title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Barrier Frank-Wolfe for Marginal Inference
We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the marginal polytope through repeated maximum a posteriori (MAP) calls. This modular structure enables us to leverage black-box MAP solvers (both exact and approximate) for variational inference, and obtains more accurate results than tree-reweighted algorithms that optimize over the local consistency relaxation. Theoretically, we bound the sub-optimality for the proposed algorithm despite the TRW objective having unbounded gradients at the boundary of the marginal polytope. Empirically, we demonstrate the increased quality of results found by tightening the relaxation over the marginal polytope as well as the spanning tree polytope on synthetic and real-world instances.
Diffusion-Convolutional Neural Networks
We present diffusion-convolutional neural networks (DCNNs), a new model for graph-structured data. Through the introduction of a diffusion-convolution operation, we show how diffusion-based representations can be learned from graph-structured data and used as an effective basis for node classification. DCNNs have several attractive qualities, including a latent representation for graphical data that is invariant under isomorphism, as well as polynomial-time prediction and learning that can be represented as tensor operations and efficiently implemented on the GPU. Through several experiments with real structured datasets, we demonstrate that DCNNs are able to outperform probabilistic relational models and kernel-on-graph methods at relational node classification tasks.
Optimal Non-Asymptotic Lower Bound on the Minimax Regret of Learning with Expert Advice
We prove non-asymptotic lower bounds on the expectation of the maximum of $d$ independent Gaussian variables and the expectation of the maximum of $d$ independent symmetric random walks. Both lower bounds recover the optimal leading constant in the limit. A simple application of the lower bound for random walks is an (asymptotically optimal) non-asymptotic lower bound on the minimax regret of online learning with expert advice.
Evaluating Protein-protein Interaction Predictors with a Novel 3-Dimensional Metric
In order for the predicted interactions to be directly adopted by biologists, the ma- chine learning predictions have to be of high precision, regardless of recall. This aspect cannot be evaluated or numerically represented well by traditional metrics like accuracy, ROC, or precision-recall curve. In this work, we start from the alignment in sensitivity of ROC and recall of precision-recall curve, and propose an evaluation metric focusing on the ability of a model to be adopted by biologists. This metric evaluates the ability of a machine learning algorithm to predict only new interactions, meanwhile, it eliminates the influence of test dataset. In the experiment of evaluating different classifiers with a same data set and evaluating the same predictor with different datasets, our new metric fulfills the evaluation task of our interest while two widely recognized metrics, ROC and precision-recall curve fail the tasks for different reasons.
Deep Kernel Learning
We introduce scalable deep kernels, which combine the structural properties of deep learning architectures with the non-parametric flexibility of kernel methods. Specifically, we transform the inputs of a spectral mixture base kernel with a deep architecture, using local kernel interpolation, inducing points, and structure exploiting (Kronecker and Toeplitz) algebra for a scalable kernel representation. These closed-form kernels can be used as drop-in replacements for standard kernels, with benefits in expressive power and scalability. We jointly learn the properties of these kernels through the marginal likelihood of a Gaussian process. Inference and learning cost $O(n)$ for $n$ training points, and predictions cost $O(1)$ per test point. On a large and diverse collection of applications, including a dataset with 2 million examples, we show improved performance over scalable Gaussian processes with flexible kernel learning models, and stand-alone deep architectures.
Active Perceptual Similarity Modeling with Auxiliary Information
Learning a model of perceptual similarity from a collection of objects is a fundamental task in machine learning underlying numerous applications. A common way to learn such a model is from relative comparisons in the form of triplets: responses to queries of the form "Is object a more similar to b than it is to c?". If no consideration is made in the determination of which queries to ask, existing similarity learning methods can require a prohibitively large number of responses. In this work, we consider the problem of actively learning from triplets -finding which queries are most useful for learning. Different from previous active triplet learning approaches, we incorporate auxiliary information into our similarity model and introduce an active learning scheme to find queries that are informative for quickly learning both the relevant aspects of auxiliary data and the directly-learned similarity components. Compared to prior approaches, we show that we can learn just as effectively with much fewer queries. For evaluation, we introduce a new dataset of exhaustive triplet comparisons obtained from humans and demonstrate improved performance for different types of auxiliary information.
Efficient Multiscale Gaussian Process Regression using Hierarchical Clustering
Standard Gaussian Process (GP) regression, a powerful machine learning tool, is computationally expensive when it is applied to large datasets, and potentially inaccurate when data points are sparsely distributed in a high-dimensional feature space. To address these challenges, a new multiscale, sparsified GP algorithm is formulated, with the goal of application to large scientific computing datasets. In this approach, the data is partitioned into clusters and the cluster centers are used to define a reduced training set, resulting in an improvement over standard GPs in terms of training and evaluation costs. Further, a hierarchical technique is used to adaptively map the local covariance representation to the underlying sparsity of the feature space, leading to improved prediction accuracy when the data distribution is highly non-uniform. A theoretical investigation of the computational complexity of the algorithm is presented. The efficacy of this method is then demonstrated on smooth and discontinuous analytical functions and on data from a direct numerical simulation of turbulent combustion.
Stacked Attention Networks for Image Question Answering
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Generation and Comprehension of Unambiguous Object Descriptions
We propose a method that can generate an unambiguous description (known as a referring expression) of a specific object or region in an image, and which can also comprehend or interpret such an expression to infer which object is being described. We show that our method outperforms previous methods that generate descriptions of objects without taking into account other potentially ambiguous objects in the scene. Our model is inspired by recent successes of deep learning methods for image captioning, but while image captioning is difficult to evaluate, our task allows for easy objective evaluation. We also present a new large-scale dataset for referring expressions, based on MS-COCO. We have released the dataset and a toolbox for visualization and evaluation, see https://github.com/mjhucla/Google_Refexp_toolbox
Performance Analysis of Multiclass Support Vector Machine Classification for Diagnosis of Coronary Heart Diseases
Automatic diagnosis of coronary heart disease helps the doctor to support in decision making a diagnosis. Coronary heart disease have some types or levels. Referring to the UCI Repository dataset, it divided into 4 types or levels that are labeled numbers 1-4 (low, medium, high and serious). The diagnosis models can be analyzed with multiclass classification approach. One of multiclass classification approach used, one of which is a support vector machine (SVM). The SVM use due to strong performance of SVM in binary classification. This research study multiclass performance classification support vector machine to diagnose the type or level of coronary heart disease. Coronary heart disease patient data taken from the UCI Repository. Stages in this study is preprocessing, which consist of, to normalizing the data, divide the data into data training and testing. The next stage of multiclass classification and performance analysis. This study uses multiclass SVM algorithm, namely: Binary Tree Support Vector Machine (BTSVM), One-Against-One (OAO), One-Against-All (OAA), Decision Direct Acyclic Graph (DDAG) and Exhaustive Output Error Correction Code (ECOC). Performance parameter used is recall, precision, F-measure and Overall accuracy.
Review-Level Sentiment Classification with Sentence-Level Polarity Correction
We propose an effective technique to solving review-level sentiment classification problem by using sentence-level polarity correction. Our polarity correction technique takes into account the consistency of the polarities (positive and negative) of sentences within each product review before performing the actual machine learning task. While sentences with inconsistent polarities are removed, sentences with consistent polarities are used to learn state-of-the-art classifiers. The technique achieved better results on different types of products reviews and outperforms baseline models without the correction technique. Experimental results show an average of 82% F-measure on four different product review domains.
Hierarchical Variational Models
Black box variational inference allows researchers to easily prototype and evaluate an array of models. Recent advances allow such algorithms to scale to high dimensions. However, a central question remains: How to specify an expressive variational distribution that maintains efficient computation? To address this, we develop hierarchical variational models (HVMs). HVMs augment a variational approximation with a prior on its parameters, which allows it to capture complex structure for both discrete and continuous latent variables. The algorithm we develop is black box, can be used for any HVM, and has the same computational efficiency as the original approximation. We study HVMs on a variety of deep discrete latent variable models. HVMs generalize other expressive variational distributions and maintains higher fidelity to the posterior.
Max-Sum Diversification, Monotone Submodular Functions and Semi-metric Spaces
In many applications such as web-based search, document summarization, facility location and other applications, the results are preferable to be both representative and diversified subsets of documents. The goal of this study is to select a good "quality", bounded-size subset of a given set of items, while maintaining their diversity relative to a semi-metric distance function. This problem was first studied by Borodin et al\cite{borodin}, but a crucial property used throughout their proof is the triangle inequality. In this modified proof, we want to relax the triangle inequality and relate the approximation ratio of max-sum diversification problem to the parameter of the relaxed triangle inequality in the normal form of the problem (i.e., a uniform matroid) and also in an arbitrary matroid.
Towards Structured Deep Neural Network for Automatic Speech Recognition
In this paper we propose the Structured Deep Neural Network (structured DNN) as a structured and deep learning framework. This approach can learn to find the best structured object (such as a label sequence) given a structured input (such as a vector sequence) by globally considering the mapping relationships between the structures rather than item by item. When automatic speech recognition is viewed as a special case of such a structured learning problem, where we have the acoustic vector sequence as the input and the phoneme label sequence as the output, it becomes possible to comprehensively learn utterance by utterance as a whole, rather than frame by frame. Structured Support Vector Machine (structured SVM) was proposed to perform ASR with structured learning previously, but limited by the linear nature of SVM. Here we propose structured DNN to use nonlinear transformations in multi-layers as a structured and deep learning approach. This approach was shown to beat structured SVM in preliminary experiments on TIMIT.
