title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Dynamic Programming for Instance Annotation in Multi-instance Multi-label Learning
Labeling data for classification requires significant human effort. To reduce labeling cost, instead of labeling every instance, a group of instances (bag) is labeled by a single bag label. Computer algorithms are then used to infer the label for each instance in a bag, a process referred to as instance annotation. This task is challenging due to the ambiguity regarding the instance labels. We propose a discriminative probabilistic model for the instance annotation problem and introduce an expectation maximization framework for inference, based on the maximum likelihood approach. For many probabilistic approaches, brute-force computation of the instance label posterior probability given its bag label is exponential in the number of instances in the bag. Our key contribution is a dynamic programming method for computing the posterior that is linear in the number of instances. We evaluate our methods using both benchmark and real world data sets, in the domain of bird song, image annotation, and activity recognition. In many cases, the proposed framework outperforms, sometimes significantly, the current state-of-the-art MIML learning methods, both in instance label prediction and bag label prediction.
A unified view of generative models for networks: models, methods, opportunities, and challenges
Research on probabilistic models of networks now spans a wide variety of fields, including physics, sociology, biology, statistics, and machine learning. These efforts have produced a diverse ecology of models and methods. Despite this diversity, many of these models share a common underlying structure: pairwise interactions (edges) are generated with probability conditional on latent vertex attributes. Differences between models generally stem from different philosophical choices about how to learn from data or different empirically-motivated goals. The highly interdisciplinary nature of work on these generative models, however, has inhibited the development of a unified view of their similarities and differences. For instance, novel theoretical models and optimization techniques developed in machine learning are largely unknown within the social and biological sciences, which have instead emphasized model interpretability. Here, we describe a unified view of generative models for networks that draws together many of these disparate threads and highlights the fundamental similarities and differences that span these fields. We then describe a number of opportunities and challenges for future work that are revealed by this view.
Learning Multi-Relational Semantics Using Neural-Embedding Models
In this paper we present a unified framework for modeling multi-relational representations, scoring, and learning, and conduct an empirical study of several recent multi-relational embedding models under the framework. We investigate the different choices of relation operators based on linear and bilinear transformations, and also the effects of entity representations by incorporating unsupervised vectors pre-trained on extra textual resources. Our results show several interesting findings, enabling the design of a simple embedding model that achieves the new state-of-the-art performance on a popular knowledge base completion task evaluated on Freebase.
Association Rule Based Flexible Machine Learning Module for Embedded System Platforms like Android
The past few years have seen a tremendous growth in the popularity of smartphones. As newer features continue to be added to smartphones to increase their utility, their significance will only increase in future. Combining machine learning with mobile computing can enable smartphones to become 'intelligent' devices, a feature which is hitherto unseen in them. Also, the combination of machine learning and context aware computing can enable smartphones to gauge user's requirements proactively, depending upon their environment and context. Accordingly, necessary services can be provided to users. In this paper, we have explored the methods and applications of integrating machine learning and context aware computing on the Android platform, to provide higher utility to the users. To achieve this, we define a Machine Learning (ML) module which is incorporated in the basic Android architecture. Firstly, we have outlined two major functionalities that the ML module should provide. Then, we have presented three architectures, each of which incorporates the ML module at a different level in the Android architecture. The advantages and shortcomings of each of these architectures have been evaluated. Lastly, we have explained a few applications in which our proposed system can be incorporated such that their functionality is improved.
Error Rate Bounds and Iterative Weighted Majority Voting for Crowdsourcing
Crowdsourcing has become an effective and popular tool for human-powered computation to label large datasets. Since the workers can be unreliable, it is common in crowdsourcing to assign multiple workers to one task, and to aggregate the labels in order to obtain results of high quality. In this paper, we provide finite-sample exponential bounds on the error rate (in probability and in expectation) of general aggregation rules under the Dawid-Skene crowdsourcing model. The bounds are derived for multi-class labeling, and can be used to analyze many aggregation methods, including majority voting, weighted majority voting and the oracle Maximum A Posteriori (MAP) rule. We show that the oracle MAP rule approximately optimizes our upper bound on the mean error rate of weighted majority voting in certain setting. We propose an iterative weighted majority voting (IWMV) method that optimizes the error rate bound and approximates the oracle MAP rule. Its one step version has a provable theoretical guarantee on the error rate. The IWMV method is intuitive and computationally simple. Experimental results on simulated and real data show that IWMV performs at least on par with the state-of-the-art methods, and it has a much lower computational cost (around one hundred times faster) than the state-of-the-art methods.
Deep Deconvolutional Networks for Scene Parsing
Scene parsing is an important and challenging prob- lem in computer vision. It requires labeling each pixel in an image with the category it belongs to. Tradition- ally, it has been approached with hand-engineered features from color information in images. Recently convolutional neural networks (CNNs), which automatically learn hierar- chies of features, have achieved record performance on the task. These approaches typically include a post-processing technique, such as superpixels, to produce the final label- ing. In this paper, we propose a novel network architecture that combines deep deconvolutional neural networks with CNNs. Our experiments show that deconvolutional neu- ral networks are capable of learning higher order image structure beyond edge primitives in comparison to CNNs. The new network architecture is employed for multi-patch training, introduced as part of this work. Multi-patch train- ing makes it possible to effectively learn spatial priors from scenes. The proposed approach yields state-of-the-art per- formance on four scene parsing datasets, namely Stanford Background, SIFT Flow, CamVid, and KITTI. In addition, our system has the added advantage of having a training system that can be completely automated end-to-end with- out requiring any post-processing.
Anisotropic Agglomerative Adaptive Mean-Shift
Mean Shift today, is widely used for mode detection and clustering. The technique though, is challenged in practice due to assumptions of isotropicity and homoscedasticity. We present an adaptive Mean Shift methodology that allows for full anisotropic clustering, through unsupervised local bandwidth selection. The bandwidth matrices evolve naturally, adapting locally through agglomeration, and in turn guiding further agglomeration. The online methodology is practical and effecive for low-dimensional feature spaces, preserving better detail and clustering salience. Additionally, conventional Mean Shift either critically depends on a per instance choice of bandwidth, or relies on offline methods which are inflexible and/or again data instance specific. The presented approach, due to its adaptive design, also alleviates this issue - with a default form performing generally well. The methodology though, allows for effective tuning of results.
Definition of Visual Speech Element and Research on a Method of Extracting Feature Vector for Korean Lip-Reading
In this paper, we defined the viseme (visual speech element) and described about the method of extracting visual feature vector. We defined the 10 visemes based on vowel by analyzing of Korean utterance and proposed the method of extracting the 20-dimensional visual feature vector, combination of static features and dynamic features. Lastly, we took an experiment in recognizing words based on 3-viseme HMM and evaluated the efficiency.
Investigating the Role of Prior Disambiguation in Deep-learning Compositional Models of Meaning
This paper aims to explore the effect of prior disambiguation on neural network- based compositional models, with the hope that better semantic representations for text compounds can be produced. We disambiguate the input word vectors before they are fed into a compositional deep net. A series of evaluations shows the positive effect of prior disambiguation for such deep models.
Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval
We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.
HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection
We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method for the classical SVM in the second phase. Both SVM formulations are adapted to knowledge incorporation. Our proposed algorithm addresses the challenges of automatic feature selection, high optimization accuracy, and algorithmic flexibility for taking advantage of prior knowledge. We demonstrate the effectiveness and efficiency of our algorithm and compare it with existing methods on a collection of synthetic and real-world data.
Influence Functions for Machine Learning: Nonparametric Estimators for Entropies, Divergences and Mutual Informations
We propose and analyze estimators for statistical functionals of one or more distributions under nonparametric assumptions. Our estimators are based on the theory of influence functions, which appear in the semiparametric statistics literature. We show that estimators based either on data-splitting or a leave-one-out technique enjoy fast rates of convergence and other favorable theoretical properties. We apply this framework to derive estimators for several popular information theoretic quantities, and via empirical evaluation, show the advantage of this approach over existing estimators.
Errata: Distant Supervision for Relation Extraction with Matrix Completion
The essence of distantly supervised relation extraction is that it is an incomplete multi-label classification problem with sparse and noisy features. To tackle the sparsity and noise challenges, we propose solving the classification problem using matrix completion on factorized matrix of minimized rank. We formulate relation classification as completing the unknown labels of testing items (entity pairs) in a sparse matrix that concatenates training and testing textual features with training labels. Our algorithmic framework is based on the assumption that the rank of item-by-feature and item-by-label joint matrix is low. We apply two optimization models to recover the underlying low-rank matrix leveraging the sparsity of feature-label matrix. The matrix completion problem is then solved by the fixed point continuation (FPC) algorithm, which can find the global optimum. Experiments on two widely used datasets with different dimensions of textual features demonstrate that our low-rank matrix completion approach significantly outperforms the baseline and the state-of-the-art methods.
Joint cross-domain classification and subspace learning for unsupervised adaptation
Domain adaptation aims at adapting the knowledge acquired on a source domain to a new different but related target domain. Several approaches have beenproposed for classification tasks in the unsupervised scenario, where no labeled target data are available. Most of the attention has been dedicated to searching a new domain-invariant representation, leaving the definition of the prediction function to a second stage. Here we propose to learn both jointly. Specifically we learn the source subspace that best matches the target subspace while at the same time minimizing a regularized misclassification loss. We provide an alternating optimization technique based on stochastic sub-gradient descent to solve the learning problem and we demonstrate its performance on several domain adaptation tasks.
Outlier-Robust Convex Segmentation
We derive a convex optimization problem for the task of segmenting sequential data, which explicitly treats presence of outliers. We describe two algorithms for solving this problem, one exact and one a top-down novel approach, and we derive a consistency results for the case of two segments and no outliers. Robustness to outliers is evaluated on two real-world tasks related to speech segmentation. Our algorithms outperform baseline segmentation algorithms.
