title
stringlengths
7
246
abstract
stringlengths
6
3.31k
Human Pose Estimation using Deep Consensus Voting
In this paper we consider the problem of human pose estimation from a single still image. We propose a novel approach where each location in the image votes for the position of each keypoint using a convolutional neural net. The voting scheme allows us to utilize information from the whole image, rather than rely on a sparse set of keypoint locations. Using dense, multi-target votes, not only produces good keypoint predictions, but also enables us to compute image-dependent joint keypoint probabilities by looking at consensus voting. This differs from most previous methods where joint probabilities are learned from relative keypoint locations and are independent of the image. We finally combine the keypoints votes and joint probabilities in order to identify the optimal pose configuration. We show our competitive performance on the MPII Human Pose and Leeds Sports Pose datasets.
Evolution of active categorical image classification via saccadic eye movement
Pattern recognition and classification is a central concern for modern information processing systems. In particular, one key challenge to image and video classification has been that the computational cost of image processing scales linearly with the number of pixels in the image or video. Here we present an intelligent machine (the "active categorical classifier," or ACC) that is inspired by the saccadic movements of the eye, and is capable of classifying images by selectively scanning only a portion of the image. We harness evolutionary computation to optimize the ACC on the MNIST hand-written digit classification task, and provide a proof-of-concept that the ACC works on noisy multi-class data. We further analyze the ACC and demonstrate its ability to classify images after viewing only a fraction of the pixels, and provide insight on future research paths to further improve upon the ACC presented here.
Negative Learning Rates and P-Learning
We present a method of training a differentiable function approximator for a regression task using negative examples. We effect this training using negative learning rates. We also show how this method can be used to perform direct policy learning in a reinforcement learning setting.
Towards Machine Intelligence
There exists a theory of a single general-purpose learning algorithm which could explain the principles of its operation. This theory assumes that the brain has some initial rough architecture, a small library of simple innate circuits which are prewired at birth and proposes that all significant mental algorithms can be learned. Given current understanding and observations, this paper reviews and lists the ingredients of such an algorithm from both architectural and functional perspectives.
Non-Greedy L21-Norm Maximization for Principal Component Analysis
Principal Component Analysis (PCA) is one of the most important unsupervised methods to handle high-dimensional data. However, due to the high computational complexity of its eigen decomposition solution, it hard to apply PCA to the large-scale data with high dimensionality. Meanwhile, the squared L2-norm based objective makes it sensitive to data outliers. In recent research, the L1-norm maximization based PCA method was proposed for efficient computation and being robust to outliers. However, this work used a greedy strategy to solve the eigen vectors. Moreover, the L1-norm maximization based objective may not be the correct robust PCA formulation, because it loses the theoretical connection to the minimization of data reconstruction error, which is one of the most important intuitions and goals of PCA. In this paper, we propose to maximize the L21-norm based robust PCA objective, which is theoretically connected to the minimization of reconstruction error. More importantly, we propose the efficient non-greedy optimization algorithms to solve our objective and the more general L21-norm maximization problem with theoretically guaranteed convergence. Experimental results on real world data sets show the effectiveness of the proposed method for principal component analysis.
The SVM Classifier Based on the Modified Particle Swarm Optimization
The problem of development of the SVM classifier based on the modified particle swarm optimization has been considered. This algorithm carries out the simultaneous search of the kernel function type, values of the kernel function parameters and value of the regularization parameter for the SVM classifier. Such SVM classifier provides the high quality of data classification. The idea of particles' {\guillemotleft}regeneration{\guillemotright} is put on the basis of the modified particle swarm optimization algorithm. At the realization of this idea, some particles change their kernel function type to the one which corresponds to the particle with the best value of the classification accuracy. The offered particle swarm optimization algorithm allows reducing the time expenditures for development of the SVM classifier. The results of experimental studies confirm the efficiency of this algorithm.
Exclusivity Regularized Machine
It has been recognized that the diversity of base learners is of utmost importance to a good ensemble. This paper defines a novel measurement of diversity, termed as exclusivity. With the designed exclusivity, we further propose an ensemble model, namely Exclusivity Regularized Machine (ERM), to jointly suppress the training error of ensemble and enhance the diversity between bases. Moreover, an Augmented Lagrange Multiplier based algorithm is customized to effectively and efficiently seek the optimal solution of ERM. Theoretical analysis on convergence and global optimality of the proposed algorithm, as well as experiments are provided to reveal the efficacy of our method and show its superiority over state-of-the-art alternatives in terms of accuracy and efficiency.
Audio Visual Emotion Recognition with Temporal Alignment and Perception Attention
This paper focuses on two key problems for audio-visual emotion recognition in the video. One is the audio and visual streams temporal alignment for feature level fusion. The other one is locating and re-weighting the perception attentions in the whole audio-visual stream for better recognition. The Long Short Term Memory Recurrent Neural Network (LSTM-RNN) is employed as the main classification architecture. Firstly, soft attention mechanism aligns the audio and visual streams. Secondly, seven emotion embedding vectors, which are corresponding to each classification emotion type, are added to locate the perception attentions. The locating and re-weighting process is also based on the soft attention mechanism. The experiment results on EmotiW2015 dataset and the qualitative analysis show the efficiency of the proposed two techniques.
Hierarchical Gaussian Mixture Model with Objects Attached to Terminal and Non-terminal Dendrogram Nodes
A hierarchical clustering algorithm based on Gaussian mixture model is presented. The key difference to regular hierarchical mixture models is the ability to store objects in both terminal and nonterminal nodes. Upper levels of the hierarchy contain sparsely distributed objects, while lower levels contain densely represented ones. As it was shown by experiments, this ability helps in noise detection (modelling). Furthermore, compared to regular hierarchical mixture model, the presented method generates more compact dendrograms with higher quality measured by adopted F-measure.
Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs
In this work we propose a structured prediction technique that combines the virtues of Gaussian Conditional Random Fields (G-CRF) with Deep Learning: (a) our structured prediction task has a unique global optimum that is obtained exactly from the solution of a linear system (b) the gradients of our model parameters are analytically computed using closed form expressions, in contrast to the memory-demanding contemporary deep structured prediction approaches that rely on back-propagation-through-time, (c) our pairwise terms do not have to be simple hand-crafted expressions, as in the line of works building on the DenseCRF, but can rather be `discovered' from data through deep architectures, and (d) out system can trained in an end-to-end manner. Building on standard tools from numerical analysis we develop very efficient algorithms for inference and learning, as well as a customized technique adapted to the semantic segmentation task. This efficiency allows us to explore more sophisticated architectures for structured prediction in deep learning: we introduce multi-resolution architectures to couple information across scales in a joint optimization framework, yielding systematic improvements. We demonstrate the utility of our approach on the challenging VOC PASCAL 2012 image segmentation benchmark, showing substantial improvements over strong baselines. We make all of our code and experiments available at {https://github.com/siddharthachandra/gcrf}
Sparse Activity and Sparse Connectivity in Supervised Learning
Sparseness is a useful regularizer for learning in a wide range of applications, in particular in neural networks. This paper proposes a model targeted at classification tasks, where sparse activity and sparse connectivity are used to enhance classification capabilities. The tool for achieving this is a sparseness-enforcing projection operator which finds the closest vector with a pre-defined sparseness for any given vector. In the theoretical part of this paper, a comprehensive theory for such a projection is developed. In conclusion, it is shown that the projection is differentiable almost everywhere and can thus be implemented as a smooth neuronal transfer function. The entire model can hence be tuned end-to-end using gradient-based methods. Experiments on the MNIST database of handwritten digits show that classification performance can be boosted by sparse activity or sparse connectivity. With a combination of both, performance can be significantly better compared to classical non-sparse approaches.
Deep Embedding for Spatial Role Labeling
This paper introduces the visually informed embedding of word (VIEW), a continuous vector representation for a word extracted from a deep neural model trained using the Microsoft COCO data set to forecast the spatial arrangements between visual objects, given a textual description. The model is composed of a deep multilayer perceptron (MLP) stacked on the top of a Long Short Term Memory (LSTM) network, the latter being preceded by an embedding layer. The VIEW is applied to transferring multimodal background knowledge to Spatial Role Labeling (SpRL) algorithms, which recognize spatial relations between objects mentioned in the text. This work also contributes with a new method to select complementary features and a fine-tuning method for MLP that improves the $F1$ measure in classifying the words into spatial roles. The VIEW is evaluated with the Task 3 of SemEval-2013 benchmark data set, SpaceEval.
Estimating Mixture Models via Mixtures of Polynomials
Mixture modeling is a general technique for making any simple model more expressive through weighted combination. This generality and simplicity in part explains the success of the Expectation Maximization (EM) algorithm, in which updates are easy to derive for a wide class of mixture models. However, the likelihood of a mixture model is non-convex, so EM has no known global convergence guarantees. Recently, method of moments approaches offer global guarantees for some mixture models, but they do not extend easily to the range of mixture models that exist. In this work, we present Polymom, an unifying framework based on method of moments in which estimation procedures are easily derivable, just as in EM. Polymom is applicable when the moments of a single mixture component are polynomials of the parameters. Our key observation is that the moments of the mixture model are a mixture of these polynomials, which allows us to cast estimation as a Generalized Moment Problem. We solve its relaxations using semidefinite optimization, and then extract parameters using ideas from computer algebra. This framework allows us to draw insights and apply tools from convex optimization, computer algebra and the theory of moments to study problems in statistical estimation.