Algorithmic Stability for Adaptive Data Analysis
Adaptivity is an important feature of data analysis---the choice of questions to ask about a dataset often depends on previous interactions with the same dataset. However, statistical validity is typically studied in a nonadaptive model, where all questions are specified before the dataset is drawn. Recent work by Dwork et al. (STOC, 2015) and Hardt and Ullman (FOCS, 2014) initiated the formal study of this problem, and gave the first upper and lower bounds on the achievable generalization error for adaptive data analysis. Specifically, suppose there is an unknown distribution $\mathbf{P}$ and a set of $n$ independent samples $\mathbf{x}$ is drawn from $\mathbf{P}$. We seek an algorithm that, given $\mathbf{x}$ as input, accurately answers a sequence of adaptively chosen queries about the unknown distribution $\mathbf{P}$. How many samples $n$ must we draw from the distribution, as a function of the type of queries, the number of queries, and the desired level of accuracy? In this work we make two new contributions: (i) We give upper bounds on the number of samples $n$ that are needed to answer statistical queries. The bounds improve and simplify the work of Dwork et al. (STOC, 2015), and have been applied in subsequent work by those authors (Science, 2015, NIPS, 2015). (ii) We prove the first upper bounds on the number of samples required to answer more general families of queries. These include arbitrary low-sensitivity queries and an important class of optimization queries. As in Dwork et al., our algorithms are based on a connection with algorithmic stability in the form of differential privacy. We extend their work by giving a quantitatively optimal, more general, and simpler proof of their main theorem that stability implies low generalization error. We also study weaker stability guarantees such as bounded KL divergence and total variation distance.
Speed learning on the fly
The practical performance of online stochastic gradient descent algorithms is highly dependent on the chosen step size, which must be tediously hand-tuned in many applications. The same is true for more advanced variants of stochastic gradients, such as SAGA, SVRG, or AdaGrad. Here we propose to adapt the step size by performing a gradient descent on the step size itself, viewing the whole performance of the learning trajectory as a function of step size. Importantly, this adaptation can be computed online at little cost, without having to iterate backward passes over the full data.
Sandwiching the marginal likelihood using bidirectional Monte Carlo
Computing the marginal likelihood (ML) of a model requires marginalizing out all of the parameters and latent variables, a difficult high-dimensional summation or integration problem. To make matters worse, it is often hard to measure the accuracy of one's ML estimates. We present bidirectional Monte Carlo, a technique for obtaining accurate log-ML estimates on data simulated from a model. This method obtains stochastic lower bounds on the log-ML using annealed importance sampling or sequential Monte Carlo, and obtains stochastic upper bounds by running these same algorithms in reverse starting from an exact posterior sample. The true value can be sandwiched between these two stochastic bounds with high probability. Using the ground truth log-ML estimates obtained from our method, we quantitatively evaluate a wide variety of existing ML estimators on several latent variable models: clustering, a low rank approximation, and a binary attributes model. These experiments yield insights into how to accurately estimate marginal likelihoods.
Deep Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics
In analyzing of modern biological data, we are often dealing with ill-posed problems and missing data, mostly due to high dimensionality and multicollinearity of the dataset. In this paper, we have proposed a system based on matrix factorization (MF) and deep recurrent neural networks (DRNNs) for genotype imputation and phenotype sequences prediction. In order to model the long-term dependencies of phenotype data, the new Recurrent Linear Units (ReLU) learning strategy is utilized for the first time. The proposed model is implemented for parallel processing on central processing units (CPUs) and graphic processing units (GPUs). Performance of the proposed model is compared with other training algorithms for learning long-term dependencies as well as the sparse partial least square (SPLS) method on a set of genotype and phenotype data with 604 samples, 1980 single-nucleotide polymorphisms (SNPs), and two traits. The results demonstrate performance of the ReLU training algorithm in learning long-term dependencies in RNNs.
How far can we go without convolution: Improving fully-connected networks
We propose ways to improve the performance of fully connected networks. We found that two approaches in particular have a strong effect on performance: linear bottleneck layers and unsupervised pre-training using autoencoders without hidden unit biases. We show how both approaches can be related to improving gradient flow and reducing sparsity in the network. We show that a fully connected network can yield approximately 70% classification accuracy on the permutation-invariant CIFAR-10 task, which is much higher than the current state-of-the-art. By adding deformations to the training data, the fully connected network achieves 78% accuracy, which is just 10% short of a decent convolutional network.
Batch-normalized Maxout Network in Network
This paper reports a novel deep architecture referred to as Maxout network In Network (MIN), which can enhance model discriminability and facilitate the process of information abstraction within the receptive field. The proposed network adopts the framework of the recently developed Network In Network structure, which slides a universal approximator, multilayer perceptron (MLP) with rectifier units, to exact features. Instead of MLP, we employ maxout MLP to learn a variety of piecewise linear activation functions and to mediate the problem of vanishing gradients that can occur when using rectifier units. Moreover, batch normalization is applied to reduce the saturation of maxout units by pre-conditioning the model and dropout is applied to prevent overfitting. Finally, average pooling is used in all pooling layers to regularize maxout MLP in order to facilitate information abstraction in every receptive field while tolerating the change of object position. Because average pooling preserves all features in the local patch, the proposed MIN model can enforce the suppression of irrelevant information during training. Our experiments demonstrated the state-of-the-art classification performance when the MIN model was applied to MNIST, CIFAR-10, and CIFAR-100 datasets and comparable performance for SVHN dataset.
A New Relaxation Approach to Normalized Hypergraph Cut
Normalized graph cut (NGC) has become a popular research topic due to its wide applications in a large variety of areas like machine learning and very large scale integration (VLSI) circuit design. Most of traditional NGC methods are based on pairwise relationships (similarities). However, in real-world applications relationships among the vertices (objects) may be more complex than pairwise, which are typically represented as hyperedges in hypergraphs. Thus, normalized hypergraph cut (NHC) has attracted more and more attention. Existing NHC methods cannot achieve satisfactory performance in real applications. In this paper, we propose a novel relaxation approach, which is called relaxed NHC (RNHC), to solve the NHC problem. Our model is defined as an optimization problem on the Stiefel manifold. To solve this problem, we resort to the Cayley transformation to devise a feasible learning algorithm. Experimental results on a set of large hypergraph benchmarks for clustering and partitioning in VLSI domain show that RNHC can outperform the state-of-the-art methods.
Decomposition Bounds for Marginal MAP
Marginal MAP inference involves making MAP predictions in systems defined with latent variables or missing information. It is significantly more difficult than pure marginalization and MAP tasks, for which a large class of efficient and convergent variational algorithms, such as dual decomposition, exist. In this work, we generalize dual decomposition to a generic power sum inference task, which includes marginal MAP, along with pure marginalization and MAP, as special cases. Our method is based on a block coordinate descent algorithm on a new convex decomposition bound, that is guaranteed to converge monotonically, and can be parallelized efficiently. We demonstrate our approach on marginal MAP queries defined on real-world problems from the UAI approximate inference challenge, showing that our framework is faster and more reliable than previous methods.
Generating Images from Captions with Attention
Motivated by the recent progress in generative models, we introduce a model that generates images from natural language descriptions. The proposed model iteratively draws patches on a canvas, while attending to the relevant words in the description. After training on Microsoft COCO, we compare our model with several baseline generative models on image generation and retrieval tasks. We demonstrate that our model produces higher quality samples than other approaches and generates images with novel scene compositions corresponding to previously unseen captions in the dataset.
Neural Module Networks
Visual question answering is fundamentally compositional in nature---a question like "where is the dog?" shares substructure with questions like "what color is the dog?" and "where is the cat?" This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning *neural module networks*, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.
Multiple Instance Dictionary Learning using Functions of Multiple Instances
A multiple instance dictionary learning method using functions of multiple instances (DL-FUMI) is proposed to address target detection and two-class classification problems with inaccurate training labels. Given inaccurate training labels, DL-FUMI learns a set of target dictionary atoms that describe the most distinctive and representative features of the true positive class as well as a set of nontarget dictionary atoms that account for the shared information found in both the positive and negative instances. Experimental results show that the estimated target dictionary atoms found by DL-FUMI are more representative prototypes and identify better discriminative features of the true positive class than existing methods in the literature. DL-FUMI is shown to have significantly better performance on several target detection and classification problems as compared to other multiple instance learning (MIL) dictionary learning algorithms on a variety of MIL problems.
Symmetries and control in generative neural nets
We study generative nets which can control and modify observations, after being trained on real-life datasets. In order to zoom-in on an object, some spatial, color and other attributes are learned by classifiers in specialized attention nets. In field-theoretical terms, these learned symmetry statistics form the gauge group of the data set. Plugging them in the generative layers of auto-classifiers-encoders (ACE) appears to be the most direct way to simultaneously: i) generate new observations with arbitrary attributes, from a given class, ii) describe the low-dimensional manifold encoding the "essence" of the data, after superfluous attributes are factored out, and iii) organically control, i.e., move or modify objects within given observations. We demonstrate the sharp improvement of the generative qualities of shallow ACE, with added spatial and color symmetry statistics, on the distorted MNIST and CIFAR10 datasets.
Visual Language Modeling on CNN Image Representations
Measuring the naturalness of images is important to generate realistic images or to detect unnatural regions in images. Additionally, a method to measure naturalness can be complementary to Convolutional Neural Network (CNN) based features, which are known to be insensitive to the naturalness of images. However, most probabilistic image models have insufficient capability of modeling the complex and abstract naturalness that we feel because they are built directly on raw image pixels. In this work, we assume that naturalness can be measured by the predictability on high-level features during eye movement. Based on this assumption, we propose a novel method to evaluate the naturalness by building a variant of Recurrent Neural Network Language Models on pre-trained CNN representations. Our method is applied to two tasks, demonstrating that 1) using our method as a regularizer enables us to generate more understandable images from image features than existing approaches, and 2) unnaturalness maps produced by our method achieve state-of-the-art eye fixation prediction performance on two well-studied datasets.
