max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
python/spec/fixtures/setup_files/imports_version.py
lioramilbaum/dependabot-core
2,670
11068753
<gh_stars>1000+ from setuptools import setup, find_packages from split_settings import __version__ setup(name='python-package', version=__version__, description='Example setup.py', url='httos://github.com/example/python-package', author='Dependabot', scripts=[], packages=find_packages(), setup_requires=[ 'numpy==1.11.0', 'pytest-runner', ], install_requires=[ 'boto3==1.3.1', 'flake8 > 2.5.4, < 3.0.0', 'gocardless_pro', 'numpy>=1.11.0', 'pandas==0.19.2', 'pep8==1.7.0', 'psycopg2==2.6.1', 'raven == 5.32.0', 'requests==2.12.*', 'scipy==0.18.1', 'scikit-learn==0.18.1', ], tests_require=[ 'pytest==2.9.1', 'responses==0.5.1', ] )
parlai/chat_service/utils/config.py
zl930216/ParlAI
9,228
11068774
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Config Utils. """ import yaml from collections import namedtuple WorldConfig = namedtuple( "WorldConfig", [ "world_name", "onboarding_name", "task_name", "max_time_in_pool", "agents_required", "backup_task", ], ) def parse_configuration_file(config_path): """ Read the config file for an experiment to get ParlAI settings. :param config_path: path to config :return: parsed configuration dictionary """ result = {} result["configs"] = {} with open(config_path) as f: cfg = yaml.load(f.read(), Loader=yaml.SafeLoader) # get world path result["world_path"] = cfg.get("world_module") if not result["world_path"]: raise ValueError("Did not specify world module") result["overworld"] = cfg.get("overworld") if not result["overworld"]: raise ValueError("Did not specify overworld") result["max_workers"] = cfg.get("max_workers") if not result["max_workers"]: raise ValueError("Did not specify max_workers") result["task_name"] = cfg.get("task_name") if not result["task_name"]: raise ValueError("Did not specify task name") task_world = cfg.get("tasks") if task_world is None or len(task_world) == 0: raise ValueError("task not in config file") # get task file for task_name, configuration in task_world.items(): if "task_world" not in configuration: raise ValueError("{} does not specify a task".format(task_name)) result["configs"][task_name] = WorldConfig( world_name=task_name, onboarding_name=configuration.get("onboard_world"), task_name=configuration.get("task_world"), max_time_in_pool=configuration.get("timeout") or 300, agents_required=configuration.get("agents_required") or 1, backup_task=configuration.get("backup_task"), ) # get world options, additional args result["world_opt"] = cfg.get("opt", {}) result["additional_args"] = cfg.get("additional_args", {}) return result
tests/test_visitors/test_ast/test_complexity/test_classes/test_bases_classes_counts.py
cdhiraj40/wemake-python-styleguide
1,931
11068778
import pytest from wemake_python_styleguide.violations.complexity import ( TooManyBaseClassesViolation, ) from wemake_python_styleguide.visitors.ast.complexity.classes import ( ClassComplexityVisitor, ) correct_count = """ class CorrectClassName( FirstParentClass, SecondParentClass, ThirdParentClass, ): ... """ correct_count_with_keywords = """ class CorrectClassName( FirstParentClass, SecondParentClass, ThirdParentClass, first=1, second=2, third=3, fourth=4, fifth=5, ): ... """ too_many_count = """ class SomeClassName( FirstParentClass, SecondParentClass, ThirdParentClass, CustomClass, AddedClass, ): ... """ @pytest.mark.parametrize('code', [ correct_count, correct_count_with_keywords, ]) def test_correct_count( assert_errors, parse_ast_tree, code, default_options, ): """Testing of correct base classes number.""" tree = parse_ast_tree(code) visitor = ClassComplexityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize('code', [ too_many_count, ]) def test_bad_number_default_option( assert_errors, assert_error_text, parse_ast_tree, code, default_options, ): """Testing of base classes number with default options.""" tree = parse_ast_tree(code) visitor = ClassComplexityVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [TooManyBaseClassesViolation]) assert_error_text(visitor, '5', default_options.max_base_classes) @pytest.mark.parametrize('code', [ too_many_count, correct_count, correct_count_with_keywords, ]) def test_bad_number_custom_option( assert_errors, parse_ast_tree, code, options, ): """Testing of base classes number with custom options.""" tree = parse_ast_tree(code) options = options(max_base_classes=5) visitor = ClassComplexityVisitor(options, tree=tree) visitor.run() assert_errors(visitor, [])
tests/test_plugin.py
Vlczech/spectree
183
11068818
<gh_stars>100-1000 import pytest from spectree.utils import get_model_key, get_model_path_key, get_model_schema from .common import JSON, SECURITY_SCHEMAS, Cookies, Headers, Query, Resp, get_paths from .test_plugin_falcon import api as falcon_api from .test_plugin_flask import api as flask_api from .test_plugin_flask import api_global_secure as flask_api_global_secure from .test_plugin_flask import api_secure as flask_api_secure from .test_plugin_flask_blueprint import api as flask_bp_api from .test_plugin_flask_view import api as flask_view_api from .test_plugin_starlette import api as starlette_api @pytest.mark.parametrize( "api", [ flask_api, flask_bp_api, flask_view_api, falcon_api, starlette_api, ], ) def test_plugin_spec(api): models = { get_model_key(model=m): get_model_schema(model=m) for m in (Query, JSON, Resp, Cookies, Headers) } for name, schema in models.items(): schema.pop("definitions", None) assert api.spec["components"]["schemas"][name] == schema assert api.spec["tags"] == [ {"name": "test"}, {"name": "health"}, { "description": "🐱", "externalDocs": { "description": "", "url": "https://pypi.org", }, "name": "API", }, ] assert get_paths(api.spec) == [ "/api/user/{name}", "/api/user_annotated/{name}", "/ping", ] ping = api.spec["paths"]["/ping"]["get"] assert ping["tags"] == ["test", "health"] assert ping["parameters"][0]["in"] == "header" assert ping["summary"] == "summary" assert ping["description"] == "description" assert ping["operationId"] == "get_/ping" user = api.spec["paths"]["/api/user/{name}"]["post"] assert user["tags"] == ["API", "test"] assert ( user["requestBody"]["content"]["application/json"]["schema"]["$ref"] == f"#/components/schemas/{get_model_path_key('tests.common.JSON')}" ) assert len(user["responses"]) == 3 params = user["parameters"] for param in params: if param["in"] == "path": assert param["name"] == "name" elif param["in"] == "query": assert param["name"] == "order" def test_secure_spec(): assert [*flask_api_secure.spec["components"]["securitySchemes"].keys()] == [ scheme.name for scheme in SECURITY_SCHEMAS ] paths = flask_api_secure.spec["paths"] # iter paths for path, path_data in paths.items(): security = path_data["get"].get("security") # check empty-secure path if path == "/no-secure-ping": assert security is None else: # iter secure names and params for secure_key, secure_value in security[0].items(): # check secure names valid assert secure_key in [scheme.name for scheme in SECURITY_SCHEMAS] # check if flow exist if secure_value: scopes = [ scheme.data.flows["authorizationCode"]["scopes"] for scheme in SECURITY_SCHEMAS if scheme.name == secure_key ] assert set(secure_value).issubset(*scopes) def test_secure_global_spec(): assert [*flask_api_global_secure.spec["components"]["securitySchemes"].keys()] == [ scheme.name for scheme in SECURITY_SCHEMAS ] paths = flask_api_global_secure.spec["paths"] global_security = flask_api_global_secure.spec["security"] assert global_security == [{"auth_apiKey": []}] # iter paths for path, path_data in paths.items(): security = path_data["get"].get("security") # check empty-secure path if path == "/no-secure-override-ping": # check if it is defined overridden no auth specification assert security == [] elif path == "/oauth2-flows-override-ping": # check if it is defined overridden security specification assert security == [{"auth_oauth2": ["admin", "read"]}] elif path == "/global-secure-ping": # check if local security specification is missing, # when was not specified explicitly assert security is None elif path == "/security_and": # check if AND operation is supported assert security == [{"auth_apiKey": [], "auth_apiKey_backup": []}] elif path == "/security_or": # check if OR operation is supported assert security == [{"auth_apiKey": []}, {"auth_apiKey_backup": []}]
core/migrations/0008_auto__add_field_attachment_filename.py
nuwainfo/treeio
242
11068890
<gh_stars>100-1000 # encoding: utf-8 # Copyright 2011 Tree.io Limited # This file is part of Treeio. # License www.tree.io/license # encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Attachment.filename' db.add_column('core_attachment', 'filename', self.gf( 'django.db.models.fields.CharField')(default='', max_length=64), keep_default=False) def backwards(self, orm): # Deleting field 'Attachment.filename' db.delete_column('core_attachment', 'filename') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.accessentity': { 'Meta': {'object_name': 'AccessEntity'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'core.attachment': { 'Meta': {'object_name': 'Attachment'}, 'attached_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'attached_object': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Object']", 'null': 'True', 'blank': 'True'}), 'attached_record': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.UpdateRecord']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mimetype': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'uploaded_by': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']"}) }, 'core.comment': { 'Meta': {'object_name': 'Comment'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']", 'null': 'True', 'blank': 'True'}), 'body': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dislikes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_disliked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'likes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_liked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}) }, 'core.configsetting': { 'Meta': {'object_name': 'ConfigSetting'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'value': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'core.group': { 'Meta': {'ordering': "['name']", 'object_name': 'Group', '_ormbases': ['core.AccessEntity']}, 'accessentity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.AccessEntity']", 'unique': 'True', 'primary_key': 'True'}), 'details': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['core.Group']"}) }, 'core.invitation': { 'Meta': {'object_name': 'Invitation'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'default_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Group']", 'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'sender': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']", 'null': 'True', 'blank': 'True'}) }, 'core.location': { 'Meta': {'object_name': 'Location', '_ormbases': ['core.Object']}, 'name': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'child_set'", 'null': 'True', 'to': "orm['core.Location']"}) }, 'core.module': { 'Meta': {'ordering': "['name']", 'object_name': 'Module', '_ormbases': ['core.Object']}, 'details': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'display': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'system': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '512'}) }, 'core.modulesetting': { 'Meta': {'object_name': 'ModuleSetting'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Group']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'module': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Module']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '512'}), 'perspective': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Perspective']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']", 'null': 'True', 'blank': 'True'}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'core.object': { 'Meta': {'object_name': 'Object'}, 'comments': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.Comment']"}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'objects_created'", 'null': 'True', 'to': "orm['core.User']"}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dislikes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_disliked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'full_access': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_full_access'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'likes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_liked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'links': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'links_rel_+'", 'null': 'True', 'to': "orm['core.Object']"}), 'nuvius_resource': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'object_name': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'object_type': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'read_access': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'objects_read_access'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}), 'subscribers': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'subscriptions'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['core.Tag']", 'null': 'True', 'blank': 'True'}), 'trash': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'core.page': { 'Meta': {'ordering': "['name']", 'object_name': 'Page', '_ormbases': ['core.Object']}, 'body': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'folder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.PageFolder']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'core.pagefolder': { 'Meta': {'object_name': 'PageFolder', '_ormbases': ['core.Object']}, 'details': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}) }, 'core.perspective': { 'Meta': {'object_name': 'Perspective', '_ormbases': ['core.Object']}, 'details': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'modules': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['core.Module']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'object_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.Object']", 'unique': 'True', 'primary_key': 'True'}) }, 'core.revision': { 'Meta': {'object_name': 'Revision'}, 'change_type': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Object']"}), 'previous': ('django.db.models.fields.related.OneToOneField', [], {'blank': 'True', 'related_name': "'next'", 'unique': 'True', 'null': 'True', 'to': "orm['core.Revision']"}) }, 'core.revisionfield': { 'Meta': {'object_name': 'RevisionField'}, 'field': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'field_type': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'revision': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Revision']"}), 'value': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'value_key': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'revisionfield_key'", 'null': 'True', 'to': "orm['core.Object']"}), 'value_key_acc': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'revisionfield_key_acc'", 'null': 'True', 'to': "orm['core.AccessEntity']"}), 'value_m2m': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'revisionfield_m2m'", 'symmetrical': 'False', 'to': "orm['core.Object']"}), 'value_m2m_acc': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'revisionfield_m2m_acc'", 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}) }, 'core.tag': { 'Meta': {'ordering': "['name']", 'object_name': 'Tag'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '512'}) }, 'core.updaterecord': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'UpdateRecord'}, 'about': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'updates'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.Object']"}), 'author': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'sent_updates'", 'null': 'True', 'to': "orm['core.User']"}), 'body': ('django.db.models.fields.TextField', [], {'default': "''", 'null': 'True', 'blank': 'True'}), 'comments': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'comments_on_updates'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.Comment']"}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'dislikes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'updates_disliked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'format_message': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'format_strings': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'likes': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'updates_liked'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.User']"}), 'recipients': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'received_updates'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['core.AccessEntity']"}), 'record_type': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'sender': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'sent_updates'", 'null': 'True', 'to': "orm['core.Object']"}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}) }, 'core.user': { 'Meta': {'ordering': "['name']", 'object_name': 'User', '_ormbases': ['core.AccessEntity']}, 'accessentity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['core.AccessEntity']", 'unique': 'True', 'primary_key': 'True'}), 'default_group': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'default_user_set'", 'null': 'True', 'to': "orm['core.Group']"}), 'disabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_access': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'other_groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['core.Group']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'core.widget': { 'Meta': {'ordering': "['weight']", 'object_name': 'Widget'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'module_name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'perspective': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.Perspective']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['core.User']"}), 'weight': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'widget_name': ('django.db.models.fields.CharField', [], {'max_length': '256'}) } } complete_apps = ['core']
OpenDataCatalog/comments/widgets.py
runonthespot/Open-Data-Catalog
105
11068923
from django.forms.util import flatatt from django.utils.encoding import StrAndUnicode, force_unicode from django.utils.html import conditional_escape from django.utils.safestring import mark_safe class StarsRadioInput(StrAndUnicode): """ An object used by RadioFieldRenderer that represents a single <input type='radio'>. """ def __init__(self, name, value, attrs, choice, index): self.name, self.value = name, value self.attrs = attrs self.choice_value = force_unicode(choice[0]) self.choice_label = force_unicode(choice[1]) self.index = index def __unicode__(self): return mark_safe(u'%s' % self.tag()) def is_checked(self): return self.value == self.choice_value def tag(self): if 'id' in self.attrs: self.attrs['id'] = '%s_%s' % (self.attrs['id'], self.index) final_attrs = dict(self.attrs, type='radio', name=self.name, value=self.choice_value) if self.is_checked(): final_attrs['checked'] = 'checked' return mark_safe(u'<input%s />' % flatatt(final_attrs)) class StarsRadioFieldRenderer(StrAndUnicode): def __init__(self, name, value, attrs, choices): self.name, self.value, self.attrs = name, value, attrs self.choices = choices def __iter__(self): for i, choice in enumerate(self.choices): yield StarsRadioInput(self.name, self.value, self.attrs.copy(), choice, i) def __getitem__(self, idx): choice = self.choices[idx] # Let the IndexError propogate return StarsRadioInput(self.name, self.value, self.attrs.copy(), choice, idx) def __unicode__(self): return self.render() def render(self): """Outputs a <ul> for this set of radio fields.""" return mark_safe(u'\n%s\n' % u'\n'.join([u'%s' % force_unicode(w) for w in self]))
tools/mo/openvino/tools/mo/front/tf/roll_ext.py
ryanloney/openvino-1
1,127
11068947
<filename>tools/mo/openvino/tools/mo/front/tf/roll_ext.py # Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from openvino.tools.mo.ops.roll import Roll from openvino.tools.mo.front.extractor import FrontExtractorOp class RollExtractor(FrontExtractorOp): op = 'Roll' enabled = True @classmethod def extract(cls, node): Roll.update_node_stat(node, {}) return cls.enabled
jiant/tasks/lib/udpos.py
yzpang/jiant
1,108
11068951
<reponame>yzpang/jiant<filename>jiant/tasks/lib/udpos.py import numpy as np import torch from dataclasses import dataclass from typing import List, Union from jiant.tasks.core import ( BaseExample, BaseTokenizedExample, BaseDataRow, BatchMixin, Task, TaskTypes, ) from jiant.tasks.lib.templates.shared import ( labels_to_bimap, create_input_set_from_tokens_and_segments, construct_single_input_tokens_and_segment_ids, pad_single_with_feat_spec, ) from jiant.utils.python.datastructures import zip_equal from jiant.utils.python.io import read_file_lines ARBITRARY_OVERLY_LONG_WORD_CONSTRAINT = 100 # In a rare number of cases, a single word (usually something like a mis-processed URL) # is overly long, and should not be treated as a real multi-subword-token word. # In these cases, we simply replace it with an UNK token. @dataclass class Example(BaseExample): guid: str tokens: List[str] pos_list: List[str] def tokenize(self, tokenizer): all_tokenized_tokens = [] labels = [] label_mask = [] for token, pos in zip_equal(self.tokens, self.pos_list): # Tokenize each "token" separately, assign label only to first token tokenized = tokenizer.tokenize(token) # If the token can't be tokenized, or is too long, replace with a single <unk> if len(tokenized) == 0 or len(tokenized) > ARBITRARY_OVERLY_LONG_WORD_CONSTRAINT: tokenized = [tokenizer.unk_token] all_tokenized_tokens += tokenized padding_length = len(tokenized) - 1 labels += [UdposTask.LABEL_TO_ID.get(pos, None)] + [None] * padding_length label_mask += [1] + [0] * padding_length return TokenizedExample( guid=self.guid, tokens=all_tokenized_tokens, labels=labels, label_mask=label_mask, ) @dataclass class TokenizedExample(BaseTokenizedExample): guid: str tokens: List labels: List[Union[int, None]] label_mask: List[int] def featurize(self, tokenizer, feat_spec): unpadded_inputs = construct_single_input_tokens_and_segment_ids( input_tokens=self.tokens, tokenizer=tokenizer, feat_spec=feat_spec, ) input_set = create_input_set_from_tokens_and_segments( unpadded_tokens=unpadded_inputs.unpadded_tokens, unpadded_segment_ids=unpadded_inputs.unpadded_segment_ids, tokenizer=tokenizer, feat_spec=feat_spec, ) # Replicate padding / additional tokens for the label ids and mask if feat_spec.sep_token_extra: label_suffix = [None, None] mask_suffix = [0, 0] special_tokens_count = 3 # CLS, SEP-SEP else: label_suffix = [None] mask_suffix = [0] special_tokens_count = 2 # CLS, SEP unpadded_labels = ( [None] + self.labels[: feat_spec.max_seq_length - special_tokens_count] + label_suffix ) unpadded_labels = [i if i is not None else -1 for i in unpadded_labels] unpadded_label_mask = ( [0] + self.label_mask[: feat_spec.max_seq_length - special_tokens_count] + mask_suffix ) padded_labels = pad_single_with_feat_spec( ls=unpadded_labels, feat_spec=feat_spec, pad_idx=-1, ) padded_label_mask = pad_single_with_feat_spec( ls=unpadded_label_mask, feat_spec=feat_spec, pad_idx=0, ) return DataRow( guid=self.guid, input_ids=np.array(input_set.input_ids), input_mask=np.array(input_set.input_mask), segment_ids=np.array(input_set.segment_ids), label_ids=np.array(padded_labels), label_mask=np.array(padded_label_mask), tokens=unpadded_inputs.unpadded_tokens, ) @dataclass class DataRow(BaseDataRow): guid: str input_ids: np.ndarray input_mask: np.ndarray segment_ids: np.ndarray label_ids: np.ndarray label_mask: np.ndarray tokens: list @dataclass class Batch(BatchMixin): input_ids: torch.LongTensor input_mask: torch.LongTensor segment_ids: torch.LongTensor label_ids: torch.LongTensor label_mask: torch.LongTensor tokens: list class UdposTask(Task): Example = Example TokenizedExample = Example DataRow = DataRow Batch = Batch TASK_TYPE = TaskTypes.TAGGING LABELS = [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ] LABEL_TO_ID, ID_TO_LABEL = labels_to_bimap(LABELS) def __init__(self, name, path_dict, language): super().__init__(name=name, path_dict=path_dict) self.language = language @property def num_labels(self): return len(self.LABELS) def get_train_examples(self): return self._create_examples(data_path=self.path_dict["train"], set_type="train") def get_val_examples(self): return self._create_examples(data_path=self.path_dict["val"], set_type="val") def get_test_examples(self): return self._create_examples(data_path=self.path_dict["test"], set_type="test") @classmethod def _create_examples(cls, data_path, set_type): curr_token_list, curr_pos_list = [], [] data_lines = read_file_lines(data_path, "r", encoding="utf-8") examples = [] idx = 0 for data_line in data_lines: data_line = data_line.strip() if data_line: if set_type == "test": line_tokens = data_line.split("\t") if len(line_tokens) == 2: token, pos = line_tokens else: token, pos = data_line, None else: token, pos = data_line.split("\t") curr_token_list.append(token) curr_pos_list.append(pos) else: examples.append( Example( guid=f"{set_type}-{idx}", tokens=curr_token_list, pos_list=curr_pos_list, ) ) idx += 1 curr_token_list, curr_pos_list = [], [] if curr_token_list: examples.append( Example(guid=f"{set_type}-{idx}", tokens=curr_token_list, pos_list=curr_pos_list) ) return examples
datathon/cbis_ddsm/scripts/cbis_ddsm_ml/trainer/tpu_model.py
kourtneyshort/healthcare
310
11068953
#!/usr/bin/python # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple CNN model for classifying CBIS-DDSM images based on breast density (https://breast-cancer.ca/densitbi-rads/) categories. This model is built on top of the "2018 NUS-MIT Datathon Tutorial: Machine Learning on CBIS-DDSM" tutorial (you can find it at https://git.io/vhgOu). The architecture of the core model itself remains the same (i.e. 6 layers CNN). However, substantial changes around data loading and metrics colletion have been made to feed data to TPUs for training. For detailed explanation on how the model works, please go to https://www.tensorflow.org/tutorials/layers. This model asssumes that the data needed for training and evaluation has already been generated and stored on GCS in TFRecords (more can be found: https://www.tensorflow.org/programmers_guide/datasets). You can find a script at https://git.io/vhg3K which helps you transform existing images to the desired data format. Please check out the tutorials folder (https://git.io/vhgaw) for instructions on training this model with TPU. """ import tensorflow as tf # Cloud TPU Cluster Resolver flags. tf.flags.DEFINE_string( "tpu", default=None, help="The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", default="us-central1-b", help="[Optional] GCE zone where the Cloud TPU is located in. At this " "moment, only us-central provides TPU access.") tf.flags.DEFINE_string( "gcp_project", default=None, help="[Optional] Project name for the Cloud TPU-enabled project.") # Input data specific flags. tf.flags.DEFINE_string( "training_data", default=None, help="Path to training data. This should be a GCS path, " "e.g. gs://datathon-cbis-ddsm-colab/cache/ddsm_train.tfrecords") tf.flags.DEFINE_string( "eval_data", default=None, help="Path to evaluation data. This should be a GCS path, " "e.g. gs://datathon-cbis-ddsm-colab/cache/ddsm_eval.tfrecords") tf.flags.DEFINE_integer( "image_width", default=0, help="Wdith of input images. All images are expected to share the same " "size.") tf.flags.DEFINE_integer( "image_height", default=0, help="Height of input images. All images are expected to share the same " "size.") tf.flags.DEFINE_integer( "image_channel", default=1, help="[Optional] Number of channels in input images.") # Model specific flags. tf.flags.DEFINE_string("model_dir", default=None, help="Estimator model_dir.") tf.flags.DEFINE_integer( "batch_size", default=96, help="Mini-batch size for the training. Note that this is the global batch " "size and not the per-shard batch.") tf.flags.DEFINE_integer( "training_steps", default=1000, help="Total number of training steps.") tf.flags.DEFINE_integer( "eval_steps", default=100, help="Total number of evaluation steps.") tf.flags.DEFINE_float("learning_rate", default=0.05, help="Learning rate.") tf.flags.DEFINE_integer( "iterations", default=50, help="Number of iterations per TPU training loop.") tf.flags.DEFINE_integer( "num_shards", default=8, help="Number of shards (TPU chips).") tf.flags.DEFINE_integer( "category_count", default=0, help="Number of categories.") FLAGS = tf.flags.FLAGS def metric_fn(labels, logits): """Record metrics for evaluation.""" predictions = tf.argmax(logits, 1) return { "accuracy": tf.metrics.precision(labels=labels, predictions=predictions) } def cnn_model_fn(features, labels, mode, params): """CNN core model. Please read the tensorflow doc for how to customize this function: https://www.tensorflow.org/get_started/custom_estimators """ del params # Not needed. # Input Layer. # Reshape to 4-D tensor: [batch_size, height, width, channels] input_layer = tf.reshape( features, [-1, FLAGS.image_height, FLAGS.image_width, FLAGS.image_channel]) # Convolutional Layer #1. conv1 = tf.layers.conv2d( inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #1. pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # Convolutional Layer #2. conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #2. pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # Flatten tensor into a batch of vectors filtered_width = FLAGS.image_width / 4 filtered_height = FLAGS.image_height / 4 pool2_flat = tf.reshape(pool2, [-1, filtered_width * filtered_height * 64]) # Dense Layer. dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) # Dropout operation. dropout = tf.layers.dropout( inputs=dense, rate=0.4, training=(mode == tf.estimator.ModeKeys.TRAIN)) # Logits Layer. logits = tf.layers.dense(inputs=dropout, units=FLAGS.category_count) # Loss Calculation. loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.train.get_global_step(), 100000, 0.96) optimizer = tf.contrib.tpu.CrossShardOptimizer( tf.train.GradientDescentOptimizer(learning_rate)) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op) return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=loss, eval_metrics=(metric_fn, [labels, logits])) def get_input_fn(filename): """Returns an `input_fn` for training and evaluation.""" def input_fn(params): # Retrieves the batch size for the current shard. The number of shards is # computed according to the input pipeline deployment. See # https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/RunConfig # for details. batch_size = params["batch_size"] def parse(serialized_example): """Parses a single tf.Example into image and label tensors.""" features = tf.parse_single_example( serialized_example, features={ "label": tf.FixedLenFeature([], tf.int64), "image": tf.FixedLenFeature([], tf.string), }) image = tf.decode_raw(features["image"], tf.float32) image = tf.reshape(image, [FLAGS.image_width, FLAGS.image_height]) label = tf.cast(features["label"], tf.int32) return image, label dataset = tf.data.TFRecordDataset(filename, buffer_size=500000) dataset = dataset.map(parse).cache().repeat() dataset = dataset.batch(batch_size, drop_remainder=True) images, labels = dataset.make_one_shot_iterator().get_next() return images, labels return input_fn def main(_): """Set up training and evaluation steps.""" tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=FLAGS.model_dir, session_config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=True), tpu_config=tf.contrib.tpu.TPUConfig(FLAGS.iterations, FLAGS.num_shards), ) classifier = tf.contrib.tpu.TPUEstimator( model_fn=cnn_model_fn, use_tpu=True, train_batch_size=FLAGS.batch_size, eval_batch_size=FLAGS.batch_size, config=run_config) # Set up logging for predictions. # Log the values in the "Softmax" tensor with label "probabilities". tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=50) # Training. classifier.train( input_fn=get_input_fn(FLAGS.training_data), steps=FLAGS.training_steps) # Evaluation. classifier.evaluate( input_fn=get_input_fn(FLAGS.eval_data), steps=FLAGS.eval_steps, hooks=[logging_hook]) if __name__ == "__main__": # Set logging level to INFO. tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
tests/api/conftest.py
Gorlym/WEB
187
11068968
import pytest from alembic.command import upgrade from sqlalchemy import create_engine from analyzer.api.__main__ import parser from analyzer.api.app import create_app @pytest.fixture async def migrated_postgres(alembic_config, postgres): """ Возвращает URL к БД с примененными миграциями. """ upgrade(alembic_config, 'head') return postgres @pytest.fixture def arguments(aiomisc_unused_port, migrated_postgres): """ Аргументы для запуска приложения. """ return parser.parse_args( [ '--log-level=debug', '--api-address=127.0.0.1', f'--api-port={aiomisc_unused_port}', f'--pg-url={migrated_postgres}' ] ) @pytest.fixture async def api_client(aiohttp_client, arguments): app = create_app(arguments) client = await aiohttp_client(app, server_kwargs={ 'port': arguments.api_port }) try: yield client finally: await client.close() @pytest.fixture def migrated_postgres_connection(migrated_postgres): """ Синхронное соединение со смигрированной БД. """ engine = create_engine(migrated_postgres) conn = engine.connect() try: yield conn finally: conn.close() engine.dispose()
metrics/log_collectors/training_data_service_client/connect.py
adrian555/FfDL
680
11068994
# # Copyright 2017-2018 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import grpc import time from log_collectors.training_data_service_client import training_data_pb2_grpc as td def get_connection()->td.TrainingDataStub: with open('log_collectors/training_data_service_client/certs/server.crt') as f: certificate = f.read() credentials = grpc.ssl_channel_credentials(root_certificates=certificate) # TODO: Change these to be configurable when/if we get the viper issue straightened out. isTLSEnabled = True isLocal = False if isLocal: host_url = '127.0.0.1' port = '30015' else: training_data_namespace = os.environ["TRAINING_DATA_NAMESPACE"] host_url = "ffdl-trainingdata.%s.svc.cluster.local" % training_data_namespace port = '80' host_url = '{}:{}'.format(host_url, port) print("host_url: "+host_url) sys.stdout.flush() channel = None for retryCount in range(0, 10): try: if isTLSEnabled: channel = grpc.secure_channel(host_url, credentials, options=(('grpc.ssl_target_name_override', 'dlaas.ibm.com',),)) else: channel = grpc.insecure_channel(host_url) if channel is not None: break except Exception as inst: print("Exception trying to connect:", sys.exc_info()[0]) print(inst) sys.stdout.flush() time.sleep(.5) if channel is not None: tdClient = td.TrainingDataStub(channel) else: tdClient = None return tdClient
apache/flask/webapp/validators.py
jamitupya/SweetSecurity3alpha
792
11068996
import re def convertMac(macAddress): if re.match(r"^[A-za-z0-9]{2}-[A-za-z0-9]{2}-[A-za-z0-9]{2}-[A-za-z0-9]{2}-[A-za-z0-9]{2}-[A-za-z0-9]{2}$",macAddress): macAddress=macAddress.replace('-','') elif re.match(r"^[A-za-z0-9]{2}:[A-za-z0-9]{2}:[A-za-z0-9]{2}:[A-za-z0-9]{2}:[A-za-z0-9]{2}:[A-za-z0-9]{2}$",macAddress): macAddress=macAddress.replace(':','') return macAddress.upper() def macAddress(macAddress): dashMatch = re.match(r"^[A-Fa-f0-9]{2}-[A-Fa-f0-9]{2}-[A-Fa-f0-9]{2}-[A-Fa-f0-9]{2}-[A-Fa-f0-9]{2}-[A-Fa-f0-9]{2}$",macAddress) colonMatch = re.match(r"^[A-Fa-f0-9]{2}:[A-Fa-f0-9]{2}:[A-Fa-f0-9]{2}:[A-Fa-f0-9]{2}:[A-Fa-f0-9]{2}:[A-Fa-f0-9]{2}$",macAddress) alphaMatch = re.match(r"^[A-Fa-f0-9]{12}$",macAddress) if dashMatch or colonMatch or alphaMatch: return True else: return False def url(url): urlMatch= re.match(r"^([a-zA-Z0-9][a-zA-Z0-9\-\_]+[a-zA-Z0-9]\.)+([A-Za-z0-9]|[A-Za-z0-9][A-Za-z0-9\-\_])+[A-Za-z0-9]$",url) ipMatch= re.match(r"^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$",url) if urlMatch or ipMatch: return True else: return False def hostname(hostname): hostnameMatch= re.match(r"^(([a-zA-Z0-9]|[a-zA-Z0-9][a-zA-Z0-9\-\_]*[a-zA-Z0-9])\.)*([A-Za-z0-9]|[A-Za-z0-9][A-Za-z0-9\-\_]*[A-Za-z0-9])$",hostname) noHostnameMatch = re.match(r"^(\d+\.\d+\.\d+\.\d+\s\(\w{12}\))",hostname) if hostnameMatch or noHostnameMatch: return True else: return False def ipAddress(ipAddress): ipMatch= re.match(r"^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$",ipAddress) if ipMatch: return True else: return False def ignoreStatus(ignored): ignoreMatch = re.match(r"^[0-1]$",ignored) if ignoreMatch: return True else: return False
examples/multioutput-example/predict.py
Anenizer/igel
3,110
11069011
<filename>examples/multioutput-example/predict.py from igel import Igel """ The goal of igel is to use ML without writing code. Therefore, the right and simplest way to use igel is from terminal. You can run ` igel predict -dp path_to_dataset`. Alternatively, you can write code if you want. This example below demonstrates how to use igel if you want to write code. However, I suggest you try and use the igel CLI. Type igel -h in your terminal to know more. """ mock_pred_params = {'data_path': './test-linnerud.csv', 'cmd': 'predict'} Igel(**mock_pred_params)
examples/sharepoint/files/upload_file.py
juguerre/Office365-REST-Python-Client
544
11069018
<reponame>juguerre/Office365-REST-Python-Client<gh_stars>100-1000 import os from office365.sharepoint.client_context import ClientContext from tests import test_user_credentials, test_team_site_url test_team_site_url = test_team_site_url ctx = ClientContext(test_team_site_url).with_credentials(test_user_credentials) path = "../../data/report #123.csv" with open(path, 'rb') as content_file: file_content = content_file.read() list_title = "Documents" target_folder = ctx.web.lists.get_by_title(list_title).root_folder name = os.path.basename(path) target_file = target_folder.upload_file(name, file_content).execute_query() print("File has been uploaded to url: {0}".format(target_file.serverRelativeUrl))
src/eventgrid/azext_eventgrid/vendored_sdks/eventgrid/operations/__init__.py
Mannan2812/azure-cli-extensions
207
11069030
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from ._domains_operations import DomainsOperations from ._domain_topics_operations import DomainTopicsOperations from ._event_channels_operations import EventChannelsOperations from ._event_subscriptions_operations import EventSubscriptionsOperations from ._system_topic_event_subscriptions_operations import SystemTopicEventSubscriptionsOperations from ._partner_topic_event_subscriptions_operations import PartnerTopicEventSubscriptionsOperations from ._operations import Operations from ._partner_namespaces_operations import PartnerNamespacesOperations from ._partner_registrations_operations import PartnerRegistrationsOperations from ._partner_topics_operations import PartnerTopicsOperations from ._private_endpoint_connections_operations import PrivateEndpointConnectionsOperations from ._private_link_resources_operations import PrivateLinkResourcesOperations from ._system_topics_operations import SystemTopicsOperations from ._topics_operations import TopicsOperations from ._extension_topics_operations import ExtensionTopicsOperations from ._topic_types_operations import TopicTypesOperations __all__ = [ 'DomainsOperations', 'DomainTopicsOperations', 'EventChannelsOperations', 'EventSubscriptionsOperations', 'SystemTopicEventSubscriptionsOperations', 'PartnerTopicEventSubscriptionsOperations', 'Operations', 'PartnerNamespacesOperations', 'PartnerRegistrationsOperations', 'PartnerTopicsOperations', 'PrivateEndpointConnectionsOperations', 'PrivateLinkResourcesOperations', 'SystemTopicsOperations', 'TopicsOperations', 'ExtensionTopicsOperations', 'TopicTypesOperations', ]
pyinfra/operations/windows.py
yggdr/pyinfra
1,532
11069040
<gh_stars>1000+ ''' The windows module handles misc windows operations. ''' from __future__ import unicode_literals from pyinfra.api import operation # Tip: Use 'Get-Command -Noun Service' to search for what commands are available or # simply 'Get-Command' to see what you can do...) # Tip: To see the windows help page about a command, use 'Get-Help'. # Might have to run 'Update-Help' if you want to use arguments like '-Examples'. # ex: 'Get-Help Stop-Service' # ex: 'Get-Help Stop-Service -Examples' # ex: 'Get-Help Stop-Service -Detailed' # ex: 'Get-Help Stop-Service -Full' # FUTURE: add ability to stop processes (ex: "Stop-Process <id>") @operation def service(service, running=True, restart=False, suspend=False, state=None, host=None): ''' Stop/Start a Windows service. + service: name of the service to manage + running: whether the the service should be running or stopped + restart: whether the the service should be restarted + suspend: whether the the service should be suspended Example: .. code:: python windows.service( {'Stop the spooler service'}, 'service', running=False, ) ''' if suspend or not running: if suspend: yield 'Suspend-Service -Name {0}'.format(service) else: yield 'Stop-Service -Name {0}'.format(service) else: if restart: yield 'Restart-Service -Name {0}'.format(service) else: if running: yield 'Start-Service -Name {0}'.format(service) @operation def reboot(state=None, host=None): ''' Restart the server. ''' yield 'Restart-Computer -Force'
flexneuart/retrieval/cand_provider.py
gitter-badger/FlexNeuART
101
11069048
<filename>flexneuart/retrieval/cand_provider.py # # Copyright 2014+ Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Access to FlexNeuART candidate providers (i.e., basic querying) """ from collections import namedtuple from jnius import autoclass from flexneuart.config import TEXT_FIELD_NAME from flexneuart.retrieval.utils import query_dict_to_dataentry_fields, DataEntryFields CandidateEntry = namedtuple('CandidateEntry', ['doc_id', 'score']) JCandidateEntry = autoclass('edu.cmu.lti.oaqa.flexneuart.cand_providers.CandidateEntry') JCandidateProvider = autoclass('edu.cmu.lti.oaqa.flexneuart.cand_providers.CandidateProvider') PROVIDER_TYPE_LUCENE = JCandidateProvider.CAND_TYPE_LUCENE PROVIDER_TYPE_NMSLIB = JCandidateProvider.CAND_TYPE_NMSLIB PROVIDER_TYPE_TREC_RUNS = JCandidateProvider.CAND_TYPE_TREC_RUNS PROVIDER_TYPE_LIST = [PROVIDER_TYPE_LUCENE, PROVIDER_TYPE_NMSLIB, PROVIDER_TYPE_TREC_RUNS] FAKE_QUERY_ID='fake_query_id' def create_cand_provider(resource_manager, provider_type, provider_uri, add_config_file=None): """Create a candidate provider (for basic querying). Configuration and index file paths are relative to the collection root (stored in the resource manager) :param resource_manager: a resource manager object :param provider_type: a provider type :param provider_uri: a provider index location (or address, e.g., for NMSLIB) :param add_config_file: an optional provider configuration file (not needed for Lucene and NMSLIB) :return: a candidate provider object """ if provider_type not in PROVIDER_TYPE_LIST: raise Exception(f'Unsupported provider type: {provider_type}, supported providers are: ' + ' '.join(PROVIDER_TYPE_LIST)) # FlexNeuART is multi-thread and for each thread we may need a separate provider object # (if the provider is not thread-safe), but in Python we generate only one provider (as we # have no real threads anyways) return resource_manager.createCandProviders(provider_type, provider_uri, add_config_file, 1)[0] def create_text_query_obj(query_text, query_id=FAKE_QUERY_ID, field_name=TEXT_FIELD_NAME): """Create a Java object with text query information. :param query_text: query text: *WHITE-SPACE* tokenized query tokens :param query_id: a query ID (can be anything or just stick to default) :param field_name: a field name (currently it's hardcoded in FlexNeuART anyways, so don't change this default) :return: """ obj = DataEntryFields(str(query_id)) obj.setString(field_name, query_text) return obj def run_query_internal(cand_provider, top_qty, query_obj): """An auxilliary function not intended to be used directly""" cand_info = cand_provider.getCandidates(0, query_obj, top_qty) return cand_info.mNumFound, \ [CandidateEntry(doc_id=e.mDocId, score=e.mScore) for e in cand_info.mEntries] def run_text_query(cand_provider, top_qty, query_text, query_id=FAKE_QUERY_ID, field_name=TEXT_FIELD_NAME): """Run a single-field text query. :param cand_provider: a candidate provider object :param top_qty: a number of top-scored entries to return :param query_text: query text: *WHITE-SPACE* tokenized query tokens :param query_id: a query ID (can be anything or just stick to default) :param field_name: a field name (currently it's hardcoded in FlexNeuART anyways, so don't change this default) :return: a tuple: # of entries found, an array of candidate entries: (document ID, score) objects """ query_obj = create_text_query_obj(query_text, query_id, field_name) return run_query_internal(cand_provider, top_qty, query_obj) def run_query(cand_provider, top_qty, query_dict, default_query_id=FAKE_QUERY_ID): """Run a generic (not-necessarily single-field text) query. :param cand_provider: a candidate provider object :param top_qty: a number of top-scored entries to return :param query_dict: query key-value dictionary that may or may not have the query/doc ID :param default_query_id: a default query ID to use if query_dict has none. :return: a tuple: # of entries found, an array of candidate entries: (document ID, score) objects """ if type(query_dict) != dict: raise Exception('A query object should be a dictionary!') query_obj = query_dict_to_dataentry_fields(query_dict, default_query_id) return run_query_internal(cand_provider, top_qty, query_obj)
docs/examples/ex22.py
bhaveshshrimali/scikit-fem
238
11069054
<gh_stars>100-1000 r"""Adaptive Poisson equation. This example solves `ex01.py` adaptively in an L-shaped domain. Using linear elements, the error indicators read .. math:: \eta_K^2 = h_K^2 \|f\|_{0,K}^2 for each element :math:`K`, and .. math:: \eta_E^2 = h_E \| [[\nabla u_h \cdot n ]] \|_{0,E}^2 for each edge :math:`E`. """ from skfem import * from skfem.models.poisson import laplace from skfem.helpers import grad import numpy as np m = MeshTri.init_lshaped().refined(2) e = ElementTriP1() def load_func(x, y): return 1. @LinearForm def load(v, w): x, y = w.x return load_func(x, y) * v def eval_estimator(m, u): # interior residual basis = Basis(m, e) @Functional def interior_residual(w): h = w.h x, y = w.x return h ** 2 * load_func(x, y) ** 2 eta_K = interior_residual.elemental(basis, w=basis.interpolate(u)) # facet jump fbasis = [InteriorFacetBasis(m, e, side=i) for i in [0, 1]] w = {'u' + str(i + 1): fbasis[i].interpolate(u) for i in [0, 1]} @Functional def edge_jump(w): h = w.h n = w.n dw1 = grad(w['u1']) dw2 = grad(w['u2']) return h * ((dw1[0] - dw2[0]) * n[0] + (dw1[1] - dw2[1]) * n[1]) ** 2 eta_E = edge_jump.elemental(fbasis[0], **w) tmp = np.zeros(m.facets.shape[1]) np.add.at(tmp, fbasis[0].find, eta_E) eta_E = np.sum(.5 * tmp[m.t2f], axis=0) return eta_K + eta_E if __name__ == "__main__": from skfem.visuals.matplotlib import draw, plot, show draw(m) for itr in reversed(range(9)): basis = Basis(m, e) K = asm(laplace, basis) f = asm(load, basis) I = m.interior_nodes() u = solve(*condense(K, f, I=I)) if itr > 0: m = m.refined(adaptive_theta(eval_estimator(m, u))) if __name__ == "__main__": draw(m) plot(m, u, shading='gouraud') show()
OcCo_Torch/models/pointnet_jigsaw.py
sun-pyo/OcCo
158
11069063
# Copyright (c) 2020. <NAME>, <EMAIL> import torch, torch.nn as nn, torch.nn.functional as F from pointnet_util import PointNetEncoder, feature_transform_regularizer class get_model(nn.Module): def __init__(self, num_class, num_channel=3, **kwargs): super(get_model, self).__init__() self.num_class = num_class self.feat = PointNetEncoder(global_feat=False, feature_transform=True, channel=num_channel) self.conv1 = nn.Conv1d(1088, 512, 1) self.conv2 = nn.Conv1d(512, 256, 1) self.conv3 = nn.Conv1d(256, 128, 1) self.conv4 = nn.Conv1d(128, self.num_class, 1) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.bn3 = nn.BatchNorm1d(128) def forward(self, x): batch_size, _, num_points = x.size() x, trans, trans_feat = self.feat(x) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = self.conv4(x) x = x.transpose(2, 1).contiguous() x = F.log_softmax(x.view(-1, self.num_class), dim=-1) x = x.view(batch_size, num_points, self.num_class) return x, trans_feat class get_loss(nn.Module): def __init__(self, mat_diff_loss_scale=0.001): super(get_loss, self).__init__() self.mat_diff_loss_scale = mat_diff_loss_scale def forward(self, pred, target, trans_feat): loss = F.nll_loss(pred, target) mat_diff_loss = feature_transform_regularizer(trans_feat) total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale return total_loss if __name__ == '__main__': model = get_model(num_class=13, num_channel=3) xyz = torch.rand(12, 3, 2048) model(xyz)
tests/st/func/wizard/test_resnet50.py
lvyufeng/mindconverter_standalone
216
11069097
<gh_stars>100-1000 # Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Function: Test the various combinations based on ResNet50. """ import os import pytest from mindinsight.wizard.base.utility import load_network_maker NETWORK_NAME = 'resnet50' class TestResNet50: """Test ResNet50 Module.""" @pytest.mark.level0 @pytest.mark.env_single @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_ascend_training @pytest.mark.parametrize('params', [{ 'config': {'loss': 'SoftmaxCrossEntropyWithLogits', 'optimizer': 'Momentum', 'dataset': 'Cifar10'}, 'dataset_loader_name': 'Cifar10Dataset' }, { 'config': {'loss': 'SoftmaxCrossEntropyWithLogits', 'optimizer': 'Adam', 'dataset': 'Cifar10'}, 'dataset_loader_name': 'Cifar10Dataset' }, { 'config': {'loss': 'SoftmaxCrossEntropyWithLogits', 'optimizer': 'SGD', 'dataset': 'Cifar10'}, 'dataset_loader_name': 'Cifar10Dataset' }, { 'config': {'loss': 'SoftmaxCrossEntropyWithLogits', 'optimizer': 'Momentum', 'dataset': 'ImageNet'}, 'dataset_loader_name': 'ImageFolderDataset' }, { 'config': {'loss': 'SoftmaxCrossEntropyWithLogits', 'optimizer': 'Adam', 'dataset': 'ImageNet'}, 'dataset_loader_name': 'ImageFolderDataset' }, { 'config': {'loss': 'SoftmaxCrossEntropyWithLogits', 'optimizer': 'SGD', 'dataset': 'ImageNet'}, 'dataset_loader_name': 'ImageFolderDataset' }]) def test_combinations(self, params): """Do testing.""" network_maker_name = NETWORK_NAME config = params['config'] dataset_loader_name = params['dataset_loader_name'] network_maker = load_network_maker(network_maker_name) network_maker.configure(config) self.source_files = network_maker.generate(**config) self.check_scripts() self.check_src(dataset_loader_name, config) self.check_train_eval_readme(config['dataset'], config['loss'], config['optimizer']) def check_src(self, dataset_name, config): """Check src file.""" dataset_is_right = False config_dataset_is_right = False config_optimizer_is_right = False network_is_right = False cross_entorpy_smooth_is_right = False generator_lr_is_right = False for source_file in self.source_files: if source_file.file_relative_path == os.path.normpath('src/dataset.py'): if dataset_name in source_file.content: dataset_is_right = True if source_file.file_relative_path == os.path.join('src', NETWORK_NAME.lower() + '.py'): network_is_right = True if source_file.file_relative_path == os.path.normpath('src/CrossEntropySmooth.py'): cross_entorpy_smooth_is_right = True if source_file.file_relative_path == os.path.normpath('src/lr_generator.py'): generator_lr_is_right = True if source_file.file_relative_path == os.path.normpath('src/config.py'): content = source_file.content config_dataset_is_right = self._check_config_dataset(config, content) config_optimizer_is_right = self._check_config_optimizer(config, content) assert dataset_is_right assert config_dataset_is_right assert config_optimizer_is_right assert network_is_right assert cross_entorpy_smooth_is_right assert generator_lr_is_right @staticmethod def _check_config_dataset(config, content): """Check dataset in config.""" config_dataset_is_right = False if config['dataset'] == 'Cifar10': if "'num_classes': 10" in content \ and "'warmup_epochs': 5" in content \ and "'lr_decay_mode': 'poly'" in content: config_dataset_is_right = True elif config['dataset'] == 'ImageNet': if "'num_classes': 1001" in content \ and "'warmup_epochs': 0" in content \ and "'lr_decay_mode': 'cosine'": config_dataset_is_right = True return config_dataset_is_right @staticmethod def _check_config_optimizer(config, content): """Check optimizer in config.""" config_optimizer_is_right = False if config['optimizer'] == 'Momentum': if "'lr': 0.01" in content and \ "'momentum': 0.9" in content: config_optimizer_is_right = True elif config['optimizer'] == 'SGD': if "'lr': 0.01" in content: config_optimizer_is_right = True else: if "'lr': 0.001" in content: config_optimizer_is_right = True return config_optimizer_is_right def check_train_eval_readme(self, dataset_name, loss_name, optimizer_name): """Check train and eval.""" train_is_right = False eval_is_right = False readme_is_right = False for source_file in self.source_files: if source_file.file_relative_path == 'train.py': content = source_file.content if 'resnet50' in content and optimizer_name in content: if dataset_name == 'ImageNet' and loss_name == 'SoftmaxCrossEntropyWithLogits' \ and 'loss = CrossEntropySmooth' in content: train_is_right = True elif loss_name in content: train_is_right = True if source_file.file_relative_path == 'eval.py': content = source_file.content if 'resnet50' in content: if dataset_name == 'ImageNet' and loss_name == 'SoftmaxCrossEntropyWithLogits' \ and 'loss = CrossEntropySmooth' in content: eval_is_right = True elif loss_name in content: eval_is_right = True if source_file.file_relative_path == 'README.md': content = source_file.content if 'ResNet50' in content and dataset_name in content: readme_is_right = True assert train_is_right assert eval_is_right assert readme_is_right def check_scripts(self): """Check scripts.""" exist_run_distribute_train = False exist_run_distribute_train_gpu = False exist_run_eval = False exist_run_eval_gpu = False exist_run_standalone_train = False exist_run_standalone_train_gpu = False for source_file in self.source_files: if source_file.file_relative_path == os.path.normpath('scripts/run_distribute_train.sh'): exist_run_distribute_train = True if source_file.file_relative_path == os.path.normpath('scripts/run_distribute_train_gpu.sh'): exist_run_distribute_train_gpu = True if source_file.file_relative_path == os.path.normpath('scripts/run_eval.sh'): exist_run_eval = True if source_file.file_relative_path == os.path.normpath('scripts/run_eval_gpu.sh'): exist_run_eval_gpu = True if source_file.file_relative_path == os.path.normpath('scripts/run_standalone_train.sh'): exist_run_standalone_train = True if source_file.file_relative_path == os.path.normpath('scripts/run_standalone_train_gpu.sh'): exist_run_standalone_train_gpu = True assert exist_run_distribute_train assert exist_run_distribute_train_gpu assert exist_run_eval assert exist_run_eval_gpu assert exist_run_standalone_train assert exist_run_standalone_train_gpu
