title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Nonconvex Nonsmooth Low-Rank Minimization via Iteratively Reweighted Nuclear Norm
The nuclear norm is widely used as a convex surrogate of the rank function in compressive sensing for low rank matrix recovery with its applications in image recovery and signal processing. However, solving the nuclear norm based relaxed convex problem usually leads to a suboptimal solution of the original rank minimization problem. In this paper, we propose to perform a family of nonconvex surrogates of $L_0$-norm on the singular values of a matrix to approximate the rank function. This leads to a nonconvex nonsmooth minimization problem. Then we propose to solve the problem by Iteratively Reweighted Nuclear Norm (IRNN) algorithm. IRNN iteratively solves a Weighted Singular Value Thresholding (WSVT) problem, which has a closed form solution due to the special properties of the nonconvex surrogate functions. We also extend IRNN to solve the nonconvex problem with two or more blocks of variables. In theory, we prove that IRNN decreases the objective function value monotonically, and any limit point is a stationary point. Extensive experiments on both synthesized data and real images demonstrate that IRNN enhances the low-rank matrix recovery compared with state-of-the-art convex algorithms.
On the complexity of switching linear regression
This technical note extends recent results on the computational complexity of globally minimizing the error of piecewise-affine models to the related problem of minimizing the error of switching linear regression models. In particular, we show that, on the one hand the problem is NP-hard, but on the other hand, it admits a polynomial-time algorithm with respect to the number of data points for any fixed data dimension and number of modes.
Modeling User Exposure in Recommendation
Collaborative filtering analyzes user preferences for items (e.g., books, movies, restaurants, academic papers) by exploiting the similarity patterns across users. In implicit feedback settings, all the items, including the ones that a user did not consume, are taken into consideration. But this assumption does not accord with the common sense understanding that users have a limited scope and awareness of items. For example, a user might not have heard of a certain paper, or might live too far away from a restaurant to experience it. In the language of causal analysis, the assignment mechanism (i.e., the items that a user is exposed to) is a latent variable that may change for various user/item combinations. In this paper, we propose a new probabilistic approach that directly incorporates user exposure to items into collaborative filtering. The exposure is modeled as a latent variable and the model infers its value from data. In doing so, we recover one of the most successful state-of-the-art approaches as a special case of our model, and provide a plug-in method for conditioning exposure on various forms of exposure covariates (e.g., topics in text, venue locations). We show that our scalable inference algorithm outperforms existing benchmarks in four different domains both with and without exposure covariates.
Fast Latent Variable Models for Inference and Visualization on Mobile Devices
In this project we outline Vedalia, a high performance distributed network for performing inference on latent variable models in the context of Amazon review visualization. We introduce a new model, RLDA, which extends Latent Dirichlet Allocation (LDA) [Blei et al., 2003] for the review space by incorporating auxiliary data available in online reviews to improve modeling while simultaneously remaining compatible with pre-existing fast sampling techniques such as [Yao et al., 2009; Li et al., 2014a] to achieve high performance. The network is designed such that computation is efficiently offloaded to the client devices using the Chital system [Robinson & Li, 2015], improving response times and reducing server costs. The resulting system is able to rapidly compute a large number of specialized latent variable models while requiring minimal server resources.
Data-driven detrending of nonstationary fractal time series with echo state networks
In this paper, we propose a novel data-driven approach for removing trends (detrending) from nonstationary, fractal and multifractal time series. We consider real-valued time series relative to measurements of an underlying dynamical system that evolves through time. We assume that such a dynamical process is predictable to a certain degree by means of a class of recurrent networks called Echo State Network (ESN), which are capable to model a generic dynamical process. In order to isolate the superimposed (multi)fractal component of interest, we define a data-driven filter by leveraging on the ESN prediction capability to identify the trend component of a given input time series. Specifically, the (estimated) trend is removed from the original time series and the residual signal is analyzed with the multifractal detrended fluctuation analysis procedure to verify the correctness of the detrending procedure. In order to demonstrate the effectiveness of the proposed technique, we consider several synthetic time series consisting of different types of trends and fractal noise components with known characteristics. We also process a real-world dataset, the sunspot time series, which is well-known for its multifractal features and has recently gained attention in the complex systems field. Results demonstrate the validity and generality of the proposed detrending method based on ESNs.
Fast and Scalable Lasso via Stochastic Frank-Wolfe Methods with a Convergence Guarantee
Frank-Wolfe (FW) algorithms have been often proposed over the last few years as efficient solvers for a variety of optimization problems arising in the field of Machine Learning. The ability to work with cheap projection-free iterations and the incremental nature of the method make FW a very effective choice for many large-scale problems where computing a sparse model is desirable. In this paper, we present a high-performance implementation of the FW method tailored to solve large-scale Lasso regression problems, based on a randomized iteration, and prove that the convergence guarantees of the standard FW method are preserved in the stochastic setting. We show experimentally that our algorithm outperforms several existing state of the art methods, including the Coordinate Descent algorithm by Friedman et al. (one of the fastest known Lasso solvers), on several benchmark datasets with a very large number of features, without sacrificing the accuracy of the model. Our results illustrate that the algorithm is able to generate the complete regularization path on problems of size up to four million variables in less than one minute.
Vehicle Speed Prediction using Deep Learning
Global optimization of the energy consumption of dual power source vehicles such as hybrid electric vehicles, plug-in hybrid electric vehicles, and plug in fuel cell electric vehicles requires knowledge of the complete route characteristics at the beginning of the trip. One of the main characteristics is the vehicle speed profile across the route. The profile will translate directly into energy requirements for a given vehicle. However, the vehicle speed that a given driver chooses will vary from driver to driver and from time to time, and may be slower, equal to, or faster than the average traffic flow. If the specific driver speed profile can be predicted, the energy usage can be optimized across the route chosen. The purpose of this paper is to research the application of Deep Learning techniques to this problem to identify at the beginning of a drive cycle the driver specific vehicle speed profile for an individual driver repeated drive cycle, which can be used in an optimization algorithm to minimize the amount of fossil fuel energy used during the trip.
On End-to-End Program Generation from User Intention by Deep Neural Networks
This paper envisions an end-to-end program generation scenario using recurrent neural networks (RNNs): Users can express their intention in natural language; an RNN then automatically generates corresponding code in a characterby-by-character fashion. We demonstrate its feasibility through a case study and empirical analysis. To fully make such technique useful in practice, we also point out several cross-disciplinary challenges, including modeling user intention, providing datasets, improving model architectures, etc. Although much long-term research shall be addressed in this new field, we believe end-to-end program generation would become a reality in future decades, and we are looking forward to its practice.
A Framework for Distributed Deep Learning Layer Design in Python
In this paper, a framework for testing Deep Neural Network (DNN) design in Python is presented. First, big data, machine learning (ML), and Artificial Neural Networks (ANNs) are discussed to familiarize the reader with the importance of such a system. Next, the benefits and detriments of implementing such a system in Python are presented. Lastly, the specifics of the system are explained, and some experimental results are presented to prove the effectiveness of the system.
The Human Kernel
Bayesian nonparametric models, such as Gaussian processes, provide a compelling framework for automatic statistical modelling: these models have a high degree of flexibility, and automatically calibrated complexity. However, automating human expertise remains elusive; for example, Gaussian processes with standard kernels struggle on function extrapolation problems that are trivial for human learners. In this paper, we create function extrapolation problems and acquire human responses, and then design a kernel learning framework to reverse engineer the inductive biases of human learners across a set of behavioral experiments. We use the learned kernels to gain psychological insights and to extrapolate in human-like ways that go beyond traditional stationary and polynomial kernels. Finally, we investigate Occam's razor in human and Gaussian process based function learning.
A Parallel algorithm for $\mathcal{X}$-Armed bandits
The target of $\mathcal{X}$-armed bandit problem is to find the global maximum of an unknown stochastic function $f$, given a finite budget of $n$ evaluations. Recently, $\mathcal{X}$-armed bandits have been widely used in many situations. Many of these applications need to deal with large-scale data sets. To deal with these large-scale data sets, we study a distributed setting of $\mathcal{X}$-armed bandits, where $m$ players collaborate to find the maximum of the unknown function. We develop a novel anytime distributed $\mathcal{X}$-armed bandit algorithm. Compared with prior work on $\mathcal{X}$-armed bandits, our algorithm uses a quite different searching strategy so as to fit distributed learning scenarios. Our theoretical analysis shows that our distributed algorithm is $m$ times faster than the classical single-player algorithm. Moreover, the number of communication rounds of our algorithm is only logarithmic in $mn$. The numerical results show that our method can make effective use of every players to minimize the loss. Thus, our distributed approach is attractive and useful.
Empirical Study on Deep Learning Models for Question Answering
In this paper we explore deep learning models with memory component or attention mechanism for question answering task. We combine and compare three models, Neural Machine Translation, Neural Turing Machine, and Memory Networks for a simulated QA data set. This paper is the first one that uses Neural Machine Translation and Neural Turing Machines for solving QA tasks. Our results suggest that the combination of attention and memory have potential to solve certain QA problem.
Using Shortlists to Support Decision Making and Improve Recommender System Performance
In this paper, we study shortlists as an interface component for recommender systems with the dual goal of supporting the user's decision process, as well as improving implicit feedback elicitation for increased recommendation quality. A shortlist is a temporary list of candidates that the user is currently considering, e.g., a list of a few movies the user is currently considering for viewing. From a cognitive perspective, shortlists serve as digital short-term memory where users can off-load the items under consideration -- thereby decreasing their cognitive load. From a machine learning perspective, adding items to the shortlist generates a new implicit feedback signal as a by-product of exploration and decision making which can improve recommendation quality. Shortlisting therefore provides additional data for training recommendation systems without the increases in cognitive load that requesting explicit feedback would incur. We perform an user study with a movie recommendation setup to compare interfaces that offer shortlist support with those that do not. From the user studies we conclude: (i) users make better decisions with a shortlist; (ii) users prefer an interface with shortlist support; and (iii) the additional implicit feedback from sessions with a shortlist improves the quality of recommendations by nearly a factor of two.
