max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tools/prepare_iata_airline_dump_file.py
mtrampont/opentraveldata
208
26184
<reponame>mtrampont/opentraveldata #!/usr/bin/env python import getopt, sys, io import pandas as pd # # Usage # def usage (script_name): """ Display the usage. """ print ("") print ("Usage: {} [options]".format(script_name)) print ("") print ("That script transforms and filter a fix width data file into a hat symbol separated CSV one") print ("") print ("Options:") print (" -h, --help : outputs this help and exits") print (" -v, --verbose : verbose output (debugging)") print (" -i, --input <input data file-path>") print (" -o, --output <output data file-path>") print ("") # # Command-line arguments # def handle_opt(): """ Handle the command-line options """ try: opts, args = getopt.getopt (sys.argv[1:], "hv:i:o:", ["help", "verbose", "input", "output"]) except (getopt.GetoptError, err): # Print help information and exit. It will print something like # "option -d not recognized" print (str (err)) usage (sys.argv[0], usage_doc) sys.exit(2) # Options verboseFlag = False airline_input_filepath = '' airline_output_filepath = '' airline_input_file = sys.stdin # '/dev/stdin' airline_output_file = sys.stdout # '/dev/stdout' # Input stream/file if len (args) != 0: airline_input_filepath = args[0] # Handling for o, a in opts: if o in ("-h", "--help"): usage (sys.argv[0]) sys.exit() elif o in ("-v", "--verbose"): verboseFlag = True elif o in ("-i", "--input"): airline_input_filepath = a elif o in ("-o", "--output"): airline_output_filepath = a else: raise ValueError ("That option ({}) is unknown. Rerun that script with the -h option to see the accepted options".format(o)) # Input file. That file may be compressed with GNU Zip (gzip) if (airline_input_filepath != ''): airline_input_file = open (airline_input_filepath, 'rb') # Output file-path if (airline_output_filepath != ''): airline_output_file = open (airline_output_filepath, 'w') # Report the configuration airline_input_filepath_str = airline_input_filepath \ if airline_input_filepath != '' \ else 'Standard input' airline_output_filepath_str = airline_output_filepath \ if airline_output_filepath != '' \ else 'Standard output' if (airline_output_filepath_str != 'Standard output'): print ("Input data file: '{}'".format(airline_input_filepath_str)) print ("Output data file: '{}'".format(airline_output_filepath_str)) # return (verboseFlag, airline_input_filepath, airline_output_file) def extract_df (airline_input_filepath): """ Parse a fix width data file containing details about IATA referenced airlines, and fill in a Pandas data-frame """ # Using Pandas with column specification col_names = ['name', 'num_code', '3char_code', '2char_code', 'address_street_1', 'address_street_2', 'address_city_name', 'address_state_name', 'address_country_name', 'address_postal_code', 'flag_1', 'flag_2', 'flag_3', 'flag_4', 'type', 'num_code_2'] col_specs = [(0, 80), (80, 84), (84, 87), (87, 90), (90, 130), (130, 170), (170, 195), (195, 215), (215, 259), (259, 373), (373, 374), (374, 375), (375, 376), (376, 377), (377, 379), (379, 385)] col_converters = { 'num_code': lambda x: str(int(x)), 'num_code_2': lambda x: str(int(x))} airline_df = pd.read_fwf(airline_input_filepath, colspecs = col_specs, header = None, names = col_names, converters = col_converters) # Leave empty fields empty (otherwise, Pandas specifies NaN) airline_df.fillna (value = '', method = None, inplace = True) # Merge num_code and num_code2 airline_df['num_code'] = airline_df \ .apply(lambda r: r['num_code'] if r['num_code'] != '' else r['num_code_2'], axis = 1) # DEBUG #print (str(airline_df.head())) #print (str(airline_df.dtypes)) # return (airline_df) def dump_to_csv (airline_df, airline_output_file): """ Dump a sub-set of the the Pandas data-frame into a CSV file. The field delimiter is the hat symbol ('^'). """ subcol_names = ['2char_code', '3char_code', 'num_code', 'name', 'type'] # DEBUG #airline_spec_df = airline_df[airline_df['2char_code'] == 'LH'][subcol_names] #print (str(airline_spec_df)) # Sort by IATA and ICAO codes airline_df.sort_values(['2char_code', '3char_code', 'num_code', 'name'], ascending = True, inplace = True) # Dump the data-frame into a CSV file airline_df.to_csv (airline_output_file, sep = '^', columns = subcol_names, header = True, index = False, doublequote = False, quotechar = '|') # # Main # def main(): """ Main """ # Parse command options (verboseFlag, airline_input_filepath, airline_output_file) = handle_opt() # DEBUG #print ("Type of file: '{}'".format(type(airline_input_filepath))) # Parse the fixed width data file of airline details airline_df = extract_df (airline_input_filepath) # Dump the Pandas data-frame into a CSV file dump_to_csv (airline_df, airline_output_file) # # Main, when launched from a library # if __name__ == "__main__": main()
tests/test_functions/http_log_exception/main.py
KaylaNguyen/functions-framework-python
479
26194
<filename>tests/test_functions/http_log_exception/main.py # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Function used in Worker tests of legacy GCF Python 3.7 logging.""" import logging X_GOOGLE_FUNCTION_NAME = "gcf-function" X_GOOGLE_ENTRY_POINT = "function" HOME = "/tmp" def function(request): """Test function which logs exceptions. Args: request: The HTTP request which triggered this function. """ try: raise Exception except: logging.exception("log") return None
swift/internal/swift_c_module.bzl
BalestraPatrick/rules_swift
215
26212
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of the `swift_c_module` rule.""" load(":swift_common.bzl", "swift_common") load(":utils.bzl", "merge_runfiles") def _swift_c_module_impl(ctx): module_map = ctx.file.module_map deps = ctx.attr.deps cc_infos = [dep[CcInfo] for dep in deps] data_runfiles = [dep[DefaultInfo].data_runfiles for dep in deps] default_runfiles = [dep[DefaultInfo].default_runfiles for dep in deps] if cc_infos: cc_info = cc_common.merge_cc_infos(cc_infos = cc_infos) compilation_context = cc_info.compilation_context else: cc_info = None compilation_context = cc_common.create_compilation_context() providers = [ # We must repropagate the dependencies' DefaultInfos, otherwise we # will lose runtime dependencies that the library expects to be # there during a test (or a regular `bazel run`). DefaultInfo( data_runfiles = merge_runfiles(data_runfiles), default_runfiles = merge_runfiles(default_runfiles), files = depset([module_map]), ), swift_common.create_swift_info( modules = [ swift_common.create_module( name = ctx.attr.module_name, clang = swift_common.create_clang_module( compilation_context = compilation_context, module_map = module_map, # TODO(b/142867898): Precompile the module and place it # here. precompiled_module = None, ), ), ], ), ] if cc_info: providers.append(cc_info) return providers swift_c_module = rule( attrs = { "module_map": attr.label( allow_single_file = True, doc = """\ The module map file that should be loaded to import the C library dependency into Swift. """, mandatory = True, ), "module_name": attr.string( doc = """\ The name of the top-level module in the module map that this target represents. A single `module.modulemap` file can define multiple top-level modules. When building with implicit modules, the presence of that module map allows any of the modules defined in it to be imported. When building explicit modules, however, there is a one-to-one correspondence between top-level modules and BUILD targets and the module name must be known without reading the module map file, so it must be provided directly. Therefore, one may have multiple `swift_c_module` targets that reference the same `module.modulemap` file but with different module names and headers. """, mandatory = True, ), "deps": attr.label_list( allow_empty = False, doc = """\ A list of C targets (or anything propagating `CcInfo`) that are dependencies of this target and whose headers may be referenced by the module map. """, mandatory = True, providers = [[CcInfo]], ), }, doc = """\ Wraps one or more C targets in a new module map that allows it to be imported into Swift to access its C interfaces. The `cc_library` rule in Bazel does not produce module maps that are compatible with Swift. In order to make interop between Swift and C possible, users have one of two options: 1. **Use an auto-generated module map.** In this case, the `swift_c_module` rule is not needed. If a `cc_library` is a direct dependency of a `swift_{binary,library,test}` target, a module map will be automatically generated for it and the module's name will be derived from the Bazel target label (in the same fashion that module names for Swift targets are derived). The module name can be overridden by setting the `swift_module` tag on the `cc_library`; e.g., `tags = ["swift_module=MyModule"]`. 2. **Use a custom module map.** For finer control over the headers that are exported by the module, use the `swift_c_module` rule to provide a custom module map that specifies the name of the module, its headers, and any other module information. The `cc_library` targets that contain the headers that you wish to expose to Swift should be listed in the `deps` of your `swift_c_module` (and by listing multiple targets, you can export multiple libraries under a single module if desired). Then, your `swift_{binary,library,test}` targets should depend on the `swift_c_module` target, not on the underlying `cc_library` target(s). NOTE: Swift at this time does not support interop directly with C++. Any headers referenced by a module map that is imported into Swift must have only C features visible, often by using preprocessor conditions like `#if __cplusplus` to hide any C++ declarations. """, implementation = _swift_c_module_impl, )
mamonsu/plugins/system/linux/__init__.py
sgrinko/mamonsu
188
26278
__all__ = [ 'proc_stat', 'disk_stats', 'disk_sizes', 'memory', 'uptime', 'open_files', 'net', 'la' ,'pg_probackup' ] from . import *
src/ralph/networks/migrations/0010_auto_20170216_1230.py
DoNnMyTh/ralph
1,668
26296
<gh_stars>1000+ # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('networks', '0009_auto_20160823_0921'), ] operations = [ migrations.AlterField( model_name='network', name='gateway', field=models.ForeignKey(to='networks.IPAddress', blank=True, on_delete=django.db.models.deletion.SET_NULL, verbose_name='Gateway address', null=True, related_name='gateway_network'), ), ]
tacker/api/views/__init__.py
takahashi-tsc/tacker
116
26300
# Copyright (C) 2020 NTT DATA # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tacker.api.common import attribute_filter from tacker.common import exceptions as exception class BaseViewBuilder(object): @classmethod def validate_filter(cls, filters=None): if not filters: return return attribute_filter.parse_filter_rule(filters, target=cls.FLATTEN_ATTRIBUTES) @classmethod def validate_attribute_fields(cls, all_fields=None, fields=None, exclude_fields=None, exclude_default=None): if all_fields and (fields or exclude_fields or exclude_default): msg = ("Invalid query parameter combination: 'all_fields' " "cannot be combined with 'fields' or 'exclude_fields' " "or 'exclude_default'") raise exception.ValidationError(msg) if fields and (all_fields or exclude_fields): msg = ("Invalid query parameter combination: 'fields' " "cannot be combined with 'all_fields' or 'exclude_fields' ") raise exception.ValidationError(msg) if exclude_fields and (all_fields or fields or exclude_default): msg = ("Invalid query parameter combination: 'exclude_fields' " "cannot be combined with 'all_fields' or 'fields' " "or 'exclude_default'") raise exception.ValidationError(msg) if exclude_default and (all_fields or exclude_fields): msg = ("Invalid query parameter combination: 'exclude_default' " "cannot be combined with 'all_fields' or 'exclude_fields' ") raise exception.ValidationError(msg) def _validate_complex_attributes(query_parameter, fields): msg = ("Invalid query parameter '%(query_parameter)s'. " "Value: %(field)s") for field in fields: if field in cls.COMPLEX_ATTRIBUTES: continue elif '*' in field: # Field should never contain '*' as it's reserved for # special purpose for handling key-value pairs. raise exception.ValidationError(msg % {"query_parameter": query_parameter, "field": field}) elif field not in cls.FLATTEN_COMPLEX_ATTRIBUTES: # Special case for field with key-value pairs. # In this particular case, key will act as an attribute # in structure so you need to treat it differently than # other fields. All key-value pair field will be post-fix # with '*' in FLATTEN_COMPLEX_ATTRIBUTES. Request # with field which contains '*' will be treated as an # error. special_field = False for attribute in cls.FLATTEN_COMPLEX_ATTRIBUTES: if '*' in attribute and field.startswith( attribute.split('*')[0]): special_field = True if not special_field: raise exception.ValidationError(msg % {"query_parameter": query_parameter, "field": field}) if fields: _validate_complex_attributes("fields", fields.split(',')) elif exclude_fields: _validate_complex_attributes("exclude_fields", exclude_fields.split(","))
vkwave/vkscript/__init__.py
krasnovmv/vkwave
222
26312
<reponame>krasnovmv/vkwave<gh_stars>100-1000 import vkwave.vkscript.handlers.assignments import vkwave.vkscript.handlers.blocks import vkwave.vkscript.handlers.calls import vkwave.vkscript.handlers.expressions import vkwave.vkscript.handlers.statements import vkwave.vkscript.handlers.types from .converter import VKScriptConverter from .execute import Execute from .execute import execute __all__ = ("execute", "Execute", "VKScriptConverter")
validation_tests/case_studies/merewether/plot_results.py
samcom12/anuga_core
136
26319
from anuga.utilities import plot_utils as util from matplotlib import pyplot as pyplot import numpy verbose= True swwfile = 'merewether_1m.sww' p=util.get_output(swwfile) p2=util.get_centroids(p) # Time index at last time tindex = len(p2.time)-1 if verbose: print('calculating experimental transect') x_data = [ 0.0, 3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0, 30.0, 33.0] #vel = [ 0.0, 0.0, 1.1, 3.2, 3.4, 2.4, 3.2, 3.2, 3.7, 3.1, 0.4, 0.0] vel_data = [ 0.0, 0.4, 3.1, 3.7, 3.2, 3.2, 2.4, 3.4, 3.2, 1.1, 0.0, 0.0] #depth = [ 0.0, 0.0, 0.1, 0.5, 0.45, 0.4, 0.55, 0.1, 0.1, 0.05, 0.04, 0.0] depth_data = [ 0.0, 0.04, 0.05, 0.1, 0.1, 0.55, 0.4, 0.45, 0.5, 0.1, 0.0, 0.0] from scipy import interpolate fvel = interpolate.interp1d(x_data, vel_data) fdepth = interpolate.interp1d(x_data, depth_data) if verbose: print('calculating model heights at observation points') # Get nearest wet points to 'point observations' point_observations = numpy.genfromtxt( 'Observations/ObservationPoints.csv', delimiter=",",skip_header=1) nearest_points = point_observations[:,0]*0. - 1 for i in range(len(nearest_points)): # Compute distance of ANUGA points to observation, and # if the ANUGA point is dry then add a large value # Then find index of minimum n = ( (p2.x+p2.xllcorner-point_observations[i,0])**2 + \ (p2.y+p2.yllcorner-point_observations[i,1])**2 + \ (p2.stage[tindex,:] <= p2.elev)*1.0e+06).argmin() nearest_points[i] = n f = open('Stage_point_comparison.csv','w') f.writelines( 'Field, ANUGA, TUFLOW, ANUGA minus Field, ANUGA minus TUFLOW \n' ) if verbose: print nearest_points.tolist() for i in range(len(nearest_points)): po = point_observations[i,-2] tu = point_observations[i,-1] anuga_data = p2.stage[tindex, nearest_points.tolist()[i]] newline = str(round(po,2)) + ', ' + str(round(anuga_data,2)) + ', ' + str(tu) + ', ' + \ str(round(anuga_data - po,2)) + ', ' + str(round(anuga_data - tu,2)) + '\n' f.writelines(newline) f.flush() f.close() if verbose: print('Plot transect') ## Plot transect 1 [need to guess appropriate end points as these are not so ## clear from the report] xx=util.near_transect(p2,[103, 100.], [130.,80.],tol=0.5) xx2=xx[0] pyplot.clf() pyplot.figure(figsize=(16,10.5)) pyplot.subplot(121) pyplot.scatter(p2.x, p2.y, c=p2.elev,edgecolors='none') # Add nice elevation data colVals = numpy.maximum(numpy.minimum(p2.elev, 25.), 19.) util.plot_triangles(p, values = colVals, edgecolors='none') pyplot.gca().set_aspect('equal') pyplot.scatter(p2.x[xx2],p2.y[xx2],color='green') pyplot.xlim( (40., 160.)) pyplot.ylim( (0.,140.)) pyplot.title('Transect points in green') pyplot.subplot(222) pyplot.scatter(xx[1],p2.vel[tindex,xx[0]],color='green',label='model') pyplot.scatter(xx[1],fvel(xx[1]),color='blue',label='data') pyplot.legend(loc='upper left') #pyplot.xlim(0,25) pyplot.title('Final flow speed along the transect') pyplot.subplot(224) pyplot.scatter(xx[1],p2.stage[tindex,xx[0]]-p2.elev[xx[0]],color='green',label='model') pyplot.scatter(xx[1],fdepth(xx[1]),color='blue',label='data') pyplot.legend(loc='upper left') #pyplot.xlim(0,25) pyplot.title('Final depth along the transect') pyplot.savefig('Transect1.png', bbox_inches='tight') if verbose: print('Plot velocity field') pyplot.clf() # Velocity vector plot pyplot.figure(figsize=(16,22)) pyplot.scatter(p2.x,p2.y,c=(p2.elev>24.),edgecolors='none', s=0.2) pyplot.gca().set_aspect('equal') pyplot.xlim((100,180)) pyplot.ylim((100,210)) #k=range(0,len(p2.x),2) # Thin out the vectors for easier viewing colVals = numpy.maximum(numpy.minimum(p2.elev, 25.), 19.) util.plot_triangles(p, values = colVals, edgecolors='white') k = range(len(p2.x)) # Thin out the triangles #k = (((10.*(p2.x - p2.x.round())).round()%2 == 0.0)*((10.*(p2.y - p2.y.round())).round()%2 == 0.0)).nonzero()[0] pyplot.quiver(p2.x[k],p2.y[k],p2.xvel[tindex,k], p2.yvel[tindex,k], scale_units='xy',units='xy',width=0.1, color='black',scale=1.0) pyplot.savefig('velocity_stationary.png',dpi=100, bbox_inches='tight') ## Froude number plot if verbose: print('Plot Froude number plot') pyplot.clf() pyplot.figure(figsize=(6,8)) froude_number = p2.vel[tindex]/(numpy.maximum(p2.height[tindex], 1.0e-03)*9.8)**0.5 froude_category = (froude_number>1.).astype(float) + (froude_number > 0.).astype(float) pyplot.scatter(p2.x,p2.y,edgecolors='none', s=0.2) ## Fake additions to plot to hack matplotlib legend pyplot.scatter(0.,0., color='FireBrick',label='>1', marker='s') pyplot.scatter(0.,0., color='PaleGreen',label='0-1', marker='s') pyplot.scatter(0.,0., color='blue',label='0',marker='s') pyplot.gca().set_aspect('equal') util.plot_triangles(p, values = froude_category, edgecolors='none') pyplot.xlim((p.x.min(), p.x.max())) pyplot.ylim((p.y.min(), p.y.max())) pyplot.title("Froude Number zones: 0, (0,1], or >1") import matplotlib.patches as mpatches #red_patch = mpatches.Patch(color='red', label='>1') #green_patch = mpatches.Patch(color='green', label='(0-1]') #blue_patch = mpatches.Patch(color='blue', label='0.') #pyplot.legend(handles=[red_patch, green_patch, blue_patch], labels=['>1', '(0-1]', '0.'], loc='best') pyplot.legend(loc='upper left') pyplot.savefig('froudeNumber.png',dpi=100,bbox_inches='tight')
test/test_conf.py
nandub/Limnoria
476
26329
## # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### from supybot.test import * import supybot.conf as conf import supybot.registry as registry import supybot.ircutils as ircutils class SupyConfTestCase(SupyTestCase): def testJoinToOneChannel(self): orig = conf.supybot.networks.test.channels() channels = ircutils.IrcSet() channels.add("#bar") conf.supybot.networks.test.channels.setValue(channels) msgs = conf.supybot.networks.test.channels.joins() self.assertEqual(msgs[0].args, ("#bar",)) conf.supybot.networks.test.channels.setValue(orig) def testJoinToManyChannels(self): orig = conf.supybot.networks.test.channels() channels = ircutils.IrcSet() input_list = [] for x in range(1, 30): name = "#verylongchannelname" + str(x) channels.add(name) input_list.append(name) conf.supybot.networks.test.channels.setValue(channels) msgs = conf.supybot.networks.test.channels.joins() # Double check we split the messages self.assertEqual(len(msgs), 2) # Ensure all channel names are present chan_list = (msgs[0].args[0] + ',' + msgs[1].args[0]).split(',') self.assertCountEqual(input_list, chan_list) conf.supybot.networks.test.channels.setValue(orig)
qf_lib/documents_utils/document_exporting/element/custom.py
webclinic017/qf-lib
198
26352
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from qf_lib.common.enums.grid_proportion import GridProportion from qf_lib.documents_utils.document_exporting.document import Document from qf_lib.documents_utils.document_exporting.element import Element class CustomElement(Element): def __init__(self, html: str, grid_proportion=GridProportion.Eight): """ An element containing custom HTML. """ super().__init__(grid_proportion) self.html = html def generate_html(self, document: Document) -> str: """ Generates the HTML that represents the underlying element. """ return self.html
electronics/scripts/generate_svg.py
chrisdearman/splitflap
2,138
26370
<filename>electronics/scripts/generate_svg.py<gh_stars>1000+ #!/usr/bin/env python3 # Copyright 2015-2016 <NAME> and the splitflap contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import pcbnew import shutil import subprocess import pcb_util from svg_processor import SvgProcessor electronics_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def color_with_alpha(base_color, alpha): return (base_color & ~(0xFF << 24)) | ((alpha & 0xFF) << 24) def run(pcb_file): output_directory = os.path.join(electronics_root, 'build') temp_dir = os.path.join(output_directory, 'temp_layers') shutil.rmtree(temp_dir, ignore_errors=True) try: os.makedirs(temp_dir) plot_to_directory(pcb_file, output_directory, temp_dir) finally: shutil.rmtree(temp_dir, ignore_errors=True) def plot_to_directory(pcb_file, output_directory, temp_dir): board_name = os.path.splitext(os.path.basename(pcb_file))[0] layers = [ { 'layer': pcbnew.B_SilkS, 'color': '#CC00CC', 'alpha': 0.8, }, { 'layer': pcbnew.B_Cu, 'color': '#33EE33', 'alpha': 0.5, }, { 'layer': pcbnew.F_Cu, 'color': '#CC0000', 'alpha': 0.5, }, { 'layer': pcbnew.F_SilkS, 'color': '#00CCCC', 'alpha': 0.8, }, { 'layer': pcbnew.Cmts_User, 'color': '#333333', 'alpha': 0.8, }, { 'layer': pcbnew.Edge_Cuts, 'color': '#3333CC', 'alpha': 0.8, }, ] with pcb_util.get_plotter(pcb_file, temp_dir) as plotter: plotter.plot_options.SetExcludeEdgeLayer(True) processed_svg_files = [] for i, layer in enumerate(layers): output_filename = plotter.plot(layer['layer'], pcbnew.PLOT_FORMAT_SVG) logger.info('Post-processing %s...', output_filename) processor = SvgProcessor(output_filename) def colorize(original): if original.lower() == '#000000': return layer['color'] return original processor.apply_color_transform(colorize) processor.wrap_with_group({ 'opacity': str(layer['alpha']), }) output_filename2 = os.path.join(temp_dir, 'processed-' + os.path.basename(output_filename)) processor.write(output_filename2) processed_svg_files.append((output_filename2, processor)) # Plot the paste layer to its own SVG logger.info('Plotting paste SVG') output_filename = plotter.plot(pcbnew.F_Paste, pcbnew.PLOT_FORMAT_SVG) processor = SvgProcessor(output_filename) def colorize(original): if original.lower() == '#000000': return '#FF0000' return original processor.apply_group_style_transforms({ 'fill-opacity': lambda _: '0', 'stroke': lambda _: '#FF0000', 'stroke-opacity': lambda _: '1', 'stroke-width': lambda _: '20', }) paste_filename = os.path.join(output_directory, '%s_paste.svg' % board_name) processor.write(paste_filename) logger.info('Merging layers...') final_svg = os.path.join(output_directory, '%s_merged.svg' % board_name) shutil.copyfile(processed_svg_files[0][0], final_svg) output_processor = SvgProcessor(final_svg) for _, processor in processed_svg_files: output_processor.import_groups(processor) output_processor.write(final_svg) logger.info('Rasterizing...') raster_width = 1280 final_png = os.path.join(output_directory, '%s_merged.png' % board_name) subprocess.check_call([ 'inkscape', '--export-area-drawing', '--export-width', str(raster_width), '--export-png', final_png, '--export-background', '#FFFFFF', final_svg, ]) if __name__ == '__main__': parser = argparse.ArgumentParser('Generate an SVG rendering of the PCB') parser.add_argument('pcb_file') args = parser.parse_args() run(args.pcb_file)
examples/deco_add_param.py
scholer/clize
390
26390
<gh_stars>100-1000 from sigtools.wrappers import decorator from clize import run @decorator def with_uppercase(wrapped, *args, uppercase=False, **kwargs): """ Formatting options: :param uppercase: Print output in capitals """ ret = wrapped(*args, **kwargs) if uppercase: return str(ret).upper() else: return ret @with_uppercase def hello_world(name=None): """Says hello world :param name: Who to say hello to """ if name is not None: return 'Hello ' + name else: return 'Hello world!' if __name__ == '__main__': run(hello_world)
mealpy/utils/visualize/linechart.py
thieu1995/mealpy
162
26424
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "Thieu" at 17:12, 09/07/2021 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% import platform from matplotlib import pyplot as plt from numpy import arange from pathlib import Path import re LIST_LINESTYLES = [ '-', # solid line style '--', # dashed line style '-.', # dash-dot line style ':', # point marker 's', # square marker '*', # star marker 'p', # pentagon marker '+', # plus marker 'x', # x marker 'd', # thin diamond marker ] LIST_COLORS = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] def __clean_filename__(filename): chars_to_remove = ["`", "~", "!", "@", "#", "$", "%", "^", "&", "*", ":", ",", "<", ">", ";", "+", "|"] regular_expression = '[' + re.escape(''.join(chars_to_remove)) + ']' temp = filename.encode("ascii", "ignore") fname = temp.decode() # Removed all non-ascii characters fname = re.sub(regular_expression, '', fname) # Removed all special characters fname.replace("_", "-") # Replaced _ by - return fname def __check_filepath__(filename): filename.replace("\\", "/") # For better handling the parent folder if "/" in filename: list_names = filename.split("/")[:-1] # Remove last element because it is filename filepath = "/".join(list_names) print(f"Fucking for real? {filepath}") Path(filepath).mkdir(parents=True, exist_ok=True) return filename def _draw_line_(data=None, title=None, linestyle='-', color='b', x_label="#Iteration", y_label="Function Value", filename=None, exts=(".png", ".pdf"), verbose=True): x = arange(0, len(data)) y = data plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.plot(x, y, linestyle=linestyle, color=color,) plt.legend() # show a legend on the plot if filename is not None: filepath = __check_filepath__(__clean_filename__(filename)) for idx, ext in enumerate(exts): plt.savefig(f"{filepath}{ext}", bbox_inches='tight') if platform.system() != "Linux" and verbose: plt.show() plt.close() def _draw_multi_line_(data=None, title=None, list_legends=None, list_styles=None, list_colors=None, x_label="#Iteration", y_label="Function Value", filename=None, exts=(".png", ".pdf"), verbose=True): x = arange(0, len(data[0])) for idx, y in enumerate(data): plt.plot(x, y, label=list_legends[idx], markerfacecolor=list_colors[idx], linestyle=list_styles[idx]) plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.legend() # show a legend on the plot if filename is not None: filepath = __check_filepath__(__clean_filename__(filename)) for idx, ext in enumerate(exts): plt.savefig(f"{filepath}{ext}", bbox_inches='tight') if platform.system() != "Linux" and verbose: plt.show() plt.close() def _draw_multi_line_in_same_figure_(data=None, title=None, list_legends=None, list_styles=None, list_colors=None, x_label="#Iteration", y_label="Objective", filename=None, exts=(".png", ".pdf"), verbose=True): n_lines = len(data) len_lines = len(data[0]) x = arange(0, len_lines) if n_lines == 1: fig, ax = plt.subplots() if list_legends is None: ax.plot(x, data[0]) else: ax.plot(x, data[0], label=list_legends[0]) ax.set_title(title) elif n_lines > 1: fig, ax_list = plt.subplots(n_lines, sharex=True) fig.suptitle(title) for idx, ax in enumerate(ax_list): if list_legends is None: ax.plot(x, data[idx], markerfacecolor=list_colors[idx], linestyle=list_styles[idx]) else: ax.plot(x, data[idx], label=list_legends[idx], markerfacecolor=list_colors[idx], linestyle=list_styles[idx]) ax.set_ylabel(f"Objective {idx + 1}") if idx == (n_lines - 1): ax.set_xlabel(x_label) if filename is not None: filepath = __check_filepath__(__clean_filename__(filename)) for idx, ext in enumerate(exts): plt.savefig(f"{filepath}{ext}", bbox_inches='tight') if platform.system() != "Linux" and verbose: plt.show() plt.close() def export_convergence_chart(data=None, title="Convergence Chart", linestyle='-', color='b', x_label="#Iteration", y_label="Function Value", filename="convergence_chart", exts=(".png", ".pdf"), verbose=True): _draw_line_(data, title=title, linestyle=linestyle, color=color, x_label=x_label, y_label=y_label, filename=filename, exts=exts, verbose=verbose) def export_explore_exploit_chart(data=None, title="Exploration vs Exploitation Percentages", list_legends=("Exploration %", "Exploitation %"), list_styles=('-', '-'), list_colors=('blue', 'orange'), x_label="#Iteration", y_label="Percentage", filename="explore_exploit_chart", exts=(".png", ".pdf"), verbose=True): _draw_multi_line_(data=data, title=title, list_legends=list_legends, list_styles=list_styles, list_colors=list_colors, x_label=x_label, y_label=y_label, filename=filename, exts=exts, verbose=verbose) def export_diversity_chart(data=None, title='Diversity Measurement Chart', list_legends=None, list_styles=None, list_colors=None, x_label="#Iteration", y_label="Diversity Measurement", filename="diversity_chart", exts=(".png", ".pdf"), verbose=True): if list_styles is None: list_styles = LIST_LINESTYLES[:len(data)] if list_colors is None: list_colors = LIST_COLORS[:len(data)] _draw_multi_line_(data=data, title=title, list_legends=list_legends, list_styles=list_styles, list_colors=list_colors, x_label=x_label, y_label=y_label, filename=filename, exts=exts, verbose=verbose) def export_objectives_chart(data=None, title="Objectives chart", list_legends=None, list_styles=None, list_colors=None, x_label="#Iteration", y_label="Function Value", filename="Objective-chart", exts=(".png", ".pdf"), verbose=True): if list_styles is None: list_styles = LIST_LINESTYLES[:len(data)] if list_colors is None: list_colors = LIST_COLORS[:len(data)] _draw_multi_line_in_same_figure_(data=data, title=title, list_legends=list_legends, list_styles=list_styles, list_colors=list_colors, x_label=x_label, y_label=y_label, filename=filename, exts=exts, verbose=verbose) def export_trajectory_chart(data=None, n_dimensions=1, title="Trajectory of some first agents after generations", list_legends=None, list_styles=None, list_colors=None, x_label="#Iteration", y_label="X1", filename="1d_trajectory", exts=(".png", ".pdf"), verbose=True): if list_styles is None: list_styles = LIST_LINESTYLES[:len(data)] if list_colors is None: list_colors = LIST_COLORS[:len(data)] if n_dimensions == 1: x = arange(0, len(data[0])) for idx, y in enumerate(data): plt.plot(x, y, label=list_legends[idx], markerfacecolor=list_colors[idx], linestyle=list_styles[idx]) elif n_dimensions == 2: for idx, point in enumerate(data): plt.plot(point[0], point[1], label=list_legends[idx], markerfacecolor=list_colors[idx], linestyle=list_styles[idx]) plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.legend() # show a legend on the plot if filename is not None: filepath = __check_filepath__(__clean_filename__(filename)) for idx, ext in enumerate(exts): plt.savefig(f"{filepath}{ext}", bbox_inches='tight') if platform.system() != "Linux" and verbose: plt.show() plt.close()
rules/tamper/wordpress.py
lavon321/Kunlun-M
1,059
26452
# -*- coding: utf-8 -*- """ wordpress ~~~~ tamper for wordpress :author: LoRexxar <<EMAIL>> :homepage: https://github.com/LoRexxar/Kunlun-M :license: MIT, see LICENSE for more details. :copyright: Copyright (c) 2017 LoRexxar. All rights reserved """ wordpress = { "esc_url": [1000, 10001, 10002], "esc_js": [1000, 10001, 10002], "esc_html": [1000, 10001, 10002], "esc_attr": [1000, 10001, 10002], "esc_textarea": [1000, 10001, 10002], "tag_escape": [1000, 10001, 10002], "esc_sql": [1004, 1005, 1006], "_real_escape": [1004, 1005, 1006], } wordpress_controlled = []
tests/links_tests/model_tests/yolo_tests/test_yolo_v3.py
souravsingh/chainercv
1,600
26460
<reponame>souravsingh/chainercv<filename>tests/links_tests/model_tests/yolo_tests/test_yolo_v3.py import numpy as np import unittest import chainer from chainer import testing from chainer.testing import attr from chainercv.links import YOLOv3 @testing.parameterize(*testing.product({ 'n_fg_class': [1, 5, 20], })) class TestYOLOv3(unittest.TestCase): def setUp(self): self.link = YOLOv3(n_fg_class=self.n_fg_class) self.insize = 416 self.n_bbox = (13 * 13 + 26 * 26 + 52 * 52) * 3 def _check_call(self): x = self.link.xp.array( np.random.uniform(-1, 1, size=(1, 3, self.insize, self.insize)), dtype=np.float32) locs, objs, confs = self.link(x) self.assertIsInstance(locs, chainer.Variable) self.assertIsInstance(locs.array, self.link.xp.ndarray) self.assertEqual(locs.shape, (1, self.n_bbox, 4)) self.assertIsInstance(objs, chainer.Variable) self.assertIsInstance(objs.array, self.link.xp.ndarray) self.assertEqual(objs.shape, (1, self.n_bbox)) self.assertIsInstance(confs, chainer.Variable) self.assertIsInstance(confs.array, self.link.xp.ndarray) self.assertEqual(confs.shape, (1, self.n_bbox, self.n_fg_class)) @attr.slow def test_call_cpu(self): self._check_call() @attr.gpu @attr.slow def test_call_gpu(self): self.link.to_gpu() self._check_call() @testing.parameterize(*testing.product({ 'n_fg_class': [None, 10, 20], 'pretrained_model': ['voc0712'], })) class TestYOLOv3Pretrained(unittest.TestCase): @attr.slow def test_pretrained(self): kwargs = { 'n_fg_class': self.n_fg_class, 'pretrained_model': self.pretrained_model, } if self.pretrained_model == 'voc0712': valid = self.n_fg_class in {None, 20} if valid: YOLOv3(**kwargs) else: with self.assertRaises(ValueError): YOLOv3(**kwargs) testing.run_module(__name__, __file__)
Plug-and-play module/attention/CBAM/cbam.py
riciche/SimpleCVReproduction
923
26464
<filename>Plug-and-play module/attention/CBAM/cbam.py import torch import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.sharedMLP = nn.Sequential( nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)) self.sigmoid = nn.Sigmoid() def forward(self, x): avgout = self.sharedMLP(self.avg_pool(x)) maxout = self.sharedMLP(self.max_pool(x)) return self.sigmoid(avgout + maxout) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), "kernel size must be 3 or 7" padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avgout = torch.mean(x, dim=1, keepdim=True) maxout, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avgout, maxout], dim=1) x = self.conv(x) return self.sigmoid(x) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.ca = ChannelAttention(planes) self.sa = SpatialAttention() self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.ca(out) * out # 广播机制 out = self.sa(out) * out # 广播机制 if self.downsample is not None: print("downsampling") residual = self.downsample(x) print(out.shape, residual.shape) out += residual out = self.relu(out) return out if __name__ == "__main__": downsample = nn.Sequential( nn.Conv2d(16, 32, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(32)) x = torch.ones(3, 16, 32, 32) model = BasicBlock(16, 32, stride=1, downsample=downsample) print(model(x).shape)
diffrax/solver/kvaerno5.py
FedericoV/diffrax
377
26472
import numpy as np from ..local_interpolation import ThirdOrderHermitePolynomialInterpolation from .runge_kutta import AbstractESDIRK, ButcherTableau γ = 0.26 a21 = γ a31 = 0.13 a32 = 0.84033320996790809 a41 = 0.22371961478320505 a42 = 0.47675532319799699 a43 = -0.06470895363112615 a51 = 0.16648564323248321 a52 = 0.10450018841591720 a53 = 0.03631482272098715 a54 = -0.13090704451073998 a61 = 0.13855640231268224 a62 = 0 a63 = -0.04245337201752043 a64 = 0.02446657898003141 a65 = 0.61943039072480676 a71 = 0.13659751177640291 a72 = 0 a73 = -0.05496908796538376 a74 = -0.04118626728321046 a75 = 0.62993304899016403 a76 = 0.06962479448202728 # Predictors taken from # https://github.com/SciML/OrdinaryDiffEq.jl/blob/54fb35870fa402fc95d665cd5f9502e2759ea436/src/tableaus/sdirk_tableaus.jl#L1444 # noqa: E501 # https://github.com/SciML/OrdinaryDiffEq.jl/blob/54fb35870fa402fc95d665cd5f9502e2759ea436/src/perform_step/kencarp_kvaerno_perform_step.jl#L1123 # noqa: E501 # This is with the exception of α21, which is mistakenly set to zero. # # See also /devdocs/predictor_dirk.md α21 = 1.0 α31 = -1.366025403784441 α32 = 2.3660254037844357 α41 = -0.19650552613122207 α42 = 0.8113579546496623 α43 = 0.38514757148155954 α51 = 0.10375304369958693 α52 = 0.937994698066431 α53 = -0.04174774176601781 α61 = -0.17281112873898072 α62 = 0.6235784481025847 α63 = 0.5492326806363959 α71 = a61 α72 = a62 α73 = a63 α74 = a64 α75 = a65 α76 = γ _kvaerno5_tableau = ButcherTableau( a_lower=( np.array([a21]), np.array([a31, a32]), np.array([a41, a42, a43]), np.array([a51, a52, a53, a54]), np.array([a61, a62, a63, a64, a65]), np.array([a71, a72, a73, a74, a75, a76]), ), a_diagonal=np.array([0, γ, γ, γ, γ, γ, γ]), a_predictor=( np.array([α21]), np.array([α31, α32]), np.array([α41, α42, α43]), np.array([α51, α52, α53, 0]), np.array([α61, α62, α63, 0, 0]), np.array([α71, α72, α73, α74, α75, α76]), ), b_sol=np.array([a71, a72, a73, a74, a75, a76, γ]), b_error=np.array( [a71 - a61, a72 - a62, a73 - a63, a74 - a64, a75 - a65, a76 - γ, γ] ), c=np.array( [0.52, 1.230333209967908, 0.8957659843500759, 0.43639360985864756, 1.0, 1.0] ), ) class Kvaerno5(AbstractESDIRK): r"""Kvaerno's 5/4 method. A-L stable stiffly accurate 5th order ESDIRK method. Has an embedded 4th order method for adaptive step sizing. Uses 7 stages. When solving an ODE over the interval $[t_0, t_1]$, note that this method will make some evaluations slightly past $t_1$. ??? cite "Reference" ```bibtex @article{kvaerno2004singly, title={Singly diagonally implicit Runge--Kutta methods with an explicit first stage}, author={Kv{\ae}rn{\o}, Anne}, journal={BIT Numerical Mathematics}, volume={44}, number={3}, pages={489--502}, year={2004}, publisher={Springer} } ``` """ tableau = _kvaerno5_tableau interpolation_cls = ThirdOrderHermitePolynomialInterpolation.from_k def order(self, terms): return 5
Hinting/Remove Zero Deltas in Selected Glyphs.py
justanotherfoundry/Glyphs-Scripts
283
26473
#MenuTitle: Remove Zero Deltas in Selected Glyphs # -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals __doc__=""" Goes through all layers of each selected glyph, and deletes all TT Delta Hints with an offset of zero. Detailed Report in Macro Window. """ def process( Layer ): try: count = 0 for i in reversed(range(len(Layer.hints))): hint = Layer.hints[i] if hint.type == TTDELTA: elementDict = hint.elementDict() if "settings" in elementDict: settings = elementDict["settings"] if settings: for deltaType in ("deltaH","deltaV"): if deltaType in settings: for transformType in settings[deltaType]: deltas = settings[deltaType][transformType] for ppmSize in deltas: if deltas[ppmSize] == 0: del deltas[ppmSize] count += 1 # clean up delta PPMs: if len(settings[deltaType][transformType]) == 0: del settings[deltaType][transformType] # clean up delta directions: if len(settings[deltaType]) == 0: del settings[deltaType] # clean up hints: if not elementDict["settings"]: del Layer.hints[i] print(" Deleted %i zero delta%s on layer '%s'." % ( count, "" if count == 1 else "s", Layer.name, )) return count except Exception as e: Glyphs.showMacroWindow() import traceback print(traceback.format_exc()) print() print(e) thisFont = Glyphs.font # frontmost font selectedLayers = thisFont.selectedLayers # active layers of selected glyphs Glyphs.clearLog() # clears log in Macro window totalCount = 0 for selectedLayer in selectedLayers: thisGlyph = selectedLayer.parent print("%s:" % thisGlyph.name) thisGlyph.beginUndo() # begin undo grouping for thisLayer in thisGlyph.layers: totalCount += process( thisLayer ) thisGlyph.endUndo() # end undo grouping if totalCount: Message( title="%i Zero Delta%s Deleted" % ( totalCount, "" if totalCount == 1 else "s", ), message="Deleted %i TT delta hint%s with zero offset in %i selected glyph%s (%s%s). Detailed report in Macro Window." % ( totalCount, "" if totalCount == 1 else "s", len(selectedLayers), "" if len(selectedLayers) == 1 else "s", ", ".join([l.parent.name for l in selectedLayers[:min(20,len(selectedLayers))]]), ",..." if len(selectedLayers) > 20 else "", ), OKButton=u"👍🏻 OK", ) else: Message( title="No Zero Deltas", message="No TT delta hints with zero offset were found in selected glyph%s (%s%s)." % ( "" if len(selectedLayers) == 1 else "s", ", ".join([l.parent.name for l in selectedLayers[:min(20,len(selectedLayers))]]), ",..." if len(selectedLayers) > 20 else "", ), OKButton=u"🍸 Cheers")
