title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Identity Mappings in Deep Residual Networks
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and nice convergence behaviors. In this paper, we analyze the propagation formulations behind the residual building blocks, which suggest that the forward and backward signals can be directly propagated from one block to any other block, when using identity mappings as the skip connections and after-addition activation. A series of ablation experiments support the importance of these identity mappings. This motivates us to propose a new residual unit, which makes training easier and improves generalization. We report improved results using a 1001-layer ResNet on CIFAR-10 (4.62% error) and CIFAR-100, and a 200-layer ResNet on ImageNet. Code is available at: https://github.com/KaimingHe/resnet-1k-layers
One-Shot Generalization in Deep Generative Models
Humans have an impressive ability to reason about new concepts and experiences from just a single example. In particular, humans have an ability for one-shot generalization: an ability to encounter a new concept, understand its structure, and then be able to generate compelling alternative variations of the concept. We develop machine learning systems with this important capacity by developing new deep generative models, models that combine the representational power of deep learning with the inferential power of Bayesian reasoning. We develop a class of sequential generative models that are built on the principles of feedback and attention. These two characteristics lead to generative models that are among the state-of-the art in density estimation and image generation. We demonstrate the one-shot generalization ability of our models using three tasks: unconditional sampling, generating new exemplars of a given concept, and generating new exemplars of a family of concepts. In all cases our models are able to generate compelling and diverse samples---having seen new examples just once---providing an important class of general-purpose models for one-shot machine learning.
Suppressing the Unusual: towards Robust CNNs using Symmetric Activation Functions
Many deep Convolutional Neural Networks (CNN) make incorrect predictions on adversarial samples obtained by imperceptible perturbations of clean samples. We hypothesize that this is caused by a failure to suppress unusual signals within network layers. As remedy we propose the use of Symmetric Activation Functions (SAF) in non-linear signal transducer units. These units suppress signals of exceptional magnitude. We prove that SAF networks can perform classification tasks to arbitrary precision in a simplified situation. In practice, rather than use SAFs alone, we add them into CNNs to improve their robustness. The modified CNNs can be easily trained using popular strategies with the moderate training load. Our experiments on MNIST and CIFAR-10 show that the modified CNNs perform similarly to plain ones on clean samples, and are remarkably more robust against adversarial and nonsense samples.
Feature Selection as a Multiagent Coordination Problem
Datasets with hundreds to tens of thousands features is the new norm. Feature selection constitutes a central problem in machine learning, where the aim is to derive a representative set of features from which to construct a classification (or prediction) model for a specific task. Our experimental study involves microarray gene expression datasets, these are high-dimensional and noisy datasets that contain genetic data typically used for distinguishing between benign or malicious tissues or classifying different types of cancer. In this paper, we formulate feature selection as a multiagent coordination problem and propose a novel feature selection method using multiagent reinforcement learning. The central idea of the proposed approach is to "assign" a reinforcement learning agent to each feature where each agent learns to control a single feature, we refer to this approach as MARL. Applying this to microarray datasets creates an enormous multiagent coordination problem between thousands of learning agents. To address the scalability challenge we apply a form of reward shaping called CLEAN rewards. We compare in total nine feature selection methods, including state-of-the-art methods, and show that the proposed method using CLEAN rewards can significantly scale-up, thus outperforming the rest of learning-based methods. We further show that a hybrid variant of MARL achieves the best overall performance.
Distributed Inexact Damped Newton Method: Data Partitioning and Load-Balancing
In this paper we study inexact dumped Newton method implemented in a distributed environment. We start with an original DiSCO algorithm [Communication-Efficient Distributed Optimization of Self-Concordant Empirical Loss, Yuchen Zhang and Lin Xiao, 2015]. We will show that this algorithm may not scale well and propose an algorithmic modifications which will lead to less communications, better load-balancing and more efficient computation. We perform numerical experiments with an regularized empirical loss minimization instance described by a 273GB dataset.
Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units
Recently, convolutional neural networks (CNNs) have been used as a powerful tool to solve many problems of machine learning and computer vision. In this paper, we aim to provide insight on the property of convolutional neural networks, as well as a generic method to improve the performance of many CNN architectures. Specifically, we first examine existing CNN models and observe an intriguing property that the filters in the lower layers form pairs (i.e., filters with opposite phase). Inspired by our observation, we propose a novel, simple yet effective activation scheme called concatenated ReLU (CRelu) and theoretically analyze its reconstruction property in CNNs. We integrate CRelu into several state-of-the-art CNN architectures and demonstrate improvement in their recognition performance on CIFAR-10/100 and ImageNet datasets with fewer trainable parameters. Our results suggest that better understanding of the properties of CNNs can lead to significant performance improvement with a simple modification.
Fast moment estimation for generalized latent Dirichlet models
We develop a generalized method of moments (GMM) approach for fast parameter estimation in a new class of Dirichlet latent variable models with mixed data types. Parameter estimation via GMM has been demonstrated to have computational and statistical advantages over alternative methods, such as expectation maximization, variational inference, and Markov chain Monte Carlo. The key computational advan- tage of our method (MELD) is that parameter estimation does not require instantiation of the latent variables. Moreover, a representational advantage of the GMM approach is that the behavior of the model is agnostic to distributional assumptions of the observations. We derive population moment conditions after marginalizing out the sample-specific Dirichlet latent variables. The moment conditions only depend on component mean parameters. We illustrate the utility of our approach on simulated data, comparing results from MELD to alternative methods, and we show the promise of our approach through the application of MELD to several data sets.
Cascading Bandits for Large-Scale Recommendation Problems
Most recommender systems recommend a list of items. The user examines the list, from the first item to the last, and often chooses the first attractive item and does not examine the rest. This type of user behavior can be modeled by the cascade model. In this work, we study cascading bandits, an online learning variant of the cascade model where the goal is to recommend $K$ most attractive items from a large set of $L$ candidate items. We propose two algorithms for solving this problem, which are based on the idea of linear generalization. The key idea in our solutions is that we learn a predictor of the attraction probabilities of items from their features, as opposing to learning the attraction probability of each item independently as in the existing work. This results in practical learning algorithms whose regret does not depend on the number of items $L$. We bound the regret of one algorithm and comprehensively evaluate the other on a range of recommendation problems. The algorithm performs well and outperforms all baselines.
Online semi-parametric learning for inverse dynamics modeling
This paper presents a semi-parametric algorithm for online learning of a robot inverse dynamics model. It combines the strength of the parametric and non-parametric modeling. The former exploits the rigid body dynamics equa- tion, while the latter exploits a suitable kernel function. We provide an extensive comparison with other methods from the literature using real data from the iCub humanoid robot. In doing so we also compare two different techniques, namely cross validation and marginal likelihood optimization, for estimating the hyperparameters of the kernel function.
Accelerating Deep Neural Network Training with Inconsistent Stochastic Gradient Descent
SGD is the widely adopted method to train CNN. Conceptually it approximates the population with a randomly sampled batch; then it evenly trains batches by conducting a gradient update on every batch in an epoch. In this paper, we demonstrate Sampling Bias, Intrinsic Image Difference and Fixed Cycle Pseudo Random Sampling differentiate batches in training, which then affect learning speeds on them. Because of this, the unbiased treatment of batches involved in SGD creates improper load balancing. To address this issue, we present Inconsistent Stochastic Gradient Descent (ISGD) to dynamically vary training effort according to learning statuses on batches. Specifically ISGD leverages techniques in Statistical Process Control to identify a undertrained batch. Once a batch is undertrained, ISGD solves a new subproblem, a chasing logic plus a conservative constraint, to accelerate the training on the batch while avoid drastic parameter changes. Extensive experiments on a variety of datasets demonstrate ISGD converges faster than SGD. In training AlexNet, ISGD is 21.05\% faster than SGD to reach 56\% top1 accuracy under the exactly same experiment setup. We also extend ISGD to work on multiGPU or heterogeneous distributed system based on data parallelism, enabling the batch size to be the key to scalability. Then we present the study of ISGD batch size to the learning rate, parallelism, synchronization cost, system saturation and scalability. We conclude the optimal ISGD batch size is machine dependent. Various experiments on a multiGPU system validate our claim. In particular, ISGD trains AlexNet to 56.3% top1 and 80.1% top5 accuracy in 11.5 hours with 4 NVIDIA TITAN X at the batch size of 1536.
Reliable Prediction Intervals for Local Linear Regression
This paper introduces two methods for estimating reliable prediction intervals for local linear least-squares regressions, named Bounded Oscillation Prediction Intervals (BOPI). It also proposes a new measure for comparing interval prediction models named Equivalent Gaussian Standard Deviation (EGSD). The experimental results compare BOPI to other methods using coverage probability, Mean Interval Size and the introduced EGSD measure. The results were generally in favor of the BOPI on considered benchmark regression datasets. It also, reports simulation studies validating the BOPI method's reliability.
Streaming Algorithms for News and Scientific Literature Recommendation: Submodular Maximization with a d-Knapsack Constraint
Submodular maximization problems belong to the family of combinatorial optimization problems and enjoy wide applications. In this paper, we focus on the problem of maximizing a monotone submodular function subject to a $d$-knapsack constraint, for which we propose a streaming algorithm that achieves a $\left(\frac{1}{1+2d}-\epsilon\right)$-approximation of the optimal value, while it only needs one single pass through the dataset without storing all the data in the memory. In our experiments, we extensively evaluate the effectiveness of our proposed algorithm via two applications: news recommendation and scientific literature recommendation. It is observed that the proposed streaming algorithm achieves both execution speedup and memory saving by several orders of magnitude, compared with existing approaches.
