title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Towards a Visual Turing Challenge
As language and visual understanding by machines progresses rapidly, we are observing an increasing interest in holistic architectures that tightly interlink both modalities in a joint learning and inference process. This trend has allowed the community to progress towards more challenging and open tasks and refueled the hope at achieving the old AI dream of building machines that could pass a turing test in open domains. In order to steadily make progress towards this goal, we realize that quantifying performance becomes increasingly difficult. Therefore we ask how we can precisely define such challenges and how we can evaluate different algorithms on this open tasks? In this paper, we summarize and discuss such challenges as well as try to give answers where appropriate options are available in the literature. We exemplify some of the solutions on a recently presented dataset of question-answering task based on real-world indoor images that establishes a visual turing challenge. Finally, we argue despite the success of unique ground-truth annotation, we likely have to step away from carefully curated dataset and rather rely on 'social consensus' as the main driving force to create suitable benchmarks. Providing coverage in this inherently ambiguous output space is an emerging challenge that we face in order to make quantifiable progress in this area.
Latent Feature Based FM Model For Rating Prediction
Rating Prediction is a basic problem in Recommender System, and one of the most widely used method is Factorization Machines(FM). However, traditional matrix factorization methods fail to utilize the benefit of implicit feedback, which has been proved to be important in Rating Prediction problem. In this work, we consider a specific situation, movie rating prediction, where we assume that watching history has a big influence on his/her rating behavior on an item. We introduce two models, Latent Dirichlet Allocation(LDA) and word2vec, both of which perform state-of-the-art results in training latent features. Based on that, we propose two feature based models. One is the Topic-based FM Model which provides the implicit feedback to the matrix factorization. The other is the Vector-based FM Model which expresses the order info of watching history. Empirical results on three datasets demonstrate that our method performs better than the baseline model and confirm that Vector-based FM Model usually works better as it contains the order info.
High-Performance Distributed ML at Scale through Parameter Server Consistency Models
As Machine Learning (ML) applications increase in data size and model complexity, practitioners turn to distributed clusters to satisfy the increased computational and memory demands. Unfortunately, effective use of clusters for ML requires considerable expertise in writing distributed code, while highly-abstracted frameworks like Hadoop have not, in practice, approached the performance seen in specialized ML implementations. The recent Parameter Server (PS) paradigm is a middle ground between these extremes, allowing easy conversion of single-machine parallel ML applications into distributed ones, while maintaining high throughput through relaxed "consistency models" that allow inconsistent parameter reads. However, due to insufficient theoretical study, it is not clear which of these consistency models can really ensure correct ML algorithm output; at the same time, there remain many theoretically-motivated but undiscovered opportunities to maximize computational throughput. Motivated by this challenge, we study both the theoretical guarantees and empirical behavior of iterative-convergent ML algorithms in existing PS consistency models. We then use the gleaned insights to improve a consistency model using an "eager" PS communication mechanism, and implement it as a new PS system that enables ML algorithms to reach their solution more quickly.
Detecting Structural Irregularity in Electronic Dictionaries Using Language Modeling
Dictionaries are often developed using tools that save to Extensible Markup Language (XML)-based standards. These standards often allow high-level repeating elements to represent lexical entries, and utilize descendants of these repeating elements to represent the structure within each lexical entry, in the form of an XML tree. In many cases, dictionaries are published that have errors and inconsistencies that are expensive to find manually. This paper discusses a method for dictionary writers to quickly audit structural regularity across entries in a dictionary by using statistical language modeling. The approach learns the patterns of XML nodes that could occur within an XML tree, and then calculates the probability of each XML tree in the dictionary against these patterns to look for entries that diverge from the norm.
Addressing the Rare Word Problem in Neural Machine Translation
Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.
Notes on Noise Contrastive Estimation and Negative Sampling
Estimating the parameters of probabilistic models of language such as maxent models and probabilistic neural models is computationally difficult since it involves evaluating partition functions by summing over an entire vocabulary, which may be millions of word types in size. Two closely related strategies---noise contrastive estimation (Mnih and Teh, 2012; Mnih and Kavukcuoglu, 2013; Vaswani et al., 2013) and negative sampling (Mikolov et al., 2012; Goldberg and Levy, 2014)---have emerged as popular solutions to this computational problem, but some confusion remains as to which is more appropriate and when. This document explicates their relationships to each other and to other estimation techniques. The analysis shows that, although they are superficially similar, NCE is a general parameter estimation technique that is asymptotically unbiased, while negative sampling is best understood as a family of binary classification models that are useful for learning word representations but not as a general-purpose estimator.
Bootstrap-Based Regularization for Low-Rank Matrix Estimation
We develop a flexible framework for low-rank matrix estimation that allows us to transform noise models into regularization schemes via a simple bootstrap algorithm. Effectively, our procedure seeks an autoencoding basis for the observed matrix that is stable with respect to the specified noise model; we call the resulting procedure a stable autoencoder. In the simplest case, with an isotropic noise model, our method is equivalent to a classical singular value shrinkage estimator. For non-isotropic noise models, e.g., Poisson noise, the method does not reduce to singular value shrinkage, and instead yields new estimators that perform well in experiments. Moreover, by iterating our stable autoencoding scheme, we can automatically generate low-rank estimates without specifying the target rank as a tuning parameter.
Towards Learning Object Affordance Priors from Technical Texts
Everyday activities performed by artificial assistants can potentially be executed naively and dangerously given their lack of common sense knowledge. This paper presents conceptual work towards obtaining prior knowledge on the usual modality (passive or active) of any given entity, and their affordance estimates, by extracting high-confidence ability modality semantic relations (X can Y relationship) from non-figurative texts, by analyzing co-occurrence of grammatical instances of subjects and verbs, and verbs and objects. The discussion includes an outline of the concept, potential and limitations, and possible feature and learning framework adoption.
Learning circuits with few negations
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, giving near-matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions).
NICE: Non-linear Independent Components Estimation
We propose a deep learning framework for modeling complex high-dimensional densities called Non-linear Independent Component Estimation (NICE). It is based on the idea that a good representation is one in which the data has a distribution that is easy to model. For this purpose, a non-linear deterministic transformation of the data is learned that maps it to a latent space so as to make the transformed data conform to a factorized distribution, i.e., resulting in independent latent variables. We parametrize this transformation so that computing the Jacobian determinant and inverse transform is trivial, yet we maintain the ability to learn complex non-linear transformations, via a composition of simple building blocks, each based on a deep neural network. The training criterion is simply the exact log-likelihood, which is tractable. Unbiased ancestral sampling is also easy. We show that this approach yields good generative models on four image datasets and can be used for inpainting.
A random forest system combination approach for error detection in digital dictionaries
When digitizing a print bilingual dictionary, whether via optical character recognition or manual entry, it is inevitable that errors are introduced into the electronic version that is created. We investigate automating the process of detecting errors in an XML representation of a digitized print dictionary using a hybrid approach that combines rule-based, feature-based, and language model-based methods. We investigate combining methods and show that using random forests is a promising approach. We find that in isolation, unsupervised methods rival the performance of supervised methods. Random forests typically require training data so we investigate how we can apply random forests to combine individual base methods that are themselves unsupervised without requiring large amounts of training data. Experiments reveal empirically that a relatively small amount of data is sufficient and can potentially be further reduced through specific selection criteria.
An ensemble-based system for automatic screening of diabetic retinopathy
In this paper, an ensemble-based method for the screening of diabetic retinopathy (DR) is proposed. This approach is based on features extracted from the output of several retinal image processing algorithms, such as image-level (quality assessment, pre-screening, AM/FM), lesion-specific (microaneurysms, exudates) and anatomical (macula, optic disc) components. The actual decision about the presence of the disease is then made by an ensemble of machine learning classifiers. We have tested our approach on the publicly available Messidor database, where 90% sensitivity, 91% specificity and 90% accuracy and 0.989 AUC are achieved in a disease/no-disease setting. These results are highly competitive in this field and suggest that retinal image processing is a valid approach for automatic DR screening.
An Online Algorithm for Learning Selectivity to Mixture Means
We develop a biologically-plausible learning rule called Triplet BCM that provably converges to the class means of general mixture models. This rule generalizes the classical BCM neural rule, and provides a novel interpretation of classical BCM as performing a kind of tensor decomposition. It achieves a substantial generalization over classical BCM by incorporating triplets of samples from the mixtures, which provides a novel information processing interpretation to spike-timing-dependent plasticity. We provide complete proofs of convergence of this learning rule, and an extended discussion of the connection between BCM and tensor learning.
DeepSentiBank: Visual Sentiment Concept Classification with Deep Convolutional Neural Networks
This paper introduces a visual sentiment concept classification method based on deep convolutional neural networks (CNNs). The visual sentiment concepts are adjective noun pairs (ANPs) automatically discovered from the tags of web photos, and can be utilized as effective statistical cues for detecting emotions depicted in the images. Nearly one million Flickr images tagged with these ANPs are downloaded to train the classifiers of the concepts. We adopt the popular model of deep convolutional neural networks which recently shows great performance improvement on classifying large-scale web-based image dataset such as ImageNet. Our deep CNNs model is trained based on Caffe, a newly developed deep learning framework. To deal with the biased training data which only contains images with strong sentiment and to prevent overfitting, we initialize the model with the model weights trained from ImageNet. Performance evaluation shows the newly trained deep CNNs model SentiBank 2.0 (or called DeepSentiBank) is significantly improved in both annotation accuracy and retrieval performance, compared to its predecessors which mainly use binary SVM classification models.
A Comparison of learning algorithms on the Arcade Learning Environment
Reinforcement learning agents have traditionally been evaluated on small toy problems. With advances in computing power and the advent of the Arcade Learning Environment, it is now possible to evaluate algorithms on diverse and difficult problems within a consistent framework. We discuss some challenges posed by the arcade learning environment which do not manifest in simpler environments. We then provide a comparison of model-free, linear learning algorithms on this challenging problem set.