torchvision/prototype/utils/__init__.py
yoshitomo-matsubara/vision
12,063
26476
<reponame>yoshitomo-matsubara/vision<filename>torchvision/prototype/utils/__init__.py from . import _internal
annotation/application/document.py
seal-git/chABSA-dataset
107
26519
<gh_stars>100-1000 import os import shutil import json class Document(): def __init__(self, doc_id, doc_text, edi_id, company_name, body, topic): self.doc_id = doc_id self.doc_text = doc_text self.edi_id = edi_id self.company_name = company_name self.body = body self.topic = topic def get_header(self): return { "document_id": self.document_id, "document_name": self.document_name, "doc_text": self.doc_text, "edi_id": self.edi_id } @property def document_id(self): return self.edi_id @property def document_name(self): return self.company_name @classmethod def load(cls, file_path): if not os.path.isfile(file_path): raise Exception("File {} does not found.".format(file_path)) with open(file_path, encoding="utf-8") as f: doc = json.load(f) doc_id = doc["doc_id"] doc_text = doc["doc_text"] edi_id = doc["edi_id"] company_name = doc["company_name"] body = doc["body"] topic = doc["topic"] return cls(doc_id, doc_text, edi_id, company_name, body, topic) class Label(): def __init__(self, label, label_group="", display_name="", display_style=""): self.label = label self.label_group = label_group self.display_name = display_name self.display_style = display_style def dumps(self): return { "label": self.label, "label_group": self.label_group, "display_name": self.display_name, "display_style": self.display_style } class Annotation(): def __init__(self, target_id, target, label, label_target="", position=(), annotator="anonymous"): self.target_id = int(target_id) self.target = target self.label = label self.label_target = label_target self.position = position if len(self.position) > 0: self.position = [int(i) for i in self.position] self.annotator = annotator def dumps(self): a = { "target_id": self.target_id, "target": self.target, "label": self.label, "label_target": self.label_target, "position": self.position, "annotator": self.annotator } return a @classmethod def loads(cls, obj): a = Annotation( obj["target_id"], obj["target"], obj["label"], obj["label_target"], obj["position"] if "position" in obj else () ) if "annotator" in obj: a.annotator = obj["annotator"] return a class AnnotationTask(): ANNOTATION_CLASS = Annotation def __init__(self, document, annotations=()): self.document = document self.annotations = {} if len(annotations) == 0 else annotations def get_targets(self): raise Exception("Sub class have to specify texts for annotation") def get_labels(self): raise Exception("Sub class have to define label candidates") def get_dataset(self): dataset = {} for target_id, target in self.get_targets(): a_s = [] if target_id in self.annotations: a_s = [a.dumps() for a in self.annotations[target_id]] dataset[target_id] = { "target": target, "annotations": a_s } return dataset def save_annotations(self, target_dir, annotation_objs, annotator): _dir = os.path.join(target_dir, self.document.document_id) annotations = [self.ANNOTATION_CLASS.loads(a_obj) for a_obj in annotation_objs] if annotator: for a in annotations: a.annotator = annotator if os.path.exists(_dir): for f in os.listdir(_dir): if f.startswith("ann__") and f.endswith("__{}.json".format(annotator)): os.remove(os.path.join(_dir, f)) save_bucket = {} for a in annotations: key = (a.target_id, a.annotator) if key not in save_bucket: save_bucket[key] = [] save_bucket[key].append(a) if len(save_bucket) > 0 and not os.path.exists(_dir): os.mkdir(_dir) for key in save_bucket: file_name = self._make_annotation_file_name(*key) body = { "annotations": [a.dumps() for a in save_bucket[key]] } file_path = os.path.join(_dir, file_name) with open(file_path, mode="w", encoding="utf-8") as f: json.dump(body, f, ensure_ascii=False, indent=2) def _make_annotation_file_name(self, target_id, annotator): return "ann__{}__{}__{}.json".format(self.document.document_id, target_id, annotator) @classmethod def load(cls, target_dir, document, annotator=""): annotations = {} _dir = os.path.join(target_dir, document.document_id) if os.path.exists(_dir): for f in sorted(os.listdir(_dir)): if not f.startswith("ann__"): continue if annotator and not f.endswith("__{}.json".format(annotator)): continue path = os.path.join(_dir, f) with open(path, encoding="utf-8") as af: annotation_objs = json.load(af)["annotations"] a_list = [cls.ANNOTATION_CLASS.loads(a_obj) for a_obj in annotation_objs] if len(a_list) > 0: target_id = a_list[0].target_id if target_id not in annotations: annotations[target_id] = a_list else: annotations[target_id] += a_list instance = cls(document, annotations) return instance
__scraping__/just-eat.fr - robobrowser/main.py
whitmans-max/python-examples
140
26538
<reponame>whitmans-max/python-examples # date: 2019.05.05 # author: Bartłomiej 'furas' Burek import robobrowser br = robobrowser.RoboBrowser(user_agent='Mozilla/5.0 (X11; Linux i586; rv:31.0) Gecko/20100101 Firefox/31.0') br.parser = 'lxml' br.open("https://www.just-eat.fr") print(br.get_forms()) iframe_src = br.select('iframe')[0]['src'] print(iframe_src) br.open("https://www.just-eat.fr"+iframe_src) print(br.parsed) br.open("https://www.just-eat.fr") print(br.get_forms())
nototools/drop_hints.py
RoelN/nototools
156
26541
<filename>nototools/drop_hints.py #!/usr/bin/env python # # Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Drop hints from a font.""" __author__ = "<EMAIL> (<NAME>)" import array import sys from fontTools import ttLib def drop_hints_from_glyphs(font): """Drops the hints from a font's glyphs.""" glyf_table = font["glyf"] for glyph_index in range(len(glyf_table.glyphOrder)): glyph_name = glyf_table.glyphOrder[glyph_index] glyph = glyf_table[glyph_name] if glyph.numberOfContours > 0: if glyph.program.bytecode: glyph.program.bytecode = array.array("B") def drop_tables(font, tables): """Drops the listed tables from a font.""" for table in tables: if table in font: del font[table] def main(argv): """Drop the hints from the first file specified and save as second.""" font = ttLib.TTFont(argv[1]) drop_hints_from_glyphs(font) drop_tables(font, ["cvt ", "fpgm", "hdmx", "LTSH", "prep", "VDMX"]) font.save(argv[2]) if __name__ == "__main__": main(sys.argv)
floss/decoding_manager.py
fireeye/flare-floss
2,067
26545
<filename>floss/decoding_manager.py # Copyright (C) 2017 Mandiant, Inc. All Rights Reserved. import logging from typing import List, Tuple from dataclasses import dataclass import viv_utils import envi.memory import viv_utils.emulator_drivers from envi import Emulator from . import api_hooks logger = logging.getLogger("floss") MAX_MAPS_SIZE = 1024 * 1024 * 100 # 100MB max memory allocated in an emulator instance def is_import(emu, va): """ Return True if the given VA is that of an imported function. """ # TODO: also check location type t = emu.getVivTaint(va) if t is None: return False return t[1] == "import" # type aliases for envi.memory map MemoryMapDescriptor = Tuple[ # va int, # size int, # perms int, # name str, ] # type aliases for envi.memory map MemoryMap = Tuple[ # start int, # end int, # descriptor MemoryMapDescriptor, # content bytes, ] # type aliases for envi.memory map Memory = List[MemoryMap] @dataclass class Snapshot: """ A snapshot of the state of the CPU and memory. Attributes: memory: a snapshot of the memory contents sp: the stack counter pc: the instruction pointer """ memory: Memory sp: int pc: int def get_map_size(emu): size = 0 for mapva, mapsize, mperm, mfname in emu.getMemoryMaps(): mapsize += size return size class MapsTooLargeError(Exception): pass def make_snapshot(emu: Emulator) -> Snapshot: """ Create a snapshot of the current CPU and memory. """ if get_map_size(emu) > MAX_MAPS_SIZE: logger.debug("emulator mapped too much memory: 0x%x", get_map_size(emu)) raise MapsTooLargeError() return Snapshot(emu.getMemorySnap(), emu.getStackCounter(), emu.getProgramCounter()) @dataclass class Delta: """ a pair of snapshots from before and after an operation. facilitates diffing the state of an emulator. """ pre: Snapshot post: Snapshot class DeltaCollectorHook(viv_utils.emulator_drivers.Hook): """ hook that collects Deltas at each imported API call. """ def __init__(self, pre_snap: Snapshot): super(DeltaCollectorHook, self).__init__() self._pre_snap = pre_snap self.deltas: List[Delta] = [] def hook(self, callname, driver, callconv, api, argv): if is_import(driver._emu, driver._emu.getProgramCounter()): try: self.deltas.append(Delta(self._pre_snap, make_snapshot(driver._emu))) except MapsTooLargeError: logger.debug("despite call to import %s, maps too large, not extracting strings", callname) pass def emulate_function( emu: Emulator, function_index, fva: int, return_address: int, max_instruction_count: int ) -> List[Delta]: """ Emulate a function and collect snapshots at each interesting place. These interesting places include calls to imported API functions and the final state of the emulator. Emulation continues until the return address is hit, or the given max_instruction_count is hit. Some library functions are shimmed, such as memory allocation routines. This helps "normal" routines emulate correct using standard library function. These include: - GetProcessHeap - RtlAllocateHeap - AllocateHeap - malloc :type function_index: viv_utils.FunctionIndex :param fva: The start address of the function to emulate. :param return_address: The expected return address of the function. Emulation stops here. :param max_instruction_count: The max number of instructions to emulate. This helps avoid unexpected infinite loops. """ try: pre_snap = make_snapshot(emu) except MapsTooLargeError: logger.warn("initial snapshot mapped too much memory, can't extract strings") return [] delta_collector = DeltaCollectorHook(pre_snap) try: logger.debug("Emulating function at 0x%08X", fva) driver = viv_utils.emulator_drivers.DebuggerEmulatorDriver(emu) monitor = api_hooks.ApiMonitor(emu.vw, function_index) driver.add_monitor(monitor) driver.add_hook(delta_collector) with api_hooks.defaultHooks(driver): driver.runToVa(return_address, max_instruction_count) except viv_utils.emulator_drivers.InstructionRangeExceededError: logger.debug("Halting as emulation has escaped!") except envi.InvalidInstruction: logger.debug("vivisect encountered an invalid instruction. will continue processing.", exc_info=True) except envi.UnsupportedInstruction: logger.debug("vivisect encountered an unsupported instruction. will continue processing.", exc_info=True) except envi.BreakpointHit: logger.debug( "vivisect encountered an unexpected emulation breakpoint. will continue processing.", exc_info=True ) except viv_utils.emulator_drivers.StopEmulation: pass except Exception: logger.debug("vivisect encountered an unexpected exception. will continue processing.", exc_info=True) logger.debug("Ended emulation at 0x%08X", emu.getProgramCounter()) deltas = delta_collector.deltas try: deltas.append(Delta(pre_snap, make_snapshot(emu))) except MapsTooLargeError: logger.debug("failed to create final snapshot, emulator mapped too much memory, skipping") pass return deltas
datadog_checks_base/tests/openmetrics/test_interface.py
vbarbaresi/integrations-core
663
26555
<filename>datadog_checks_base/tests/openmetrics/test_interface.py # (C) Datadog, Inc. 2020-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import pytest from datadog_checks.base import OpenMetricsBaseCheckV2 from datadog_checks.base.constants import ServiceCheck from datadog_checks.dev.testing import requires_py3 from .utils import get_check pytestmark = [requires_py3, pytest.mark.openmetrics, pytest.mark.openmetrics_interface] def test_default_config(aggregator, dd_run_check, mock_http_response): class Check(OpenMetricsBaseCheckV2): __NAMESPACE__ = 'test' def get_default_config(self): return {'metrics': ['.+'], 'rename_labels': {'foo': 'bar'}} mock_http_response( """ # HELP go_memstats_alloc_bytes Number of bytes allocated and still in use. # TYPE go_memstats_alloc_bytes gauge go_memstats_alloc_bytes{foo="baz"} 6.396288e+06 """ ) check = Check('test', {}, [{'openmetrics_endpoint': 'test'}]) dd_run_check(check) aggregator.assert_metric( 'test.go_memstats_alloc_bytes', 6396288, metric_type=aggregator.GAUGE, tags=['endpoint:test', 'bar:baz'] ) aggregator.assert_all_metrics_covered() def test_service_check_dynamic_tags(aggregator, dd_run_check, mock_http_response): mock_http_response( """ # HELP go_memstats_alloc_bytes Number of bytes allocated and still in use. # TYPE go_memstats_alloc_bytes gauge go_memstats_alloc_bytes{foo="baz"} 6.396288e+06 # HELP state Node state # TYPE state gauge state{bar="baz"} 3 """ ) check = get_check( {'metrics': ['.+', {'state': {'type': 'service_check', 'status_map': {'3': 'ok'}}}], 'tags': ['foo:bar']} ) dd_run_check(check) aggregator.assert_metric( 'test.go_memstats_alloc_bytes', 6396288, metric_type=aggregator.GAUGE, tags=['endpoint:test', 'foo:bar', 'foo:baz'], ) aggregator.assert_service_check('test.state', ServiceCheck.OK, tags=['endpoint:test', 'foo:bar']) aggregator.assert_service_check('test.openmetrics.health', ServiceCheck.OK, tags=['endpoint:test', 'foo:bar']) aggregator.assert_all_metrics_covered() assert len(aggregator.service_check_names) == 2 aggregator.reset() check.set_dynamic_tags('baz:foo') dd_run_check(check) aggregator.assert_metric( 'test.go_memstats_alloc_bytes', 6396288, metric_type=aggregator.GAUGE, tags=['endpoint:test', 'foo:bar', 'foo:baz', 'baz:foo'], ) aggregator.assert_service_check('test.state', ServiceCheck.OK, tags=['endpoint:test', 'foo:bar']) aggregator.assert_service_check('test.openmetrics.health', ServiceCheck.OK, tags=['endpoint:test', 'foo:bar']) aggregator.assert_all_metrics_covered() assert len(aggregator.service_check_names) == 2
hbaselines/envs/deeploco/envs.py
reufko/h-baselines
186
26585
"""Script containing the DeepLoco environments.""" import gym import numpy as np import os import sys import cv2 try: sys.path.append(os.path.join(os.environ["TERRAINRL_PATH"], "simAdapter")) import terrainRLSim # noqa: F401 except (KeyError, ImportError, ModuleNotFoundError): pass class BipedalSoccer(gym.Env): """Bipedal Soccer environment. In this environment, a bipedal agent is placed in an open field with a soccer ball. The agent is rewarded for moving to the ball, and additionally dribbling the ball to the target. The reward function is a weighted sum of the agent's distance from the ball and the distance of the ball from a desired goal position. This reward is positive to discourage the agent from falling prematurely. Attributes ---------- wrapped_env : gym.Env the original environment, which add more dimensions than wanted here """ def __init__(self): """Instantiate the environment.""" self.wrapped_env = terrainRLSim.getEnv( "PD-Biped3D-HLC-Soccer-v1", render=False) # Add the time horizon. self.horizon = 512 @property def observation_space(self): """See parent class.""" return self.wrapped_env.observation_space @property def action_space(self): """See parent class.""" return self.wrapped_env.action_space def step(self, action): """See parent class.""" obs, rew, done, info = self.wrapped_env.step(np.array([action])) return obs[0], rew[0][0], done, info def reset(self): """See parent class.""" return self.wrapped_env.reset()[0] def render(self, mode='human'): """See parent class.""" return self.wrapped_env.render(mode=mode) class BipedalObstacles(gym.Env): """Bipedal Obstacles environment. In this environment, a bipedal agent is placed in an open field with obstacles scattered throughout the world. The goal of the agent is to walk around the world and reach a goal position. Attributes ---------- wrapped_env : gym.Env the original environment, which add more dimensions than wanted here """ def __init__(self, render): """Instantiate the environment. Parameters ---------- render : bool whether to render the environment """ self.t = 0 if render: self.wrapped_env = gym.make("PD-Biped3D-HLC-Obstacles-render-v2") else: self.wrapped_env = gym.make("PD-Biped3D-HLC-Obstacles-v2") # Add the time horizon. self.horizon = 2000 @property def observation_space(self): """See parent class.""" return gym.spaces.Box( low=20 * self.wrapped_env.observation_space.low[:-2], high=20 * self.wrapped_env.observation_space.high[:-2], dtype=np.float32) @property def context_space(self): """See parent class.""" return gym.spaces.Box( low=20 * self.wrapped_env.observation_space.low[-2:], high=20 * self.wrapped_env.observation_space.high[-2:], dtype=np.float32) @property def action_space(self): """See parent class.""" return self.wrapped_env.action_space @property def current_context(self): """See parent class.""" return self.wrapped_env.env.getObservation()[-2:] def step(self, action): """See parent class.""" self.t += 1 obs, rew, done, info = self.wrapped_env.step(action) done = done or self.t >= self.horizon return obs[:-2], rew, done, info def reset(self): """See parent class.""" self.t = 0 return self.wrapped_env.reset()[:-2] def render(self, mode='human'): """See parent class.""" image = self.wrapped_env.env.render( headless_step=True) if mode == 'human': f = np.flip(image.astype(np.float32) / 255.0, axis=0) f = np.flip(f, axis=2) cv2.imshow("PD-Biped3D-HLC-Obstacles-v2", f) cv2.waitKey(1) elif mode == 'rgb_array': return image
river/tree/hoeffding_tree.py
online-ml/creme
1,105
26589
<reponame>online-ml/creme<filename>river/tree/hoeffding_tree.py import collections import functools import io import math import typing from abc import ABC, abstractmethod from river import base from river.utils.skmultiflow_utils import ( calculate_object_size, normalize_values_in_dict, ) from .nodes.branch import ( DTBranch, NominalBinaryBranch, NominalMultiwayBranch, NumericBinaryBranch, NumericMultiwayBranch, ) from .nodes.leaf import HTLeaf try: import graphviz GRAPHVIZ_INSTALLED = True except ImportError: GRAPHVIZ_INSTALLED = False class HoeffdingTree(ABC): """Base class for Hoeffding Decision Trees. This is an **abstract class**, so it cannot be used directly. It defines base operations and properties that all the Hoeffding decision trees must inherit or implement according to their own design. Parameters ---------- max_depth The maximum depth a tree can reach. If `None`, the tree will grow indefinitely. binary_split If True, only allow binary splits. max_size The max size of the tree, in Megabytes (MB). memory_estimate_period Interval (number of processed instances) between memory consumption checks. stop_mem_management If True, stop growing as soon as memory limit is hit. remove_poor_attrs If True, disable poor attributes to reduce memory usage. merit_preprune If True, enable merit-based tree pre-pruning. """ def __init__( self, max_depth: int = None, binary_split: bool = False, max_size: float = 100.0, memory_estimate_period: int = 1000000, stop_mem_management: bool = False, remove_poor_attrs: bool = False, merit_preprune: bool = True, ): # Properties common to all the Hoeffding trees self._split_criterion: str = "" self._leaf_prediction: str = "" self.max_depth: float = max_depth if max_depth is not None else math.inf self.binary_split: bool = binary_split self._max_size: float = max_size self._max_byte_size: float = self._max_size * (2**20) # convert to byte self.memory_estimate_period: int = memory_estimate_period self.stop_mem_management: bool = stop_mem_management self.remove_poor_attrs: bool = remove_poor_attrs self.merit_preprune: bool = merit_preprune self._root: typing.Union[DTBranch, HTLeaf, None] = None self._n_active_leaves: int = 0 self._n_inactive_leaves: int = 0 self._inactive_leaf_size_estimate: float = 0.0 self._active_leaf_size_estimate: float = 0.0 self._size_estimate_overhead_fraction: float = 1.0 self._growth_allowed = True self._train_weight_seen_by_model: float = 0.0 @staticmethod def _hoeffding_bound(range_val, confidence, n): r"""Compute the Hoeffding bound, used to decide how many samples are necessary at each node. Notes ----- The Hoeffding bound is defined as: $\\epsilon = \\sqrt{\\frac{R^2\\ln(1/\\delta))}{2n}}$ where: $\\epsilon$: Hoeffding bound. $R$: Range of a random variable. For a probability the range is 1, and for an information gain the range is log *c*, where *c* is the number of classes. $\\delta$: Confidence. 1 minus the desired probability of choosing the correct attribute at any given node. $n$: Number of samples. Parameters ---------- range_val Range value. confidence Confidence of choosing the correct attribute. n Number of processed samples. """ return math.sqrt( (range_val * range_val * math.log(1.0 / confidence)) / (2.0 * n) ) @property def max_size(self): """Max allowed size tree can reach (in MB).""" return self._max_size @max_size.setter def max_size(self, size): self._max_size = size self._max_byte_size = self._max_size * (2**20) @property def height(self) -> int: if self._root: return self._root.height @property def n_nodes(self): if self._root: return self._root.n_nodes @property def n_branches(self): if self._root: return self._root.n_branches @property def n_leaves(self): if self._root: return self._root.n_leaves @property def n_active_leaves(self): return self._n_active_leaves @property def n_inactive_leaves(self): return self._n_inactive_leaves @property def summary(self): """Collect metrics corresponding to the current status of the tree in a string buffer. """ summary = { "n_nodes": self.n_nodes, "n_branches": self.n_branches, "n_leaves": self.n_leaves, "n_active_leaves": self.n_active_leaves, "n_inactive_leaves": self.n_inactive_leaves, "height": self.height, "total_observed_weight": self._train_weight_seen_by_model, } return summary def to_dataframe(self): """Return a representation of the current tree structure organized in a `pandas.DataFrame` object. In case the tree is empty or it only contains a single node (a leaf), `None` is returned. Returns ------- df A `pandas.DataFrame` depicting the tree structure. """ if self._root is not None and isinstance(self._root, DTBranch): return self._root.to_dataframe() def _branch_selector( self, numerical_feature=True, multiway_split=False ) -> typing.Type[DTBranch]: """Create a new split node.""" if numerical_feature: if not multiway_split: return NumericBinaryBranch else: return NumericMultiwayBranch else: if not multiway_split: return NominalBinaryBranch else: return NominalMultiwayBranch @abstractmethod def _new_leaf( self, initial_stats: dict = None, parent: typing.Union[HTLeaf, DTBranch] = None ) -> HTLeaf: """Create a new learning node. The characteristics of the learning node depends on the tree algorithm. Parameters ---------- initial_stats Target statistics set from the parent node. parent Parent node to inherit from. Returns ------- A new learning node. """ @property def split_criterion(self) -> str: """Return a string with the name of the split criterion being used by the tree.""" return self._split_criterion @split_criterion.setter @abstractmethod def split_criterion(self, split_criterion): """Define the split criterion to be used by the tree.""" @property def leaf_prediction(self) -> str: """Return the prediction strategy used by the tree at its leaves.""" return self._leaf_prediction @leaf_prediction.setter @abstractmethod def leaf_prediction(self, leaf_prediction): """Define the prediction strategy used by the tree in its leaves.""" def _enforce_size_limit(self): """Track the size of the tree and disable/enable nodes if required. This memory-management routine shared by all the Hoeffding Trees is based on [^1]. References ---------- [^1]: <NAME>., 2007. Improving hoeffding trees (Doctoral dissertation, The University of Waikato). """ tree_size = self._size_estimate_overhead_fraction * ( self._active_leaf_size_estimate + self._n_inactive_leaves * self._inactive_leaf_size_estimate ) if self._n_inactive_leaves > 0 or tree_size > self._max_byte_size: if self.stop_mem_management: self._growth_allowed = False return leaves = self._find_leaves() leaves.sort(key=lambda leaf: leaf.calculate_promise()) max_active = 0 while max_active < len(leaves): max_active += 1 if ( ( max_active * self._active_leaf_size_estimate + (len(leaves) - max_active) * self._inactive_leaf_size_estimate ) * self._size_estimate_overhead_fraction ) > self._max_byte_size: max_active -= 1 break cutoff = len(leaves) - max_active for i in range(cutoff): if leaves[i].is_active(): leaves[i].deactivate() self._n_inactive_leaves += 1 self._n_active_leaves -= 1 for i in range(cutoff, len(leaves)): if not leaves[i].is_active() and leaves[i].depth < self.max_depth: leaves[i].activate() self._n_active_leaves += 1 self._n_inactive_leaves -= 1 def _estimate_model_size(self): """Calculate the size of the model and trigger tracker function if the actual model size exceeds the max size in the configuration. This memory-management routine shared by all the Hoeffding Trees is based on [^1]. References ---------- [^1]: <NAME>., 2007. Improving hoeffding trees (Doctoral dissertation, The University of Waikato). """ leaves = self._find_leaves() total_active_size = 0 total_inactive_size = 0 for leaf in leaves: if leaf.is_active(): total_active_size += calculate_object_size(leaf) else: total_inactive_size += calculate_object_size(leaf) if total_active_size > 0: self._active_leaf_size_estimate = total_active_size / self._n_active_leaves if total_inactive_size > 0: self._inactive_leaf_size_estimate = ( total_inactive_size / self._n_inactive_leaves ) actual_model_size = calculate_object_size(self) estimated_model_size = ( self._n_active_leaves * self._active_leaf_size_estimate + self._n_inactive_leaves * self._inactive_leaf_size_estimate ) self._size_estimate_overhead_fraction = actual_model_size / estimated_model_size if actual_model_size > self._max_byte_size: self._enforce_size_limit() def _deactivate_all_leaves(self): """Deactivate all leaves.""" leaves = self._find_leaves() for leaf in leaves: leaf.deactivate() self._n_inactive_leaves += 1 self._n_active_leaves -= 1 def _find_leaves(self) -> typing.List[HTLeaf]: """Find learning nodes in the tree. Returns ------- List of learning nodes in the tree. """ return [leaf for leaf in self._root.iter_leaves()] # Adapted from creme's original implementation def debug_one(self, x: dict) -> typing.Union[str, None]: """Print an explanation of how `x` is predicted. Parameters ---------- x A dictionary of features. Returns ------- A representation of the path followed by the tree to predict `x`; `None` if the tree is empty. Notes ----- Currently, Label Combination Hoeffding Tree Classifier (for multi-label classification) is not supported. """ if self._root is None: return # We'll redirect all the print statement to a buffer, we'll return the content of the # buffer at the end buffer = io.StringIO() _print = functools.partial(print, file=buffer) for node in self._root.walk(x, until_leaf=True): if isinstance(node, HTLeaf): _print(repr(node)) else: try: child_index = node.branch_no(x) # noqa except KeyError: child_index, _ = node.most_common_path() _print(node.repr_branch(child_index)) # noqa return buffer.getvalue() def draw(self, max_depth: int = None): """Draw the tree using the `graphviz` library. Since the tree is drawn without passing incoming samples, classification trees will show the majority class in their leaves, whereas regression trees will use the target mean. Parameters ---------- max_depth Only the root will be drawn when set to `0`. Every node will be drawn when set to `None`. Notes ----- Currently, Label Combination Hoeffding Tree Classifier (for multi-label classification) is not supported. Examples -------- >>> from river import datasets >>> from river import tree >>> model = tree.HoeffdingTreeClassifier( ... grace_period=5, ... split_confidence=1e-5, ... split_criterion='gini', ... max_depth=10, ... tie_threshold=0.05, ... ) >>> for x, y in datasets.Phishing(): ... model = model.learn_one(x, y) >>> dot = model.draw() .. image:: ../../docs/img/dtree_draw.svg :align: center """ counter = 0 def iterate(node=None): if node is None: yield None, None, self._root, 0, None yield from iterate(self._root) nonlocal counter parent_no = counter if isinstance(node, DTBranch): for branch_index, child in enumerate(node.children): counter += 1 yield parent_no, node, child, counter, branch_index if isinstance(child, DTBranch): yield from iterate(child) if max_depth is None: max_depth = math.inf dot = graphviz.Digraph( graph_attr={"splines": "ortho", "forcelabels": "true", "overlap": "false"}, node_attr={ "shape": "box", "penwidth": "1.2", "fontname": "trebuchet", "fontsize": "11", "margin": "0.1,0.0", }, edge_attr={"penwidth": "0.6", "center": "true", "fontsize": "7 "}, ) if isinstance(self, base.Classifier): n_colors = len(self.classes) # noqa else: n_colors = 1 # Pick a color palette which maps classes to colors new_color = functools.partial(next, iter(_color_brew(n_colors))) palette = collections.defaultdict(new_color) for parent_no, parent, child, child_no, branch_index in iterate(): if child.depth > max_depth: continue if isinstance(child, DTBranch): text = f"{child.feature}" # noqa else: text = f"{repr(child)}\nsamples: {int(child.total_weight)}" # Pick a color, the hue depends on the class and the transparency on the distribution if isinstance(self, base.Classifier): class_proba = normalize_values_in_dict(child.stats, inplace=False) mode = max(class_proba, key=class_proba.get) p_mode = class_proba[mode] try: alpha = (p_mode - 1 / n_colors) / (1 - 1 / n_colors) fillcolor = str(transparency_hex(color=palette[mode], alpha=alpha)) except ZeroDivisionError: fillcolor = "#FFFFFF" else: fillcolor = "#FFFFFF" dot.node(f"{child_no}", text, fillcolor=fillcolor, style="filled") if parent_no is not None: dot.edge( f"{parent_no}", f"{child_no}", xlabel=parent.repr_branch(branch_index, shorten=True), ) return dot # Utility adapted from the original creme's implementation def _color_brew(n: int) -> typing.List[typing.Tuple[int, int, int]]: """Generate n colors with equally spaced hues. Parameters ---------- n The number of required colors. Returns ------- List of n tuples of form (R, G, B) being the components of each color. References ---------- https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/tree/_export.py """ colors = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in [i for i in range(25, 385, int(360 / n))]: # Calculate some intermediate values h_bar = h / 60.0 x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [ (c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0), ] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store colors.append( ((int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))) ) return colors # Utility adapted from the original creme's implementation def transparency_hex(color: typing.Tuple[int, int, int], alpha: float) -> str: """Apply alpha coefficient on hexadecimal color.""" return "#%02x%02x%02x" % tuple( [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color] )
services/docker/webrecorder/local.py
rachelaus/perma
317
26591
import hashlib import logging import os import shutil import traceback from contextlib import closing from pywb.utils.loaders import BlockLoader from webrecorder.rec.storage.base import BaseStorage from webrecorder.rec.storage.storagepaths import add_local_store_prefix, strip_prefix logger = logging.getLogger('wr.io') # ============================================================================ class DirectLocalFileStorage(BaseStorage): """Webrecorder storage (local files).""" def __init__(self): """Initialize Webrecorder storage.""" super(DirectLocalFileStorage, self).__init__(os.environ['STORAGE_ROOT']) def delete_collection_dir(self, dir_path): """Delete collection directory. :param str dir_path: directory path :returns: whether successful or not :rtype: bool """ local_dir = os.path.join(self.storage_root, dir_path) try: logger.debug('Local Store: Deleting Directory: ' + local_dir) parent_dir = os.path.dirname(local_dir) shutil.rmtree(local_dir) os.removedirs(parent_dir) return True except Exception as e: if e.errno != 2: logger.error(str(e)) return False def do_upload(self, target_url, full_filename): """Upload file into local file storage. :param str target_url: target URL :param str full_filename: path :returns: whether successful or not :rtype: bool """ os.makedirs(os.path.dirname(target_url), exist_ok=True) try: if full_filename != target_url: shutil.copyfile(full_filename, target_url) else: logger.debug('Local Store: Same File, No Upload') return True except Exception as e: logger.error(str(e)) return False def is_valid_url(self, target_url): """Return whether given target URL is an existing file. :param str target_url: target URL :returns: whether given target URL is an existing file :rtype: bool """ return os.path.isfile(target_url) def get_client_url(self, target_url): """Get client URL. :param str target_url: target URL :returns: client URL :rtype: str """ return add_local_store_prefix(target_url.replace(os.path.sep, '/')) def client_url_to_target_url(self, client_url): """Get target URL (from client URL). :param str client URL: client URL :returns: target URL :rtype: str """ return strip_prefix(client_url) def do_delete(self, target_url, client_url): """Delete file from storage. :param str target_url: target URL :returns: whether successful or not :rtype: bool """ try: logger.debug('Local Store: Deleting: ' + target_url) os.remove(target_url) # if target_url.startswith(self.storage_root): # os.removedirs(os.path.dirname(target_url)) return True except Exception as e: if e.errno != 2: logger.error(str(e)) return False # ============================================================================ class LocalFileStorage(DirectLocalFileStorage): """Webrecorder storage w/ Redis interface (local files). :ivar StrictRedis redis: Redis interface """ def __init__(self, redis): """Initialize Webrecorder storage w/ Redis interface. :param StrictRedis redis: Redis interface """ self.redis = redis super(LocalFileStorage, self).__init__() ### BEGIN PERMA CUSTOMIZATIONS ### First pass at https://github.com/harvard-lil/perma/issues/2614 def delete_collection(self, collection): """Delete collection. :param collection: collection :type: n.s. :returns: whether successful or not :rtype: bool """ path = collection.get_dir_path() if path: try: dirpath = os.path.join(self.storage_root, path) return (self.redis.publish('handle_delete_dir', dirpath) > 0) except Exception: logger.error("Failed attempt to delete collection {}".format(collection), exc_info=True) return False return False ### END PERMA CUSTOMIZATIONS def do_delete(self, target_url, client_url): """Delete file. :param str target_url: target URL :param str client_url: client URL (unused argument) :returns: whether successful or not :rtype: bool """ return self.redis.publish('handle_delete_file', target_url) > 0 def get_checksum_and_size(self, filepath_or_url): """Returns the checksum of the supplied URL or filepath and the size of the resource :param str filepath_or_url: The URL or filepath to the resource that the checksum and size is desired for :return: A three tuple containing the kind of checksum, the checksum itself, and size :rtype: tuple[str|None, str|None, int|None] """ m = hashlib.md5() amount = 1024 * 1024 total_size = 0 with closing(BlockLoader().load(filepath_or_url)) as f: while True: chunk = f.read(amount) chunk_size = len(chunk) if chunk_size == 0: break total_size += chunk_size m.update(chunk) return 'md5', m.hexdigest(), total_size
cape_privacy/pandas/transformations/test_utils.py
vismaya-Kalaiselvan/cape-python
144
26612
<gh_stars>100-1000 import pandas as pd class PlusN: """A sample transform that adds n to a specific field. Attributes: field: The field that this transform will be applied to. n: The value to add to the field. """ identifier = "plusN" type_signature = "col->col" def __init__(self, n: int = 1) -> None: self.n = n def __call__(self, column: pd.Series) -> pd.Series: return column + self.n
ext/testlib/suite.py
mandaltj/gem5_chips
135
26640
<gh_stars>100-1000 # Copyright (c) 2017 <NAME> and <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: <NAME> import helper import runner as runner_mod class TestSuite(object): ''' An object grouping a collection of tests. It provides tags which enable filtering during list and run selection. All tests held in the suite must have a unique name. ..note:: The :func:`__new__` method enables collection of test cases, it must be called in order for test cases to be collected. ..note:: To reduce test definition boilerplate, the :func:`init` method is forwarded all `*args` and `**kwargs`. This means derived classes can define init without boilerplate super().__init__(*args, **kwargs). ''' runner = runner_mod.SuiteRunner collector = helper.InstanceCollector() fixtures = [] tests = [] tags = set() def __new__(klass, *args, **kwargs): obj = super(TestSuite, klass).__new__(klass, *args, **kwargs) TestSuite.collector.collect(obj) return obj def __init__(self, name=None, fixtures=tuple(), tests=tuple(), tags=tuple(), **kwargs): self.fixtures = self.fixtures + list(fixtures) self.tags = self.tags | set(tags) self.tests = self.tests + list(tests) if name is None: name = self.__class__.__name__ self.name = name def __iter__(self): return iter(self.tests)
rotkehlchen/accounting/export/csv.py
rotkehlchenio/rotkehlchen
137
26690