Neighbourhood NILM: A Big-data Approach to Household Energy Disaggregation
In this paper, we investigate whether "big-data" is more valuable than "precise" data for the problem of energy disaggregation: the process of breaking down aggregate energy usage on a per-appliance basis. Existing techniques for disaggregation rely on energy metering at a resolution of 1 minute or higher, but most power meters today only provide a reading once per month, and at most once every 15 minutes. In this paper, we propose a new technique called Neighbourhood NILM that leverages data from 'neighbouring' homes to disaggregate energy given only a single energy reading per month. The key intuition behind our approach is that 'similar' homes have 'similar' energy consumption on a per-appliance basis. Neighbourhood NILM matches every home with a set of 'neighbours' that have direct submetering infrastructure, i.e. power meters on individual circuits or loads. Many such homes already exist. Then, it estimates the appliance-level energy consumption of the target home to be the average of its K neighbours. We evaluate this approach using 25 homes and results show that our approach gives comparable or better disaggregation in comparison to state-of-the-art accuracy reported in the literature that depend on manual model training, high frequency power metering, or both. Results show that Neighbourhood NILM can achieve 83% and 79% accuracy disaggregating fridge and heating/cooling loads, compared to 74% and 73% for a technique called FHMM. Furthermore, it achieves up to 64% accuracy on washing machine, dryer, dishwasher, and lighting loads, which is higher than previously reported results. Many existing techniques are not able to disaggregate these loads at all. These results indicate a potentially substantial advantage to installing submetering infrastructure in a select few homes rather than installing new high-frequency smart metering infrastructure in all homes.
Efficient Construction of Local Parametric Reduced Order Models Using Machine Learning Techniques
Reduced order models are computationally inexpensive approximations that capture the important dynamical characteristics of large, high-fidelity computer models of physical systems. This paper applies machine learning techniques to improve the design of parametric reduced order models. Specifically, machine learning is used to develop feasible regions in the parameter space where the admissible target accuracy is achieved with a predefined reduced order basis, to construct parametric maps, to chose the best two already existing bases for a new parameter configuration from accuracy point of view and to pre-select the optimal dimension of the reduced basis such as to meet the desired accuracy. By combining available information using bases concatenation and interpolation as well as high-fidelity solutions interpolation we are able to build accurate reduced order models associated with new parameter settings. Promising numerical results with a viscous Burgers model illustrate the potential of machine learning approaches to help design better reduced order models.
Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
Hyperspectral image (HSI) classification is a hot topic in the remote sensing community. This paper proposes a new framework of spectral-spatial feature extraction for HSI classification, in which for the first time the concept of deep learning is introduced. Specifically, the model of autoencoder is exploited in our framework to extract various kinds of features. First we verify the eligibility of autoencoder by following classical spectral information based classification and use autoencoders with different depth to classify hyperspectral image. Further in the proposed framework, we combine PCA on spectral dimension and autoencoder on the other two spatial dimensions to extract spectral-spatial information for classification. The experimental results show that this framework achieves the highest classification accuracy among all methods, and outperforms classical classifiers such as SVM and PCA-based SVM.
Reducing the Training Time of Neural Networks by Partitioning
This paper presents a new method for pre-training neural networks that can decrease the total training time for a neural network while maintaining the final performance, which motivates its use on deep neural networks. By partitioning the training task in multiple training subtasks with sub-models, which can be performed independently and in parallel, it is shown that the size of the sub-models reduces almost quadratically with the number of subtasks created, quickly scaling down the sub-models used for the pre-training. The sub-models are then merged to provide a pre-trained initial set of weights for the original model. The proposed method is independent of the other aspects of the training, such as architecture of the neural network, training method, and objective, making it compatible with a wide range of existing approaches. The speedup without loss of performance is validated experimentally on MNIST and on CIFAR10 data sets, also showing that even performing the subtasks sequentially can decrease the training time. Moreover, we show that larger models may present higher speedups and conjecture about the benefits of the method in distributed learning systems.
Learning with a Strong Adversary
The robustness of neural networks to intended perturbations has recently attracted significant attention. In this paper, we propose a new method, \emph{learning with a strong adversary}, that learns robust classifiers from supervised data. The proposed method takes finding adversarial examples as an intermediate step. A new and simple way of finding adversarial examples is presented and experimentally shown to be efficient. Experimental results demonstrate that resulting learning method greatly improves the robustness of the classification models produced.
Tiny Descriptors for Image Retrieval with Unsupervised Triplet Hashing
A typical image retrieval pipeline starts with the comparison of global descriptors from a large database to find a short list of candidate matches. A good image descriptor is key to the retrieval pipeline and should reconcile two contradictory requirements: providing recall rates as high as possible and being as compact as possible for fast matching. Following the recent successes of Deep Convolutional Neural Networks (DCNN) for large scale image classification, descriptors extracted from DCNNs are increasingly used in place of the traditional hand crafted descriptors such as Fisher Vectors (FV) with better retrieval performances. Nevertheless, the dimensionality of a typical DCNN descriptor --extracted either from the visual feature pyramid or the fully-connected layers-- remains quite high at several thousands of scalar values. In this paper, we propose Unsupervised Triplet Hashing (UTH), a fully unsupervised method to compute extremely compact binary hashes --in the 32-256 bits range-- from high-dimensional global descriptors. UTH consists of two successive deep learning steps. First, Stacked Restricted Boltzmann Machines (SRBM), a type of unsupervised deep neural nets, are used to learn binary embedding functions able to bring the descriptor size down to the desired bitrate. SRBMs are typically able to ensure a very high compression rate at the expense of loosing some desirable metric properties of the original DCNN descriptor space. Then, triplet networks, a rank learning scheme based on weight sharing nets is used to fine-tune the binary embedding functions to retain as much as possible of the useful metric properties of the original space. A thorough empirical evaluation conducted on multiple publicly available dataset using DCNN descriptors shows that our method is able to significantly outperform state-of-the-art unsupervised schemes in the target bit range.
The CTU Prague Relational Learning Repository
The aim of the CTU Prague Relational Learning Repository is to support machine learning research with multi-relational data. The repository currently contains 50 SQL databases hosted on a public MySQL server located at relational.fit.cvut.cz. A searchable meta-database provides metadata (e.g., the number of tables in the database, the number of rows and columns in the tables, the number of foreign key constraints between tables).
Semi-supervised Tuning from Temporal Coherence
Recent works demonstrated the usefulness of temporal coherence to regularize supervised training or to learn invariant features with deep architectures. In particular, enforcing smooth output changes while presenting temporally-closed frames from video sequences, proved to be an effective strategy. In this paper we prove the efficacy of temporal coherence for semi-supervised incremental tuning. We show that a deep architecture, just mildly trained in a supervised manner, can progressively improve its classification accuracy, if exposed to video sequences of unlabeled data. The extent to which, in some cases, a semi-supervised tuning allows to improve classification accuracy (approaching the supervised one) is somewhat surprising. A number of control experiments pointed out the fundamental role of temporal coherence.
Sliced Wasserstein Kernels for Probability Distributions
Optimal transport distances, otherwise known as Wasserstein distances, have recently drawn ample attention in computer vision and machine learning as a powerful discrepancy measure for probability distributions. The recent developments on alternative formulations of the optimal transport have allowed for faster solutions to the problem and has revamped its practical applications in machine learning. In this paper, we exploit the widely used kernel methods and provide a family of provably positive definite kernels based on the Sliced Wasserstein distance and demonstrate the benefits of these kernels in a variety of learning tasks. Our work provides a new perspective on the application of optimal transport flavored distances through kernel methods in machine learning tasks.
Label Efficient Learning by Exploiting Multi-class Output Codes
We present a new perspective on the popular multi-class algorithmic techniques of one-vs-all and error correcting output codes. Rather than studying the behavior of these techniques for supervised learning, we establish a connection between the success of these methods and the existence of label-efficient learning procedures. We show that in both the realizable and agnostic cases, if output codes are successful at learning from labeled data, they implicitly assume structure on how the classes are related. By making that structure explicit, we design learning algorithms to recover the classes with low label complexity. We provide results for the commonly studied cases of one-vs-all learning and when the codewords of the classes are well separated. We additionally consider the more challenging case where the codewords are not well separated, but satisfy a boundary features condition that captures the natural intuition that every bit of the codewords should be significant.
Learning Communities in the Presence of Errors
We study the problem of learning communities in the presence of modeling errors and give robust recovery algorithms for the Stochastic Block Model (SBM). This model, which is also known as the Planted Partition Model, is widely used for community detection and graph partitioning in various fields, including machine learning, statistics, and social sciences. Many algorithms exist for learning communities in the Stochastic Block Model, but they do not work well in the presence of errors. In this paper, we initiate the study of robust algorithms for partial recovery in SBM with modeling errors or noise. We consider graphs generated according to the Stochastic Block Model and then modified by an adversary. We allow two types of adversarial errors, Feige---Kilian or monotone errors, and edge outlier errors. Mossel, Neeman and Sly (STOC 2015) posed an open question about whether an almost exact recovery is possible when the adversary is allowed to add $o(n)$ edges. Our work answers this question affirmatively even in the case of $k>2$ communities. We then show that our algorithms work not only when the instances come from SBM, but also work when the instances come from any distribution of graphs that is $\epsilon m$ close to SBM in the Kullback---Leibler divergence. This result also works in the presence of adversarial errors. Finally, we present almost tight lower bounds for two communities.
A Hierarchical Spectral Method for Extreme Classification
Extreme classification problems are multiclass and multilabel classification problems where the number of outputs is so large that straightforward strategies are neither statistically nor computationally viable. One strategy for dealing with the computational burden is via a tree decomposition of the output space. While this typically leads to training and inference that scales sublinearly with the number of outputs, it also results in reduced statistical performance. In this work, we identify two shortcomings of tree decomposition methods, and describe two heuristic mitigations. We compose these with an eigenvalue technique for constructing the tree. The end result is a computationally efficient algorithm that provides good statistical performance on several extreme data sets.
