title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Zoom Better to See Clearer: Human and Object Parsing with Hierarchical Auto-Zoom Net
Parsing articulated objects, e.g. humans and animals, into semantic parts (e.g. body, head and arms, etc.) from natural images is a challenging and fundamental problem for computer vision. A big difficulty is the large variability of scale and location for objects and their corresponding parts. Even limited mistakes in estimating scale and location will degrade the parsing output and cause errors in boundary details. To tackle these difficulties, we propose a "Hierarchical Auto-Zoom Net" (HAZN) for object part parsing which adapts to the local scales of objects and parts. HAZN is a sequence of two "Auto-Zoom Net" (AZNs), each employing fully convolutional networks that perform two tasks: (1) predict the locations and scales of object instances (the first AZN) or their parts (the second AZN); (2) estimate the part scores for predicted object instance or part regions. Our model can adaptively "zoom" (resize) predicted image regions into their proper scales to refine the parsing. We conduct extensive experiments over the PASCAL part datasets on humans, horses, and cows. For humans, our approach significantly outperforms the state-of-the-arts by 5% mIOU and is especially better at segmenting small instances and small parts. We obtain similar improvements for parsing cows and horses over alternative methods. In summary, our strategy of first zooming into objects and then zooming into parts is very effective. It also enables us to process different regions of the image at different scales adaptively so that, for example, we do not need to waste computational resources scaling the entire image.
Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond
This paper presents a novel nonmyopic adaptive Gaussian process planning (GPP) framework endowed with a general class of Lipschitz continuous reward functions that can unify some active learning/sensing and Bayesian optimization criteria and offer practitioners some flexibility to specify their desired choices for defining new tasks/problems. In particular, it utilizes a principled Bayesian sequential decision problem framework for jointly and naturally optimizing the exploration-exploitation trade-off. In general, the resulting induced GPP policy cannot be derived exactly due to an uncountable set of candidate observations. A key contribution of our work here thus lies in exploiting the Lipschitz continuity of the reward functions to solve for a nonmyopic adaptive epsilon-optimal GPP (epsilon-GPP) policy. To plan in real time, we further propose an asymptotically optimal, branch-and-bound anytime variant of epsilon-GPP with performance guarantee. We empirically demonstrate the effectiveness of our epsilon-GPP policy and its anytime variant in Bayesian optimization and an energy harvesting task.
Near-Optimal Active Learning of Multi-Output Gaussian Processes
This paper addresses the problem of active learning of a multi-output Gaussian process (MOGP) model representing multiple types of coexisting correlated environmental phenomena. In contrast to existing works, our active learning problem involves selecting not just the most informative sampling locations to be observed but also the types of measurements at each selected location for minimizing the predictive uncertainty (i.e., posterior joint entropy) of a target phenomenon of interest given a sampling budget. Unfortunately, such an entropy criterion scales poorly in the numbers of candidate sampling locations and selected observations when optimized. To resolve this issue, we first exploit a structure common to sparse MOGP models for deriving a novel active learning criterion. Then, we exploit a relaxed form of submodularity property of our new criterion for devising a polynomial-time approximation algorithm that guarantees a constant-factor approximation of that achieved by the optimal set of selected observations. Empirical evaluation on real-world datasets shows that our proposed approach outperforms existing algorithms for active learning of MOGP and single-output GP models.
BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies
We propose BlackOut, an approximation algorithm to efficiently train massive recurrent neural network language models (RNNLMs) with million word vocabularies. BlackOut is motivated by using a discriminative loss, and we describe a new sampling strategy which significantly reduces computation while improving stability, sample efficiency, and rate of convergence. One way to understand BlackOut is to view it as an extension of the DropOut strategy to the output layer, wherein we use a discriminative training loss and a weighted sampling scheme. We also establish close connections between BlackOut, importance sampling, and noise contrastive estimation (NCE). Our experiments, on the recently released one billion word language modeling benchmark, demonstrate scalability and accuracy of BlackOut; we outperform the state-of-the art, and achieve the lowest perplexity scores on this dataset. Moreover, unlike other established methods which typically require GPUs or CPU clusters, we show that a carefully implemented version of BlackOut requires only 1-10 days on a single machine to train a RNNLM with a million word vocabulary and billions of parameters on one billion words. Although we describe BlackOut in the context of RNNLM training, it can be used to any networks with large softmax output layers.
ICU Patient Deterioration prediction: a Data-Mining Approach
A huge amount of medical data is generated every day, which presents a challenge in analysing these data. The obvious solution to this challenge is to reduce the amount of data without information loss. Dimension reduction is considered the most popular approach for reducing data size and also to reduce noise and redundancies in data. In this paper, we investigate the effect of feature selection in improving the prediction of patient deterioration in ICUs. We consider lab tests as features. Thus, choosing a subset of features would mean choosing the most important lab tests to perform. If the number of tests can be reduced by identifying the most important tests, then we could also identify the redundant tests. By omitting the redundant tests, observation time could be reduced and early treatment could be provided to avoid the risk. Additionally, unnecessary monetary cost would be avoided. Our approach uses state-ofthe- art feature selection for predicting ICU patient deterioration using the medical lab results. We apply our technique on the publicly available MIMIC-II database and show the effectiveness of the feature selection. We also provide a detailed analysis of the best features identified by our approach.
Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems
A long-term goal of machine learning is to build intelligent conversational agents. One recent popular approach is to train end-to-end models on a large amount of real dialog transcripts between humans (Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). However, this approach leaves many questions unanswered as an understanding of the precise successes and shortcomings of each model is hard to assess. A contrasting recent proposal are the bAbI tasks (Weston et al., 2015b) which are synthetic data that measure the ability of learning machines at various reasoning tasks over toy language. Unfortunately, those tests are very small and hence may encourage methods that do not scale. In this work, we propose a suite of new tasks of a much larger scale that attempt to bridge the gap between the two regimes. Choosing the domain of movies, we provide tasks that test the ability of models to answer factual questions (utilizing OMDB), provide personalization (utilizing MovieLens), carry short conversations about the two, and finally to perform on natural dialogs from Reddit. We provide a dataset covering 75k movie entities and with 3.5M training examples. We present results of various models on these tasks, and evaluate their performance.
Session-based Recommendations with Recurrent Neural Networks
We apply recurrent neural networks (RNN) on a new domain, namely recommender systems. Real-life recommender systems often face the problem of having to base recommendations only on short session-based data (e.g. a small sportsware website) instead of long user histories (as in the case of Netflix). In this situation the frequently praised matrix factorization approaches are not accurate. This problem is usually overcome in practice by resorting to item-to-item recommendations, i.e. recommending similar items. We argue that by modeling the whole session, more accurate recommendations can be provided. We therefore propose an RNN-based approach for session-based recommendations. Our approach also considers practical aspects of the task and introduces several modifications to classic RNNs such as a ranking loss function that make it more viable for this specific problem. Experimental results on two data-sets show marked improvements over widely used approaches.
Gradual DropIn of Layers to Train Very Deep Neural Networks
We introduce the concept of dynamically growing a neural network during training. In particular, an untrainable deep network starts as a trainable shallow network and newly added layers are slowly, organically added during training, thereby increasing the network's depth. This is accomplished by a new layer, which we call DropIn. The DropIn layer starts by passing the output from a previous layer (effectively skipping over the newly added layers), then increasingly including units from the new layers for both feedforward and backpropagation. We show that deep networks, which are untrainable with conventional methods, will converge with DropIn layers interspersed in the architecture. In addition, we demonstrate that DropIn provides regularization during training in an analogous way as dropout. Experiments are described with the MNIST dataset and various expanded LeNet architectures, CIFAR-10 dataset with its architecture expanded from 3 to 11 layers, and on the ImageNet dataset with the AlexNet architecture expanded to 13 layers and the VGG 16-layer architecture.
On the Linear Algebraic Structure of Distributed Word Representations
In this work, we leverage the linear algebraic structure of distributed word representations to automatically extend knowledge bases and allow a machine to learn new facts about the world. Our goal is to extract structured facts from corpora in a simpler manner, without applying classifiers or patterns, and using only the co-occurrence statistics of words. We demonstrate that the linear algebraic structure of word embeddings can be used to reduce data requirements for methods of learning facts. In particular, we demonstrate that words belonging to a common category, or pairs of words satisfying a certain relation, form a low-rank subspace in the projected space. We compute a basis for this low-rank subspace using singular value decomposition (SVD), then use this basis to discover new facts and to fit vectors for less frequent words which we do not yet have vectors for.
Online Semi-Supervised Learning with Deep Hybrid Boltzmann Machines and Denoising Autoencoders
Two novel deep hybrid architectures, the Deep Hybrid Boltzmann Machine and the Deep Hybrid Denoising Auto-encoder, are proposed for handling semi-supervised learning problems. The models combine experts that model relevant distributions at different levels of abstraction to improve overall predictive performance on discriminative tasks. Theoretical motivations and algorithms for joint learning for each are presented. We apply the new models to the domain of data-streams in work towards life-long learning. The proposed architectures show improved performance compared to a pseudo-labeled, drop-out rectifier network.
End-to-end Learning of Action Detection from Frame Glimpses in Videos
In this work we introduce a fully end-to-end approach for action detection in videos that learns to directly predict the temporal bounds of actions. Our intuition is that the process of detecting actions is naturally one of observation and refinement: observing moments in video, and refining hypotheses about when an action is occurring. Based on this insight, we formulate our model as a recurrent neural network-based agent that interacts with a video over time. The agent observes video frames and decides both where to look next and when to emit a prediction. Since backpropagation is not adequate in this non-differentiable setting, we use REINFORCE to learn the agent's decision policy. Our model achieves state-of-the-art results on the THUMOS'14 and ActivityNet datasets while observing only a fraction (2% or less) of the video frames.
Anvaya: An Algorithm and Case-Study on Improving the Goodness of Software Process Models generated by Mining Event-Log Data in Issue Tracking System
Issue Tracking Systems (ITS) such as Bugzilla can be viewed as Process Aware Information Systems (PAIS) generating event-logs during the life-cycle of a bug report. Process Mining consists of mining event logs generated from PAIS for process model discovery, conformance and enhancement. We apply process map discovery techniques to mine event trace data generated from ITS of open source Firefox browser project to generate and study process models. Bug life-cycle consists of diversity and variance. Therefore, the process models generated from the event-logs are spaghetti-like with large number of edges, inter-connections and nodes. Such models are complex to analyse and difficult to comprehend by a process analyst. We improve the Goodness (fitness and structural complexity) of the process models by splitting the event-log into homogeneous subsets by clustering structurally similar traces. We adapt the K-Medoid clustering algorithm with two different distance metrics: Longest Common Subsequence (LCS) and Dynamic Time Warping (DTW). We evaluate the goodness of the process models generated from the clusters using complexity and fitness metrics. We study back-forth \& self-loops, bug reopening, and bottleneck in the clusters obtained and show that clustering enables better analysis. We also propose an algorithm to automate the clustering process -the algorithm takes as input the event log and returns the best cluster set.