<reponame>rotkehlchenio/rotkehlchen import json import logging from csv import DictWriter from pathlib import Path from tempfile import mkdtemp from typing import TYPE_CHECKING, Any, Dict, List, Literal, Tuple from zipfile import ZIP_DEFLATED, ZipFile from rotkehlchen.accounting.pnl import PnlTotals from rotkehlchen.constants.misc import ZERO from rotkehlchen.fval import FVal from rotkehlchen.logging import RotkehlchenLogsAdapter from rotkehlchen.types import Timestamp from rotkehlchen.utils.mixins.customizable_date import CustomizableDateMixin from rotkehlchen.utils.version_check import get_current_version if TYPE_CHECKING: from rotkehlchen.accounting.structures.processed_event import ProcessedAccountingEvent from rotkehlchen.db.dbhandler import DBHandler logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) FILENAME_ALL_CSV = 'all_events.csv' ETH_EXPLORER = 'https://etherscan.io/tx/' ACCOUNTING_SETTINGS = ( 'include_crypto2crypto', 'taxfree_after_period', 'include_gas_costs', 'account_for_assets_movements', 'calculate_past_cost_basis', ) CSV_INDEX_OFFSET = 2 # skip title row and since counting starts from 1 class CSVWriteError(Exception): pass def _dict_to_csv_file(path: Path, dictionary_list: List) -> None: """Takes a filepath and a list of dictionaries representing the rows and writes them into the file as a CSV May raise: - CSVWriteError if DictWriter.writerow() tried to write a dict contains fields not in fieldnames """ if len(dictionary_list) == 0: log.debug('Skipping writting empty CSV for {}'.format(path)) return with open(path, 'w', newline='') as f: w = DictWriter(f, fieldnames=dictionary_list[0].keys()) w.writeheader() try: for dic in dictionary_list: w.writerow(dic) except ValueError as e: raise CSVWriteError(f'Failed to write {path} CSV due to {str(e)}') from e class CSVExporter(CustomizableDateMixin): def __init__( self, database: 'DBHandler', ): super().__init__(database=database) self.reset(start_ts=Timestamp(0), end_ts=Timestamp(0)) def reset(self, start_ts: Timestamp, end_ts: Timestamp) -> None: self.start_ts = start_ts self.end_ts = end_ts self.reload_settings() try: frontend_settings = json.loads(self.settings.frontend_settings) if ( 'explorers' in frontend_settings and 'ETH' in frontend_settings['explorers'] and 'transaction' in frontend_settings['explorers']['ETH'] ): self.eth_explorer = frontend_settings['explorers']['ETH']['transaction'] else: self.eth_explorer = ETH_EXPLORER except (json.decoder.JSONDecodeError, KeyError): self.eth_explorer = ETH_EXPLORER def _add_sumif_formula( self, check_range: str, condition: str, sum_range: str, actual_value: FVal, ) -> str: if self.settings.pnl_csv_with_formulas is False: return str(actual_value) return f'=SUMIF({check_range};{condition};{sum_range})' def _add_pnl_type( self, event: 'ProcessedAccountingEvent', dict_event: Dict[str, Any], amount_column: str, name: Literal['free', 'taxable'], ) -> None: """Adds the pnl type value and cost basis to the passed dict event""" if getattr(event.pnl, name, ZERO) == ZERO: return index = event.index + CSV_INDEX_OFFSET value_formula = f'{amount_column}{index}*H{index}' total_value_formula = f'(F{index}*H{index}+G{index}*H{index})' # noqa: E501 # formula of both free and taxable cost_basis_column = 'K' if name == 'taxable' else 'L' cost_basis = f'{cost_basis_column}{index}' should_count_entire_spend_formula = ( name == 'taxable' and event.timestamp >= self.start_ts or name == 'free' and event.timestamp < self.start_ts ) if event.count_entire_amount_spend and should_count_entire_spend_formula: equation = ( f'=IF({cost_basis}="",' f'-{total_value_formula},' f'-{total_value_formula}+{value_formula}-{cost_basis})' ) else: equation = ( f'=IF({cost_basis}="",' f'{value_formula},' f'{value_formula}-{cost_basis})' ) dict_event[f'pnl_{name}'] = equation cost_basis = '' if event.cost_basis is not None: for acquisition in event.cost_basis.matched_acquisitions: if name == 'taxable' and acquisition.taxable is False: continue if name == 'free' and acquisition.taxable is True: continue index = acquisition.event.index + CSV_INDEX_OFFSET if cost_basis == '': cost_basis = '=' else: cost_basis += '+' cost_basis += f'{str(acquisition.amount)}*H{index}' dict_event[f'cost_basis_{name}'] = cost_basis def _maybe_add_summary(self, events: List[Dict[str, Any]], pnls: PnlTotals) -> None: """Depending on given settings, adds a few summary lines at the end of the all events PnL report""" if self.settings.pnl_csv_have_summary is False: return length = len(events) + 1 template: Dict[str, Any] = { 'type': '', 'notes': '', 'location': '', 'timestamp': '', 'asset': '', 'free_amount': '', 'taxable_amount': '', 'price': '', 'pnl_taxable': '', 'cost_basis_taxable': '', 'pnl_free': '', 'cost_basis_free': '', } events.append(template) # separate with 2 new lines events.append(template) entry = template.copy() entry['taxable_amount'] = 'TAXABLE' entry['price'] = 'FREE' events.append(entry) start_sums_index = length + 4 sums = 0 for name, value in pnls.items(): if value.taxable == ZERO and value.free == ZERO: continue sums += 1 entry = template.copy() entry['free_amount'] = f'{str(name)} total' entry['taxable_amount'] = self._add_sumif_formula( check_range=f'A2:A{length}', condition=f'"{str(name)}"', sum_range=f'I2:I{length}', actual_value=value.taxable, ) entry['price'] = self._add_sumif_formula( check_range=f'A2:A{length}', condition=f'"{str(name)}"', sum_range=f'J2:J{length}', actual_value=value.free, ) events.append(entry) entry = template.copy() entry['free_amount'] = 'TOTAL' if sums != 0: entry['taxable_amount'] = f'=SUM(G{start_sums_index}:G{start_sums_index+sums-1})' entry['price'] = f'=SUM(H{start_sums_index}:H{start_sums_index+sums-1})' else: entry['taxable_amount'] = entry['price'] = 0 events.append(entry) events.append(template) # separate with 2 new lines events.append(template) version_result = get_current_version(check_for_updates=False) entry = template.copy() entry['free_amount'] = 'rotki version' entry['taxable_amount'] = version_result.our_version events.append(entry) for setting in ACCOUNTING_SETTINGS: entry = template.copy() entry['free_amount'] = setting entry['taxable_amount'] = str(getattr(self.settings, setting)) events.append(entry) def create_zip( self, events: List['ProcessedAccountingEvent'], pnls: PnlTotals, ) -> Tuple[bool, str]: # TODO: Find a way to properly delete the directory after send is complete dirpath = Path(mkdtemp()) success, msg = self.export(events=events, pnls=pnls, directory=dirpath) if not success: return False, msg files: List[Tuple[Path, str]] = [ (dirpath / FILENAME_ALL_CSV, FILENAME_ALL_CSV), ] with ZipFile(file=dirpath / 'csv.zip', mode='w', compression=ZIP_DEFLATED) as csv_zip: for path, filename in files: if not path.exists(): continue csv_zip.write(path, filename) path.unlink() success = False filename = '' if csv_zip.filename is not None: success = True filename = csv_zip.filename return success, filename def to_csv_entry(self, event: 'ProcessedAccountingEvent') -> Dict[str, Any]: dict_event = event.to_exported_dict( ts_converter=self.timestamp_to_date, eth_explorer=self.eth_explorer, for_api=False, ) # For CSV also convert timestamp to date dict_event['timestamp'] = self.timestamp_to_date(event.timestamp) if self.settings.pnl_csv_with_formulas is False: return dict_event # else add formulas self._add_pnl_type(event=event, dict_event=dict_event, amount_column='F', name='free') self._add_pnl_type(event=event, dict_event=dict_event, amount_column='G', name='taxable') return dict_event def export( self, events: List['ProcessedAccountingEvent'], pnls: PnlTotals, directory: Path, ) -> Tuple[bool, str]: serialized_events = [self.to_csv_entry(x) for idx, x in enumerate(events)] self._maybe_add_summary(events=serialized_events, pnls=pnls) try: directory.mkdir(parents=True, exist_ok=True) _dict_to_csv_file( directory / FILENAME_ALL_CSV, serialized_events, ) except (CSVWriteError, PermissionError) as e: return False, str(e) return True, ''
src/abundance.py
Ilia-Abolhasani/modify_vamb
111
26706
import sys import os import argparse import numpy as np parser = argparse.ArgumentParser( description="""Command-line bin abundance estimator. Print the median RPKM abundance for each bin in each sample to STDOUT. Will read the RPKM file into memory - beware.""", formatter_class=argparse.RawDescriptionHelpFormatter, add_help=False) parser.add_argument('rpkmpath', help='Path to RPKM file') parser.add_argument('clusterspath', help='Path to clusters.tsv') parser.add_argument('headerpath', help='Path to list of headers') if len(sys.argv) == 1: parser.print_help() sys.exit() args = parser.parse_args() # Check files for infile in (args.rpkmpath, args.clusterspath, args.headerpath): if not os.path.isfile(infile): raise FileNotFoundError(infile) # Load Vamb sys.path.append('../vamb') import vamb # Load in files with open(args.headerpath) as file: indexof = {line.strip():i for i,line in enumerate(file)} with open(args.clusterspath) as file: clusters = vamb.vambtools.read_clusters(file) # Check that all clusters names are in headers: for cluster in clusters.values(): for header in cluster: if header not in indexof: raise KeyError("Header not found in headerlist: {}".format(header)) # Load RPKM and check it rpkm = vamb.vambtools.read_npz(args.rpkmpath) nsamples = rpkm.shape[1] if len(indexof) != len(rpkm): raise ValueError("Not the same number of headers as rows in RPKM file") # Now estimate abundances for clustername, cluster in clusters.items(): depths = np.empty((len(cluster), nsamples), dtype=np.float32) for row, header in enumerate(cluster): index = indexof[header] depths[row] = rpkm[index] median_depths = np.median(depths, axis=0) print(clustername, end='\t') print('\t'.join([str(i) for i in median_depths]))
pony/orm/tests/test_f_strings.py
luckydonald/pony
2,628
26762
<filename>pony/orm/tests/test_f_strings.py from sys import version_info if version_info[:2] >= (3, 6): from pony.orm.tests.py36_test_f_strings import *
applications/MultilevelMonteCarloApplication/python_scripts/statistical_variable_utilities.py
lkusch/Kratos
778
26808
<filename>applications/MultilevelMonteCarloApplication/python_scripts/statistical_variable_utilities.py # Import Python libraries import numpy as np # Import distributed framework from exaqute import * try: init() except: pass try: computing_units_auxiliar_utilities = int(os.environ["computing_units_auxiliar_utilities"]) except: computing_units_auxiliar_utilities = 1 """ auxiliary function of UpdateOnePassCentralMoments of the StatisticalVariable class input: sample: new value that will update the statistics old_mean : old mean old_central_moment_1 : old first central moment compute_M1 : boolean setting if computation is needed old_central_moment_2 : old second central moment compute_M2 : boolean setting if computation is needed old_central_moment_3 : old third central moment compute_M3 : boolean setting if computation is needed old_central_moment_1 : old fourth central moment compute_M4 : boolean settings if computation is needed nsamples : old number of samples computed, starts from 1 output: new_mean : updated mean new_sample_variance : updated sample variance new_central_moment_1 : updated central_moment_1 new_central_moment_2 : updated central_moment_2 new_central_moment_3 : updated central_moment_3 new_central_moment_4 : updated central_moment_4 nsamples : updated number of samples """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=7,priority=True) def UpdateOnePassCentralMomentsAux_Task(sample,old_mean,old_central_moment_1,compute_M1,old_central_moment_2,compute_M2,old_central_moment_3,compute_M3,old_central_moment_4,compute_M4,nsamples): old_M1 = old_central_moment_1 * nsamples old_M2 = old_central_moment_2 * nsamples old_M3 = old_central_moment_3 * nsamples old_M4 = old_central_moment_4 * nsamples nsamples = nsamples + 1 if nsamples == 1: new_mean = sample new_M1 = 0.0 new_M2 = 0.0 new_sample_variance = 0.0 new_M3 = 0.0 new_M4 = 0.0 else: delta = np.subtract(sample,old_mean) new_mean = old_mean + np.divide(delta,nsamples) if (compute_M1): new_M1 = old_M1 # we are not updating, first central moment = 0.0 else: new_M1 = old_M1 # we are not updating, first central moment = 0.0 if (compute_M2): new_M2 = old_M2 + delta*np.subtract(sample,new_mean) else: raise Exception ("Not computing StatisticalVariable.central_moment_2, set StatisticalVariable.central_moment_2_to_compute to True") new_sample_variance = np.divide(new_M2,np.subtract(nsamples,1)) if (compute_M3): new_M3 = old_M3 - 3.0*old_M2*np.divide(delta,nsamples) + np.divide(np.multiply((nsamples-1)*(nsamples-2),(delta**3)),(nsamples**2)) else: new_M3 = old_M3 # we are not updating if (compute_M4): new_M4 = old_M4 - 4.0*old_M3*np.divide(delta,nsamples) + 6.0*old_M2*np.divide(delta,nsamples)**2 + np.multiply((nsamples-1)*(nsamples**2-3*nsamples+3),np.divide(delta**4,nsamples**3)) else: new_M4 = old_M4 # we are not updating new_central_moment_1 = new_M1 / nsamples new_central_moment_2 = new_M2 / nsamples new_central_moment_3 = new_M3 / nsamples new_central_moment_4 = new_M4 / nsamples return new_mean,new_sample_variance,new_central_moment_1,new_central_moment_2,new_central_moment_3,new_central_moment_4,nsamples """ auxiliary function of UpdateOnePassPowerSums of the StatisticalVariable class input: sample : new value that will update the statistics old_S1 : old first power sum old_S2 : old second power sum old_S3 : old third power sum old_S4 : old fourth power sum nsamples : number of samples, it has already been updated in UpdateOnePassCentralMomentsAux_Task output: new_S1 : updated first power sum new_s2 : updated second power sum new_S3 : updated third power sum new_S4 : updated fourth power sum """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=5,priority=True) def UpdateOnePassPowerSumsAux_Task(sample,old_S1,old_S2,old_S3,old_S4,nsamples): nsamples = nsamples + 1 if nsamples == 1: new_S1 = sample new_S2 = sample**2 new_S3 = sample**3 new_S4 = sample**4 else: new_S1 = old_S1 + sample new_S2 = old_S2 + sample**2 new_S3 = old_S3 + sample**3 new_S4 = old_S4 + sample**4 return new_S1,new_S2,new_S3,new_S4,nsamples """ auxiliary function of UpdateGlobalPowerSums of the StatisticalVariable class input: old_S1 : old first power sum old_S2 : old second power sum old_S3 : old third power sum old_S4 : old fourth power sum number_samples_level : number of samples, it has already been updated in UpdateOnePassCentralMomentsAux_Task add_S1 : power sum order one to add add_S2 : power sum order two to add add_S3 : power sum order three to add add_S4 : power sum order four to add add_number_samples_level : number of samples to add output: new_S1 : updated first power sum new_s2 : updated second power sum new_S3 : updated third power sum new_S4 : updated fourth power sum number_samples_level : number of samples of current level """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=5,priority=True) def UpdateGlobalPowerSumsAux_Task(old_S1,old_S2,old_S3,old_S4,number_samples_level,add_S1,add_S2,add_S3,add_S4,add_number_samples_level): new_S1 = old_S1 + add_S1 new_S2 = old_S2 + add_S2 new_S3 = old_S3 + add_S3 new_S4 = old_S4 + add_S4 number_samples_level = number_samples_level + add_number_samples_level return new_S1,new_S2,new_S3,new_S4,number_samples_level """ function unfolding values from a list, needed by PyCOMPSs for list of lists input: sample : the list of lists output: sample[*] : list position * of the list of lists """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=4, priority=True) def UnfoldValuesAux_Task(sample): return sample[0], sample[1], sample[2], sample[3] """ auxiliary function of UpdateBatchesPassPowerSums input: samples : list of samples output: return the sum, done in mini_batch_size batches, of the samples components """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=1,priority=True) def UpdateBatchesPassPowerSumsAux_Task(*samples): samples_list = np.array(list(samples)) return np.sum(samples_list, axis = 0) """ if nsamples == 0: new_S1 = samples[0] new_S2 = samples[0]**2 new_S3 = samples[0]**3 new_S4 = samples[0]**4 old_S1 = new_S1 old_S2 = new_S2 old_S3 = new_S3 old_S4 = new_S4 nsamples = 1 samples=samples[1:] for sample in samples: nsamples = nsamples + 1 new_S1 = old_S1 + sample new_S2 = old_S2 + sample**2 new_S3 = old_S3 + sample**3 new_S4 = old_S4 + sample**4 old_S1 = new_S1 old_S2 = new_S2 old_S3 = new_S3 old_S4 = new_S4 return new_S1,new_S2,new_S3,new_S4,nsamples """ """ auxiliary function of UpdateHStatistics of the StatisticalVariable class input: S1_level : first power sum at defined level S2_level : second power sum at defined level S3_level : third power sum at defined level S4_level : fourth power sum at defined level number_samples_level : number of samples (already update) for defined level output: h1_level : first h statistics for defined level h2_level : second h statistics for defined level h3_level : third h statistics for defined level h4_level : fourth h statistics for defined level """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=4,priority=True) def ComputeHStatisticsAux_Task(S1_level,S2_level,S3_level,S4_level,number_samples_level): h1_level = S1_level / number_samples_level h2_level = (number_samples_level*S2_level-S1_level**2) / ((number_samples_level-1)*number_samples_level) h3_level = (number_samples_level**2*S3_level-3*number_samples_level*S2_level*S1_level+2*S1_level**3) / \ ((number_samples_level-2)*(number_samples_level-1)*number_samples_level) h4_level = ((-4*number_samples_level**2+8*number_samples_level-12)*S3_level*S1_level+ \ (number_samples_level**3-2*number_samples_level**2+3*number_samples_level)*S4_level+ \ 6*number_samples_level*S2_level*S1_level**2+(9-6*number_samples_level)*S2_level**2-3*S1_level**4) / \ ((number_samples_level-3)*(number_samples_level-2)*(number_samples_level-1)*number_samples_level) return h1_level,h2_level,h3_level,h4_level """ auxiliary function of ComputeSkewnessKurtosis of the StatisticalVariable class input: h2_level : second h statistics for defined level h3_level : third h statistics for defined level h4_level : fourth h statistics for defined level output: skewness_level : skewness for defined level kurtosis_level : kurtosis for defined level """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=2,priority=True) def ComputeSkewnessKurtosisAux_Task(h2_level,h3_level,h4_level): skewness_level = h3_level / (np.sqrt(h2_level**3)) kurtosis_level = h4_level / (h2_level**2) return skewness_level,kurtosis_level """ auxiliary function of ComputeSampleCentralMomentsFromScratch of the StatisticalVariable class input: sample: new value that will update the statistics number_samples_level : number of samples for defined level central_moment_from_scratch_1_to_compute : boolean setting if computation is needed central_moment_from_scratch_2_to_compute : boolean setting if computation is needed central_moment_from_scratch_3_to_compute : boolean setting if computation is needed central_moment_from_scratch_3_absolute_to_compute : boolean setting if computation is needed central_moment_from_scratch_4_to_compute : boolean setting if computation is needed central_moment_from_scratch_1 : old first central moment central_moment_from_scratch_2 : old second central moment central_moment_from_scratch_3 : old third central moment central_moment_from_scratch_3_absolute : old third central moment absolute value central_moment_from_scratch_4 : old fourth central moment output: central_moment_from_scratch_1 : updated first central moment central_moment_from_scratch_2 : updated second central moment central_moment_from_scratch_3 : updated third central moment central_moment_from_scratch_3_absolute : updated third central moment absolute value central_moment_from_scratch_4 : update fourth central moment """ @constraint(computing_units=computing_units_auxiliar_utilities) @task(keep=True,returns=5,priority=True) def ComputeSampleCentralMomentsFromScratchAux_Task(number_samples_level,central_moment_from_scratch_1_to_compute,central_moment_from_scratch_2_to_compute, \ central_moment_from_scratch_3_to_compute,central_moment_from_scratch_3_absolute_to_compute,central_moment_from_scratch_4_to_compute, \ central_moment_from_scratch_1,central_moment_from_scratch_2,central_moment_from_scratch_3,central_moment_from_scratch_3_absolute,central_moment_from_scratch_4, \ samples): # generate a single list from a list of lists samples = [item for sublist in samples for item in sublist] # compute the mean auxiliary_mean = 0.0 for sample in samples: auxiliary_mean = auxiliary_mean + sample curr_mean = auxiliary_mean / number_samples_level for sample in samples: if (central_moment_from_scratch_1_to_compute): central_moment_from_scratch_1 = central_moment_from_scratch_1 + ((sample - curr_mean)**1) / number_samples_level if (central_moment_from_scratch_2_to_compute): central_moment_from_scratch_2 = central_moment_from_scratch_2 + ((sample - curr_mean)**2) / number_samples_level if (central_moment_from_scratch_3_to_compute): central_moment_from_scratch_3 = central_moment_from_scratch_3 + ((sample - curr_mean)**3) / number_samples_level if (central_moment_from_scratch_3_absolute_to_compute): central_moment_from_scratch_3_absolute = central_moment_from_scratch_3_absolute + (np.abs(sample - curr_mean)**3) / number_samples_level if (central_moment_from_scratch_4_to_compute): central_moment_from_scratch_4 = central_moment_from_scratch_4 + ((sample - curr_mean)**4) / number_samples_level return central_moment_from_scratch_1,central_moment_from_scratch_2,central_moment_from_scratch_3,central_moment_from_scratch_3_absolute,central_moment_from_scratch_4 class StatisticalVariable(object): """The base class for statistical variables""" def __init__(self): """constructor of the class Keyword arguments: self : an instance of a class """ # values of the variable, organized per level self.values = [] # mean of the variable per each level self.raw_moment_1 = [] # sample variance of the variable per each level self.unbiased_central_moment_2 = [] # moments of the variable per each level M_p = n * mu_p # mu_p = p-th central moment # n = number of values self.central_moment_1 = [] self.central_moment_2 = [] self.central_moment_3 = [] self.central_moment_4 = [] # set which central moments will be computed (moment_2 is mandatory to be computed because it is exploited in the mean evaluation) self.central_moment_1_to_compute = True self.central_moment_2_to_compute = True self.central_moment_3_to_compute = True self.central_moment_4_to_compute = True # bias error of the variable self.bias_error = None # statistical error of the variable self.statistical_error = None # type of variable: scalar or field self.type = None # number of samples of the variable self.number_samples = None self.batches_number_samples = [] # global power sums # S_p = \sum_{i=1}^{n} Q(sample_i)**p, organized per level self.power_sum_1 = [] self.power_sum_2 = [] self.power_sum_3 = [] self.power_sum_4 = [] # power sums batches self.power_sum_batches_1 = [] self.power_sum_batches_2 = [] self.power_sum_batches_3 = [] self.power_sum_batches_4 = [] # sample central moments \mu_p = \sum_{i=1}^{n} (Q(sample_i)-mean_n)**p / n, organized per level self.central_moment_from_scratch_1 = [] self.central_moment_from_scratch_2 = [] self.central_moment_from_scratch_3 = [] self.central_moment_from_scratch_3_absolute = [] # \mu_p = \sum_{i=1}^{n} abs((Q(sample_i)-mean_n)**p) / n self.central_moment_from_scratch_4 = [] self.central_moment_from_scratch_1_to_compute = False self.central_moment_from_scratch_2_to_compute = False self.central_moment_from_scratch_3_to_compute = False self.central_moment_from_scratch_3_absolute_to_compute = False self.central_moment_from_scratch_4_to_compute = False # h-statistics h_p, the unbiased central moment estimator with minimal variance, organized per level self.h_statistics_1 = [] self.h_statistics_2 = [] self.h_statistics_3 = [] self.h_statistics_4 = [] self.h_statistics_computed = False # skewness of the variable per each level self.skewness = [] # kurtosis of the variable per each level self.kurtosis = [] # convergence criteria of the algorithm self.convergence_criteria = None """ function initializing variables of the Statistical Variable class in lists given number of levels input: self : an instance of the class number_levels : number of levels considered number_initial_batches : number of batches of iteration zero """ def InitializeLists(self,number_levels,number_initial_batches): self.number_samples = [0 for _ in range (number_levels)] self.values = [[[] for _ in range (number_levels)] for _ in range (number_initial_batches)] self.raw_moment_1 = [[] for _ in range (number_levels)] self.central_moment_1 = [[] for _ in range (number_levels)] self.central_moment_2 = [[] for _ in range (number_levels)] self.central_moment_3 = [[] for _ in range (number_levels)] self.central_moment_4 = [[] for _ in range (number_levels)] self.unbiased_central_moment_2 = [[] for _ in range (number_levels)] self.power_sum_1 = [0 for _ in range (number_levels)] self.power_sum_2 = [0 for _ in range (number_levels)] self.power_sum_3 = [0 for _ in range (number_levels)] self.power_sum_4 = [0 for _ in range (number_levels)] self.power_sum_batches_1 = [[[] for _ in range (number_levels)] for _ in range (number_initial_batches)] self.power_sum_batches_2 = [[[] for _ in range (number_levels)] for _ in range (number_initial_batches)] self.power_sum_batches_3 = [[[] for _ in range (number_levels)] for _ in range (number_initial_batches)] self.power_sum_batches_4 = [[[] for _ in range (number_levels)] for _ in range (number_initial_batches)] self.h_statistics_1 = [[] for _ in range (number_levels)] self.h_statistics_2 = [[] for _ in range (number_levels)] self.h_statistics_3 = [[] for _ in range (number_levels)] self.h_statistics_4 = [[] for _ in range (number_levels)] self.skewness = [[] for _ in range (number_levels)] self.kurtosis = [[] for _ in range (number_levels)] self.central_moment_from_scratch_1 = [[] for _ in range (number_levels)] self.central_moment_from_scratch_2 = [[] for _ in range (number_levels)] self.central_moment_from_scratch_3 = [[] for _ in range (number_levels)] self.central_moment_from_scratch_3_absolute = [[] for _ in range (number_levels)] self.central_moment_from_scratch_4 = [[] for _ in range (number_levels)] self.batches_number_samples = [[0 for _ in range (number_levels)] for _ in range (number_initial_batches)] """ function updating statistic moments and number of samples input: self : an instance of the class level : defined level i_sample : defined sample in level """ def UpdateOnePassCentralMoments(self,level,i_sample): number_samples_level = self.number_samples[level] sample = self.values[level][i_sample] old_mean = self.raw_moment_1[level] # old_M1 = self.central_moment_1[level] * number_samples_level old_central_moment_1 = self.central_moment_1[level] compute_M1 = self.central_moment_1_to_compute # old_M2 = self.central_moment_2[level] * number_samples_level old_central_moment_2 = self.central_moment_2[level] compute_M2 = self.central_moment_2_to_compute # old_M3 = self.central_moment_3[level] * number_samples_level old_central_moment_3 = self.central_moment_3[level] compute_M3 = self.central_moment_3_to_compute # old_M4 = self.central_moment_4[level] * number_samples_level old_central_moment_4 = self.central_moment_4[level] compute_M4 = self.central_moment_4_to_compute new_mean,new_sample_variance,new_central_moment_1,new_central_moment_2,new_central_moment_3,new_central_moment_4,number_samples_level \ = UpdateOnePassCentralMomentsAux_Task(sample,old_mean,old_central_moment_1,compute_M1,old_central_moment_2,compute_M2,old_central_moment_3,compute_M3,old_central_moment_4,compute_M4,number_samples_level) self.raw_moment_1[level] = new_mean self.unbiased_central_moment_2[level] = new_sample_variance self.central_moment_1[level] = new_central_moment_1 self.central_moment_2[level] = new_central_moment_2 self.central_moment_3[level] = new_central_moment_3 self.central_moment_4[level] = new_central_moment_4 self.number_samples[level] = number_samples_level """ function updating the power sums S_p input: self : an instance of the class level : defined level i_sample : defined sample in level """ def UpdateOnePassPowerSums(self,level,i_sample): sample = self.values[level][i_sample] old_S1 = self.power_sum_1[level] old_S2 = self.power_sum_2[level] old_S3 = self.power_sum_3[level] old_S4 = self.power_sum_4[level] number_samples_level = self.number_samples[level] new_S1,new_S2,new_S3,new_S4,number_samples_level = UpdateOnePassPowerSumsAux_Task(sample,old_S1,old_S2,old_S3,old_S4,number_samples_level) self.power_sum_1[level] = new_S1 self.power_sum_2[level] = new_S2 self.power_sum_3[level] = new_S3 self.power_sum_4[level] = new_S4 self.number_samples[level] = number_samples_level """ function updating the global power sums input: self : an instance of the class level : current level batch_counter : current batch """ def UpdateGlobalPowerSums(self,level,batch_counter): old_S1 = self.power_sum_1[level] old_S2 = self.power_sum_2[level] old_S3 = self.power_sum_3[level] old_S4 = self.power_sum_4[level] number_samples_level = self.number_samples[level] add_S1 = self.power_sum_batches_1[batch_counter][level] add_S2 = self.power_sum_batches_2[batch_counter][level] add_S3 = self.power_sum_batches_3[batch_counter][level] add_S4 = self.power_sum_batches_4[batch_counter][level] add_number_samples_level = self.batches_number_samples[batch_counter][level] new_S1,new_S2,new_S3,new_S4,number_samples_level = UpdateGlobalPowerSumsAux_Task(old_S1,old_S2,old_S3,old_S4,number_samples_level,add_S1,add_S2,add_S3,add_S4,add_number_samples_level) self.power_sum_1[level] = new_S1 self.power_sum_2[level] = new_S2 self.power_sum_3[level] = new_S3 self.power_sum_4[level] = new_S4 self.number_samples[level] = number_samples_level """ function updating the in-batch power sums input: self : an instance of the class level : current level batch_counter : current batch mini_batch : size such that we update the in-batch power sums with mini_batch samples """ def UpdateBatchesPassPowerSum(self,level,batch_counter,mini_batch=50): samples = self.values[batch_counter][level] #for mini_batch in range (0,len(samples)): while len(samples) > 1: mini_batches_samples = samples[:mini_batch] samples = samples[mini_batch:] new_power_sums = UpdateBatchesPassPowerSumsAux_Task(*mini_batches_samples) samples.append(new_power_sums) new_S1, new_S2, new_S3, new_S4 = UnfoldValuesAux_Task(samples[0]) self.power_sum_batches_1[batch_counter][level] = new_S1 self.power_sum_batches_2[batch_counter][level] = new_S2 self.power_sum_batches_3[batch_counter][level] = new_S3 self.power_sum_batches_4[batch_counter][level] = new_S4 """ function computing the h statistics h_p from the power sums input: self : an instance of the class level : defined level """ def ComputeHStatistics(self,level): number_samples_level = self.number_samples[level] S1_level = self.power_sum_1[level] S2_level = self.power_sum_2[level] S3_level = self.power_sum_3[level] S4_level = self.power_sum_4[level] self.h_statistics_computed = True h1_level,h2_level,h3_level,h4_level = ComputeHStatisticsAux_Task(S1_level,S2_level,S3_level,S4_level,number_samples_level) self.h_statistics_1[level] = h1_level self.h_statistics_2[level] = h2_level self.h_statistics_3[level] = h3_level self.h_statistics_4[level] = h4_level """ function computing from scratch the central moments and the absolute third central moment input: self : an instance of the class level : defined level """ def ComputeSampleCentralMomentsFromScratch(self,level,number_samples_level): # initialize central moments central_moment_from_scratch_1 = 0.0 central_moment_from_scratch_2 = 0.0 central_moment_from_scratch_3 = 0.0 central_moment_from_scratch_3_absolute = 0.0 central_moment_from_scratch_4 = 0.0 central_moment_from_scratch_1_to_compute = self.central_moment_from_scratch_1_to_compute central_moment_from_scratch_2_to_compute = self.central_moment_from_scratch_2_to_compute central_moment_from_scratch_3_to_compute = self.central_moment_from_scratch_3_to_compute central_moment_from_scratch_3_absolute_to_compute = self.central_moment_from_scratch_3_absolute_to_compute central_moment_from_scratch_4_to_compute = self.central_moment_from_scratch_4_to_compute samples = [] for batch in range (len(self.values)): for mini_batch_samples in self.values[batch][level]: samples.append(mini_batch_samples) central_moment_from_scratch_1,central_moment_from_scratch_2,central_moment_from_scratch_3,central_moment_from_scratch_3_absolute,central_moment_from_scratch_4 = \ ComputeSampleCentralMomentsFromScratchAux_Task(number_samples_level,central_moment_from_scratch_1_to_compute, \ central_moment_from_scratch_2_to_compute,central_moment_from_scratch_3_to_compute,central_moment_from_scratch_3_absolute_to_compute,central_moment_from_scratch_4_to_compute, \ central_moment_from_scratch_1,central_moment_from_scratch_2,central_moment_from_scratch_3,central_moment_from_scratch_3_absolute,central_moment_from_scratch_4, samples) self.central_moment_from_scratch_1[level] = central_moment_from_scratch_1 self.central_moment_from_scratch_2[level] = central_moment_from_scratch_2 self.central_moment_from_scratch_3[level] = central_moment_from_scratch_3 self.central_moment_from_scratch_3_absolute[level] = central_moment_from_scratch_3_absolute self.central_moment_from_scratch_4[level] = central_moment_from_scratch_4 """ function computing the skewness and the kurtosis from the h statistics skewness = \mu_3 / \sqrt(\mu_2^3) kurtosis = \mu_4 / \mu_2^2 input: self : an instance of the class level : defined level """ def ComputeSkewnessKurtosis(self,level): if (self.h_statistics_computed): h2_level = self.h_statistics_2[level] h3_level = self.h_statistics_3[level] h4_level = self.h_statistics_4[level] skewness_level,kurtosis_level =ComputeSkewnessKurtosisAux_Task(h2_level,h3_level,h4_level) self.skewness[level] = skewness_level self.kurtosis[level] = kurtosis_level
contrib/experiments/interpretation/penobscot/local/default.py
elmajdma/seismic-deeplearning
270
26829
<gh_stars>100-1000 # ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function from yacs.config import CfgNode as CN _C = CN() _C.OUTPUT_DIR = "output" # This will be the base directory for all output, such as logs and saved models _C.LOG_DIR = "" # This will be a subdirectory inside OUTPUT_DIR _C.GPUS = (0,) _C.WORKERS = 4 _C.PRINT_FREQ = 20 _C.AUTO_RESUME = False _C.PIN_MEMORY = True _C.LOG_CONFIG = "logging.conf" _C.SEED = 42 _C.OPENCV_BORDER_CONSTANT = 0 # size of voxel cube: WINDOW_SIZE x WINDOW_SIZE x WINDOW_SIZE; used for 3D models only _C.WINDOW_SIZE = 65 # Cudnn related params _C.CUDNN = CN() _C.CUDNN.BENCHMARK = True _C.CUDNN.DETERMINISTIC = False _C.CUDNN.ENABLED = True # DATASET related params _C.DATASET = CN() _C.DATASET.ROOT = "" _C.DATASET.NUM_CLASSES = 7 _C.DATASET.CLASS_WEIGHTS = [ 0.02630481, 0.05448931, 0.0811898, 0.01866496, 0.15868563, 0.0875993, 0.5730662, ] _C.DATASET.INLINE_HEIGHT = 1501 _C.DATASET.INLINE_WIDTH = 481 # common params for NETWORK _C.MODEL = CN() _C.MODEL.NAME = "resnet_unet" _C.MODEL.IN_CHANNELS = 1 _C.MODEL.PRETRAINED = "" _C.MODEL.EXTRA = CN(new_allowed=True) # training _C.TRAIN = CN() _C.TRAIN.COMPLETE_PATCHES_ONLY = True _C.TRAIN.MIN_LR = 0.001 _C.TRAIN.MAX_LR = 0.01 _C.TRAIN.MOMENTUM = 0.9 _C.TRAIN.BEGIN_EPOCH = 0 _C.TRAIN.END_EPOCH = 300 _C.TRAIN.BATCH_SIZE_PER_GPU = 32 _C.TRAIN.WEIGHT_DECAY = 0.0001 _C.TRAIN.SNAPSHOTS = 5 _C.TRAIN.MODEL_DIR = "models" # This will be a subdirectory inside OUTPUT_DIR _C.TRAIN.AUGMENTATION = True _C.TRAIN.STRIDE = 64 _C.TRAIN.PATCH_SIZE = 128 _C.TRAIN.MEAN = [-0.0001777, 0.49, -0.0000688] # 0.0009996710808862074 _C.TRAIN.STD = [0.14076, 0.2717, 0.06286] # 0.20976548783479299 _C.TRAIN.MAX = 1 _C.TRAIN.DEPTH = "patch" # Options are none, patch, and section # None adds no depth information and the num of channels remains at 1 # Patch adds depth per patch so is simply the height of that patch from 0 to 1, channels=3 # Section adds depth per section so contains depth information for the whole section, channels=3 _C.TRAIN.AUGMENTATIONS = CN() _C.TRAIN.AUGMENTATIONS.RESIZE = CN() _C.TRAIN.AUGMENTATIONS.RESIZE.HEIGHT = 256 _C.TRAIN.AUGMENTATIONS.RESIZE.WIDTH = 256 _C.TRAIN.AUGMENTATIONS.PAD = CN() _C.TRAIN.AUGMENTATIONS.PAD.HEIGHT = 256 _C.TRAIN.AUGMENTATIONS.PAD.WIDTH = 256 # validation _C.VALIDATION = CN() _C.VALIDATION.BATCH_SIZE_PER_GPU = 32 _C.VALIDATION.COMPLETE_PATCHES_ONLY = True # TEST _C.TEST = CN() _C.TEST.MODEL_PATH = "" _C.TEST.COMPLETE_PATCHES_ONLY = True _C.TEST.AUGMENTATIONS = CN() _C.TEST.AUGMENTATIONS.RESIZE = CN() _C.TEST.AUGMENTATIONS.RESIZE.HEIGHT = 256 _C.TEST.AUGMENTATIONS.RESIZE.WIDTH = 256 _C.TEST.AUGMENTATIONS.PAD = CN() _C.TEST.AUGMENTATIONS.PAD.HEIGHT = 256 _C.TEST.AUGMENTATIONS.PAD.WIDTH = 256 def update_config(cfg, options=None, config_file=None): cfg.defrost() if config_file: cfg.merge_from_file(config_file) if options: cfg.merge_from_list(options) cfg.freeze() if __name__ == "__main__": import sys with open(sys.argv[1], "w") as f: print(_C, file=f)
src/backend/common/sitevars/flask_secrets.py
ofekashery/the-blue-alliance
266
26831
from typing import TypedDict from backend.common.sitevars.sitevar import Sitevar class ContentType(TypedDict): secret_key: str class FlaskSecrets(Sitevar[ContentType]): DEFAULT_SECRET_KEY: str = "thebluealliance" @staticmethod def key() -> str: return "flask.secrets" @staticmethod def description() -> str: return "Secret key for Flask session" @staticmethod def default_value() -> ContentType: return ContentType(secret_key=FlaskSecrets.DEFAULT_SECRET_KEY) @classmethod def secret_key(cls) -> str: secret_key = cls.get().get("secret_key") return secret_key if secret_key else FlaskSecrets.DEFAULT_SECRET_KEY
mmdet/ops/nms_rotated/nms_rotated_wrapper.py
vpeopleonatank/OBBDetection
274
26841
<reponame>vpeopleonatank/OBBDetection import BboxToolkit as bt import numpy as np import torch from . import nms_rotated_ext def obb2hbb(obboxes): center, w, h, theta = torch.split(obboxes, [2, 1, 1, 1], dim=1) Cos, Sin = torch.cos(theta), torch.sin(theta) x_bias = torch.abs(w/2 * Cos) + torch.abs(h/2 * Sin) y_bias = torch.abs(w/2 * Sin) + torch.abs(h/2 * Cos) bias = torch.cat([x_bias, y_bias], dim=1) return torch.cat([center-bias, center+bias], dim=1) def obb_nms(dets, iou_thr, device_id=None): if isinstance(dets, torch.Tensor): is_numpy = False dets_th = dets elif isinstance(dets, np.ndarray): is_numpy = True device = 'cpu' if device_id is None else f'cuda:{device_id}' dets_th = torch.from_numpy(dets).to(device) else: raise TypeError('dets must be eithr a Tensor or numpy array, ' f'but got {type(dets)}') if dets_th.numel() == 0: inds = dets_th.new_zeros(0, dtype=torch.int64) else: # same bug will happen when bboxes is too small too_small = dets_th[:, [2, 3]].min(1)[0] < 0.001 if too_small.all(): inds = dets_th.new_zeros(0, dtype=torch.int64) else: ori_inds = torch.arange(dets_th.size(0)) ori_inds = ori_inds[~too_small] dets_th = dets_th[~too_small] bboxes, scores = dets_th[:, :5], dets_th[:, 5] inds = nms_rotated_ext.nms_rotated(bboxes, scores, iou_thr) inds = ori_inds[inds] if is_numpy: inds = inds.cpu().numpy() return dets[inds, :], inds def poly_nms(dets, iou_thr, device_id=None): if isinstance(dets, torch.Tensor): is_numpy = False dets_th = dets elif isinstance(dets, np.ndarray): is_numpy = True device = 'cpu' if device_id is None else f'cuda:{device_id}' dets_th = torch.from_numpy(dets).to(device) else: raise TypeError('dets must be eithr a Tensor or numpy array, ' f'but got {type(dets)}') if dets_th.device == torch.device('cpu'): raise NotImplementedError inds = nms_rotated_ext.nms_poly(dets_th.float(), iou_thr) if is_numpy: inds = inds.cpu().numpy() return dets[inds, :], inds def BT_nms(dets, iou_thr, device_id=None): if isinstance(dets, torch.Tensor): is_tensor = True device = dets.device dets_np = dets.cpu().numpy() elif isinstance(dets, np.ndarray): is_tensor = False dets_np = dets else: raise TypeError('dets must be eithr a Tensor or numpy array, ' f'but got {type(dets)}') bboxes, scores = dets_np[:, :-1], dets_np[:, -1] inds = bt.bbox_nms(bboxes, scores, iou_thr=iou_thr, score_thr=0) if is_tensor: inds = torch.from_numpy(inds).to(device) return dets[inds, :], inds def arb_batched_nms(bboxes, scores, inds, nms_cfg, class_agnostic=False): nms_cfg_ = nms_cfg.copy() class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic) if class_agnostic: bboxes_for_nms = bboxes else: hbboxes = obb2hbb(bboxes) if bboxes.size(-1) == 5 else bboxes max_coordinate = hbboxes.max() - hbboxes.min() offsets = inds.to(bboxes) * (max_coordinate + 1) if bboxes.size(-1) == 5: bboxes_for_nms = bboxes.clone() bboxes_for_nms[:, :2] = bboxes_for_nms[:, :2] + offsets[:, None] else: bboxes_for_nms = bboxes + offsets[:, None] nms_type = nms_cfg_.pop('type', 'BT_nms') try: nms_op = eval(nms_type) except NameError: from ..nms import nms_wrapper nms_op = getattr(nms_wrapper, nms_type) dets, keep = nms_op( torch.cat([bboxes_for_nms, scores[:, None]], -1), **nms_cfg_) bboxes = bboxes[keep] scores = dets[:, -1] return torch.cat([bboxes, scores[:, None]], -1), keep