mypaas/stats/client_code.py
lilahtovmoon/mypaas
208
11069109
<reponame>lilahtovmoon/mypaas<filename>mypaas/stats/client_code.py """ Python code that will be transpiled to JS to implement the client side. """ from pscript.stubs import window, document, undefined, Math, Date # JS from pscript.stubs import data_per_db, text_color # are made available panels = [] # %% Button callbacks def toggle_utc(): info = get_hash_info() if info.get("utc", False): info.pop("utc") else: info["utc"] = True return refresh(None, info) def toggle_columns(): info = get_hash_info() columns = info.get("columns", 0) if not columns: if window.document.body.clientWidth >= 1200: info["columns"] = 2 else: info["columns"] = 1 else: info.pop("columns") return refresh(None, info) def update_range(action=""): ndays = window.ndays daysago = window.daysago if action == "zoomout": if ndays < 4: ndays += 1 elif ndays < 10: ndays += 2 elif ndays < 30: ndays += 5 else: ndays += 10 elif action == "zoomin": if ndays <= 4: ndays -= 1 elif ndays <= 10: ndays -= 2 elif ndays <= 30: ndays -= 5 else: ndays -= 10 ndays = max(1, ndays) elif action == "older": daysago += ndays elif action == "newer": daysago -= ndays info = get_query_info() info["ndays"] = ndays if daysago > 0: info["daysago"] = daysago else: info.pop("daysago", None) return refresh(info, None) def refresh(self, query_info=None, hash_info=None): if query_info is None: query_info = get_query_info() if hash_info is None: hash_info = get_hash_info() url = window.location.origin + window.location.pathname encode_uri_component = window.encodeURIComponent if query_info: url += "?" + "&".join( [key + "=" + encode_uri_component(val) for key, val in query_info.items()] ) if True: url += "#" + "&".join( [key + "=" + encode_uri_component(val) for key, val in hash_info.items()] ) if url == window.location.href: window.location.reload() else: window.location.href = url return undefined def panel_sort_func(x): t = x.split("|")[1] if t: t = {"num": "anum", "cat": "zcat"}.get(t, t) return (t + "|" + x).lower() # %% def on_init(): for dbname, data in data_per_db.items(): # Create panel container (and a title) title_el = document.createElement("div") container_el = document.createElement("div") title_el.innerText = dbname # .replace("_", " ") title_el.classList.add("panelcontainertitle") container_el.classList.add("panelcontainer") document.body.appendChild(title_el) document.body.appendChild(container_el) if dbname == "system" and window.info: panels.append(InfoPanel(container_el, dbname, "info", "system info")) # Collect panel types panel_kinds = {} for i in range(len(data)): aggr = data[i] for key in aggr.keys(): panel_kinds[key] = True # Sort the panel types - count, dcount, num, cat panel_kinds = panel_kinds.keys() panel_kinds.sort(key=panel_sort_func) # Create panels for i in range(len(panel_kinds)): key = panel_kinds[i] # Select panel class key_parts = key.split("|") if len(key_parts) == 2: name, type = key_parts unit = "" elif len(key_parts) == 3: name, type, unit = key_parts else: continue if type == "time": continue # skip time info elif type == "count": title = "# " + name Cls = CountPanel # noqa: N806 elif type == "dcount": title = "# daily " + name Cls = DailyCountPanel # noqa: N806 elif type == "mcount": title = "# monthly " + name Cls = MonthlyCountPanel # noqa: N806 elif type == "cat": title = name + "'s" Cls = CategoricalPanel # noqa: N806 elif type == "num": title = name Cls = NumericalPanel # noqa: N806 else: window.console.warn(f"Don't know what to do with {key}") continue if unit: title = title + " " + unit # Create panel panel = Cls(container_el, dbname, key, title, unit) panels.append(panel) on_hash_change() # calls on_resize() def on_resize(): window.setTimeout(_on_resize, 1) def get_query_info(): url = window.location.href q = "" if "?" in url: q = window.location.href.split("?", 1)[-1].split("#")[0] return get_dict_from_hash_or_query(q) def get_hash_info(): return get_dict_from_hash_or_query(window.location.hash.lstrip("#")) def get_dict_from_hash_or_query(s): info = {} for s in s.split("&"): key, _, val = s.partition("=") if key and val: val = window.decodeURIComponent(val) if val.lower() == "true": val = True elif val.lower() == "false": val = False elif val in "0123456789": val = int(val) info[key] = val elif s: info[s] = True return info def on_hash_change(): info = get_hash_info() containers = document.getElementsByClassName("panelcontainer") columns = int(info.get("columns", "")) or 0 if columns > 0: grid_template_columns = "auto ".repeat(columns) else: grid_template_columns = None height = int(info.get("height", "")) or 0 if height > 0: grid_auto_rows = height + "px" else: grid_auto_rows = None for i in range(len(containers)): containers[i].style.gridAutoRows = grid_auto_rows containers[i].style.gridTemplateColumns = grid_template_columns on_resize() def _on_resize(): for panel in panels: if panel.canvas: # Get dimensions w = panel.node.clientWidth - 10 h = panel.node.clientHeight - 35 pixel_ratio = get_pixel_ratio(panel.canvas.getContext("2d")) # Set dimensions panel.canvas.style.width = w + "px" panel.canvas.style.height = h + "px" panel.canvas.width = w * pixel_ratio panel.canvas.height = h * pixel_ratio # Set some info on the object panel.pixel_ratio = pixel_ratio panel.width = w panel.height = h if panel.draw: panel.draw() def get_pixel_ratio(ctx): """Get the ratio of logical pixel to screen pixel.""" PSCRIPT_OVERLOAD = False # noqa dpr = window.devicePixelRatio or 1 bsr = ( ctx.webkitBackingStorePixelRatio or ctx.mozBackingStorePixelRatio or ctx.msBackingStorePixelRatio or ctx.oBackingStorePixelRatio or ctx.backingStorePixelRatio or 1 ) return dpr / bsr def _create_tick_units(): # Create tick units tick_units = [] for e in range(-14, 14): for i in [10, 20, 25, 50]: tick_units.append(i * 10 ** e) return tick_units _tick_units = _create_tick_units() # def split_group(s, sep): # group, _, sub = s.partition(sep) # if len(sub) == 0: # return "", group # else: # return group, sub class BasePanel: def __init__(self, container, dbname, key, title, unit): self.dbname = dbname self.key = key self.title = title self.unit = unit self.node = document.createElement("div") self.node.classList.add("panel") container.appendChild(self.node) self.titlenode = document.createElement("div") self.titlenode.classList.add("title") self.titlenode.innerText = title self.node.appendChild(self.titlenode) class InfoPanel(BasePanel): def __init__(self, *args): super().__init__(*args) self.content = document.createElement("div") self.content.classList.add("content") self.node.appendChild(self.content) hider = document.createElement("div") hider.classList.add("scrollhider") self.node.appendChild(hider) self._create() def _create(self): PSCRIPT_OVERLOAD = False # noqa if not window.info: return lines = [] lines.append("<table>") for key, value in window.info.items(): lines.append(f"<tr> <td>{key}</td> <td>{value}</td> </tr>") lines.append("</table>") self.content.innerHTML = "\n".join(lines) class CategoricalPanel(InfoPanel): def _create(self): PSCRIPT_OVERLOAD = False # noqa key = self.key # First aggregate data = data_per_db[self.dbname] totalcount = 0 rows = {} for i in range(len(data)): aggr = data[i] meas = aggr.get(key, {}) for k, v in meas.items(): rows[k] = rows.get(k, 0) + v totalcount += v # Group so we can sort in a grouped fashion groups = {} group_counts = {} for key, count in rows.items(): group, _, subkey = key.partition(" - ") groups.setdefault(group, []).append((subkey, count)) group_counts[group] = group_counts.get(group, 0) + count group_counts = [(k, v) for k, v in group_counts.items()] # Sort groups and items inside the groupd group_counts.sort(key=lambda x: -x[1]) for subs in groups.values(): subs.sort(key=lambda x: -x[1]) lines = [] lines.append("<table>") for group, _ in group_counts: for sub, count in groups[group]: key = group + " - " + sub key = key.strip(" -") pct = 100 * count / totalcount lines.append( f"<tr> <td>{pct:0.0f}%</td> <td>{count}</td> <td>{key}</td> </tr>" ) lines.append("</table>") self.content.innerHTML = "\n".join(lines) class PlotPanel(BasePanel): _values_are_integer = False def __init__(self, *args): super().__init__(*args) self.canvas = document.createElement("canvas") self.node.appendChild(self.canvas) def _draw_text(self, ctx, text, x, y, angle=0): PSCRIPT_OVERLOAD = False # noqa ctx.save() ctx.translate(x, y) ctx.scale(1, -1) ctx.rotate(angle) ctx.fillText(text, 0, 0) ctx.restore() def _get_min_max(self): return 0, 1 def _get_ticks(self, scale, mi, ma, min_tick_dist=40): PSCRIPT_OVERLOAD = False # noqa # Inspired from flexx' PlotWidget, which took inspirartion from visvis # Get tick multipliers and unit modifier if self.unit == "iB": if ma >= 2 ** 30: mult, unit = 1 / 2 ** 30, "G" elif ma >= 2 ** 20: mult, unit = 1 / 2 ** 20, "M" elif ma >= 2 ** 10: mult, unit = 1 / 2 ** 10, "K" else: mult, unit = 1, "" else: if ma >= 10_000_000_000: mult, unit = 1 / 1_000_000_000, "G" elif ma >= 10_000_000: mult, unit = 1 / 1_000_000, "M" elif ma >= 10000: mult, unit = 1 / 1000, "K" elif ma < 0.0001: mult, unit = 1_000_000, "u" elif ma < 0.1: mult, unit = 1000, "m" else: mult, unit = 1, "" if self.unit in ("iB", "s"): title = self.title.replace(" " + self.unit, " " + unit + self.unit) self.titlenode.innerText = title unit = "" # Get tick unit is_int = self._values_are_integer for tick_unit in _tick_units: if is_int and str(tick_unit).indexOf(".") >= 0: continue if tick_unit * scale / mult >= min_tick_dist: break else: return [] # Calculate tick values first_tick = Math.ceil(mi * mult / tick_unit) * tick_unit last_tick = Math.floor(ma * mult / tick_unit) * tick_unit ticks = {} t = first_tick # t does not mean time here! while t <= last_tick: ticks[t / mult] = t t += tick_unit # Stringify for realt, t in ticks.items(): if t == 0: s = "0" elif mult == 1 and is_int: s = str(int(t)) else: s = t.toPrecision(4) # t is already multiplied if "." in s: while len(s) > 5 and s.endsWith("0"): s = s[:-1] ticks[realt] = s + unit return ticks def draw(self): PSCRIPT_OVERLOAD = False # noqa ctx = self.canvas.getContext("2d") # Prepare hidpi mode for canvas (flush state just in case) for i in range(4): ctx.restore() ctx.save() ctx.scale(self.pixel_ratio, self.pixel_ratio) # Flip y-axis ctx.scale(1, -1) ctx.translate(0, -self.height) # Clear bg ctx.clearRect(0, 0, self.width, self.height) # Determine drawing area x0 = 45 y0 = 35 width = self.width - x0 - 15 height = self.height - y0 - 5 data = data_per_db[self.dbname] if len(data) == 0: return # Get bounding box t1 = data[0].time_start t2 = data[-1].time_stop mi, ma = self._get_min_max() if ma <= mi: return hscale = width / (t2 - t1) vscale = height / (ma - mi) unix_from_utc_tuple = Date.UTC # avoid triggering new utc = get_hash_info().get("utc", False) xticks = {} # Prepare x ticks for hours (one hour is the smallest granularity) hourly_tick_units = (1, 3600), (2, 7200), (6, 21600) min_tick_dist = 60 for nhours, tick_unit in hourly_tick_units: if tick_unit * hscale >= min_tick_dist: break else: tick_unit = 0 # if tick_unit > 0: d = Date(t1 * 1000) if utc: tup = [ d.getUTCFullYear(), d.getUTCMonth(), d.getUTCDate(), d.getUTCHours(), ] tup[-1] = nhours * int(tup[-1] / nhours) t = unix_from_utc_tuple(tup[0], tup[1], tup[2], tup[3]) / 1000 else: tup = [d.getFullYear(), d.getMonth(), d.getDate(), d.getHours()] tup[-1] = nhours * int(tup[-1] / nhours) t = Date(tup[0], tup[1], tup[2], tup[3]).getTime() / 1000 while t <= t2: if t >= t1: d = Date(t * 1000) if utc: xticks[t] = f"{d.getUTCHours():02i}:{d.getUTCMinutes():02i}" else: xticks[t] = f"{d.getHours():02i}:{d.getMinutes():02i}" t += tick_unit # Prepare x ticks for days/months day_tick_units = (2, 1), (2, 2), (2, 5), (1, 1), (1, 2), (1, 3), (0, 365) min_tick_dist = 60 for dindex, nsomething in day_tick_units: tick_unit = nsomething * [365 * 86400, 30 * 86400, 86400][dindex] if tick_unit * hscale >= min_tick_dist: break else: tick_unit = nsomething = 0 # n_date_ticks = 0 if nsomething > 0: d = Date(t1 * 1000) if utc: tup = [d.getUTCFullYear(), d.getUTCMonth(), d.getUTCDate()] tup[dindex] = nsomething * int(tup[dindex] / nsomething) t = unix_from_utc_tuple(tup[0], tup[1], tup[2]) / 1000 else: tup = [d.getFullYear(), d.getMonth(), d.getDate()] tup[dindex] = nsomething * int(tup[dindex] / nsomething) t = Date(tup[0], tup[1], tup[2]).getTime() / 1000 while t <= t2: if t >= t1: n_date_ticks += 1 d = Date(t * 1000) if utc: dd = f"{d.getUTCDate():02i}" mm = f"{d.getUTCMonth()+1:02i}" yy = f"{d.getUTCFullYear()}" xticks[t] = f"{dd}-{mm}-{yy}" else: dd = f"{d.getDate():02i}" mm = f"{d.getMonth()+1:02i}" yy = f"{d.getFullYear()}" xticks[t] = f"{dd}-{mm}-{yy}" tup[dindex] += nsomething if utc: t = unix_from_utc_tuple(tup[0], tup[1], tup[2]) / 1000 else: t = Date(tup[0], tup[1], tup[2]).getTime() / 1000 # extra_x_tick = "" if n_date_ticks < 2: xtickskeys = xticks.keys() if len(xtickskeys) > 0 and hscale * (xtickskeys[0] - t1) < 30: xticks.pop(xtickskeys[0]) d = Date(t1 * 1000) if utc: extra_x_tick = ( f"{d.getUTCFullYear()}-{d.getUTCMonth()+1:02i}-{d.getUTCDate():02i}" ) else: extra_x_tick = ( f"{d.getFullYear()}-{d.getMonth()+1:02i}-{d.getDate():02i}" ) # Prepare y ticks yticks = self._get_ticks(vscale, mi, ma, 25) # text -> value # Prepare drawing ctx.lineWidth = 1 # Draw grid lines ctx.strokeStyle = "rgba(128, 128, 128, 0.3)" ctx.beginPath() for v, text in yticks.items(): y = y0 + (float(v) - mi) * vscale ctx.moveTo(x0, y) ctx.lineTo(x0 + width, y) ctx.stroke() # Draw x ticks ctx.strokeStyle = text_color ctx.fillStyle = text_color ctx.textAlign = "center" ctx.textBaseline = "top" # middle ctx.beginPath() for t, text in xticks.items(): x = x0 + (float(t) - t1) * hscale ctx.moveTo(x, y0) ctx.lineTo(x, y0 - 4) ctx.stroke() for t, text in xticks.items(): x = x0 + (float(t) - t1) * hscale angle = 0 # -0.15 * Math.PI x = min(x, x0 + width - 15) self._draw_text(ctx, text, x, y0 - 10, angle) if extra_x_tick: ctx.textAlign = "left" ctx.textBaseline = "bottom" self._draw_text(ctx, extra_x_tick, 0, 0) # Draw y ticks ctx.textAlign = "right" ctx.textBaseline = "middle" ctx.beginPath() for v, text in yticks.items(): y = y0 + (float(v) - mi) * vscale ctx.moveTo(x0 - 4, y) ctx.lineTo(x0, y) ctx.stroke() for v, text in yticks.items(): y = y0 + (float(v) - mi) * vscale self._draw_text(ctx, text, x0 - 8, y) # Draw axis ctx.strokeStyle = text_color ctx.beginPath() ctx.moveTo(x0, y0) ctx.lineTo(x0 + width, y0) ctx.moveTo(x0, y0) ctx.lineTo(x0, y0 + height) ctx.stroke() # Draw content self._draw_content(ctx, mi, ma, t1, t2, x0, y0, hscale, vscale) # Draw local / UTC ctx.fillStyle = "rgba(128, 128, 128, 0.5)" ctx.textAlign = "right" ctx.textBaseline = "bottom" self._draw_text(ctx, "UTC" if utc else "Local time", self.width, 0) class CountPanel(PlotPanel): _values_are_integer = True clr = 50, 250, 50 def _get_min_max(self): PSCRIPT_OVERLOAD = False # noqa key = self.key mi = 0 ma = -9_999_999 data = data_per_db[self.dbname] for i in range(len(data)): aggr = data[i] v = aggr[key] if v is undefined: continue ma = max(ma, v) return mi, ma def _draw_content(self, ctx, mi, ma, t1, t2, x0, y0, hscale, vscale): PSCRIPT_OVERLOAD = False # noqa key = self.key clr = self.clr ctx.fillStyle = f"rgba({clr[0]}, {clr[1]}, {clr[2]}, 0.8)" data = data_per_db[self.dbname] for i in range(len(data)): aggr = data[i] v = aggr[key] if v is undefined: continue if aggr.time_start > t2: continue x = x0 + (aggr.time_start - t1) * hscale w = (aggr.time_stop - aggr.time_start) * hscale w = max(w - 1, 1) ctx.fillRect(x, y0, w, v * vscale) class DailyCountPanel(CountPanel): clr = 220, 250, 0 def _get_min_max(self): PSCRIPT_OVERLOAD = False # noqa key = self.key mi = 0 ma = -9_999_999 self.daily = daily = [] prev_day = "" data = data_per_db[self.dbname] for i in range(len(data)): aggr = data[i] v = aggr[key] if v is undefined: continue day = aggr.time_key[:10] if day != prev_day: if len(daily) > 0: ma = max(ma, daily[-1][key]) new_aggr = {"time_start": aggr.time_start, "time_stop": aggr.time_stop} new_aggr[key] = aggr[key] daily.append(new_aggr) prev_day = day else: daily[-1][key] += v daily[-1].time_stop = aggr.time_stop if len(daily) > 0: ma = max(ma, daily[-1][key]) return mi, ma def _draw_content(self, ctx, mi, ma, t1, t2, x0, y0, hscale, vscale): PSCRIPT_OVERLOAD = False # noqa # Draw daily key = self.key clr = self.clr ctx.fillStyle = f"rgba({clr[0]}, {clr[1]}, {clr[2]}, 0.4)" for i in range(len(self.daily)): aggr = self.daily[i] v = aggr[key] if aggr.time_start > t2: continue x = x0 + (aggr.time_start - t1) * hscale w = (aggr.time_stop - aggr.time_start) * hscale w = max(w - 1, 1) ctx.fillRect(x, y0, w, v * vscale) # Draw per unit super()._draw_content(ctx, mi, ma, t1, t2, x0, y0, hscale, vscale) class MonthlyCountPanel(CountPanel): clr = 250, 200, 0 def _get_min_max(self): PSCRIPT_OVERLOAD = False # noqa key = self.key mi = 0 ma = -9_999_999 self.monthly = monthly = [] prev_month = "" data = data_per_db[self.dbname] for i in range(len(data)): aggr = data[i] v = aggr[key] if v is undefined: continue month = aggr.time_key[:7] if month != prev_month: if len(monthly) > 0: ma = max(ma, monthly[-1][key]) new_aggr = {"time_start": aggr.time_start, "time_stop": aggr.time_stop} new_aggr[key] = aggr[key] monthly.append(new_aggr) prev_month = month else: monthly[-1][key] += v monthly[-1].time_stop = aggr.time_stop if len(monthly) > 0: ma = max(ma, monthly[-1][key]) return mi, ma def _draw_content(self, ctx, mi, ma, t1, t2, x0, y0, hscale, vscale): PSCRIPT_OVERLOAD = False # noqa # Draw monthly key = self.key clr = self.clr ctx.fillStyle = f"rgba({clr[0]}, {clr[1]}, {clr[2]}, 0.4)" for i in range(len(self.monthly)): aggr = self.monthly[i] v = aggr[key] if aggr.time_start > t2: continue x = x0 + (aggr.time_start - t1) * hscale w = (aggr.time_stop - aggr.time_start) * hscale w = max(w - 1, 1) ctx.fillRect(x, y0, w, v * vscale) # Draw per unit super()._draw_content(ctx, mi, ma, t1, t2, x0, y0, hscale, vscale) class NumericalPanel(PlotPanel): clr = 0, 220, 250 def __init__(self, *args): super().__init__(*args) def _get_min_max(self): PSCRIPT_OVERLOAD = False # noqa key = self.key mi = +1e20 ma = -1e20 data = data_per_db[self.dbname] for i in range(len(data)): aggr = data[i] meas = aggr[key] if meas is undefined or meas.n == 0: continue mi = min(mi, meas.min) ma = max(ma, meas.max) if ma >= mi: mi = min(0.8 * ma, mi) # Select a good min point mi = 0 if self.unit == "%": mi = 0 ma = max(ma, 100) # percentages can be larger than 100 return mi, ma def _draw_content(self, ctx, mi, ma, t1, t2, x0, y0, hscale, vscale): PSCRIPT_OVERLOAD = False # noqa key = self.key clr = self.clr ctx.fillStyle = f"rgba({clr[0]}, {clr[1]}, {clr[2]}, 0.2)" ctx.strokeStyle = f"rgba({clr[0]}, {clr[1]}, {clr[2]}, 1.0)" data = data_per_db[self.dbname] mean_points = [] for i in range(len(data)): aggr = data[i] meas = aggr[key] if meas is undefined or meas.n == 0: continue if aggr.time_start > t2: continue x = x0 + (aggr.time_start - t1) * hscale w = (aggr.time_stop - aggr.time_start) * hscale w = max(w, 1) # Draw rectangle for min max y = y0 + (meas.min - mi) * vscale h = (meas.max - meas.min) * vscale ctx.fillRect(x, y, w, h) # Draw rectangle for std mean = meas.mean std = (meas.magic / meas.n) ** 0.5 # Welford st1 = max(meas.min, mean - std) st2 = min(meas.max, mean + std) y = y0 + (st1 - mi) * vscale h = (st2 - st1) * vscale ctx.fillRect(x, y, w, h) y = y0 + (mean - mi) * vscale mean_points.append((x + 0.3333 * w, y)) mean_points.append((x + 0.6666 * w, y)) # Draw mean if len(mean_points) > 0: ctx.beginPath() ctx.moveTo(mean_points[0], mean_points[1]) for x, y in mean_points: ctx.lineTo(x, y) ctx.stroke() window.addEventListener("load", on_init) window.addEventListener("resize", on_resize) window.addEventListener("hashchange", on_hash_change)
test/unit/test_k8s_job_name_sanitizer.py
Netflix/metaflow
5,821
11069117
import re from metaflow.plugins.aws.eks.kubernetes import generate_rfc1123_name rfc1123 = re.compile(r'^[a-zA-Z0-9]([a-zA-Z0-9\-]{0,61}[a-zA-Z0-9])?$') def test_job_name_santitizer(): # Basic name assert rfc1123.match(generate_rfc1123_name('HelloFlow', '1', 'end', '321', '1')) # Step name ends with _ assert rfc1123.match(generate_rfc1123_name('HelloFlow', '1', '_end', '321', '1')) # Step name starts and ends with _ assert rfc1123.match(generate_rfc1123_name('HelloFlow', '1', '_end_', '321', '1')) # Flow name ends with _ assert rfc1123.match(generate_rfc1123_name('HelloFlow_', '1', 'end', '321', '1')) # Same flow name, different case must produce different job names assert generate_rfc1123_name('Helloflow', '1', 'end', '321', '1') != generate_rfc1123_name('HelloFlow', '1', 'end', '321', '1') # Very long step name should be fine assert rfc1123.match(generate_rfc1123_name('Helloflow', '1', 'end'*50, '321', '1')) # Very long run id should be fine too assert rfc1123.match(generate_rfc1123_name('Helloflow', '1'*100, 'end', '321', '1'))
sandbox/library/apps.py
caplena/django-hashid-field
310
11069121
from django.apps import AppConfig class LibraryConfig(AppConfig): name = 'library'
x-pack/filebeat/tests/system/test_xpack_modules.py
tetianakravchenko/beats
9,729
11069146
<gh_stars>1000+ import os import sys import test_modules class XPackTest(test_modules.Test): @classmethod def setUpClass(self): self.beat_name = "filebeat" self.beat_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "../../")) super(test_modules.Test, self).setUpClass() def setUp(self): super(test_modules.Test, self).setUp()
homeassistant/components/panasonic_viera/__init__.py
MrDelik/core
30,023
11069153
"""The Panasonic Viera integration.""" from functools import partial import logging from urllib.error import HTTPError, URLError from panasonic_viera import EncryptionRequired, Keys, RemoteControl, SOAPError import voluptuous as vol from homeassistant.config_entries import SOURCE_IMPORT, ConfigEntry from homeassistant.const import ( CONF_HOST, CONF_NAME, CONF_PORT, STATE_OFF, STATE_ON, Platform, ) from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from homeassistant.helpers.script import Script from homeassistant.helpers.typing import ConfigType from .const import ( ATTR_DEVICE_INFO, ATTR_REMOTE, ATTR_UDN, CONF_APP_ID, CONF_ENCRYPTION_KEY, CONF_ON_ACTION, DEFAULT_NAME, DEFAULT_PORT, DOMAIN, ) _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.All( cv.ensure_list, [ vol.Schema( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_ON_ACTION): cv.SCRIPT_SCHEMA, } ) ], ) }, extra=vol.ALLOW_EXTRA, ) PLATFORMS = [Platform.MEDIA_PLAYER, Platform.REMOTE] async def async_setup(hass: HomeAssistant, config: ConfigType) -> bool: """Set up Panasonic Viera from configuration.yaml.""" if DOMAIN not in config: return True for conf in config[DOMAIN]: hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=conf ) ) return True async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry) -> bool: """Set up Panasonic Viera from a config entry.""" panasonic_viera_data = hass.data.setdefault(DOMAIN, {}) config = config_entry.data host = config[CONF_HOST] port = config[CONF_PORT] if (on_action := config[CONF_ON_ACTION]) is not None: on_action = Script(hass, on_action, config[CONF_NAME], DOMAIN) params = {} if CONF_APP_ID in config and CONF_ENCRYPTION_KEY in config: params["app_id"] = config[CONF_APP_ID] params["encryption_key"] = config[CONF_ENCRYPTION_KEY] remote = Remote(hass, host, port, on_action, **params) await remote.async_create_remote_control(during_setup=True) panasonic_viera_data[config_entry.entry_id] = {ATTR_REMOTE: remote} # Add device_info to older config entries if ATTR_DEVICE_INFO not in config or config[ATTR_DEVICE_INFO] is None: device_info = await remote.async_get_device_info() unique_id = config_entry.unique_id if device_info is None: _LOGGER.error( "Couldn't gather device info; Please restart Home Assistant with your TV turned on and connected to your network" ) else: unique_id = device_info[ATTR_UDN] hass.config_entries.async_update_entry( config_entry, unique_id=unique_id, data={**config, ATTR_DEVICE_INFO: device_info}, ) hass.config_entries.async_setup_platforms(config_entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, config_entry: ConfigEntry) -> bool: """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms( config_entry, PLATFORMS ) if unload_ok: hass.data[DOMAIN].pop(config_entry.entry_id) return unload_ok class Remote: """The Remote class. It stores the TV properties and the remote control connection itself.""" def __init__( self, hass, host, port, on_action=None, app_id=None, encryption_key=None, ): """Initialize the Remote class.""" self._hass = hass self._host = host self._port = port self._on_action = on_action self._app_id = app_id self._encryption_key = encryption_key self.state = None self.available = False self.volume = 0 self.muted = False self.playing = True self._control = None async def async_create_remote_control(self, during_setup=False): """Create remote control.""" try: params = {} if self._app_id and self._encryption_key: params["app_id"] = self._app_id params["encryption_key"] = self._encryption_key self._control = await self._hass.async_add_executor_job( partial(RemoteControl, self._host, self._port, **params) ) if during_setup: await self.async_update() except (URLError, SOAPError, OSError) as err: _LOGGER.debug("Could not establish remote connection: %s", err) self._control = None self.state = STATE_OFF self.available = self._on_action is not None except Exception as err: # pylint: disable=broad-except _LOGGER.exception("An unknown error occurred: %s", err) self._control = None self.state = STATE_OFF self.available = self._on_action is not None async def async_update(self): """Update device data.""" if self._control is None: await self.async_create_remote_control() return await self._handle_errors(self._update) def _update(self): """Retrieve the latest data.""" self.muted = self._control.get_mute() self.volume = self._control.get_volume() / 100 async def async_send_key(self, key): """Send a key to the TV and handle exceptions.""" try: key = getattr(Keys, key) except (AttributeError, TypeError): key = getattr(key, "value", key) await self._handle_errors(self._control.send_key, key) async def async_turn_on(self, context): """Turn on the TV.""" if self._on_action is not None: await self._on_action.async_run(context=context) await self.async_update() elif self.state != STATE_ON: await self.async_send_key(Keys.power) await self.async_update() async def async_turn_off(self): """Turn off the TV.""" if self.state != STATE_OFF: await self.async_send_key(Keys.power) self.state = STATE_OFF await self.async_update() async def async_set_mute(self, enable): """Set mute based on 'enable'.""" await self._handle_errors(self._control.set_mute, enable) async def async_set_volume(self, volume): """Set volume level, range 0..1.""" volume = int(volume * 100) await self._handle_errors(self._control.set_volume, volume) async def async_play_media(self, media_type, media_id): """Play media.""" _LOGGER.debug("Play media: %s (%s)", media_id, media_type) await self._handle_errors(self._control.open_webpage, media_id) async def async_get_device_info(self): """Return device info.""" if self._control is None: return None device_info = await self._handle_errors(self._control.get_device_info) _LOGGER.debug("Fetched device info: %s", str(device_info)) return device_info async def _handle_errors(self, func, *args): """Handle errors from func, set available and reconnect if needed.""" try: result = await self._hass.async_add_executor_job(func, *args) self.state = STATE_ON self.available = True return result except EncryptionRequired: _LOGGER.error( "The connection couldn't be encrypted. Please reconfigure your TV" ) self.available = False except (SOAPError, HTTPError) as err: _LOGGER.debug("An error occurred: %s", err) self.state = STATE_OFF self.available = True await self.async_create_remote_control() except (URLError, OSError) as err: _LOGGER.debug("An error occurred: %s", err) self.state = STATE_OFF self.available = self._on_action is not None await self.async_create_remote_control() except Exception as err: # pylint: disable=broad-except _LOGGER.exception("An unknown error occurred: %s", err) self.state = STATE_OFF self.available = self._on_action is not None
wechat_sdk/__init__.py
upcwangying/wechat-python-sdk
1,150
11069213
# -*- coding: utf-8 -*- from wechat_sdk.core.conf import WechatConf from wechat_sdk.basic import WechatBasic from wechat_sdk.ext import WechatExt __all__ = ['WechatConf', 'WechatBasic', 'WechatExt'] __version__ = "0.6.4"
net/data/gencerts/__init__.py
Yannic/chromium
575
11069224
<reponame>Yannic/chromium #!/usr/bin/env python # Copyright (c) 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Set of helpers to generate signed X.509v3 certificates. This works by shelling out calls to the 'openssl req' and 'openssl ca' commands, and passing the appropriate command line flags and configuration file (.cnf). """ import base64 import hashlib import os import shutil import subprocess import sys import openssl_conf # Enum for the "type" of certificate that is to be created. This is used to # select sane defaults for the .cnf file and command line flags, but they can # all be overridden. TYPE_CA = 2 TYPE_END_ENTITY = 3 # March 1st, 2015 12:00 UTC MARCH_1_2015_UTC = '150301120000Z' # March 2nd, 2015 12:00 UTC MARCH_2_2015_UTC = '150302120000Z' # January 1st, 2015 12:00 UTC JANUARY_1_2015_UTC = '150101120000Z' # September 1st, 2015 12:00 UTC SEPTEMBER_1_2015_UTC = '150901120000Z' # January 1st, 2016 12:00 UTC JANUARY_1_2016_UTC = '160101120000Z' # November 3rd, 2020 12:00 UTC NOVEMBER_3_2020_UTC = '201103120000Z' # November 3rd, 2021 12:00 UTC NOVEMBER_3_2021_UTC = '211103120000Z' KEY_PURPOSE_ANY = 'anyExtendedKeyUsage' KEY_PURPOSE_SERVER_AUTH = 'serverAuth' KEY_PURPOSE_CLIENT_AUTH = 'clientAuth' DEFAULT_KEY_PURPOSE = KEY_PURPOSE_SERVER_AUTH # Counters used to generate unique (but readable) path names. g_cur_path_id = {} # Output paths used: # - g_tmp_dir: where any temporary files (cert req, signing db etc) are # saved to. # See init() for how these are assigned. g_tmp_dir = None g_invoking_script_path = None # The default validity range of generated certificates. Can be modified with # set_default_validity_range(). Chosen to end on a Wednesday, since these # will have to be manually re-generated. g_default_start_date = NOVEMBER_3_2020_UTC g_default_end_date = NOVEMBER_3_2021_UTC def set_default_validity_range(start_date, end_date): """Sets the validity range that will be used for certificates created with Certificate""" global g_default_start_date global g_default_end_date g_default_start_date = start_date g_default_end_date = end_date def get_unique_path_id(name): """Returns a base filename that contains 'name', but is unique to the output directory""" # Use case-insensitive matching for counting duplicates, since some # filesystems are case insensitive, but case preserving. lowercase_name = name.lower() path_id = g_cur_path_id.get(lowercase_name, 0) g_cur_path_id[lowercase_name] = path_id + 1 # Use a short and clean name for the first use of this name. if path_id == 0: return name # Otherwise append the count to make it unique. return '%s_%d' % (name, path_id) def get_path_in_tmp_dir(name, suffix): return os.path.join(g_tmp_dir, '%s%s' % (name, suffix)) class Key(object): """Describes a public + private key pair. It is a dumb wrapper around an on-disk key.""" def __init__(self, path): self.path = path def get_path(self): """Returns the path to a file that contains the key contents.""" return self.path def get_or_generate_key(generation_arguments, path): """Helper function to either retrieve a key from an existing file |path|, or generate a new one using the command line |generation_arguments|.""" generation_arguments_str = ' '.join(generation_arguments) # If the file doesn't already exist, generate a new key using the generation # parameters. if not os.path.isfile(path): key_contents = subprocess.check_output(generation_arguments) # Prepend the generation parameters to the key file. write_string_to_file(generation_arguments_str + '\n' + key_contents, path) else: # If the path already exists, confirm that it is for the expected key type. first_line = read_file_to_string(path).splitlines()[0] if first_line != generation_arguments_str: sys.stderr.write(('\nERROR: The existing key file:\n %s\nis not ' 'compatible with the requested parameters:\n "%s" vs "%s".\n' 'Delete the file if you want to re-generate it with the new ' 'parameters, otherwise pick a new filename\n') % ( path, first_line, generation_arguments_str)) sys.exit(1) return Key(path) def get_or_generate_rsa_key(size_bits, path): """Retrieves an existing key from a file if the path exists. Otherwise generates an RSA key with the specified bit size and saves it to the path.""" return get_or_generate_key(['openssl', 'genrsa', str(size_bits)], path) def get_or_generate_ec_key(named_curve, path): """Retrieves an existing key from a file if the path exists. Otherwise generates an EC key with the specified named curve and saves it to the path.""" return get_or_generate_key(['openssl', 'ecparam', '-name', named_curve, '-genkey'], path) def create_key_path(base_name): """Generates a name that contains |base_name| in it, and is relative to the "keys/" directory. If create_key_path(xxx) is called more than once during the script run, a suffix will be added.""" # Save keys to CWD/keys/*.key keys_dir = 'keys' # Create the keys directory if it doesn't exist if not os.path.exists(keys_dir): os.makedirs(keys_dir) return get_unique_path_id(os.path.join(keys_dir, base_name)) + '.key' class Certificate(object): """Helper for building an X.509 certificate.""" def __init__(self, name, cert_type, issuer): # The name will be used for the subject's CN, and also as a component of # the temporary filenames to help with debugging. self.name = name self.path_id = get_unique_path_id(name) # Allow the caller to override the key later. If no key was set will # auto-generate one. self.key = None # The issuer is also a Certificate object. Passing |None| means it is a # self-signed certificate. self.issuer = issuer if issuer is None: self.issuer = self # The config contains all the OpenSSL options that will be passed via a # .cnf file. Set up defaults. self.config = openssl_conf.Config() self.init_config() # Some settings need to be passed as flags rather than in the .cnf file. # Technically these can be set though a .cnf, however doing so makes it # sticky to the issuing certificate, rather than selecting it per # subordinate certificate. self.validity_flags = [] self.md_flags = [] # By default OpenSSL will use the current time for the start time. Instead # default to using a fixed timestamp for more predictable results each time # the certificates are re-generated. self.set_validity_range(g_default_start_date, g_default_end_date) # Use SHA-256 when THIS certificate is signed (setting it in the # configuration would instead set the hash to use when signing other # certificates with this one). self.set_signature_hash('sha256') # Set appropriate key usages and basic constraints. For flexibility in # testing (since want to generate some flawed certificates) these are set # on a per-certificate basis rather than automatically when signing. if cert_type == TYPE_END_ENTITY: self.get_extensions().set_property('keyUsage', 'critical,digitalSignature,keyEncipherment') self.get_extensions().set_property('extendedKeyUsage', 'serverAuth,clientAuth') else: self.get_extensions().set_property('keyUsage', 'critical,keyCertSign,cRLSign') self.get_extensions().set_property('basicConstraints', 'critical,CA:true') # Tracks whether the PEM file for this certificate has been written (since # generation is done lazily). self.finalized = False # Initialize any files that will be needed if this certificate is used to # sign other certificates. Picks a pseudo-random starting serial number # based on the file system path, and will increment this for each signed # certificate. if not os.path.exists(self.get_serial_path()): write_string_to_file('%s\n' % self.make_serial_number(), self.get_serial_path()) if not os.path.exists(self.get_database_path()): write_string_to_file('', self.get_database_path()) def set_validity_range(self, start_date, end_date): """Sets the Validity notBefore and notAfter properties for the certificate""" self.validity_flags = ['-startdate', start_date, '-enddate', end_date] def set_signature_hash(self, md): """Sets the hash function that will be used when signing this certificate. Can be sha1, sha256, sha512, md5, etc.""" self.md_flags = ['-md', md] def get_extensions(self): return self.config.get_section('req_ext') def get_subject(self): """Returns the configuration section responsible for the subject of the certificate. This can be used to alter the subject to be more complex.""" return self.config.get_section('req_dn') def get_path(self, suffix): """Forms a path to an output file for this certificate, containing the indicated suffix. The certificate's name will be used as its basis.""" return os.path.join(g_tmp_dir, '%s%s' % (self.path_id, suffix)) def get_name_path(self, suffix): """Forms a path to an output file for this CA, containing the indicated suffix. If multiple certificates have the same name, they will use the same path.""" return get_path_in_tmp_dir(self.name, suffix) def set_key(self, key): assert self.finalized is False self.set_key_internal(key) def set_key_internal(self, key): self.key = key # Associate the private key with the certificate. section = self.config.get_section('root_ca') section.set_property('private_key', self.key.get_path()) def get_key(self): if self.key is None: self.set_key_internal( get_or_generate_rsa_key(2048, create_key_path(self.name))) return self.key def get_cert_path(self): return self.get_path('.pem') def get_serial_path(self): return self.get_name_path('.serial') def make_serial_number(self): """Returns a hex number that is generated based on the certificate file path. This serial number will likely be globally unique, which makes it easier to use the certificates with NSS (which assumes certificate equivalence based on issuer and serial number).""" # Hash some predictable values together to get the serial number. The # predictability is so that re-generating certificate chains is # a no-op, however each certificate ends up with a unique serial number. m = hashlib.sha1() # Mix in up to the last 3 components of the path for the generating script. # For example, # "verify_certificate_chain_unittest/my_test/generate_chains.py" script_path = os.path.realpath(g_invoking_script_path) script_path = "/".join(script_path.split(os.sep)[-3:]) m.update(script_path) # Mix in the path_id, which corresponds to a unique path for the # certificate under out/ (and accounts for non-unique certificate names). m.update(self.path_id) serial_bytes = m.digest() # SHA1 digest is 20 bytes long, which is appropriate for a serial number. # However, need to also make sure the most significant bit is 0 so it is # not a "negative" number. serial_bytes = chr(ord(serial_bytes[0]) & 0x7F) + serial_bytes[1:] return serial_bytes.encode("hex") def get_csr_path(self): return self.get_path('.csr') def get_database_path(self): return self.get_name_path('.db') def get_config_path(self): return self.get_path('.cnf') def get_cert_pem(self): # Finish generating a .pem file for the certificate. self.finalize() # Read the certificate data. return read_file_to_string(self.get_cert_path()) def finalize(self): """Finishes the certificate creation process. This generates any needed key, creates and signs the CSR. On completion the resulting PEM file can be found at self.get_cert_path()""" if self.finalized: return # Already finalized, no work needed. self.finalized = True # Ensure that the issuer has been "finalized", since its outputs need to be # accessible. Note that self.issuer could be the same as self. self.issuer.finalize() # Ensure the certificate has a key (gets lazily created by this call if # missing). self.get_key() # Serialize the config to a file. self.config.write_to_file(self.get_config_path()) # Create a CSR. subprocess.check_call( ['openssl', 'req', '-new', '-key', self.key.get_path(), '-out', self.get_csr_path(), '-config', self.get_config_path()]) cmd = ['openssl', 'ca', '-batch', '-in', self.get_csr_path(), '-out', self.get_cert_path(), '-config', self.issuer.get_config_path()] if self.issuer == self: cmd.append('-selfsign') # Add in any extra flags. cmd.extend(self.validity_flags) cmd.extend(self.md_flags) # Run the 'openssl ca' command. subprocess.check_call(cmd) def init_config(self): """Initializes default properties in the certificate .cnf file that are generic enough to work for all certificates (but can be overridden later). """ # -------------------------------------- # 'req' section # -------------------------------------- section = self.config.get_section('req') section.set_property('encrypt_key', 'no') section.set_property('utf8', 'yes') section.set_property('string_mask', 'utf8only') section.set_property('prompt', 'no') section.set_property('distinguished_name', 'req_dn') section.set_property('req_extensions', 'req_ext') # -------------------------------------- # 'req_dn' section # -------------------------------------- # This section describes the certificate subject's distinguished name. section = self.config.get_section('req_dn') section.set_property('commonName', '"%s"' % (self.name)) # -------------------------------------- # 'req_ext' section # -------------------------------------- # This section describes the certificate's extensions. section = self.config.get_section('req_ext') section.set_property('subjectKeyIdentifier', 'hash') # -------------------------------------- # SECTIONS FOR CAs # -------------------------------------- # The following sections are used by the 'openssl ca' and relate to the # signing operation. They are not needed for end-entity certificate # configurations, but only if this certifiate will be used to sign other # certificates. # -------------------------------------- # 'ca' section # -------------------------------------- section = self.config.get_section('ca') section.set_property('default_ca', 'root_ca') section = self.config.get_section('root_ca') section.set_property('certificate', self.get_cert_path()) section.set_property('new_certs_dir', g_tmp_dir) section.set_property('serial', self.get_serial_path()) section.set_property('database', self.get_database_path()) section.set_property('unique_subject', 'no') # These will get overridden via command line flags. section.set_property('default_days', '365') section.set_property('default_md', 'sha256') section.set_property('policy', 'policy_anything') section.set_property('email_in_dn', 'no') section.set_property('preserve', 'yes') section.set_property('name_opt', 'multiline,-esc_msb,utf8') section.set_property('cert_opt', 'ca_default') section.set_property('copy_extensions', 'copy') section.set_property('x509_extensions', 'signing_ca_ext') section.set_property('default_crl_days', '30') section.set_property('crl_extensions', 'crl_ext') section = self.config.get_section('policy_anything') section.set_property('domainComponent', 'optional') section.set_property('countryName', 'optional') section.set_property('stateOrProvinceName', 'optional') section.set_property('localityName', 'optional') section.set_property('organizationName', 'optional') section.set_property('organizationalUnitName', 'optional') section.set_property('commonName', 'optional') section.set_property('emailAddress', 'optional') section = self.config.get_section('signing_ca_ext') section.set_property('subjectKeyIdentifier', 'hash') section.set_property('authorityKeyIdentifier', 'keyid:always') section.set_property('authorityInfoAccess', '@issuer_info') section.set_property('crlDistributionPoints', '@crl_info') section = self.config.get_section('issuer_info') section.set_property('caIssuers;URI.0', 'http://url-for-aia/%s.cer' % (self.name)) section = self.config.get_section('crl_info') section.set_property('URI.0', 'http://url-for-crl/%s.crl' % (self.name)) section = self.config.get_section('crl_ext') section.set_property('authorityKeyIdentifier', 'keyid:always') section.set_property('authorityInfoAccess', '@issuer_info') def text_data_to_pem(block_header, text_data): return '%s\n-----BEGIN %s-----\n%s\n-----END %s-----\n' % (text_data, block_header, base64.b64encode(text_data), block_header) def write_chain(description, chain, out_pem): """Writes the chain to a .pem file as a series of CERTIFICATE blocks""" # Prepend the script name that generated the file to the description. test_data = '[Created by: %s]\n\n%s\n' % (sys.argv[0], description) # Write the certificate chain to the output file. for cert in chain: test_data += '\n' + cert.get_cert_pem() write_string_to_file(test_data, out_pem) def write_string_to_file(data, path): with open(path, 'w') as f: f.write(data) def read_file_to_string(path): with open(path, 'r') as f: return f.read() def init(invoking_script_path): """Creates an output directory to contain all the temporary files that may be created, as well as determining the path for the final output. These paths are all based off of the name of the calling script. """ global g_tmp_dir global g_invoking_script_path g_invoking_script_path = invoking_script_path # The scripts assume to be run from within their containing directory (paths # to things like "keys/" are written relative). expected_cwd = os.path.realpath(os.path.dirname(invoking_script_path)) actual_cwd = os.path.realpath(os.getcwd()) if actual_cwd != expected_cwd: sys.stderr.write( ('Your current working directory must be that containing the python ' 'scripts:\n%s\nas the script may reference paths relative to this\n') % (expected_cwd)) sys.exit(1) # Use an output directory that is a sibling of the invoking script. g_tmp_dir = 'out' # Ensure the output directory exists and is empty. sys.stdout.write('Creating output directory: %s\n' % (g_tmp_dir)) shutil.rmtree(g_tmp_dir, True) os.makedirs(g_tmp_dir) def create_self_signed_root_certificate(name): return Certificate(name, TYPE_CA, None) def create_intermediate_certificate(name, issuer): return Certificate(name, TYPE_CA, issuer) def create_end_entity_certificate(name, issuer): return Certificate(name, TYPE_END_ENTITY, issuer) init(sys.argv[0])
bigflow_python/python/bigflow/transform_impls/select_elements_processor.py
tushushu/bigflow
1,236
11069290
#!/usr/bin/env python # -*- coding: utf-8 -*- ######################################################################## # # Copyright (c) 2015 Baidu, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ######################################################################## """ File: select_elements_processor.py Author: panyunhong(<EMAIL>) Date: 2015/05/08 11:49:39 """ import heapq from bigflow.transform_impls import processor def default_select_min_comparator(first_key, second_key): return first_key > second_key class SelectElementsProcessor(processor.AbstractProcessor): class __wrapper(object): def __init__(self, key, record, comparer): self._key = key self._record = record self._comparer = comparer def __lt__(self, wrapper_obj): return self._comparer(self._key(self._record), \ wrapper_obj._key(wrapper_obj._record)) def __init__(self, _n, _key, comparer=default_select_min_comparator): super(SelectElementsProcessor, self).__init__(_key) self.n = _n self.heap = [] self.key = (lambda x: x) if _key is None else _key self._comparer = comparer def process(self, index, record): wrapper_obj = SelectElementsProcessor.__wrapper(self.key, record, self._comparer) if len(self.heap) < self.n: heapq.heappush(self.heap, wrapper_obj) else: if self.heap[0] < wrapper_obj: heapq.heapreplace(self.heap, wrapper_obj) def end(self): while len(self.heap) > 0: wrapper_obj = heapq.heappop(self.heap) self._emitter.emit(wrapper_obj._record)
VMEncryption/main/CommandExecutor.py
shridpant/azure-linux-extensions
266
11069292
<reponame>shridpant/azure-linux-extensions #!/usr/bin/env python # # VMEncryption extension # # Copyright 2015 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.7+ # import os import os.path import shlex import sys from subprocess import * from threading import Timer class ProcessCommunicator(object): def __init__(self): self.stdout = None self.stderr = None class CommandExecutor(object): """description of class""" def __init__(self, logger): self.logger = logger def Execute(self, command_to_execute, raise_exception_on_failure=False, communicator=None, input=None, suppress_logging=False, timeout=0): if type(command_to_execute) == unicode: command_to_execute = command_to_execute.encode('ascii', 'ignore') if not suppress_logging: self.logger.log("Executing: {0}".format(command_to_execute)) args = shlex.split(command_to_execute) proc = None timer = None return_code = None try: proc = Popen(args, stdout=PIPE, stderr=PIPE, stdin=PIPE, close_fds=True) except Exception as e: if raise_exception_on_failure: raise else: if not suppress_logging: self.logger.log("Process creation failed: " + str(e)) return -1 def timeout_process(): proc.kill() self.logger.log("Command {0} didn't finish in {1} seconds. Timing it out".format(command_to_execute, timeout)) try: if timeout>0: timer = Timer(timeout, timeout_process) timer.start() stdout, stderr = proc.communicate(input=input) finally: if timer is not None: timer.cancel() return_code = proc.returncode if isinstance(communicator, ProcessCommunicator): communicator.stdout, communicator.stderr = stdout, stderr if int(return_code) != 0: msg = "Command {0} failed with return code {1}".format(command_to_execute, return_code) msg += "\nstdout:\n" + stdout msg += "\nstderr:\n" + stderr if not suppress_logging: self.logger.log(msg) if raise_exception_on_failure: raise Exception(msg) return return_code def ExecuteInBash(self, command_to_execute, raise_exception_on_failure=False, communicator=None, input=None, suppress_logging=False): command_to_execute = 'bash -c "{0}{1}"'.format('set -e; ' if raise_exception_on_failure else '', command_to_execute) return self.Execute(command_to_execute, raise_exception_on_failure, communicator, input, suppress_logging)
tools/mb/mb.py
chromium/chromium
14,668
11069298