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov Approximation
The expressive power of a Gaussian process (GP) model comes at a cost of poor scalability in the data size. To improve its scalability, this paper presents a low-rank-cum-Markov approximation (LMA) of the GP model that is novel in leveraging the dual computational advantages stemming from complementing a low-rank approximate representation of the full-rank GP based on a support set of inputs with a Markov approximation of the resulting residual process; the latter approximation is guaranteed to be closest in the Kullback-Leibler distance criterion subject to some constraint and is considerably more refined than that of existing sparse GP models utilizing low-rank representations due to its more relaxed conditional independence assumption (especially with larger data). As a result, our LMA method can trade off between the size of the support set and the order of the Markov property to (a) incur lower computational cost than such sparse GP models while achieving predictive performance comparable to them and (b) accurately represent features/patterns of any scale. Interestingly, varying the Markov order produces a spectrum of LMAs with PIC approximation and full-rank GP at the two extremes. An advantage of our LMA method is that it is amenable to parallelization on multiple machines/cores, thereby gaining greater scalability. Empirical evaluation on three real-world datasets in clusters of up to 32 computing nodes shows that our centralized and parallel LMA methods are significantly more time-efficient and scalable than state-of-the-art sparse and full-rank GP regression methods while achieving comparable predictive performances.
Implicitly Constrained Semi-Supervised Linear Discriminant Analysis
Semi-supervised learning is an important and active topic of research in pattern recognition. For classification using linear discriminant analysis specifically, several semi-supervised variants have been proposed. Using any one of these methods is not guaranteed to outperform the supervised classifier which does not take the additional unlabeled data into account. In this work we compare traditional Expectation Maximization type approaches for semi-supervised linear discriminant analysis with approaches based on intrinsic constraints and propose a new principled approach for semi-supervised linear discriminant analysis, using so-called implicit constraints. We explore the relationships between these methods and consider the question if and in what sense we can expect improvement in performance over the supervised procedure. The constraint based approaches are more robust to misspecification of the model, and may outperform alternatives that make more assumptions on the data, in terms of the log-likelihood of unseen objects.
Cross-Modal Similarity Learning : A Low Rank Bilinear Formulation
The cross-media retrieval problem has received much attention in recent years due to the rapid increasing of multimedia data on the Internet. A new approach to the problem has been raised which intends to match features of different modalities directly. In this research, there are two critical issues: how to get rid of the heterogeneity between different modalities and how to match the cross-modal features of different dimensions. Recently metric learning methods show a good capability in learning a distance metric to explore the relationship between data points. However, the traditional metric learning algorithms only focus on single-modal features, which suffer difficulties in addressing the cross-modal features of different dimensions. In this paper, we propose a cross-modal similarity learning algorithm for the cross-modal feature matching. The proposed method takes a bilinear formulation, and with the nuclear-norm penalization, it achieves low-rank representation. Accordingly, the accelerated proximal gradient algorithm is successfully imported to find the optimal solution with a fast convergence rate O(1/t^2). Experiments on three well known image-text cross-media retrieval databases show that the proposed method achieves the best performance compared to the state-of-the-art algorithms.
Nonnegative Tensor Factorization for Directional Blind Audio Source Separation
We augment the nonnegative matrix factorization method for audio source separation with cues about directionality of sound propagation. This improves separation quality greatly and removes the need for training data, with only a twofold increase in run time. This is the first method which can exploit directional information from microphone arrays much smaller than the wavelength of sound, working both in simulation and in practice on millimeter-scale microphone arrays.
Music Data Analysis: A State-of-the-art Survey
Music accounts for a significant chunk of interest among various online activities. This is reflected by wide array of alternatives offered in music related web/mobile apps, information portals, featuring millions of artists, songs and events attracting user activity at similar scale. Availability of large scale structured and unstructured data has attracted similar level of attention by data science community. This paper attempts to offer current state-of-the-art in music related analysis. Various approaches involving machine learning, information theory, social network analysis, semantic web and linked open data are represented in the form of taxonomy along with data sources and use cases addressed by the research community.
Learning nonparametric differential equations with operator-valued kernels and gradient matching
Modeling dynamical systems with ordinary differential equations implies a mechanistic view of the process underlying the dynamics. However in many cases, this knowledge is not available. To overcome this issue, we introduce a general framework for nonparametric ODE models using penalized regression in Reproducing Kernel Hilbert Spaces (RKHS) based on operator-valued kernels. Moreover, we extend the scope of gradient matching approaches to nonparametric ODE. A smooth estimate of the solution ODE is built to provide an approximation of the derivative of the ODE solution which is in turn used to learn the nonparametric ODE model. This approach benefits from the flexibility of penalized regression in RKHS allowing for ridge or (structured) sparse regression as well. Very good results are shown on 3 different ODE systems.
Large-Margin Classification with Multiple Decision Rules
Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome indicating the membership of one of two classes. In the literature, there exists a distinction between hard and soft classification. In soft classification, the conditional class probability is modeled as a function of the covariates. In contrast, hard classification methods only target the optimal prediction boundary. While hard and soft classification methods have been studied extensively, not much work has been done to compare the actual tasks of hard and soft classification. In this paper we propose a spectrum of statistical learning problems which span the hard and soft classification tasks based on fitting multiple decision rules to the data. By doing so, we reveal a novel collection of learning tasks of increasing complexity. We study the problems using the framework of large-margin classifiers and a class of piecewise linear convex surrogates, for which we derive statistical properties and a corresponding sub-gradient descent algorithm. We conclude by applying our approach to simulation settings and a magnetic resonance imaging (MRI) dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
ConceptLearner: Discovering Visual Concepts from Weakly Labeled Image Collections
Discovering visual knowledge from weakly labeled data is crucial to scale up computer vision recognition system, since it is expensive to obtain fully labeled data for a large number of concept categories. In this paper, we propose ConceptLearner, which is a scalable approach to discover visual concepts from weakly labeled image collections. Thousands of visual concept detectors are learned automatically, without human in the loop for additional annotation. We show that these learned detectors could be applied to recognize concepts at image-level and to detect concepts at image region-level accurately. Under domain-specific supervision, we further evaluate the learned concepts for scene recognition on SUN database and for object detection on Pascal VOC 2007. ConceptLearner shows promising performance compared to fully supervised and weakly supervised methods.
Unification of field theory and maximum entropy methods for learning probability densities
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory is thus seen to provide a natural test of the validity of the maximum entropy null hypothesis. Bayesian field theory also returns a lower entropy density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided. Based on these results, I argue that Bayesian field theory is poised to provide a definitive solution to the density estimation problem in one dimension.
Stochastic Block Transition Models for Dynamic Networks
There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly influence future edge probabilities while retaining the interpretability of the SBM. I derive an approximate inference procedure for the SBTM and demonstrate that it is significantly better at reproducing durations of edges in real social network data.
Private Empirical Risk Minimization Beyond the Worst Case: The Effect of the Constraint Set Geometry
Empirical Risk Minimization (ERM) is a standard technique in machine learning, where a model is selected by minimizing a loss function over constraint set. When the training dataset consists of private information, it is natural to use a differentially private ERM algorithm, and this problem has been the subject of a long line of work started with Chaudhuri and Monteleoni 2008. A private ERM algorithm outputs an approximate minimizer of the loss function and its error can be measured as the difference from the optimal value of the loss function. When the constraint set is arbitrary, the required error bounds are fairly well understood \cite{BassilyST14}. In this work, we show that the geometric properties of the constraint set can be used to derive significantly better results. Specifically, we show that a differentially private version of Mirror Descent leads to error bounds of the form $\tilde{O}(G_{\mathcal{C}}/n)$ for a lipschitz loss function, improving on the $\tilde{O}(\sqrt{p}/n)$ bounds in Bassily, Smith and Thakurta 2014. Here $p$ is the dimensionality of the problem, $n$ is the number of data points in the training set, and $G_{\mathcal{C}}$ denotes the Gaussian width of the constraint set that we optimize over. We show similar improvements for strongly convex functions, and for smooth functions. In addition, we show that when the loss function is Lipschitz with respect to the $\ell_1$ norm and $\mathcal{C}$ is $\ell_1$-bounded, a differentially private version of the Frank-Wolfe algorithm gives error bounds of the form $\tilde{O}(n^{-2/3})$. This captures the important and common case of sparse linear regression (LASSO), when the data $x_i$ satisfies $|x_i|_{\infty} \leq 1$ and we optimize over the $\ell_1$ ball. We show new lower bounds for this setting, that together with known bounds, imply that all our upper bounds are tight.
Differentially Private Algorithms for Empirical Machine Learning
An important use of private data is to build machine learning classifiers. While there is a burgeoning literature on differentially private classification algorithms, we find that they are not practical in real applications due to two reasons. First, existing differentially private classifiers provide poor accuracy on real world datasets. Second, there is no known differentially private algorithm for empirically evaluating the private classifier on a private test dataset. In this paper, we develop differentially private algorithms that mirror real world empirical machine learning workflows. We consider the private classifier training algorithm as a blackbox. We present private algorithms for selecting features that are input to the classifier. Though adding a preprocessing step takes away some of the privacy budget from the actual classification process (thus potentially making it noisier and less accurate), we show that our novel preprocessing techniques significantly increase classifier accuracy on three real-world datasets. We also present the first private algorithms for empirically constructing receiver operating characteristic (ROC) curves on a private test set.
Linking GloVe with word2vec
The Global Vectors for word representation (GloVe), introduced by Jeffrey Pennington et al. is reported to be an efficient and effective method for learning vector representations of words. State-of-the-art performance is also provided by skip-gram with negative-sampling (SGNS) implemented in the word2vec tool. In this note, we explain the similarities between the training objectives of the two models, and show that the objective of SGNS is similar to the objective of a specialized form of GloVe, though their cost functions are defined differently.