Shuffle and Learn: Unsupervised Learning using Temporal Order Verification
In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semantic labels, we learn a powerful visual representation using a Convolutional Neural Network (CNN). The representation contains complementary information to that learned from supervised image datasets like ImageNet. Qualitative results show that our method captures information that is temporally varying, such as human pose. When used as pre-training for action recognition, our method gives significant gains over learning without external data on benchmark datasets like UCF101 and HMDB51. To demonstrate its sensitivity to human pose, we show results for pose estimation on the FLIC and MPII datasets that are competitive, or better than approaches using significantly more supervision. Our method can be combined with supervised representations to provide an additional boost in accuracy.
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
We present a framework for efficient inference in structured image models that explicitly reason about objects. We achieve this by performing probabilistic inference using a recurrent neural network that attends to scene elements and processes them one at a time. Crucially, the model itself learns to choose the appropriate number of inference steps. We use this scheme to learn to perform inference in partially specified 2D models (variable-sized variational auto-encoders) and fully specified 3D models (probabilistic renderers). We show that such models learn to identify multiple objects - counting, locating and classifying the elements of a scene - without any supervision, e.g., decomposing 3D images with various numbers of objects in a single forward pass of a neural network. We further show that the networks produce accurate inferences when compared to supervised counterparts, and that their structure leads to improved generalization.
Classification-based Financial Markets Prediction using Deep Neural Networks
Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the application of DNNs to predicting financial market movement directions. In particular we describe the configuration and training approach and then demonstrate their application to backtesting a simple trading strategy over 43 different Commodity and FX future mid-prices at 5-minute intervals. All results in this paper are generated using a C++ implementation on the Intel Xeon Phi co-processor which is 11.4x faster than the serial version and a Python strategy backtesting environment both of which are available as open source code written by the authors.
Submodular Variational Inference for Network Reconstruction
In real-world and online social networks, individuals receive and transmit information in real time. Cascading information transmissions (e.g. phone calls, text messages, social media posts) may be understood as a realization of a diffusion process operating on the network, and its branching path can be represented by a directed tree. The process only traverses and thus reveals a limited portion of the edges. The network reconstruction/inference problem is to infer the unrevealed connections. Most existing approaches derive a likelihood and attempt to find the network topology maximizing the likelihood, a problem that is highly intractable. In this paper, we focus on the network reconstruction problem for a broad class of real-world diffusion processes, exemplified by a network diffusion scheme called respondent-driven sampling (RDS). We prove that under realistic and general models of network diffusion, the posterior distribution of an observed RDS realization is a Bayesian log-submodular model.We then propose VINE (Variational Inference for Network rEconstruction), a novel, accurate, and computationally efficient variational inference algorithm, for the network reconstruction problem under this model. Crucially, we do not assume any particular probabilistic model for the underlying network. VINE recovers any connected graph with high accuracy as shown by our experimental results on real-life networks.
Regret Analysis of the Anytime Optimally Confident UCB Algorithm
I introduce and analyse an anytime version of the Optimally Confident UCB (OCUCB) algorithm designed for minimising the cumulative regret in finite-armed stochastic bandits with subgaussian noise. The new algorithm is simple, intuitive (in hindsight) and comes with the strongest finite-time regret guarantees for a horizon-free algorithm so far. I also show a finite-time lower bound that nearly matches the upper bound.
Interpretability of Multivariate Brain Maps in Brain Decoding: Definition and Quantification
Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed theoretical definition, we formalize a heuristic method for approximating the interpretability of multivariate brain maps in a binary magnetoencephalography (MEG) decoding scenario. Third, we propose to combine the approximated interpretability and the performance of the brain decoding model into a new multi-objective criterion for model selection. Our results for the MEG data show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms in the future.
Machine Learning and Cloud Computing: Survey of Distributed and SaaS Solutions
Applying popular machine learning algorithms to large amounts of data raised new challenges for the ML practitioners. Traditional ML libraries does not support well processing of huge datasets, so that new approaches were needed. Parallelization using modern parallel computing frameworks, such as MapReduce, CUDA, or Dryad gained in popularity and acceptance, resulting in new ML libraries developed on top of these frameworks. We will briefly introduce the most prominent industrial and academic outcomes, such as Apache Mahout, GraphLab or Jubatus. We will investigate how cloud computing paradigm impacted the field of ML. First direction is of popular statistics tools and libraries (R system, Python) deployed in the cloud. A second line of products is augmenting existing tools with plugins that allow users to create a Hadoop cluster in the cloud and run jobs on it. Next on the list are libraries of distributed implementations for ML algorithms, and on-premise deployments of complex systems for data analytics and data mining. Last approach on the radar of this survey is ML as Software-as-a-Service, several BigData start-ups (and large companies as well) already opening their solutions to the market.
Spectral M-estimation with Applications to Hidden Markov Models
Method of moment estimators exhibit appealing statistical properties, such as asymptotic unbiasedness, for nonconvex problems. However, they typically require a large number of samples and are extremely sensitive to model misspecification. In this paper, we apply the framework of M-estimation to develop both a generalized method of moments procedure and a principled method for regularization. Our proposed M-estimator obtains optimal sample efficiency rates (in the class of moment-based estimators) and the same well-known rates on prediction accuracy as other spectral estimators. It also makes it straightforward to incorporate regularization into the sample moment conditions. We demonstrate empirically the gains in sample efficiency from our approach on hidden Markov models.
Towards Understanding Sparse Filtering: A Theoretical Perspective
In this paper we present a theoretical analysis to understand sparse filtering, a recent and effective algorithm for unsupervised learning. The aim of this research is not to show whether or how well sparse filtering works, but to understand why and when sparse filtering does work. We provide a thorough theoretical analysis of sparse filtering and its properties, and further offer an experimental validation of the main outcomes of our theoretical analysis. We show that sparse filtering works by explicitly maximizing the entropy of the learned representation through the maximization of the proxy of sparsity, and by implicitly preserving mutual information between original and learned representations through the constraint of preserving a structure of the data, specifically the structure defined by relations of neighborhoodness under the cosine distance. Furthermore, we empirically validate our theoretical results with artificial and real data sets, and we apply our theoretical understanding to explain the success of sparse filtering on real-world problems. Our work provides a strong theoretical basis for understanding sparse filtering: it highlights assumptions and conditions for success behind this feature distribution learning algorithm, and provides insights for developing new feature distribution learning algorithms.
Revisiting Semi-Supervised Learning with Graph Embeddings
We present a semi-supervised learning framework based on graph embeddings. Given a graph between instances, we train an embedding for each instance to jointly predict the class label and the neighborhood context in the graph. We develop both transductive and inductive variants of our method. In the transductive variant of our method, the class labels are determined by both the learned embeddings and input feature vectors, while in the inductive variant, the embeddings are defined as a parametric function of the feature vectors, so predictions can be made on instances not seen during training. On a large and diverse set of benchmark tasks, including text classification, distantly supervised entity extraction, and entity classification, we show improved performance over many of the existing models.
Detecting weak changes in dynamic events over networks
Large volume of networked streaming event data are becoming increasingly available in a wide variety of applications, such as social network analysis, Internet traffic monitoring and healthcare analytics. Streaming event data are discrete observation occurred in continuous time, and the precise time interval between two events carries a great deal of information about the dynamics of the underlying systems. How to promptly detect changes in these dynamic systems using these streaming event data? In this paper, we propose a novel change-point detection framework for multi-dimensional event data over networks. We cast the problem into sequential hypothesis test, and derive the likelihood ratios for point processes, which are computed efficiently via an EM-like algorithm that is parameter-free and can be computed in a distributed fashion. We derive a highly accurate theoretical characterization of the false-alarm-rate, and show that it can achieve weak signal detection by aggregating local statistics over time and networks. Finally, we demonstrate the good performance of our algorithm on numerical examples and real-world datasets from twitter and Memetracker.
Towards Practical Bayesian Parameter and State Estimation
Joint state and parameter estimation is a core problem for dynamic Bayesian networks. Although modern probabilistic inference toolkits make it relatively easy to specify large and practically relevant probabilistic models, the silver bullet---an efficient and general online inference algorithm for such problems---remains elusive, forcing users to write special-purpose code for each application. We propose a novel blackbox algorithm -- a hybrid of particle filtering for state variables and assumed density filtering for parameter variables. It has following advantages: (a) it is efficient due to its online nature, and (b) it is applicable to both discrete and continuous parameter spaces . On a variety of toy and real models, our system is able to generate more accurate results within a fixed computation budget. This preliminary evidence indicates that the proposed approach is likely to be of practical use.