Detecting Road Surface Wetness from Audio: A Deep Learning Approach
We introduce a recurrent neural network architecture for automated road surface wetness detection from audio of tire-surface interaction. The robustness of our approach is evaluated on 785,826 bins of audio that span an extensive range of vehicle speeds, noises from the environment, road surface types, and pavement conditions including international roughness index (IRI) values from 25 in/mi to 1400 in/mi. The training and evaluation of the model are performed on different roads to minimize the impact of environmental and other external factors on the accuracy of the classification. We achieve an unweighted average recall (UAR) of 93.2% across all vehicle speeds including 0 mph. The classifier still works at 0 mph because the discriminating signal is present in the sound of other vehicles driving by.
ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation
We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally and vertically in both directions, encoding patches or activations, and providing relevant global information. Moreover, ReNet layers are stacked on top of pre-trained convolutional layers, benefiting from generic local features. Upsampling layers follow ReNet layers to recover the original image resolution in the final predictions. The proposed ReSeg architecture is efficient, flexible and suitable for a variety of semantic segmentation tasks. We evaluate ReSeg on several widely-used semantic segmentation datasets: Weizmann Horse, Oxford Flower, and CamVid; achieving state-of-the-art performance. Results show that ReSeg can act as a suitable architecture for semantic segmentation tasks, and may have further applications in other structured prediction problems. The source code and model hyperparameters are available on https://github.com/fvisin/reseg.
Multiple--Instance Learning: Christoffel Function Approach to Distribution Regression Problem
A two--step Christoffel function based solution is proposed to distribution regression problem. On the first step, to model distribution of observations inside a bag, build Christoffel function for each bag of observations. Then, on the second step, build outcome variable Christoffel function, but use the bag's Christoffel function value at given point as the weight for the bag's outcome. The approach allows the result to be obtained in closed form and then to be evaluated numerically. While most of existing approaches minimize some kind an error between outcome and prediction, the proposed approach is conceptually different, because it uses Christoffel function for knowledge representation, what is conceptually equivalent working with probabilities only. To receive possible outcomes and their probabilities Gauss quadrature for second--step measure can be built, then the nodes give possible outcomes and normalized weights -- outcome probabilities. A library providing numerically stable polynomial basis for these calculations is available, what make the proposed approach practical.
On the Generalization Error Bounds of Neural Networks under Diversity-Inducing Mutual Angular Regularization
Recently diversity-inducing regularization methods for latent variable models (LVMs), which encourage the components in LVMs to be diverse, have been studied to address several issues involved in latent variable modeling: (1) how to capture long-tail patterns underlying data; (2) how to reduce model complexity without sacrificing expressivity; (3) how to improve the interpretability of learned patterns. While the effectiveness of diversity-inducing regularizers such as the mutual angular regularizer has been demonstrated empirically, a rigorous theoretical analysis of them is still missing. In this paper, we aim to bridge this gap and analyze how the mutual angular regularizer (MAR) affects the generalization performance of supervised LVMs. We use neural network (NN) as a model instance to carry out the study and the analysis shows that increasing the diversity of hidden units in NN would reduce estimation error and increase approximation error. In addition to theoretical analysis, we also present empirical study which demonstrates that the MAR can greatly improve the performance of NN and the empirical observations are in accordance with the theoretical analysis.
Cascading Denoising Auto-Encoder as a Deep Directed Generative Model
Recent work (Bengio et al., 2013) has shown howDenoising Auto-Encoders(DAE) become gener-ative models as a density estimator. However,in practice, the framework suffers from a mixingproblem in the MCMC sampling process and nodirect method to estimate the test log-likelihood.We consider a directed model with an stochas-tic identity mapping (simple corruption pro-cess) as an inference model and a DAE as agenerative model. By cascading these mod-els, we propose Cascading Denoising Auto-Encoders(CDAE) which can generate samples ofdata distribution from tractable prior distributionunder the assumption that probabilistic distribu-tion of corrupted data approaches tractable priordistribution as the level of corruption increases.This work tries to answer two questions. On theone hand, can deep directed models be success-fully trained without intractable posterior infer-ence and difficult optimization of very deep neu-ral networks in inference and generative mod-els? These are unavoidable when recent suc-cessful directed model like VAE (Kingma &Welling, 2014) is trained on complex dataset likereal images. On the other hand, can DAEs getclean samples of data distribution from heavilycorrupted samples which can be considered oftractable prior distribution far from data mani-fold? so-called global denoising scheme.Our results show positive responses of thesequestions and this work can provide fairly simpleframework for generative models of very com-plex dataset.
What Happened to My Dog in That Network: Unraveling Top-down Generators in Convolutional Neural Networks
Top-down information plays a central role in human perception, but plays relatively little role in many current state-of-the-art deep networks, such as Convolutional Neural Networks (CNNs). This work seeks to explore a path by which top-down information can have a direct impact within current deep networks. We explore this path by learning and using "generators" corresponding to the network internal effects of three types of transformation (each a restriction of a general affine transformation): rotation, scaling, and translation. We demonstrate how these learned generators can be used to transfer top-down information to novel settings, as mediated by the "feature flows" that the transformations (and the associated generators) correspond to inside the network. Specifically, we explore three aspects: 1) using generators as part of a method for synthesizing transformed images --- given a previously unseen image, produce versions of that image corresponding to one or more specified transformations, 2) "zero-shot learning" --- when provided with a feature flow corresponding to the effect of a transformation of unknown amount, leverage learned generators as part of a method by which to perform an accurate categorization of the amount of transformation, even for amounts never observed during training, and 3) (inside-CNN) "data augmentation" --- improve the classification performance of an existing network by using the learned generators to directly provide additional training "inside the CNN".
Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions
We develop parallel predictive entropy search (PPES), a novel algorithm for Bayesian optimization of expensive black-box objective functions. At each iteration, PPES aims to select a batch of points which will maximize the information gain about the global maximizer of the objective. Well known strategies exist for suggesting a single evaluation point based on previous observations, while far fewer are known for selecting batches of points to evaluate in parallel. The few batch selection schemes that have been studied all resort to greedy methods to compute an optimal batch. To the best of our knowledge, PPES is the first non-greedy batch Bayesian optimization strategy. We demonstrate the benefit of this approach in optimization performance on both synthetic and real world applications, including problems in machine learning, rocket science and robotics.
A PAC Approach to Application-Specific Algorithm Selection
The best algorithm for a computational problem generally depends on the "relevant inputs," a concept that depends on the application domain and often defies formal articulation. While there is a large literature on empirical approaches to selecting the best algorithm for a given application domain, there has been surprisingly little theoretical analysis of the problem. This paper adapts concepts from statistical and online learning theory to reason about application-specific algorithm selection. Our models capture several state-of-the-art empirical and theoretical approaches to the problem, ranging from self-improving algorithms to empirical performance models, and our results identify conditions under which these approaches are guaranteed to perform well. We present one framework that models algorithm selection as a statistical learning problem, and our work here shows that dimension notions from statistical learning theory, historically used to measure the complexity of classes of binary- and real-valued functions, are relevant in a much broader algorithmic context. We also study the online version of the algorithm selection problem, and give possibility and impossibility results for the existence of no-regret learning algorithms.
Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization
We address the problem of maximizing an unknown submodular function that can only be accessed via noisy evaluations. Our work is motivated by the task of summarizing content, e.g., image collections, by leveraging users' feedback in form of clicks or ratings. For summarization tasks with the goal of maximizing coverage and diversity, submodular set functions are a natural choice. When the underlying submodular function is unknown, users' feedback can provide noisy evaluations of the function that we seek to maximize. We provide a generic algorithm -- \submM{} -- for maximizing an unknown submodular function under cardinality constraints. This algorithm makes use of a novel exploration module -- \blbox{} -- that proposes good elements based on adaptively sampling noisy function evaluations. \blbox{} is able to accommodate different kinds of observation models such as value queries and pairwise comparisons. We provide PAC-style guarantees on the quality and sampling cost of the solution obtained by \submM{}. We demonstrate the effectiveness of our approach in an interactive, crowdsourced image collection summarization application.
NetVLAD: CNN architecture for weakly supervised place recognition
We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following three principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we develop a training procedure, based on a new weakly supervised ranking loss, to learn parameters of the architecture in an end-to-end manner from images depicting the same places over time downloaded from Google Street View Time Machine. Finally, we show that the proposed architecture significantly outperforms non-learnt image representations and off-the-shelf CNN descriptors on two challenging place recognition benchmarks, and improves over current state-of-the-art compact image representations on standard image retrieval benchmarks.
Input Sparsity Time Low-Rank Approximation via Ridge Leverage Score Sampling
We present a new algorithm for finding a near optimal low-rank approximation of a matrix $A$ in $O(nnz(A))$ time. Our method is based on a recursive sampling scheme for computing a representative subset of $A$'s columns, which is then used to find a low-rank approximation. This approach differs substantially from prior $O(nnz(A))$ time algorithms, which are all based on fast Johnson-Lindenstrauss random projections. It matches the guarantees of these methods while offering a number of advantages. Not only are sampling algorithms faster for sparse and structured data, but they can also be applied in settings where random projections cannot. For example, we give new single-pass streaming algorithms for the column subset selection and projection-cost preserving sample problems. Our method has also been used to give the fastest algorithms for provably approximating kernel matrices [MM16].
Learning Simple Algorithms from Examples
We present an approach for learning simple algorithms such as copying, multi-digit addition and single digit multiplication directly from examples. Our framework consists of a set of interfaces, accessed by a controller. Typical interfaces are 1-D tapes or 2-D grids that hold the input and output data. For the controller, we explore a range of neural network-based models which vary in their ability to abstract the underlying algorithm from training instances and generalize to test examples with many thousands of digits. The controller is trained using $Q$-learning with several enhancements and we show that the bottleneck is in the capabilities of the controller rather than in the search incurred by $Q$-learning.