Partition-wise Linear Models
Region-specific linear models are widely used in practical applications because of their non-linear but highly interpretable model representations. One of the key challenges in their use is non-convexity in simultaneous optimization of regions and region-specific models. This paper proposes novel convex region-specific linear models, which we refer to as partition-wise linear models. Our key ideas are 1) assigning linear models not to regions but to partitions (region-specifiers) and representing region-specific linear models by linear combinations of partition-specific models, and 2) optimizing regions via partition selection from a large number of given partition candidates by means of convex structured regularizations. In addition to providing initialization-free globally-optimal solutions, our convex formulation makes it possible to derive a generalization bound and to use such advanced optimization techniques as proximal methods and decomposition of the proximal maps for sparsity-inducing regularizations. Experimental results demonstrate that our partition-wise linear models perform better than or are at least competitive with state-of-the-art region-specific or locally linear models.
Learning Mixtures of Ranking Models
This work concerns learning probabilistic models for ranking data in a heterogeneous population. The specific problem we study is learning the parameters of a Mallows Mixture Model. Despite being widely studied, current heuristics for this problem do not have theoretical guarantees and can get stuck in bad local optima. We present the first polynomial time algorithm which provably learns the parameters of a mixture of two Mallows models. A key component of our algorithm is a novel use of tensor decomposition techniques to learn the top-k prefix in both the rankings. Before this work, even the question of identifiability in the case of a mixture of two Mallows models was unresolved.
Supervised learning model for parsing Arabic language
Parsing the Arabic language is a difficult task given the specificities of this language and given the scarcity of digital resources (grammars and annotated corpora). In this paper, we suggest a method for Arabic parsing based on supervised machine learning. We used the SVMs algorithm to select the syntactic labels of the sentence. Furthermore, we evaluated our parser following the cross validation method by using the Penn Arabic Treebank. The obtained results are very encouraging.
Greedy Subspace Clustering
We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets to estimate the subspaces. As the geometric structure of the clusters (linear subspaces) forbids proper performance of general distance based approaches such as K-means, many model-specific methods have been proposed. In this paper, we provide new simple and efficient algorithms for this problem. Our statistical analysis shows that the algorithms are guaranteed exact (perfect) clustering performance under certain conditions on the number of points and the affinity between subspaces. These conditions are weaker than those considered in the standard statistical literature. Experimental results on synthetic data generated from the standard unions of subspaces model demonstrate our theory. We also show that our algorithm performs competitively against state-of-the-art algorithms on real-world applications such as motion segmentation and face clustering, with much simpler implementation and lower computational cost.
Rapid Adaptation of POS Tagging for Domain Specific Uses
Part-of-speech (POS) tagging is a fundamental component for performing natural language tasks such as parsing, information extraction, and question answering. When POS taggers are trained in one domain and applied in significantly different domains, their performance can degrade dramatically. We present a methodology for rapid adaptation of POS taggers to new domains. Our technique is unsupervised in that a manually annotated corpus for the new domain is not necessary. We use suffix information gathered from large amounts of raw text as well as orthographic information to increase the lexical coverage. We present an experiment in the Biological domain where our POS tagger achieves results comparable to POS taggers specifically trained to this domain.
Validation of Matching
We introduce a technique to compute probably approximately correct (PAC) bounds on precision and recall for matching algorithms. The bounds require some verified matches, but those matches may be used to develop the algorithms. The bounds can be applied to network reconciliation or entity resolution algorithms, which identify nodes in different networks or values in a data set that correspond to the same entity. For network reconciliation, the bounds do not require knowledge of the network generation process.
Robust sketching for multiple square-root LASSO problems
Many learning tasks, such as cross-validation, parameter search, or leave-one-out analysis, involve multiple instances of similar problems, each instance sharing a large part of learning data with the others. We introduce a robust framework for solving multiple square-root LASSO problems, based on a sketch of the learning data that uses low-rank approximations. Our approach allows a dramatic reduction in computational effort, in effect reducing the number of observations from $m$ (the number of observations to start with) to $k$ (the number of singular values retained in the low-rank model), while not sacrificing---sometimes even improving---the statistical performance. Theoretical analysis, as well as numerical experiments on both synthetic and real data, illustrate the efficiency of the method in large scale applications.
Entropy of Overcomplete Kernel Dictionaries
In signal analysis and synthesis, linear approximation theory considers a linear decomposition of any given signal in a set of atoms, collected into a so-called dictionary. Relevant sparse representations are obtained by relaxing the orthogonality condition of the atoms, yielding overcomplete dictionaries with an extended number of atoms. More generally than the linear decomposition, overcomplete kernel dictionaries provide an elegant nonlinear extension by defining the atoms through a mapping kernel function (e.g., the gaussian kernel). Models based on such kernel dictionaries are used in neural networks, gaussian processes and online learning with kernels. The quality of an overcomplete dictionary is evaluated with a diversity measure the distance, the approximation, the coherence and the Babel measures. In this paper, we develop a framework to examine overcomplete kernel dictionaries with the entropy from information theory. Indeed, a higher value of the entropy is associated to a further uniform spread of the atoms over the space. For each of the aforementioned diversity measures, we derive lower bounds on the entropy. Several definitions of the entropy are examined, with an extensive analysis in both the input space and the mapped feature space.
Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms
Let $p$ be an unknown and arbitrary probability distribution over $[0,1)$. We consider the problem of {\em density estimation}, in which a learning algorithm is given i.i.d. draws from $p$ and must (with high probability) output a hypothesis distribution that is close to $p$. The main contribution of this paper is a highly efficient density estimation algorithm for learning using a variable-width histogram, i.e., a hypothesis distribution with a piecewise constant probability density function. In more detail, for any $k$ and $\epsilon$, we give an algorithm that makes $\tilde{O}(k/\epsilon^2)$ draws from $p$, runs in $\tilde{O}(k/\epsilon^2)$ time, and outputs a hypothesis distribution $h$ that is piecewise constant with $O(k \log^2(1/\epsilon))$ pieces. With high probability the hypothesis $h$ satisfies $d_{\mathrm{TV}}(p,h) \leq C \cdot \mathrm{opt}_k(p) + \epsilon$, where $d_{\mathrm{TV}}$ denotes the total variation distance (statistical distance), $C$ is a universal constant, and $\mathrm{opt}_k(p)$ is the smallest total variation distance between $p$ and any $k$-piecewise constant distribution. The sample size and running time of our algorithm are optimal up to logarithmic factors. The "approximation factor" $C$ in our result is inherent in the problem, as we prove that no algorithm with sample size bounded in terms of $k$ and $\epsilon$ can achieve $C<2$ regardless of what kind of hypothesis distribution it uses.
Synchronization Clustering based on a Linearized Version of Vicsek model
This paper presents a kind of effective synchronization clustering method based on a linearized version of Vicsek model. This method can be represented by an Effective Synchronization Clustering algorithm (ESynC), an Improved version of ESynC algorithm (IESynC), a Shrinking Synchronization Clustering algorithm based on another linear Vicsek model (SSynC), and an effective Multi-level Synchronization Clustering algorithm (MSynC). After some analysis and comparisions, we find that ESynC algorithm based on the Linearized version of the Vicsek model has better synchronization effect than SynC algorithm based on an extensive Kuramoto model and a similar synchronization clustering algorithm based on the original Vicsek model. By simulated experiments of some artificial data sets, we observe that ESynC algorithm, IESynC algorithm, and SSynC algorithm can get better synchronization effect although it needs less iterative times and less time than SynC algorithm. In some simulations, we also observe that IESynC algorithm and SSynC algorithm can get some improvements in time cost than ESynC algorithm. At last, it gives some research expectations to popularize this algorithm.
Population Empirical Bayes
Bayesian predictive inference analyzes a dataset to make predictions about new observations. When a model does not match the data, predictive accuracy suffers. We develop population empirical Bayes (POP-EB), a hierarchical framework that explicitly models the empirical population distribution as part of Bayesian analysis. We introduce a new concept, the latent dataset, as a hierarchical variable and set the empirical population as its prior. This leads to a new predictive density that mitigates model mismatch. We efficiently apply this method to complex models by proposing a stochastic variational inference algorithm, called bumping variational inference (BUMP-VI). We demonstrate improved predictive accuracy over classical Bayesian inference in three models: a linear regression model of health data, a Bayesian mixture model of natural images, and a latent Dirichlet allocation topic model of scientific documents.
Geodesic Exponential Kernels: When Curvature and Linearity Conflict
We consider kernel methods on general geodesic metric spaces and provide both negative and positive results. First we show that the common Gaussian kernel can only be generalized to a positive definite kernel on a geodesic metric space if the space is flat. As a result, for data on a Riemannian manifold, the geodesic Gaussian kernel is only positive definite if the Riemannian manifold is Euclidean. This implies that any attempt to design geodesic Gaussian kernels on curved Riemannian manifolds is futile. However, we show that for spaces with conditionally negative definite distances the geodesic Laplacian kernel can be generalized while retaining positive definiteness. This implies that geodesic Laplacian kernels can be generalized to some curved spaces, including spheres and hyperbolic spaces. Our theoretical results are verified empirically.