No-Regret Learnability for Piecewise Linear Losses
In the convex optimization approach to online regret minimization, many methods have been developed to guarantee a $O(\sqrt{T})$ bound on regret for subdifferentiable convex loss functions with bounded subgradients, by using a reduction to linear loss functions. This suggests that linear loss functions tend to be the hardest ones to learn against, regardless of the underlying decision spaces. We investigate this question in a systematic fashion looking at the interplay between the set of possible moves for both the decision maker and the adversarial environment. This allows us to highlight sharp distinctive behaviors about the learnability of piecewise linear loss functions. On the one hand, when the decision set of the decision maker is a polyhedron, we establish $\Omega(\sqrt{T})$ lower bounds on regret for a large class of piecewise linear loss functions with important applications in online linear optimization, repeated zero-sum Stackelberg games, online prediction with side information, and online two-stage optimization. On the other hand, we exhibit $o(\sqrt{T})$ learning rates, achieved by the Follow-The-Leader algorithm, in online linear optimization when the boundary of the decision maker's decision set is curved and when $0$ does not lie in the convex hull of the environment's decision set. Hence, the curvature of the decision maker's decision set is a determining factor for the optimal learning rate. These results hold in a completely adversarial setting.
A Joint Probabilistic Classification Model of Relevant and Irrelevant Sentences in Mathematical Word Problems
Estimating the difficulty level of math word problems is an important task for many educational applications. Identification of relevant and irrelevant sentences in math word problems is an important step for calculating the difficulty levels of such problems. This paper addresses a novel application of text categorization to identify two types of sentences in mathematical word problems, namely relevant and irrelevant sentences. A novel joint probabilistic classification model is proposed to estimate the joint probability of classification decisions for all sentences of a math word problem by utilizing the correlation among all sentences along with the correlation between the question sentence and other sentences, and sentence text. The proposed model is compared with i) a SVM classifier which makes independent classification decisions for individual sentences by only using the sentence text and ii) a novel SVM classifier that considers the correlation between the question sentence and other sentences along with the sentence text. An extensive set of experiments demonstrates the effectiveness of the joint probabilistic classification model for identifying relevant and irrelevant sentences as well as the novel SVM classifier that utilizes the correlation between the question sentence and other sentences. Furthermore, empirical results and analysis show that i) it is highly beneficial not to remove stopwords and ii) utilizing part of speech tagging does not make a significant improvement although it has been shown to be effective for the related task of math word problem type classification.
Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering
In this paper, we describe an algorithm FARDiff (Fuzzy Adaptive Resonance Dif- fusion) which combines Diffusion Maps and Fuzzy Adaptive Resonance Theory to do clustering on high dimensional data. We describe some applications of this method and some problems for future research.
Randomized Dual Coordinate Ascent with Arbitrary Sampling
We study the problem of minimizing the average of a large number of smooth convex functions penalized with a strongly convex regularizer. We propose and analyze a novel primal-dual method (Quartz) which at every iteration samples and updates a random subset of the dual variables, chosen according to an arbitrary distribution. In contrast to typical analysis, we directly bound the decrease of the primal-dual error (in expectation), without the need to first analyze the dual error. Depending on the choice of the sampling, we obtain efficient serial, parallel and distributed variants of the method. In the serial case, our bounds match the best known bounds for SDCA (both with uniform and importance sampling). With standard mini-batching, our bounds predict initial data-independent speedup as well as additional data-driven speedup which depends on spectral and sparsity properties of the data. We calculate theoretical speedup factors and find that they are excellent predictors of actual speedup in practice. Moreover, we illustrate that it is possible to design an efficient mini-batch importance sampling. The distributed variant of Quartz is the first distributed SDCA-like method with an analysis for non-separable data.
Falling Rule Lists
Falling rule lists are classification models consisting of an ordered list of if-then rules, where (i) the order of rules determines which example should be classified by each rule, and (ii) the estimated probability of success decreases monotonically down the list. These kinds of rule lists are inspired by healthcare applications where patients would be stratified into risk sets and the highest at-risk patients should be considered first. We provide a Bayesian framework for learning falling rule lists that does not rely on traditional greedy decision tree learning methods.
Understanding image representations by measuring their equivariance and equivalence
Despite the importance of image representations such as histograms of oriented gradients and deep Convolutional Neural Networks (CNN), our theoretical understanding of them remains limited. Aiming at filling this gap, we investigate three key mathematical properties of representations: equivariance, invariance, and equivalence. Equivariance studies how transformations of the input image are encoded by the representation, invariance being a special case where a transformation has no effect. Equivalence studies whether two representations, for example two different parametrisations of a CNN, capture the same visual information or not. A number of methods to establish these properties empirically are proposed, including introducing transformation and stitching layers in CNNs. These methods are then applied to popular representations to reveal insightful aspects of their structure, including clarifying at which layers in a CNN certain geometric invariances are achieved. While the focus of the paper is theoretical, direct applications to structured-output regression are demonstrated too.
Learning to Generate Chairs, Tables and Cars with Convolutional Networks
We train generative 'up-convolutional' neural networks which are able to generate images of objects given object style, viewpoint, and color. We train the networks on rendered 3D models of chairs, tables, and cars. Our experiments show that the networks do not merely learn all images by heart, but rather find a meaningful representation of 3D models allowing them to assess the similarity of different models, interpolate between given views to generate the missing ones, extrapolate views, and invent new objects not present in the training set by recombining training instances, or even two different object classes. Moreover, we show that such generative networks can be used to find correspondences between different objects from the dataset, outperforming existing approaches on this task.
On the Impossibility of Convex Inference in Human Computation
Human computation or crowdsourcing involves joint inference of the ground-truth-answers and the worker-abilities by optimizing an objective function, for instance, by maximizing the data likelihood based on an assumed underlying model. A variety of methods have been proposed in the literature to address this inference problem. As far as we know, none of the objective functions in existing methods is convex. In machine learning and applied statistics, a convex function such as the objective function of support vector machines (SVMs) is generally preferred, since it can leverage the high-performance algorithms and rigorous guarantees established in the extensive literature on convex optimization. One may thus wonder if there exists a meaningful convex objective function for the inference problem in human computation. In this paper, we investigate this convexity issue for human computation. We take an axiomatic approach by formulating a set of axioms that impose two mild and natural assumptions on the objective function for the inference. Under these axioms, we show that it is unfortunately impossible to ensure convexity of the inference problem. On the other hand, we show that interestingly, in the absence of a requirement to model "spammers", one can construct reasonable objective functions for crowdsourcing that guarantee convex inference.
Clustering evolving data using kernel-based methods
In this thesis, we propose several modelling strategies to tackle evolving data in different contexts. In the framework of static clustering, we start by introducing a soft kernel spectral clustering (SKSC) algorithm, which can better deal with overlapping clusters with respect to kernel spectral clustering (KSC) and provides more interpretable outcomes. Afterwards, a whole strategy based upon KSC for community detection of static networks is proposed, where the extraction of a high quality training sub-graph, the choice of the kernel function, the model selection and the applicability to large-scale data are key aspects. This paves the way for the development of a novel clustering algorithm for the analysis of evolving networks called kernel spectral clustering with memory effect (MKSC), where the temporal smoothness between clustering results in successive time steps is incorporated at the level of the primal optimization problem, by properly modifying the KSC formulation. Later on, an application of KSC to fault detection of an industrial machine is presented. Here, a smart pre-processing of the data by means of a proper windowing operation is necessary to catch the ongoing degradation process affecting the machine. In this way, in a genuinely unsupervised manner, it is possible to raise an early warning when necessary, in an online fashion. Finally, we propose a new algorithm called incremental kernel spectral clustering (IKSC) for online learning of non-stationary data. This ambitious challenge is faced by taking advantage of the out-of-sample property of kernel spectral clustering (KSC) to adapt the initial model, in order to tackle merging, splitting or drifting of clusters across time. Real-world applications considered in this thesis include image segmentation, time-series clustering, community detection of static and evolving networks.
PU Learning for Matrix Completion
In this paper, we consider the matrix completion problem when the observations are one-bit measurements of some underlying matrix M, and in particular the observed samples consist only of ones and no zeros. This problem is motivated by modern applications such as recommender systems and social networks where only "likes" or "friendships" are observed. The problem of learning from only positive and unlabeled examples, called PU (positive-unlabeled) learning, has been studied in the context of binary classification. We consider the PU matrix completion problem, where an underlying real-valued matrix M is first quantized to generate one-bit observations and then a subset of positive entries is revealed. Under the assumption that M has bounded nuclear norm, we provide recovery guarantees for two different observation models: 1) M parameterizes a distribution that generates a binary matrix, 2) M is thresholded to obtain a binary matrix. For the first case, we propose a "shifted matrix completion" method that recovers M using only a subset of indices corresponding to ones, while for the second case, we propose a "biased matrix completion" method that recovers the (thresholded) binary matrix. Both methods yield strong error bounds --- if M is n by n, the Frobenius error is bounded as O(1/((1-rho)n), where 1-rho denotes the fraction of ones observed. This implies a sample complexity of O(n\log n) ones to achieve a small error, when M is dense and n is large. We extend our methods and guarantees to the inductive matrix completion problem, where rows and columns of M have associated features. We provide efficient and scalable optimization procedures for both the methods and demonstrate the effectiveness of the proposed methods for link prediction (on real-world networks consisting of over 2 million nodes and 90 million links) and semi-supervised clustering tasks.
Efficiently learning Ising models on arbitrary graphs
We consider the problem of reconstructing the graph underlying an Ising model from i.i.d. samples. Over the last fifteen years this problem has been of significant interest in the statistics, machine learning, and statistical physics communities, and much of the effort has been directed towards finding algorithms with low computational cost for various restricted classes of models. Nevertheless, for learning Ising models on general graphs with $p$ nodes of degree at most $d$, it is not known whether or not it is possible to improve upon the $p^{d}$ computation needed to exhaustively search over all possible neighborhoods for each node. In this paper we show that a simple greedy procedure allows to learn the structure of an Ising model on an arbitrary bounded-degree graph in time on the order of $p^2$. We make no assumptions on the parameters except what is necessary for identifiability of the model, and in particular the results hold at low-temperatures as well as for highly non-uniform models. The proof rests on a new structural property of Ising models: we show that for any node there exists at least one neighbor with which it has a high mutual information. This structural property may be of independent interest.