Online Rules for Control of False Discovery Rate and False Discovery Exceedance
Multiple hypothesis testing is a core problem in statistical inference and arises in almost every scientific field. Given a set of null hypotheses $\mathcal{H}(n) = (H_1,\dotsc, H_n)$, Benjamini and Hochberg introduced the false discovery rate (FDR), which is the expected proportion of false positives among rejected null hypotheses, and proposed a testing procedure that controls FDR below a pre-assigned significance level. Nowadays FDR is the criterion of choice for large scale multiple hypothesis testing. In this paper we consider the problem of controlling FDR in an "online manner". Concretely, we consider an ordered --possibly infinite-- sequence of null hypotheses $\mathcal{H} = (H_1,H_2,H_3,\dots )$ where, at each step $i$, the statistician must decide whether to reject hypothesis $H_i$ having access only to the previous decisions. This model was introduced by Foster and Stine. We study a class of "generalized alpha-investing" procedures and prove that any rule in this class controls online FDR, provided $p$-values corresponding to true nulls are independent from the other $p$-values. (Earlier work only established mFDR control.) Next, we obtain conditions under which generalized alpha-investing controls FDR in the presence of general $p$-values dependencies. Finally, we develop a modified set of procedures that also allow to control the false discovery exceedance (the tail of the proportion of false discoveries). Numerical simulations and analytical results indicate that online procedures do not incur a large loss in statistical power with respect to offline approaches, such as Benjamini-Hochberg.
Recurrent Batch Normalization
We propose a reparameterization of LSTM that brings the benefits of batch normalization to recurrent neural networks. Whereas previous works only apply batch normalization to the input-to-hidden transformation of RNNs, we demonstrate that it is both possible and beneficial to batch-normalize the hidden-to-hidden transition, thereby reducing internal covariate shift between time steps. We evaluate our proposal on various sequential problems such as sequence classification, language modeling and question answering. Our empirical results show that our batch-normalized LSTM consistently leads to faster convergence and improved generalization.
Towards Geo-Distributed Machine Learning
Latency to end-users and regulatory requirements push large companies to build data centers all around the world. The resulting data is "born" geographically distributed. On the other hand, many machine learning applications require a global view of such data in order to achieve the best results. These types of applications form a new class of learning problems, which we call Geo-Distributed Machine Learning (GDML). Such applications need to cope with: 1) scarce and expensive cross-data center bandwidth, and 2) growing privacy concerns that are pushing for stricter data sovereignty regulations. Current solutions to learning from geo-distributed data sources revolve around the idea of first centralizing the data in one data center, and then training locally. As machine learning algorithms are communication-intensive, the cost of centralizing the data is thought to be offset by the lower cost of intra-data center communication during training. In this work, we show that the current centralized practice can be far from optimal, and propose a system for doing geo-distributed training. Furthermore, we argue that the geo-distributed approach is structurally more amenable to dealing with regulatory constraints, as raw data never leaves the source data center. Our empirical evaluation on three real datasets confirms the general validity of our approach, and shows that GDML is not only possible but also advisable in many scenarios.
Cost-Sensitive Label Embedding for Multi-Label Classification
Label embedding (LE) is an important family of multi-label classification algorithms that digest the label information jointly for better performance. Different real-world applications evaluate performance by different cost functions of interest. Current LE algorithms often aim to optimize one specific cost function, but they can suffer from bad performance with respect to other cost functions. In this paper, we resolve the performance issue by proposing a novel cost-sensitive LE algorithm that takes the cost function of interest into account. The proposed algorithm, cost-sensitive label embedding with multidimensional scaling (CLEMS), approximates the cost information with the distances of the embedded vectors by using the classic multidimensional scaling approach for manifold learning. CLEMS is able to deal with both symmetric and asymmetric cost functions, and effectively makes cost-sensitive decisions by nearest-neighbor decoding within the embedded vectors. We derive theoretical results that justify how CLEMS achieves the desired cost-sensitivity. Furthermore, extensive experimental results demonstrate that CLEMS is significantly better than a wide spectrum of existing LE algorithms and state-of-the-art cost-sensitive algorithms across different cost functions.
Robustness of Bayesian Pool-based Active Learning Against Prior Misspecification
We study the robustness of active learning (AL) algorithms against prior misspecification: whether an algorithm achieves similar performance using a perturbed prior as compared to using the true prior. In both the average and worst cases of the maximum coverage setting, we prove that all $\alpha$-approximate algorithms are robust (i.e., near $\alpha$-approximate) if the utility is Lipschitz continuous in the prior. We further show that robustness may not be achieved if the utility is non-Lipschitz. This suggests we should use a Lipschitz utility for AL if robustness is required. For the minimum cost setting, we can also obtain a robustness result for approximate AL algorithms. Our results imply that many commonly used AL algorithms are robust against perturbed priors. We then propose the use of a mixture prior to alleviate the problem of prior misspecification. We analyze the robustness of the uniform mixture prior and show experimentally that it performs reasonably well in practice.
Semi-Supervised Learning on Graphs through Reach and Distance Diffusion
Semi-supervised learning (SSL) is an indispensable tool when there are few labeled entities and many unlabeled entities for which we want to predict labels. With graph-based methods, entities correspond to nodes in a graph and edges represent strong relations. At the heart of SSL algorithms is the specification of a dense {\em kernel} of pairwise affinity values from the graph structure. A learning algorithm is then trained on the kernel together with labeled entities. The most popular kernels are {\em spectral} and include the highly scalable "symmetric" Laplacian methods, that compute a soft labels using Jacobi iterations, and "asymmetric" methods including Personalized Page Rank (PPR) which use short random walks and apply with directed relations, such as like, follow, or hyperlinks. We introduce {\em Reach diffusion} and {\em Distance diffusion} kernels that build on powerful social and economic models of centrality and influence in networks and capture the directed pairwise relations that underline social influence. Inspired by the success of social influence as an alternative to spectral centrality such as Page Rank, we explore SSL with our kernels and develop highly scalable algorithms for parameter setting, label learning, and sampling. We perform preliminary experiments that demonstrate the properties and potential of our kernels.
deepTarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks
MicroRNAs (miRNAs) are short sequences of ribonucleic acids that control the expression of target messenger RNAs (mRNAs) by binding them. Robust prediction of miRNA-mRNA pairs is of utmost importance in deciphering gene regulations but has been challenging because of high false positive rates, despite a deluge of computational tools that normally require laborious manual feature extraction. This paper presents an end-to-end machine learning framework for miRNA target prediction. Leveraged by deep recurrent neural networks-based auto-encoding and sequence-sequence interaction learning, our approach not only delivers an unprecedented level of accuracy but also eliminates the need for manual feature extraction. The performance gap between the proposed method and existing alternatives is substantial (over 25% increase in F-measure), and deepTarget delivers a quantum leap in the long-standing challenge of robust miRNA target prediction.
Bilingual Learning of Multi-sense Embeddings with Discrete Autoencoders
We present an approach to learning multi-sense word embeddings relying both on monolingual and bilingual information. Our model consists of an encoder, which uses monolingual and bilingual context (i.e. a parallel sentence) to choose a sense for a given word, and a decoder which predicts context words based on the chosen sense. The two components are estimated jointly. We observe that the word representations induced from bilingual data outperform the monolingual counterparts across a range of evaluation tasks, even though crosslingual information is not available at test time.
Model Interpolation with Trans-dimensional Random Field Language Models for Speech Recognition
The dominant language models (LMs) such as n-gram and neural network (NN) models represent sentence probabilities in terms of conditionals. In contrast, a new trans-dimensional random field (TRF) LM has been recently introduced to show superior performances, where the whole sentence is modeled as a random field. In this paper, we examine how the TRF models can be interpolated with the NN models, and obtain 12.1\% and 17.9\% relative error rate reductions over 6-gram LMs for English and Chinese speech recognition respectively through log-linear combination.
Optimal Recommendation to Users that React: Online Learning for a Class of POMDPs
We describe and study a model for an Automated Online Recommendation System (AORS) in which a user's preferences can be time-dependent and can also depend on the history of past recommendations and play-outs. The three key features of the model that makes it more realistic compared to existing models for recommendation systems are (1) user preference is inherently latent, (2) current recommendations can affect future preferences, and (3) it allows for the development of learning algorithms with provable performance guarantees. The problem is cast as an average-cost restless multi-armed bandit for a given user, with an independent partially observable Markov decision process (POMDP) for each item of content. We analyze the POMDP for a single arm, describe its structural properties, and characterize its optimal policy. We then develop a Thompson sampling-based online reinforcement learning algorithm to learn the parameters of the model and optimize utility from the binary responses of the users to continuous recommendations. We then analyze the performance of the learning algorithm and characterize the regret. Illustrative numerical results and directions for extension to the restless hidden Markov multi-armed bandit problem are also presented.
Degrees of Freedom in Deep Neural Networks
In this paper, we explore degrees of freedom in deep sigmoidal neural networks. We show that the degrees of freedom in these models is related to the expected optimism, which is the expected difference between test error and training error. We provide an efficient Monte-Carlo method to estimate the degrees of freedom for multi-class classification methods. We show degrees of freedom are lower than the parameter count in a simple XOR network. We extend these results to neural nets trained on synthetic and real data, and investigate impact of network's architecture and different regularization choices. The degrees of freedom in deep networks are dramatically smaller than the number of parameters, in some real datasets several orders of magnitude. Further, we observe that for fixed number of parameters, deeper networks have less degrees of freedom exhibiting a regularization-by-depth.
Clinical Information Extraction via Convolutional Neural Network
We report an implementation of a clinical information extraction tool that leverages deep neural network to annotate event spans and their attributes from raw clinical notes and pathology reports. Our approach uses context words and their part-of-speech tags and shape information as features. Then we hire temporal (1D) convolutional neural network to learn hidden feature representations. Finally, we use Multilayer Perceptron (MLP) to predict event spans. The empirical evaluation demonstrates that our approach significantly outperforms baselines.
