sensors
The ability to use inexpensive, noninvasive sensors to accurately classify flying insects would have significant implications for entomological research, and allow for the development of many useful applications in vector control for both medical and agricultural entomology. Given this, the last sixty years have seen many research efforts on this task. To date, however, none of this research has had a lasting impact. In this work, we explain this lack of progress. We attribute the stagnation on this problem to several factors, including the use of acoustic sensing devices, the over-reliance on the single feature of wingbeat frequency, and the attempts to learn complex models with relatively little data. In contrast, we show that pseudo-acoustic optical sensors can produce vastly superior data, that we can exploit additional features, both intrinsic and extrinsic to the insect's flight behavior, and that a Bayesian classification approach allows us to efficiently learn classification models that are very robust to over-fitting. We demonstrate our findings with large scale experiments that dwarf all previous works combined, as measured by the number of insects and the number of species considered.
Robust and Scalable Bayes via a Median of Subset Posterior Measures
We propose a novel approach to Bayesian analysis that is provably robust to outliers in the data and often has computational advantages over standard methods. Our technique is based on splitting the data into non-overlapping subgroups, evaluating the posterior distribution given each independent subgroup, and then combining the resulting measures. The main novelty of our approach is the proposed aggregation step, which is based on the evaluation of a median in the space of probability measures equipped with a suitable collection of distances that can be quickly and efficiently evaluated in practice. We present both theoretical and numerical evidence illustrating the improvements achieved by our method.
Learning Deep Face Representation
Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed, considerable room for improvement is still present. In this paper, we present a very easy-to-implement deep learning framework for face representation. Our method bases on a new structure of deep network (called Pyramid CNN). The proposed Pyramid CNN adopts a greedy-filter-and-down-sample operation, which enables the training procedure to be very fast and computation-efficient. In addition, the structure of Pyramid CNN can naturally incorporate feature sharing across multi-scale face representations, increasing the discriminative ability of resulting representation. Our basic network is capable of achieving high recognition accuracy ($85.8\%$ on LFW benchmark) with only 8 dimension representation. When extended to feature-sharing Pyramid CNN, our system achieves the state-of-the-art performance ($97.3\%$) on LFW benchmark. We also introduce a new benchmark of realistic face images on social network and validate our proposed representation has a good ability of generalization.
A survey of dimensionality reduction techniques
Experimental life sciences like biology or chemistry have seen in the recent decades an explosion of the data available from experiments. Laboratory instruments become more and more complex and report hundreds or thousands measurements for a single experiment and therefore the statistical methods face challenging tasks when dealing with such high dimensional data. However, much of the data is highly redundant and can be efficiently brought down to a much smaller number of variables without a significant loss of information. The mathematical procedures making possible this reduction are called dimensionality reduction techniques; they have widely been developed by fields like Statistics or Machine Learning, and are currently a hot research topic. In this review we categorize the plethora of dimension reduction techniques available and give the mathematical insight behind them.
Cancer Prognosis Prediction Using Balanced Stratified Sampling
High accuracy in cancer prediction is important to improve the quality of the treatment and to improve the rate of survivability of patients. As the data volume is increasing rapidly in the healthcare research, the analytical challenge exists in double. The use of effective sampling technique in classification algorithms always yields good prediction accuracy. The SEER public use cancer database provides various prominent class labels for prognosis prediction. The main objective of this paper is to find the effect of sampling techniques in classifying the prognosis variable and propose an ideal sampling method based on the outcome of the experimentation. In the first phase of this work the traditional random sampling and stratified sampling techniques have been used. At the next level the balanced stratified sampling with variations as per the choice of the prognosis class labels have been tested. Much of the initial time has been focused on performing the pre_processing of the SEER data set. The classification model for experimentation has been built using the breast cancer, respiratory cancer and mixed cancer data sets with three traditional classifiers namely Decision Tree, Naive Bayes and K-Nearest Neighbor. The three prognosis factors survival, stage and metastasis have been used as class labels for experimental comparisons. The results shows a steady increase in the prediction accuracy of balanced stratified model as the sample size increases, but the traditional approach fluctuates before the optimum results.