Characterization of the equivalence of robustification and regularization in linear and matrix regression
The notion of developing statistical methods in machine learning which are robust to adversarial perturbations in the underlying data has been the subject of increasing interest in recent years. A common feature of this work is that the adversarial robustification often corresponds exactly to regularization methods which appear as a loss function plus a penalty. In this paper we deepen and extend the understanding of the connection between robustification and regularization (as achieved by penalization) in regression problems. Specifically, (a) in the context of linear regression, we characterize precisely under which conditions on the model of uncertainty used and on the loss function penalties robustification and regularization are equivalent, and (b) we extend the characterization of robustification and regularization to matrix regression problems (matrix completion and Principal Component Analysis).
Kickback cuts Backprop's red-tape: Biologically plausible credit assignment in neural networks
Error backpropagation is an extremely effective algorithm for assigning credit in artificial neural networks. However, weight updates under Backprop depend on lengthy recursive computations and require separate output and error messages -- features not shared by biological neurons, that are perhaps unnecessary. In this paper, we revisit Backprop and the credit assignment problem. We first decompose Backprop into a collection of interacting learning algorithms; provide regret bounds on the performance of these sub-algorithms; and factorize Backprop's error signals. Using these results, we derive a new credit assignment algorithm for nonparametric regression, Kickback, that is significantly simpler than Backprop. Finally, we provide a sufficient condition for Kickback to follow error gradients, and show that Kickback matches Backprop's performance on real-world regression benchmarks.
Compound Rank-k Projections for Bilinear Analysis
In many real-world applications, data are represented by matrices or high-order tensors. Despite the promising performance, the existing two-dimensional discriminant analysis algorithms employ a single projection model to exploit the discriminant information for projection, making the model less flexible. In this paper, we propose a novel Compound Rank-k Projection (CRP) algorithm for bilinear analysis. CRP deals with matrices directly without transforming them into vectors, and it therefore preserves the correlations within the matrix and decreases the computation complexity. Different from the existing two dimensional discriminant analysis algorithms, objective function values of CRP increase monotonically.In addition, CRP utilizes multiple rank-k projection models to enable a larger search space in which the optimal solution can be found. In this way, the discriminant ability is enhanced.
Semi-supervised Feature Analysis by Mining Correlations among Multiple Tasks
In this paper, we propose a novel semi-supervised feature selection framework by mining correlations among multiple tasks and apply it to different multimedia applications. Instead of independently computing the importance of features for each task, our algorithm leverages shared knowledge from multiple related tasks, thus, improving the performance of feature selection. Note that we build our algorithm on assumption that different tasks share common structures. The proposed algorithm selects features in a batch mode, by which the correlations between different features are taken into consideration. Besides, considering the fact that labeling a large amount of training data in real world is both time-consuming and tedious, we adopt manifold learning which exploits both labeled and unlabeled training data for feature space analysis. Since the objective function is non-smooth and difficult to solve, we propose an iterative algorithm with fast convergence. Extensive experiments on different applications demonstrate that our algorithm outperforms other state-of-the-art feature selection algorithms.
A Convex Sparse PCA for Feature Analysis
Principal component analysis (PCA) has been widely applied to dimensionality reduction and data pre-processing for different applications in engineering, biology and social science. Classical PCA and its variants seek for linear projections of the original variables to obtain a low dimensional feature representation with maximal variance. One limitation is that it is very difficult to interpret the results of PCA. In addition, the classical PCA is vulnerable to certain noisy data. In this paper, we propose a convex sparse principal component analysis (CSPCA) algorithm and apply it to feature analysis. First we show that PCA can be formulated as a low-rank regression optimization problem. Based on the discussion, the l 2 , 1 -norm minimization is incorporated into the objective function to make the regression coefficients sparse, thereby robust to the outliers. In addition, based on the sparse model used in CSPCA, an optimal weight is assigned to each of the original feature, which in turn provides the output with good interpretability. With the output of our CSPCA, we can effectively analyze the importance of each feature under the PCA criteria. The objective function is convex, and we propose an iterative algorithm to optimize it. We apply the CSPCA algorithm to feature selection and conduct extensive experiments on six different benchmark datasets. Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art unsupervised feature selection algorithms.
Balanced k-Means and Min-Cut Clustering
Clustering is an effective technique in data mining to generate groups that are the matter of interest. Among various clustering approaches, the family of k-means algorithms and min-cut algorithms gain most popularity due to their simplicity and efficacy. The classical k-means algorithm partitions a number of data points into several subsets by iteratively updating the clustering centers and the associated data points. By contrast, a weighted undirected graph is constructed in min-cut algorithms which partition the vertices of the graph into two sets. However, existing clustering algorithms tend to cluster minority of data points into a subset, which shall be avoided when the target dataset is balanced. To achieve more accurate clustering for balanced dataset, we propose to leverage exclusive lasso on k-means and min-cut to regulate the balance degree of the clustering results. By optimizing our objective functions that build atop the exclusive lasso, we can make the clustering result as much balanced as possible. Extensive experiments on several large-scale datasets validate the advantage of the proposed algorithms compared to the state-of-the-art clustering algorithms.
Improved Spectral Clustering via Embedded Label Propagation
Spectral clustering is a key research topic in the field of machine learning and data mining. Most of the existing spectral clustering algorithms are built upon Gaussian Laplacian matrices, which are sensitive to parameters. We propose a novel parameter free, distance consistent Locally Linear Embedding. The proposed distance consistent LLE promises that edges between closer data points have greater weight.Furthermore, we propose a novel improved spectral clustering via embedded label propagation. Our algorithm is built upon two advancements of the state of the art:1) label propagation,which propagates a node\'s labels to neighboring nodes according to their proximity; and 2) manifold learning, which has been widely used in its capacity to leverage the manifold structure of data points. First we perform standard spectral clustering on original data and assign each cluster to k nearest data points. Next, we propagate labels through dense, unlabeled data regions. Extensive experiments with various datasets validate the superiority of the proposed algorithm compared to current state of the art spectral algorithms.
Structure Regularization for Structured Prediction: Theories and Experiments
While there are many studies on weight regularization, the study on structure regularization is rare. Many existing systems on structured prediction focus on increasing the level of structural dependencies within the model. However, this trend could have been misdirected, because our study suggests that complex structures are actually harmful to generalization ability in structured prediction. To control structure-based overfitting, we propose a structure regularization framework via \emph{structure decomposition}, which decomposes training samples into mini-samples with simpler structures, deriving a model with better generalization power. We show both theoretically and empirically that structure regularization can effectively control overfitting risk and lead to better accuracy. As a by-product, the proposed method can also substantially accelerate the training speed. The method and the theoretical results can apply to general graphical models with arbitrary structures. Experiments on well-known tasks demonstrate that our method can easily beat the benchmark systems on those highly-competitive tasks, achieving state-of-the-art accuracies yet with substantially faster training speed.
Target Fishing: A Single-Label or Multi-Label Problem?
According to Cobanoglu et al and Murphy, it is now widely acknowledged that the single target paradigm (one protein or target, one disease, one drug) that has been the dominant premise in drug development in the recent past is untenable. More often than not, a drug-like compound (ligand) can be promiscuous - that is, it can interact with more than one target protein. In recent years, in in silico target prediction methods the promiscuity issue has been approached computationally in different ways. In this study we confine attention to the so-called ligand-based target prediction machine learning approaches, commonly referred to as target-fishing. With a few exceptions, the target-fishing approaches that are currently ubiquitous in cheminformatics literature can be essentially viewed as single-label multi-classification schemes; these approaches inherently bank on the single target paradigm assumption that a ligand can home in on one specific target. In order to address the ligand promiscuity issue, one might be able to cast target-fishing as a multi-label multi-class classification problem. For illustrative and comparison purposes, single-label and multi-label Naive Bayes classification models (denoted here by SMM and MMM, respectively) for target-fishing were implemented. The models were constructed and tested on 65,587 compounds and 308 targets retrieved from the ChEMBL17 database. SMM and MMM performed differently: for 16,344 test compounds, the MMM model returned recall and precision values of 0.8058 and 0.6622, respectively; the corresponding recall and precision values yielded by the SMM model were 0.7805 and 0.7596, respectively. However, at a significance level of 0.05 and one degree of freedom McNemar test performed on the target prediction results returned by SMM and MMM for the 16,344 test ligands gave a chi-squared value of 15.656, in favour of the MMM approach.
Revenue Optimization in Posted-Price Auctions with Strategic Buyers
We study revenue optimization learning algorithms for posted-price auctions with strategic buyers. We analyze a very broad family of monotone regret minimization algorithms for this problem, which includes the previously best known algorithm, and show that no algorithm in that family admits a strategic regret more favorable than $\Omega(\sqrt{T})$. We then introduce a new algorithm that achieves a strategic regret differing from the lower bound only by a factor in $O(\log T)$, an exponential improvement upon the previous best algorithm. Our new algorithm admits a natural analysis and simpler proofs, and the ideas behind its design are general. We also report the results of empirical evaluations comparing our algorithm with the previous state of the art and show a consistent exponential improvement in several different scenarios.
Diversifying Sparsity Using Variational Determinantal Point Processes
We propose a novel diverse feature selection method based on determinantal point processes (DPPs). Our model enables one to flexibly define diversity based on the covariance of features (similar to orthogonal matching pursuit) or alternatively based on side information. We introduce our approach in the context of Bayesian sparse regression, employing a DPP as a variational approximation to the true spike and slab posterior distribution. We subsequently show how this variational DPP approximation generalizes and extends mean-field approximation, and can be learned efficiently by exploiting the fast sampling properties of DPPs. Our motivating application comes from bioinformatics, where we aim to identify a diverse set of genes whose expression profiles predict a tumor type where the diversity is defined with respect to a gene-gene interaction network. We also explore an application in spatial statistics. In both cases, we demonstrate that the proposed method yields significantly more diverse feature sets than classic sparse methods, without compromising accuracy.
