title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Expressive recommender systems through normalized nonnegative models
We introduce normalized nonnegative models (NNM) for explorative data analysis. NNMs are partial convexifications of models from probability theory. We demonstrate their value at the example of item recommendation. We show that NNM-based recommender systems satisfy three criteria that all recommender systems should ideally satisfy: high predictive power, computational tractability, and expressive representations of users and items. Expressive user and item representations are important in practice to succinctly summarize the pool of customers and the pool of items. In NNMs, user representations are expressive because each user's preference can be regarded as normalized mixture of preferences of stereotypical users. The interpretability of item and user representations allow us to arrange properties of items (e.g., genres of movies or topics of documents) or users (e.g., personality traits) hierarchically.
Mixtures of Sparse Autoregressive Networks
We consider high-dimensional distribution estimation through autoregressive networks. By combining the concepts of sparsity, mixtures and parameter sharing we obtain a simple model which is fast to train and which achieves state-of-the-art or better results on several standard benchmark datasets. Specifically, we use an L1-penalty to regularize the conditional distributions and introduce a procedure for automatic parameter sharing between mixture components. Moreover, we propose a simple distributed representation which permits exact likelihood evaluations since the latent variables are interleaved with the observable variables and can be easily integrated out. Our model achieves excellent generalization performance and scales well to extremely high dimensions.
Causal interpretation rules for encoding and decoding models in neuroimaging
Causal terminology is often introduced in the interpretation of encoding and decoding models trained on neuroimaging data. In this article, we investigate which causal statements are warranted and which ones are not supported by empirical evidence. We argue that the distinction between encoding and decoding models is not sufficient for this purpose: relevant features in encoding and decoding models carry a different meaning in stimulus- and in response-based experimental paradigms. We show that only encoding models in the stimulus-based setting support unambiguous causal interpretations. By combining encoding and decoding models trained on the same data, however, we obtain insights into causal relations beyond those that are implied by each individual model type. We illustrate the empirical relevance of our theoretical findings on EEG data recorded during a visuo-motor learning task.
Budget Online Multiple Kernel Learning
Online learning with multiple kernels has gained increasing interests in recent years and found many applications. For classification tasks, Online Multiple Kernel Classification (OMKC), which learns a kernel based classifier by seeking the optimal linear combination of a pool of single kernel classifiers in an online fashion, achieves superior accuracy and enjoys great flexibility compared with traditional single-kernel classifiers. Despite being studied extensively, existing OMKC algorithms suffer from high computational cost due to their unbounded numbers of support vectors. To overcome this drawback, we present a novel framework of Budget Online Multiple Kernel Learning (BOMKL) and propose a new Sparse Passive Aggressive learning to perform effective budget online learning. Specifically, we adopt a simple yet effective Bernoulli sampling to decide if an incoming instance should be added to the current set of support vectors. By limiting the number of support vectors, our method can significantly accelerate OMKC while maintaining satisfactory accuracy that is comparable to that of the existing OMKC algorithms. We theoretically prove that our new method achieves an optimal regret bound in expectation, and empirically found that the proposed algorithm outperforms various OMKC algorithms and can easily scale up to large-scale datasets.
Neural Programmer: Inducing Latent Programs with Gradient Descent
Deep neural networks have achieved impressive supervised classification performance in many tasks including image recognition, speech recognition, and sequence to sequence learning. However, this success has not been translated to applications like question answering that may involve complex arithmetic and logic reasoning. A major limitation of these models is in their inability to learn even simple arithmetic and logic operations. For example, it has been shown that neural networks fail to learn to add two binary numbers reliably. In this work, we propose Neural Programmer, an end-to-end differentiable neural network augmented with a small set of basic arithmetic and logic operations. Neural Programmer can call these augmented operations over several steps, thereby inducing compositional programs that are more complex than the built-in operations. The model learns from a weak supervision signal which is the result of execution of the correct program, hence it does not require expensive annotation of the correct program itself. The decisions of what operations to call, and what data segments to apply to are inferred by Neural Programmer. Such decisions, during training, are done in a differentiable fashion so that the entire network can be trained jointly by gradient descent. We find that training the model is difficult, but it can be greatly improved by adding random noise to the gradient. On a fairly complex synthetic table-comprehension dataset, traditional recurrent networks and attentional models perform poorly while Neural Programmer typically obtains nearly perfect accuracy.
Nonparametric Canonical Correlation Analysis
Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choosing a kernel or neural network structure), and are computationally demanding. Interestingly, the theory of nonlinear CCA, without functional restrictions, had been studied in the population setting by Lancaster already in the 1950s, but these results have not inspired practical algorithms. We revisit Lancaster's theory to devise a practical algorithm for nonparametric CCA (NCCA). Specifically, we show that the solution can be expressed in terms of the singular value decomposition of a certain operator associated with the joint density of the views. Thus, by estimating the population density from data, NCCA reduces to solving an eigenvalue system, superficially like kernel CCA but, importantly, without requiring the inversion of any kernel matrix. We also derive a partially linear CCA (PLCCA) variant in which one of the views undergoes a linear projection while the other is nonparametric. Using a kernel density estimate based on a small number of nearest neighbors, our NCCA and PLCCA algorithms are memory-efficient, often run much faster, and perform better than kernel CCA and comparable to deep CCA.
Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch
Since the BOSS competition, in 2010, most steganalysis approaches use a learning methodology involving two steps: feature extraction, such as the Rich Models (RM), for the image representation, and use of the Ensemble Classifier (EC) for the learning step. In 2015, Qian et al. have shown that the use of a deep learning approach that jointly learns and computes the features, is very promising for the steganalysis. In this paper, we follow-up the study of Qian et al., and show that, due to intrinsic joint minimization, the results obtained from a Convolutional Neural Network (CNN) or a Fully Connected Neural Network (FNN), if well parameterized, surpass the conventional use of a RM with an EC. First, numerous experiments were conducted in order to find the best " shape " of the CNN. Second, experiments were carried out in the clairvoyant scenario in order to compare the CNN and FNN to an RM with an EC. The results show more than 16% reduction in the classification error with our CNN or FNN. Third, experiments were also performed in a cover-source mismatch setting. The results show that the CNN and FNN are naturally robust to the mismatch problem. In Addition to the experiments, we provide discussions on the internal mechanisms of a CNN, and weave links with some previously stated ideas, in order to understand the impressive results we obtained.
A Neural Transducer
Sequence-to-sequence models have achieved impressive results on various tasks. However, they are unsuitable for tasks that require incremental predictions to be made as more data arrives or tasks that have long input sequences and output sequences. This is because they generate an output sequence conditioned on an entire input sequence. In this paper, we present a Neural Transducer that can make incremental predictions as more input arrives, without redoing the entire computation. Unlike sequence-to-sequence models, the Neural Transducer computes the next-step distribution conditioned on the partially observed input sequence and the partially generated sequence. At each time step, the transducer can decide to emit zero to many output symbols. The data can be processed using an encoder and presented as input to the transducer. The discrete decision to emit a symbol at every time step makes it difficult to learn with conventional backpropagation. It is however possible to train the transducer by using a dynamic programming algorithm to generate target discrete decisions. Our experiments show that the Neural Transducer works well in settings where it is required to produce output predictions as data come in. We also find that the Neural Transducer performs well for long sequences even when attention mechanisms are not used.
Sherlock: Scalable Fact Learning in Images
We study scalable and uniform understanding of facts in images. Existing visual recognition systems are typically modeled differently for each fact type such as objects, actions, and interactions. We propose a setting where all these facts can be modeled simultaneously with a capacity to understand unbounded number of facts in a structured way. The training data comes as structured facts in images, including (1) objects (e.g., $<$boy$>$), (2) attributes (e.g., $<$boy, tall$>$), (3) actions (e.g., $<$boy, playing$>$), and (4) interactions (e.g., $<$boy, riding, a horse $>$). Each fact has a semantic language view (e.g., $<$ boy, playing$>$) and a visual view (an image with this fact). We show that learning visual facts in a structured way enables not only a uniform but also generalizable visual understanding. We propose and investigate recent and strong approaches from the multiview learning literature and also introduce two learning representation models as potential baselines. We applied the investigated methods on several datasets that we augmented with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage of relating facts by the structure by the proposed models compared to the designed baselines on bidirectional fact retrieval.
Performing Highly Accurate Predictions Through Convolutional Networks for Actual Telecommunication Challenges
We investigated how the application of deep learning, specifically the use of convolutional networks trained with GPUs, can help to build better predictive models in telecommunication business environments, and fill this gap. In particular, we focus on the non-trivial problem of predicting customer churn in telecommunication operators. Our model, called WiseNet, consists of a convolutional network and a novel encoding method that transforms customer activity data and Call Detail Records (CDRs) into images. Experimental evaluation with several machine learning classifiers supports the ability of WiseNet for learning features when using structured input data. For this type of telecommunication business problems, we found that WiseNet outperforms machine learning models with hand-crafted features, and does not require the labor-intensive step of feature engineering. Furthermore, the same model has been applied without retraining to a different market, achieving consistent results. This confirms the generalization property of WiseNet and the ability to extract useful representations.
A genetic algorithm to discover flexible motifs with support
Finding repeated patterns or motifs in a time series is an important unsupervised task that has still a number of open issues, starting by the definition of motif. In this paper, we revise the notion of motif support, characterizing it as the number of patterns or repetitions that define a motif. We then propose GENMOTIF, a genetic algorithm to discover motifs with support which, at the same time, is flexible enough to accommodate other motif specifications and task characteristics. GENMOTIF is an anytime algorithm that easily adapts to many situations: searching in a range of segment lengths, applying uniform scaling, dealing with multiple dimensions, using different similarity and grouping criteria, etc. GENMOTIF is also parameter-friendly: it has only two intuitive parameters which, if set within reasonable bounds, do not substantially affect its performance. We demonstrate the value of our approach in a number of synthetic and real-world settings, considering traffic volume measurements, accelerometer signals, and telephone call records.
An Exploration of Softmax Alternatives Belonging to the Spherical Loss Family
In a multi-class classification problem, it is standard to model the output of a neural network as a categorical distribution conditioned on the inputs. The output must therefore be positive and sum to one, which is traditionally enforced by a softmax. This probabilistic mapping allows to use the maximum likelihood principle, which leads to the well-known log-softmax loss. However the choice of the softmax function seems somehow arbitrary as there are many other possible normalizing functions. It is thus unclear why the log-softmax loss would perform better than other loss alternatives. In particular Vincent et al. (2015) recently introduced a class of loss functions, called the spherical family, for which there exists an efficient algorithm to compute the updates of the output weights irrespective of the output size. In this paper, we explore several loss functions from this family as possible alternatives to the traditional log-softmax. In particular, we focus our investigation on spherical bounds of the log-softmax loss and on two spherical log-likelihood losses, namely the log-Spherical Softmax suggested by Vincent et al. (2015) and the log-Taylor Softmax that we introduce. Although these alternatives do not yield as good results as the log-softmax loss on two language modeling tasks, they surprisingly outperform it in our experiments on MNIST and CIFAR-10, suggesting that they might be relevant in a broad range of applications.