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
We introduce the "exponential linear unit" (ELU) which speeds up learning in deep neural networks and leads to higher classification accuracies. Like rectified linear units (ReLUs), leaky ReLUs (LReLUs) and parametrized ReLUs (PReLUs), ELUs alleviate the vanishing gradient problem via the identity for positive values. However, ELUs have improved learning characteristics compared to the units with other activation functions. In contrast to ReLUs, ELUs have negative values which allows them to push mean unit activations closer to zero like batch normalization but with lower computational complexity. Mean shifts toward zero speed up learning by bringing the normal gradient closer to the unit natural gradient because of a reduced bias shift effect. While LReLUs and PReLUs have negative values, too, they do not ensure a noise-robust deactivation state. ELUs saturate to a negative value with smaller inputs and thereby decrease the forward propagated variation and information. Therefore, ELUs code the degree of presence of particular phenomena in the input, while they do not quantitatively model the degree of their absence. In experiments, ELUs lead not only to faster learning, but also to significantly better generalization performance than ReLUs and LReLUs on networks with more than 5 layers. On CIFAR-100 ELUs networks significantly outperform ReLU networks with batch normalization while batch normalization does not improve ELU networks. ELU networks are among the top 10 reported CIFAR-10 results and yield the best published result on CIFAR-100, without resorting to multi-view evaluation or model averaging. On ImageNet, ELU networks considerably speed up learning compared to a ReLU network with the same architecture, obtaining less than 10% classification error for a single crop, single model network.
Sparse Recovery via Partial Regularization: Models, Theory and Algorithms
In the context of sparse recovery, it is known that most of existing regularizers such as $\ell_1$ suffer from some bias incurred by some leading entries (in magnitude) of the associated vector. To neutralize this bias, we propose a class of models with partial regularizers for recovering a sparse solution of a linear system. We show that every local minimizer of these models is sufficiently sparse or the magnitude of all its nonzero entries is above a uniform constant depending only on the data of the linear system. Moreover, for a class of partial regularizers, any global minimizer of these models is a sparsest solution to the linear system. We also establish some sufficient conditions for local or global recovery of the sparsest solution to the linear system, among which one of the conditions is weaker than the best known restricted isometry property (RIP) condition for sparse recovery by $\ell_1$. In addition, a first-order feasible augmented Lagrangian (FAL) method is proposed for solving these models, in which each subproblem is solved by a nonmonotone proximal gradient (NPG) method. Despite the complication of the partial regularizers, we show that each proximal subproblem in NPG can be solved as a certain number of one-dimensional optimization problems, which usually have a closed-form solution. We also show that any accumulation point of the sequence generated by FAL is a first-order stationary point of the models. Numerical results on compressed sensing and sparse logistic regression demonstrate that the proposed models substantially outperform the widely used ones in the literature in terms of solution quality.
Modular Autoencoders for Ensemble Feature Extraction
We introduce the concept of a Modular Autoencoder (MAE), capable of learning a set of diverse but complementary representations from unlabelled data, that can later be used for supervised tasks. The learning of the representations is controlled by a trade off parameter, and we show on six benchmark datasets the optimum lies between two extremes: a set of smaller, independent autoencoders each with low capacity, versus a single monolithic encoding, outperforming an appropriate baseline. In the present paper we explore the special case of linear MAE, and derive an SVD-based algorithm which converges several orders of magnitude faster than gradient descent.
Interpretable Two-level Boolean Rule Learning for Classification
This paper proposes algorithms for learning two-level Boolean rules in Conjunctive Normal Form (CNF, i.e. AND-of-ORs) or Disjunctive Normal Form (DNF, i.e. OR-of-ANDs) as a type of human-interpretable classification model, aiming for a favorable trade-off between the classification accuracy and the simplicity of the rule. Two formulations are proposed. The first is an integer program whose objective function is a combination of the total number of errors and the total number of features used in the rule. We generalize a previously proposed linear programming (LP) relaxation from one-level to two-level rules. The second formulation replaces the 0-1 classification error with the Hamming distance from the current two-level rule to the closest rule that correctly classifies a sample. Based on this second formulation, block coordinate descent and alternating minimization algorithms are developed. Experiments show that the two-level rules can yield noticeably better performance than one-level rules due to their dramatically larger modeling capacity, and the two algorithms based on the Hamming distance formulation are generally superior to the other two-level rule learning methods in our comparison. A proposed approach to binarize any fractional values in the optimal solutions of LP relaxations is also shown to be effective.
Pushing the Boundaries of Boundary Detection using Deep Learning
In this work we show that adapting Deep Convolutional Neural Network training to the task of boundary detection can result in substantial improvements over the current state-of-the-art in boundary detection. Our contributions consist firstly in combining a careful design of the loss for boundary detection training, a multi-resolution architecture and training with external data to improve the detection accuracy of the current state of the art. When measured on the standard Berkeley Segmentation Dataset, we improve theoptimal dataset scale F-measure from 0.780 to 0.808 - while human performance is at 0.803. We further improve performance to 0.813 by combining deep learning with grouping, integrating the Normalized Cuts technique within a deep network. We also examine the potential of our boundary detector in conjunction with the task of semantic segmentation and demonstrate clear improvements over state-of-the-art systems. Our detector is fully integrated in the popular Caffe framework and processes a 320x420 image in less than a second.
MazeBase: A Sandbox for Learning from Games
This paper introduces MazeBase: an environment for simple 2D games, designed as a sandbox for machine learning approaches to reasoning and planning. Within it, we create 10 simple games embodying a range of algorithmic tasks (e.g. if-then statements or set negation). A variety of neural models (fully connected, convolutional network, memory network) are deployed via reinforcement learning on these games, with and without a procedurally generated curriculum. Despite the tasks' simplicity, the performance of the models is far from optimal, suggesting directions for future development. We also demonstrate the versatility of MazeBase by using it to emulate small combat scenarios from StarCraft. Models trained on the MazeBase version can be directly applied to StarCraft, where they consistently beat the in-game AI.
Top-Down Learning for Structured Labeling with Convolutional Pseudoprior
Current practice in convolutional neural networks (CNN) remains largely bottom-up and the role of top-down process in CNN for pattern analysis and visual inference is not very clear. In this paper, we propose a new method for structured labeling by developing convolutional pseudo-prior (ConvPP) on the ground-truth labels. Our method has several interesting properties: (1) compared with classical machine learning algorithms like CRFs and Structural SVM, ConvPP automatically learns rich convolutional kernels to capture both short- and long- range contexts; (2) compared with cascade classifiers like Auto-Context, ConvPP avoids the iterative steps of learning a series of discriminative classifiers and automatically learns contextual configurations; (3) compared with recent efforts combing CNN models with CRFs and RNNs, ConvPP learns convolution in the labeling space with much improved modeling capability and less manual specification; (4) compared with Bayesian models like MRFs, ConvPP capitalizes on the rich representation power of convolution by automatically learning priors built on convolutional filters. We accomplish our task using pseudo-likelihood approximation to the prior under a novel fixed-point network structure that facilitates an end-to-end learning process. We show state-of-the-art results on sequential labeling and image labeling benchmarks.
Weak Convergence Properties of Constrained Emphatic Temporal-difference Learning with Constant and Slowly Diminishing Stepsize
We consider the emphatic temporal-difference (TD) algorithm, ETD($\lambda$), for learning the value functions of stationary policies in a discounted, finite state and action Markov decision process. The ETD($\lambda$) algorithm was recently proposed by Sutton, Mahmood, and White to solve a long-standing divergence problem of the standard TD algorithm when it is applied to off-policy training, where data from an exploratory policy are used to evaluate other policies of interest. The almost sure convergence of ETD($\lambda$) has been proved in our recent work under general off-policy training conditions, but for a narrow range of diminishing stepsize. In this paper we present convergence results for constrained versions of ETD($\lambda$) with constant stepsize and with diminishing stepsize from a broad range. Our results characterize the asymptotic behavior of the trajectory of iterates produced by those algorithms, and are derived by combining key properties of ETD($\lambda$) with powerful convergence theorems from the weak convergence methods in stochastic approximation theory. For the case of constant stepsize, in addition to analyzing the behavior of the algorithms in the limit as the stepsize parameter approaches zero, we also analyze their behavior for a fixed stepsize and bound the deviations of their averaged iterates from the desired solution. These results are obtained by exploiting the weak Feller property of the Markov chains associated with the algorithms, and by using ergodic theorems for weak Feller Markov chains, in conjunction with the convergence results we get from the weak convergence methods. Besides ETD($\lambda$), our analysis also applies to the off-policy TD($\lambda$) algorithm, when the divergence issue is avoided by setting $\lambda$ sufficiently large.
Constrained Structured Regression with Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have recently emerged as the dominant model in computer vision. If provided with enough training data, they predict almost any visual quantity. In a discrete setting, such as classification, CNNs are not only able to predict a label but often predict a confidence in the form of a probability distribution over the output space. In continuous regression tasks, such a probability estimate is often lacking. We present a regression framework which models the output distribution of neural networks. This output distribution allows us to infer the most likely labeling following a set of physical or modeling constraints. These constraints capture the intricate interplay between different input and output variables, and complement the output of a CNN. However, they may not hold everywhere. Our setup further allows to learn a confidence with which a constraint holds, in the form of a distribution of the constrain satisfaction. We evaluate our approach on the problem of intrinsic image decomposition, and show that constrained structured regression significantly increases the state-of-the-art.
The Limitations of Deep Learning in Adversarial Settings
Deep learning takes advantage of large datasets and computationally efficient training algorithms to outperform other approaches at various machine learning tasks. However, imperfections in the training phase of deep neural networks make them vulnerable to adversarial samples: inputs crafted by adversaries with the intent of causing deep neural networks to misclassify. In this work, we formalize the space of adversaries against deep neural networks (DNNs) and introduce a novel class of algorithms to craft adversarial samples based on a precise understanding of the mapping between inputs and outputs of DNNs. In an application to computer vision, we show that our algorithms can reliably produce samples correctly classified by human subjects but misclassified in specific targets by a DNN with a 97% adversarial success rate while only modifying on average 4.02% of the input features per sample. We then evaluate the vulnerability of different sample classes to adversarial perturbations by defining a hardness measure. Finally, we describe preliminary work outlining defenses against adversarial samples by defining a predictive measure of distance between a benign input and a target classification.
Convergent Learning: Do different neural networks learn the same representations?
Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.