A Convex Formulation for Spectral Shrunk Clustering
Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Thus, applying manifold information obtained from the original space to the clustering process in a low-dimensional subspace is prone to inferior performance. Aiming to address this issue, we propose a novel convex algorithm that mines the manifold structure in the low-dimensional subspace. In addition, our unified learning process makes the manifold learning particularly tailored for the clustering. Compared with other related methods, the proposed algorithm results in more structured clustering result. To validate the efficacy of the proposed algorithm, we perform extensive experiments on several benchmark datasets in comparison with some state-of-the-art clustering approaches. The experimental results demonstrate that the proposed algorithm has quite promising clustering performance.
On the High-dimensional Power of Linear-time Kernel Two-Sample Testing under Mean-difference Alternatives
Nonparametric two sample testing deals with the question of consistently deciding if two distributions are different, given samples from both, without making any parametric assumptions about the form of the distributions. The current literature is split into two kinds of tests - those which are consistent without any assumptions about how the distributions may differ (\textit{general} alternatives), and those which are designed to specifically test easier alternatives, like a difference in means (\textit{mean-shift} alternatives). The main contribution of this paper is to explicitly characterize the power of a popular nonparametric two sample test, designed for general alternatives, under a mean-shift alternative in the high-dimensional setting. Specifically, we explicitly derive the power of the linear-time Maximum Mean Discrepancy statistic using the Gaussian kernel, where the dimension and sample size can both tend to infinity at any rate, and the two distributions differ in their means. As a corollary, we find that if the signal-to-noise ratio is held constant, then the test's power goes to one if the number of samples increases faster than the dimension increases. This is the first explicit power derivation for a general nonparametric test in the high-dimensional setting, and also the first analysis of how tests designed for general alternatives perform when faced with easier ones.
Vision and Learning for Deliberative Monocular Cluttered Flight
Cameras provide a rich source of information while being passive, cheap and lightweight for small and medium Unmanned Aerial Vehicles (UAVs). In this work we present the first implementation of receding horizon control, which is widely used in ground vehicles, with monocular vision as the only sensing mode for autonomous UAV flight in dense clutter. We make it feasible on UAVs via a number of contributions: novel coupling of perception and control via relevant and diverse, multiple interpretations of the scene around the robot, leveraging recent advances in machine learning to showcase anytime budgeted cost-sensitive feature selection, and fast non-linear regression for monocular depth prediction. We empirically demonstrate the efficacy of our novel pipeline via real world experiments of more than 2 kms through dense trees with a quadrotor built from off-the-shelf parts. Moreover our pipeline is designed to combine information from other modalities like stereo and lidar as well if available.
A Hybrid Solution to improve Iteration Efficiency in the Distributed Learning
Currently, many machine learning algorithms contain lots of iterations. When it comes to existing large-scale distributed systems, some slave nodes may break down or have lower efficiency. Therefore traditional machine learning algorithm may fail because of the instability of distributed system.We presents a hybrid approach which not only own a high fault-tolerant but also achieve a balance of performance and efficiency.For each iteration, the result of slow machines will be abandoned. Then, we discuss the relationship between accuracy and abandon rate. Next we debate the convergence speed of this process. Finally, our experiments demonstrate our idea can dramatically reduce calculation time and be used in many platforms.
Scale-Invariant Convolutional Neural Networks
Even though convolutional neural networks (CNN) has achieved near-human performance in various computer vision tasks, its ability to tolerate scale variations is limited. The popular practise is making the model bigger first, and then train it with data augmentation using extensive scale-jittering. In this paper, we propose a scaleinvariant convolutional neural network (SiCNN), a modeldesigned to incorporate multi-scale feature exaction and classification into the network structure. SiCNN uses a multi-column architecture, with each column focusing on a particular scale. Unlike previous multi-column strategies, these columns share the same set of filter parameters by a scale transformation among them. This design deals with scale variation without blowing up the model size. Experimental results show that SiCNN detects features at various scales, and the classification result exhibits strong robustness against object scale variations.
Big Learning with Bayesian Methods
Explosive growth in data and availability of cheap computing resources have sparked increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms, systems, and applications with Big Data. Bayesian methods represent one important class of statistic methods for machine learning, with substantial recent developments on adaptive, flexible and scalable Bayesian learning. This article provides a survey of the recent advances in Big learning with Bayesian methods, termed Big Bayesian Learning, including nonparametric Bayesian methods for adaptively inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior regularization, and scalable algorithms and systems based on stochastic subsampling and distributed computing for dealing with large-scale applications.
Mutual Information-Based Unsupervised Feature Transformation for Heterogeneous Feature Subset Selection
Conventional mutual information (MI) based feature selection (FS) methods are unable to handle heterogeneous feature subset selection properly because of data format differences or estimation methods of MI between feature subset and class label. A way to solve this problem is feature transformation (FT). In this study, a novel unsupervised feature transformation (UFT) which can transform non-numerical features into numerical features is developed and tested. The UFT process is MI-based and independent of class label. MI-based FS algorithms, such as Parzen window feature selector (PWFS), minimum redundancy maximum relevance feature selection (mRMR), and normalized MI feature selection (NMIFS), can all adopt UFT for pre-processing of non-numerical features. Unlike traditional FT methods, the proposed UFT is unbiased while PWFS is utilized to its full advantage. Simulations and analyses of large-scale datasets showed that feature subset selected by the integrated method, UFT-PWFS, outperformed other FT-FS integrated methods in classification accuracy.
Distributed Coordinate Descent for L1-regularized Logistic Regression
Solving logistic regression with L1-regularization in distributed settings is an important problem. This problem arises when training dataset is very large and cannot fit the memory of a single machine. We present d-GLMNET, a new algorithm solving logistic regression with L1-regularization in the distributed settings. We empirically show that it is superior over distributed online learning via truncated gradient.
Consistency of Cheeger and Ratio Graph Cuts
This paper establishes the consistency of a family of graph-cut-based algorithms for clustering of data clouds. We consider point clouds obtained as samples of a ground-truth measure. We investigate approaches to clustering based on minimizing objective functionals defined on proximity graphs of the given sample. Our focus is on functionals based on graph cuts like the Cheeger and ratio cuts. We show that minimizers of the these cuts converge as the sample size increases to a minimizer of a corresponding continuum cut (which partitions the ground truth measure). Moreover, we obtain sharp conditions on how the connectivity radius can be scaled with respect to the number of sample points for the consistency to hold. We provide results for two-way and for multiway cuts. Furthermore we provide numerical experiments that illustrate the results and explore the optimality of scaling in dimension two.
A Latent Source Model for Online Collaborative Filtering
Despite the prevalence of collaborative filtering in recommendation systems, there has been little theoretical development on why and how well it works, especially in the "online" setting, where items are recommended to users over time. We address this theoretical gap by introducing a model for online recommendation systems, cast item recommendation under the model as a learning problem, and analyze the performance of a cosine-similarity collaborative filtering method. In our model, each of $n$ users either likes or dislikes each of $m$ items. We assume there to be $k$ types of users, and all the users of a given type share a common string of probabilities determining the chance of liking each item. At each time step, we recommend an item to each user, where a key distinction from related bandit literature is that once a user consumes an item (e.g., watches a movie), then that item cannot be recommended to the same user again. The goal is to maximize the number of likable items recommended to users over time. Our main result establishes that after nearly $\log(km)$ initial learning time steps, a simple collaborative filtering algorithm achieves essentially optimal performance without knowing $k$. The algorithm has an exploitation step that uses cosine similarity and two types of exploration steps, one to explore the space of items (standard in the literature) and the other to explore similarity between users (novel to this work).
Noise Benefits in Expectation-Maximization Algorithms
This dissertation shows that careful injection of noise into sample data can substantially speed up Expectation-Maximization algorithms. Expectation-Maximization algorithms are a class of iterative algorithms for extracting maximum likelihood estimates from corrupted or incomplete data. The convergence speed-up is an example of a noise benefit or "stochastic resonance" in statistical signal processing. The dissertation presents derivations of sufficient conditions for such noise-benefits and demonstrates the speed-up in some ubiquitous signal-processing algorithms. These algorithms include parameter estimation for mixture models, the $k$-means clustering algorithm, the Baum-Welch algorithm for training hidden Markov models, and backpropagation for training feedforward artificial neural networks. This dissertation also analyses the effects of data and model corruption on the more general Bayesian inference estimation framework. The main finding is a theorem guaranteeing that uniform approximators for Bayesian model functions produce uniform approximators for the posterior pdf via Bayes theorem. This result also applies to hierarchical and multidimensional Bayesian models.
One Vector is Not Enough: Entity-Augmented Distributional Semantics for Discourse Relations
Discourse relations bind smaller linguistic units into coherent texts. However, automatically identifying discourse relations is difficult, because it requires understanding the semantics of the linked arguments. A more subtle challenge is that it is not enough to represent the meaning of each argument of a discourse relation, because the relation may depend on links between lower-level components, such as entity mentions. Our solution computes distributional meaning representations by composition up the syntactic parse tree. A key difference from previous work on compositional distributional semantics is that we also compute representations for entity mentions, using a novel downward compositional pass. Discourse relations are predicted from the distributional representations of the arguments, and also of their coreferent entity mentions. The resulting system obtains substantial improvements over the previous state-of-the-art in predicting implicit discourse relations in the Penn Discourse Treebank.
LABR: A Large Scale Arabic Sentiment Analysis Benchmark
We introduce LABR, the largest sentiment analysis dataset to-date for the Arabic language. It consists of over 63,000 book reviews, each rated on a scale of 1 to 5 stars. We investigate the properties of the dataset, and present its statistics. We explore using the dataset for two tasks: (1) sentiment polarity classification; and (2) ratings classification. Moreover, we provide standard splits of the dataset into training, validation and testing, for both polarity and ratings classification, in both balanced and unbalanced settings. We extend our previous work by performing a comprehensive analysis on the dataset. In particular, we perform an extended survey of the different classifiers typically used for the sentiment polarity classification problem. We also construct a sentiment lexicon from the dataset that contains both single and compound sentiment words and we explore its effectiveness. We make the dataset and experimental details publicly available.