Deep Networks with Stochastic Depth
Very deep convolutional networks with hundreds of layers have led to significant reductions in error on competitive benchmarks. Although the unmatched expressiveness of the many layers can be highly desirable at test time, training very deep networks comes with its own set of challenges. The gradients can vanish, the forward flow often diminishes, and the training time can be painfully slow. To address these problems, we propose stochastic depth, a training procedure that enables the seemingly contradictory setup to train short networks and use deep networks at test time. We start with very deep networks but during training, for each mini-batch, randomly drop a subset of layers and bypass them with the identity function. This simple approach complements the recent success of residual networks. It reduces training time substantially and improves the test error significantly on almost all data sets that we used for evaluation. With stochastic depth we can increase the depth of residual networks even beyond 1200 layers and still yield meaningful improvements in test error (4.91% on CIFAR-10).
Minimal Gated Unit for Recurrent Neural Networks
Recently recurrent neural networks (RNN) has been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN is a difficult task, partly because there are many competing and complex hidden units (such as LSTM and GRU). We propose a gated unit for RNN, named as Minimal Gated Unit (MGU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MGU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MGU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically.
A Stratified Analysis of Bayesian Optimization Methods
Empirical analysis serves as an important complement to theoretical analysis for studying practical Bayesian optimization. Often empirical insights expose strengths and weaknesses inaccessible to theoretical analysis. We define two metrics for comparing the performance of Bayesian optimization methods and propose a ranking mechanism for summarizing performance within various genres or strata of test functions. These test functions serve to mimic the complexity of hyperparameter optimization problems, the most prominent application of Bayesian optimization, but with a closed form which allows for rapid evaluation and more predictable behavior. This offers a flexible and efficient way to investigate functions with specific properties of interest, such as oscillatory behavior or an optimum on the domain boundary.
A ParaBoost Stereoscopic Image Quality Assessment (PBSIQA) System
The problem of stereoscopic image quality assessment, which finds applications in 3D visual content delivery such as 3DTV, is investigated in this work. Specifically, we propose a new ParaBoost (parallel-boosting) stereoscopic image quality assessment (PBSIQA) system. The system consists of two stages. In the first stage, various distortions are classified into a few types, and individual quality scorers targeting at a specific distortion type are developed. These scorers offer complementary performance in face of a database consisting of heterogeneous distortion types. In the second stage, scores from multiple quality scorers are fused to achieve the best overall performance, where the fuser is designed based on the parallel boosting idea borrowed from machine learning. Extensive experimental results are conducted to compare the performance of the proposed PBSIQA system with those of existing stereo image quality assessment (SIQA) metrics. The developed quality metric can serve as an objective function to optimize the performance of a 3D content delivery system.
Learning Compatibility Across Categories for Heterogeneous Item Recommendation
Identifying relationships between items is a key task of an online recommender system, in order to help users discover items that are functionally complementary or visually compatible. In domains like clothing recommendation, this task is particularly challenging since a successful system should be capable of handling a large corpus of items, a huge amount of relationships among them, as well as the high-dimensional and semantically complicated features involved. Furthermore, the human notion of "compatibility" to capture goes beyond mere similarity: For two items to be compatible---whether jeans and a t-shirt, or a laptop and a charger---they should be similar in some ways, but systematically different in others. In this paper we propose a novel method, Monomer, to learn complicated and heterogeneous relationships between items in product recommendation settings. Recently, scalable methods have been developed that address this task by learning similarity metrics on top of the content of the products involved. Here our method relaxes the metricity assumption inherent in previous work and models multiple localized notions of 'relatedness,' so as to uncover ways in which related items should be systematically similar, and systematically different. Quantitatively, we show that our system achieves state-of-the-art performance on large-scale compatibility prediction tasks, especially in cases where there is substantial heterogeneity between related items. Qualitatively, we demonstrate that richer notions of compatibility can be learned that go beyond similarity, and that our model can make effective recommendations of heterogeneous content.
Learning Multiscale Features Directly From Waveforms
Deep learning has dramatically improved the performance of speech recognition systems through learning hierarchies of features optimized for the task at hand. However, true end-to-end learning, where features are learned directly from waveforms, has only recently reached the performance of hand-tailored representations based on the Fourier transform. In this paper, we detail an approach to use convolutional filters to push past the inherent tradeoff of temporal and frequency resolution that exists for spectral representations. At increased computational cost, we show that increasing temporal resolution via reduced stride and increasing frequency resolution via additional filters delivers significant performance improvements. Further, we find more efficient representations by simultaneously learning at multiple scales, leading to an overall decrease in word error rate on a difficult internal speech test set by 20.7% relative to networks with the same number of parameters trained on spectrograms.
Online Optimization with Costly and Noisy Measurements using Random Fourier Expansions
This paper analyzes DONE, an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion (RFE). The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable to Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyper-parameters of the algorithm should be chosen. The algorithm is compared to a Bayesian optimization algorithm for a benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems, while achieving a similar or better performance.
Differentiable Pooling for Unsupervised Acoustic Model Adaptation
We present a deep neural network (DNN) acoustic model that includes parametrised and differentiable pooling operators. Unsupervised acoustic model adaptation is cast as the problem of updating the decision boundaries implemented by each pooling operator. In particular, we experiment with two types of pooling parametrisations: learned $L_p$-norm pooling and weighted Gaussian pooling, in which the weights of both operators are treated as speaker-dependent. We perform investigations using three different large vocabulary speech recognition corpora: AMI meetings, TED talks and Switchboard conversational telephone speech. We demonstrate that differentiable pooling operators provide a robust and relatively low-dimensional way to adapt acoustic models, with relative word error rates reductions ranging from 5--20% with respect to unadapted systems, which themselves are better than the baseline fully-connected DNN-based acoustic models. We also investigate how the proposed techniques work under various adaptation conditions including the quality of adaptation data and complementarity to other feature- and model-space adaptation methods, as well as providing an analysis of the characteristics of each of the proposed approaches.
Data Collection for Interactive Learning through the Dialog
This paper presents a dataset collected from natural dialogs which enables to test the ability of dialog systems to learn new facts from user utterances throughout the dialog. This interactive learning will help with one of the most prevailing problems of open domain dialog system, which is the sparsity of facts a dialog system can reason about. The proposed dataset, consisting of 1900 collected dialogs, allows simulation of an interactive gaining of denotations and questions explanations from users which can be used for the interactive learning.
Detection under Privileged Information
For well over a quarter century, detection systems have been driven by models learned from input features collected from real or simulated environments. An artifact (e.g., network event, potential malware sample, suspicious email) is deemed malicious or non-malicious based on its similarity to the learned model at runtime. However, the training of the models has been historically limited to only those features available at runtime. In this paper, we consider an alternate learning approach that trains models using "privileged" information--features available at training time but not at runtime--to improve the accuracy and resilience of detection systems. In particular, we adapt and extend recent advances in knowledge transfer, model influence, and distillation to enable the use of forensic or other data unavailable at runtime in a range of security domains. An empirical evaluation shows that privileged information increases precision and recall over a system with no privileged information: we observe up to 7.7% relative decrease in detection error for fast-flux bot detection, 8.6% for malware traffic detection, 7.3% for malware classification, and 16.9% for face recognition. We explore the limitations and applications of different privileged information techniques in detection systems. Such techniques provide a new means for detection systems to learn from data that would otherwise not be available at runtime.
Multi-task Recurrent Model for Speech and Speaker Recognition
Although highly correlated, speech and speaker recognition have been regarded as two independent tasks and studied by two communities. This is certainly not the way that people behave: we decipher both speech content and speaker traits at the same time. This paper presents a unified model to perform speech and speaker recognition simultaneously and altogether. The model is based on a unified neural network where the output of one task is fed to the input of the other, leading to a multi-task recurrent network. Experiments show that the joint model outperforms the task-specific models on both the two tasks.
Pessimistic Uplift Modeling
Uplift modeling is a machine learning technique that aims to model treatment effects heterogeneity. It has been used in business and health sectors to predict the effect of a specific action on a given individual. Despite its advantages, uplift models show high sensitivity to noise and disturbance, which leads to unreliable results. In this paper we show different approaches to address the problem of uplift modeling, we demonstrate how disturbance in data can affect uplift measurement. We propose a new approach, we call it Pessimistic Uplift Modeling, that minimizes disturbance effects. We compared our approach with the existing uplift methods, on simulated and real data-sets. The experiments show that our approach outperforms the existing approaches, especially in the case of high noise data environment.
Hierarchical Quickest Change Detection via Surrogates
Change detection (CD) in time series data is a critical problem as it reveal changes in the underlying generative processes driving the time series. Despite having received significant attention, one important unexplored aspect is how to efficiently utilize additional correlated information to improve the detection and the understanding of changepoints. We propose hierarchical quickest change detection (HQCD), a framework that formalizes the process of incorporating additional correlated sources for early changepoint detection. The core ideas behind HQCD are rooted in the theory of quickest detection and HQCD can be regarded as its novel generalization to a hierarchical setting. The sources are classified into targets and surrogates, and HQCD leverages this structure to systematically assimilate observed data to update changepoint statistics across layers. The decision on actual changepoints are provided by minimizing the delay while still maintaining reliability bounds. In addition, HQCD also uncovers interesting relations between changes at targets from changes across surrogates. We validate HQCD for reliability and performance against several state-of-the-art methods for both synthetic dataset (known changepoints) and several real-life examples (unknown changepoints). Our experiments indicate that we gain significant robustness without loss of detection delay through HQCD. Our real-life experiments also showcase the usefulness of the hierarchical setting by connecting the surrogate sources (such as Twitter chatter) to target sources (such as Employment related protests that ultimately lead to major uprisings).