Efficient Learning by Directed Acyclic Graph For Resource Constrained Prediction
We study the problem of reducing test-time acquisition costs in classification systems. Our goal is to learn decision rules that adaptively select sensors for each example as necessary to make a confident prediction. We model our system as a directed acyclic graph (DAG) where internal nodes correspond to sensor subsets and decision functions at each node choose whether to acquire a new sensor or classify using the available measurements. This problem can be naturally posed as an empirical risk minimization over training data. Rather than jointly optimizing such a highly coupled and non-convex problem over all decision nodes, we propose an efficient algorithm motivated by dynamic programming. We learn node policies in the DAG by reducing the global objective to a series of cost sensitive learning problems. Our approach is computationally efficient and has proven guarantees of convergence to the optimal system for a fixed architecture. In addition, we present an extension to map other budgeted learning problems with large number of sensors to our DAG architecture and demonstrate empirical performance exceeding state-of-the-art algorithms for data composed of both few and many sensors.
Phenotyping of Clinical Time Series with LSTM Recurrent Neural Networks
We present a novel application of LSTM recurrent neural networks to multilabel classification of diagnoses given variable-length time series of clinical measurements. Our method outperforms a strong baseline on a variety of metrics.
Statistically efficient thinning of a Markov chain sampler
It is common to subsample Markov chain output to reduce the storage burden. Geyer (1992) shows that discarding $k-1$ out of every $k$ observations will not improve statistical efficiency, as quantified through variance in a given computational budget. That observation is often taken to mean that thinning MCMC output cannot improve statistical efficiency. Here we suppose that it costs one unit of time to advance a Markov chain and then $\theta>0$ units of time to compute a sampled quantity of interest. For a thinned process, that cost $\theta$ is incurred less often, so it can be advanced through more stages. Here we provide examples to show that thinning will improve statistical efficiency if $\theta$ is large and the sample autocorrelations decay slowly enough. If the lag $\ell\ge1$ autocorrelations of a scalar measurement satisfy $\rho_\ell\ge\rho_{\ell+1}\ge0$, then there is always a $\theta<\infty$ at which thinning becomes more efficient for averages of that scalar. Many sample autocorrelation functions resemble first order AR(1) processes with $\rho_\ell =\rho^{|\ell|}$ for some $-1<\rho<1$. For an AR(1) process it is possible to compute the most efficient subsampling frequency $k$. The optimal $k$ grows rapidly as $\rho$ increases towards $1$. The resulting efficiency gain depends primarily on $\theta$, not $\rho$. Taking $k=1$ (no thinning) is optimal when $\rho\le0$. For $\rho>0$ it is optimal if and only if $\theta \le (1-\rho)^2/(2\rho)$. This efficiency gain never exceeds $1+\theta$. This paper also gives efficiency bounds for autocorrelations bounded between those of two AR(1) processes.
The Wilson Machine for Image Modeling
Learning the distribution of natural images is one of the hardest and most important problems in machine learning. The problem remains open, because the enormous complexity of the structures in natural images spans all length scales. We break down the complexity of the problem and show that the hierarchy of structures in natural images fuels a new class of learning algorithms based on the theory of critical phenomena and stochastic processes. We approach this problem from the perspective of the theory of critical phenomena, which was developed in condensed matter physics to address problems with infinite length-scale fluctuations, and build a framework to integrate the criticality of natural images into a learning algorithm. The problem is broken down by mapping images into a hierarchy of binary images, called bitplanes. In this representation, the top bitplane is critical, having fluctuations in structures over a vast range of scales. The bitplanes below go through a gradual stochastic heating process to disorder. We turn this representation into a directed probabilistic graphical model, transforming the learning problem into the unsupervised learning of the distribution of the critical bitplane and the supervised learning of the conditional distributions for the remaining bitplanes. We learnt the conditional distributions by logistic regression in a convolutional architecture. Conditioned on the critical binary image, this simple architecture can generate large, natural-looking images, with many shades of gray, without the use of hidden units, unprecedented in the studies of natural images. The framework presented here is a major step in bringing criticality and stochastic processes to machine learning and in studying natural image statistics.
Exclusive Sparsity Norm Minimization with Random Groups via Cone Projection
Many practical applications such as gene expression analysis, multi-task learning, image recognition, signal processing, and medical data analysis pursue a sparse solution for the feature selection purpose and particularly favor the nonzeros \emph{evenly} distributed in different groups. The exclusive sparsity norm has been widely used to serve to this purpose. However, it still lacks systematical studies for exclusive sparsity norm optimization. This paper offers two main contributions from the optimization perspective: 1) We provide several efficient algorithms to solve exclusive sparsity norm minimization with either smooth loss or hinge loss (non-smooth loss). All algorithms achieve the optimal convergence rate $O(1/k^2)$ ($k$ is the iteration number). To the best of our knowledge, this is the first time to guarantee such convergence rate for the general exclusive sparsity norm minimization; 2) When the group information is unavailable to define the exclusive sparsity norm, we propose to use the random grouping scheme to construct groups and prove that if the number of groups is appropriately chosen, the nonzeros (true features) would be grouped in the ideal way with high probability. Empirical studies validate the efficiency of proposed algorithms, and the effectiveness of random grouping scheme on the proposed exclusive SVM formulation.
Online Learning with Gaussian Payoffs and Side Observations
We consider a sequential learning problem with Gaussian payoffs and side information: after selecting an action $i$, the learner receives information about the payoff of every action $j$ in the form of Gaussian observations whose mean is the same as the mean payoff, but the variance depends on the pair $(i,j)$ (and may be infinite). The setup allows a more refined information transfer from one action to another than previous partial monitoring setups, including the recently introduced graph-structured feedback case. For the first time in the literature, we provide non-asymptotic problem-dependent lower bounds on the regret of any algorithm, which recover existing asymptotic problem-dependent lower bounds and finite-time minimax lower bounds available in the literature. We also provide algorithms that achieve the problem-dependent lower bound (up to some universal constant factor) or the minimax lower bounds (up to logarithmic factors).
Operator-valued Kernels for Learning from Functional Response Data
In this paper we consider the problems of supervised classification and regression in the case where attributes and labels are functions: a data is represented by a set of functions, and the label is also a function. We focus on the use of reproducing kernel Hilbert space theory to learn from such functional data. Basic concepts and properties of kernel-based learning are extended to include the estimation of function-valued functions. In this setting, the representer theorem is restated, a set of rigorously defined infinite-dimensional operator-valued kernels that can be valuably applied when the data are functions is described, and a learning algorithm for nonlinear functional data analysis is introduced. The methodology is illustrated through speech and audio signal processing experiments.
Canonical Divergence Analysis
We aim to analyze the relation between two random vectors that may potentially have both different number of attributes as well as realizations, and which may even not have a joint distribution. This problem arises in many practical domains, including biology and architecture. Existing techniques assume the vectors to have the same domain or to be jointly distributed, and hence are not applicable. To address this, we propose Canonical Divergence Analysis (CDA). We introduce three instantiations, each of which permits practical implementation. Extensive empirical evaluation shows the potential of our method.
Flexibly Mining Better Subgroups
In subgroup discovery, also known as supervised pattern mining, discovering high quality one-dimensional subgroups and refinements of these is a crucial task. For nominal attributes, this is relatively straightforward, as we can consider individual attribute values as binary features. For numerical attributes, the task is more challenging as individual numeric values are not reliable statistics. Instead, we can consider combinations of adjacent values, i.e. bins. Existing binning strategies, however, are not tailored for subgroup discovery. That is, they do not directly optimize for the quality of subgroups, therewith potentially degrading the mining result. To address this issue, we propose FLEXI. In short, with FLEXI we propose to use optimal binning to find high quality binary features for both numeric and ordinal attributes. We instantiate FLEXI with various quality measures and show how to achieve efficiency accordingly. Experiments on both synthetic and real-world data sets show that FLEXI outperforms state of the art with up to 25 times improvement in subgroup quality.
Linear-time Detection of Non-linear Changes in Massively High Dimensional Time Series
Change detection in multivariate time series has applications in many domains, including health care and network monitoring. A common approach to detect changes is to compare the divergence between the distributions of a reference window and a test window. When the number of dimensions is very large, however, the naive approach has both quality and efficiency issues: to ensure robustness the window size needs to be large, which not only leads to missed alarms but also increases runtime. To this end, we propose LIGHT, a linear-time algorithm for robustly detecting non-linear changes in massively high dimensional time series. Importantly, LIGHT provides high flexibility in choosing the window size, allowing the domain expert to fit the level of details required. To do such, we 1) perform scalable PCA to reduce dimensionality, 2) perform scalable factorization of the joint distribution, and 3) scalably compute divergences between these lower dimensional distributions. Extensive empirical evaluation on both synthetic and real-world data show that LIGHT outperforms state of the art with up to 100% improvement in both quality and efficiency.
Universal Dependency Analysis
Most data is multi-dimensional. Discovering whether any subset of dimensions, or subspaces, of such data is significantly correlated is a core task in data mining. To do so, we require a measure that quantifies how correlated a subspace is. For practical use, such a measure should be universal in the sense that it captures correlation in subspaces of any dimensionality and allows to meaningfully compare correlation scores across different subspaces, regardless how many dimensions they have and what specific statistical properties their dimensions possess. Further, it would be nice if the measure can non-parametrically and efficiently capture both linear and non-linear correlations. In this paper, we propose UDS, a multivariate correlation measure that fulfills all of these desiderata. In short, we define \uds based on cumulative entropy and propose a principled normalization scheme to bring its scores across different subspaces to the same domain, enabling universal correlation assessment. UDS is purely non-parametric as we make no assumption on data distributions nor types of correlation. To compute it on empirical data, we introduce an efficient and non-parametric method. Extensive experiments show that UDS outperforms state of the art.
Learning with $\ell^{0}$-Graph: $\ell^{0}$-Induced Sparse Subspace Clustering
Sparse subspace clustering methods, such as Sparse Subspace Clustering (SSC) \cite{ElhamifarV13} and $\ell^{1}$-graph \cite{YanW09,ChengYYFH10}, are effective in partitioning the data that lie in a union of subspaces. Most of those methods use $\ell^{1}$-norm or $\ell^{2}$-norm with thresholding to impose the sparsity of the constructed sparse similarity graph, and certain assumptions, e.g. independence or disjointness, on the subspaces are required to obtain the subspace-sparse representation, which is the key to their success. Such assumptions are not guaranteed to hold in practice and they limit the application of sparse subspace clustering on subspaces with general location. In this paper, we propose a new sparse subspace clustering method named $\ell^{0}$-graph. In contrast to the required assumptions on subspaces for most existing sparse subspace clustering methods, it is proved that subspace-sparse representation can be obtained by $\ell^{0}$-graph for arbitrary distinct underlying subspaces almost surely under the mild i.i.d. assumption on the data generation. We develop a proximal method to obtain the sub-optimal solution to the optimization problem of $\ell^{0}$-graph with proved guarantee of convergence. Moreover, we propose a regularized $\ell^{0}$-graph that encourages nearby data to have similar neighbors so that the similarity graph is more aligned within each cluster and the graph connectivity issue is alleviated. Extensive experimental results on various data sets demonstrate the superiority of $\ell^{0}$-graph compared to other competing clustering methods, as well as the effectiveness of regularized $\ell^{0}$-graph.