Discriminative Embeddings of Latent Variable Models for Structured Data
Kernel classifiers and regressors designed for structured data, such as sequences, trees and graphs, have significantly advanced a number of interdisciplinary areas such as computational biology and drug design. Typically, kernels are designed beforehand for a data type which either exploit statistics of the structures or make use of probabilistic generative models, and then a discriminative classifier is learned based on the kernels via convex optimization. However, such an elegant two-stage approach also limited kernel methods from scaling up to millions of data points, and exploiting discriminative information to learn feature representations. We propose, structure2vec, an effective and scalable approach for structured data representation based on the idea of embedding latent variable models into feature spaces, and learning such feature spaces using discriminative information. Interestingly, structure2vec extracts features by performing a sequence of function mappings in a way similar to graphical model inference procedures, such as mean field and belief propagation. In applications involving millions of data points, we showed that structure2vec runs 2 times faster, produces models which are $10,000$ times smaller, while at the same time achieving the state-of-the-art predictive performance.
Optimal Black-Box Reductions Between Optimization Objectives
The diverse world of machine learning applications has given rise to a plethora of algorithms and optimization methods, finely tuned to the specific regression or classification task at hand. We reduce the complexity of algorithm design for machine learning by reductions: we develop reductions that take a method developed for one setting and apply it to the entire spectrum of smoothness and strong-convexity in applications. Furthermore, unlike existing results, our new reductions are OPTIMAL and more PRACTICAL. We show how these new reductions give rise to new and faster running times on training linear classifiers for various families of loss functions, and conclude with experiments showing their successes also in practice.
Variance Reduction for Faster Non-Convex Optimization
We consider the fundamental problem in non-convex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order non-convex optimization remain to be full gradient descent that converges in $O(1/\varepsilon)$ iterations for smooth objectives, and stochastic gradient descent that converges in $O(1/\varepsilon^2)$ iterations for objectives that are sum of smooth functions. We provide the first improvement in this line of research. Our result is based on the variance reduction trick recently introduced to convex optimization, as well as a brand new analysis of variance reduction that is suitable for non-convex optimization. For objectives that are sum of smooth functions, our first-order minibatch stochastic method converges with an $O(1/\varepsilon)$ rate, and is faster than full gradient descent by $\Omega(n^{1/3})$. We demonstrate the effectiveness of our methods on empirical risk minimizations with non-convex loss functions and training neural nets.
Predicting health inspection results from online restaurant reviews
Informatics around public health are increasingly shifting from the professional to the public spheres. In this work, we apply linguistic analytics to restaurant reviews, from Yelp, in order to automatically predict official health inspection reports. We consider two types of feature sets, i.e., keyword detection and topic model features, and use these in several classification methods. Our empirical analysis shows that these extracted features can predict public health inspection reports with over 90% accuracy using simple support vector machines.
Do Deep Convolutional Nets Really Need to be Deep and Convolutional?
Yes, they do. This paper provides the first empirical demonstration that deep convolutional models really need to be both deep and convolutional, even when trained with methods such as distillation that allow small or shallow models of high accuracy to be trained. Although previous research showed that shallow feed-forward nets sometimes can learn the complex functions previously learned by deep nets while using the same number of parameters as the deep models they mimic, in this paper we demonstrate that the same methods cannot be used to train accurate models on CIFAR-10 unless the student models contain multiple layers of convolution. Although the student models do not have to be as deep as the teacher model they mimic, the students need multiple convolutional layers to learn functions of comparable accuracy as the deep convolutional teacher.
A Comparison between Deep Neural Nets and Kernel Acoustic Models for Speech Recognition
We study large-scale kernel methods for acoustic modeling and compare to DNNs on performance metrics related to both acoustic modeling and recognition. Measuring perplexity and frame-level classification accuracy, kernel-based acoustic models are as effective as their DNN counterparts. However, on token-error-rates DNN models can be significantly better. We have discovered that this might be attributed to DNN's unique strength in reducing both the perplexity and the entropy of the predicted posterior probabilities. Motivated by our findings, we propose a new technique, entropy regularized perplexity, for model selection. This technique can noticeably improve the recognition performance of both types of models, and reduces the gap between them. While effective on Broadcast News, this technique could be also applicable to other tasks.
Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning
Recognizing acoustic events is an intricate problem for a machine and an emerging field of research. Deep neural networks achieve convincing results and are currently the state-of-the-art approach for many tasks. One advantage is their implicit feature learning, opposite to an explicit feature extraction of the input signal. In this work, we analyzed whether more discriminative features can be learned from either the time-domain or the frequency-domain representation of the audio signal. For this purpose, we trained multiple deep networks with different architectures on the Freiburg-106 and ESC-10 datasets. Our results show that feature learning from the frequency domain is superior to the time domain. Moreover, additionally using convolution and pooling layers, to explore local structures of the audio signal, significantly improves the recognition performance and achieves state-of-the-art results.
N-ary Error Correcting Coding Scheme
The coding matrix design plays a fundamental role in the prediction performance of the error correcting output codes (ECOC)-based multi-class task. {In many-class classification problems, e.g., fine-grained categorization, it is difficult to distinguish subtle between-class differences under existing coding schemes due to a limited choices of coding values.} In this paper, we investigate whether one can relax existing binary and ternary code design to $N$-ary code design to achieve better classification performance. {In particular, we present a novel $N$-ary coding scheme that decomposes the original multi-class problem into simpler multi-class subproblems, which is similar to applying a divide-and-conquer method.} The two main advantages of such a coding scheme are as follows: (i) the ability to construct more discriminative codes and (ii) the flexibility for the user to select the best $N$ for ECOC-based classification. We show empirically that the optimal $N$ (based on classification performance) lies in $[3, 10]$ with some trade-off in computational cost. Moreover, we provide theoretical insights on the dependency of the generalization error bound of an $N$-ary ECOC on the average base classifier generalization error and the minimum distance between any two codes constructed. Extensive experimental results on benchmark multi-class datasets show that the proposed coding scheme achieves superior prediction performance over the state-of-the-art coding methods.
Distributed Iterative Learning Control for a Team of Quadrotors
The goal of this work is to enable a team of quadrotors to learn how to accurately track a desired trajectory while holding a given formation. We solve this problem in a distributed manner, where each vehicle has only access to the information of its neighbors. The desired trajectory is only available to one (or few) vehicles. We present a distributed iterative learning control (ILC) approach where each vehicle learns from the experience of its own and its neighbors' previous task repetitions, and adapts its feedforward input to improve performance. Existing algorithms are extended in theory to make them more applicable to real-world experiments. In particular, we prove stability for any causal learning function with gains chosen according to a simple scalar condition. Previous proofs were restricted to a specific learning function that only depends on the tracking error derivative (D-type ILC). Our extension provides more degrees of freedom in the ILC design and, as a result, better performance can be achieved. We also show that stability is not affected by a linear dynamic coupling between neighbors. This allows us to use an additional consensus feedback controller to compensate for non-repetitive disturbances. Experiments with two quadrotors attest the effectiveness of the proposed distributed multi-agent ILC approach. This is the first work to show distributed ILC in experiment.
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Nesterov's momentum trick is famously known for accelerating gradient descent, and has been proven useful in building fast iterative algorithms. However, in the stochastic setting, counterexamples exist and prevent Nesterov's momentum from providing similar acceleration, even if the underlying problem is convex and finite-sum. We introduce $\mathtt{Katyusha}$, a direct, primal-only stochastic gradient method to fix this issue. In convex finite-sum stochastic optimization, $\mathtt{Katyusha}$ has an optimal accelerated convergence rate, and enjoys an optimal parallel linear speedup in the mini-batch setting. The main ingredient is $\textit{Katyusha momentum}$, a novel "negative momentum" on top of Nesterov's momentum. It can be incorporated into a variance-reduction based algorithm and speed it up, both in terms of $\textit{sequential and parallel}$ performance. Since variance reduction has been successfully applied to a growing list of practical problems, our paper suggests that in each of such cases, one could potentially try to give Katyusha a hug.
Document Neural Autoregressive Distribution Estimation
We present an approach based on feed-forward neural networks for learning the distribution of textual documents. This approach is inspired by the Neural Autoregressive Distribution Estimator(NADE) model, which has been shown to be a good estimator of the distribution of discrete-valued igh-dimensional vectors. In this paper, we present how NADE can successfully be adapted to the case of textual data, retaining from NADE the property that sampling or computing the probability of observations can be done exactly and efficiently. The approach can also be used to learn deep representations of documents that are competitive to those learned by the alternative topic modeling approaches. Finally, we describe how the approach can be combined with a regular neural network N-gram model and substantially improve its performance, by making its learned representation sensitive to the larger, document-specific context.
L0-norm Sparse Graph-regularized SVD for Biclustering
Learning the "blocking" structure is a central challenge for high dimensional data (e.g., gene expression data). Recently, a sparse singular value decomposition (SVD) has been used as a biclustering tool to achieve this goal. However, this model ignores the structural information between variables (e.g., gene interaction graph). Although typical graph-regularized norm can incorporate such prior graph information to get accurate discovery and better interpretability, it fails to consider the opposite effect of variables with different signs. Motivated by the development of sparse coding and graph-regularized norm, we propose a novel sparse graph-regularized SVD as a powerful biclustering tool for analyzing high-dimensional data. The key of this method is to impose two penalties including a novel graph-regularized norm ($|\pmb{u}|\pmb{L}|\pmb{u}|$) and $L_0$-norm ($\|\pmb{u}\|_0$) on singular vectors to induce structural sparsity and enhance interpretability. We design an efficient Alternating Iterative Sparse Projection (AISP) algorithm to solve it. Finally, we apply our method and related ones to simulated and real data to show its efficiency in capturing natural blocking structures.