Variational reaction-diffusion systems for semantic segmentation
A novel global energy model for multi-class semantic image segmentation is proposed that admits very efficient exact inference and derivative calculations for learning. Inference in this model is equivalent to MAP inference in a particular kind of vector-valued Gaussian Markov random field, and ultimately reduces to solving a linear system of linear PDEs known as a reaction-diffusion system. Solving this system can be achieved in time scaling near-linearly in the number of image pixels by reducing it to sequential FFTs, after a linear change of basis. The efficiency and differentiability of the model make it especially well-suited for integration with convolutional neural networks, even allowing it to be used in interior, feature-generating layers and stacked multiple times. Experimental results are shown demonstrating that the model can be employed profitably in conjunction with different convolutional net architectures, and that doing so compares favorably to joint training of a fully-connected CRF with a convolutional net.
Semi-supervised and Unsupervised Methods for Categorizing Posts in Web Discussion Forums
Web discussion forums are used by millions of people worldwide to share information belonging to a variety of domains such as automotive vehicles, pets, sports, etc. They typically contain posts that fall into different categories such as problem, solution, feedback, spam, etc. Automatic identification of these categories can aid information retrieval that is tailored for specific user requirements. Previously, a number of supervised methods have attempted to solve this problem; however, these depend on the availability of abundant training data. A few existing unsupervised and semi-supervised approaches are either focused on identifying a single category or do not report category-specific performance. In contrast, this work proposes unsupervised and semi-supervised methods that require no or minimal training data to achieve this objective without compromising on performance. A fine-grained analysis is also carried out to discuss their limitations. The proposed methods are based on sequence models (specifically, Hidden Markov Models) that can model language for each category using word and part-of-speech probability distributions, and manually specified features. Empirical evaluations across domains demonstrate that the proposed methods are better suited for this task than existing ones.
Nonparametric Spherical Topic Modeling with Word Embeddings
Traditional topic models do not account for semantic regularities in language. Recent distributional representations of words exhibit semantic consistency over directional metrics such as cosine similarity. However, neither categorical nor Gaussian observational distributions used in existing topic models are appropriate to leverage such correlations. In this paper, we propose to use the von Mises-Fisher distribution to model the density of words over a unit sphere. Such a representation is well-suited for directional data. We use a Hierarchical Dirichlet Process for our base topic model and propose an efficient inference algorithm based on Stochastic Variational Inference. This model enables us to naturally exploit the semantic structures of word embeddings while flexibly discovering the number of topics. Experiments demonstrate that our method outperforms competitive approaches in terms of topic coherence on two different text corpora while offering efficient inference.
Using Recurrent Neural Networks to Optimize Dynamical Decoupling for Quantum Memory
We utilize machine learning models which are based on recurrent neural networks to optimize dynamical decoupling (DD) sequences. DD is a relatively simple technique for suppressing the errors in quantum memory for certain noise models. In numerical simulations, we show that with minimum use of prior knowledge and starting from random sequences, the models are able to improve over time and eventually output DD-sequences with performance better than that of the well known DD-families. Furthermore, our algorithm is easy to implement in experiments to find solutions tailored to the specific hardware, as it treats the figure of merit as a black box.
Building Machines That Learn and Think Like People
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
A Semisupervised Approach for Language Identification based on Ladder Networks
In this study we address the problem of training a neuralnetwork for language identification using both labeled and unlabeled speech samples in the form of i-vectors. We propose a neural network architecture that can also handle out-of-set languages. We utilize a modified version of the recently proposed Ladder Network semisupervised training procedure that optimizes the reconstruction costs of a stack of denoising autoencoders. We show that this approach can be successfully applied to the case where the training dataset is composed of both labeled and unlabeled acoustic data. The results show enhanced language identification on the NIST 2015 language identification dataset.
Embedding Lexical Features via Low-Rank Tensors
Modern NLP models rely heavily on engineered features, which often combine word and contextual information into complex lexical features. Such combination results in large numbers of features, which can lead to over-fitting. We present a new model that represents complex lexical features---comprised of parts for words, contextual information and labels---in a tensor that captures conjunction information among these parts. We apply low-rank tensor approximations to the corresponding parameter tensors to reduce the parameter space and improve prediction speed. Furthermore, we investigate two methods for handling features that include $n$-grams of mixed lengths. Our model achieves state-of-the-art results on tasks in relation extraction, PP-attachment, and preposition disambiguation.
SAM: Support Vector Machine Based Active Queue Management
Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers.
Multi-Relational Learning at Scale with ADMM
Learning from multiple-relational data which contains noise, ambiguities, or duplicate entities is essential to a wide range of applications such as statistical inference based on Web Linked Data, recommender systems, computational biology, and natural language processing. These tasks usually require working with very large and complex datasets - e.g., the Web graph - however, current approaches to multi-relational learning are not practical for such scenarios due to their high computational complexity and poor scalability on large data. In this paper, we propose a novel and scalable approach for multi-relational factorization based on consensus optimization. Our model, called ConsMRF, is based on the Alternating Direction Method of Multipliers (ADMM) framework, which enables us to optimize each target relation using a smaller set of parameters than the state-of-the-art competitors in this task. Due to ADMM's nature, ConsMRF can be easily parallelized which makes it suitable for large multi-relational data. Experiments on large Web datasets - derived from DBpedia, Wikipedia and YAGO - show the efficiency and performance improvement of ConsMRF over strong competitors. In addition, ConsMRF near-linear scalability indicates great potential to tackle Web-scale problem sizes.
A Characterization of the Non-Uniqueness of Nonnegative Matrix Factorizations
Nonnegative matrix factorization (NMF) is a popular dimension reduction technique that produces interpretable decomposition of the data into parts. However, this decompostion is not generally identifiable (even up to permutation and scaling). While other studies have provide criteria under which NMF is identifiable, we present the first (to our knowledge) characterization of the non-identifiability of NMF. We describe exactly when and how non-uniqueness can occur, which has important implications for algorithms to efficiently discover alternate solutions, if they exist.
Character-Level Question Answering with Attention
We show that a character-level encoder-decoder framework can be successfully applied to question answering with a structured knowledge base. We use our model for single-relation question answering and demonstrate the effectiveness of our approach on the SimpleQuestions dataset (Bordes et al., 2015), where we improve state-of-the-art accuracy from 63.9% to 70.9%, without use of ensembles. Importantly, our character-level model has 16x fewer parameters than an equivalent word-level model, can be learned with significantly less data compared to previous work, which relies on data augmentation, and is robust to new entities in testing.
The CMA Evolution Strategy: A Tutorial
This tutorial introduces the CMA Evolution Strategy (ES), where CMA stands for Covariance Matrix Adaptation. The CMA-ES is a stochastic, or randomized, method for real-parameter (continuous domain) optimization of non-linear, non-convex functions. We try to motivate and derive the algorithm from intuitive concepts and from requirements of non-linear, non-convex search in continuous domain.
Topic Model Based Multi-Label Classification from the Crowd
Multi-label classification is a common supervised machine learning problem where each instance is associated with multiple classes. The key challenge in this problem is learning the correlations between the classes. An additional challenge arises when the labels of the training instances are provided by noisy, heterogeneous crowdworkers with unknown qualities. We first assume labels from a perfect source and propose a novel topic model where the present as well as the absent classes generate the latent topics and hence the words. We non-trivially extend our topic model to the scenario where the labels are provided by noisy crowdworkers. Extensive experimentation on real world datasets reveals the superior performance of the proposed model. The proposed model learns the qualities of the annotators as well, even with minimal training data.
Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models
Nearly all previous work on neural machine translation (NMT) has used quite restricted vocabularies, perhaps with a subsequent method to patch in unknown words. This paper presents a novel word-character solution to achieving open vocabulary NMT. We build hybrid systems that translate mostly at the word level and consult the character components for rare words. Our character-level recurrent neural networks compute source word representations and recover unknown target words when needed. The twofold advantage of such a hybrid approach is that it is much faster and easier to train than character-based ones; at the same time, it never produces unknown words as in the case of word-based models. On the WMT'15 English to Czech translation task, this hybrid approach offers an addition boost of +2.1-11.4 BLEU points over models that already handle unknown words. Our best system achieves a new state-of-the-art result with 20.7 BLEU score. We demonstrate that our character models can successfully learn to not only generate well-formed words for Czech, a highly-inflected language with a very complex vocabulary, but also build correct representations for English source words.
Recurrent Neural Networks for Polyphonic Sound Event Detection in Real Life Recordings
In this paper we present an approach to polyphonic sound event detection in real life recordings based on bi-directional long short term memory (BLSTM) recurrent neural networks (RNNs). A single multilabel BLSTM RNN is trained to map acoustic features of a mixture signal consisting of sounds from multiple classes, to binary activity indicators of each event class. Our method is tested on a large database of real-life recordings, with 61 classes (e.g. music, car, speech) from 10 different everyday contexts. The proposed method outperforms previous approaches by a large margin, and the results are further improved using data augmentation techniques. Overall, our system reports an average F1-score of 65.5% on 1 second blocks and 64.7% on single frames, a relative improvement over previous state-of-the-art approach of 6.8% and 15.1% respectively.