Fast Randomized Kernel Methods With Statistical Guarantees
One approach to improving the running time of kernel-based machine learning methods is to build a small sketch of the input and use it in lieu of the full kernel matrix in the machine learning task of interest. Here, we describe a version of this approach that comes with running time guarantees as well as improved guarantees on its statistical performance. By extending the notion of \emph{statistical leverage scores} to the setting of kernel ridge regression, our main statistical result is to identify an importance sampling distribution that reduces the size of the sketch (i.e., the required number of columns to be sampled) to the \emph{effective dimensionality} of the problem. This quantity is often much smaller than previous bounds that depend on the \emph{maximal degrees of freedom}. Our main algorithmic result is to present a fast algorithm to compute approximations to these scores. This algorithm runs in time that is linear in the number of samples---more precisely, the running time is $O(np^2)$, where the parameter $p$ depends only on the trace of the kernel matrix and the regularization parameter---and it can be applied to the matrix of feature vectors, without having to form the full kernel matrix. This is obtained via a variant of length-squared sampling that we adapt to the kernel setting in a way that is of independent interest. Lastly, we provide empirical results illustrating our theory, and we discuss how this new notion of the statistical leverage of a data point captures in a fine way the difficulty of the original statistical learning problem.
Iterative Hessian sketch: Fast and accurate solution approximation for constrained least-squares
We study randomized sketching methods for approximately solving least-squares problem with a general convex constraint. The quality of a least-squares approximation can be assessed in different ways: either in terms of the value of the quadratic objective function (cost approximation), or in terms of some distance measure between the approximate minimizer and the true minimizer (solution approximation). Focusing on the latter criterion, our first main result provides a general lower bound on any randomized method that sketches both the data matrix and vector in a least-squares problem; as a surprising consequence, the most widely used least-squares sketch is sub-optimal for solution approximation. We then present a new method known as the iterative Hessian sketch, and show that it can be used to obtain approximations to the original least-squares problem using a projection dimension proportional to the statistical complexity of the least-squares minimizer, and a logarithmic number of iterations. We illustrate our general theory with simulations for both unconstrained and constrained versions of least-squares, including $\ell_1$-regularization and nuclear norm constraints. We also numerically demonstrate the practicality of our approach in a real face expression classification experiment.
Distributed Submodular Maximization
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set function subject to various constraints. Classical approaches to submodular optimization require centralized access to the full dataset, which is impractical for truly large-scale problems. In this paper, we consider the problem of submodular function maximization in a distributed fashion. We develop a simple, two-stage protocol GreeDi, that is easily implemented using MapReduce style computations. We theoretically analyze our approach, and show that under certain natural conditions, performance close to the centralized approach can be achieved. We begin with monotone submodular maximization subject to a cardinality constraint, and then extend this approach to obtain approximation guarantees for (not necessarily monotone) submodular maximization subject to more general constraints including matroid or knapsack constraints. In our extensive experiments, we demonstrate the effectiveness of our approach on several applications, including sparse Gaussian process inference and exemplar based clustering on tens of millions of examples using Hadoop.
Correlation Clustering with Constrained Cluster Sizes and Extended Weights Bounds
We consider the problem of correlation clustering on graphs with constraints on both the cluster sizes and the positive and negative weights of edges. Our contributions are twofold: First, we introduce the problem of correlation clustering with bounded cluster sizes. Second, we extend the regime of weight values for which the clustering may be performed with constant approximation guarantees in polynomial time and apply the results to the bounded cluster size problem.
Bayesian feature selection with strongly-regularizing priors maps to the Ising Model
Identifying small subsets of features that are relevant for prediction and/or classification tasks is a central problem in machine learning and statistics. The feature selection task is especially important, and computationally difficult, for modern datasets where the number of features can be comparable to, or even exceed, the number of samples. Here, we show that feature selection with Bayesian inference takes a universal form and reduces to calculating the magnetizations of an Ising model, under some mild conditions. Our results exploit the observation that the evidence takes a universal form for strongly-regularizing priors --- priors that have a large effect on the posterior probability even in the infinite data limit. We derive explicit expressions for feature selection for generalized linear models, a large class of statistical techniques that include linear and logistic regression. We illustrate the power of our approach by analyzing feature selection in a logistic regression-based classifier trained to distinguish between the letters B and D in the notMNIST dataset.
Factorbird - a Parameter Server Approach to Distributed Matrix Factorization
We present Factorbird, a prototype of a parameter server approach for factorizing large matrices with Stochastic Gradient Descent-based algorithms. We designed Factorbird to meet the following desiderata: (a) scalability to tall and wide matrices with dozens of billions of non-zeros, (b) extensibility to different kinds of models and loss functions as long as they can be optimized using Stochastic Gradient Descent (SGD), and (c) adaptability to both batch and streaming scenarios. Factorbird uses a parameter server in order to scale to models that exceed the memory of an individual machine, and employs lock-free Hogwild!-style learning with a special partitioning scheme to drastically reduce conflicting updates. We also discuss other aspects of the design of our system such as how to efficiently grid search for hyperparameters at scale. We present experiments of Factorbird on a matrix built from a subset of Twitter's interaction graph, consisting of more than 38 billion non-zeros and about 200 million rows and columns, which is to the best of our knowledge the largest matrix on which factorization results have been reported in the literature.
Active Inference for Binary Symmetric Hidden Markov Models
We consider active maximum a posteriori (MAP) inference problem for Hidden Markov Models (HMM), where, given an initial MAP estimate of the hidden sequence, we select to label certain states in the sequence to improve the estimation accuracy of the remaining states. We develop an analytical approach to this problem for the case of binary symmetric HMMs, and obtain a closed form solution that relates the expected error reduction to model parameters under the specified active inference scheme. We then use this solution to determine most optimal active inference scheme in terms of error reduction, and examine the relation of those schemes to heuristic principles of uncertainty reduction and solution unicity.
Clustering memes in social media streams
The problem of clustering content in social media has pervasive applications, including the identification of discussion topics, event detection, and content recommendation. Here we describe a streaming framework for online detection and clustering of memes in social media, specifically Twitter. A pre-clustering procedure, namely protomeme detection, first isolates atomic tokens of information carried by the tweets. Protomemes are thereafter aggregated, based on multiple similarity measures, to obtain memes as cohesive groups of tweets reflecting actual concepts or topics of discussion. The clustering algorithm takes into account various dimensions of the data and metadata, including natural language, the social network, and the patterns of information diffusion. As a result, our system can build clusters of semantically, structurally, and topically related tweets. The clustering process is based on a variant of Online K-means that incorporates a memory mechanism, used to "forget" old memes and replace them over time with the new ones. The evaluation of our framework is carried out by using a dataset of Twitter trending topics. Over a one-week period, we systematically determined whether our algorithm was able to recover the trending hashtags. We show that the proposed method outperforms baseline algorithms that only use content features, as well as a state-of-the-art event detection method that assumes full knowledge of the underlying follower network. We finally show that our online learning framework is flexible, due to its independence of the adopted clustering algorithm, and best suited to work in a streaming scenario.
Approachability in Stackelberg Stochastic Games with Vector Costs
The notion of approachability was introduced by Blackwell [1] in the context of vector-valued repeated games. The famous Blackwell's approachability theorem prescribes a strategy for approachability, i.e., for `steering' the average cost of a given agent towards a given target set, irrespective of the strategies of the other agents. In this paper, motivated by the multi-objective optimization/decision making problems in dynamically changing environments, we address the approachability problem in Stackelberg stochastic games with vector valued cost functions. We make two main contributions. Firstly, we give a simple and computationally tractable strategy for approachability for Stackelberg stochastic games along the lines of Blackwell's. Secondly, we give a reinforcement learning algorithm for learning the approachable strategy when the transition kernel is unknown. We also recover as a by-product Blackwell's necessary and sufficient condition for approachability for convex sets in this set up and thus a complete characterization. We also give sufficient conditions for non-convex sets.
CUR Algorithm for Partially Observed Matrices
CUR matrix decomposition computes the low rank approximation of a given matrix by using the actual rows and columns of the matrix. It has been a very useful tool for handling large matrices. One limitation with the existing algorithms for CUR matrix decomposition is that they need an access to the {\it full} matrix, a requirement that can be difficult to fulfill in many real world applications. In this work, we alleviate this limitation by developing a CUR decomposition algorithm for partially observed matrices. In particular, the proposed algorithm computes the low rank approximation of the target matrix based on (i) the randomly sampled rows and columns, and (ii) a subset of observed entries that are randomly sampled from the matrix. Our analysis shows the relative error bound, measured by spectral norm, for the proposed algorithm when the target matrix is of full rank. We also show that only $O(n r\ln r)$ observed entries are needed by the proposed algorithm to perfectly recover a rank $r$ matrix of size $n\times n$, which improves the sample complexity of the existing algorithms for matrix completion. Empirical studies on both synthetic and real-world datasets verify our theoretical claims and demonstrate the effectiveness of the proposed algorithm.
Convex Optimization for Big Data
This article reviews recent advances in convex optimization algorithms for Big Data, which aim to reduce the computational, storage, and communications bottlenecks. We provide an overview of this emerging field, describe contemporary approximation techniques like first-order methods and randomization for scalability, and survey the important role of parallel and distributed computation. The new Big Data algorithms are based on surprisingly simple principles and attain staggering accelerations even on classical problems.
Iterated geometric harmonics for data imputation and reconstruction of missing data
The method of geometric harmonics is adapted to the situation of incomplete data by means of the iterated geometric harmonics (IGH) scheme. The method is tested on natural and synthetic data sets with 50--500 data points and dimensionality of 400--10,000. Experiments suggest that the algorithm converges to a near optimal solution within 4--6 iterations, at runtimes of less than 30 minutes on a medium-grade desktop computer. The imputation of missing data values is applied to collections of damaged images (suffering from data annihilation rates of up to 70\%) which are reconstructed with a surprising degree of accuracy.