Tensor Methods and Recommender Systems
A substantial progress in development of new and efficient tensor factorization techniques has led to an extensive research of their applicability in recommender systems field. Tensor-based recommender models push the boundaries of traditional collaborative filtering techniques by taking into account a multifaceted nature of real environments, which allows to produce more accurate, situational (e.g. context-aware, criteria-driven) recommendations. Despite the promising results, tensor-based methods are poorly covered in existing recommender systems surveys. This survey aims to complement previous works and provide a comprehensive overview on the subject. To the best of our knowledge, this is the first attempt to consolidate studies from various application domains in an easily readable, digestible format, which helps to get a notion of the current state of the field. We also provide a high level discussion of the future perspectives and directions for further improvement of tensor-based recommendation systems.
Globally Normalized Transition-Based Neural Networks
We introduce a globally normalized transition-based neural network model that achieves state-of-the-art part-of-speech tagging, dependency parsing and sentence compression results. Our model is a simple feed-forward neural network that operates on a task-specific transition system, yet achieves comparable or better accuracies than recurrent models. We discuss the importance of global as opposed to local normalization: a key insight is that the label bias problem implies that globally normalized models can be strictly more expressive than locally normalized models.
Fast DPP Sampling for Nystr\"om with Application to Kernel Methods
The Nystr\"om method has long been popular for scaling up kernel methods. Its theoretical guarantees and empirical performance rely critically on the quality of the landmarks selected. We study landmark selection for Nystr\"om using Determinantal Point Processes (DPPs), discrete probability models that allow tractable generation of diverse samples. We prove that landmarks selected via DPPs guarantee bounds on approximation errors; subsequently, we analyze implications for kernel ridge regression. Contrary to prior reservations due to cubic complexity of DPPsampling, we show that (under certain conditions) Markov chain DPP sampling requires only linear time in the size of the data. We present several empirical results that support our theoretical analysis, and demonstrate the superior performance of DPP-based landmark selection compared with existing approaches.
DASA: Domain Adaptation in Stacked Autoencoders using Systematic Dropout
Domain adaptation deals with adapting behaviour of machine learning based systems trained using samples in source domain to their deployment in target domain where the statistics of samples in both domains are dissimilar. The task of directly training or adapting a learner in the target domain is challenged by lack of abundant labeled samples. In this paper we propose a technique for domain adaptation in stacked autoencoder (SAE) based deep neural networks (DNN) performed in two stages: (i) unsupervised weight adaptation using systematic dropouts in mini-batch training, (ii) supervised fine-tuning with limited number of labeled samples in target domain. We experimentally evaluate performance in the problem of retinal vessel segmentation where the SAE-DNN is trained using large number of labeled samples in the source domain (DRIVE dataset) and adapted using less number of labeled samples in target domain (STARE dataset). The performance of SAE-DNN measured using $logloss$ in source domain is $0.19$, without and with adaptation are $0.40$ and $0.18$, and $0.39$ when trained exclusively with limited samples in target domain. The area under ROC curve is observed respectively as $0.90$, $0.86$, $0.92$ and $0.87$. The high efficiency of vessel segmentation with DASA strongly substantiates our claim.
Deep Shading: Convolutional Neural Networks for Screen-Space Shading
In computer vision, convolutional neural networks (CNNs) have recently achieved new levels of performance for several inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen-space shading has recently increased the visual quality in interactive image synthesis, where per-pixel attributes such as positions, normals or reflectance of a virtual 3D scene are converted into RGB pixel appearance, enabling effects like ambient occlusion, indirect light, scattering, depth-of-field, motion blur, or anti-aliasing. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading simulates various screen-space effects at competitive quality and speed while not being programmed by human experts but learned from example images.
How Transferable are Neural Networks in NLP Applications?
Transfer learning is aimed to make use of valuable knowledge in a source domain to help model performance in a target domain. It is particularly important to neural networks, which are very likely to be overfitting. In some fields like image processing, many studies have shown the effectiveness of neural network-based transfer learning. For neural NLP, however, existing studies have only casually applied transfer learning, and conclusions are inconsistent. In this paper, we conduct systematic case studies and provide an illuminating picture on the transferability of neural networks in NLP.
Sentence Pair Scoring: Towards Unified Framework for Text Comprehension
We review the task of Sentence Pair Scoring, popular in the literature in various forms - viewed as Answer Sentence Selection, Semantic Text Scoring, Next Utterance Ranking, Recognizing Textual Entailment, Paraphrasing or e.g. a component of Memory Networks. We argue that all such tasks are similar from the model perspective and propose new baselines by comparing the performance of common IR metrics and popular convolutional, recurrent and attention-based neural models across many Sentence Pair Scoring tasks and datasets. We discuss the problem of evaluating randomized models, propose a statistically grounded methodology, and attempt to improve comparisons by releasing new datasets that are much harder than some of the currently used well explored benchmarks. We introduce a unified open source software framework with easily pluggable models and tasks, which enables us to experiment with multi-task reusability of trained sentence model. We set a new state-of-art in performance on the Ubuntu Dialogue dataset.
Automated Correction for Syntax Errors in Programming Assignments using Recurrent Neural Networks
We present a method for automatically generating repair feedback for syntax errors for introductory programming problems. Syntax errors constitute one of the largest classes of errors (34%) in our dataset of student submissions obtained from a MOOC course on edX. The previous techniques for generating automated feed- back on programming assignments have focused on functional correctness and style considerations of student programs. These techniques analyze the program AST of the program and then perform some dynamic and symbolic analyses to compute repair feedback. Unfortunately, it is not possible to generate ASTs for student pro- grams with syntax errors and therefore the previous feedback techniques are not applicable in repairing syntax errors. We present a technique for providing feedback on syntax errors that uses Recurrent neural networks (RNNs) to model syntactically valid token sequences. Our approach is inspired from the recent work on learning language models from Big Code (large code corpus). For a given programming assignment, we first learn an RNN to model all valid token sequences using the set of syntactically correct student submissions. Then, for a student submission with syntax errors, we query the learnt RNN model with the prefix to- ken sequence to predict token sequences that can fix the error by either replacing or inserting the predicted token sequence at the error location. We evaluate our technique on over 14, 000 student submissions with syntax errors. Our technique can completely re- pair 31.69% (4501/14203) of submissions with syntax errors and in addition partially correct 6.39% (908/14203) of the submissions.
A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation
The existing machine translation systems, whether phrase-based or neural, have relied almost exclusively on word-level modelling with explicit segmentation. In this paper, we ask a fundamental question: can neural machine translation generate a character sequence without any explicit segmentation? To answer this question, we evaluate an attention-based encoder-decoder with a subword-level encoder and a character-level decoder on four language pairs--En-Cs, En-De, En-Ru and En-Fi-- using the parallel corpora from WMT'15. Our experiments show that the models with a character-level decoder outperform the ones with a subword-level decoder on all of the four language pairs. Furthermore, the ensembles of neural models with a character-level decoder outperform the state-of-the-art non-neural machine translation systems on En-Cs, En-De and En-Fi and perform comparably on En-Ru.
Fast Incremental Method for Nonconvex Optimization
We analyze a fast incremental aggregated gradient method for optimizing nonconvex problems of the form $\min_x \sum_i f_i(x)$. Specifically, we analyze the SAGA algorithm within an Incremental First-order Oracle framework, and show that it converges to a stationary point provably faster than both gradient descent and stochastic gradient descent. We also discuss a Polyak's special class of nonconvex problems for which SAGA converges at a linear rate to the global optimum. Finally, we analyze the practically valuable regularized and minibatch variants of SAGA. To our knowledge, this paper presents the first analysis of fast convergence for an incremental aggregated gradient method for nonconvex problems.
Stochastic Variance Reduction for Nonconvex Optimization
We study nonconvex finite-sum problems and analyze stochastic variance reduced gradient (SVRG) methods for them. SVRG and related methods have recently surged into prominence for convex optimization given their edge over stochastic gradient descent (SGD); but their theoretical analysis almost exclusively assumes convexity. In contrast, we prove non-asymptotic rates of convergence (to stationary points) of SVRG for nonconvex optimization, and show that it is provably faster than SGD and gradient descent. We also analyze a subclass of nonconvex problems on which SVRG attains linear convergence to the global optimum. We extend our analysis to mini-batch variants of SVRG, showing (theoretical) linear speedup due to mini-batching in parallel settings.
Joint Stochastic Approximation learning of Helmholtz Machines
Though with progress, model learning and performing posterior inference still remains a common challenge for using deep generative models, especially for handling discrete hidden variables. This paper is mainly concerned with algorithms for learning Helmholz machines, which is characterized by pairing the generative model with an auxiliary inference model. A common drawback of previous learning algorithms is that they indirectly optimize some bounds of the targeted marginal log-likelihood. In contrast, we successfully develop a new class of algorithms, based on stochastic approximation (SA) theory of the Robbins-Monro type, to directly optimize the marginal log-likelihood and simultaneously minimize the inclusive KL-divergence. The resulting learning algorithm is thus called joint SA (JSA). Moreover, we construct an effective MCMC operator for JSA. Our results on the MNIST datasets demonstrate that the JSA's performance is consistently superior to that of competing algorithms like RWS, for learning a range of difficult models.
Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science
As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement an open source Tree-based Pipeline Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a series of simulated and real-world benchmark data sets. In particular, we show that TPOT can design machine learning pipelines that provide a significant improvement over a basic machine learning analysis while requiring little to no input nor prior knowledge from the user. We also address the tendency for TPOT to design overly complex pipelines by integrating Pareto optimization, which produces compact pipelines without sacrificing classification accuracy. As such, this work represents an important step toward fully automating machine learning pipeline design.
Flow of Information in Feed-Forward Deep Neural Networks
Feed-forward deep neural networks have been used extensively in various machine learning applications. Developing a precise understanding of the underling behavior of neural networks is crucial for their efficient deployment. In this paper, we use an information theoretic approach to study the flow of information in a neural network and to determine how entropy of information changes between consecutive layers. Moreover, using the Information Bottleneck principle, we develop a constrained optimization problem that can be used in the training process of a deep neural network. Furthermore, we determine a lower bound for the level of data representation that can be achieved in a deep neural network with an acceptable level of distortion.
Collaborative prediction with expert advice
Many practical learning systems aggregate data across many users, while learning theory traditionally considers a single learner who trusts all of their observations. A case in point is the foundational learning problem of prediction with expert advice. To date, there has been no theoretical study of the general collaborative version of prediction with expert advice, in which many users face a similar problem and would like to share their experiences in order to learn faster. A key issue in this collaborative framework is robustness: generally algorithms that aggregate data are vulnerable to manipulation by even a small number of dishonest users. We exhibit the first robust collaborative algorithm for prediction with expert advice. When all users are honest and have similar tastes our algorithm matches the performance of pooling data and using a traditional algorithm. But our algorithm also guarantees that adding users never significantly degrades performance, even if the additional users behave adversarially. We achieve strong guarantees even when the overwhelming majority of users behave adversarially. As a special case, our algorithm is extremely robust to variation amongst the users.
Multi-Task Cross-Lingual Sequence Tagging from Scratch
We present a deep hierarchical recurrent neural network for sequence tagging. Given a sequence of words, our model employs deep gated recurrent units on both character and word levels to encode morphology and context information, and applies a conditional random field layer to predict the tags. Our model is task independent, language independent, and feature engineering free. We further extend our model to multi-task and cross-lingual joint training by sharing the architecture and parameters. Our model achieves state-of-the-art results in multiple languages on several benchmark tasks including POS tagging, chunking, and NER. We also demonstrate that multi-task and cross-lingual joint training can improve the performance in various cases.
Multi-fidelity Gaussian Process Bandit Optimisation
In many scientific and engineering applications, we are tasked with the maximisation of an expensive to evaluate black box function $f$. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to $f$ may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of $f$ in a small but promising region and speedily identify the optimum. We formalise this task as a \emph{multi-fidelity} bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour, and achieves better regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.
Harnessing Deep Neural Networks with Logic Rules
Combining deep neural networks with structured logic rules is desirable to harness flexibility and reduce uninterpretability of the neural models. We propose a general framework capable of enhancing various types of neural networks (e.g., CNNs and RNNs) with declarative first-order logic rules. Specifically, we develop an iterative distillation method that transfers the structured information of logic rules into the weights of neural networks. We deploy the framework on a CNN for sentiment analysis, and an RNN for named entity recognition. With a few highly intuitive rules, we obtain substantial improvements and achieve state-of-the-art or comparable results to previous best-performing systems.
Learning Dexterous Manipulation for a Soft Robotic Hand from Human Demonstration
Dexterous multi-fingered hands can accomplish fine manipulation behaviors that are infeasible with simple robotic grippers. However, sophisticated multi-fingered hands are often expensive and fragile. Low-cost soft hands offer an appealing alternative to more conventional devices, but present considerable challenges in sensing and actuation, making them difficult to apply to more complex manipulation tasks. In this paper, we describe an approach to learning from demonstration that can be used to train soft robotic hands to perform dexterous manipulation tasks. Our method uses object-centric demonstrations, where a human demonstrates the desired motion of manipulated objects with their own hands, and the robot autonomously learns to imitate these demonstrations using reinforcement learning. We propose a novel algorithm that allows us to blend and select a subset of the most feasible demonstrations to learn to imitate on the hardware, which we use with an extension of the guided policy search framework to use multiple demonstrations to learn generalizable neural network policies. We demonstrate our approach on the RBO Hand 2, with learned motor skills for turning a valve, manipulating an abacus, and grasping.
Online Learning with Low Rank Experts
We consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown $d$-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank $d$. For the stochastic model we show a tight bound of $\Theta(\sqrt{dT})$, and extend it to a setting of an approximate $d$ subspace. For the adversarial model we show an upper bound of $O(d\sqrt{T})$ and a lower bound of $\Omega(\sqrt{dT})$.
Incorporating Copying Mechanism in Sequence-to-Sequence Learning
We address an important problem in sequence-to-sequence (Seq2Seq) learning referred to as copying, in which certain segments in the input sequence are selectively replicated in the output sequence. A similar phenomenon is observable in human language communication. For example, humans tend to repeat entity names or even long phrases in conversation. The challenge with regard to copying in Seq2Seq is that new machinery is needed to decide when to perform the operation. In this paper, we incorporate copying into neural network-based Seq2Seq learning and propose a new model called CopyNet with encoder-decoder structure. CopyNet can nicely integrate the regular way of word generation in the decoder with the new copying mechanism which can choose sub-sequences in the input sequence and put them at proper places in the output sequence. Our empirical study on both synthetic data sets and real world data sets demonstrates the efficacy of CopyNet. For example, CopyNet can outperform regular RNN-based model with remarkable margins on text summarization tasks.
Deep Learning in Bioinformatics
In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e., omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e., deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies.
Hard-Clustering with Gaussian Mixture Models
Training the parameters of statistical models to describe a given data set is a central task in the field of data mining and machine learning. A very popular and powerful way of parameter estimation is the method of maximum likelihood estimation (MLE). Among the most widely used families of statistical models are mixture models, especially, mixtures of Gaussian distributions. A popular hard-clustering variant of the MLE problem is the so-called complete-data maximum likelihood estimation (CMLE) method. The standard approach to solve the CMLE problem is the Classification-Expectation-Maximization (CEM) algorithm. Unfortunately, it is only guaranteed that the algorithm converges to some (possibly arbitrarily poor) stationary point of the objective function. In this paper, we present two algorithms for a restricted version of the CMLE problem. That is, our algorithms approximate reasonable solutions to the CMLE problem which satisfy certain natural properties. Moreover, they compute solutions whose cost (i.e. complete-data log-likelihood values) are at most a factor $(1+\epsilon)$ worse than the cost of the solutions that we search for. Note the CMLE problem in its most general, i.e. unrestricted, form is not well defined and allows for trivial optimal solutions that can be thought of as degenerated solutions.
Deep video gesture recognition using illumination invariants
In this paper we present architectures based on deep neural nets for gesture recognition in videos, which are invariant to local scaling. We amalgamate autoencoder and predictor architectures using an adaptive weighting scheme coping with a reduced size labeled dataset, while enriching our models from enormous unlabeled sets. We further improve robustness to lighting conditions by introducing a new adaptive filer based on temporal local scale normalization. We provide superior results over known methods, including recent reported approaches based on neural nets.
A Comparison Study of Nonlinear Kernels
In this paper, we compare 5 different nonlinear kernels: min-max, RBF, fRBF (folded RBF), acos, and acos-$\chi^2$, on a wide range of publicly available datasets. The proposed fRBF kernel performs very similarly to the RBF kernel. Both RBF and fRBF kernels require an important tuning parameter ($\gamma$). Interestingly, for a significant portion of the datasets, the min-max kernel outperforms the best-tuned RBF/fRBF kernels. The acos kernel and acos-$\chi^2$ kernel also perform well in general and in some datasets achieve the best accuracies. One crucial issue with the use of nonlinear kernels is the excessive computational and memory cost. These days, one increasingly popular strategy is to linearize the kernels through various randomization algorithms. In our study, the randomization method for the min-max kernel demonstrates excellent performance compared to the randomization methods for other types of nonlinear kernels, measured in terms of the number of nonzero terms in the transformed dataset. Our study provides evidence for supporting the use of the min-max kernel and the corresponding randomized linearization method (i.e., the so-called "0-bit CWS"). Furthermore, the results motivate at least two directions for future research: (i) To develop new (and linearizable) nonlinear kernels for better accuracies; and (ii) To develop better linearization algorithms for improving the current linearization methods for the RBF kernel, the acos kernel, and the acos-$\chi^2$ kernel. One attempt is to combine the min-max kernel with the acos kernel or the acos-$\chi^2$ kernel. The advantages of these two new and tuning-free nonlinear kernels are demonstrated vias our extensive experiments.