The Singular Value Decomposition, Applications and Beyond
The singular value decomposition (SVD) is not only a classical theory in matrix computation and analysis, but also is a powerful tool in machine learning and modern data analysis. In this tutorial we first study the basic notion of SVD and then show the central role of SVD in matrices. Using majorization theory, we consider variational principles of singular values and eigenvalues. Built on SVD and a theory of symmetric gauge functions, we discuss unitarily invariant norms, which are then used to formulate general results for matrix low rank approximation. We study the subdifferentials of unitarily invariant norms. These results would be potentially useful in many machine learning problems such as matrix completion and matrix data classification. Finally, we discuss matrix low rank approximation and its recent developments such as randomized SVD, approximate matrix multiplication, CUR decomposition, and Nystrom approximation. Randomized algorithms are important approaches to large scale SVD as well as fast matrix computations.
Attention with Intention for a Neural Network Conversation Model
In a conversation or a dialogue process, attention and intention play intrinsic roles. This paper proposes a neural network based approach that models the attention and intention processes. It essentially consists of three recurrent networks. The encoder network is a word-level model representing source side sentences. The intention network is a recurrent network that models the dynamics of the intention process. The decoder network is a recurrent network produces responses to the input from the source side. It is a language model that is dependent on the intention and has an attention mechanism to attend to particular source side words, when predicting a symbol in the response. The model is trained end-to-end without labeling data. Experiments show that this model generates natural responses to user inputs.
WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation
Developing efficient and scalable algorithms for Latent Dirichlet Allocation (LDA) is of wide interest for many applications. Previous work has developed an O(1) Metropolis-Hastings sampling method for each token. However, the performance is far from being optimal due to random accesses to the parameter matrices and frequent cache misses. In this paper, we first carefully analyze the memory access efficiency of existing algorithms for LDA by the scope of random access, which is the size of the memory region in which random accesses fall, within a short period of time. We then develop WarpLDA, an LDA sampler which achieves both the best O(1) time complexity per token and the best O(K) scope of random access. Our empirical results in a wide range of testing conditions demonstrate that WarpLDA is consistently 5-15x faster than the state-of-the-art Metropolis-Hastings based LightLDA, and is comparable or faster than the sparsity aware F+LDA. With WarpLDA, users can learn up to one million topics from hundreds of millions of documents in a few hours, at an unprecedentedly throughput of 11G tokens per second.
RATM: Recurrent Attentive Tracking Model
We present an attention-based modular neural framework for computer vision. The framework uses a soft attention mechanism allowing models to be trained with gradient descent. It consists of three modules: a recurrent attention module controlling where to look in an image or video frame, a feature-extraction module providing a representation of what is seen, and an objective module formalizing why the model learns its attentive behavior. The attention module allows the model to focus computation on task-related information in the input. We apply the framework to several object tracking tasks and explore various design choices. We experiment with three data sets, bouncing ball, moving digits and the real-world KTH data set. The proposed Recurrent Attentive Tracking Model performs well on all three tasks and can generalize to related but previously unseen sequences from a challenging tracking data set.
Covariance-Controlled Adaptive Langevin Thermostat for Large-Scale Bayesian Sampling
Monte Carlo sampling for Bayesian posterior inference is a common approach used in machine learning. The Markov Chain Monte Carlo procedures that are used are often discrete-time analogues of associated stochastic differential equations (SDEs). These SDEs are guaranteed to leave invariant the required posterior distribution. An area of current research addresses the computational benefits of stochastic gradient methods in this setting. Existing techniques rely on estimating the variance or covariance of the subsampling error, and typically assume constant variance. In this article, we propose a covariance-controlled adaptive Langevin thermostat that can effectively dissipate parameter-dependent noise while maintaining a desired target distribution. The proposed method achieves a substantial speedup over popular alternative schemes for large-scale machine learning applications.
How good is good enough? Re-evaluating the bar for energy disaggregation
Since the early 1980s, the research community has developed ever more sophisticated algorithms for the problem of energy disaggregation, but despite decades of research, there is still a dearth of applications with demonstrated value. In this work, we explore a question that is highly pertinent to this research community: how good does energy disaggregation need to be in order to infer characteristics of a household? We present novel techniques that use unsupervised energy disaggregation to predict both household occupancy and static properties of the household such as size of the home and number of occupants. Results show that basic disaggregation approaches performs up to 30% better at occupancy estimation than using aggregate power data alone, and are up to 10% better at estimating static household characteristics. These results show that even rudimentary energy disaggregation techniques are sufficient for improved inference of household characteristics. To conclude, we re-evaluate the bar set by the community for energy disaggregation accuracy and try to answer the question "how good is good enough?"
Spiking Deep Networks with LIF Neurons
We train spiking deep networks using leaky integrate-and-fire (LIF) neurons, and achieve state-of-the-art results for spiking networks on the CIFAR-10 and MNIST datasets. This demonstrates that biologically-plausible spiking LIF neurons can be integrated into deep networks can perform as well as other spiking models (e.g. integrate-and-fire). We achieved this result by softening the LIF response function, such that its derivative remains bounded, and by training the network with noise to provide robustness against the variability introduced by spikes. Our method is general and could be applied to other neuron types, including those used on modern neuromorphic hardware. Our work brings more biological realism into modern image classification models, with the hope that these models can inform how the brain performs this difficult task. It also provides new methods for training deep networks to run on neuromorphic hardware, with the aim of fast, power-efficient image classification for robotics applications.
Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications to Parallel Machine Learning and Multi-Label Image Segmentation
We study two mixed robust/average-case submodular partitioning problems that we collectively call Submodular Partitioning. These problems generalize both purely robust instances of the problem (namely max-min submodular fair allocation (SFA) and min-max submodular load balancing (SLB) and also generalize average-case instances (that is the submodular welfare problem (SWP) and submodular multiway partition (SMP). While the robust versions have been studied in the theory community, existing work has focused on tight approximation guarantees, and the resultant algorithms are not, in general, scalable to very large real-world applications. This is in contrast to the average case, where most of the algorithms are scalable. In the present paper, we bridge this gap, by proposing several new algorithms (including those based on greedy, majorization-minimization, minorization-maximization, and relaxation algorithms) that not only scale to large sizes but that also achieve theoretical approximation guarantees close to the state-of-the-art, and in some cases achieve new tight bounds. We also provide new scalable algorithms that apply to additive combinations of the robust and average-case extreme objectives. We show that these problems have many applications in machine learning (ML). This includes: 1) data partitioning and load balancing for distributed machine algorithms on parallel machines; 2) data clustering; and 3) multi-label image segmentation with (only) Boolean submodular functions via pixel partitioning. We empirically demonstrate the efficacy of our algorithms on real-world problems involving data partitioning for distributed optimization of standard machine learning objectives (including both convex and deep neural network objectives), and also on purely unsupervised (i.e., no supervised or semi-supervised learning, and no interactive segmentation) image segmentation.
Robust Shift-and-Invert Preconditioning: Faster and More Sample Efficient Algorithms for Eigenvector Computation
We provide faster algorithms and improved sample complexities for approximating the top eigenvector of a matrix. Offline Setting: Given an $n \times d$ matrix $A$, we show how to compute an $\epsilon$ approximate top eigenvector in time $\tilde O ( [nnz(A) + \frac{d \cdot sr(A)}{gap^2}]\cdot \log 1/\epsilon )$ and $\tilde O([\frac{nnz(A)^{3/4} (d \cdot sr(A))^{1/4}}{\sqrt{gap}}]\cdot \log1/\epsilon )$. Here $sr(A)$ is the stable rank and $gap$ is the multiplicative eigenvalue gap. By separating the $gap$ dependence from $nnz(A)$ we improve on the classic power and Lanczos methods. We also improve prior work using fast subspace embeddings and stochastic optimization, giving significantly improved dependencies on $sr(A)$ and $\epsilon$. Our second running time improves this further when $nnz(A) \le \frac{d\cdot sr(A)}{gap^2}$. Online Setting: Given a distribution $D$ with covariance matrix $\Sigma$ and a vector $x_0$ which is an $O(gap)$ approximate top eigenvector for $\Sigma$, we show how to refine to an $\epsilon$ approximation using $\tilde O(\frac{v(D)}{gap^2} + \frac{v(D)}{gap \cdot \epsilon})$ samples from $D$. Here $v(D)$ is a natural variance measure. Combining our algorithm with previous work to initialize $x_0$, we obtain a number of improved sample complexity and runtime results. For general distributions, we achieve asymptotically optimal accuracy as a function of sample size as the number of samples grows large. Our results center around a robust analysis of the classic method of shift-and-invert preconditioning to reduce eigenvector computation to approximately solving a sequence of linear systems. We then apply fast SVRG based approximate system solvers to achieve our claims. We believe our results suggest the general effectiveness of shift-and-invert based approaches and imply that further computational gains may be reaped in practice.
Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning
Recently, there has been significant progress in understanding reinforcement learning in discounted infinite-horizon Markov decision processes (MDPs) by deriving tight sample complexity bounds. However, in many real-world applications, an interactive learning agent operates for a fixed or bounded period of time, for example tutoring students for exams or handling customer service requests. Such scenarios can often be better treated as episodic fixed-horizon MDPs, for which only looser bounds on the sample complexity exist. A natural notion of sample complexity in this setting is the number of episodes required to guarantee a certain performance with high probability (PAC guarantee). In this paper, we derive an upper PAC bound $\tilde O(\frac{|\mathcal S|^2 |\mathcal A| H^2}{\epsilon^2} \ln\frac 1 \delta)$ and a lower PAC bound $\tilde \Omega(\frac{|\mathcal S| |\mathcal A| H^2}{\epsilon^2} \ln \frac 1 {\delta + c})$ that match up to log-terms and an additional linear dependency on the number of states $|\mathcal S|$. The lower bound is the first of its kind for this setting. Our upper bound leverages Bernstein's inequality to improve on previous bounds for episodic finite-horizon MDPs which have a time-horizon dependency of at least $H^3$.