A statistical model for tensor PCA
We consider the Principal Component Analysis problem for large tensors of arbitrary order $k$ under a single-spike (or rank-one plus noise) model. On the one hand, we use information theory, and recent results in probability theory, to establish necessary and sufficient conditions under which the principal component can be estimated using unbounded computational resources. It turns out that this is possible as soon as the signal-to-noise ratio $\beta$ becomes larger than $C\sqrt{k\log k}$ (and in particular $\beta$ can remain bounded as the problem dimensions increase). On the other hand, we analyze several polynomial-time estimation algorithms, based on tensor unfolding, power iteration and message passing ideas from graphical models. We show that, unless the signal-to-noise ratio diverges in the system dimensions, none of these approaches succeeds. This is possibly related to a fundamental limitation of computationally tractable estimators for this problem. We discuss various initializations for tensor power iteration, and show that a tractable initialization based on the spectrum of the matricized tensor outperforms significantly baseline methods, statistically and computationally. Finally, we consider the case in which additional side information is available about the unknown signal. We characterize the amount of side information that allows the iterative algorithms to converge to a good estimate.
Fast Exact Matrix Completion with Finite Samples
Matrix completion is the problem of recovering a low rank matrix by observing a small fraction of its entries. A series of recent works [KOM12,JNS13,HW14] have proposed fast non-convex optimization based iterative algorithms to solve this problem. However, the sample complexity in all these results is sub-optimal in its dependence on the rank, condition number and the desired accuracy. In this paper, we present a fast iterative algorithm that solves the matrix completion problem by observing $O(nr^5 \log^3 n)$ entries, which is independent of the condition number and the desired accuracy. The run time of our algorithm is $O(nr^7\log^3 n\log 1/\epsilon)$ which is near linear in the dimension of the matrix. To the best of our knowledge, this is the first near linear time algorithm for exact matrix completion with finite sample complexity (i.e. independent of $\epsilon$). Our algorithm is based on a well known projected gradient descent method, where the projection is onto the (non-convex) set of low rank matrices. There are two key ideas in our result: 1) our argument is based on a $\ell_{\infty}$ norm potential function (as opposed to the spectral norm) and provides a novel way to obtain perturbation bounds for it. 2) we prove and use a natural extension of the Davis-Kahan theorem to obtain perturbation bounds on the best low rank approximation of matrices with good eigen-gap. Both of these ideas may be of independent interest.
Expectation-Maximization for Learning Determinantal Point Processes
A determinantal point process (DPP) is a probabilistic model of set diversity compactly parameterized by a positive semi-definite kernel matrix. To fit a DPP to a given task, we would like to learn the entries of its kernel matrix by maximizing the log-likelihood of the available data. However, log-likelihood is non-convex in the entries of the kernel matrix, and this learning problem is conjectured to be NP-hard. Thus, previous work has instead focused on more restricted convex learning settings: learning only a single weight for each row of the kernel matrix, or learning weights for a linear combination of DPPs with fixed kernel matrices. In this work we propose a novel algorithm for learning the full kernel matrix. By changing the kernel parameterization from matrix entries to eigenvalues and eigenvectors, and then lower-bounding the likelihood in the manner of expectation-maximization algorithms, we obtain an effective optimization procedure. We test our method on a real-world product recommendation task, and achieve relative gains of up to 16.5% in test log-likelihood compared to the naive approach of maximizing likelihood by projected gradient ascent on the entries of the kernel matrix.
Do Convnets Learn Correspondence?
Convolutional neural nets (convnets) trained from massive labeled datasets have substantially improved the state-of-the-art in image classification and object detection. However, visual understanding requires establishing correspondence on a finer level than object category. Given their large pooling regions and training from whole-image labels, it is not clear that convnets derive their success from an accurate correspondence model which could be used for precise localization. In this paper, we study the effectiveness of convnet activation features for tasks requiring correspondence. We present evidence that convnet features localize at a much finer scale than their receptive field sizes, that they can be used to perform intraclass alignment as well as conventional hand-engineered features, and that they outperform conventional features in keypoint prediction on objects from PASCAL VOC 2011.
Projecting Markov Random Field Parameters for Fast Mixing
Markov chain Monte Carlo (MCMC) algorithms are simple and extremely powerful techniques to sample from almost arbitrary distributions. The flaw in practice is that it can take a large and/or unknown amount of time to converge to the stationary distribution. This paper gives sufficient conditions to guarantee that univariate Gibbs sampling on Markov Random Fields (MRFs) will be fast mixing, in a precise sense. Further, an algorithm is given to project onto this set of fast-mixing parameters in the Euclidean norm. Following recent work, we give an example use of this to project in various divergence measures, comparing univariate marginals obtained by sampling after projection to common variational methods and Gibbs sampling on the original parameters.
Distributed Low-Rank Estimation Based on Joint Iterative Optimization in Wireless Sensor Networks
This paper proposes a novel distributed reduced--rank scheme and an adaptive algorithm for distributed estimation in wireless sensor networks. The proposed distributed scheme is based on a transformation that performs dimensionality reduction at each agent of the network followed by a reduced-dimension parameter vector. A distributed reduced-rank joint iterative estimation algorithm is developed, which has the ability to achieve significantly reduced communication overhead and improved performance when compared with existing techniques. Simulation results illustrate the advantages of the proposed strategy in terms of convergence rate and mean square error performance.
Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems
Stochastic gradient descent (SGD) on a low-rank factorization is commonly employed to speed up matrix problems including matrix completion, subspace tracking, and SDP relaxation. In this paper, we exhibit a step size scheme for SGD on a low-rank least-squares problem, and we prove that, under broad sampling conditions, our method converges globally from a random starting point within $O(\epsilon^{-1} n \log n)$ steps with constant probability for constant-rank problems. Our modification of SGD relates it to stochastic power iteration. We also show experiments to illustrate the runtime and convergence of the algorithm.
Conditional Random Field Autoencoders for Unsupervised Structured Prediction
We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines.
On the Complexity of Learning with Kernels
A well-recognized limitation of kernel learning is the requirement to handle a kernel matrix, whose size is quadratic in the number of training examples. Many methods have been proposed to reduce this computational cost, mostly by using a subset of the kernel matrix entries, or some form of low-rank matrix approximation, or a random projection method. In this paper, we study lower bounds on the error attainable by such methods as a function of the number of entries observed in the kernel matrix or the rank of an approximate kernel matrix. We show that there are kernel learning problems where no such method will lead to non-trivial computational savings. Our results also quantify how the problem difficulty depends on parameters such as the nature of the loss function, the regularization parameter, the norm of the desired predictor, and the kernel matrix rank. Our results also suggest cases where more efficient kernel learning might be possible.
Rapid Skill Capture in a First-Person Shooter
Various aspects of computer game design, including adaptive elements of game levels, characteristics of 'bot' behavior, and player matching in multiplayer games, would ideally be sensitive to a player's skill level. Yet, while difficulty and player learning have been explored in the context of games, there has been little work analyzing skill per se, and how it pertains to a player's input. To this end, we present a data set of 476 game logs from over 40 players of a first-person shooter game (Red Eclipse) as a basis of a case study. We then analyze different metrics of skill and show that some of these can be predicted using only a few seconds of keyboard and mouse input. We argue that the techniques used here are useful for adapting games to match players' skill levels rapidly, perhaps more rapidly than solutions based on performance averaging such as TrueSkill.
Eigenvectors of Orthogonally Decomposable Functions
The Eigendecomposition of quadratic forms (symmetric matrices) guaranteed by the spectral theorem is a foundational result in applied mathematics. Motivated by a shared structure found in inferential problems of recent interest---namely orthogonal tensor decompositions, Independent Component Analysis (ICA), topic models, spectral clustering, and Gaussian mixture learning---we generalize the eigendecomposition from quadratic forms to a broad class of "orthogonally decomposable" functions. We identify a key role of convexity in our extension, and we generalize two traditional characterizations of eigenvectors: First, the eigenvectors of a quadratic form arise from the optima structure of the quadratic form on the sphere. Second, the eigenvectors are the fixed points of the power iteration. In our setting, we consider a simple first order generalization of the power method which we call gradient iteration. It leads to efficient and easily implementable methods for basis recovery. It includes influential Machine Learning methods such as cumulant-based FastICA and the tensor power iteration for orthogonally decomposable tensors as special cases. We provide a complete theoretical analysis of gradient iteration using the structure theory of discrete dynamical systems to show almost sure convergence and fast (super-linear) convergence rates. The analysis also extends to the case when the observed function is only approximately orthogonally decomposable, with bounds that are polynomial in dimension and other relevant parameters, such as perturbation size. Our perturbation results can be considered as a non-linear version of the classical Davis-Kahan theorem for perturbations of eigenvectors of symmetric matrices.
On the Information Theoretic Limits of Learning Ising Models
We provide a general framework for computing lower-bounds on the sample complexity of recovering the underlying graphs of Ising models, given i.i.d samples. While there have been recent results for specific graph classes, these involve fairly extensive technical arguments that are specialized to each specific graph class. In contrast, we isolate two key graph-structural ingredients that can then be used to specify sample complexity lower-bounds. Presence of these structural properties makes the graph class hard to learn. We derive corollaries of our main result that not only recover existing recent results, but also provide lower bounds for novel graph classes not considered previously. We also extend our framework to the random graph setting and derive corollaries for Erd\H{o}s-R\'{e}nyi graphs in a certain dense setting.
Electrocardiography Separation of Mother and Baby
Extraction of Electrocardiography (ECG or EKG) signals of mother and baby is a challenging task, because one single device is used and it receives a mixture of multiple heart beats. In this paper, we would like to design a filter to separate the signals from each other.