Anchored Discrete Factor Analysis
We present a semi-supervised learning algorithm for learning discrete factor analysis models with arbitrary structure on the latent variables. Our algorithm assumes that every latent variable has an "anchor", an observed variable with only that latent variable as its parent. Given such anchors, we show that it is possible to consistently recover moments of the latent variables and use these moments to learn complete models. We also introduce a new technique for improving the robustness of method-of-moment algorithms by optimizing over the marginal polytope or its relaxations. We evaluate our algorithm using two real-world tasks, tag prediction on questions from the Stack Overflow website and medical diagnosis in an emergency department.
Visual7W: Grounded Question Answering in Images
We have seen great progress in basic perceptual tasks such as object recognition and detection. However, AI models still fail to match humans in high-level vision tasks due to the lack of capacities for deeper reasoning. Recently the new task of visual question answering (QA) has been proposed to evaluate a model's capacity for deep image understanding. Previous works have established a loose, global association between QA sentences and images. However, many questions and answers, in practice, relate to local regions in the images. We establish a semantic link between textual descriptions and image regions by object-level grounding. It enables a new type of QA with visual answers, in addition to textual answers used in previous work. We study the visual QA tasks in a grounded setting with a large collection of 7W multiple-choice QA pairs. Furthermore, we evaluate human performance and several baseline models on the QA tasks. Finally, we propose a novel LSTM model with spatial attention to tackle the 7W QA tasks.
Hierarchical Latent Semantic Mapping for Automated Topic Generation
Much of information sits in an unprecedented amount of text data. Managing allocation of these large scale text data is an important problem for many areas. Topic modeling performs well in this problem. The traditional generative models (PLSA,LDA) are the state-of-the-art approaches in topic modeling and most recent research on topic generation has been focusing on improving or extending these models. However, results of traditional generative models are sensitive to the number of topics K, which must be specified manually. The problem of generating topics from corpus resembles community detection in networks. Many effective algorithms can automatically detect communities from networks without a manually specified number of the communities. Inspired by these algorithms, in this paper, we propose a novel method named Hierarchical Latent Semantic Mapping (HLSM), which automatically generates topics from corpus. HLSM calculates the association between each pair of words in the latent topic space, then constructs a unipartite network of words with this association and hierarchically generates topics from this network. We apply HLSM to several document collections and the experimental comparisons against several state-of-the-art approaches demonstrate the promising performance.
Federated Optimization:Distributed Optimization Beyond the Datacenter
We introduce a new and increasingly relevant setting for distributed optimization in machine learning, where the data defining the optimization are distributed (unevenly) over an extremely large number of \nodes, but the goal remains to train a high-quality centralized model. We refer to this setting as Federated Optimization. In this setting, communication efficiency is of utmost importance. A motivating example for federated optimization arises when we keep the training data locally on users' mobile devices rather than logging it to a data center for training. Instead, the mobile devices are used as nodes performing computation on their local data in order to update a global model. We suppose that we have an extremely large number of devices in our network, each of which has only a tiny fraction of data available totally; in particular, we expect the number of data points available locally to be much smaller than the number of devices. Additionally, since different users generate data with different patterns, we assume that no device has a representative sample of the overall distribution. We show that existing algorithms are not suitable for this setting, and propose a new algorithm which shows encouraging experimental results. This work also sets a path for future research needed in the context of federated optimization.
DataGrinder: Fast, Accurate, Fully non-Parametric Classification Approach Using 2D Convex Hulls
It has been a long time, since data mining technologies have made their ways to the field of data management. Classification is one of the most important data mining tasks for label prediction, categorization of objects into groups, advertisement and data management. In this paper, we focus on the standard classification problem which is predicting unknown labels in Euclidean space. Most efforts in Machine Learning communities are devoted to methods that use probabilistic algorithms which are heavy on Calculus and Linear Algebra. Most of these techniques have scalability issues for big data, and are hardly parallelizable if they are to maintain their high accuracies in their standard form. Sampling is a new direction for improving scalability, using many small parallel classifiers. In this paper, rather than conventional sampling methods, we focus on a discrete classification algorithm with O(n) expected running time. Our approach performs a similar task as sampling methods. However, we use column-wise sampling of data, rather than the row-wise sampling used in the literature. In either case, our algorithm is completely deterministic. Our algorithm, proposes a way of combining 2D convex hulls in order to achieve high classification accuracy as well as scalability in the same time. First, we thoroughly describe and prove our O(n) algorithm for finding the convex hull of a point set in 2D. Then, we show with experiments our classifier model built based on this idea is very competitive compared with existing sophisticated classification algorithms included in commercial statistical applications such as MATLAB.
The Fourier Transform of Poisson Multinomial Distributions and its Algorithmic Applications
An $(n, k)$-Poisson Multinomial Distribution (PMD) is a random variable of the form $X = \sum_{i=1}^n X_i$, where the $X_i$'s are independent random vectors supported on the set of standard basis vectors in $\mathbb{R}^k.$ In this paper, we obtain a refined structural understanding of PMDs by analyzing their Fourier transform. As our core structural result, we prove that the Fourier transform of PMDs is {\em approximately sparse}, i.e., roughly speaking, its $L_1$-norm is small outside a small set. By building on this result, we obtain the following applications: {\bf Learning Theory.} We design the first computationally efficient learning algorithm for PMDs with respect to the total variation distance. Our algorithm learns an arbitrary $(n, k)$-PMD within variation distance $\epsilon$ using a near-optimal sample size of $\widetilde{O}_k(1/\epsilon^2),$ and runs in time $\widetilde{O}_k(1/\epsilon^2) \cdot \log n.$ Previously, no algorithm with a $\mathrm{poly}(1/\epsilon)$ runtime was known, even for $k=3.$ {\bf Game Theory.} We give the first efficient polynomial-time approximation scheme (EPTAS) for computing Nash equilibria in anonymous games. For normalized anonymous games with $n$ players and $k$ strategies, our algorithm computes a well-supported $\epsilon$-Nash equilibrium in time $n^{O(k^3)} \cdot (k/\epsilon)^{O(k^3\log(k/\epsilon)/\log\log(k/\epsilon))^{k-1}}.$ The best previous algorithm for this problem had running time $n^{(f(k)/\epsilon)^k},$ where $f(k) = \Omega(k^{k^2})$, for any $k>2.$ {\bf Statistics.} We prove a multivariate central limit theorem (CLT) that relates an arbitrary PMD to a discretized multivariate Gaussian with the same mean and covariance, in total variation distance. Our new CLT strengthens the CLT of Valiant and Valiant by completely removing the dependence on $n$ in the error bound.
A Size-Free CLT for Poisson Multinomials and its Applications
An $(n,k)$-Poisson Multinomial Distribution (PMD) is the distribution of the sum of $n$ independent random vectors supported on the set ${\cal B}_k=\{e_1,\ldots,e_k\}$ of standard basis vectors in $\mathbb{R}^k$. We show that any $(n,k)$-PMD is ${\rm poly}\left({k\over \sigma}\right)$-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on $n$ from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath, and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on $n$ and $1/\varepsilon$ of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of $(n,k)$-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from $O_k(1/\varepsilon^2)$ samples in ${\rm poly}_k(1/\varepsilon)$-time, removing the quasi-polynomial dependence of the running time on $1/\varepsilon$ from the algorithm of Daskalakis, Kamath, and Tzamos.
Unifying distillation and privileged information
Distillation (Hinton et al., 2015) and privileged information (Vapnik & Izmailov, 2015) are two techniques that enable machines to learn from other machines. This paper unifies these two techniques into generalized distillation, a framework to learn from multiple machines and data representations. We provide theoretical and causal insight about the inner workings of generalized distillation, extend it to unsupervised, semisupervised and multitask learning scenarios, and illustrate its efficacy on a variety of numerical simulations on both synthetic and real-world data.
Learning to Diagnose with LSTM Recurrent Neural Networks
Clinical medical data, especially in the intensive care unit (ICU), consist of multivariate time series of observations. For each patient visit (or episode), sensor data and lab test results are recorded in the patient's Electronic Health Record (EHR). While potentially containing a wealth of insights, the data is difficult to mine effectively, owing to varying length, irregular sampling and missing data. Recurrent Neural Networks (RNNs), particularly those using Long Short-Term Memory (LSTM) hidden units, are powerful and increasingly popular models for learning from sequence data. They effectively model varying length sequences and capture long range dependencies. We present the first study to empirically evaluate the ability of LSTMs to recognize patterns in multivariate time series of clinical measurements. Specifically, we consider multilabel classification of diagnoses, training a model to classify 128 diagnoses given 13 frequently but irregularly sampled clinical measurements. First, we establish the effectiveness of a simple LSTM network for modeling clinical data. Then we demonstrate a straightforward and effective training strategy in which we replicate targets at each sequence step. Trained only on raw time series, our models outperform several strong baselines, including a multilayer perceptron trained on hand-engineered features.
Generative Concatenative Nets Jointly Learn to Write and Classify Reviews
A recommender system's basic task is to estimate how users will respond to unseen items. This is typically modeled in terms of how a user might rate a product, but here we aim to extend such approaches to model how a user would write about the product. To do so, we design a character-level Recurrent Neural Network (RNN) that generates personalized product reviews. The network convincingly learns styles and opinions of nearly 1000 distinct authors, using a large corpus of reviews from BeerAdvocate.com. It also tailors reviews to describe specific items, categories, and star ratings. Using a simple input replication strategy, the Generative Concatenative Network (GCN) preserves the signal of static auxiliary inputs across wide sequence intervals. Without any additional training, the generative model can classify reviews, identifying the author of the review, the product category, and the sentiment (rating), with remarkable accuracy. Our evaluation shows the GCN captures complex dynamics in text, such as the effect of negation, misspellings, slang, and large vocabularies gracefully absent any machinery explicitly dedicated to the purpose.
Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?
In the current context of data explosion, online techniques that do not require storing all data in memory are indispensable to routinely perform tasks like principal component analysis (PCA). Recursive algorithms that update the PCA with each new observation have been studied in various fields of research and found wide applications in industrial monitoring, computer vision, astronomy, and latent semantic indexing, among others. This work provides guidance for selecting an online PCA algorithm in practice. We present the main approaches to online PCA, namely, perturbation techniques, incremental methods, and stochastic optimization, and compare their statistical accuracy, computation time, and memory requirements using artificial and real data. Extensions to missing data and to functional data are discussed. All studied algorithms are available in the R package onlinePCA on CRAN.
Universum Prescription: Regularization using Unlabeled Data
This paper shows that simply prescribing "none of the above" labels to unlabeled data has a beneficial regularization effect to supervised learning. We call it universum prescription by the fact that the prescribed labels cannot be one of the supervised labels. In spite of its simplicity, universum prescription obtained competitive results in training deep convolutional networks for CIFAR-10, CIFAR-100, STL-10 and ImageNet datasets. A qualitative justification of these approaches using Rademacher complexity is presented. The effect of a regularization parameter -- probability of sampling from unlabeled data -- is also studied empirically.
Doubly Robust Off-policy Value Evaluation for Reinforcement Learning
We study the problem of off-policy value evaluation in reinforcement learning (RL), where one aims to estimate the value of a new policy based on data collected by a different policy. This problem is often a critical step when applying RL in real-world problems. Despite its importance, existing general methods either have uncontrolled bias or suffer high variance. In this work, we extend the doubly robust estimator for bandits to sequential decision-making problems, which gets the best of both worlds: it is guaranteed to be unbiased and can have a much lower variance than the popular importance sampling estimators. We demonstrate the estimator's accuracy in several benchmark problems, and illustrate its use as a subroutine in safe policy improvement. We also provide theoretical results on the hardness of the problem, and show that our estimator can match the lower bound in certain scenarios.
Grounding of Textual Phrases in Images by Reconstruction
Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.
Random Multi-Constraint Projection: Stochastic Gradient Methods for Convex Optimization with Many Constraints
Consider convex optimization problems subject to a large number of constraints. We focus on stochastic problems in which the objective takes the form of expected values and the feasible set is the intersection of a large number of convex sets. We propose a class of algorithms that perform both stochastic gradient descent and random feasibility updates simultaneously. At every iteration, the algorithms sample a number of projection points onto a randomly selected small subsets of all constraints. Three feasibility update schemes are considered: averaging over random projected points, projecting onto the most distant sample, projecting onto a special polyhedral set constructed based on sample points. We prove the almost sure convergence of these algorithms, and analyze the iterates' feasibility error and optimality error, respectively. We provide new convergence rate benchmarks for stochastic first-order optimization with many constraints. The rate analysis and numerical experiments reveal that the algorithm using the polyhedral-set projection scheme is the most efficient one within known algorithms.
Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach
In this paper, we develop a randomized algorithm and theory for learning a sparse model from large-scale and high-dimensional data, which is usually formulated as an empirical risk minimization problem with a sparsity-inducing regularizer. Under the assumption that there exists a (approximately) sparse solution with high classification accuracy, we argue that the dual solution is also sparse or approximately sparse. The fact that both primal and dual solutions are sparse motivates us to develop a randomized approach for a general convex-concave optimization problem. Specifically, the proposed approach combines the strength of random projection with that of sparse learning: it utilizes random projection to reduce the dimensionality, and introduces $\ell_1$-norm regularization to alleviate the approximation error caused by random projection. Theoretical analysis shows that under favored conditions, the randomized algorithm can accurately recover the optimal solutions to the convex-concave optimization problem (i.e., recover both the primal and dual solutions).
Improving performance of recurrent neural network with relu nonlinearity
In recent years significant progress has been made in successfully training recurrent neural networks (RNNs) on sequence learning problems involving long range temporal dependencies. The progress has been made on three fronts: (a) Algorithmic improvements involving sophisticated optimization techniques, (b) network design involving complex hidden layer nodes and specialized recurrent layer connections and (c) weight initialization methods. In this paper, we focus on recently proposed weight initialization with identity matrix for the recurrent weights in a RNN. This initialization is specifically proposed for hidden nodes with Rectified Linear Unit (ReLU) non linearity. We offer a simple dynamical systems perspective on weight initialization process, which allows us to propose a modified weight initialization strategy. We show that this initialization technique leads to successfully training RNNs composed of ReLUs. We demonstrate that our proposal produces comparable or better solution for three toy problems involving long range temporal structure: the addition problem, the multiplication problem and the MNIST classification problem using sequence of pixels. In addition, we present results for a benchmark action recognition problem.
On the Optimal Sample Complexity for Best Arm Identification
We study the best arm identification (BEST-1-ARM) problem, which is defined as follows. We are given $n$ stochastic bandit arms. The $i$th arm has a reward distribution $D_i$ with an unknown mean $\mu_{i}$. Upon each play of the $i$th arm, we can get a reward, sampled i.i.d. from $D_i$. We would like to identify the arm with the largest mean with probability at least $1-\delta$, using as few samples as possible. We provide a nontrivial algorithm for BEST-1-ARM, which improves upon several prior upper bounds on the same problem. We also study an important special case where there are only two arms, which we call the sign problem. We provide a new lower bound of sign, simplifying and significantly extending a classical result by Farrell in 1964, with a completely new proof. Using the new lower bound for sign, we obtain the first lower bound for BEST-1-ARM that goes beyond the classic Mannor-Tsitsiklis lower bound, by an interesting reduction from Sign to BEST-1-ARM. We propose an interesting conjecture concerning the optimal sample complexity of BEST-1-ARM from the perspective of instance-wise optimality.
Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control
This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching with a three-joint robot manipulator using external visual observation. A Deep Q Network (DQN) was demonstrated to perform target reaching after training in simulation. Transferring the network to real hardware and real observation in a naive approach failed, but experiments show that the network works when replacing camera images with synthetic images.
Learning Nonparametric Forest Graphical Models with Prior Information
We present a framework for incorporating prior information into nonparametric estimation of graphical models. To avoid distributional assumptions, we restrict the graph to be a forest and build on the work of forest density estimation (FDE). We reformulate the FDE approach from a Bayesian perspective, and introduce prior distributions on the graphs. As two concrete examples, we apply this framework to estimating scale-free graphs and learning multiple graphs with similar structures. The resulting algorithms are equivalent to finding a maximum spanning tree of a weighted graph with a penalty term on the connectivity pattern of the graph. We solve the optimization problem via a minorize-maximization procedure with Kruskal's algorithm. Simulations show that the proposed methods outperform competing parametric methods, and are robust to the true data distribution. They also lead to improvement in predictive power and interpretability in two real data sets.
Characterizing Concept Drift
Most machine learning models are static, but the world is dynamic, and increasing online deployment of learned models gives increasing urgency to the development of efficient and effective mechanisms to address learning in the context of non-stationary distributions, or as it is commonly called concept drift. However, the key issue of characterizing the different types of drift that can occur has not previously been subjected to rigorous definition and analysis. In particular, while some qualitative drift categorizations have been proposed, few have been formally defined, and the quantitative descriptions required for precise and objective understanding of learner performance have not existed. We present the first comprehensive framework for quantitative analysis of drift. This supports the development of the first comprehensive set of formal definitions of types of concept drift. The formal definitions clarify ambiguities and identify gaps in previous definitions, giving rise to a new comprehensive taxonomy of concept drift types and a solid foundation for research into mechanisms to detect and address concept drift.
Feature Learning based Deep Supervised Hashing with Pairwise Labels
Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hash-code learning with deep neural networks, which have shown better performance than traditional hashing methods with hand-crafted features. Most of these deep hashing methods are supervised whose supervised information is given with triplet labels. For another common application scenario with pairwise labels, there have not existed methods for simultaneous feature learning and hash-code learning. In this paper, we propose a novel deep hashing method, called deep pairwise-supervised hashing(DPSH), to perform simultaneous feature learning and hash-code learning for applications with pairwise labels. Experiments on real datasets show that our DPSH method can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.
Learning Human Identity from Motion Patterns
We present a large-scale study exploring the capability of temporal deep neural networks to interpret natural human kinematics and introduce the first method for active biometric authentication with mobile inertial sensors. At Google, we have created a first-of-its-kind dataset of human movements, passively collected by 1500 volunteers using their smartphones daily over several months. We (1) compare several neural architectures for efficient learning of temporal multi-modal data representations, (2) propose an optimized shift-invariant dense convolutional mechanism (DCWRNN), and (3) incorporate the discriminatively-trained dynamic features in a probabilistic generative framework taking into account temporal characteristics. Our results demonstrate that human kinematics convey important information about user identity and can serve as a valuable component of multi-modal authentication systems.
Bayesian Analysis of Dynamic Linear Topic Models
In dynamic topic modeling, the proportional contribution of a topic to a document depends on the temporal dynamics of that topic's overall prevalence in the corpus. We extend the Dynamic Topic Model of Blei and Lafferty (2006) by explicitly modeling document level topic proportions with covariates and dynamic structure that includes polynomial trends and periodicity. A Markov Chain Monte Carlo (MCMC) algorithm that utilizes Polya-Gamma data augmentation is developed for posterior inference. Conditional independencies in the model and sampling are made explicit, and our MCMC algorithm is parallelized where possible to allow for inference in large corpora. To address computational bottlenecks associated with Polya-Gamma sampling, we appeal to the Central Limit Theorem to develop a Gaussian approximation to the Polya-Gamma random variable. This approximation is fast and reliable for parameter values relevant in the text mining domain. Our model and inference algorithm are validated with multiple simulation examples, and we consider the application of modeling trends in PubMed abstracts. We demonstrate that sharing information across documents is critical for accurately estimating document-specific topic proportions. We also show that explicitly modeling polynomial and periodic behavior improves our ability to predict topic prevalence at future time points.