Testing Visual Attention in Dynamic Environments
We investigate attention as the active pursuit of useful information. This contrasts with attention as a mechanism for the attenuation of irrelevant information. We also consider the role of short-term memory, whose use is critical to any model incapable of simultaneously perceiving all information on which its output depends. We present several simple synthetic tasks, which become considerably more interesting when we impose strong constraints on how a model can interact with its input, and on how long it can take to produce its output. We develop a model with a different structure from those seen in previous work, and we train it using stochastic variational inference with a learned proposal distribution.
Principal Differences Analysis: Interpretable Characterization of Differences between Distributions
We introduce principal differences analysis (PDA) for analyzing differences between high-dimensional distributions. The method operates by finding the projection that maximizes the Wasserstein divergence between the resulting univariate populations. Relying on the Cramer-Wold device, it requires no assumptions about the form of the underlying distributions, nor the nature of their inter-class differences. A sparse variant of the method is introduced to identify features responsible for the differences. We provide algorithms for both the original minimax formulation as well as its semidefinite relaxation. In addition to deriving some convergence results, we illustrate how the approach may be applied to identify differences between cell populations in the somatosensory cortex and hippocampus as manifested by single cell RNA-seq. Our broader framework extends beyond the specific choice of Wasserstein divergence.
Robust Subspace Clustering via Tighter Rank Approximation
Matrix rank minimization problem is in general NP-hard. The nuclear norm is used to substitute the rank function in many recent studies. Nevertheless, the nuclear norm approximation adds all singular values together and the approximation error may depend heavily on the magnitudes of singular values. This might restrict its capability in dealing with many practical problems. In this paper, an arctangent function is used as a tighter approximation to the rank function. We use it on the challenging subspace clustering problem. For this nonconvex minimization problem, we develop an effective optimization procedure based on a type of augmented Lagrange multipliers (ALM) method. Extensive experiments on face clustering and motion segmentation show that the proposed method is effective for rank approximation.
CONQUER: Confusion Queried Online Bandit Learning
We present a new recommendation setting for picking out two items from a given set to be highlighted to a user, based on contextual input. These two items are presented to a user who chooses one of them, possibly stochastically, with a bias that favours the item with the higher value. We propose a second-order algorithm framework that members of it use uses relative upper-confidence bounds to trade off exploration and exploitation, and some explore via sampling. We analyze one algorithm in this framework in an adversarial setting with only mild assumption on the data, and prove a regret bound of $O(Q_T + \sqrt{TQ_T\log T} + \sqrt{T}\log T)$, where $T$ is the number of rounds and $Q_T$ is the cumulative approximation error of item values using a linear model. Experiments with product reviews from 33 domains show the advantage of our methods over algorithms designed for related settings, and that UCB based algorithms are inferior to greed or sampling based algorithms.
Highway Long Short-Term Memory RNNs for Distant Speech Recognition
In this paper, we extend the deep long short-term memory (DLSTM) recurrent neural networks by introducing gated direct connections between memory cells in adjacent layers. These direct links, called highway connections, enable unimpeded information flow across different layers and thus alleviate the gradient vanishing problem when building deeper LSTMs. We further introduce the latency-controlled bidirectional LSTMs (BLSTMs) which can exploit the whole history while keeping the latency under control. Efficient algorithms are proposed to train these novel networks using both frame and sequence discriminative criteria. Experiments on the AMI distant speech recognition (DSR) task indicate that we can train deeper LSTMs and achieve better improvement from sequence training with highway LSTMs (HLSTMs). Our novel model obtains $43.9/47.7\%$ WER on AMI (SDM) dev and eval sets, outperforming all previous works. It beats the strong DNN and DLSTM baselines with $15.7\%$ and $5.3\%$ relative improvement respectively.
Prediction-Adaptation-Correction Recurrent Neural Networks for Low-Resource Language Speech Recognition
In this paper, we investigate the use of prediction-adaptation-correction recurrent neural networks (PAC-RNNs) for low-resource speech recognition. A PAC-RNN is comprised of a pair of neural networks in which a {\it correction} network uses auxiliary information given by a {\it prediction} network to help estimate the state probability. The information from the correction network is also used by the prediction network in a recurrent loop. Our model outperforms other state-of-the-art neural networks (DNNs, LSTMs) on IARPA-Babel tasks. Moreover, transfer learning from a language that is similar to the target language can help improve performance further.
Subsampling in Smoothed Range Spaces
We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point) can be contained in a range with a non-binary value in $[0,1]$. Similar notions have been considered for kernels; we extend them to more general types of ranges. We then consider approximations of these range spaces through $\varepsilon $-nets and $\varepsilon $-samples (aka $\varepsilon$-approximations). We characterize when size bounds for $\varepsilon $-samples on kernels can be extended to these more general smoothed range spaces. We also describe new generalizations for $\varepsilon $-nets to these range spaces and show when results from binary range spaces can carry over to these smoothed ones.
Learning Continuous Control Policies by Stochastic Value Gradients
We present a unified framework for learning continuous control policies using backpropagation. It supports stochastic control by treating stochasticity in the Bellman equation as a deterministic function of exogenous noise. The product is a spectrum of general policy gradient algorithms that range from model-free methods with value functions to model-based methods without value functions. We use learned models but only require observations from the environment in- stead of observations from model-predicted trajectories, minimizing the impact of compounded model errors. We apply these algorithms first to a toy stochastic control problem and then to several physics-based control problems in simulation. One of these variants, SVG(1), shows the effectiveness of learning models, value functions, and policies simultaneously in continuous domains.
Streaming, Distributed Variational Inference for Bayesian Nonparametrics
This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from the fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.
Generating Text with Deep Reinforcement Learning
We introduce a novel schema for sequence to sequence learning with a Deep Q-Network (DQN), which decodes the output sequence iteratively. The aim here is to enable the decoder to first tackle easier portions of the sequences, and then turn to cope with difficult parts. Specifically, in each iteration, an encoder-decoder Long Short-Term Memory (LSTM) network is employed to, from the input sequence, automatically create features to represent the internal states of and formulate a list of potential actions for the DQN. Take rephrasing a natural sentence as an example. This list can contain ranked potential words. Next, the DQN learns to make decision on which action (e.g., word) will be selected from the list to modify the current decoded sequence. The newly modified output sequence is subsequently used as the input to the DQN for the next decoding iteration. In each iteration, we also bias the reinforcement learning's attention to explore sequence portions which are previously difficult to be decoded. For evaluation, the proposed strategy was trained to decode ten thousands natural sentences. Our experiments indicate that, when compared to a left-to-right greedy beam search LSTM decoder, the proposed method performed competitively well when decoding sentences from the training set, but significantly outperformed the baseline when decoding unseen sentences, in terms of BLEU score obtained.
Learning Causal Graphs with Small Interventions
We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearl's Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to discover the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $\alpha$-approximation algorithm where $\alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $\alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.
Learning Adversary Behavior in Security Games: A PAC Model Perspective
Recent applications of Stackelberg Security Games (SSG), from wildlife crime to urban crime, have employed machine learning tools to learn and predict adversary behavior using available data about defender-adversary interactions. Given these recent developments, this paper commits to an approach of directly learning the response function of the adversary. Using the PAC model, this paper lays a firm theoretical foundation for learning in SSGs (e.g., theoretically answer questions about the numbers of samples required to learn adversary behavior) and provides utility guarantees when the learned adversary model is used to plan the defender's strategy. The paper also aims to answer practical questions such as how much more data is needed to improve an adversary model's accuracy. Additionally, we explain a recently observed phenomenon that prediction accuracy of learned adversary behavior is not enough to discover the utility maximizing defender strategy. We provide four main contributions: (1) a PAC model of learning adversary response functions in SSGs; (2) PAC-model analysis of the learning of key, existing bounded rationality models in SSGs; (3) an entirely new approach to adversary modeling based on a non-parametric class of response functions with PAC-model analysis and (4) identification of conditions under which computing the best defender strategy against the learned adversary behavior is indeed the optimal strategy. Finally, we conduct experiments with real-world data from a national park in Uganda, showing the benefit of our new adversary modeling approach and verification of our PAC model predictions.
The Pareto Regret Frontier for Bandits
Given a multi-armed bandit problem it may be desirable to achieve a smaller-than-usual worst-case regret for some special actions. I show that the price for such unbalanced worst-case regret guarantees is rather high. Specifically, if an algorithm enjoys a worst-case regret of B with respect to some action, then there must exist another action for which the worst-case regret is at least {\Omega}(nK/B), where n is the horizon and K the number of actions. I also give upper bounds in both the stochastic and adversarial settings showing that this result cannot be improved. For the stochastic case the pareto regret frontier is characterised exactly up to constant factors.
Gaussian Process Random Fields
Gaussian processes have been successful in both supervised and unsupervised machine learning tasks, but their computational complexity has constrained practical applications. We introduce a new approximation for large-scale Gaussian processes, the Gaussian Process Random Field (GPRF), in which local GPs are coupled via pairwise potentials. The GPRF likelihood is a simple, tractable, and parallelizeable approximation to the full GP marginal likelihood, enabling latent variable modeling and hyperparameter selection on large datasets. We demonstrate its effectiveness on synthetic spatial data as well as a real-world application to seismic event location.
Top-down Tree Long Short-Term Memory Networks
Long Short-Term Memory (LSTM) networks, a type of recurrent neural network with a more complex computational unit, have been successfully applied to a variety of sequence modeling tasks. In this paper we develop Tree Long Short-Term Memory (TreeLSTM), a neural network model based on LSTM, which is designed to predict a tree rather than a linear sequence. TreeLSTM defines the probability of a sentence by estimating the generation probability of its dependency tree. At each time step, a node is generated based on the representation of the generated sub-tree. We further enhance the modeling power of TreeLSTM by explicitly representing the correlations between left and right dependents. Application of our model to the MSR sentence completion challenge achieves results beyond the current state of the art. We also report results on dependency parsing reranking achieving competitive performance.
Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions
Several recent works have explored stochastic gradient methods for variational inference that exploit the geometry of the variational-parameter space. However, the theoretical properties of these methods are not well-understood and these methods typically only apply to conditionally-conjugate models. We present a new stochastic method for variational inference which exploits the geometry of the variational-parameter space and also yields simple closed-form updates even for non-conjugate models. We also give a convergence-rate analysis of our method and many other previous methods which exploit the geometry of the space. Our analysis generalizes existing convergence results for stochastic mirror-descent on non-convex objectives by using a more general class of divergence functions. Beyond giving a theoretical justification for a variety of recent methods, our experiments show that new algorithms derived in this framework lead to state of the art results on a variety of problems. Further, due to its generality, we expect that our theoretical analysis could also apply to other applications.
Preconditioned Data Sparsification for Big Data with Applications to PCA and K-means
We analyze a compression scheme for large data sets that randomly keeps a small percentage of the components of each data sample. The benefit is that the output is a sparse matrix and therefore subsequent processing, such as PCA or K-means, is significantly faster, especially in a distributed-data setting. Furthermore, the sampling is single-pass and applicable to streaming data. The sampling mechanism is a variant of previous methods proposed in the literature combined with a randomized preconditioning to smooth the data. We provide guarantees for PCA in terms of the covariance matrix, and guarantees for K-means in terms of the error in the center estimators at a given step. We present numerical evidence to show both that our bounds are nearly tight and that our algorithms provide a real benefit when applied to standard test data sets, as well as providing certain benefits over related sampling approaches.
Prediction of Dynamical time Series Using Kernel Based Regression and Smooth Splines
Prediction of dynamical time series with additive noise using support vector machines or kernel based regression has been proved to be consistent for certain classes of discrete dynamical systems. Consistency implies that these methods are effective at computing the expected value of a point at a future time given the present coordinates. However, the present coordinates themselves are noisy, and therefore, these methods are not necessarily effective at removing noise. In this article, we consider denoising and prediction as separate problems for flows, as opposed to discrete time dynamical systems, and show that the use of smooth splines is more effective at removing noise. Combination of smooth splines and kernel based regression yields predictors that are more accurate on benchmarks typically by a factor of 2 or more. We prove that kernel based regression in combination with smooth splines converges to the exact predictor for time series extracted from any compact invariant set of any sufficiently smooth flow. As a consequence of convergence, one can find examples where the combination of kernel based regression with smooth splines is superior by even a factor of $100$. The predictors that we compute operate on delay coordinate data and not the full state vector, which is typically not observable.
Large-scale probabilistic predictors with and without guarantees of validity
This paper studies theoretically and empirically a method of turning machine-learning algorithms into probabilistic predictors that automatically enjoys a property of validity (perfect calibration) and is computationally efficient. The price to pay for perfect calibration is that these probabilistic predictors produce imprecise (in practice, almost precise for large data sets) probabilities. When these imprecise probabilities are merged into precise probabilities, the resulting predictors, while losing the theoretical property of perfect calibration, are consistently more accurate than the existing methods in empirical studies.
Stochastic Top-k ListNet
ListNet is a well-known listwise learning to rank model and has gained much attention in recent years. A particular problem of ListNet, however, is the high computation complexity in model training, mainly due to the large number of object permutations involved in computing the gradients. This paper proposes a stochastic ListNet approach which computes the gradient within a bounded permutation subset. It significantly reduces the computation complexity of model training and allows extension to Top-k models, which is impossible with the conventional implementation based on full-set permutations. Meanwhile, the new approach utilizes partial ranking information of human labels, which helps improve model quality. Our experiments demonstrated that the stochastic ListNet method indeed leads to better ranking performance and speeds up the model training remarkably.
Spatial Semantic Scan: Jointly Detecting Subtle Events and their Spatial Footprint
Many methods have been proposed for detecting emerging events in text streams using topic modeling. However, these methods have shortcomings that make them unsuitable for rapid detection of locally emerging events on massive text streams. We describe Spatially Compact Semantic Scan (SCSS) that has been developed specifically to overcome the shortcomings of current methods in detecting new spatially compact events in text streams. SCSS employs alternating optimization between using semantic scan to estimate contrastive foreground topics in documents, and discovering spatial neighborhoods with high occurrence of documents containing the foreground topics. We evaluate our method on Emergency Department chief complaints dataset (ED dataset) to verify the effectiveness of our method in detecting real-world disease outbreaks from free-text ED chief complaint data.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Deep Neural Networks (DNN) have achieved state-of-the-art results in a wide range of tasks, with the best results obtained with large training sets and large models. In the past, GPUs enabled these breakthroughs because of their greater computational speed. In the future, faster computation at both training and test time is likely to be crucial for further progress and for consumer applications on low-power devices. As a result, there is much interest in research and development of dedicated hardware for Deep Learning (DL). Binary weights, i.e., weights which are constrained to only two possible values (e.g. -1 or 1), would bring great benefits to specialized DL hardware by replacing many multiply-accumulate operations by simple accumulations, as multipliers are the most space and power-hungry components of the digital implementation of neural networks. We introduce BinaryConnect, a method which consists in training a DNN with binary weights during the forward and backward propagations, while retaining precision of the stored weights in which gradients are accumulated. Like other dropout schemes, we show that BinaryConnect acts as regularizer and we obtain near state-of-the-art results with BinaryConnect on the permutation-invariant MNIST, CIFAR-10 and SVHN.
Submodular Functions: from Discrete to Continous Domains
Submodular set-functions have many applications in combinatorial optimization, as they can be minimized and approximately maximized in polynomial time. A key element in many of the algorithms and analyses is the possibility of extending the submodular set-function to a convex function, which opens up tools from convex optimization. Submodularity goes beyond set-functions and has naturally been considered for problems with multiple labels or for functions defined on continuous domains, where it corresponds essentially to cross second-derivatives being nonpositive. In this paper, we show that most results relating submodularity and convexity for set-functions can be extended to all submodular functions. In particular, (a) we naturally define a continuous extension in a set of probability measures, (b) show that the extension is convex if and only if the original function is submodular, (c) prove that the problem of minimizing a submodular function is equivalent to a typically non-smooth convex optimization problem, and (d) propose another convex optimization problem with better computational properties (e.g., a smooth dual problem). Most of these extensions from the set-function situation are obtained by drawing links with the theory of multi-marginal optimal transport, which provides also a new interpretation of existing results for set-functions. We then provide practical algorithms to minimize generic submodular functions on discrete domains, with associated convergence rates.
An Impossibility Result for Reconstruction in a Degree-Corrected Planted-Partition Model
We consider the Degree-Corrected Stochastic Block Model (DC-SBM): a random graph on $n$ nodes, having i.i.d. weights $(\phi_u)_{u=1}^n$ (possibly heavy-tailed), partitioned into $q \geq 2$ asymptotically equal-sized clusters. The model parameters are two constants $a,b > 0$ and the finite second moment of the weights $\Phi^{(2)}$. Vertices $u$ and $v$ are connected by an edge with probability $\frac{\phi_u \phi_v}{n}a$ when they are in the same class and with probability $\frac{\phi_u \phi_v}{n}b$ otherwise. We prove that it is information-theoretically impossible to estimate the clusters in a way positively correlated with the true community structure when $(a-b)^2 \Phi^{(2)} \leq q(a+b)$. As by-products of our proof we obtain $(1)$ a precise coupling result for local neighbourhoods in DC-SBM's, that we use in a follow up paper [Gulikers et al., 2017] to establish a law of large numbers for local-functionals and $(2)$ that long-range interactions are weak in (power-law) DC-SBM's.
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network. The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN and also with the well known DeepLab-LargeFOV, DeconvNet architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. We show that SegNet provides good performance with competitive inference time and more efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
Toward an Efficient Multi-class Classification in an Open Universe
Classification is a fundamental task in machine learning and data mining. Existing classification methods are designed to classify unknown instances within a set of previously known training classes. Such a classification takes the form of a prediction within a closed-set of classes. However, a more realistic scenario that fits real-world applications is to consider the possibility of encountering instances that do not belong to any of the training classes, $i.e.$, an open-set classification. In such situation, existing closed-set classifiers will assign a training label to these instances resulting in a misclassification. In this paper, we introduce Galaxy-X, a novel multi-class classification approach for open-set recognition problems. For each class of the training set, Galaxy-X creates a minimum bounding hyper-sphere that encompasses the distribution of the class by enclosing all of its instances. In such manner, our method is able to distinguish instances resembling previously seen classes from those that are of unknown ones. To adequately evaluate open-set classification, we introduce a novel evaluation procedure. Experimental results on benchmark datasets show the efficiency of our approach in classifying novel instances from known as well as unknown classes.
ProtNN: Fast and Accurate Nearest Neighbor Protein Function Prediction based on Graph Embedding in Structural and Topological Space
Studying the function of proteins is important for understanding the molecular mechanisms of life. The number of publicly available protein structures has increasingly become extremely large. Still, the determination of the function of a protein structure remains a difficult, costly, and time consuming task. The difficulties are often due to the essential role of spatial and topological structures in the determination of protein functions in living cells. In this paper, we propose ProtNN, a novel approach for protein function prediction. Given an unannotated protein structure and a set of annotated proteins, ProtNN finds the nearest neighbor annotated structures based on protein-graph pairwise similarities. Given a query protein, ProtNN finds the nearest neighbor reference proteins based on a graph representation model and a pairwise similarity between vector embedding of both query and reference protein-graphs in structural and topological spaces. ProtNN assigns to the query protein the function with the highest number of votes across the set of k nearest neighbor reference proteins, where k is a user-defined parameter. Experimental evaluation demonstrates that ProtNN is able to accurately classify several datasets in an extremely fast runtime compared to state-of-the-art approaches. We further show that ProtNN is able to scale up to a whole PDB dataset in a single-process mode with no parallelization, with a gain of thousands order of magnitude of runtime compared to state-of-the-art approaches.