Analyzing Tensor Power Method Dynamics in Overcomplete Regime
We present a novel analysis of the dynamics of tensor power iterations in the overcomplete regime where the tensor CP rank is larger than the input dimension. Finding the CP decomposition of an overcomplete tensor is NP-hard in general. We consider the case where the tensor components are randomly drawn, and show that the simple power iteration recovers the components with bounded error under mild initialization conditions. We apply our analysis to unsupervised learning of latent variable models, such as multi-view mixture models and spherical Gaussian mixtures. Given the third order moment tensor, we learn the parameters using tensor power iterations. We prove it can correctly learn the model parameters when the number of hidden components $k$ is much larger than the data dimension $d$, up to $k = o(d^{1.5})$. We initialize the power iterations with data samples and prove its success under mild conditions on the signal-to-noise ratio of the samples. Our analysis significantly expands the class of latent variable models where spectral methods are applicable. Our analysis also deals with noise in the input tensor leading to sample complexity result in the application to learning latent variable models.
Efficient Representations for Life-Long Learning and Autoencoding
It has been a long-standing goal in machine learning, as well as in AI more generally, to develop life-long learning systems that learn many different tasks over time, and reuse insights from tasks learned, "learning to learn" as they do so. In this work we pose and provide efficient algorithms for several natural theoretical formulations of this goal. Specifically, we consider the problem of learning many different target functions over time, that share certain commonalities that are initially unknown to the learning algorithm. Our aim is to learn new internal representations as the algorithm learns new target functions, that capture this commonality and allow subsequent learning tasks to be solved more efficiently and from less data. We develop efficient algorithms for two very different kinds of commonalities that target functions might share: one based on learning common low-dimensional and unions of low-dimensional subspaces and one based on learning nonlinear Boolean combinations of features. Our algorithms for learning Boolean feature combinations additionally have a dual interpretation, and can be viewed as giving an efficient procedure for constructing near-optimal sparse Boolean autoencoders under a natural "anchor-set" assumption.
Convolutional Neural Network-based Place Recognition
Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.
Large-Margin Determinantal Point Processes
Determinantal point processes (DPPs) offer a powerful approach to modeling diversity in many applications where the goal is to select a diverse subset. We study the problem of learning the parameters (the kernel matrix) of a DPP from labeled training data. We make two contributions. First, we show how to reparameterize a DPP's kernel matrix with multiple kernel functions, thus enhancing modeling flexibility. Second, we propose a novel parameter estimation technique based on the principle of large margin separation. In contrast to the state-of-the-art method of maximum likelihood estimation, our large-margin loss function explicitly models errors in selecting the target subsets, and it can be customized to trade off different types of errors (precision vs. recall). Extensive empirical studies validate our contributions, including applications on challenging document and video summarization, where flexibility in modeling the kernel matrix and balancing different errors is indispensable.
A Hybrid Recurrent Neural Network For Music Transcription
We investigate the problem of incorporating higher-level symbolic score-like information into Automatic Music Transcription (AMT) systems to improve their performance. We use recurrent neural networks (RNNs) and their variants as music language models (MLMs) and present a generative architecture for combining these models with predictions from a frame level acoustic classifier. We also compare different neural network architectures for acoustic modeling. The proposed model computes a distribution over possible output sequences given the acoustic input signal and we present an algorithm for performing a global search for good candidate transcriptions. The performance of the proposed model is evaluated on piano music from the MAPS dataset and we observe that the proposed model consistently outperforms existing transcription methods.
Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets
To cope with the high level of ambiguity faced in domains such as Computer Vision or Natural Language processing, robust prediction methods often search for a diverse set of high-quality candidate solutions or proposals. In structured prediction problems, this becomes a daunting task, as the solution space (image labelings, sentence parses, etc.) is exponentially large. We study greedy algorithms for finding a diverse subset of solutions in structured-output spaces by drawing new connections between submodular functions over combinatorial item sets and High-Order Potentials (HOPs) studied for graphical models. Specifically, we show via examples that when marginal gains of submodular diversity functions allow structured representations, this enables efficient (sub-linear time) approximate maximization by reducing the greedy augmentation step to inference in a factor graph with appropriately constructed HOPs. We discuss benefits, tradeoffs, and show that our constructions lead to significantly better proposals.
Conditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels.
How transferable are features in deep neural networks?
Many deep neural networks trained on natural images exhibit a curious phenomenon in common: on the first layer they learn features similar to Gabor filters and color blobs. Such first-layer features appear not to be specific to a particular dataset or task, but general in that they are applicable to many datasets and tasks. Features must eventually transition from general to specific by the last layer of the network, but this transition has not been studied extensively. In this paper we experimentally quantify the generality versus specificity of neurons in each layer of a deep convolutional neural network and report a few surprising results. Transferability is negatively affected by two distinct issues: (1) the specialization of higher layer neurons to their original task at the expense of performance on the target task, which was expected, and (2) optimization difficulties related to splitting networks between co-adapted neurons, which was not expected. In an example network trained on ImageNet, we demonstrate that either of these two issues may dominate, depending on whether features are transferred from the bottom, middle, or top of the network. We also document that the transferability of features decreases as the distance between the base task and target task increases, but that transferring features even from distant tasks can be better than using random features. A final surprising result is that initializing a network with transferred features from almost any number of layers can produce a boost to generalization that lingers even after fine-tuning to the target dataset.
Beta Process Non-negative Matrix Factorization with Stochastic Structured Mean-Field Variational Inference
Beta process is the standard nonparametric Bayesian prior for latent factor model. In this paper, we derive a structured mean-field variational inference algorithm for a beta process non-negative matrix factorization (NMF) model with Poisson likelihood. Unlike the linear Gaussian model, which is well-studied in the nonparametric Bayesian literature, NMF model with beta process prior does not enjoy the conjugacy. We leverage the recently developed stochastic structured mean-field variational inference to relax the conjugacy constraint and restore the dependencies among the latent variables in the approximating variational distribution. Preliminary results on both synthetic and real examples demonstrate that the proposed inference algorithm can reasonably recover the hidden structure of the data.
Variational Tempering
Variational inference (VI) combined with data subsampling enables approximate posterior inference over large data sets, but suffers from poor local optima. We first formulate a deterministic annealing approach for the generic class of conditionally conjugate exponential family models. This approach uses a decreasing temperature parameter which deterministically deforms the objective during the course of the optimization. A well-known drawback to this annealing approach is the choice of the cooling schedule. We therefore introduce variational tempering, a variational algorithm that introduces a temperature latent variable to the model. In contrast to related work in the Markov chain Monte Carlo literature, this algorithm results in adaptive annealing schedules. Lastly, we develop local variational tempering, which assigns a latent temperature to each data point; this allows for dynamic annealing that varies across data. Compared to the traditional VI, all proposed approaches find improved predictive likelihoods on held-out data.
Power-Law Graph Cuts
Algorithms based on spectral graph cut objectives such as normalized cuts, ratio cuts and ratio association have become popular in recent years because they are widely applicable and simple to implement via standard eigenvector computations. Despite strong performance for a number of clustering tasks, spectral graph cut algorithms still suffer from several limitations: first, they require the number of clusters to be known in advance, but this information is often unknown a priori; second, they tend to produce clusters with uniform sizes. In some cases, the true clusters exhibit a known size distribution; in image segmentation, for instance, human-segmented images tend to yield segment sizes that follow a power-law distribution. In this paper, we propose a general framework of power-law graph cut algorithms that produce clusters whose sizes are power-law distributed, and also does not fix the number of clusters upfront. To achieve our goals, we treat the Pitman-Yor exchangeable partition probability function (EPPF) as a regularizer to graph cut objectives. Because the resulting objectives cannot be solved by relaxing via eigenvectors, we derive a simple iterative algorithm to locally optimize the objectives. Moreover, we show that our proposed algorithm can be viewed as performing MAP inference on a particular Pitman-Yor mixture model. Our experiments on various data sets show the effectiveness of our algorithms.
A totally unimodular view of structured sparsity
This paper describes a simple framework for structured sparse recovery based on convex optimization. We show that many structured sparsity models can be naturally represented by linear matrix inequalities on the support of the unknown parameters, where the constraint matrix has a totally unimodular (TU) structure. For such structured models, tight convex relaxations can be obtained in polynomial time via linear programming. Our modeling framework unifies the prevalent structured sparsity norms in the literature, introduces new interesting ones, and renders their tightness and tractability arguments transparent.
Partitioning Well-Clustered Graphs: Spectral Clustering Works!
In this paper we study variants of the widely used spectral clustering that partitions a graph into k clusters by (1) embedding the vertices of a graph into a low-dimensional space using the bottom eigenvectors of the Laplacian matrix, and (2) grouping the embedded points into k clusters via k-means algorithms. We show that, for a wide class of graphs, spectral clustering gives a good approximation of the optimal clustering. While this approach was proposed in the early 1990s and has comprehensive applications, prior to our work similar results were known only for graphs generated from stochastic models. We also give a nearly-linear time algorithm for partitioning well-clustered graphs based on computing a matrix exponential and approximate nearest neighbor data structures.
Online Collaborative-Filtering on Graphs
A common phenomena in modern recommendation systems is the use of feedback from one user to infer the `value' of an item to other users. This results in an exploration vs. exploitation trade-off, in which items of possibly low value have to be presented to users in order to ascertain their value. Existing approaches to solving this problem focus on the case where the number of items are small, or admit some underlying structure -- it is unclear, however, if good recommendation is possible when dealing with content-rich settings with unstructured content. We consider this problem under a simple natural model, wherein the number of items and the number of item-views are of the same order, and an `access-graph' constrains which user is allowed to see which item. Our main insight is that the presence of the access-graph in fact makes good recommendation possible -- however this requires the exploration policy to be designed to take advantage of the access-graph. Our results demonstrate the importance of `serendipity' in exploration, and how higher graph-expansion translates to a higher quality of recommendations; it also suggests a reason why in some settings, simple policies like Twitter's `Latest-First' policy achieve a good performance. From a technical perspective, our model presents a way to study exploration-exploitation tradeoffs in settings where the number of `trials' and `strategies' are large (potentially infinite), and more importantly, of the same order. Our algorithms admit competitive-ratio guarantees which hold for the worst-case user, under both finite-population and infinite-horizon settings, and are parametrized in terms of properties of the underlying graph. Conversely, we also demonstrate that improperly-designed policies can be highly sub-optimal, and that in many settings, our results are order-wise optimal.