Statistical Decision Making for Optimal Budget Allocation in Crowd Labeling
In crowd labeling, a large amount of unlabeled data instances are outsourced to a crowd of workers. Workers will be paid for each label they provide, but the labeling requester usually has only a limited amount of the budget. Since data instances have different levels of labeling difficulty and workers have different reliability, it is desirable to have an optimal policy to allocate the budget among all instance-worker pairs such that the overall labeling accuracy is maximized. We consider categorical labeling tasks and formulate the budget allocation problem as a Bayesian Markov decision process (MDP), which simultaneously conducts learning and decision making. Using the dynamic programming (DP) recurrence, one can obtain the optimal allocation policy. However, DP quickly becomes computationally intractable when the size of the problem increases. To solve this challenge, we propose a computationally efficient approximate policy, called optimistic knowledge gradient policy. Our MDP is a quite general framework, which applies to both pull crowdsourcing marketplaces with homogeneous workers and push marketplaces with heterogeneous workers. It can also incorporate the contextual information of instances when they are available. The experiments on both simulated and real data show that the proposed policy achieves a higher labeling accuracy than other existing policies at the same budget level.
Sparse Recovery with Linear and Nonlinear Observations: Dependent and Noisy Data
We formulate sparse support recovery as a salient set identification problem and use information-theoretic analyses to characterize the recovery performance and sample complexity. We consider a very general model where we are not restricted to linear models or specific distributions. We state non-asymptotic bounds on recovery probability and a tight mutual information formula for sample complexity. We evaluate our bounds for applications such as sparse linear regression and explicitly characterize effects of correlation or noisy features on recovery performance. We show improvements upon previous work and identify gaps between the performance of recovery algorithms and fundamental information.
The Potential Benefits of Filtering Versus Hyper-Parameter Optimization
The quality of an induced model by a learning algorithm is dependent on the quality of the training data and the hyper-parameters supplied to the learning algorithm. Prior work has shown that improving the quality of the training data (i.e., by removing low quality instances) or tuning the learning algorithm hyper-parameters can significantly improve the quality of an induced model. A comparison of the two methods is lacking though. In this paper, we estimate and compare the potential benefits of filtering and hyper-parameter optimization. Estimating the potential benefit gives an overly optimistic estimate but also empirically demonstrates an approximation of the maximum potential benefit of each method. We find that, while both significantly improve the induced model, improving the quality of the training set has a greater potential effect than hyper-parameter optimization.
Spectral Correlation Hub Screening of Multivariate Time Series
This chapter discusses correlation analysis of stationary multivariate Gaussian time series in the spectral or Fourier domain. The goal is to identify the hub time series, i.e., those that are highly correlated with a specified number of other time series. We show that Fourier components of the time series at different frequencies are asymptotically statistically independent. This property permits independent correlation analysis at each frequency, alleviating the computational and statistical challenges of high-dimensional time series. To detect correlation hubs at each frequency, an existing correlation screening method is extended to the complex numbers to accommodate complex-valued Fourier components. We characterize the number of hub discoveries at specified correlation and degree thresholds in the regime of increasing dimension and fixed sample size. The theory specifies appropriate thresholds to apply to sample correlation matrices to detect hubs and also allows statistical significance to be attributed to hub discoveries. Numerical results illustrate the accuracy of the theory and the usefulness of the proposed spectral framework.
Box Drawings for Learning with Imbalanced Data
The vast majority of real world classification problems are imbalanced, meaning there are far fewer data from the class of interest (the positive class) than from other classes. We propose two machine learning algorithms to handle highly imbalanced classification problems. The classifiers constructed by both methods are created as unions of parallel axis rectangles around the positive examples, and thus have the benefit of being interpretable. The first algorithm uses mixed integer programming to optimize a weighted balance between positive and negative class accuracies. Regularization is introduced to improve generalization performance. The second method uses an approximation in order to assist with scalability. Specifically, it follows a \textit{characterize then discriminate} approach, where the positive class is characterized first by boxes, and then each box boundary becomes a separate discriminative classifier. This method has the computational advantages that it can be easily parallelized, and considers only the relevant regions of feature space.