Action-Affect Classification and Morphing using Multi-Task Representation Learning
Most recent work focused on affect from facial expressions, and not as much on body. This work focuses on body affect analysis. Affect does not occur in isolation. Humans usually couple affect with an action in natural interactions; for example, a person could be talking and smiling. Recognizing body affect in sequences requires efficient algorithms to capture both the micro movements that differentiate between happy and sad and the macro variations between different actions. We depart from traditional approaches for time-series data analytics by proposing a multi-task learning model that learns a shared representation that is well-suited for action-affect classification as well as generation. For this paper we choose Conditional Restricted Boltzmann Machines to be our building block. We propose a new model that enhances the CRBM model with a factored multi-task component to become Multi-Task Conditional Restricted Boltzmann Machines (MTCRBMs). We evaluate our approach on two publicly available datasets, the Body Affect dataset and the Tower Game dataset, and show superior classification performance improvement over the state-of-the-art, as well as the generative abilities of our model.
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-stochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
Bayesian Neural Word Embedding
Recently, several works in the domain of natural language processing presented successful methods for word embedding. Among them, the Skip-Gram with negative sampling, known also as word2vec, advanced the state-of-the-art of various linguistics tasks. In this paper, we propose a scalable Bayesian neural word embedding algorithm. The algorithm relies on a Variational Bayes solution for the Skip-Gram objective and a detailed step by step description is provided. We present experimental results that demonstrate the performance of the proposed algorithm for word analogy and similarity tasks on six different datasets and show it is competitive with the original Skip-Gram method.
Variational Autoencoders for Feature Detection of Magnetic Resonance Imaging Data
Independent component analysis (ICA), as an approach to the blind source-separation (BSS) problem, has become the de-facto standard in many medical imaging settings. Despite successes and a large ongoing research effort, the limitation of ICA to square linear transformations have not been overcome, so that general INFOMAX is still far from being realized. As an alternative, we present feature analysis in medical imaging as a problem solved by Helmholtz machines, which include dimensionality reduction and reconstruction of the raw data under the same objective, and which recently have overcome major difficulties in inference and learning with deep and nonlinear configurations. We demonstrate one approach to training Helmholtz machines, variational auto-encoders (VAE), as a viable approach toward feature extraction with magnetic resonance imaging (MRI) data.
Information Theoretic-Learning Auto-Encoder
We propose Information Theoretic-Learning (ITL) divergence measures for variational regularization of neural networks. We also explore ITL-regularized autoencoders as an alternative to variational autoencoding bayes, adversarial autoencoders and generative adversarial networks for randomly generating sample data without explicitly defining a partition function. This paper also formalizes, generative moment matching networks under the ITL framework.
Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis
In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge.
A Self-Paced Regularization Framework for Multi-Label Learning
In this paper, we propose a novel multi-label learning framework, called Multi-Label Self-Paced Learning (MLSPL), in an attempt to incorporate the self-paced learning strategy into multi-label learning regime. In light of the benefits of adopting the easy-to-hard strategy proposed by self-paced learning, the devised MLSPL aims to learn multiple labels jointly by gradually including label learning tasks and instances into model training from the easy to the hard. We first introduce a self-paced function as a regularizer in the multi-label learning formulation, so as to simultaneously rank priorities of the label learning tasks and the instances in each learning iteration. Considering that different multi-label learning scenarios often need different self-paced schemes during optimization, we thus propose a general way to find the desired self-paced functions. Experimental results on three benchmark datasets suggest the state-of-the-art performance of our approach.
Localized Lasso for High-Dimensional Regression
We introduce the localized Lasso, which is suited for learning models that are both interpretable and have a high predictive power in problems with high dimensionality $d$ and small sample size $n$. More specifically, we consider a function defined by local sparse models, one at each data point. We introduce sample-wise network regularization to borrow strength across the models, and sample-wise exclusive group sparsity (a.k.a., $\ell_{1,2}$ norm) to introduce diversity into the choice of feature sets in the local models. The local models are interpretable in terms of similarity of their sparsity patterns. The cost function is convex, and thus has a globally optimal solution. Moreover, we propose a simple yet efficient iterative least-squares based optimization procedure for the localized Lasso, which does not need a tuning parameter, and is guaranteed to converge to a globally optimal solution. The solution is empirically shown to outperform alternatives for both simulated and genomic personalized medicine data.
Doubly Random Parallel Stochastic Methods for Large Scale Learning
We consider learning problems over training sets in which both, the number of training examples and the dimension of the feature vectors, are large. To solve these problems we propose the random parallel stochastic algorithm (RAPSA). We call the algorithm random parallel because it utilizes multiple processors to operate in a randomly chosen subset of blocks of the feature vector. We call the algorithm parallel stochastic because processors choose elements of the training set randomly and independently. Algorithms that are parallel in either of these dimensions exist, but RAPSA is the first attempt at a methodology that is parallel in both, the selection of blocks and the selection of elements of the training set. In RAPSA, processors utilize the randomly chosen functions to compute the stochastic gradient component associated with a randomly chosen block. The technical contribution of this paper is to show that this minimally coordinated algorithm converges to the optimal classifier when the training objective is convex. In particular, we show that: (i) When using decreasing stepsizes, RAPSA converges almost surely over the random choice of blocks and functions. (ii) When using constant stepsizes, convergence is to a neighborhood of optimality with a rate that is linear in expectation. RAPSA is numerically evaluated on the MNIST digit recognition problem.
Using real-time cluster configurations of streaming asynchronous features as online state descriptors in financial markets
We present a scheme for online, unsupervised state discovery and detection from streaming, multi-featured, asynchronous data in high-frequency financial markets. Online feature correlations are computed using an unbiased, lossless Fourier estimator. A high-speed maximum likelihood clustering algorithm is then used to find the feature cluster configuration which best explains the structure in the correlation matrix. We conjecture that this feature configuration is a candidate descriptor for the temporal state of the system. Using a simple cluster configuration similarity metric, we are able to enumerate the state space based on prevailing feature configurations. The proposed state representation removes the need for human-driven data pre-processing for state attribute specification, allowing a learning agent to find structure in streaming data, discern changes in the system, enumerate its perceived state space and learn suitable action-selection policies.
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. However, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.
Multi-velocity neural networks for gesture recognition in videos
We present a new action recognition deep neural network which adaptively learns the best action velocities in addition to the classification. While deep neural networks have reached maturity for image understanding tasks, we are still exploring network topologies and features to handle the richer environment of video clips. Here, we tackle the problem of multiple velocities in action recognition, and provide state-of-the-art results for gesture recognition, on known and new collected datasets. We further provide the training steps for our semi-supervised network, suited to learn from huge unlabeled datasets with only a fraction of labeled examples.
Enhanced perceptrons using contrastive biclusters
Perceptrons are neuronal devices capable of fully discriminating linearly separable classes. Although straightforward to implement and train, their applicability is usually hindered by non-trivial requirements imposed by real-world classification problems. Therefore, several approaches, such as kernel perceptrons, have been conceived to counteract such difficulties. In this paper, we investigate an enhanced perceptron model based on the notion of contrastive biclusters. From this perspective, a good discriminative bicluster comprises a subset of data instances belonging to one class that show high coherence across a subset of features and high differentiation from nearest instances of the other class under the same features (referred to as its contrastive bicluster). Upon each local subspace associated with a pair of contrastive biclusters a perceptron is trained and the model with highest area under the receiver operating characteristic curve (AUC) value is selected as the final classifier. Experiments conducted on a range of data sets, including those related to a difficult biosignal classification problem, show that the proposed variant can be indeed very useful, prevailing in most of the cases upon standard and kernel perceptrons in terms of accuracy and AUC measures.
Trading-off variance and complexity in stochastic gradient descent
Stochastic gradient descent is the method of choice for large-scale machine learning problems, by virtue of its light complexity per iteration. However, it lags behind its non-stochastic counterparts with respect to the convergence rate, due to high variance introduced by the stochastic updates. The popular Stochastic Variance-Reduced Gradient (SVRG) method mitigates this shortcoming, introducing a new update rule which requires infrequent passes over the entire input dataset to compute the full-gradient. In this work, we propose CheapSVRG, a stochastic variance-reduction optimization scheme. Our algorithm is similar to SVRG but instead of the full gradient, it uses a surrogate which can be efficiently computed on a small subset of the input data. It achieves a linear convergence rate ---up to some error level, depending on the nature of the optimization problem---and features a trade-off between the computational complexity and the convergence rate. Empirical evaluation shows that CheapSVRG performs at least competitively compared to the state of the art.
Feeling the Bern: Adaptive Estimators for Bernoulli Probabilities of Pairwise Comparisons
We study methods for aggregating pairwise comparison data in order to estimate outcome probabilities for future comparisons among a collection of n items. Working within a flexible framework that imposes only a form of strong stochastic transitivity (SST), we introduce an adaptivity index defined by the indifference sets of the pairwise comparison probabilities. In addition to measuring the usual worst-case risk of an estimator, this adaptivity index also captures the extent to which the estimator adapts to instance-specific difficulty relative to an oracle estimator. We prove three main results that involve this adaptivity index and different algorithms. First, we propose a three-step estimator termed Count-Randomize-Least squares (CRL), and show that it has adaptivity index upper bounded as $\sqrt{n}$ up to logarithmic factors. We then show that that conditional on the hardness of planted clique, no computationally efficient estimator can achieve an adaptivity index smaller than $\sqrt{n}$. Second, we show that a regularized least squares estimator can achieve a poly-logarithmic adaptivity index, thereby demonstrating a $\sqrt{n}$-gap between optimal and computationally achievable adaptivity. Finally, we prove that the standard least squares estimator, which is known to be optimally adaptive in several closely related problems, fails to adapt in the context of estimating pairwise probabilities.