stronghold/tests/testmixins.py
davitovmasyan/django-stronghold
252
26846
from stronghold.views import StrongholdPublicMixin import django from django.views.generic import View from django.views.generic.base import TemplateResponseMixin if django.VERSION[:2] < (1, 9): from django.utils import unittest else: import unittest class StrongholdMixinsTests(unittest.TestCase): def test_public_mixin_sets_attr(self): class TestView(StrongholdPublicMixin, View): pass self.assertTrue(TestView.dispatch.STRONGHOLD_IS_PUBLIC) def test_public_mixin_sets_attr_with_multiple_mixins(self): class TestView(StrongholdPublicMixin, TemplateResponseMixin, View): template_name = 'dummy.html' self.assertTrue(TestView.dispatch.STRONGHOLD_IS_PUBLIC)
pydis_site/apps/api/migrations/0055_reminder_mentions.py
Numerlor/site
700
26851
<filename>pydis_site/apps/api/migrations/0055_reminder_mentions.py # Generated by Django 2.2.14 on 2020-07-15 07:37 import django.contrib.postgres.fields import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0054_user_invalidate_unknown_role'), ] operations = [ migrations.AddField( model_name='reminder', name='mentions', field=django.contrib.postgres.fields.ArrayField(base_field=models.BigIntegerField(validators=[django.core.validators.MinValueValidator(limit_value=0, message='Mention IDs cannot be negative.')]), blank=True, default=list, help_text='IDs of roles or users to ping with the reminder.', size=None), ), ]
hata/ext/extension_loader/client_extension.py
Multiface24111/hata
173
26853
<gh_stars>100-1000 __all__ = () from ...backend.utils import KeepType from ...discord.client import Client from .extension import EXTENSIONS, EXTENSION_STATE_LOADED @KeepType(Client) class Client: @property def extensions(self): """ Returns a list of extensions added to the client. Added by the `extension_loader` extension. Returns ------- extensions : `list` of ``Extension`` """ extensions = [] for extension in EXTENSIONS.values(): if extension._state == EXTENSION_STATE_LOADED: snapshot_difference = extension._snapshot_difference if (snapshot_difference is not None): for client, client_snapshot_difference in snapshot_difference: if (self is client) and client_snapshot_difference: extensions.append(extension) break return extensions
MANN/Utils/similarities.py
jgyllinsky/How-to-Learn-from-Little-Data
161
26859
import tensorflow as tf def cosine_similarity(x, y, eps=1e-6): z = tf.batch_matmul(x, tf.transpose(y, perm=[0,2,1])) z /= tf.sqrt(tf.multiply(tf.expand_dims(tf.reduce_sum(tf.multiply(x,x), 2), 2),tf.expand_dims(tf.reduce_sum(tf.multiply(y,y), 2), 1)) + eps) return z
data/synthetic/analyze.py
thonic/pyhawkes
221
26877
import gzip import pickle import os def analyze(data_path): """ Run the comparison on the given data file :param data_path: :return: """ if data_path.endswith(".gz"): with gzip.open(data_path, 'r') as f: S, true_model = pickle.load(f) else: with open(data_path, 'r') as f: S, true_model = pickle.load(f) print("True model:") print(true_model) T = float(S.shape[0]) N = S.sum(axis=0) print("lambda0: ", true_model.bias_model.lambda0.mean()) print("Average event count: ", N.mean(), " +- ", N.std()) print("Average event count: ", (N/T).mean(), " +- ", (N/T).std()) # seed = 2650533028 K = 50 C = 5 T = 100000 data_path = os.path.join("data", "synthetic", "synthetic_K%d_C%d_T%d.pkl.gz" % (K,C,T)) analyze(data_path)
rl_coach/graph_managers/hrl_graph_manager.py
jl45621/coach
1,960
26882
<reponame>jl45621/coach # # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List, Union, Tuple from rl_coach.base_parameters import AgentParameters, VisualizationParameters, TaskParameters, \ PresetValidationParameters from rl_coach.core_types import EnvironmentSteps from rl_coach.environments.environment import EnvironmentParameters, Environment from rl_coach.graph_managers.graph_manager import GraphManager, ScheduleParameters from rl_coach.level_manager import LevelManager from rl_coach.utils import short_dynamic_import class HRLGraphManager(GraphManager): """ A simple HRL graph manager creates a deep hierarchy with a single composite agent per hierarchy level, and a single environment which is interacted with. """ def __init__(self, agents_params: List[AgentParameters], env_params: EnvironmentParameters, schedule_params: ScheduleParameters, vis_params: VisualizationParameters, consecutive_steps_to_run_each_level: Union[EnvironmentSteps, List[EnvironmentSteps]], preset_validation_params: PresetValidationParameters = PresetValidationParameters()): """ :param agents_params: the parameters of all the agents in the hierarchy starting from the top level of the hierarchy to the bottom level :param env_params: the parameters of the environment :param schedule_params: the parameters for scheduling the graph :param vis_params: the visualization parameters :param consecutive_steps_to_run_each_level: the number of time steps that each level is ran. for example, when the top level gives the bottom level a goal, the bottom level can act for consecutive_steps_to_run_each_level steps and try to reach that goal. This is expected to be either an EnvironmentSteps which will be used for all levels, or an EnvironmentSteps for each level as a list. """ super().__init__('hrl_graph', schedule_params, vis_params) self.agents_params = agents_params self.env_params = env_params self.preset_validation_params = preset_validation_params if isinstance(consecutive_steps_to_run_each_level, list): if len(consecutive_steps_to_run_each_level) != len(self.agents_params): raise ValueError("If the consecutive_steps_to_run_each_level is given as a list, it should match " "the number of levels in the hierarchy. Alternatively, it is possible to use a single " "value for all the levels, by passing an EnvironmentSteps") elif isinstance(consecutive_steps_to_run_each_level, EnvironmentSteps): self.consecutive_steps_to_run_each_level = [consecutive_steps_to_run_each_level] * len(self.agents_params) for agent_params in agents_params: agent_params.visualization = self.visualization_parameters if agent_params.input_filter is None: agent_params.input_filter = self.env_params.default_input_filter() if agent_params.output_filter is None: agent_params.output_filter = self.env_params.default_output_filter() if len(self.agents_params) < 2: raise ValueError("The HRL graph manager must receive the agent parameters for at least two levels of the " "hierarchy. Otherwise, use the basic RL graph manager.") def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]: self.env_params.seed = task_parameters.seed env = short_dynamic_import(self.env_params.path)(**self.env_params.__dict__, visualization_parameters=self.visualization_parameters) for agent_params in self.agents_params: agent_params.task_parameters = task_parameters # we need to build the hierarchy in reverse order (from the bottom up) in order for the spaces of each level # to be known level_managers = [] current_env = env # out_action_space = env.action_space for level_idx, agent_params in reversed(list(enumerate(self.agents_params))): # TODO: the code below is specific for HRL on observation scale # in action space # if level_idx == 0: # # top level agents do not get directives # in_action_space = None # else: # pass # attention_size = (env.state_space['observation'].shape - 1)//4 # in_action_space = AttentionActionSpace(shape=2, low=0, high=env.state_space['observation'].shape - 1, # forced_attention_size=attention_size) # agent_params.output_filter.action_filters['masking'].set_masking(0, attention_size) agent_params.name = "agent_{}".format(level_idx) agent_params.is_a_highest_level_agent = level_idx == 0 agent = short_dynamic_import(agent_params.path)(agent_params) level_manager = LevelManager( agents=agent, environment=current_env, real_environment=env, steps_limit=self.consecutive_steps_to_run_each_level[level_idx], should_reset_agent_state_after_time_limit_passes=level_idx > 0, name="level_{}".format(level_idx) ) current_env = level_manager level_managers.insert(0, level_manager) # out_action_space = in_action_space return level_managers, [env]
sphinx-sources/Examples/ComputerPrac/FresnelPlane.py
jccmak/lightpipes
132
26893
#!/usr/bin/env python """ Computer practical 6.1. Fresnel diffraction, plane wavefront. ============================================================= This is part of the 'computer practical' set of assignments. Demonstrates Fresnel diffraction when a plane wavefront enters a round hole. Measure the values of z and d for which minima and/or maxima on-axis occur and apply the Fresnel-zone theory to find the wavelength of the light. """ import matplotlib matplotlib.use("TkAgg") from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import matplotlib.pyplot as plt import sys import webbrowser if sys.version_info[0] < 3: from Tkinter import * import Tkinter as Tk else: from tkinter import * import tkinter as Tk from LightPipes import * root = Tk.Tk() root.wm_title("Computer practical: 6.1 Fresnel plane wavefront. LP-version = " + LPversion) root.wm_protocol("WM_DELETE_WINDOW", root.quit) wavelength=530*nm; size=5*mm; N=200; N2=int(N/2) z=20*cm R=0.5*mm D=DoubleVar() Z=DoubleVar() D.set(2*R/mm) Z.set(z/cm) fig=plt.figure(figsize=(8,8)) ax1 = fig.add_subplot(111) canvas = FigureCanvasTkAgg(fig, master=root) canvas._tkcanvas.pack(side=Tk.LEFT, fill=Tk.BOTH, expand=1) v=StringVar() def TheExample(event): global I F=Begin(size,wavelength,N) z=Z.get()*cm R=D.get()/2*mm F=CircAperture(R,0,0,F) FN=R*R/z/wavelength if (FN >= 15.0): F=Forvard(z,F) else: F=Fresnel(z,F) I=Intensity(0,F) ax1.clear() ax1.contourf(I,50,cmap='hot'); ax1.axis('off'); ax1.axis('equal') str='Intensity distribution\ncenter-irradiance = %3.3f [a.u.]' %I[N2][N2] ax1.set_title(str) canvas.draw() def motion(event): x=event.xdata;y=event.ydata if (x and y is not None and x>0 and x<N and y>0 and y<N): v.set('x=%3.2f mm, y=%3.2f mm\n I=%3.3f [a.u.]' %((-size/2+x*size/N)/mm,(-size/2+y*size/N)/mm,I[int(x)][int(y)])) root.configure(cursor='crosshair') else: v.set('') root.configure(cursor='arrow') def openbrowser(event): webbrowser.open_new(r"https://opticspy.github.io/lightpipes/FresnelDiffraction.html") def _quit(): root.quit() Scale( root, takefocus = 1, orient='horizontal', label = 'diameter aperture [mm]', length = 200, from_=0.5, to=size/2/mm, resolution = 0.001, variable = D, cursor="hand2", command = TheExample).pack() Scale( root, takefocus = 1, orient='horizontal', label = 'z [cm]', length = 200, from_=0.01, to=200.0, resolution = 0.01, variable = Z, cursor="hand2", command = TheExample).pack() Button( root, width = 24, text='Quit', cursor="hand2", command=_quit).pack(pady=10) link = Label(root, text="help", fg="blue", cursor="hand2") link.pack() link.bind("<Button-1>", openbrowser) Label(root, textvariable=v).pack(pady=50) cid = fig.canvas.mpl_connect('motion_notify_event', motion) TheExample(0) root.mainloop() root.destroy()
python/parserDev/brothon/live_simulator.py
jzadeh/aktaion
112
26926
"""LiveSimulator: This class reads in various Bro IDS logs. The class utilizes the BroLogReader and simply loops over the static bro log file, replaying rows and changing any time stamps Args: eps (int): Events Per Second that the simulator will emit events (default = 10) max_rows (int): The maximum number of rows to generate (default = None (go forever)) """ from __future__ import print_function import os import time import datetime import itertools # Third party import numpy as np # Local Imports from brothon import bro_log_reader from brothon.utils import file_utils class LiveSimulator(object): """LiveSimulator: This class reads in various Bro IDS logs. The class utilizes the BroLogReader and simply loops over the static bro log file replaying rows at the specified EPS and changing timestamps to 'now()' """ def __init__(self, filepath, eps=10, max_rows=None): """Initialization for the LiveSimulator Class Args: eps (int): Events Per Second that the simulator will emit events (default = 10) max_rows (int): The maximum number of rows to generate (default = None (go forever)) """ # Compute EPS timer # Logic: # - Normal distribution centered around 1.0/eps # - Make sure never less than 0 # - Precompute 1000 deltas and then just cycle around self.eps_timer = itertools.cycle([max(0, delta) for delta in np.random.normal(1.0/float(eps), .5/float(eps), size=1000)]) # Initialize the Bro log reader self.log_reader = bro_log_reader.BroLogReader(filepath, tail=False) # Store max_rows self.max_rows = max_rows def readrows(self): """Using the BroLogReader this method yields each row of the log file replacing timestamps, looping and emitting rows based on EPS rate """ # Loop forever or until max_rows is reached num_rows = 0 while True: # Yield the rows from the internal reader for row in self.log_reader.readrows(): yield self.replace_timestamp(row) # Sleep and count rows time.sleep(next(self.eps_timer)) num_rows += 1 # Check for max_rows if self.max_rows and (num_rows >= self.max_rows): return @staticmethod def replace_timestamp(row): """Replace the timestamp with now()""" if 'ts' in row: row['ts'] = datetime.datetime.utcnow() return row def test(): """Test for LiveSimulator Python Class""" # Grab a test file data_path = file_utils.relative_dir(__file__, '../data') test_path = os.path.join(data_path, 'conn.log') print('Opening Data File: {:s}'.format(test_path)) # Create a LiveSimulator reader reader = LiveSimulator(test_path, max_rows=10) for line in reader.readrows(): print(line) print('Read with max_rows Test successful!') if __name__ == '__main__': # Run the test for easy testing/debugging test()
test/util_test.py
quiet-oceans/libais
161
26943
#!/usr/bin/env python """Tests for ais.util.""" import unittest from ais import util import six class UtilTest(unittest.TestCase): def testMaybeToNumber(self): self.assertEqual(util.MaybeToNumber(None), None) self.assertEqual(util.MaybeToNumber([]), []) self.assertEqual(util.MaybeToNumber({}), {}) self.assertEqual(util.MaybeToNumber('a'), 'a') self.assertEqual(util.MaybeToNumber(1), 1) self.assertEqual(util.MaybeToNumber(-3.12), -3.12) self.assertEqual(util.MaybeToNumber('-1'), -1) self.assertIsInstance(util.MaybeToNumber('-1'), int) self.assertEqual(util.MaybeToNumber('42.0'), 42.0) self.assertIsInstance(util.MaybeToNumber('42.0'), float) value = 9999999999999999999999999 value_str = '9999999999999999999999999' self.assertEqual(util.MaybeToNumber(value_str), value) self.assertIsInstance(util.MaybeToNumber(value_str), six.integer_types) self.assertEqual( util.MaybeToNumber('1e99999999999999999999999'), float('inf')) self.assertEqual( util.MaybeToNumber('-1e99999999999999999999999'), float('-inf')) if __name__ == '__main__': unittest.main()
Chapter8/listing8_1.py
hohsieh/osgeopy-code
160
26945
<filename>Chapter8/listing8_1.py # Script to reproject a shapefile. from osgeo import ogr, osr # Create an output SRS. sr = osr.SpatialReference() sr.ImportFromProj4('''+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs''') # Don't forget to change your directory here. ds = ogr.Open(r'D:\osgeopy-data\US', 1) # Get the input layer. in_lyr = ds.GetLayer('us_volcanos') # Create the empty output layer. out_lyr = ds.CreateLayer('us_volcanos_aea', sr, ogr.wkbPoint) out_lyr.CreateFields(in_lyr.schema) # Loop through the features in the input layer. out_feat = ogr.Feature(out_lyr.GetLayerDefn()) for in_feat in in_lyr: # Clone the geometry, project it, and add it to the feature. geom = in_feat.geometry().Clone() geom.TransformTo(sr) out_feat.SetGeometry(geom) # Copy attributes. for i in range(in_feat.GetFieldCount()): out_feat.SetField(i, in_feat.GetField(i)) # Insert the feature out_lyr.CreateFeature(out_feat)
Validation/RecoTrack/python/customiseMTVForBPix123Holes.py
ckamtsikis/cmssw
852
26947
<filename>Validation/RecoTrack/python/customiseMTVForBPix123Holes.py from __future__ import print_function # This customise file provides an example (in the form of holes in # BPix L1-L2 and L3-L3) on how to select a subset of generalTracks # (e.g. by phi and eta) and setup various MTV instances for those # (selected tracks, built tracks, and seeds in this case). The naming # of DQM folders is consistent with an example in trackingCompare.py import FWCore.ParameterSet.Config as cms def customiseMTVForBPix123Holes(process): from Validation.RecoTrack.cutsRecoTracks_cfi import cutsRecoTracks as _cutsRecoTracks import math _minPhi = process.trackValidatorTrackingOnly.histoProducerAlgoBlock.minPhi.value() _maxPhi = process.trackValidatorTrackingOnly.histoProducerAlgoBlock.maxPhi.value() _nPhi = process.trackValidatorTrackingOnly.histoProducerAlgoBlock.nintPhi.value() _binPhi = (_maxPhi - _minPhi) / _nPhi process.generalTracksL1L2 = _cutsRecoTracks.clone( minLayer = 0, quality = [], minRapidity = -1.0, # also eta < -1 is affected, but let's start with this minPhi=_minPhi+_binPhi*14, maxPhi=_minPhi+_binPhi*19) # ~0.7 .. ~0.2 process.generalTracksL2L3 = process.generalTracksL1L2.clone( minRapidity = -0.9, maxRapidity = 2, minPhi=_minPhi+_binPhi*33, maxPhi=_minPhi+_binPhi + 2*math.pi) # ~2.6 .. ~3.3 print("L1L2 %f %f" % (process.generalTracksL1L2.minPhi.value(), process.generalTracksL1L2.maxPhi.value())) print("L2L3 %f %f" % (process.generalTracksL2L3.minPhi.value(), process.generalTracksL2L3.maxPhi.value())) from CommonTools.RecoAlgos.trackingParticleRefSelector_cfi import trackingParticleRefSelector as _trackingParticleRefSelector process.trackingParticlesL1L2 = _trackingParticleRefSelector.clone( signalOnly = False, chargedOnly = False, tip = 1e5, lip = 1e5, minRapidity = process.generalTracksL1L2.minRapidity.value(), maxRapidity = process.generalTracksL1L2.maxRapidity.value(), ptMin = 0, minPhi = process.generalTracksL1L2.minPhi.value(), maxPhi = process.generalTracksL1L2.maxPhi.value(), ) process.trackingParticlesL2L3 = process.trackingParticlesL1L2.clone( minRapidity = process.generalTracksL2L3.minRapidity.value(), maxRapidity = process.generalTracksL2L3.maxRapidity.value(), minPhi = process.generalTracksL2L3.minPhi.value(), maxPhi = process.generalTracksL2L3.maxPhi.value(), ) process.tracksPreValidationTrackingOnly += ( process.trackingParticlesL1L2 + process.trackingParticlesL2L3 + process.generalTracksL1L2 + process.generalTracksL2L3 ) process.trackValidatorTrackingOnlyL1L2 = process.trackValidatorTrackingOnly.clone( dirName = process.trackValidatorTrackingOnly.dirName.value().replace("Track/", "TrackL1L2/"), label_tp_effic = "trackingParticlesL1L2", label_tp_effic_refvector = True, label = ["generalTracksL1L2"], ) process.trackValidatorTrackingOnlyL2L3 = process.trackValidatorTrackingOnlyL1L2.clone( dirName = process.trackValidatorTrackingOnlyL1L2.dirName.value().replace("L1L2", "L2L3"), label_tp_effic = "trackingParticlesL2L3", label = ["generalTracksL2L3"], ) process.trackValidatorsTrackingOnly += ( process.trackValidatorTrackingOnlyL1L2 + process.trackValidatorTrackingOnlyL2L3 ) for trkColl in process.trackValidatorTrackingOnly.label: if "ByAlgoMask" in trkColl: continue if "Pt09" in trkColl and not trkColl in ["generalTracksPt09", "cutsRecoTracksPt09Hp"]: continue if trkColl != "generalTracks": selL1L2 = getattr(process, trkColl).clone(src="generalTracksL1L2") selL2L3 = getattr(process, trkColl).clone(src="generalTracksL2L3") if "Pt09" in trkColl: selL1L2Name = trkColl.replace("Pt09", "Pt09L1L2") selL2L3Name = trkColl.replace("Pt09", "Pt09L2L3") else: selL1L2Name = trkColl.replace("cutsRecoTracks", "cutsRecoTracksL1L2") selL2L3Name = trkColl.replace("cutsRecoTracks", "cutsRecoTracksL2L3") setattr(process, selL1L2Name, selL1L2) setattr(process, selL2L3Name, selL2L3) process.tracksPreValidationTrackingOnly += (selL1L2+selL2L3) process.trackValidatorTrackingOnlyL1L2.label.append(selL1L2Name) process.trackValidatorTrackingOnlyL2L3.label.append(selL2L3Name) for midfix in ["Building", "Seeding"]: label = "trackValidator%sTrackingOnly" % midfix mtv = getattr(process, label) mtvL1L2 = mtv.clone( dirName = mtv.dirName.value()[:-1] + "L1L2/", label_tp_effic = "trackingParticlesL1L2", label_tp_effic_refvector = True, label = [], mvaLabels = cms.PSet(), doMVAPlots = False, ) mtvL2L3 = mtvL1L2.clone( dirName = mtvL1L2.dirName.value().replace("L1L2", "L2L3"), label_tp_effic = "trackingParticlesL2L3", ) setattr(process, label+"L1L2", mtvL1L2) setattr(process, label+"L2L3", mtvL2L3) process.trackValidatorsTrackingOnly += ( mtvL1L2 + mtvL2L3 ) for trkColl in mtv.label: selL1L2 = process.generalTracksL1L2.clone(src=trkColl) selL2L3 = process.generalTracksL2L3.clone(src=trkColl) selL1L2Name = trkColl+"L1L2" selL2L3Name = trkColl+"L2L3" setattr(process, selL1L2Name, selL1L2) setattr(process, selL2L3Name, selL2L3) process.tracksPreValidationTrackingOnly += (selL1L2+selL2L3) mtvL1L2.label.append(selL1L2Name) mtvL2L3.label.append(selL2L3Name) return process
examples/hist.py
RyanAugust/geoplotlib
1,021
26959
<reponame>RyanAugust/geoplotlib """ Example of 2D histogram """ import geoplotlib from geoplotlib.utils import read_csv, BoundingBox data = read_csv('data/opencellid_dk.csv') geoplotlib.hist(data, colorscale='sqrt', binsize=8) geoplotlib.set_bbox(BoundingBox.DK) geoplotlib.show()
recipes/Python/578871_Simple_Tkinter_strip_chart/recipe-578871.py
tdiprima/code
2,023
26969
# (c) MIT License Copyright 2014 <NAME> # Please reuse, modify or distribute freely. from collections import OrderedDict import tkinter as tk class StripChart( tk.Frame ): def __init__( self, parent, scale, historySize, trackColors, *args, **opts ): # Initialize super().__init__( parent, *args, **opts ) self._trackHist = OrderedDict() # Map: TrackName -> list of canvas objID self._trackColor = trackColors # Map: Track Name -> color self._chartHeight = scale + 1 self._chartLength = historySize * 2 # Stretch for readability self._canvas = tk.Canvas( self, height=self._chartHeight + 17, width=self._chartLength, background='black' ) self._canvas.grid( sticky=tk.N+tk.S+tk.E+tk.W ) # Draw horizontal to divide plot from tick labels x, y = 0, self._chartHeight + 2 x2, y2 = self._chartLength, y self._baseLine = self._canvas.create_line( x, y, x2, y2, fill='white' ) # Init track def and histories lists self._trackColor.update( { 'tick':'white', 'tickline':'white', 'ticklabel':'white' } ) for trackName in self._trackColor.keys(): self._trackHist[ trackName ] = [ None for x in range(historySize) ] def plotValues( self, **vals ): for trackName, trackHistory in self._trackHist.items(): # Scroll left-wards self._canvas.delete( trackHistory.pop(0) ) # Remove left-most canvas objs self._canvas.move( trackName, -2, 0 ) # Scroll canvas objs 2 pixels left # Plot the new values try: val = vals[ trackName ] x = self._chartLength y = self._chartHeight - val color = self._trackColor[ trackName ] objId = self._canvas.create_line( x, y, x+1, y, fill=color, width=3, tags=trackName ) trackHistory.append( objId ) except: trackHistory.append( None ) def drawTick( self, text=None, **lineOpts ): # draw vertical tick line x = self._chartLength y = 1 x2 = x y2 = self._chartHeight color = self._trackColor[ 'tickline' ] objId = self._canvas.create_line( x, y, x2, y2, fill=color, tags='tick', **lineOpts ) self._trackHist[ 'tickline' ].append( objId ) # draw tick label if text is not None: x = self._chartLength y = self._chartHeight + 10 color = self._trackColor[ 'ticklabel' ] objId = self._canvas.create_text( x, y, text=text, fill=color, tags='tick' ) self._trackHist[ 'ticklabel' ].append( objId ) def configTrackColors( self, **trackColors ): # Change plotted data color for trackName, colorName in trackColors.items( ): self._canvas.itemconfigure( trackName, fill=colorName ) # Change settings so future data has the new color self._trackColor.update( trackColors ) if __name__ == '__main__': top = tk.Tk( ) graph = StripChart( top, 100, 300, { 'A':'blue', 'B':'green', 'C':'red' } ) graph.grid( ) val_A = 0 val_B = 0 val_C = 0 delta = [ -3, -2, -1, 0, 1, 2, 3 ] # randomly vary the values by one of these tickCount = 0 def nextVal( current, lowerBound, upperBound ): from random import choice current += choice( delta ) if current < lowerBound: return lowerBound elif current > upperBound: return upperBound else: return current def plotNextVals( ): global val_A, val_B, val_C, tickCount if tickCount % 50 == 0: graph.drawTick( text=str(tickCount), dash=(1,4) ) tickCount += 1 val_A = nextVal( val_A, 0, 99 ) val_B = nextVal( val_B, 0, 99 ) val_C = nextVal( val_C, 0, 99 ) graph.plotValues( A=val_A, B=val_B, C=val_C ) #changeColor = { 800: 'black', #1200: 'yellow', #1600: 'orange', #2000: 'white', #2400: 'brown', #2800: 'blue' } #if tickCount in changeColor: #graph.configTrackColors( A=changeColor[tickCount] ) top.after( 1, plotNextVals ) top.after( 1, plotNextVals ) top.mainloop( )
graph_explorer/structured_metrics/plugins/vmstat.py
farheenkaifee/dashboard_3
284
26977
from . import Plugin class VmstatPlugin(Plugin): targets = [ { 'match': '^servers\.(?P<server>[^\.]+)\.vmstat\.(?P<type>.*)$', 'target_type': 'rate', 'tags': {'unit': 'Page'} } ] def sanitize(self, target): target['tags']['type'] = target['tags']['type'].replace('pgpg', 'paging_') target['tags']['type'] = target['tags']['type'].replace('pswp', 'swap_') # vim: ts=4 et sw=4:
SimCalorimetry/EcalSelectiveReadoutProducers/python/ecalDigis_craft_cfi.py
ckamtsikis/cmssw
852
26991
import FWCore.ParameterSet.Config as cms simEcalDigis = cms.EDProducer("EcalSelectiveReadoutProducer", # Label of input EB and EE digi collections digiProducer = cms.string('simEcalUnsuppressedDigis'), # Instance name of input EB digi collections EBdigiCollection = cms.string(''), # Instance name of input EB digi collections EEdigiCollection = cms.string(''), # Instance name of output EB SR flags collection EBSrFlagCollection = cms.string('ebSrFlags'), # Instance name of output EE SR flags collection EESrFlagCollection = cms.string('eeSrFlags'), # Instance name of output EB digis collection EBSRPdigiCollection = cms.string('ebDigis'), # Instance name of output EE digis collection EESRPdigiCollection = cms.string('eeDigis'), # Label name of input ECAL trigger primitive collection trigPrimProducer = cms.string('simEcalTriggerPrimitiveDigis'), # Instance name of ECAL trigger primitive collection trigPrimCollection = cms.string(''), # Neighbour eta range, neighborhood: (2*deltaEta+1)*(2*deltaPhi+1) deltaEta = cms.int32(1), # Neighbouring eta range, neighborhood: (2*deltaEta+1)*(2*deltaPhi+1) deltaPhi = cms.int32(1), # Index of time sample (staring from 1) the first DCC weights is implied ecalDccZs1stSample = cms.int32(3), # ADC to GeV conversion factor used in ZS filter for EB ebDccAdcToGeV = cms.double(0.035), # ADC to GeV conversion factor used in ZS filter for EE eeDccAdcToGeV = cms.double(0.06), #DCC ZS FIR weights. #d-efault value set of DCC firmware used in CRUZET and CRAFT dccNormalizedWeights = cms.vdouble(-1.1865, 0.0195, 0.2900, 0.3477, 0.3008, 0.2266), # Switch to use a symetric zero suppression (cut on absolute value). For # studies only, for time being it is not supported by the hardware. symetricZS = cms.bool(False), # ZS energy threshold in GeV to apply to low interest channels of barrel srpBarrelLowInterestChannelZS = cms.double(3*.035), # ZS energy threshold in GeV to apply to low interest channels of endcap srpEndcapLowInterestChannelZS = cms.double(3*0.06), # ZS energy threshold in GeV to apply to high interest channels of barrel srpBarrelHighInterestChannelZS = cms.double(-1.e9), # ZS energy threshold in GeV to apply to high interest channels of endcap srpEndcapHighInterestChannelZS = cms.double(-1.e9), #switch to run w/o trigger primitive. For debug use only trigPrimBypass = cms.bool(False), #for debug mode only: trigPrimBypassLTH = cms.double(1.0), #for debug mode only: trigPrimBypassHTH = cms.double(1.0), #for debug mode only trigPrimBypassWithPeakFinder = cms.bool(True), # Mode selection for "Trig bypass" mode # 0: TT thresholds applied on sum of crystal Et's # 1: TT thresholds applies on compressed Et from Trigger primitive # @ee trigPrimByPass_ switch trigPrimBypassMode = cms.int32(0), #number of events whose TT and SR flags must be dumped (for debug purpose): dumpFlags = cms.untracked.int32(0), #logical flag to write out SrFlags writeSrFlags = cms.untracked.bool(True), #switch to apply selective readout decision on the digis and produce #the "suppressed" digis produceDigis = cms.untracked.bool(True), #Trigger Tower Flag to use when a flag is not found from the input #Trigger Primitive collection. Must be one of the following values: # 0: low interest, 1: mid interest, 3: high interest # 4: forced low interest, 5: forced mid interest, 7: forced high interest defaultTtf_ = cms.int32(4), # SR->action flag map actions = cms.vint32(1, 3, 3, 3, 5, 7, 7, 7) )
plugin/AssemblerSPAdes/bin/RunAssembler.py
konradotto/TS
125
27024
#!/usr/bin/env python import json import os import subprocess import sys def fileExistsAndNonEmpty(filename): if not os.path.exists(filename): return False return os.stat(filename).st_size > 0 class AssemblerRunner(object): def __init__(self, sample_id, sample_seq, bam_file): with open("startplugin.json", "r") as fh: self.config = json.load(fh) self.params = self.config['pluginconfig'] # launch.sh creates a symlink to the input BAM file in this directory self.output_dir = self.config['runinfo']['results_dir'] self.sample_id = sample_id self.sample_seq = sample_seq self.sample_name = sample_id + "." + sample_seq self.sample_output_dir = os.path.join(self.output_dir, self.sample_name) self.bam_file = bam_file self.bam_rel_path = os.path.join(self.sample_name, self.bam_file) # relative path to the input bam file self.bam_to_assemble = os.path.join(self.output_dir, self.bam_rel_path) # how much to downsample (the step is skipped if it equals to 1) if self.params.has_key('fraction_of_reads'): self.fraction_of_reads = float(self.params['fraction_of_reads']) # all executables are located in bin/ subdirectory self.assembler_path = os.path.join(os.environ['DIRNAME'], 'bin') # where to output HTML with results self.url_root = self.config['runinfo']['url_root'] # skip assembly (and run only QUAST) if contigs exist self.quast_only = self.params.has_key('quastOnly') # information will be printed to "info.json" self.info = { 'params' : self.params, 'executedCommands' : [] } if sample_id != '' and sample_seq != '': self.info['sampleId'] = sample_id self.info['sampleSeq'] = sample_seq self.info['sampleName'] = self.sample_name # Prints 'pluginconfig' section of 'startplugin.json' def printAssemblyParameters(self): print("AssemblerSPAdes run parameters:") print(self.params) def writeInfo(self, json_filename): with open(json_filename, 'w+') as f: json.dump(self.info, f, indent=4) def runCommand(self, command, description=None): if description: print(description) else: print(command) sys.stdout.flush() os.system(command) self.info['executedCommands'].append(command) def runDownsampling(self): print("\nSubsampling using Picard") # downsampler = os.path.join(self.assembler_path, 'DownsampleSam.jar') downsampler = "/opt/picard/picard-tools-current/picard.jar" out = os.path.join(self.sample_output_dir, self.bam_file + "_scaled") cmd = ("java -Xmx2g -jar {downsampler} " "DownsampleSam " "INPUT={self.bam_to_assemble} OUTPUT={out} " "PROBABILITY={self.fraction_of_reads}").format(**locals()) self.runCommand(cmd) cmd = ("mv {out} {self.bam_to_assemble}").format(**locals()) self.runCommand(cmd) def execute(self): self.printAssemblyParameters() read_count_cmd = "samtools view -c " + self.bam_rel_path read_count_process = subprocess.Popen(read_count_cmd, shell=True, stdout=subprocess.PIPE) num_reads = int(read_count_process.communicate()[0]) def tooFewReads(): if not self.params.has_key('min_reads'): return False self.min_reads = int(self.params['min_reads']) return num_reads <= self.min_reads print("%d reads in %s" % (num_reads, self.bam_file)) if tooFewReads(): print(("\tDoes not have more than %d reads. " "Skipping this file") % (self.min_reads,)) return if self.fraction_of_reads < 1: self.runDownsampling() # if self.params.has_key('runSpades'): self.runSPAdes() def runSPAdes(self): if self.params.has_key('spadesversion'): version = self.params['spadesversion'] else: version = "3.1.0" assert(version >= "3.0.0") rel_path = os.path.join("SPAdes-%s-Linux" % version, "bin", "spades.py") spades_path = os.path.join(self.assembler_path, rel_path) output_dir = os.path.join(self.sample_name, "spades") contigs_fn = os.path.join(output_dir, "contigs.fasta") scaffolds_fn = os.path.join(output_dir, "scaffolds.fasta") log_fn = os.path.join(output_dir, "spades.log") skip_assembly = self.quast_only and fileExistsAndNonEmpty(contigs_fn) if self.params.has_key('spadesOptions'): user_options = self.params['spadesOptions'] else: user_options = "-k 21,33,55,77,99" spades_info = {'contigs' : contigs_fn, 'scaffolds' : scaffolds_fn, 'log' : log_fn, 'userOptions' : user_options, 'version' : version } pid = os.getpid() if not skip_assembly: cmd = ("{spades_path} --iontorrent --tmp-dir /tmp/{pid} " "-s {self.bam_to_assemble} -o {output_dir} " "{user_options} > /dev/null").format(**locals()) print("Running AssemblerSPAdes - SPAdes %s" % version) self.runCommand(cmd) report_dir = self.createQuastReport(contigs_fn, output_dir) spades_info['quastReportDir'] = report_dir self.info['spades'] = spades_info def createQuastReport(self, contigs_fn, output_dir): version = "2.3" rel_path = os.path.join("quast-%s" % version, "quast.py") quast_path = os.path.join(self.assembler_path, rel_path) # quast_reference = self.params['bgenome'] quast_reference = "None" quast_results_dir = os.path.join(output_dir, "quast_results") print("Running QUAST %s" % version) reference_param = ("-R " + quast_reference) if quast_reference!="None" else " " cmd = ("{quast_path} -o {quast_results_dir} " "{reference_param} {contigs_fn}").format(**locals()) self.runCommand(cmd) try: if os.path.isfile(os.path.join(quast_results_dir, "report.html")): return os.path.abspath(quast_results_dir) else: return None except: return None import sys if __name__ == "__main__": if len(sys.argv) == 5: sample_id = sys.argv[1] sample_seq = sys.argv[2] bam_file = sys.argv[3] out_dir = sys.argv[4] runner = AssemblerRunner(sample_id, sample_seq, bam_file) runner.execute() runner.writeInfo("%s/info_%s.%s.json" % (out_dir,sample_id, sample_seq)) else: assert(len(sys.argv) == 3) # not a barcode run bam_file = sys.argv[1] out_dir = sys.argv[2] # HACK: sample_name = '.' => essentially vanishes from all paths runner = AssemblerRunner('', '', bam_file) runner.execute() runner.writeInfo("%s/info.json" % (out_dir))
blogs/views/feed.py
daaawx/bearblog
657
27051
from django.http.response import Http404 from django.http import HttpResponse from blogs.helpers import unmark, clean_text from blogs.views.blog import resolve_address from feedgen.feed import FeedGenerator import mistune def feed(request): blog = resolve_address(request) if not blog: raise Http404("Blog does not exist") all_posts = blog.post_set.filter(publish=True, is_page=False).order_by('-published_date') fg = FeedGenerator() fg.id(blog.useful_domain()) fg.author({'name': blog.subdomain, 'email': 'hidden'}) fg.title(blog.title) fg.subtitle(blog.meta_description or clean_text(unmark(blog.content)[:160]) or blog.title) fg.link(href=f"{blog.useful_domain()}/", rel='alternate') for post in all_posts: fe = fg.add_entry() fe.id(f"{blog.useful_domain()}/{post.slug}/") fe.title(post.title) fe.author({'name': blog.subdomain, 'email': 'hidden'}) fe.link(href=f"{blog.useful_domain()}/{post.slug}/") fe.content(clean_text(mistune.html(post.content)), type="html") fe.published(post.published_date) fe.updated(post.published_date) if request.GET.get('type') == 'rss': fg.link(href=f"{blog.useful_domain()}/feed/?type=rss", rel='self') rssfeed = fg.rss_str(pretty=True) return HttpResponse(rssfeed, content_type='application/rss+xml') else: fg.link(href=f"{blog.useful_domain()}/feed/", rel='self') atomfeed = fg.atom_str(pretty=True) return HttpResponse(atomfeed, content_type='application/atom+xml')
tests/functional/test_tagged_unions_unknown.py
karim7262/botocore
1,063
27054
<gh_stars>1000+ # Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from botocore.session import Session from tests import unittest class TestTaggedUnionsUnknown(unittest.TestCase): def test_tagged_union_member_name_does_not_coincide_with_unknown_key(self): # This test ensures that operation models do not use SDK_UNKNOWN_MEMBER # as a member name. Thereby reserving SDK_UNKNOWN_MEMBER for the parser to # set as a key on the reponse object. This is necessary when the client # encounters a member that it is unaware of or not modeled. session = Session() for service_name in session.get_available_services(): service_model = session.get_service_model(service_name) for shape_name in service_model.shape_names: shape = service_model.shape_for(shape_name) if hasattr(shape, 'is_tagged_union') and shape.is_tagged_union: self.assertNotIn('SDK_UNKNOWN_MEMBER', shape.members)
tools/launcher.py
agentx-cgn/Hannibal
189
27105