Document Context Language Models
Text documents are structured on multiple levels of detail: individual words are related by syntax, but larger units of text are related by discourse structure. Existing language models generally fail to account for discourse structure, but it is crucial if we are to have language models that reward coherence and generate coherent texts. We present and empirically evaluate a set of multi-level recurrent neural network language models, called Document-Context Language Models (DCLM), which incorporate contextual information both within and beyond the sentence. In comparison with word-level recurrent neural network language models, the DCLM models obtain slightly better predictive likelihoods, and considerably better assessments of document coherence.
Representational Distance Learning for Deep Neural Networks
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs towards those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g. images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.
Prediction of the Yield of Enzymatic Synthesis of Betulinic Acid Ester Using Artificial Neural Networks and Support Vector Machine
3\b{eta}-O-phthalic ester of betulinic acid is of great importance in anticancer studies. However, the optimization of its reaction conditions requires a large number of experimental works. To simplify the number of times of optimization in experimental works, here, we use artificial neural network (ANN) and support vector machine (SVM) models for the prediction of yields of 3\b{eta}-O-phthalic ester of betulinic acid synthesized by betulinic acid and phthalic anhydride using lipase as biocatalyst. General regression neural network (GRNN), multilayer feed-forward neural network (MLFN) and the SVM models were trained based on experimental data. Four indicators were set as independent variables, including time (h), temperature (C), amount of enzyme (mg) and molar ratio, while the yield of the 3\b{eta}-O-phthalic ester of betulinic acid was set as the dependent variable. Results show that the GRNN and SVM models have the best prediction results during the testing process, with comparatively low RMS errors (4.01 and 4.23respectively) and short training times (both 1s). The prediction accuracy of the GRNN and SVM are both 100% in testing process, under the tolerance of 30%.
Block-diagonal covariance selection for high-dimensional Gaussian graphical models
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on an oracle inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network.
Kernel Methods for Accurate UWB-Based Ranging with Reduced Complexity
Accurate and robust positioning in multipath environments can enable many applications, such as search-and-rescue and asset tracking. For this problem, ultra-wideband (UWB) technology can provide the most accurate range estimates, which are required for range-based positioning. However, UWB still faces a problem with non-line-of-sight (NLOS) measurements, in which the range estimates based on time-of-arrival (TOA) will typically be positively biased. There are many techniques that address this problem, mainly based on NLOS identification and NLOS error mitigation algorithms. However, these techniques do not exploit all available information in the UWB channel impulse response. Kernel-based machine learning methods, such as Gaussian Process Regression (GPR), are able to make use of all information, but they may be too complex in their original form. In this paper, we propose novel ranging methods based on kernel principal component analysis (kPCA), in which the selected channel parameters are projected onto a nonlinear orthogonal high-dimensional space, and a subset of these projections is then used as an input for ranging. We evaluate the proposed methods using real UWB measurements obtained in a basement tunnel, and found that one of the proposed methods is able to outperform state-of-the-art, even if little training samples are available.
Efficient non-greedy optimization of decision trees
Decision trees and randomized forests are widely used in computer vision and machine learning. Standard algorithms for decision tree induction optimize the split functions one node at a time according to some splitting criteria. This greedy procedure often leads to suboptimal trees. In this paper, we present an algorithm for optimizing the split functions at all levels of the tree jointly with the leaf parameters, based on a global objective. We show that the problem of finding optimal linear-combination (oblique) splits for decision trees is related to structured prediction with latent variables, and we formulate a convex-concave upper bound on the tree's empirical loss. The run-time of computing the gradient of the proposed surrogate objective with respect to each training exemplar is quadratic in the the tree depth, and thus training deep trees is feasible. The use of stochastic gradient descent for optimization enables effective training with large datasets. Experiments on several classification benchmarks demonstrate that the resulting non-greedy decision trees outperform greedy decision tree baselines.
Properly Learning Poisson Binomial Distributions in Almost Polynomial Time
We give an algorithm for properly learning Poisson binomial distributions. A Poisson binomial distribution (PBD) of order $n$ is the discrete probability distribution of the sum of $n$ mutually independent Bernoulli random variables. Given $\widetilde{O}(1/\epsilon^2)$ samples from an unknown PBD $\mathbf{p}$, our algorithm runs in time $(1/\epsilon)^{O(\log \log (1/\epsilon))}$, and outputs a hypothesis PBD that is $\epsilon$-close to $\mathbf{p}$ in total variation distance. The previously best known running time for properly learning PBDs was $(1/\epsilon)^{O(\log(1/\epsilon))}$. As one of our main contributions, we provide a novel structural characterization of PBDs. We prove that, for all $\epsilon >0,$ there exists an explicit collection $\cal{M}$ of $(1/\epsilon)^{O(\log \log (1/\epsilon))}$ vectors of multiplicities, such that for any PBD $\mathbf{p}$ there exists a PBD $\mathbf{q}$ with $O(\log(1/\epsilon))$ distinct parameters whose multiplicities are given by some element of ${\cal M}$, such that $\mathbf{q}$ is $\epsilon$-close to $\mathbf{p}$. Our proof combines tools from Fourier analysis and algebraic geometry. Our approach to the proper learning problem is as follows: Starting with an accurate non-proper hypothesis, we fit a PBD to this hypothesis. More specifically, we essentially start with the hypothesis computed by the computationally efficient non-proper learning algorithm in our recent work~\cite{DKS15}. Our aforementioned structural characterization allows us to reduce the corresponding fitting problem to a collection of $(1/\epsilon)^{O(\log \log(1/\epsilon))}$ systems of low-degree polynomial inequalities. We show that each such system can be solved in time $(1/\epsilon)^{O(\log \log(1/\epsilon))}$, which yields the overall running time of our algorithm.
LSTM-based Deep Learning Models for Non-factoid Answer Selection
In this paper, we apply a general deep learning (DL) framework for the answer selection task, which does not depend on manually defined features or linguistic tools. The basic framework is to build the embeddings of questions and answers based on bidirectional long short-term memory (biLSTM) models, and measure their closeness by cosine similarity. We further extend this basic model in two directions. One direction is to define a more composite representation for questions and answers by combining convolutional neural network with the basic framework. The other direction is to utilize a simple but efficient attention mechanism in order to generate the answer representation according to the question context. Several variations of models are provided. The models are examined by two datasets, including TREC-QA and InsuranceQA. Experimental results demonstrate that the proposed models substantially outperform several strong baselines.
Action Recognition using Visual Attention
We propose a soft attention based model for the task of action recognition in videos. We use multi-layered Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units which are deep both spatially and temporally. Our model learns to focus selectively on parts of the video frames and classifies videos after taking a few glimpses. The model essentially learns which parts in the frames are relevant for the task at hand and attaches higher importance to them. We evaluate the model on UCF-11 (YouTube Action), HMDB-51 and Hollywood2 datasets and analyze how the model focuses its attention depending on the scene and the action being performed.
Seeing the Unseen Network: Inferring Hidden Social Ties from Respondent-Driven Sampling
Learning about the social structure of hidden and hard-to-reach populations --- such as drug users and sex workers --- is a major goal of epidemiological and public health research on risk behaviors and disease prevention. Respondent-driven sampling (RDS) is a peer-referral process widely used by many health organizations, where research subjects recruit other subjects from their social network. In such surveys, researchers observe who recruited whom, along with the time of recruitment and the total number of acquaintances (network degree) of respondents. However, due to privacy concerns, the identities of acquaintances are not disclosed. In this work, we show how to reconstruct the underlying network structure through which the subjects are recruited. We formulate the dynamics of RDS as a continuous-time diffusion process over the underlying graph and derive the likelihood for the recruitment time series under an arbitrary recruitment time distribution. We develop an efficient stochastic optimization algorithm called RENDER (REspoNdent-Driven nEtwork Reconstruction) that finds the network that best explains the collected data. We support our analytical results through an exhaustive set of experiments on both synthetic and real data.
Deep Reinforcement Learning in Parameterized Action Space
Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning within the domain of simulated RoboCup soccer, which features a small set of discrete action types, each of which is parameterized with continuous variables. The best learned agent can score goals more reliably than the 2012 RoboCup champion agent. As such, this paper represents a successful extension of deep reinforcement learning to the class of parameterized action space MDPs.
A Continuous-time Mutually-Exciting Point Process Framework for Prioritizing Events in Social Media
The overwhelming amount and rate of information update in online social media is making it increasingly difficult for users to allocate their attention to their topics of interest, thus there is a strong need for prioritizing news feeds. The attractiveness of a post to a user depends on many complex contextual and temporal features of the post. For instance, the contents of the post, the responsiveness of a third user, and the age of the post may all have impact. So far, these static and dynamic features has not been incorporated in a unified framework to tackle the post prioritization problem. In this paper, we propose a novel approach for prioritizing posts based on a feature modulated multi-dimensional point process. Our model is able to simultaneously capture textual and sentiment features, and temporal features such as self-excitation, mutual-excitation and bursty nature of social interaction. As an evaluation, we also curated a real-world conversational benchmark dataset crawled from Facebook. In our experiments, we demonstrate that our algorithm is able to achieve the-state-of-the-art performance in terms of analyzing, predicting, and prioritizing events. In terms of interpretability of our method, we observe that features indicating individual user profile and linguistic characteristics of the events work best for prediction and prioritization of new events.