<reponame>chromium/chromium #!/usr/bin/env python # Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """MB - the Meta-Build wrapper around GN. MB is a wrapper script for GN that can be used to generate build files for sets of canned configurations and analyze them. """ from __future__ import absolute_import from __future__ import print_function import argparse import ast import collections import errno import json import os import pipes import platform import re import shutil import sys import subprocess import tempfile import traceback import zipfile if sys.version_info.major == 2: from urllib2 import urlopen else: from urllib.request import urlopen CHROMIUM_SRC_DIR = os.path.dirname(os.path.dirname(os.path.dirname( os.path.abspath(__file__)))) sys.path = [os.path.join(CHROMIUM_SRC_DIR, 'build')] + sys.path sys.path.insert(0, os.path.join( os.path.dirname(os.path.abspath(__file__)), '..')) import gn_helpers from mb.lib import validation def DefaultVals(): """Default mixin values""" return { 'args_file': '', 'gn_args': '', } def PruneVirtualEnv(): # Set by VirtualEnv, no need to keep it. os.environ.pop('VIRTUAL_ENV', None) # Set by VPython, if scripts want it back they have to set it explicitly. os.environ.pop('PYTHONNOUSERSITE', None) # Look for "activate_this.py" in this path, which is installed by VirtualEnv. # This mechanism is used by vpython as well to sanitize VirtualEnvs from # $PATH. os.environ['PATH'] = os.pathsep.join([ p for p in os.environ.get('PATH', '').split(os.pathsep) if not os.path.isfile(os.path.join(p, 'activate_this.py')) ]) def main(args): # Prune all evidence of VPython/VirtualEnv out of the environment. This means # that we 'unwrap' vpython VirtualEnv path/env manipulation. Invocations of # `python` from GN should never inherit the gn.py's own VirtualEnv. This also # helps to ensure that generated ninja files do not reference python.exe from # the VirtualEnv generated from depot_tools' own .vpython file (or lack # thereof), but instead reference the default python from the PATH. PruneVirtualEnv() mbw = MetaBuildWrapper() return mbw.Main(args) class MetaBuildWrapper(object): def __init__(self): self.chromium_src_dir = CHROMIUM_SRC_DIR self.default_config = os.path.join(self.chromium_src_dir, 'tools', 'mb', 'mb_config.pyl') self.default_isolate_map = os.path.join(self.chromium_src_dir, 'testing', 'buildbot', 'gn_isolate_map.pyl') self.executable = sys.executable self.platform = sys.platform self.sep = os.sep self.args = argparse.Namespace() self.configs = {} self.public_artifact_builders = None self.builder_groups = {} self.mixins = {} self.isolate_exe = 'isolate.exe' if self.platform.startswith( 'win') else 'isolate' self.use_luci_auth = False self.rts_out_dir = self.PathJoin('gen', 'rts') self.banned_from_rts = set() def PostArgsInit(self): self.use_luci_auth = getattr(self.args, 'luci_auth', False) if 'config_file' in self.args and self.args.config_file is None: self.args.config_file = self.default_config if 'expectations_dir' in self.args and self.args.expectations_dir is None: self.args.expectations_dir = os.path.join( os.path.dirname(self.args.config_file), 'mb_config_expectations') banned_from_rts_map = json.loads( self.ReadFile( self.PathJoin(self.chromium_src_dir, 'tools', 'mb', 'rts_banned_suites.json'))) self.banned_from_rts.update(banned_from_rts_map.get('*', set())) if getattr(self.args, 'builder', None): self.banned_from_rts.update( banned_from_rts_map.get(self.args.builder, set())) def Main(self, args): self.ParseArgs(args) self.PostArgsInit() try: ret = self.args.func() if ret != 0: self.DumpInputFiles() return ret except KeyboardInterrupt: self.Print('interrupted, exiting') return 130 except Exception: self.DumpInputFiles() s = traceback.format_exc() for l in s.splitlines(): self.Print(l) return 1 def ParseArgs(self, argv): def AddCommonOptions(subp): group = subp.add_mutually_exclusive_group() group.add_argument( '-m', '--builder-group', help='builder group name to look up config from') subp.add_argument('-b', '--builder', help='builder name to look up config from') subp.add_argument('-c', '--config', help='configuration to analyze') subp.add_argument('--phase', help='optional phase name (used when builders ' 'do multiple compiles with different ' 'arguments in a single build)') subp.add_argument('-i', '--isolate-map-file', metavar='PATH', help='path to isolate map file ' '(default is %(default)s)', default=[], action='append', dest='isolate_map_files') subp.add_argument('-n', '--dryrun', action='store_true', help='Do a dry run (i.e., do nothing, just print ' 'the commands that will run)') subp.add_argument('-v', '--verbose', action='store_true', help='verbose logging') subp.add_argument('--root', help='Path to GN source root') subp.add_argument('--dotfile', help='Path to GN dotfile') AddExpansionOptions(subp) def AddExpansionOptions(subp): # These are the args needed to expand a config file into the full # parsed dicts of GN args. subp.add_argument('-f', '--config-file', metavar='PATH', help=('path to config file ' '(default is mb_config.pyl')) subp.add_argument('-g', '--goma-dir', help='path to goma directory') subp.add_argument('--android-version-code', help='Sets GN arg android_default_version_code') subp.add_argument('--android-version-name', help='Sets GN arg android_default_version_name') subp.add_argument('--use-rts', action='store_true', default=False, help='whether or not to use regression test selection' ' For more info about RTS, please see' ' //docs/testing/regression-test-selection.md') subp.add_argument('--use-st', action='store_true', default=False, help='whether or not to add filter stable tests during' ' RTS selection') # TODO(crbug.com/1060857): Remove this once swarming task templates # support command prefixes. luci_auth_group = subp.add_mutually_exclusive_group() luci_auth_group.add_argument( '--luci-auth', action='store_true', help='Run isolated commands under `luci-auth context`.') luci_auth_group.add_argument( '--no-luci-auth', action='store_false', dest='luci_auth', help='Do not run isolated commands under `luci-auth context`.') parser = argparse.ArgumentParser( prog='mb', description='mb (meta-build) is a python wrapper around GN. ' 'See the user guide in ' '//tools/mb/docs/user_guide.md for detailed usage ' 'instructions.') subps = parser.add_subparsers() subp = subps.add_parser('analyze', description='Analyze whether changes to a set of ' 'files will cause a set of binaries to ' 'be rebuilt.') AddCommonOptions(subp) subp.add_argument('path', help='path build was generated into.') subp.add_argument('input_path', help='path to a file containing the input arguments ' 'as a JSON object.') subp.add_argument('output_path', help='path to a file containing the output arguments ' 'as a JSON object.') subp.add_argument('--json-output', help='Write errors to json.output') subp.set_defaults(func=self.CmdAnalyze) subp = subps.add_parser('export', description='Print out the expanded configuration ' 'for each builder as a JSON object.') AddExpansionOptions(subp) subp.set_defaults(func=self.CmdExport) subp = subps.add_parser('get-swarming-command', description='Get the command needed to run the ' 'binary under swarming') AddCommonOptions(subp) subp.add_argument('--no-build', dest='build', default=True, action='store_false', help='Do not build, just isolate') subp.add_argument('--as-list', action='store_true', help='return the command line as a JSON-formatted ' 'list of strings instead of single string') subp.add_argument('path', help=('path to generate build into (or use).' ' This can be either a regular path or a ' 'GN-style source-relative path like ' '//out/Default.')) subp.add_argument('target', help='ninja target to build and run') subp.set_defaults(func=self.CmdGetSwarmingCommand) subp = subps.add_parser('train', description='Writes the expanded configuration ' 'for each builder as JSON files to a configured ' 'directory.') subp.add_argument('-f', '--config-file', metavar='PATH', help='path to config file (default is mb_config.pyl') subp.add_argument('--expectations-dir', metavar='PATH', help='path to dir containing expectation files') subp.add_argument('-n', '--dryrun', action='store_true', help='Do a dry run (i.e., do nothing, just print ' 'the commands that will run)') subp.add_argument('-v', '--verbose', action='store_true', help='verbose logging') subp.set_defaults(func=self.CmdTrain) subp = subps.add_parser('gen', description='Generate a new set of build files.') AddCommonOptions(subp) subp.add_argument('--swarming-targets-file', help='generates runtime dependencies for targets listed ' 'in file as .isolate and .isolated.gen.json files. ' 'Targets should be listed by name, separated by ' 'newline.') subp.add_argument('--json-output', help='Write errors to json.output') subp.add_argument('--rts-target-change-recall', type=float, help='how much safety is needed when selecting tests. ' '0.0 is the lowest and 1.0 is the highest') subp.add_argument('path', help='path to generate build into') subp.set_defaults(func=self.CmdGen) subp = subps.add_parser('isolate-everything', description='Generates a .isolate for all targets. ' 'Requires that mb.py gen has already ' 'been run.') AddCommonOptions(subp) subp.set_defaults(func=self.CmdIsolateEverything) subp.add_argument('path', help='path build was generated into') subp = subps.add_parser('isolate', description='Generate the .isolate files for a ' 'given binary.') AddCommonOptions(subp) subp.add_argument('--no-build', dest='build', default=True, action='store_false', help='Do not build, just isolate') subp.add_argument('-j', '--jobs', type=int, help='Number of jobs to pass to ninja') subp.add_argument('path', help='path build was generated into') subp.add_argument('target', help='ninja target to generate the isolate for') subp.set_defaults(func=self.CmdIsolate) subp = subps.add_parser('lookup', description='Look up the command for a given ' 'config or builder.') AddCommonOptions(subp) subp.add_argument('--quiet', default=False, action='store_true', help='Print out just the arguments, ' 'do not emulate the output of the gen subcommand.') subp.add_argument('--recursive', default=False, action='store_true', help='Lookup arguments from imported files, ' 'implies --quiet') subp.set_defaults(func=self.CmdLookup) subp = subps.add_parser('try', description='Try your change on a remote builder') AddCommonOptions(subp) subp.add_argument('target', help='ninja target to build and run') subp.add_argument('--force', default=False, action='store_true', help='Force the job to run. Ignores local checkout state;' ' by default, the tool doesn\'t trigger jobs if there are' ' local changes which are not present on Gerrit.') subp.set_defaults(func=self.CmdTry) subp = subps.add_parser( 'run', formatter_class=argparse.RawDescriptionHelpFormatter) subp.description = ( 'Build, isolate, and run the given binary with the command line\n' 'listed in the isolate. You may pass extra arguments after the\n' 'target; use "--" if the extra arguments need to include switches.\n' '\n' 'Examples:\n' '\n' ' % tools/mb/mb.py run -m chromium.linux -b "Linux Builder" \\\n' ' //out/Default content_browsertests\n' '\n' ' % tools/mb/mb.py run out/Default content_browsertests\n' '\n' ' % tools/mb/mb.py run out/Default content_browsertests -- \\\n' ' --test-launcher-retry-limit=0' '\n' ) AddCommonOptions(subp) subp.add_argument('-j', '--jobs', type=int, help='Number of jobs to pass to ninja') subp.add_argument('--no-build', dest='build', default=True, action='store_false', help='Do not build, just isolate and run') subp.add_argument('path', help=('path to generate build into (or use).' ' This can be either a regular path or a ' 'GN-style source-relative path like ' '//out/Default.')) subp.add_argument('-s', '--swarmed', action='store_true', help='Run under swarming with the default dimensions') subp.add_argument('-d', '--dimension', default=[], action='append', nargs=2, dest='dimensions', metavar='FOO bar', help='dimension to filter on') subp.add_argument('--tags', default=[], action='append', metavar='FOO:BAR', help='Tags to assign to the swarming task') subp.add_argument('--no-default-dimensions', action='store_false', dest='default_dimensions', default=True, help='Do not automatically add dimensions to the task') subp.add_argument('target', help='ninja target to build and run') subp.add_argument('extra_args', nargs='*', help=('extra args to pass to the isolate to run. Use ' '"--" as the first arg if you need to pass ' 'switches')) subp.set_defaults(func=self.CmdRun) subp = subps.add_parser('validate', description='Validate the config file.') AddExpansionOptions(subp) subp.add_argument('--expectations-dir', metavar='PATH', help='path to dir containing expectation files') subp.add_argument('--skip-dcheck-check', help='Skip check for dcheck_always_on.', action='store_true') subp.set_defaults(func=self.CmdValidate) subp = subps.add_parser('zip', description='Generate a .zip containing the files ' 'needed for a given binary.') AddCommonOptions(subp) subp.add_argument('--no-build', dest='build', default=True, action='store_false', help='Do not build, just isolate') subp.add_argument('-j', '--jobs', type=int, help='Number of jobs to pass to ninja') subp.add_argument('path', help='path build was generated into') subp.add_argument('target', help='ninja target to generate the isolate for') subp.add_argument('zip_path', help='path to zip file to create') subp.set_defaults(func=self.CmdZip) subp = subps.add_parser('help', help='Get help on a subcommand.') subp.add_argument(nargs='?', action='store', dest='subcommand', help='The command to get help for.') subp.set_defaults(func=self.CmdHelp) self.args = parser.parse_args(argv) def DumpInputFiles(self): def DumpContentsOfFilePassedTo(arg_name, path): if path and self.Exists(path): self.Print("\n# To recreate the file passed to %s:" % arg_name) self.Print("%% cat > %s <<EOF" % path) contents = self.ReadFile(path) self.Print(contents) self.Print("EOF\n%\n") if getattr(self.args, 'input_path', None): DumpContentsOfFilePassedTo( 'argv[0] (input_path)', self.args.input_path) if getattr(self.args, 'swarming_targets_file', None): DumpContentsOfFilePassedTo( '--swarming-targets-file', self.args.swarming_targets_file) def CmdAnalyze(self): vals = self.Lookup() return self.RunGNAnalyze(vals) def CmdExport(self): obj = self._ToJsonish() s = json.dumps(obj, sort_keys=True, indent=2, separators=(',', ': ')) self.Print(s) return 0 def CmdTrain(self): expectations_dir = self.args.expectations_dir if not self.Exists(expectations_dir): self.Print('Expectations dir (%s) does not exist.' % expectations_dir) return 1 # Removing every expectation file then immediately re-generating them will # clear out deleted groups. for f in self.ListDir(expectations_dir): self.RemoveFile(os.path.join(expectations_dir, f)) obj = self._ToJsonish() for builder_group, builder in sorted(obj.items()): expectation_file = os.path.join(expectations_dir, builder_group + '.json') json_s = json.dumps(builder, indent=2, sort_keys=True, separators=(',', ': ')) self.WriteFile(expectation_file, json_s) return 0 def RtsSelect(self): model_dir = self.PathJoin( self.chromium_src_dir, 'testing', 'rts', self._CipdPlatform()) exe = self.PathJoin(model_dir, 'rts-chromium') if self.platform == 'win32': exe += '.exe' args = [ exe, 'select', '-model-dir', model_dir, \ '-out', self.PathJoin(self.ToAbsPath(self.args.path), self.rts_out_dir), '-checkout', self.chromium_src_dir, ] if self.args.rts_target_change_recall: if (self.args.rts_target_change_recall < 0 or self.args.rts_target_change_recall > 1): self.WriteFailureAndRaise( 'rts-target-change-recall must be between (0 and 1]', None) args += ['-target-change-recall', str(self.args.rts_target_change_recall)] ret, _, _ = self.Run(args, force_verbose=True) if ret != 0: self.WriteFailureAndRaise(err, None) def CmdGen(self): if self.args.use_rts: self.RtsSelect() vals = self.Lookup() return self.RunGNGen(vals) def CmdGetSwarmingCommand(self): vals = self.GetConfig() command, _ = self.GetSwarmingCommand(self.args.target, vals) if self.args.as_list: self.Print(json.dumps(command)) else: self.Print(' '.join(command)) return 0 def CmdIsolateEverything(self): vals = self.Lookup() return self.RunGNGenAllIsolates(vals) def CmdHelp(self): if self.args.subcommand: self.ParseArgs([self.args.subcommand, '--help']) else: self.ParseArgs(['--help']) def CmdIsolate(self): vals = self.GetConfig() if not vals: return 1 if self.args.build: ret = self.Build(self.args.target) if ret != 0: return ret return self.RunGNIsolate(vals) def CmdLookup(self): vals = self.Lookup() _, gn_args = self.GNArgs(vals, expand_imports=self.args.recursive) if self.args.quiet or self.args.recursive: self.Print(gn_args, end='') else: cmd = self.GNCmd('gen', '_path_') self.Print('\nWriting """\\\n%s""" to _path_/args.gn.\n' % gn_args) self.PrintCmd(cmd) return 0 def CmdTry(self): ninja_target = self.args.target if ninja_target.startswith('//'): self.Print("Expected a ninja target like base_unittests, got %s" % ( ninja_target)) return 1 _, out, _ = self.Run(['git', 'cl', 'diff', '--stat'], force_verbose=False) if out: self.Print("Your checkout appears to local changes which are not uploaded" " to Gerrit. Changes must be committed and uploaded to Gerrit" " to be tested using this tool.") if not self.args.force: return 1 json_path = self.PathJoin(self.chromium_src_dir, 'out.json') try: ret, out, err = self.Run( ['git', 'cl', 'issue', '--json=out.json'], force_verbose=False) if ret != 0: self.Print( "Unable to fetch current issue. Output and error:\n%s\n%s" % ( out, err )) return ret with open(json_path) as f: issue_data = json.load(f) finally: if self.Exists(json_path): os.unlink(json_path) if not issue_data['issue']: self.Print("Missing issue data. Upload your CL to Gerrit and try again.") return 1 class LedException(Exception): pass def run_cmd(previous_res, cmd): if self.args.verbose: self.Print(('| ' if previous_res else '') + ' '.join(cmd)) res, out, err = self.Call(cmd, stdin=previous_res) if res != 0: self.Print("Err while running '%s'. Output:\n%s\nstderr:\n%s" % ( ' '.join(cmd), out, err)) raise LedException() return out try: result = LedResult(None, run_cmd).then( # TODO(martiniss): maybe don't always assume the bucket? 'led', 'get-builder', 'luci.chromium.try:%s' % self.args.builder).then( 'led', 'edit', '-r', 'chromium_trybot_experimental', '-p', 'tests=["%s"]' % ninja_target).then( 'led', 'edit-system', '--tag=purpose:user-debug-mb-try').then( 'led', 'edit-cr-cl', issue_data['issue_url']).then( 'led', 'launch').result except LedException: self.Print("If this is an unexpected error message, please file a bug" " with https://goto.google.com/mb-try-bug") raise swarming_data = json.loads(result)['swarming'] self.Print("Launched task at https://%s/task?id=%s" % ( swarming_data['host_name'], swarming_data['task_id'])) def CmdRun(self): vals = self.GetConfig() if not vals: return 1 if self.args.build: self.Print('') ret = self.Build(self.args.target) if ret: return ret self.Print('') ret = self.RunGNIsolate(vals) if ret: return ret self.Print('') if self.args.swarmed: cmd, _ = self.GetSwarmingCommand(self.args.target, vals) return self._RunUnderSwarming(self.args.path, self.args.target, cmd) return self._RunLocallyIsolated(self.args.path, self.args.target) def CmdZip(self): ret = self.CmdIsolate() if ret: return ret zip_dir = None try: zip_dir = self.TempDir() remap_cmd = [ self.PathJoin(self.chromium_src_dir, 'tools', 'luci-go', self.isolate_exe), 'remap', '-i', self.PathJoin(self.args.path, self.args.target + '.isolate'), '-outdir', zip_dir ] ret, _, _ = self.Run(remap_cmd) if ret: return ret zip_path = self.args.zip_path with zipfile.ZipFile( zip_path, 'w', zipfile.ZIP_DEFLATED, allowZip64=True) as fp: for root, _, files in os.walk(zip_dir): for filename in files: path = self.PathJoin(root, filename) fp.write(path, self.RelPath(path, zip_dir)) return 0 finally: if zip_dir: self.RemoveDirectory(zip_dir) def _RunUnderSwarming(self, build_dir, target, isolate_cmd): cas_instance = 'chromium-swarm' swarming_server = 'chromium-swarm.appspot.com' # TODO(dpranke): Look up the information for the target in # the //testing/buildbot.json file, if possible, so that we # can determine the isolate target, command line, and additional # swarming parameters, if possible. # # TODO(dpranke): Also, add support for sharding and merging results. dimensions = [] for k, v in self._DefaultDimensions() + self.args.dimensions: dimensions += ['-d', '%s=%s' % (k, v)] archive_json_path = self.ToSrcRelPath( '%s/%s.archive.json' % (build_dir, target)) cmd = [ self.PathJoin(self.chromium_src_dir, 'tools', 'luci-go', self.isolate_exe), 'archive', '-i', self.ToSrcRelPath('%s/%s.isolate' % (build_dir, target)), '-cas-instance', cas_instance, '-dump-json', archive_json_path, ] # Talking to the isolateserver may fail because we're not logged in. # We trap the command explicitly and rewrite the error output so that # the error message is actually correct for a Chromium check out. self.PrintCmd(cmd) ret, out, _ = self.Run(cmd, force_verbose=False) if ret: self.Print(' -> returned %d' % ret) if out: self.Print(out, end='') return ret try: archive_hashes = json.loads(self.ReadFile(archive_json_path)) except Exception: self.Print( 'Failed to read JSON file "%s"' % archive_json_path, file=sys.stderr) return 1 try: cas_digest = archive_hashes[target] except Exception: self.Print( 'Cannot find hash for "%s" in "%s", file content: %s' % (target, archive_json_path, archive_hashes), file=sys.stderr) return 1 tags = ['-tag=%s' % tag for tag in self.args.tags] try: json_dir = self.TempDir() json_file = self.PathJoin(json_dir, 'task.json') cmd = [ self.PathJoin('tools', 'luci-go', 'swarming'), 'trigger', '-digest', cas_digest, '-server', swarming_server, '-tag=purpose:user-debug-mb', '-relative-cwd', self.ToSrcRelPath(build_dir), '-dump-json', json_file, ] + tags + dimensions + ['--'] + list(isolate_cmd) if self.args.extra_args: cmd += self.args.extra_args self.Print('') ret, _, _ = self.Run(cmd, force_verbose=True, buffer_output=False) if ret: return ret task_json = self.ReadFile(json_file) task_id = json.loads(task_json)["tasks"][0]['task_id'] collect_output = self.PathJoin(json_dir, 'collect_output.json') cmd = [ self.PathJoin('tools', 'luci-go', 'swarming'), 'collect', '-server', swarming_server, '-task-output-stdout=console', '-task-summary-json', collect_output, task_id, ] ret, _, _ = self.Run(cmd, force_verbose=True, buffer_output=False) if ret != 0: return ret collect_json = json.loads(self.ReadFile(collect_output)) # The exit_code field is not included if the task was successful. ret = collect_json.get(task_id, {}).get('results', {}).get('exit_code', 0) finally: if json_dir: self.RemoveDirectory(json_dir) return ret def _RunLocallyIsolated(self, build_dir, target): cmd = [ self.PathJoin(self.chromium_src_dir, 'tools', 'luci-go', self.isolate_exe), 'run', '-i', self.ToSrcRelPath('%s/%s.isolate' % (build_dir, target)), ] if self.args.extra_args: cmd += ['--'] + self.args.extra_args ret, _, _ = self.Run(cmd, force_verbose=True, buffer_output=False) return ret def _DefaultDimensions(self): if not self.args.default_dimensions: return [] # This code is naive and just picks reasonable defaults per platform. if self.platform == 'darwin': os_dim = ('os', 'Mac-10.13') elif self.platform.startswith('linux'): os_dim = ('os', 'Ubuntu-16.04') elif self.platform == 'win32': os_dim = ('os', 'Windows-10') else: raise MBErr('unrecognized platform string "%s"' % self.platform) return [('pool', 'chromium.tests'), ('cpu', 'x86-64'), os_dim] def _ToJsonish(self): """Dumps the config file into a json-friendly expanded dict. Returns: A dict with builder group -> builder -> all GN args mapping. """ self.ReadConfigFile(self.args.config_file) obj = {} for builder_group, builders in self.builder_groups.items(): obj[builder_group] = {} for builder in builders: config = self.builder_groups[builder_group][builder] if not config: continue if isinstance(config, dict): # This is a 'phased' builder. Each key in the config is a different # phase of the builder. args = {} for k, v in config.items(): args[k] = gn_helpers.FromGNArgs( FlattenConfig(self.configs, self.mixins, v)['gn_args']) elif config.startswith('//'): args = config else: flattened_config = FlattenConfig(self.configs, self.mixins, config) if flattened_config['gn_args'] == 'error': continue args = {'gn_args': gn_helpers.FromGNArgs(flattened_config['gn_args'])} if flattened_config.get('args_file'): args['args_file'] = flattened_config['args_file'] obj[builder_group][builder] = args return obj def CmdValidate(self, print_ok=True): errs = [] self.ReadConfigFile(self.args.config_file) # Build a list of all of the configs referenced by builders. all_configs = validation.GetAllConfigs(self.builder_groups) # Check that every referenced args file or config actually exists. for config, loc in all_configs.items(): if config.startswith('//'): if not self.Exists(self.ToAbsPath(config)): errs.append('Unknown args file "%s" referenced from "%s".' % (config, loc)) elif not config in self.configs: errs.append('Unknown config "%s" referenced from "%s".' % (config, loc)) # Check that every config and mixin is referenced. validation.CheckAllConfigsAndMixinsReferenced(errs, all_configs, self.configs, self.mixins) if self.args.config_file == self.default_config: validation.EnsureNoProprietaryMixins(errs, self.builder_groups, self.configs, self.mixins) validation.CheckDuplicateConfigs(errs, self.configs, self.mixins, self.builder_groups, FlattenConfig) if not self.args.skip_dcheck_check: self._ValidateEach(errs, validation.CheckDebugDCheckOrOfficial) if errs: raise MBErr(('mb config file %s has problems:\n ' % self.args.config_file) + '\n '.join(errs)) expectations_dir = self.args.expectations_dir # TODO(crbug.com/1117577): Force all versions of mb_config.pyl to have # expectations. For now, just ignore those that don't have them. if self.Exists(expectations_dir): jsonish_blob = self._ToJsonish() if not validation.CheckExpectations(self, jsonish_blob, expectations_dir): raise MBErr("Expectations out of date. Please run 'mb.py train'.") if print_ok: self.Print('mb config file %s looks ok.' % self.args.config_file) return 0 def _ValidateEach(self, errs, validate): """Checks a validate function against every builder config. This loops over all the builders in the config file, invoking the validate function against the full set of GN args. Any errors found should be appended to the errs list passed in; the validation function signature is validate(errs:list, gn_args:dict, builder_group:str, builder:str, phase:(str|None))""" for builder_group, builders in self.builder_groups.items(): for builder, config in builders.items(): if isinstance(config, dict): for phase, phase_config in config.items(): vals = FlattenConfig(self.configs, self.mixins, phase_config) if vals['gn_args'] == 'error': continue try: parsed_gn_args, _ = self.GNArgs(vals, expand_imports=True) except IOError: # The builder must use an args file that was not checked out or # generated, so we should just ignore it. parsed_gn_args, _ = self.GNArgs(vals, expand_imports=False) validate(errs, parsed_gn_args, builder_group, builder, phase) else: vals = FlattenConfig(self.configs, self.mixins, config) if vals['gn_args'] == 'error': continue try: parsed_gn_args, _ = self.GNArgs(vals, expand_imports=True) except IOError: # The builder must use an args file that was not checked out or # generated, so we should just ignore it. parsed_gn_args, _ = self.GNArgs(vals, expand_imports=False) validate(errs, parsed_gn_args, builder_group, builder, phase=None) def GetConfig(self): build_dir = self.args.path vals = DefaultVals() if self.args.builder or self.args.builder_group or self.args.config: vals = self.Lookup() # Re-run gn gen in order to ensure the config is consistent with the # build dir. self.RunGNGen(vals) return vals toolchain_path = self.PathJoin(self.ToAbsPath(build_dir), 'toolchain.ninja') if not self.Exists(toolchain_path): self.Print('Must either specify a path to an existing GN build dir ' 'or pass in a -m/-b pair or a -c flag to specify the ' 'configuration') return {} vals['gn_args'] = self.GNArgsFromDir(build_dir) return vals def GNArgsFromDir(self, build_dir): args_contents = "" gn_args_path = self.PathJoin(self.ToAbsPath(build_dir), 'args.gn') if self.Exists(gn_args_path): args_contents = self.ReadFile(gn_args_path) # Handle any .gni file imports, e.g. the ones used by CrOS. This should # be automatically handled by gn_helpers.FromGNArgs (via its call to # gn_helpers.GNValueParser.ReplaceImports), but that currently breaks # mb_unittest since it mocks out file reads itself instead of using # pyfakefs. This results in gn_helpers trying to read a non-existent file. # The implementation of ReplaceImports here can be removed once the # unittests use pyfakefs. def ReplaceImports(input_contents): output_contents = '' for l in input_contents.splitlines(True): if not l.strip().startswith('#') and 'import(' in l: import_file = l.split('"', 2)[1] import_file = self.ToAbsPath(import_file) imported_contents = self.ReadFile(import_file) output_contents += ReplaceImports(imported_contents) + '\n' else: output_contents += l return output_contents args_contents = ReplaceImports(args_contents) args_dict = gn_helpers.FromGNArgs(args_contents) # Re-add the quotes around strings so they show up as they would in the # args.gn file. for k, v in args_dict.items(): if isinstance(v, str): args_dict[k] = '"%s"' % v return ' '.join(['%s=%s' % (k, v) for (k, v) in args_dict.items()]) def Lookup(self): self.ReadConfigFile(self.args.config_file) try: config = self.ConfigFromArgs() except MBErr as e: # TODO(crbug.com/912681) While iOS bots are migrated to use the # Chromium recipe, we want to ensure that we're checking MB's # configurations first before going to iOS. # This is to be removed once the migration is complete. vals = self.ReadIOSBotConfig() if not vals: raise e return vals # TODO(crbug.com/912681) Some iOS bots have a definition, with ios_error # as an indicator that it's incorrect. We utilize this to check the # iOS JSON instead, and error out if there exists no definition at all. # This is to be removed once the migration is complete. if config == 'ios_error': vals = self.ReadIOSBotConfig() if not vals: raise MBErr('No iOS definition was found. Please ensure there is a ' 'definition for the given iOS bot under ' 'mb_config.pyl or a JSON file definition under ' '//ios/build/bots.') return vals if config.startswith('//'): if not self.Exists(self.ToAbsPath(config)): raise MBErr('args file "%s" not found' % config) vals = DefaultVals() vals['args_file'] = config else: if not config in self.configs: raise MBErr( 'Config "%s" not found in %s' % (config, self.args.config_file)) vals = FlattenConfig(self.configs, self.mixins, config) return vals def ReadIOSBotConfig(self): if not self.args.builder_group or not self.args.builder: return {} path = self.PathJoin(self.chromium_src_dir, 'ios', 'build', 'bots', self.args.builder_group, self.args.builder + '.json') if not self.Exists(path): return {} contents = json.loads(self.ReadFile(path)) gn_args = ' '.join(contents.get('gn_args', [])) vals = DefaultVals() vals['gn_args'] = gn_args return vals def ReadConfigFile(self, config_file): if not self.Exists(config_file): raise MBErr('config file not found at %s' % config_file) try: contents = ast.literal_eval(self.ReadFile(config_file)) except SyntaxError as e: raise MBErr('Failed to parse config file "%s": %s' % (config_file, e)) self.configs = contents['configs'] self.mixins = contents['mixins'] self.builder_groups = contents.get('builder_groups') self.public_artifact_builders = contents.get('public_artifact_builders') def ReadIsolateMap(self): if not self.args.isolate_map_files: self.args.isolate_map_files = [self.default_isolate_map] for f in self.args.isolate_map_files: if not self.Exists(f): raise MBErr('isolate map file not found at %s' % f) isolate_maps = {} for isolate_map in self.args.isolate_map_files: try: isolate_map = ast.literal_eval(self.ReadFile(isolate_map)) duplicates = set(isolate_map).intersection(isolate_maps) if duplicates: raise MBErr( 'Duplicate targets in isolate map files: %s.' % ', '.join(duplicates)) isolate_maps.update(isolate_map) except SyntaxError as e: raise MBErr( 'Failed to parse isolate map file "%s": %s' % (isolate_map, e)) return isolate_maps def ConfigFromArgs(self): if self.args.config: if self.args.builder_group or self.args.builder: raise MBErr('Can not specific both -c/--config and --builder-group ' 'or -b/--builder') return self.args.config if not self.args.builder_group or not self.args.builder: raise MBErr('Must specify either -c/--config or ' '(--builder-group and -b/--builder)') if not self.args.builder_group in self.builder_groups: raise MBErr('Builder group name "%s" not found in "%s"' % (self.args.builder_group, self.args.config_file)) if not self.args.builder in self.builder_groups[self.args.builder_group]: raise MBErr('Builder name "%s" not found under groups[%s] in "%s"' % (self.args.builder, self.args.builder_group, self.args.config_file)) config = self.builder_groups[self.args.builder_group][self.args.builder] if isinstance(config, dict): if self.args.phase is None: raise MBErr('Must specify a build --phase for %s on %s' % (self.args.builder, self.args.builder_group)) phase = str(self.args.phase) if phase not in config: raise MBErr('Phase %s doesn\'t exist for %s on %s' % (phase, self.args.builder, self.args.builder_group)) return config[phase] if self.args.phase is not None: raise MBErr('Must not specify a build --phase for %s on %s' % (self.args.builder, self.args.builder_group)) return config def RunGNGen(self, vals, compute_inputs_for_analyze=False, check=True): build_dir = self.args.path if check: cmd = self.GNCmd('gen', build_dir, '--check') else: cmd = self.GNCmd('gen', build_dir) _, gn_args = self.GNArgs(vals) if compute_inputs_for_analyze: gn_args += ' compute_inputs_for_analyze=true' # Since GN hasn't run yet, the build directory may not even exist. self.MaybeMakeDirectory(self.ToAbsPath(build_dir)) gn_args_path = self.ToAbsPath(build_dir, 'args.gn') self.WriteFile(gn_args_path, gn_args, force_verbose=True) if getattr(self.args, 'swarming_targets_file', None): # We need GN to generate the list of runtime dependencies for # the compile targets listed (one per line) in the file so # we can run them via swarming. We use gn_isolate_map.pyl to convert # the compile targets to the matching GN labels. path = self.args.swarming_targets_file if not self.Exists(path): self.WriteFailureAndRaise('"%s" does not exist' % path, output_path=None) contents = self.ReadFile(path) isolate_targets = set(contents.splitlines()) isolate_map = self.ReadIsolateMap() self.RemovePossiblyStaleRuntimeDepsFiles(vals, isolate_targets, isolate_map, build_dir) err, labels = self.MapTargetsToLabels(isolate_map, isolate_targets) if err: raise MBErr(err) gn_runtime_deps_path = self.ToAbsPath(build_dir, 'runtime_deps') self.WriteFile(gn_runtime_deps_path, '\n'.join(labels) + '\n') cmd.append('--runtime-deps-list-file=%s' % gn_runtime_deps_path) ret, output, _ = self.Run(cmd) if ret != 0: if self.args.json_output: # write errors to json.output self.WriteJSON({'output': output}, self.args.json_output) # If `gn gen` failed, we should exit early rather than trying to # generate isolates. Run() will have already logged any error output. self.Print('GN gen failed: %d' % ret) return ret if getattr(self.args, 'swarming_targets_file', None): ret = self.GenerateIsolates(vals, isolate_targets, isolate_map, build_dir) return ret def RunGNGenAllIsolates(self, vals): """ This command generates all .isolate files. This command assumes that "mb.py gen" has already been run, as it relies on "gn ls" to fetch all gn targets. If uses that output, combined with the isolate_map, to determine all isolates that can be generated for the current gn configuration. """ build_dir = self.args.path ret, output, _ = self.Run(self.GNCmd('ls', build_dir), force_verbose=False) if ret != 0: # If `gn ls` failed, we should exit early rather than trying to # generate isolates. self.Print('GN ls failed: %d' % ret) return ret # Create a reverse map from isolate label to isolate dict. isolate_map = self.ReadIsolateMap() isolate_dict_map = {} for key, isolate_dict in isolate_map.items(): isolate_dict_map[isolate_dict['label']] = isolate_dict isolate_dict_map[isolate_dict['label']]['isolate_key'] = key runtime_deps = [] isolate_targets = [] # For every GN target, look up the isolate dict. for line in output.splitlines(): target = line.strip() if target in isolate_dict_map: if isolate_dict_map[target]['type'] == 'additional_compile_target': # By definition, additional_compile_targets are not tests, so we # shouldn't generate isolates for them. continue isolate_targets.append(isolate_dict_map[target]['isolate_key']) runtime_deps.append(target) self.RemovePossiblyStaleRuntimeDepsFiles(vals, isolate_targets, isolate_map, build_dir) gn_runtime_deps_path = self.ToAbsPath(build_dir, 'runtime_deps') self.WriteFile(gn_runtime_deps_path, '\n'.join(runtime_deps) + '\n') cmd = self.GNCmd('gen', build_dir) cmd.append('--runtime-deps-list-file=%s' % gn_runtime_deps_path) self.Run(cmd) return self.GenerateIsolates(vals, isolate_targets, isolate_map, build_dir) def RemovePossiblyStaleRuntimeDepsFiles(self, vals, targets, isolate_map, build_dir): # TODO(crbug.com/932700): Because `gn gen --runtime-deps-list-file` # puts the runtime_deps file in different locations based on the actual # type of a target, we may end up with multiple possible runtime_deps # files in a given build directory, where some of the entries might be # stale (since we might be reusing an existing build directory). # # We need to be able to get the right one reliably; you might think # we can just pick the newest file, but because GN won't update timestamps # if the contents of the files change, an older runtime_deps # file might actually be the one we should use over a newer one (see # crbug.com/932387 for a more complete explanation and example). # # In order to avoid this, we need to delete any possible runtime_deps # files *prior* to running GN. As long as the files aren't actually # needed during the build, this hopefully will not cause unnecessary # build work, and so it should be safe. # # Ultimately, we should just make sure we get the runtime_deps files # in predictable locations so we don't have this issue at all, and # that's what crbug.com/932700 is for. possible_rpaths = self.PossibleRuntimeDepsPaths(vals, targets, isolate_map) for rpaths in possible_rpaths.values(): for rpath in rpaths: path = self.ToAbsPath(build_dir, rpath) if self.Exists(path): self.RemoveFile(path) def _FilterOutUnneededSkylabDeps(self, deps): """Filter out the runtime dependencies not used by Skylab. Skylab is CrOS infra facilities for us to run hardware tests. These files may appear in the test target's runtime_deps but unnecessary for our tests to execute in a CrOS device. """ file_ignore_list = [ re.compile(r'.*build/android.*'), re.compile(r'.*build/chromeos.*'), re.compile(r'.*build/cros_cache.*'), # The following matches anything under //testing/ that isn't under # //testing/buildbot/filters/. re.compile(r'.*testing/(?!buildbot/filters).*'), re.compile(r'.*third_party/chromite.*'), # No test target should rely on files in [output_dir]/gen. re.compile(r'^gen/.*'), ] return [f for f in deps if not any(r.match(f) for r in file_ignore_list)] def _DedupDependencies(self, deps): """Remove the deps already contained by other paths.""" def _add(root, path): cur = path.popleft() # Only continue the recursion if the path has child nodes # AND the current node is not ended by other existing paths. if path and root.get(cur) != {}: return _add(root.setdefault(cur, {}), path) # Cut this path, because child nodes are already included. root[cur] = {} return root def _list(root, prefix, res): for k, v in root.items(): if v == {}: res.append('%s/%s' % (prefix, k)) continue _list(v, '%s/%s' % (prefix, k), res) return res root = {} for d in deps: q = collections.deque(d.rstrip('/').split('/')) _add(root, q) return [p.lstrip('/') for p in _list(root, '', [])] def GenerateIsolates(self, vals, ninja_targets, isolate_map, build_dir): """ Generates isolates for a list of ninja targets. Ninja targets are transformed to GN targets via isolate_map. This function assumes that a previous invocation of "mb.py gen" has generated runtime deps for all targets. """ possible_rpaths = self.PossibleRuntimeDepsPaths(vals, ninja_targets, isolate_map) for target, rpaths in possible_rpaths.items(): # TODO(crbug.com/932700): We don't know where each .runtime_deps # file might be, but assuming we called # RemovePossiblyStaleRuntimeDepsFiles prior to calling `gn gen`, # there should only be one file. found_one = False path_to_use = None for r in rpaths: path = self.ToAbsPath(build_dir, r) if self.Exists(path): if found_one: raise MBErr('Found more than one of %s' % ', '.join(rpaths)) path_to_use = path found_one = True if not found_one: raise MBErr('Did not find any of %s' % ', '.join(rpaths)) command, extra_files = self.GetSwarmingCommand(target, vals) runtime_deps = self.ReadFile(path_to_use).splitlines() runtime_deps = self._DedupDependencies(runtime_deps) if 'is_skylab=true' in vals['gn_args']: runtime_deps = self._FilterOutUnneededSkylabDeps(runtime_deps) # For more info about RTS, please see # //docs/testing/regression-test-selection.md if self.args.use_rts or self.args.use_st: self.AddFilterFileArg(target, build_dir, command) canonical_target = target.replace(':','_').replace('/','_') ret = self.WriteIsolateFiles(build_dir, command, canonical_target, runtime_deps, vals, extra_files) if ret != 0: return ret return 0 def AddFilterFileArg(self, target, build_dir, command): if target in self.banned_from_rts: self.Print('%s is banned for RTS on this builder' % target) else: filter_file = target + '.filter' filter_file_path = self.PathJoin(self.rts_out_dir, filter_file) abs_filter_file_path = self.ToAbsPath(build_dir, filter_file_path) self.CreateOrAppendStableTestFilter(abs_filter_file_path, build_dir, target) if self.Exists(abs_filter_file_path): command.append('--test-launcher-filter-file=%s' % filter_file_path) self.Print('added RTS filter file to command: %s' % filter_file) def CreateOrAppendStableTestFilter(self, abs_filter_file_path, build_dir, target): if self.args.use_st: stable_filter_file = self.PathJoin( self.chromium_src_dir, 'testing', 'buildbot', 'filters', 'stable_test_filters', getattr(self.args, 'builder', None), target) + '.filter' # The path to the filter file to append abs_stable_filter_file = self.ToAbsPath(build_dir, stable_filter_file) if self.Exists(abs_stable_filter_file): # A stable filter exists if not self.args.use_rts: self.Print('RTS disabled, using stable filter') dest_dir = os.path.dirname(abs_filter_file_path) if not self.Exists(dest_dir): os.makedirs(dest_dir) shutil.copy(abs_stable_filter_file, abs_filter_file_path) else: # Rts is enabled and will delete ALL .filter files # only rts filters generated this run should remain if not self.Exists(abs_filter_file_path): self.Print('No RTS filter found, using stable filter') shutil.copy(abs_stable_filter_file, abs_filter_file_path) else: self.Print('Adding stable tests filter to RTS filter') with open(abs_filter_file_path, 'a+') as select_filter_file, open( abs_stable_filter_file, 'r') as stable_filter_file: select_filter_file.write('\n') select_filter_file.write(stable_filter_file.read()) else: self.Print('No stable filter found at %s' % abs_stable_filter_file) else: self.Print('No stable filter') return 0 def PossibleRuntimeDepsPaths(self, vals, ninja_targets, isolate_map): """Returns a map of targets to possible .runtime_deps paths. Each ninja target maps on to a GN label, but depending on the type of the GN target, `gn gen --runtime-deps-list-file` will write the .runtime_deps files into different locations. Unfortunately, in some cases we don't actually know which of multiple locations will actually be used, so we return all plausible candidates. The paths that are returned are relative to the build directory. """ android = 'target_os="android"' in vals['gn_args'] ios = 'target_os="ios"' in vals['gn_args'] fuchsia = 'target_os="fuchsia"' in vals['gn_args'] win = self.platform == 'win32' or 'target_os="win"' in vals['gn_args'] possible_runtime_deps_rpaths = {} for target in ninja_targets: target_type = isolate_map[target]['type'] label = isolate_map[target]['label'] stamp_runtime_deps = 'obj/%s.stamp.runtime_deps' % label.replace(':', '/') # TODO(https://crbug.com/876065): 'official_tests' use # type='additional_compile_target' to isolate tests. This is not the # intended use for 'additional_compile_target'. if (target_type == 'additional_compile_target' and target != 'official_tests'): # By definition, additional_compile_targets are not tests, so we # shouldn't generate isolates for them. raise MBErr('Cannot generate isolate for %s since it is an ' 'additional_compile_target.' % target) if fuchsia or ios or target_type == 'generated_script': # iOS and Fuchsia targets end up as groups. # generated_script targets are always actions. rpaths = [stamp_runtime_deps] elif android: # Android targets may be either android_apk or executable. The former # will result in runtime_deps associated with the stamp file, while the # latter will result in runtime_deps associated with the executable. label = isolate_map[target]['label'] rpaths = [ target + '.runtime_deps', stamp_runtime_deps] elif (target_type == 'script' or isolate_map[target].get('label_type') == 'group'): # For script targets, the build target is usually a group, # for which gn generates the runtime_deps next to the stamp file # for the label, which lives under the obj/ directory, but it may # also be an executable. label = isolate_map[target]['label'] rpaths = [stamp_runtime_deps] if win: rpaths += [ target + '.exe.runtime_deps' ] else: rpaths += [ target + '.runtime_deps' ] elif win: rpaths = [target + '.exe.runtime_deps'] else: rpaths = [target + '.runtime_deps'] possible_runtime_deps_rpaths[target] = rpaths return possible_runtime_deps_rpaths def RunGNIsolate(self, vals): target = self.args.target isolate_map = self.ReadIsolateMap() err, labels = self.MapTargetsToLabels(isolate_map, [target]) if err: raise MBErr(err) label = labels[0] build_dir = self.args.path command, extra_files = self.GetSwarmingCommand(target, vals) # Any warning for an unused arg will get interleaved into the cmd's # stdout. When that happens, the isolate step below will fail with an # obscure error when it tries processing the lines of the warning. Fail # quickly in that case to avoid confusion cmd = self.GNCmd('desc', build_dir, label, 'runtime_deps', '--fail-on-unused-args') ret, out, _ = self.Call(cmd) if ret != 0: if out: self.Print(out) return ret runtime_deps = out.splitlines() ret = self.WriteIsolateFiles(build_dir, command, target, runtime_deps, vals, extra_files) if ret != 0: return ret ret, _, _ = self.Run([ self.PathJoin(self.chromium_src_dir, 'tools', 'luci-go', self.isolate_exe), 'check', '-i', self.ToSrcRelPath('%s/%s.isolate' % (build_dir, target)), ], buffer_output=False) return ret def WriteIsolateFiles(self, build_dir, command, target, runtime_deps, vals, extra_files): isolate_path = self.ToAbsPath(build_dir, target + '.isolate') files = sorted(set(runtime_deps + extra_files)) # Complain if any file is a directory that's inside the build directory, # since that makes incremental builds incorrect. See # https://crbug.com/912946 is_android = 'target_os="android"' in vals['gn_args'] is_cros = ('target_os="chromeos"' in vals['gn_args'] or 'is_chromeos_device=true' in vals['gn_args']) is_mac = self.platform == 'darwin' is_msan = 'is_msan=true' in vals['gn_args'] is_ios = 'target_os="ios"' in vals['gn_args'] err = '' for f in files: # Skip a few configs that need extra cleanup for now. # TODO(https://crbug.com/912946): Fix everything on all platforms and # enable check everywhere. if is_android: break # iOS has generated directories in gn data items. # Skipping for iOS instead of listing all apps. if is_ios: break # Skip a few existing violations that need to be cleaned up. Each of # these will lead to incorrect incremental builds if their directory # contents change. Do not add to this list, except for mac bundles until # crbug.com/1000667 is fixed. # TODO(https://crbug.com/912946): Remove this if statement. if ((is_msan and f == 'instrumented_libraries_prebuilt/') or f == 'mr_extension/' or # https://crbug.com/997947 f.startswith('nacl_test_data/') or f.startswith('ppapi_nacl_tests_libs/') or (is_cros and f in ( # https://crbug.com/1002509 'chromevox_test_data/', 'gen/ui/file_manager/file_manager/', 'resources/chromeos/', 'resources/chromeos/accessibility/accessibility_common/', 'resources/chromeos/accessibility/chromevox/', 'resources/chromeos/accessibility/select_to_speak/', 'test_data/chrome/browser/resources/chromeos/accessibility/' 'accessibility_common/', 'test_data/chrome/browser/resources/chromeos/accessibility/' 'chromevox/', 'test_data/chrome/browser/resources/chromeos/accessibility/' 'select_to_speak/', )) or (is_mac and f in ( # https://crbug.com/1000667 'Chromium Framework.framework/', 'Chromium Helper.app/', 'Chromium.app/', 'ChromiumUpdater.app/', 'Content Shell.app/', 'Google Chrome Framework.framework/', 'Google Chrome Helper (Alerts).app/', 'Google Chrome Helper (GPU).app/', 'Google Chrome Helper (Plugin).app/', 'Google Chrome Helper (Renderer).app/', 'Google Chrome Helper.app/', 'Google Chrome.app/', 'GoogleUpdater.app/', 'UpdaterTestApp Framework.framework/', 'UpdaterTestApp.app/', 'blink_deprecated_test_plugin.plugin/', 'blink_test_plugin.plugin/', 'corb_test_plugin.plugin/', 'obj/tools/grit/brotli_mac_asan_workaround/', 'ppapi_tests.plugin/', 'ui_unittests Framework.framework/', ))): continue # This runs before the build, so we can't use isdir(f). But # isolate.py luckily requires data directories to end with '/', so we # can check for that. if not f.startswith('../../') and f.endswith('/'): # Don't use self.PathJoin() -- all involved paths consistently use # forward slashes, so don't add one single backslash on Windows. err += '\n' + build_dir + '/' + f if err: self.Print('error: gn `data` items may not list generated directories; ' 'list files in directory instead for:' + err) return 1 self.WriteFile(isolate_path, json.dumps({ 'variables': { 'command': command, 'files': files, } }, sort_keys=True) + '\n') self.WriteJSON( { 'args': [ '--isolate', self.ToSrcRelPath('%s/%s.isolate' % (build_dir, target)), ], 'dir': self.chromium_src_dir, 'version': 1, }, isolate_path + 'd.gen.json', ) return 0 def MapTargetsToLabels(self, isolate_map, targets): labels = [] err = '' for target in targets: if target == 'all': labels.append(target) elif target.startswith('//'): labels.append(target) else: if target in isolate_map: if isolate_map[target]['type'] == 'unknown': err += ('test target "%s" type is unknown\n' % target) else: labels.append(isolate_map[target]['label']) else: err += ('target "%s" not found in ' '//testing/buildbot/gn_isolate_map.pyl\n' % target) return err, labels def GNCmd(self, subcommand, path, *args): if self.platform.startswith('linux'): subdir, exe = 'linux64', 'gn' elif self.platform == 'darwin': subdir, exe = 'mac', 'gn' elif self.platform == 'aix6': subdir, exe = 'aix', 'gn' else: subdir, exe = 'win', 'gn.exe' gn_path = self.PathJoin(self.chromium_src_dir, 'buildtools', subdir, exe) cmd = [gn_path, subcommand] if self.args.root: cmd += ['--root=' + self.args.root] if self.args.dotfile: cmd += ['--dotfile=' + self.args.dotfile] return cmd + [path] + list(args) def GNArgs(self, vals, expand_imports=False): """Returns the gn args from vals as a Python dict and a text string. If expand_imports is true, any import() lines will be read in and valuese them will be included.""" gn_args = vals['gn_args'] if self.args.goma_dir: gn_args += ' goma_dir="%s"' % self.args.goma_dir android_version_code = self.args.android_version_code if android_version_code: gn_args += ' android_default_version_code="%s"' % android_version_code android_version_name = self.args.android_version_name if android_version_name: gn_args += ' android_default_version_name="%s"' % android_version_name if self.args.use_rts or self.args.use_st: gn_args += ' use_rts=true' args_gn_lines = [] parsed_gn_args = {} args_file = vals.get('args_file', None) if args_file: if expand_imports: content = self.ReadFile(self.ToAbsPath(args_file)) parsed_gn_args = gn_helpers.FromGNArgs(content) else: args_gn_lines.append('import("%s")' % args_file) # Canonicalize the arg string into a sorted, newline-separated list # of key-value pairs, and de-dup the keys if need be so that only # the last instance of each arg is listed. parsed_gn_args.update(gn_helpers.FromGNArgs(gn_args)) args_gn_lines.append(gn_helpers.ToGNString(parsed_gn_args)) return parsed_gn_args, '\n'.join(args_gn_lines) def GetSwarmingCommand(self, target, vals): isolate_map = self.ReadIsolateMap() is_android = 'target_os="android"' in vals['gn_args'] is_fuchsia = 'target_os="fuchsia"' in vals['gn_args'] is_cros = ('target_os="chromeos"' in vals['gn_args'] or 'is_chromeos_device=true' in vals['gn_args']) is_cros_device = 'is_chromeos_device=true' in vals['gn_args'] is_ios = 'target_os="ios"' in vals['gn_args'] is_mac = self.platform == 'darwin' and not is_ios is_win = self.platform == 'win32' or 'target_os="win"' in vals['gn_args'] is_lacros = 'chromeos_is_browser_only=true' in vals['gn_args'] test_type = isolate_map[target]['type'] if self.use_luci_auth: cmdline = ['luci-auth.exe' if is_win else 'luci-auth', 'context', '--'] else: cmdline = [] if test_type == 'generated_script' or is_ios or is_lacros: assert 'script' not in isolate_map[target], ( 'generated_scripts can no longer customize the script path') if is_win: default_script = 'bin\\run_{}.bat'.format(target) else: default_script = 'bin/run_{}'.format(target) script = isolate_map[target].get('script', default_script) # TODO(crbug.com/816629): remove any use of 'args' from # generated_scripts. cmdline += [script] + isolate_map[target].get('args', []) return cmdline, [] # TODO(crbug.com/816629): Convert all targets to generated_scripts # and delete the rest of this function. # This should be true if tests with type='windowed_test_launcher' are # expected to run using xvfb. For example, Linux Desktop, X11 CrOS and # Ozone CrOS builds on Linux (xvfb is not used on CrOS HW or VMs). Note # that one Ozone build can be used to run different backends. Currently, # tests are executed for the headless and X11 backends and both can run # under Xvfb on Linux. # TODO(tonikitoo,msisov,fwang): Find a way to run tests for the Wayland # backend. use_xvfb = (self.platform.startswith('linux') and not is_android and not is_fuchsia and not is_cros_device) asan = 'is_asan=true' in vals['gn_args'] msan = 'is_msan=true' in vals['gn_args'] tsan = 'is_tsan=true' in vals['gn_args'] cfi_diag = 'use_cfi_diag=true' in vals['gn_args'] clang_coverage = 'use_clang_coverage=true' in vals['gn_args'] java_coverage = 'use_jacoco_coverage=true' in vals['gn_args'] javascript_coverage = 'use_javascript_coverage=true' in vals['gn_args'] executable = isolate_map[target].get('executable', target) executable_suffix = isolate_map[target].get( 'executable_suffix', '.exe' if is_win else '') if isolate_map[target].get('python3', True): extra_files = ['../../.vpython3'] vpython_exe = 'vpython3' else: extra_files = ['../../.vpython'] vpython_exe = 'vpython' extra_files += [ '../../testing/test_env.py', ] if is_android and test_type != 'script': if asan: cmdline += [os.path.join('bin', 'run_with_asan'), '--'] cmdline += [ vpython_exe, '../../build/android/test_wrapper/logdog_wrapper.py', '--target', target, '--logdog-bin-cmd', '../../.task_template_packages/logdog_butler', '--store-tombstones' ] if clang_coverage or java_coverage: cmdline += ['--coverage-dir', '${ISOLATED_OUTDIR}'] elif is_fuchsia and test_type != 'script': cmdline += [ os.path.join('bin', 'run_%s' % target), '--test-launcher-bot-mode', '--logs-dir=${ISOLATED_OUTDIR}', ] elif is_cros_device and test_type != 'script': cmdline += [ os.path.join('bin', 'run_%s' % target), '--logs-dir=${ISOLATED_OUTDIR}', ] elif use_xvfb and test_type == 'windowed_test_launcher': extra_files.append('../../testing/xvfb.py') cmdline += [ vpython_exe, '../../testing/xvfb.py', './' + str(executable) + executable_suffix, '--test-launcher-bot-mode', '--asan=%d' % asan, # Enable lsan when asan is enabled except on Windows where LSAN isn't # supported. # TODO(https://crbug.com/948939): Enable on Mac once things pass. # TODO(https://crbug.com/974478): Enable on ChromeOS once things pass. '--lsan=%d' % (asan and not is_mac and not is_win and not is_cros), '--msan=%d' % msan, '--tsan=%d' % tsan, '--cfi-diag=%d' % cfi_diag, ] if javascript_coverage: cmdline += ['--devtools-code-coverage=${ISOLATED_OUTDIR}'] elif test_type in ('windowed_test_launcher', 'console_test_launcher'): cmdline += [ vpython_exe, '../../testing/test_env.py', './' + str(executable) + executable_suffix, '--test-launcher-bot-mode', '--asan=%d' % asan, # Enable lsan when asan is enabled except on Windows where LSAN isn't # supported. # TODO(https://crbug.com/948939): Enable on Mac once things pass. # TODO(https://crbug.com/974478): Enable on ChromeOS once things pass. '--lsan=%d' % (asan and not is_mac and not is_win and not is_cros), '--msan=%d' % msan, '--tsan=%d' % tsan, '--cfi-diag=%d' % cfi_diag, ] elif test_type == 'script': # If we're testing a CrOS simplechrome build, assume we need to prepare a # DUT for testing. So prepend the command to run with the test wrapper. if is_cros_device: cmdline += [ os.path.join('bin', 'cros_test_wrapper'), '--logs-dir=${ISOLATED_OUTDIR}', '--', ] if is_android: extra_files.append('../../build/android/test_wrapper/logdog_wrapper.py') cmdline += [ vpython_exe, '../../testing/test_env.py', '../../build/android/test_wrapper/logdog_wrapper.py', '--script', '../../' + self.ToSrcRelPath(isolate_map[target]['script']), '--logdog-bin-cmd', '../../.task_template_packages/logdog_butler', ] else: cmdline += [ vpython_exe, '../../testing/test_env.py', '../../' + self.ToSrcRelPath(isolate_map[target]['script']) ] elif test_type == 'additional_compile_target': cmdline = [ './' + str(target) + executable_suffix, ] else: self.WriteFailureAndRaise('No command line for %s found (test type %s).' % (target, test_type), output_path=None) cmdline += isolate_map[target].get('args', []) return cmdline, extra_files def ToAbsPath(self, build_path, *comps): return self.PathJoin(self.chromium_src_dir, self.ToSrcRelPath(build_path), *comps) def ToSrcRelPath(self, path): """Returns a relative path from the top of the repo.""" if path.startswith('//'): return path[2:].replace('/', self.sep) return self.RelPath(path, self.chromium_src_dir) def RunGNAnalyze(self, vals): # Analyze runs before 'gn gen' now, so we need to run gn gen # in order to ensure that we have a build directory. ret = self.RunGNGen(vals, compute_inputs_for_analyze=True, check=False) if ret != 0: return ret build_path = self.args.path input_path = self.args.input_path gn_input_path = input_path + '.gn' output_path = self.args.output_path gn_output_path = output_path + '.gn' inp = self.ReadInputJSON(['files', 'test_targets', 'additional_compile_targets']) if self.args.verbose: self.Print() self.Print('analyze input:') self.PrintJSON(inp) self.Print() # This shouldn't normally happen, but could due to unusual race conditions, # like a try job that gets scheduled before a patch lands but runs after # the patch has landed. if not inp['files']: self.Print('Warning: No files modified in patch, bailing out early.') self.WriteJSON({ 'status': 'No dependency', 'compile_targets': [], 'test_targets': [], }, output_path) return 0 gn_inp = {} gn_inp['files'] = ['//' + f for f in inp['files'] if not f.startswith('//')] isolate_map = self.ReadIsolateMap() err, gn_inp['additional_compile_targets'] = self.MapTargetsToLabels( isolate_map, inp['additional_compile_targets']) if err: raise MBErr(err) err, gn_inp['test_targets'] = self.MapTargetsToLabels( isolate_map, inp['test_targets']) if err: raise MBErr(err) labels_to_targets = {} for i, label in enumerate(gn_inp['test_targets']): labels_to_targets[label] = inp['test_targets'][i] try: self.WriteJSON(gn_inp, gn_input_path) cmd = self.GNCmd('analyze', build_path, gn_input_path, gn_output_path) ret, output, _ = self.Run(cmd, force_verbose=True) if ret != 0: if self.args.json_output: # write errors to json.output self.WriteJSON({'output': output}, self.args.json_output) return ret gn_outp_str = self.ReadFile(gn_output_path) try: gn_outp = json.loads(gn_outp_str) except Exception as e: self.Print("Failed to parse the JSON string GN returned: %s\n%s" % (repr(gn_outp_str), str(e))) raise outp = {} if 'status' in gn_outp: outp['status'] = gn_outp['status'] if 'error' in gn_outp: outp['error'] = gn_outp['error'] if 'invalid_targets' in gn_outp: outp['invalid_targets'] = gn_outp['invalid_targets'] if 'compile_targets' in gn_outp: all_input_compile_targets = sorted( set(inp['test_targets'] + inp['additional_compile_targets'])) # If we're building 'all', we can throw away the rest of the targets # since they're redundant. if 'all' in gn_outp['compile_targets']: outp['compile_targets'] = ['all'] else: outp['compile_targets'] = gn_outp['compile_targets'] # crbug.com/736215: When GN returns targets back, for targets in # the default toolchain, GN will have generated a phony ninja # target matching the label, and so we can safely (and easily) # transform any GN label into the matching ninja target. For # targets in other toolchains, though, GN doesn't generate the # phony targets, and we don't know how to turn the labels into # compile targets. In this case, we also conservatively give up # and build everything. Probably the right thing to do here is # to have GN return the compile targets directly. if any("(" in target for target in outp['compile_targets']): self.Print('WARNING: targets with non-default toolchains were ' 'found, building everything instead.') outp['compile_targets'] = all_input_compile_targets else: outp['compile_targets'] = [ label.replace('//', '') for label in outp['compile_targets']] # Windows has a maximum command line length of 8k; even Linux # maxes out at 128k; if analyze returns a *really long* list of # targets, we just give up and conservatively build everything instead. # Probably the right thing here is for ninja to support response # files as input on the command line # (see https://github.com/ninja-build/ninja/issues/1355). # Android targets use a lot of templates and often exceed 7kb. # https://crbug.com/946266 max_cmd_length_kb = 64 if platform.system() == 'Linux' else 7 if len(' '.join(outp['compile_targets'])) > max_cmd_length_kb * 1024: self.Print('WARNING: Too many compile targets were affected.') self.Print('WARNING: Building everything instead to avoid ' 'command-line length issues.') outp['compile_targets'] = all_input_compile_targets if 'test_targets' in gn_outp: outp['test_targets'] = [ labels_to_targets[label] for label in gn_outp['test_targets']] if self.args.verbose: self.Print() self.Print('analyze output:') self.PrintJSON(outp) self.Print() self.WriteJSON(outp, output_path) finally: if self.Exists(gn_input_path): self.RemoveFile(gn_input_path) if self.Exists(gn_output_path): self.RemoveFile(gn_output_path) return 0 def ReadInputJSON(self, required_keys): path = self.args.input_path output_path = self.args.output_path if not self.Exists(path): self.WriteFailureAndRaise('"%s" does not exist' % path, output_path) try: inp = json.loads(self.ReadFile(path)) except Exception as e: self.WriteFailureAndRaise('Failed to read JSON input from "%s": %s' % (path, e), output_path) for k in required_keys: if not k in inp: self.WriteFailureAndRaise('input file is missing a "%s" key' % k, output_path) return inp def WriteFailureAndRaise(self, msg, output_path): if output_path: self.WriteJSON({'error': msg}, output_path, force_verbose=True) raise MBErr(msg) def WriteJSON(self, obj, path, force_verbose=False): try: self.WriteFile(path, json.dumps(obj, indent=2, sort_keys=True) + '\n', force_verbose=force_verbose) except Exception as e: raise MBErr('Error %s writing to the output path "%s"' % (e, path)) def PrintCmd(self, cmd): if self.platform == 'win32': shell_quoter = QuoteForCmd else: shell_quoter = pipes.quote if cmd[0] == self.executable: cmd = ['python'] + cmd[1:] self.Print(*[shell_quoter(arg) for arg in cmd]) def PrintJSON(self, obj): self.Print(json.dumps(obj, indent=2, sort_keys=True)) def Build(self, target): build_dir = self.ToSrcRelPath(self.args.path) if self.platform == 'win32': # On Windows use the batch script since there is no exe ninja_cmd = ['autoninja.bat', '-C', build_dir] else: ninja_cmd = ['autoninja', '-C', build_dir] if self.args.jobs: ninja_cmd.extend(['-j', '%d' % self.args.jobs]) ninja_cmd.append(target) ret, _, _ = self.Run(ninja_cmd, buffer_output=False) return ret def Run(self, cmd, env=None, force_verbose=True, buffer_output=True): # This function largely exists so it can be overridden for testing. if self.args.dryrun or self.args.verbose or force_verbose: self.PrintCmd(cmd) if self.args.dryrun: return 0, '', '' ret, out, err = self.Call(cmd, env=env, buffer_output=buffer_output) if self.args.verbose or force_verbose: if ret != 0: self.Print(' -> returned %d' % ret) if out: # This is the error seen on the logs self.Print(out, end='') if err: self.Print(err, end='', file=sys.stderr) return ret, out, err def Call(self, cmd, env=None, buffer_output=True, stdin=None): if buffer_output: p = subprocess.Popen(cmd, shell=False, cwd=self.chromium_src_dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, stdin=subprocess.PIPE) out, err = p.communicate(input=stdin) out = out.decode('utf-8') err = err.decode('utf-8') else: p = subprocess.Popen(cmd, shell=False, cwd=self.chromium_src_dir, env=env) p.wait() out = err = '' return p.returncode, out, err def _CipdPlatform(self): """Returns current CIPD platform, e.g. linux-amd64. Assumes AMD64. """ if self.platform == 'win32': return 'windows-amd64' if self.platform == 'darwin': return 'mac-amd64' return 'linux-amd64' def ExpandUser(self, path): # This function largely exists so it can be overridden for testing. return os.path.expanduser(path) def Exists(self, path): # This function largely exists so it can be overridden for testing. return os.path.exists(path) def Fetch(self, url): # This function largely exists so it can be overridden for testing. f = urlopen(url) contents = f.read() f.close() return contents def ListDir(self, path): # This function largely exists so it can be overridden for testing. return os.listdir(path) def MaybeMakeDirectory(self, path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def PathJoin(self, *comps): # This function largely exists so it can be overriden for testing. return os.path.join(*comps) def Print(self, *args, **kwargs): # This function largely exists so it can be overridden for testing. print(*args, **kwargs) if kwargs.get('stream', sys.stdout) == sys.stdout: sys.stdout.flush() def ReadFile(self, path): # This function largely exists so it can be overriden for testing. with open(path) as fp: return fp.read() def RelPath(self, path, start='.'): # This function largely exists so it can be overriden for testing. return os.path.relpath(path, start) def RemoveFile(self, path): # This function largely exists so it can be overriden for testing. os.remove(path) def RemoveDirectory(self, abs_path): if self.platform == 'win32': # In other places in chromium, we often have to retry this command # because we're worried about other processes still holding on to # file handles, but when MB is invoked, it will be early enough in the # build that their should be no other processes to interfere. We # can change this if need be. self.Run(['cmd.exe', '/c', 'rmdir', '/q', '/s', abs_path]) else: shutil.rmtree(abs_path, ignore_errors=True) def TempDir(self): # This function largely exists so it can be overriden for testing. return tempfile.mkdtemp(prefix='mb_') def TempFile(self, mode='w'): # This function largely exists so it can be overriden for testing. return tempfile.NamedTemporaryFile(mode=mode, delete=False) def WriteFile(self, path, contents, force_verbose=False): # This function largely exists so it can be overriden for testing. if self.args.dryrun or self.args.verbose or force_verbose: self.Print('\nWriting """\\\n%s""" to %s.\n' % (contents, path)) with open(path, 'w') as fp: return fp.write(contents) class LedResult(object): """Holds the result of a led operation. Can be chained using |then|.""" def __init__(self, result, run_cmd): self._result = result self._run_cmd = run_cmd @property def result(self): """The mutable result data of the previous led call as decoded JSON.""" return self._result def then(self, *cmd): """Invoke led, passing it the current `result` data as input. Returns another LedResult object with the output of the command. """ return self.__class__( self._run_cmd(self._result, cmd), self._run_cmd) def FlattenConfig(config_pool, mixin_pool, config): mixins = config_pool[config] vals = DefaultVals() visited = [] FlattenMixins(mixin_pool, mixins, vals, visited) return vals def FlattenMixins(mixin_pool, mixins_to_flatten, vals, visited): for m in mixins_to_flatten: if m not in mixin_pool: raise MBErr('Unknown mixin "%s"' % m) visited.append(m) mixin_vals = mixin_pool[m] if 'args_file' in mixin_vals: if vals['args_file']: raise MBErr('args_file specified multiple times in mixins ' 'for mixin %s' % m) vals['args_file'] = mixin_vals['args_file'] if 'gn_args' in mixin_vals: if vals['gn_args']: vals['gn_args'] += ' ' + mixin_vals['gn_args'] else: vals['gn_args'] = mixin_vals['gn_args'] if 'mixins' in mixin_vals: FlattenMixins(mixin_pool, mixin_vals['mixins'], vals, visited) return vals class MBErr(Exception): pass # See http://goo.gl/l5NPDW and http://goo.gl/4Diozm for the painful # details of this next section, which handles escaping command lines # so that they can be copied and pasted into a cmd window. UNSAFE_FOR_SET = set('^<>&|') UNSAFE_FOR_CMD = UNSAFE_FOR_SET.union(set('()%')) ALL_META_CHARS = UNSAFE_FOR_CMD.union(set('"')) def QuoteForSet(arg): if any(a in UNSAFE_FOR_SET for a in arg): arg = ''.join('^' + a if a in UNSAFE_FOR_SET else a for a in arg) return arg def QuoteForCmd(arg): # First, escape the arg so that CommandLineToArgvW will parse it properly. if arg == '' or ' ' in arg or '"' in arg: quote_re = re.compile(r'(\\*)"') arg = '"%s"' % (quote_re.sub(lambda mo: 2 * mo.group(1) + '\\"', arg)) # Then check to see if the arg contains any metacharacters other than # double quotes; if it does, quote everything (including the double # quotes) for safety. if any(a in UNSAFE_FOR_CMD for a in arg): arg = ''.join('^' + a if a in ALL_META_CHARS else a for a in arg) return arg if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
release/stubs.min/System/Diagnostics/__init___parts/DebuggerBrowsableAttribute.py
htlcnn/ironpython-stubs
182
11069304
class DebuggerBrowsableAttribute(Attribute,_Attribute): """ Determines if and how a member is displayed in the debugger variable windows. This class cannot be inherited. DebuggerBrowsableAttribute(state: DebuggerBrowsableState) """ def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod def __new__(self,state): """ __new__(cls: type,state: DebuggerBrowsableState) """ pass State=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the display state for the attribute. Get: State(self: DebuggerBrowsableAttribute) -> DebuggerBrowsableState """
packages/plugins/minos-database-aiopg/minos/plugins/aiopg/factories/aggregate/snapshots/__init__.py
minos-framework/minos-python
247
11069306
from .impl import ( AiopgSnapshotDatabaseOperationFactory, ) from .queries import ( AiopgSnapshotQueryDatabaseOperationBuilder, )
base_model/mobilenetv1.py
Abhishekvats1997/ResRep
176
11069307
import torch.nn as nn from builder import ConvBuilder import torch.nn.functional as F from constants import MI1_ORIGIN_DEPS class MobileV1Block(nn.Module): '''Depthwise conv + Pointwise conv''' def __init__(self, builder:ConvBuilder, in_planes, out_planes, stride=1): super(MobileV1Block, self).__init__() self.depthwise = builder.Conv2dBNReLU(in_channels=in_planes, out_channels=in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes) self.pointwise = builder.Conv2dBNReLU(in_channels=in_planes, out_channels=out_planes, kernel_size=1, stride=1, padding=0) def forward(self, x): out = self.depthwise(x) out = self.pointwise(out) return out imagenet_cfg = [32, 64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), 1024] # cifar_cfg = [16, (32,2), 32, (64,2), 64, (128,2), 128, 128, 128, 128, 128, (256,2), 256] # 86% # cifar_cfg = [16, 32, 32, (64,2), 64, (128,2), 128, 128, 128, 128, 128, (256,2), 256] cifar_cfg = [16, 32, 32, 64, 64, (128,2), 128, 128, 128, 128, 128, (256,2), 256] # 93 class MobileV1CifarNet(nn.Module): def __init__(self, builder:ConvBuilder, num_classes): super(MobileV1CifarNet, self).__init__() self.conv1 = builder.Conv2dBNReLU(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1) blocks = [] in_planes = cifar_cfg[0] for x in cifar_cfg: out_planes = x if isinstance(x, int) else x[0] stride = 1 if isinstance(x, int) else x[1] blocks.append(MobileV1Block(builder=builder, in_planes=in_planes, out_planes=out_planes, stride=stride)) in_planes = out_planes self.stem = builder.Sequential(*blocks) self.gap = builder.GAP(kernel_size=8) self.linear = builder.Linear(cifar_cfg[-1], num_classes) def forward(self, x): out = self.conv1(x) out = self.stem(out) out = self.gap(out) out = self.linear(out) return out class MobileV1ImagenetNet(nn.Module): def __init__(self, builder:ConvBuilder, num_classes, deps=None): super(MobileV1ImagenetNet, self).__init__() if deps is None: deps = MI1_ORIGIN_DEPS assert len(deps) == 27 self.conv1 = builder.Conv2dBNReLU(in_channels=3, out_channels=deps[0], kernel_size=3, stride=2, padding=1) blocks = [] for block_idx in range(13): depthwise_channels = int(deps[block_idx * 2 + 1]) pointwise_channels = int(deps[block_idx * 2 + 2]) stride = 2 if block_idx in [1, 3, 5, 11] else 1 blocks.append(MobileV1Block(builder=builder, in_planes=depthwise_channels, out_planes=pointwise_channels, stride=stride)) self.stem = builder.Sequential(*blocks) self.gap = builder.GAP(kernel_size=7) self.linear = builder.Linear(imagenet_cfg[-1], num_classes) def forward(self, x): out = self.conv1(x) out = self.stem(out) out = self.gap(out) out = self.linear(out) return out # # class MobileV1ImagenetNetLarge(nn.Module): # # def __init__(self, builder:ConvBuilder, num_classes): # super(MobileV1ImagenetNetLarge, self).__init__() # self.conv1 = builder.Conv2dBNReLU(in_channels=3, out_channels=imagenet_cfg[0], kernel_size=3, stride=2, padding=1) # blocks = [] # in_planes = imagenet_cfg[0] # for block_idx in range(13): # out_planes = x if isinstance(x, int) else x[0] # stride = 2 if block_idx in [] # blocks.append(MobileV1Block(builder=builder, in_planes=in_planes, out_planes=out_planes, stride=stride)) # in_planes = out_planes # self.stem = builder.Sequential(*blocks) # self.gap = builder.GAP(kernel_size=28) # self.linear = builder.Linear(imagenet_cfg[-1], num_classes) # # def forward(self, x): # out = F.upsample_bilinear(x, scale_factor=4) # out = self.conv1(out) # out = self.stem(out) # out = self.gap(out) # out = self.linear(out) # return out def create_MobileV1Cifar(cfg, builder): return MobileV1CifarNet(builder=builder, num_classes=10) def create_MobileV1CH(cfg, builder): return MobileV1CifarNet(builder=builder, num_classes=100) def create_MobileV1Imagenet(cfg, builder): return MobileV1ImagenetNet(builder=builder, num_classes=1000, deps=cfg.deps) def create_MobileV1ImagenetLarge(cfg, builder): return MobileV1ImagenetNetLarge(builder=builder, num_classes=1000)
examples/locality-load-balancing/client.py
giantcroc/envoy
17,703
11069332
import sys import urllib.request from collections import Counter url, n_requests = sys.argv[1], int(sys.argv[2]) count = Counter() count_fail = 0 for i in range(n_requests): try: with urllib.request.urlopen(url) as resp: content = resp.read().decode("utf-8").strip() count[content] += 1 except: count_fail += 1 for k in count: print(f"{k}: actual weight {count[k] / n_requests * 100}%") print(f"Failed: {count_fail}")
src/amuse/plot/__init__.py
sibonyves/amuse
131
11069342
<reponame>sibonyves/amuse from ._plot import *
openspeech/models/rnn_transducer/configurations.py
CanYouImagine/openspeech
207
11069354
<filename>openspeech/models/rnn_transducer/configurations.py # MIT License # # Copyright (c) 2021 <NAME> and <NAME> and <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from dataclasses import dataclass, field from openspeech.dataclass.configurations import OpenspeechDataclass @dataclass class RNNTransducerConfigs(OpenspeechDataclass): r""" This is the configuration class to store the configuration of a :class:`~openspeech.models.RNNTransducer`. It is used to initiated an `RNNTransducer` model. Configuration objects inherit from :class: `~openspeech.dataclass.configs.OpenspeechDataclass`. Args: model_name (str): Model name (default: transformer_transducer) encoder_hidden_state_dim (int): Hidden state dimension of encoder (default: 312) decoder_hidden_state_dim (int): Hidden state dimension of decoder (default: 512) num_encoder_layers (int): The number of encoder layers. (default: 4) num_decoder_layers (int): The number of decoder layers. (default: 1) encoder_dropout_p (float): The dropout probability of encoder. (default: 0.2) decoder_dropout_p (float): The dropout probability of decoder. (default: 0.2) bidirectional (bool): If True, becomes a bidirectional encoders (default: True) rnn_type (str): Type of rnn cell (rnn, lstm, gru) (default: lstm) output_dim (int): dimension of model output. (default: 512) optimizer (str): Optimizer for training. (default: adam) """ model_name: str = field( default="rnn_transducer", metadata={"help": "Model name"} ) encoder_hidden_state_dim: int = field( default=320, metadata={"help": "Dimension of encoder."} ) decoder_hidden_state_dim: int = field( default=512, metadata={"help": "Dimension of decoder."} ) num_encoder_layers: int = field( default=4, metadata={"help": "The number of encoder layers."} ) num_decoder_layers: int = field( default=1, metadata={"help": "The number of decoder layers."} ) encoder_dropout_p: float = field( default=0.2, metadata={"help": "The dropout probability of encoder."} ) decoder_dropout_p: float = field( default=0.2, metadata={"help": "The dropout probability of decoder."} ) bidirectional: bool = field( default=True, metadata={"help": "If True, becomes a bidirectional encoders"} ) rnn_type: str = field( default="lstm", metadata={"help": "Type of rnn cell (rnn, lstm, gru)"} ) output_dim: int = field( default=512, metadata={"help": "Dimension of outputs"} ) optimizer: str = field( default="adam", metadata={"help": "Optimizer for training."} )
smsBomb/__main__.py
YINZHI-keji/smsBomb
461
11069363
<filename>smsBomb/__main__.py # coding=utf-8 from smsBomb import cli if __name__ == '__main__': cli.main()
elliot/recommender/neural/NeuMF/neural_matrix_factorization.py
gategill/elliot
175
11069391
<reponame>gategill/elliot """ Module description: """ __version__ = '0.3.1' __author__ = '<NAME>, <NAME>' __email__ = '<EMAIL>, <EMAIL>' import time import numpy as np from tqdm import tqdm from elliot.recommender.neural.NeuMF import custom_sampler as cs from elliot.recommender.base_recommender_model import BaseRecommenderModel from elliot.recommender.base_recommender_model import init_charger from elliot.recommender.neural.NeuMF.neural_matrix_factorization_model import NeuralMatrixFactorizationModel from elliot.recommender.recommender_utils_mixin import RecMixin class NeuMF(RecMixin, BaseRecommenderModel): r""" Neural Collaborative Filtering For further details, please refer to the `paper <https://arxiv.org/abs/1708.05031>`_ Args: mf_factors: Number of MF latent factors mlp_factors: Number of MLP latent factors mlp_hidden_size: List of units for each layer lr: Learning rate dropout: Dropout rate is_mf_train: Whether to train the MF embeddings is_mlp_train: Whether to train the MLP layers To include the recommendation model, add it to the config file adopting the following pattern: .. code:: yaml models: NeuMF: meta: save_recs: True epochs: 10 batch_size: 512 mf_factors: 10 mlp_factors: 10 mlp_hidden_size: (64,32) lr: 0.001 dropout: 0.0 is_mf_train: True is_mlp_train: True """ @init_charger def __init__(self, data, config, params, *args, **kwargs): self._params_list = [ ("_learning_rate", "lr", "lr", 0.001, None, None), ("_mf_factors", "mf_factors", "mffactors", 10, int, None), # If the user prefer a generalized model (WARNING: not coherent with the paper) can uncomment the following options #("_mlp_factors", "mlp_factors", "mlpfactors", 10, int, None), #("_mlp_hidden_size", "mlp_hidden_size", "mlpunits", "(64,32)", lambda x: list(make_tuple(str(x))), lambda x: self._batch_remove(str(x), " []").replace(",", "-")), ("_dropout", "dropout", "drop", 0, None, None), ("_is_mf_train", "is_mf_train", "mftrain", True, None, None), ("_is_mlp_train", "is_mlp_train", "mlptrain", True, None, None), ("_m", "m", "m", 0, int, None) ] self.autoset_params() self._mlp_hidden_size = (self._mf_factors*4, self._mf_factors*2, self._mf_factors) self._mlp_factors = self._mf_factors if self._batch_size < 1: self._batch_size = self._data.transactions self._sampler = cs.Sampler(self._data.i_train_dict, self._m) self._ratings = self._data.train_dict self._sp_i_train = self._data.sp_i_train self._i_items_set = list(range(self._num_items)) self._model = NeuralMatrixFactorizationModel(self._num_users, self._num_items, self._mf_factors, self._mlp_factors, self._mlp_hidden_size, self._dropout, self._is_mf_train, self._is_mlp_train, self._learning_rate, self._seed) @property def name(self): return "NeuMF"\ + f"_{self.get_base_params_shortcut()}" \ + f"_{self.get_params_shortcut()}" def train(self): if self._restore: return self.restore_weights() for it in self.iterate(self._epochs): loss = 0 steps = 0 with tqdm(total=int(self._data.transactions * (self._m + 1) // self._batch_size), disable=not self._verbose) as t: for batch in self._sampler.step(self._batch_size): steps += 1 loss += self._model.train_step(batch).numpy() t.set_postfix({'loss': f'{loss / steps:.5f}'}) t.update() self.evaluate(it, loss/(it + 1)) def get_recommendations(self, k: int = 100): predictions_top_k_test = {} predictions_top_k_val = {} for index, offset in enumerate(range(0, self._num_users, self._batch_size)): offset_stop = min(offset + self._batch_size, self._num_users) predictions = self._model.get_recs( ( np.repeat(np.array(list(range(offset, offset_stop)))[:, None], repeats=self._num_items, axis=1), np.array([self._i_items_set for _ in range(offset, offset_stop)]) ) ) recs_val, recs_test = self.process_protocol(k, predictions, offset, offset_stop) predictions_top_k_val.update(recs_val) predictions_top_k_test.update(recs_test) return predictions_top_k_val, predictions_top_k_test
examples/airline_demo/airline_demo_tests/unit_tests/test_ingest_csv_file_handle_to_spark.py
dbatten5/dagster
4,606
11069402
<filename>examples/airline_demo/airline_demo_tests/unit_tests/test_ingest_csv_file_handle_to_spark.py<gh_stars>1000+ import tempfile from airline_demo.pipelines import local_parquet_io_manager from airline_demo.solids import ingest_csv_file_handle_to_spark from dagster import ( LocalFileHandle, ModeDefinition, execute_pipeline, fs_io_manager, local_file_manager, pipeline, solid, ) from dagster.core.definitions.no_step_launcher import no_step_launcher from dagster.utils import file_relative_path from dagster_pyspark import pyspark_resource from pyspark.sql import Row @solid def collect_df(df): """The pyspark Spark context will be stopped on pipeline termination, so we need to collect the pyspark DataFrame before pipeline completion. """ return df.collect() def test_ingest_csv_file_handle_to_spark(spark_config): @solid def emit_num_csv_local_file(): return LocalFileHandle(file_relative_path(__file__, "../num.csv")) @pipeline( mode_defs=[ ModeDefinition( resource_defs={ "pyspark": pyspark_resource, "pyspark_step_launcher": no_step_launcher, "pyspark_io_manager": local_parquet_io_manager, "file_manager": local_file_manager, "io_manager": fs_io_manager, } ) ] ) def ingest_csv_file_test(): return collect_df(ingest_csv_file_handle_to_spark(emit_num_csv_local_file())) with tempfile.TemporaryDirectory() as temp_dir: result = execute_pipeline( ingest_csv_file_test, run_config={ "resources": { "pyspark": {"config": {"spark_conf": spark_config}}, "pyspark_io_manager": {"config": {"base_dir": temp_dir}}, "io_manager": {"config": {"base_dir": temp_dir}}, } }, ) assert result.success df = result.result_for_solid("collect_df").output_value() assert df == [Row(num1="1", num2="2")] def test_ingest_csv_file_with_special_handle_to_spark(spark_config): @solid def emit_num_special_csv_local_file(): return LocalFileHandle(file_relative_path(__file__, "../num_with_special_chars.csv")) @pipeline( mode_defs=[ ModeDefinition( resource_defs={ "pyspark": pyspark_resource, "pyspark_step_launcher": no_step_launcher, "file_manager": local_file_manager, "pyspark_io_manager": local_parquet_io_manager, "io_manager": fs_io_manager, } ) ] ) def ingest_csv_file_test(): return collect_df(ingest_csv_file_handle_to_spark(emit_num_special_csv_local_file())) with tempfile.TemporaryDirectory() as temp_dir: result = execute_pipeline( ingest_csv_file_test, run_config={ "resources": { "pyspark": {"config": {"spark_conf": spark_config}}, "pyspark_io_manager": {"config": {"base_dir": temp_dir}}, "io_manager": {"config": {"base_dir": temp_dir}}, } }, ) assert result.success df = result.result_for_solid("collect_df").output_value() assert df == [Row(num1="1", num2="2")]
openstackclient/tests/functional/compute/v2/test_flavor.py
mydevice/python-openstackclient
262
11069417
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import uuid from openstackclient.tests.functional import base class FlavorTests(base.TestCase): """Functional tests for flavor.""" PROJECT_NAME = uuid.uuid4().hex @classmethod def setUpClass(cls): super(FlavorTests, cls).setUpClass() # Make a project cmd_output = json.loads(cls.openstack( "project create -f json --enable " + cls.PROJECT_NAME )) cls.project_id = cmd_output["id"] @classmethod def tearDownClass(cls): try: raw_output = cls.openstack("project delete " + cls.PROJECT_NAME) cls.assertOutput('', raw_output) finally: super(FlavorTests, cls).tearDownClass() def test_flavor_delete(self): """Test create w/project, delete multiple""" name1 = uuid.uuid4().hex cmd_output = json.loads(self.openstack( "flavor create -f json " + "--project " + self.PROJECT_NAME + " " + "--private " + name1 )) self.assertIsNotNone(cmd_output["id"]) name2 = uuid.uuid4().hex cmd_output = json.loads(self.openstack( "flavor create -f json " + "--id qaz " + "--project " + self.PROJECT_NAME + " " + "--private " + name2 )) self.assertIsNotNone(cmd_output["id"]) self.assertEqual( "qaz", cmd_output["id"], ) raw_output = self.openstack( "flavor delete " + name1 + " " + name2, ) self.assertOutput('', raw_output) def test_flavor_list(self): """Test create defaults, list filters, delete""" name1 = uuid.uuid4().hex cmd_output = json.loads(self.openstack( "flavor create -f json " + "--property a=b " + "--property c=d " + name1 )) self.addCleanup(self.openstack, "flavor delete " + name1) self.assertIsNotNone(cmd_output["id"]) self.assertEqual( name1, cmd_output["name"], ) name2 = uuid.uuid4().hex cmd_output = json.loads(self.openstack( "flavor create -f json " + "--id qaz " + "--ram 123 " + "--private " + "--property a=b2 " + "--property b=d2 " + name2 )) self.addCleanup(self.openstack, "flavor delete " + name2) self.assertIsNotNone(cmd_output["id"]) self.assertEqual( "qaz", cmd_output["id"], ) self.assertEqual( name2, cmd_output["name"], ) self.assertEqual( 123, cmd_output["ram"], ) self.assertEqual( 0, cmd_output["disk"], ) self.assertFalse( cmd_output["os-flavor-access:is_public"], ) self.assertDictEqual( {"a": "b2", "b": "d2"}, cmd_output["properties"], ) # Test list cmd_output = json.loads(self.openstack( "flavor list -f json" )) col_name = [x["Name"] for x in cmd_output] self.assertIn(name1, col_name) self.assertNotIn(name2, col_name) # Test list --long cmd_output = json.loads(self.openstack( "flavor list -f json " + "--long" )) # We have list of complex json objects # Iterate through the list setting flags found_expected = False for rec in cmd_output: if rec['Name'] == name1: found_expected = True self.assertEqual('b', rec['Properties']['a']) self.assertEqual('d', rec['Properties']['c']) elif rec['Name'] == name2: # We should have not seen private flavor self.assertFalse(True) self.assertTrue(found_expected) # Test list --public cmd_output = json.loads(self.openstack( "flavor list -f json " + "--public" )) col_name = [x["Name"] for x in cmd_output] self.assertIn(name1, col_name) self.assertNotIn(name2, col_name) # Test list --private cmd_output = json.loads(self.openstack( "flavor list -f json " + "--private" )) col_name = [x["Name"] for x in cmd_output] self.assertNotIn(name1, col_name) self.assertIn(name2, col_name) # Test list --all cmd_output = json.loads(self.openstack( "flavor list -f json " + "--all" )) col_name = [x["Name"] for x in cmd_output] self.assertIn(name1, col_name) self.assertIn(name2, col_name) def test_flavor_properties(self): """Test create defaults, list filters, delete""" name1 = uuid.uuid4().hex cmd_output = json.loads(self.openstack( "flavor create -f json " + "--id qaz " + "--ram 123 " + "--disk 20 " + "--private " + "--property a=first " + "--property b=second " + name1 )) self.addCleanup(self.openstack, "flavor delete " + name1) self.assertIsNotNone(cmd_output["id"]) self.assertEqual( "qaz", cmd_output["id"], ) self.assertEqual( name1, cmd_output["name"], ) self.assertEqual( 123, cmd_output["ram"], ) self.assertEqual( 20, cmd_output["disk"], ) self.assertFalse( cmd_output["os-flavor-access:is_public"], ) self.assertDictEqual( {"a": "first", "b": "second"}, cmd_output["properties"], ) raw_output = self.openstack( "flavor set " + "--property a='third and 10' " + "--property g=fourth " + name1 ) self.assertEqual('', raw_output) cmd_output = json.loads(self.openstack( "flavor show -f json " + name1 )) self.assertEqual( "qaz", cmd_output["id"], ) self.assertEqual( 'third and 10', cmd_output['properties']['a']) self.assertEqual( 'second', cmd_output['properties']['b']) self.assertEqual( 'fourth', cmd_output['properties']['g']) raw_output = self.openstack( "flavor unset " + "--property b " + name1 ) self.assertEqual('', raw_output) cmd_output = json.loads(self.openstack( "flavor show -f json " + name1 )) self.assertNotIn('b', cmd_output['properties'])
model/model_cd.py
MingSun-Tse/Collaborative-Distillation
172
11069433
import numpy as np import os import torch.nn as nn import torch from torch.utils.serialization import load_lua from utils import load_param_from_t7 as load_param from model.model_kd2sd import SmallDecoder1_16x_aux, SmallDecoder2_16x_aux, SmallDecoder3_16x_aux, SmallDecoder4_16x_aux, SmallDecoder5_16x_aux import pickle pjoin = os.path.join # calculate style distances in CVPR paper # since 5-stage style distances are shown separately, there is no need to normalize it by num_channel. # ref https://pytorch.org/tutorials/advanced/neural_style_tutorial.html def gram_matrix(input): a, b, c, d = input.size() # [N, C, H, W] batch_feat = input.view(a, b, c*d) # [N, C, HW] batch_gram = torch.stack([torch.mm(feat, feat.t()) for feat in batch_feat]) batch_gram = batch_gram.div(a*b*c*d) return batch_gram # shape: [N, C, C] # ref: AdaIN impel. (https://github.com/naoto0804/pytorch-AdaIN/blob/master/function.py) def calc_mean_std(feat, eps=1e-5): # eps is a small value added to the variance to avoid divide-by-zero. size = feat.size() assert (len(size) == 4) N, C = size[:2] feat_var = feat.view(N, C, -1).var(dim=2) + eps feat_std = feat_var.sqrt().view(N, C, 1, 1) feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1) return feat_mean, feat_std def adaptive_instance_normalization(content_feat, style_feat): assert (content_feat.size()[:2] == style_feat.size()[:2]) size = content_feat.size() style_mean, style_std = calc_mean_std(style_feat) content_mean, content_std = calc_mean_std(content_feat) normalized_feat = (content_feat - content_mean.expand( size)) / content_std.expand(size) return normalized_feat * style_std.expand(size) + style_mean.expand(size) # calculate average style distance, which needs normalization by num_channel. def gram_matrix_ave(input): a, b, c, d = input.size() batch_feat = input.view(a, b, c*d) batch_gram = torch.stack([torch.mm(feat, feat.t()).div(b*c*d) for feat in batch_feat]) return batch_gram # shape: [batch_size, channel, channel] # Load param from model1 to model2 # For each layer of model2, if model1 has the same layer, then copy the params. def load_param2(model1_path, model2): dict_param1 = torch.load(model1_path) # model1_path: .pth model path dict_param2 = model2.state_dict() for name2 in dict_param2: if name2 in dict_param1: # print("tensor '%s' found in both models, so copy it from model 1 to model 2" % name2) dict_param2[name2].data.copy_(dict_param1[name2].data) model2.load_state_dict(dict_param2) return model2 # ----------------------------------------------- class SmallDecoder1_16x(nn.Module): def __init__(self, model=None, fixed=False): super(SmallDecoder1_16x, self).__init__() self.fixed = fixed self.conv11 = nn.Conv2d(24,3,3,1,0, dilation=1) self.relu = nn.ReLU(inplace=True) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv11(self.pad(y))) return y def forward_pwct(self, input): out11 = self.conv11(self.pad(input)) return out11 class SmallDecoder2_16x(nn.Module): def __init__(self, model=None, fixed=False): super(SmallDecoder2_16x, self).__init__() self.fixed = fixed self.conv21 = nn.Conv2d( 32, 16,3,1,0) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv11 = nn.Conv2d( 16, 3,3,1,0, dilation=1) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.unpool_pwct = nn.MaxUnpool2d(kernel_size=2, stride=2) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.relu(self.conv11(self.pad(y))) return y def forward_pwct(self, x, pool1_idx=None, pool1_size=None, pool2_idx=None, pool2_size=None, pool3_idx=None, pool3_size=None): out21 = self.relu(self.conv21(self.pad(x))) out21 = self.unpool_pwct(out21, pool1_idx, output_size=pool1_size) out12 = self.relu(self.conv12(self.pad(out21))) out11 = self.conv11(self.pad(out12)) return out11 class SmallDecoder3_16x(nn.Module): def __init__(self, model=None, fixed=False): super(SmallDecoder3_16x, self).__init__() self.fixed = fixed self.conv31 = nn.Conv2d( 64, 32,3,1,0) self.conv22 = nn.Conv2d( 32, 32,3,1,0) self.conv21 = nn.Conv2d( 32, 16,3,1,0) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv11 = nn.Conv2d( 16, 3,3,1,0, dilation=1) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.unpool_pwct = nn.MaxUnpool2d(kernel_size=2, stride=2) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.relu(self.conv11(self.pad(y))) return y def forward_pwct(self, x, pool1_idx=None, pool1_size=None, pool2_idx=None, pool2_size=None, pool3_idx=None, pool3_size=None): out31 = self.relu(self.conv31(self.pad(x))) out31 = self.unpool_pwct(out31, pool2_idx, output_size=pool2_size) out22 = self.relu(self.conv22(self.pad(out31))) out21 = self.relu(self.conv21(self.pad(out22))) out21 = self.unpool_pwct(out21, pool1_idx, output_size=pool1_size) out12 = self.relu(self.conv12(self.pad(out21))) out11 = self.conv11(self.pad(out12)) return out11 class SmallDecoder4_16x(nn.Module): def __init__(self, model=None, fixed=False): super(SmallDecoder4_16x, self).__init__() self.fixed = fixed self.conv41 = nn.Conv2d(128, 64,3,1,0) self.conv34 = nn.Conv2d( 64, 64,3,1,0) self.conv33 = nn.Conv2d( 64, 64,3,1,0) self.conv32 = nn.Conv2d( 64, 64,3,1,0) self.conv31 = nn.Conv2d( 64, 32,3,1,0) self.conv22 = nn.Conv2d( 32, 32,3,1,0, dilation=1) self.conv21 = nn.Conv2d( 32, 16,3,1,0, dilation=1) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv11 = nn.Conv2d( 16, 3,3,1,0, dilation=1) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.unpool_pwct = nn.MaxUnpool2d(kernel_size=2, stride=2) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv41(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv34(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.relu(self.conv11(self.pad(y))) return y def forward_pwct(self, x, pool1_idx=None, pool1_size=None, pool2_idx=None, pool2_size=None, pool3_idx=None, pool3_size=None): out41 = self.relu(self.conv41(self.pad(x))) out41 = self.unpool_pwct(out41, pool3_idx, output_size=pool3_size) out34 = self.relu(self.conv34(self.pad(out41))) out33 = self.relu(self.conv33(self.pad(out34))) out32 = self.relu(self.conv32(self.pad(out33))) out31 = self.relu(self.conv31(self.pad(out32))) out31 = self.unpool_pwct(out31, pool2_idx, output_size=pool2_size) out22 = self.relu(self.conv22(self.pad(out31))) out21 = self.relu(self.conv21(self.pad(out22))) out21 = self.unpool_pwct(out21, pool1_idx, output_size=pool1_size) out12 = self.relu(self.conv12(self.pad(out21))) out11 = self.conv11(self.pad(out12)) return out11 class SmallDecoder5_16x(nn.Module): def __init__(self, model=None, fixed=False): super(SmallDecoder5_16x, self).__init__() self.fixed = fixed self.conv51 = nn.Conv2d(128,128,3,1,0) self.conv44 = nn.Conv2d(128,128,3,1,0) self.conv43 = nn.Conv2d(128,128,3,1,0) self.conv42 = nn.Conv2d(128,128,3,1,0) self.conv41 = nn.Conv2d(128, 64,3,1,0) self.conv34 = nn.Conv2d( 64, 64,3,1,0, dilation=1) self.conv33 = nn.Conv2d( 64, 64,3,1,0, dilation=1) self.conv32 = nn.Conv2d( 64, 64,3,1,0, dilation=1) self.conv31 = nn.Conv2d( 64, 32,3,1,0, dilation=1) self.conv22 = nn.Conv2d( 32, 32,3,1,0, dilation=1) self.conv21 = nn.Conv2d( 32, 16,3,1,0, dilation=1) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv11 = nn.Conv2d( 16, 3,3,1,0, dilation=1) self.relu = nn.ReLU(inplace=True) self.unpool = nn.UpsamplingNearest2d(scale_factor=2) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv51(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv44(self.pad(y))) y = self.relu(self.conv43(self.pad(y))) y = self.relu(self.conv42(self.pad(y))) y = self.relu(self.conv41(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv34(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv31(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv22(self.pad(y))) y = self.relu(self.conv21(self.pad(y))) y = self.unpool(y) y = self.relu(self.conv12(self.pad(y))) y = self.relu(self.conv11(self.pad(y))) # self.conv11(self.pad(y)) return y def forward_branch(self, input): out51 = self.relu(self.conv51(self.pad(input))) out51 = self.unpool(out51) out44 = self.relu(self.conv44(self.pad(out51))) out43 = self.relu(self.conv43(self.pad(out44))) out42 = self.relu(self.conv42(self.pad(out43))) out41 = self.relu(self.conv41(self.pad(out42))) out41 = self.unpool(out41) out34 = self.relu(self.conv34(self.pad(out41))) out33 = self.relu(self.conv33(self.pad(out34))) out32 = self.relu(self.conv32(self.pad(out33))) out31 = self.relu(self.conv31(self.pad(out32))) out31 = self.unpool(out31) out22 = self.relu(self.conv22(self.pad(out31))) out21 = self.relu(self.conv21(self.pad(out22))) out21 = self.unpool(out21) out12 = self.relu(self.conv12(self.pad(out21))) out11 = self.relu(self.conv11(self.pad(out12))) return out11 # bridge the dimension mismatch using a 1x1 linear layer class SmallEncoder1_16x_aux(nn.Module): def __init__(self, model=None, fixed=False): super(SmallEncoder1_16x_aux, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3,3,1,1,0) self.conv0.requires_grad = False self.conv11 = nn.Conv2d( 3, 24, 3, 1, 0, dilation=1) self.conv11_aux = nn.Conv2d( 24, 64, 1, 1, 0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False # "forward" only outputs the final output # "forward_branch" outputs all the middle branch ouputs # "forward_aux" outputs all the middle auxiliary mapping layers def forward(self, y): y = self.conv0(y) y = self.relu(self.conv11(self.pad(y))) return y def forward_branch(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) return out11, def forward_aux(self, input, relu=True): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) if relu: out11_aux = self.relu(self.conv11_aux(out11)) else: out11_aux = self.conv11_aux(out11) return out11_aux, def forward_aux2(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out11_aux = self.relu(self.conv11_aux(out11)) return out11_aux, out11 # used for feature loss and style loss class SmallEncoder2_16x_aux(nn.Module): def __init__(self, model=None, fixed=False): super(SmallEncoder2_16x_aux, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3,3,1,1,0) self.conv0.requires_grad = False self.conv11 = nn.Conv2d( 3, 16,3,1,0, dilation=1) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv21 = nn.Conv2d( 16, 32,3,1,0) self.conv11_aux = nn.Conv2d( 16, 64,1,1,0) self.conv21_aux = nn.Conv2d( 32,128,1,1,0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=False) self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=True) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.conv0(y) y = self.relu(self.conv11(self.pad(y))) y = self.relu(self.conv12(self.pad(y))) y = self.pool(y) y = self.relu(self.conv21(self.pad(y))) return y def forward_branch(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) return out11, out21 def forward_aux(self, input, relu=True): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) if relu: out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) else: out11_aux = self.conv11_aux(out11) out21_aux = self.conv21_aux(out21) return out11_aux, out21_aux def forward_aux2(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) return out11_aux, out21_aux, out21 # used for feature loss and style loss def forward_pwct(self, input): # for function in photo WCT out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) pool12, out12_ix = self.pool2(out12) out21 = self.relu(self.conv21(self.pad(pool12))) return out21, out12_ix, out12.size() class SmallEncoder3_16x_aux(nn.Module): def __init__(self, model=None, fixed=False): super(SmallEncoder3_16x_aux, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3,3,1,1,0) self.conv0.requires_grad = False self.conv11 = nn.Conv2d( 3, 16,3,1,0, dilation=1) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv21 = nn.Conv2d( 16, 32,3,1,0) self.conv22 = nn.Conv2d( 32, 32,3,1,0) self.conv31 = nn.Conv2d( 32, 64,3,1,0) self.conv11_aux = nn.Conv2d( 16, 64,1,1,0) self.conv21_aux = nn.Conv2d( 32,128,1,1,0) self.conv31_aux = nn.Conv2d( 64,256,1,1,0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=False) self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=True) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.conv0(y) y = self.relu(self.conv11(self.pad(y))) y = self.relu(self.conv12(self.pad(y))) y = self.pool(y) y = self.relu(self.conv21(self.pad(y))) y = self.relu(self.conv22(self.pad(y))) y = self.pool(y) y = self.relu(self.conv31(self.pad(y))) return y def forward_branch(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) return out11, out21, out31 def forward_aux(self, input, relu=True): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) if relu: out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) out31_aux = self.relu(self.conv31_aux(out31)) else: out11_aux = self.conv11_aux(out11) out21_aux = self.conv21_aux(out21) out31_aux = self.conv31_aux(out31) return out11_aux, out21_aux, out31_aux def forward_aux2(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) out31_aux = self.relu(self.conv31_aux(out31)) return out11_aux, out21_aux, out31_aux, out31 # used for feature loss and style loss def forward_pwct(self, input): # for function in photo WCT out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) pool12, out12_ix = self.pool2(out12) out21 = self.relu(self.conv21(self.pad(pool12))) out22 = self.relu(self.conv22(self.pad(out21))) pool22, out22_ix = self.pool2(out22) out31 = self.relu(self.conv31(self.pad(pool22))) return out31, out12_ix, out12.size(), out22_ix, out22.size() class SmallEncoder4_16x_aux(nn.Module): def __init__(self, model=None, fixed=False): super(SmallEncoder4_16x_aux, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3,3,1,1,0) self.conv0.requires_grad = False self.conv11 = nn.Conv2d( 3, 16,3,1,0, dilation=1) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv21 = nn.Conv2d( 16, 32,3,1,0, dilation=1) self.conv22 = nn.Conv2d( 32, 32,3,1,0, dilation=1) self.conv31 = nn.Conv2d( 32, 64,3,1,0) self.conv32 = nn.Conv2d( 64, 64,3,1,0) self.conv33 = nn.Conv2d( 64, 64,3,1,0) self.conv34 = nn.Conv2d( 64, 64,3,1,0) self.conv41 = nn.Conv2d( 64,128,3,1,0) self.conv11_aux = nn.Conv2d( 16, 64,1,1,0) self.conv21_aux = nn.Conv2d( 32,128,1,1,0) self.conv31_aux = nn.Conv2d( 64,256,1,1,0) self.conv41_aux = nn.Conv2d(128,512,1,1,0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=False) self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=True) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.conv0(y) y = self.relu(self.conv11(self.pad(y))) y = self.relu(self.conv12(self.pad(y))) y = self.pool(y) y = self.relu(self.conv21(self.pad(y))) y = self.relu(self.conv22(self.pad(y))) y = self.pool(y) y = self.relu(self.conv31(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv34(self.pad(y))) y = self.pool(y) y = self.relu(self.conv41(self.pad(y))) return y def forward_branch(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) return out11, out21, out31, out41 def forward_pwct(self, input): # for function in photo WCT out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) pool12, out12_ix = self.pool2(out12) out21 = self.relu(self.conv21(self.pad(pool12))) out22 = self.relu(self.conv22(self.pad(out21))) pool22, out22_ix = self.pool2(out22) out31 = self.relu(self.conv31(self.pad(pool22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) pool34, out34_ix = self.pool2(out34) out41 = self.relu(self.conv41(self.pad(pool34))) return out41, out12_ix, out12.size(), out22_ix, out22.size(), out34_ix, out34.size() def forward_aux(self, input, relu=True): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) if relu: out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) out31_aux = self.relu(self.conv31_aux(out31)) out41_aux = self.relu(self.conv41_aux(out41)) else: out11_aux = self.conv11_aux(out11) out21_aux = self.conv21_aux(out21) out31_aux = self.conv31_aux(out31) out41_aux = self.conv41_aux(out41) return out11_aux, out21_aux, out31_aux, out41_aux def forward_aux2(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) out31_aux = self.relu(self.conv31_aux(out31)) out41_aux = self.relu(self.conv41_aux(out41)) return out11_aux, out21_aux, out31_aux, out41_aux, out41 # used for feature loss and style loss class SmallEncoder5_16x_aux(nn.Module): def __init__(self, model=None, fixed=False): super(SmallEncoder5_16x_aux, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3,3,1,1,0) self.conv0.requires_grad = False self.conv11 = nn.Conv2d( 3, 16,3,1,0, dilation=1) self.conv12 = nn.Conv2d( 16, 16,3,1,0, dilation=1) self.conv21 = nn.Conv2d( 16, 32,3,1,0, dilation=1) self.conv22 = nn.Conv2d( 32, 32,3,1,0, dilation=1) self.conv31 = nn.Conv2d( 32, 64,3,1,0, dilation=1) self.conv32 = nn.Conv2d( 64, 64,3,1,0, dilation=1) self.conv33 = nn.Conv2d( 64, 64,3,1,0, dilation=1) self.conv34 = nn.Conv2d( 64, 64,3,1,0, dilation=1) self.conv41 = nn.Conv2d( 64,128,3,1,0) self.conv42 = nn.Conv2d(128,128,3,1,0) self.conv43 = nn.Conv2d(128,128,3,1,0) self.conv44 = nn.Conv2d(128,128,3,1,0) self.conv51 = nn.Conv2d(128,128,3,1,0) self.conv11_aux = nn.Conv2d( 16, 64,1,1,0) self.conv21_aux = nn.Conv2d( 32,128,1,1,0) self.conv31_aux = nn.Conv2d( 64,256,1,1,0) self.conv41_aux = nn.Conv2d(128,512,1,1,0) self.conv51_aux = nn.Conv2d(128,512,1,1,0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2,stride=2,return_indices=False) self.pad = nn.ReflectionPad2d((1,1,1,1)) if model: weights = torch.load(model, map_location=lambda storage, location: storage) if "model" in weights: self.load_state_dict(weights["model"]) else: self.load_state_dict(weights) print("load model '%s' successfully" % model) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.conv0(y) y = self.relu(self.conv11(self.pad(y))) y = self.relu(self.conv12(self.pad(y))) y = self.pool(y) y = self.relu(self.conv21(self.pad(y))) y = self.relu(self.conv22(self.pad(y))) y = self.pool(y) y = self.relu(self.conv31(self.pad(y))) y = self.relu(self.conv32(self.pad(y))) y = self.relu(self.conv33(self.pad(y))) y = self.relu(self.conv34(self.pad(y))) y = self.pool(y) y = self.relu(self.conv41(self.pad(y))) y = self.relu(self.conv42(self.pad(y))) y = self.relu(self.conv43(self.pad(y))) y = self.relu(self.conv44(self.pad(y))) y = self.pool(y) y = self.relu(self.conv51(self.pad(y))) return y def forward_branch(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) out42 = self.relu(self.conv42(self.pad(out41))) out43 = self.relu(self.conv43(self.pad(out42))) out44 = self.relu(self.conv44(self.pad(out43))) out44 = self.pool(out44) out51 = self.relu(self.conv51(self.pad(out44))) return out11, out21, out31, out41, out51 def forward_aux(self, input, relu=True): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) out42 = self.relu(self.conv42(self.pad(out41))) out43 = self.relu(self.conv43(self.pad(out42))) out44 = self.relu(self.conv44(self.pad(out43))) out44 = self.pool(out44) out51 = self.relu(self.conv51(self.pad(out44))) if relu: out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) out31_aux = self.relu(self.conv31_aux(out31)) out41_aux = self.relu(self.conv41_aux(out41)) out51_aux = self.relu(self.conv51_aux(out51)) else: out11_aux = self.conv11_aux(out11) out21_aux = self.conv21_aux(out21) out31_aux = self.conv31_aux(out31) out41_aux = self.conv41_aux(out41) out51_aux = self.conv51_aux(out51) return out11_aux, out21_aux, out31_aux, out41_aux, out51_aux def forward_aux2(self, input): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) out42 = self.relu(self.conv42(self.pad(out41))) out43 = self.relu(self.conv43(self.pad(out42))) out44 = self.relu(self.conv44(self.pad(out43))) out44 = self.pool(out44) out51 = self.relu(self.conv51(self.pad(out44))) out11_aux = self.relu(self.conv11_aux(out11)) out21_aux = self.relu(self.conv21_aux(out21)) out31_aux = self.relu(self.conv31_aux(out31)) out41_aux = self.relu(self.conv41_aux(out41)) out51_aux = self.relu(self.conv51_aux(out51)) return out11_aux, out21_aux, out31_aux, out41_aux, out51_aux, out51 # output out51 def forward_aux3(self, input, relu=False): out0 = self.conv0(input) out11 = self.relu(self.conv11(self.pad(out0))) out12 = self.relu(self.conv12(self.pad(out11))) out12 = self.pool(out12) out21 = self.relu(self.conv21(self.pad(out12))) out22 = self.relu(self.conv22(self.pad(out21))) out22 = self.pool(out22) out31 = self.relu(self.conv31(self.pad(out22))) out32 = self.relu(self.conv32(self.pad(out31))) out33 = self.relu(self.conv33(self.pad(out32))) out34 = self.relu(self.conv34(self.pad(out33))) out34 = self.pool(out34) out41 = self.relu(self.conv41(self.pad(out34))) out42 = self.relu(self.conv42(self.pad(out41))) out43 = self.relu(self.conv43(self.pad(out42))) out44 = self.relu(self.conv44(self.pad(out43))) out44 = self.pool(out44) out51 = self.relu(self.conv51(self.pad(out44))) if relu: out51_aux = self.relu(self.conv51_aux(out51)) else: out51_aux = self.conv51_aux(out51) return out11, out21, out31, out41, out51, out51_aux
snippets/04b - Advanced groupby operations30.py
joshuagottardogalvani/pandas-tutorial
183
11069436
hamlets = titles[titles['title'].str.match('Hamlet')] hamlets['title'].value_counts()
Virtual_makeover/Virtual Makeup/Makeup.py
swapnilgarg7/Face-X
175
11069445