Learning Theory for Distribution Regression
We focus on the distribution regression problem: regressing to vector-valued outputs from probability measures. Many important machine learning and statistical tasks fit into this framework, including multi-instance learning and point estimation problems without analytical solution (such as hyperparameter or entropy estimation). Despite the large number of available heuristics in the literature, the inherent two-stage sampled nature of the problem makes the theoretical analysis quite challenging, since in practice only samples from sampled distributions are observable, and the estimates have to rely on similarities computed between sets of points. To the best of our knowledge, the only existing technique with consistency guarantees for distribution regression requires kernel density estimation as an intermediate step (which often performs poorly in practice), and the domain of the distributions to be compact Euclidean. In this paper, we study a simple, analytically computable, ridge regression-based alternative to distribution regression, where we embed the distributions to a reproducing kernel Hilbert space, and learn the regressor from the embeddings to the outputs. Our main contribution is to prove that this scheme is consistent in the two-stage sampled setup under mild conditions (on separable topological domains enriched with kernels): we present an exact computational-statistical efficiency trade-off analysis showing that our estimator is able to match the one-stage sampled minimax optimal rate [Caponnetto and De Vito, 2007; Steinwart et al., 2009]. This result answers a 17-year-old open question, establishing the consistency of the classical set kernel [Haussler, 1999; Gaertner et. al, 2002] in regression. We also cover consistency for more recent kernels on distributions, including those due to [Christmann and Steinwart, 2010].
Covariate-assisted spectral clustering
Biological and social systems consist of myriad interacting units. The interactions can be represented in the form of a graph or network. Measurements of these graphs can reveal the underlying structure of these interactions, which provides insight into the systems that generated the graphs. Moreover, in applications such as connectomics, social networks, and genomics, graph data are accompanied by contextualizing measures on each node. We utilize these node covariates to help uncover latent communities in a graph, using a modification of spectral clustering. Statistical guarantees are provided under a joint mixture model that we call the node-contextualized stochastic blockmodel, including a bound on the mis-clustering rate. The bound is used to derive conditions for achieving perfect clustering. For most simulated cases, covariate-assisted spectral clustering yields results superior to regularized spectral clustering without node covariates and to an adaptation of canonical correlation analysis. We apply our clustering method to large brain graphs derived from diffusion MRI data, using the node locations or neurological region membership as covariates. In both cases, covariate-assisted spectral clustering yields clusters that are easier to interpret neurologically.
Model-Parallel Inference for Big Topic Models
In real world industrial applications of topic modeling, the ability to capture gigantic conceptual space by learning an ultra-high dimensional topical representation, i.e., the so-called "big model", is becoming the next desideratum after enthusiasms on "big data", especially for fine-grained downstream tasks such as online advertising, where good performances are usually achieved by regression-based predictors built on millions if not billions of input features. The conventional data-parallel approach for training gigantic topic models turns out to be rather inefficient in utilizing the power of parallelism, due to the heavy dependency on a centralized image of "model". Big model size also poses another challenge on the storage, where available model size is bounded by the smallest RAM of nodes. To address these issues, we explore another type of parallelism, namely model-parallelism, which enables training of disjoint blocks of a big topic model in parallel. By integrating data-parallelism with model-parallelism, we show that dependencies between distributed elements can be handled seamlessly, achieving not only faster convergence but also an ability to tackle significantly bigger model size. We describe an architecture for model-parallel inference of LDA, and present a variant of collapsed Gibbs sampling algorithm tailored for it. Experimental results demonstrate the ability of this system to handle topic modeling with unprecedented amount of 200 billion model variables only on a low-end cluster with very limited computational resources and bandwidth.
N$^3$LARS: Minimum Redundancy Maximum Relevance Feature Selection for Large and High-dimensional Data
We propose a feature selection method that finds non-redundant features from a large and high-dimensional data in nonlinear way. Specifically, we propose a nonlinear extension of the non-negative least-angle regression (LARS) called N${}^3$LARS, where the similarity between input and output is measured through the normalized version of the Hilbert-Schmidt Independence Criterion (HSIC). An advantage of N${}^3$LARS is that it can easily incorporate with map-reduce frameworks such as Hadoop and Spark. Thus, with the help of distributed computing, a set of features can be efficiently selected from a large and high-dimensional data. Moreover, N${}^3$LARS is a convex method and can find a global optimum solution. The effectiveness of the proposed method is first demonstrated through feature selection experiments for classification and regression with small and high-dimensional datasets. Finally, we evaluate our proposed method over a large and high-dimensional biology dataset.
Multi-Task Metric Learning on Network Data
Multi-task learning (MTL) improves prediction performance in different contexts by learning models jointly on multiple different, but related tasks. Network data, which are a priori data with a rich relational structure, provide an important context for applying MTL. In particular, the explicit relational structure implies that network data is not i.i.d. data. Network data also often comes with significant metadata (i.e., attributes) associated with each entity (node). Moreover, due to the diversity and variation in network data (e.g., multi-relational links or multi-category entities), various tasks can be performed and often a rich correlation exists between them. Learning algorithms should exploit all of these additional sources of information for better performance. In this work we take a metric-learning point of view for the MTL problem in the network context. Our approach builds on structure preserving metric learning (SPML). In particular SPML learns a Mahalanobis distance metric for node attributes using network structure as supervision, so that the learned distance function encodes the structure and can be used to predict link patterns from attributes. SPML is described for single-task learning on single network. Herein, we propose a multi-task version of SPML, abbreviated as MT-SPML, which is able to learn across multiple related tasks on multiple networks via shared intermediate parametrization. MT-SPML learns a specific metric for each task and a common metric for all tasks. The task correlation is carried through the common metric and the individual metrics encode task specific information. When combined together, they are structure-preserving with respect to individual tasks. MT-SPML works on general networks, thus is suitable for a wide variety of problems. In experiments, we challenge MT-SPML on two real-word problems, where MT-SPML achieves significant improvement.
Similarity Learning for High-Dimensional Sparse Data
A good measure of similarity between data points is crucial to many tasks in machine learning. Similarity and metric learning methods learn such measures automatically from data, but they do not scale well respect to the dimensionality of the data. In this paper, we propose a method that can learn efficiently similarity measure from high-dimensional sparse data. The core idea is to parameterize the similarity measure as a convex combination of rank-one matrices with specific sparsity structures. The parameters are then optimized with an approximate Frank-Wolfe procedure to maximally satisfy relative similarity constraints on the training data. Our algorithm greedily incorporates one pair of features at a time into the similarity measure, providing an efficient way to control the number of active features and thus reduce overfitting. It enjoys very appealing convergence guarantees and its time and memory complexity depends on the sparsity of the data instead of the dimension of the feature space. Our experiments on real-world high-dimensional datasets demonstrate its potential for classification, dimensionality reduction and data exploration.
Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
Inspired by recent advances in multimodal learning and machine translation, we introduce an encoder-decoder pipeline that learns (a): a multimodal joint embedding space with images and text and (b): a novel language model for decoding distributed representations from our space. Our pipeline effectively unifies joint image-text embedding models with multimodal neural language models. We introduce the structure-content neural language model that disentangles the structure of a sentence to its content, conditioned on representations produced by the encoder. The encoder allows one to rank images and sentences while the decoder can generate novel descriptions from scratch. Using LSTM to encode sentences, we match the state-of-the-art performance on Flickr8K and Flickr30K without using object detections. We also set new best results when using the 19-layer Oxford convolutional network. Furthermore we show that with linear encoders, the learned embedding space captures multimodal regularities in terms of vector space arithmetic e.g. *image of a blue car* - "blue" + "red" is near images of red cars. Sample captions generated for 800 images are made available for comparison.
Deep Exponential Families
We describe \textit{deep exponential families} (DEFs), a class of latent variable models that are inspired by the hidden structures used in deep neural networks. DEFs capture a hierarchy of dependencies between latent variables, and are easily generalized to many settings through exponential families. We perform inference using recent "black box" variational inference techniques. We then evaluate various DEFs on text and combine multiple DEFs into a model for pairwise recommendation data. In an extensive study, we show that going beyond one layer improves predictions for DEFs. We demonstrate that DEFs find interesting exploratory structure in large data sets, and give better predictive performance than state-of-the-art models.
A chain rule for the expected suprema of Gaussian processes
The expected supremum of a Gaussian process indexed by the image of an index set under a function class is bounded in terms of separate properties of the index set and the function class. The bound is relevant to the estimation of nonlinear transformations or the analysis of learning algorithms whenever hypotheses are chosen from composite classes, as is the case for multi-layer models.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of $m$ adaptively chosen functions on an unknown distribution given $n$ random samples. We show that, surprisingly, there is a way to estimate an exponential in $n$ number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
The Bayesian Echo Chamber: Modeling Social Influence via Linguistic Accommodation
We present the Bayesian Echo Chamber, a new Bayesian generative model for social interaction data. By modeling the evolution of people's language usage over time, this model discovers latent influence relationships between them. Unlike previous work on inferring influence, which has primarily focused on simple temporal dynamics evidenced via turn-taking behavior, our model captures more nuanced influence relationships, evidenced via linguistic accommodation patterns in interaction content. The model, which is based on a discrete analog of the multivariate Hawkes process, permits a fully Bayesian inference algorithm. We validate our model's ability to discover latent influence patterns using transcripts of arguments heard by the US Supreme Court and the movie "12 Angry Men." We showcase our model's capabilities by using it to infer latent influence patterns from Federal Open Market Committee meeting transcripts, demonstrating state-of-the-art performance at uncovering social dynamics in group discussions.