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' https://docs.python.org/2/library/subprocess.html#popen-objects http://stackoverflow.com/questions/1606795/catching-stdout-in-realtime-from-subprocess http://askubuntu.com/questions/458041/find-x-window-name http://stackoverflow.com/questions/9681959/how-can-i-use-xdotool-from-within-a-python-module-script http://manpages.ubuntu.com/manpages/trusty/en/man1/avconv.1.html http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python xwininfo gives window info: xwininfo: Window id: 0x2800010 "0 A.D." xdotool: sudo apt-get install libx11-dev libxtst-dev libXinerama-dev make make install https://github.com/nullkey/glc/wiki/Capture glc-capture --start --fps=30 --resize=1.0 --disable-audio --out=pyro.glc ./launcher.py glc-play pyro.glc -o - -y 1 | avconv -i - -an -y pyro.mp4 avconv -i pyro.mp4 -codec copy -ss 15 -y pyro01.mp4 qt-faststart pyro01.mp4 pyro02.mp4 mplayer pyro02.mp4 ''' VERSION = "0.2.0" import os, sys, subprocess, time, json from time import sleep sys.dont_write_bytecode = True ## maps etc. from data import data bcolors = { "Bold": "\033[1m", "Header" : "\033[95m", "LBlue" : "\033[94m", ## light blue "DBlue" : "\033[34m", ## dark blue "OKGreen" : "\033[32m", ## dark Green "Green" : "\033[92m", ## light green "Warn" : "\033[33m", ## orange "Fail" : "\033[91m", "End" : "\033[0m", # orange='\033[33m' } def printc(color, text) : print (bcolors[color] + text + bcolors["End"]) def stdc(color, text) : sys.stdout.write (bcolors[color] + text + bcolors["End"]) folders = { "pro" : "/home/noiv/Desktop/0ad", ## project "rel" : "/usr/games/0ad", ## release "trunk" : "/Daten/Projects/Osiris/ps/trunk", ## svn "share" : "/home/noiv/.local/share", ## user mod } ## the game binary locations = { "rel" : folders["rel"], ## release "svn" : folders["trunk"] + "/binaries/system/pyrogenesis", ## svn "hbl" : folders["share"] + "/0ad/mods/hannibal/simulation/ai/hannibal/", ## bot folder "deb" : folders["share"] + "/0ad/mods/hannibal/simulation/ai/hannibal/_debug.js", ## bot folder "log" : folders["pro"] + "/last.log", ## log file "ana" : folders["pro"] + "/analysis/", ## analysis csv file } ## Hannibal log/debug options + data, readable by JS and Python DEBUG = { ## default map "map": "scenarios/Arcadia 02", ## counter "counter": [], ## num: 0=no numerus ## xdo: move window, sim speed ## fil can use files ## log: 0=silent, 1+=errors, 2+=warnings, 3+=info, 4=all ## col: log colors ## sup: suppress, bot does not intialize (saves startup time) ## tst: activate tester "bots": { "0" : {"num": 0, "xdo": 0, "fil": 0, "log": 4, "sup": 1, "tst": 0, "col": "" }, "1" : {"num": 1, "xdo": 1, "fil": 1, "log": 4, "sup": 0, "tst": 1, "col": "" }, "2" : {"num": 0, "xdo": 0, "fil": 0, "log": 3, "sup": 0, "tst": 1, "col": "" }, "3" : {"num": 0, "xdo": 0, "fil": 0, "log": 2, "sup": 1, "tst": 0, "col": "" }, "4" : {"num": 0, "xdo": 0, "fil": 0, "log": 2, "sup": 1, "tst": 0, "col": "" }, "5" : {"num": 0, "xdo": 0, "fil": 0, "log": 2, "sup": 1, "tst": 0, "col": "" }, "6" : {"num": 0, "xdo": 0, "fil": 0, "log": 2, "sup": 1, "tst": 0, "col": "" }, "7" : {"num": 0, "xdo": 0, "fil": 0, "log": 2, "sup": 1, "tst": 0, "col": "" }, "8" : {"num": 0, "xdo": 0, "fil": 0, "log": 2, "sup": 1, "tst": 0, "col": "" }, } } ## keep track of open file handles files = {} ## civs to choose from at start civs = [ "athen", "brit", "cart", "celt", "gaul", "hele", "iber", "mace", "maur", "pers", "ptol", "rome", "sele", "spart", ] def buildCmd(typ="rel", map="Arcadia 02", bots=2) : ## see /ps/trunk/binaries/system/readme.txt cmd = [ locations[typ], "-quickstart", ## load faster (disables audio and some system info logging) "-autostart=" + map, ## enables autostart and sets MAPNAME; TYPEDIR is skirmishes, scenarios, or random "-mod=public", ## start the game using NAME mod "-mod=charts", "-mod=hannibal", "-autostart-seed=0", ## sets random map SEED value (default 0, use -1 for random) "-autostart-size=192", ## sets random map size in TILES (default 192) # "-autostart-players=2", ## sets NUMBER of players on random map (default 2) # "-autostart-ai=1:hannibal", # "-autostart-civ=1:athen", ## sets PLAYER's civilisation to CIV (skirmish and random maps only) # "-autostart-ai=2:hannibal", ## sets the AI for PLAYER (e.g. 2:petra) # "-autostart-civ=2:cart", ## sets PLAYER's civilisation to CIV (skirmish and random maps only) ] ## svn does not autoload /user if typ == "svn" : cmd.append("-mod=user") ## set # of players cmd.append("-autostart-players=" + str(bots)) ## add bots with civ for bot in range(1, bots +1) : cmd.append("-autostart-ai=" + str(bot) + ":hannibal") cmd.append("-autostart-civ=" + str(bot) + ":" + civs[bot -1]) return cmd def findWindow(title) : process = subprocess.Popen("xdotool search --name '%s'" % (title), stdout=subprocess.PIPE, shell="FALSE") windowid = process.stdout.readlines()[0].strip() process.stdout.close() return windowid def xdotool(command) : subprocess.call(("xdotool %s" % command).split(" ")) def cleanup() : for k, v in files.iteritems() : v.close() def writeDEBUG(): fTest = open(locations["deb"], 'w') fTest.truncate() fTest.write("var HANNIBAL_DEBUG = " + json.dumps(DEBUG, indent=2) + ";") fTest.close() def killDEBUG(): fTest = open(locations["deb"], 'w') fTest.truncate() fTest.close() def processMaps(): proc0AD = None DEBUG["OnUpdate"] = "print('#! terminate');" for mp in data["testMaps"] : DEBUG["map"] = mp writeDEBUG() cmd0AD = [pyrogenesis, "-quickstart", "-autostart=" + mp, "-mod=public", "-mod:hannibal", "-autostart-ai=1:hannibal"] proc0AD = subprocess.Popen(cmd0AD, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) print " > " + " ".join(cmd0AD) try: for line in iter(proc0AD.stdout.readline, b'') : sline = line.strip() if sline.startswith("#! terminate") : proc0AD.terminate() sleep(2) if proc0AD : proc0AD.wait() if proc0AD : proc0AD.kill() break else : pass # sys.stdout.write(line) except KeyboardInterrupt, e : if proc0AD : proc0AD.terminate() break print "done." def launch(typ="rel", map="Arcadia 02", bots=2): winX = 1520; winY = 20 doWrite = False curFileNum = None idWindow = None proc0AD = None def terminate() : if proc0AD : proc0AD.terminate() files["log"] = open(locations["log"], 'w') files["log"].truncate() DEBUG['map'] = map writeDEBUG() cmd0AD = buildCmd(typ, map, bots) print (" cmd: %s" % " ".join(cmd0AD)); proc0AD = subprocess.Popen(cmd0AD, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) try: for line in iter(proc0AD.stdout.readline, b'') : ## line has everything ## sline is stripped ## bline is active bot line after colon sline = line.strip() ## removes nl and wp bline = "" id = 0 bot = DEBUG["bots"]["0"] ## detect bot id if len(sline) >= 2 and sline[1:3] == "::" : id = sline[0] bot = DEBUG["bots"][id] bline = "" if bot["log"] == 0 else sline[3:] files["log"].write(line) ## terminate everything if sline.startswith("#! terminate") : if bot["xdo"] : print(sline) terminate() return ## clear console elif bline.startswith("#! clear") : print(sline) sys.stderr.write("\x1b[2J\x1b[H") ## why not ?? ## xdo init elif bot["xdo"] and bline.startswith("#! xdotool init") : idWindow = findWindow("0 A.D") printc("DBlue", " xdo: window id: %s" % idWindow) xdotool("windowmove %s %s %s" % (idWindow, winX, winY)) ## xdo command with echo elif bot["xdo"] and bline.startswith("#! xdotool ") : params = " ".join(bline.split(" ")[2:]) printc("DBlue", " X11: " + params) xdotool(params) ## xdo command without echo elif bot["xdo"] and bline.startswith("## xdotool ") : ## same, no echo params = " ".join(bline.split(" ")[2:]) xdotool(params) ## xdo command suppress elif not bot["xdo"] and bline.startswith("## xdotool ") : pass ## file open elif bot["fil"] and bline.startswith("#! open ") : filenum = bline.split(" ")[2] filename = bline.split(" ")[3] files[filenum] = open(filename, 'w') files[filenum].truncate() ## file append elif bot["fil"] and bline.startswith("#! append ") : filenum = bline.split(" ")[2] dataLine = ":".join(bline.split(":")[1:]) files[filenum].write(dataLine + "\n") ## file write elif bot["fil"] and bline.startswith("#! write ") : print(bline) filenum = bline.split(" ")[2] filename = bline.split(" ")[3] files[filenum] = open(filename, 'w') files[filenum].truncate() curFileNum = filenum ## file close elif bot["fil"] and bline.startswith("#! close ") : filenum = bline.split(" ")[2] files[filenum].close() print("#! closed %s at %s" % (filenum, os.stat(filename).st_size)) ## bot output elif bot["log"] > 0 and bline : if bline.startswith("ERROR :") : stdc("Fail", id + "::" + bline + "\n") elif bline.startswith("WARN :") : stdc("Warn", id + "::" + bline + "\n") elif bline.startswith("INFO :") : stdc("OKGreen", id + "::" + bline + "\n") else : sys.stdout.write("" + bline + "\n") ## suppressed bots - no output elif bot["log"] == 0: pass ## hannibal or map or 0AD output elif line : if line.startswith("ERROR :") : stdc("Fail", line + "\n") elif line.startswith("WARN :") : stdc("Warn", line + "\n") elif line.startswith("INFO :") : stdc("OKGreen", line + "\n") elif line.startswith("TIMER| ") : pass ## suppress 0AD debugs elif line.startswith("sys_cursor_create:") : pass elif line.startswith("AL lib:") : pass elif line.startswith("Sound:") : pass else : sys.stdout.write("" + line) except KeyboardInterrupt, e : terminate() if __name__ == '__main__': args = sys.argv[1:] if args[0] == "maps" : print (" processing maps...") processMaps(args) else: typ = args[0] if len(args) > 0 else "rel" map = args[1] if len(args) > 1 else "Arcadia 02" bots = args[2] if len(args) > 2 else "2" launch(typ, map, int(bots)) cleanup() print ("\nBye\n")
src/jarvis/jarvis/skills/collection/remember.py
jameswynn/Python-ai-assistant
424
27125
# MIT License # Copyright (c) 2019 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from jarvis.skills.skill import AssistantSkill from jarvis.utils.mongoDB import db from jarvis.utils import input header = """ ----------------------------------------------------------------------------------------------- I would like to learn, tell me the right answer! ----------------------------------------------------------------------------------------------- * Note: Create new skill! Write your question and the appropriate answer. \n """ class RememberSkills(AssistantSkill): @classmethod def remember(cls, **kwargs): cls.console(header) continue_add = True while continue_add: cls.console(text='Question: ') tags = cls.user_input() cls.console(text='Suggested Response: ') response = cls.user_input() new_skill = {'name': 'learned_skill', 'enable': True, 'func': cls.tell_response.__name__, 'response': response, 'tags': tags, }, cls.response('Add more? ', refresh_console=False) continue_add = input.check_input_to_continue() db.insert_many_documents(collection='learned_skills', documents=new_skill) @classmethod def tell_response(cls, **kwargs): cls.response(kwargs.get('skill').get('response')) @classmethod def clear_learned_skills(cls, **kwargs): if db.is_collection_empty(collection='learned_skills'): cls.response("I can't find learned skills in my database") else: cls.response('I found learned skills..') cls.response('Are you sure to remove learned skills? ', refresh_console=False) user_answer = input.check_input_to_continue() if user_answer: db.drop_collection(collection='learned_skills') cls.response("Perfect I have deleted them all")
tests/test_inheritance_and_pydantic_generation/test_validators_in_generated_pydantic.py
ivangirko/ormar
905
27151
<filename>tests/test_inheritance_and_pydantic_generation/test_validators_in_generated_pydantic.py<gh_stars>100-1000 import enum import databases import pydantic import pytest import sqlalchemy from pydantic import ValidationError import ormar from tests.settings import DATABASE_URL metadata = sqlalchemy.MetaData() database = databases.Database(DATABASE_URL) class BaseMeta(ormar.ModelMeta): database = database metadata = metadata class EnumExample(str, enum.Enum): A = "A" B = "B" C = "C" class ModelExample(ormar.Model): class Meta(ormar.ModelMeta): database = database metadata = metadata tablename = "examples" id: int = ormar.Integer(primary_key=True) str_field: str = ormar.String(min_length=5, max_length=10, nullable=False) enum_field: str = ormar.String( max_length=1, nullable=False, choices=list(EnumExample) ) @pydantic.validator("str_field") def validate_str_field(cls, v): if " " not in v: raise ValueError("must contain a space") return v ModelExampleCreate = ModelExample.get_pydantic(exclude={"id"}) def test_ormar_validator(): ModelExample(str_field="a aaaaaa", enum_field="A") with pytest.raises(ValidationError) as e: ModelExample(str_field="aaaaaaa", enum_field="A") assert "must contain a space" in str(e) with pytest.raises(ValidationError) as e: ModelExample(str_field="a aaaaaaa", enum_field="Z") assert "not in allowed choices" in str(e) def test_pydantic_validator(): ModelExampleCreate(str_field="a aaaaaa", enum_field="A") with pytest.raises(ValidationError) as e: ModelExampleCreate(str_field="aaaaaaa", enum_field="A") assert "must contain a space" in str(e) with pytest.raises(ValidationError) as e: ModelExampleCreate(str_field="a aaaaaaa", enum_field="Z") assert "not in allowed choices" in str(e)
torchbnn/functional.py
Harry24k/bayesian-neural-network-pytorch
178
27192
<reponame>Harry24k/bayesian-neural-network-pytorch import math import torch from .modules import * def _kl_loss(mu_0, log_sigma_0, mu_1, log_sigma_1) : """ An method for calculating KL divergence between two Normal distribtuion. Arguments: mu_0 (Float) : mean of normal distribution. log_sigma_0 (Float): log(standard deviation of normal distribution). mu_1 (Float): mean of normal distribution. log_sigma_1 (Float): log(standard deviation of normal distribution). """ kl = log_sigma_1 - log_sigma_0 + \ (torch.exp(log_sigma_0)**2 + (mu_0-mu_1)**2)/(2*math.exp(log_sigma_1)**2) - 0.5 return kl.sum() def bayesian_kl_loss(model, reduction='mean', last_layer_only=False) : """ An method for calculating KL divergence of whole layers in the model. Arguments: model (nn.Module): a model to be calculated for KL-divergence. reduction (string, optional): Specifies the reduction to apply to the output: ``'mean'``: the sum of the output will be divided by the number of elements of the output. ``'sum'``: the output will be summed. last_layer_only (Bool): True for return only the last layer's KL divergence. """ device = torch.device("cuda" if next(model.parameters()).is_cuda else "cpu") kl = torch.Tensor([0]).to(device) kl_sum = torch.Tensor([0]).to(device) n = torch.Tensor([0]).to(device) for m in model.modules() : if isinstance(m, (BayesLinear, BayesConv2d)): kl = _kl_loss(m.weight_mu, m.weight_log_sigma, m.prior_mu, m.prior_log_sigma) kl_sum += kl n += len(m.weight_mu.view(-1)) if m.bias : kl = _kl_loss(m.bias_mu, m.bias_log_sigma, m.prior_mu, m.prior_log_sigma) kl_sum += kl n += len(m.bias_mu.view(-1)) if isinstance(m, BayesBatchNorm2d): if m.affine : kl = _kl_loss(m.weight_mu, m.weight_log_sigma, m.prior_mu, m.prior_log_sigma) kl_sum += kl n += len(m.weight_mu.view(-1)) kl = _kl_loss(m.bias_mu, m.bias_log_sigma, m.prior_mu, m.prior_log_sigma) kl_sum += kl n += len(m.bias_mu.view(-1)) if last_layer_only or n == 0 : return kl if reduction == 'mean' : return kl_sum/n elif reduction == 'sum' : return kl_sum else : raise ValueError(reduction + " is not valid")
Python3/537.py
rakhi2001/ecom7
854
27201
<reponame>rakhi2001/ecom7<filename>Python3/537.py __________________________________________________________________________________________________ sample 24 ms submission class Solution: def complexNumberMultiply(self, a: str, b: str) -> str: A = [int(x) for x in a.replace('i','').split('+')] B = [int(x) for x in b.replace('i','').split('+')] return str(A[0]*B[0]-A[1]*B[1])+'+'+str(A[0]*B[1]+A[1]*B[0])+'i' __________________________________________________________________________________________________ sample 13124 kb submission class Solution: def getrc(self, strs): val = '' r, c = 0, 0 positive = True for char in strs: if char == '-': positive = False elif char != '+' and char != 'i': val += char else: val = int(val) if not positive: val = -val if char == '+': r = val else: c = val val = '' positive = True return (r, c) def complexNumberMultiply(self, a: str, b: str) -> str: ra, ca = self.getrc(a) rb, cb = self.getrc(b) r = ra*rb-ca*cb c = ra*cb+rb*ca if r >= 0: r = str(r) else: r = '-' + str(-r) if c >= 0: c = str(c) else: c = '-' + str(-c) return r + '+' + c + 'i' __________________________________________________________________________________________________
metaworld/policies/sawyer_push_wall_v2_policy.py
yiwc/robotics-world
681
27212
<reponame>yiwc/robotics-world<filename>metaworld/policies/sawyer_push_wall_v2_policy.py import numpy as np from metaworld.policies.action import Action from metaworld.policies.policy import Policy, assert_fully_parsed, move class SawyerPushWallV2Policy(Policy): @staticmethod @assert_fully_parsed def _parse_obs(obs): return { 'hand_pos': obs[:3], 'unused_1': obs[3], 'obj_pos': obs[4:7], 'unused_2': obs[7:-3], 'goal_pos': obs[-3:], } def get_action(self, obs): o_d = self._parse_obs(obs) action = Action({ 'delta_pos': np.arange(3), 'grab_effort': 3 }) action['delta_pos'] = move(o_d['hand_pos'], to_xyz=self.desired_pos(o_d), p=10.) action['grab_effort'] = self.grab_effort(o_d) return action.array @staticmethod def desired_pos(o_d): pos_curr = o_d['hand_pos'] pos_obj = o_d['obj_pos'] + np.array([-0.005, 0, 0]) # If error in the XY plane is greater than 0.02, place end effector above the puck if np.linalg.norm(pos_curr[:2] - pos_obj[:2]) > 0.02: return pos_obj + np.array([0., 0., 0.2]) # Once XY error is low enough, drop end effector down on top of obj elif abs(pos_curr[2] - pos_obj[2]) > 0.04: return pos_obj + np.array([0., 0., 0.03]) # Move to the goal else: #if the wall is between the puck and the goal, go around the wall if(-0.1 <= pos_obj[0] <= 0.3 and 0.65 <= pos_obj[1] <= 0.75): return pos_curr + np.array([-1, 0, 0]) elif ((-0.15 < pos_obj[0] < 0.05 or 0.15 < pos_obj[0] < 0.35) and 0.695 <= pos_obj[1] <= 0.755): return pos_curr + np.array([0, 1, 0]) return o_d['goal_pos'] @staticmethod def grab_effort(o_d): pos_curr = o_d['hand_pos'] pos_obj = o_d['obj_pos'] if np.linalg.norm(pos_curr[:2] - pos_obj[:2]) > 0.02 or \ abs(pos_curr[2] - pos_obj[2]) > 0.1: return 0.0 # While end effector is moving down toward the obj, begin closing the grabber else: return 0.6
sdk/notificationhubs/azure-mgmt-notificationhubs/azure/mgmt/notificationhubs/models/__init__.py
rsdoherty/azure-sdk-for-python
2,728
27240
<reponame>rsdoherty/azure-sdk-for-python # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import AdmCredential from ._models_py3 import ApnsCredential from ._models_py3 import BaiduCredential from ._models_py3 import CheckAvailabilityParameters from ._models_py3 import CheckAvailabilityResult from ._models_py3 import DebugSendResponse from ._models_py3 import ErrorResponse from ._models_py3 import GcmCredential from ._models_py3 import MpnsCredential from ._models_py3 import NamespaceCreateOrUpdateParameters from ._models_py3 import NamespaceListResult from ._models_py3 import NamespacePatchParameters from ._models_py3 import NamespaceResource from ._models_py3 import NotificationHubCreateOrUpdateParameters from ._models_py3 import NotificationHubListResult from ._models_py3 import NotificationHubPatchParameters from ._models_py3 import NotificationHubResource from ._models_py3 import Operation from ._models_py3 import OperationDisplay from ._models_py3 import OperationListResult from ._models_py3 import PnsCredentialsResource from ._models_py3 import PolicykeyResource from ._models_py3 import Resource from ._models_py3 import ResourceListKeys from ._models_py3 import SharedAccessAuthorizationRuleCreateOrUpdateParameters from ._models_py3 import SharedAccessAuthorizationRuleListResult from ._models_py3 import SharedAccessAuthorizationRuleProperties from ._models_py3 import SharedAccessAuthorizationRuleResource from ._models_py3 import Sku from ._models_py3 import SubResource from ._models_py3 import WnsCredential except (SyntaxError, ImportError): from ._models import AdmCredential # type: ignore from ._models import ApnsCredential # type: ignore from ._models import BaiduCredential # type: ignore from ._models import CheckAvailabilityParameters # type: ignore from ._models import CheckAvailabilityResult # type: ignore from ._models import DebugSendResponse # type: ignore from ._models import ErrorResponse # type: ignore from ._models import GcmCredential # type: ignore from ._models import MpnsCredential # type: ignore from ._models import NamespaceCreateOrUpdateParameters # type: ignore from ._models import NamespaceListResult # type: ignore from ._models import NamespacePatchParameters # type: ignore from ._models import NamespaceResource # type: ignore from ._models import NotificationHubCreateOrUpdateParameters # type: ignore from ._models import NotificationHubListResult # type: ignore from ._models import NotificationHubPatchParameters # type: ignore from ._models import NotificationHubResource # type: ignore from ._models import Operation # type: ignore from ._models import OperationDisplay # type: ignore from ._models import OperationListResult # type: ignore from ._models import PnsCredentialsResource # type: ignore from ._models import PolicykeyResource # type: ignore from ._models import Resource # type: ignore from ._models import ResourceListKeys # type: ignore from ._models import SharedAccessAuthorizationRuleCreateOrUpdateParameters # type: ignore from ._models import SharedAccessAuthorizationRuleListResult # type: ignore from ._models import SharedAccessAuthorizationRuleProperties # type: ignore from ._models import SharedAccessAuthorizationRuleResource # type: ignore from ._models import Sku # type: ignore from ._models import SubResource # type: ignore from ._models import WnsCredential # type: ignore from ._notification_hubs_management_client_enums import ( AccessRights, NamespaceType, SkuName, ) __all__ = [ 'AdmCredential', 'ApnsCredential', 'BaiduCredential', 'CheckAvailabilityParameters', 'CheckAvailabilityResult', 'DebugSendResponse', 'ErrorResponse', 'GcmCredential', 'MpnsCredential', 'NamespaceCreateOrUpdateParameters', 'NamespaceListResult', 'NamespacePatchParameters', 'NamespaceResource', 'NotificationHubCreateOrUpdateParameters', 'NotificationHubListResult', 'NotificationHubPatchParameters', 'NotificationHubResource', 'Operation', 'OperationDisplay', 'OperationListResult', 'PnsCredentialsResource', 'PolicykeyResource', 'Resource', 'ResourceListKeys', 'SharedAccessAuthorizationRuleCreateOrUpdateParameters', 'SharedAccessAuthorizationRuleListResult', 'SharedAccessAuthorizationRuleProperties', 'SharedAccessAuthorizationRuleResource', 'Sku', 'SubResource', 'WnsCredential', 'AccessRights', 'NamespaceType', 'SkuName', ]
python/15_bsearch/bsearch_recursion.py
shipan3452/algo
22,028
27269
<reponame>shipan3452/algo """ Author: dreamkong """ from typing import List def bsearch(nums: List[int], target: int) -> int: return bsearch_internally(nums, 0, len(nums)-1, target) def bsearch_internally(nums: List[int], low: int, high: int, target: int) -> int: if low > high: return -1 mid = low+int((high-low) >> 2) if nums[mid] == target: return mid elif nums[mid] < target: return bsearch_internally(nums, mid+1, high, target) else: return bsearch_internally(nums, low, mid-1, target)
alphamind/model/data_preparing.py
rongliang-tech/alpha-mind
186
27271
# -*- coding: utf-8 -*- """ Created on 2017-8-24 @author: cheng.li """ import bisect import datetime as dt from typing import Iterable from typing import Union import numpy as np import pandas as pd from simpleutils.asserts import require from PyFin.DateUtilities import Period from PyFin.api import BizDayConventions from PyFin.api import DateGeneration from PyFin.api import advanceDateByCalendar from PyFin.api import makeSchedule from alphamind.data.engines.sqlengine import SqlEngine from alphamind.data.engines.sqlengine import total_risk_factors from alphamind.data.engines.universe import Universe from alphamind.data.processing import factor_processing from alphamind.data.transformer import Transformer from alphamind.utilities import alpha_logger from alphamind.utilities import map_freq def _merge_df(engine, names, factor_df, target_df, universe, dates, risk_model, neutralized_risk): risk_df = engine.fetch_risk_model_range(universe, dates=dates, risk_model=risk_model)[1] used_neutralized_risk = list(set(total_risk_factors).difference(names)) risk_df = risk_df[['trade_date', 'code'] + used_neutralized_risk].dropna() target_df = pd.merge(target_df, risk_df, on=['trade_date', 'code']).dropna() if neutralized_risk: train_x = pd.merge(factor_df, risk_df, on=['trade_date', 'code']) train_y = target_df.copy() risk_exp = train_x[neutralized_risk].values.astype(float) x_values = train_x[names].values.astype(float) y_values = train_y[['dx']].values else: risk_exp = None train_x = factor_df.copy() train_y = target_df.copy() x_values = train_x[names].values.astype(float) y_values = train_y[['dx']].values codes = train_x['code'].values date_label = pd.DatetimeIndex(factor_df.trade_date).to_pydatetime() dates = np.unique(date_label) return target_df, dates, date_label, risk_exp, x_values, y_values, train_x, train_y, codes def prepare_data(engine: SqlEngine, factors: Union[Transformer, Iterable[object]], start_date: str, end_date: str, frequency: str, universe: Universe, benchmark: int, warm_start: int = 0, fit_target: Union[Transformer, object] = None): if warm_start > 0: p = Period(frequency) p = Period(length=-warm_start * p.length(), units=p.units()) start_date = advanceDateByCalendar('china.sse', start_date, p).strftime('%Y-%m-%d') dates = makeSchedule(start_date, end_date, frequency, calendar='china.sse', dateRule=BizDayConventions.Following, dateGenerationRule=DateGeneration.Forward) dates = [d.strftime('%Y-%m-%d') for d in dates] horizon = map_freq(frequency) if isinstance(factors, Transformer): transformer = factors else: transformer = Transformer(factors) factor_df = engine.fetch_factor_range(universe, factors=transformer, dates=dates).sort_values(['trade_date', 'code']) alpha_logger.info("factor data loading finished") if fit_target is None: target_df = engine.fetch_dx_return_range(universe, dates=dates, horizon=horizon) else: one_more_date = advanceDateByCalendar('china.sse', dates[-1], frequency) target_df = engine.fetch_factor_range_forward(universe, factors=fit_target, dates=dates + [one_more_date]) target_df = target_df[target_df.trade_date.isin(dates)] target_df = target_df.groupby('code').apply(lambda x: x.fillna(method='pad')) alpha_logger.info("fit target data loading finished") industry_df = engine.fetch_industry_range(universe, dates=dates) alpha_logger.info("industry data loading finished") benchmark_df = engine.fetch_benchmark_range(benchmark, dates=dates) alpha_logger.info("benchmark data loading finished") df = pd.merge(factor_df, target_df, on=['trade_date', 'code']).dropna() df = pd.merge(df, benchmark_df, on=['trade_date', 'code'], how='left') df = pd.merge(df, industry_df, on=['trade_date', 'code']) df['weight'] = df['weight'].fillna(0.) df.dropna(inplace=True) return dates, df[['trade_date', 'code', 'dx']], df[ ['trade_date', 'code', 'weight', 'industry_code', 'industry'] + transformer.names] def batch_processing(names, x_values, y_values, groups, group_label, batch, risk_exp, pre_process, post_process, codes): train_x_buckets = {} train_y_buckets = {} train_risk_buckets = {} predict_x_buckets = {} predict_y_buckets = {} predict_risk_buckets = {} predict_codes_bucket = {} for i, start in enumerate(groups[:-batch]): end = groups[i + batch] left_index = bisect.bisect_left(group_label, start) right_index = bisect.bisect_left(group_label, end) this_raw_x = x_values[left_index:right_index] this_raw_y = y_values[left_index:right_index] if risk_exp is not None: this_risk_exp = risk_exp[left_index:right_index] else: this_risk_exp = None train_x_buckets[end] = pd.DataFrame(factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process), columns=names) train_y_buckets[end] = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) train_risk_buckets[end] = this_risk_exp left_index = bisect.bisect_right(group_label, start) right_index = bisect.bisect_right(group_label, end) sub_dates = group_label[left_index:right_index] this_raw_x = x_values[left_index:right_index] this_codes = codes[left_index:right_index] if risk_exp is not None: this_risk_exp = risk_exp[left_index:right_index] else: this_risk_exp = None ne_x = factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) inner_left_index = bisect.bisect_left(sub_dates, end) inner_right_index = bisect.bisect_right(sub_dates, end) predict_x_buckets[end] = pd.DataFrame(ne_x[inner_left_index:inner_right_index], columns=names) if risk_exp is not None: predict_risk_buckets[end] = this_risk_exp[inner_left_index:inner_right_index] else: predict_risk_buckets = None predict_codes_bucket[end] = this_codes[inner_left_index:inner_right_index] this_raw_y = y_values[left_index:right_index] if len(this_raw_y) > 0: ne_y = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) predict_y_buckets[end] = ne_y[inner_left_index:inner_right_index] return train_x_buckets, \ train_y_buckets, \ train_risk_buckets, \ predict_x_buckets, \ predict_y_buckets, \ predict_risk_buckets, \ predict_codes_bucket def fetch_data_package(engine: SqlEngine, alpha_factors: Iterable[object], start_date: str, end_date: str, frequency: str, universe: Universe, benchmark: int, warm_start: int = 0, batch: int = 1, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, fit_target: Union[Transformer, object] = None) -> dict: alpha_logger.info("Starting data package fetching ...") transformer = Transformer(alpha_factors) names = transformer.names dates, target_df, factor_df = prepare_data(engine, transformer, start_date, end_date, frequency, universe, benchmark, warm_start + batch, fit_target=fit_target) target_df, dates, date_label, risk_exp, x_values, y_values, train_x, train_y, codes = \ _merge_df(engine, names, factor_df, target_df, universe, dates, risk_model, neutralized_risk) alpha_logger.info("data merging finished") target_df['weight'] = train_x['weight'] target_df['industry'] = train_x['industry'] target_df['industry_code'] = train_x['industry_code'] if neutralized_risk: for i, name in enumerate(neutralized_risk): target_df.loc[:, name] = risk_exp[:, i] alpha_logger.info("Loading data is finished") train_x_buckets, train_y_buckets, train_risk_buckets, predict_x_buckets, predict_y_buckets, predict_risk_buckets, predict_codes_bucket \ = batch_processing(names, x_values, y_values, dates, date_label, batch, risk_exp, pre_process, post_process, codes) alpha_logger.info("Data processing is finished") ret = dict() ret['x_names'] = names ret['settlement'] = target_df[target_df.trade_date >= start_date] train_x_buckets = {k: train_x_buckets[k] for k in train_x_buckets if k.strftime('%Y-%m-%d') >= start_date} train_y_buckets = {k: train_y_buckets[k] for k in train_y_buckets if k.strftime('%Y-%m-%d') >= start_date} train_risk_buckets = {k: train_risk_buckets[k] for k in train_risk_buckets if k.strftime('%Y-%m-%d') >= start_date} predict_x_buckets = {k: predict_x_buckets[k] for k in predict_x_buckets if k.strftime('%Y-%m-%d') >= start_date} predict_y_buckets = {k: predict_y_buckets[k] for k in predict_y_buckets if k.strftime('%Y-%m-%d') >= start_date} if neutralized_risk: predict_risk_buckets = {k: predict_risk_buckets[k] for k in predict_risk_buckets if k.strftime('%Y-%m-%d') >= start_date} else: predict_risk_buckets = None predict_codes_bucket = {k: predict_codes_bucket[k] for k in predict_codes_bucket if k.strftime('%Y-%m-%d') >= start_date} ret['train'] = {'x': train_x_buckets, 'y': train_y_buckets, 'risk': train_risk_buckets} ret['predict'] = {'x': predict_x_buckets, 'y': predict_y_buckets, 'risk': predict_risk_buckets, 'code': predict_codes_bucket} return ret def fetch_train_phase(engine, alpha_factors: Union[Transformer, Iterable[object]], ref_date, frequency, universe, batch=1, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, warm_start: int = 0, fit_target: Union[Transformer, object] = None) -> dict: if isinstance(alpha_factors, Transformer): transformer = alpha_factors else: transformer = Transformer(alpha_factors) p = Period(frequency) p = Period(length=-(warm_start + batch) * p.length(), units=p.units()) start_date = advanceDateByCalendar('china.sse', ref_date, p, BizDayConventions.Following) dates = makeSchedule(start_date, ref_date, frequency, calendar='china.sse', dateRule=BizDayConventions.Following, dateGenerationRule=DateGeneration.Backward) horizon = map_freq(frequency) factor_df = engine.fetch_factor_range(universe, factors=transformer, dates=dates) if fit_target is None: target_df = engine.fetch_dx_return_range(universe, dates=dates, horizon=horizon) else: one_more_date = advanceDateByCalendar('china.sse', dates[-1], frequency) target_df = engine.fetch_factor_range_forward(universe, factors=fit_target, dates=dates + [one_more_date]) target_df = target_df[target_df.trade_date.isin(dates)] target_df = target_df.groupby('code').apply(lambda x: x.fillna(method='pad')) df = pd.merge(factor_df, target_df, on=['trade_date', 'code']).dropna() target_df, factor_df = df[['trade_date', 'code', 'dx']], df[ ['trade_date', 'code'] + transformer.names] target_df, dates, date_label, risk_exp, x_values, y_values, _, _, codes = \ _merge_df(engine, transformer.names, factor_df, target_df, universe, dates, risk_model, neutralized_risk) if dates[-1] == dt.datetime.strptime(ref_date, '%Y-%m-%d'): require(len(dates) >= 2, ValueError, "No previous data for training for the date {0}".format(ref_date)) end = dates[-2] start = dates[-batch - 1] if batch <= len(dates) - 1 else dates[0] else: end = dates[-1] start = dates[-batch] if batch <= len(dates) else dates[0] index = (date_label >= start) & (date_label <= end) this_raw_x = x_values[index] this_raw_y = y_values[index] this_code = codes[index] if risk_exp is not None: this_risk_exp = risk_exp[index] else: this_risk_exp = None ne_x = factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) ne_y = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) ret = dict() ret['x_names'] = transformer.names ret['train'] = {'x': pd.DataFrame(ne_x, columns=transformer.names), 'y': ne_y, 'code': this_code} return ret def fetch_predict_phase(engine, alpha_factors: Union[Transformer, Iterable[object]], ref_date, frequency, universe, batch=1, neutralized_risk: Iterable[str] = None, risk_model: str = 'short', pre_process: Iterable[object] = None, post_process: Iterable[object] = None, warm_start: int = 0, fillna: str = None, fit_target: Union[Transformer, object] = None): if isinstance(alpha_factors, Transformer): transformer = alpha_factors else: transformer = Transformer(alpha_factors) p = Period(frequency) p = Period(length=-(warm_start + batch - 1) * p.length(), units=p.units()) start_date = advanceDateByCalendar('china.sse', ref_date, p, BizDayConventions.Following) dates = makeSchedule(start_date, ref_date, frequency, calendar='china.sse', dateRule=BizDayConventions.Following, dateGenerationRule=DateGeneration.Backward) horizon = map_freq(frequency) factor_df = engine.fetch_factor_range(universe, factors=transformer, dates=dates) if fillna: factor_df = factor_df.groupby('trade_date').apply( lambda x: x.fillna(x.median())).reset_index( drop=True).dropna() else: factor_df = factor_df.dropna() if fit_target is None: target_df = engine.fetch_dx_return_range(universe, dates=dates, horizon=horizon) else: one_more_date = advanceDateByCalendar('china.sse', dates[-1], frequency) target_df = engine.fetch_factor_range_forward(universe, factors=fit_target, dates=dates + [one_more_date]) target_df = target_df[target_df.trade_date.isin(dates)] target_df = target_df.groupby('code').apply(lambda x: x.fillna(method='pad')) names = transformer.names if neutralized_risk: risk_df = engine.fetch_risk_model_range(universe, dates=dates, risk_model=risk_model)[1] used_neutralized_risk = list(set(neutralized_risk).difference(names)) risk_df = risk_df[['trade_date', 'code'] + used_neutralized_risk].dropna() train_x = pd.merge(factor_df, risk_df, on=['trade_date', 'code']) train_x = pd.merge(train_x, target_df, on=['trade_date', 'code'], how='left') risk_exp = train_x[neutralized_risk].values.astype(float) else: train_x = pd.merge(factor_df, target_df, on=['trade_date', 'code'], how='left') risk_exp = None train_x.dropna(inplace=True, subset=train_x.columns[:-1]) x_values = train_x[names].values.astype(float) y_values = train_x[['dx']].values.astype(float) date_label = pd.DatetimeIndex(train_x.trade_date).to_pydatetime() dates = np.unique(date_label) if dates[-1] == dt.datetime.strptime(ref_date, '%Y-%m-%d'): end = dates[-1] start = dates[-batch] if batch <= len(dates) else dates[0] left_index = bisect.bisect_left(date_label, start) right_index = bisect.bisect_right(date_label, end) this_raw_x = x_values[left_index:right_index] this_raw_y = y_values[left_index:right_index] sub_dates = date_label[left_index:right_index] if risk_exp is not None: this_risk_exp = risk_exp[left_index:right_index] else: this_risk_exp = None ne_x = factor_processing(this_raw_x, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) ne_y = factor_processing(this_raw_y, pre_process=pre_process, risk_factors=this_risk_exp, post_process=post_process) inner_left_index = bisect.bisect_left(sub_dates, end) inner_right_index = bisect.bisect_right(sub_dates, end) ne_x = ne_x[inner_left_index:inner_right_index] ne_y = ne_y[inner_left_index:inner_right_index] left_index = bisect.bisect_left(date_label, end) right_index = bisect.bisect_right(date_label, end) codes = train_x.code.values[left_index:right_index] else: ne_x = None ne_y = None codes = None ret = dict() ret['x_names'] = transformer.names ret['predict'] = {'x': pd.DataFrame(ne_x, columns=transformer.names, index=codes), 'code': codes, 'y': ne_y.flatten()} return ret
Echoes/Filezilla.py
xeddmc/BrainDamage
1,520
27277
# Based on the work of https://github.com/AlessandroZ/LaZagne/blob/master/Windows/lazagne/ import xml.etree.cElementTree as ET import os, base64 class Filezilla(): def __init__(self): options = {'command': '-f', 'action': 'store_true', 'dest': 'filezilla', 'help': 'filezilla'} def run(self): if 'APPDATA' in os.environ: directory = os.environ['APPDATA'] + '\FileZilla' else: return interesting_xml_file = [] info_xml_file = [] if os.path.exists(os.path.join(directory, 'sitemanager.xml')): interesting_xml_file.append('sitemanager.xml') info_xml_file.append('Stores all saved sites server info including password in plaintext') if os.path.exists(os.path.join(directory, 'recentservers.xml')): interesting_xml_file.append('recentservers.xml') info_xml_file.append('Stores all recent server info including password in plaintext') if os.path.exists(os.path.join(directory, 'filezilla.xml')): interesting_xml_file.append('filezilla.xml') info_xml_file.append('Stores most recent server info including password in plaintext') if interesting_xml_file != []: pwdFound = [] for i in range(len(interesting_xml_file)): xml_file = os.path.expanduser(directory + os.sep + interesting_xml_file[i]) tree = ET.ElementTree(file=xml_file) root = tree.getroot() servers = root.getchildren() for ss in servers: server = ss.getchildren() jump_line = 0 for s in server: s1 = s.getchildren() values = {} for s11 in s1: if s11.tag == 'Host': values[s11.tag] = s11.text if s11.tag == 'Port': values[s11.tag] = s11.text if s11.tag == 'User': values['Login'] = s11.text if s11.tag == 'Pass': try: # if base64 encoding if 'encoding' in s11.attrib: if s11.attrib['encoding'] == 'base64': values['Password'] = base64.b64decode(s11.text) else: values['Password'] = <PASSWORD> except: values['Password'] = <PASSWORD> # password found if len(values) != 0: pwdFound.append(values) # print the results return pwdFound else: pass #tem = Filezilla() #a = tem.run() #print a
libcity/model/trajectory_loc_prediction/SERM.py
moghadas76/test_bigcity
221
27280
<filename>libcity/model/trajectory_loc_prediction/SERM.py<gh_stars>100-1000 import torch import torch.nn as nn import numpy as np from libcity.model.abstract_model import AbstractModel from torch.nn.utils.rnn import pack_padded_sequence from torch.nn.utils.rnn import pad_packed_sequence class EmbeddingMatrix(nn.Module): # text_embdeding def __init__(self, input_size, output_size, word_vec): super(EmbeddingMatrix, self).__init__() self.input_size = input_size self.output_size = output_size self.layer = nn.Linear(in_features=self.input_size, out_features=self.output_size, bias=False) self.init_weight(word_vec) def init_weight(self, word_vec): # word_vec为text_embedding初始权重矩阵,从data_feature传入. # self.weight output_size*input_size namely length_of_wordvect_glove_pretrained(50) # *text_size(the size of dictionary) # 按照论文源代码 word_vec = text_size(the size of dictionary)*length_of_wordvect_glove_pretrained word_vec = torch.Tensor(word_vec).t() # 转置 self.layer.weight = nn.Parameter(word_vec) def forward(self, x): # x:batch*seq*input_size # return torch.matmul(x, self.weights) #batch*seq*text_size * text_size*output_size = batch*seq*output_size return self.layer(x) # batch*seq*output_size class SERM(AbstractModel): def __init__(self, config, data_feature): super(SERM, self).__init__(config, data_feature) # initialize parameters # print(config['dataset_class']) self.loc_size = data_feature['loc_size'] self.loc_emb_size = config['loc_emb_size'] self.tim_size = data_feature['tim_size'] self.tim_emb_size = config['tim_emb_size'] self.user_size = data_feature['uid_size'] self.user_emb_size = data_feature['loc_size'] # 根据论文 self.text_size = data_feature['text_size'] self.text_emb_size = len(data_feature['word_vec'][0]) # 这个受限于 word_vec 的长度 self.hidden_size = config['hidden_size'] self.word_one_hot_matrix = np.eye(self.text_size) self.device = config['device'] # Embedding layer self.emb_loc = nn.Embedding(num_embeddings=self.loc_size, embedding_dim=self.loc_emb_size, padding_idx=data_feature['loc_pad']) self.emb_tim = nn.Embedding(num_embeddings=self.tim_size, embedding_dim=self.tim_emb_size, padding_idx=data_feature['tim_pad']) self.emb_user = nn.Embedding(num_embeddings=self.user_size, embedding_dim=self.user_emb_size) self.emb_text = EmbeddingMatrix(self.text_size, self.text_emb_size, data_feature['word_vec']) # lstm layer self.lstm = nn.LSTM(input_size=self.loc_emb_size + self.tim_emb_size + self.text_emb_size, hidden_size=self.hidden_size) # self.lstm = nn.LSTM(input_size=self.loc_emb_size + self.tim_emb_size, hidden_size=self.hidden_size) # dense layer self.dense = nn.Linear(in_features=self.hidden_size, out_features=self.loc_size) # init weight self.apply(self._init_weight) def _init_weight(self, module): if isinstance(module, nn.Embedding): nn.init.xavier_normal_(module.weight) elif isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight) elif isinstance(module, nn.LSTM): for name, param in module.named_parameters(): if 'weight_ih' in name: nn.init.xavier_uniform_(param.data) elif 'weight_hh' in name: nn.init.orthogonal_(param.data) elif 'bias' in name: nn.init.constant_(param.data, 0) def forward(self, batch): loc = batch['current_loc'] tim = batch['current_tim'] user = batch['uid'] text = batch['text'] max_len = batch['current_loc'].shape[1] text_pad = np.zeros((self.text_size)) # text 现在是 word index 的形式,还需要进行 one_hot encoding one_hot_text = [] for word_index in text: one_hot_text_a_slice = [] for words in word_index: if len(words) == 0: one_hot_text_a_slice.append(np.zeros((self.text_size))) else: one_hot_text_a_slice.append(np.sum(self.word_one_hot_matrix[words], axis=0) / len(words)) # pad one_hot_text_a_slice += [text_pad] * (max_len - len(one_hot_text_a_slice)) one_hot_text.append(np.array(one_hot_text_a_slice)) # batch_size * seq_len * text_size one_hot_text = torch.FloatTensor(one_hot_text).to(self.device) loc_emb = self.emb_loc(loc) tim_emb = self.emb_tim(tim) user_emb = self.emb_user(user) text_emb = self.emb_text(one_hot_text) # change batch*seq*emb_size to seq*batch*emb_size x = torch.cat([loc_emb, tim_emb, text_emb], dim=2).permute(1, 0, 2) # attrs_latent = torch.cat([loc_emb, tim_emb], dim=2).permute(1, 0, 2) # print(attrs_latent.size()) # pack attrs_latent seq_len = batch.get_origin_len('current_loc') pack_x = pack_padded_sequence(x, lengths=seq_len, enforce_sorted=False) lstm_out, (h_n, c_n) = self.lstm(pack_x) # seq*batch*hidden_size # print(lstm_out.size()) # unpack lstm_out, out_len = pad_packed_sequence(lstm_out, batch_first=True) # user_emb is batch*loc_size, so we need get the final lstm_out for i in range(lstm_out.shape[0]): if i == 0: out = lstm_out[0][seq_len[i] - 1].reshape(1, -1) # .reshape(1,-1)表示:转化为1行 else: out = torch.cat((out, lstm_out[i][seq_len[i] - 1].reshape(1, -1)), 0) dense = self.dense(out) # batch * loc_size out_vec = torch.add(dense, user_emb) # batch * loc_size pred = nn.LogSoftmax(dim=1)(out_vec) # result # print(pred.size()) return pred # batch*loc_size def predict(self, batch): return self.forward(batch) def calculate_loss(self, batch): criterion = nn.NLLLoss() scores = self.forward(batch) # batch*loc_size return criterion(scores, batch['target'])