Transductive Log Opinion Pool of Gaussian Process Experts
We introduce a framework for analyzing transductive combination of Gaussian process (GP) experts, where independently trained GP experts are combined in a way that depends on test point location, in order to scale GPs to big data. The framework provides some theoretical justification for the generalized product of GP experts (gPoE-GP) which was previously shown to work well in practice but lacks theoretical basis. Based on the proposed framework, an improvement over gPoE-GP is introduced and empirically validated.
DenseCap: Fully Convolutional Localization Networks for Dense Captioning
We introduce the dense captioning task, which requires a computer vision system to both localize and describe salient regions in images in natural language. The dense captioning task generalizes object detection when the descriptions consist of a single word, and Image Captioning when one predicted region covers the full image. To address the localization and description task jointly we propose a Fully Convolutional Localization Network (FCLN) architecture that processes an image with a single, efficient forward pass, requires no external regions proposals, and can be trained end-to-end with a single round of optimization. The architecture is composed of a Convolutional Network, a novel dense localization layer, and Recurrent Neural Network language model that generates the label sequences. We evaluate our network on the Visual Genome dataset, which comprises 94,000 images and 4,100,000 region-grounded captions. We observe both speed and accuracy improvements over baselines based on current state of the art approaches in both generation and retrieval settings.
Picking a Conveyor Clean by an Autonomously Learning Robot
We present a research picking prototype related to our company's industrial waste sorting application. The goal of the prototype is to be as autonomous as possible and it both calibrates itself and improves its picking with minimal human intervention. The system learns to pick objects better based on a feedback sensor in its gripper and uses machine learning to choosing the best proposal from a random sample produced by simple hard-coded geometric models. We show experimentally the system improving its picking autonomously by measuring the pick success rate as function of time. We also show how this system can pick a conveyor belt clean, depositing 70 out of 80 objects in a difficult to manipulate pile of novel objects into the correct chute. We discuss potential improvements and next steps in this direction.
LocNet: Improving Localization Accuracy for Object Detection
We propose a novel object localization methodology with the purpose of boosting the localization accuracy of state-of-the-art object detection systems. Our model, given a search region, aims at returning the bounding box of an object of interest inside this region. To accomplish its goal, it relies on assigning conditional probabilities to each row and column of this region, where these probabilities provide useful information regarding the location of the boundaries of the object inside the search region and allow the accurate inference of the object bounding box under a simple probabilistic framework. For implementing our localization model, we make use of a convolutional neural network architecture that is properly adapted for this task, called LocNet. We show experimentally that LocNet achieves a very significant improvement on the mAP for high IoU thresholds on PASCAL VOC2007 test set and that it can be very easily coupled with recent state-of-the-art object detection systems, helping them to boost their performance. Finally, we demonstrate that our detection approach can achieve high detection accuracy even when it is given as input a set of sliding windows, thus proving that it is independent of box proposal methods.
Generalized Conjugate Gradient Methods for $\ell_1$ Regularized Convex Quadratic Programming with Finite Convergence
The conjugate gradient (CG) method is an efficient iterative method for solving large-scale strongly convex quadratic programming (QP). In this paper we propose some generalized CG (GCG) methods for solving the $\ell_1$-regularized (possibly not strongly) convex QP that terminate at an optimal solution in a finite number of iterations. At each iteration, our methods first identify a face of an orthant and then either perform an exact line search along the direction of the negative projected minimum-norm subgradient of the objective function or execute a CG subroutine that conducts a sequence of CG iterations until a CG iterate crosses the boundary of this face or an approximate minimizer of over this face or a subface is found. We determine which type of step should be taken by comparing the magnitude of some components of the minimum-norm subgradient of the objective function to that of its rest components. Our analysis on finite convergence of these methods makes use of an error bound result and some key properties of the aforementioned exact line search and the CG subroutine. We also show that the proposed methods are capable of finding an approximate solution of the problem by allowing some inexactness on the execution of the CG subroutine. The overall arithmetic operation cost of our GCG methods for finding an $\epsilon$-optimal solution depends on $\epsilon$ in $O(\log(1/\epsilon))$, which is superior to the accelerated proximal gradient method [2,23] that depends on $\epsilon$ in $O(1/\sqrt{\epsilon})$. In addition, our GCG methods can be extended straightforwardly to solve box-constrained convex QP with finite convergence. Numerical results demonstrate that our methods are very favorable for solving ill-conditioned problems.
Dynamic Capacity Networks
We introduce the Dynamic Capacity Network (DCN), a neural network that can adaptively assign its capacity across different portions of the input data. This is achieved by combining modules of two types: low-capacity sub-networks and high-capacity sub-networks. The low-capacity sub-networks are applied across most of the input, but also provide a guide to select a few portions of the input on which to apply the high-capacity sub-networks. The selection is made using a novel gradient-based attention mechanism, that efficiently identifies input regions for which the DCN's output is most sensitive and to which we should devote more capacity. We focus our empirical evaluation on the Cluttered MNIST and SVHN image datasets. Our findings indicate that DCNs are able to drastically reduce the number of computations, compared to traditional convolutional neural networks, while maintaining similar or even better performance.
Private Posterior distributions from Variational approximations
Privacy preserving mechanisms such as differential privacy inject additional randomness in the form of noise in the data, beyond the sampling mechanism. Ignoring this additional noise can lead to inaccurate and invalid inferences. In this paper, we incorporate the privacy mechanism explicitly into the likelihood function by treating the original data as missing, with an end goal of estimating posterior distributions over model parameters. This leads to a principled way of performing valid statistical inference using private data, however, the corresponding likelihoods are intractable. In this paper, we derive fast and accurate variational approximations to tackle such intractable likelihoods that arise due to privacy. We focus on estimating posterior distributions of parameters of the naive Bayes log-linear model, where the sufficient statistics of this model are shared using a differentially private interface. Using a simulation study, we show that the posterior approximations outperform the naive method of ignoring the noise addition mechanism.
Performance Limits of Stochastic Sub-Gradient Learning, Part I: Single Agent Case
In this work and the supporting Part II, we examine the performance of stochastic sub-gradient learning strategies under weaker conditions than usually considered in the literature. The new conditions are shown to be automatically satisfied by several important cases of interest including SVM, LASSO, and Total-Variation denoising formulations. In comparison, these problems do not satisfy the traditional assumptions used in prior analyses and, therefore, conclusions derived from these earlier treatments are not directly applicable to these problems. The results in this article establish that stochastic sub-gradient strategies can attain linear convergence rates, as opposed to sub-linear rates, to the steady-state regime. A realizable exponential-weighting procedure is employed to smooth the intermediate iterates and guarantee useful performance bounds in terms of convergence rate and excessive risk performance. Part I of this work focuses on single-agent scenarios, which are common in stand-alone learning applications, while Part II extends the analysis to networked learners. The theoretical conclusions are illustrated by several examples and simulations, including comparisons with the FISTA procedure.
Context-aware CNNs for person head detection
Person detection is a key problem for many computer vision tasks. While face detection has reached maturity, detecting people under a full variation of camera view-points, human poses, lighting conditions and occlusions is still a difficult challenge. In this work we focus on detecting human heads in natural scenes. Starting from the recent local R-CNN object detector, we extend it with two types of contextual cues. First, we leverage person-scene relations and propose a Global CNN model trained to predict positions and scales of heads directly from the full image. Second, we explicitly model pairwise relations among objects and train a Pairwise CNN model using a structured-output surrogate loss. The Local, Global and Pairwise models are combined into a joint CNN framework. To train and test our full model, we introduce a large dataset composed of 369,846 human heads annotated in 224,740 movie frames. We evaluate our method and demonstrate improvements of person head detection against several recent baselines in three datasets. We also show improvements of the detection speed provided by our model.
Temporal Convolutional Neural Networks for Diagnosis from Lab Tests
Early diagnosis of treatable diseases is essential for improving healthcare, and many diseases' onsets are predictable from annual lab tests and their temporal trends. We introduce a multi-resolution convolutional neural network for early detection of multiple diseases from irregularly measured sparse lab values. Our novel architecture takes as input both an imputed version of the data and a binary observation matrix. For imputing the temporal sparse observations, we develop a flexible, fast to train method for differentiable multivariate kernel regression. Our experiments on data from 298K individuals over 8 years, 18 common lab measurements, and 171 diseases show that the temporal signatures learned via convolution are significantly more predictive than baselines commonly used for early disease diagnosis.
Learning Halfspaces and Neural Networks with Random Initialization
We study non-convex empirical risk minimization for learning halfspaces and neural networks. For loss functions that are $L$-Lipschitz continuous, we present algorithms to learn halfspaces and multi-layer neural networks that achieve arbitrarily small excess risk $\epsilon>0$. The time complexity is polynomial in the input dimension $d$ and the sample size $n$, but exponential in the quantity $(L/\epsilon^2)\log(L/\epsilon)$. These algorithms run multiple rounds of random initialization followed by arbitrary optimization steps. We further show that if the data is separable by some neural network with constant margin $\gamma>0$, then there is a polynomial-time algorithm for learning a neural network that separates the training data with margin $\Omega(\gamma)$. As a consequence, the algorithm achieves arbitrary generalization error $\epsilon>0$ with ${\rm poly}(d,1/\epsilon)$ sample and time complexity. We establish the same learnability result when the labels are randomly flipped with probability $\eta<1/2$.
Exploring Correlation between Labels to improve Multi-Label Classification
This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.
MOOCs Meet Measurement Theory: A Topic-Modelling Approach
This paper adapts topic models to the psychometric testing of MOOC students based on their online forum postings. Measurement theory from education and psychology provides statistical models for quantifying a person's attainment of intangible attributes such as attitudes, abilities or intelligence. Such models infer latent skill levels by relating them to individuals' observed responses on a series of items such as quiz questions. The set of items can be used to measure a latent skill if individuals' responses on them conform to a Guttman scale. Such well-scaled items differentiate between individuals and inferred levels span the entire range from most basic to the advanced. In practice, education researchers manually devise items (quiz questions) while optimising well-scaled conformance. Due to the costly nature and expert requirements of this process, psychometric testing has found limited use in everyday teaching. We aim to develop usable measurement models for highly-instrumented MOOC delivery platforms, by using participation in automatically-extracted online forum topics as items. The challenge is to formalise the Guttman scale educational constraint and incorporate it into topic models. To favour topics that automatically conform to a Guttman scale, we introduce a novel regularisation into non-negative matrix factorisation-based topic modelling. We demonstrate the suitability of our approach with both quantitative experiments on three Coursera MOOCs, and with a qualitative survey of topic interpretability on two MOOCs by domain expert interviews.