Deep Mean Maps
The use of distributions and high-level features from deep architecture has become commonplace in modern computer vision. Both of these methodologies have separately achieved a great deal of success in many computer vision tasks. However, there has been little work attempting to leverage the power of these to methodologies jointly. To this end, this paper presents the Deep Mean Maps (DMMs) framework, a novel family of methods to non-parametrically represent distributions of features in convolutional neural network models. DMMs are able to both classify images using the distribution of top-level features, and to tune the top-level features for performing this task. We show how to implement DMMs using a special mean map layer composed of typical CNN operations, making both forward and backward propagation simple. We illustrate the efficacy of DMMs at analyzing distributional patterns in image data in a synthetic data experiment. We also show that we extending existing deep architectures with DMMs improves the performance of existing CNNs on several challenging real-world datasets.
Adaptive Affinity Matrix for Unsupervised Metric Learning
Spectral clustering is one of the most popular clustering approaches with the capability to handle some challenging clustering problems. Most spectral clustering methods provide a nonlinear map from the data manifold to a subspace. Only a little work focuses on the explicit linear map which can be viewed as the unsupervised distance metric learning. In practice, the selection of the affinity matrix exhibits a tremendous impact on the unsupervised learning. While much success of affinity learning has been achieved in recent years, some issues such as noise reduction remain to be addressed. In this paper, we propose a novel method, dubbed Adaptive Affinity Matrix (AdaAM), to learn an adaptive affinity matrix and derive a distance metric from the affinity. We assume the affinity matrix to be positive semidefinite with ability to quantify the pairwise dissimilarity. Our method is based on posing the optimization of objective function as a spectral decomposition problem. We yield the affinity from both the original data distribution and the widely-used heat kernel. The provided matrix can be regarded as the optimal representation of pairwise relationship on the manifold. Extensive experiments on a number of real-world data sets show the effectiveness and efficiency of AdaAM.
Neuroprosthetic decoder training as imitation learning
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. We describe how training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger, [1]), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
On the Quality of the Initial Basin in Overspecified Neural Networks
Deep learning, in the form of artificial neural networks, has achieved remarkable practical success in recent years, for a variety of difficult machine learning applications. However, a theoretical explanation for this remains a major open problem, since training neural networks involves optimizing a highly non-convex objective function, and is known to be computationally hard in the worst case. In this work, we study the \emph{geometric} structure of the associated non-convex objective function, in the context of ReLU networks and starting from a random initialization of the network parameters. We identify some conditions under which it becomes more favorable to optimization, in the sense of (i) High probability of initializing at a point from which there is a monotonically decreasing path to a global minimum; and (ii) High probability of initializing at a basin (suitably defined) with a small minimal objective value. A common theme in our results is that such properties are more likely to hold for larger ("overspecified") networks, which accords with some recent empirical and theoretical observations.
Active Contextual Entropy Search
Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a small number of hyperparameters. However, learning, when performed on real robotic systems, is typically restricted to a small number of trials. Bayesian optimization has recently been proposed as a sample-efficient means for contextual policy search that is well suited under these conditions. In this work, we extend entropy search, a variant of Bayesian optimization, such that it can be used for active contextual policy search where the agent selects those tasks during training in which it expects to learn the most. Empirical results in simulation suggest that this allows learning successful behavior with less trials.
Deep Feature Learning for EEG Recordings
We introduce and compare several strategies for learning discriminative features from electroencephalography (EEG) recordings using deep learning techniques. EEG data are generally only available in small quantities, they are high-dimensional with a poor signal-to-noise ratio, and there is considerable variability between individual subjects and recording sessions. Our proposed techniques specifically address these challenges for feature learning. Cross-trial encoding forces auto-encoders to focus on features that are stable across trials. Similarity-constraint encoders learn features that allow to distinguish between classes by demanding that two trials from the same class are more similar to each other than to trials from other classes. This tuple-based training approach is especially suitable for small datasets. Hydra-nets allow for separate processing pathways adapting to subsets of a dataset and thus combine the advantages of individual feature learning (better adaptation of early, low-level processing) with group model training (better generalization of higher-level processing in deeper layers). This way, models can, for instance, adapt to each subject individually to compensate for differences in spatial patterns due to anatomical differences or variance in electrode positions. The different techniques are evaluated using the publicly available OpenMIIR dataset of EEG recordings taken while participants listened to and imagined music.
Handling Class Imbalance in Link Prediction using Learning to Rank Techniques
We consider the link prediction problem in a partially observed network, where the objective is to make predictions in the unobserved portion of the network. Many existing methods reduce link prediction to binary classification problem. However, the dominance of absent links in real world networks makes misclassification error a poor performance metric. Instead, researchers have argued for using ranking performance measures, like AUC, AP and NDCG, for evaluation. Our main contribution is to recast the link prediction problem as a learning to rank problem and use effective learning to rank techniques directly during training. This is in contrast to existing work that uses ranking measures only during evaluation. Our approach is able to deal with the class imbalance problem by using effective, scalable learning to rank techniques during training. Furthermore, our approach allows us to combine network topology and node features. As a demonstration of our general approach, we develop a link prediction method by optimizing the cross-entropy surrogate, originally used in the popular ListNet ranking algorithm. We conduct extensive experiments on publicly available co-authorship, citation and metabolic networks to demonstrate the merits of our method.
Similarity-based Text Recognition by Deeply Supervised Siamese Network
In this paper, we propose a new text recognition model based on measuring the visual similarity of text and predicting the content of unlabeled texts. First a Siamese convolutional network is trained with deep supervision on a labeled training dataset. This network projects texts into a similarity manifold. The Deeply Supervised Siamese network learns visual similarity of texts. Then a K-nearest neighbor classifier is used to predict unlabeled text based on similarity distance to labeled texts. The performance of the model is evaluated on three datasets of machine-print and hand-written text combined. We demonstrate that the model reduces the cost of human estimation by $50\%-85\%$. The error of the system is less than $0.5\%$. The proposed model outperform conventional Siamese network by finding visually-similar barely-readable and readable text, e.g. machine-printed, handwritten, due to deep supervision. The results also demonstrate that the predicted labels are sometimes better than human labels e.g. spelling correction.
Symbol Grounding Association in Multimodal Sequences with Missing Elements
In this paper, we extend a symbolic association framework for being able to handle missing elements in multimodal sequences. The general scope of the work is the symbolic associations of object-word mappings as it happens in language development in infants. In other words, two different representations of the same abstract concepts can associate in both directions. This scenario has been long interested in Artificial Intelligence, Psychology, and Neuroscience. In this work, we extend a recent approach for multimodal sequences (visual and audio) to also cope with missing elements in one or both modalities. Our method uses two parallel Long Short-Term Memories (LSTMs) with a learning rule based on EM-algorithm. It aligns both LSTM outputs via Dynamic Time Warping (DTW). We propose to include an extra step for the combination with the max operation for exploiting the common elements between both sequences. The motivation behind is that the combination acts as a condition selector for choosing the best representation from both LSTMs. We evaluated the proposed extension in the following scenarios: missing elements in one modality (visual or audio) and missing elements in both modalities (visual and sound). The performance of our extension reaches better results than the original model and similar results to individual LSTM trained in each modality.
Dynamic Sum Product Networks for Tractable Inference on Sequence Data (Extended Version)
Sum-Product Networks (SPN) have recently emerged as a new class of tractable probabilistic graphical models. Unlike Bayesian networks and Markov networks where inference may be exponential in the size of the network, inference in SPNs is in time linear in the size of the network. Since SPNs represent distributions over a fixed set of variables only, we propose dynamic sum product networks (DSPNs) as a generalization of SPNs for sequence data of varying length. A DSPN consists of a template network that is repeated as many times as needed to model data sequences of any length. We present a local search technique to learn the structure of the template network. In contrast to dynamic Bayesian networks for which inference is generally exponential in the number of variables per time slice, DSPNs inherit the linear inference complexity of SPNs. We demonstrate the advantages of DSPNs over DBNs and other models on several datasets of sequence data.
Deeply-Recursive Convolutional Network for Image Super-Resolution
We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Our network has a very deep recursive layer (up to 16 recursions). Increasing recursion depth can improve performance without introducing new parameters for additional convolutions. Albeit advantages, learning a DRCN is very hard with a standard gradient descent method due to exploding/vanishing gradients. To ease the difficulty of training, we propose two extensions: recursive-supervision and skip-connection. Our method outperforms previous methods by a large margin.
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems. However, recent studies have shown that deep learning, like other machine learning techniques, is vulnerable to adversarial samples: inputs crafted to force a deep neural network (DNN) to provide adversary-selected outputs. Such attacks can seriously undermine the security of the system supported by the DNN, sometimes with devastating consequences. For example, autonomous vehicles can be crashed, illicit or illegal content can bypass content filters, or biometric authentication systems can be manipulated to allow improper access. In this work, we introduce a defensive mechanism called defensive distillation to reduce the effectiveness of adversarial samples on DNNs. We analytically investigate the generalizability and robustness properties granted by the use of defensive distillation when training DNNs. We also empirically study the effectiveness of our defense mechanisms on two DNNs placed in adversarial settings. The study shows that defensive distillation can reduce effectiveness of sample creation from 95% to less than 0.5% on a studied DNN. Such dramatic gains can be explained by the fact that distillation leads gradients used in adversarial sample creation to be reduced by a factor of 10^30. We also find that distillation increases the average minimum number of features that need to be modified to create adversarial samples by about 800% on one of the DNNs we tested.
Sparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference
We study parameter estimation and asymptotic inference for sparse nonlinear regression. More specifically, we assume the data are given by $y = f( x^\top \beta^* ) + \epsilon$, where $f$ is nonlinear. To recover $\beta^*$, we propose an $\ell_1$-regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of $f$. In spite of the nonconvexity, we prove that under mild conditions, every stationary point of the objective enjoys an optimal statistical rate of convergence. In addition, we provide an efficient algorithm that provably converges to a stationary point. We also access the uncertainty of the obtained estimator. Specifically, based on any stationary point of the objective, we construct valid hypothesis tests and confidence intervals for the low dimensional components of the high-dimensional parameter $\beta^*$. Detailed numerical results are provided to back up our theory.
Efficient Training of Very Deep Neural Networks for Supervised Hashing
In this paper, we propose training very deep neural networks (DNNs) for supervised learning of hash codes. Existing methods in this context train relatively "shallow" networks limited by the issues arising in back propagation (e.e. vanishing gradients) as well as computational efficiency. We propose a novel and efficient training algorithm inspired by alternating direction method of multipliers (ADMM) that overcomes some of these limitations. Our method decomposes the training process into independent layer-wise local updates through auxiliary variables. Empirically we observe that our training algorithm always converges and its computational complexity is linearly proportional to the number of edges in the networks. Empirically we manage to train DNNs with 64 hidden layers and 1024 nodes per layer for supervised hashing in about 3 hours using a single GPU. Our proposed very deep supervised hashing (VDSH) method significantly outperforms the state-of-the-art on several benchmark datasets.
8-Bit Approximations for Parallelism in Deep Learning
The creation of practical deep learning data-products often requires parallelization across processors and computers to make deep learning feasible on large data sets, but bottlenecks in communication bandwidth make it difficult to attain good speedups through parallelism. Here we develop and test 8-bit approximation algorithms which make better use of the available bandwidth by compressing 32-bit gradients and nonlinear activations to 8-bit approximations. We show that these approximations do not decrease predictive performance on MNIST, CIFAR10, and ImageNet for both model and data parallelism and provide a data transfer speedup of 2x relative to 32-bit parallelism. We build a predictive model for speedups based on our experimental data, verify its validity on known speedup data, and show that we can obtain a speedup of 50x and more on a system of 96 GPUs compared to a speedup of 23x for 32-bit. We compare our data types with other methods and show that 8-bit approximations achieve state-of-the-art speedups for model parallelism. Thus 8-bit approximation is an efficient method to parallelize convolutional networks on very large systems of GPUs.
A Test of Relative Similarity For Model Selection in Generative Models
Probabilistic generative models provide a powerful framework for representing data that avoids the expense of manual annotation typically needed by discriminative approaches. Model selection in this generative setting can be challenging, however, particularly when likelihoods are not easily accessible. To address this issue, we introduce a statistical test of relative similarity, which is used to determine which of two models generates samples that are significantly closer to a real-world reference dataset of interest. We use as our test statistic the difference in maximum mean discrepancies (MMDs) between the reference dataset and each model dataset, and derive a powerful, low-variance test based on the joint asymptotic distribution of the MMDs between each reference-model pair. In experiments on deep generative models, including the variational auto-encoder and generative moment matching network, the tests provide a meaningful ranking of model performance as a function of parameter and training settings.
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
We present a highly accurate single-image super-resolution (SR) method. Our method uses a very deep convolutional network inspired by VGG-net used for ImageNet classification \cite{simonyan2015very}. We find increasing our network depth shows a significant improvement in accuracy. Our final model uses 20 weight layers. By cascading small filters many times in a deep network structure, contextual information over large image regions is exploited in an efficient way. With very deep networks, however, convergence speed becomes a critical issue during training. We propose a simple yet effective training procedure. We learn residuals only and use extremely high learning rates ($10^4$ times higher than SRCNN \cite{dong2015image}) enabled by adjustable gradient clipping. Our proposed method performs better than existing methods in accuracy and visual improvements in our results are easily noticeable.
DeepFool: a simple and accurate method to fool deep neural networks
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.
Deep Reinforcement Learning with a Natural Language Action Space
This paper introduces a novel architecture for reinforcement learning with deep neural networks designed to handle state and action spaces characterized by natural language, as found in text-based games. Termed a deep reinforcement relevance network (DRRN), the architecture represents action and state spaces with separate embedding vectors, which are combined with an interaction function to approximate the Q-function in reinforcement learning. We evaluate the DRRN on two popular text games, showing superior performance over other deep Q-learning architectures. Experiments with paraphrased action descriptions show that the model is extracting meaning rather than simply memorizing strings of text.
Deep Activity Recognition Models with Triaxial Accelerometers
Despite the widespread installation of accelerometers in almost all mobile phones and wearable devices, activity recognition using accelerometers is still immature due to the poor recognition accuracy of existing recognition methods and the scarcity of labeled training data. We consider the problem of human activity recognition using triaxial accelerometers and deep learning paradigms. This paper shows that deep activity recognition models (a) provide better recognition accuracy of human activities, (b) avoid the expensive design of handcrafted features in existing systems, and (c) utilize the massive unlabeled acceleration samples for unsupervised feature extraction. Moreover, a hybrid approach of deep learning and hidden Markov models (DL-HMM) is presented for sequential activity recognition. This hybrid approach integrates the hierarchical representations of deep activity recognition models with the stochastic modeling of temporal sequences in the hidden Markov models. We show substantial recognition improvement on real world datasets over state-of-the-art methods of human activity recognition using triaxial accelerometers.
Robust Elastic Net Regression
We propose a robust elastic net (REN) model for high-dimensional sparse regression and give its performance guarantees (both the statistical error bound and the optimization bound). A simple idea of trimming the inner product is applied to the elastic net model. Specifically, we robustify the covariance matrix by trimming the inner product based on the intuition that the trimmed inner product can not be significant affected by a bounded number of arbitrarily corrupted points (outliers). The REN model can also derive two interesting special cases: robust Lasso and robust soft thresholding. Comprehensive experimental results show that the robustness of the proposed model consistently outperforms the original elastic net and matches the performance guarantees nicely.
An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors
We consider the problem of low-rank decomposition of incomplete multiway tensors. Since many real-world data lie on an intrinsically low dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an Nth-order tensor in terms of N factor matrices and a core tensor via multilinear operations. To exploit the underlying multilinear low-rank structure in high-dimensional datasets, we propose a group-based log-sum penalty functional to place structural sparsity over the core tensor, which leads to a compact representation with smallest core tensor. The method for Tucker decomposition is developed by iteratively minimizing a surrogate function that majorizes the original objective function, which results in an iterative reweighted process. In addition, to reduce the computational complexity, an over-relaxed monotone fast iterative shrinkage-thresholding technique is adapted and embedded in the iterative reweighted process. The proposed method is able to determine the model complexity (i.e. multilinear rank) in an automatic way. Simulation results show that the proposed algorithm offers competitive performance compared with other existing algorithms.
Deep Linear Discriminant Analysis
We introduce Deep Linear Discriminant Analysis (DeepLDA) which learns linearly separable latent representations in an end-to-end fashion. Classic LDA extracts features which preserve class separability and is used for dimensionality reduction for many classification problems. The central idea of this paper is to put LDA on top of a deep neural network. This can be seen as a non-linear extension of classic LDA. Instead of maximizing the likelihood of target labels for individual samples, we propose an objective function that pushes the network to produce feature distributions which: (a) have low variance within the same class and (b) high variance between different classes. Our objective is derived from the general LDA eigenvalue problem and still allows to train with stochastic gradient descent and back-propagation. For evaluation we test our approach on three different benchmark datasets (MNIST, CIFAR-10 and STL-10). DeepLDA produces competitive results on MNIST and CIFAR-10 and outperforms a network trained with categorical cross entropy (same architecture) on a supervised setting of STL-10.
Learning Representations of Affect from Speech
There has been a lot of prior work on representation learning for speech recognition applications, but not much emphasis has been given to an investigation of effective representations of affect from speech, where the paralinguistic elements of speech are separated out from the verbal content. In this paper, we explore denoising autoencoders for learning paralinguistic attributes i.e. categorical and dimensional affective traits from speech. We show that the representations learnt by the bottleneck layer of the autoencoder are highly discriminative of activation intensity and at separating out negative valence (sadness and anger) from positive valence (happiness). We experiment with different input speech features (such as FFT and log-mel spectrograms with temporal context windows), and different autoencoder architectures (such as stacked and deep autoencoders). We also learn utterance specific representations by a combination of denoising autoencoders and BLSTM based recurrent autoencoders. Emotion classification is performed with the learnt temporal/dynamic representations to evaluate the quality of the representations. Experiments on a well-established real-life speech dataset (IEMOCAP) show that the learnt representations are comparable to state of the art feature extractors (such as voice quality features and MFCCs) and are competitive with state-of-the-art approaches at emotion and dimensional affect recognition.
Large-Scale Approximate Kernel Canonical Correlation Analysis
Kernel canonical correlation analysis (KCCA) is a nonlinear multi-view representation learning technique with broad applicability in statistics and machine learning. Although there is a closed-form solution for the KCCA objective, it involves solving an $N\times N$ eigenvalue system where $N$ is the training set size, making its computational requirements in both memory and time prohibitive for large-scale problems. Various approximation techniques have been developed for KCCA. A commonly used approach is to first transform the original inputs to an $M$-dimensional random feature space so that inner products in the feature space approximate kernel evaluations, and then apply linear CCA to the transformed inputs. In many applications, however, the dimensionality $M$ of the random feature space may need to be very large in order to obtain a sufficiently good approximation; it then becomes challenging to perform the linear CCA step on the resulting very high-dimensional data matrices. We show how to use a stochastic optimization algorithm, recently proposed for linear CCA and its neural-network extension, to further alleviate the computation requirements of approximate KCCA. This approach allows us to run approximate KCCA on a speech dataset with $1.4$ million training samples and a random feature space of dimensionality $M=100000$ on a typical workstation.