Accelerated Parallel Optimization Methods for Large Scale Machine Learning
The growing amount of high dimensional data in different machine learning applications requires more efficient and scalable optimization algorithms. In this work, we consider combining two techniques, parallelism and Nesterov's acceleration, to design faster algorithms for L1-regularized loss. We first simplify BOOM, a variant of gradient descent, and study it in a unified framework, which allows us to not only propose a refined measurement of sparsity to improve BOOM, but also show that BOOM is provably slower than FISTA. Moving on to parallel coordinate descent methods, we then propose an efficient accelerated version of Shotgun, improving the convergence rate from $O(1/t)$ to $O(1/t^2)$. Our algorithm enjoys a concise form and analysis compared to previous work, and also allows one to study several connected work in a unified way.
Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data
We propose an efficient family of algorithms to learn the parameters of a Bayesian network from incomplete data. In contrast to textbook approaches such as EM and the gradient method, our approach is non-iterative, yields closed form parameter estimates, and eliminates the need for inference in a Bayesian network. Our approach provides consistent parameter estimates for missing data problems that are MCAR, MAR, and in some cases, MNAR. Empirically, our approach is orders of magnitude faster than EM (as our approach requires no inference). Given sufficient data, we learn parameters that can be orders of magnitude more accurate.
Localized Complexities for Transductive Learning
We show two novel concentration inequalities for suprema of empirical processes when sampling without replacement, which both take the variance of the functions into account. While these inequalities may potentially have broad applications in learning theory in general, we exemplify their significance by studying the transductive setting of learning theory. For which we provide the first excess risk bounds based on the localized complexity of the hypothesis class, which can yield fast rates of convergence also in the transductive learning setting. We give a preliminary analysis of the localized complexities for the prominent case of kernel classes.
Heuristics for Exact Nonnegative Matrix Factorization
The exact nonnegative matrix factorization (exact NMF) problem is the following: given an $m$-by-$n$ nonnegative matrix $X$ and a factorization rank $r$, find, if possible, an $m$-by-$r$ nonnegative matrix $W$ and an $r$-by-$n$ nonnegative matrix $H$ such that $X = WH$. In this paper, we propose two heuristics for exact NMF, one inspired from simulated annealing and the other from the greedy randomized adaptive search procedure. We show that these two heuristics are able to compute exact nonnegative factorizations for several classes of nonnegative matrices (namely, linear Euclidean distance matrices, slack matrices, unique-disjointness matrices, and randomly generated matrices) and as such demonstrate their superiority over standard multi-start strategies. We also consider a hybridization between these two heuristics that allows us to combine the advantages of both methods. Finally, we discuss the use of these heuristics to gain insight on the behavior of the nonnegative rank, i.e., the minimum factorization rank such that an exact NMF exists. In particular, we disprove a conjecture on the nonnegative rank of a Kronecker product, propose a new upper bound on the extension complexity of generic $n$-gons and conjecture the exact value of (i) the extension complexity of regular $n$-gons and (ii) the nonnegative rank of a submatrix of the slack matrix of the correlation polytope.
A Chasm Between Identity and Equivalence Testing with Conditional Queries
A recent model for property testing of probability distributions (Chakraborty et al., ITCS 2013, Canonne et al., SICOMP 2015) enables tremendous savings in the sample complexity of testing algorithms, by allowing them to condition the sampling on subsets of the domain. In particular, Canonne, Ron, and Servedio (SICOMP 2015) showed that, in this setting, testing identity of an unknown distribution $D$ (whether $D=D^\ast$ for an explicitly known $D^\ast$) can be done with a constant number of queries, independent of the support size $n$ -- in contrast to the required $\Omega(\sqrt{n})$ in the standard sampling model. It was unclear whether the same stark contrast exists for the case of testing equivalence, where both distributions are unknown. While Canonne et al. established a $\mathrm{poly}(\log n)$-query upper bound for equivalence testing, very recently brought down to $\tilde O(\log\log n)$ by Falahatgar et al. (COLT 2015), whether a dependence on the domain size $n$ is necessary was still open, and explicitly posed by Fischer at the Bertinoro Workshop on Sublinear Algorithms (2014). We show that any testing algorithm for equivalence must make $\Omega(\sqrt{\log\log n})$ queries in the conditional sampling model. This demonstrates a gap between identity and equivalence testing, absent in the standard sampling model (where both problems have sampling complexity $n^{\Theta(1)}$). We also obtain results on the query complexity of uniformity testing and support-size estimation with conditional samples. We answer a question of Chakraborty et al. (ITCS 2013) showing that non-adaptive uniformity testing indeed requires $\Omega(\log n)$ queries in the conditional model. For the related problem of support-size estimation, we provide both adaptive and non-adaptive algorithms, with query complexities $\mathrm{poly}(\log\log n)$ and $\mathrm{poly}(\log n)$, respectively.
Signal Recovery on Graphs: Variation Minimization
We consider the problem of signal recovery on graphs as graphs model data with complex structure as signals on a graph. Graph signal recovery implies recovery of one or multiple smooth graph signals from noisy, corrupted, or incomplete measurements. We propose a graph signal model and formulate signal recovery as a corresponding optimization problem. We provide a general solution by using the alternating direction methods of multipliers. We next show how signal inpainting, matrix completion, robust principal component analysis, and anomaly detection all relate to graph signal recovery, and provide corresponding specific solutions and theoretical analysis. Finally, we validate the proposed methods on real-world recovery problems, including online blog classification, bridge condition identification, temperature estimation, recommender system, and expert opinion combination of online blog classification.
Metrics for Probabilistic Geometries
We investigate the geometrical structure of probabilistic generative dimensionality reduction models using the tools of Riemannian geometry. We explicitly define a distribution over the natural metric given by the models. We provide the necessary algorithms to compute expected metric tensors where the distribution over mappings is given by a Gaussian process. We treat the corresponding latent variable model as a Riemannian manifold and we use the expectation of the metric under the Gaussian process prior to define interpolating paths and measure distance between latent points. We show how distances that respect the expected metric lead to more appropriate generation of new data.
Pattern Decomposition with Complex Combinatorial Constraints: Application to Materials Discovery
Identifying important components or factors in large amounts of noisy data is a key problem in machine learning and data mining. Motivated by a pattern decomposition problem in materials discovery, aimed at discovering new materials for renewable energy, e.g. for fuel and solar cells, we introduce CombiFD, a framework for factor based pattern decomposition that allows the incorporation of a-priori knowledge as constraints, including complex combinatorial constraints. In addition, we propose a new pattern decomposition algorithm, called AMIQO, based on solving a sequence of (mixed-integer) quadratic programs. Our approach considerably outperforms the state of the art on the materials discovery problem, scaling to larger datasets and recovering more precise and physically meaningful decompositions. We also show the effectiveness of our approach for enforcing background knowledge on other application domains.
Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems
In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with $m$ constraints and matrices of size $d$ by $d$ is roughly reduced from $\mathcal{O}(m^3+md^3+m^2d^2)$ to $\mathcal{O}(d^3)$ ($m>d$ in our case).
Graph Sensitive Indices for Comparing Clusterings
This report discusses two new indices for comparing clusterings of a set of points. The motivation for looking at new ways for comparing clusterings stems from the fact that the existing clustering indices are based on set cardinality alone and do not consider the positions of data points. The new indices, namely, the Random Walk index (RWI) and Variation of Information with Neighbors (VIN), are both inspired by the clustering metric Variation of Information (VI). VI possesses some interesting theoretical properties which are also desirable in a metric for comparing clusterings. We define our indices and discuss some of their explored properties which appear relevant for a clustering index. We also include the results of these indices on clusterings of some example data sets.
Learning Stochastic Recurrent Networks
Leveraging advances in variational inference, we propose to enhance recurrent neural networks with latent variables, resulting in Stochastic Recurrent Networks (STORNs). The model i) can be trained with stochastic gradient methods, ii) allows structured and multi-modal conditionals at each time step, iii) features a reliable estimator of the marginal likelihood and iv) is a generalisation of deterministic recurrent neural networks. We evaluate the method on four polyphonic musical data sets and motion capture data.
On the Expressive Efficiency of Sum Product Networks
Sum Product Networks (SPNs) are a recently developed class of deep generative models which compute their associated unnormalized density functions using a special type of arithmetic circuit. When certain sufficient conditions, called the decomposability and completeness conditions (or "D&C" conditions), are imposed on the structure of these circuits, marginal densities and other useful quantities, which are typically intractable for other deep generative models, can be computed by what amounts to a single evaluation of the network (which is a property known as "validity"). However, the effect that the D&C conditions have on the capabilities of D&C SPNs is not well understood. In this work we analyze the D&C conditions, expose the various connections that D&C SPNs have with multilinear arithmetic circuits, and consider the question of how well they can capture various distributions as a function of their size and depth. Among our various contributions is a result which establishes the existence of a relatively simple distribution with fully tractable marginal densities which cannot be efficiently captured by D&C SPNs of any depth, but which can be efficiently captured by various other deep generative models. We also show that with each additional layer of depth permitted, the set of distributions which can be efficiently captured by D&C SPNs grows in size. This kind of "depth hierarchy" property has been widely conjectured to hold for various deep models, but has never been proven for any of them. Some of our other contributions include a new characterization of the D&C conditions as sufficient and necessary ones for a slightly strengthened notion of validity, and various state-machine characterizations of the types of computations that can be performed efficiently by D&C SPNs.
Classification with Noisy Labels by Importance Reweighting
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability $\rho\in[0,0.5)$, and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate $\rho$. We show that the rate is upper bounded by the conditional probability $P(y|x)$ of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
From neural PCA to deep unsupervised learning
A network supporting deep unsupervised learning is presented. The network is an autoencoder with lateral shortcut connections from the encoder to decoder at each level of the hierarchy. The lateral shortcut connections allow the higher levels of the hierarchy to focus on abstract invariant features. While standard autoencoders are analogous to latent variable models with a single layer of stochastic variables, the proposed network is analogous to hierarchical latent variables models. Learning combines denoising autoencoder and denoising sources separation frameworks. Each layer of the network contributes to the cost function a term which measures the distance of the representations produced by the encoder and the decoder. Since training signals originate from all levels of the network, all layers can learn efficiently even in deep networks. The speedup offered by cost terms from higher levels of the hierarchy and the ability to learn invariant features are demonstrated in experiments.