Inferring User Preferences by Probabilistic Logical Reasoning over Social Networks
We propose a framework for inferring the latent attitudes or preferences of users by performing probabilistic first-order logical reasoning over the social network graph. Our method answers questions about Twitter users like {\em Does this user like sushi?} or {\em Is this user a New York Knicks fan?} by building a probabilistic model that reasons over user attributes (the user's location or gender) and the social network (the user's friends and spouse), via inferences like homophily (I am more likely to like sushi if spouse or friends like sushi, I am more likely to like the Knicks if I live in New York). The algorithm uses distant supervision, semi-supervised data harvesting and vector space models to extract user attributes (e.g. spouse, education, location) and preferences (likes and dislikes) from text. The extracted propositions are then fed into a probabilistic reasoner (we investigate both Markov Logic and Probabilistic Soft Logic). Our experiments show that probabilistic logical reasoning significantly improves the performance on attribute and relation extraction, and also achieves an F-score of 0.791 at predicting a users likes or dislikes, significantly better than two strong baselines.
Speaker Identification From Youtube Obtained Data
An efficient, and intuitive algorithm is presented for the identification of speakers from a long dataset (like YouTube long discussion, Cocktail party recorded audio or video).The goal of automatic speaker identification is to identify the number of different speakers and prepare a model for that speaker by extraction, characterization and speaker-specific information contained in the speech signal. It has many diverse application specially in the field of Surveillance, Immigrations at Airport, cyber security, transcription in multi-source of similar sound source, where it is difficult to assign transcription arbitrary. The most commonly speech parametrization used in speaker verification, K-mean, cepstral analysis, is detailed. Gaussian mixture modeling, which is the speaker modeling technique is then explained. Gaussian mixture models (GMM), perhaps the most robust machine learning algorithm has been introduced examine and judge carefully speaker identification in text independent. The application or employment of Gaussian mixture models for monitoring & Analysing speaker identity is encouraged by the familiarity, awareness, or understanding gained through experience that Gaussian spectrum depict the characteristics of speaker's spectral conformational pattern and remarkable ability of GMM to construct capricious densities after that we illustrate 'Expectation maximization' an iterative algorithm which takes some arbitrary value in initial estimation and carry on the iterative process until the convergence of value is observed,so by doing various number of experiments we are able to obtain 79 ~ 82% of identification rate using Vector quantization and 85 ~ 92.6% of identification rate using GMM modeling by Expectation maximization parameter estimation depending on variation of parameter.
A new estimate of mutual information based measure of dependence between two variables: properties and fast implementation
This article proposes a new method to estimate an existing mutual information based dependence measure using histogram density estimates. Finding a suitable bin length for histogram is an open problem. We propose a new way of computing the bin length for histogram using a function of maximum separation between points. The chosen bin length leads to consistent density estimates for histogram method. The values of density thus obtained are used to calculate an estimate of an existing dependence measure. The proposed estimate is named as Mutual Information Based Dependence Index (MIDI). Some important properties of MIDI have also been stated. The performance of the proposed method has been compared to generally accepted measures like Distance Correlation (dcor), Maximal Information Coefficient (MINE) in terms of accuracy and computational complexity with the help of several artificial data sets with different amounts of noise. The proposed method is able to detect many types of relationships between variables, without making any assumption about the functional form of the relationship. The power statistics of proposed method illustrate their effectiveness in detecting non linear relationship. Thus, it is able to achieve generality without a high rate of false positive cases. MIDI is found to work better on a real life data set than competing methods. The proposed method is found to overcome some of the limitations which occur with dcor and MINE. Computationally, MIDI is found to be better than dcor and MINE, in terms of time and memory, making it suitable for large data sets.
Bounded Regret for Finite-Armed Structured Bandits
We study a new type of K-armed bandit problem where the expected return of one arm may depend on the returns of other arms. We present a new algorithm for this general class of problems and show that under certain circumstances it is possible to achieve finite expected cumulative regret. We also give problem-dependent lower bounds on the cumulative regret showing that at least in special cases the new algorithm is nearly optimal.
Deep Multi-Instance Transfer Learning
We present a new approach for transferring knowledge from groups to individuals that comprise them. We evaluate our method in text, by inferring the ratings of individual sentences using full-review ratings. This approach, which combines ideas from transfer learning, deep learning and multi-instance learning, reduces the need for laborious human labelling of fine-grained data when abundant labels are available at the group level.
Warranty Cost Estimation Using Bayesian Network
All multi-component product manufacturing companies face the problem of warranty cost estimation. Failure rate analysis of components plays a key role in this problem. Data source used for failure rate analysis has traditionally been past failure data of components. However, failure rate analysis can be improved by means of fusion of additional information, such as symptoms observed during after-sale service of the product, geographical information (hilly or plains areas), and information from tele-diagnostic analytics. In this paper, we propose an approach, which learns dependency between part-failures and symptoms gleaned from such diverse sources of information, to predict expected number of failures with better accuracy. We also indicate how the optimum warranty period can be computed. We demonstrate, through empirical results, that our method can improve the warranty cost estimates significantly.
On TD(0) with function approximation: Concentration bounds and a centered variant with exponential convergence
We provide non-asymptotic bounds for the well-known temporal difference learning algorithm TD(0) with linear function approximators. These include high-probability bounds as well as bounds in expectation. Our analysis suggests that a step-size inversely proportional to the number of iterations cannot guarantee optimal rate of convergence unless we assume (partial) knowledge of the stationary distribution for the Markov chain underlying the policy considered. We also provide bounds for the iterate averaged TD(0) variant, which gets rid of the step-size dependency while exhibiting the optimal rate of convergence. Furthermore, we propose a variant of TD(0) with linear approximators that incorporates a centering sequence, and establish that it exhibits an exponential rate of convergence in expectation. We demonstrate the usefulness of our bounds on two synthetic experimental settings.
Using Gaussian Measures for Efficient Constraint Based Clustering
In this paper we present a novel iterative multiphase clustering technique for efficiently clustering high dimensional data points. For this purpose we implement clustering feature (CF) tree on a real data set and a Gaussian density distribution constraint on the resultant CF tree. The post processing by the application of Gaussian density distribution function on the micro-clusters leads to refinement of the previously formed clusters thus improving their quality. This algorithm also succeeds in overcoming the inherent drawbacks of conventional hierarchical methods of clustering like inability to undo the change made to the dendogram of the data points. Moreover, the constraint measure applied in the algorithm makes this clustering technique suitable for need driven data analysis. We provide veracity of our claim by evaluating our algorithm with other similar clustering algorithms. Introduction
Statistically Significant Detection of Linguistic Change
We propose a new computational approach for tracking and detecting statistically significant linguistic shifts in the meaning and usage of words. Such linguistic shifts are especially prevalent on the Internet, where the rapid exchange of ideas can quickly change a word's meaning. Our meta-analysis approach constructs property time series of word usage, and then uses statistically sound change point detection algorithms to identify significant linguistic shifts. We consider and analyze three approaches of increasing complexity to generate such linguistic property time series, the culmination of which uses distributional characteristics inferred from word co-occurrences. Using recently proposed deep neural language models, we first train vector representations of words for each time period. Second, we warp the vector spaces into one unified coordinate system. Finally, we construct a distance-based distributional time series for each word to track it's linguistic displacement over time. We demonstrate that our approach is scalable by tracking linguistic change across years of micro-blogging using Twitter, a decade of product reviews using a corpus of movie reviews from Amazon, and a century of written books using the Google Book-ngrams. Our analysis reveals interesting patterns of language usage change commensurate with each medium.
A Randomized Algorithm for CCA
We present RandomizedCCA, a randomized algorithm for computing canonical analysis, suitable for large datasets stored either out of core or on a distributed file system. Accurate results can be obtained in as few as two data passes, which is relevant for distributed processing frameworks in which iteration is expensive (e.g., Hadoop). The strategy also provides an excellent initializer for standard iterative solutions.
Multi-view Anomaly Detection via Probabilistic Latent Variable Models
We propose a nonparametric Bayesian probabilistic latent variable model for multi-view anomaly detection, which is the task of finding instances that have inconsistent views. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different views are generated from different latent vectors. By inferring the number of latent vectors used for each instance with Dirichlet process priors, we obtain multi-view anomaly scores. The proposed model can be seen as a robust extension of probabilistic canonical correlation analysis for noisy multi-view data. We present Bayesian inference procedures for the proposed model based on a stochastic EM algorithm. The effectiveness of the proposed model is demonstrated in terms of performance when detecting multi-view anomalies and imputing missing values in multi-view data with anomalies.
SelfieBoost: A Boosting Algorithm for Deep Learning
We describe and analyze a new boosting algorithm for deep learning called SelfieBoost. Unlike other boosting algorithms, like AdaBoost, which construct ensembles of classifiers, SelfieBoost boosts the accuracy of a single network. We prove a $\log(1/\epsilon)$ convergence rate for SelfieBoost under some "SGD success" assumption which seems to hold in practice.
Greedy metrics in orthogonal greedy learning
Orthogonal greedy learning (OGL) is a stepwise learning scheme that adds a new atom from a dictionary via the steepest gradient descent and build the estimator via orthogonal projecting the target function to the space spanned by the selected atoms in each greedy step. Here, "greed" means choosing a new atom according to the steepest gradient descent principle. OGL then avoids the overfitting/underfitting by selecting an appropriate iteration number. In this paper, we point out that the overfitting/underfitting can also be avoided via redefining "greed" in OGL. To this end, we introduce a new greedy metric, called $\delta$-greedy thresholds, to refine "greed" and theoretically verifies its feasibility. Furthermore, we reveals that such a greedy metric can bring an adaptive termination rule on the premise of maintaining the prominent learning performance of OGL. Our results show that the steepest gradient descent is not the unique greedy metric of OGL and some other more suitable metric may lessen the hassle of model-selection of OGL.