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
We introduce Divnet, a flexible technique for learning networks with diverse neurons. Divnet models neuronal diversity by placing a Determinantal Point Process (DPP) over neurons in a given layer. It uses this DPP to select a subset of diverse neurons and subsequently fuses the redundant neurons into the selected ones. Compared with previous approaches, Divnet offers a more principled, flexible technique for capturing neuronal diversity and thus implicitly enforcing regularization. This enables effective auto-tuning of network architecture and leads to smaller network sizes without hurting performance. Moreover, through its focus on diversity and neuron fusing, Divnet remains compatible with other procedures that seek to reduce memory footprints of networks. We present experimental results to corroborate our claims: for pruning neural networks, Divnet is seen to be notably superior to competing approaches.
Topic Modeling of Behavioral Modes Using Sensor Data
The field of Movement Ecology, like so many other fields, is experiencing a period of rapid growth in availability of data. As the volume rises, traditional methods are giving way to machine learning and data science, which are playing an increasingly large part it turning this data into science-driving insights. One rich and interesting source is the bio-logger. These small electronic wearable devices are attached to animals free to roam in their natural habitats, and report back readings from multiple sensors, including GPS and accelerometer bursts. A common use of accelerometer data is for supervised learning of behavioral modes. However, we need unsupervised analysis tools as well, in order to overcome the inherent difficulties of obtaining a labeled dataset, which in some cases is either infeasible or does not successfully encompass the full repertoire of behavioral modes of interest. Here we present a matrix factorization based topic-model method for accelerometer bursts, derived using a linear mixture property of patch features. Our method is validated via comparison to a labeled dataset, and is further compared to standard clustering algorithms.
Yin and Yang: Balancing and Answering Binary Visual Questions
The complex compositional structure of language makes problems at the intersection of vision and language challenging. But language also provides a strong prior that can result in good superficial performance, without the underlying models truly understanding the visual content. This can hinder progress in pushing state of art in the computer vision aspects of multi-modal AI. In this paper, we address binary Visual Question Answering (VQA) on abstract scenes. We formulate this problem as visual verification of concepts inquired in the questions. Specifically, we convert the question to a tuple that concisely summarizes the visual concept to be detected in the image. If the concept can be found in the image, the answer to the question is "yes", and otherwise "no". Abstract scenes play two roles (1) They allow us to focus on the high-level semantics of the VQA task as opposed to the low-level recognition problems, and perhaps more importantly, (2) They provide us the modality to balance the dataset such that language priors are controlled, and the role of vision is essential. In particular, we collect fine-grained pairs of scenes for every question, such that the answer to the question is "yes" for one scene, and "no" for the other for the exact same question. Indeed, language priors alone do not perform better than chance on our balanced dataset. Moreover, our proposed approach matches the performance of a state-of-the-art VQA approach on the unbalanced dataset, and outperforms it on the balanced dataset.
How (not) to Train your Generative Model: Scheduled Sampling, Likelihood, Adversary?
Modern applications and progress in deep learning research have created renewed interest for generative models of text and of images. However, even today it is unclear what objective functions one should use to train and evaluate these models. In this paper we present two contributions. Firstly, we present a critique of scheduled sampling, a state-of-the-art training method that contributed to the winning entry to the MSCOCO image captioning benchmark in 2015. Here we show that despite this impressive empirical performance, the objective function underlying scheduled sampling is improper and leads to an inconsistent learning algorithm. Secondly, we revisit the problems that scheduled sampling was meant to address, and present an alternative interpretation. We argue that maximum likelihood is an inappropriate training objective when the end-goal is to generate natural-looking samples. We go on to derive an ideal objective function to use in this situation instead. We introduce a generalisation of adversarial training, and show how such method can interpolate between maximum likelihood training and our ideal training objective. To our knowledge this is the first theoretical analysis that explains why adversarial training tends to produce samples with higher perceived quality.
Resolving the Geometric Locus Dilemma for Support Vector Learning Machines
Capacity control, the bias/variance dilemma, and learning unknown functions from data, are all concerned with identifying effective and consistent fits of unknown geometric loci to random data points. A geometric locus is a curve or surface formed by points, all of which possess some uniform property. A geometric locus of an algebraic equation is the set of points whose coordinates are solutions of the equation. Any given curve or surface must pass through each point on a specified locus. This paper argues that it is impossible to fit random data points to algebraic equations of partially configured geometric loci that reference arbitrary Cartesian coordinate systems. It also argues that the fundamental curve of a linear decision boundary is actually a principal eigenaxis. It is shown that learning principal eigenaxes of linear decision boundaries involves finding a point of statistical equilibrium for which eigenenergies of principal eigenaxis components are symmetrically balanced with each other. It is demonstrated that learning linear decision boundaries involves strong duality relationships between a statistical eigenlocus of principal eigenaxis components and its algebraic forms, in primal and dual, correlated Hilbert spaces. Locus equations are introduced and developed that describe principal eigen-coordinate systems for lines, planes, and hyperplanes. These equations are used to introduce and develop primal and dual statistical eigenlocus equations of principal eigenaxes of linear decision boundaries. Important generalizations for linear decision boundaries are shown to be encoded within a dual statistical eigenlocus of principal eigenaxis components. Principal eigenaxes of linear decision boundaries are shown to encode Bayes' likelihood ratio for common covariance data and a robust likelihood ratio for all other data.
Random sampling of bandlimited signals on graphs
We study the problem of sampling k-bandlimited signals on graphs. We propose two sampling strategies that consist in selecting a small subset of nodes at random. The first strategy is non-adaptive, i.e., independent of the graph structure, and its performance depends on a parameter called the graph coherence. On the contrary, the second strategy is adaptive but yields optimal results. Indeed, no more than O(k log(k)) measurements are sufficient to ensure an accurate and stable recovery of all k-bandlimited signals. This second strategy is based on a careful choice of the sampling distribution, which can be estimated quickly. Then, we propose a computationally efficient decoder to reconstruct k-bandlimited signals from their samples. We prove that it yields accurate reconstructions and that it is also stable to noise. Finally, we conduct several experiments to test these techniques.
Deep Kalman Filters
Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of particular interest is the use of temporal generative models for counterfactual inference. We investigate the efficacy of such models for counterfactual inference, and to that end we introduce the "Healing MNIST" dataset where long-term structure, noise and actions are applied to sequences of digits. We show the efficacy of our method for modeling this dataset. We further show how our model can be used for counterfactual inference for patients, based on electronic health record data of 8,000 patients over 4.5 years.
Adversarial Manipulation of Deep Representations
We show that the representation of an image in a deep neural network (DNN) can be manipulated to mimic those of other natural images, with only minor, imperceptible perturbations to the original image. Previous methods for generating adversarial images focused on image perturbations designed to produce erroneous class labels, while we concentrate on the internal layers of DNN representations. In this way our new class of adversarial images differs qualitatively from others. While the adversary is perceptually similar to one image, its internal representation appears remarkably similar to a different image, one from a different class, bearing little if any apparent similarity to the input; they appear generic and consistent with the space of natural images. This phenomenon raises questions about DNN representations, as well as the properties of natural images themselves.
Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting
The Augmented Lagragian Method (ALM) and Alternating Direction Method of Multiplier (ADMM) have been powerful optimization methods for general convex programming subject to linear constraint. We consider the convex problem whose objective consists of a smooth part and a nonsmooth but simple part. We propose the Fast Proximal Augmented Lagragian Method (Fast PALM) which achieves the convergence rate $O(1/K^2)$, compared with $O(1/K)$ by the traditional PALM. In order to further reduce the per-iteration complexity and handle the multi-blocks problem, we propose the Fast Proximal ADMM with Parallel Splitting (Fast PL-ADMM-PS) method. It also partially improves the rate related to the smooth part of the objective function. Experimental results on both synthesized and real world data demonstrate that our fast methods significantly improve the previous PALM and ADMM.
Convolutional Models for Joint Object Categorization and Pose Estimation
In the task of Object Recognition, there exists a dichotomy between the categorization of objects and estimating object pose, where the former necessitates a view-invariant representation, while the latter requires a representation capable of capturing pose information over different categories of objects. With the rise of deep architectures, the prime focus has been on object category recognition. Deep learning methods have achieved wide success in this task. In contrast, object pose regression using these approaches has received relatively much less attention. In this paper we show how deep architectures, specifically Convolutional Neural Networks (CNN), can be adapted to the task of simultaneous categorization and pose estimation of objects. We investigate and analyze the layers of various CNN models and extensively compare between them with the goal of discovering how the layers of distributed representations of CNNs represent object pose information and how this contradicts with object category representations. We extensively experiment on two recent large and challenging multi-view datasets. Our models achieve better than state-of-the-art performance on both datasets.
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
Deep neural networks are powerful parametric models that can be trained efficiently using the backpropagation algorithm. Stochastic neural networks combine the power of large parametric functions with that of graphical models, which makes it possible to learn very complex distributions. However, as backpropagation is not directly applicable to stochastic networks that include discrete sampling operations within their computational graph, training such networks remains difficult. We present MuProp, an unbiased gradient estimator for stochastic networks, designed to make this task easier. MuProp improves on the likelihood-ratio estimator by reducing its variance using a control variate based on the first-order Taylor expansion of a mean-field network. Crucially, unlike prior attempts at using backpropagation for training stochastic networks, the resulting estimator is unbiased and well behaved. Our experiments on structured output prediction and discrete latent variable modeling demonstrate that MuProp yields consistently good performance across a range of difficult tasks.
Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models
Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is $O(N \log N)$ time, where $N$ is the number of samples.
Sparse-promoting Full Waveform Inversion based on Online Orthonormal Dictionary Learning
Full waveform inversion (FWI) delivers high-resolution images of the subsurface by minimizing iteratively the misfit between the recorded and calculated seismic data. It has been attacked successfully with the Gauss-Newton method and sparsity promoting regularization based on fixed multiscale transforms that permit significant subsampling of the seismic data when the model perturbation at each FWI data-fitting iteration can be represented with sparse coefficients. Rather than using analytical transforms with predefined dictionaries to achieve sparse representation, we introduce an adaptive transform called the Sparse Orthonormal Transform (SOT) whose dictionary is learned from many small training patches taken from the model perturbations in previous iterations. The patch-based dictionary is constrained to be orthonormal and trained with an online approach to provide the best sparse representation of the complex features and variations of the entire model perturbation. The complexity of the training method is proportional to the cube of the number of samples in one small patch. By incorporating both compressive subsampling and the adaptive SOT-based representation into the Gauss-Newton least-squares problem for each FWI iteration, the model perturbation can be recovered after an l1-norm sparsity constraint is applied on the SOT coefficients. Numerical experiments on synthetic models demonstrate that the SOT-based sparsity promoting regularization can provide robust FWI results with reduced computation.