Learning Unfair Trading: a Market Manipulation Analysis From the Reinforcement Learning Perspective
Market manipulation is a strategy used by traders to alter the price of financial securities. One type of manipulation is based on the process of buying or selling assets by using several trading strategies, among them spoofing is a popular strategy and is considered illegal by market regulators. Some promising tools have been developed to detect manipulation, but cases can still be found in the markets. In this paper we model spoofing and pinging trading, two strategies that differ in the legal background but share the same elemental concept of market manipulation. We use a reinforcement learning framework within the full and partial observability of Markov decision processes and analyse the underlying behaviour of the manipulators by finding the causes of what encourages the traders to perform fraudulent activities. This reveals procedures to counter the problem that may be helpful to market regulators as our model predicts the activity of spoofers.
PAC Learning-Based Verification and Model Synthesis
We introduce a novel technique for verification and model synthesis of sequential programs. Our technique is based on learning a regular model of the set of feasible paths in a program, and testing whether this model contains an incorrect behavior. Exact learning algorithms require checking equivalence between the model and the program, which is a difficult problem, in general undecidable. Our learning procedure is therefore based on the framework of probably approximately correct (PAC) learning, which uses sampling instead and provides correctness guarantees expressed using the terms error probability and confidence. Besides the verification result, our procedure also outputs the model with the said correctness guarantees. Obtained preliminary experiments show encouraging results, in some cases even outperforming mature software verifiers.
Fast Collaborative Filtering from Implicit Feedback with Provable Guarantees
Building recommendation algorithms is one of the most challenging tasks in Machine Learning. Although most of the recommendation systems are built on explicit feedback available from the users in terms of rating or text, a majority of the applications do not receive such feedback. Here we consider the recommendation task where the only available data is the records of user-item interaction over web applications over time, in terms of subscription or purchase of items; this is known as implicit feedback recommendation. There is usually a massive amount of such user-item interaction available for any web applications. Algorithms like PLSI or Matrix Factorization runs several iterations through the dataset, and may prove very expensive for large datasets. Here we propose a recommendation algorithm based on Method of Moment, which involves factorization of second and third order moments of the dataset. Our algorithm can be proven to be globally convergent using PAC learning theory. Further, we show how to extract the parameters using only three passes through the entire dataset. This results in a highly scalable algorithm that scales up to million of users even on a machine with a single-core processor and 8 GB RAM and produces competitive performance in comparison with existing algorithms.
The Variational Fair Autoencoder
We investigate the problem of learning representations that are invariant to certain nuisance or sensitive factors of variation in the data while retaining as much of the remaining information as possible. Our model is based on a variational autoencoding architecture with priors that encourage independence between sensitive and latent factors of variation. Any subsequent processing, such as classification, can then be performed on this purged latent representation. To remove any remaining dependencies we incorporate an additional penalty term based on the "Maximum Mean Discrepancy" (MMD) measure. We discuss how these architectures can be efficiently trained on data and show in experiments that this method is more effective than previous work in removing unwanted sources of variation while maintaining informative latent representations.
Properties of the Sample Mean in Graph Spaces and the Majorize-Minimize-Mean Algorithm
One of the most fundamental concepts in statistics is the concept of sample mean. Properties of the sample mean that are well-defined in Euclidean spaces become unwieldy or even unclear in graph spaces. Open problems related to the sample mean of graphs include: non-existence, non-uniqueness, statistical inconsistency, lack of convergence results of mean algorithms, non-existence of midpoints, and disparity to midpoints. We present conditions to resolve all six problems and propose a Majorize-Minimize-Mean (MMM) Algorithm. Experiments on graph datasets representing images and molecules show that the MMM-Algorithm best approximates a sample mean of graphs compared to six other mean algorithms.
Do Prices Coordinate Markets?
Walrasian equilibrium prices can be said to coordinate markets: They support a welfare optimal allocation in which each buyer is buying bundle of goods that is individually most preferred. However, this clean story has two caveats. First, the prices alone are not sufficient to coordinate the market, and buyers may need to select among their most preferred bundles in a coordinated way to find a feasible allocation. Second, we don't in practice expect to encounter exact equilibrium prices tailored to the market, but instead only approximate prices, somehow encoding "distributional" information about the market. How well do prices work to coordinate markets when tie-breaking is not coordinated, and they encode only distributional information? We answer this question. First, we provide a genericity condition such that for buyers with Matroid Based Valuations, overdemand with respect to equilibrium prices is at most 1, independent of the supply of goods, even when tie-breaking is done in an uncoordinated fashion. Second, we provide learning-theoretic results that show that such prices are robust to changing the buyers in the market, so long as all buyers are sampled from the same (unknown) distribution.
Data Stream Classification using Random Feature Functions and Novel Method Combinations
Big Data streams are being generated in a faster, bigger, and more commonplace. In this scenario, Hoeffding Trees are an established method for classification. Several extensions exist, including high-performing ensemble setups such as online and leveraging bagging. Also, $k$-nearest neighbors is a popular choice, with most extensions dealing with the inherent performance limitations over a potentially-infinite stream. At the same time, gradient descent methods are becoming increasingly popular, owing in part to the successes of deep learning. Although deep neural networks can learn incrementally, they have so far proved too sensitive to hyper-parameter options and initial conditions to be considered an effective `off-the-shelf' data-streams solution. In this work, we look at combinations of Hoeffding-trees, nearest neighbour, and gradient descent methods with a streaming preprocessing approach in the form of a random feature functions filter for additional predictive power. We further extend the investigation to implementing methods on GPUs, which we test on some large real-world datasets, and show the benefits of using GPUs for data-stream learning due to their high scalability. Our empirical evaluation yields positive results for the novel approaches that we experiment with, highlighting important issues, and shed light on promising future directions in approaches to data-stream classification.
Understanding symmetries in deep networks
Recent works have highlighted scale invariance or symmetry present in the weight space of a typical deep network and the adverse effect it has on the Euclidean gradient based stochastic gradient descent optimization. In this work, we show that a commonly used deep network, which uses convolution, batch normalization, reLU, max-pooling, and sub-sampling pipeline, possess more complex forms of symmetry arising from scaling-based reparameterization of the network weights. We propose to tackle the issue of the weight space symmetry by constraining the filters to lie on the unit-norm manifold. Consequently, training the network boils down to using stochastic gradient descent updates on the unit-norm manifold. Our empirical evidence based on the MNIST dataset shows that the proposed updates improve the test performance beyond what is achieved with batch normalization and without sacrificing the computational efficiency of the weight updates.
Detecting Interrogative Utterances with Recurrent Neural Networks
In this paper, we explore different neural network architectures that can predict if a speaker of a given utterance is asking a question or making a statement. We com- pare the outcomes of regularization methods that are popularly used to train deep neural networks and study how different context functions can affect the classification performance. We also compare the efficacy of gated activation functions that are favorably used in recurrent neural networks and study how to combine multimodal inputs. We evaluate our models on two multimodal datasets: MSR-Skype and CALLHOME.
Detecting Clusters of Anomalies on Low-Dimensional Feature Subsets with Application to Network Traffic Flow Data
In a variety of applications, one desires to detect groups of anomalous data samples, with a group potentially manifesting its atypicality (relative to a reference model) on a low-dimensional subset of the full measured set of features. Samples may only be weakly atypical individually, whereas they may be strongly atypical when considered jointly. What makes this group anomaly detection problem quite challenging is that it is a priori unknown which subset of features jointly manifests a particular group of anomalies. Moreover, it is unknown how many anomalous groups are present in a given data batch. In this work, we develop a group anomaly detection (GAD) scheme to identify the subset of samples and subset of features that jointly specify an anomalous cluster. We apply our approach to network intrusion detection to detect BotNet and peer-to-peer flow clusters. Unlike previous studies, our approach captures and exploits statistical dependencies that may exist between the measured features. Experiments on real world network traffic data demonstrate the advantage of our proposed system, and highlight the importance of exploiting feature dependency structure, compared to the feature (or test) independence assumption made in previous studies.
Distributed Deep Learning for Question Answering
This paper is an empirical study of the distributed deep learning for question answering subtasks: answer selection and question classification. Comparison studies of SGD, MSGD, ADADELTA, ADAGRAD, ADAM/ADAMAX, RMSPROP, DOWNPOUR and EASGD/EAMSGD algorithms have been presented. Experimental results show that the distributed framework based on the message passing interface can accelerate the convergence speed at a sublinear scale. This paper demonstrates the importance of distributed training. For example, with 48 workers, a 24x speedup is achievable for the answer selection task and running time is decreased from 138.2 hours to 5.81 hours, which will increase the productivity significantly.
adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs
Recurrent Neural Networks (RNNs) are powerful models that achieve exceptional performance on several pattern recognition problems. However, the training of RNNs is a computationally difficult task owing to the well-known "vanishing/exploding" gradient problem. Algorithms proposed for training RNNs either exploit no (or limited) curvature information and have cheap per-iteration complexity, or attempt to gain significant curvature information at the cost of increased per-iteration cost. The former set includes diagonally-scaled first-order methods such as ADAGRAD and ADAM, while the latter consists of second-order algorithms like Hessian-Free Newton and K-FAC. In this paper, we present adaQN, a stochastic quasi-Newton algorithm for training RNNs. Our approach retains a low per-iteration cost while allowing for non-diagonal scaling through a stochastic L-BFGS updating scheme. The method uses a novel L-BFGS scaling initialization scheme and is judicious in storing and retaining L-BFGS curvature pairs. We present numerical experiments on two language modeling tasks and show that adaQN is competitive with popular RNN training algorithms.
Learn on Source, Refine on Target:A Model Transfer Learning Framework with Random Forests
We propose novel model transfer-learning methods that refine a decision forest model M learned within a "source" domain using a training set sampled from a "target" domain, assumed to be a variation of the source. We present two random forest transfer algorithms. The first algorithm searches greedily for locally optimal modifications of each tree structure by trying to locally expand or reduce the tree around individual nodes. The second algorithm does not modify structure, but only the parameter (thresholds) associated with decision nodes. We also propose to combine both methods by considering an ensemble that contains the union of the two forests. The proposed methods exhibit impressive experimental results over a range of problems.
Study of a bias in the offline evaluation of a recommendation algorithm
Recommendation systems have been integrated into the majority of large online systems to filter and rank information according to user profiles. It thus influences the way users interact with the system and, as a consequence, bias the evaluation of the performance of a recommendation algorithm computed using historical data (via offline evaluation). This paper describes this bias and discuss the relevance of a weighted offline evaluation to reduce this bias for different classes of recommendation algorithms.