import cv2 import dlib import numpy as np def empty(a): pass cv2.namedWindow("BGR") cv2.resizeWindow("BGR",400,240) cv2.createTrackbar("Blue","BGR",0,255,empty) cv2.createTrackbar("Green","BGR",0,255,empty) cv2.createTrackbar("Red","BGR",0,255,empty) def create(img, points,masked = False, cropped = True): if masked: mask = np.zeros_like(img) mask = cv2.fillPoly(mask,[points],(255,255,255)) # cv2.imshow("mask",mask) img = cv2.bitwise_and(img,mask) if cropped: b = cv2.boundingRect(points) x,y,w,h = b imgCrop = img[y:y+h,x:x+w] imgCrop = cv2.resize(imgCrop,(0,0),None,5,5) return imgCrop else: return mask detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") while True: img = cv2.imread("./img.png") img = cv2.resize(img,(0,0), None,2,2) imgOriginal = img.copy() imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) faces = detector(imgGray) for face in faces: x1,y1 = face.left(),face.top() x2,y2 = face.right(),face.bottom() # imgOri = cv2.rectangle(imgOriginal,(x1,y1),(x2,y2),(0,255,0),1) landmarks = predictor(imgGray,face) mypoints = [] for n in range(0,68): x = landmarks.part(n).x y = landmarks.part(n).y mypoints.append([x,y]) # cv2.circle(imgOriginal,(x,y),2,(0,0,255),3) # cv2.putText(imgOriginal,str(n),(x,y-10),cv2.FONT_HERSHEY_COMPLEX,0.5,(0,255,0),1) mypoints = np.array(mypoints) lips = create(img,mypoints[48:61],masked=True,cropped=False) # cv2.imshow("Lip",lips) imgColor = np.zeros_like(lips) a = cv2.getTrackbarPos("Blue","BGR") q = cv2.getTrackbarPos("Green","BGR") w = cv2.getTrackbarPos("Red","BGR") imgColor[:] = a,q,w # cv2.imshow("Color",imgColor) imgColor = cv2.bitwise_and(lips,imgColor) imgColor = cv2.GaussianBlur(imgColor,(9,9),20) imgOriginal_Image = cv2.cvtColor(imgOriginal,cv2.COLOR_BGR2GRAY) imgOriginal_Image = cv2.cvtColor(imgOriginal_Image,cv2.COLOR_GRAY2BGR) imgColor =cv2.addWeighted(imgOriginal_Image,1,imgColor,0.8,0) cv2.imshow("BGR",imgColor) cv2.imshow("Original_Image",imgOriginal) key = cv2.waitKey(1) if key == ord("q"): break cv2.destroyAllWindows()
twitch/helix/models/video.py
sotif/Twitch-Python
177
11069446
from typing import Dict, Any import twitch.helix as helix import twitch.v5 as v5 from twitch.api import API from .model import Model class Video(Model): def __init__(self, api: API, data: Dict[str, Any]): super().__init__(api, data) self.id: str = data.get('id') self.user_id: str = data.get('user_id') self.user_name: str = data.get('user_name') self.title: str = data.get('title') self.description: str = data.get('description') self.created_at: str = data.get('created_at') self.published_at: str = data.get('published_at') self.url: str = data.get('url') self.thumbnail_url: str = data.get('thumbnail_url') self.viewable: str = data.get('viewable') self.view_count: int = data.get('view_count') self.language: str = data.get('language') self.type: str = data.get('type') self.duration: str = data.get('duration') def __str__(self): return self.title @property def comments(self) -> 'v5.Comments': return v5.V5(client_id=self._api.client_id, use_cache=self._api.use_cache, cache_duration=self._api.cache_duration).comments(self.id) @property def user(self) -> 'helix.User': return helix.Users(self._api, int(self.user_id))[0]
plex_mpv_shim/player.py
romosborne/plex-mpv-shim
231
11069471
import logging import os import sys import requests import urllib.parse from threading import RLock, Lock from queue import Queue from . import conffile from .utils import synchronous, Timer from .conf import settings from .menu import OSDMenu from .media import MediaType log = logging.getLogger('player') mpv_log = logging.getLogger('mpv') python_mpv_available=True is_using_ext_mpv=False if not settings.mpv_ext: try: import mpv log.info("Using libmpv1 playback backend.") except OSError: log.warning("Could not find libmpv1.") python_mpv_available=False if settings.mpv_ext or not python_mpv_available: import python_mpv_jsonipc as mpv log.info("Using external mpv playback backend.") is_using_ext_mpv=True APP_NAME = 'plex-mpv-shim' SUBTITLE_POS = { "top": 0, "bottom": 100, "middle": 80, } mpv_log_levels = { "fatal": mpv_log.error, "error": mpv_log.error, "warn": mpv_log.warning, "info": mpv_log.info } def mpv_log_handler(level, prefix, text): if level in mpv_log_levels: mpv_log_levels[level]("{0}: {1}".format(prefix, text)) else: mpv_log.debug("{0}: {1}".format(prefix, text)) win_utils = None if sys.platform.startswith("win32") or sys.platform.startswith("cygwin"): try: from . import win_utils except ModuleNotFoundError: log.warning("win_utils is not available.") # Q: What is with the put_task call? # A: Some calls to python-mpv require event processing. # put_task is used to deal with the events originating from # the event thread, which would cause deadlock if they run there. class PlayerManager(object): """ Manages the relationship between a ``Player`` instance and a ``Media`` item. This is designed to be used as a singleton via the ``playerManager`` instance in this module. All communication between a caller and either the current ``player`` or ``media`` instance should be done through this class for thread safety reasons as all methods that access the ``player`` or ``media`` are thread safe. """ def __init__(self): mpv_config = conffile.get(APP_NAME,"mpv.conf", True) input_config = conffile.get(APP_NAME,"input.conf", True) extra_options = {} self._media_item = None self._lock = RLock() self._finished_lock = Lock() self.last_update = Timer() self.__part = 1 self.timeline_trigger = None self.action_trigger = None self.external_subtitles = {} self.external_subtitles_rev = {} self.url = None self.evt_queue = Queue() self.is_in_intro = False self.intro_has_triggered = False if is_using_ext_mpv: extra_options = { "start_mpv": settings.mpv_ext_start, "ipc_socket": settings.mpv_ext_ipc, "mpv_location": settings.mpv_ext_path, "player-operation-mode": "cplayer" } self._player = mpv.MPV(input_default_bindings=True, input_vo_keyboard=True, input_media_keys=True, include=mpv_config, input_conf=input_config, log_handler=mpv_log_handler, loglevel=settings.mpv_log_level, **extra_options) self.menu = OSDMenu(self) if hasattr(self._player, 'osc'): self._player.osc = settings.enable_osc else: log.warning("This mpv version doesn't support on-screen controller.") # Wrapper for on_key_press that ignores None. def keypress(key): def wrapper(func): if key is not None: self._player.on_key_press(key)(func) return func return wrapper @self._player.on_key_press('CLOSE_WIN') @self._player.on_key_press('STOP') @keypress(settings.kb_stop) def handle_stop(): self.stop() self.timeline_handle() @keypress(settings.kb_prev) def handle_prev(): self.put_task(self.play_prev) @keypress(settings.kb_next) def handle_next(): self.put_task(self.play_next) @self._player.on_key_press('PREV') @self._player.on_key_press('XF86_PREV') def handle_media_prev(): if settings.media_key_seek: self._player.command("seek", -15) else: self.put_task(self.play_prev) @self._player.on_key_press('NEXT') @self._player.on_key_press('XF86_NEXT') def handle_media_next(): if settings.media_key_seek: if self.is_in_intro: self.skip_intro() else: self._player.command("seek", 30) else: self.put_task(self.play_next) @keypress(settings.kb_watched) def handle_watched(): self.put_task(self.watched_skip) @keypress(settings.kb_unwatched) def handle_unwatched(): self.put_task(self.unwatched_quit) @keypress(settings.kb_menu) def menu_open(): if not self.menu.is_menu_shown: self.menu.show_menu() else: self.menu.hide_menu() @keypress(settings.kb_menu_esc) def menu_back(): if self.menu.is_menu_shown: self.menu.menu_action('back') else: self._player.command('set', 'fullscreen', 'no') @keypress(settings.kb_menu_ok) def menu_ok(): self.menu.menu_action('ok') @keypress(settings.kb_menu_left) def menu_left(): if self.menu.is_menu_shown: self.menu.menu_action('left') else: self._player.command("seek", settings.seek_left) @keypress(settings.kb_menu_right) def menu_right(): if self.menu.is_menu_shown: self.menu.menu_action('right') else: if self.is_in_intro: self.skip_intro() else: self._player.command("seek", settings.seek_right) @keypress(settings.kb_menu_up) def menu_up(): if self.menu.is_menu_shown: self.menu.menu_action('up') else: if self.is_in_intro: self.skip_intro() else: self._player.command("seek", settings.seek_up) @keypress(settings.kb_menu_down) def menu_down(): if self.menu.is_menu_shown: self.menu.menu_action('down') else: self._player.command("seek", settings.seek_down) @keypress(settings.kb_pause) def handle_pause(): if self.menu.is_menu_shown: self.menu.menu_action('ok') else: self.toggle_pause() # This gives you an interactive python debugger prompt. @keypress(settings.kb_debug) def handle_debug(): import pdb pdb.set_trace() # Fires between episodes. @self._player.property_observer('eof-reached') def handle_end(_name, reached_end): if self._media_item and reached_end: has_lock = self._finished_lock.acquire(False) self.put_task(self.finished_callback, has_lock) # Fires at the end. @self._player.event_callback('idle') def handle_end_idle(event): if self._media_item: has_lock = self._finished_lock.acquire(False) self.put_task(self.finished_callback, has_lock) # Put a task to the event queue. # This ensures the task executes outside # of an event handler, which causes a crash. def put_task(self, func, *args): self.evt_queue.put([func, args]) if self.action_trigger: self.action_trigger.set() # Trigger the timeline to update all # clients immediately. def timeline_handle(self): if self.timeline_trigger: self.timeline_trigger.set() def skip_intro(self): if self._media_item.media_type == MediaType.VIDEO: self._player.playback_time = self._media_item.intro_end self.timeline_handle() self.is_in_intro = False @synchronous('_lock') def update(self): if ((settings.skip_intro_always or settings.skip_intro_prompt) and self._media_item is not None and self._media_item.media_type == MediaType.VIDEO and self._media_item.intro_start is not None and self._player.playback_time is not None and self._player.playback_time > self._media_item.intro_start and self._player.playback_time < self._media_item.intro_end): if not self.is_in_intro: if settings.skip_intro_always and not self.intro_has_triggered: self.intro_has_triggered = True self.skip_intro() self._player.show_text("Skipped Intro", 3000, 1) elif settings.skip_intro_prompt: self._player.show_text("Seek to Skip Intro", 3000, 1) self.is_in_intro = True else: self.is_in_intro = False while not self.evt_queue.empty(): func, args = self.evt_queue.get() func(*args) if self._media_item and not self._player.playback_abort: if not self.is_paused(): self.last_update.restart() def play(self, media_item, offset=0): url = media_item.get_playback_url() if not url: log.error("PlayerManager::play no URL found") return self._play_media(media_item, url, offset) @synchronous('_lock') def _play_media(self, media_item, url, offset=0): self.url = url self.menu.hide_menu() if settings.log_decisions: log.debug("Playing: {0}".format(url)) self._player.play(self.url) self._player.wait_for_property("duration") if settings.fullscreen: self._player.fs = True self._player.force_media_title = media_item.get_proper_title() self._media_item = media_item self.is_in_intro = False self.intro_has_triggered = False self.update_subtitle_visuals(False) self.upd_player_hide() self.external_subtitles = {} self.external_subtitles_rev = {} if win_utils: win_utils.raise_mpv() if offset > 0: self._player.playback_time = offset if media_item.media_type == MediaType.VIDEO and not media_item.is_transcode: audio_idx = media_item.get_audio_idx() if audio_idx is not None: log.debug("PlayerManager::play selecting audio stream index=%s" % audio_idx) self._player.audio = audio_idx sub_idx = media_item.get_subtitle_idx() xsub_id = media_item.get_external_sub_id() if sub_idx is not None: log.debug("PlayerManager::play selecting subtitle index=%s" % sub_idx) self._player.sub = sub_idx elif xsub_id is not None: log.debug("PlayerManager::play selecting external subtitle id=%s" % xsub_id) self.load_external_sub(xsub_id) else: self._player.sub = 'no' self._player.pause = False self.timeline_handle() if self._finished_lock.locked(): self._finished_lock.release() def exec_stop_cmd(self): if settings.stop_cmd: os.system(settings.stop_cmd) @synchronous('_lock') def stop(self, playend=False): if not playend and (not self._media_item or self._player.playback_abort): self.exec_stop_cmd() return if not playend: log.debug("PlayerManager::stop stopping playback of %s" % self._media_item) if self._media_item.media_type == MediaType.VIDEO: self._media_item.terminate_transcode() self._media_item = None self._player.command("stop") self._player.pause = False self.timeline_handle() if not playend: self.exec_stop_cmd() @synchronous('_lock') def get_volume(self, percent=False): if self._player: if not percent: return self._player.volume / 100 return self._player.volume @synchronous('_lock') def toggle_pause(self): if not self._player.playback_abort: self._player.pause = not self._player.pause self.timeline_handle() @synchronous('_lock') def seek(self, offset): """ Seek to ``offset`` seconds """ if not self._player.playback_abort: if self.is_in_intro and offset > self._player.playback_time: self.skip_intro() else: self._player.playback_time = offset self.timeline_handle() @synchronous('_lock') def set_volume(self, pct): if not self._player.playback_abort: self._player.volume = pct self.timeline_handle() @synchronous('_lock') def get_state(self): if self._player.playback_abort: return "stopped" if self._player.pause: return "paused" return "playing" @synchronous('_lock') def is_paused(self): if not self._player.playback_abort: return self._player.pause return False @synchronous('_lock') def finished_callback(self, has_lock): if not self._media_item: return self._media_item.set_played() if self._media_item.is_multipart(): if has_lock: log.debug("PlayerManager::finished_callback media is multi-part, checking for next part") # Try to select the next part next_part = self.__part+1 if self._media_item.select_part(next_part): self.__part = next_part log.debug("PlayerManager::finished_callback starting next part") self.play(self._media_item) else: log.debug("PlayerManager::finished_callback No lock, skipping...") elif self._media_item.parent.has_next and settings.auto_play: if has_lock: log.debug("PlayerManager::finished_callback starting next episode") self.play(self._media_item.parent.get_next().get_media_item(0)) else: log.debug("PlayerManager::finished_callback No lock, skipping...") else: if settings.media_ended_cmd: os.system(settings.media_ended_cmd) log.debug("PlayerManager::finished_callback reached end") self.stop(playend=True) @synchronous('_lock') def watched_skip(self): if not self._media_item: return self._media_item.set_played() self.play_next() @synchronous('_lock') def unwatched_quit(self): if not self._media_item: return self._media_item.set_played(False) self.stop() @synchronous('_lock') def play_next(self): if self._media_item.parent.has_next: self.play(self._media_item.parent.get_next().get_media_item(0)) return True return False @synchronous('_lock') def skip_to(self, key): media = self._media_item.parent.get_from_key(key) if media: self.play(media.get_media_item(0)) return True return False @synchronous('_lock') def play_prev(self): if self._media_item.parent.has_prev: self.play(self._media_item.parent.get_prev().get_media_item(0)) return True return False @synchronous('_lock') def restart_playback(self): current_time = self._player.playback_time self.play(self._media_item, current_time) return True @synchronous('_lock') def get_media_item_attr(self, attr, default=None): if self._media_item: return self._media_item.get_media_item_attr(attr, default) return default @synchronous('_lock') def set_streams(self, audio_uid, sub_uid): if not self._media_item.is_transcode: if audio_uid is not None: log.debug("PlayerManager::play selecting audio stream index=%s" % audio_uid) self._player.audio = self._media_item.audio_seq[audio_uid] if sub_uid == '0': log.debug("PlayerManager::play selecting subtitle stream (none)") self._player.sub = 'no' elif sub_uid is not None: log.debug("PlayerManager::play selecting subtitle stream index=%s" % sub_uid) if sub_uid in self._media_item.subtitle_seq: self._player.sub = self._media_item.subtitle_seq[sub_uid] else: log.debug("PlayerManager::play selecting external subtitle id=%s" % sub_uid) self.load_external_sub(sub_uid) self._media_item.set_streams(audio_uid, sub_uid) if self._media_item.is_transcode: self.restart_playback() self.timeline_handle() @synchronous('_lock') def load_external_sub(self, sub_id): if sub_id in self.external_subtitles: self._player.sub = self.external_subtitles[sub_id] else: try: sub_url = self._media_item.get_external_sub(sub_id) if settings.log_decisions: log.debug("Load External Subtitle: {0}".format(sub_url)) self._player.sub_add(sub_url) self.external_subtitles[sub_id] = self._player.sub self.external_subtitles_rev[self._player.sub] = sub_id except SystemError: log.debug("PlayerManager::could not load external subtitle") def get_track_ids(self): if self._media_item.is_transcode: return self._media_item.get_transcode_streams() else: aid, sid = None, None if self._player.sub and self._player.sub != 'no': if self._player.sub in self.external_subtitles_rev: sid = self.external_subtitles_rev.get(self._player.sub, '') else: sid = self._media_item.subtitle_uid.get(self._player.sub, '') if self._player.audio != 'no': aid = self._media_item.audio_uid.get(self._player.audio, '') return aid, sid def update_subtitle_visuals(self, restart_transcode=True): if self._media_item.is_transcode: if restart_transcode: self.restart_playback() else: self._player.sub_pos = SUBTITLE_POS[settings.subtitle_position] self._player.sub_scale = settings.subtitle_size / 100 self._player.sub_color = settings.subtitle_color self.timeline_handle() def upd_player_hide(self): self._player.keep_open = self._media_item.parent.has_next def terminate(self): self.stop() if is_using_ext_mpv: self._player.terminate() playerManager = PlayerManager()
pyquil/gates.py
stjordanis/pyquil
677
11069477
<reponame>stjordanis/pyquil<gh_stars>100-1000 ############################################################################## # Copyright 2016-2018 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from numbers import Real from typing import Callable, Mapping, Optional, Tuple, Union, Iterable, no_type_check import numpy as np from pyquil.quilatom import ( Expression, FormalArgument, Frame, MemoryReference, MemoryReferenceDesignator, ParameterDesignator, QubitDesignator, Qubit, unpack_classical_reg, unpack_qubit, Waveform, ) from pyquil.quilbase import ( AbstractInstruction, Declare, Gate, Halt, Reset, ResetQubit, Measurement, Nop, Wait, ClassicalNeg, ClassicalNot, ClassicalAnd, ClassicalInclusiveOr, ClassicalExclusiveOr, ClassicalEqual, ClassicalGreaterEqual, ClassicalGreaterThan, ClassicalLessEqual, ClassicalLessThan, ClassicalMove, ClassicalExchange, ClassicalConvert, ClassicalLoad, ClassicalStore, ClassicalAdd, ClassicalSub, ClassicalMul, ClassicalDiv, Pulse, SetFrequency, ShiftFrequency, SetPhase, ShiftPhase, SwapPhase, SetScale, Capture, RawCapture, DelayFrames, DelayQubits, FenceAll, Fence, ) def unpack_reg_val_pair( classical_reg1: MemoryReferenceDesignator, classical_reg2: Union[MemoryReferenceDesignator, int, float], ) -> Tuple[MemoryReference, Union[MemoryReference, int, float]]: """ Helper function for typechecking / type-coercing arguments to constructors for binary classical operators. :param classical_reg1: Specifier for the classical memory address to be modified. :param classical_reg2: Specifier for the second argument: a classical memory address or an immediate value. :return: A pair of pyQuil objects suitable for use as operands. """ left = unpack_classical_reg(classical_reg1) if isinstance(classical_reg2, (float, int)): return left, classical_reg2 return left, unpack_classical_reg(classical_reg2) def prepare_ternary_operands( classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator, classical_reg3: Union[MemoryReferenceDesignator, int, float], ) -> Tuple[MemoryReference, MemoryReference, Union[MemoryReference, int, float]]: """ Helper function for typechecking / type-coercing arguments to constructors for ternary classical operators. :param classical_reg1: Specifier for the classical memory address to be modified. :param classical_reg2: Specifier for the left operand: a classical memory address. :param classical_reg3: Specifier for the right operand: a classical memory address or an immediate value. :return: A triple of pyQuil objects suitable for use as operands. """ if isinstance(classical_reg1, int): raise TypeError("Target operand of comparison must be a memory address") classical_reg1 = unpack_classical_reg(classical_reg1) if isinstance(classical_reg2, int): raise TypeError("Left operand of comparison must be a memory address") classical_reg2 = unpack_classical_reg(classical_reg2) if not isinstance(classical_reg3, (float, int)): classical_reg3 = unpack_classical_reg(classical_reg3) return classical_reg1, classical_reg2, classical_reg3 def I(qubit: QubitDesignator) -> Gate: """Produces the I identity gate:: I = [1, 0] [0, 1] This gate is a single qubit identity gate. Note that this gate is different that the NOP instruction as noise channels are typically still applied during the duration of identity gates. Identities will also block parallelization like any other gate. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="I", params=[], qubits=[unpack_qubit(qubit)]) def X(qubit: QubitDesignator) -> Gate: """Produces the X ("NOT") gate:: X = [[0, 1], [1, 0]] This gate is a single qubit X-gate. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="X", params=[], qubits=[unpack_qubit(qubit)]) def Y(qubit: QubitDesignator) -> Gate: """Produces the Y gate:: Y = [[0, 0 - 1j], [0 + 1j, 0]] This gate is a single qubit Y-gate. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="Y", params=[], qubits=[unpack_qubit(qubit)]) def Z(qubit: QubitDesignator) -> Gate: """Produces the Z gate:: Z = [[1, 0], [0, -1]] This gate is a single qubit Z-gate. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="Z", params=[], qubits=[unpack_qubit(qubit)]) def H(qubit: QubitDesignator) -> Gate: """Produces the Hadamard gate:: H = (1 / sqrt(2)) * [[1, 1], [1, -1]] Produces the H instruction. This gate is a single qubit Hadamard gate. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="H", params=[], qubits=[unpack_qubit(qubit)]) def S(qubit: QubitDesignator) -> Gate: """Produces the S gate:: S = [[1, 0], [0, 1j]] This gate is a single qubit S-gate. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="S", params=[], qubits=[unpack_qubit(qubit)]) def T(qubit: QubitDesignator) -> Gate: """Produces the T gate:: T = [[1, 0], [0, exp(1j * pi / 4)]] This gate is a single qubit T-gate. It is the same as RZ(pi/4). :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="T", params=[], qubits=[unpack_qubit(qubit)]) def RX(angle: ParameterDesignator, qubit: QubitDesignator) -> Gate: """Produces the RX gate:: RX(phi) = [[cos(phi / 2), -1j * sin(phi / 2)], [-1j * sin(phi / 2), cos(phi / 2)]] This gate is a single qubit X-rotation. :param angle: The angle to rotate around the x-axis on the bloch sphere. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="RX", params=[angle], qubits=[unpack_qubit(qubit)]) def RY(angle: ParameterDesignator, qubit: QubitDesignator) -> Gate: """Produces the RY gate:: RY(phi) = [[cos(phi / 2), -sin(phi / 2)], [sin(phi / 2), cos(phi / 2)]] This gate is a single qubit Y-rotation. :param angle: The angle to rotate around the y-axis on the bloch sphere. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="RY", params=[angle], qubits=[unpack_qubit(qubit)]) def RZ(angle: ParameterDesignator, qubit: QubitDesignator) -> Gate: """Produces the RZ gate:: RZ(phi) = [[cos(phi / 2) - 1j * sin(phi / 2), 0] [0, cos(phi / 2) + 1j * sin(phi / 2)]] This gate is a single qubit Z-rotation. :param angle: The angle to rotate around the z-axis on the bloch sphere. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="RZ", params=[angle], qubits=[unpack_qubit(qubit)]) def PHASE(angle: ParameterDesignator, qubit: QubitDesignator) -> Gate: """Produces the PHASE gate:: PHASE(phi) = [[1, 0], [0, exp(1j * phi)]] This is the same as the RZ gate. :param angle: The angle to rotate around the z-axis on the bloch sphere. :param qubit: The qubit apply the gate to. :returns: A Gate object. """ return Gate(name="PHASE", params=[angle], qubits=[unpack_qubit(qubit)]) def CZ(control: QubitDesignator, target: QubitDesignator) -> Gate: """Produces a controlled-Z gate:: CZ = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]] This gate applies to two qubit arguments to produce the controlled-Z gate instruction. :param control: The control qubit. :param target: The target qubit. The target qubit has an Z-gate applied to it if the control qubit is in the excited state. :returns: A Gate object. """ return Gate(name="CZ", params=[], qubits=[unpack_qubit(q) for q in (control, target)]) def CNOT(control: QubitDesignator, target: QubitDesignator) -> Gate: """Produces a controlled-NOT (controlled-X) gate:: CNOT = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]] This gate applies to two qubit arguments to produce the controlled-not gate instruction. :param control: The control qubit. :param target: The target qubit. The target qubit has an X-gate applied to it if the control qubit is in the ``|1>`` state. :returns: A Gate object. """ return Gate(name="CNOT", params=[], qubits=[unpack_qubit(q) for q in (control, target)]) def CCNOT(control1: QubitDesignator, control2: QubitDesignator, target: QubitDesignator) -> Gate: """Produces a doubly-controlled NOT gate:: CCNOT = [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]] This gate applies to three qubit arguments to produce the controlled-controlled-not gate instruction. :param control1: The first control qubit. :param control2: The second control qubit. :param target: The target qubit. The target qubit has an X-gate applied to it if both control qubits are in the excited state. :returns: A Gate object. """ qubits = [unpack_qubit(q) for q in (control1, control2, target)] return Gate(name="CCNOT", params=[], qubits=qubits) def CPHASE00(angle: ParameterDesignator, control: QubitDesignator, target: QubitDesignator) -> Gate: """Produces a controlled-phase gate that phases the ``|00>`` state:: CPHASE00(phi) = diag([exp(1j * phi), 1, 1, 1]) This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects the state 00. :param angle: The input phase angle to apply when both qubits are in the ``|0>`` state. :param control: Qubit 1. :param target: Qubit 2. :returns: A Gate object. """ qubits = [unpack_qubit(q) for q in (control, target)] return Gate(name="CPHASE00", params=[angle], qubits=qubits) def CPHASE01(angle: ParameterDesignator, control: QubitDesignator, target: QubitDesignator) -> Gate: """Produces a controlled-phase gate that phases the ``|01>`` state:: CPHASE01(phi) = diag([1.0, exp(1j * phi), 1.0, 1.0]) This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects the state 01. :param angle: The input phase angle to apply when q1 is in the ``|1>`` state and q2 is in the ``|0>`` state. :param control: Qubit 1. :param target: Qubit 2. :returns: A Gate object. """ qubits = [unpack_qubit(q) for q in (control, target)] return Gate(name="CPHASE01", params=[angle], qubits=qubits) def CPHASE10(angle: ParameterDesignator, control: QubitDesignator, target: QubitDesignator) -> Gate: """Produces a controlled-phase gate that phases the ``|10>`` state:: CPHASE10(phi) = diag([1, 1, exp(1j * phi), 1]) This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects the state 10. :param angle: The input phase angle to apply when q2 is in the ``|1>`` state and q1 is in the ``|0>`` state. :param control: Qubit 1. :param target: Qubit 2. :returns: A Gate object. """ qubits = [unpack_qubit(q) for q in (control, target)] return Gate(name="CPHASE10", params=[angle], qubits=qubits) # NOTE: We don't use ParameterDesignator here because of the following Sphinx error. This error # can be resolved by importing Expression, but then flake8 complains about an unused import: # Cannot resolve forward reference in type annotations of "pyquil.gates.CPHASE": # name 'Expression' is not defined def CPHASE( angle: Union[Expression, MemoryReference, np.int_, int, float, complex], control: QubitDesignator, target: QubitDesignator, ) -> Gate: """Produces a controlled-phase instruction:: CPHASE(phi) = diag([1, 1, 1, exp(1j * phi)]) This gate applies to two qubit arguments to produce the variant of the controlled phase instruction that affects the state 11. Compare with the ``CPHASExx`` variants. This variant is the most common and does not have a suffix, although you can think of it as ``CPHASE11``. :param angle: The input phase angle to apply when both qubits are in the ``|1>`` state. :param control: Qubit 1. :param target: Qubit 2. :returns: A Gate object. """ qubits = [unpack_qubit(q) for q in (control, target)] return Gate(name="CPHASE", params=[angle], qubits=qubits) def SWAP(q1: QubitDesignator, q2: QubitDesignator) -> Gate: """Produces a SWAP gate which swaps the state of two qubits:: SWAP = [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]] :param q1: Qubit 1. :param q2: Qubit 2. :returns: A Gate object. """ return Gate(name="SWAP", params=[], qubits=[unpack_qubit(q) for q in (q1, q2)]) def CSWAP(control: QubitDesignator, target_1: QubitDesignator, target_2: QubitDesignator) -> Gate: """Produces a controlled-SWAP gate. This gate conditionally swaps the state of two qubits:: CSWAP = [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]] :param control: The control qubit. :param target_1: The first target qubit. :param target_2: The second target qubit. The two target states are swapped if the control is in the ``|1>`` state. """ qubits = [unpack_qubit(q) for q in (control, target_1, target_2)] return Gate(name="CSWAP", params=[], qubits=qubits) def ISWAP(q1: QubitDesignator, q2: QubitDesignator) -> Gate: """Produces an ISWAP gate:: ISWAP = [[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]] This gate swaps the state of two qubits, applying a -i phase to q1 when it is in the 1 state and a -i phase to q2 when it is in the 0 state. :param q1: Qubit 1. :param q2: Qubit 2. :returns: A Gate object. """ return Gate(name="ISWAP", params=[], qubits=[unpack_qubit(q) for q in (q1, q2)]) def PSWAP(angle: ParameterDesignator, q1: QubitDesignator, q2: QubitDesignator) -> Gate: """Produces a parameterized SWAP gate:: PSWAP(phi) = [[1, 0, 0, 0], [0, 0, exp(1j * phi), 0], [0, exp(1j * phi), 0, 0], [0, 0, 0, 1]] :param angle: The angle of the phase to apply to the swapped states. This phase is applied to q1 when it is in the 1 state and to q2 when it is in the 0 state. :param q1: Qubit 1. :param q2: Qubit 2. :returns: A Gate object. """ return Gate(name="PSWAP", params=[angle], qubits=[unpack_qubit(q) for q in (q1, q2)]) def XY(angle: ParameterDesignator, q1: QubitDesignator, q2: QubitDesignator) -> Gate: """Produces a parameterized ISWAP gate:: XY(phi) = [[1, 0, 0, 0], [0, cos(phi/2), 1j * sin(phi/2), 0], [0, 1j * sin(phi/2), cos(phi/2), 0], [0, 0, 0, 1] :param angle: The angle of the rotation to apply to the population 1 subspace. :param q1: Qubit 1. :param q2: Qubit 2. :returns: A Gate object. """ return Gate(name="XY", params=[angle], qubits=[unpack_qubit(q) for q in (q1, q2)]) WAIT = Wait() """ This instruction tells the quantum computation to halt. Typically these is used while classical memory is being manipulated by a CPU in a hybrid classical/quantum algorithm. :returns: A Wait object. """ def RESET(qubit_index: Optional[QubitDesignator] = None) -> Union[Reset, ResetQubit]: """ Reset all qubits or just one specific qubit. :param qubit_index: The qubit to reset. This can be a qubit's index, a Qubit, or a QubitPlaceholder. If None, reset all qubits. :returns: A Reset or ResetQubit Quil AST expression corresponding to a global or targeted reset, respectively. """ if qubit_index is not None: return ResetQubit(unpack_qubit(qubit_index)) else: return Reset() NOP = Nop() """ This instruction applies no operation at that timestep. Typically these are ignored in error-models. :returns: A Nop object. """ HALT = Halt() """ This instruction ends the program. :returns: A Halt object. """ def DECLARE( name: str, memory_type: str = "BIT", memory_size: int = 1, shared_region: Optional[str] = None, offsets: Optional[Iterable[Tuple[int, str]]] = None, ) -> Declare: return Declare( name=name, memory_type=memory_type, memory_size=memory_size, shared_region=shared_region, offsets=offsets, ) def MEASURE(qubit: QubitDesignator, classical_reg: Optional[MemoryReferenceDesignator]) -> Measurement: """ Produce a MEASURE instruction. :param qubit: The qubit to measure. :param classical_reg: The classical register to measure into, or None. :return: A Measurement instance. """ qubit = unpack_qubit(qubit) if classical_reg is None: address = None else: address = unpack_classical_reg(classical_reg) return Measurement(qubit, address) def NEG(classical_reg: MemoryReferenceDesignator) -> ClassicalNeg: """ Produce a NEG instruction. :param classical_reg: A classical memory address to modify. :return: A ClassicalNeg instance. """ return ClassicalNeg(unpack_classical_reg(classical_reg)) def NOT(classical_reg: MemoryReferenceDesignator) -> ClassicalNot: """ Produce a NOT instruction. :param classical_reg: A classical register to modify. :return: A ClassicalNot instance. """ return ClassicalNot(unpack_classical_reg(classical_reg)) def AND( classical_reg1: MemoryReferenceDesignator, classical_reg2: Union[MemoryReferenceDesignator, int] ) -> ClassicalAnd: """ Produce an AND instruction. NOTE: The order of operands was reversed in pyQuil <=1.9 . :param classical_reg1: The first classical register, which gets modified. :param classical_reg2: The second classical register or immediate value. :return: A ClassicalAnd instance. """ left, right = unpack_reg_val_pair(classical_reg1, classical_reg2) assert isinstance(right, (MemoryReference, int)) # placate mypy return ClassicalAnd(left, right) def IOR( classical_reg1: MemoryReferenceDesignator, classical_reg2: Union[MemoryReferenceDesignator, int] ) -> ClassicalInclusiveOr: """ Produce an inclusive OR instruction. :param classical_reg1: The first classical register, which gets modified. :param classical_reg2: The second classical register or immediate value. :return: A ClassicalInclusiveOr instance. """ left, right = unpack_reg_val_pair(classical_reg1, classical_reg2) assert isinstance(right, (MemoryReference, int)) # placate mypy return ClassicalInclusiveOr(left, right) def XOR( classical_reg1: MemoryReferenceDesignator, classical_reg2: Union[MemoryReferenceDesignator, int] ) -> ClassicalExclusiveOr: """ Produce an exclusive OR instruction. :param classical_reg1: The first classical register, which gets modified. :param classical_reg2: The second classical register or immediate value. :return: A ClassicalExclusiveOr instance. """ left, right = unpack_reg_val_pair(classical_reg1, classical_reg2) assert isinstance(right, (MemoryReference, int)) # placate mypy return ClassicalExclusiveOr(left, right) def MOVE( classical_reg1: MemoryReferenceDesignator, classical_reg2: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalMove: """ Produce a MOVE instruction. :param classical_reg1: The first classical register, which gets modified. :param classical_reg2: The second classical register or immediate value. :return: A ClassicalMove instance. """ left, right = unpack_reg_val_pair(classical_reg1, classical_reg2) return ClassicalMove(left, right) def EXCHANGE(classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator) -> ClassicalExchange: """ Produce an EXCHANGE instruction. :param classical_reg1: The first classical register, which gets modified. :param classical_reg2: The second classical register, which gets modified. :return: A ClassicalExchange instance. """ left = unpack_classical_reg(classical_reg1) right = unpack_classical_reg(classical_reg2) return ClassicalExchange(left, right) def LOAD( target_reg: MemoryReferenceDesignator, region_name: str, offset_reg: MemoryReferenceDesignator ) -> ClassicalLoad: """ Produce a LOAD instruction. :param target_reg: LOAD storage target. :param region_name: Named region of memory to load from. :param offset_reg: Offset into region of memory to load from. Must be a MemoryReference. :return: A ClassicalLoad instance. """ return ClassicalLoad(unpack_classical_reg(target_reg), region_name, unpack_classical_reg(offset_reg)) def STORE( region_name: str, offset_reg: MemoryReferenceDesignator, source: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalStore: """ Produce a STORE instruction. :param region_name: Named region of memory to store to. :param offset_reg: Offset into memory region. Must be a MemoryReference. :param source: Source data. Can be either a MemoryReference or a constant. :return: A ClassicalStore instance. """ if not isinstance(source, int) and not isinstance(source, float): source = unpack_classical_reg(source) return ClassicalStore(region_name, unpack_classical_reg(offset_reg), source) def CONVERT(classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator) -> ClassicalConvert: """ Produce a CONVERT instruction. :param classical_reg1: MemoryReference to store to. :param classical_reg2: MemoryReference to read from. :return: A ClassicalConvert instance. """ return ClassicalConvert(unpack_classical_reg(classical_reg1), unpack_classical_reg(classical_reg2)) def ADD(classical_reg: MemoryReferenceDesignator, right: Union[MemoryReferenceDesignator, int, float]) -> ClassicalAdd: """ Produce an ADD instruction. :param classical_reg: Left operand for the arithmetic operation. Also serves as the store target. :param right: Right operand for the arithmetic operation. :return: A ClassicalAdd instance. """ left, right = unpack_reg_val_pair(classical_reg, right) return ClassicalAdd(left, right) def SUB(classical_reg: MemoryReferenceDesignator, right: Union[MemoryReferenceDesignator, int, float]) -> ClassicalSub: """ Produce a SUB instruction. :param classical_reg: Left operand for the arithmetic operation. Also serves as the store target. :param right: Right operand for the arithmetic operation. :return: A ClassicalSub instance. """ left, right = unpack_reg_val_pair(classical_reg, right) return ClassicalSub(left, right) def MUL(classical_reg: MemoryReferenceDesignator, right: Union[MemoryReferenceDesignator, int, float]) -> ClassicalMul: """ Produce a MUL instruction. :param classical_reg: Left operand for the arithmetic operation. Also serves as the store target. :param right: Right operand for the arithmetic operation. :return: A ClassicalMul instance. """ left, right = unpack_reg_val_pair(classical_reg, right) return ClassicalMul(left, right) def DIV(classical_reg: MemoryReferenceDesignator, right: Union[MemoryReferenceDesignator, int, float]) -> ClassicalDiv: """ Produce an DIV instruction. :param classical_reg: Left operand for the arithmetic operation. Also serves as the store target. :param right: Right operand for the arithmetic operation. :return: A ClassicalDiv instance. """ left, right = unpack_reg_val_pair(classical_reg, right) return ClassicalDiv(left, right) def EQ( classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator, classical_reg3: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalEqual: """ Produce an EQ instruction. :param classical_reg1: Memory address to which to store the comparison result. :param classical_reg2: Left comparison operand. :param classical_reg3: Right comparison operand. :return: A ClassicalEqual instance. """ classical_reg1, classical_reg2, classical_reg3 = prepare_ternary_operands( classical_reg1, classical_reg2, classical_reg3 ) return ClassicalEqual(classical_reg1, classical_reg2, classical_reg3) def LT( classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator, classical_reg3: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalLessThan: """ Produce an LT instruction. :param classical_reg1: Memory address to which to store the comparison result. :param classical_reg2: Left comparison operand. :param classical_reg3: Right comparison operand. :return: A ClassicalLessThan instance. """ classical_reg1, classical_reg2, classical_reg3 = prepare_ternary_operands( classical_reg1, classical_reg2, classical_reg3 ) return ClassicalLessThan(classical_reg1, classical_reg2, classical_reg3) def LE( classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator, classical_reg3: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalLessEqual: """ Produce an LE instruction. :param classical_reg1: Memory address to which to store the comparison result. :param classical_reg2: Left comparison operand. :param classical_reg3: Right comparison operand. :return: A ClassicalLessEqual instance. """ classical_reg1, classical_reg2, classical_reg3 = prepare_ternary_operands( classical_reg1, classical_reg2, classical_reg3 ) return ClassicalLessEqual(classical_reg1, classical_reg2, classical_reg3) def GT( classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator, classical_reg3: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalGreaterThan: """ Produce an GT instruction. :param classical_reg1: Memory address to which to store the comparison result. :param classical_reg2: Left comparison operand. :param classical_reg3: Right comparison operand. :return: A ClassicalGreaterThan instance. """ classical_reg1, classical_reg2, classical_reg3 = prepare_ternary_operands( classical_reg1, classical_reg2, classical_reg3 ) return ClassicalGreaterThan(classical_reg1, classical_reg2, classical_reg3) def GE( classical_reg1: MemoryReferenceDesignator, classical_reg2: MemoryReferenceDesignator, classical_reg3: Union[MemoryReferenceDesignator, int, float], ) -> ClassicalGreaterEqual: """ Produce an GE instruction. :param classical_reg1: Memory address to which to store the comparison result. :param classical_reg2: Left comparison operand. :param classical_reg3: Right comparison operand. :return: A ClassicalGreaterEqual instance. """ classical_reg1, classical_reg2, classical_reg3 = prepare_ternary_operands( classical_reg1, classical_reg2, classical_reg3 ) return ClassicalGreaterEqual(classical_reg1, classical_reg2, classical_reg3) def PULSE(frame: Frame, waveform: Waveform, nonblocking: bool = False) -> Pulse: """ Produce a PULSE instruction. :param frame: The frame on which to apply the pulse. :param waveform: The pulse waveform. :param nonblocking: A flag indicating whether the pulse is NONBLOCKING. :return: A Pulse instance. """ return Pulse(frame, waveform, nonblocking) def SET_FREQUENCY(frame: Frame, freq: ParameterDesignator) -> SetFrequency: """ Produce a SET-FREQUENCY instruction. :param frame: The frame on which to set the frequency. :param freq: The frequency value, in Hz. :returns: A SetFrequency instance. """ return SetFrequency(frame, freq) def SHIFT_FREQUENCY(frame: Frame, freq: ParameterDesignator) -> ShiftFrequency: """ Produce a SHIFT-FREQUENCY instruction. :param frame: The frame on which to shift the frequency. :param freq: The value, in Hz, to add to the existing frequency. :returns: A ShiftFrequency instance. """ return ShiftFrequency(frame, freq) def SET_PHASE(frame: Frame, phase: ParameterDesignator) -> SetPhase: """ Produce a SET-PHASE instruction. :param frame: The frame on which to set the phase. :param phase: The new phase value, in radians. :returns: A SetPhase instance. """ return SetPhase(frame, phase) def SHIFT_PHASE(frame: Frame, phase: ParameterDesignator) -> ShiftPhase: """ Produce a SHIFT-PHASE instruction. :param frame: The frame on which to shift the phase. :param phase: The value, in radians, to add to the existing phase. :returns: A ShiftPhase instance. """ return ShiftPhase(frame, phase) def SWAP_PHASE(frameA: Frame, frameB: Frame) -> SwapPhase: """ Produce a SWAP-PHASE instruction. :param frameA: A frame. :param frameB: A frame. :returns: A SwapPhase instance. """ return SwapPhase(frameA, frameB) def SET_SCALE(frame: Frame, scale: ParameterDesignator) -> SetScale: """ Produce a SET-SCALE instruction. :param frame: The frame on which to set the scale. :param scale: The scaling factor. :returns: A SetScale instance. """ return SetScale(frame, scale) def CAPTURE( frame: Frame, kernel: Waveform, memory_region: MemoryReferenceDesignator, nonblocking: bool = False, ) -> Capture: """ Produce a CAPTURE instruction. :param frame: The frame on which to capture an IQ value. :param kernel: The integrating kernel for the capture. :param memory_region: The classical memory region to store the resulting IQ value. :param nonblocking: A flag indicating whether the capture is NONBLOCKING. :returns: A Capture instance. """ memory_region = unpack_classical_reg(memory_region) return Capture(frame, kernel, memory_region, nonblocking) def RAW_CAPTURE( frame: Frame, duration: float, memory_region: MemoryReferenceDesignator, nonblocking: bool = False, ) -> RawCapture: """ Produce a RAW-CAPTURE instruction. :param frame: The frame on which to capture raw values. :param duration: The duration of the capture, in seconds. :param memory_region: The classical memory region to store the resulting raw values. :param nonblocking: A flag indicating whether the capture is NONBLOCKING. :returns: A RawCapture instance. """ memory_region = unpack_classical_reg(memory_region) return RawCapture(frame, duration, memory_region, nonblocking) # Mypy doesn't support a complex type hint here on args. Particularly, # you can't tell Mypy that args should always begin with a int, end # with a float, and everything in between should be of a particular # type T. @no_type_check def DELAY(*args) -> Union[DelayFrames, DelayQubits]: """ Produce a DELAY instruction. Note: There are two variants of DELAY. One applies to specific frames on some qubit, e.g. `DELAY 0 "rf" "ff" 1.0` delays the `"rf"` and `"ff"` frames on 0. It is also possible to delay all frames on some qubits, e.g. `DELAY 0 1 2 1.0`. :param args: A list of delay targets, ending with a duration. :returns: A DelayFrames or DelayQubits instance. """ if len(args) < 2: raise ValueError( "Expected DELAY(t1,...,tn, duration). In particular, there " "must be at least one target, as well as a duration." ) targets, duration = args[:-1], args[-1] if not isinstance(duration, (Expression, Real)): raise TypeError("The last argument of DELAY must be a real or parametric duration.") if all(isinstance(t, Frame) for t in targets): return DelayFrames(targets, duration) elif all(isinstance(t, (int, Qubit, FormalArgument)) for t in targets): targets = [Qubit(t) if isinstance(t, int) else t for t in targets] return DelayQubits(targets, duration) else: raise TypeError( "DELAY targets must be either (i) a list of frames, or " "(ii) a list of qubits / formal arguments. " f"Got {args}." ) def FENCE(*qubits: Union[int, Qubit, FormalArgument]) -> Union[FenceAll, Fence]: """ Produce a FENCE instruction. Note: If no qubits are specified, then this is interpreted as a global FENCE. :params qubits: A list of qubits or formal arguments. :returns: A Fence or FenceAll instance. """ if qubits: return Fence([Qubit(t) if isinstance(t, int) else t for t in qubits]) else: return FenceAll() QUANTUM_GATES: Mapping[str, Callable[..., Gate]] = { "I": I, "X": X, "Y": Y, "Z": Z, "H": H, "S": S, "T": T, "PHASE": PHASE, "RX": RX, "RY": RY, "RZ": RZ, "CZ": CZ, "CNOT": CNOT, "CCNOT": CCNOT, "CPHASE00": CPHASE00, "CPHASE01": CPHASE01, "CPHASE10": CPHASE10, "CPHASE": CPHASE, "SWAP": SWAP, "CSWAP": CSWAP, "ISWAP": ISWAP, "PSWAP": PSWAP, "XY": XY, } """ Dictionary of quantum gate functions keyed by gate names. """ STANDARD_GATES = QUANTUM_GATES """ Alias for the above dictionary of quantum gates. """ QUILT_INSTRUCTIONS: Mapping[str, Callable[..., AbstractInstruction]] = { "PULSE": PULSE, "SET-FREQUENCY": SET_FREQUENCY, "SHIFT-FREQUENCY": SHIFT_FREQUENCY, "SET-PHASE": SET_PHASE, "SHIFT-PHASE": SHIFT_PHASE, "SWAP-PHASE": SWAP_PHASE, "SET-SCALE": SET_SCALE, "CAPTURE": CAPTURE, "RAW-CAPTURE": RAW_CAPTURE, "DELAY": DELAY, "FENCE": FENCE, } """ Dictionary of Quil-T AST construction functions keyed by instruction name. """ STANDARD_INSTRUCTIONS: Mapping[str, Union[AbstractInstruction, Callable[..., AbstractInstruction]]] = { "WAIT": WAIT, "RESET": RESET, "DECLARE": DECLARE, "NOP": NOP, "HALT": HALT, "MEASURE": MEASURE, "NOT": NOT, "AND": AND, "MOVE": MOVE, "EXCHANGE": EXCHANGE, "IOR": IOR, "XOR": XOR, "NEG": NEG, "ADD": ADD, "SUB": SUB, "MUL": MUL, "DIV": DIV, "EQ": EQ, "GT": GT, "GE": GE, "LE": LE, "LT": LT, "LOAD": LOAD, "STORE": STORE, "CONVERT": CONVERT, } """ Dictionary of standard instruction functions keyed by instruction names. """ __all__ = ( list(QUANTUM_GATES.keys()) + list(fn.__name__ for fn in QUILT_INSTRUCTIONS.values()) + list(STANDARD_INSTRUCTIONS.keys()) + ["Gate", "QUANTUM_GATES", "STANDARD_GATES", "QUILT_INSTRUCTIONS", "STANDARD_INSTRUCTIONS"] )
tests/terraform/checks/resource/aws/test_AthenaWorkgroupConfiguration.py
antonblr/checkov
4,013
11069525
import unittest from checkov.common.models.enums import CheckResult from checkov.terraform.checks.resource.aws.AthenaWorkgroupConfiguration import check class TestAthenaWorkgroupConfiguration(unittest.TestCase): def test_failure(self): resource_conf = { "name": "Example", "configuration": [ { "enforce_workgroup_configuration": False, } ], } scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_success(self): resource_conf = { "name": "Example", } scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) def test_success_full(self): resource_conf = { "name": "Example", "configuration": [ { "enforce_workgroup_configuration": True, } ], } scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) if __name__ == '__main__': unittest.main()
custom/m4change/reports/anc_hmis_report.py
dimagilg/commcare-hq
471
11069531
<reponame>dimagilg/commcare-hq<gh_stars>100-1000 from django.utils.translation import ugettext as _ from corehq.apps.locations.permissions import location_safe from corehq.apps.reports.datatables import DataTablesHeader, DataTablesColumn, NumericColumn from corehq.apps.reports.filters.select import MonthFilter, YearFilter from corehq.apps.reports.standard import MonthYearMixin from corehq.apps.reports.standard.cases.basic import CaseListReport from custom.common.filters import RestrictedAsyncLocationFilter from custom.m4change.reports import validate_report_parameters, get_location_hierarchy_by_id from custom.m4change.reports.reports import M4ChangeReport from custom.m4change.reports.sql_data import AncHmisCaseSqlData def _get_row(row_data, form_data, key): data = form_data.get(key) rows = dict([(row_key, data.get(row_key, 0)) for row_key in row_data]) for key in rows: if rows.get(key) == None: rows[key] = 0 rows["antenatal_first_visit_total"] = rows.get("attendance_before_20_weeks_total") \ + rows.get("attendance_after_20_weeks_total") return rows @location_safe class AncHmisReport(MonthYearMixin, CaseListReport, M4ChangeReport): ajax_pagination = False asynchronous = True exportable = True emailable = False name = "Facility ANC HMIS Report" slug = "facility_anc_hmis_report" default_rows = 25 base_template = "m4change/report.html" report_template_path = "m4change/anc_hmis_report_content.html" fields = [ RestrictedAsyncLocationFilter, MonthFilter, YearFilter ] @classmethod def get_report_data(cls, config): validate_report_parameters(["domain", "location_id", "datespan"], config) domain = config["domain"] location_id = config["location_id"] user = config["user"] sql_data = AncHmisCaseSqlData(domain=domain, datespan=config["datespan"]).data locations = get_location_hierarchy_by_id(location_id, domain, user) row_data = AncHmisReport.get_initial_row_data() for location_id in locations: key = (domain, location_id) if key in sql_data: report_rows = _get_row(row_data, sql_data, key) for key in report_rows: row_data.get(key)["value"] += report_rows.get(key) return sorted([(key, row_data[key]) for key in row_data], key=lambda t: t[1].get("hmis_code")) @classmethod def get_initial_row_data(cls): return { "attendance_total": { "hmis_code": 3, "label": _("Antenatal Attendance - Total"), "value": 0 }, "attendance_before_20_weeks_total": { "hmis_code": 4, "label": _("Antenatal first Visit before 20wks"), "value": 0 }, "attendance_after_20_weeks_total": { "hmis_code": 5, "label": _("Antenatal first Visit after 20wks"), "value": 0 }, "antenatal_first_visit_total": { "hmis_code": 6, "label": _("Antenatal first visit - total"), "value": 0 }, "attendance_gte_4_visits_total": { "hmis_code": 7, "label": _("Pregnant women that attend antenatal clinic for 4th visit during the month"), "value": 0 }, 'anc_syphilis_test_done_total': { "hmis_code": 8, "label": _("ANC syphilis test done"), "value": 0 }, 'anc_syphilis_test_positive_total': { "hmis_code": 9, "label": _("ANC syphilis test positive"), "value": 0 }, 'anc_syphilis_case_treated_total': { "hmis_code": 10, "label": _("ANC syphilis case treated"), "value": 0 }, 'pregnant_mothers_receiving_ipt1_total': { "hmis_code": 11, "label": _("Pregnant women who receive malaria IPT1"), "value": 0 }, 'pregnant_mothers_receiving_ipt2_total': { "hmis_code": 12, "label": _("Pregnant women who receive malaria IPT2"), "value": 0 }, 'pregnant_mothers_receiving_llin_total': { "hmis_code": 13, "label": _("Pregnant women who receive malaria LLIN"), "value": 0 }, 'pregnant_mothers_receiving_ifa_total': { "hmis_code": 14, "label": _("Pregnant women who receive malaria Haematinics"), "value": 0 }, 'postnatal_attendance_total': { "hmis_code": 15, "label": _("Postnatal Attendance - Total"), "value": 0 }, 'postnatal_clinic_visit_lte_1_day_total': { "hmis_code": 16, "label": _("Postnatal clinic visit within 1 day of delivery"), "value": 0 }, 'postnatal_clinic_visit_lte_3_days_total': { "hmis_code": 17, "label": _("Postnatal clinic visit within 3 days of delivery"), "value": 0 }, 'postnatal_clinic_visit_gte_7_days_total': { "hmis_code": 18, "label": _("Postnatal clinic visit >= 7 days of delivery"), "value": 0 } } @property def headers(self): headers = DataTablesHeader(NumericColumn(_("HMIS code")), DataTablesColumn(_("Data Point")), NumericColumn(_("Total"))) return headers @property def rows(self): row_data = AncHmisReport.get_report_data({ "location_id": self.request.GET.get("location_id", None), "datespan": self.datespan, "domain": str(self.domain), "user": self.request.couch_user }) for row in row_data: yield [ self.table_cell(row[1].get("hmis_code")), self.table_cell(row[1].get("label")), self.table_cell(row[1].get("value")) ] @property def rendered_report_title(self): return self.name
endgame/exposure_via_resource_policies/iam.py
vikrum/endgame
224
11069533