Binary embeddings with structured hashed projections
We consider the hashing mechanism for constructing binary embeddings, that involves pseudo-random projections followed by nonlinear (sign function) mappings. The pseudo-random projection is described by a matrix, where not all entries are independent random variables but instead a fixed "budget of randomness" is distributed across the matrix. Such matrices can be efficiently stored in sub-quadratic or even linear space, provide reduction in randomness usage (i.e. number of required random values), and very often lead to computational speed ups. We prove several theoretical results showing that projections via various structured matrices followed by nonlinear mappings accurately preserve the angular distance between input high-dimensional vectors. To the best of our knowledge, these results are the first that give theoretical ground for the use of general structured matrices in the nonlinear setting. In particular, they generalize previous extensions of the Johnson-Lindenstrauss lemma and prove the plausibility of the approach that was so far only heuristically confirmed for some special structured matrices. Consequently, we show that many structured matrices can be used as an efficient information compression mechanism. Our findings build a better understanding of certain deep architectures, which contain randomly weighted and untrained layers, and yet achieve high performance on different learning tasks. We empirically verify our theoretical findings and show the dependence of learning via structured hashed projections on the performance of neural network as well as nearest neighbor classifier.
How much does your data exploration overfit? Controlling bias via information usage
Modern data is messy and high-dimensional, and it is often not clear a priori what are the right questions to ask. Instead, the analyst typically needs to use the data to search for interesting analyses to perform and hypotheses to test. This is an adaptive process, where the choice of analysis to be performed next depends on the results of the previous analyses on the same data. Ultimately, which results are reported can be heavily influenced by the data. It is widely recognized that this process, even if well-intentioned, can lead to biases and false discoveries, contributing to the crisis of reproducibility in science. But while %the adaptive nature of exploration any data-exploration renders standard statistical theory invalid, experience suggests that different types of exploratory analysis can lead to disparate levels of bias, and the degree of bias also depends on the particulars of the data set. In this paper, we propose a general information usage framework to quantify and provably bound the bias and other error metrics of an arbitrary exploratory analysis. We prove that our mutual information based bound is tight in natural settings, and then use it to give rigorous insights into when commonly used procedures do or do not lead to substantially biased estimation. Through the lens of information usage, we analyze the bias of specific exploration procedures such as filtering, rank selection and clustering. Our general framework also naturally motivates randomization techniques that provably reduces exploration bias while preserving the utility of the data analysis. We discuss the connections between our approach and related ideas from differential privacy and blinded data analysis, and supplement our results with illustrative simulations.
Reduced-Precision Strategies for Bounded Memory in Deep Neural Nets
This work investigates how using reduced precision data in Convolutional Neural Networks (CNNs) affects network accuracy during classification. More specifically, this study considers networks where each layer may use different precision data. Our key result is the observation that the tolerance of CNNs to reduced precision data not only varies across networks, a well established observation, but also within networks. Tuning precision per layer is appealing as it could enable energy and performance improvements. In this paper we study how error tolerance across layers varies and propose a method for finding a low precision configuration for a network while maintaining high accuracy. A diverse set of CNNs is analyzed showing that compared to a conventional implementation using a 32-bit floating-point representation for all layers, and with less than 1% loss in relative accuracy, the data footprint required by these networks can be reduced by an average of 74% and up to 92%.
An extension of McDiarmid's inequality
We derive an extension of McDiarmid's inequality for functions $f$ with bounded differences on a high probability set ${\cal Y}$ (instead of almost surely). The behavior of $f$ outside ${\cal Y}$ may be arbitrary. The proof is short and elementary, and relies on an extension argument similar to Kirszbraun's theorem.
Robust PCA via Nonconvex Rank Approximation
Numerous applications in data mining and machine learning require recovering a matrix of minimal rank. Robust principal component analysis (RPCA) is a general framework for handling this kind of problems. Nuclear norm based convex surrogate of the rank function in RPCA is widely investigated. Under certain assumptions, it can recover the underlying true low rank matrix with high probability. However, those assumptions may not hold in real-world applications. Since the nuclear norm approximates the rank by adding all singular values together, which is essentially a $\ell_1$-norm of the singular values, the resulting approximation error is not trivial and thus the resulting matrix estimator can be significantly biased. To seek a closer approximation and to alleviate the above-mentioned limitations of the nuclear norm, we propose a nonconvex rank approximation. This approximation to the matrix rank is tighter than the nuclear norm. To solve the associated nonconvex minimization problem, we develop an efficient augmented Lagrange multiplier based optimization algorithm. Experimental results demonstrate that our method outperforms current state-of-the-art algorithms in both accuracy and efficiency.
The Use of Machine Learning Algorithms in Recommender Systems: A Systematic Review
Recommender systems use algorithms to provide users with product or service recommendations. Recently, these systems have been using machine learning algorithms from the field of artificial intelligence. However, choosing a suitable machine learning algorithm for a recommender system is difficult because of the number of algorithms described in the literature. Researchers and practitioners developing recommender systems are left with little information about the current approaches in algorithm usage. Moreover, the development of a recommender system using a machine learning algorithm often has problems and open questions that must be evaluated, so software engineers know where to focus research efforts. This paper presents a systematic review of the literature that analyzes the use of machine learning algorithms in recommender systems and identifies research opportunities for software engineering research. The study concludes that Bayesian and decision tree algorithms are widely used in recommender systems because of their relative simplicity, and that requirement and design phases of recommender system development appear to offer opportunities for further research.
AUC-maximized Deep Convolutional Neural Fields for Sequence Labeling
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This manuscript presents Deep Convolutional Neural Fields (DeepCNF), a combination of DCNN with Conditional Random Field (CRF), for sequence labeling with highly imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on highly imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. We then test our AUC-maximized DeepCNF on three very different protein sequence labeling tasks: solvent accessibility prediction, 8-state secondary structure prediction, and disorder prediction. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also have similar performance as the other two training methods on the solvent accessibility prediction problem which has three equally-distributed labels. Furthermore, our experimental results also show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks.
Semi-supervised Collaborative Ranking with Push at Top
Existing collaborative ranking based recommender systems tend to perform best when there is enough observed ratings for each user and the observation is made completely at random. Under this setting recommender systems can properly suggest a list of recommendations according to the user interests. However, when the observed ratings are extremely sparse (e.g. in the case of cold-start users where no rating data is available), and are not sampled uniformly at random, existing ranking methods fail to effectively leverage side information to transduct the knowledge from existing ratings to unobserved ones. We propose a semi-supervised collaborative ranking model, dubbed \texttt{S$^2$COR}, to improve the quality of cold-start recommendation. \texttt{S$^2$COR} mitigates the sparsity issue by leveraging side information about both observed and missing ratings by collaboratively learning the ranking model. This enables it to deal with the case of missing data not at random, but to also effectively incorporate the available side information in transduction. We experimentally evaluated our proposed algorithm on a number of challenging real-world datasets and compared against state-of-the-art models for cold-start recommendation. We report significantly higher quality recommendations with our algorithm compared to the state-of-the-art.
On the interplay of network structure and gradient convergence in deep learning
The regularization and output consistency behavior of dropout and layer-wise pretraining for learning deep networks have been fairly well studied. However, our understanding of how the asymptotic convergence of backpropagation in deep architectures is related to the structural properties of the network and other design choices (like denoising and dropout rate) is less clear at this time. An interesting question one may ask is whether the network architecture and input data statistics may guide the choices of learning parameters and vice versa. In this work, we explore the association between such structural, distributional and learnability aspects vis-\`a-vis their interaction with parameter convergence rates. We present a framework to address these questions based on convergence of backpropagation for general nonconvex objectives using first-order information. This analysis suggests an interesting relationship between feature denoising and dropout. Building upon these results, we obtain a setup that provides systematic guidance regarding the choice of learning parameters and network sizes that achieve a certain level of convergence (in the optimization sense) often mediated by statistical attributes of the inputs. Our results are supported by a set of experimental evaluations as well as independent empirical observations reported by other groups.
Structural-RNN: Deep Learning on Spatio-Temporal Graphs
Deep Recurrent Neural Network architectures, though remarkably capable at modeling sequences, lack an intuitive high-level spatio-temporal structure. That is while many problems in computer vision inherently have an underlying high-level structure and can benefit from it. Spatio-temporal graphs are a popular tool for imposing such high-level intuitions in the formulation of real world problems. In this paper, we propose an approach for combining the power of high-level spatio-temporal graphs and sequence learning success of Recurrent Neural Networks~(RNNs). We develop a scalable method for casting an arbitrary spatio-temporal graph as a rich RNN mixture that is feedforward, fully differentiable, and jointly trainable. The proposed method is generic and principled as it can be used for transforming any spatio-temporal graph through employing a certain set of well defined steps. The evaluations of the proposed approach on a diverse set of problems, ranging from modeling human motion to object interactions, shows improvement over the state-of-the-art with a large margin. We expect this method to empower new approaches to problem formulation through high-level spatio-temporal graphs and Recurrent Neural Networks.
Constant Time EXPected Similarity Estimation using Stochastic Optimization
A new algorithm named EXPected Similarity Estimation (EXPoSE) was recently proposed to solve the problem of large-scale anomaly detection. It is a non-parametric and distribution free kernel method based on the Hilbert space embedding of probability measures. Given a dataset of $n$ samples, EXPoSE needs only $\mathcal{O}(n)$ (linear time) to build a model and $\mathcal{O}(1)$ (constant time) to make a prediction. In this work we improve the linear computational complexity and show that an $\epsilon$-accurate model can be estimated in constant time, which has significant implications for large-scale learning problems. To achieve this goal, we cast the original EXPoSE formulation into a stochastic optimization problem. It is crucial that this approach allows us to determine the number of iteration based on a desired accuracy $\epsilon$, independent of the dataset size $n$. We will show that the proposed stochastic gradient descent algorithm works in general (possible infinite-dimensional) Hilbert spaces, is easy to implement and requires no additional step-size parameters.
Bayesian Optimization with Dimension Scheduling: Application to Biological Systems
Bayesian Optimization (BO) is a data-efficient method for global black-box optimization of an expensive-to-evaluate fitness function. BO typically assumes that computation cost of BO is cheap, but experiments are time consuming or costly. In practice, this allows us to optimize ten or fewer critical parameters in up to 1,000 experiments. But experiments may be less expensive than BO methods assume: In some simulation models, we may be able to conduct multiple thousands of experiments in a few hours, and the computational burden of BO is no longer negligible compared to experimentation time. To address this challenge we introduce a new Dimension Scheduling Algorithm (DSA), which reduces the computational burden of BO for many experiments. The key idea is that DSA optimizes the fitness function only along a small set of dimensions at each iteration. This DSA strategy (1) reduces the necessary computation time, (2) finds good solutions faster than the traditional BO method, and (3) can be parallelized straightforwardly. We evaluate the DSA in the context of optimizing parameters of dynamic models of microalgae metabolism and show faster convergence than traditional BO.