src/api/test/test_datahub_serializer.py
RogerTangos/datahub-stub
192
27300
<filename>src/api/test/test_datahub_serializer.py<gh_stars>100-1000 from mock import patch from django.test import TestCase from ..serializer import DataHubSerializer class DataHubSerializerTests(TestCase): """Test DataHubSerializer methods""" def setUp(self): self.username = "delete_me_username" self.repo_base = "delete_me_repo_base" self.password = "<PASSWORD>" self.mock_manager = self.create_patch( 'api.serializer.DataHubManager') self.serializer = DataHubSerializer( username=self.username, repo_base=self.repo_base) def create_patch(self, name): # helper method for creating patches patcher = patch(name) thing = patcher.start() self.addCleanup(patcher.stop) return thing def test_initialization(self): dataHubSerializer = DataHubSerializer( username=self.username, repo_base=self.repo_base) self.assertEqual(dataHubSerializer.username, self.username) self.assertEqual(dataHubSerializer.repo_base, self.repo_base) self.assertEqual( self.mock_manager.call_args[1]['repo_base'], self.repo_base) self.assertEqual( self.mock_manager.call_args[1]['user'], self.username)
cflearn/api/ml/interface.py
carefree0910/carefree-learn
400
27370
import os import json import shutil import numpy as np from typing import Any from typing import Dict from typing import List from typing import Type from typing import Tuple from typing import Union from typing import Callable from typing import Optional from typing import NamedTuple from tqdm.autonotebook import tqdm from cfdata.tabular import TabularData from cftool.ml import ModelPattern from cftool.ml import EnsemblePattern from cftool.dist import Parallel from cftool.misc import update_dict from cftool.misc import shallow_copy_dict from cftool.ml.utils import patterns_type from cftool.ml.utils import Comparer from cftool.ml.utils import Estimator from .pipeline import SimplePipeline from .pipeline import CarefreePipeline from ...data import MLData from ...data import MLInferenceData from ...trainer import get_sorted_checkpoints from ...constants import SCORES_FILE from ...constants import WARNING_PREFIX from ...constants import CHECKPOINTS_FOLDER from ...constants import ML_PIPELINE_SAVE_NAME from ...dist.ml import Experiment from ...dist.ml import ExperimentResults from ...misc.toolkit import to_2d from ...misc.toolkit import get_latest_workplace from ...models.ml.protocol import MLCoreProtocol def register_core(name: str) -> Callable[[Type], Type]: return MLCoreProtocol.register(name) pipelines_type = Dict[str, List[SimplePipeline]] various_pipelines_type = Union[ SimplePipeline, List[SimplePipeline], Dict[str, SimplePipeline], pipelines_type, ] def _to_pipelines(pipelines: various_pipelines_type) -> pipelines_type: if isinstance(pipelines, dict): pipeline_dict = {} for key, value in pipelines.items(): if isinstance(value, list): pipeline_dict[key] = value else: pipeline_dict[key] = [value] else: if not isinstance(pipelines, list): pipelines = [pipelines] pipeline_dict = {} for pipeline in pipelines: assert pipeline.model is not None key = pipeline.model.__identifier__ pipeline_dict.setdefault(key, []).append(pipeline) return pipeline_dict def evaluate( data: Union[MLData, MLInferenceData], *, metrics: Union[str, List[str]], metric_configs: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, contains_labels: bool = True, pipelines: Optional[various_pipelines_type] = None, predict_config: Optional[Dict[str, Any]] = None, other_patterns: Optional[Dict[str, patterns_type]] = None, comparer_verbose_level: Optional[int] = 1, ) -> Comparer: if not contains_labels: err_msg = "`cflearn.evaluate` must be called with `contains_labels = True`" raise ValueError(err_msg) if metric_configs is None: metric_configs = [{} for _ in range(len(metrics))] patterns = {} x, y = data.x_train, data.y_train if pipelines is None: msg = None if y is None: msg = "either `pipelines` or `y` should be provided" if other_patterns is None: msg = "either `pipelines` or `other_patterns` should be provided" if msg is not None: raise ValueError(msg) else: pipelines = _to_pipelines(pipelines) # get data # TODO : different pipelines may have different labels if y is not None: y = to_2d(y) else: if not isinstance(x, str): raise ValueError("`x` should be str when `y` is not provided") data_pipeline = list(pipelines.values())[0][0] if not isinstance(data_pipeline, CarefreePipeline): raise ValueError("only `CarefreePipeline` can handle file inputs") cf_data = data_pipeline.cf_data assert cf_data is not None x, y = cf_data.read_file(x, contains_labels=contains_labels) y = cf_data.transform(x, y).y # get metrics if predict_config is None: predict_config = {} predict_config.setdefault("contains_labels", contains_labels) for name, pipeline_list in pipelines.items(): patterns[name] = [ pipeline.to_pattern(**predict_config) for pipeline in pipeline_list ] if other_patterns is not None: for other_name in other_patterns.keys(): if other_name in patterns: print( f"{WARNING_PREFIX}'{other_name}' is found in " "`other_patterns`, it will be overwritten" ) update_dict(other_patterns, patterns) if isinstance(metrics, list): metrics_list = metrics else: assert isinstance(metrics, str) metrics_list = [metrics] if isinstance(metric_configs, list): metric_configs_list = metric_configs else: assert isinstance(metric_configs, dict) metric_configs_list = [metric_configs] estimators = [ Estimator(metric, metric_config=metric_config) for metric, metric_config in zip(metrics_list, metric_configs_list) ] comparer = Comparer(patterns, estimators) comparer.compare(data, y, verbose_level=comparer_verbose_level) return comparer def task_loader( workplace: str, pipeline_base: Type[SimplePipeline] = CarefreePipeline, compress: bool = True, ) -> SimplePipeline: export_folder = os.path.join(workplace, ML_PIPELINE_SAVE_NAME) m = pipeline_base.load(export_folder=export_folder, compress=compress) assert isinstance(m, SimplePipeline) return m def load_experiment_results( results: ExperimentResults, pipeline_base: Type[SimplePipeline], ) -> pipelines_type: pipelines_dict: Dict[str, Dict[int, SimplePipeline]] = {} iterator = list(zip(results.workplaces, results.workplace_keys)) for workplace, workplace_key in tqdm(iterator, desc="load"): pipeline = task_loader(workplace, pipeline_base) model, str_i = workplace_key pipelines_dict.setdefault(model, {})[int(str_i)] = pipeline return {k: [v[i] for i in sorted(v)] for k, v in pipelines_dict.items()} class RepeatResult(NamedTuple): data: Optional[TabularData] experiment: Optional[Experiment] pipelines: Optional[Dict[str, List[SimplePipeline]]] patterns: Optional[Dict[str, List[ModelPattern]]] def repeat_with( data: MLData, *, pipeline_base: Type[SimplePipeline] = CarefreePipeline, workplace: str = "_repeat", models: Union[str, List[str]] = "fcnn", model_configs: Optional[Dict[str, Dict[str, Any]]] = None, predict_config: Optional[Dict[str, Any]] = None, sequential: Optional[bool] = None, num_jobs: int = 1, num_repeat: int = 5, return_patterns: bool = True, compress: bool = True, use_tqdm: bool = True, available_cuda_list: Optional[List[int]] = None, resource_config: Optional[Dict[str, Any]] = None, task_meta_kwargs: Optional[Dict[str, Any]] = None, is_fix: bool = False, **kwargs: Any, ) -> RepeatResult: if os.path.isdir(workplace) and not is_fix: print(f"{WARNING_PREFIX}'{workplace}' already exists, it will be erased") shutil.rmtree(workplace) kwargs = shallow_copy_dict(kwargs) if isinstance(models, str): models = [models] if sequential is None: sequential = num_jobs <= 1 if model_configs is None: model_configs = {} def is_buggy(i_: int, model_: str) -> bool: i_workplace = os.path.join(workplace, model_, str(i_)) i_latest_workplace = get_latest_workplace(i_workplace) if i_latest_workplace is None: return True checkpoint_folder = os.path.join(i_latest_workplace, CHECKPOINTS_FOLDER) if not os.path.isfile(os.path.join(checkpoint_folder, SCORES_FILE)): return True if not get_sorted_checkpoints(checkpoint_folder): return True return False def fetch_config(core_name: str) -> Dict[str, Any]: local_kwargs = shallow_copy_dict(kwargs) assert model_configs is not None local_core_config = model_configs.setdefault(core_name, {}) local_kwargs["core_name"] = core_name local_kwargs["core_config"] = shallow_copy_dict(local_core_config) return shallow_copy_dict(local_kwargs) pipelines_dict: Optional[Dict[str, List[SimplePipeline]]] = None if sequential: cuda = kwargs.pop("cuda", None) experiment = None tqdm_settings = kwargs.setdefault("tqdm_settings", {}) tqdm_settings["tqdm_position"] = 2 if not return_patterns: print( f"{WARNING_PREFIX}`return_patterns` should be " "True when `sequential` is True, because patterns " "will always be generated" ) return_patterns = True pipelines_dict = {} if not use_tqdm: iterator = models else: iterator = tqdm(models, total=len(models), position=0) for model in iterator: local_pipelines = [] sub_iterator = range(num_repeat) if use_tqdm: sub_iterator = tqdm( sub_iterator, total=num_repeat, position=1, leave=False, ) for i in sub_iterator: if is_fix and not is_buggy(i, model): continue local_config = fetch_config(model) local_workplace = os.path.join(workplace, model, str(i)) local_config.setdefault("workplace", local_workplace) m = pipeline_base(**local_config) m.fit(data, cuda=cuda) local_pipelines.append(m) pipelines_dict[model] = local_pipelines else: if num_jobs <= 1: print( f"{WARNING_PREFIX}we suggest setting `sequential` " f"to True when `num_jobs` is {num_jobs}" ) # data data_folder = Experiment.dump_data_bundle( data.x_train, data.y_train, data.x_valid, data.y_valid, workplace=workplace, ) # experiment experiment = Experiment( num_jobs=num_jobs, available_cuda_list=available_cuda_list, resource_config=resource_config, ) for model in models: for i in range(num_repeat): if is_fix and not is_buggy(i, model): continue local_config = fetch_config(model) experiment.add_task( model=model, compress=compress, root_workplace=workplace, workplace_key=(model, str(i)), config=local_config, data_folder=data_folder, **(task_meta_kwargs or {}), ) # finalize results = experiment.run_tasks(use_tqdm=use_tqdm) if return_patterns: pipelines_dict = load_experiment_results(results, pipeline_base) patterns = None if return_patterns: assert pipelines_dict is not None if predict_config is None: predict_config = {} patterns = { model: [m.to_pattern(**predict_config) for m in pipelines] for model, pipelines in pipelines_dict.items() } cf_data = None if patterns is not None: m = patterns[models[0]][0].model if isinstance(m, CarefreePipeline): cf_data = m.cf_data return RepeatResult(cf_data, experiment, pipelines_dict, patterns) def pack_repeat( workplace: str, pipeline_base: Type[SimplePipeline], *, num_jobs: int = 1, ) -> List[str]: sub_workplaces = [] for stuff in sorted(os.listdir(workplace)): stuff_path = os.path.join(workplace, stuff) if not os.path.isdir(stuff_path): continue sub_workplaces.append(get_latest_workplace(stuff_path)) rs = Parallel(num_jobs).grouped(pipeline_base.pack, sub_workplaces).ordered_results return sum(rs, []) def pick_from_repeat_and_pack( workplace: str, pipeline_base: Type[SimplePipeline], *, num_pick: int, num_jobs: int = 1, ) -> List[str]: score_workplace_pairs = [] for stuff in sorted(os.listdir(workplace)): stuff_path = os.path.join(workplace, stuff) if not os.path.isdir(stuff_path): continue sub_workplace = get_latest_workplace(stuff_path) assert sub_workplace is not None, "internal error occurred" score_path = os.path.join(sub_workplace, CHECKPOINTS_FOLDER, SCORES_FILE) with open(score_path, "r") as f: score = float(max(json.load(f).values())) score_workplace_pairs.append((score, sub_workplace)) score_workplace_pairs = sorted(score_workplace_pairs)[::-1] sub_workplaces = [pair[1] for pair in score_workplace_pairs[:num_pick]] rs = Parallel(num_jobs).grouped(pipeline_base.pack, sub_workplaces).ordered_results return sum(rs, []) def make_toy_model( model: str = "fcnn", config: Optional[Dict[str, Any]] = None, *, pipeline_type: str = "ml.carefree", is_classification: bool = False, cf_data_config: Optional[Dict[str, Any]] = None, data_tuple: Optional[Tuple[np.ndarray, np.ndarray]] = None, cuda: Optional[str] = None, ) -> SimplePipeline: if config is None: config = {} if data_tuple is not None: x_np, y_np = data_tuple else: if not is_classification: x, y = [[0]], [[1.0]] else: x, y = [[0], [1]], [[1], [0]] x_np, y_np = map(np.array, [x, y]) model_config = {} if model in ("fcnn", "tree_dnn"): model_config = { "hidden_units": [100], "batch_norm": False, "dropout": 0.0, } base_config = { "core_name": model, "core_config": model_config, "output_dim": 1 + int(is_classification), "num_epoch": 2, "max_epoch": 4, } updated = update_dict(config, base_config) m = SimplePipeline.make(pipeline_type, updated) assert isinstance(m, SimplePipeline) if cf_data_config is None: cf_data_config = {} cf_data_config = update_dict( cf_data_config, dict( valid_columns=list(range(x_np.shape[1])), label_process_method="identical", ), ) data = MLData.with_cf_data( x_np, y_np, is_classification=is_classification, cf_data_config=cf_data_config, valid_split=0.0, ) m.fit(data, cuda=cuda) return m __all__ = [ "register_core", "evaluate", "task_loader", "load_experiment_results", "repeat_with", "pack_repeat", "pick_from_repeat_and_pack", "make_toy_model", "ModelPattern", "EnsemblePattern", ]
test/testing/test_pandas_assert.py
S-aiueo32/gokart
255
27390
<reponame>S-aiueo32/gokart import unittest import pandas as pd import gokart class TestPandasAssert(unittest.TestCase): def test_assert_frame_contents_equal(self): expected = pd.DataFrame(data=dict(f1=[1, 2, 3], f3=[111, 222, 333], f2=[4, 5, 6]), index=[0, 1, 2]) resulted = pd.DataFrame(data=dict(f2=[5, 4, 6], f1=[2, 1, 3], f3=[222, 111, 333]), index=[1, 0, 2]) gokart.testing.assert_frame_contents_equal(resulted, expected) def test_assert_frame_contents_equal_with_small_error(self): expected = pd.DataFrame(data=dict(f1=[1.0001, 2.0001, 3.0001], f3=[111, 222, 333], f2=[4, 5, 6]), index=[0, 1, 2]) resulted = pd.DataFrame(data=dict(f2=[5, 4, 6], f1=[2.0002, 1.0002, 3.0002], f3=[222, 111, 333]), index=[1, 0, 2]) gokart.testing.assert_frame_contents_equal(resulted, expected, atol=1e-1) def test_assert_frame_contents_equal_with_duplicated_columns(self): expected = pd.DataFrame(data=dict(f1=[1, 2, 3], f3=[111, 222, 333], f2=[4, 5, 6]), index=[0, 1, 2]) expected.columns = ['f1', 'f1', 'f2'] resulted = pd.DataFrame(data=dict(f2=[5, 4, 6], f1=[2, 1, 3], f3=[222, 111, 333]), index=[1, 0, 2]) resulted.columns = ['f2', 'f1', 'f1'] with self.assertRaises(AssertionError): gokart.testing.assert_frame_contents_equal(resulted, expected) def test_assert_frame_contents_equal_with_duplicated_indexes(self): expected = pd.DataFrame(data=dict(f1=[1, 2, 3], f3=[111, 222, 333], f2=[4, 5, 6]), index=[0, 1, 2]) expected.index = [0, 1, 1] resulted = pd.DataFrame(data=dict(f2=[5, 4, 6], f1=[2, 1, 3], f3=[222, 111, 333]), index=[1, 0, 2]) expected.index = [1, 0, 1] with self.assertRaises(AssertionError): gokart.testing.assert_frame_contents_equal(resulted, expected)
WebMirror/util/StatusUpdater/Updater.py
awesome-archive/ReadableWebProxy
193
27430
if __name__ == "__main__": import logSetup logSetup.initLogging() import pickle from common import database import config import common.LogBase import WebMirror.rules from WebMirror.OutputFilters.util.MessageConstructors import pack_message import WebMirror.TimedTriggers.TriggerBase import common.get_rpyc # import WebMirror.OutputFilters.AmqpInterface class MetaUpdater(WebMirror.TimedTriggers.TriggerBase.TriggerBaseClass): pluginName = "Meta Updater" loggerPath = 'MetaUpdater' def __init__(self): super().__init__() # print() self.rpc_interface = common.get_rpyc.RemoteJobInterface("FeedUpdater") # if config.C_DO_RABBIT: # print("No message queue! Doing independent RabbitMQ connection!") # # traceback.print_stack() # # print("Wat?") # # print() # self.msg_q = False # amqp_settings = { # "RABBIT_LOGIN" : config.C_RABBIT_LOGIN, # "RABBIT_PASWD" : config.C_RABBIT_PASWD, # "RABBIT_SRVER" : config.C_RABBIT_SRVER, # "RABBIT_VHOST" : config.C_RABBIT_VHOST, # 'taskq_task' : 'task.master.q', # 'taskq_response' : 'response.master.q', # } # self._amqpint = WebMirror.OutputFilters.AmqpInterface.RabbitQueueHandler(amqp_settings) def get_feed_count_message(self): feeds = set() for ruleset in WebMirror.rules.load_rules(): feeds |= set(ruleset['feedurls']) data = { "feed-count" : len(feeds) } return pack_message("system-feed-counts", data) def get_times(self): with common.database.session_context() as conn: aps = conn.execute("SELECT job_state FROM apscheduler_jobs;") update_times = [] for blob, in aps: job_dict = pickle.loads(blob) update_times.append(( job_dict['id'], job_dict['next_run_time'].isoformat() )) data = { "update-times" : update_times, } database.delete_db_session() return pack_message("system-update-times", data) def go(self): feeds = self.get_feed_count_message() times = self.get_times() self.rpc_interface.put_feed_job(feeds) self.rpc_interface.put_feed_job(times) # self._amqpint.put_item(feeds) # self._amqpint.put_item(times) def do_meta_update(): updator = MetaUpdater() updator._go() updator = MetaUpdater() updator._go() updator = MetaUpdater() updator._go() if __name__ == '__main__': do_meta_update()
data_structures/heap/heap_using_heapq.py
ruler30cm/python-ds
1,723
27469
<reponame>ruler30cm/python-ds """ Heap in python using heapq library function Note: by default, heapq creates a min-heap. To make it a max-heap, add items after multiplying them by -1 """ from heapq import heappop, heappush, heapify heap = [] heapify(heap) heappush(heap, 10) heappush(heap, 11) heappush(heap, 2) heappush(heap, 4) heappush(heap, 14) heappush(heap, 1) print('first element - ', heap[0]) print('popping min element - ', heappop(heap)) print('first element - ', heap[0]) # Heap prints as an array and can be access using indexes print(heap) print(heap[2])
S2.Surface_Normal/regNormalNet/regNormalNet.py
leoshine/Spherical_Regression
133
27496
<filename>S2.Surface_Normal/regNormalNet/regNormalNet.py<gh_stars>100-1000 # coding: utf8 """ @Author : <NAME> """ import os import torch.nn as nn import torch.utils.model_zoo as model_zoo from torch.autograd import Variable import torch from basic.common import rdict import numpy as np from easydict import EasyDict as edict from collections import OrderedDict as odict from itertools import product from basic.common import add_path, env this_dir = os.path.dirname(os.path.abspath(__file__)) add_path(this_dir+'/../lib/') from helper import * from model import VGG16_Trunk from modelSE import VGG16_Trunk as VGG16SE_Trunk # net_arch2Trunk = dict( # vgg16 = VGG16_Trunk, # vgg16se = VGG16SE_Trunk, # ) net_arch2Trunk = dict( vgg16=dict( Sflat = VGG16_Trunk, Sexp = VGG16SE_Trunk, ), ) from pytorch_util.libtrain import copy_weights, init_weights_by_filling from pytorch_util.torch_v4_feature import LocalResponseNorm # * from pytorch_util.torch_3rd_layers import Maskout from pytorch_util.torch_3rd_funcs import norm2unit, exp_Normalization def cls_pred(output, topk=(1,), dim=1): maxk = max(topk) batch_size = output.size(0) _, pred = output.topk(maxk, dim=dim, largest=True, sorted=True) return pred class _regNormalNet(nn.Module): def __init__(self, method, net_arch='vgg16', init_weights=True): super(_regNormalNet, self).__init__() _Trunk = net_arch2Trunk[net_arch][method] self.trunk = _Trunk(init_weights=init_weights) def forword(self, x, label): raise NotImplementedError #---------------------------------------------------------------------[regQuat] class reg_Sflat_Net(_regNormalNet): def __init__(self, net_arch='vgg16', init_weights=True): _regNormalNet.__init__(self, 'Sflat', net_arch=net_arch, init_weights=init_weights) # loss module self.loss_handler = Cos_Proximity_Loss_Handler() self.targets = ['norm'] def forward(self, x): """label shape (batchsize, ) """ x = self.trunk(x) # Forward Conv and Fc6,Fc7 # batchsize = x.size(0) # x of shape (40, 3, 240, 320) #-- Normalize coordinate to a unit x_norm = norm2unit(x, dim=1) Prob = edict(norm=x_norm.permute(0,2,3,1).double()) # transpose prediction from BxCxHxW to BxHxWxC order. return Prob def compute_loss(self, Prob, GT): Loss, Errs = self.loss_handler.compute_loss(self.targets, Prob, GT) _metric_ = edict(norm=Errs['norm']) return Loss, _metric_ def compute_pred(self, Prob, encode_bit=8): x_norm = Prob['norm'] # Get cpu data. norm = x_norm.data.cpu().numpy().copy() # B,H,W,C assert encode_bit in [8,16] if encode_bit==8: normImgs = ((norm+1)*(2**7)).astype(np.uint8) # map [-1,1] to [0,256) else: normImgs = ((norm+1)*(2**15)).astype(np.uint16) # map [-1,1] to [0,65535) Pred = edict(norm=normImgs) return Pred #---------------------------------------------------------------------[regQuat] class reg_Sexp_Net(_regNormalNet): # Spherical exponential Problem + sign classification def __init__(self, net_arch='vgg16', init_weights=True): _regNormalNet.__init__(self, 'Sexp', net_arch=net_arch, init_weights=init_weights) self.reg_n_D = 3 # Note: for a surface normal (x,z,y) (Watch out the order) # z should always satisfy z<=0 (Surface normal should from visible surfaces) # Thus only x,y need sign prediction. dim_need_sign = 2 _signs = list( product(*( [(-1,1)]*dim_need_sign )) ) # [(-1, -1), (-1, 1), (1, -1), (1, 1)], with len=4 self.signs = [(x[0],-1,x[1]) for x in _signs] # y-z-x order: [(-1, -1, -1), (-1, -1, 1), (1, -1, -1), (1, -1, 1)], with len=4; z always -1 self.signs2label = odict(zip(self.signs, range(len(self.signs)))) self.label2signs = Variable( torch.DoubleTensor(self.signs) ).cuda() # make it as a Variable self.softmax = nn.Softmax(dim=1).cuda() # loss module self.loss_handler_abs_norm = Cos_Proximity_Loss_Handler() self.loss_handler_sgc_norm = Cross_Entropy_Loss_Handler() self.targets = ['sgc_norm','abs_norm'] self.gt_targets = ['norm'] self.cost, self.sint = torch.tensor(np.cos(np.pi/4)).double().cuda(), torch.tensor(np.sin(np.pi/4)).double().cuda() def forward(self, x): """label shape (batchsize, ) """ x_abs, x_sgc = self.trunk(x) # Forward Conv and Fc6,Fc7 # batchsize = x_abs.size(0) #-- Exp and Normalize coordinate to a unit x_sqr_norm = self.softmax(x_abs) #, nr_cate=self.nr_cate) # sign category head (totally 4 category) x_sgc_norm = x_sgc Prob = edict(abs_norm=torch.sqrt(x_sqr_norm).permute(0,2,3,1).double(), # B,H,W,3 sgc_norm=x_sgc_norm.permute(0,2,3,1) ) # B,H,W,4 return Prob def compute_loss(self, Prob, GT): B,H,W,_3_ = GT.norm.size() assert _3_==3, "Wrong dim: %s,%s,%s,%s" % (B,H,W,_3_) # First get sign label from GT #== Formulate squared value of quaternion GT_abs_norm = torch.abs(GT.norm) # B,H,W,3 #== Formulate signs label of quaternion GT_sign_norm = torch.sign(GT.norm) # B,H,W,3 #------------------------------------- # hard coded: sign to label #------------------------------------- # y x label # [-1 -1] --> 0 # [-1 1] --> 1 # [ 1 -1] --> 2 # [ 1 1] --> 3 # GT_sign_norm (B,H,W,3) in y-z-x order GT_sign_norm[GT_sign_norm==0] = -1 # make sign of '0' as -1 (use -1 instead of 1 just because z<=0) y_sign, x_sign = GT_sign_norm[:,:,:,0], GT_sign_norm[:,:,:,2] y_sign += 1 # [y_sign==-1] x_sign[x_sign==-1] = 0 GT_sgc_norm = (y_sign+x_sign).long() # data with shape with (B,H,W) index of [0,1,2,3] # here just because compute_loss need a same key from Prob and GT, # so we just give a fake name to GT.sqr_quat as '_GT.logsqr_norm'. _GT = edict(abs_norm=GT_abs_norm, sgc_norm=GT_sgc_norm, mask=GT.mask) # abs_norm: (B,H,W,3) sgc_norm: (B,H,W) Loss_abs_norm, abs_Errs = self.loss_handler_abs_norm.compute_loss(['abs_norm'], Prob, _GT) Loss_sgc_norm = self.loss_handler_sgc_norm.compute_loss(['sgc_norm'], Prob, _GT) # ---------------------------------------- # Compute the metric. sign_ind = cls_pred(Prob['sgc_norm'], topk=(1,), dim=3).data.squeeze(dim=3) # B,H,W pr_sign_norm = self.label2signs[sign_ind] # magic here: Indexing label2signs (4x3) by sign_ind (B,H,W) becomes (B,H,W,3) (10, 240, 320, 3) pr_abs_norm = Prob['abs_norm'] _Prob = edict(norm=pr_abs_norm * pr_sign_norm) # current predicted final norm (applied sign prediction) _Loss_norm, out_Errs = self.loss_handler_abs_norm.compute_loss(['norm'], _Prob, GT) # just borrow loss_handler_abs_norm, nothing more. # Compute acc of classification: sign_ind vs GT_sgc_norm mask = GT['mask'] acc = eval_cls(sign_ind[mask], GT_sgc_norm[mask]) _metric_ = edict(abs_norm = abs_Errs['abs_norm'], norm = out_Errs['norm'] , sgc_norm_acc = acc ,) # To add loss weights here. Loss = edict( abs_norm=Loss_abs_norm['abs_norm']*10, # / 5. sgc_norm=Loss_sgc_norm['sgc_norm'], ) return Loss, _metric_ # .update(abs_Errs) def compute_pred(self, Prob, encode_bit=8): x_abs_norm = Prob['abs_norm'] # B,H,W,3 x_sgc_norm = Prob['sgc_norm'] # B,H,W,4 batchsize = x_abs_norm.size(0) # sign_ind = cls_pred(x_sgc_norm, topk=(1,), dim=3).data.squeeze(dim=3) # .view(-1,) # B,H,W x_sign_norm = self.label2signs[sign_ind] # magic here: Indexing label2signs (4x3) by sign_ind (B,H,W) becomes (B,H,W,3) # x_norm = x_abs_norm * x_sign_norm # B,H,W,3 # --------------Recover rot45 trick -------------- # Note: since we applied rot45 trick, here we recover it back _x_norm = x_norm.detach().clone() # return a copy of x_norm without grad _y,_z,_x = _x_norm[:,:,:,0],_x_norm[:,:,:,1],_x_norm[:,:,:,2] y, z, x = x_norm[:,:,:,0],x_norm[:,:,:,1],x_norm[:,:,:,2] x[:] = self.cost*_x - self.sint*_y y[:] = self.sint*_x + self.cost*_y # ------------------------------------------------ # Get cpu data. norm = x_norm.data.cpu().numpy().copy() # B,H,W,C assert encode_bit in [8,16] if encode_bit==8: normImgs = ((norm+1)*(2**7)).astype(np.uint8) # map [-1,1] to [0,256) else: normImgs = ((norm+1)*(2**15)).astype(np.uint16) # map [-1,1] to [0,65535) Pred = edict(norm=normImgs) return Pred
timemachines/skaters/orbt/orbitlgtskaterfactory.py
iklasky/timemachines
253
27524
from timemachines.skaters.orbt.orbitinclusion import using_orbit if using_orbit: from timemachines.skaters.orbt.orbitwrappers import orbit_lgt_iskater from timemachines.skatertools.utilities.conventions import Y_TYPE, A_TYPE, R_TYPE, E_TYPE, T_TYPE from timemachines.skatertools.batch.batchskater import batch_skater_factory def orbit_lgt_skater_factory(y: Y_TYPE, s, k: int, a: A_TYPE = None, t: T_TYPE = None, e: E_TYPE = None, r: R_TYPE = None, emp_mass=0.0, seasonality=None): return batch_skater_factory(y=y, s=s, k=k, a=a, t=t, e=e, r=r, emp_mass=emp_mass, iskater=orbit_lgt_iskater, iskater_kwargs={'seasonality': seasonality}, min_e=0, n_warm=20) def orbit_lgt_12(y,s,k,a=None, t=None,e=None): return orbit_lgt_skater_factory(y=y, s=s, k=k, a=a,t=t,e=e, seasonality=12) def orbit_lgt_24(y,s,k,a=None, t=None,e=None): return orbit_lgt_skater_factory(y, s, k, a=a,t=t,e=e, seasonality=24)
sponsors/migrations/0038_auto_20210827_1223.py
Manny27nyc/pythondotorg
911
27531
# Generated by Django 2.0.13 on 2021-08-27 12:23 from django.db import migrations def populate_sponsorship_package_fk(apps, schema_editor): Sponsorship = apps.get_model('sponsors.Sponsorship') SponsorshipPackage = apps.get_model('sponsors.SponsorshipPackage') for sponsorship in Sponsorship.objects.all().iterator(): try: package = SponsorshipPackage.objects.get(name=sponsorship.level_name) sponsorship.package = package sponsorship.save() except SponsorshipPackage.DoesNotExist: continue class Migration(migrations.Migration): dependencies = [ ('sponsors', '0037_sponsorship_package'), ] operations = [ migrations.RunPython(populate_sponsorship_package_fk, migrations.RunPython.noop) ]
backpack/extensions/secondorder/diag_ggn/permute.py
jabader97/backpack
395
27565
"""Module defining DiagGGNPermute.""" from backpack.core.derivatives.permute import PermuteDerivatives from backpack.extensions.secondorder.diag_ggn.diag_ggn_base import DiagGGNBaseModule class DiagGGNPermute(DiagGGNBaseModule): """DiagGGN extension of Permute.""" def __init__(self): """Initialize.""" super().__init__(derivatives=PermuteDerivatives())
analysis_engine/prepare_history_dataset.py
virdesai/stock-analysis-engine
819
27577
""" Helper for loading a ``Trading History`` dataset """ import json import zlib import pandas as pd import analysis_engine.consts as ae_consts import spylunking.log.setup_logging as log_utils log = log_utils.build_colorized_logger(name=__name__) def prepare_history_dataset( data, compress=False, encoding='utf-8', convert_to_dict=False, include_keys=None, ignore_keys=None, convert_to_dates=None, verbose=False): """prepare_history_dataset Load a ``Trading History`` dataset into a dictionary with a ``pd.DataFrame`` for the trading history record list :param data: string holding contents of a ``Trading History`` from a file, s3 key or redis-key :param compress: optional - boolean flag for decompressing the contents of the ``data`` if necessary (default is ``False`` and algorithms use ``zlib`` for compression) :param convert_to_dict: optional - bool for s3 use ``False`` and for files use ``True`` :param encoding: optional - string for data encoding :param include_keys: optional - list of string keys to include before from the dataset .. note:: tickers are automatically included in the ``pd.DataFrame`` :param ignore_keys: optional - list of string keys to remove before building the ``pd.DataFrame`` :param convert_to_dates: optional - list of string keys to convert to datetime before building the ``pd.DataFrame`` :param verbose: optional - bool show the logs (default is ``False``) """ if verbose: log.debug('start') use_data = None parsed_data = None data_as_dict = None if compress: if verbose: log.debug('decompressing') parsed_data = zlib.decompress( data).decode( encoding) else: parsed_data = data if not parsed_data: log.error('failed parsing') return None if verbose: log.debug('loading as dict') use_data = {} if convert_to_dict: try: data_as_dict = json.loads(parsed_data) except Exception as e: if ( 'the JSON object must be str, bytes or ' 'bytearray, not') in str(e): log.critical( f'failed decoding json for string - double ' f'compression for history dataset found ex={e}') data_as_dict = parsed_data else: data_as_dict = parsed_data if len(data_as_dict) == 0: log.error( 'empty trading history dictionary') return use_data convert_these_date_keys = [ 'date', 'minute', 'exp_date' ] use_include_keys = [ 'tickers', 'version', 'last_trade_data', 'algo_config_dict', 'algo_name', 'created' ] if include_keys: use_include_keys = include_keys use_ignore_keys = [] if ignore_keys: use_ignore_keys = ignore_keys for k in data_as_dict: if k in use_include_keys: use_data[k] = data_as_dict[k] all_records = [] num_records = 0 for ticker in data_as_dict['tickers']: if ticker not in use_data: use_data[ticker] = [] for node in data_as_dict[ticker]: for ignore in use_ignore_keys: node.pop(ignore, None) all_records.append(node) # end for all datasets on this date to load num_records = len(all_records) if num_records: if verbose: log.info(f'found records={num_records}') history_df = pd.DataFrame(all_records) for dc in convert_these_date_keys: if dc in history_df: history_df[dc] = pd.to_datetime( history_df[dc], format=ae_consts.COMMON_TICK_DATE_FORMAT) # end of converting all date columns use_data[ticker] = history_df else: log.error( f'did not find any records={num_records} in history dataset') # end for all tickers in the dataset return use_data # end of prepare_history_dataset
scripts/count_git_changes.py
ShankarNara/shogun
2,753
27578
<reponame>ShankarNara/shogun import os import sys insertions=0 deletions=0 files=0 FROMVER="" if len(sys.argv)>1: FROMVER=sys.argv[1] TOVER="" if len(sys.argv)>2: TOVER=sys.argv[2] TMPNAME=os.tmpnam() VER="" if len(FROMVER)>0: VER=FROMVER+'..' if len(TOVER)>0: if len(VER)==0: VER='..' VER=VER+TOVER os.system('git log --oneline --shortstat %s >%s' % (VER,TMPNAME)) for line in file(TMPNAME).readlines(): if line.find('file') == -1: continue if line.find('changed') == -1: continue if line.find('insertion') == -1 and line.find('deletion') == -1: continue entries=line.split(',') for e in entries: if e.find('file') != -1: files+=int(e.strip().split(' ')[0]) elif e.find('insertion') != -1: insertions+=int(e.strip().split(' ')[0]) elif e.find('deletion') != -1: deletions+=int(e.strip().split(' ')[0]) print "Files changed: %d" % files print "Insertions: %d" % insertions print "Deletions: %d" % deletions os.unlink(TMPNAME)
tools/telemetry/telemetry/core/platform/power_monitor/android_ds2784_power_monitor_unittest.py
kjthegod/chromium
231
27591
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from telemetry.core.platform.power_monitor import android_ds2784_power_monitor class DS2784PowerMonitorMonitorTest(unittest.TestCase): def testEnergyComsumption(self): data = ('0000 1000 -10 12\n' '1800 1000 -10 11\n' '3600 1000 -10 09\n' '5400 0000 -20 08\n' '7200 0000 -20 11\n' '9000 0000 -20 11\n') results = ( android_ds2784_power_monitor.DS2784PowerMonitor.ParseSamplingOutput( data)) self.assertEqual(results['power_samples_mw'], [1.2e-07, 1.1e-07, 9e-08, 1.6e-07, 2.2e-07, 2.2e-07]) self.assertEqual(results['energy_consumption_mwh'], 2.1e-07)
nlt/debug/dataset.py
isabella232/neural-light-transport
176
27607
<filename>nlt/debug/dataset.py # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from os.path import join, dirname from absl import app import tensorflow as tf tf.compat.v1.enable_eager_execution() sys.path.append('../') import datasets from util import io as ioutil def main(_): config_ini = join(dirname(__file__), '..', 'config', 'dragon_specular.ini') config = ioutil.read_config(config_ini) # Make training dataset dataset_name = config.get('DEFAULT', 'dataset') Dataset = datasets.get_dataset_class(dataset_name) dataset = Dataset(config, 'train') path = dataset.files[1] ret = dataset._load_data(path) # Iterate no_batch = config.getboolean('DEFAULT', 'no_batch') datapipe = dataset.build_pipeline(no_batch=no_batch) for batch_i, batch in enumerate(datapipe): from IPython import embed; embed() if __name__ == '__main__': app.run(main)
events/migrations/0043_remove_premium_restrictions.py
alysivji/GetTogether
446
27633
# Generated by Django 2.0 on 2018-08-25 14:19 from django.db import migrations class Migration(migrations.Migration): dependencies = [("events", "0042_allow_team_without_country")] operations = [ migrations.RemoveField(model_name="team", name="is_premium"), migrations.RemoveField(model_name="team", name="premium_by"), migrations.RemoveField(model_name="team", name="premium_expires"), migrations.RemoveField(model_name="team", name="premium_started"), ]
test/com/facebook/buck/parser/testdata/disable_implicit_native_rules/skylark/implicit_in_extension_bzl/extension.bzl
Unknoob/buck
8,027
27635
<filename>test/com/facebook/buck/parser/testdata/disable_implicit_native_rules/skylark/implicit_in_extension_bzl/extension.bzl """ Example module """ def java_maker(*args, **kwargs): """ Make you a java """ java_library(*args, **kwargs)
thriftpy2/contrib/aio/transport/framed.py
JonnoFTW/thriftpy2
5,079
27644
<filename>thriftpy2/contrib/aio/transport/framed.py # -*- coding: utf-8 -*- from __future__ import absolute_import import struct import asyncio from io import BytesIO from .base import TAsyncTransportBase, readall from .buffered import TAsyncBufferedTransport class TAsyncFramedTransport(TAsyncTransportBase): """Class that wraps another transport and frames its I/O when writing.""" def __init__(self, trans): self._trans = trans self._rbuf = BytesIO() self._wbuf = BytesIO() def is_open(self): return self._trans.is_open() @asyncio.coroutine def open(self): return (yield from self._trans.open()) def close(self): return self._trans.close() @asyncio.coroutine def read(self, sz): # Important: don't attempt to read the next frame if the caller # doesn't actually need any data. if sz == 0: return b'' ret = self._rbuf.read(sz) if len(ret) != 0: return ret yield from self.read_frame() return self._rbuf.read(sz) @asyncio.coroutine def read_frame(self): buff = yield from readall(self._trans.read, 4) sz, = struct.unpack('!i', buff) frame = yield from readall(self._trans.read, sz) self._rbuf = BytesIO(frame) def write(self, buf): self._wbuf.write(buf) @asyncio.coroutine def flush(self): # reset wbuf before write/flush to preserve state on underlying failure out = self._wbuf.getvalue() self._wbuf = BytesIO() # N.B.: Doing this string concatenation is WAY cheaper than making # two separate calls to the underlying socket object. Socket writes in # Python turn out to be REALLY expensive, but it seems to do a pretty # good job of managing string buffer operations without excessive # copies self._trans.write(struct.pack("!i", len(out)) + out) yield from self._trans.flush() def getvalue(self): return self._trans.getvalue() class TAsyncFramedTransportFactory(object): def get_transport(self, trans): return TAsyncBufferedTransport(TAsyncFramedTransport(trans))
upper_print.py
DazEB2/SimplePyScripts
117
27657
<reponame>DazEB2/SimplePyScripts<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' def upper_print(f): def wrapper(*args, **kwargs): f(*[i.upper() if hasattr(i, 'upper') else i for i in args], **kwargs) return wrapper if __name__ == '__main__': text = 'hello world!' print(text) # hello world! old_print = print print = upper_print(print) print(text) # HELLO WORLD! print = old_print print(text) # hello world!