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning
In this paper we present a new way of predicting the performance of a reinforcement learning policy given historical data that may have been generated by a different policy. The ability to evaluate a policy from historical data is important for applications where the deployment of a bad policy can be dangerous or costly. We show empirically that our algorithm produces estimates that often have orders of magnitude lower mean squared error than existing methods---it makes more efficient use of the available data. Our new estimator is based on two advances: an extension of the doubly robust estimator (Jiang and Li, 2015), and a new way to mix between model based estimates and importance sampling based estimates.
Revisiting Distributed Synchronous SGD
Distributed training of deep learning models on large-scale training data is typically conducted with asynchronous stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the synchronous approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional beliefs in this paper, and examine the weaknesses of both approaches. We demonstrate that a third approach, synchronous optimization with backup workers, can avoid asynchronous noise while mitigating for the worst stragglers. Our approach is empirically validated and shown to converge faster and to better test accuracies.
Accurate and scalable social recommendation using mixed-membership stochastic block models
With ever-increasing amounts of online information available, modeling and predicting individual preferences-for books or articles, for example-is becoming more and more important. Good predictions enable us to improve advice to users, and obtain a better understanding of the socio-psychological processes that determine those preferences. We have developed a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of individuals' preferences. Our approach is based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. Importantly, we allow each individual and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches, such as matrix factorization, we do not assume implicitly or explicitly that individuals in each group prefer items in a single group of items. The resulting overlapping groups and the predicted preferences can be inferred with a expectation-maximization algorithm whose running time scales linearly (per iteration). Our approach enables us to predict individual preferences in large datasets, and is considerably more accurate than the current algorithms for such large datasets.
Feature extraction using Latent Dirichlet Allocation and Neural Networks: A case study on movie synopses
Feature extraction has gained increasing attention in the field of machine learning, as in order to detect patterns, extract information, or predict future observations from big data, the urge of informative features is crucial. The process of extracting features is highly linked to dimensionality reduction as it implies the transformation of the data from a sparse high-dimensional space, to higher level meaningful abstractions. This dissertation employs Neural Networks for distributed paragraph representations, and Latent Dirichlet Allocation to capture higher level features of paragraph vectors. Although Neural Networks for distributed paragraph representations are considered the state of the art for extracting paragraph vectors, we show that a quick topic analysis model such as Latent Dirichlet Allocation can provide meaningful features too. We evaluate the two methods on the CMU Movie Summary Corpus, a collection of 25,203 movie plot summaries extracted from Wikipedia. Finally, for both approaches, we use K-Nearest Neighbors to discover similar movies, and plot the projected representations using T-Distributed Stochastic Neighbor Embedding to depict the context similarities. These similarities, expressed as movie distances, can be used for movies recommendation. The recommended movies of this approach are compared with the recommended movies from IMDB, which use a collaborative filtering recommendation approach, to show that our two models could constitute either an alternative or a supplementary recommendation approach.
Towards Label Imbalance in Multi-label Classification with Many Labels
In multi-label classification, an instance may be associated with a set of labels simultaneously. Recently, the research on multi-label classification has largely shifted its focus to the other end of the spectrum where the number of labels is assumed to be extremely large. The existing works focus on how to design scalable algorithms that offer fast training procedures and have a small memory footprint. However they ignore and even compound another challenge - the label imbalance problem. To address this drawback, we propose a novel Representation-based Multi-label Learning with Sampling (RMLS) approach. To the best of our knowledge, we are the first to tackle the imbalance problem in multi-label classification with many labels. Our experimentations with real-world datasets demonstrate the effectiveness of the proposed approach.
Bayesian Optimization with Exponential Convergence
This paper presents a Bayesian optimization method with exponential convergence without the need of auxiliary optimization and without the delta-cover sampling. Most Bayesian optimization methods require auxiliary optimization: an additional non-convex global optimization problem, which can be time-consuming and hard to implement in practice. Also, the existing Bayesian optimization method with exponential convergence requires access to the delta-cover sampling, which was considered to be impractical. Our approach eliminates both requirements and achieves an exponential convergence rate.
Bounded Optimal Exploration in MDP
Within the framework of probably approximately correct Markov decision processes (PAC-MDP), much theoretical work has focused on methods to attain near optimality after a relatively long period of learning and exploration. However, practical concerns require the attainment of satisfactory behavior within a short period of time. In this paper, we relax the PAC-MDP conditions to reconcile theoretically driven exploration methods and practical needs. We propose simple algorithms for discrete and continuous state spaces, and illustrate the benefits of our proposed relaxation via theoretical analyses and numerical examples. Our algorithms also maintain anytime error bounds and average loss bounds. Our approach accommodates both Bayesian and non-Bayesian methods.
Heavy hitters via cluster-preserving clustering
In turnstile $\ell_p$ $\varepsilon$-heavy hitters, one maintains a high-dimensional $x\in\mathbb{R}^n$ subject to $\texttt{update}(i,\Delta)$ causing $x_i\leftarrow x_i + \Delta$, where $i\in[n]$, $\Delta\in\mathbb{R}$. Upon receiving a query, the goal is to report a small list $L\subset[n]$, $|L| = O(1/\varepsilon^p)$, containing every "heavy hitter" $i\in[n]$ with $|x_i| \ge \varepsilon \|x_{\overline{1/\varepsilon^p}}\|_p$, where $x_{\overline{k}}$ denotes the vector obtained by zeroing out the largest $k$ entries of $x$ in magnitude. For any $p\in(0,2]$ the CountSketch solves $\ell_p$ heavy hitters using $O(\varepsilon^{-p}\log n)$ words of space with $O(\log n)$ update time, $O(n\log n)$ query time to output $L$, and whose output after any query is correct with high probability (whp) $1 - 1/poly(n)$. Unfortunately the query time is very slow. To remedy this, the work [CM05] proposed for $p=1$ in the strict turnstile model, a whp correct algorithm achieving suboptimal space $O(\varepsilon^{-1}\log^2 n)$, worse update time $O(\log^2 n)$, but much better query time $O(\varepsilon^{-1}poly(\log n))$. We show this tradeoff between space and update time versus query time is unnecessary. We provide a new algorithm, ExpanderSketch, which in the most general turnstile model achieves optimal $O(\varepsilon^{-p}\log n)$ space, $O(\log n)$ update time, and fast $O(\varepsilon^{-p}poly(\log n))$ query time, and whp correctness. Our main innovation is an efficient reduction from the heavy hitters to a clustering problem in which each heavy hitter is encoded as some form of noisy spectral cluster in a much bigger graph, and the goal is to identify every cluster. Since every heavy hitter must be found, correctness requires that every cluster be found. We then develop a "cluster-preserving clustering" algorithm, partitioning the graph into clusters without destroying any original cluster.
Lipschitz Continuity of Mahalanobis Distances and Bilinear Forms
Many theoretical results in the machine learning domain stand only for functions that are Lipschitz continuous. Lipschitz continuity is a strong form of continuity that linearly bounds the variations of a function. In this paper, we derive tight Lipschitz constants for two families of metrics: Mahalanobis distances and bounded-space bilinear forms. To our knowledge, this is the first time the Mahalanobis distance is formally proved to be Lipschitz continuous and that such tight Lipschitz constants are derived.
Self-Paced Multi-Task Learning
In this paper, we propose a novel multi-task learning (MTL) framework, called Self-Paced Multi-Task Learning (SPMTL). Different from previous works treating all tasks and instances equally when training, SPMTL attempts to jointly learn the tasks by taking into consideration the complexities of both tasks and instances. This is inspired by the cognitive process of human brain that often learns from the easy to the hard. We construct a compact SPMTL formulation by proposing a new task-oriented regularizer that can jointly prioritize the tasks and the instances. Thus it can be interpreted as a self-paced learner for MTL. A simple yet effective algorithm is designed for optimizing the proposed objective function. An error bound for a simplified formulation is also analyzed theoretically. Experimental results on toy and real-world datasets demonstrate the effectiveness of the proposed approach, compared to the state-of-the-art methods.
Learning A Deep $\ell_\infty$ Encoder for Hashing
We investigate the $\ell_\infty$-constrained representation which demonstrates robustness to quantization errors, utilizing the tool of deep learning. Based on the Alternating Direction Method of Multipliers (ADMM), we formulate the original convex minimization problem as a feed-forward neural network, named \textit{Deep $\ell_\infty$ Encoder}, by introducing the novel Bounded Linear Unit (BLU) neuron and modeling the Lagrange multipliers as network biases. Such a structural prior acts as an effective network regularization, and facilitates the model initialization. We then investigate the effective use of the proposed model in the application of hashing, by coupling the proposed encoders under a supervised pairwise loss, to develop a \textit{Deep Siamese $\ell_\infty$ Network}, which can be optimized from end to end. Extensive experiments demonstrate the impressive performances of the proposed model. We also provide an in-depth analysis of its behaviors against the competitors.