Learning with Memory Embeddings
Embedding learning, a.k.a. representation learning, has been shown to be able to model large-scale semantic knowledge graphs. A key concept is a mapping of the knowledge graph to a tensor representation whose entries are predicted by models using latent representations of generalized entities. Latent variable models are well suited to deal with the high dimensionality and sparsity of typical knowledge graphs. In recent publications the embedding models were extended to also consider time evolutions, time patterns and subsymbolic representations. In this paper we map embedding models, which were developed purely as solutions to technical problems for modelling temporal knowledge graphs, to various cognitive memory functions, in particular to semantic and concept memory, episodic memory, sensory memory, short-term memory, and working memory. We discuss learning, query answering, the path from sensory input to semantic decoding, and the relationship between episodic memory and semantic memory. We introduce a number of hypotheses on human memory that can be derived from the developed mathematical models.
Learning to detect video events from zero or very few video examples
In this work we deal with the problem of high-level event detection in video. Specifically, we study the challenging problems of i) learning to detect video events from solely a textual description of the event, without using any positive video examples, and ii) additionally exploiting very few positive training samples together with a small number of ``related'' videos. For learning only from an event's textual description, we first identify a general learning framework and then study the impact of different design choices for various stages of this framework. For additionally learning from example videos, when true positive training samples are scarce, we employ an extension of the Support Vector Machine that allows us to exploit ``related'' event videos by automatically introducing different weights for subsets of the videos in the overall training set. Experimental evaluations performed on the large-scale TRECVID MED 2014 video dataset provide insight on the effectiveness of the proposed methods.
Relaxed Majorization-Minimization for Non-smooth and Non-convex Optimization
We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the directional derivatives of the objective function and its surrogate function vanishes when the number of iterations approaches infinity, which is a very weak condition. So our method can use a surrogate function that directly approximates the non-smooth objective function. In comparison, all the existing MM methods construct the surrogate function by approximating the smooth component of the objective function. We apply our relaxed MM methods to the robust matrix factorization (RMF) problem with different regularizations, where our locally majorant algorithm shows advantages over the state-of-the-art approaches for RMF. This is the first algorithm for RMF ensuring, without extra assumptions, that any limit point of the iterates is a stationary point.
Strategic Dialogue Management via Deep Reinforcement Learning
Artificially intelligent agents equipped with strategic skills that can negotiate during their interactions with other natural or artificial agents are still underdeveloped. This paper describes a successful application of Deep Reinforcement Learning (DRL) for training intelligent agents with strategic conversational skills, in a situated dialogue setting. Previous studies have modelled the behaviour of strategic agents using supervised learning and traditional reinforcement learning techniques, the latter using tabular representations or learning with linear function approximation. In this study, we apply DRL with a high-dimensional state space to the strategic board game of Settlers of Catan---where players can offer resources in exchange for others and they can also reply to offers made by other players. Our experimental results report that the DRL-based learnt policies significantly outperformed several baselines including random, rule-based, and supervised-based behaviours. The DRL-based policy has a 53% win rate versus 3 automated players (`bots'), whereas a supervised player trained on a dialogue corpus in this setting achieved only 27%, versus the same 3 bots. This result supports the claim that DRL is a promising framework for training dialogue systems, and strategic agents with negotiation abilities.
Unifying Decision Trees Split Criteria Using Tsallis Entropy
The construction of efficient and effective decision trees remains a key topic in machine learning because of their simplicity and flexibility. A lot of heuristic algorithms have been proposed to construct near-optimal decision trees. ID3, C4.5 and CART are classical decision tree algorithms and the split criteria they used are Shannon entropy, Gain Ratio and Gini index respectively. All the split criteria seem to be independent, actually, they can be unified in a Tsallis entropy framework. Tsallis entropy is a generalization of Shannon entropy and provides a new approach to enhance decision trees' performance with an adjustable parameter $q$. In this paper, a Tsallis Entropy Criterion (TEC) algorithm is proposed to unify Shannon entropy, Gain Ratio and Gini index, which generalizes the split criteria of decision trees. More importantly, we reveal the relations between Tsallis entropy with different $q$ and other split criteria. Experimental results on UCI data sets indicate that the TEC algorithm achieves statistically significant improvement over the classical algorithms.
Towards Universal Paraphrastic Sentence Embeddings
We consider the problem of learning general-purpose, paraphrastic sentence embeddings based on supervision from the Paraphrase Database (Ganitkevitch et al., 2013). We compare six compositional architectures, evaluating them on annotated textual similarity datasets drawn both from the same distribution as the training data and from a wide range of other domains. We find that the most complex architectures, such as long short-term memory (LSTM) recurrent neural networks, perform best on the in-domain data. However, in out-of-domain scenarios, simple architectures such as word averaging vastly outperform LSTMs. Our simplest averaging model is even competitive with systems tuned for the particular tasks while also being extremely efficient and easy to use. In order to better understand how these architectures compare, we conduct further experiments on three supervised NLP tasks: sentence similarity, entailment, and sentiment classification. We again find that the word averaging models perform well for sentence similarity and entailment, outperforming LSTMs. However, on sentiment classification, we find that the LSTM performs very strongly-even recording new state-of-the-art performance on the Stanford Sentiment Treebank. We then demonstrate how to combine our pretrained sentence embeddings with these supervised tasks, using them both as a prior and as a black box feature extractor. This leads to performance rivaling the state of the art on the SICK similarity and entailment tasks. We release all of our resources to the research community with the hope that they can serve as the new baseline for further work on universal sentence embeddings.
Neural GPUs Learn Algorithms
Learning an algorithm from examples is a fundamental problem that has been widely studied. Recently it has been addressed using neural networks, in particular by Neural Turing Machines (NTMs). These are fully differentiable computers that use backpropagation to learn their own programming. Despite their appeal NTMs have a weakness that is caused by their sequential nature: they are not parallel and are are hard to train due to their large depth when unfolded. We present a neural network architecture to address this problem: the Neural GPU. It is based on a type of convolutional gated recurrent unit and, like the NTM, is computationally universal. Unlike the NTM, the Neural GPU is highly parallel which makes it easier to train and efficient to run. An essential property of algorithms is their ability to handle inputs of arbitrary size. We show that the Neural GPU can be trained on short instances of an algorithmic task and successfully generalize to long instances. We verified it on a number of tasks including long addition and long multiplication of numbers represented in binary. We train the Neural GPU on numbers with upto 20 bits and observe no errors whatsoever while testing it, even on much longer numbers. To achieve these results we introduce a technique for training deep recurrent networks: parameter sharing relaxation. We also found a small amount of dropout and gradient noise to have a large positive effect on learning and generalization.
Hierarchical classification of e-commerce related social media
In this paper, we attempt to classify tweets into root categories of the Amazon browse node hierarchy using a set of tweets with browse node ID labels, a much larger set of tweets without labels, and a set of Amazon reviews. Examining twitter data presents unique challenges in that the samples are short (under 140 characters) and often contain misspellings or abbreviations that are trivial for a human to decipher but difficult for a computer to parse. A variety of query and document expansion techniques are implemented in an effort to improve information retrieval to modest success.
Named Entity Recognition with Bidirectional LSTM-CNNs
Named entity recognition is a challenging task that has traditionally required large amounts of knowledge in the form of feature engineering and lexicons to achieve high performance. In this paper, we present a novel neural network architecture that automatically detects word- and character-level features using a hybrid bidirectional LSTM and CNN architecture, eliminating the need for most feature engineering. We also propose a novel method of encoding partial lexicon matches in neural networks and compare it to existing approaches. Extensive evaluation shows that, given only tokenized text and publicly available word embeddings, our system is competitive on the CoNLL-2003 dataset and surpasses the previously reported state of the art performance on the OntoNotes 5.0 dataset by 2.13 F1 points. By using two lexicons constructed from publicly-available sources, we establish new state of the art performance with an F1 score of 91.62 on CoNLL-2003 and 86.28 on OntoNotes, surpassing systems that employ heavy feature engineering, proprietary lexicons, and rich entity linking information.
Random Forests for Big Data
Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to "divide-and-conquer" approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations.
The Automatic Statistician: A Relational Perspective
Gaussian Processes (GPs) provide a general and analytically tractable way of modeling complex time-varying, nonparametric functions. The Automatic Bayesian Covariance Discovery (ABCD) system constructs natural-language description of time-series data by treating unknown time-series data nonparametrically using GP with a composite covariance kernel function. Unfortunately, learning a composite covariance kernel with a single time-series data set often results in less informative kernel that may not give qualitative, distinctive descriptions of data. We address this challenge by proposing two relational kernel learning methods which can model multiple time-series data sets by finding common, shared causes of changes. We show that the relational kernel learning methods find more accurate models for regression problems on several real-world data sets; US stock data, US house price index data and currency exchange rate data.
Regularizing RNNs by Stabilizing Activations
We stabilize the activations of Recurrent Neural Networks (RNNs) by penalizing the squared distance between successive hidden states' norms. This penalty term is an effective regularizer for RNNs including LSTMs and IRNNs, improving performance on character-level language modeling and phoneme recognition, and outperforming weight noise and dropout. We achieve competitive performance (18.6\% PER) on the TIMIT phoneme recognition task for RNNs evaluated without beam search or an RNN transducer. With this penalty term, IRNN can achieve similar performance to LSTM on language modeling, although adding the penalty term to the LSTM results in superior performance. Our penalty term also prevents the exponential growth of IRNN's activations outside of their training horizon, allowing them to generalize to much longer sequences.
Gains and Losses are Fundamentally Different in Regret Minimization: The Sparse Case
We demonstrate that, in the classical non-stochastic regret minimization problem with $d$ decisions, gains and losses to be respectively maximized or minimized are fundamentally different. Indeed, by considering the additional sparsity assumption (at each stage, at most $s$ decisions incur a nonzero outcome), we derive optimal regret bounds of different orders. Specifically, with gains, we obtain an optimal regret guarantee after $T$ stages of order $\sqrt{T\log s}$, so the classical dependency in the dimension is replaced by the sparsity size. With losses, we provide matching upper and lower bounds of order $\sqrt{Ts\log(d)/d}$, which is decreasing in $d$. Eventually, we also study the bandit setting, and obtain an upper bound of order $\sqrt{Ts\log (d/s)}$ when outcomes are losses. This bound is proven to be optimal up to the logarithmic factor $\sqrt{\log(d/s)}$.