Learning with Algebraic Invariances, and the Invariant Kernel Trick
When solving data analysis problems it is important to integrate prior knowledge and/or structural invariances. This paper contributes by a novel framework for incorporating algebraic invariance structure into kernels. In particular, we show that algebraic properties such as sign symmetries in data, phase independence, scaling etc. can be included easily by essentially performing the kernel trick twice. We demonstrate the usefulness of our theory in simulations on selected applications such as sign-invariant spectral clustering and underdetermined ICA.
Predicting clicks in online display advertising with latent features and side-information
We review a method for click-through rate prediction based on the work of Menon et al. [11], which combines collaborative filtering and matrix factorization with a side-information model and fuses the outputs to proper probabilities in [0,1]. In addition we provide details, both for the modeling as well as the experimental part, that are not found elsewhere. We rigorously test the performance on several test data sets from consecutive days in a click-through rate prediction setup, in a manner which reflects a real-world pipeline. Our results confirm that performance can be increased using latent features, albeit the differences in the measures are small but significant.
Bus Travel Time Predictions Using Additive Models
Many factors can affect the predictability of public bus services such as traffic, weather and local events. Other aspects, such as day of week or hour of day, may influence bus travel times as well, either directly or in conjunction with other variables. However, the exact nature of such relationships between travel times and predictor variables is, in most situations, not known. In this paper we develop a framework that allows for flexible modeling of bus travel times through the use of Additive Models. In particular, we model travel times as a sum of linear as well as nonlinear terms that are modeled as smooth functions of predictor variables. The proposed class of models provides a principled statistical framework that is highly flexible in terms of model building. The experimental results demonstrate uniformly superior performance of our best model as compared to previous prediction methods when applied to a very large GPS data set obtained from buses operating in the city of Rio de Janeiro.
Guaranteed Matrix Completion via Non-convex Factorization
Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization can be solved very efficiently by standard algorithms in practice. However, due to the non-convexity caused by the factorization model, there is a limited theoretical understanding of this formulation. In this paper, we establish a theoretical guarantee for the factorization formulation to correctly recover the underlying low-rank matrix. In particular, we show that under similar conditions to those in previous works, many standard optimization algorithms converge to the global optima of a factorization formulation, and recover the true low-rank matrix. We study the local geometry of a properly regularized factorization formulation and prove that any stationary point in a certain local region is globally optimal. A major difference of our work from the existing results is that we do not need resampling in either the algorithm or its analysis. Compared to other works on nonconvex optimization, one extra difficulty lies in analyzing nonconvex constrained optimization when the constraint (or the corresponding regularizer) is not "consistent" with the gradient direction. One technical contribution is the perturbation analysis for non-symmetric matrix factorization.
Multiple Instance Reinforcement Learning for Efficient Weakly-Supervised Detection in Images
State-of-the-art visual recognition and detection systems increasingly rely on large amounts of training data and complex classifiers. Therefore it becomes increasingly expensive both to manually annotate datasets and to keep running times at levels acceptable for practical applications. In this paper, we propose two solutions to address these issues. First, we introduce a weakly supervised, segmentation-based approach to learn accurate detectors and image classifiers from weak supervisory signals that provide only approximate constraints on target localization. We illustrate our system on the problem of action detection in static images (Pascal VOC Actions 2012), using human visual search patterns as our training signal. Second, inspired from the saccade-and-fixate operating principle of the human visual system, we use reinforcement learning techniques to train efficient search models for detection. Our sequential method is weakly supervised and general (it does not require eye movements), finds optimal search strategies for any given detection confidence function and achieves performance similar to exhaustive sliding window search at a fraction of its computational cost.
Constant Step Size Least-Mean-Square: Bias-Variance Trade-offs and Optimal Sampling Distributions
We consider the least-squares regression problem and provide a detailed asymptotic analysis of the performance of averaged constant-step-size stochastic gradient descent (a.k.a. least-mean-squares). In the strongly-convex case, we provide an asymptotic expansion up to explicit exponentially decaying terms. Our analysis leads to new insights into stochastic approximation algorithms: (a) it gives a tighter bound on the allowed step-size; (b) the generalization error may be divided into a variance term which is decaying as O(1/n), independently of the step-size $\gamma$, and a bias term that decays as O(1/$\gamma$ 2 n 2); (c) when allowing non-uniform sampling, the choice of a good sampling density depends on whether the variance or bias terms dominate. In particular, when the variance term dominates, optimal sampling densities do not lead to much gain, while when the bias term dominates, we can choose larger step-sizes that leads to significant improvements.
Empirical Q-Value Iteration
We propose a new simple and natural algorithm for learning the optimal Q-value function of a discounted-cost Markov Decision Process (MDP) when the transition kernels are unknown. Unlike the classical learning algorithms for MDPs, such as Q-learning and actor-critic algorithms, this algorithm doesn't depend on a stochastic approximation-based method. We show that our algorithm, which we call the empirical Q-value iteration (EQVI) algorithm, converges to the optimal Q-value function. We also give a rate of convergence or a non-asymptotic sample complexity bound, and also show that an asynchronous (or online) version of the algorithm will also work. Preliminary experimental results suggest a faster rate of convergence to a ball park estimate for our algorithm compared to stochastic approximation-based algorithms.
The Loss Surfaces of Multilayer Networks
We study the connection between the highly non-convex loss function of a simple model of the fully-connected feed-forward neural network and the Hamiltonian of the spherical spin-glass model under the assumptions of: i) variable independence, ii) redundancy in network parametrization, and iii) uniformity. These assumptions enable us to explain the complexity of the fully decoupled neural network through the prism of the results from random matrix theory. We show that for large-size decoupled networks the lowest critical values of the random loss function form a layered structure and they are located in a well-defined band lower-bounded by the global minimum. The number of local minima outside that band diminishes exponentially with the size of the network. We empirically verify that the mathematical model exhibits similar behavior as the computer simulations, despite the presence of high dependencies in real networks. We conjecture that both simulated annealing and SGD converge to the band of low critical points, and that all critical points found there are local minima of high quality measured by the test error. This emphasizes a major difference between large- and small-size networks where for the latter poor quality local minima have non-zero probability of being recovered. Finally, we prove that recovering the global minimum becomes harder as the network size increases and that it is in practice irrelevant as global minimum often leads to overfitting.
An Infra-Structure for Performance Estimation and Experimental Comparison of Predictive Models in R
This document describes an infra-structure provided by the R package performanceEstimation that allows to estimate the predictive performance of different approaches (workflows) to predictive tasks. The infra-structure is generic in the sense that it can be used to estimate the values of any performance metrics, for any workflow on different predictive tasks, namely, classification, regression and time series tasks. The package also includes several standard workflows that allow users to easily set up their experiments limiting the amount of work and information they need to provide. The overall goal of the infra-structure provided by our package is to facilitate the task of estimating the predictive performance of different modeling approaches to predictive tasks in the R environment.
Low-Rank Approximation and Completion of Positive Tensors
Unlike the matrix case, computing low-rank approximations of tensors is NP-hard and numerically ill-posed in general. Even the best rank-1 approximation of a tensor is NP-hard. In this paper, we use convex optimization to develop polynomial-time algorithms for low-rank approximation and completion of positive tensors. Our approach is to use algebraic topology to define a new (numerically well-posed) decomposition for positive tensors, which we show is equivalent to the standard tensor decomposition in important cases. Though computing this decomposition is a nonconvex optimization problem, we prove it can be exactly reformulated as a convex optimization problem. This allows us to construct polynomial-time randomized algorithms for computing this decomposition and for solving low-rank tensor approximation problems. Among the consequences is that best rank-1 approximations of positive tensors can be computed in polynomial time. Our framework is next extended to the tensor completion problem, where noisy entries of a tensor are observed and then used to estimate missing entries. We provide a polynomial-time algorithm that for specific cases requires a polynomial (in tensor order) number of measurements, in contrast to existing approaches that require an exponential number of measurements. These algorithms are extended to exploit sparsity in the tensor to reduce the number of measurements needed. We conclude by providing a novel interpretation of statistical regression problems with categorical variables as tensor completion problems, and numerical examples with synthetic data and data from a bioengineered metabolic network show the improved performance of our approach on this problem.
Effective Use of Word Order for Text Categorization with Convolutional Neural Networks
Convolutional neural network (CNN) is a neural network that can make use of the internal structure of data such as the 2D structure of image data. This paper studies CNN on text categorization to exploit the 1D structure (namely, word order) of text data for accurate prediction. Instead of using low-dimensional word vectors as input as is often done, we directly apply CNN to high-dimensional text data, which leads to directly learning embedding of small text regions for use in classification. In addition to a straightforward adaptation of CNN from image to text, a simple but new variation which employs bag-of-word conversion in the convolution layer is proposed. An extension to combine multiple convolution layers is also explored for higher accuracy. The experiments demonstrate the effectiveness of our approach in comparison with state-of-the-art methods.
Learning interpretable models of phenotypes from whole genome sequences with the Set Covering Machine
The increased affordability of whole genome sequencing has motivated its use for phenotypic studies. We address the problem of learning interpretable models for discrete phenotypes from whole genomes. We propose a general approach that relies on the Set Covering Machine and a k-mer representation of the genomes. We show results for the problem of predicting the resistance of Pseudomonas Aeruginosa, an important human pathogen, against 4 antibiotics. Our results demonstrate that extremely sparse models which are biologically relevant can be learnt using this approach.