Jamming Bandits
Can an intelligent jammer learn and adapt to unknown environments in an electronic warfare-type scenario? In this paper, we answer this question in the positive, by developing a cognitive jammer that adaptively and optimally disrupts the communication between a victim transmitter-receiver pair. We formalize the problem using a novel multi-armed bandit framework where the jammer can choose various physical layer parameters such as the signaling scheme, power level and the on-off/pulsing duration in an attempt to obtain power efficient jamming strategies. We first present novel online learning algorithms to maximize the jamming efficacy against static transmitter-receiver pairs and prove that our learning algorithm converges to the optimal (in terms of the error rate inflicted at the victim and the energy used) jamming strategy. Even more importantly, we prove that the rate of convergence to the optimal jamming strategy is sub-linear, i.e. the learning is fast in comparison to existing reinforcement learning algorithms, which is particularly important in dynamically changing wireless environments. Also, we characterize the performance of the proposed bandit-based learning algorithm against multiple static and adaptive transmitter-receiver pairs.
Minimal Realization Problems for Hidden Markov Models
Consider a stationary discrete random process with alphabet size d, which is assumed to be the output process of an unknown stationary Hidden Markov Model (HMM). Given the joint probabilities of finite length strings of the process, we are interested in finding a finite state generative model to describe the entire process. In particular, we focus on two classes of models: HMMs and quasi-HMMs, which is a strictly larger class of models containing HMMs. In the main theorem, we show that if the random process is generated by an HMM of order less or equal than k, and whose transition and observation probability matrix are in general position, namely almost everywhere on the parameter space, both the minimal quasi-HMM realization and the minimal HMM realization can be efficiently computed based on the joint probabilities of all the length N strings, for N > 4 lceil log_d(k) rceil +1. In this paper, we also aim to compare and connect the two lines of literature: realization theory of HMMs, and the recent development in learning latent variable models with tensor decomposition techniques.
Acoustic Scene Classification
In this article we present an account of the state-of-the-art in acoustic scene classification (ASC), the task of classifying environments from the sounds they produce. Starting from a historical review of previous research in this area, we define a general framework for ASC and present different imple- mentations of its components. We then describe a range of different algorithms submitted for a data challenge that was held to provide a general and fair benchmark for ASC techniques. The dataset recorded for this purpose is presented, along with the performance metrics that are used to evaluate the algorithms and statistical significance tests to compare the submitted methods. We use a baseline method that employs MFCCS, GMMS and a maximum likelihood criterion as a benchmark, and only find sufficient evidence to conclude that three algorithms significantly outperform it. We also evaluate the human classification accuracy in performing a similar classification task. The best performing algorithm achieves a mean accuracy that matches the median accuracy obtained by humans, and common pairs of classes are misclassified by both computers and humans. However, all acoustic scenes are correctly classified by at least some individuals, while there are scenes that are misclassified by all algorithms.
Deep Narrow Boltzmann Machines are Universal Approximators
We show that deep narrow Boltzmann machines are universal approximators of probability distributions on the activities of their visible units, provided they have sufficiently many hidden layers, each containing the same number of units as the visible layer. We show that, within certain parameter domains, deep Boltzmann machines can be studied as feedforward networks. We provide upper and lower bounds on the sufficient depth and width of universal approximators. These results settle various intuitions regarding undirected networks and, in particular, they show that deep narrow Boltzmann machines are at least as compact universal approximators as narrow sigmoid belief networks and restricted Boltzmann machines, with respect to the currently available bounds for those models.
Asymmetric Minwise Hashing
Minwise hashing (Minhash) is a widely popular indexing scheme in practice. Minhash is designed for estimating set resemblance and is known to be suboptimal in many applications where the desired measure is set overlap (i.e., inner product between binary vectors) or set containment. Minhash has inherent bias towards smaller sets, which adversely affects its performance in applications where such a penalization is not desirable. In this paper, we propose asymmetric minwise hashing (MH-ALSH), to provide a solution to this problem. The new scheme utilizes asymmetric transformations to cancel the bias of traditional minhash towards smaller sets, making the final "collision probability" monotonic in the inner product. Our theoretical comparisons show that for the task of retrieving with binary inner products asymmetric minhash is provably better than traditional minhash and other recently proposed hashing algorithms for general inner products. Thus, we obtain an algorithmic improvement over existing approaches in the literature. Experimental evaluations on four publicly available high-dimensional datasets validate our claims and the proposed scheme outperforms, often significantly, other hashing algorithms on the task of near neighbor retrieval with set containment. Our proposal is simple and easy to implement in practice.
Predictive Encoding of Contextual Relationships for Perceptual Inference, Interpolation and Prediction
We propose a new neurally-inspired model that can learn to encode the global relationship context of visual events across time and space and to use the contextual information to modulate the analysis by synthesis process in a predictive coding framework. The model learns latent contextual representations by maximizing the predictability of visual events based on local and global contextual information through both top-down and bottom-up processes. In contrast to standard predictive coding models, the prediction error in this model is used to update the contextual representation but does not alter the feedforward input for the next layer, and is thus more consistent with neurophysiological observations. We establish the computational feasibility of this model by demonstrating its ability in several aspects. We show that our model can outperform state-of-art performances of gated Boltzmann machines (GBM) in estimation of contextual information. Our model can also interpolate missing events or predict future events in image sequences while simultaneously estimating contextual information. We show it achieves state-of-art performances in terms of prediction accuracy in a variety of tasks and possesses the ability to interpolate missing frames, a function that is lacking in GBM.
Learning Fuzzy Controllers in Mobile Robotics with Embedded Preprocessing
The automatic design of controllers for mobile robots usually requires two stages. In the first stage,sensorial data are preprocessed or transformed into high level and meaningful values of variables whichare usually defined from expert knowledge. In the second stage, a machine learning technique is applied toobtain a controller that maps these high level variables to the control commands that are actually sent tothe robot. This paper describes an algorithm that is able to embed the preprocessing stage into the learningstage in order to get controllers directly starting from sensorial raw data with no expert knowledgeinvolved. Due to the high dimensionality of the sensorial data, this approach uses Quantified Fuzzy Rules(QFRs), that are able to transform low-level input variables into high-level input variables, reducingthe dimensionality through summarization. The proposed learning algorithm, called Iterative QuantifiedFuzzy Rule Learning (IQFRL), is based on genetic programming. IQFRL is able to learn rules with differentstructures, and can manage linguistic variables with multiple granularities. The algorithm has been testedwith the implementation of the wall-following behavior both in several realistic simulated environmentswith different complexity and on a Pioneer 3-AT robot in two real environments. Results have beencompared with several well-known learning algorithms combined with different data preprocessingtechniques, showing that IQFRL exhibits a better and statistically significant performance. Moreover,three real world applications for which IQFRL plays a central role are also presented: path and objecttracking with static and moving obstacles avoidance.
Sample-targeted clinical trial adaptation
Clinical trial adaptation refers to any adjustment of the trial protocol after the onset of the trial. The main goal is to make the process of introducing new medical interventions to patients more efficient by reducing the cost and the time associated with evaluating their safety and efficacy. The principal question is how should adaptation be performed so as to minimize the chance of distorting the outcome of the trial. We propose a novel method for achieving this. Unlike previous work our approach focuses on trial adaptation by sample size adjustment. We adopt a recently proposed stratification framework based on collected auxiliary data and show that this information together with the primary measured variables can be used to make a probabilistically informed choice of the particular sub-group a sample should be removed from. Experiments on simulated data are used to illustrate the effectiveness of our method and its application in practice.
How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets
The computational complexity of kernel methods has often been a major barrier for applying them to large-scale learning problems. We argue that this barrier can be effectively overcome. In particular, we develop methods to scale up kernel models to successfully tackle large-scale learning problems that are so far only approachable by deep learning architectures. Based on the seminal work by Rahimi and Recht on approximating kernel functions with features derived from random projections, we advance the state-of-the-art by proposing methods that can efficiently train models with hundreds of millions of parameters, and learn optimal representations from multiple kernels. We conduct extensive empirical studies on problems from image recognition and automatic speech recognition, and show that the performance of our kernel models matches that of well-engineered deep neural nets (DNNs). To the best of our knowledge, this is the first time that a direct comparison between these two methods on large-scale problems is reported. Our kernel methods have several appealing properties: training with convex optimization, cost for training a single model comparable to DNNs, and significantly reduced total cost due to fewer hyperparameters to tune for model selection. Our contrastive study between these two very different but equally competitive models sheds light on fundamental questions such as how to learn good representations.
Deep Belief Network Training Improvement Using Elite Samples Minimizing Free Energy
Nowadays this is very popular to use deep architectures in machine learning. Deep Belief Networks (DBNs) are deep architectures that use stack of Restricted Boltzmann Machines (RBM) to create a powerful generative model using training data. In this paper we present an improvement in a common method that is usually used in training of RBMs. The new method uses free energy as a criterion to obtain elite samples from generative model. We argue that these samples can more accurately compute gradient of log probability of training data. According to the results, an error rate of 0.99% was achieved on MNIST test set. This result shows that the proposed method outperforms the method presented in the first paper introducing DBN (1.25% error rate) and general classification methods such as SVM (1.4% error rate) and KNN (with 1.6% error rate). In another test using ISOLET dataset, letter classification error dropped to 3.59% compared to 5.59% error rate achieved in those papers using this dataset. The implemented method is available online at "http://ceit.aut.ac.ir/~keyvanrad/DeeBNet Toolbox.html".