Recurrent Neural Network Encoder with Attention for Community Question Answering
We apply a general recurrent neural network (RNN) encoder framework to community question answering (cQA) tasks. Our approach does not rely on any linguistic processing, and can be applied to different languages or domains. Further improvements are observed when we extend the RNN encoders with a neural attention mechanism that encourages reasoning over entire sequences. To deal with practical issues such as data sparsity and imbalanced labels, we apply various techniques such as transfer learning and multitask learning. Our experiments on the SemEval-2016 cQA task show 10% improvement on a MAP score compared to an information retrieval-based approach, and achieve comparable performance to a strong handcrafted feature-based method.
Predicting Glaucoma Visual Field Loss by Hierarchically Aggregating Clustering-based Predictors
This study addresses the issue of predicting the glaucomatous visual field loss from patient disease datasets. Our goal is to accurately predict the progress of the disease in individual patients. As very few measurements are available for each patient, it is difficult to produce good predictors for individuals. A recently proposed clustering-based method enhances the power of prediction using patient data with similar spatiotemporal patterns. Each patient is categorized into a cluster of patients, and a predictive model is constructed using all of the data in the class. Predictions are highly dependent on the quality of clustering, but it is difficult to identify the best clustering method. Thus, we propose a method for aggregating cluster-based predictors to obtain better prediction accuracy than from a single cluster-based prediction. Further, the method shows very high performances by hierarchically aggregating experts generated from several cluster-based methods. We use real datasets to demonstrate that our method performs significantly better than conventional clustering-based and patient-wise regression methods, because the hierarchical aggregating strategy has a mechanism whereby good predictors in a small community can thrive.
A Decentralized Quasi-Newton Method for Dual Formulations of Consensus Optimization
This paper considers consensus optimization problems where each node of a network has access to a different summand of an aggregate cost function. Nodes try to minimize the aggregate cost function, while they exchange information only with their neighbors. We modify the dual decomposition method to incorporate a curvature correction inspired by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. The resulting dual D-BFGS method is a fully decentralized algorithm in which nodes approximate curvature information of themselves and their neighbors through the satisfaction of a secant condition. Dual D-BFGS is of interest in consensus optimization problems that are not well conditioned, making first order decentralized methods ineffective, and in which second order information is not readily available, making decentralized second order methods infeasible. Asynchronous implementation is discussed and convergence of D-BFGS is established formally for both synchronous and asynchronous implementations. Performance advantages relative to alternative decentralized algorithms are shown numerically.
Global-Local Face Upsampling Network
Face hallucination, which is the task of generating a high-resolution face image from a low-resolution input image, is a well-studied problem that is useful in widespread application areas. Face hallucination is particularly challenging when the input face resolution is very low (e.g., 10 x 12 pixels) and/or the image is captured in an uncontrolled setting with large pose and illumination variations. In this paper, we revisit the algorithm introduced in [1] and present a deep interpretation of this framework that achieves state-of-the-art under such challenging scenarios. In our deep network architecture the global and local constraints that define a face can be efficiently modeled and learned end-to-end using training data. Conceptually our network design can be partitioned into two sub-networks: the first one implements the holistic face reconstruction according to global constraints, and the second one enhances face-specific details and enforces local patch statistics. We optimize the deep network using a new loss function for super-resolution that combines reconstruction error with a learned face quality measure in adversarial setting, producing improved visual results. We conduct extensive experiments in both controlled and uncontrolled setups and show that our algorithm improves the state of the art both numerically and visually.
A Tutorial on Deep Neural Networks for Intelligent Systems
Developing Intelligent Systems involves artificial intelligence approaches including artificial neural networks. Here, we present a tutorial of Deep Neural Networks (DNNs), and some insights about the origin of the term "deep"; references to deep learning are also given. Restricted Boltzmann Machines, which are the core of DNNs, are discussed in detail. An example of a simple two-layer network, performing unsupervised learning for unlabeled data, is shown. Deep Belief Networks (DBNs), which are used to build networks with more than two layers, are also described. Moreover, examples for supervised learning with DNNs performing simple prediction and classification tasks, are presented and explained. This tutorial includes two intelligent pattern recognition applications: hand- written digits (benchmark known as MNIST) and speech recognition.
A guide to convolution arithmetic for deep learning
We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. The guide clarifies the relationship between various properties (input shape, kernel shape, zero padding, strides and output shape) of convolutional, pooling and transposed convolutional layers, as well as the relationship between convolutional and transposed convolutional layers. Relationships are derived for various cases, and are illustrated in order to make them intuitive.
Debugging Machine Learning Tasks
Unlike traditional programs (such as operating systems or word processors) which have large amounts of code, machine learning tasks use programs with relatively small amounts of code (written in machine learning libraries), but voluminous amounts of data. Just like developers of traditional programs debug errors in their code, developers of machine learning tasks debug and fix errors in their data. However, algorithms and tools for debugging and fixing errors in data are less common, when compared to their counterparts for detecting and fixing errors in code. In this paper, we consider classification tasks where errors in training data lead to misclassifications in test points, and propose an automated method to find the root causes of such misclassifications. Our root cause analysis is based on Pearl's theory of causation, and uses Pearl's PS (Probability of Sufficiency) as a scoring metric. Our implementation, Psi, encodes the computation of PS as a probabilistic program, and uses recent work on probabilistic programs and transformations on probabilistic programs (along with gray-box models of machine learning algorithms) to efficiently compute PS. Psi is able to identify root causes of data errors in interesting data sets.
On the Theory and Practice of Privacy-Preserving Bayesian Data Analysis
Bayesian inference has great promise for the privacy-preserving analysis of sensitive data, as posterior sampling automatically preserves differential privacy, an algorithmic notion of data privacy, under certain conditions (Dimitrakakis et al., 2014; Wang et al., 2015). While this one posterior sample (OPS) approach elegantly provides privacy "for free," it is data inefficient in the sense of asymptotic relative efficiency (ARE). We show that a simple alternative based on the Laplace mechanism, the workhorse of differential privacy, is as asymptotically efficient as non-private posterior inference, under general assumptions. This technique also has practical advantages including efficient use of the privacy budget for MCMC. We demonstrate the practicality of our approach on a time-series analysis of sensitive military records from the Afghanistan and Iraq wars disclosed by the Wikileaks organization.
Learning Mixtures of Plackett-Luce Models
In this paper we address the identifiability and efficient learning problems of finite mixtures of Plackett-Luce models for rank data. We prove that for any $k\geq 2$, the mixture of $k$ Plackett-Luce models for no more than $2k-1$ alternatives is non-identifiable and this bound is tight for $k=2$. For generic identifiability, we prove that the mixture of $k$ Plackett-Luce models over $m$ alternatives is generically identifiable if $k\leq\lfloor\frac {m-2} 2\rfloor!$. We also propose an efficient generalized method of moments (GMM) algorithm to learn the mixture of two Plackett-Luce models and show that the algorithm is consistent. Our experiments show that our GMM algorithm is significantly faster than the EMM algorithm by Gormley and Murphy (2008), while achieving competitive statistical efficiency.
Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices
In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We identify the RPU device and system specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30,000X compared to state-of-the-art microprocessors while providing power efficiency of 84,000 GigaOps/s/W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisted of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration and analysis of multimodal sensory data flows from massive number of IoT (Internet of Things) sensors.
A Reconfigurable Low Power High Throughput Architecture for Deep Network Training
General purpose computing systems are used for a large variety of applications. Extensive supports for flexibility in these systems limit their energy efficiencies. Neural networks, including deep networks, are widely used for signal processing and pattern recognition applications. In this paper we propose a multicore architecture for deep neural network based processing. Memristor crossbars are utilized to provide low power high throughput execution of neural networks. The system has both training and recognition (evaluation of new input) capabilities. The proposed system could be used for classification, dimensionality reduction, feature extraction, and anomaly detection applications. The system level area and power benefits of the specialized architecture is compared with the NVIDIA Telsa K20 GPGPU. Our experimental evaluations show that the proposed architecture can provide up to five orders of magnitude more energy efficiency over GPGPUs for deep neural network processing.
On the Powerball Method for Optimization
We propose a new method to accelerate the convergence of optimization algorithms. This method simply adds a power coefficient $\gamma\in[0,1)$ to the gradient during optimization. We call this the Powerball method and analyze the convergence rate for the Powerball method for strongly convex functions. While theoretically the Powerball method is guaranteed to have a linear convergence rate in the same order of the gradient method, we show that empirically it significantly outperforms the gradient descent and Newton's method, especially during the initial iterations. We demonstrate that the Powerball method provides a $10$-fold speedup of the convergence of both gradient descent and L-BFGS on multiple real datasets.
Deep Extreme Feature Extraction: New MVA Method for Searching Particles in High Energy Physics
In this paper, we present Deep Extreme Feature Extraction (DEFE), a new ensemble MVA method for searching $\tau^{+}\tau^{-}$ channel of Higgs bosons in high energy physics. DEFE can be viewed as a deep ensemble learning scheme that trains a strongly diverse set of neural feature learners without explicitly encouraging diversity and penalizing correlations. This is achieved by adopting an implicit neural controller (not involved in feedforward compuation) that directly controls and distributes gradient flows from higher level deep prediction network. Such model-independent controller results in that every single local feature learned are used in the feature-to-output mapping stage, avoiding the blind averaging of features. DEFE makes the ensembles 'deep' in the sense that it allows deep post-process of these features that tries to learn to select and abstract the ensemble of neural feature learners. With the application of this model, a selection regions full of signal process can be obtained through the training of a miniature collision events set. In comparison of the Classic Deep Neural Network, DEFE shows a state-of-the-art performance: the error rate has decreased by about 37\%, the accuracy has broken through 90\% for the first time, along with the discovery significance has reached a standard deviation of 6.0 $\sigma$. Experimental data shows that, DEFE is able to train an ensemble of discriminative feature learners that boosts the overperformance of final prediction.