AppPkg/Applications/Python/Python-2.7.2/Lib/test/test_ttk_textonly.py
CEOALT1/RefindPlusUDK
2,757
27659
import os from test import test_support # Skip this test if _tkinter does not exist. test_support.import_module('_tkinter') this_dir = os.path.dirname(os.path.abspath(__file__)) lib_tk_test = os.path.abspath(os.path.join(this_dir, '..', 'lib-tk', 'test')) with test_support.DirsOnSysPath(lib_tk_test): import runtktests def test_main(): with test_support.DirsOnSysPath(lib_tk_test): test_support.run_unittest( *runtktests.get_tests(gui=False, packages=['test_ttk'])) if __name__ == '__main__': test_main()
lbworkflow/tests/purchase/models.py
wearypossum4770/django-lb-workflow
194
27666
from django.db import models from lbworkflow.models import BaseWFObj class Purchase(BaseWFObj): title = models.CharField("Title", max_length=255) reason = models.CharField("Reason", max_length=255) def __str__(self): return self.reason class Item(models.Model): purchase = models.ForeignKey( Purchase, on_delete=models.CASCADE, ) name = models.CharField("Name", max_length=255) qty = models.IntegerField("Qty") note = models.CharField("Note", max_length=255) class Meta: verbose_name = "Purchase Item" def __str__(self): return self.name
cube2/server.py
bobssup/kripken
892
27669
<gh_stars>100-1000 #!/usr/bin/env python ''' Sets up websocket server support to run the server in one HTML page and the client in another HTML page. Each connects to a websocket server, which we relay together, so the two pages think they are connected to each other (see websocket_bi tests in emscripten). Instructions for websocket networking: Mode 1: Two clients (one with embedded server) 1. Run this script 2. Run a webserver (e.g. python -m SimpleHTTPServer 8888) 3. Run http://localhost:8888/game.html?low,low,windowed,serve in one browser 4. Run http://localhost:8888/game.html?low,low,windowed in another browser 5. In the second browser, do /connect 'windowed' runs in non-fullscreen mode, useful to run two browsers at once - scroll all the way down to see the canvas. 'serve' runs the embedded server in that client. Mode 2: Server and client 1. Run this script 2. Run a webserver (e.g. python -m SimpleHTTPServer 8888) 3. Run http://localhost:8888/server.html 4. Run http://localhost:8888/game.html?low,low 5. In the client, do /connect Note that you likely need to run the server and client in different browsers or at least browser windows, since browsers throttle background tabs. ''' import os, sys, multiprocessing, time from subprocess import Popen, PIPE, STDOUT __rootpath__ = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def path_from_root(*pathelems): return os.path.join(__rootpath__, *pathelems) sys.path += [path_from_root('tools/'), path_from_root('tools/websockify')] import websockify def websockify_func(wsp): wsp.start_server() client = websockify.WebSocketProxy(verbose=True, listen_port=28785, target_host="127.0.0.1", target_port=28786, run_once=True) client_process = multiprocessing.Process(target=websockify_func, args=(client,)) client_process.start() print 'client on process', client_process.pid server = websockify.WebSocketProxy(verbose=True, listen_port=28780, target_host="127.0.0.1", target_port=28781, run_once=True) server_process = multiprocessing.Process(target=websockify_func, args=(server,)) server_process.start() print 'server on process', server_process.pid def relay_server(child): child.communicate() relay_child = Popen(['python', path_from_root('tools', 'socket_relay.py'), '28781', '28786']) relay_process = multiprocessing.Process(target=relay_server, args=(relay_child,)) relay_process.start() print 'relay on process', relay_process.pid while 1: time.sleep(1)
src/spaczz/regex/__init__.py
brunobg/spaczz
153
27682
<reponame>brunobg/spaczz """Module for regex components.""" from .regexconfig import RegexConfig __all__ = ["RegexConfig"]
imagetagger/imagetagger/annotations/migrations/0006_auto_20170826_1431.py
jbargu/imagetagger
212
27683
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-26 12:31 from __future__ import unicode_literals import json import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('annotations', '0005_auto_20170826_1424'), ] def forward_func(apps, schema_editor): Annotation = apps.get_model("annotations", "Annotation") db_alias = schema_editor.connection.alias # Copy all valid annotations from raw_vector to vector for annotation in Annotation.objects.using(db_alias).all(): try: vector = json.loads(annotation.raw_vector) for key, value in vector.items(): try: # try to convert all numeric vector values to integer vector[key] = int(value) except ValueError: continue annotation.vector = vector annotation.save() except ValueError: # Annotation is invalid, delete it annotation.delete() def backward_func(apps, schema_editor): Annotation = apps.get_model("annotations", "Annotation") db_alias = schema_editor.connection.alias # Copy all annotations from vector to raw_vector for annotation in Annotation.objects.using(db_alias).all(): annotation.raw_vector = json.dumps(annotation.vector) annotation.save() operations = [ migrations.RenameField( model_name='annotation', old_name='vector', new_name='raw_vector', ), migrations.AddField( model_name='annotation', name='vector', field=django.contrib.postgres.fields.jsonb.JSONField(null=True), ), migrations.RunPython(forward_func, backward_func, atomic=True), ]
asn1tools/version.py
eerimoq/asn1tools
198
27689
__version__ = '0.159.0'
tests/integration/boxscore/test_ncaab_boxscore.py
MArtinherz/sportsipy
221
27694
<reponame>MArtinherz/sportsipy<filename>tests/integration/boxscore/test_ncaab_boxscore.py<gh_stars>100-1000 import mock import os import pandas as pd from datetime import datetime from flexmock import flexmock from sportsipy import utils from sportsipy.constants import HOME from sportsipy.ncaab.constants import BOXSCORES_URL, SCHEDULE_URL from sportsipy.ncaab.boxscore import Boxscore, Boxscores MONTH = 1 YEAR = 2020 BOXSCORE = '2020-01-22-19-louisville' def read_file(filename): filepath = os.path.join(os.path.dirname(__file__), 'ncaab', filename) return open('%s' % filepath, 'r', encoding='utf8').read() def mock_pyquery(url): class MockPQ: def __init__(self, html_contents): self.status_code = 200 self.html_contents = html_contents self.text = html_contents def __call__(self, div): return read_file('table.html') if url == BOXSCORES_URL % (MONTH, 5, YEAR): return MockPQ(read_file('boxscores-1-5-2020.html')) if url == BOXSCORES_URL % (MONTH, 6, YEAR): return MockPQ(read_file('boxscores-1-6-2020.html')) boxscore = read_file('%s.html' % BOXSCORE) return MockPQ(boxscore) class MockDateTime: def __init__(self, year, month): self.year = year self.month = month class TestNCAABBoxscore: @mock.patch('requests.get', side_effect=mock_pyquery) def setup_method(self, *args, **kwargs): self.results = { 'date': 'January 22, 2020', 'location': 'KFC Yum! Center, Louisville, Kentucky', 'winner': HOME, 'winning_name': 'Louisville', 'winning_abbr': 'LOUISVILLE', 'losing_name': 'Georgia Tech', 'losing_abbr': 'GEORGIA-TECH', 'pace': 66.2, 'away_ranking': None, 'away_win_percentage': .421, 'away_wins': 8, 'away_losses': 11, 'away_minutes_played': 200, 'away_field_goals': 22, 'away_field_goal_attempts': 48, 'away_field_goal_percentage': .458, 'away_two_point_field_goals': 17, 'away_two_point_field_goal_attempts': 31, 'away_two_point_field_goal_percentage': .548, 'away_three_point_field_goals': 5, 'away_three_point_field_goal_attempts': 17, 'away_three_point_field_goal_percentage': .294, 'away_free_throws': 15, 'away_free_throw_attempts': 20, 'away_free_throw_percentage': .750, 'away_offensive_rebounds': 7, 'away_defensive_rebounds': 23, 'away_total_rebounds': 30, 'away_assists': 11, 'away_steals': 4, 'away_blocks': 4, 'away_turnovers': 16, 'away_personal_fouls': 18, 'away_points': 64, 'away_true_shooting_percentage': .557, 'away_effective_field_goal_percentage': .510, 'away_three_point_attempt_rate': .354, 'away_free_throw_attempt_rate': .417, 'away_offensive_rebound_percentage': 28.0, 'away_defensive_rebound_percentage': 63.9, 'away_total_rebound_percentage': 49.2, 'away_assist_percentage': 50.0, 'away_steal_percentage': 6.1, 'away_block_percentage': 10.5, 'away_turnover_percentage': 22.0, 'away_offensive_rating': 97.0, 'away_defensive_rating': 103.0, 'home_ranking': 6, 'home_win_percentage': .842, 'home_wins': 16, 'home_losses': 3, 'home_minutes_played': 200, 'home_field_goals': 24, 'home_field_goal_attempts': 58, 'home_field_goal_percentage': .414, 'home_two_point_field_goals': 18, 'home_two_point_field_goal_attempts': 38, 'home_two_point_field_goal_percentage': .474, 'home_three_point_field_goals': 6, 'home_three_point_field_goal_attempts': 20, 'home_three_point_field_goal_percentage': .300, 'home_free_throws': 14, 'home_free_throw_attempts': 23, 'home_free_throw_percentage': .609, 'home_offensive_rebounds': 13, 'home_defensive_rebounds': 18, 'home_total_rebounds': 31, 'home_assists': 12, 'home_steals': 9, 'home_blocks': 3, 'home_turnovers': 10, 'home_personal_fouls': 17, 'home_points': 68, 'home_true_shooting_percentage': .493, 'home_effective_field_goal_percentage': .466, 'home_three_point_attempt_rate': .345, 'home_free_throw_attempt_rate': .397, 'home_offensive_rebound_percentage': 36.1, 'home_defensive_rebound_percentage': 72.0, 'home_total_rebound_percentage': 50.8, 'home_assist_percentage': 50.0, 'home_steal_percentage': 13.6, 'home_block_percentage': 9.7, 'home_turnover_percentage': 12.8, 'home_offensive_rating': 103.0, 'home_defensive_rating': 97.0 } flexmock(utils) \ .should_receive('_todays_date') \ .and_return(MockDateTime(YEAR, MONTH)) self.boxscore = Boxscore('2020-01-22-19-louisville') def test_ncaab_boxscore_returns_requested_boxscore(self): for attribute, value in self.results.items(): assert getattr(self.boxscore, attribute) == value assert getattr(self.boxscore, 'summary') == { # Box score is not parsed correctly 'away': [], 'home': [] } def test_invalid_url_yields_empty_class(self): flexmock(Boxscore) \ .should_receive('_retrieve_html_page') \ .and_return(None) boxscore = Boxscore(BOXSCORE) for key, value in boxscore.__dict__.items(): if key == '_uri': continue assert value is None def test_ncaab_boxscore_dataframe_returns_dataframe_of_all_values(self): df = pd.DataFrame([self.results], index=[BOXSCORE]) # Pandas doesn't natively allow comparisons of DataFrames. # Concatenating the two DataFrames (the one generated during the test # and the expected one above) and dropping duplicate rows leaves only # the rows that are unique between the two frames. This allows a quick # check of the DataFrame to see if it is empty - if so, all rows are # duplicates, and they are equal. frames = [df, self.boxscore.dataframe] df1 = pd.concat(frames).drop_duplicates(keep=False) assert df1.empty def test_ncaab_boxscore_players(self): boxscore = Boxscore(BOXSCORE) assert len(boxscore.home_players) == 10 assert len(boxscore.away_players) == 7 for player in boxscore.home_players: assert not player.dataframe.empty for player in boxscore.away_players: assert not player.dataframe.empty def test_ncaab_boxscore_string_representation(self): expected = ('Boxscore for Georgia Tech ' 'at Louisville (January 22, 2020)') boxscore = Boxscore(BOXSCORE) assert boxscore.__repr__() == expected class TestNCAABBoxscores: def setup_method(self): self.expected = { '1-5-2020': [ {'boxscore': '2020-01-05-13-michigan-state', 'away_name': 'Michigan', 'away_abbr': 'michigan', 'away_score': 69, 'away_rank': 12, 'home_name': 'Michigan State', 'home_abbr': 'michigan-state', 'home_score': 87, 'home_rank': 14, 'non_di': False, 'top_25': True, 'winning_name': 'Michigan State', 'winning_abbr': 'michigan-state', 'losing_name': 'Michigan', 'losing_abbr': 'michigan'}, {'boxscore': '2020-01-05-13-saint-josephs', 'away_name': 'Dayton', 'away_abbr': 'dayton', 'away_score': 80, 'away_rank': 20, 'home_name': "<NAME>", 'home_abbr': 'saint-josephs', 'home_score': 67, 'home_rank': None, 'non_di': False, 'top_25': True, 'winning_name': 'Dayton', 'winning_abbr': 'dayton', 'losing_name': "<NAME>", 'losing_abbr': 'saint-josephs'}, {'boxscore': '2020-01-05-15-american', 'away_name': 'Boston University', 'away_abbr': 'boston-university', 'away_score': 63, 'away_rank': None, 'home_name': 'American', 'home_abbr': 'american', 'home_score': 67, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'American', 'winning_abbr': 'american', 'losing_name': 'Boston University', 'losing_abbr': 'boston-university'}, {'boxscore': '2020-01-05-14-lafayette', 'away_name': 'Bucknell', 'away_abbr': 'bucknell', 'away_score': 78, 'away_rank': None, 'home_name': 'Lafayette', 'home_abbr': 'lafayette', 'home_score': 66, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Bucknell', 'winning_abbr': 'bucknell', 'losing_name': 'Lafayette', 'losing_abbr': 'lafayette'}, {'boxscore': '2020-01-05-14-duquesne', 'away_name': 'Davidson', 'away_abbr': 'davidson', 'away_score': 64, 'away_rank': None, 'home_name': 'Duquesne', 'home_abbr': 'duquesne', 'home_score': 71, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Duquesne', 'winning_abbr': 'duquesne', 'losing_name': 'Davidson', 'losing_abbr': 'davidson'}, {'boxscore': '2020-01-05-16-south-dakota', 'away_name': 'Denver', 'away_abbr': 'denver', 'away_score': 78, 'away_rank': None, 'home_name': 'South Dakota', 'home_abbr': 'south-dakota', 'home_score': 80, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'South Dakota', 'winning_abbr': 'south-dakota', 'losing_name': 'Denver', 'losing_abbr': 'denver'}, {'boxscore': '2020-01-05-14-canisius', 'away_name': 'Fairfield', 'away_abbr': 'fairfield', 'away_score': 46, 'away_rank': None, 'home_name': 'Canisius', 'home_abbr': 'canisius', 'home_score': 42, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Fairfield', 'winning_abbr': 'fairfield', 'losing_name': 'Canisius', 'losing_abbr': 'canisius'}, {'boxscore': '2020-01-05-17-northwestern-state', 'away_name': '<NAME>', 'away_abbr': 'houston-baptist', 'away_score': 79, 'away_rank': None, 'home_name': 'Northwestern State', 'home_abbr': 'northwestern-state', 'home_score': 106, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Northwestern State', 'winning_abbr': 'northwestern-state', 'losing_name': '<NAME>', 'losing_abbr': 'houston-baptist'}, {'boxscore': '2020-01-05-14-milwaukee', 'away_name': 'UIC', 'away_abbr': 'illinois-chicago', 'away_score': 62, 'away_rank': None, 'home_name': 'Milwaukee', 'home_abbr': 'milwaukee', 'home_score': 64, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Milwaukee', 'winning_abbr': 'milwaukee', 'losing_name': 'UIC', 'losing_abbr': 'illinois-chicago'}, {'boxscore': '2020-01-05-14-monmouth', 'away_name': 'Iona', 'away_abbr': 'iona', 'away_score': 61, 'away_rank': None, 'home_name': 'Monmouth', 'home_abbr': 'monmouth', 'home_score': 73, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Monmouth', 'winning_abbr': 'monmouth', 'losing_name': 'Iona', 'losing_abbr': 'iona'}, {'boxscore': '2020-01-05-17-north-dakota', 'away_name': "<NAME>", 'away_abbr': 'ipfw', 'away_score': 69, 'away_rank': None, 'home_name': 'North Dakota', 'home_abbr': 'north-dakota', 'home_score': 83, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'North Dakota', 'winning_abbr': 'north-dakota', 'losing_name': "<NAME>", 'losing_abbr': 'ipfw'}, {'boxscore': '2020-01-05-14-green-bay', 'away_name': 'IUPUI', 'away_abbr': 'iupui', 'away_score': 93, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'green-bay', 'home_score': 78, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'IUPUI', 'winning_abbr': 'iupui', 'losing_name': '<NAME>', 'losing_abbr': 'green-bay'}, {'boxscore': '2020-01-05-14-fordham', 'away_name': '<NAME>', 'away_abbr': 'la-salle', 'away_score': 66, 'away_rank': None, 'home_name': 'Fordham', 'home_abbr': 'fordham', 'home_score': 60, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'la-salle', 'losing_name': 'Fordham', 'losing_abbr': 'fordham'}, {'boxscore': '2020-01-05-14-lehigh', 'away_name': 'Loyola (MD)', 'away_abbr': 'loyola-md', 'away_score': 71, 'away_rank': None, 'home_name': 'Lehigh', 'home_abbr': 'lehigh', 'home_score': 78, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Lehigh', 'winning_abbr': 'lehigh', 'losing_name': 'Loyola (MD)', 'losing_abbr': 'loyola-md'}, {'boxscore': '2020-01-05-13-niagara', 'away_name': 'Manhattan', 'away_abbr': 'manhattan', 'away_score': 67, 'away_rank': None, 'home_name': 'Niagara', 'home_abbr': 'niagara', 'home_score': 62, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Manhattan', 'winning_abbr': 'manhattan', 'losing_name': 'Niagara', 'losing_abbr': 'niagara'}, {'boxscore': '2020-01-05-14-saint-peters', 'away_name': 'Marist', 'away_abbr': 'marist', 'away_score': 40, 'away_rank': None, 'home_name': "<NAME>", 'home_abbr': 'saint-peters', 'home_score': 66, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': "<NAME>", 'winning_abbr': 'saint-peters', 'losing_name': 'Marist', 'losing_abbr': 'marist'}, {'boxscore': '2020-01-05-16-saint-louis', 'away_name': 'UMass', 'away_abbr': 'massachusetts', 'away_score': 80, 'away_rank': None, 'home_name': 'Saint Louis', 'home_abbr': 'saint-louis', 'home_score': 83, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'saint-louis', 'losing_name': 'UMass', 'losing_abbr': 'massachusetts'}, {'boxscore': '2020-01-05-12-holy-cross', 'away_name': 'Navy', 'away_abbr': 'navy', 'away_score': 61, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'holy-cross', 'home_score': 63, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'holy-cross', 'losing_name': 'Navy', 'losing_abbr': 'navy'}, {'boxscore': '2020-01-05-15-oakland', 'away_name': 'Northern Kentucky', 'away_abbr': 'northern-kentucky', 'away_score': 75, 'away_rank': None, 'home_name': 'Oakland', 'home_abbr': 'oakland', 'home_score': 64, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Northern Kentucky', 'winning_abbr': 'northern-kentucky', 'losing_name': 'Oakland', 'losing_abbr': 'oakland'}, {'boxscore': '2020-01-05-15-north-dakota-state', 'away_name': 'Northland', 'away_abbr': 'Northland', 'away_score': 43, 'away_rank': None, 'home_name': 'North Dakota State', 'home_abbr': 'north-dakota-state', 'home_score': 97, 'home_rank': None, 'non_di': True, 'top_25': False, 'winning_name': 'North Dakota State', 'winning_abbr': 'north-dakota-state', 'losing_name': 'Northland', 'losing_abbr': 'Northland'}, {'boxscore': '2020-01-05-19-minnesota', 'away_name': 'Northwestern', 'away_abbr': 'northwestern', 'away_score': 68, 'away_rank': None, 'home_name': 'Minnesota', 'home_abbr': 'minnesota', 'home_score': 77, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Minnesota', 'winning_abbr': 'minnesota', 'losing_name': 'Northwestern', 'losing_abbr': 'northwestern'}, {'boxscore': '2020-01-05-18-colorado', 'away_name': 'Oregon State', 'away_abbr': 'oregon-state', 'away_score': 76, 'away_rank': None, 'home_name': 'Colorado', 'home_abbr': 'colorado', 'home_score': 68, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Oregon State', 'winning_abbr': 'oregon-state', 'losing_name': 'Colorado', 'losing_abbr': 'colorado'}, {'boxscore': '2020-01-05-20-illinois', 'away_name': 'Purdue', 'away_abbr': 'purdue', 'away_score': 37, 'away_rank': None, 'home_name': 'Illinois', 'home_abbr': 'illinois', 'home_score': 63, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Illinois', 'winning_abbr': 'illinois', 'losing_name': 'Purdue', 'losing_abbr': 'purdue'}, {'boxscore': '2020-01-05-12-rhode-island', 'away_name': 'Richmond', 'away_abbr': 'richmond', 'away_score': 69, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'rhode-island', 'home_score': 61, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Richmond', 'winning_abbr': 'richmond', 'losing_name': '<NAME>', 'losing_abbr': 'rhode-island'}, {'boxscore': '2020-01-05-14-rider', 'away_name': 'Siena', 'away_abbr': 'siena', 'away_score': 77, 'away_rank': None, 'home_name': 'Rider', 'home_abbr': 'rider', 'home_score': 85, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Rider', 'winning_abbr': 'rider', 'losing_name': 'Siena', 'losing_abbr': 'siena'}, {'boxscore': '2020-01-05-22-washington', 'away_name': 'USC', 'away_abbr': 'southern-california', 'away_score': 40, 'away_rank': None, 'home_name': 'Washington', 'home_abbr': 'washington', 'home_score': 72, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Washington', 'winning_abbr': 'washington', 'losing_name': 'USC', 'losing_abbr': 'southern-california'}, {'boxscore': '2020-01-05-16-george-washington', 'away_name': 'St. Bonaventure', 'away_abbr': 'st-bonaventure', 'away_score': 71, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'george-washington', 'home_score': 66, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'St. Bonaventure', 'winning_abbr': 'st-bonaventure', 'losing_name': '<NAME>', 'losing_abbr': 'george-washington'}, {'boxscore': '2020-01-05-16-xavier', 'away_name': "<NAME> (NY)", 'away_abbr': 'st-johns-ny', 'away_score': 67, 'away_rank': None, 'home_name': 'Xavier', 'home_abbr': 'xavier', 'home_score': 75, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Xavier', 'winning_abbr': 'xavier', 'losing_name': "<NAME> (NY)", 'losing_abbr': 'st-johns-ny'}, {'boxscore': '2020-01-05-13-maine', 'away_name': '<NAME>', 'away_abbr': 'stony-brook', 'away_score': 73, 'away_rank': None, 'home_name': 'Maine', 'home_abbr': 'maine', 'home_score': 52, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'stony-brook', 'losing_name': 'Maine', 'losing_abbr': 'maine'}, {'boxscore': '2020-01-05-12-george-mason', 'away_name': 'VCU', 'away_abbr': 'virginia-commonwealth', 'away_score': 72, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'george-mason', 'home_score': 59, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'VCU', 'winning_abbr': 'virginia-commonwealth', 'losing_name': '<NAME>', 'losing_abbr': 'george-mason'}, {'boxscore': '2020-01-05-13-detroit-mercy', 'away_name': "Wright State", 'away_abbr': "wright-state", 'away_score': 70, 'away_rank': None, 'home_name': 'Detroit', 'home_abbr': 'detroit-mercy', 'home_score': 69, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Wright State', 'winning_abbr': 'wright-state', 'losing_name': "Detroit", 'losing_abbr': "detroit-mercy"} ] } @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search(self, *args, **kwargs): result = Boxscores(datetime(2020, 1, 5)).games assert result == self.expected @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search_invalid_end(self, *args, **kwargs): result = Boxscores(datetime(2020, 1, 5), datetime(2020, 1, 4)).games assert result == self.expected @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search_multiple_days(self, *args, **kwargs): expected = { '1-5-2020': [ {'boxscore': '2020-01-05-13-michigan-state', 'away_name': 'Michigan', 'away_abbr': 'michigan', 'away_score': 69, 'away_rank': 12, 'home_name': 'Michigan State', 'home_abbr': 'michigan-state', 'home_score': 87, 'home_rank': 14, 'non_di': False, 'top_25': True, 'winning_name': 'Michigan State', 'winning_abbr': 'michigan-state', 'losing_name': 'Michigan', 'losing_abbr': 'michigan'}, {'boxscore': '2020-01-05-13-saint-josephs', 'away_name': 'Dayton', 'away_abbr': 'dayton', 'away_score': 80, 'away_rank': 20, 'home_name': "<NAME>", 'home_abbr': 'saint-josephs', 'home_score': 67, 'home_rank': None, 'non_di': False, 'top_25': True, 'winning_name': 'Dayton', 'winning_abbr': 'dayton', 'losing_name': "<NAME>", 'losing_abbr': 'saint-josephs'}, {'boxscore': '2020-01-05-15-american', 'away_name': 'Boston University', 'away_abbr': 'boston-university', 'away_score': 63, 'away_rank': None, 'home_name': 'American', 'home_abbr': 'american', 'home_score': 67, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'American', 'winning_abbr': 'american', 'losing_name': 'Boston University', 'losing_abbr': 'boston-university'}, {'boxscore': '2020-01-05-14-lafayette', 'away_name': 'Bucknell', 'away_abbr': 'bucknell', 'away_score': 78, 'away_rank': None, 'home_name': 'Lafayette', 'home_abbr': 'lafayette', 'home_score': 66, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Bucknell', 'winning_abbr': 'bucknell', 'losing_name': 'Lafayette', 'losing_abbr': 'lafayette'}, {'boxscore': '2020-01-05-14-duquesne', 'away_name': 'Davidson', 'away_abbr': 'davidson', 'away_score': 64, 'away_rank': None, 'home_name': 'Duquesne', 'home_abbr': 'duquesne', 'home_score': 71, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Duquesne', 'winning_abbr': 'duquesne', 'losing_name': 'Davidson', 'losing_abbr': 'davidson'}, {'boxscore': '2020-01-05-16-south-dakota', 'away_name': 'Denver', 'away_abbr': 'denver', 'away_score': 78, 'away_rank': None, 'home_name': 'South Dakota', 'home_abbr': 'south-dakota', 'home_score': 80, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'South Dakota', 'winning_abbr': 'south-dakota', 'losing_name': 'Denver', 'losing_abbr': 'denver'}, {'boxscore': '2020-01-05-14-canisius', 'away_name': 'Fairfield', 'away_abbr': 'fairfield', 'away_score': 46, 'away_rank': None, 'home_name': 'Canisius', 'home_abbr': 'canisius', 'home_score': 42, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Fairfield', 'winning_abbr': 'fairfield', 'losing_name': 'Canisius', 'losing_abbr': 'canisius'}, {'boxscore': '2020-01-05-17-northwestern-state', 'away_name': '<NAME>', 'away_abbr': 'houston-baptist', 'away_score': 79, 'away_rank': None, 'home_name': 'Northwestern State', 'home_abbr': 'northwestern-state', 'home_score': 106, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Northwestern State', 'winning_abbr': 'northwestern-state', 'losing_name': 'Houston Baptist', 'losing_abbr': 'houston-baptist'}, {'boxscore': '2020-01-05-14-milwaukee', 'away_name': 'UIC', 'away_abbr': 'illinois-chicago', 'away_score': 62, 'away_rank': None, 'home_name': 'Milwaukee', 'home_abbr': 'milwaukee', 'home_score': 64, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Milwaukee', 'winning_abbr': 'milwaukee', 'losing_name': 'UIC', 'losing_abbr': 'illinois-chicago'}, {'boxscore': '2020-01-05-14-monmouth', 'away_name': 'Iona', 'away_abbr': 'iona', 'away_score': 61, 'away_rank': None, 'home_name': 'Monmouth', 'home_abbr': 'monmouth', 'home_score': 73, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Monmouth', 'winning_abbr': 'monmouth', 'losing_name': 'Iona', 'losing_abbr': 'iona'}, {'boxscore': '2020-01-05-17-north-dakota', 'away_name': "<NAME>", 'away_abbr': 'ipfw', 'away_score': 69, 'away_rank': None, 'home_name': 'North Dakota', 'home_abbr': 'north-dakota', 'home_score': 83, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'North Dakota', 'winning_abbr': 'north-dakota', 'losing_name': "<NAME>", 'losing_abbr': 'ipfw'}, {'boxscore': '2020-01-05-14-green-bay', 'away_name': 'IUPUI', 'away_abbr': 'iupui', 'away_score': 93, 'away_rank': None, 'home_name': 'Green Bay', 'home_abbr': 'green-bay', 'home_score': 78, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'IUPUI', 'winning_abbr': 'iupui', 'losing_name': '<NAME>', 'losing_abbr': 'green-bay'}, {'boxscore': '2020-01-05-14-fordham', 'away_name': '<NAME>', 'away_abbr': 'la-salle', 'away_score': 66, 'away_rank': None, 'home_name': 'Fordham', 'home_abbr': 'fordham', 'home_score': 60, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'la-salle', 'losing_name': 'Fordham', 'losing_abbr': 'fordham'}, {'boxscore': '2020-01-05-14-lehigh', 'away_name': 'Loyola (MD)', 'away_abbr': 'loyola-md', 'away_score': 71, 'away_rank': None, 'home_name': 'Lehigh', 'home_abbr': 'lehigh', 'home_score': 78, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Lehigh', 'winning_abbr': 'lehigh', 'losing_name': 'Loyola (MD)', 'losing_abbr': 'loyola-md'}, {'boxscore': '2020-01-05-13-niagara', 'away_name': 'Manhattan', 'away_abbr': 'manhattan', 'away_score': 67, 'away_rank': None, 'home_name': 'Niagara', 'home_abbr': 'niagara', 'home_score': 62, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Manhattan', 'winning_abbr': 'manhattan', 'losing_name': 'Niagara', 'losing_abbr': 'niagara'}, {'boxscore': '2020-01-05-14-saint-peters', 'away_name': 'Marist', 'away_abbr': 'marist', 'away_score': 40, 'away_rank': None, 'home_name': "<NAME>", 'home_abbr': 'saint-peters', 'home_score': 66, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': "<NAME>", 'winning_abbr': 'saint-peters', 'losing_name': 'Marist', 'losing_abbr': 'marist'}, {'boxscore': '2020-01-05-16-saint-louis', 'away_name': 'UMass', 'away_abbr': 'massachusetts', 'away_score': 80, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'saint-louis', 'home_score': 83, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Saint Louis', 'winning_abbr': 'saint-louis', 'losing_name': 'UMass', 'losing_abbr': 'massachusetts'}, {'boxscore': '2020-01-05-12-holy-cross', 'away_name': 'Navy', 'away_abbr': 'navy', 'away_score': 61, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'holy-cross', 'home_score': 63, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'holy-cross', 'losing_name': 'Navy', 'losing_abbr': 'navy'}, {'boxscore': '2020-01-05-15-oakland', 'away_name': 'Northern Kentucky', 'away_abbr': 'northern-kentucky', 'away_score': 75, 'away_rank': None, 'home_name': 'Oakland', 'home_abbr': 'oakland', 'home_score': 64, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>entucky', 'winning_abbr': 'northern-kentucky', 'losing_name': 'Oakland', 'losing_abbr': 'oakland'}, {'boxscore': '2020-01-05-15-north-dakota-state', 'away_name': 'Northland', 'away_abbr': 'Northland', 'away_score': 43, 'away_rank': None, 'home_name': 'North Dakota State', 'home_abbr': 'north-dakota-state', 'home_score': 97, 'home_rank': None, 'non_di': True, 'top_25': False, 'winning_name': 'North Dakota State', 'winning_abbr': 'north-dakota-state', 'losing_name': 'Northland', 'losing_abbr': 'Northland'}, {'boxscore': '2020-01-05-19-minnesota', 'away_name': 'Northwestern', 'away_abbr': 'northwestern', 'away_score': 68, 'away_rank': None, 'home_name': 'Minnesota', 'home_abbr': 'minnesota', 'home_score': 77, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Minnesota', 'winning_abbr': 'minnesota', 'losing_name': 'Northwestern', 'losing_abbr': 'northwestern'}, {'boxscore': '2020-01-05-18-colorado', 'away_name': 'Oregon State', 'away_abbr': 'oregon-state', 'away_score': 76, 'away_rank': None, 'home_name': 'Colorado', 'home_abbr': 'colorado', 'home_score': 68, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Oregon State', 'winning_abbr': 'oregon-state', 'losing_name': 'Colorado', 'losing_abbr': 'colorado'}, {'boxscore': '2020-01-05-20-illinois', 'away_name': 'Purdue', 'away_abbr': 'purdue', 'away_score': 37, 'away_rank': None, 'home_name': 'Illinois', 'home_abbr': 'illinois', 'home_score': 63, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Illinois', 'winning_abbr': 'illinois', 'losing_name': 'Purdue', 'losing_abbr': 'purdue'}, {'boxscore': '2020-01-05-12-rhode-island', 'away_name': 'Richmond', 'away_abbr': 'richmond', 'away_score': 69, 'away_rank': None, 'home_name': 'Rhode Island', 'home_abbr': 'rhode-island', 'home_score': 61, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Richmond', 'winning_abbr': 'richmond', 'losing_name': '<NAME>', 'losing_abbr': 'rhode-island'}, {'boxscore': '2020-01-05-14-rider', 'away_name': 'Siena', 'away_abbr': 'siena', 'away_score': 77, 'away_rank': None, 'home_name': 'Rider', 'home_abbr': 'rider', 'home_score': 85, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Rider', 'winning_abbr': 'rider', 'losing_name': 'Siena', 'losing_abbr': 'siena'}, {'boxscore': '2020-01-05-22-washington', 'away_name': 'USC', 'away_abbr': 'southern-california', 'away_score': 40, 'away_rank': None, 'home_name': 'Washington', 'home_abbr': 'washington', 'home_score': 72, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Washington', 'winning_abbr': 'washington', 'losing_name': 'USC', 'losing_abbr': 'southern-california'}, {'boxscore': '2020-01-05-16-george-washington', 'away_name': '<NAME>', 'away_abbr': 'st-bonaventure', 'away_score': 71, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'george-washington', 'home_score': 66, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'st-bonaventure', 'losing_name': '<NAME>', 'losing_abbr': 'george-washington'}, {'boxscore': '2020-01-05-16-xavier', 'away_name': "<NAME> (NY)", 'away_abbr': 'st-johns-ny', 'away_score': 67, 'away_rank': None, 'home_name': 'Xavier', 'home_abbr': 'xavier', 'home_score': 75, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Xavier', 'winning_abbr': 'xavier', 'losing_name': "<NAME> (NY)", 'losing_abbr': 'st-johns-ny'}, {'boxscore': '2020-01-05-13-maine', 'away_name': '<NAME>', 'away_abbr': 'stony-brook', 'away_score': 73, 'away_rank': None, 'home_name': 'Maine', 'home_abbr': 'maine', 'home_score': 52, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'stony-brook', 'losing_name': 'Maine', 'losing_abbr': 'maine'}, {'boxscore': '2020-01-05-12-george-mason', 'away_name': 'VCU', 'away_abbr': 'virginia-commonwealth', 'away_score': 72, 'away_rank': None, 'home_name': '<NAME>', 'home_abbr': 'george-mason', 'home_score': 59, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'VCU', 'winning_abbr': 'virginia-commonwealth', 'losing_name': '<NAME>', 'losing_abbr': 'george-mason'}, {'boxscore': '2020-01-05-13-detroit-mercy', 'away_name': "<NAME>", 'away_abbr': "wright-state", 'away_score': 70, 'away_rank': None, 'home_name': 'Detroit', 'home_abbr': 'detroit-mercy', 'home_score': 69, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'wright-state', 'losing_name': "Detroit", 'losing_abbr': "detroit-mercy"} ], '1-6-2020': [ {'boxscore': '2020-01-06-21-oklahoma-state', 'away_name': 'West Virginia', 'away_abbr': 'west-virginia', 'away_score': 55, 'away_rank': 17, 'home_name': 'Oklahoma State', 'home_abbr': 'oklahoma-state', 'home_score': 41, 'home_rank': None, 'non_di': False, 'top_25': True, 'winning_name': 'West Virginia', 'winning_abbr': 'west-virginia', 'losing_name': 'Oklahoma State', 'losing_abbr': 'oklahoma-state'}, {'boxscore': '2020-01-06-20-jackson-state', 'away_name': 'Alabama A&M', 'away_abbr': 'alabama-am', 'away_score': 66, 'away_rank': None, 'home_name': 'Jackson State', 'home_abbr': 'jackson-state', 'home_score': 57, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Alabama A&M', 'winning_abbr': 'alabama-am', 'losing_name': '<NAME>', 'losing_abbr': 'jackson-state'}, {'boxscore': '2020-01-06-20-grambling', 'away_name': 'Alabama State', 'away_abbr': 'alabama-state', 'away_score': 63, 'away_rank': None, 'home_name': 'Grambling', 'home_abbr': 'grambling', 'home_score': 68, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Grambling', 'winning_abbr': 'grambling', 'losing_name': 'Alabama State', 'losing_abbr': 'alabama-state'}, {'boxscore': '2020-01-06-20-texas-southern', 'away_name': 'Alcorn State', 'away_abbr': 'alcorn-state', 'away_score': 95, 'away_rank': None, 'home_name': 'Texas Southern', 'home_abbr': 'texas-southern', 'home_score': 80, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Al<NAME>', 'winning_abbr': 'alcorn-state', 'losing_name': 'Texas Southern', 'losing_abbr': 'texas-southern'}, {'boxscore': '2020-01-06-19-howard', 'away_name': 'Bethune-Cookman', 'away_abbr': 'bethune-cookman', 'away_score': 102, 'away_rank': None, 'home_name': 'Howard', 'home_abbr': 'howard', 'home_score': 73, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Bethune-Cookman', 'winning_abbr': 'bethune-cookman', 'losing_name': 'Howard', 'losing_abbr': 'howard'}, {'boxscore': '2020-01-06-19-army', 'away_name': 'Colgate', 'away_abbr': 'colgate', 'away_score': 70, 'away_rank': None, 'home_name': 'Army', 'home_abbr': 'army', 'home_score': 65, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Colgate', 'winning_abbr': 'colgate', 'losing_name': 'Army', 'losing_abbr': 'army'}, {'boxscore': '2020-01-06-19-north-carolina-at', 'away_name': 'Florida A&M', 'away_abbr': 'florida-am', 'away_score': 90, 'away_rank': None, 'home_name': 'North Carolina A&T', 'home_abbr': 'north-carolina-at', 'home_score': 97, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'North Carolina A&T', 'winning_abbr': 'north-carolina-at', 'losing_name': 'Florida A&M', 'losing_abbr': 'florida-am'}, {'boxscore': '2020-01-06-19-arkansas-little-rock', 'away_name': 'Georgia Southern', 'away_abbr': 'georgia-southern', 'away_score': 73, 'away_rank': None, 'home_name': '<NAME>ock', 'home_abbr': 'little-rock', 'home_score': 79, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'little-rock', 'losing_name': 'Georgia Southern', 'losing_abbr': 'georgia-southern'}, {'boxscore': '2020-01-06-20-arkansas-state', 'away_name': 'Georgia State', 'away_abbr': 'georgia-state', 'away_score': 87, 'away_rank': None, 'home_name': 'Arkansas State', 'home_abbr': 'arkansas-state', 'home_score': 90, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Arkansas State', 'winning_abbr': 'arkansas-state', 'losing_name': 'Georgia State', 'losing_abbr': 'georgia-state'}, {'boxscore': '2020-01-06-19-appalachian-state', 'away_name': 'Louisiana', 'away_abbr': 'louisiana', 'away_score': 81, 'away_rank': None, 'home_name': 'Appalachian State', 'home_abbr': 'appalachian-state', 'home_score': 73, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Louisiana', 'winning_abbr': 'louisiana', 'losing_name': 'Appalachian State', 'losing_abbr': 'appalachian-state'}, {'boxscore': '2020-01-06-19-coastal-carolina', 'away_name': 'Louisiana-Monroe', 'away_abbr': 'louisiana-monroe', 'away_score': 64, 'away_rank': None, 'home_name': 'Coastal Carolina', 'home_abbr': 'coastal-carolnia', 'home_score': 93, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Coastal Carolina', 'winning_abbr': 'coastal-carolina', 'losing_name': 'Louisiana-Monroe', 'losing_abbr': 'louisiana-monroe'}, {'boxscore': '2020-01-06-19-coppin-state', 'away_name': 'Norfolk State', 'away_abbr': 'norfolk-state', 'away_score': 82, 'away_rank': None, 'home_name': 'Coppin State', 'home_abbr': 'coppin-state', 'home_score': 59, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Norfolk State', 'winning_abbr': 'norfolk-state', 'losing_name': 'Coppin State', 'losing_abbr': 'coppin-state'}, {'boxscore': '2020-01-06-20-texas-arlington', 'away_name': 'South Alabama', 'away_abbr': 'south-alabama', 'away_score': 66, 'away_rank': None, 'home_name': 'Texas-Arlington', 'home_abbr': 'texas-arlington', 'home_score': 54, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'South Alabama', 'winning_abbr': 'south-alabama', 'losing_name': 'Texas-Arlington', 'losing_abbr': 'texas-arlington'}, {'boxscore': '2020-01-06-19-morgan-state', 'away_name': 'South Carolina State', 'away_abbr': 'south-carolina-state', 'away_score': 63, 'away_rank': None, 'home_name': 'Morgan State', 'home_abbr': 'morgan-state', 'home_score': 77, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Morgan State', 'winning_abbr': 'morgan-state', 'losing_name': 'South Carolina State', 'losing_abbr': 'south-carolina-state'}, {'boxscore': '2020-01-06-21-prairie-view', 'away_name': 'Southern', 'away_abbr': 'southern', 'away_score': 54, 'away_rank': None, 'home_name': 'Prairie View', 'home_abbr': 'prairie-view', 'home_score': 64, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': '<NAME>', 'winning_abbr': 'prairie-view', 'losing_name': 'Southern', 'losing_abbr': 'southern'}, {'boxscore': '2020-01-06-20-texas-state', 'away_name': 'Troy', 'away_abbr': 'troy', 'away_score': 71, 'away_rank': None, 'home_name': 'Texas State', 'home_abbr': 'texas-state', 'home_score': 63, 'home_rank': None, 'non_di': False, 'top_25': False, 'winning_name': 'Troy', 'winning_abbr': 'troy', 'losing_name': 'Texas State', 'losing_abbr': 'texas-state'} ] } @mock.patch('requests.get', side_effect=mock_pyquery) def test_boxscores_search_string_representation(self, *args, **kwargs): result = Boxscores(datetime(2020, 1, 5)) assert result.__repr__() == 'NCAAB games for 1-5-2020'