Learning the Dimensionality of Word Embeddings
We describe a method for learning word embeddings with data-dependent dimensionality. Our Stochastic Dimensionality Skip-Gram (SD-SG) and Stochastic Dimensionality Continuous Bag-of-Words (SD-CBOW) are nonparametric analogs of Mikolov et al.'s (2013) well-known 'word2vec' models. Vector dimensionality is made dynamic by employing techniques used by Cote & Larochelle (2016) to define an RBM with an infinite number of hidden units. We show qualitatively and quantitatively that SD-SG and SD-CBOW are competitive with their fixed-dimension counterparts while providing a distribution over embedding dimensionalities, which offers a window into how semantics distribute across dimensions.
Understanding Adversarial Training: Increasing Local Stability of Neural Nets through Robust Optimization
We propose a general framework for increasing local stability of Artificial Neural Nets (ANNs) using Robust Optimization (RO). We achieve this through an alternating minimization-maximization procedure, in which the loss of the network is minimized over perturbed examples that are generated at each parameter update. We show that adversarial training of ANNs is in fact robustification of the network optimization, and that our proposed framework generalizes previous approaches for increasing local stability of ANNs. Experimental results reveal that our approach increases the robustness of the network to existing adversarial examples, while making it harder to generate new ones. Furthermore, our algorithm improves the accuracy of the network also on the original test data.
Deep multi-scale video prediction beyond mean square error
Learning to predict future images from a video sequence involves the construction of an internal representation that models the image evolution accurately, and therefore, to some degree, its content and dynamics. This is why pixel-space video prediction may be viewed as a promising avenue for unsupervised feature learning. In addition, while optical flow has been a very studied problem in computer vision for a long time, future frame prediction is rarely approached. Still, many vision applications could benefit from the knowledge of the next frames of videos, that does not require the complexity of tracking every pixel trajectories. In this work, we train a convolutional network to generate future frames given an input sequence. To deal with the inherently blurry predictions obtained from the standard Mean Squared Error (MSE) loss function, we propose three different and complementary feature learning strategies: a multi-scale architecture, an adversarial training method, and an image gradient difference loss function. We compare our predictions to different published results based on recurrent neural networks on the UCF101 dataset
Extending Gossip Algorithms to Distributed Estimation of U-Statistics
Efficient and robust algorithms for decentralized estimation in networks are essential to many distributed systems. Whereas distributed estimation of sample mean statistics has been the subject of a good deal of attention, computation of $U$-statistics, relying on more expensive averaging over pairs of observations, is a less investigated area. Yet, such data functionals are essential to describe global properties of a statistical population, with important examples including Area Under the Curve, empirical variance, Gini mean difference and within-cluster point scatter. This paper proposes new synchronous and asynchronous randomized gossip algorithms which simultaneously propagate data across the network and maintain local estimates of the $U$-statistic of interest. We establish convergence rate bounds of $O(1/t)$ and $O(\log t / t)$ for the synchronous and asynchronous cases respectively, where $t$ is the number of iterations, with explicit data and network dependent terms. Beyond favorable comparisons in terms of rate analysis, numerical experiments provide empirical evidence the proposed algorithms surpasses the previously introduced approach.
Gated Graph Sequence Neural Networks
Graph-structured data appears frequently in domains including chemistry, natural language semantics, social networks, and knowledge bases. In this work, we study feature learning techniques for graph-structured inputs. Our starting point is previous work on Graph Neural Networks (Scarselli et al., 2009), which we modify to use gated recurrent units and modern optimization techniques and then extend to output sequences. The result is a flexible and broadly useful class of neural network models that has favorable inductive biases relative to purely sequence-based models (e.g., LSTMs) when the problem is graph-structured. We demonstrate the capabilities on some simple AI (bAbI) and graph algorithm learning tasks. We then show it achieves state-of-the-art performance on a problem from program verification, in which subgraphs need to be matched to abstract data structures.
Learning Neural Network Architectures using Backpropagation
Deep neural networks with millions of parameters are at the heart of many state of the art machine learning models today. However, recent works have shown that models with much smaller number of parameters can also perform just as well. In this work, we introduce the problem of architecture-learning, i.e; learning the architecture of a neural network along with weights. We introduce a new trainable parameter called tri-state ReLU, which helps in eliminating unnecessary neurons. We also propose a smooth regularizer which encourages the total number of neurons after elimination to be small. The resulting objective is differentiable and simple to optimize. We experimentally validate our method on both small and large networks, and show that it can learn models with a considerably small number of parameters without affecting prediction accuracy.
Automatic Instrument Recognition in Polyphonic Music Using Convolutional Neural Networks
Traditional methods to tackle many music information retrieval tasks typically follow a two-step architecture: feature engineering followed by a simple learning algorithm. In these "shallow" architectures, feature engineering and learning are typically disjoint and unrelated. Additionally, feature engineering is difficult, and typically depends on extensive domain expertise. In this paper, we present an application of convolutional neural networks for the task of automatic musical instrument identification. In this model, feature extraction and learning algorithms are trained together in an end-to-end fashion. We show that a convolutional neural network trained on raw audio can achieve performance surpassing traditional methods that rely on hand-crafted features.
Return of Frustratingly Easy Domain Adaptation
Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning methods. Supervised domain adaptation methods have been proposed for the case when the target data have labels, including some that perform very well despite being "frustratingly easy" to implement. However, in practice, the target domain is often unlabeled, requiring unsupervised adaptation. We propose a simple, effective, and efficient method for unsupervised domain adaptation called CORrelation ALignment (CORAL). CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. Even though it is extraordinarily simple--it can be implemented in four lines of Matlab code--CORAL performs remarkably well in extensive evaluations on standard benchmark datasets.
Identifying the Absorption Bump with Deep Learning
The pervasive interstellar dust grains provide significant insights to understand the formation and evolution of the stars, planetary systems, and the galaxies, and may harbor the building blocks of life. One of the most effective way to analyze the dust is via their interaction with the light from background sources. The observed extinction curves and spectral features carry the size and composition information of dust. The broad absorption bump at 2175 Angstrom is the most prominent feature in the extinction curves. Traditionally, statistical methods are applied to detect the existence of the absorption bump. These methods require heavy preprocessing and the co-existence of other reference features to alleviate the influence from the noises. In this paper, we apply Deep Learning techniques to detect the broad absorption bump. We demonstrate the key steps for training the selected models and their results. The success of Deep Learning based method inspires us to generalize a common methodology for broader science discovery problems. We present our on-going work to build the DeepDis system for such kind of applications.
A Block Regression Model for Short-Term Mobile Traffic Forecasting
Accurate mobile traffic forecast is important for efficient network planning and operations. However, existing traffic forecasting models have high complexity, making the forecasting process slow and costly. In this paper, we analyze some characteristics of mobile traffic such as periodicity, spatial similarity and short term relativity. Based on these characteristics, we propose a \emph{Block Regression} ({BR}) model for mobile traffic forecasting. This model employs seasonal differentiation so as to take into account of the temporally repetitive nature of mobile traffic. One of the key features of our {BR} model lies in its low complexity since it constructs a single model for all base stations. We evaluate the accuracy of {BR} model based on real traffic data and compare it with the existing models. Results show that our {BR} model offers equal accuracy to the existing models but has much less complexity.
Learning Structured Inference Neural Networks with Label Relations
Images of scenes have various objects as well as abundant attributes, and diverse levels of visual categorization are possible. A natural image could be assigned with fine-grained labels that describe major components, coarse-grained labels that depict high level abstraction or a set of labels that reveal attributes. Such categorization at different concept layers can be modeled with label graphs encoding label information. In this paper, we exploit this rich information with a state-of-art deep learning framework, and propose a generic structured model that leverages diverse label relations to improve image classification performance. Our approach employs a novel stacked label prediction neural network, capturing both inter-level and intra-level label semantics. We evaluate our method on benchmark image datasets, and empirical results illustrate the efficacy of our model.
Predicting distributions with Linearizing Belief Networks
Conditional belief networks introduce stochastic binary variables in neural networks. Contrary to a classical neural network, a belief network can predict more than the expected value of the output $Y$ given the input $X$. It can predict a distribution of outputs $Y$ which is useful when an input can admit multiple outputs whose average is not necessarily a valid answer. Such networks are particularly relevant to inverse problems such as image prediction for denoising, or text to speech. However, traditional sigmoid belief networks are hard to train and are not suited to continuous problems. This work introduces a new family of networks called linearizing belief nets or LBNs. A LBN decomposes into a deep linear network where each linear unit can be turned on or off by non-deterministic binary latent units. It is a universal approximator of real-valued conditional distributions and can be trained using gradient descent. Moreover, the linear pathways efficiently propagate continuous information and they act as multiplicative skip-connections that help optimization by removing gradient diffusion. This yields a model which trains efficiently and improves the state-of-the-art on image denoising and facial expression generation with the Toronto faces dataset.
Competitive Multi-scale Convolution
In this paper, we introduce a new deep convolutional neural network (ConvNet) module that promotes competition among a set of multi-scale convolutional filters. This new module is inspired by the inception module, where we replace the original collaborative pooling stage (consisting of a concatenation of the multi-scale filter outputs) by a competitive pooling represented by a maxout activation unit. This extension has the following two objectives: 1) the selection of the maximum response among the multi-scale filters prevents filter co-adaptation and allows the formation of multiple sub-networks within the same model, which has been shown to facilitate the training of complex learning problems; and 2) the maxout unit reduces the dimensionality of the outputs from the multi-scale filters. We show that the use of our proposed module in typical deep ConvNets produces classification results that are either better than or comparable to the state of the art on the following benchmark datasets: MNIST, CIFAR-10, CIFAR-100 and SVHN.
Net2Net: Accelerating Learning via Knowledge Transfer
We introduce techniques for rapidly transferring the information stored in one neural net into another neural net. The main purpose is to accelerate the training of a significantly larger neural net. During real-world workflows, one often trains very many different neural networks during the experimentation and design process. This is a wasteful process in which each new model is trained from scratch. Our Net2Net technique accelerates the experimentation process by instantaneously transferring the knowledge from a previous network to each new deeper or wider network. Our techniques are based on the concept of function-preserving transformations between neural network specifications. This differs from previous approaches to pre-training that altered the function represented by a neural net when adding layers to it. Using our knowledge transfer mechanism to add depth to Inception modules, we demonstrate a new state of the art accuracy rating on the ImageNet dataset.