Source Localization on Graphs via l1 Recovery and Spectral Graph Theory
We cast the problem of source localization on graphs as the simultaneous problem of sparse recovery and diffusion kernel learning. An l1 regularization term enforces the sparsity constraint while we recover the sources of diffusion from a single snapshot of the diffusion process. The diffusion kernel is estimated by assuming the process to be as generic as the standard heat diffusion. We show with synthetic data that we can concomitantly learn the diffusion kernel and the sources, given an estimated initialization. We validate our model with cholera mortality and atmospheric tracer diffusion data, showing also that the accuracy of the solution depends on the construction of the graph from the data points.
Recursive Neural Language Architecture for Tag Prediction
We consider the problem of learning distributed representations for tags from their associated content for the task of tag recommendation. Considering tagging information is usually very sparse, effective learning from content and tag association is very crucial and challenging task. Recently, various neural representation learning models such as WSABIE and its variants show promising performance, mainly due to compact feature representations learned in a semantic space. However, their capacity is limited by a linear compositional approach for representing tags as sum of equal parts and hurt their performance. In this work, we propose a neural feedback relevance model for learning tag representations with weighted feature representations. Our experiments on two widely used datasets show significant improvement for quality of recommendations over various baselines.
Probabilistic Reasoning via Deep Learning: Neural Association Models
In this paper, we propose a new deep learning approach, called neural association model (NAM), for probabilistic reasoning in artificial intelligence. We propose to use neural networks to model association between any two events in a domain. Neural networks take one event as input and compute a conditional probability of the other event to model how likely these two events are to be associated. The actual meaning of the conditional probabilities varies between applications and depends on how the models are trained. In this work, as two case studies, we have investigated two NAM structures, namely deep neural networks (DNN) and relation-modulated neural nets (RMNN), on several probabilistic reasoning tasks in AI, including recognizing textual entailment, triple classification in multi-relational knowledge bases and commonsense reasoning. Experimental results on several popular datasets derived from WordNet, FreeBase and ConceptNet have all demonstrated that both DNNs and RMNNs perform equally well and they can significantly outperform the conventional methods available for these reasoning tasks. Moreover, compared with DNNs, RMNNs are superior in knowledge transfer, where a pre-trained model can be quickly extended to an unseen relation after observing only a few training samples. To further prove the effectiveness of the proposed models, in this work, we have applied NAMs to solving challenging Winograd Schema (WS) problems. Experiments conducted on a set of WS problems prove that the proposed models have the potential for commonsense reasoning.
Co-occurrence Feature Learning for Skeleton based Action Recognition using Regularized Deep LSTM Networks
Skeleton based action recognition distinguishes human actions using the trajectories of skeleton joints, which provide a very good representation for describing actions. Considering that recurrent neural networks (RNNs) with Long Short-Term Memory (LSTM) can learn feature representations and model long-term temporal dependencies automatically, we propose an end-to-end fully connected deep LSTM network for skeleton based action recognition. Inspired by the observation that the co-occurrences of the joints intrinsically characterize human actions, we take the skeleton as the input at each time slot and introduce a novel regularization scheme to learn the co-occurrence features of skeleton joints. To train the deep LSTM network effectively, we propose a new dropout algorithm which simultaneously operates on the gates, cells, and output responses of the LSTM neurons. Experimental results on three human action recognition datasets consistently demonstrate the effectiveness of the proposed model.
Conditional Similarity Networks
What makes images similar? To measure the similarity between images, they are typically embedded in a feature-vector space, in which their distance preserve the relative dissimilarity. However, when learning such similarity embeddings the simplifying assumption is commonly made that images are only compared to one unique measure of similarity. A main reason for this is that contradicting notions of similarities cannot be captured in a single space. To address this shortcoming, we propose Conditional Similarity Networks (CSNs) that learn embeddings differentiated into semantically distinct subspaces that capture the different notions of similarities. CSNs jointly learn a disentangled embedding where features for different similarities are encoded in separate dimensions as well as masks that select and reweight relevant dimensions to induce a subspace that encodes a specific similarity notion. We show that our approach learns interpretable image representations with visually relevant semantic subspaces. Further, when evaluating on triplet questions from multiple similarity notions our model even outperforms the accuracy obtained by training individual specialized networks for each notion separately.
Privacy-Preserved Big Data Analysis Based on Asymmetric Imputation Kernels and Multiside Similarities
This study presents an efficient approach for incomplete data classification, where the entries of samples are missing or masked due to privacy preservation. To deal with these incomplete data, a new kernel function with asymmetric intrinsic mappings is proposed in this study. Such a new kernel uses three-side similarities for kernel matrix formation. The similarity between a testing instance and a training sample relies not only on their distance but also on the relation between the testing sample and the centroid of the class, where the training sample belongs. This reduces biased estimation compared with typical methods when only one training sample is used for kernel matrix formation. Furthermore, centroid generation does not involve any clustering algorithms. The proposed kernel is capable of performing data imputation by using class-dependent averages. This enhances Fisher Discriminant Ratios and data discriminability. Experiments on two open databases were carried out for evaluating the proposed method. The result indicated that the accuracy of the proposed method was higher than that of the baseline. These findings thereby demonstrated the effectiveness of the proposed idea.
An end-to-end convolutional selective autoencoder approach to Soybean Cyst Nematode eggs detection
This paper proposes a novel selective autoencoder approach within the framework of deep convolutional networks. The crux of the idea is to train a deep convolutional autoencoder to suppress undesired parts of an image frame while allowing the desired parts resulting in efficient object detection. The efficacy of the framework is demonstrated on a critical plant science problem. In the United States, approximately $1 billion is lost per annum due to a nematode infection on soybean plants. Currently, plant-pathologists rely on labor-intensive and time-consuming identification of Soybean Cyst Nematode (SCN) eggs in soil samples via manual microscopy. The proposed framework attempts to significantly expedite the process by using a series of manually labeled microscopic images for training followed by automated high-throughput egg detection. The problem is particularly difficult due to the presence of a large population of non-egg particles (disturbances) in the image frames that are very similar to SCN eggs in shape, pose and illumination. Therefore, the selective autoencoder is trained to learn unique features related to the invariant shapes and sizes of the SCN eggs without handcrafting. After that, a composite non-maximum suppression and differencing is applied at the post-processing stage.
Early Detection of Combustion Instabilities using Deep Convolutional Selective Autoencoders on Hi-speed Flame Video
This paper proposes an end-to-end convolutional selective autoencoder approach for early detection of combustion instabilities using rapidly arriving flame image frames. The instabilities arising in combustion processes cause significant deterioration and safety issues in various human-engineered systems such as land and air based gas turbine engines. These properties are described as self-sustaining, large amplitude pressure oscillations and show varying spatial scales periodic coherent vortex structure shedding. However, such instability is extremely difficult to detect before a combustion process becomes completely unstable due to its sudden (bifurcation-type) nature. In this context, an autoencoder is trained to selectively mask stable flame and allow unstable flame image frames. In that process, the model learns to identify and extract rich descriptive and explanatory flame shape features. With such a training scheme, the selective autoencoder is shown to be able to detect subtle instability features as a combustion process makes transition from stable to unstable region. As a consequence, the deep learning tool-chain can perform as an early detection framework for combustion instabilities that will have a transformative impact on the safety and performance of modern engines.
Deep Learning At Scale and At Ease
Recently, deep learning techniques have enjoyed success in various multimedia applications, such as image classification and multi-modal data analysis. Large deep learning models are developed for learning rich representations of complex data. There are two challenges to overcome before deep learning can be widely adopted in multimedia and other applications. One is usability, namely the implementation of different models and training algorithms must be done by non-experts without much effort especially when the model is large and complex. The other is scalability, that is the deep learning system must be able to provision for a huge demand of computing resources for training large models with massive datasets. To address these two challenges, in this paper, we design a distributed deep learning platform called SINGA which has an intuitive programming model based on the common layer abstraction of deep learning models. Good scalability is achieved through flexible distributed training architecture and specific optimization techniques. SINGA runs on GPUs as well as on CPUs, and we show that it outperforms many other state-of-the-art deep learning systems. Our experience with developing and training deep learning models for real-life multimedia applications in SINGA shows that the platform is both usable and scalable.
A multinomial probabilistic model for movie genre predictions
This paper proposes a movie genre-prediction based on multinomial probability model. To the best of our knowledge, this problem has not been addressed yet in the field of recommender system. The prediction of a movie genre has many practical applications including complementing the items categories given by experts and providing a surprise effect in the recommendations given to a user. We employ mulitnomial event model to estimate a likelihood of a movie given genre and the Bayes rule to evaluate the posterior probability of a genre given a movie. Experiments with the MovieLens dataset validate our approach. We achieved 70% prediction rate using only 15% of the whole set for training.