image-generation/variational-auto-encoder/vq-vae/models/vq_vae.py
AaratiAkkapeddi/nnabla-examples
228
27721
# Copyright 2019,2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF import nnabla.initializer as I import numpy as np np.random.seed(1) class ResidualStack(object): def __init__(self, in_channels, num_hidden, num_res_layers, rng=313): self.in_channels = in_channels self.num_hidden = num_hidden self.num_res_layers = num_res_layers self.rng = rng def __call__(self, x, test): out = x for i in range(self.num_res_layers): out = self.res_block(out, scope_name='res_block_'+str(i)) return F.relu(out) def res_block(self, x, scope_name='res_block', test=False): with nn.parameter_scope(scope_name): out = F.relu(x) out = PF.convolution(out, self.num_hidden, (3, 3), stride=(1, 1), pad=(1, 1), with_bias=False, name='conv_1', rng=self.rng) out = PF.batch_normalization(out, name='bn_1', batch_stat=not test) out = F.relu(out) out = PF.convolution(out, self.num_hidden, (1, 1), stride=(1, 1), with_bias=False, name='conv_2', rng=self.rng) out = PF.batch_normalization(out, name='bn_2', batch_stat=not test) return x + out class VectorQuantizer(object): def __init__(self, embedding_dim, num_embedding, commitment_cost, rng, scope_name='vector_quantizer'): self.embedding_dim = embedding_dim self.num_embedding = num_embedding self.commitment_cost = commitment_cost self.rng = rng self.scope_name = scope_name with nn.parameter_scope(scope_name): self.embedding_weight = nn.parameter.get_parameter_or_create('W', shape=(self.num_embedding, self.embedding_dim), initializer=I.UniformInitializer((-1./self.num_embedding, 1./self.num_embedding), rng=self.rng), need_grad=True) def __call__(self, x, return_encoding_indices=False): x = F.transpose(x, (0, 2, 3, 1)) x_flat = x.reshape((-1, self.embedding_dim)) x_flat_squared = F.broadcast( F.sum(x_flat**2, axis=1, keepdims=True), (x_flat.shape[0], self.num_embedding)) emb_wt_squared = F.transpose( F.sum(self.embedding_weight**2, axis=1, keepdims=True), (1, 0)) distances = x_flat_squared + emb_wt_squared - 2 * \ F.affine(x_flat, F.transpose(self.embedding_weight, (1, 0))) encoding_indices = F.min( distances, only_index=True, axis=1, keepdims=True) encoding_indices.need_grad = False quantized = F.embed(encoding_indices.reshape( encoding_indices.shape[:-1]), self.embedding_weight).reshape(x.shape) if return_encoding_indices: return encoding_indices, F.transpose(quantized, (0, 3, 1, 2)) encodings = F.one_hot(encoding_indices, (self.num_embedding,)) e_latent_loss = F.mean(F.squared_error( quantized.get_unlinked_variable(need_grad=False), x)) q_latent_loss = F.mean(F.squared_error( quantized, x.get_unlinked_variable(need_grad=False))) loss = q_latent_loss + self.commitment_cost*e_latent_loss quantized = x + (quantized - x).get_unlinked_variable(need_grad=False) avg_probs = F.mean(encodings, axis=0) perplexity = F.exp(-F.sum(avg_probs*F.log(avg_probs+1.0e-10))) return loss, F.transpose(quantized, (0, 3, 1, 2)), perplexity, encodings class VQVAE(object): def __init__(self, config, training=True): self.in_channels = config['model']['in_channels'] self.num_hidden = config['model']['num_hidden'] self.num_res_layers = config['model']['num_res_layers'] self.rng = np.random.RandomState(config['model']['rng']) self.encoder_res_stack = ResidualStack(in_channels=self.num_hidden, num_hidden=self.num_hidden, num_res_layers=self.num_res_layers, rng=self.rng) self.decoder_res_stack = ResidualStack(in_channels=self.num_hidden, num_hidden=self.num_hidden, num_res_layers=self.num_res_layers, rng=self.rng) self.num_embedding = config['model']['num_embeddings'] self.embedding_dim = config['model']['embedding_dim'] self.commitment_cost = config['model']['commitment_cost'] self.decay = config['model']['decay'] self.training = training self.vq = VectorQuantizer( self.embedding_dim, self.num_embedding, self.commitment_cost, self.rng) def encoder(self, x, test): with nn.parameter_scope('encoder'): out = PF.convolution(x, self.num_hidden, (4, 4), stride=(2, 2), pad=(1, 1), name='conv_1', rng=self.rng) out = PF.batch_normalization(out, batch_stat=not test) out = F.relu(out) out = PF.convolution(out, self.num_hidden, (4, 4), stride=(2, 2), pad=(1, 1), name='conv_2', rng=self.rng) out = self.encoder_res_stack(out, test=test) return out def decoder(self, x, test): with nn.parameter_scope('decoder'): out = self.decoder_res_stack(x, test=test) out = F.relu(out) out = PF.deconvolution(out, self.num_hidden, (4, 4), stride=(2, 2), pad=(1, 1), name='deconv_1', rng=self.rng) out = PF.batch_normalization(out, batch_stat=not test) out = F.relu(out) out = PF.deconvolution(out, self.in_channels, (4, 4), stride=(2, 2), pad=(1, 1), name='deconv_2', rng=self.rng) out = F.tanh(out) return out def __call__(self, img, return_encoding_indices=False, quantized_as_input=False, test=False): with nn.parameter_scope('vq_vae'): # import pdb; pdb.set_trace() if quantized_as_input: return self.decoder(img, test) z = self.encoder(img, test) z = PF.convolution(z, self.embedding_dim, (1, 1), stride=(1, 1)) if return_encoding_indices: return self.vq(z, return_encoding_indices=True) loss, quantized, perplexity, encodings = self.vq(z) img_recon = self.decoder(quantized, test) return loss, img_recon, perplexity
magma/backend/coreir/coreir_transformer.py
leonardt/magma
167
27723
<gh_stars>100-1000 from abc import ABC, abstractmethod from copy import copy import json import logging import os import coreir as pycoreir from magma.digital import Digital from magma.array import Array from magma.bits import Bits from magma.backend.check_wiring_context import check_wiring_context from magma.backend.coreir.coreir_utils import ( attach_debug_info, check_magma_interface, constant_to_value, get_inst_args, get_module_of_inst, magma_interface_to_coreir_module_type, magma_port_to_coreir_port, make_cparams, map_genarg, magma_name_to_coreir_select, Slice) from magma.compile_exception import UnconnectedPortException from magma.interface import InterfaceKind from magma.is_definition import isdefinition from magma.linking import ( get_linked_modules, has_default_linked_module, get_default_linked_module) from magma.logging import root_logger from magma.passes import dependencies from magma.tuple import Tuple from magma.backend.util import get_codegen_debug_info from magma.clock import is_clock_or_nested_clock from magma.passes.clock import ( drive_all_undriven_clocks_in_value, get_all_output_clocks_in_defn) from magma.config import get_debug_mode from magma.protocol_type import MagmaProtocol, MagmaProtocolMeta from magma.ref import PortViewRef, ArrayRef from magma.symbol_table import SYMBOL_TABLE_EMPTY # NOTE(rsetaluri): We do not need to set the level of this logger since it has # already been done in backend/coreir/coreir_backend.py. _logger = root_logger().getChild("coreir_backend") _generator_callbacks = {} def _is_generator(ckt_or_inst): return ckt_or_inst.coreir_genargs is not None def _coreir_longname(magma_defn_or_decl, coreir_module_or_generator): # NOTE(rsetaluri): This is a proxy to exposing a pycoreir/coreir-c API to # get a module's longname. This logic should be identical right now. Another # caveat is that we don't elaborate the CoreIR generator at the magma level, # so it's longname needs to be dynamically reconstructed anyway. namespace = coreir_module_or_generator.namespace.name prefix = "" if namespace == "global" else f"{namespace}_" longname = prefix + coreir_module_or_generator.name if isinstance(coreir_module_or_generator, pycoreir.Module): return longname assert isinstance(coreir_module_or_generator, pycoreir.Generator) param_keys = coreir_module_or_generator.params.keys() for k in param_keys: v = magma_defn_or_decl.coreir_genargs[k] longname += f"__{k}{v}" return longname def _collect_drivers(value): """ Iterate over value to collect the child drivers, packing slices together """ drivers = [] start_idx = 0 for i in range(1, len(value)): # If the next value item is not a reference to an array of bits where # the array matches the previous item and the index is incremented by # one, append the current slice to drivers (may introduce slices of # length 1) if not ( isinstance(value[i].name, ArrayRef) and issubclass(value[i].name.array.T, Digital) and isinstance(value[i - 1].name, ArrayRef) and value[i].name.array is value[i - 1].name.array and value[i].name.index == value[i - 1].name.index + 1 ): drivers.append(value[start_idx:i]) start_idx = i drivers.append(value[start_idx:]) return drivers def _unwrap(x): if isinstance(x, MagmaProtocol): return x._get_magma_value_() if isinstance(x, MagmaProtocolMeta): return x._to_magma_() return x class TransformerBase(ABC): __MISSING = object() def __init__(self, backend, opts): self.backend = backend self.opts = opts self.ran = False self._children = None def run(self): if self.ran: raise RuntimeError("Can only run transformer once") self._children = self.children() for child in self._children: child.run() self.run_self() self.ran = True @abstractmethod def children(self): raise NotImplementedError() def run_self(self): pass def get_opt(self, key, default=__MISSING): if default is TransformerBase.__MISSING: return self.opts[key] return self.opts.get(key, default) class LeafTransformer(TransformerBase): def children(self): return [] class DefnOrDeclTransformer(TransformerBase): def __init__(self, backend, opts, defn_or_decl): super().__init__(backend, opts) self.defn_or_decl = defn_or_decl self.coreir_module = None def children(self): if _is_generator(self.defn_or_decl): return [GeneratorTransformer( self.backend, self.opts, self.defn_or_decl)] try: coreir_module = self.backend.get_module(self.defn_or_decl) _logger.debug(f"{self.defn_or_decl} already compiled, skipping") self.coreir_module = coreir_module return [] except KeyError: pass if not isdefinition(self.defn_or_decl): return [DeclarationTransformer(self.backend, self.opts, self.defn_or_decl)] wrapped = getattr(self.defn_or_decl, "wrappedModule", None) if wrapped and wrapped.context is self.backend.context: return [WrappedTransformer(self.backend, self.opts, self.defn_or_decl)] return [DefinitionTransformer(self.backend, self.opts, self.defn_or_decl)] def run_self(self): self._run_self_impl() self._generate_symbols() self._link_default_module() self._link_modules() def _link_default_module(self): if not has_default_linked_module(self.defn_or_decl): return target = get_default_linked_module(self.defn_or_decl) target = self.backend.get_module(target) self.coreir_module.link_default_module(target) def _link_modules(self): targets = get_linked_modules(self.defn_or_decl) for key, target in targets.items(): target = self.backend.get_module(target) self.coreir_module.link_module(key, target) def _generate_symbols(self): if not self.get_opt("generate_symbols", False): return out_module_name = _coreir_longname( self.defn_or_decl, self.coreir_module) self.opts.get("symbol_table").set_module_name( self.defn_or_decl.name, out_module_name) def _run_self_impl(self): if self.coreir_module: return self.coreir_module = self._children[0].coreir_module self.backend.add_module(self.defn_or_decl, self.coreir_module) if isdefinition(self.defn_or_decl): self.defn_or_decl.wrappedModule = self.coreir_module libs = self.backend.included_libs() self.defn_or_decl.coreir_wrapped_modules_libs_used = libs class GeneratorTransformer(TransformerBase): def __init__(self, backend, opts, defn_or_decl): super().__init__(backend, opts) self.defn_or_decl = defn_or_decl self.coreir_module = None def children(self): try: coreir_module = self.backend.get_module(self.defn_or_decl) _logger.debug(f"{self.defn_or_decl} already compiled, skipping") self.coreir_module = coreir_module return [] except KeyError: pass assert not isdefinition(self.defn_or_decl) return [DeclarationTransformer(self.backend, self.opts, self.defn_or_decl)] def run_self(self): self._generate_symbols() if self.coreir_module is not None: return self.coreir_module = self._children[0].coreir_module def _generate_symbols(self): if not self.get_opt("generate_symbols", False): return global _generator_callbacks def _callback(coreir_inst): magma_names = list(self.defn_or_decl.interface.ports.keys()) coreir_names = list(k for k, _ in coreir_inst.module.type.items()) assert len(magma_names) == len(coreir_names) for magma_name, coreir_name in zip(magma_names, coreir_names): self.opts.get("symbol_table").set_port_name( self.defn_or_decl.name, magma_name, coreir_name) assert self.defn_or_decl not in _generator_callbacks _generator_callbacks[self.defn_or_decl] = _callback class InstanceTransformer(LeafTransformer): def __init__(self, backend, opts, inst, defn): super().__init__(backend, opts) self.inst = inst self.defn = defn self.coreir_inst_gen = None def run_self(self): self.coreir_inst_gen = self.run_self_impl() def run_self_impl(self): _logger.debug( f"Compiling instance {(self.inst.name, type(self.inst).name)}" ) defn = type(self.inst) if hasattr(self.inst, "namespace"): lib = self.backend.get_lib(self.inst.namespace) else: lib = self.backend.get_lib(self.inst.coreir_lib) if self.inst.coreir_lib == "global": lib = self.get_opt("user_namespace", lib) if not _is_generator(self.inst): module = get_module_of_inst(self.backend.context, self.inst, lib) args = get_inst_args(self.inst) args = self.backend.context.new_values(args) return lambda m: m.add_module_instance(self.inst.name, module, args) generator = lib.generators[defn.coreir_name] config_args = {k: v for k, v in self.inst.coreir_configargs.items()} config_args = self.backend.context.new_values(config_args) gen_args = {k: map_genarg(self.backend.context, v) for k, v in defn.coreir_genargs.items()} gen_args = self.backend.context.new_values(gen_args) return lambda m: m.add_generator_instance( self.inst.name, generator, gen_args, config_args) class WrappedTransformer(LeafTransformer): def __init__(self, backend, opts, defn): super().__init__(backend, opts) self.defn = defn self.coreir_module = self.defn.wrappedModule self.backend.include_lib_or_libs( self.defn.coreir_wrapped_modules_libs_used) class DefinitionTransformer(TransformerBase): def __init__(self, backend, opts, defn): super().__init__(backend, opts) self.defn = defn self.coreir_module = None self.decl_tx = DeclarationTransformer(self.backend, self.opts, self.defn) self.inst_txs = { inst: InstanceTransformer(self.backend, self.opts, inst, self.defn) for inst in self.defn.instances } self.clocks = get_all_output_clocks_in_defn(defn) self._constant_cache = {} def children(self): children = [] if not self.get_opt("skip_instance_graph", False): deps = dependencies(self.defn, include_self=False) opts = self.opts.copy() opts.update({"skip_instance_graph": True}) children += [DefnOrDeclTransformer(self.backend, opts, dep) for dep in deps] children += [self.decl_tx] children += self.inst_txs.values() return children def run_self(self): _logger.debug(f"Compiling definition {self.defn}") self.coreir_module = self.decl_tx.coreir_module if self.defn.inline_verilog_strs: inline_verilog = "\n\n".join(x[0] for x in self.defn.inline_verilog_strs) connect_references = {} for _, inline_value_map in self.defn.inline_verilog_strs: for key, value in inline_value_map.items(): connect_references[key] = magma_port_to_coreir_port(value) self.coreir_module.add_metadata("inline_verilog", json.dumps( {"str": inline_verilog, "connect_references": connect_references} )) for name, module in self.defn.compiled_bind_modules.items(): self.backend.bind_module(name, module) self.coreir_module.definition = self.get_coreir_defn() def _generate_symbols(self, coreir_insts): if not self.get_opt("generate_symbols", False): return for inst, coreir_inst in coreir_insts.items(): self.get_opt("symbol_table").set_instance_name( self.defn.name, inst.name, (SYMBOL_TABLE_EMPTY, coreir_inst.name)) self.get_opt("symbol_table").set_instance_type( self.defn.name, inst.name, type(inst).name) def get_coreir_defn(self): coreir_defn = self.coreir_module.new_definition() coreir_insts = {inst: self.inst_txs[inst].coreir_inst_gen(coreir_defn) for inst in self.defn.instances} # Call generator callback if necessary. global _generator_callbacks for inst, coreir_inst in coreir_insts.items(): try: callback = _generator_callbacks.pop(type(inst)) except KeyError: continue callback(coreir_inst) self._generate_symbols(coreir_insts) # If this module was imported from verilog, do not go through the # general module construction flow. Instead just attach the verilog # source as metadata and return the module. if hasattr(self.defn, "verilogFile") and self.defn.verilogFile: metadata = json.dumps({"verilog_string": self.defn.verilogFile}) self.coreir_module.add_metadata("verilog", metadata) return coreir_defn if hasattr(self.defn, "verilog") and self.defn.verilog: metadata = json.dumps({"verilog_body": self.defn.verilog}) self.coreir_module.add_metadata("verilog", metadata) return coreir_defn if self.defn.coreir_lib is not None: self.backend.include_lib_or_libs(self.defn.coreir_lib) for name, port in self.defn.interface.ports.items(): _logger.debug(f"{name}, {port}, {port.is_output()}") for inst, coreir_inst in coreir_insts.items(): if get_codegen_debug_info() and getattr(inst, "debug_info", False): attach_debug_info(coreir_inst, inst.debug_info) if getattr(inst, "coreir_metadata"): for k, v in inst.coreir_metadata.items(): coreir_inst.add_metadata(k, json.dumps(v)) for inst in coreir_insts: for name, port in inst.interface.ports.items(): self.connect_non_outputs(coreir_defn, port) for port in self.defn.interface.ports.values(): self.connect_non_outputs(coreir_defn, port) return coreir_defn def connect_non_outputs(self, module_defn, port): # Recurse into non input types that may contain inout children. if isinstance(port, Tuple) and not port.is_input() or \ isinstance(port, Array) and not port.T.is_input(): for elem in port: self.connect_non_outputs(module_defn, elem) elif not port.is_output(): self.connect(module_defn, port, port.trace()) def get_source(self, port, value, module_defn): port = _unwrap(port) value = _unwrap(value) if isinstance(value, pycoreir.Wireable): return value if isinstance(value, Slice): return module_defn.select(value.get_coreir_select()) if isinstance(value, Bits) and value.const(): return self._const_instance(value, len(value), module_defn) if value.anon() and isinstance(value, Array): drivers = _collect_drivers(value) offset = 0 for d in drivers: d = _unwrap(d) if len(d) == 1: # _collect_drivers will introduce a slice of length 1 for # non-slices, so we index them here with 0 to unpack the # extra array dimension self.connect(module_defn, port[offset], d[0]) else: self.connect(module_defn, Slice(port, offset, offset + len(d)), Slice(d[0].name.array, d[0].name.index, d[-1].name.index + 1)) offset += len(d) return None if isinstance(value, Tuple) and value.anon(): for p, v in zip(port, value): self.connect(module_defn, p, v) return None if value.const(): return self._const_instance(value, None, module_defn) if isinstance(value.name, PortViewRef): return module_defn.select( magma_name_to_coreir_select(value.name)) return module_defn.select(magma_port_to_coreir_port(value)) def connect(self, module_defn, port, value): if value is None and is_clock_or_nested_clock(type(port)): with self.defn.open(): if not drive_all_undriven_clocks_in_value(port, self.clocks): # No default clock raise UnconnectedPortException(port) value = port.trace() if value is None: if port.is_inout(): return # skip inouts because they might be conn. as an input. if getattr(self.defn, "_ignore_undriven_", False): return raise UnconnectedPortException(port) check_wiring_context(port, value) source = self.get_source(port, value, module_defn) if not source: return sink = module_defn.select(magma_port_to_coreir_port(port)) module_defn.connect(source, sink) if get_codegen_debug_info() and getattr(port, "debug_info", False): attach_debug_info(module_defn, port.debug_info, source, sink) def _const_instance(self, constant, num_bits, module_defn): value = constant_to_value(constant) key = (value, num_bits) try: return self._constant_cache[key] except KeyError: pass if num_bits is None: config = self.backend.context.new_values({"value": bool(value)}) name = f"bit_const_{value}_{num_bits}" mod = self.backend.get_lib("corebit").modules["const"] module_defn.add_module_instance(name, mod, config) else: config = self.backend.context.new_values({"value": value}) name = f"const_{value}_{num_bits}" gen = self.backend.get_lib("coreir").generators["const"] gen_args = self.backend.context.new_values({"width": num_bits}) module_defn.add_generator_instance(name, gen, gen_args, config) out = module_defn.select(f"{name}.out") return self._constant_cache.setdefault(key, out) class DeclarationTransformer(LeafTransformer): def __init__(self, backend, opts, decl): super().__init__(backend, opts) self.decl = decl self.coreir_module = None def run_self(self): self.coreir_module = self._run_self_impl() self._generate_symbols() def _generate_symbols(self): if not self.get_opt("generate_symbols", False): return if _is_generator(self.decl): return magma_names = list(self.decl.interface.ports.keys()) coreir_names = list(k for k, _ in self.coreir_module.type.items()) assert len(magma_names) == len(coreir_names) for magma_name, coreir_name in zip(magma_names, coreir_names): self.opts.get("symbol_table").set_port_name( self.decl.name, magma_name, coreir_name) def _run_self_impl(self): self.decl = self.decl _logger.debug(f"Compiling declaration {self.decl}") if self.decl.coreir_lib is not None: self.backend.include_lib_or_libs(self.decl.coreir_lib) # These libraries are already available by default in coreir, so we # don't need declarations. if self.decl.coreir_lib in ["coreir", "corebit", "commonlib", "memory"]: lib = self.backend.get_lib(self.decl.coreir_lib) if not _is_generator(self.decl): return lib.modules[self.decl.coreir_name] return lib.generators[self.decl.coreir_name] try: coreir_module = self.backend.get_module(self.decl) _logger.debug(f"{self.decl} already compiled, skipping") return coreir_module except KeyError: pass if get_debug_mode(): check_magma_interface(self.decl.interface) module_type = magma_interface_to_coreir_module_type( self.backend.context, self.decl.interface) if isinstance(self.decl.interface, InterfaceKind): module_type = self.backend.context.Flip(module_type) kwargs = {} if hasattr(self.decl, "coreir_config_param_types"): param_types = self.decl.coreir_config_param_types kwargs["cparams"] = make_cparams(self.backend.context, param_types) if hasattr(self.decl, "namespace"): # Allows users to choose namespace explicitly with # class MyCircuit(m.Circuit): # namespace = "foo" # overrides user_namespace setting namespace = self.backend.get_lib(self.decl.namespace) else: namespace = self.get_opt("user_namespace", self.backend.context.global_namespace) coreir_module = namespace.new_module( self.decl.coreir_name, module_type, **kwargs) if get_codegen_debug_info() and self.decl.debug_info: attach_debug_info(coreir_module, self.decl.debug_info) for key, value in self.decl.coreir_metadata.items(): coreir_module.add_metadata(key, json.dumps(value)) return coreir_module
test/connector/exchange/altmarkets/test_altmarkets_user_stream_tracker.py
BGTCapital/hummingbot
542
27726
<gh_stars>100-1000 #!/usr/bin/env python import sys import asyncio import logging import unittest import conf from os.path import join, realpath from hummingbot.connector.exchange.altmarkets.altmarkets_user_stream_tracker import AltmarketsUserStreamTracker from hummingbot.connector.exchange.altmarkets.altmarkets_auth import AltmarketsAuth from hummingbot.core.utils.async_utils import safe_ensure_future from hummingbot.logger.struct_logger import METRICS_LOG_LEVEL sys.path.insert(0, realpath(join(__file__, "../../../../../"))) logging.basicConfig(level=METRICS_LOG_LEVEL) class AltmarketsUserStreamTrackerUnitTest(unittest.TestCase): api_key = conf.altmarkets_api_key api_secret = conf.altmarkets_secret_key @classmethod def setUpClass(cls): cls.ev_loop: asyncio.BaseEventLoop = asyncio.get_event_loop() cls.trading_pairs = ["BTC-USD"] cls.user_stream_tracker: AltmarketsUserStreamTracker = AltmarketsUserStreamTracker( altmarkets_auth=AltmarketsAuth(cls.api_key, cls.api_secret), trading_pairs=cls.trading_pairs) cls.user_stream_tracker_task: asyncio.Task = safe_ensure_future(cls.user_stream_tracker.start()) def test_user_stream(self): # Wait process some msgs. print("\nSleeping for 30s to gather some user stream messages.") self.ev_loop.run_until_complete(asyncio.sleep(30.0)) print(self.user_stream_tracker.user_stream)
catalyst/core/misc.py
tadejsv/catalyst
206
27738
from typing import Dict, List, Tuple, Union from collections import OrderedDict from functools import lru_cache import warnings from torch.utils.data import BatchSampler, DataLoader from catalyst.core.callback import ( Callback, CallbackWrapper, IBackwardCallback, ICriterionCallback, IOptimizerCallback, ISchedulerCallback, ) from catalyst.typing import RunnerCriterion, RunnerOptimizer, RunnerScheduler def get_original_callback(callback: Callback) -> Callback: """Docs.""" while isinstance(callback, CallbackWrapper): callback = callback.callback return callback def callback_isinstance(callback: Callback, class_or_tuple) -> bool: """Check if callback is the same type as required ``class_or_tuple`` Args: callback: callback to check class_or_tuple: class_or_tuple to compare with Returns: bool: true if first object has the required type """ callback = get_original_callback(callback) return isinstance(callback, class_or_tuple) def sort_callbacks_by_order( callbacks: Union[List, Dict, OrderedDict] ) -> "OrderedDict[str, Callback]": """Creates an sequence of callbacks and sort them. Args: callbacks: either list of callbacks or ordered dict Returns: sequence of callbacks sorted by ``callback order`` Raises: TypeError: if `callbacks` is out of `None`, `dict`, `OrderedDict`, `list` """ if callbacks is None: output = OrderedDict() elif isinstance(callbacks, (dict, OrderedDict)): output = [(k, v) for k, v in callbacks.items()] output = sorted(output, key=lambda x: x[1].order) output = OrderedDict(output) elif isinstance(callbacks, list): output = sorted(callbacks, key=lambda x: x.order) output = OrderedDict([(i, value) for i, value in enumerate(output)]) else: raise TypeError( f"Callbacks must be either Dict/OrderedDict or list, " f"got {type(callbacks)}" ) return output @lru_cache(maxsize=42) def is_str_intersections(origin_string: str, strings: Tuple): """Docs.""" return any(x in origin_string for x in strings) def get_loader_batch_size(loader: DataLoader): """Docs.""" batch_size = loader.batch_size if batch_size is not None: return batch_size batch_size = loader.batch_sampler.batch_size if batch_size is not None: return batch_size raise NotImplementedError( "No `batch_size` found," "please specify it with `loader.batch_size`," "or `loader.batch_sampler.batch_size`" ) def get_loader_num_samples(loader: DataLoader): """Docs.""" batch_size = get_loader_batch_size(loader) if isinstance(loader.batch_sampler, BatchSampler): # pytorch default item-based samplers if loader.drop_last: return (len(loader.dataset) // batch_size) * batch_size else: return len(loader.dataset) else: # pytorch batch-based samplers return len(loader) * batch_size def check_callbacks( callbacks: OrderedDict, criterion: RunnerCriterion = None, optimizer: RunnerOptimizer = None, scheduler: RunnerScheduler = None, ): """Docs.""" callback_exists = lambda callback_fn: any( callback_isinstance(x, callback_fn) for x in callbacks.values() ) if criterion is not None and not callback_exists(ICriterionCallback): warnings.warn( "No ``ICriterionCallback/CriterionCallback`` were found " "while runner.criterion is not None." "Do you compute the loss during ``runner.handle_batch``?" ) if (criterion is not None or optimizer is not None) and not callback_exists( IBackwardCallback ): warnings.warn( "No ``IBackwardCallback/BackwardCallback`` were found " "while runner.criterion/optimizer is not None." "Do you backward the loss during ``runner.handle_batch``?" ) if optimizer is not None and not callback_exists(IOptimizerCallback): warnings.warn( "No ``IOptimizerCallback/OptimizerCallback`` were found " "while runner.optimizer is not None." "Do run optimisation step pass during ``runner.handle_batch``?" ) if scheduler is not None and not callback_exists(ISchedulerCallback): warnings.warn( "No ``ISchedulerCallback/SchedulerCallback`` were found " "while runner.scheduler is not None." "Do you make scheduler step during ``runner.handle_batch``?" ) __all__ = [ "get_original_callback", "callback_isinstance", "check_callbacks", "is_str_intersections", "get_loader_batch_size", "get_loader_num_samples", "sort_callbacks_by_order", ]
practice/bitwise_operations/ex2.py
recursivelycurious/wordnik-repl
346
27764
<reponame>recursivelycurious/wordnik-repl print 0b1, #1 print 0b10, #2 print 0b11, #3 print 0b100, #4 print 0b101, #5 print 0b110, #6 print 0b111 #7 print "******" print 0b1 + 0b11 print 0b11 * 0b11
learning_algorithm/neural_network.py
Bermuhz/DataMiningCompetitionFirstPrize
128
27773
<reponame>Bermuhz/DataMiningCompetitionFirstPrize from sklearn.neural_network import MLPClassifier from commons import variables from commons import tools from scipy.stats import mode def learn(x, y, test_x): (temp_x, temp_y) = tools.simple_negative_sample(x, y, variables.select_rate_nn) clf = MLPClassifier(hidden_layer_sizes=(variables.unit_num_nn,), random_state=2017, max_iter=2000, alpha=variables.alpha_nn, learning_rate_init=variables.learning_rate_init_nn,solver="adam",activation="relu").fit(temp_x, temp_y) prediction_list = clf.predict(test_x) prediction_list_prob = clf.predict_proba(test_x) return prediction_list,prediction_list_prob
top_players.py
ergest/Fantasy-Premier-League
1,011
27794
<gh_stars>1000+ from getters import * from parsers import * def main(): data = get_data() parse_top_players(data, 'data/2020-21') if __name__ == '__main__': main()
ch10-unsupervised/clustering/spectral_clustering/tests/test_spectral_embedding_.py
skforest/intro_ds
314
27796
# -*- coding: UTF-8 -*- import numpy as np from numpy.testing import assert_array_almost_equal from spectral_clustering.spectral_embedding_ import spectral_embedding def assert_first_col_equal(maps): constant_vec = [1] * maps.shape[0] assert_array_almost_equal(maps[:, 0] / maps[0, 0], constant_vec) def test_spectral_embedding(): """ 根据spectral embedding的定义,第一列的数据是恒等的 """ adjacency = np.array([ [0., 0.8, 0.9, 0.], [0.8, 0., 0., 0.], [0.9, 0., 0., 1.], [0., 0., 1., 0.]]) maps = spectral_embedding( adjacency, n_components=2, drop_first=False, eigen_solver="arpack") assert_first_col_equal(maps) maps_1 = spectral_embedding( adjacency, n_components=2, drop_first=False, eigen_solver="lobpcg") assert_first_col_equal(maps_1)
GPLT_Python/L1-003.py
upupming/algorithm
107
27803
<gh_stars>100-1000 a = str(input()) b = {'0': 0, '1': 0, '2': 0, '3': 0, '4': 0, '5': 0, '6': 0, '7': 0, '8': 0, '9': 0} for i in a: b[i] = b[i] + 1 for i in range(len(b)): if b[str(i)] == 0: continue print(str(i) + ':' + str(b[str(i)]))
cubes/query/__init__.py
digitalsatori/cubes
1,020
27807
from .browser import * from .cells import * from .computation import * from .statutils import *
pymoo/operators/mutation/nom.py
jarreguit/pymoo
762
27808
<filename>pymoo/operators/mutation/nom.py from pymoo.core.mutation import Mutation class NoMutation(Mutation): def _do(self, problem, X, **kwargs): return X