Simple and Efficient Learning using Privileged Information
The Support Vector Machine using Privileged Information (SVM+) has been proposed to train a classifier to utilize the additional privileged information that is only available in the training phase but not available in the test phase. In this work, we propose an efficient solution for SVM+ by simply utilizing the squared hinge loss instead of the hinge loss as in the existing SVM+ formulation, which interestingly leads to a dual form with less variables and in the same form with the dual of the standard SVM. The proposed algorithm is utilized to leverage the additional web knowledge that is only available during training for the image categorization tasks. The extensive experimental results on both Caltech101 andWebQueries datasets show that our proposed method can achieve a factor of up to hundred times speedup with the comparable accuracy when compared with the existing SVM+ method.
A Survey on Bayesian Deep Learning
A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks. For a constantly updating project page, please refer to https://github.com/js05212/BayesianDeepLearning-Survey.
Relationship between Variants of One-Class Nearest Neighbours and Creating their Accurate Ensembles
In one-class classification problems, only the data for the target class is available, whereas the data for the non-target class may be completely absent. In this paper, we study one-class nearest neighbour (OCNN) classifiers and their different variants. We present a theoretical analysis to show the relationships among different variants of OCNN that may use different neighbours or thresholds to identify unseen examples of the non-target class. We also present a method based on inter-quartile range for optimising parameters used in OCNN in the absence of non-target data during training. Then, we propose two ensemble approaches based on random subspace and random projection methods to create accurate OCNN ensembles. We tested the proposed methods on 15 benchmark and real world domain-specific datasets and show that random-projection ensembles of OCNN perform best.
Safe Probability
We formalize the idea of probability distributions that lead to reliable predictions about some, but not all aspects of a domain. The resulting notion of `safety' provides a fresh perspective on foundational issues in statistics, providing a middle ground between imprecise probability and multiple-prior models on the one hand and strictly Bayesian approaches on the other. It also allows us to formalize fiducial distributions in terms of the set of random variables that they can safely predict, thus taking some of the sting out of the fiducial idea. By restricting probabilistic inference to safe uses, one also automatically avoids paradoxes such as the Monty Hall problem. Safety comes in a variety of degrees, such as "validity" (the strongest notion), "calibration", "confidence safety" and "unbiasedness" (almost the weakest notion).
Advances in Very Deep Convolutional Neural Networks for LVCSR
Very deep CNNs with small 3x3 kernels have recently been shown to achieve very strong performance as acoustic models in hybrid NN-HMM speech recognition systems. In this paper we investigate how to efficiently scale these models to larger datasets. Specifically, we address the design choice of pooling and padding along the time dimension which renders convolutional evaluation of sequences highly inefficient. We propose a new CNN design without timepadding and without timepooling, which is slightly suboptimal for accuracy, but has two significant advantages: it enables sequence training and deployment by allowing efficient convolutional evaluation of full utterances, and, it allows for batch normalization to be straightforwardly adopted to CNNs on sequence data. Through batch normalization, we recover the lost peformance from removing the time-pooling, while keeping the benefit of efficient convolutional evaluation. We demonstrate the performance of our models both on larger scale data than before, and after sequence training. Our very deep CNN model sequence trained on the 2000h switchboard dataset obtains 9.4 word error rate on the Hub5 test-set, matching with a single model the performance of the 2015 IBM system combination, which was the previous best published result.
Learning to Track at 100 FPS with Deep Regression Networks
Machine learning techniques are often used in computer vision due to their ability to leverage large amounts of training data to improve performance. Unfortunately, most generic object trackers are still trained from scratch online and do not benefit from the large number of videos that are readily available for offline training. We propose a method for offline training of neural networks that can track novel objects at test-time at 100 fps. Our tracker is significantly faster than previous methods that use neural networks for tracking, which are typically very slow to run and not practical for real-time applications. Our tracker uses a simple feed-forward network with no online training required. The tracker learns a generic relationship between object motion and appearance and can be used to track novel objects that do not appear in the training set. We test our network on a standard tracking benchmark to demonstrate our tracker's state-of-the-art performance. Further, our performance improves as we add more videos to our offline training set. To the best of our knowledge, our tracker is the first neural-network tracker that learns to track generic objects at 100 fps.
Generalising the Discriminative Restricted Boltzmann Machine
We present a novel theoretical result that generalises the Discriminative Restricted Boltzmann Machine (DRBM). While originally the DRBM was defined assuming the {0, 1}-Bernoulli distribution in each of its hidden units, this result makes it possible to derive cost functions for variants of the DRBM that utilise other distributions, including some that are often encountered in the literature. This is illustrated with the Binomial and {-1, +1}-Bernoulli distributions here. We evaluate these two DRBM variants and compare them with the original one on three benchmark datasets, namely the MNIST and USPS digit classification datasets, and the 20 Newsgroups document classification dataset. Results show that each of the three compared models outperforms the remaining two in one of the three datasets, thus indicating that the proposed theoretical generalisation of the DRBM may be valuable in practice.
Differential TD Learning for Value Function Approximation
Value functions arise as a component of algorithms as well as performance metrics in statistics and engineering applications. Computation of the associated Bellman equations is numerically challenging in all but a few special cases. A popular approximation technique is known as Temporal Difference (TD) learning. The algorithm introduced in this paper is intended to resolve two well-known problems with this approach: In the discounted-cost setting, the variance of the algorithm diverges as the discount factor approaches unity. Second, for the average cost setting, unbiased algorithms exist only in special cases. It is shown that the gradient of any of these value functions admits a representation that lends itself to algorithm design. Based on this result, the new differential TD method is obtained for Markovian models on Euclidean space with smooth dynamics. Numerical examples show remarkable improvements in performance. In application to speed scaling, variance is reduced by two orders of magnitude.
Clustering Via Crowdsourcing
In recent years, crowdsourcing, aka human aided computation has emerged as an effective platform for solving problems that are considered complex for machines alone. Using human is time-consuming and costly due to monetary compensations. Therefore, a crowd based algorithm must judiciously use any information computed through an automated process, and ask minimum number of questions to the crowd adaptively. One such problem which has received significant attention is {\em entity resolution}. Formally, we are given a graph $G=(V,E)$ with unknown edge set $E$ where $G$ is a union of $k$ (again unknown, but typically large $O(n^\alpha)$, for $\alpha>0$) disjoint cliques $G_i(V_i, E_i)$, $i =1, \dots, k$. The goal is to retrieve the sets $V_i$s by making minimum number of pair-wise queries $V \times V\to\{\pm1\}$ to an oracle (the crowd). When the answer to each query is correct, e.g. via resampling, then this reduces to finding connected components in a graph. On the other hand, when crowd answers may be incorrect, it corresponds to clustering over minimum number of noisy inputs. Even, with perfect answers, a simple lower and upper bound of $\Theta(nk)$ on query complexity can be shown. A major contribution of this paper is to reduce the query complexity to linear or even sublinear in $n$ when mild side information is provided by a machine, and even in presence of crowd errors which are not correctable via resampling. We develop new information theoretic lower bounds on the query complexity of clustering with side information and errors, and our upper bounds closely match with them. Our algorithms are naturally parallelizable, and also give near-optimal bounds on the number of adaptive rounds required to match the query complexity.
Building Ensembles of Adaptive Nested Dichotomies with Random-Pair Selection
A system of nested dichotomies is a method of decomposing a multi-class problem into a collection of binary problems. Such a system recursively splits the set of classes into two subsets, and trains a binary classifier to distinguish between each subset. Even though ensembles of nested dichotomies with random structure have been shown to perform well in practice, using a more sophisticated class subset selection method can be used to improve classification accuracy. We investigate an approach to this problem called random-pair selection, and evaluate its effectiveness compared to other published methods of subset selection. We show that our method outperforms other methods in many cases when forming ensembles of nested dichotomies, and is at least on par in all other cases.
Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis
We study the stochastic optimization of canonical correlation analysis (CCA), whose objective is nonconvex and does not decouple over training samples. Although several stochastic gradient based optimization algorithms have been recently proposed to solve this problem, no global convergence guarantee was provided by any of them. Inspired by the alternating least squares/power iterations formulation of CCA, and the shift-and-invert preconditioning method for PCA, we propose two globally convergent meta-algorithms for CCA, both of which transform the original problem into sequences of least squares problems that need only be solved approximately. We instantiate the meta-algorithms with state-of-the-art SGD methods and obtain time complexities that significantly improve upon that of previous work. Experimental results demonstrate their superior performance.
When is Nontrivial Estimation Possible for Graphons and Stochastic Block Models?
Block graphons (also called stochastic block models) are an important and widely-studied class of models for random networks. We provide a lower bound on the accuracy of estimators for block graphons with a large number of blocks. We show that, given only the number $k$ of blocks and an upper bound $\rho$ on the values (connection probabilities) of the graphon, every estimator incurs error at least on the order of $\min(\rho, \sqrt{\rho k^2/n^2})$ in the $\delta_2$ metric with constant probability, in the worst case over graphons. In particular, our bound rules out any nontrivial estimation (that is, with $\delta_2$ error substantially less than $\rho$) when $k\geq n\sqrt{\rho}$. Combined with previous upper and lower bounds, our results characterize, up to logarithmic terms, the minimax accuracy of graphon estimation in the $\delta_2$ metric. A similar lower bound to ours was obtained independently by Klopp, Tsybakov and Verzelen (2016).