A New Smooth Approximation to the Zero One Loss with a Probabilistic Interpretation
We examine a new form of smooth approximation to the zero one loss in which learning is performed using a reformulation of the widely used logistic function. Our approach is based on using the posterior mean of a novel generalized Beta-Bernoulli formulation. This leads to a generalized logistic function that approximates the zero one loss, but retains a probabilistic formulation conferring a number of useful properties. The approach is easily generalized to kernel logistic regression and easily integrated into methods for structured prediction. We present experiments in which we learn such models using an optimization method consisting of a combination of gradient descent and coordinate descent using localized grid search so as to escape from local minima. Our experiments indicate that optimization quality is improved when learning meta-parameters are themselves optimized using a validation set. Our experiments show improved performance relative to widely used logistic and hinge loss methods on a wide variety of problems ranging from standard UC Irvine and libSVM evaluation datasets to product review predictions and a visual information extraction task. We observe that the approach: 1) is more robust to outliers compared to the logistic and hinge losses; 2) outperforms comparable logistic and max margin models on larger scale benchmark problems; 3) when combined with Gaussian- Laplacian mixture prior on parameters the kernelized version of our formulation yields sparser solutions than Support Vector Machine classifiers; and 4) when integrated into a probabilistic structured prediction technique our approach provides more accurate probabilities yielding improved inference and increasing information extraction performance.
Adversarial Autoencoders
In this paper, we propose the "adversarial autoencoder" (AAE), which is a probabilistic autoencoder that uses the recently proposed generative adversarial networks (GAN) to perform variational inference by matching the aggregated posterior of the hidden code vector of the autoencoder with an arbitrary prior distribution. Matching the aggregated posterior to the prior ensures that generating from any part of prior space results in meaningful samples. As a result, the decoder of the adversarial autoencoder learns a deep generative model that maps the imposed prior to the data distribution. We show how the adversarial autoencoder can be used in applications such as semi-supervised classification, disentangling style and content of images, unsupervised clustering, dimensionality reduction and data visualization. We performed experiments on MNIST, Street View House Numbers and Toronto Face datasets and show that adversarial autoencoders achieve competitive results in generative modeling and semi-supervised classification tasks.
Tree-Guided MCMC Inference for Normalized Random Measure Mixture Models
Normalized random measures (NRMs) provide a broad class of discrete random measures that are often used as priors for Bayesian nonparametric models. Dirichlet process is a well-known example of NRMs. Most of posterior inference methods for NRM mixture models rely on MCMC methods since they are easy to implement and their convergence is well studied. However, MCMC often suffers from slow convergence when the acceptance rate is low. Tree-based inference is an alternative deterministic posterior inference method, where Bayesian hierarchical clustering (BHC) or incremental Bayesian hierarchical clustering (IBHC) have been developed for DP or NRM mixture (NRMM) models, respectively. Although IBHC is a promising method for posterior inference for NRMM models due to its efficiency and applicability to online inference, its convergence is not guaranteed since it uses heuristics that simply selects the best solution after multiple trials are made. In this paper, we present a hybrid inference algorithm for NRMM models, which combines the merits of both MCMC and IBHC. Trees built by IBHC outlines partitions of data, which guides Metropolis-Hastings procedure to employ appropriate proposals. Inheriting the nature of MCMC, our tree-guided MCMC (tgMCMC) is guaranteed to converge, and enjoys the fast convergence thanks to the effective proposals guided by trees. Experiments on both synthetic and real-world datasets demonstrate the benefit of our method.
Why are deep nets reversible: A simple theory, with implications for training
Generative models for deep learning are promising both to improve understanding of the model, and yield training methods requiring fewer labeled samples. Recent works use generative model approaches to produce the deep net's input given the value of a hidden layer several levels above. However, there is no accompanying "proof of correctness" for the generative model, showing that the feedforward deep net is the correct inference method for recovering the hidden layer given the input. Furthermore, these models are complicated. The current paper takes a more theoretical tack. It presents a very simple generative model for RELU deep nets, with the following characteristics: (i) The generative model is just the reverse of the feedforward net: if the forward transformation at a layer is $A$ then the reverse transformation is $A^T$. (This can be seen as an explanation of the old weight tying idea for denoising autoencoders.) (ii) Its correctness can be proven under a clean theoretical assumption: the edge weights in real-life deep nets behave like random numbers. Under this assumption ---which is experimentally tested on real-life nets like AlexNet--- it is formally proved that feed forward net is a correct inference method for recovering the hidden layer. The generative model suggests a simple modification for training: use the generative model to produce synthetic data with labels and include it in the training set. Experiments are shown to support this theory of random-like deep nets; and that it helps the training.
Expressiveness of Rectifier Networks
Rectified Linear Units (ReLUs) have been shown to ameliorate the vanishing gradient problem, allow for efficient backpropagation, and empirically promote sparsity in the learned parameters. They have led to state-of-the-art results in a variety of applications. However, unlike threshold and sigmoid networks, ReLU networks are less explored from the perspective of their expressiveness. This paper studies the expressiveness of ReLU networks. We characterize the decision boundary of two-layer ReLU networks by constructing functionally equivalent threshold networks. We show that while the decision boundary of a two-layer ReLU network can be captured by a threshold network, the latter may require an exponentially larger number of hidden units. We also formulate sufficient conditions for a corresponding logarithmic reduction in the number of hidden units to represent a sign network as a ReLU network. Finally, we experimentally compare threshold networks and their much smaller ReLU counterparts with respect to their ability to learn from synthetically generated data.
A Distribution Adaptive Framework for Prediction Interval Estimation Using Nominal Variables
Proposed methods for prediction interval estimation so far focus on cases where input variables are numerical. In datasets with solely nominal input variables, we observe records with the exact same input $x^u$, but different real valued outputs due to the inherent noise in the system. Existing prediction interval estimation methods do not use representations that can accurately model such inherent noise in the case of nominal inputs. We propose a new prediction interval estimation method tailored for this type of data, which is prevalent in biology and medicine. We call this method Distribution Adaptive Prediction Interval Estimation given Nominal inputs (DAPIEN) and has four main phases. First, we select a distribution function that can best represent the inherent noise of the system for all unique inputs. Then we infer the parameters $\theta_i$ (e.g. $\theta_i=[mean_i, variance_i]$) of the selected distribution function for all unique input vectors $x^u_i$ and generate a new corresponding training set using pairs of $x^u_i, \theta_i$. III). Then, we train a model to predict $\theta$ given a new $x_u$. Finally, we calculate the prediction interval for a new sample using the inverse of the cumulative distribution function once the parameters $\theta$ is predicted by the trained model. We compared DAPIEN to the commonly used Bootstrap method on three synthetic datasets. Our results show that DAPIEN provides tighter prediction intervals while preserving the requested coverage when compared to Bootstrap. This work can facilitate broader usage of regression methods in medicine and biology where it is necessary to provide tight prediction intervals while preserving coverage when input variables are nominal.
Efficient Output Kernel Learning for Multiple Tasks
The paradigm of multi-task learning is that one can achieve better generalization by learning tasks jointly and thus exploiting the similarity between the tasks rather than learning them independently of each other. While previously the relationship between tasks had to be user-defined in the form of an output kernel, recent approaches jointly learn the tasks and the output kernel. As the output kernel is a positive semidefinite matrix, the resulting optimization problems are not scalable in the number of tasks as an eigendecomposition is required in each step. \mbox{Using} the theory of positive semidefinite kernels we show in this paper that for a certain class of regularizers on the output kernel, the constraint of being positive semidefinite can be dropped as it is automatically satisfied for the relaxed problem. This leads to an unconstrained dual problem which can be solved efficiently. Experiments on several multi-task and multi-class data sets illustrate the efficacy of our approach in terms of computational efficiency as well as generalization performance.
Complex-Valued Gaussian Processes for Regression
In this paper we propose a novel Bayesian solution for nonlinear regression in complex fields. Previous solutions for kernels methods usually assume a complexification approach, where the real-valued kernel is replaced by a complex-valued one. This approach is limited. Based on results in complex-valued linear theory and Gaussian random processes we show that a pseudo-kernel must be included. This is the starting point to develop the new complex-valued formulation for Gaussian process for regression (CGPR). We face the design of the covariance and pseudo-covariance based on a convolution approach and for several scenarios. Just in the particular case where the outputs are proper, the pseudo-kernel cancels. Also, the hyperparameters of the covariance {can be learnt} maximizing the marginal likelihood using Wirtinger's calculus and patterned complex-valued matrix derivatives. In the experiments included, we show how CGPR successfully solve systems where real and imaginary parts are correlated. Besides, we successfully solve the nonlinear channel equalization problem by developing a recursive solution with basis removal. We report remarkable improvements compared to previous solutions: a 2-4 dB reduction of the MSE with {just a quarter} of the training samples used by previous approaches.
Online learning in repeated auctions
Motivated by online advertising auctions, we consider repeated Vickrey auctions where goods of unknown value are sold sequentially and bidders only learn (potentially noisy) information about a good's value once it is purchased. We adopt an online learning approach with bandit feedback to model this problem and derive bidding strategies for two models: stochastic and adversarial. In the stochastic model, the observed values of the goods are random variables centered around the true value of the good. In this case, logarithmic regret is achievable when competing against well behaved adversaries. In the adversarial model, the goods need not be identical and we simply compare our performance against that of the best fixed bid in hindsight. We show that sublinear regret is also achievable in this case and prove matching minimax lower bounds. To our knowledge, this is the first complete set of strategies for bidders participating in auctions of this type.
Sparse learning of maximum likelihood model for optimization of complex loss function
Traditional machine learning methods usually minimize a simple loss function to learn a predictive model, and then use a complex performance measure to measure the prediction performance. However, minimizing a simple loss function cannot guarantee that an optimal performance. In this paper, we study the problem of optimizing the complex performance measure directly to obtain a predictive model. We proposed to construct a maximum likelihood model for this problem, and to learn the model parameter, we minimize a com- plex loss function corresponding to the desired complex performance measure. To optimize the loss function, we approximate the upper bound of the complex loss. We also propose impose the sparsity to the model parameter to obtain a sparse model. An objective is constructed by combining the upper bound of the loss function and the sparsity of the model parameter, and we develop an iterative algorithm to minimize it by using the fast iterative shrinkage- thresholding algorithm framework. The experiments on optimization on three different complex performance measures, including F-score, receiver operating characteristic curve, and recall precision curve break even point, over three real-world applications, aircraft event recognition of civil aviation safety, in- trusion detection in wireless mesh networks, and image classification, show the advantages of the proposed method over state-of-the-art methods.
Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction
We tackle image question answering (ImageQA) problem by learning a convolutional neural network (CNN) with a dynamic parameter layer whose weights are determined adaptively based on questions. For the adaptive parameter prediction, we employ a separate parameter prediction network, which consists of gated recurrent unit (GRU) taking a question as its input and a fully-connected layer generating a set of candidate weights as its output. However, it is challenging to construct a parameter prediction network for a large number of parameters in the fully-connected dynamic parameter layer of the CNN. We reduce the complexity of this problem by incorporating a hashing technique, where the candidate weights given by the parameter prediction network are selected using a predefined hash function to determine individual weights in the dynamic parameter layer. The proposed network---joint network with the CNN for ImageQA and the parameter prediction network---is trained end-to-end through back-propagation, where its weights are initialized using a pre-trained CNN and GRU. The proposed algorithm illustrates the state-of-the-art performance on all available public ImageQA benchmarks.
Metric learning approach for graph-based label propagation
The efficiency of graph-based semi-supervised algorithms depends on the graph of instances on which they are applied. The instances are often in a vectorial form before a graph linking them is built. The construction of the graph relies on a metric over the vectorial space that help define the weight of the connection between entities. The classic choice for this metric is usually a distance measure or a similarity measure based on the euclidean norm. We claim that in some cases the euclidean norm on the initial vectorial space might not be the more appropriate to solve the task efficiently. We propose an algorithm that aims at learning the most appropriate vectorial representation for building a graph on which the task at hand is solved efficiently.
Censoring Representations with an Adversary
In practice, there are often explicit constraints on what representations or decisions are acceptable in an application of machine learning. For example it may be a legal requirement that a decision must not favour a particular group. Alternatively it can be that that representation of data must not have identifying information. We address these two related issues by learning flexible representations that minimize the capability of an adversarial critic. This adversary is trying to predict the relevant sensitive variable from the representation, and so minimizing the performance of the adversary ensures there is little or no information in the representation about the sensitive variable. We demonstrate this adversarial approach on two problems: making decisions free from discrimination and removing private information from images. We formulate the adversarial model as a minimax problem, and optimize that minimax objective using a stochastic gradient alternate min-max optimizer. We demonstrate the ability to provide discriminant free representations for standard test problems, and compare with previous state of the art methods for fairness, showing statistically significant improvement across most cases. The flexibility of this method is shown via a novel problem: removing annotations from images, from unaligned training examples of annotated and unannotated images, and with no a priori knowledge of the form of annotation provided to the model.
Combining Neural Networks and Log-linear Models to Improve Relation Extraction
The last decade has witnessed the success of the traditional feature-based method on exploiting the discrete structures such as words or lexical patterns to extract relations from text. Recently, convolutional and recurrent neural networks has provided very effective mechanisms to capture the hidden structures within sentences via continuous representations, thereby significantly advancing the performance of relation extraction. The advantage of convolutional neural networks is their capacity to generalize the consecutive k-grams in the sentences while recurrent neural networks are effective to encode long ranges of sentence context. This paper proposes to combine the traditional feature-based method, the convolutional and recurrent neural networks to simultaneously benefit from their advantages. Our systematic evaluation of different network architectures and combination methods demonstrates the effectiveness of this approach and results in the state-of-the-art performance on the ACE 2005 and SemEval dataset.
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
The Frank-Wolfe (FW) optimization algorithm has lately re-gained popularity thanks in particular to its ability to nicely handle the structured constraints appearing in machine learning applications. However, its convergence rate is known to be slow (sublinear) when the solution lies at the boundary. A simple less-known fix is to add the possibility to take 'away steps' during optimization, an operation that importantly does not require a feasibility oracle. In this paper, we highlight and clarify several variants of the Frank-Wolfe optimization algorithm that have been successfully applied in practice: away-steps FW, pairwise FW, fully-corrective FW and Wolfe's minimum norm point algorithm, and prove for the first time that they all enjoy global linear convergence, under a weaker condition than strong convexity of the objective. The constant in the convergence rate has an elegant interpretation as the product of the (classical) condition number of the function with a novel geometric quantity that plays the role of a 'condition number' of the constraint set. We provide pointers to where these algorithms have made a difference in practice, in particular with the flow polytope, the marginal polytope and the base polytope for submodular optimization.
Seeding K-Means using Method of Moments
K-means is one of the most widely used algorithms for clustering in Data Mining applications, which attempts to minimize the sum of the square of the Euclidean distance of the points in the clusters from the respective means of the clusters. However, K-means suffers from local minima problem and is not guaranteed to converge to the optimal cost. K-means++ tries to address the problem by seeding the means using a distance-based sampling scheme. However, seeding the means in K-means++ needs $O\left(K\right)$ sequential passes through the entire dataset, and this can be very costly for large datasets. Here we propose a method of seeding the initial means based on factorizations of higher order moments for bounded data. Our method takes $O\left(1\right)$ passes through the entire dataset to extract the initial set of means, and its final cost can be proven to be within $O(\sqrt{K})$ of the optimal cost. We demonstrate the performance of our algorithm in comparison with the existing algorithms on various benchmark datasets.
Metric Learning with Adaptive Density Discrimination
Distance metric learning (DML) approaches learn a transformation to a representation space where distance is in correspondence with a predefined notion of similarity. While such models offer a number of compelling benefits, it has been difficult for these to compete with modern classification algorithms in performance and even in feature extraction. In this work, we propose a novel approach explicitly designed to address a number of subtle yet important issues which have stymied earlier DML algorithms. It maintains an explicit model of the distributions of the different classes in representation space. It then employs this knowledge to adaptively assess similarity, and achieve local discrimination by penalizing class distribution overlap. We demonstrate the effectiveness of this idea on several tasks. Our approach achieves state-of-the-art classification results on a number of fine-grained visual recognition datasets, surpassing the standard softmax classifier and outperforming triplet loss by a relative margin of 30-40%. In terms of computational performance, it alleviates training inefficiencies in the traditional triplet loss, reaching the same error in 5-30 times fewer iterations. Beyond classification, we further validate the saliency of the learnt representations via their attribute concentration and hierarchy recovery properties, achieving 10-25% relative gains on the softmax classifier and 25-50% on triplet loss in these tasks.
Doctor AI: Predicting Clinical Events via Recurrent Neural Networks
Leveraging large historical data in electronic health record (EHR), we developed Doctor AI, a generic predictive model that covers observed medical conditions and medication uses. Doctor AI is a temporal model using recurrent neural networks (RNN) and was developed and applied to longitudinal time stamped EHR data from 260K patients over 8 years. Encounter records (e.g. diagnosis codes, medication codes or procedure codes) were input to RNN to predict (all) the diagnosis and medication categories for a subsequent visit. Doctor AI assesses the history of patients to make multilabel predictions (one label for each diagnosis or medication category). Based on separate blind test set evaluation, Doctor AI can perform differential diagnosis with up to 79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great generalizability of Doctor AI by adapting the resulting models from one institution to another without losing substantial accuracy.
Unitary-Group Invariant Kernels and Features from Transformed Unlabeled Data
The study of representations invariant to common transformations of the data is important to learning. Most techniques have focused on local approximate invariance implemented within expensive optimization frameworks lacking explicit theoretical guarantees. In this paper, we study kernels that are invariant to the unitary group while having theoretical guarantees in addressing practical issues such as (1) unavailability of transformed versions of labelled data and (2) not observing all transformations. We present a theoretically motivated alternate approach to the invariant kernel SVM. Unlike previous approaches to the invariant SVM, the proposed formulation solves both issues mentioned. We also present a kernel extension of a recent technique to extract linear unitary-group invariant features addressing both issues and extend some guarantees regarding invariance and stability. We present experiments on the UCI ML datasets to illustrate and validate our methods.
ACDC: A Structured Efficient Linear Layer
The linear layer is one of the most pervasive modules in deep learning representations. However, it requires $O(N^2)$ parameters and $O(N^2)$ operations. These costs can be prohibitive in mobile applications or prevent scaling in many domains. Here, we introduce a deep, differentiable, fully-connected neural network module composed of diagonal matrices of parameters, $\mathbf{A}$ and $\mathbf{D}$, and the discrete cosine transform $\mathbf{C}$. The core module, structured as $\mathbf{ACDC^{-1}}$, has $O(N)$ parameters and incurs $O(N log N )$ operations. We present theoretical results showing how deep cascades of ACDC layers approximate linear layers. ACDC is, however, a stand-alone module and can be used in combination with any other types of module. In our experiments, we show that it can indeed be successfully interleaved with ReLU modules in convolutional neural networks for image recognition. Our experiments also study critical factors in the training of these structured modules, including initialization and depth. Finally, this paper also provides a connection between structured linear transforms used in deep learning and the field of Fourier optics, illustrating how ACDC could in principle be implemented with lenses and diffractive elements.
Staleness-aware Async-SGD for Distributed Deep Learning
Deep neural networks have been shown to achieve state-of-the-art performance in several machine learning tasks. Stochastic Gradient Descent (SGD) is the preferred optimization algorithm for training these networks and asynchronous SGD (ASGD) has been widely adopted for accelerating the training of large-scale deep networks in a distributed computing environment. However, in practice it is quite challenging to tune the training hyperparameters (such as learning rate) when using ASGD so as achieve convergence and linear speedup, since the stability of the optimization algorithm is strongly influenced by the asynchronous nature of parameter updates. In this paper, we propose a variant of the ASGD algorithm in which the learning rate is modulated according to the gradient staleness and provide theoretical guarantees for convergence of this algorithm. Experimental verification is performed on commonly-used image classification benchmarks: CIFAR10 and Imagenet to demonstrate the superior effectiveness of the proposed approach, compared to SSGD (Synchronous SGD) and the conventional ASGD algorithm.
Prioritized Experience Replay
Experience replay lets online reinforcement learning agents remember and reuse experiences from the past. In prior work, experience transitions were uniformly sampled from a replay memory. However, this approach simply replays transitions at the same frequency that they were originally experienced, regardless of their significance. In this paper we develop a framework for prioritizing experience, so as to replay important transitions more frequently, and therefore learn more efficiently. We use prioritized experience replay in Deep Q-Networks (DQN), a reinforcement learning algorithm that achieved human-level performance across many Atari games. DQN with prioritized experience replay achieves a new state-of-the-art, outperforming DQN with uniform replay on 41 out of 49 games.
A pilot study on the daily control capability of s-EMG prosthetic hands by amputees
Surface electromyography is a valid tool to gather muscular contraction signals from intact and amputated subjects. Electromyographic signals can be used to control prosthetic devices in a noninvasive way distinguishing the movements performed by the particular EMG electrodes activity. According to the literature, several algorithms have been used to control prosthetic hands through s-EMG signals. The main issue is to correctly classify the signals acquired as the movement actually performed. This work presents a study on the Support Vector Machine's performance in a short-time period, gained using two different feature representation (Mean Absolute Value and Waveform Length) of the sEMG signals. In particular, we paid close attention to the repeatability problem, that is the capability to achieve a stable and satisfactory level of accuracy in repeated experiments. Results on a limited setting are encouraging, as they show an average accuracy above 73% even in the worst case scenario.