Co-Clustering Network-Constrained Trajectory Data
Recently, clustering moving object trajectories kept gaining interest from both the data mining and machine learning communities. This problem, however, was studied mainly and extensively in the setting where moving objects can move freely on the euclidean space. In this paper, we study the problem of clustering trajectories of vehicles whose movement is restricted by the underlying road network. We model relations between these trajectories and road segments as a bipartite graph and we try to cluster its vertices. We demonstrate our approaches on synthetic data and show how it could be useful in inferring knowledge about the flow dynamics and the behavior of the drivers using the road network.
Factorizing LambdaMART for cold start recommendations
Recommendation systems often rely on point-wise loss metrics such as the mean squared error. However, in real recommendation settings only few items are presented to a user. This observation has recently encouraged the use of rank-based metrics. LambdaMART is the state-of-the-art algorithm in learning to rank which relies on such a metric. Despite its success it does not have a principled regularization mechanism relying in empirical approaches to control model complexity leaving it thus prone to overfitting. Motivated by the fact that very often the users' and items' descriptions as well as the preference behavior can be well summarized by a small number of hidden factors, we propose a novel algorithm, LambdaMART Matrix Factorization (LambdaMART-MF), that learns a low rank latent representation of users and items using gradient boosted trees. The algorithm factorizes lambdaMART by defining relevance scores as the inner product of the learned representations of the users and items. The low rank is essentially a model complexity controller; on top of it we propose additional regularizers to constraint the learned latent representations that reflect the user and item manifolds as these are defined by their original feature based descriptors and the preference behavior. Finally we also propose to use a weighted variant of NDCG to reduce the penalty for similar items with large rating discrepancy. We experiment on two very different recommendation datasets, meta-mining and movies-users, and evaluate the performance of LambdaMART-MF, with and without regularization, in the cold start setting as well as in the simpler matrix completion setting. In both cases it outperforms in a significant manner current state of the art algorithms.
Data-Driven Learning of a Union of Sparsifying Transforms Model for Blind Compressed Sensing
Compressed sensing is a powerful tool in applications such as magnetic resonance imaging (MRI). It enables accurate recovery of images from highly undersampled measurements by exploiting the sparsity of the images or image patches in a transform domain or dictionary. In this work, we focus on blind compressed sensing (BCS), where the underlying sparse signal model is a priori unknown, and propose a framework to simultaneously reconstruct the underlying image as well as the unknown model from highly undersampled measurements. Specifically, our model is that the patches of the underlying image(s) are approximately sparse in a transform domain. We also extend this model to a union of transforms model that better captures the diversity of features in natural images. The proposed block coordinate descent type algorithms for blind compressed sensing are highly efficient, and are guaranteed to converge to at least the partial global and partial local minimizers of the highly non-convex BCS problems. Our numerical experiments show that the proposed framework usually leads to better quality of image reconstructions in MRI compared to several recent image reconstruction methods. Importantly, the learning of a union of sparsifying transforms leads to better image reconstructions than a single adaptive transform.
Learning in Auctions: Regret is Hard, Envy is Easy
A line of recent work provides welfare guarantees of simple combinatorial auction formats, such as selling m items via simultaneous second price auctions (SiSPAs) (Christodoulou et al. 2008, Bhawalkar and Roughgarden 2011, Feldman et al. 2013). These guarantees hold even when the auctions are repeatedly executed and players use no-regret learning algorithms. Unfortunately, off-the-shelf no-regret algorithms for these auctions are computationally inefficient as the number of actions is exponential. We show that this obstacle is insurmountable: there are no polynomial-time no-regret algorithms for SiSPAs, unless RP$\supseteq$ NP, even when the bidders are unit-demand. Our lower bound raises the question of how good outcomes polynomially-bounded bidders may discover in such auctions. To answer this question, we propose a novel concept of learning in auctions, termed "no-envy learning." This notion is founded upon Walrasian equilibrium, and we show that it is both efficiently implementable and results in approximately optimal welfare, even when the bidders have fractionally subadditive (XOS) valuations (assuming demand oracles) or coverage valuations (without demand oracles). No-envy learning outcomes are a relaxation of no-regret outcomes, which maintain their approximate welfare optimality while endowing them with computational tractability. Our results extend to other auction formats that have been studied in the literature via the smoothness paradigm. Our results for XOS valuations are enabled by a novel Follow-The-Perturbed-Leader algorithm for settings where the number of experts is infinite, and the payoff function of the learner is non-linear. This algorithm has applications outside of auction settings, such as in security games. Our result for coverage valuations is based on a novel use of convex rounding schemes and a reduction to online convex optimization.
Train and Test Tightness of LP Relaxations in Structured Prediction
Structured prediction is used in areas such as computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typically require the use of approximate solvers. We propose a theoretical explanation to the striking observation that approximations based on linear programming (LP) relaxations are often tight on real-world instances. In particular, we show that learning with LP relaxed inference encourages integrality of training instances, and that tightness generalizes from train to test data.
Semi-supervised Sequence Learning
We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" step for a later supervised sequence learning algorithm. In other words, the parameters obtained from the unsupervised step can be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after being pretrained with the two approaches are more stable and generalize better. With pretraining, we are able to train long short term memory recurrent networks up to a few hundred timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups.
Low-Rank Approximation of Weighted Tree Automata
We describe a technique to minimize weighted tree automata (WTA), a powerful formalisms that subsumes probabilistic context-free grammars (PCFGs) and latent-variable PCFGs. Our method relies on a singular value decomposition of the underlying Hankel matrix defined by the WTA. Our main theoretical result is an efficient algorithm for computing the SVD of an infinite Hankel matrix implicitly represented as a WTA. We provide an analysis of the approximation error induced by the minimization, and we evaluate our method on real-world data originating in newswire treebank. We show that the model achieves lower perplexity than previous methods for PCFG minimization, and also is much more stable due to the absence of local optima.
How Robust are Reconstruction Thresholds for Community Detection?
The stochastic block model is one of the oldest and most ubiquitous models for studying clustering and community detection. In an exciting sequence of developments, motivated by deep but non-rigorous ideas from statistical physics, Decelle et al. conjectured a sharp threshold for when community detection is possible in the sparse regime. Mossel, Neeman and Sly and Massoulie proved the conjecture and gave matching algorithms and lower bounds. Here we revisit the stochastic block model from the perspective of semirandom models where we allow an adversary to make `helpful' changes that strengthen ties within each community and break ties between them. We show a surprising result that these `helpful' changes can shift the information-theoretic threshold, making the community detection problem strictly harder. We complement this by showing that an algorithm based on semidefinite programming (which was known to get close to the threshold) continues to work in the semirandom model (even for partial recovery). This suggests that algorithms based on semidefinite programming are robust in ways that any algorithm meeting the information-theoretic threshold cannot be. These results point to an interesting new direction: Can we find robust, semirandom analogues to some of the classical, average-case thresholds in statistics? We also explore this question in the broadcast tree model, and we show that the viewpoint of semirandom models can help explain why some algorithms are preferred to others in practice, in spite of the gaps in their statistical performance on random models.
Mean-field inference of Hawkes point processes
We propose a fast and efficient estimation method that is able to accurately recover the parameters of a d-dimensional Hawkes point-process from a set of observations. We exploit a mean-field approximation that is valid when the fluctuations of the stochastic intensity are small. We show that this is notably the case in situations when interactions are sufficiently weak, when the dimension of the system is high or when the fluctuations are self-averaging due to the large number of past events they involve. In such a regime the estimation of a Hawkes process can be mapped on a least-squares problem for which we provide an analytic solution. Though this estimator is biased, we show that its precision can be comparable to the one of the Maximum Likelihood Estimator while its computation speed is shown to be improved considerably. We give a theoretical control on the accuracy of our new approach and illustrate its efficiency using synthetic datasets, in order to assess the statistical estimation error of the parameters.
Mining Local Gazetteers of Literary Chinese with CRF and Pattern based Methods for Biographical Information in Chinese History
Person names and location names are essential building blocks for identifying events and social networks in historical documents that were written in literary Chinese. We take the lead to explore the research on algorithmically recognizing named entities in literary Chinese for historical studies with language-model based and conditional-random-field based methods, and extend our work to mining the document structures in historical documents. Practical evaluations were conducted with texts that were extracted from more than 220 volumes of local gazetteers (Difangzhi). Difangzhi is a huge and the single most important collection that contains information about officers who served in local government in Chinese history. Our methods performed very well on these realistic tests. Thousands of names and addresses were identified from the texts. A good portion of the extracted names match the biographical information currently recorded in the China Biographical Database (CBDB) of Harvard University, and many others can be verified by historians and will become as new additions to CBDB.
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
We aim to produce predictive models that are not only accurate, but are also interpretable to human experts. Our models are decision lists, which consist of a series of if...then... statements (e.g., if high blood pressure, then stroke) that discretize a high-dimensional, multivariate feature space into a series of simple, readily interpretable decision statements. We introduce a generative model called Bayesian Rule Lists that yields a posterior distribution over possible decision lists. It employs a novel prior structure to encourage sparsity. Our experiments show that Bayesian Rule Lists has predictive accuracy on par with the current top algorithms for prediction in machine learning. Our method is motivated by recent developments in personalized medicine, and can be used to produce highly accurate and interpretable medical scoring systems. We demonstrate this by producing an alternative to the CHADS$_2$ score, actively used in clinical practice for estimating the risk of stroke in patients that have atrial fibrillation. Our model is as interpretable as CHADS$_2$, but more accurate.
Stochastic Proximal Gradient Descent for Nuclear Norm Regularization
In this paper, we utilize stochastic optimization to reduce the space complexity of convex composite optimization with a nuclear norm regularizer, where the variable is a matrix of size $m \times n$. By constructing a low-rank estimate of the gradient, we propose an iterative algorithm based on stochastic proximal gradient descent (SPGD), and take the last iterate of SPGD as the final solution. The main advantage of the proposed algorithm is that its space complexity is $O(m+n)$, in contrast, most of previous algorithms have a $O(mn)$ space complexity. Theoretical analysis shows that it achieves $O(\log T/\sqrt{T})$ and $O(\log T/T)$ convergence rates for general convex functions and strongly convex functions, respectively.