import logging import json import boto3 import botocore from abc import ABC from botocore.exceptions import ClientError from endgame.shared import constants from endgame.exposure_via_resource_policies.common import ResourceType, ResourceTypes from endgame.shared.policy_document import PolicyDocument from endgame.shared.list_resources_response import ListResourcesResponse from endgame.shared.response_message import ResponseMessage from endgame.shared.response_message import ResponseGetRbp logger = logging.getLogger(__name__) class IAMRole(ResourceType, ABC): def __init__(self, name: str, region: str, client: boto3.Session.client, current_account_id: str): self.service = "iam" self.resource_type = "role" self.region = region self.current_account_id = current_account_id self.name = name # Override parent values due to IAM being special # Don't include the "Resource" block in the policy, or else the policy update will fail # Instead of iam:*, we want to give sts:AssumeRole self.include_resource_block = False self.override_action = "sts:AssumeRole" super().__init__(name, self.resource_type, self.service, region, client, current_account_id, include_resource_block=self.include_resource_block, override_action=self.override_action) @property def arn(self) -> str: return f"arn:aws:{self.service}::{self.current_account_id}:{self.resource_type}/{self.name}" def _get_rbp(self) -> ResponseGetRbp: """Get the resource based policy for this resource and store it""" logger.debug("Getting resource policy for %s" % self.arn) try: response = self.client.get_role(RoleName=self.name) policy = response.get("Role").get("AssumeRolePolicyDocument") success = True except self.client.exceptions.NoSuchEntityException: logger.critical(f"There is no resource with the name {self.name}") policy = constants.get_empty_policy() success = False except botocore.exceptions.ClientError: # When there is no policy, let's return an empty policy to avoid breaking things policy = constants.get_empty_policy() success = False policy_document = PolicyDocument( policy=policy, service=self.service, override_action=self.override_action, include_resource_block=self.include_resource_block, override_resource_block=self.override_resource_block, override_account_id_instead_of_principal=self.override_account_id_instead_of_principal, ) response = ResponseGetRbp(policy_document=policy_document, success=success) return response def set_rbp(self, evil_policy: dict) -> ResponseMessage: logger.debug("Setting resource policy for %s" % self.arn) new_policy = json.dumps(evil_policy) try: self.client.update_assume_role_policy(RoleName=self.name, PolicyDocument=new_policy) message = "success" success = True except botocore.exceptions.ClientError as error: message = str(error) logger.critical(error) success = False response_message = ResponseMessage(message=message, operation="set_rbp", success=success, evil_principal="", victim_resource_arn=self.arn, original_policy=self.original_policy, updated_policy=evil_policy, resource_type=self.resource_type, resource_name=self.name, service=self.service) return response_message class IAMRoles(ResourceTypes): def __init__(self, client: boto3.Session.client, current_account_id: str, region: str): super().__init__(client, current_account_id, region) self.service = "iam" self.resource_type = "role" @property def resources(self) -> [ListResourcesResponse]: """Get a list of these resources""" resources = [] paginator = self.client.get_paginator("list_roles") page_iterator = paginator.paginate() for page in page_iterator: roles = page["Roles"] for role in roles: path = role.get("Path") arn = role.get("Arn") name = role.get("RoleName") # Special case: Ignore Service Linked Roles if path.startswith("/aws-service-role/"): # if path == "/service-role/" or path.startswith("/aws-service-role/"): continue list_resources_response = ListResourcesResponse( service=self.service, account_id=self.current_account_id, arn=arn, region=self.region, resource_type=self.resource_type, name=name) resources.append(list_resources_response) return resources
djangox/lib/python3.8/site-packages/oauthlib/oauth2/rfc6749/endpoints/__init__.py
DemarcusL/django_wiki_lab
954
11069545
<reponame>DemarcusL/django_wiki_lab """ oauthlib.oauth2.rfc6749 ~~~~~~~~~~~~~~~~~~~~~~~ This module is an implementation of various logic needed for consuming and providing OAuth 2.0 RFC6749. """ from .authorization import AuthorizationEndpoint from .introspect import IntrospectEndpoint from .metadata import MetadataEndpoint from .pre_configured import ( BackendApplicationServer, LegacyApplicationServer, MobileApplicationServer, Server, WebApplicationServer, ) from .resource import ResourceEndpoint from .revocation import RevocationEndpoint from .token import TokenEndpoint
setup.py
gmossessian/DAWG-1
153
11069562
#! /usr/bin/env python import glob from setuptools import setup, Extension setup( name="DAWG", version="0.8.0", description="Fast and memory efficient DAWG (DAFSA) for Python", long_description=open('README.rst').read() + '\n\n' + open('CHANGES.rst').read(), author='<NAME>', author_email='<EMAIL>', url='https://github.com/pytries/DAWG/', ext_modules=[ Extension( "dawg", sources=glob.glob('src/*.cpp') + glob.glob('lib/b64/*.c'), include_dirs=['lib'], language="c++", ) ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Programming Language :: Cython', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Text Processing :: Linguistic', ], )
src/benchmarks/gc/src/commonlib/document.py
BruceForstall/performance
547
11069629
<reponame>BruceForstall/performance # Licensed to the .NET Foundation under one or more agreements. # The .NET Foundation licenses this file to you under the MIT license. # See the LICENSE file in the project root for more information. from collections.abc import Sequence as ABCSequence from dataclasses import dataclass from enum import Enum from io import StringIO from math import ceil, floor from os import get_terminal_size, terminal_size from pathlib import Path from typing import Callable, cast, Iterable, Mapping, Optional, List, Sequence, Tuple, Union from psutil import Process from termcolor import colored from xlsxwriter import Workbook from yattag import Doc, indent as indent_xml from yattag.simpledoc import SimpleDoc from .collection_util import ( empty_sequence, index_of_max, is_empty, try_index, with_is_last, zip_check, zip_check_3, ) from .option import map_option, optional_to_iter, option_or from .type_utils import argument, check_cast, with_slots from .util import float_to_str, get_command_line, os_is_windows Tag = SimpleDoc.Tag # Parameters: text, bold, color _ColorType = Callable[[str, bool, Optional[str]], str] class Align(Enum): left = 0 right = 1 center = 2 CellValueSingle = Union[str, float, int, None] CellValue = Union[CellValueSingle, Sequence[CellValueSingle]] @with_slots @dataclass(frozen=True) class Cell: value: CellValue = None align: Align = Align.right color: Optional[str] = None bold: bool = False @with_slots @dataclass(frozen=True) class HeaderGroup: text: str size_cells: int def __post_init__(self) -> None: assert self.size_cells > 0 Row = Sequence[Cell] @with_slots @dataclass(frozen=True) class Table: name: Optional[str] = None text: Optional[str] = None headers: Optional[Sequence[str]] = None rows: Sequence[Row] = () header_groups: Optional[Sequence[HeaderGroup]] = None @property def n_columns(self) -> int: if self.headers is not None: return len(self.headers) elif not is_empty(self.rows): return len(self.rows[0]) else: return 0 def __post_init__(self) -> None: n_columns = self.n_columns assert self.headers is None or len(self.headers) == n_columns assert ( self.header_groups is None or sum(x.size_cells for x in self.header_groups) == n_columns ) for row in self.rows: assert ( len(row) == n_columns ), f"Row has {len(row)} entries but table has {n_columns} column headers" @with_slots @dataclass(frozen=True) class Section: name: Optional[str] = None text: Optional[str] = None tables: Sequence[Table] = () @property def n_columns(self) -> int: return 0 if is_empty(self.tables) else self.tables[0].n_columns def __post_init__(self) -> None: for table in self.tables: assert table.n_columns == self.n_columns @with_slots @dataclass(frozen=True) class Document: comment: Optional[str] = None sections: Sequence[Section] = empty_sequence() def single_table_document(table: Table) -> Document: return Document(sections=(Section(tables=(table,)),)) def _pad(width: int, s: str, align: Align) -> str: assert len(s) <= width, ( f"Line '{s}' (len {len(s)}) is bigger than allowed width {width}.\n" + "(This is a bug in document.py)" ) pad = width - len(s) switch: Mapping[Align, Callable[[], str]] = { Align.left: lambda: s + " " * pad, Align.right: lambda: " " * pad + s, Align.center: lambda: " " * floor(pad / 2) + s + " " * ceil(pad / 2), } return switch[align]() _SUPPORTED_TERMINALS = {"ConEmuC64.exe", "WindowsTerminal.exe"} def _shell_supports_color() -> bool: if os_is_windows(): py = _get_py_process() parent = py.parent() if parent.name() in ("Code.exe", "jupyter-notebook.exe"): return True else: assert parent.name() in ("powershell.exe", "cmd.exe", "wsl.exe") shell = parent.parent() return shell.name() in _SUPPORTED_TERMINALS else: return True def _get_py_process() -> Process: p = Process() assert p.name() == "python.exe" par = p.parent() # In jupyter notebook in code, "python.exe" has "python.exe" as a parent, then "Code.exe" return par if par.name() in ("py.exe", "python.exe") else p class SpecialOutputWidth(Enum): inf = 0 OutputWidth = Union[int, SpecialOutputWidth] def print_document( doc: Document, max_width: Optional[OutputWidth] = None, table_indent: Optional[int] = None, color: Optional[bool] = False, ) -> None: # Add an additional newline in front # Because jupyter notebook likes removing leading spaces (messing up indent), # but wont' remove a leading newline. text = "\n" + _render_to_text( doc=doc, color=yes_color if option_or(color, _shell_supports_color()) else no_color, # Need a cast due to https://github.com/python/mypy/issues/6751 max_width=cast(OutputWidth, option_or(max_width, _get_terminal_width())), op_table_indent=option_or(table_indent, 2), ) # Avoid https://bugs.python.org/issue37871 for line in text.split("\n"): print(line) def _get_terminal_width() -> OutputWidth: try: term_size: Optional[terminal_size] = get_terminal_size() except OSError: term_size = None if term_size is None: return SpecialOutputWidth.inf else: # PowerShell wraps to a blank line if you fill in exactly the terminal width. # So reduce by 1. res = term_size.columns - 1 assert 20 < res < 2000 return res def yes_color(text: str, bold: bool, color: Optional[str]) -> str: return colored(text, color, attrs=("bold",) if bold else ()) def no_color(text: str, _bold: bool, _color: Optional[str]) -> str: return text def _render_to_plaintext( doc: Document, max_width: Optional[OutputWidth], table_indent: Optional[int] ) -> str: return _render_to_text( doc, no_color, # Need a cast due to https://github.com/python/mypy/issues/6751 max_width=cast(OutputWidth, option_or(max_width, SpecialOutputWidth.inf)), op_table_indent=table_indent, ) def _render_to_excel(doc: Document, file_name: Path) -> None: """WARN: This is untested.""" workbook = Workbook(str(file_name)) worksheet = workbook.add_worksheet() row_index = 0 def next_row() -> int: nonlocal row_index res = row_index row_index += 1 return res if doc.comment is not None: raise Exception("TODO: render doc comment to excel") for section in doc.sections: next_row() if section.name is not None: worksheet.write(next_row(), 0, section.name) if section.text is not None: raise Exception("TODO: render section text to excel") next_row() for table in section.tables: if table.name is not None: worksheet.write(next_row(), 0, table.name) if table.text is not None: raise Exception("TODO: render table text to excel") assert table.header_groups is None if table.headers is not None: for i, header in enumerate(table.headers): worksheet.write(row_index, i, header) next_row() for row in table.rows: for i, value in enumerate(row): if value.color is not None or value.bold is not None: raise Exception("TODO: render to excel with bold or colored cells") worksheet.write(row_index, i, "" if value.value is None else value.value) workbook.close() def _render_to_text( doc: Document, color: _ColorType, max_width: OutputWidth, op_table_indent: Optional[int] ) -> str: table_indent = option_or(op_table_indent, 2) out = StringIO() def write(s: str) -> None: out.write(s) def nl(n: int = 1) -> None: write("\n" * n) if doc.comment is not None: write(doc.comment) nl(2) for section in doc.sections: cell_sizes = _get_cell_sizes_for_section( section, max_table_width=max_width if isinstance(max_width, SpecialOutputWidth) else max_width - table_indent, ) if section.name is not None: _write_in_box(write, section.name, total_width=_sum_cell_sizes(cell_sizes)) nl(2) if section.text is not None: write(section.text) nl(2) for table in section.tables: _render_table_to_text(table, write, color, cell_sizes, table_indent) nl(2) nl() return out.getvalue() Write = Callable[[str], None] _VERTICAL_BAR = "│" _HORIZONTAL_BAR = "─" _HORIZONTAL_AND_VERTICAL_BAR = "┼" _TOP_LEFT_CORNER = "┌" _TOP_RIGHT_CORNER = "┐" _BOTTOM_LEFT_CORNER = "└" _BOTTOM_RIGHT_CORNER = "┘" def _write_in_box(write: Write, s: str, total_width: int) -> None: width = _max_line_len(s) + 4 pad = " " * ((total_width - width) // 2) if width < total_width else "" write(f"{pad}{_TOP_LEFT_CORNER}{_HORIZONTAL_BAR * (width - 2)}{_TOP_RIGHT_CORNER}\n") for line in _lines(s): write(f"{pad}{_VERTICAL_BAR} {_pad(width - 4, line, Align.left)} {_VERTICAL_BAR}\n") write(f"{pad}{_BOTTOM_LEFT_CORNER}{_HORIZONTAL_BAR * (width - 2)}{_BOTTOM_RIGHT_CORNER}\n") _MIN_CELL_SIZE = 3 _SPACE_BETWEEN_COLUMNS = 3 assert _SPACE_BETWEEN_COLUMNS % 2 == 1 _HALF_SPACE_BETWEEN_COLUMNS = 1 assert _HALF_SPACE_BETWEEN_COLUMNS * 2 + 1 == _SPACE_BETWEEN_COLUMNS _HALF_SPACE_BETWEEN_COLUMNS_STR = " " * _HALF_SPACE_BETWEEN_COLUMNS _BETWEEN_COLUMNS_STR = ( f"{_HALF_SPACE_BETWEEN_COLUMNS_STR}{_VERTICAL_BAR}{_HALF_SPACE_BETWEEN_COLUMNS_STR}" ) _HALF_HORIZ = _HORIZONTAL_BAR * _HALF_SPACE_BETWEEN_COLUMNS _HORIZ_BETWEEN_COLUMNS_STR = f"{_HALF_HORIZ}{_HORIZONTAL_AND_VERTICAL_BAR}{_HALF_HORIZ}" # WARN: Cell size is the *interior* size of each cell, does not include _SPACE_BETWEEN_COLUMNS # Each table in a section must have the same number of columns, so this is for the whole section. def _get_cell_sizes_for_section(section: Section, max_table_width: OutputWidth) -> Sequence[int]: assert isinstance(max_table_width, SpecialOutputWidth) or max_table_width > _sum_cell_sizes( _MIN_CELL_SIZE for _ in range(section.n_columns) ), f"Can't squeeze a {section.n_columns}-column table with a width of only {max_table_width}" cell_sizes = _get_cell_sizes_ignoring_max_width(section) while ( not isinstance(max_table_width, SpecialOutputWidth) and _sum_cell_sizes(cell_sizes) > max_table_width ): # Find the largest cell size and reduce it # TODO: We should actually be trying to minimize the number of line breaks # we'll have to insert to fit text into the smaller width. i = index_of_max(cell_sizes) assert cell_sizes[i] > _SPACE_BETWEEN_COLUMNS cell_sizes[i] -= 1 return cell_sizes def _get_cell_sizes_ignoring_max_width(section: Section) -> List[int]: cell_sizes = [0 for _ in range(section.n_columns)] for table in section.tables: for i in range(table.n_columns): cell_sizes[i] = max( cell_sizes[i], 0 if table.headers is None else len(table.headers[i]), *(_max_line_len(_to_str(r[i].value)) for r in table.rows), ) # header_groups will expand the last column so the header will fit if table.header_groups is not None: i = 0 for hg in table.header_groups: end = i + hg.size_cells cur = _sum_cell_sizes([cell_sizes[j] for j in range(i, end)]) diff = _max_line_len(hg.text) - cur if diff > 0: cell_sizes[end - 1] += diff i = end return cell_sizes def _sum_cell_sizes(cell_sizes: Iterable[int]) -> int: total, count = _sum_and_count(cell_sizes) return total + (_SPACE_BETWEEN_COLUMNS * (count - 1)) def _sum_and_count(i: Iterable[int]) -> Tuple[int, int]: total = 0 count = 0 for x in i: total += x count += 1 return total, count def _render_table_to_text( table: Table, write: Write, color: _ColorType, cell_sizes: Sequence[int], indent: int ) -> None: if table.name is not None: write(table.name + "\n\n") if table.text is not None: write(table.text + "\n\n") if table.header_groups is not None: _write_header_groups(table.header_groups, write, cell_sizes, indent) if table.headers is not None: _write_cells([Cell(h) for h in table.headers], write, no_color, cell_sizes, indent) _write_between_rows(write, cell_sizes, indent) for is_last, row in with_is_last(table.rows): _write_cells(row, write, color, cell_sizes, indent) if not is_last: _write_between_rows(write, cell_sizes, indent) def _write_header_groups( header_groups: Sequence[HeaderGroup], write: Write, cell_sizes: Sequence[int], indent: int ) -> None: group_sizes = _get_header_group_sizes(cell_sizes, [group.size_cells for group in header_groups]) _write_cells( [Cell(group.text) for group in header_groups], write, no_color, group_sizes, indent ) def _get_header_group_sizes( cell_sizes: Sequence[int], group_sizes_in_cells: Sequence[int] ) -> Sequence[int]: cell_i = 0 def group_size_columns(group_size_cells: int) -> int: nonlocal cell_i old_cell_i = cell_i cell_i = cell_i + group_size_cells return _sum_cell_sizes(cell_sizes[old_cell_i:cell_i]) group_cell_sizes = [ group_size_columns(group_size_cells) for group_size_cells in group_sizes_in_cells ] assert cell_i == len(cell_sizes) assert _sum_cell_sizes(cell_sizes) == _sum_cell_sizes(group_cell_sizes) return group_cell_sizes def _write_cells( cells: Sequence[Cell], write: Write, color: _ColorType, cell_sizes: Sequence[int], indent: int ) -> None: cell_lines = [ _split_text_to_lines(_to_str(cell.value), cell_size) for cell_size, cell in zip_check(cell_sizes, cells) ] n_lines = max(len(lines) for lines in cell_lines) for line_index in range(n_lines): _write_indent(write, indent) for is_last, (cell_size, cell, lines) in with_is_last( zip_check_3(cell_sizes, cells, cell_lines) ): line_text = lines[line_index] if line_index < len(lines) else "" assert len(line_text) <= cell_size write(color(_pad(cell_size, line_text, cell.align), cell.bold, cell.color)) if not is_last: write(_BETWEEN_COLUMNS_STR) write("\n") def _write_between_rows(write: Write, cell_sizes: Sequence[int], indent: int) -> None: _write_indent(write, indent) for is_last, i in with_is_last(range(len(cell_sizes))): write(_HORIZONTAL_BAR * cell_sizes[i]) if not is_last: write(_HORIZ_BETWEEN_COLUMNS_STR) write("\n") def _write_indent(write: Write, indent: int) -> None: write(" " * indent) def _render_to_html(document: Document) -> str: doc = Doc() tag = doc.tag text = doc.text line = doc.line with tag("html"): with tag("head"): with tag("style"): text( """ table { border-collapse: collapse; } tr, td, th { border: solid; } tr { border-width: 1px 0; } td, th { border-width: 0 1px; } div { margin: 1em; } """ ) with tag("body"): if document.comment is not None: text(document.comment) for section in document.sections: with tag("div"): if section.name is not None: line("h1", section.name) if section.text is not None: text(section.text) for table in section.tables: _render_table_to_html(doc, table) return indent_xml(doc.getvalue(), indent_text=True) def _render_table_to_html(doc: Doc, table: Table) -> None: tag = doc.tag line = doc.line text = doc.text if table.name is not None: line("h2", table.name) if table.text is not None: raise Exception("TODO") with tag("table", style="width: 100%"): # TODO: use css if table.header_groups is not None: with tag("tr"): for hg in table.header_groups: line("th", hg.text, colspan=hg.size_cells) if table.headers is not None: with tag("tr"): for header in table.headers: line("th", header) for row in table.rows: with tag("tr"): for cell in row: cell_text = _to_str(cell.value) with tag("td"): style = ";".join( ( *optional_to_iter(map_option(cell.color, lambda c: f"color:{c}")), *optional_to_iter("bold" if cell.bold else None), ) ) if is_empty(style): text(cell_text) else: with tag("span", style=style): text(cell_text) def _to_str(v: CellValue) -> str: if isinstance(v, ABCSequence) and not isinstance(v, str): return "\n".join(_to_str_single(x) for x in v) else: return _to_str_single(v) def _to_str_single(u: CellValueSingle) -> str: if u is None: return "" elif isinstance(u, str): return u elif isinstance(u, int): return str(u) else: return float_to_str(u) def _split_text_to_lines(s: str, width: int) -> Sequence[str]: return tuple(_iter_lines_of_split_text(s, width)) def _iter_lines_of_split_text(s: str, width: int) -> Iterable[str]: assert width > 0 while not is_empty(s): first_line = s[:width] nl = try_index(first_line, "\n") if nl is None: yield first_line s = s[width:] else: yield first_line[:nl] s = s[nl + 1 :] def _max_line_len(s: str) -> int: return max(len(line) for line in _lines(s)) def _lines(s: str) -> Sequence[str]: return s.split("\n") @with_slots @dataclass(frozen=True) class OutputOptions: width: Optional[OutputWidth] = None # Applies only to text output table_indent: Optional[int] = None html: Optional[Path] = None txt: Optional[Path] = None excel: Optional[Path] = None def __post_init__(self) -> None: check_cast(Optional[Path], self.html) check_cast(Optional[Path], self.txt) check_cast(Optional[Path], self.excel) def any_file_output(self) -> bool: return self.html is not None or self.txt is not None or self.excel is not None EMPTY_OUTPUT_OPTIONS = OutputOptions() @with_slots @dataclass(frozen=True) class DocOutputArgs: output_width: Optional[OutputWidth] = argument( default=None, doc=""" Maximum width (in columns) of console or text file output. Default is the current terminal size. """, ) table_indent: Optional[int] = argument(default=None, doc="Indent tables by this many spaces.") txt: Optional[Path] = argument(default=None, doc="Output to a '.txt' file") html: Optional[Path] = argument(default=None, doc="Output to a '.html' file") # Hidden because render_to_excel is incomplete xlsx: Optional[Path] = argument(default=None, hidden=True, doc="Output to a '.xlsx' file") def output_options_from_args(args: DocOutputArgs) -> OutputOptions: return OutputOptions( width=args.output_width, table_indent=args.table_indent, html=args.html, txt=args.txt, excel=args.xlsx, ) def handle_doc(doc: Document, output: OutputOptions = EMPTY_OUTPUT_OPTIONS) -> None: if output.html: output.html.write_text(_render_to_html(doc)) if output.txt: doc_txt = _render_to_plaintext( doc, max_width=output.width, table_indent=output.table_indent ) txt = f"{get_command_line()}\n\n{doc_txt}" output.txt.write_text(txt, encoding="utf-8") if output.excel: _render_to_excel(doc, output.excel) if not output.any_file_output(): print_document(doc, max_width=output.width, table_indent=output.table_indent, color=False)
tests/constants.py
nhutnamhcmus/pykeen
750
11069682
<filename>tests/constants.py<gh_stars>100-1000 # -*- coding: utf-8 -*- """Constants for PyKEEN testing.""" import pathlib __all__ = [ "HERE", "RESOURCES", "EPSILON", ] HERE = pathlib.Path(__file__).resolve().parent RESOURCES = HERE.joinpath("resources") EPSILON = 1.0e-07
python/cuml/test/dask/test_label_encoder.py
siddheshmhatre/cuml
2,743
11069699
# Copyright (c) 2020-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cuml from cuml.dask.preprocessing.LabelEncoder import LabelEncoder import cudf import numpy as np import dask_cudf import pytest from cuml.common.exceptions import NotFittedError import cupy as cp def _arr_to_similarity_mat(arr): arr = arr.reshape(1, -1) return np.pad(arr, [(arr.shape[1] - 1, 0), (0, 0)], "edge") @pytest.mark.parametrize("length", [10, 1000]) @pytest.mark.parametrize("cardinality", [5, 10, 50]) def test_labelencoder_fit_transform(length, cardinality, client): """ Try encoding the entire df """ tmp = cudf.Series(np.random.choice(cardinality, (length,))) df = dask_cudf.from_cudf(tmp, npartitions=len(client.has_what())) encoded = cuml.dask.preprocessing.LabelEncoder().fit_transform(df) df_arr = df.compute().to_numpy() df_arr = _arr_to_similarity_mat(df_arr) encoder_arr = cp.asnumpy(encoded.compute().to_numpy()) encoded_arr = _arr_to_similarity_mat(encoder_arr) assert ((encoded_arr == encoded_arr.T) == (df_arr == df_arr.T)).all() @pytest.mark.parametrize("length", [10, 100, 1000]) @pytest.mark.parametrize("cardinality", [5, 10, 50]) def test_labelencoder_transform(length, cardinality, client): """ Try fitting and then encoding a small subset of the df """ tmp = cudf.Series(np.random.choice(cardinality, (length,))) df = dask_cudf.from_cudf(tmp, npartitions=len(client.has_what())) le = LabelEncoder().fit(df) assert le._fitted encoded = le.transform(df) df_arr = df.compute().to_numpy() df_arr = _arr_to_similarity_mat(df_arr) encoder_arr = cp.asnumpy(encoded.compute().to_numpy()) encoded_arr = _arr_to_similarity_mat(encoder_arr) assert ( (encoded_arr == encoded_arr.T) == (df_arr == df_arr.T) ).all() def test_labelencoder_unseen(client): """ Try encoding a value that was not present during fitting """ df = dask_cudf.from_cudf(cudf.Series(np.random.choice(10, (10,))), npartitions=len(client.has_what())) le = LabelEncoder().fit(df) assert le._fitted with pytest.raises(KeyError): tmp = dask_cudf.from_cudf(cudf.Series([-100, -120]), npartitions=len(client.has_what())) le.transform(tmp).compute() def test_labelencoder_unfitted(client): """ Try calling `.transform()` without fitting first """ df = dask_cudf.from_cudf(cudf.Series(np.random.choice(10, (10,))), npartitions=len(client.has_what())) le = LabelEncoder() with pytest.raises(NotFittedError): le.transform(df).compute() @pytest.mark.parametrize("use_fit_transform", [False, True]) @pytest.mark.parametrize( "orig_label, ord_label, expected_reverted, bad_ord_label", [(cudf.Series(['a', 'b', 'c']), cudf.Series([2, 1, 2, 0]), cudf.Series(['c', 'b', 'c', 'a']), cudf.Series([-1, 1, 2, 0])), (cudf.Series(['Tokyo', 'Paris', 'Austin']), cudf.Series([0, 2, 0]), cudf.Series(['Austin', 'Tokyo', 'Austin']), cudf.Series([0, 1, 2, 3])), (cudf.Series(['a', 'b', 'c1']), cudf.Series([2, 1]), cudf.Series(['c1', 'b']), cudf.Series([0, 1, 2, 3])), (cudf.Series(['1.09', '0.09', '.09', '09']), cudf.Series([0, 1, 2, 3]), cudf.Series(['.09', '0.09', '09', '1.09']), cudf.Series([0, 1, 2, 3, 4]))]) def test_inverse_transform(orig_label, ord_label, expected_reverted, bad_ord_label, use_fit_transform, client): n_workers = len(client.has_what()) orig_label = dask_cudf.from_cudf(orig_label, npartitions=n_workers) ord_label = dask_cudf.from_cudf(ord_label, npartitions=n_workers) expected_reverted = dask_cudf.from_cudf(expected_reverted, npartitions=n_workers) bad_ord_label = dask_cudf.from_cudf(bad_ord_label, npartitions=n_workers) # prepare LabelEncoder le = LabelEncoder() if use_fit_transform: le.fit_transform(orig_label) else: le.fit(orig_label) assert(le._fitted is True) # test if inverse_transform is correct reverted = le.inverse_transform(ord_label) reverted = reverted.compute().reset_index(drop=True) expected_reverted = expected_reverted.compute() assert(len(reverted) == len(expected_reverted)) assert(len(reverted) == len(reverted[reverted == expected_reverted])) # test if correctly raies ValueError with pytest.raises(ValueError, match='y contains previously unseen label'): le.inverse_transform(bad_ord_label).compute() def test_unfitted_inverse_transform(client): """ Try calling `.inverse_transform()` without fitting first """ tmp = cudf.Series(np.random.choice(10, (10,))) df = dask_cudf.from_cudf(tmp, npartitions=len(client.has_what())) le = LabelEncoder() with pytest.raises(NotFittedError): le.transform(df) @pytest.mark.parametrize("empty, ord_label", [(cudf.Series([]), cudf.Series([2, 1]))]) def test_empty_input(empty, ord_label, client): # prepare LabelEncoder n_workers = len(client.has_what()) empty = dask_cudf.from_cudf(empty, npartitions=n_workers) ord_label = dask_cudf.from_cudf(ord_label, npartitions=n_workers) le = LabelEncoder() le.fit(empty) assert(le._fitted is True) # test if correctly raies ValueError with pytest.raises(ValueError, match='y contains previously unseen label'): le.inverse_transform(ord_label).compute() # check fit_transform() le = LabelEncoder() transformed = le.fit_transform(empty).compute() assert(le._fitted is True) assert(len(transformed) == 0) def test_masked_encode(client): n_workers = len(client.has_what()) df = cudf.DataFrame({"filter_col": [1, 1, 2, 3, 1, 1, 1, 1, 6, 5], "cat_col": ['a', 'b', 'c', 'd', 'a', 'a', 'a', 'c', 'b', 'c']}) ddf = dask_cudf.from_cudf(df, npartitions=n_workers) ddf_filter = ddf[ddf["filter_col"] == 1] filter_encoded = LabelEncoder().fit_transform(ddf_filter["cat_col"]) ddf_filter = ddf_filter.assign(filter_encoded=filter_encoded.values) encoded_filter = LabelEncoder().fit_transform(ddf["cat_col"]) ddf = ddf.assign(encoded_filter=encoded_filter.values) ddf = ddf[ddf.filter_col == 1] assert(ddf.encoded_filter == ddf_filter.filter_encoded).compute().all()
third_party/bazel/cuda_supplement/cuda_supplement_configure.bzl
alibaba/BladeDISC
328
11069711
load("//bazel:common.bzl", "files_exist") _TF_CUDA_HOME = "TF_CUDA_HOME" def _create_dummy_repository(repo_ctx): repo_ctx.symlink(Label("//bazel/cuda_supplement:dummy.BUILD.tpl"), "BUILD") repo_ctx.template("build_defs.bzl", Label("//bazel/cuda_supplement:build_defs.bzl.tpl"), { "%{IF_HAS_CUBLASLT}": "False", "%{IF_HAS_CUDNN_STATIC}": "False", }) def _impl(repo_ctx): cuda_path = repo_ctx.os.environ.get(_TF_CUDA_HOME, None) if cuda_path != None: if_has_cublaslt, if_has_cudnn_static = files_exist(repo_ctx, [ cuda_path + "/lib64/libcublasLt_static.a", cuda_path + "/lib64/libcudnn_static.a", ]) repo_ctx.template("BUILD", Label("//bazel/cuda_supplement:cuda_supplement.BUILD.tpl"), {}) repo_ctx.symlink(cuda_path + "/lib64", "lib64") repo_ctx.template("build_defs.bzl", Label("//bazel/cuda_supplement:build_defs.bzl.tpl"), { "%{IF_HAS_CUBLASLT}": "True" if if_has_cublaslt else "False", "%{IF_HAS_CUDNN_STATIC}": "True" if if_has_cudnn_static else "False", }) else: _create_dummy_repository(repo_ctx) cuda_supplement_configure = repository_rule( implementation = _impl, local = True, environ = [_TF_CUDA_HOME], )
mypy_drf_plugin/lib/fullnames.py
danielroseman/djangorestframework-stubs
224
11069727
FIELD_FULLNAME = "rest_framework.fields.Field" BASE_SERIALIZER_FULLNAME = "rest_framework.serializers.BaseSerializer" SERIALIZER_FULLNAME = "rest_framework.serializers.Serializer" LIST_SERIALIZER_FULLNAME = "rest_framework.serializers.ListSerializer" MODEL_SERIALIZER_FULLNAME = "rest_framework.serializers.ModelSerializer" SERIALIZER_FIELD_MAPPING = { "django.db.models.fields.AutoField": "rest_framework.serializers.IntegerField", "django.db.models.fields.BigIntegerField": "rest_framework.serializers.IntegerField", "django.db.models.fields.BooleanField": "rest_framework.serializers.BooleanField", "django.db.models.fields.CharField": "rest_framework.serializers.CharField", "django.db.models.fields.CommaSeparatedIntegerField": "rest_framework.serializers.CharField", "django.db.models.fields.DateField": "rest_framework.serializers.DateField", "django.db.models.fields.DateTimeField": "rest_framework.serializers.DateTimeField", "django.db.models.fields.DecimalField": "rest_framework.serializers.DecimalField", "django.db.models.fields.DurationField": "rest_framework.serializers.DurationField", "django.db.models.fields.EmailField": "rest_framework.serializers.EmailField", "django.db.models.fields.Field": "rest_framework.serializers.ModelField", "django.db.models.fields.FileField": "rest_framework.serializers.FileField", "django.db.models.fields.FilePathField": "rest_framework.serializers.FilePathField", "django.db.models.fields.FloatField": "rest_framework.serializers.FloatField", "django.db.models.fields.GenericIPAddressField": "rest_framework.serializers.IPAddressField", "django.db.models.fields.ImageField": "rest_framework.serializers.ImageField", "django.db.models.fields.IntegerField": "rest_framework.serializers.IntegerField", "django.db.models.fields.NullBooleanField": "rest_framework.serializers.BooleanField", "django.db.models.fields.PositiveIntegerField": "rest_framework.serializers.IntegerField", "django.db.models.fields.PositiveSmallIntegerField": "rest_framework.serializers.IntegerField", "django.db.models.fields.SlugField": "rest_framework.serializers.SlugField", "django.db.models.fields.SmallIntegerField": "rest_framework.serializers.IntegerField", "django.db.models.fields.TextField": "rest_framework.serializers.CharField", "django.db.models.fields.TimeField": "rest_framework.serializers.TimeField", "django.db.models.fields.URLField": "rest_framework.serializers.URLField", "django.db.models.fields.UUIDField": "rest_framework.serializers.UUIDField", "django.db.models.fields.JSONField": "rest_framework.serializers.JSONField", } ID_TYPE = "builtins.object"
pandas/_config/localization.py
CJL89/pandas
28,899
11069739
<gh_stars>1000+ """ Helpers for configuring locale settings. Name `localization` is chosen to avoid overlap with builtin `locale` module. """ from contextlib import contextmanager import locale import re import subprocess from pandas._config.config import options @contextmanager def set_locale(new_locale, lc_var: int = locale.LC_ALL): """ Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if all(x is not None for x in normalized_locale): yield ".".join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc: str, lc_var: int = locale.LC_ALL) -> bool: """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """ Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ return [ loc for loc in ( locale.normalize(loc.strip()) if normalize else loc.strip() for loc in locales ) if can_set_locale(loc) ] def _default_locale_getter(): return subprocess.check_output(["locale -a"], shell=True) def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """ Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except subprocess.CalledProcessError: # Raised on (some? all?) Windows platforms because Note: "locale -a" # is not defined return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b"\n") out_locales = [] for x in raw_locales: try: out_locales.append(str(x, encoding=options.display.encoding)) except UnicodeError: # 'locale -a' is used to populated 'raw_locales' and on # Redhat 7 Linux (and maybe others) prints locale names # using windows-1252 encoding. Bug only triggered by # a few special characters and when there is an # extensive list of installed locales. out_locales.append(str(x, encoding="windows-1252")) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile(f"{prefix}.*") found = pattern.findall("\n".join(out_locales)) return _valid_locales(found, normalize)
tests/basics/frozenset_difference.py
learnforpractice/micropython-cpp
13,648
11069768
<filename>tests/basics/frozenset_difference.py try: frozenset except NameError: print("SKIP") raise SystemExit l = [1, 2, 3, 4] s = frozenset(l) outs = [s.difference(), s.difference(frozenset({1})), s.difference(frozenset({1}), [1, 2]), s.difference(frozenset({1}), {1, 2}, {2, 3})] for out in outs: print(type(out), sorted(out)) s = frozenset(l) try: print(s.difference_update({1})) except AttributeError: print("AttributeError")
examples/pybullet/gym/pybullet_envs/minitaur/robots/mini_cheetah.py
felipeek/bullet3
9,136
11069773
<reponame>felipeek/bullet3 """Pybullet simulation of a vision60 robot.""" import math import os import gin import numpy as np from pybullet_envs.minitaur.robots import laikago_motor from pybullet_envs.minitaur.robots import minitaur from pybullet_envs.minitaur.robots import robot_config NUM_MOTORS = 12 NUM_LEGS = 4 MOTOR_NAMES = [ "torso_to_abduct_fl_j", # Left front abduction (hip0). "abduct_fl_to_thigh_fl_j", # Left front hip (upper0). "thigh_fl_to_knee_fl_j", # Left front knee (lower0). "torso_to_abduct_hl_j", # Left rear abduction (hip1). "abduct_hl_to_thigh_hl_j", # Left rear hip (upper1). "thigh_hl_to_knee_hl_j", # Left rear knee (lower1). "torso_to_abduct_fr_j", # Right front abduction (hip2). "abduct_fr_to_thigh_fr_j", # Right front hip (upper2). "thigh_fr_to_knee_fr_j", # Right front knee (lower2). "torso_to_abduct_hr_j", # Right rear abduction (hip3). "abduct_hr_to_thigh_hr_j", # Right rear hip (upper3). "thigh_hr_to_knee_hr_j", # Right rear knee (lower3). ] _DEFAULT_TORQUE_LIMITS = [12, 18, 12] * 4 INIT_RACK_POSITION = [0, 0, 1.4] INIT_POSITION = [0, 0, 0.4] JOINT_DIRECTIONS = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) HIP_JOINT_OFFSET = 0.0 UPPER_LEG_JOINT_OFFSET = 0.0 KNEE_JOINT_OFFSET = 0.0 DOFS_PER_LEG = 3 JOINT_OFFSETS = np.array( [HIP_JOINT_OFFSET, UPPER_LEG_JOINT_OFFSET, KNEE_JOINT_OFFSET] * 4) PI = math.pi DEFAULT_ABDUCTION_ANGLE = 0.0 DEFAULT_HIP_ANGLE = -1.1 DEFAULT_KNEE_ANGLE = 2.3 # Bases on the readings from 's default pose. INIT_MOTOR_ANGLES = [ DEFAULT_ABDUCTION_ANGLE, DEFAULT_HIP_ANGLE, DEFAULT_KNEE_ANGLE ] * NUM_LEGS DEFAULT_LOCAL_TOE_POSITIONS = [[0.17, -0.11, -0.16], [0.17, 0.11, -0.16], [-0.20, -0.11, -0.16], [-0.20, 0.11, -0.16]] @gin.configurable class MiniCheetah(minitaur.Minitaur): """A simulation for the mini cheetah robot.""" def __init__(self, **kwargs): if "motor_kp" not in kwargs: kwargs["motor_kp"] = 100.0 if "motor_kd" not in kwargs: kwargs["motor_kd"] = 2.0 if "motor_torque_limits" not in kwargs: kwargs["motor_torque_limits"] = _DEFAULT_TORQUE_LIMITS # The follwing parameters are fixed for the vision60 robot. kwargs["num_motors"] = NUM_MOTORS kwargs["dofs_per_leg"] = DOFS_PER_LEG kwargs["motor_direction"] = JOINT_DIRECTIONS kwargs["motor_offset"] = JOINT_OFFSETS kwargs["motor_overheat_protection"] = False kwargs["motor_model_class"] = laikago_motor.LaikagoMotorModel super(MiniCheetah, self).__init__(**kwargs) def _LoadRobotURDF(self): mini_cheetah_urdf_path = "mini_cheetah/mini_cheetah.urdf" if self._self_collision_enabled: self.quadruped = self._pybullet_client.loadURDF( mini_cheetah_urdf_path, self._GetDefaultInitPosition(), self._GetDefaultInitOrientation(), flags=self._pybullet_client.URDF_USE_SELF_COLLISION) else: self.quadruped = self._pybullet_client.loadURDF( mini_cheetah_urdf_path, self._GetDefaultInitPosition(), self._GetDefaultInitOrientation()) def _SettleDownForReset(self, default_motor_angles, reset_time): self.ReceiveObservation() for _ in range(500): self.ApplyAction( INIT_MOTOR_ANGLES, motor_control_mode=robot_config.MotorControlMode.POSITION) self._pybullet_client.stepSimulation() self.ReceiveObservation() if default_motor_angles is not None: num_steps_to_reset = int(reset_time / self.time_step) for _ in range(num_steps_to_reset): self.ApplyAction( default_motor_angles, motor_control_mode=robot_config.MotorControlMode.POSITION) self._pybullet_client.stepSimulation() self.ReceiveObservation() def GetURDFFile(self): return os.path.join(self._urdf_root, "mini_cheetah/mini_cheetah.urdf") def ResetPose(self, add_constraint): del add_constraint for name in self._joint_name_to_id: joint_id = self._joint_name_to_id[name] self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(joint_id), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=0) for name, i in zip(MOTOR_NAMES, range(len(MOTOR_NAMES))): angle = INIT_MOTOR_ANGLES[i] self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id[name], angle, targetVelocity=0) def _BuildUrdfIds(self): pass def _GetMotorNames(self): return MOTOR_NAMES def _GetDefaultInitPosition(self): if self._on_rack: return INIT_RACK_POSITION else: return INIT_POSITION def _GetDefaultInitOrientation(self): init_orientation = [0, 0, 0, 1.0] return init_orientation
portia_server/portia_server/views.py
hackrush01/portia
6,390
11069777
from django.conf import settings from portia_api.jsonapi import JSONResponse def capabilities(request): capabilities = { 'custom': settings.CUSTOM, 'username': request.user.username, 'capabilities': settings.CAPABILITIES, } return JSONResponse(capabilities)
devil/devil/utils/markdown_test.py
Martijnve23/catapult
1,894
11069785
#! /usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys import textwrap import unittest if __name__ == '__main__': sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))) from devil.utils import markdown class MarkdownTest(unittest.TestCase): def testBold(self): raw = 'foo' self.assertEqual('**foo**', markdown.md_bold(raw)) def testBoldContainsStars(self): raw = '*foo*' self.assertEqual('**\\*foo\\***', markdown.md_bold(raw)) def testCode(self): raw = textwrap.dedent("""\ class MarkdownTest(unittest.TestCase): def testCode(self): pass""") expected = textwrap.dedent("""\ ```python class MarkdownTest(unittest.TestCase): def testCode(self): pass ``` """) actual = markdown.md_code(raw, language='python') self.assertEqual(expected, actual) def testCodeContainsTicks(self): raw = textwrap.dedent("""\ This is sample markdown. ```c // This is a sample code block. int main(int argc, char** argv) { return 0; } ```""") expected = textwrap.dedent("""\ ``` This is sample markdown. \\`\\`\\`c // This is a sample code block. int main(int argc, char** argv) { return 0; } \\`\\`\\` ``` """) actual = markdown.md_code(raw, language=None) self.assertEqual(expected, actual) def testEscape(self): raw = 'text_with_underscores *and stars*' expected = 'text\\_with\\_underscores \\*and stars\\*' actual = markdown.md_escape(raw) self.assertEqual(expected, actual) def testHeading1(self): raw = 'Heading 1' self.assertEqual('# Heading 1', markdown.md_heading(raw, level=1)) def testHeading5(self): raw = 'Heading 5' self.assertEqual('##### Heading 5', markdown.md_heading(raw, level=5)) def testHeading10(self): raw = 'Heading 10' self.assertEqual('###### Heading 10', markdown.md_heading(raw, level=10)) def testInlineCode(self): raw = 'devil.utils.markdown_test' self.assertEqual('`devil.utils.markdown_test`', markdown.md_inline_code(raw)) def testInlineCodeContainsTicks(self): raw = 'this contains `backticks`' self.assertEqual('`this contains \\`backticks\\``', markdown.md_inline_code(raw)) def testItalic(self): raw = 'bar' self.assertEqual('*bar*', markdown.md_italic(raw)) def testItalicContainsStars(self): raw = '*bar*' self.assertEqual('*\\*bar\\**', markdown.md_italic(raw)) def testLink(self): link_text = 'Devil home' link_target = ( 'https://chromium.googlesource.com/catapult.git/+/HEAD/devil') expected = ('[Devil home]' '(https://chromium.googlesource.com/catapult.git/+/HEAD/devil)') self.assertEqual(expected, markdown.md_link(link_text, link_target)) def testLinkTextContainsBracket(self): link_text = 'foo [] bar' link_target = 'https://www.google.com' expected = '[foo [\\] bar](https://www.google.com)' self.assertEqual(expected, markdown.md_link(link_text, link_target)) if __name__ == '__main__': unittest.main(verbosity=2)
stackoverflow/venv/lib/python3.6/site-packages/hamcrest/library/collection/is_empty.py
zhi-xianwei/learn_python3_spider
9,953
11069788
from hamcrest.core.base_matcher import BaseMatcher __author__ = "<NAME>" __copyright__ = "Copyright 2012 hamcrest.org" __license__ = "BSD, see License.txt" class IsEmpty(BaseMatcher): def matches(self, item, mismatch_description=None): try: if len(item) == 0: return True if mismatch_description: mismatch_description \ .append_text('has %d item(s)' % len(item)) except TypeError: if mismatch_description: mismatch_description \ .append_text('does not support length') return False def describe_to(self, description): description.append_text('an empty collection') def empty(): """ This matcher matches any collection-like object that responds to the __len__ method, and has a length of 0. """ return IsEmpty()
mythril/analysis/module/modules/multiple_sends.py
kalloc/mythril
1,887
11069796
<reponame>kalloc/mythril """This module contains the detection code to find multiple sends occurring in a single transaction.""" from copy import copy from typing import cast, List from mythril.analysis.report import Issue from mythril.analysis.solver import get_transaction_sequence, UnsatError from mythril.analysis.swc_data import MULTIPLE_SENDS from mythril.analysis.module.base import DetectionModule, EntryPoint from mythril.laser.ethereum.state.annotation import StateAnnotation from mythril.laser.ethereum.state.global_state import GlobalState import logging log = logging.getLogger(__name__) class MultipleSendsAnnotation(StateAnnotation): def __init__(self) -> None: self.call_offsets = [] # type: List[int] def __copy__(self): result = MultipleSendsAnnotation() result.call_offsets = copy(self.call_offsets) return result class MultipleSends(DetectionModule): """This module checks for multiple sends in a single transaction.""" name = "Multiple external calls in the same transaction" swc_id = MULTIPLE_SENDS description = "Check for multiple sends in a single transaction" entry_point = EntryPoint.CALLBACK pre_hooks = ["CALL", "DELEGATECALL", "STATICCALL", "CALLCODE", "RETURN", "STOP"] def _execute(self, state: GlobalState) -> None: if state.get_current_instruction()["address"] in self.cache: return issues = self._analyze_state(state) for issue in issues: self.cache.add(issue.address) self.issues.extend(issues) @staticmethod def _analyze_state(state: GlobalState): """ :param state: the current state :return: returns the issues for that corresponding state """ instruction = state.get_current_instruction() annotations = cast( List[MultipleSendsAnnotation], list(state.get_annotations(MultipleSendsAnnotation)), ) if len(annotations) == 0: state.annotate(MultipleSendsAnnotation()) annotations = cast( List[MultipleSendsAnnotation], list(state.get_annotations(MultipleSendsAnnotation)), ) call_offsets = annotations[0].call_offsets if instruction["opcode"] in ["CALL", "DELEGATECALL", "STATICCALL", "CALLCODE"]: call_offsets.append(state.get_current_instruction()["address"]) else: # RETURN or STOP for offset in call_offsets[1:]: try: transaction_sequence = get_transaction_sequence( state, state.world_state.constraints ) except UnsatError: continue description_tail = ( "This call is executed following another call within the same transaction. It is possible " "that the call never gets executed if a prior call fails permanently. This might be caused " "intentionally by a malicious callee. If possible, refactor the code such that each transaction " "only executes one external call or " "make sure that all callees can be trusted (i.e. they’re part of your own codebase)." ) issue = Issue( contract=state.environment.active_account.contract_name, function_name=state.environment.active_function_name, address=offset, swc_id=MULTIPLE_SENDS, bytecode=state.environment.code.bytecode, title="Multiple Calls in a Single Transaction", severity="Low", description_head="Multiple calls are executed in the same transaction.", description_tail=description_tail, gas_used=(state.mstate.min_gas_used, state.mstate.max_gas_used), transaction_sequence=transaction_sequence, ) return [issue] return [] detector = MultipleSends()
electroncash/winconsole.py
christroutner/Electron-Cash
208
11069820
# Electron Cash - lightweight Bitcoin client # Copyright (C) 2019 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ This module is for to handling console attaching and / or creation in Windows binaries that are built for the Windows subsystem and therefore do not automatically allocate a console. """ import sys import os import ctypes import atexit STD_OUTPUT_HANDLE = -11 FILE_TYPE_DISK = 1 def parent_process_pids() -> int: """ Returns all parent process PIDs, starting with the closest parent """ try: import psutil pid = os.getpid() while pid > 0: pid = psutil.Process(pid).ppid() yield pid except psutil.NoSuchProcess: # Parent process not found, likely terminated, nothing we can do pass def get_console_title() -> str: ''' Return the current console title as a string. May return None on error. ''' b = bytes(1024) b_ptr = ctypes.c_char_p(b) title = None title_len = ctypes.windll.kernel32.GetConsoleTitleW(b_ptr, len(b)//2) # GetConsoleTitleW expects size in 2-byte chars if title_len > 0: title = b.decode('utf-16')[:title_len] return title def create_or_attach_console(*, attach: bool = True, create: bool = False, title: str = None) -> bool: """ Workaround to the fact that cmd.exe based execution of this program means it has no stdout handles and thus is always silent, thereby rendering vernbose console output or command-line usage problematic. First, check if we have STD_OUTPUT_HANDLE (a console) and do nothing if there is one, returning True. Otherwise, try to attach to the console of any ancestor process, and return True. If not successful, optionally (create=True) create a new console. NB: Creating a new console results in a 'cmd.exe' console window to be created on the Windows desktop, so only pass create=True if that's acceptable. If a console was found or created, we redirect current output handles (sys.stdout, sys.stderr) to this found and/or created console. Always return True on success or if there was a console already, False or None on failure (a None return indicates a missing lib or some other unspecified exception was raised when attempting to create a console). """ std_out_handle = ctypes.windll.kernel32.GetStdHandle(STD_OUTPUT_HANDLE) has_console = std_out_handle > 0 if has_console: # Output is being redirected to a file, or we have an msys console. # do nothing return True try: if attach: # Try to attach to a parent console for pid in parent_process_pids(): if ctypes.windll.kernel32.AttachConsole(pid): has_console = True break except ImportError: # User's system lacks psutil return # Return None in case caller wants to differntiate exceptional failures from regular False return created = False if not has_console and create: # Try to allocate a new console if ctypes.windll.kernel32.AllocConsole(): has_console = True created = True if not has_console: # Indicate to caller no console is to be had. return False try: # Reopen Pythons console input and output handles conout = open('CONOUT$', 'w') sys.stdout = conout sys.stderr = conout sys.stdin = open('CONIN$', 'r') except OSError: # If we get here, we likely were in MinGW / MSYS where CONOUT$ / CONIN$ # are not valid files or some other weirdness occurred. Give up. return # return None to indicate underlying exception if title: old_title = get_console_title() if not created else None # save the old title only if not created by us # Set the console title, if specified ctypes.windll.kernel32.SetConsoleTitleW(title) if old_title is not None: # undo the setting of the console title at app exit atexit.register(ctypes.windll.kernel32.SetConsoleTitleW, old_title) return True
azure-py-cosmosdb-logicapp/__main__.py
PaulusTM/examples
1,628
11069823
# Copyright 2016-2021, Pulumi Corporation. All rights reserved. import pulumi import pulumi_azure_native.authorization as authorization import pulumi_azure_native.documentdb as documentdb import pulumi_azure_native.logic as logic import pulumi_azure_native.resources as resources import pulumi_azure_native.storage as storage import pulumi_azure_native.web as web # Create an Azure Resource Group resource_group = resources.ResourceGroup("resourceGroup") # Create an Azure resource (Storage Account) storage_account = storage.StorageAccount( "logicappdemosa", resource_group_name=resource_group.name, sku=storage.SkuArgs( name=storage.SkuName.STANDARD_LRS, ), kind=storage.Kind.STORAGE_V2) # Cosmos DB Account cosmosdb_account = documentdb.DatabaseAccount( "logicappdemo-cdb", resource_group_name=resource_group.name, database_account_offer_type=documentdb.DatabaseAccountOfferType.STANDARD, locations=[documentdb.LocationArgs( location_name=resource_group.location, failover_priority=0, )], consistency_policy=documentdb.ConsistencyPolicyArgs( default_consistency_level=documentdb.DefaultConsistencyLevel.SESSION, )) # Cosmos DB Database db = documentdb.SqlResourceSqlDatabase( "sqldb", resource_group_name=resource_group.name, account_name=cosmosdb_account.name, resource=documentdb.SqlDatabaseResourceArgs( id="sqldb", )) # Cosmos DB SQL Container db_container = documentdb.SqlResourceSqlContainer( "container", resource_group_name=resource_group.name, account_name=cosmosdb_account.name, database_name=db.name, resource=documentdb.SqlContainerResourceArgs( id="container", partition_key=documentdb.ContainerPartitionKeyArgs( paths=["/myPartitionKey"], kind="Hash", ) )) account_keys = documentdb.list_database_account_keys_output( account_name=cosmosdb_account.name, resource_group_name=resource_group.name) client_config = pulumi.Output.from_input(authorization.get_client_config()) api_id = pulumi.Output.concat( "/subscriptions/", client_config.subscription_id, "/providers/Microsoft.Web/locations/", resource_group.location, "/managedApis/documentdb") # API Connection to be used in a Logic App connection = web.Connection( "connection", resource_group_name=resource_group.name, properties=web.ApiConnectionDefinitionPropertiesArgs( display_name="cosmosdb_connection", api=web.ApiReferenceArgs( id=api_id, ), parameter_values={ "databaseAccount": cosmosdb_account.name, "access_key": account_keys.primary_master_key, }, )) # Logic App with an HTTP trigger and Cosmos DB action workflow = logic.Workflow( "workflow", resource_group_name=resource_group.name, definition={ "$schema": "https://schema.management.azure.com/providers/Microsoft.Logic/schemas/2016-06-01/workflowdefinition.json#", "content_version": "1.0.0.0", "parameters": { "$connections": { "default_value": {}, "type": "Object", }, }, "triggers": { "Receive_post": { "type": "Request", "kind": "Http", "inputs": { "method": "POST", "schema": { "properties": {}, "type": "object", }, }, }, }, "actions": { "write_body": { "type": "ApiConnection", "inputs": { "body": { "data": "@triggerBody()", "id": "@utcNow()", }, "host": { "connection": { "name": "@parameters('$connections')['documentdb']['connectionId']", }, }, "method": "post", "path": pulumi.Output.all(db.name, db_container.name).apply( lambda arg: f"/dbs/{arg[0]}/colls/{arg[1]}/docs"), }, }, }, }, parameters={ "$connections": logic.WorkflowParameterArgs( value={ "documentdb": { "connection_id": connection.id, "connection_name": "logicapp-cosmosdb-connection", "id": api_id, }, }, ), }) callback_urls = logic.list_workflow_trigger_callback_url_output( resource_group_name=resource_group.name, workflow_name=workflow.name, trigger_name="Receive_post") # Export the HTTP endpoint pulumi.export("endpoint", callback_urls.value)
sportsbetting/bookmakers/france_pari.py
MiladC4/Sports-betting
169
11069834