Studying the control of non invasive prosthetic hands over large time spans
The electromyography (EMG) signal is the electrical manifestation of a neuromuscular activation that provides access to physiological processes which cause the muscle to generate force and produce movement. Non invasive prostheses use such signals detected by the electrodes placed on the user's stump, as input to generate hand posture movements according to the intentions of the prosthesis wearer. The aim of this pilot study is to explore the repeatability issue, i.e. the ability to classify 17 different hand postures, represented by EMG signal, across a time span of days by a control algorithm. Data collection experiments lasted four days and signals were collected from the forearm of a single subject. We find that Support Vector Machine (SVM) classification results are high enough to guarantee a correct classification of more than 10 postures in each moment of the considered time span.
Regret Analysis of the Finite-Horizon Gittins Index Strategy for Multi-Armed Bandits
I analyse the frequentist regret of the famous Gittins index strategy for multi-armed bandits with Gaussian noise and a finite horizon. Remarkably it turns out that this approach leads to finite-time regret guarantees comparable to those available for the popular UCB algorithm. Along the way I derive finite-time bounds on the Gittins index that are asymptotically exact and may be of independent interest. I also discuss some computational issues and present experimental results suggesting that a particular version of the Gittins index strategy is a modest improvement on existing algorithms with finite-time regret guarantees such as UCB and Thompson sampling.
Segmental Recurrent Neural Networks
We introduce segmental recurrent neural networks (SRNNs) which define, given an input sequence, a joint probability distribution over segmentations of the input and labelings of the segments. Representations of the input segments (i.e., contiguous subsequences of the input) are computed by encoding their constituent tokens using bidirectional recurrent neural nets, and these "segment embeddings" are used to define compatibility scores with output labels. These local compatibility scores are integrated using a global semi-Markov conditional random field. Both fully supervised training -- in which segment boundaries and labels are observed -- as well as partially supervised training -- in which segment boundaries are latent -- are straightforward. Experiments on handwriting recognition and joint Chinese word segmentation/POS tagging show that, compared to models that do not explicitly represent segments such as BIO tagging schemes and connectionist temporal classification (CTC), SRNNs obtain substantially higher accuracies.
Neural Variational Inference for Text Processing
Recent advances in neural variational inference have spawned a renaissance in deep latent variable models. In this paper we introduce a generic variational inference framework for generative and conditional models of text. While traditional variational methods derive an analytic approximation for the intractable distributions over latent variables, here we construct an inference network conditioned on the discrete text input to provide the variational distribution. We validate this framework on two very different text modelling applications, generative document modelling and supervised question answering. Our neural variational document model combines a continuous stochastic document representation with a bag-of-words generative model and achieves the lowest reported perplexities on two standard test corpora. The neural answer selection model employs a stochastic representation layer within an attention mechanism to extract the semantics between a question and answer pair. On two question answering benchmarks this model exceeds all previous published benchmarks.
What Objective Does Self-paced Learning Indeed Optimize?
Self-paced learning (SPL) is a recently raised methodology designed through simulating the learning principle of humans/animals. A variety of SPL realization schemes have been designed for different computer vision and pattern recognition tasks, and empirically substantiated to be effective in these applications. However, the investigation on its theoretical insight is still a blank. To this issue, this study attempts to provide some new theoretical understanding under the SPL scheme. Specifically, we prove that the solving strategy on SPL accords with a majorization minimization algorithm implemented on a latent objective function. Furthermore, we find that the loss function contained in this latent objective has a similar configuration with non-convex regularized penalty (NSPR) known in statistics and machine learning. Such connection inspires us discovering more intrinsic relationship between SPL regimes and NSPR forms, like SCAD, LOG and EXP. The robustness insight under SPL can then be finely explained. We also analyze the capability of SPL on its easy loss prior embedding property, and provide an insightful interpretation to the effectiveness mechanism under previous SPL variations. Besides, we design a group-partial-order loss prior, which is especially useful to weakly labeled large-scale data processing tasks. Through applying SPL with this loss prior to the FCVID dataset, which is currently one of the biggest manually annotated video dataset, our method achieves state-of-the-art performance beyond previous methods, which further helps supports the proposed theoretical arguments.
SparkNet: Training Deep Networks in Spark
Training deep networks is a time-consuming process, with networks for object recognition often requiring multiple days to train. For this reason, leveraging the resources of a cluster to speed up training is an important area of work. However, widely-popular batch-processing computational frameworks like MapReduce and Spark were not designed to support the asynchronous and communication-intensive workloads of existing distributed deep learning systems. We introduce SparkNet, a framework for training deep networks in Spark. Our implementation includes a convenient interface for reading data from Spark RDDs, a Scala interface to the Caffe deep learning framework, and a lightweight multi-dimensional tensor library. Using a simple parallelization scheme for stochastic gradient descent, SparkNet scales well with the cluster size and tolerates very high-latency communication. Furthermore, it is easy to deploy and use with no parameter tuning, and it is compatible with existing Caffe models. We quantify the dependence of the speedup obtained by SparkNet on the number of machines, the communication frequency, and the cluster's communication overhead, and we benchmark our system's performance on the ImageNet dataset.
A Novel Approach for Phase Identification in Smart Grids Using Graph Theory and Principal Component Analysis
Consumers with low demand, like households, are generally supplied single-phase power by connecting their service mains to one of the phases of a distribution transformer. The distribution companies face the problem of keeping a record of consumer connectivity to a phase due to uninformed changes that happen. The exact phase connectivity information is important for the efficient operation and control of distribution system. We propose a new data driven approach to the problem based on Principal Component Analysis (PCA) and its Graph Theoretic interpretations, using energy measurements in equally timed short intervals, generated from smart meters. We propose an algorithm for inferring phase connectivity from noisy measurements. The algorithm is demonstrated using simulated data for phase connectivities in distribution networks.
Deep Learning for Tactile Understanding From Visual and Haptic Data
Robots which interact with the physical world will benefit from a fine-grained tactile understanding of objects and surfaces. Additionally, for certain tasks, robots may need to know the haptic properties of an object before touching it. To enable better tactile understanding for robots, we propose a method of classifying surfaces with haptic adjectives (e.g., compressible or smooth) from both visual and physical interaction data. Humans typically combine visual predictions and feedback from physical interactions to accurately predict haptic properties and interact with the world. Inspired by this cognitive pattern, we propose and explore a purely visual haptic prediction model. Purely visual models enable a robot to "feel" without physical interaction. Furthermore, we demonstrate that using both visual and physical interaction signals together yields more accurate haptic classification. Our models take advantage of recent advances in deep neural networks by employing a unified approach to learning features for physical interaction and visual observations. Even though we employ little domain specific knowledge, our model still achieves better results than methods based on hand-designed features.
Transfer Learning for Speech and Language Processing
Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.
Convolutional neural networks with low-rank regularization
Large CNNs have delivered impressive performance in various computer vision applications. But the storage and computation requirements make it problematic for deploying these models on mobile devices. Recently, tensor decompositions have been used for speeding up CNNs. In this paper, we further develop the tensor decomposition technique. We propose a new algorithm for computing the low-rank tensor decomposition for removing the redundancy in the convolution kernels. The algorithm finds the exact global optimizer of the decomposition and is more effective than iterative methods. Based on the decomposition, we further propose a new method for training low-rank constrained CNNs from scratch. Interestingly, while achieving a significant speedup, sometimes the low-rank constrained CNNs delivers significantly better performance than their non-constrained counterparts. On the CIFAR-10 dataset, the proposed low-rank NIN model achieves $91.31\%$ accuracy (without data augmentation), which also improves upon state-of-the-art result. We evaluated the proposed method on CIFAR-10 and ILSVRC12 datasets for a variety of modern CNNs, including AlexNet, NIN, VGG and GoogleNet with success. For example, the forward time of VGG-16 is reduced by half while the performance is still comparable. Empirical success suggests that low-rank tensor decompositions can be a very useful tool for speeding up large CNNs.
Reducing Overfitting in Deep Networks by Decorrelating Representations
One major challenge in training Deep Neural Networks is preventing overfitting. Many techniques such as data augmentation and novel regularizers such as Dropout have been proposed to prevent overfitting without requiring a massive amount of training data. In this work, we propose a new regularizer called DeCov which leads to significantly reduced overfitting (as indicated by the difference between train and val performance), and better generalization. Our regularizer encourages diverse or non-redundant representations in Deep Neural Networks by minimizing the cross-covariance of hidden activations. This simple intuition has been explored in a number of past works but surprisingly has never been applied as a regularizer in supervised learning. Experiments across a range of datasets and network architectures show that this loss always reduces overfitting while almost always maintaining or increasing generalization performance and often improving performance over Dropout.
Mediated Experts for Deep Convolutional Networks
We present a new supervised architecture termed Mediated Mixture-of-Experts (MMoE) that allows us to improve classification accuracy of Deep Convolutional Networks (DCN). Our architecture achieves this with the help of expert networks: A network is trained on a disjoint subset of a given dataset and then run in parallel to other experts during deployment. A mediator is employed if experts contradict each other. This allows our framework to naturally support incremental learning, as adding new classes requires (re-)training of the new expert only. We also propose two measures to control computational complexity: An early-stopping mechanism halts experts that have low confidence in their prediction. The system allows to trade-off accuracy and complexity without further retraining. We also suggest to share low-level convolutional layers between experts in an effort to avoid computation of a near-duplicate feature set. We evaluate our system on a popular dataset and report improved accuracy compared to a single model of same configuration.
Learning Deep Structure-Preserving Image-Text Embeddings
This paper proposes a method for learning joint embeddings of images and text using a two-branch neural network with multiple layers of linear projections followed by nonlinearities. The network is trained using a large margin objective that combines cross-view ranking constraints with within-view neighborhood structure preservation constraints inspired by metric learning literature. Extensive experiments show that our approach gains significant improvements in accuracy for image-to-text and text-to-image retrieval. Our method achieves new state-of-the-art results on the Flickr30K and MSCOCO image-sentence datasets and shows promise on the new task of phrase localization on the Flickr30K Entities dataset.