The Mechanism of Additive Composition
Additive composition (Foltz et al, 1998; Landauer and Dumais, 1997; Mitchell and Lapata, 2010) is a widely used method for computing meanings of phrases, which takes the average of vector representations of the constituent words. In this article, we prove an upper bound for the bias of additive composition, which is the first theoretical analysis on compositional frameworks from a machine learning point of view. The bound is written in terms of collocation strength; we prove that the more exclusively two successive words tend to occur together, the more accurate one can guarantee their additive composition as an approximation to the natural phrase vector. Our proof relies on properties of natural language data that are empirically verified, and can be theoretically derived from an assumption that the data is generated from a Hierarchical Pitman-Yor Process. The theory endorses additive composition as a reasonable operation for calculating meanings of phrases, and suggests ways to improve additive compositionality, including: transforming entries of distributional word vectors by a function that meets a specific condition, constructing a novel type of vector representations to make additive composition sensitive to word order, and utilizing singular value decomposition to train word vectors.
An Introduction to Convolutional Neural Networks
The field of machine learning has taken a dramatic twist in recent times, with the rise of the Artificial Neural Network (ANN). These biologically inspired computational models are able to far exceed the performance of previous forms of artificial intelligence in common machine learning tasks. One of the most impressive forms of ANN architecture is that of the Convolutional Neural Network (CNN). CNNs are primarily used to solve difficult image-driven pattern recognition tasks and with their precise yet simple architecture, offers a simplified method of getting started with ANNs. This document provides a brief introduction to CNNs, discussing recently published papers and newly formed techniques in developing these brilliantly fantastic image recognition models. This introduction assumes you are familiar with the fundamentals of ANNs and machine learning.
Distributed Machine Learning via Sufficient Factor Broadcasting
Matrix-parametrized models, including multiclass logistic regression and sparse coding, are used in machine learning (ML) applications ranging from computer vision to computational biology. When these models are applied to large-scale ML problems starting at millions of samples and tens of thousands of classes, their parameter matrix can grow at an unexpected rate, resulting in high parameter synchronization costs that greatly slow down distributed learning. To address this issue, we propose a Sufficient Factor Broadcasting (SFB) computation model for efficient distributed learning of a large family of matrix-parameterized models, which share the following property: the parameter update computed on each data sample is a rank-1 matrix, i.e., the outer product of two "sufficient factors" (SFs). By broadcasting the SFs among worker machines and reconstructing the update matrices locally at each worker, SFB improves communication efficiency --- communication costs are linear in the parameter matrix's dimensions, rather than quadratic --- without affecting computational correctness. We present a theoretical convergence analysis of SFB, and empirically corroborate its efficiency on four different matrix-parametrized ML models.
Incremental Truncated LSTD
Balancing between computational efficiency and sample efficiency is an important goal in reinforcement learning. Temporal difference (TD) learning algorithms stochastically update the value function, with a linear time complexity in the number of features, whereas least-squares temporal difference (LSTD) algorithms are sample efficient but can be quadratic in the number of features. In this work, we develop an efficient incremental low-rank LSTD({\lambda}) algorithm that progresses towards the goal of better balancing computation and sample efficiency. The algorithm reduces the computation and storage complexity to the number of features times the chosen rank parameter while summarizing past samples efficiently to nearly obtain the sample complexity of LSTD. We derive a simulation bound on the solution given by truncated low-rank approximation, illustrating a bias- variance trade-off dependent on the choice of rank. We demonstrate that the algorithm effectively balances computational complexity and sample efficiency for policy evaluation in a benchmark task and a high-dimensional energy allocation domain.
Iterative Instance Segmentation
Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings, often leading to predictions that are visually implausible. While incorporating structure into the model should improve prediction quality, doing so is challenging - manually specifying the form of structural constraints may be impractical and inference often becomes intractable even if structural constraints are given. We sidestep this problem by reducing structured prediction to a sequence of unconstrained prediction problems and demonstrate that this approach is capable of automatically discovering priors on shape, contiguity of region predictions and smoothness of region contours from data without any a priori specification. On the instance segmentation task, this method outperforms the state-of-the-art, achieving a mean $\mathrm{AP}^{r}$ of 63.6% at 50% overlap and 43.3% at 70% overlap.
Regularized EM Algorithms: A Unified Framework and Statistical Guarantees
Latent variable models are a fundamental modeling tool in machine learning applications, but they present significant computational and analytical challenges. The popular EM algorithm and its variants, is a much used algorithmic tool; yet our rigorous understanding of its performance is highly incomplete. Recently, work in Balakrishnan et al. (2014) has demonstrated that for an important class of problems, EM exhibits linear local convergence. In the high-dimensional setting, however, the M-step may not be well defined. We address precisely this setting through a unified treatment using regularization. While regularization for high-dimensional problems is by now well understood, the iterative EM algorithm requires a careful balancing of making progress towards the solution while identifying the right structure (e.g., sparsity or low-rank). In particular, regularizing the M-step using the state-of-the-art high-dimensional prescriptions (e.g., Wainwright (2014)) is not guaranteed to provide this balance. Our algorithm and analysis are linked in a way that reveals the balance between optimization and statistical errors. We specialize our general framework to sparse gaussian mixture models, high-dimensional mixed regression, and regression with missing variables, obtaining statistical guarantees for each of these examples.
Simultaneous Private Learning of Multiple Concepts
We investigate the direct-sum problem in the context of differentially private PAC learning: What is the sample complexity of solving $k$ learning tasks simultaneously under differential privacy, and how does this cost compare to that of solving $k$ learning tasks without privacy? In our setting, an individual example consists of a domain element $x$ labeled by $k$ unknown concepts $(c_1,\ldots,c_k)$. The goal of a multi-learner is to output $k$ hypotheses $(h_1,\ldots,h_k)$ that generalize the input examples. Without concern for privacy, the sample complexity needed to simultaneously learn $k$ concepts is essentially the same as needed for learning a single concept. Under differential privacy, the basic strategy of learning each hypothesis independently yields sample complexity that grows polynomially with $k$. For some concept classes, we give multi-learners that require fewer samples than the basic strategy. Unfortunately, however, we also give lower bounds showing that even for very simple concept classes, the sample cost of private multi-learning must grow polynomially in $k$.
Shaping Proto-Value Functions via Rewards
In this paper, we combine task-dependent reward shaping and task-independent proto-value functions to obtain reward dependent proto-value functions (RPVFs). In constructing the RPVFs we are making use of the immediate rewards which are available during the sampling phase but are not used in the PVF construction. We show via experiments that learning with an RPVF based representation is better than learning with just reward shaping or PVFs. In particular, when the state space is symmetrical and the rewards are asymmetrical, the RPVF capture the asymmetry better than the PVFs.
Algorithms for Differentially Private Multi-Armed Bandits
We present differentially private algorithms for the stochastic Multi-Armed Bandit (MAB) problem. This is a problem for applications such as adaptive clinical trials, experiment design, and user-targeted advertising where private information is connected to individual rewards. Our major contribution is to show that there exist $(\epsilon, \delta)$ differentially private variants of Upper Confidence Bound algorithms which have optimal regret, $O(\epsilon^{-1} + \log T)$. This is a significant improvement over previous results, which only achieve poly-log regret $O(\epsilon^{-2} \log^{2} T)$, because of our use of a novel interval-based mechanism. We also substantially improve the bounds of previous family of algorithms which use a continual release mechanism. Experiments clearly validate our theoretical bounds.
On the convergence of cycle detection for navigational reinforcement learning
We consider a reinforcement learning framework where agents have to navigate from start states to goal states. We prove convergence of a cycle-detection learning algorithm on a class of tasks that we call reducible. Reducible tasks have an acyclic solution. We also syntactically characterize the form of the final policy. This characterization can be used to precisely detect the convergence point in a simulation. Our result demonstrates that even simple algorithms can be successful in learning a large class of nontrivial tasks. In addition, our framework is elementary in the sense that we only use basic concepts to formally prove convergence.
Informative Data Projections: A Framework and Two Examples
Methods for Projection Pursuit aim to facilitate the visual exploration of high-dimensional data by identifying interesting low-dimensional projections. A major challenge is the design of a suitable quality metric of projections, commonly referred to as the projection index, to be maximized by the Projection Pursuit algorithm. In this paper, we introduce a new information-theoretic strategy for tackling this problem, based on quantifying the amount of information the projection conveys to a user given their prior beliefs about the data. The resulting projection index is a subjective quantity, explicitly dependent on the intended user. As a useful illustration, we developed this idea for two particular kinds of prior beliefs. The first kind leads to PCA (Principal Component Analysis), shining new light on when PCA is (not) appropriate. The second kind leads to a novel projection index, the maximization of which can be regarded as a robust variant of PCA. We show how this projection index, though non-convex, can be effectively maximized using a modified power method as well as using a semidefinite programming relaxation. The usefulness of this new projection index is demonstrated in comparative empirical experiments against PCA and a popular Projection Pursuit method.
Multiagent Cooperation and Competition with Deep Reinforcement Learning
Multiagent systems appear in most social, economical, and political situations. In the present work we extend the Deep Q-Learning Network architecture proposed by Google DeepMind to multiagent environments and investigate how two agents controlled by independent Deep Q-Networks interact in the classic videogame Pong. By manipulating the classical rewarding scheme of Pong we demonstrate how competitive and collaborative behaviors emerge. Competitive agents learn to play and score efficiently. Agents trained under collaborative rewarding schemes find an optimal strategy to keep the ball in the game as long as possible. We also describe the progression from competitive to collaborative behavior. The present work demonstrates that Deep Q-Networks can become a practical tool for studying the decentralized learning of multiagent systems living in highly complex environments.
Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) - The $\ell_0$ Method
The sparsity of natural signals and images in a transform domain or dictionary has been extensively exploited in several applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise in many applications compared to fixed or analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. In this work, we investigate an efficient method for $\ell_{0}$ "norm"-based dictionary learning by first approximating the training data set with a sum of sparse rank-one matrices and then using a block coordinate descent approach to estimate the unknowns. The proposed block coordinate descent algorithm involves efficient closed-form solutions. In particular, the sparse coding step involves a simple form of thresholding. We provide a convergence analysis for the proposed block coordinate descent approach. Our numerical experiments show the promising performance and significant speed-ups provided by our method over the classical K-SVD scheme in sparse signal representation and image denoising.
Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach
Three-qubit quantum gates are key ingredients for quantum error correction and quantum information processing. We generate quantum-control procedures to design three types of three-qubit gates, namely Toffoli, Controlled-Not-Not and Fredkin gates. The design procedures are applicable to a system comprising three nearest-neighbor-coupled superconducting artificial atoms. For each three-qubit gate, the numerical simulation of the proposed scheme achieves 99.9% fidelity, which is an accepted threshold fidelity for fault-tolerant quantum computing. We test our procedure in the presence of decoherence-induced noise as well as show its robustness against random external noise generated by the control electronics. The three-qubit gates are designed via the machine learning algorithm called Subspace-Selective Self-Adaptive Differential Evolution (SuSSADE).
MidRank: Learning to rank based on subsequences
We present a supervised learning to rank algorithm that effectively orders images by exploiting the structure in image sequences. Most often in the supervised learning to rank literature, ranking is approached either by analyzing pairs of images or by optimizing a list-wise surrogate loss function on full sequences. In this work we propose MidRank, which learns from moderately sized sub-sequences instead. These sub-sequences contain useful structural ranking information that leads to better learnability during training and better generalization during testing. By exploiting sub-sequences, the proposed MidRank improves ranking accuracy considerably on an extensive array of image ranking applications and datasets.
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with $p\gg n$. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable ordering. These results apply to a variety of practical situations that allow for arbitrary nondegenerate covariance structures as well as many popular regularizers including the MCP, SCAD, $\ell_{0}$ and $\ell_{1}$. The proof relies on interpreting a DAG as a recursive linear structural equation model, which reduces the estimation problem to a series of neighbourhood regressions. We provide a novel statistical analysis of these neighbourhood problems, establishing uniform control over the superexponential family of neighbourhoods associated with a Gaussian distribution. We then apply these results to study the statistical properties of score-based DAG estimators, learning causal DAGs, and inferring conditional independence relations via graphical models. Our results yield---for the first time---finite-sample guarantees for structure learning of Gaussian DAGs in high-dimensions via score-based estimation.
Robotic Search & Rescue via Online Multi-task Reinforcement Learning
Reinforcement learning (RL) is a general and well-known method that a robot can use to learn an optimal control policy to solve a particular task. We would like to build a versatile robot that can learn multiple tasks, but using RL for each of them would be prohibitively expensive in terms of both time and wear-and-tear on the robot. To remedy this problem, we use the Policy Gradient Efficient Lifelong Learning Algorithm (PG-ELLA), an online multi-task RL algorithm that enables the robot to efficiently learn multiple consecutive tasks by sharing knowledge between these tasks to accelerate learning and improve performance. We implemented and evaluated three RL methods--Q-learning, policy gradient RL, and PG-ELLA--on a ground robot whose task is to find a target object in an environment under different surface conditions. In this paper, we discuss our implementations as well as present an empirical analysis of their learning performance.
How do the naive Bayes classifier and the Support Vector Machine compare in their ability to forecast the Stock Exchange of Thailand?
This essay investigates the question of how the naive Bayes classifier and the support vector machine compare in their ability to forecast the Stock Exchange of Thailand. The theory behind the SVM and the naive Bayes classifier is explored. The algorithms are trained using data from the month of January 2010, extracted from the MarketWatch.com website. Input features are selected based on previous studies of the SET100 Index. The Weka 3 software is used to create models from the labeled training data. Mean squared error and proportion of correctly classified instances, and a number of other error measurements are the used to compare the two algorithms. This essay shows that these two algorithms are currently not advanced enough to accurately model the stock exchange. Nevertheless, the naive Bayes is better than the support vector machine at predicting the Stock Exchange of Thailand.
Multiple-Instance Learning: Radon-Nikodym Approach to Distribution Regression Problem
For distribution regression problem, where a bag of $x$--observations is mapped to a single $y$ value, a one--step solution is proposed. The problem of random distribution to random value is transformed to random vector to random value by taking distribution moments of $x$ observations in a bag as random vector. Then Radon--Nikodym or least squares theory can be applied, what give $y(x)$ estimator. The probability distribution of $y$ is also obtained, what requires solving generalized eigenvalues problem, matrix spectrum (not depending on $x$) give possible $y$ outcomes and depending on $x$ probabilities of outcomes can be obtained by projecting the distribution with fixed $x$ value (delta--function) to corresponding eigenvector. A library providing numerically stable polynomial basis for these calculations is available, what make the proposed approach practical.
Position paper: a general framework for applying machine learning techniques in operating room
In this position paper we describe a general framework for applying machine learning and pattern recognition techniques in healthcare. In particular, we are interested in providing an automated tool for monitoring and incrementing the level of awareness in the operating room and for identifying human errors which occur during the laparoscopy surgical operation. The framework that we present is divided in three different layers: each layer implements algorithms which have an increasing level of complexity and which perform functionality with an higher degree of abstraction. In the first layer, raw data collected from sensors in the operating room during surgical operation, they are pre-processed and aggregated. The results of this initial phase are transferred to a second layer, which implements pattern recognition techniques and extract relevant features from the data. Finally, in the last layer, expert systems are employed to take high level decisions, which represent the final output of the system.
A Short Survey on Data Clustering Algorithms
With rapidly increasing data, clustering algorithms are important tools for data analytics in modern research. They have been successfully applied to a wide range of domains; for instance, bioinformatics, speech recognition, and financial analysis. Formally speaking, given a set of data instances, a clustering algorithm is expected to divide the set of data instances into the subsets which maximize the intra-subset similarity and inter-subset dissimilarity, where a similarity measure is defined beforehand. In this work, the state-of-the-arts clustering algorithms are reviewed from design concept to methodology; Different clustering paradigms are discussed. Advanced clustering algorithms are also discussed. After that, the existing clustering evaluation metrics are reviewed. A summary with future insights is provided at the end.
Aspect-based Opinion Summarization with Convolutional Neural Networks
This paper considers Aspect-based Opinion Summarization (AOS) of reviews on particular products. To enable real applications, an AOS system needs to address two core subtasks, aspect extraction and sentiment classification. Most existing approaches to aspect extraction, which use linguistic analysis or topic modeling, are general across different products but not precise enough or suitable for particular products. Instead we take a less general but more precise scheme, directly mapping each review sentence into pre-defined aspects. To tackle aspect mapping and sentiment classification, we propose two Convolutional Neural Network (CNN) based methods, cascaded CNN and multitask CNN. Cascaded CNN contains two levels of convolutional networks. Multiple CNNs at level 1 deal with aspect mapping task, and a single CNN at level 2 deals with sentiment classification. Multitask CNN also contains multiple aspect CNNs and a sentiment CNN, but different networks share the same word embeddings. Experimental results indicate that both cascaded and multitask CNNs outperform SVM-based methods by large margins. Multitask CNN generally performs better than cascaded CNN.
Proximal gradient method for huberized support vector machine
The Support Vector Machine (SVM) has been used in a wide variety of classification problems. The original SVM uses the hinge loss function, which is non-differentiable and makes the problem difficult to solve in particular for regularized SVMs, such as with $\ell_1$-regularization. This paper considers the Huberized SVM (HSVM), which uses a differentiable approximation of the hinge loss function. We first explore the use of the Proximal Gradient (PG) method to solving binary-class HSVM (B-HSVM) and then generalize it to multi-class HSVM (M-HSVM). Under strong convexity assumptions, we show that our algorithm converges linearly. In addition, we give a finite convergence result about the support of the solution, based on which we further accelerate the algorithm by a two-stage method. We present extensive numerical experiments on both synthetic and real datasets which demonstrate the superiority of our methods over some state-of-the-art methods for both binary- and multi-class SVMs.
Asynchronous adaptive networks
In a recent article [1] we surveyed advances related to adaptation, learning, and optimization over synchronous networks. Various distributed strategies were discussed that enable a collection of networked agents to interact locally in response to streaming data and to continually learn and adapt to track drifts in the data and models. Under reasonable technical conditions on the data, the adaptive networks were shown to be mean-square stable in the slow adaptation regime, and their mean-square-error performance and convergence rate were characterized in terms of the network topology and data statistical moments [2]. Classical results for single-agent adaptation and learning were recovered as special cases. Following the works [3]-[5], this chapter complements the exposition from [1] and extends the results to asynchronous networks. The operation of this class of networks can be subject to various sources of uncertainties that influence their dynamic behavior, including randomly changing topologies, random link failures, random data arrival times, and agents turning on and off randomly. In an asynchronous environment, agents may stop updating their solutions or may stop sending or receiving information in a random manner and without coordination with other agents. The presentation will reveal that the mean-square-error performance of asynchronous networks remains largely unaltered compared to synchronous networks. The results justify the remarkable resilience of cooperative networks in the face of random events.
Non-adaptive Group Testing on Graphs
Grebinski and Kucherov (1998) and Alon et al. (2004-2005) study the problem of learning a hidden graph for some especial cases, such as hamiltonian cycle, cliques, stars, and matchings. This problem is motivated by problems in chemical reactions, molecular biology and genome sequencing. In this paper, we present a generalization of this problem. Precisely, we consider a graph G and a subgraph H of G and we assume that G contains exactly one defective subgraph isomorphic to H. The goal is to find the defective subgraph by testing whether an induced subgraph contains an edge of the defective subgraph, with the minimum number of tests. We present an upper bound for the number of tests to find the defective subgraph by using the symmetric and high probability variation of Lov\'asz Local Lemma.
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models
This paper addresses the general problem of reinforcement learning (RL) in partially observable environments. In 2013, our large RL recurrent neural networks (RNNs) learned from scratch to drive simulated cars from high-dimensional video input. However, real brains are more powerful in many ways. In particular, they learn a predictive model of their initially unknown environment, and somehow use it for abstract (e.g., hierarchical) planning and reasoning. Guided by algorithmic information theory, we describe RNN-based AIs (RNNAIs) designed to do the same. Such an RNNAI can be trained on never-ending sequences of tasks, some of them provided by the user, others invented by the RNNAI itself in a curious, playful fashion, to improve its RNN-based world model. Unlike our previous model-building RNN-based RL machines dating back to 1990, the RNNAI learns to actively query its model for abstract reasoning and planning and decision making, essentially "learning to think." The basic ideas of this report can be applied to many other cases where one RNN-like system exploits the algorithmic information content of another. They are taken from a grant proposal submitted in Fall 2014, and also explain concepts such as "mirror neurons." Experimental results will be described in separate papers.