""" France-pari odds scraper """ import datetime import re import requests from bs4 import BeautifulSoup import sportsbetting as sb def parse_france_pari(url): """ Retourne les cotes disponibles sur france-pari """ soup = BeautifulSoup(requests.get(url).content, features="lxml") match_odds_hash = {} today = datetime.datetime.today() today = datetime.datetime(today.year, today.month, today.day) year = " " + str(today.year) date = "" match = "" date_time = None id_match = None for line in soup.find_all(): if "class" in line.attrs and "competition" in line["class"]: competition = line.text.strip() if "class" in line.attrs and "date" in line["class"]: date = line.text + year elif "class" in line.attrs and "odd-event-block" in line["class"]: strings = list(line.stripped_strings) if "snc-odds-date-lib" in line["class"]: id_match = line.findChild("a", recursive=True).get("href").split("-")[0].split("/")[-1] hour = strings[0] try: i = strings.index("/") date_time = datetime.datetime.strptime( date + " " + hour, "%A %d %B %Y %H:%M") if date_time < today: date_time = date_time.replace(year=date_time.year + 1) match = " ".join(strings[1:i]) + \ " - " + " ".join(strings[i + 1:]) reg_exp = (r'\[[0-7]\/[0-7]\s?([0-7]\/[0-7]\s?)*\]' r'|\[[0-7]\-[0-7]\s?([0-7]\-[0-7]\s?)*\]') if list(re.finditer(reg_exp, match)): # match tennis live match = match.split("[")[0].strip() except ValueError: pass else: odds = [] for i, val in enumerate(strings): if i % 2: odds.append(float(val.replace(",", "."))) try: if match: match_odds_hash[match] = {} match_odds_hash[match]['odds'] = {"france_pari": odds} match_odds_hash[match]['date'] = date_time match_odds_hash[match]['id'] = {"france_pari": id_match} match_odds_hash[match]['competition'] = competition match = None except UnboundLocalError: pass if not match_odds_hash: raise sb.UnavailableCompetitionException return match_odds_hash
src/pybel/manager/citation_utils.py
rpatil524/pybel
103
11069843
<filename>src/pybel/manager/citation_utils.py # -*- coding: utf-8 -*- """Citation utilities for the database manager.""" import logging import re from datetime import date, datetime from functools import lru_cache from typing import Any, Dict, Iterable, List, Mapping, Optional, Set, Tuple, Union import ratelimit import requests from more_itertools import chunked from sqlalchemy import and_ from tqdm.autonotebook import tqdm from . import models from .cache_manager import Manager from ..constants import CITATION from ..struct.filters import filter_edges from ..struct.filters.edge_predicates import CITATION_PREDICATES from ..struct.graph import BELGraph from ..struct.summary.provenance import get_citation_identifiers __all__ = [ 'enrich_pubmed_citations', 'enrich_pmc_citations', ] logger = logging.getLogger(__name__) EUTILS_URL_FMT = "http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&retmode=json&id={}" re1 = re.compile(r'^[12][0-9]{3} [a-zA-Z]{3} \d{1,2}$') re2 = re.compile(r'^[12][0-9]{3} [a-zA-Z]{3}$') re3 = re.compile(r'^[12][0-9]{3}$') re4 = re.compile(r'^[12][0-9]{3} [a-zA-Z]{3}-[a-zA-Z]{3}$') re5 = re.compile(r'^([12][0-9]{3}) (Spring|Fall|Winter|Summer)$') re6 = re.compile(r'^[12][0-9]{3} [a-zA-Z]{3} \d{1,2}-(\d{1,2})$') re7 = re.compile(r'^[12][0-9]{3} [a-zA-Z]{3} \d{1,2}-([a-zA-Z]{3} \d{1,2})$') # TODO "Winter 2016" probably with re.compile(r'^(Spring|Fall|Winter|Summer) ([12][0-9]{3})$') # TODO "YYYY Oct - Dec" update re4 to allow spaces before and after the dash season_map = {'Spring': '03', 'Summer': '06', 'Fall': '09', 'Winter': '12'} def sanitize_date(publication_date: str) -> str: """Sanitize lots of different date strings into ISO-8601.""" if re1.search(publication_date): return datetime.strptime(publication_date, '%Y %b %d').strftime('%Y-%m-%d') if re2.search(publication_date): return datetime.strptime(publication_date, '%Y %b').strftime('%Y-%m-01') if re3.search(publication_date): return publication_date + "-01-01" if re4.search(publication_date): return datetime.strptime(publication_date[:-4], '%Y %b').strftime('%Y-%m-01') s = re5.search(publication_date) if s: year, season = s.groups() return '{}-{}-01'.format(year, season_map[season]) s = re6.search(publication_date) if s: return datetime.strptime(publication_date, '%Y %b %d-{}'.format(s.groups()[0])).strftime('%Y-%m-%d') s = re7.search(publication_date) if s: return datetime.strptime(publication_date, '%Y %b %d-{}'.format(s.groups()[0])).strftime('%Y-%m-%d') def clean_pubmed_identifiers(identifiers: Iterable[str]) -> List[str]: """Clean a list of identifiers with string strips, deduplicates, and sorting.""" _identifiers = (str(identifier).strip() for identifier in identifiers if identifier) return sorted({i for i in _identifiers if i}) @ratelimit.limits(calls=3, period=1) def get_pubmed_citation_response(pubmed_identifiers: Iterable[str]): """Get the response from PubMed E-Utils for a given list of PubMed identifiers. Rate limit of 3 requests per second is from: https://ncbiinsights.ncbi.nlm.nih.gov/2018/08/14/release-plan-for-e-utility-api-keys/ :param pubmed_identifiers: :rtype: dict """ pubmed_identifiers = list(pubmed_identifiers) url = EUTILS_URL_FMT.format( ','.join( pubmed_identifier for pubmed_identifier in pubmed_identifiers if pubmed_identifier ), ) response = requests.get(url) return response.json() def enrich_citation_model(manager: Manager, citation: models.Citation, p: Mapping[str, Any]) -> bool: """Enrich a citation model with the information from PubMed. :param manager: A database manager :param citation: A citation model :param p: The dictionary from PubMed E-Utils corresponding to d["result"][pmid] """ if 'error' in p: logger.warning('Error downloading PubMed') return False citation.title = p['title'] citation.journal = p['fulljournalname'] citation.volume = p['volume'] citation.issue = p['issue'] citation.pages = p['pages'] citation.first = manager.get_or_create_author(p['sortfirstauthor']) citation.last = manager.get_or_create_author(p['lastauthor']) pubtypes = p['pubtype'] if pubtypes: citation.article_type = pubtypes[0] if 'authors' in p: for author in p['authors']: author_model = manager.get_or_create_author(author['name']) if author_model not in citation.authors: citation.authors.append(author_model) publication_date = p['pubdate'] try: sanitized_publication_date = sanitize_date(publication_date) except ValueError: logger.warning('could not parse publication date %s for pubmed:%s', publication_date, citation.db_id) sanitized_publication_date = None if sanitized_publication_date: citation.date = datetime.strptime(sanitized_publication_date, '%Y-%m-%d') else: logger.info('result had date with strange format: %s', publication_date) return True def get_citations_by_pmids( manager: Manager, pmids: Iterable[Union[str, int]], *, group_size: Optional[int] = None, offline: bool = False, ) -> Tuple[Dict[str, Dict], Set[str]]: return _get_citations_by_identifiers( manager=manager, identifiers=pmids, group_size=group_size, offline=offline, prefix='pubmed', ) def _get_citations_by_identifiers( manager: Manager, identifiers: Iterable[Union[str, int]], *, group_size: Optional[int] = None, offline: bool = False, prefix: Optional[str] = None, ) -> Tuple[Dict[str, Dict], Set[str]]: """Get citation information for the given list of PubMed identifiers using the NCBI's eUtils service. :type manager: pybel.Manager :param identifiers: an iterable of PubMed identifiers :param group_size: The number of PubMed identifiers to query at a time. Defaults to 200 identifiers. :return: A dictionary of {identifier: data dictionary} or a pair of this dictionary and a set ot erroneous identifiers. """ if prefix is None: prefix = 'pubmed' helper = _HELPERS.get(prefix) if helper is None: raise ValueError(f'can not work on prefix: {prefix}') group_size = group_size if group_size is not None else 200 identifiers = clean_pubmed_identifiers(identifiers) logger.info('ensuring %d %s identifiers', len(identifiers), prefix) enriched_models = {} unenriched_models = {} id_to_model = { citation_model.db_id: citation_model for citation_model in _get_citation_models(identifiers, prefix=prefix, manager=manager) } logger.info('%d of %d %s identifiers are already cached', len(id_to_model), len(identifiers), prefix) for identifier in tqdm(identifiers, desc=f'creating {prefix} models'): model = id_to_model.get(identifier) if model is None: model = id_to_model[identifier] = manager.get_or_create_citation(identifier=identifier, namespace=prefix) if model.is_enriched: enriched_models[identifier] = model.to_json() else: unenriched_models[identifier] = model logger.info('%d of %d %s are identifiers already enriched', len(enriched_models), len(identifiers), prefix) manager.session.commit() errors = set() if not unenriched_models or offline: return enriched_models, errors it = tqdm(unenriched_models, desc=f'getting {prefix} data in chunks of {group_size}') for identifier_chunk in chunked(it, n=group_size): helper( identifier_chunk, manager=manager, enriched_models=enriched_models, unenriched_models=unenriched_models, errors=errors, ) return enriched_models, errors def _help_enrich_pmids(identifiers: Iterable[str], *, manager, unenriched_models, enriched_models, errors): response = get_pubmed_citation_response(identifiers) response_pmids = response['result']['uids'] for pmid in response_pmids: p = response['result'][pmid] citation = unenriched_models.get(pmid) if citation is None: tqdm.write(f'problem looking up pubmed:{pmid}') continue successful_enrichment = enrich_citation_model(manager, citation, p) if not successful_enrichment: tqdm.write(f"Error downloading pubmed:{pmid}") errors.add(pmid) continue enriched_models[pmid] = citation.to_json() manager.session.add(citation) manager.session.commit() # commit in groups def _help_enrich_pmc_identifiers( identifiers: Iterable[str], *, manager: Manager, unenriched_models, enriched_models, errors, ): for pmcid in identifiers: try: csl = get_pmc_csl_item(pmcid) except Exception: tqdm.write(f"Error downloading pmc:{pmcid}") errors.add(pmcid) continue model = unenriched_models[pmcid] enrich_citation_model_from_pmc(manager=manager, citation=model, csl=csl) manager.session.add(model) enriched_models[pmcid] = model.to_json() manager.session.commit() # commit in groups _HELPERS = { 'pubmed': _help_enrich_pmids, 'pmc': _help_enrich_pmc_identifiers, } def _get_citation_models( identifiers: Iterable[str], *, prefix: str, manager: Manager, chunksize: int = 200, ) -> Iterable[models.Citation]: for identifiers_chunk in chunked(identifiers, chunksize): citation_filter = and_( models.Citation.db == prefix, models.Citation.db_id.in_(identifiers_chunk), ) yield from manager.session.query(models.Citation).filter(citation_filter).all() def enrich_pubmed_citations( graph: BELGraph, *, manager: Optional[Manager] = None, group_size: Optional[int] = None, offline: bool = False, ) -> Set[str]: """Overwrite all PubMed citations with values from NCBI's eUtils lookup service. :param graph: A BEL graph :param manager: A PyBEL database manager :param group_size: The number of PubMed identifiers to query at a time. Defaults to 200 identifiers. :param offline: An override for when you don't want to hit the eUtils :return: A set of PMIDs for which the eUtils service crashed """ return _enrich_citations( manager=manager, graph=graph, group_size=group_size, offline=offline, prefix='pubmed', ) def enrich_pmc_citations( graph: BELGraph, *, manager: Optional[Manager] = None, group_size: Optional[int] = None, offline: bool = False, ) -> Set[str]: """Overwrite all PubMed citations with values from NCBI's eUtils lookup service. :param graph: A BEL graph :param manager: A PyBEL database manager :param group_size: The number of PubMed identifiers to query at a time. Defaults to 200 identifiers. :param offline: An override for when you don't want to hit the eUtils :return: A set of PMIDs for which the eUtils service crashed """ return _enrich_citations( manager=manager, graph=graph, group_size=group_size, offline=offline, prefix='pmc', ) def _enrich_citations( graph: BELGraph, manager: Optional[Manager], group_size: Optional[int] = None, offline: bool = False, prefix: Optional[str] = None, ) -> Set[str]: """Overwrite all citations of the given prefix using the predefined lookup functions. :param graph: A BEL Graph :param group_size: The number of identifiers to query at a time. Defaults to 200 identifiers. :return: A set of identifiers for which lookup was not possible """ if manager is None: manager = Manager() if prefix is None: prefix = 'pubmed' identifiers = {identifier for identifier in get_citation_identifiers(graph, prefix) if identifier} identifier_map, errors = _get_citations_by_identifiers( manager, identifiers=identifiers, group_size=group_size, offline=offline, prefix=prefix, ) for u, v, k in filter_edges(graph, CITATION_PREDICATES[prefix]): identifier = graph[u][v][k][CITATION].identifier identifier_data = identifier_map.get(identifier) if identifier_data is None: logger.warning('Missing data for %s:%s', prefix, identifier) errors.add(identifier) continue graph[u][v][k][CITATION].update(identifier_data) return errors @lru_cache() def get_pmc_csl_item(pmcid: str) -> Mapping[str, Any]: """Get the CSL Item for a PubMed Central record by its PMID, PMCID, or DOI, using the NCBI Citation Exporter API.""" if not pmcid.startswith("PMC"): raise ValueError(f'not a valid pmd id: {pmcid}') from manubot.cite.pubmed import get_pmc_csl_item csl_item = get_pmc_csl_item(pmcid) if "URL" not in csl_item: csl_item["URL"] = f"https://www.ncbi.nlm.nih.gov/pmc/articles/{csl_item.get('PMCID', pmcid)}/" return csl_item def enrich_citation_model_from_pmc(manager: Manager, citation: models.Citation, csl: Mapping[str, Any]) -> bool: """Enrich a citation model with the information from PubMed Central. :param manager: A database manager :param citation: A citation model :param dict csl: The dictionary from PMC """ citation.title = csl.get('title') citation.journal = csl.get('container-title') citation.volume = csl.get('volume') # citation.issue = csl['issue'] citation.pages = csl.get('page') citation.article_type = csl.get('type') for author in csl.get('author', []): try: author_name = f'{author["given"]} {author["family"]}' except KeyError: print(f'problem with author in pmc:{citation.db_id}', author) continue author_model = manager.get_or_create_author(author_name) if author_model not in citation.authors: citation.authors.append(author_model) if citation.authors: citation.first = citation.authors[0] citation.last = citation.authors[-1] issued = csl.get('issued') if issued is not None: date_parts = issued['date-parts'][0] if len(date_parts) == 3: citation.date = date(year=date_parts[0], month=date_parts[1], day=date_parts[2]) elif len(date_parts) == 2: citation.date = date(year=date_parts[0], month=date_parts[1], day=1) elif len(date_parts) == 1: citation.date = date(year=date_parts[0], month=1, day=1) else: logger.warning('not sure about date parts: %s', date_parts) return True
packages/python/pyfora/algorithms/logistic/TrustRegionConjugateGradientSolver.py
ufora/ufora
571
11069860
<reponame>ufora/ufora<gh_stars>100-1000 # Copyright 2016 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import math from Solver import Solver, ReturnValue class TrustRegionConjugateGradientSolver(Solver): """ Implements "Trust Region Newton Methods for Large-Scale Logistic Regression" of <NAME>, <NAME>, and <NAME> (http://www.machinelearning.org/proceedings/icml2007/papers/114.pdf) This is the same algorithm used in the liblinear library. """ def __init__( self, X, y, classZeroLabel, C=1.0, eps=0.001, maxIters=1000, splitLimit=1000000): self.X = X self.y = y self.classZeroLabel = classZeroLabel self.C = float(C) self.eps = TrustRegionConjugateGradientSolver.computeEps( eps, y, classZeroLabel) self.maxIters = maxIters self.nFeatures = X.shape[1] self.nSamples = X.shape[0] self.splitLimit = splitLimit self.eta0 = 1e-4 self.eta1 = 0.25 self.eta2 = 0.75 self.sigma1 = 0.25 self.sigma2 = 0.5 self.sigma3 = 4.0 self.xi = 0.1 @staticmethod def computeEps(eps, y, classZeroLabel): def signFunc(elt): if elt == classZeroLabel: return 1.0 return 0.0 numClassZeros = sum(signFunc(elt) for elt in y) numClassOnes = len(y) - numClassZeros return eps * max(min(numClassZeros, numClassOnes), 1.0) / float(len(y)) def normalized_y_value(self, ix): if self.y[ix] == self.classZeroLabel: return 1.0 return -1.0 def solve(self, weights=None): if weights is None: weights = numpy.zeros(self.X.shape[1]) normGradientAtZeroWeights = self.normGradientAtZeroWeights() objectiveFun = ObjectiveFunctionAtWeights( self.X, self.normalized_y_value, self.C, weights) gradient = objectiveFun.gradient() normGradient = self.norm(gradient) delta = normGradient solverState = SolverState( objectiveFun=objectiveFun, gradient=gradient, normGradient=normGradient, delta=delta) while solverState.iterationIx < self.maxIters and \ solverState.normGradient > self.eps * normGradientAtZeroWeights: solverState = self.update(solverState) return ReturnValue( weights=solverState.objectiveFun.w, iterations=solverState.iterationIx - 1 ) def update(self, solverState): step, r = self.trustRegionConjugateGradientSearch( solverState.objectiveFun, solverState.gradient, solverState.normGradient, solverState.delta) candidateObjectiveFun = solverState.objectiveFun.withWeights( solverState.objectiveFun.w + step) gradientDotStep = solverState.gradient.dot(step) estimatedFunctionChange = -0.5 * (gradientDotStep - step.dot(r)) actualFunctionChange = \ solverState.objectiveFun.value() - candidateObjectiveFun.value() if actualFunctionChange > self.eta0 * estimatedFunctionChange: newObjectiveFun = candidateObjectiveFun newGradient = candidateObjectiveFun.gradient() newNormGradient = self.norm(newGradient) else: newObjectiveFun = solverState.objectiveFun newGradient = solverState.gradient newNormGradient = solverState.normGradient newDelta = self.updateDelta( solverState.delta, gradientDotStep, solverState.iterationIx, step, actualFunctionChange, estimatedFunctionChange ) return SolverState( objectiveFun=newObjectiveFun, gradient=newGradient, normGradient=newNormGradient, delta=newDelta, iterationIx=solverState.iterationIx + 1) def normGradientAtZeroWeights(self): nSamples = len(self.X) return math.sqrt( sum( (-0.5 * self.C * \ sum(self.normalized_y_value(ix) * column[ix] for \ ix in xrange(nSamples))) ** 2.0 \ for column in self.X.columns() ) ) def updateDelta( self, delta, gradientDotStep, iterationIx, step, actualFunctionChange, estimatedFunctionChange): stepNorm = self.norm(step) if iterationIx == 1: delta = min(delta, stepNorm) if -actualFunctionChange - gradientDotStep <= 0: alpha = self.sigma3 else: alpha = max( self.sigma1, -0.5 * (gradientDotStep / \ (-actualFunctionChange - gradientDotStep)) ) if actualFunctionChange < self.eta0 * estimatedFunctionChange: return min(max(alpha, self.sigma1) * stepNorm, self.sigma2 * delta) elif actualFunctionChange < self.eta1 * estimatedFunctionChange: return max(self.sigma1 * delta, min(alpha * stepNorm, self.sigma2 * delta)) elif actualFunctionChange < self.eta2 * estimatedFunctionChange: return max(self.sigma1 * delta, min(alpha * stepNorm, self.sigma3 * delta)) else: return max(delta, min(alpha * stepNorm, self.sigma3 * delta)) def trustRegionConjugateGradientSearch( self, objectiveFun, gradient, normGradient, delta): step = numpy.zeros(self.nFeatures) r = -gradient r_norm_squared = r.dot(r) d = r Hd = objectiveFun.hessian_dot_vec(d) iters = 1 while iters < self.maxIters and \ math.sqrt(r_norm_squared) > self.xi * normGradient: alpha = r_norm_squared / d.dot(Hd) step = step + (d * alpha) if self.norm(step) >= delta: return self.touchedTrustRegion(step, d, alpha, delta, Hd, r) r = r - (Hd * alpha) old_r_norm_squared = r_norm_squared r_norm_squared = r.dot(r) beta = r_norm_squared / old_r_norm_squared d = r + (d * beta) Hd = objectiveFun.hessian_dot_vec(d) return step, r def touchedTrustRegion(self, step, d, alpha, delta, Hd, r): step = (d * -alpha) + step step_dot_d = step.dot(d) norm_squared_step = step.dot(step) norm_squared_d = d.dot(d) deltaSquared = delta * delta rad = math.sqrt(step_dot_d * step_dot_d + \ norm_squared_d * (deltaSquared - norm_squared_step)) if step_dot_d >= 0.0: alpha = (deltaSquared - norm_squared_step) / (step_dot_d + rad) else: alpha = (rad - step_dot_d) / norm_squared_d step = (d * alpha) + step r = (Hd * -alpha) + r return step, r def norm(self, vec): return math.sqrt(vec.dot(vec)) class SolverState(object): def __init__( self, objectiveFun, gradient, normGradient, delta, iterationIx=1): self.objectiveFun = objectiveFun self.gradient = gradient self.normGradient = normGradient self.delta = delta self.iterationIx = iterationIx class ObjectiveFunctionAtWeights(object): def __init__(self, X, normalized_y_value, regularlizer, weights): self.X = X self.normalized_y_value = normalized_y_value self.C = regularlizer self.w = numpy.array(weights) self.Xw = X.dot(weights) def withWeights(self, newWeights): return ObjectiveFunctionAtWeights( self.X, self.normalized_y_value, self.C, newWeights ) def value(self): return 0.5 * self.w.dot(self.w) + self.C * sum( math.log(1.0 + math.exp(-self.normalized_y_value(ix) * self.Xw[ix])) \ for ix in xrange(len(self.Xw)) ) def sigma(self, t): return 1.0 / (1.0 + math.exp(-t)) def gradient(self): def rowMultiplier(rowIx): y_rowIx = self.normalized_y_value(rowIx) return (self.sigma(y_rowIx * self.Xw[rowIx]) - 1) * y_rowIx rowMultipliers = [rowMultiplier(ix) for ix in xrange(len(self.X))] tr = numpy.array( [self.C * column.dot(rowMultipliers) for column in self.X.columns()] ) tr = tr + self.w return tr def hessian_dot_vec(self, v): # Hess = I + C * X^t * D * X Xv = self.X.dot(v) def D_fun(ix): sigma = self.sigma(self.normalized_y_value(ix) * self.Xw[ix]) return sigma * (1 - sigma) DXv = [Xv[ix] * D_fun(ix) for ix in xrange(len(Xv))] # this part doesn't seem so natural. What if we had a row major self.X? tr = numpy.array( [self.C * column.dot(DXv) for column in self.X.columns()] ) tr = tr + v return tr
src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py
liminghao1630/transformers
8,028
11069861
<reponame>liminghao1630/transformers # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import ( Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2ForAudioFrameClassification, Wav2Vec2ForSequenceClassification, Wav2Vec2ForXVector, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) def convert_classification(base_model_name, hf_config, downstream_dict): model = Wav2Vec2ForSequenceClassification.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["projector.weight"] model.projector.bias.data = downstream_dict["projector.bias"] model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] return model def convert_diarization(base_model_name, hf_config, downstream_dict): model = Wav2Vec2ForAudioFrameClassification.from_pretrained(base_model_name, config=hf_config) model.classifier.weight.data = downstream_dict["model.linear.weight"] model.classifier.bias.data = downstream_dict["model.linear.bias"] return model def convert_xvector(base_model_name, hf_config, downstream_dict): model = Wav2Vec2ForXVector.from_pretrained(base_model_name, config=hf_config) model.projector.weight.data = downstream_dict["connector.weight"] model.projector.bias.data = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel): model.tdnn[i].kernel.weight.data = downstream_dict[ f"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] model.tdnn[i].kernel.bias.data = downstream_dict[f"model.framelevel_feature_extractor.module.{i}.kernel.bias"] model.feature_extractor.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] model.feature_extractor.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] model.classifier.weight.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] model.classifier.bias.data = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] model.objective.weight.data = downstream_dict["objective.W"] return model @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") downstream_dict = checkpoint["Downstream"] hf_config = Wav2Vec2Config.from_pretrained(config_path) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) arch = hf_config.architectures[0] if arch.endswith("ForSequenceClassification"): hf_model = convert_classification(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForAudioFrameClassification"): hf_model = convert_diarization(base_model_name, hf_config, downstream_dict) elif arch.endswith("ForXVector"): hf_model = convert_xvector(base_model_name, hf_config, downstream_dict) else: raise NotImplementedError(f"S3PRL weights conversion is not supported for {arch}") if hf_config.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
tools/agile-machine-learning-api/train.py
ruchirjain86/professional-services
2,116
11069871
<filename>tools/agile-machine-learning-api/train.py # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ API framework to post a training job """ import os import yaml from googleapiclient import discovery def post( cfg, train_csv_path, eval_csv_path, task_type, target_var, data_type, column_name, na_values, condition, n_classes, to_drop, name, hidden_units, num_layers, lin_opt, deep_opt, train_steps, export_dir, jobid): """ Post request to submit the training job Args: cfg: dict, Configurations from yaml file train_csv_path: string, Path of the Train csv eval_csv_path: string, Path of the Eval csv task_type: string, Type of the task (eg LinearClassifier etc.) target_var: string, Target column name in the given data data_type: dict, A dictionary containing feature names as key and values as the types of the feature column_name: list of strings, Column names in the given data na_values: string, Null value character in the data condition: string, Condition to convert seperate classes in the target column n_classes: integer, Number of classes in target column to_drop: list of strings, Specific columns to drop name: string, Name of the model you want to use hidden_units: integer, No. of hidden units for deep classifiers and regressors num_layers: integer, No of layers for deep classifiers and regressors lin_opt: string, Linear Optimizer deep_opt: string, Deep Optimizer job_dir: string, Job directory for CMLE job train_steps: integer, No. of training steps export_dir: string, Export directory of trained model jobid: string, Job ID of the training Returns: Response of the Training job """ with open('config/train.yaml', 'rb') as config_yml: train_cfg = yaml.load(config_yml) project_id = 'projects/{}'.format(cfg['project_id']) cloudml = discovery.build('ml', 'v1') params = [ '--train_csv_path', train_csv_path, '--eval_csv_path', eval_csv_path, '--task_type', task_type, '--target_var', target_var, '--data_type', data_type, '--column_name', column_name, '--na_values', na_values, '--condition', condition, '--n_classes', n_classes, '--to_drop', to_drop, '--name', name, '--hidden_units', hidden_units, '--num_layers', num_layers, '--lin_opt', lin_opt, '--deep_opt', deep_opt, '--train_steps', train_steps, '--export_dir', export_dir ] current_models = [ 'linearclassifier', 'linearregressor', 'dnnclassifier', 'dnnregressor', 'combinedclassifier', 'combinedregressor' ] if name not in current_models: raise AssertionError( 'Please provide a model name from the following : {}'.format( str(current_models))) training_inputs = { 'scaleTier': train_cfg['scaleTier'], 'masterType': train_cfg['masterType'], 'workerType': train_cfg['workerType'], 'parameterServerType': train_cfg['parameterServerType'], 'workerCount': train_cfg['workerCount'], 'parameterServerCount': train_cfg['parameterServerCount'], 'packageUris': train_cfg['packageUris'], 'pythonModule': "trainer.launch_demo", 'args': params, 'region': train_cfg['region'], 'jobDir': os.path.join(train_cfg['jobDir'], jobid), 'runtimeVersion': train_cfg['runtimeVersion'], 'pythonVersion': train_cfg['pythonVersion'] } job_spec = {'jobId': jobid, 'trainingInput': training_inputs} response = cloudml.projects().jobs().create(body=job_spec, parent=project_id).execute() return response
pyNastran/bdf/bdf_interface/test/test_dev_utils.py
ACea15/pyNastran
293
11069891
import os import unittest import pyNastran from pyNastran.bdf.mesh_utils.dev.create_vectorized_numbered import create_vectorized_numbered PKG_PATH = pyNastran.__path__[0] MODEL_PATH = os.path.join(PKG_PATH, '../', 'models') class DevUtils(unittest.TestCase): """tests various dev functions""" def test_convert_bdf(self): """tests create_vectorized_numbered""" bdf_filename_in = os.path.join(MODEL_PATH, 'elements', 'static_elements.bdf') bdf_filename_out = os.path.join(MODEL_PATH, 'elements', 'static_elements_convert.bdf') create_vectorized_numbered(bdf_filename_in, bdf_filename_out, debug=False) os.remove(bdf_filename_out) if __name__ == '__main__': # pragma: no cover unittest.main()
mmfewshot/detection/models/backbones/resnet_with_meta_conv.py
BIGWangYuDong/mmfewshot
376
11069901
<filename>mmfewshot/detection/models/backbones/resnet_with_meta_conv.py<gh_stars>100-1000 # Copyright (c) OpenMMLab. All rights reserved. from typing import Tuple from mmcv.cnn import build_conv_layer from mmdet.models import ResNet from mmdet.models.builder import BACKBONES from torch import Tensor @BACKBONES.register_module() class ResNetWithMetaConv(ResNet): """ResNet with `meta_conv` to handle different inputs in metarcnn and fsdetview. When input with shape (N, 3, H, W) from images, the network will use `conv1` as regular ResNet. When input with shape (N, 4, H, W) from (image + mask) the network will replace `conv1` with `meta_conv` to handle additional channel. """ def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.meta_conv = build_conv_layer( self.conv_cfg, # from config of ResNet 4, 64, kernel_size=7, stride=2, padding=3, bias=False) def forward(self, x: Tensor, use_meta_conv: bool = False) -> Tuple[Tensor]: """Forward function. When input with shape (N, 3, H, W) from images, the network will use `conv1` as regular ResNet. When input with shape (N, 4, H, W) from (image + mask) the network will replace `conv1` with `meta_conv` to handle additional channel. Args: x (Tensor): Tensor with shape (N, 3, H, W) from images or (N, 4, H, W) from (images + masks). use_meta_conv (bool): If set True, forward input tensor with `meta_conv` which require tensor with shape (N, 4, H, W). Otherwise, forward input tensor with `conv1` which require tensor with shape (N, 3, H, W). Default: False. Returns: tuple[Tensor]: Tuple of features, each item with shape (N, C, H, W). """ if use_meta_conv: x = self.meta_conv(x) else: x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.maxpool(x) outs = [] for i, layer_name in enumerate(self.res_layers): res_layer = getattr(self, layer_name) x = res_layer(x) if i in self.out_indices: outs.append(x) return tuple(outs)
Lib/objc/_Engram.py
snazari/Pyto
701
11069907
<filename>Lib/objc/_Engram.py """ Classes from the 'Engram' framework. """ try: from rubicon.objc import ObjCClass except ValueError: def ObjCClass(name): return None def _Class(name): try: return ObjCClass(name) except NameError: return None ENCypher_AES128 = _Class("ENCypher_AES128") ENCypher = _Class("ENCypher") ENParticipantDevice = _Class("ENParticipantDevice") ENParticipant = _Class("ENParticipant") ENAsyncReducerState = _Class("ENAsyncReducerState") ENAsyncReducer = _Class("ENAsyncReducer") _ENGroupInfo = _Class("_ENGroupInfo") ENGroup = _Class("ENGroup") ENLog = _Class("ENLog") ENAccountIdentity = _Class("ENAccountIdentity") ENGroupContext = _Class("ENGroupContext") ENGroupContextNotifyingObserver = _Class("ENGroupContextNotifyingObserver") ENGroupContextInMemoryCache = _Class("ENGroupContextInMemoryCache") ENStableGroupID = _Class("ENStableGroupID") ENGroupID = _Class("ENGroupID") ENPair = _Class("ENPair") ENKeyClassRegister = _Class("ENKeyClassRegister") ENGroupContextCoreDataCache = _Class("ENGroupContextCoreDataCache") ENKeyedArchiverFromDataTransformer = _Class("ENKeyedArchiverFromDataTransformer") ENCDGroup = _Class("ENCDGroup")
chatbotv5/demo.py
drpreetyrai/ChatBotCourse
5,087
11069919
<filename>chatbotv5/demo.py # coding:utf-8 # author: lichuang # mail: <EMAIL> import sys import numpy as np import tensorflow as tf from tensorflow.contrib.legacy_seq2seq.python.ops import seq2seq import word_token import jieba import random # 输入序列长度 input_seq_len = 5 # 输出序列长度 output_seq_len = 5 # 空值填充0 PAD_ID = 0 # 输出序列起始标记 GO_ID = 1 # 结尾标记 EOS_ID = 2 # LSTM神经元size size = 8 # 初始学习率 init_learning_rate = 1 # 在样本中出现频率超过这个值才会进入词表 min_freq = 10 wordToken = word_token.WordToken() # 放在全局的位置,为了动态算出num_encoder_symbols和num_decoder_symbols max_token_id = wordToken.load_file_list(['./samples/question', './samples/answer'], min_freq) num_encoder_symbols = max_token_id + 5 num_decoder_symbols = max_token_id + 5 def get_id_list_from(sentence): sentence_id_list = [] seg_list = jieba.cut(sentence) for str in seg_list: id = wordToken.word2id(str) if id: sentence_id_list.append(wordToken.word2id(str)) return sentence_id_list def get_train_set(): global num_encoder_symbols, num_decoder_symbols train_set = [] with open('./samples/question', 'r') as question_file: with open('./samples/answer', 'r') as answer_file: while True: question = question_file.readline() answer = answer_file.readline() if question and answer: question = question.strip() answer = answer.strip() question_id_list = get_id_list_from(question) answer_id_list = get_id_list_from(answer) if len(question_id_list) > 0 and len(answer_id_list) > 0: answer_id_list.append(EOS_ID) train_set.append([question_id_list, answer_id_list]) else: break return train_set def get_samples(train_set, batch_num): """构造样本数据 :return: encoder_inputs: [array([0, 0], dtype=int32), array([0, 0], dtype=int32), array([5, 5], dtype=int32), array([7, 7], dtype=int32), array([9, 9], dtype=int32)] decoder_inputs: [array([1, 1], dtype=int32), array([11, 11], dtype=int32), array([13, 13], dtype=int32), array([15, 15], dtype=int32), array([2, 2], dtype=int32)] """ # train_set = [[[5, 7, 9], [11, 13, 15, EOS_ID]], [[7, 9, 11], [13, 15, 17, EOS_ID]], [[15, 17, 19], [21, 23, 25, EOS_ID]]] raw_encoder_input = [] raw_decoder_input = [] if batch_num >= len(train_set): batch_train_set = train_set else: random_start = random.randint(0, len(train_set)-batch_num) batch_train_set = train_set[random_start:random_start+batch_num] for sample in batch_train_set: raw_encoder_input.append([PAD_ID] * (input_seq_len - len(sample[0])) + sample[0]) raw_decoder_input.append([GO_ID] + sample[1] + [PAD_ID] * (output_seq_len - len(sample[1]) - 1)) encoder_inputs = [] decoder_inputs = [] target_weights = [] for length_idx in xrange(input_seq_len): encoder_inputs.append(np.array([encoder_input[length_idx] for encoder_input in raw_encoder_input], dtype=np.int32)) for length_idx in xrange(output_seq_len): decoder_inputs.append(np.array([decoder_input[length_idx] for decoder_input in raw_decoder_input], dtype=np.int32)) target_weights.append(np.array([ 0.0 if length_idx == output_seq_len - 1 or decoder_input[length_idx] == PAD_ID else 1.0 for decoder_input in raw_decoder_input ], dtype=np.float32)) return encoder_inputs, decoder_inputs, target_weights def seq_to_encoder(input_seq): """从输入空格分隔的数字id串,转成预测用的encoder、decoder、target_weight等 """ input_seq_array = [int(v) for v in input_seq.split()] encoder_input = [PAD_ID] * (input_seq_len - len(input_seq_array)) + input_seq_array decoder_input = [GO_ID] + [PAD_ID] * (output_seq_len - 1) encoder_inputs = [np.array([v], dtype=np.int32) for v in encoder_input] decoder_inputs = [np.array([v], dtype=np.int32) for v in decoder_input] target_weights = [np.array([1.0], dtype=np.float32)] * output_seq_len return encoder_inputs, decoder_inputs, target_weights def get_model(feed_previous=False): """构造模型 """ learning_rate = tf.Variable(float(init_learning_rate), trainable=False, dtype=tf.float32) learning_rate_decay_op = learning_rate.assign(learning_rate * 0.9) encoder_inputs = [] decoder_inputs = [] target_weights = [] for i in xrange(input_seq_len): encoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="encoder{0}".format(i))) for i in xrange(output_seq_len + 1): decoder_inputs.append(tf.placeholder(tf.int32, shape=[None], name="decoder{0}".format(i))) for i in xrange(output_seq_len): target_weights.append(tf.placeholder(tf.float32, shape=[None], name="weight{0}".format(i))) # decoder_inputs左移一个时序作为targets targets = [decoder_inputs[i + 1] for i in xrange(output_seq_len)] cell = tf.contrib.rnn.BasicLSTMCell(size) # 这里输出的状态我们不需要 outputs, _ = seq2seq.embedding_attention_seq2seq( encoder_inputs, decoder_inputs[:output_seq_len], cell, num_encoder_symbols=num_encoder_symbols, num_decoder_symbols=num_decoder_symbols, embedding_size=size, output_projection=None, feed_previous=feed_previous, dtype=tf.float32) # 计算加权交叉熵损失 loss = seq2seq.sequence_loss(outputs, targets, target_weights) # 梯度下降优化器 opt = tf.train.GradientDescentOptimizer(learning_rate) # 优化目标:让loss最小化 update = opt.apply_gradients(opt.compute_gradients(loss)) # 模型持久化 saver = tf.train.Saver(tf.global_variables()) return encoder_inputs, decoder_inputs, target_weights, outputs, loss, update, saver, learning_rate_decay_op, learning_rate def train(): """ 训练过程 """ # train_set = [[[5, 7, 9], [11, 13, 15, EOS_ID]], [[7, 9, 11], [13, 15, 17, EOS_ID]], # [[15, 17, 19], [21, 23, 25, EOS_ID]]] train_set = get_train_set() with tf.Session() as sess: encoder_inputs, decoder_inputs, target_weights, outputs, loss, update, saver, learning_rate_decay_op, learning_rate = get_model() # 全部变量初始化 sess.run(tf.global_variables_initializer()) # 训练很多次迭代,每隔10次打印一次loss,可以看情况直接ctrl+c停止 previous_losses = [] for step in xrange(20000): sample_encoder_inputs, sample_decoder_inputs, sample_target_weights = get_samples(train_set, 1000) input_feed = {} for l in xrange(input_seq_len): input_feed[encoder_inputs[l].name] = sample_encoder_inputs[l] for l in xrange(output_seq_len): input_feed[decoder_inputs[l].name] = sample_decoder_inputs[l] input_feed[target_weights[l].name] = sample_target_weights[l] input_feed[decoder_inputs[output_seq_len].name] = np.zeros([len(sample_decoder_inputs[0])], dtype=np.int32) [loss_ret, _] = sess.run([loss, update], input_feed) if step % 10 == 0: print 'step=', step, 'loss=', loss_ret, 'learning_rate=', learning_rate.eval() if len(previous_losses) > 5 and loss_ret > max(previous_losses[-5:]): sess.run(learning_rate_decay_op) previous_losses.append(loss_ret) # 模型持久化 saver.save(sess, './model/demo') def predict(): """ 预测过程 """ with tf.Session() as sess: encoder_inputs, decoder_inputs, target_weights, outputs, loss, update, saver, learning_rate_decay_op, learning_rate = get_model(feed_previous=True) saver.restore(sess, './model/demo') sys.stdout.write("> ") sys.stdout.flush() input_seq = sys.stdin.readline() while input_seq: input_seq = input_seq.strip() input_id_list = get_id_list_from(input_seq) if (len(input_id_list)): sample_encoder_inputs, sample_decoder_inputs, sample_target_weights = seq_to_encoder(' '.join([str(v) for v in input_id_list])) input_feed = {} for l in xrange(input_seq_len): input_feed[encoder_inputs[l].name] = sample_encoder_inputs[l] for l in xrange(output_seq_len): input_feed[decoder_inputs[l].name] = sample_decoder_inputs[l] input_feed[target_weights[l].name] = sample_target_weights[l] input_feed[decoder_inputs[output_seq_len].name] = np.zeros([2], dtype=np.int32) # 预测输出 outputs_seq = sess.run(outputs, input_feed) # 因为输出数据每一个是num_decoder_symbols维的,因此找到数值最大的那个就是预测的id,就是这里的argmax函数的功能 outputs_seq = [int(np.argmax(logit[0], axis=0)) for logit in outputs_seq] # 如果是结尾符,那么后面的语句就不输出了 if EOS_ID in outputs_seq: outputs_seq = outputs_seq[:outputs_seq.index(EOS_ID)] outputs_seq = [wordToken.id2word(v) for v in outputs_seq] print " ".join(outputs_seq) else: print "WARN:词汇不在服务区" sys.stdout.write("> ") sys.stdout.flush() input_seq = sys.stdin.readline() if __name__ == "__main__": if sys.argv[1] == 'train': train() else: predict()
vkbottle/dispatch/__init__.py
homus32/vkbottle
698
11069947
from .abc import ABCRouter from .bot_router import BotRouter from .dispenser import ABCStateDispenser, BuiltinStateDispenser from .handlers import ABCHandler from .middlewares import BaseMiddleware, MiddlewareResponse from .return_manager import BaseReturnManager from .rules import ABCRule, ABCFilter, AndFilter, OrFilter from .views import ABCView, ABCDispenseView, ABCMessageView, MessageView, RawEventView
tests/fixtures/example.py
tony/vcspull
169
11069965
<reponame>tony/vcspull<filename>tests/fixtures/example.py<gh_stars>100-1000 import os config_dict = { "/home/me/myproject/study/": { "linux": "git+git://git.kernel.org/linux/torvalds/linux.git", "freebsd": "git+https://github.com/freebsd/freebsd.git", "sphinx": "hg+https://bitbucket.org/birkenfeld/sphinx", "docutils": "svn+http://svn.code.sf.net/p/docutils/code/trunk", }, "/home/me/myproject/github_projects/": { "kaptan": { "url": "git+git<EMAIL>:tony/kaptan.git", "remotes": { "upstream": "git+https://github.com/emre/kaptan", "ms": "git+https://github.com/ms/kaptan.git", }, } }, "/home/me/myproject": { ".vim": { "url": "git+git<EMAIL>:tony/vim-config.git", "shell_command_after": "ln -sf /home/me/.vim/.vimrc /home/me/.vimrc", }, ".tmux": { "url": "git+git@<EMAIL>.com:tony/tmux-config.git", "shell_command_after": [ "ln -sf /home/me/.tmux/.tmux.conf /home/me/.tmux.conf" ], }, }, } config_dict_expanded = [ { "name": "linux", "parent_dir": "/home/me/myproject/study/", "dir": os.path.join("/home/me/myproject/study/", "linux"), "url": "git+git://git.kernel.org/linux/torvalds/linux.git", }, { "name": "freebsd", "parent_dir": "/home/me/myproject/study/", "dir": os.path.join("/home/me/myproject/study/", "freebsd"), "url": "git+https://github.com/freebsd/freebsd.git", }, { "name": "sphinx", "parent_dir": "/home/me/myproject/study/", "dir": os.path.join("/home/me/myproject/study/", "sphinx"), "url": "hg+https://bitbucket.org/birkenfeld/sphinx", }, { "name": "docutils", "parent_dir": "/home/me/myproject/study/", "dir": os.path.join("/home/me/myproject/study/", "docutils"), "url": "svn+http://svn.code.sf.net/p/docutils/code/trunk", }, { "name": "kaptan", "url": "<EMAIL>+<EMAIL>:tony/kaptan.git", "parent_dir": "/home/me/myproject/github_projects/", "dir": os.path.join("/home/me/myproject/github_projects/", "kaptan"), "remotes": [ {"remote_name": "upstream", "url": "git+https://github.com/emre/kaptan"}, {"remote_name": "ms", "url": "git+https://github.com/ms/kaptan.git"}, ], }, { "name": ".vim", "parent_dir": "/home/me/myproject", "dir": os.path.join("/home/me/myproject", ".vim"), "url": "<EMAIL>+<EMAIL>:tony/vim-config.git", "shell_command_after": ["ln -sf /home/me/.vim/.vimrc /home/me/.vimrc"], }, { "name": ".tmux", "parent_dir": "/home/me/myproject", "dir": os.path.join("/home/me/myproject", ".tmux"), "url": "<EMAIL>+<EMAIL>:tony/tmux-config.git", "shell_command_after": ["ln -sf /home/me/.tmux/.tmux.conf /home/me/.tmux.conf"], }, ]
examples/exploding_logo.py
salt-die/nurses_2
171
11069967
""" Credit for ascii art logo to <NAME> (https://ascii.matthewbarber.io/art/python/) Directions: 'esc' to quit 'r' to reset 'click' to poke """ import asyncio import numpy as np from nurses_2.app import App from nurses_2.colors import foreground_rainbow from nurses_2.io import MouseButton from nurses_2.widgets.particle_field.text_field import ( TextParticleField, TextParticle, ) LOGO = """ _.gj8888888lkoz.,_ d888888888888888888888b, j88P""V8888888888888888888 888 8888888888888888888 888baed8888888888888888888 88888888888888888888888888 8888888888888 ,ad8888888888888888888888888888888888 888888be, d8888888888888888888888888888888888888 888888888b, d88888888888888888888888888888888888888 8888888888b, j888888888888888888888888888888888888888 88888888888p, j888888888888888888888888888888888888888' 8888888888888 8888888888888888888888888888888888888^" ,8888888888888 88888888888888^' .d88888888888888 8888888888888" .a8888888888888888888888888888888888888 8888888888888 ,888888888888888888888888888888888888888^ ^888888888888 888888888888888888888888888888888888888^ V88888888888 88888888888888888888888888888888888888Y V8888888888 8888888888888888888888888888888888888Y `"^8888888 8888888888888888888888888888888888^"' 8888888888888 88888888888888888888888888 8888888888888888888P""V888 8888888888888888888 888 8888888888888888888baed88V `^888888888888888888888^ `'"^^V888888888V^^' """ HEIGHT, WIDTH = 28, 56 POWER = 2 MAX_PARTICLE_SPEED = 10 FRICTION = .97 NCOLORS = 100 RAINBOW = foreground_rainbow(NCOLORS) BLUE_INDEX = round(.65 * NCOLORS) YELLOW_INDEX = round(.1 * NCOLORS) COLOR_CHANGE_SPEED = 5 PERCENTS = tuple(np.linspace(0, 1, 30)) class PokeParticle(TextParticle): def __init__(self, color_index, **kwargs): self.color_index = color_index super().__init__(color_pair=RAINBOW[color_index], **kwargs) self.middle_row = self.middle_column = 0 self.original_position = self.pos self.position = complex(self.top, self.left) self.velocity = 0j self._update_task = self._reset_task = asyncio.create_task(asyncio.sleep(0)) # dummy task def update_geometry(self): """ Re-position towards center of parent's canvas. """ old_middle_row = self.middle_row old_middle_column = self.middle_column parent_middle_row, parent_middle_column = self.parent.center self.middle_row = parent_middle_row - HEIGHT // 2 self.middle_column = parent_middle_column - WIDTH // 2 move_vertical = self.middle_row - old_middle_row move_horizontal = self.middle_column - old_middle_column o_top, o_left = self.original_position o_top += move_vertical o_left += move_horizontal self.original_position = o_top, o_left self.position += complex(move_vertical, move_horizontal) self.top += move_vertical self.left += move_horizontal def on_click(self, mouse_event): if mouse_event.button == MouseButton.LEFT: if dyx := -complex(*self.to_local(mouse_event.position)): self.velocity += POWER * dyx / (dyx.real**2 + dyx.imag**2) if self._update_task.done(): self._reset_task.cancel() self._update_task = asyncio.create_task(self.update()) def on_press(self, key_press_event): if key_press_event.key == "r" and self._reset_task.done(): self._reset_task = asyncio.create_task(self.reset()) async def update(self): """ Coroutine that updates color and position due to velocity. """ parent = self.parent color_index = RAINBOW.index(self.color_pair) while True: velocity = self.velocity speed = abs(velocity) if speed < .001: return color_index = round(color_index + min(speed, MAX_PARTICLE_SPEED) * COLOR_CHANGE_SPEED) % NCOLORS self.color_pair = RAINBOW[color_index] if speed > MAX_PARTICLE_SPEED: velocity *= MAX_PARTICLE_SPEED / speed self.position += velocity position = self.position self.top = top = round(position.real) self.left = left = round(position.imag) if ( top < 0 and velocity.real < 0 or top >= parent.height and velocity.real > 0 ): velocity = -velocity.conjugate() if ( left < 0 and velocity.imag < 0 or left >= parent.width and velocity.imag > 0 ): velocity = velocity.conjugate() self.velocity = velocity * FRICTION try: await asyncio.sleep(0) except asyncio.CancelledError: return async def reset(self): """ Coroutine that returns a particle to its starting position with original color. """ self._update_task.cancel() self.velocity = 0j start_y, start_x = self.pos end_y, end_x = self.original_position start_color_index = RAINBOW.index(self.color_pair) end_color_index = self.color_index for percent in PERCENTS: percent_left = 1 - percent self.top = round(percent_left * start_y + percent * end_y) self.left = round(percent_left * start_x + percent * end_x) self.position = complex(self.top, self.left) color_index = round(percent_left * start_color_index + percent * end_color_index) self.color_pair = RAINBOW[color_index] try: await asyncio.sleep(0) except asyncio.CancelledError: return class MyApp(App): async def on_start(self): # Create array of starting colors of particles colors = np.full((HEIGHT, WIDTH), BLUE_INDEX) colors[-7:] = colors[-13: -7, -41:] = YELLOW_INDEX colors[-14, -17:] = colors[-20: -14, -15:] = YELLOW_INDEX field = TextParticleField(size_hint=(1.0, 1.0)) # Create a Particle for each non-space character in the logo field.add_widgets( PokeParticle(pos=(y, x), char=char, color_index=colors[y, x]) for y, row in enumerate(LOGO.splitlines()) for x, char in enumerate(row) if char != " " ) self.add_widget(field) MyApp().run()
modules/python/test/test_persistence.py
ghennadii/opencv
163
11069973
#!/usr/bin/env python """"Core serializaion tests.""" import tempfile import os import cv2 as cv import numpy as np from tests_common import NewOpenCVTests class persistence_test(NewOpenCVTests): def test_yml_rw(self): fd, fname = tempfile.mkstemp(prefix="opencv_python_persistence_", suffix=".yml") os.close(fd) # Writing ... expected = np.array([[[0, 1, 2, 3, 4]]]) expected_str = ("Hello", "World", "!") fs = cv.FileStorage(fname, cv.FILE_STORAGE_WRITE) fs.write("test", expected) fs.write("strings", expected_str) fs.release() # Reading ... fs = cv.FileStorage(fname, cv.FILE_STORAGE_READ) root = fs.getFirstTopLevelNode() self.assertEqual(root.name(), "test") test = fs.getNode("test") self.assertEqual(test.empty(), False) self.assertEqual(test.name(), "test") self.assertEqual(test.type(), cv.FILE_NODE_MAP) self.assertEqual(test.isMap(), True) actual = test.mat() self.assertEqual(actual.shape, expected.shape) self.assertEqual(np.array_equal(expected, actual), True) strings = fs.getNode("strings") self.assertEqual(strings.isSeq(), True) self.assertEqual(strings.size(), len(expected_str)) self.assertEqual(all(strings.at(i).isString() for i in range(strings.size())), True) self.assertSequenceEqual([strings.at(i).string() for i in range(strings.size())], expected_str) fs.release() os.remove(fname)
frameworks/CPLELearning.py
mrengler/semisup-learn
101
11069994
class Unbuffered(object): def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) import sys sys.stdout = Unbuffered(sys.stdout) from sklearn.base import BaseEstimator import numpy import sklearn.metrics from sklearn.linear_model import LogisticRegression as LR import nlopt import scipy.stats class CPLELearningModel(BaseEstimator): """ Contrastive Pessimistic Likelihood Estimation framework for semi-supervised learning, based on (Loog, 2015). This implementation contains two significant differences to (Loog, 2015): - the discriminative likelihood p(y|X), instead of the generative likelihood p(X), is used for optimization - apart from `pessimism' (the assumption that the true labels of the unlabeled instances are as adversarial to the likelihood as possible), the optimization objective also tries to increase the likelihood on the labeled examples This class takes a base model (any scikit learn estimator), trains it on the labeled examples, and then uses global optimization to find (soft) label hypotheses for the unlabeled examples in a pessimistic fashion (such that the model log likelihood on the unlabeled data is as small as possible, but the log likelihood on the labeled data is as high as possible) See Loog, Marco. "Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification." arXiv preprint arXiv:1503.00269 (2015). http://arxiv.org/pdf/1503.00269 Attributes ---------- basemodel : BaseEstimator instance Base classifier to be trained on the partially supervised data pessimistic : boolean, optional (default=True) Whether the label hypotheses for the unlabeled instances should be pessimistic (i.e. minimize log likelihood) or optimistic (i.e. maximize log likelihood). Pessimistic label hypotheses ensure safety (i.e. the semi-supervised solution will not be worse than a model trained on the purely supervised instances) predict_from_probabilities : boolean, optional (default=False) The prediction is calculated from the probabilities if this is True (1 if more likely than the mean predicted probability or 0 otherwise). If it is false, the normal base model predictions are used. This only affects the predict function. Warning: only set to true if predict will be called with a substantial number of data points use_sample_weighting : boolean, optional (default=True) Whether to use sample weights (soft labels) for the unlabeled instances. Setting this to False allows the use of base classifiers which do not support sample weights (but might slow down the optimization) max_iter : int, optional (default=3000) Maximum number of iterations verbose : int, optional (default=1) Enable verbose output (1 shows progress, 2 shows the detailed log likelihood at every iteration). """ def __init__(self, basemodel, pessimistic=True, predict_from_probabilities = False, use_sample_weighting = True, max_iter=3000, verbose = 1): self.model = basemodel self.pessimistic = pessimistic self.predict_from_probabilities = predict_from_probabilities self.use_sample_weighting = use_sample_weighting self.max_iter = max_iter self.verbose = verbose self.it = 0 # iteration counter self.noimprovementsince = 0 # log likelihood hasn't improved since this number of iterations self.maxnoimprovementsince = 3 # threshold for iterations without improvements (convergence is assumed when this is reached) self.buffersize = 200 # buffer for the last few discriminative likelihoods (used to check for convergence) self.lastdls = [0]*self.buffersize # best discriminative likelihood and corresponding soft labels; updated during training self.bestdl = numpy.infty self.bestlbls = [] # unique id self.id = str(chr(numpy.random.randint(26)+97))+str(chr(numpy.random.randint(26)+97)) def discriminative_likelihood(self, model, labeledData, labeledy = None, unlabeledData = None, unlabeledWeights = None, unlabeledlambda = 1, gradient=[], alpha = 0.01): unlabeledy = (unlabeledWeights[:, 0]<0.5)*1 uweights = numpy.copy(unlabeledWeights[:, 0]) # large prob. for k=0 instances, small prob. for k=1 instances uweights[unlabeledy==1] = 1-uweights[unlabeledy==1] # subtract from 1 for k=1 instances to reflect confidence weights = numpy.hstack((numpy.ones(len(labeledy)), uweights)) labels = numpy.hstack((labeledy, unlabeledy)) # fit model on supervised data if self.use_sample_weighting: model.fit(numpy.vstack((labeledData, unlabeledData)), labels, sample_weight=weights) else: model.fit(numpy.vstack((labeledData, unlabeledData)), labels) # probability of labeled data P = model.predict_proba(labeledData) try: # labeled discriminative log likelihood labeledDL = -sklearn.metrics.log_loss(labeledy, P) except Exception as e: print(e) P = model.predict_proba(labeledData) # probability of unlabeled data unlabeledP = model.predict_proba(unlabeledData) try: # unlabeled discriminative log likelihood eps = 1e-15 unlabeledP = numpy.clip(unlabeledP, eps, 1 - eps) unlabeledDL = numpy.average((unlabeledWeights*numpy.vstack((1-unlabeledy, unlabeledy)).T*numpy.log(unlabeledP)).sum(axis=1)) except Exception as e: print(e) unlabeledP = model.predict_proba(unlabeledData) if self.pessimistic: # pessimistic: minimize the difference between unlabeled and labeled discriminative likelihood (assume worst case for unknown true labels) dl = unlabeledlambda * unlabeledDL - labeledDL else: # optimistic: minimize negative total discriminative likelihood (i.e. maximize likelihood) dl = - unlabeledlambda * unlabeledDL - labeledDL return dl def discriminative_likelihood_objective(self, model, labeledData, labeledy = None, unlabeledData = None, unlabeledWeights = None, unlabeledlambda = 1, gradient=[], alpha = 0.01): if self.it == 0: self.lastdls = [0]*self.buffersize dl = self.discriminative_likelihood(model, labeledData, labeledy, unlabeledData, unlabeledWeights, unlabeledlambda, gradient, alpha) self.it += 1 self.lastdls[numpy.mod(self.it, len(self.lastdls))] = dl if numpy.mod(self.it, self.buffersize) == 0: # or True: improvement = numpy.mean((self.lastdls[(len(self.lastdls)/2):])) - numpy.mean((self.lastdls[:(len(self.lastdls)/2)])) # ttest - test for hypothesis that the likelihoods have not changed (i.e. there has been no improvement, and we are close to convergence) _, prob = scipy.stats.ttest_ind(self.lastdls[(len(self.lastdls)/2):], self.lastdls[:(len(self.lastdls)/2)]) # if improvement is not certain accoring to t-test... noimprovement = prob > 0.1 and numpy.mean(self.lastdls[(len(self.lastdls)/2):]) < numpy.mean(self.lastdls[:(len(self.lastdls)/2)]) if noimprovement: self.noimprovementsince += 1 if self.noimprovementsince >= self.maxnoimprovementsince: # no improvement since a while - converged; exit self.noimprovementsince = 0 raise Exception(" converged.") # we need to raise an exception to get NLopt to stop before exceeding the iteration budget else: self.noimprovementsince = 0 if self.verbose == 2: print(self.id,self.it, dl, numpy.mean(self.lastdls), improvement, round(prob, 3), (prob < 0.1)) elif self.verbose: sys.stdout.write(('.' if self.pessimistic else '.') if not noimprovement else 'n') if dl < self.bestdl: self.bestdl = dl self.bestlbls = numpy.copy(unlabeledWeights[:, 0]) return dl def fit(self, X, y): # -1 for unlabeled unlabeledX = X[y==-1, :] labeledX = X[y!=-1, :] labeledy = y[y!=-1] M = unlabeledX.shape[0] # train on labeled data self.model.fit(labeledX, labeledy) unlabeledy = self.predict(unlabeledX) #re-train, labeling unlabeled instances pessimistically # pessimistic soft labels ('weights') q for unlabelled points, q=P(k=0|Xu) f = lambda softlabels, grad=[]: self.discriminative_likelihood_objective(self.model, labeledX, labeledy=labeledy, unlabeledData=unlabeledX, unlabeledWeights=numpy.vstack((softlabels, 1-softlabels)).T, gradient=grad) #- supLL lblinit = numpy.random.random(len(unlabeledy)) try: self.it = 0 opt = nlopt.opt(nlopt.GN_DIRECT_L_RAND, M) opt.set_lower_bounds(numpy.zeros(M)) opt.set_upper_bounds(numpy.ones(M)) opt.set_min_objective(f) opt.set_maxeval(self.max_iter) self.bestsoftlbl = opt.optimize(lblinit) print(" max_iter exceeded.") except Exception as e: print(e) self.bestsoftlbl = self.bestlbls if numpy.any(self.bestsoftlbl != self.bestlbls): self.bestsoftlbl = self.bestlbls ll = f(self.bestsoftlbl) unlabeledy = (self.bestsoftlbl<0.5)*1 uweights = numpy.copy(self.bestsoftlbl) # large prob. for k=0 instances, small prob. for k=1 instances uweights[unlabeledy==1] = 1-uweights[unlabeledy==1] # subtract from 1 for k=1 instances to reflect confidence weights = numpy.hstack((numpy.ones(len(labeledy)), uweights)) labels = numpy.hstack((labeledy, unlabeledy)) if self.use_sample_weighting: self.model.fit(numpy.vstack((labeledX, unlabeledX)), labels, sample_weight=weights) else: self.model.fit(numpy.vstack((labeledX, unlabeledX)), labels) if self.verbose > 1: print("number of non-one soft labels: ", numpy.sum(self.bestsoftlbl != 1), ", balance:", numpy.sum(self.bestsoftlbl<0.5), " / ", len(self.bestsoftlbl)) print("current likelihood: ", ll) if not getattr(self.model, "predict_proba", None): # Platt scaling self.plattlr = LR() preds = self.model.predict(labeledX) self.plattlr.fit( preds.reshape( -1, 1 ), labeledy ) return self def predict_proba(self, X): """Compute probabilities of possible outcomes for samples in X. The model need to have probability information computed at training time: fit with attribute `probability` set to True. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ if getattr(self.model, "predict_proba", None): return self.model.predict_proba(X) else: preds = self.model.predict(X) return self.plattlr.predict_proba(preds.reshape( -1, 1 )) def predict(self, X): """Perform classification on samples in X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- y_pred : array, shape = [n_samples] Class labels for samples in X. """ if self.predict_from_probabilities: P = self.predict_proba(X) return (P[:, 0]<numpy.average(P[:, 0])) else: return self.model.predict(X) def score(self, X, y, sample_weight=None): return sklearn.metrics.accuracy_score(y, self.predict(X), sample_weight=sample_weight)