Variable Rate Image Compression with Recurrent Neural Networks
A large fraction of Internet traffic is now driven by requests from mobile devices with relatively small screens and often stringent bandwidth requirements. Due to these factors, it has become the norm for modern graphics-heavy websites to transmit low-resolution, low-bytecount image previews (thumbnails) as part of the initial page load process to improve apparent page responsiveness. Increasing thumbnail compression beyond the capabilities of existing codecs is therefore a current research focus, as any byte savings will significantly enhance the experience of mobile device users. Toward this end, we propose a general framework for variable-rate image compression and a novel architecture based on convolutional and deconvolutional LSTM recurrent networks. Our models address the main issues that have prevented autoencoder neural networks from competing with existing image compression algorithms: (1) our networks only need to be trained once (not per-image), regardless of input image dimensions and the desired compression rate; (2) our networks are progressive, meaning that the more bits are sent, the more accurate the image reconstruction; and (3) the proposed architecture is at least as efficient as a standard purpose-trained autoencoder for a given number of bits. On a large-scale benchmark of 32$\times$32 thumbnails, our LSTM-based approaches provide better visual quality than (headerless) JPEG, JPEG2000 and WebP, with a storage size that is reduced by 10% or more.
Principled Parallel Mean-Field Inference for Discrete Random Fields
Mean-field variational inference is one of the most popular approaches to inference in discrete random fields. Standard mean-field optimization is based on coordinate descent and in many situations can be impractical. Thus, in practice, various parallel techniques are used, which either rely on ad-hoc smoothing with heuristically set parameters, or put strong constraints on the type of models. In this paper, we propose a novel proximal gradient-based approach to optimizing the variational objective. It is naturally parallelizable and easy to implement. We prove its convergence, and then demonstrate that, in practice, it yields faster convergence and often finds better optima than more traditional mean-field optimization techniques. Moreover, our method is less sensitive to the choice of parameters.
Semi-supervised Learning for Convolutional Neural Networks via Online Graph Construction
The recent promising achievements of deep learning rely on the large amount of labeled data. Considering the abundance of data on the web, most of them do not have labels at all. Therefore, it is important to improve generalization performance using unlabeled data on supervised tasks with few labeled instances. In this work, we revisit graph-based semi-supervised learning algorithms and propose an online graph construction technique which suits deep convolutional neural network better. We consider an EM-like algorithm for semi-supervised learning on deep neural networks: In forward pass, the graph is constructed based on the network output, and the graph is then used for loss calculation to help update the network by back propagation in the backward pass. We demonstrate the strength of our online approach compared to the conventional ones whose graph is constructed on static but not robust enough feature representations beforehand.
Multi-task Sequence to Sequence Learning
Sequence to sequence learning has recently emerged as a new paradigm in supervised learning. To date, most of its applications focused on only one task and not much work explored this framework for multiple tasks. This paper examines three multi-task learning (MTL) settings for sequence to sequence models: (a) the oneto-many setting - where the encoder is shared between several tasks such as machine translation and syntactic parsing, (b) the many-to-one setting - useful when only the decoder can be shared, as in the case of translation and image caption generation, and (c) the many-to-many setting - where multiple encoders and decoders are shared, which is the case with unsupervised objectives and translation. Our results show that training on a small amount of parsing and image caption data can improve the translation quality between English and German by up to 1.5 BLEU points over strong single-task baselines on the WMT benchmarks. Furthermore, we have established a new state-of-the-art result in constituent parsing with 93.0 F1. Lastly, we reveal interesting properties of the two unsupervised learning objectives, autoencoder and skip-thought, in the MTL context: autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.
Coreset-Based Adaptive Tracking
We propose a method for learning from streaming visual data using a compact, constant size representation of all the data that was seen until a given moment. Specifically, we construct a 'coreset' representation of streaming data using a parallelized algorithm, which is an approximation of a set with relation to the squared distances between this set and all other points in its ambient space. We learn an adaptive object appearance model from the coreset tree in constant time and logarithmic space and use it for object tracking by detection. Our method obtains excellent results for object tracking on three standard datasets over more than 100 videos. The ability to summarize data efficiently makes our method ideally suited for tracking in long videos in presence of space and time constraints. We demonstrate this ability by outperforming a variety of algorithms on the TLD dataset with 2685 frames on average. This coreset based learning approach can be applied for both real-time learning of small, varied data and fast learning of big data.
Adjustable Bounded Rectifiers: Towards Deep Binary Representations
Binary representation is desirable for its memory efficiency, computation speed and robustness. In this paper, we propose adjustable bounded rectifiers to learn binary representations for deep neural networks. While hard constraining representations across layers to be binary makes training unreasonably difficult, we softly encourage activations to diverge from real values to binary by approximating step functions. Our final representation is completely binary. We test our approach on MNIST, CIFAR10, and ILSVRC2012 dataset, and systematically study the training dynamics of the binarization process. Our approach can binarize the last layer representation without loss of performance and binarize all the layers with reasonably small degradations. The memory space that it saves may allow more sophisticated models to be deployed, thus compensating the loss. To the best of our knowledge, this is the first work to report results on current deep network architectures using complete binary middle representations. Given the learned representations, we find that the firing or inhibition of a binary neuron is usually associated with a meaningful interpretation across different classes. This suggests that the semantic structure of a neural network may be manifested through a guided binarization process.
Diffusion Representations
Diffusion Maps framework is a kernel based method for manifold learning and data analysis that defines diffusion similarities by imposing a Markovian process on the given dataset. Analysis by this process uncovers the intrinsic geometric structures in the data. Recently, it was suggested to replace the standard kernel by a measure-based kernel that incorporates information about the density of the data. Thus, the manifold assumption is replaced by a more general measure-based assumption. The measure-based diffusion kernel incorporates two separate independent representations. The first determines a measure that correlates with a density that represents normal behaviors and patterns in the data. The second consists of the analyzed multidimensional data points. In this paper, we present a representation framework for data analysis of datasets that is based on a closed-form decomposition of the measure-based kernel. The proposed representation preserves pairwise diffusion distances that does not depend on the data size while being invariant to scale. For a stationary data, no out-of-sample extension is needed for embedding newly arrived data points in the representation space. Several aspects of the presented methodology are demonstrated on analytically generated data.
Knowledge Base Population using Semantic Label Propagation
A crucial aspect of a knowledge base population system that extracts new facts from text corpora, is the generation of training data for its relation extractors. In this paper, we present a method that maximizes the effectiveness of newly trained relation extractors at a minimal annotation cost. Manual labeling can be significantly reduced by Distant Supervision, which is a method to construct training data automatically by aligning a large text corpus with an existing knowledge base of known facts. For example, all sentences mentioning both 'Barack Obama' and 'US' may serve as positive training instances for the relation born_in(subject,object). However, distant supervision typically results in a highly noisy training set: many training sentences do not really express the intended relation. We propose to combine distant supervision with minimal manual supervision in a technique called feature labeling, to eliminate noise from the large and noisy initial training set, resulting in a significant increase of precision. We further improve on this approach by introducing the Semantic Label Propagation method, which uses the similarity between low-dimensional representations of candidate training instances, to extend the training set in order to increase recall while maintaining high precision. Our proposed strategy for generating training data is studied and evaluated on an established test collection designed for knowledge base population tasks. The experimental results show that the Semantic Label Propagation strategy leads to substantial performance gains when compared to existing approaches, while requiring an almost negligible manual annotation effort.
Towards Open Set Deep Networks
Deep networks have produced significant gains for various visual recognition problems, leading to high impact academic and commercial applications. Recent work in deep networks highlighted that it is easy to generate images that humans would never classify as a particular object class, yet networks classify such images high confidence as that given class - deep network are easily fooled with images humans do not consider meaningful. The closed set nature of deep networks forces them to choose from one of the known classes leading to such artifacts. Recognition in the real world is open set, i.e. the recognition system should reject unknown/unseen classes at test time. We present a methodology to adapt deep networks for open set recognition, by introducing a new model layer, OpenMax, which estimates the probability of an input being from an unknown class. A key element of estimating the unknown probability is adapting Meta-Recognition concepts to the activation patterns in the penultimate layer of the network. OpenMax allows rejection of "fooling" and unrelated open set images presented to the system; OpenMax greatly reduces the number of obvious errors made by a deep network. We prove that the OpenMax concept provides bounded open space risk, thereby formally providing an open set recognition solution. We evaluate the resulting open set deep networks using pre-trained networks from the Caffe Model-zoo on ImageNet 2012 validation data, and thousands of fooling and open set images. The proposed OpenMax model significantly outperforms open set recognition accuracy of basic deep networks as well as deep networks with thresholding of SoftMax probabilities.
Multimodal sparse representation learning and applications
Unsupervised methods have proven effective for discriminative tasks in a single-modality scenario. In this paper, we present a multimodal framework for learning sparse representations that can capture semantic correlation between modalities. The framework can model relationships at a higher level by forcing the shared sparse representation. In particular, we propose the use of joint dictionary learning technique for sparse coding and formulate the joint representation for concision, cross-modal representations (in case of a missing modality), and union of the cross-modal representations. Given the accelerated growth of multimodal data posted on the Web such as YouTube, Wikipedia, and Twitter, learning good multimodal features is becoming increasingly important. We show that the shared representations enabled by our framework substantially improve the classification performance under both unimodal and multimodal settings. We further show how deep architectures built on the proposed framework are effective for the case of highly nonlinear correlations between modalities. The effectiveness of our approach is demonstrated experimentally in image denoising, multimedia event detection and retrieval on the TRECVID dataset (audio-video), category classification on the Wikipedia dataset (image-text), and sentiment classification on PhotoTweet (image-text).
Convolutional Clustering for Unsupervised Learning
The task of labeling data for training deep neural networks is daunting and tedious, requiring millions of labels to achieve the current state-of-the-art results. Such reliance on large amounts of labeled data can be relaxed by exploiting hierarchical features via unsupervised learning techniques. In this work, we propose to train a deep convolutional network based on an enhanced version of the k-means clustering algorithm, which reduces the number of correlated parameters in the form of similar filters, and thus increases test categorization accuracy. We call our algorithm convolutional k-means clustering. We further show that learning the connection between the layers of a deep convolutional neural network improves its ability to be trained on a smaller amount of labeled data. Our experiments show that the proposed algorithm outperforms other techniques that learn filters unsupervised. Specifically, we obtained a test accuracy of 74.1% on STL-10 and a test error of 0.5% on MNIST.
Predicting online user behaviour using deep learning algorithms
We propose a robust classifier to predict buying intentions based on user behaviour within a large e-commerce website. In this work we compare traditional machine learning techniques with the most advanced deep learning approaches. We show that both Deep Belief Networks and Stacked Denoising auto-Encoders achieved a substantial improvement by extracting features from high dimensional data during the pre-train phase. They prove also to be more convenient to deal with severe class imbalance.
Stochastic modified equations and adaptive stochastic gradient algorithms
We develop the method of stochastic modified equations (SME), in which stochastic gradient algorithms are approximated in the weak sense by continuous-time stochastic differential equations. We exploit the continuous formulation together with optimal control theory to derive novel adaptive hyper-parameter adjustment policies. Our algorithms have competitive performance with the added benefit of being robust to varying models and datasets. This provides a general methodology for the analysis and design of stochastic gradient algorithms.