Scalable and Accurate Online Feature Selection for Big Data
Feature selection is important in many big data applications. Two critical challenges closely associate with big data. Firstly, in many big data applications, the dimensionality is extremely high, in millions, and keeps growing. Secondly, big data applications call for highly scalable feature selection algorithms in an online manner such that each feature can be processed in a sequential scan. We present SAOLA, a Scalable and Accurate OnLine Approach for feature selection in this paper. With a theoretical analysis on bounds of the pairwise correlations between features, SAOLA employs novel pairwise comparison techniques and maintain a parsimonious model over time in an online manner. Furthermore, to deal with upcoming features that arrive by groups, we extend the SAOLA algorithm, and then propose a new group-SAOLA algorithm for online group feature selection. The group-SAOLA algorithm can online maintain a set of feature groups that is sparse at the levels of both groups and individual features simultaneously. An empirical study using a series of benchmark real data sets shows that our two algorithms, SAOLA and group-SAOLA, are scalable on data sets of extremely high dimensionality, and have superior performance over the state-of-the-art feature selection methods.
Cost-aware Pre-training for Multiclass Cost-sensitive Deep Learning
Deep learning has been one of the most prominent machine learning techniques nowadays, being the state-of-the-art on a broad range of applications where automatic feature extraction is needed. Many such applications also demand varying costs for different types of mis-classification errors, but it is not clear whether or how such cost information can be incorporated into deep learning to improve performance. In this work, we propose a novel cost-aware algorithm that takes into account the cost information into not only the training stage but also the pre-training stage of deep learning. The approach allows deep learning to conduct automatic feature extraction with the cost information effectively. Extensive experimental results demonstrate that the proposed approach outperforms other deep learning models that do not digest the cost information in the pre-training stage.
k-Nearest Neighbour Classification of Datasets with a Family of Distances
The $k$-nearest neighbour ($k$-NN) classifier is one of the oldest and most important supervised learning algorithms for classifying datasets. Traditionally the Euclidean norm is used as the distance for the $k$-NN classifier. In this thesis we investigate the use of alternative distances for the $k$-NN classifier. We start by introducing some background notions in statistical machine learning. We define the $k$-NN classifier and discuss Stone's theorem and the proof that $k$-NN is universally consistent on the normed space $R^d$. We then prove that $k$-NN is universally consistent if we take a sequence of random norms (that are independent of the sample and the query) from a family of norms that satisfies a particular boundedness condition. We extend this result by replacing norms with distances based on uniformly locally Lipschitz functions that satisfy certain conditions. We discuss the limitations of Stone's lemma and Stone's theorem, particularly with respect to quasinorms and adaptively choosing a distance for $k$-NN based on the labelled sample. We show the universal consistency of a two stage $k$-NN type classifier where we select the distance adaptively based on a split labelled sample and the query. We conclude by giving some examples of improvements of the accuracy of classifying various datasets using the above techniques.
Decoding Hidden Markov Models Faster Than Viterbi Via Online Matrix-Vector (max, +)-Multiplication
In this paper, we present a novel algorithm for the maximum a posteriori decoding (MAPD) of time-homogeneous Hidden Markov Models (HMM), improving the worst-case running time of the classical Viterbi algorithm by a logarithmic factor. In our approach, we interpret the Viterbi algorithm as a repeated computation of matrix-vector $(\max, +)$-multiplications. On time-homogeneous HMMs, this computation is online: a matrix, known in advance, has to be multiplied with several vectors revealed one at a time. Our main contribution is an algorithm solving this version of matrix-vector $(\max,+)$-multiplication in subquadratic time, by performing a polynomial preprocessing of the matrix. Employing this fast multiplication algorithm, we solve the MAPD problem in $O(mn^2/ \log n)$ time for any time-homogeneous HMM of size $n$ and observation sequence of length $m$, with an extra polynomial preprocessing cost negligible for $m > n$. To the best of our knowledge, this is the first algorithm for the MAPD problem requiring subquadratic time per observation, under the only assumption -- usually verified in practice -- that the transition probability matrix does not change with time.
Learning Using 1-Local Membership Queries
Classic machine learning algorithms learn from labelled examples. For example, to design a machine translation system, a typical training set will consist of English sentences and their translation. There is a stronger model, in which the algorithm can also query for labels of new examples it creates. E.g, in the translation task, the algorithm can create a new English sentence, and request its translation from the user during training. This combination of examples and queries has been widely studied. Yet, despite many theoretical results, query algorithms are almost never used. One of the main causes for this is a report (Baum and Lang, 1992) on very disappointing empirical performance of a query algorithm. These poor results were mainly attributed to the fact that the algorithm queried for labels of examples that are artificial, and impossible to interpret by humans. In this work we study a new model of local membership queries (Awasthi et al., 2012), which tries to resolve the problem of artificial queries. In this model, the algorithm is only allowed to query the labels of examples which are close to examples from the training set. E.g., in translation, the algorithm can change individual words in a sentence it has already seen, and then ask for the translation. In this model, the examples queried by the algorithm will be close to natural examples and hence, hopefully, will not appear as artificial or random. We focus on 1-local queries (i.e., queries of distance 1 from an example in the training sample). We show that 1-local membership queries are already stronger than the standard learning model. We also present an experiment on a well known NLP task of sentiment analysis. In this experiment, the users were asked to provide more information than merely indicating the label. We present results that illustrate that this extra information is beneficial in practice.
MOCICE-BCubed F$_1$: A New Evaluation Measure for Biclustering Algorithms
The validation of biclustering algorithms remains a challenging task, even though a number of measures have been proposed for evaluating the quality of these algorithms. Although no criterion is universally accepted as the overall best, a number of meta-evaluation conditions to be satisfied by biclustering algorithms have been enunciated. In this work, we present MOCICE-BCubed F$_1$, a new external measure for evaluating biclusterings, in the scenario where gold standard annotations are available for both the object clusters and the associated feature subspaces. Our proposal relies on the so-called micro-objects transformation and satisfies the most comprehensive set of meta-evaluation conditions so far enunciated for biclusterings. Additionally, the proposed measure adequately handles the occurrence of overlapping in both the object and feature spaces. Moreover, when used for evaluating traditional clusterings, which are viewed as a particular case of biclustering, the proposed measure also satisfies the most comprehensive set of meta-evaluation conditions so far enunciated for this task.
Towards Dropout Training for Convolutional Neural Networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling, to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.
Sequential visibility-graph motifs
Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.
Taxonomy grounded aggregation of classifiers with different label sets
We describe the problem of aggregating the label predictions of diverse classifiers using a class taxonomy. Such a taxonomy may not have been available or referenced when the individual classifiers were designed and trained, yet mapping the output labels into the taxonomy is desirable to integrate the effort spent in training the constituent classifiers. A hierarchical taxonomy representing some domain knowledge may be different from, but partially mappable to, the label sets of the individual classifiers. We present a heuristic approach and a principled graphical model to aggregate the label predictions by grounding them into the available taxonomy. Our model aggregates the labels using the taxonomy structure as constraints to find the most likely hierarchically consistent class. We experimentally validate our proposed method on image and text classification tasks.
Reinforcement Learning Applied to an Electric Water Heater: From Theory to Practice
Electric water heaters have the ability to store energy in their water buffer without impacting the comfort of the end user. This feature makes them a prime candidate for residential demand response. However, the stochastic and nonlinear dynamics of electric water heaters, makes it challenging to harness their flexibility. Driven by this challenge, this paper formulates the underlying sequential decision-making problem as a Markov decision process and uses techniques from reinforcement learning. Specifically, we apply an auto-encoder network to find a compact feature representation of the sensor measurements, which helps to mitigate the curse of dimensionality. A wellknown batch reinforcement learning technique, fitted Q-iteration, is used to find a control policy, given this feature representation. In a simulation-based experiment using an electric water heater with 50 temperature sensors, the proposed method was able to achieve good policies much faster than when using the full state information. In a lab experiment, we apply fitted Q-iteration to an electric water heater with eight temperature sensors. Further reducing the state vector did not improve the results of fitted Q-iteration. The results of the lab experiment, spanning 40 days, indicate that compared to a thermostat controller, the presented approach was able to reduce the total cost of energy consumption of the electric water heater by 15%.
Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing
Existing methods for retrieving k-nearest neighbours suffer from the curse of dimensionality. We argue this is caused in part by inherent deficiencies of space partitioning, which is the underlying strategy used by most existing methods. We devise a new strategy that avoids partitioning the vector space and present a novel randomized algorithm that runs in time linear in dimensionality of the space and sub-linear in the intrinsic dimensionality and the size of the dataset and takes space constant in dimensionality of the space and linear in the size of the dataset. The proposed algorithm allows fine-grained control over accuracy and speed on a per-query basis, automatically adapts to variations in data density, supports dynamic updates to the dataset and is easy-to-implement. We show appealing theoretical properties and demonstrate empirically that the proposed algorithm outperforms locality-sensitivity hashing (LSH) in terms of approximation quality, speed and space efficiency.
Loss Functions for Top-k Error: Analysis and Insights
In order to push the performance on realistic computer vision tasks, the number of classes in modern benchmark datasets has significantly increased in recent years. This increase in the number of classes comes along with increased ambiguity between the class labels, raising the question if top-1 error is the right performance measure. In this paper, we provide an extensive comparison and evaluation of established multiclass methods comparing their top-k performance both from a practical as well as from a theoretical perspective. Moreover, we introduce novel top-k loss functions as modifications of the softmax and the multiclass SVM losses and provide efficient optimization schemes for them. In the experiments, we compare on various datasets all of the proposed and established methods for top-k error optimization. An interesting insight of this paper is that the softmax loss yields competitive top-k performance for all k simultaneously. For a specific top-k error, our new top-k losses lead typically to further improvements while being faster to train than the softmax.
Attribute2Image: Conditional Image Generation from Visual Attributes
This paper investigates a novel problem of generating images from visual attributes. We model the image as a composite of foreground and background and develop a layered generative model with disentangled latent variables that can be learned end-to-end using a variational auto-encoder. We experiment with natural images of faces and birds and demonstrate that the proposed models are capable of generating realistic and diverse samples with disentangled latent representations. We use a general energy minimization algorithm for posterior inference of latent variables given novel images. Therefore, the learned generative models show excellent quantitative and visual results in the tasks of attribute-conditioned image reconstruction and completion.