The Asymptotic Performance of Linear Echo State Neural Networks
In this article, a study of the mean-square error (MSE) performance of linear echo-state neural networks is performed, both for training and testing tasks. Considering the realistic setting of noise present at the network nodes, we derive deterministic equivalents for the aforementioned MSE in the limit where the number of input data $T$ and network size $n$ both grow large. Specializing then the network connectivity matrix to specific random settings, we further obtain simple formulas that provide new insights on the performance of such networks.
Hybridization of Expectation-Maximization and K-Means Algorithms for Better Clustering Performance
The present work proposes hybridization of Expectation-Maximization (EM) and K-Means techniques as an attempt to speed-up the clustering process. Though both K-Means and EM techniques look into different areas, K-means can be viewed as an approximate way to obtain maximum likelihood estimates for the means. Along with the proposed algorithm for hybridization, the present work also experiments with the Standard EM algorithm. Six different datasets are used for the experiments of which three are synthetic datasets. Clustering fitness and Sum of Squared Errors (SSE) are computed for measuring the clustering performance. In all the experiments it is observed that the proposed algorithm for hybridization of EM and K-Means techniques is consistently taking less execution time with acceptable Clustering Fitness value and less SSE than the standard EM algorithm. It is also observed that the proposed algorithm is producing better clustering results than the Cluster package of Purdue University.
A Novel Biologically Mechanism-Based Visual Cognition Model--Automatic Extraction of Semantics, Formation of Integrated Concepts and Re-selection Features for Ambiguity
Integration between biology and information science benefits both fields. Many related models have been proposed, such as computational visual cognition models, computational motor control models, integrations of both and so on. In general, the robustness and precision of recognition is one of the key problems for object recognition models. In this paper, inspired by features of human recognition process and their biological mechanisms, a new integrated and dynamic framework is proposed to mimic the semantic extraction, concept formation and feature re-selection in human visual processing. The main contributions of the proposed model are as follows: (1) Semantic feature extraction: Local semantic features are learnt from episodic features that are extracted from raw images through a deep neural network; (2) Integrated concept formation: Concepts are formed with local semantic information and structural information learnt through network. (3) Feature re-selection: When ambiguity is detected during recognition process, distinctive features according to the difference between ambiguous candidates are re-selected for recognition. Experimental results on hand-written digits and facial shape dataset show that, compared with other methods, the new proposed model exhibits higher robustness and precision for visual recognition, especially in the condition when input samples are smantic ambiguous. Meanwhile, the introduced biological mechanisms further strengthen the interaction between neuroscience and information science.
Investigation Into The Effectiveness Of Long Short Term Memory Networks For Stock Price Prediction
The effectiveness of long short term memory networks trained by backpropagation through time for stock price prediction is explored in this paper. A range of different architecture LSTM networks are constructed trained and tested.
Developing Quantum Annealer Driven Data Discovery
Machine learning applications are limited by computational power. In this paper, we gain novel insights into the application of quantum annealing (QA) to machine learning (ML) through experiments in natural language processing (NLP), seizure prediction, and linear separability testing. These experiments are performed on QA simulators and early-stage commercial QA hardware and compared to an unprecedented number of traditional ML techniques. We extend QBoost, an early implementation of a binary classifier that utilizes a quantum annealer, via resampling and ensembling of predicted probabilities to produce a more robust class estimator. To determine the strengths and weaknesses of this approach, resampled QBoost (RQBoost) is tested across several datasets and compared to QBoost and traditional ML. We show and explain how QBoost in combination with a commercial QA device are unable to perfectly separate binary class data which is linearly separable via logistic regression with shrinkage. We further explore the performance of RQBoost in the space of NLP and seizure prediction and find QA-enabled ML using QBoost and RQBoost is outperformed by traditional techniques. Additionally, we provide a detailed discussion of algorithmic constraints and trade-offs imposed by the use of this QA hardware. Through these experiments, we provide unique insights into the state of quantum ML via boosting and the use of quantum annealing hardware that are valuable to institutions interested in applying QA to problems in ML and beyond.
How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
We investigate evaluation metrics for dialogue response generation systems where supervised labels, such as task completion, are not available. Recent works in response generation have adopted metrics from machine translation to compare a model's generated response to a single target response. We show that these metrics correlate very weakly with human judgements in the non-technical Twitter domain, and not at all in the technical Ubuntu domain. We provide quantitative and qualitative results highlighting specific weaknesses in existing metrics, and provide recommendations for future development of better automatic evaluation metrics for dialogue systems.
On the Simultaneous Preservation of Privacy and Community Structure in Anonymized Networks
We consider the problem of performing community detection on a network, while maintaining privacy, assuming that the adversary has access to an auxiliary correlated network. We ask the question "Does there exist a regime where the network cannot be deanonymized perfectly, yet the community structure could be learned?." To answer this question, we derive information theoretic converses for the perfect deanonymization problem using the Stochastic Block Model and edge sub-sampling. We also provide an almost tight achievability result for perfect deanonymization. We also evaluate the performance of percolation based deanonymization algorithm on Stochastic Block Model data-sets that satisfy the conditions of our converse. Although our converse applies to exact deanonymization, the algorithm fails drastically when the conditions of the converse are met. Additionally, we study the effect of edge sub-sampling on the community structure of a real world dataset. Results show that the dataset falls under the purview of the idea of this paper. There results suggest that it may be possible to prove stronger partial deanonymizability converses, which would enable better privacy guarantees.
Resnet in Resnet: Generalizing Residual Architectures
Residual networks (ResNets) have recently achieved state-of-the-art on challenging computer vision tasks. We introduce Resnet in Resnet (RiR): a deep dual-stream architecture that generalizes ResNets and standard CNNs and is easily implemented with no computational overhead. RiR consistently improves performance over ResNets, outperforms architectures with similar amounts of augmentation on CIFAR-10, and establishes a new state-of-the-art on CIFAR-100.
On kernel methods for covariates that are rankings
Permutation-valued features arise in a variety of applications, either in a direct way when preferences are elicited over a collection of items, or an indirect way in which numerical ratings are converted to a ranking. To date, there has been relatively limited study of regression, classification, and testing problems based on permutation-valued features, as opposed to permutation-valued responses. This paper studies the use of reproducing kernel Hilbert space methods for learning from permutation-valued features. These methods embed the rankings into an implicitly defined function space, and allow for efficient estimation of regression and test functions in this richer space. Our first contribution is to characterize both the feature spaces and spectral properties associated with two kernels for rankings, the Kendall and Mallows kernels. Using tools from representation theory, we explain the limited expressive power of the Kendall kernel by characterizing its degenerate spectrum, and in sharp contrast, we prove that Mallows' kernel is universal and characteristic. We also introduce families of polynomial kernels that interpolate between the Kendall (degree one) and Mallows' (infinite degree) kernels. We show the practical effectiveness of our methods via applications to Eurobarometer survey data as well as a Movielens ratings dataset.
On the Detection of Mixture Distributions with applications to the Most Biased Coin Problem
This paper studies the trade-off between two different kinds of pure exploration: breadth versus depth. The most biased coin problem asks how many total coin flips are required to identify a "heavy" coin from an infinite bag containing both "heavy" coins with mean $\theta_1 \in (0,1)$, and "light" coins with mean $\theta_0 \in (0,\theta_1)$, where heavy coins are drawn from the bag with probability $\alpha \in (0,1/2)$. The key difficulty of this problem lies in distinguishing whether the two kinds of coins have very similar means, or whether heavy coins are just extremely rare. This problem has applications in crowdsourcing, anomaly detection, and radio spectrum search. Chandrasekaran et. al. (2014) recently introduced a solution to this problem but it required perfect knowledge of $\theta_0,\theta_1,\alpha$. In contrast, we derive algorithms that are adaptive to partial or absent knowledge of the problem parameters. Moreover, our techniques generalize beyond coins to more general instances of infinitely many armed bandit problems. We also prove lower bounds that show our algorithm's upper bounds are tight up to $\log$ factors, and on the way characterize the sample complexity of differentiating between a single parametric distribution and a mixture of two such distributions. As a result, these bounds have surprising implications both for solutions to the most biased coin problem and for anomaly detection when only partial information about the parameters is known.
On the Compression of Recurrent Neural Networks with an Application to LVCSR acoustic modeling for Embedded Speech Recognition
We study the problem of compressing recurrent neural networks (RNNs). In particular, we focus on the compression of RNN acoustic models, which are motivated by the goal of building compact and accurate speech recognition systems which can be run efficiently on mobile devices. In this work, we present a technique for general recurrent model compression that jointly compresses both recurrent and non-recurrent inter-layer weight matrices. We find that the proposed technique allows us to reduce the size of our Long Short-Term Memory (LSTM) acoustic model to a third of its original size with negligible loss in accuracy.
Pointing the Unknown Words
The problem of rare and unknown words is an important issue that can potentially influence the performance of many NLP systems, including both the traditional count-based and the deep learning models. We propose a novel way to deal with the rare and unseen words for the neural network models using attention. Our model uses two softmax layers in order to predict the next word in conditional language models: one predicts the location of a word in the source sentence, and the other predicts a word in the shortlist vocabulary. At each time-step, the decision of which softmax layer to use choose adaptively made by an MLP which is conditioned on the context.~We motivate our work from a psychological evidence that humans naturally have a tendency to point towards objects in the context or the environment when the name of an object is not known.~We observe improvements on two tasks, neural machine translation on the Europarl English to French parallel corpora and text summarization on the Gigaword dataset using our proposed model.
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a \emph{per-pixel} loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing \emph{perceptual} loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.