Easy Hyperparameter Search Using Optunity
Optunity is a free software package dedicated to hyperparameter optimization. It contains various types of solvers, ranging from undirected methods to direct search, particle swarm and evolutionary optimization. The design focuses on ease of use, flexibility, code clarity and interoperability with existing software in all machine learning environments. Optunity is written in Python and contains interfaces to environments such as R and MATLAB. Optunity uses a BSD license and is freely available online at http://www.optunity.net.
Highly comparative fetal heart rate analysis
A database of fetal heart rate (FHR) time series measured from 7221 patients during labor is analyzed with the aim of learning the types of features of these recordings that are informative of low cord pH. Our 'highly comparative' analysis involves extracting over 9000 time-series analysis features from each FHR time series, including measures of autocorrelation, entropy, distribution, and various model fits. This diverse collection of features was developed in previous work, and is publicly available. We describe five features that most accurately classify a balanced training set of 59 'low pH' and 59 'normal pH' FHR recordings. We then describe five of the features with the strongest linear correlation to cord pH across the full dataset of FHR time series. The features identified in this work may be used as part of a system for guiding intervention during labor in future. This work successfully demonstrates the utility of comparing across a large, interdisciplinary literature on time-series analysis to automatically contribute new scientific results for specific biomedical signal processing challenges.
New insights and perspectives on the natural gradient method
Natural gradient descent is an optimization method traditionally motivated from the perspective of information geometry, and works well for many applications as an alternative to stochastic gradient descent. In this paper we critically analyze this method and its properties, and show how it can be viewed as a type of 2nd-order optimization method, with the Fisher information matrix acting as a substitute for the Hessian. In many important cases, the Fisher information matrix is shown to be equivalent to the Generalized Gauss-Newton matrix, which both approximates the Hessian, but also has certain properties that favor its use over the Hessian. This perspective turns out to have significant implications for the design of a practical and robust natural gradient optimizer, as it motivates the use of techniques like trust regions and Tikhonov regularization. Additionally, we make a series of contributions to the understanding of natural gradient and 2nd-order methods, including: a thorough analysis of the convergence speed of stochastic natural gradient descent (and more general stochastic 2nd-order methods) as applied to convex quadratics, a critical examination of the oft-used "empirical" approximation of the Fisher matrix, and an analysis of the (approximate) parameterization invariance property possessed by natural gradient methods (which we show also holds for certain other curvature, but notably not the Hessian).
Deep Distributed Random Samplings for Supervised Learning: An Alternative to Random Forests?
In (\cite{zhang2014nonlinear,zhang2014nonlinear2}), we have viewed machine learning as a coding and dimensionality reduction problem, and further proposed a simple unsupervised dimensionality reduction method, entitled deep distributed random samplings (DDRS). In this paper, we further extend it to supervised learning incrementally. The key idea here is to incorporate label information into the coding process by reformulating that each center in DDRS has multiple output units indicating which class the center belongs to. The supervised learning method seems somewhat similar with random forests (\cite{breiman2001random}), here we emphasize their differences as follows. (i) Each layer of our method considers the relationship between part of the data points in training data with all training data points, while random forests focus on building each decision tree on only part of training data points independently. (ii) Our method builds gradually-narrowed network by sampling less and less data points, while random forests builds gradually-narrowed network by merging subclasses. (iii) Our method is trained more straightforward from bottom layer to top layer, while random forests build each tree from top layer to bottom layer by splitting. (iv) Our method encodes output targets implicitly in sparse codes, while random forests encode output targets by remembering the class attributes of the activated nodes. Therefore, our method is a simpler, more straightforward, and maybe a better alternative choice, though both methods use two very basic elements---randomization and nearest neighbor optimization---as the core. This preprint is used to protect the incremental idea from (\cite{zhang2014nonlinear,zhang2014nonlinear2}). Full empirical evaluation will be announced carefully later.
Curriculum Learning of Multiple Tasks
Sharing information between multiple tasks enables algorithms to achieve good generalization performance even from small amounts of training data. However, in a realistic scenario of multi-task learning not all tasks are equally related to each other, hence it could be advantageous to transfer information only between the most related tasks. In this work we propose an approach that processes multiple tasks in a sequence with sharing between subsequent tasks instead of solving all tasks jointly. Subsequently, we address the question of curriculum learning of tasks, i.e. finding the best order of tasks to be learned. Our approach is based on a generalization bound criterion for choosing the task order that optimizes the average expected classification performance over all tasks. Our experimental results show that learning multiple related tasks sequentially can be more effective than learning them jointly, the order in which tasks are being solved affects the overall performance, and that our model is able to automatically discover the favourable order of tasks.
Structure learning of antiferromagnetic Ising models
In this paper we investigate the computational complexity of learning the graph structure underlying a discrete undirected graphical model from i.i.d. samples. We first observe that the notoriously difficult problem of learning parities with noise can be captured as a special case of learning graphical models. This leads to an unconditional computational lower bound of $\Omega (p^{d/2})$ for learning general graphical models on $p$ nodes of maximum degree $d$, for the class of so-called statistical algorithms recently introduced by Feldman et al (2013). The lower bound suggests that the $O(p^d)$ runtime required to exhaustively search over neighborhoods cannot be significantly improved without restricting the class of models. Aside from structural assumptions on the graph such as it being a tree, hypertree, tree-like, etc., many recent papers on structure learning assume that the model has the correlation decay property. Indeed, focusing on ferromagnetic Ising models, Bento and Montanari (2009) showed that all known low-complexity algorithms fail to learn simple graphs when the interaction strength exceeds a number related to the correlation decay threshold. Our second set of results gives a class of repelling (antiferromagnetic) models that have the opposite behavior: very strong interaction allows efficient learning in time $O(p^2)$. We provide an algorithm whose performance interpolates between $O(p^2)$ and $O(p^{d+2})$ depending on the strength of the repulsion.
Skip-gram Language Modeling Using Sparse Non-negative Matrix Probability Estimation
We present a novel family of language model (LM) estimation techniques named Sparse Non-negative Matrix (SNM) estimation. A first set of experiments empirically evaluating it on the One Billion Word Benchmark shows that SNM $n$-gram LMs perform almost as well as the well-established Kneser-Ney (KN) models. When using skip-gram features the models are able to match the state-of-the-art recurrent neural network (RNN) LMs; combining the two modeling techniques yields the best known result on the benchmark. The computational advantages of SNM over both maximum entropy and RNN LM estimation are probably its main strength, promising an approach that has the same flexibility in combining arbitrary features effectively and yet should scale to very large amounts of data as gracefully as $n$-gram LMs do.
On the String Kernel Pre-Image Problem with Applications in Drug Discovery
The pre-image problem has to be solved during inference by most structured output predictors. For string kernels, this problem corresponds to finding the string associated to a given input. An algorithm capable of solving or finding good approximations to this problem would have many applications in computational biology and other fields. This work uses a recent result on combinatorial optimization of linear predictors based on string kernels to develop, for the pre-image, a low complexity upper bound valid for many string kernels. This upper bound is used with success in a branch and bound searching algorithm. Applications and results in the discovery of druggable peptides are presented and discussed.
Information Exchange and Learning Dynamics over Weakly-Connected Adaptive Networks
The paper examines the learning mechanism of adaptive agents over weakly-connected graphs and reveals an interesting behavior on how information flows through such topologies. The results clarify how asymmetries in the exchange of data can mask local information at certain agents and make them totally dependent on other agents. A leader-follower relationship develops with the performance of some agents being fully determined by the performance of other agents that are outside their domain of influence. This scenario can arise, for example, due to intruder attacks by malicious agents or as the result of failures by some critical links. The findings in this work help explain why strong-connectivity of the network topology, adaptation of the combination weights, and clustering of agents are important ingredients to equalize the learning abilities of all agents against such disturbances. The results also clarify how weak-connectivity can be helpful in reducing the effect of outlier data on learning performance.
Metric Learning Driven Multi-Task Structured Output Optimization for Robust Keypoint Tracking
As an important and challenging problem in computer vision and graphics, keypoint-based object tracking is typically formulated in a spatio-temporal statistical learning framework. However, most existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency within frames, and discriminative feature construction. To address this issue, we propose a robust keypoint tracker based on spatio-temporal multi-task structured output optimization driven by discriminative metric learning. Consequently, temporal model coherence is characterized by multi-task structured keypoint model learning over several adjacent frames, while spatial model consistency is modeled by solving a geometric verification based structured learning problem. Discriminative feature construction is enabled by metric learning to ensure the intra-class compactness and inter-class separability. Finally, the above three modules are simultaneously optimized in a joint learning scheme. Experimental results have demonstrated the effectiveness of our tracker.
LightLDA: Big Topic Models on Modest Compute Clusters
When building large-scale machine learning (ML) programs, such as big topic models or deep neural nets, one usually assumes such tasks can only be attempted with industrial-sized clusters with thousands of nodes, which are out of reach for most practitioners or academic researchers. We consider this challenge in the context of topic modeling on web-scale corpora, and show that with a modest cluster of as few as 8 machines, we can train a topic model with 1 million topics and a 1-million-word vocabulary (for a total of 1 trillion parameters), on a document collection with 200 billion tokens -- a scale not yet reported even with thousands of machines. Our major contributions include: 1) a new, highly efficient O(1) Metropolis-Hastings sampling algorithm, whose running cost is (surprisingly) agnostic of model size, and empirically converges nearly an order of magnitude faster than current state-of-the-art Gibbs samplers; 2) a structure-aware model-parallel scheme, which leverages dependencies within the topic model, yielding a sampling strategy that is frugal on machine memory and network communication; 3) a differential data-structure for model storage, which uses separate data structures for high- and low-frequency words to allow extremely large models to fit in memory, while maintaining high inference speed; and 4) a bounded asynchronous data-parallel scheme, which allows efficient distributed processing of massive data via a parameter server. Our distribution strategy is an instance of the model-and-data-parallel programming model underlying the Petuum framework for general distributed ML, and was implemented on top of the Petuum open-source system. We provide experimental evidence showing how this development puts massive models within reach on a small cluster while still enjoying proportional time cost reductions with increasing cluster size, in comparison with alternative options.