Optimizing Performance of Recurrent Neural Networks on GPUs
As recurrent neural networks become larger and deeper, training times for single networks are rising into weeks or even months. As such there is a significant incentive to improve the performance and scalability of these networks. While GPUs have become the hardware of choice for training and deploying recurrent models, the implementations employed often make use of only basic optimizations for these architectures. In this article we demonstrate that by exposing parallelism between operations within the network, an order of magnitude speedup across a range of network sizes can be achieved over a naive implementation. We describe three stages of optimization that have been incorporated into the fifth release of NVIDIA's cuDNN: firstly optimizing a single cell, secondly a single layer, and thirdly the entire network.
Deep Online Convex Optimization with Gated Games
Methods from convex optimization are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since modern convolutional networks (convnets), incorporating rectifier units and max-pooling, are neither smooth nor convex. Standard guarantees therefore do not apply. This paper provides the first convergence rates for gradient descent on rectifier convnets. The proof utilizes the particular structure of rectifier networks which consists in binary active/inactive gates applied on top of an underlying linear network. The approach generalizes to max-pooling, dropout and maxout. In other words, to precisely the neural networks that perform best empirically. The key step is to introduce gated games, an extension of convex games with similar convergence properties that capture the gating function of rectifiers. The main result is that rectifier convnets converge to a critical point at a rate controlled by the gated-regret of the units in the network. Corollaries of the main result include: (i) a game-theoretic description of the representations learned by a neural network; (ii) a logarithmic-regret algorithm for training neural nets; and (iii) a formal setting for analyzing conditional computation in neural nets that can be applied to recently developed models of attention.
Online Optimization of Smoothed Piecewise Constant Functions
We study online optimization of smoothed piecewise constant functions over the domain [0, 1). This is motivated by the problem of adaptively picking parameters of learning algorithms as in the recently introduced framework by Gupta and Roughgarden (2016). Majority of the machine learning literature has focused on Lipschitz-continuous functions or functions with bounded gradients. 1 This is with good reason---any learning algorithm suffers linear regret even against piecewise constant functions that are chosen adversarially, arguably the simplest of non-Lipschitz continuous functions. The smoothed setting we consider is inspired by the seminal work of Spielman and Teng (2004) and the recent work of Gupta and Roughgarden---in this setting, the sequence of functions may be chosen by an adversary, however, with some uncertainty in the location of discontinuities. We give algorithms that achieve sublinear regret in the full information and bandit settings.
Combinatorial Topic Models using Small-Variance Asymptotics
Topic models have emerged as fundamental tools in unsupervised machine learning. Most modern topic modeling algorithms take a probabilistic view and derive inference algorithms based on Latent Dirichlet Allocation (LDA) or its variants. In contrast, we study topic modeling as a combinatorial optimization problem, and propose a new objective function derived from LDA by passing to the small-variance limit. We minimize the derived objective by using ideas from combinatorial optimization, which results in a new, fast, and high-quality topic modeling algorithm. In particular, we show that our results are competitive with popular LDA-based topic modeling approaches, and also discuss the (dis)similarities between our approach and its probabilistic counterparts.
Sentence Level Recurrent Topic Model: Letting Topics Speak for Themselves
We propose Sentence Level Recurrent Topic Model (SLRTM), a new topic model that assumes the generation of each word within a sentence to depend on both the topic of the sentence and the whole history of its preceding words in the sentence. Different from conventional topic models that largely ignore the sequential order of words or their topic coherence, SLRTM gives full characterization to them by using a Recurrent Neural Networks (RNN) based framework. Experimental results have shown that SLRTM outperforms several strong baselines on various tasks. Furthermore, SLRTM can automatically generate sentences given a topic (i.e., topics to sentences), which is a key technology for real world applications such as personalized short text conversation.
Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values
This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.
Resolving Language and Vision Ambiguities Together: Joint Segmentation & Prepositional Attachment Resolution in Captioned Scenes
We present an approach to simultaneously perform semantic segmentation and prepositional phrase attachment resolution for captioned images. Some ambiguities in language cannot be resolved without simultaneously reasoning about an associated image. If we consider the sentence "I shot an elephant in my pajamas", looking at language alone (and not using common sense), it is unclear if it is the person or the elephant wearing the pajamas or both. Our approach produces a diverse set of plausible hypotheses for both semantic segmentation and prepositional phrase attachment resolution that are then jointly reranked to select the most consistent pair. We show that our semantic segmentation and prepositional phrase attachment resolution modules have complementary strengths, and that joint reasoning produces more accurate results than any module operating in isolation. Multiple hypotheses are also shown to be crucial to improved multiple-module reasoning. Our vision and language approach significantly outperforms the Stanford Parser (De Marneffe et al., 2006) by 17.91% (28.69% relative) and 12.83% (25.28% relative) in two different experiments. We also make small improvements over DeepLab-CRF (Chen et al., 2015).
A Low Complexity Algorithm with $O(\sqrt{T})$ Regret and $O(1)$ Constraint Violations for Online Convex Optimization with Long Term Constraints
This paper considers online convex optimization over a complicated constraint set, which typically consists of multiple functional constraints and a set constraint. The conventional online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the potentially high computation complexity of the projection operation. In this paper, we relax the functional constraints by allowing them to be violated at each round but still requiring them to be satisfied in the long term. This type of relaxed online convex optimization (with long term constraints) was first considered in Mahdavi et al. (2012). That prior work proposes an algorithm to achieve $O(\sqrt{T})$ regret and $O(T^{3/4})$ constraint violations for general problems and another algorithm to achieve an $O(T^{2/3})$ bound for both regret and constraint violations when the constraint set can be described by a finite number of linear constraints. A recent extension in \citet{Jenatton16ICML} can achieve $O(T^{\max\{\theta,1-\theta\}})$ regret and $O(T^{1-\theta/2})$ constraint violations where $\theta\in (0,1)$. The current paper proposes a new simple algorithm that yields improved performance in comparison to prior works. The new algorithm achieves an $O(\sqrt{T})$ regret bound with $O(1)$ constraint violations.
Probabilistic classifiers with low rank indefinite kernels
Indefinite similarity measures can be frequently found in bio-informatics by means of alignment scores, but are also common in other fields like shape measures in image retrieval. Lacking an underlying vector space, the data are given as pairwise similarities only. The few algorithms available for such data do not scale to larger datasets. Focusing on probabilistic batch classifiers, the Indefinite Kernel Fisher Discriminant (iKFD) and the Probabilistic Classification Vector Machine (PCVM) are both effective algorithms for this type of data but, with cubic complexity. Here we propose an extension of iKFD and PCVM such that linear runtime and memory complexity is achieved for low rank indefinite kernels. Employing the Nystr\"om approximation for indefinite kernels, we also propose a new almost parameter free approach to identify the landmarks, restricted to a supervised learning problem. Evaluations at several larger similarity data from various domains show that the proposed methods provides similar generalization capabilities while being easier to parametrize and substantially faster for large scale data.
Single-Molecule Protein Identification by Sub-Nanopore Sensors
Recent advances in top-down mass spectrometry enabled identification of intact proteins, but this technology still faces challenges. For example, top-down mass spectrometry suffers from a lack of sensitivity since the ion counts for a single fragmentation event are often low. In contrast, nanopore technology is exquisitely sensitive to single intact molecules, but it has only been successfully applied to DNA sequencing, so far. Here, we explore the potential of sub-nanopores for single-molecule protein identification (SMPI) and describe an algorithm for identification of the electrical current blockade signal (nanospectrum) resulting from the translocation of a denaturated, linearly charged protein through a sub-nanopore. The analysis of identification p-values suggests that the current technology is already sufficient for matching nanospectra against small protein databases, e.g., protein identification in bacterial proteomes.
Online Open World Recognition
As we enter into the big data age and an avalanche of images have become readily available, recognition systems face the need to move from close, lab settings where the number of classes and training data are fixed, to dynamic scenarios where the number of categories to be recognized grows continuously over time, as well as new data providing useful information to update the system. Recent attempts, like the open world recognition framework, tried to inject dynamics into the system by detecting new unknown classes and adding them incrementally, while at the same time continuously updating the models for the known classes. incrementally adding new classes and detecting instances from unknown classes, while at the same time continuously updating the models for the known classes. In this paper we argue that to properly capture the intrinsic dynamic of open world recognition, it is necessary to add to these aspects (a) the incremental learning of the underlying metric, (b) the incremental estimate of confidence thresholds for the unknown classes, and (c) the use of local learning to precisely describe the space of classes. We extend three existing metric learning algorithms towards these goals by using online metric learning. Experimentally we validate our approach on two large-scale datasets in different learning scenarios. For all these scenarios our proposed methods outperform their non-online counterparts. We conclude that local and online learning is important to capture the full dynamics of open world recognition.
Back to the Basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation
Estimating student proficiency is an important task for computer based learning systems. We compare a family of IRT-based proficiency estimation methods to Deep Knowledge Tracing (DKT), a recently proposed recurrent neural network model with promising initial results. We evaluate how well each model predicts a student's future response given previous responses using two publicly available and one proprietary data set. We find that IRT-based methods consistently matched or outperformed DKT across all data sets at the finest level of content granularity that was tractable for them to be trained on. A hierarchical extension of IRT that captured item grouping structure performed best overall. When data sets included non-trivial autocorrelations in student response patterns, a temporal extension of IRT improved performance over standard IRT while the RNN-based method did not. We conclude that IRT-based models provide a simpler, better-performing alternative to existing RNN-based models of student interaction data while also affording more interpretability and guarantees due to their formulation as Bayesian probabilistic models.