Symmetry-invariant optimization in deep networks
Recent works have highlighted scale invariance or symmetry that is present in the weight space of a typical deep network and the adverse effect that it has on the Euclidean gradient based stochastic gradient descent optimization. In this work, we show that these and other commonly used deep networks, such as those which use a max-pooling and sub-sampling layer, possess more complex forms of symmetry arising from scaling based reparameterization of the network weights. We then propose two symmetry-invariant gradient based weight updates for stochastic gradient descent based learning. Our empirical evidence based on the MNIST dataset shows that these updates improve the test performance without sacrificing the computational efficiency of the weight updates. We also show the results of training with one of the proposed weight updates on an image segmentation problem.
Discrete R\'enyi Classifiers
Consider the binary classification problem of predicting a target variable $Y$ from a discrete feature vector $X = (X_1,...,X_d)$. When the probability distribution $\mathbb{P}(X,Y)$ is known, the optimal classifier, leading to the minimum misclassification rate, is given by the Maximum A-posteriori Probability decision rule. However, estimating the complete joint distribution $\mathbb{P}(X,Y)$ is computationally and statistically impossible for large values of $d$. An alternative approach is to first estimate some low order marginals of $\mathbb{P}(X,Y)$ and then design the classifier based on the estimated low order marginals. This approach is also helpful when the complete training data instances are not available due to privacy concerns. In this work, we consider the problem of finding the optimum classifier based on some estimated low order marginals of $(X,Y)$. We prove that for a given set of marginals, the minimum Hirschfeld-Gebelein-Renyi (HGR) correlation principle introduced in [1] leads to a randomized classification rule which is shown to have a misclassification rate no larger than twice the misclassification rate of the optimal classifier. Then, under a separability condition, we show that the proposed algorithm is equivalent to a randomized linear regression approach. In addition, this method naturally results in a robust feature selection method selecting a subset of features having the maximum worst case HGR correlation with the target variable. Our theoretical upper-bound is similar to the recent Discrete Chebyshev Classifier (DCC) approach [2], while the proposed algorithm has significant computational advantages since it only requires solving a least square optimization problem. Finally, we numerically compare our proposed algorithm with the DCC classifier and show that the proposed algorithm results in better misclassification rate over various datasets.
Computational Intractability of Dictionary Learning for Sparse Representation
In this paper we consider the dictionary learning problem for sparse representation. We first show that this problem is NP-hard by polynomial time reduction of the densest cut problem. Then, using successive convex approximation strategies, we propose efficient dictionary learning schemes to solve several practical formulations of this problem to stationary points. Unlike many existing algorithms in the literature, such as K-SVD, our proposed dictionary learning scheme is theoretically guaranteed to converge to the set of stationary points under certain mild assumptions. For the image denoising application, the performance and the efficiency of the proposed dictionary learning scheme are comparable to that of K-SVD algorithm in simulation.
A note on the evaluation of generative models
Probabilistic generative models can be used for compression, denoising, inpainting, texture synthesis, semi-supervised learning, unsupervised feature learning, and other tasks. Given this wide range of applications, it is not surprising that a lot of heterogeneity exists in the way these models are formulated, trained, and evaluated. As a consequence, direct comparison between models is often difficult. This article reviews mostly known but often underappreciated properties relating to the evaluation and interpretation of generative models with a focus on image models. In particular, we show that three of the currently most commonly used criteria---average log-likelihood, Parzen window estimates, and visual fidelity of samples---are largely independent of each other when the data is high-dimensional. Good performance with respect to one criterion therefore need not imply good performance with respect to the other criteria. Our results show that extrapolation from one criterion to another is not warranted and generative models need to be evaluated directly with respect to the application(s) they were intended for. In addition, we provide examples demonstrating that Parzen window estimates should generally be avoided.
Convolutional Neural Network for Stereotypical Motor Movement Detection in Autism
Autism Spectrum Disorders (ASDs) are often associated with specific atypical postural or motor behaviors, of which Stereotypical Motor Movements (SMMs) have a specific visibility. While the identification and the quantification of SMM patterns remain complex, its automation would provide support to accurate tuning of the intervention in the therapy of autism. Therefore, it is essential to develop automatic SMM detection systems in a real world setting, taking care of strong inter-subject and intra-subject variability. Wireless accelerometer sensing technology can provide a valid infrastructure for real-time SMM detection, however such variability remains a problem also for machine learning methods, in particular whenever handcrafted features extracted from accelerometer signal are considered. Here, we propose to employ the deep learning paradigm in order to learn discriminating features from multi-sensor accelerometer signals. Our results provide preliminary evidence that feature learning and transfer learning embedded in the deep architecture achieve higher accurate SMM detectors in longitudinal scenarios.
Thoughts on Massively Scalable Gaussian Processes
We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard $O(n^3)$ complexity of GP learning and inference to $O(n)$, and the standard $O(n^2)$ complexity per test point prediction to $O(1)$. MSGP involves 1) decomposing covariance matrices as Kronecker products of Toeplitz matrices approximated by circulant matrices. This multi-level circulant approximation allows one to unify the orthogonal computational benefits of fast Kronecker and Toeplitz approaches, and is significantly faster than either approach in isolation; 2) local kernel interpolation and inducing points to allow for arbitrarily located data inputs, and $O(1)$ test time predictions; 3) exploiting block-Toeplitz Toeplitz-block structure (BTTB), which enables fast inference and learning when multidimensional Kronecker structure is not present; and 4) projections of the input space to flexibly model correlated inputs and high dimensional data. The ability to handle many ($m \approx n$) inducing points allows for near-exact accuracy and large scale kernel learning.
Stop Wasting My Gradients: Practical SVRG
We present and analyze several strategies for improving the performance of stochastic variance-reduced gradient (SVRG) methods. We first show that the convergence rate of these methods can be preserved under a decreasing sequence of errors in the control variate, and use this to derive variants of SVRG that use growing-batch strategies to reduce the number of gradient calculations required in the early iterations. We further (i) show how to exploit support vectors to reduce the number of gradient computations in the later iterations, (ii) prove that the commonly-used regularized SVRG iteration is justified and improves the convergence rate, (iii) consider alternate mini-batch selection strategies, and (iv) consider the generalization error of the method.
Enhanced Low-Rank Matrix Approximation
This letter proposes to estimate low-rank matrices by formulating a convex optimization problem with non-convex regularization. We employ parameterized non-convex penalty functions to estimate the non-zero singular values more accurately than the nuclear norm. A closed-form solution for the global optimum of the proposed objective function (sum of data fidelity and the non-convex regularizer) is also derived. The solution reduces to singular value thresholding method as a special case. The proposed method is demonstrated for image denoising.
Towards a Better Understanding of Predict and Count Models
In a recent paper, Levy and Goldberg pointed out an interesting connection between prediction-based word embedding models and count models based on pointwise mutual information. Under certain conditions, they showed that both models end up optimizing equivalent objective functions. This paper explores this connection in more detail and lays out the factors leading to differences between these models. We find that the most relevant differences from an optimization perspective are (i) predict models work in a low dimensional space where embedding vectors can interact heavily; (ii) since predict models have fewer parameters, they are less prone to overfitting. Motivated by the insight of our analysis, we show how count models can be regularized in a principled manner and provide closed-form solutions for L1 and L2 regularization. Finally, we propose a new embedding model with a convex objective and the additional benefit of being intelligible.
Finding structure in data using multivariate tree boosting
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles like random forests (Strobl, Malley, and Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called Gradient Boosted Regression Trees (Friedman, 2001). Our method, multivariate tree boosting, can be used for identifying important predictors, detecting predictors with non-linear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary without parametric assumptions. We provide the R package 'mvtboost' to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package 'gbm' (Ridgeway, 2013) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff and Keyes, 1995). Simulations verify that our approach identifies predictors with non-linear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions.
ALOJA-ML: A Framework for Automating Characterization and Knowledge Discovery in Hadoop Deployments
This article presents ALOJA-Machine Learning (ALOJA-ML) an extension to the ALOJA project that uses machine learning techniques to interpret Hadoop benchmark performance data and performance tuning; here we detail the approach, efficacy of the model and initial results. Hadoop presents a complex execution environment, where costs and performance depends on a large number of software (SW) configurations and on multiple hardware (HW) deployment choices. These results are accompanied by a test bed and tools to deploy and evaluate the cost-effectiveness of the different hardware configurations, parameter tunings, and Cloud services. Despite early success within ALOJA from expert-guided benchmarking, it became clear that a genuinely comprehensive study requires automation of modeling procedures to allow a systematic analysis of large and resource-constrained search spaces. ALOJA-ML provides such an automated system allowing knowledge discovery by modeling Hadoop executions from observed benchmarks across a broad set of configuration parameters. The resulting performance models can be used to forecast execution behavior of various workloads; they allow 'a-priori' prediction of the execution times for new configurations and HW choices and they offer a route to model-based anomaly detection. In addition, these models can guide the benchmarking exploration efficiently, by automatically prioritizing candidate future benchmark tests. Insights from ALOJA-ML's models can be used to reduce the operational time on clusters, speed-up the data acquisition and knowledge discovery process, and importantly, reduce running costs. In addition to learning from the methodology presented in this work, the community can benefit in general from ALOJA data-sets, framework, and derived insights to improve the design and deployment of Big Data applications.
ALOJA: A Framework for Benchmarking and Predictive Analytics in Big Data Deployments
This article presents the ALOJA project and its analytics tools, which leverages machine learning to interpret Big Data benchmark performance data and tuning. ALOJA is part of a long-term collaboration between BSC and Microsoft to automate the characterization of cost-effectiveness on Big Data deployments, currently focusing on Hadoop. Hadoop presents a complex run-time environment, where costs and performance depend on a large number of configuration choices. The ALOJA project has created an open, vendor-neutral repository, featuring over 40,000 Hadoop job executions and their performance details. The repository is accompanied by a test-bed and tools to deploy and evaluate the cost-effectiveness of different hardware configurations, parameters and Cloud services. Despite early success within ALOJA, a comprehensive study requires automation of modeling procedures to allow an analysis of large and resource-constrained search spaces. The predictive analytics extension, ALOJA-ML, provides an automated system allowing knowledge discovery by modeling environments from observed executions. The resulting models can forecast execution behaviors, predicting execution times for new configurations and hardware choices. That also enables model-based anomaly detection or efficient benchmark guidance by prioritizing executions. In addition, the community can benefit from ALOJA data-sets and framework to improve the design and deployment of Big Data applications.