tests/cmdline/params/types/test_data.py
mkrack/aiida-core
153
11070000
<gh_stars>100-1000 # -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Tests for the `DataParamType`.""" import pytest from aiida.cmdline.params.types import DataParamType from aiida.orm import Data from aiida.orm.utils.loaders import OrmEntityLoader class TestDataParamType: """Tests for the `DataParamType`.""" @pytest.fixture(autouse=True) def init_profile(self, aiida_profile_clean): # pylint: disable=unused-argument """ Create some code to test the DataParamType parameter type for the command line infrastructure We create an initial code with a random name and then on purpose create two code with a name that matches exactly the ID and UUID, respectively, of the first one. This allows us to test the rules implemented to solve ambiguities that arise when determing the identifier type """ # pylint: disable=attribute-defined-outside-init self.param = DataParamType() self.entity_01 = Data().store() self.entity_02 = Data().store() self.entity_03 = Data().store() self.entity_01.label = 'data_01' self.entity_02.label = str(self.entity_01.pk) self.entity_03.label = str(self.entity_01.uuid) def test_get_by_id(self): """ Verify that using the ID will retrieve the correct entity """ identifier = f'{self.entity_01.pk}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_01.uuid def test_get_by_uuid(self): """ Verify that using the UUID will retrieve the correct entity """ identifier = f'{self.entity_01.uuid}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_01.uuid def test_get_by_label(self): """ Verify that using the LABEL will retrieve the correct entity """ identifier = f'{self.entity_01.label}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_01.uuid def test_ambiguous_label_pk(self): """ Situation: LABEL of entity_02 is exactly equal to ID of entity_01 Verify that using an ambiguous identifier gives precedence to the ID interpretation Appending the special ambiguity breaker character will force the identifier to be treated as a LABEL """ identifier = f'{self.entity_02.label}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_01.uuid identifier = f'{self.entity_02.label}{OrmEntityLoader.label_ambiguity_breaker}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_02.uuid def test_ambiguous_label_uuid(self): """ Situation: LABEL of entity_03 is exactly equal to UUID of entity_01 Verify that using an ambiguous identifier gives precedence to the UUID interpretation Appending the special ambiguity breaker character will force the identifier to be treated as a LABEL """ identifier = f'{self.entity_03.label}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_01.uuid identifier = f'{self.entity_03.label}{OrmEntityLoader.label_ambiguity_breaker}' result = self.param.convert(identifier, None, None) assert result.uuid == self.entity_03.uuid
kafka/tools/protocol/requests/delete_topics_v0.py
akashvacher/kafka-tools
578
11070006
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from kafka.tools.protocol.requests import BaseRequest, ArgumentError from kafka.tools.protocol.responses.delete_topics_v0 import DeleteTopicsV0Response class DeleteTopicsV0Request(BaseRequest): api_key = 20 api_version = 0 cmd = "DeleteTopics" response = DeleteTopicsV0Response supports_cli = True help_string = ("Request: {0}V{1}\n".format(cmd, api_version) + "Format: {0}V{1} timeout (topic_name ...)\n".format(cmd, api_version) + "Description: Delete the specified topics.\n") schema = [ {'name': 'topics', 'type': 'array', 'item_type': 'string'}, {'name': 'timeout', 'type': 'int32'}, ] @classmethod def process_arguments(cls, cmd_args): if (len(cmd_args) < 2) or (not cmd_args[0].isdigit()): raise ArgumentError("The first argument must be an integer, and at least one topic must be provided") return {'topics': cmd_args[1:], 'timeout': int(cmd_args[0])}
GeometryReaders/XMLIdealGeometryESSource/python/cmsGeometryDB_cff.py
ckamtsikis/cmssw
852
11070020
<reponame>ckamtsikis/cmssw<filename>GeometryReaders/XMLIdealGeometryESSource/python/cmsGeometryDB_cff.py import FWCore.ParameterSet.Config as cms XMLFromDBSource = cms.ESProducer("XMLIdealGeometryESProducer", rootDDName = cms.string('cms:OCMS'), label = cms.string('Extended') )
var/spack/repos/builtin/packages/geode/package.py
kkauder/spack
2,360
11070024
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Geode(Package): """ Apache Geode is a data management platform that provides real-time, consistent access to data-intensive applications throughout widely distributed cloud architectures. """ homepage = "https://geode.apache.org/" url = "https://archive.apache.org/dist/geode/1.9.2/apache-geode-1.9.2.tgz" version('1.9.2', sha256='4b8118114ef43166f6bf73af56b93aadbf9108fcab06d1fbbb8e27f7d559d7e0') version('1.9.0', sha256='8794808ebc89bc855f0b989b32e91e890d446cfd058e123f6ccb9e12597c1c4f') version('1.8.0', sha256='58edc41edac4eabd899322b73a24727eac41f6253274c2ce7d0a82227121ae3e') version('1.7.0', sha256='91eec04420f46e949d32104479c4a4b5b34a4e5570dca7b98ca067a30d5a783d') version('1.6.0', sha256='79e8d81d058b1c4edd5fb414ff30ac530f7913b978f5abc899c353fcb06e5ef3') depends_on('java', type='run') def install(self, spec, prefix): install_tree('.', prefix)
Source/driver/parse_castro_params.py
joehellmers/Castro
178
11070025
#!/usr/bin/env python3 """ This script parses the list of C++ runtime parameters and writes the necessary header files and Fortran routines to make them available in Castro's C++ routines. parameters have the format: name type default need-in-fortran? ifdef the first three (name, type, default) are mandatory: name: the name of the parameter. This will be the same name as the variable in C++ unless a pair is specified as (name, cpp_name) type: the C++ data type (int, bool, Real, string) default: the default value. If specified as a pair, (a, b), then the first value is the normal default and the second is for debug mode (#ifdef AMREX_DEBUG) the next are optional: need-in-fortran: no longer used ifdef: only define this parameter if the name provided is #ifdef-ed Any line beginning with a "#" is ignored Commands begin with a "@": @namespace: sets the namespace that these will be under (see below) e.g. @namespace castro Note: categories listed in the input file aren't used for code generation but are used for the documentation generation For a namespace, name, we write out: -- name_params.H (for castro, included in Castro.H): sets up the namespace and extern parameters -- name_declares.H (for castro, included in Castro.cpp): declares the runtime parameters -- name_queries.H (for castro, included in Castro.cpp): does the parmparse query to override the default in C++ -- name_job_info_tests.H this tests the current value against the default and outputs into a file """ import argparse import re import sys import runtime_parameters as rp CWARNING = """ // This file is automatically created by parse_castro_params.py at build time. // To update or add runtime parameters, please edit _cpp_parameters and rebuild.\n """ def parse_params(infile, out_directory): params = [] namespace = None try: f = open(infile) except IOError: sys.exit("error opening the input file") for line in f: if line[0] == "#": continue if line.strip() == "": continue if line[0] == "@": # this is a command cmd, value = line.split(":") if cmd == "@namespace": fields = value.split() namespace = fields[0] else: sys.exit("invalid command") continue # this splits the line into separate fields. A field is a # single word or a pair in parentheses like "(a, b)" fields = re.findall(r'[\w\"\+\.-]+|\([\w+\.-]+\s*,\s*[\w\+\.-]+\)', line) name = fields[0] if name[0] == "(": name, cpp_var_name = re.findall(r"\w+", name) else: cpp_var_name = name dtype = fields[1].lower() default = fields[2] if default[0] == "(": default, debug_default = re.findall(r"\w+", default) else: debug_default = None try: in_fortran_string = fields[3] except IndexError: in_fortran = 0 else: if in_fortran_string.lower().strip() == "y": in_fortran = 1 else: in_fortran = 0 try: ifdef = fields[4] except IndexError: ifdef = None if namespace is None: sys.exit("namespace not set") params.append(rp.Param(name, dtype, default, cpp_var_name=cpp_var_name, namespace=namespace, debug_default=debug_default, in_fortran=in_fortran, ifdef=ifdef)) # output # find all the namespaces namespaces = {q.namespace for q in params} for nm in namespaces: params_nm = [q for q in params if q.namespace == nm] ifdefs = {q.ifdef for q in params_nm} # write name_declares.H try: cd = open(f"{out_directory}/{nm}_declares.H", "w") except IOError: sys.exit(f"unable to open {nm}_declares.H for writing") cd.write(CWARNING) cd.write(f"#ifndef _{nm.upper()}_DECLARES_H_\n") cd.write(f"#define _{nm.upper()}_DECLARES_H_\n") for ifdef in ifdefs: if ifdef is None: for p in [q for q in params_nm if q.ifdef is None]: cd.write(p.get_declare_string()) else: cd.write(f"#ifdef {ifdef}\n") for p in [q for q in params_nm if q.ifdef == ifdef]: cd.write(p.get_declare_string()) cd.write("#endif\n") cd.write("#endif\n") cd.close() # write name_params.H try: cp = open(f"{out_directory}/{nm}_params.H", "w") except IOError: sys.exit(f"unable to open {nm}_params.H for writing") cp.write(CWARNING) cp.write(f"#ifndef _{nm.upper()}_PARAMS_H_\n") cp.write(f"#define _{nm.upper()}_PARAMS_H_\n") cp.write("\n") cp.write(f"namespace {nm} {{\n") for ifdef in ifdefs: if ifdef is None: for p in [q for q in params_nm if q.ifdef is None]: cp.write(p.get_decl_string()) else: cp.write(f"#ifdef {ifdef}\n") for p in [q for q in params_nm if q.ifdef == ifdef]: cp.write(p.get_decl_string()) cp.write("#endif\n") cp.write("}\n\n") cp.write("#endif\n") cp.close() # write castro_queries.H try: cq = open(f"{out_directory}/{nm}_queries.H", "w") except IOError: sys.exit(f"unable to open {nm}_queries.H for writing") cq.write(CWARNING) for ifdef in ifdefs: if ifdef is None: for p in [q for q in params_nm if q.ifdef is None]: cq.write(p.get_default_string()) cq.write(p.get_query_string("C++")) cq.write("\n") else: cq.write(f"#ifdef {ifdef}\n") for p in [q for q in params_nm if q.ifdef == ifdef]: cq.write(p.get_default_string()) cq.write(p.get_query_string("C++")) cq.write("\n") cq.write("#endif\n") cq.write("\n") cq.close() # write the job info tests try: jo = open(f"{out_directory}/{nm}_job_info_tests.H", "w") except IOError: sys.exit(f"unable to open {nm}_job_info_tests.H") for ifdef in ifdefs: if ifdef is None: for p in [q for q in params_nm if q.ifdef is None]: jo.write(p.get_job_info_test()) else: jo.write(f"#ifdef {ifdef}\n") for p in [q for q in params_nm if q.ifdef == ifdef]: jo.write(p.get_job_info_test()) jo.write("#endif\n") jo.close() def main(): """the main driver""" parser = argparse.ArgumentParser() parser.add_argument("-o", type=str, default=None, help="output directory for the generated files") parser.add_argument("input_file", type=str, nargs=1, help="input file containing the list of parameters we will define") args = parser.parse_args() parse_params(args.input_file[0], args.o) if __name__ == "__main__": main()
scripts/external_libs/scapy-2.3.1/python2/scapy/asn1packet.py
klement/trex-core
995
11070036
## This file is part of Scapy ## See http://www.secdev.org/projects/scapy for more informations ## Copyright (C) <NAME> <<EMAIL>> ## This program is published under a GPLv2 license """ Packet holding data in Abstract Syntax Notation (ASN.1). """ from packet import * class ASN1_Packet(Packet): ASN1_root = None ASN1_codec = None def init_fields(self): flist = self.ASN1_root.get_fields_list() self.do_init_fields(flist) self.fields_desc = flist def self_build(self): if self.raw_packet_cache is not None: return self.raw_packet_cache return self.ASN1_root.build(self) def do_dissect(self, x): return self.ASN1_root.dissect(self, x)
DynamoDB-SDK-Examples/python/WorkingWithQueries/query_begins_with.py
mikeweltejr/aws-dynamodb-examples
261
11070044
<filename>DynamoDB-SDK-Examples/python/WorkingWithQueries/query_begins_with.py import boto3, json from boto3.dynamodb.conditions import Key # boto3 is the AWS SDK library for Python. # The "resources" interface allows for a higher-level abstraction than the low-level client interface. # For more details, go to http://boto3.readthedocs.io/en/latest/guide/resources.html dynamodb = boto3.resource('dynamodb', region_name='us-west-2') table = dynamodb.Table('RetailDatabase') # When making a Query API call, we use the KeyConditionExpression parameter to specify the partition key on which we want to query. # We're using the Key object from the Boto3 library to specify that we want the attribute name ("pk") # to equal "<EMAIL>" by using the ".eq()" method. Further we get all of those items that have a sort key using the # "begins_with()" method to look for "meta::". resp = table.query(KeyConditionExpression=Key('pk').eq('<EMAIL>') & Key('sk').begins_with('meta::')) print("The query returned the following items:") for item in resp['Items']: print(json.dumps(item, indent=4, sort_keys=True))
changes/compat.py
michaeljoseph/changes
135
11070048
<filename>changes/compat.py import sys IS_WINDOWS = 'win32' in str(sys.platform).lower()
rupo/util/timeit.py
dagrigorev/rupo
171
11070053
<reponame>dagrigorev/rupo import time import logging def timeit(method): def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() logging.debug('%s %2.2f sec' % (method.__name__, te-ts)) return result return timed
tests/conftest.py
jakul/pytest_httpx
148
11070057
# see https://docs.pytest.org/en/documentation-restructure/how-to/writing_plugins.html#testing-plugins pytest_plugins = ["pytester"]
salt/modules/boto_cfn.py
markgras/salt
9,425
11070077
""" Connection module for Amazon Cloud Formation .. versionadded:: 2015.5.0 :configuration: This module accepts explicit AWS credentials but can also utilize IAM roles assigned to the instance through Instance Profiles. Dynamic credentials are then automatically obtained from AWS API and no further configuration is necessary. More Information available at: .. code-block:: text http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html If IAM roles are not used you need to specify them either in a pillar or in the minion's config file: .. code-block:: yaml cfn.keyid: <KEY> cfn.key: <KEY> A region may also be specified in the configuration: .. code-block:: yaml cfn.region: us-east-1 :depends: boto """ # keep lint from choking on _get_conn and _cache_id # pylint: disable=E0602 import logging import salt.utils.versions log = logging.getLogger(__name__) # pylint: disable=import-error try: # pylint: disable=unused-import import boto import boto.cloudformation # pylint: enable=unused-import from boto.exception import BotoServerError logging.getLogger("boto").setLevel(logging.CRITICAL) HAS_BOTO = True except ImportError: HAS_BOTO = False def __virtual__(): """ Only load if boto libraries exist. """ return salt.utils.versions.check_boto_reqs(check_boto3=False) def __init__(opts): if HAS_BOTO: __utils__["boto.assign_funcs"]( __name__, "cfn", module="cloudformation", pack=__salt__ ) def exists(name, region=None, key=None, keyid=None, profile=None): """ Check to see if a stack exists. CLI Example: .. code-block:: bash salt myminion boto_cfn.exists mystack region=us-east-1 """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: # Returns an object if stack exists else an exception exists = conn.describe_stacks(name) log.debug("Stack %s exists.", name) return True except BotoServerError as e: log.debug("boto_cfn.exists raised an exception", exc_info=True) return False def describe(name, region=None, key=None, keyid=None, profile=None): """ Describe a stack. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt myminion boto_cfn.describe mystack region=us-east-1 """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: # Returns an object if stack exists else an exception r = conn.describe_stacks(name) if r: stack = r[0] log.debug("Found VPC: %s", stack.stack_id) keys = ( "stack_id", "description", "stack_status", "stack_status_reason", "tags", ) ret = {k: getattr(stack, k) for k in keys if hasattr(stack, k)} o = getattr(stack, "outputs") p = getattr(stack, "parameters") outputs = {} parameters = {} for i in o: outputs[i.key] = i.value ret["outputs"] = outputs for j in p: parameters[j.key] = j.value ret["parameters"] = parameters return {"stack": ret} log.debug("Stack %s exists.", name) return True except BotoServerError as e: log.warning("Could not describe stack %s.\n%s", name, e) return False def create( name, template_body=None, template_url=None, parameters=None, notification_arns=None, disable_rollback=None, timeout_in_minutes=None, capabilities=None, tags=None, on_failure=None, stack_policy_body=None, stack_policy_url=None, region=None, key=None, keyid=None, profile=None, ): """ Create a CFN stack. CLI Example: .. code-block:: bash salt myminion boto_cfn.create mystack template_url='https://s3.amazonaws.com/bucket/template.cft' \ region=us-east-1 """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: return conn.create_stack( name, template_body, template_url, parameters, notification_arns, disable_rollback, timeout_in_minutes, capabilities, tags, on_failure, stack_policy_body, stack_policy_url, ) except BotoServerError as e: msg = "Failed to create stack {}.\n{}".format(name, e) log.error(msg) log.debug(e) return False def update_stack( name, template_body=None, template_url=None, parameters=None, notification_arns=None, disable_rollback=False, timeout_in_minutes=None, capabilities=None, tags=None, use_previous_template=None, stack_policy_during_update_body=None, stack_policy_during_update_url=None, stack_policy_body=None, stack_policy_url=None, region=None, key=None, keyid=None, profile=None, ): """ Update a CFN stack. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt myminion boto_cfn.update_stack mystack template_url='https://s3.amazonaws.com/bucket/template.cft' \ region=us-east-1 """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: update = conn.update_stack( name, template_body, template_url, parameters, notification_arns, disable_rollback, timeout_in_minutes, capabilities, tags, use_previous_template, stack_policy_during_update_body, stack_policy_during_update_url, stack_policy_body, stack_policy_url, ) log.debug("Updated result is : %s.", update) return update except BotoServerError as e: msg = "Failed to update stack {}.".format(name) log.debug(e) log.error(msg) return str(e) def delete(name, region=None, key=None, keyid=None, profile=None): """ Delete a CFN stack. CLI Example: .. code-block:: bash salt myminion boto_cfn.delete mystack region=us-east-1 """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: return conn.delete_stack(name) except BotoServerError as e: msg = "Failed to create stack {}.".format(name) log.error(msg) log.debug(e) return str(e) def get_template(name, region=None, key=None, keyid=None, profile=None): """ Check to see if attributes are set on a CFN stack. CLI Example: .. code-block:: bash salt myminion boto_cfn.get_template mystack """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: template = conn.get_template(name) log.info("Retrieved template for stack %s", name) return template except BotoServerError as e: log.debug(e) msg = "Template {} does not exist".format(name) log.error(msg) return str(e) def validate_template( template_body=None, template_url=None, region=None, key=None, keyid=None, profile=None, ): """ Validate cloudformation template .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt myminion boto_cfn.validate_template mystack-template """ conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) try: # Returns an object if json is validated and an exception if its not return conn.validate_template(template_body, template_url) except BotoServerError as e: log.debug(e) msg = "Error while trying to validate template {}.".format(template_body) log.error(msg) return str(e)
CIFAR/utils.py
Omid-Nejati/MoEx
130
11070106
# original code: https://github.com/eladhoffer/convNet.pytorch/blob/master/preprocess.py import torch import random __all__ = ["Compose", "Lighting", "ColorJitter"] class Compose(object): """Composes several transforms together. Args: transforms (list of ``Transform`` objects): list of transforms to compose. Example: >>> transforms.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img): for t in self.transforms: img = t(img) return img def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Lighting(object): """Lighting noise(AlexNet - style PCA - based noise)""" def __init__(self, alphastd, eigval, eigvec): self.alphastd = alphastd self.eigval = torch.Tensor(eigval) self.eigvec = torch.Tensor(eigvec) def __call__(self, img): if self.alphastd == 0: return img alpha = img.new().resize_(3).normal_(0, self.alphastd) rgb = self.eigvec.type_as(img).clone() \ .mul(alpha.view(1, 3).expand(3, 3)) \ .mul(self.eigval.view(1, 3).expand(3, 3)) \ .sum(1).squeeze() return img.add(rgb.view(3, 1, 1).expand_as(img)) class Grayscale(object): def __call__(self, img): gs = img.clone() gs[0].mul_(0.299).add_(0.587, gs[1]).add_(0.114, gs[2]) gs[1].copy_(gs[0]) gs[2].copy_(gs[0]) return gs class Saturation(object): def __init__(self, var): self.var = var def __call__(self, img): gs = Grayscale()(img) alpha = random.uniform(-self.var, self.var) return img.lerp(gs, alpha) class Brightness(object): def __init__(self, var): self.var = var def __call__(self, img): gs = img.new().resize_as_(img).zero_() alpha = random.uniform(-self.var, self.var) return img.lerp(gs, alpha) class Contrast(object): def __init__(self, var): self.var = var def __call__(self, img): gs = Grayscale()(img) gs.fill_(gs.mean()) alpha = random.uniform(-self.var, self.var) return img.lerp(gs, alpha) class ColorJitter(object): def __init__(self, brightness=0.4, contrast=0.4, saturation=0.4): self.brightness = brightness self.contrast = contrast self.saturation = saturation def __call__(self, img): self.transforms = [] if self.brightness != 0: self.transforms.append(Brightness(self.brightness)) if self.contrast != 0: self.transforms.append(Contrast(self.contrast)) if self.saturation != 0: self.transforms.append(Saturation(self.saturation)) random.shuffle(self.transforms) transform = Compose(self.transforms) return transform(img)
benchmarks/api_hour/benchmarks/benchmarks/services/__init__.py
Ovvovy/API-Hour
571
11070116
<filename>benchmarks/api_hour/benchmarks/benchmarks/services/__init__.py from . import agents
Codeforces/91 Beta Division 2/Problem B/B.py
VastoLorde95/Competitive-Programming
170
11070123
<reponame>VastoLorde95/Competitive-Programming<filename>Codeforces/91 Beta Division 2/Problem B/B.py s = raw_input() r = "" i = 0 while i < len(s) and s[i] == '0': i += 1 while i < len(s): r += s[i] i += 1 l = [] i = 0 for i in xrange(len(r)): tmp = "" for j in xrange(i, len(r)): flag = 0 for k in xrange(i, j+1): if r[k] == '4' or r[k] == '7': tmp += r[i] else: flag = 1 break if flag == 0: l.append(tmp) if len(l) == 0: print -1 else: d = {} for i in l: d[i] = r.count(i) mx = 0 l = [] for i in d: mx = max(mx, d[i]) for i in d: if d[i] == mx: l.append(i) l.sort() print l[0]
seoanalyzer/__init__.py
cobolbaby/python-seo-analyzer
743
11070134
<reponame>cobolbaby/python-seo-analyzer #!/usr/bin/env python3 from .analyzer import analyze from .stemmer import stem
bigsi/graph/__init__.py
Phelimb/bfg
109
11070168
from bigsi.graph.bigsi import BIGSI #
cumulusci/utils/yaml/cumulusci_yml.py
SFDO-Tooling/CumulusCI
163
11070173
import enum from logging import getLogger from pathlib import Path from typing import Any, Dict, List, Optional, Sequence, Union from pydantic import Field, root_validator from pydantic.types import DirectoryPath from typing_extensions import Literal, TypedDict from cumulusci.utils.fileutils import DataInput, load_from_source from cumulusci.utils.yaml.model_parser import CCIDictModel, HashableBaseModel from cumulusci.utils.yaml.safer_loader import load_yaml_data default_logger = getLogger(__name__) # type aliases PythonClassPath = str URL = str # additionalProperties here works around an # incompatibility with VSCode's Red Hat YAML validator # Can probably remove it at some future date if the # bug/incompatibilty is fixed elsewhere in the stack VSCodeFriendlyDict = Field({}, additionalProperties=True) class PreflightCheck(CCIDictModel): when: str = None action: str = None message: str = None class Step(CCIDictModel): task: str = None flow: str = None ignore_failure: bool = False when: str = None # is this allowed? options: Dict[str, Any] = VSCodeFriendlyDict ui_options: Dict[str, Any] = VSCodeFriendlyDict checks: List[PreflightCheck] = [] description: str = None @root_validator() def _check(cls, values): has_task = values.get("task") and values["task"] != "None" has_flow = values.get("flow") and values["flow"] != "None" assert not ( has_task and has_flow ), "Steps must have either task or flow but not both" return values class Task(CCIDictModel): class_path: str = None description: str = None group: str = None # additionalProperties here works around an # incompatibility with VSCode's Red Hat YAML validator options: Dict[str, Any] = VSCodeFriendlyDict ui_options: Dict[str, Any] = VSCodeFriendlyDict name: str = None # get rid of this??? class Flow(CCIDictModel): description: str = None steps: Dict[str, Step] = None group: str = None class Package(CCIDictModel): name: Optional[str] = None name_managed: Optional[str] = None namespace: Optional[str] = None install_class: str = None uninstall_class: str = None api_version: str = None metadata_package_id: str = None class Test(CCIDictModel): name_match: str class ReleaseNotesParser(CCIDictModel): class_path: PythonClassPath title: str class ReleaseNotes(CCIDictModel): parsers: Dict[int, ReleaseNotesParser] class Git(CCIDictModel): repo_url: str = None default_branch: str = None prefix_feature: str = None prefix_beta: str = None prefix_release: str = None push_prefix_sandbox: str = None push_prefix_production: str = None release_notes: ReleaseNotes = None two_gp_context: str = Field(None, alias="2gp_context") class Plan(CCIDictModel): # MetaDeploy plans title: str = None description: str = None tier: Literal["primary", "secondary", "additional"] = None slug: str = None is_listed: bool = True steps: Dict[str, Step] = None checks: List[PreflightCheck] = [] group: str = None error_message: str = None post_install_message: str = None preflight_message: str = None class DependencyResolutions(CCIDictModel): production: str = None preproduction: str = None resolution_strategies: Dict[str, List[str]] = None class Project(CCIDictModel): name: str = None package: Package = None test: Test = None git: Git = None dependencies: List[Dict[str, str]] = None # TODO dependency_resolutions: DependencyResolutions = None source_format: Literal["sfdx", "mdapi"] = "mdapi" class ScratchOrg(CCIDictModel): config_file: Path = None days: int = None namespaced: str = None setup_flow: str = None noancestors: bool = None class Orgs(CCIDictModel): scratch: Dict[str, ScratchOrg] = None class ServiceAttribute(CCIDictModel): description: str = None required: bool = None default_factory: PythonClassPath = None class Service(CCIDictModel): description: str = None class_path: Optional[str] attributes: Dict[str, ServiceAttribute] = None validator: PythonClassPath = None class CumulusCIConfig(CCIDictModel): keychain: PythonClassPath class GitHubSourceRelease(str, enum.Enum): LATEST = "latest" PREVIOUS = "previous" LATEST_BETA = "latest_beta" class GitHubSourceModel(HashableBaseModel): github: str resolution_strategy: Optional[str] commit: Optional[str] ref: Optional[str] branch: Optional[str] tag: Optional[str] release: Optional[GitHubSourceRelease] description: Optional[str] @root_validator def validate(cls, values): exclusive_keys = [ "resolution_strategy", "commit", "ref", "branch", "tag", "release", ] key_count = len([x for x in exclusive_keys if x in values and values[x]]) if key_count > 1: raise ValueError( 'Sources must use only one of "resolution_strategy", "commit", "ref", "branch", "tag", or "release".' ) elif key_count == 0: values["resolution_strategy"] = "production" return values class LocalFolderSourceModel(HashableBaseModel): path: DirectoryPath class CumulusCLIConfig(CCIDictModel): show_stacktraces: bool = False plain_output: bool = None class CumulusCIRoot(CCIDictModel): tasks: Dict[str, Task] = {} flows: Dict[str, Flow] = {} project: Project = {} orgs: Orgs = {} services: Dict[str, Service] = {} cumulusci: CumulusCIConfig = None plans: Dict[str, Plan] = {} minimum_cumulusci_version: str = None sources: Dict[str, Union[LocalFolderSourceModel, GitHubSourceModel]] = {} cli: CumulusCLIConfig = None class CumulusCIFile(CCIDictModel): __root__: Union[CumulusCIRoot, None] def parse_from_yaml(source) -> dict: "Parse from a path, url, path-like or file-like" return CumulusCIFile.parse_from_yaml(source) or {} def validate_data( data: Union[dict, list], context: str = None, on_error: callable = None, ): """Validate data which has already been loaded into a dictionary or list. context is a string that will be used to give context to error messages. on_error will be called for any validation errors with a dictionary in Pydantic error format https://pydantic-docs.helpmanual.io/usage/models/#error-handling """ return CumulusCIFile.validate_data(data, context=context, on_error=on_error) class ErrorDict(TypedDict): "The structure of a Pydantic error dictionary. Google TypedDict if its new to you." loc: Sequence[Union[str, int]] msg: str type: str has_shown_yaml_error_message = False def _log_yaml_errors(logger, errors: List[ErrorDict]): "Format and log a Pydantic-style error dictionary" global has_shown_yaml_error_message plural = "" if len(errors) <= 1 else "s" logger.warning(f"CumulusCI Configuration Warning{plural}:") for error in errors: loc = " -> ".join(repr(x) for x in error["loc"] if x != "__root__") logger.warning(" %s\n %s", loc, error["msg"]) if not has_shown_yaml_error_message: logger.error( "NOTE: These warnings may become errors in future versions of CumulusCI." ) logger.error( "If you think your YAML has no error, please report the bug to the CumulusCI team." ) logger.error("https://github.com/SFDO-Tooling/CumulusCI/issues/\n") has_shown_yaml_error_message = True def cci_safe_load( source: DataInput, context: str = None, on_error: callable = None, logger=None ) -> dict: """Load a CumulusCI.yml file and issue warnings for unknown structures.""" errors = [] assert not ( on_error and logger ), "Please specify either on_error or logger but not both" on_error = on_error or errors.append logger = logger or default_logger with load_from_source(source) as (data_stream, filename): data = load_yaml_data(data_stream, filename) context = context or filename try: validate_data(data, context=context, on_error=on_error) if errors: _log_yaml_errors(logger, errors) except Exception as e: # should never be executed print(f"Error validating cumulusci.yml {e}") if on_error: on_error( { "loc": (context,), "msg": f"Error validating cumulusci.yml {e}", "type": "exception", } ) pass return data or {} def _validate_files(globs): "Validate YML files from Dev CLI for smoke testing" from glob import glob errors = [] for g in globs: print(g) filenames = glob(g, recursive=True) for filename in filenames: print("Validating", filename) cci_safe_load(filename, filename, on_error=errors.append) return errors def _validate_url(url): # pragma: no cover "Validate YML URL from Dev CLI for smoke testing" errors = [] cci_safe_load(url, url, on_error=errors.append) return errors # validate YML files as a CLI for smoke testing if __name__ == "__main__": # pragma: no cover import sys from pprint import pprint if sys.argv[1].startswith("http"): pprint(_validate_url(sys.argv[1])) else: pprint(_validate_files(sys.argv[1:]))
hoomd/hpmc/external/user.py
YMWani/hoomd-blue
204
11070195
# Copyright (c) 2009-2021 The Regents of the University of Michigan # This file is part of the HOOMD-blue project, released under the BSD 3-Clause # License. """User-defined external fields for HPMC simulations.""" import hoomd from hoomd import _compile from hoomd.hpmc import integrate if hoomd.version.llvm_enabled: from hoomd.hpmc import _jit from hoomd.operation import _HOOMDBaseObject from hoomd.data.parameterdicts import ParameterDict from hoomd.logging import log class CPPExternalPotential(_HOOMDBaseObject): """Define an external potential energy field imposed on all particles in \ the system. Args: code (str): C++ function body to compile. Potentials added using :py:class:`CPPExternalPotential` are added to the total energy calculation in :py:mod:`hpmc <hoomd.hpmc>` integrators. :py:class:`CPPExternalPotential` takes C++ code, compiles it at runtime, and executes the code natively in the MC loop with full performance. It enables researchers to quickly and easily implement custom energetic field intractions without the need to modify and recompile HOOMD. .. rubric:: C++ code Supply C++ code to the *code* argument and :py:class:`CPPExternalPotential` will compile the code and call it to evaluate the energy. The text provided in *code* is the body of a function with the following signature: .. code:: float eval(const BoxDim& box, unsigned int type_i, const vec3<Scalar>& r_i, const quat<Scalar>& q_i Scalar diameter, Scalar charge ) * *box* is the system box. * *type_i* is the (integer) particle type. * *r_i* is the particle position * *q_i* the quaternion representing the particle orientation. * *diameter* the particle diameter. * *charge* the particle charge. Note: ``vec3`` and ``quat`` are defined in the file `VectorMath.h`_ in the \ HOOMD-blue source code, and ``BoxDim`` is defined in he file \ `BoxDim.h`_ in the HOOMD-blue source code. Note: Your code *must* return a value. .. _VectorMath.h: https://github.com/glotzerlab/hoomd-blue/blob/\ v3.0.0-beta.9/hoomd/VectorMath.h .. _BoxDim.h: https://github.com/glotzerlab/hoomd-blue/blob/\ v3.0.0-beta.9/hoomd/BoxDim.h Example: .. code-block:: python grav_code = "return r_i.z + box.getL().z/2;" gravity = hoomd.hpmc.external.user.CPPExternalPotential( code=grav_code) mc.external_potential = gravity Note: `CPPExternalPotential` does not support execution on GPUs. Warning: ``CPPExternalPotential`` is **experimental** and subject to change in future minor releases. Attributes: code (str): The code of the body of the external field energy function. After running zero or more steps, this property cannot be modified. """ def __init__(self, code): param_dict = ParameterDict(code=str) self._param_dict = param_dict self.code = code def _getattr_param(self, attr): if attr == 'code': return self._param_dict[attr] return super()._getattr_param(attr) def _wrap_cpu_code(self, code): """Helper function to wrap the provided code into a function \ with the expected signature. Args: code (`str`): Body of the C++ function """ cpp_function = """ #include "hoomd/HOOMDMath.h" #include "hoomd/VectorMath.h" #include "hoomd/BoxDim.h" extern "C" { float eval(const BoxDim& box, unsigned int type_i, const vec3<Scalar> r_i, const quat<Scalar>& q_i, Scalar diameter, Scalar charge ) { """ cpp_function += code cpp_function += """ } } """ return cpp_function def _attach(self): integrator_pairs = { integrate.Sphere: _jit.ExternalFieldJITSphere, integrate.ConvexPolygon: _jit.ExternalFieldJITConvexPolygon, integrate.SimplePolygon: _jit.ExternalFieldJITSimplePolygon, integrate.ConvexPolyhedron: _jit.ExternalFieldJITConvexPolyhedron, integrate.ConvexSpheropolyhedron: _jit.ExternalFieldJITSpheropolyhedron, integrate.Ellipsoid: _jit.ExternalFieldJITEllipsoid, integrate.ConvexSpheropolygon: _jit.ExternalFieldJITSpheropolygon, integrate.FacetedEllipsoid: _jit.ExternalFieldJITFacetedEllipsoid, integrate.Polyhedron: _jit.ExternalFieldJITPolyhedron, integrate.Sphinx: _jit.ExternalFieldJITSphinx } integrator = self._simulation.operations.integrator if not isinstance(integrator, integrate.HPMCIntegrator): raise RuntimeError("The integrator must be a HPMC integrator.") if (isinstance(self._simulation.device, hoomd.device.GPU)): msg = 'User-defined external fields are not supported on the GPU.' raise NotImplementedError(msg) cpp_cls = integrator_pairs.get( self._simulation.operations.integrator.__class__, None) if cpp_cls is None: raise RuntimeError("Unsupported integrator.\n") cpu_code = self._wrap_cpu_code(self.code) cpu_include_options = _compile.get_cpu_include_options() self._cpp_obj = cpp_cls(self._simulation.state._cpp_sys_def, self._simulation.device._cpp_exec_conf, cpu_code, cpu_include_options) super()._attach() @log(requires_run=True) def energy(self): """float: Total field energy of the system in the current state. Returns `None` when the patch object and integrator are not attached. """ timestep = self._simulation.timestep return self._cpp_obj.computeEnergy(timestep)
descarteslabs/workflows/models/tests/test_xyz.py
descarteslabs/descarteslabs-python
167
11070198
import datetime import logging from six.moves import queue import grpc import mock from google.protobuf.timestamp_pb2 import Timestamp from descarteslabs.common.proto.xyz import xyz_pb2 from descarteslabs.common.proto.logging import logging_pb2 from descarteslabs.workflows import _channel, client from .. import XYZ, XYZLogListener from ..published_graft import PublishedGraft from ..utils import ( pb_datetime_to_milliseconds, pb_milliseconds_to_datetime, py_log_level_to_proto_log_level, ) from ..visualization import VizOption from . import utils def mock_CreateXYZ(msg: xyz_pb2.CreateXYZRequest, **kwargs) -> xyz_pb2.XYZ: assert isinstance(msg, xyz_pb2.CreateXYZRequest) expires_timestamp = Timestamp() expires_timestamp.FromJsonString("2003-01-02T04:05:06.789+00:00") return xyz_pb2.XYZ( id="mclovin", name=msg.name, description=msg.description, serialized_graft=msg.serialized_graft, typespec=msg.typespec, parameters=msg.parameters, public=msg.public, viz_options=msg.viz_options, expires_timestamp=expires_timestamp, channel=msg.channel, client_version=msg.client_version, ) @mock.patch( "descarteslabs.workflows.models.published_graft.get_global_grpc_client", new=lambda: utils.MockedClient(), ) @mock.patch( "descarteslabs.workflows.models.xyz.get_global_grpc_client", new=lambda: utils.MockedClient(), ) @mock.patch("descarteslabs.common.proto.xyz.xyz_pb2_grpc.XYZAPIStub") class TestXYZ(object): def test_init(self, stub): CreateXYZ = stub.return_value.CreateXYZ CreateXYZ.side_effect = mock_CreateXYZ obj = utils.Bar(utils.Foo(1)) name = "bar" desc = "a bar" public = True viz_options = [ VizOption( id="viz1", bands=["red", "green", "blue"], scales=[[0, 0.4], [0, 0.4], [0, 0.4]], ), ] # do some hackery to pull out the `self._message` produced by the superclass's `__init__` super_message = None orig_init = PublishedGraft.__init__ def patched_init(self, *args, **kwargs): "pull out `self._message` at the end of `PublishedGraft.__init__` so we can use it in tests" orig_init(self, *args, **kwargs) nonlocal super_message super_message = self._message with mock.patch.object(PublishedGraft, "__init__", patched_init): xyz = XYZ( obj, name=name, description=desc, viz_options=viz_options, ) expected_req = xyz_pb2.CreateXYZRequest( name=name, description=desc, serialized_graft=super_message.serialized_graft, typespec=super_message.typespec, parameters=super_message.parameters, public=public, viz_options=[vp._message for vp in viz_options], channel=super_message.channel, client_version=super_message.client_version, ) CreateXYZ.assert_called_once_with( expected_req, timeout=client.Client.DEFAULT_TIMEOUT, metadata=mock.ANY, ) assert xyz._message == mock_CreateXYZ(expected_req) assert xyz.name == name assert xyz.description == desc assert xyz.expires_timestamp == datetime.datetime(2003, 1, 2, 4, 5, 6, 789000) assert xyz.viz_options == viz_options def test_get(self, stub): message = "foo" stub.return_value.GetXYZ.return_value = message with mock.patch.object(XYZ, "_from_proto") as _from_proto: XYZ.get("fake_id") _from_proto.assert_called_once() assert _from_proto.call_args[0][0] is message stub.return_value.GetXYZ.assert_called_once_with( xyz_pb2.GetXYZRequest(xyz_id="fake_id"), timeout=client.Client.DEFAULT_TIMEOUT, metadata=mock.ANY, ) def test_properties(self, stub): stub.return_value.CreateXYZ.side_effect = mock_CreateXYZ obj = utils.Bar(utils.Foo(1)) xyz = XYZ(obj, name="bar", description="a bar") assert xyz.object is obj assert xyz.type is type(obj) assert xyz.name == "bar" assert xyz.description == "a bar" assert xyz.channel == _channel.__channel__ xyz._message.id = "1234" xyz._message.created_timestamp = 100 xyz._message.updated_timestamp = 200 assert xyz.id == "1234" assert xyz.created_timestamp == pb_milliseconds_to_datetime(100) assert xyz.updated_timestamp == pb_milliseconds_to_datetime(200) def test_iter_tile_logs(self, stub): stub.return_value.CreateXYZ.side_effect = mock_CreateXYZ start_datetime = datetime.datetime.now(datetime.timezone.utc) log_level = logging.WARNING session_id = "bar" logs = [ xyz_pb2.XYZLogRecord( record=logging_pb2.LogRecord(message="foo"), session_id=session_id ), xyz_pb2.XYZLogRecord( record=logging_pb2.LogRecord(message="bar"), session_id=session_id ), ] xyz = XYZ(utils.Foo(1), name="foo", description="a foo") stub.return_value.GetXYZSessionLogs.return_value = logs assert ( list( xyz.iter_tile_logs( session_id=session_id, start_datetime=start_datetime, level=log_level, ) ) == logs ) stub.return_value.GetXYZSessionLogs.assert_called_once_with( xyz_pb2.GetXYZSessionLogsRequest( session_id=session_id, start_timestamp=pb_datetime_to_milliseconds(start_datetime), xyz_id=xyz.id, level=py_log_level_to_proto_log_level(log_level), ), timeout=client.Client.STREAM_TIMEOUT, metadata=mock.ANY, ) def test_url(self, stub): stub.return_value.CreateXYZ.side_effect = mock_CreateXYZ obj = utils.Foo(1) xyz = XYZ(obj) url_template = xyz._message.url_template = "http://base.net" assert xyz.url() == url_template def test_wmts_url(self, stub): stub.return_value.CreateXYZ.side_effect = mock_CreateXYZ obj = utils.Foo(1) xyz = XYZ(obj) wmts_url_template = ( "http://base.net/wmts/xyz/mclovin/1.0.0/WMTSCapabilities.xml" ) xyz._message.wmts_url_template = wmts_url_template assert xyz.wmts_url() == wmts_url_template assert ( xyz.wmts_url(tile_matrix_sets="utm") == wmts_url_template + "?tile_matrix_sets=utm" ) assert ( xyz.wmts_url(tile_matrix_sets=["EPSG:4326", "EPSG:3857"]) == wmts_url_template + "?tile_matrix_sets=EPSG%3A4326&tile_matrix_sets=EPSG%3A3857" ) @mock.patch("descarteslabs.workflows.models.xyz._tile_log_stream") def test_xyz_log_listener(log_stream_mock): class FakeRendezvous(object): def __init__(self, q): self.q = q def __iter__(self): while True: msg = self.q.get() if msg != "cancel": yield msg self.q.task_done() else: self.q.task_done() raise grpc.RpcError def cancel(self): self.q.put("cancel") q = queue.Queue() rendezvous = FakeRendezvous(q) log_stream_mock.return_value = rendezvous listener = XYZLogListener("foobar") msgs = [] listener.add_callback(lambda msg: msgs.append(msg)) listener.listen("foobar") log_stream_mock.assert_called_once() # simulate incoming messages q.put("first") q.put("second") q.join() # avoid possible race condition in test assert msgs == ["first", "second"] stopped = listener.stop(timeout=1) assert stopped assert not listener.running() assert len(msgs) == 2
libraries/top_menu.py
Rod-O/Deviot
327
11070227
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import import sublime_plugin from os import path from ..api import deviot from .I18n import I18n from .menu_files import MenuFiles from .tools import get_setting, save_setting class CheckMenuFilesCommand(sublime_plugin.WindowCommand): def run(self): menu_path = deviot.main_menu_path() compile_lang = get_setting('compile_lang', True) if(compile_lang or not path.exists(menu_path)): TopMenu().make_menu_files() save_setting('compile_lang', False) class CompileMenuCommand(sublime_plugin.WindowCommand): def run(self): TopMenu().make_menu_files() class TopMenu(MenuFiles): def __init__(self): super(TopMenu, self).__init__() def create_main_menu(self): """Main Menu Generates the main menu of the plugin. The main menu is built from diferents sources, here the diferents sources are called to get the data, the data is manipulated (ex. translated) and stored as a menu file (menu_name.sublime-menu) """ menu_preset = self.get_template_menu('main_menu.json') path = deviot.plugin_path() for option in menu_preset: option = self.translate_childrens(option) for sub in option['children']: try: sub = self.translate_childrens(sub) except KeyError: pass self.create_sublime_menu(menu_preset, 'Main', path) def translate_childrens(self, option_dict): """Translate Children Menu Translate a children sublime text menu Arguments: option_dict {dict} -- children to be traslated Returns: dict -- children translated """ tr = I18n().translate for children in option_dict['children']: children['caption'] = tr(children['caption']) try: for children_chil in children['children']: children_chil['caption'] = tr(children_chil['caption']) except: pass return option_dict def make_menu_files(self): """Menu Files Makes each file who needs to be translated like the main menu, quick panel, contextual menu """ self.create_main_menu() self.create_quick_commands() self.create_context_menu()
keras_tuner/tuners/hyperband.py
ageron/keras-tuner
2,676
11070230
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import random from keras_tuner.engine import oracle as oracle_module from keras_tuner.engine import tuner as tuner_module class HyperbandOracle(oracle_module.Oracle): """Oracle class for Hyperband. Note that to use this Oracle with your own subclassed Tuner, your Tuner class must be able to handle in `Tuner.run_trial` three special hyperparameters that will be set by this Tuner: - "tuner/trial_id": String, optionally set. The trial_id of the Trial to load from when starting this trial. - "tuner/initial_epoch": Int, always set. The initial epoch the Trial should be started from. - "tuner/epochs": Int, always set. The cumulative number of epochs this Trial should be trained. These hyperparameters will be set during the "successive halving" portion of the Hyperband algorithm. Examples: ```python def run_trial(self, trial, *args, **kwargs): hp = trial.hyperparameters if "tuner/trial_id" in hp: past_trial = self.oracle.get_trial(hp['tuner/trial_id']) model = self.load_model(past_trial) else: model = self.hypermodel.build(hp) initial_epoch = hp['tuner/initial_epoch'] last_epoch = hp['tuner/epochs'] for epoch in range(initial_epoch, last_epoch): self.on_epoch_begin(...) for step in range(...): # Run model training step here. self.on_epoch_end(...) ``` Args: objective: A string or `keras_tuner.Objective` instance. If a string, the direction of the optimization (min or max) will be inferred. It is optional when `Tuner.run_trial()` or `HyperModel.fit()` returns a single float as the objective to minimize. max_epochs: Integer, the maximum number of epochs to train one model. It is recommended to set this to a value slightly higher than the expected epochs to convergence for your largest Model, and to use early stopping during training (for example, via `tf.keras.callbacks.EarlyStopping`). Defaults to 100. factor: Integer, the reduction factor for the number of epochs and number of models for each bracket. Defaults to 3. hyperband_iterations: Integer, at least 1, the number of times to iterate over the full Hyperband algorithm. One iteration will run approximately `max_epochs * (math.log(max_epochs, factor) ** 2)` cumulative epochs across all trials. It is recommended to set this to as high a value as is within your resource budget. Defaults to 1. seed: Optional integer, the random seed. hyperparameters: Optional HyperParameters instance. Can be used to override (or register in advance) hyperparameters in the search space. tune_new_entries: Boolean, whether hyperparameter entries that are requested by the hypermodel but that were not specified in `hyperparameters` should be added to the search space, or not. If not, then the default value for these parameters will be used. Defaults to True. allow_new_entries: Boolean, whether the hypermodel is allowed to request hyperparameter entries not listed in `hyperparameters`. Defaults to True. """ def __init__( self, objective=None, max_epochs=100, factor=3, hyperband_iterations=1, seed=None, hyperparameters=None, allow_new_entries=True, tune_new_entries=True, ): super(HyperbandOracle, self).__init__( objective=objective, hyperparameters=hyperparameters, allow_new_entries=allow_new_entries, tune_new_entries=tune_new_entries, seed=seed, ) if factor < 2: raise ValueError("factor needs to be a int larger than 1.") self.hyperband_iterations = hyperband_iterations or float("inf") self.max_epochs = max_epochs # Minimum epochs before successive halving, Hyperband sweeps through varying # degress of aggressiveness. self.min_epochs = 1 self.factor = factor self.seed = seed or random.randint(1, 10000) self._max_collisions = 20 self._seed_state = self.seed self._tried_so_far = set() self._current_iteration = 0 # Start with most aggressively halving bracket. self._current_bracket = self._get_num_brackets() - 1 self._brackets = [] self._start_new_bracket() def populate_space(self, trial_id): self._remove_completed_brackets() for bracket in self._brackets: bracket_num = bracket["bracket_num"] rounds = bracket["rounds"] if len(rounds[0]) < self._get_size(bracket_num, round_num=0): # Populate the initial random trials for this bracket. return self._random_trial(trial_id, bracket) else: # Try to populate incomplete rounds for this bracket. for round_num in range(1, len(rounds)): round_info = rounds[round_num] past_round_info = rounds[round_num - 1] size = self._get_size(bracket_num, round_num) past_size = self._get_size(bracket_num, round_num - 1) # If more trials from the last round are ready than will be # thrown out, we can select the best to run for the next round. already_selected = [info["past_id"] for info in round_info] candidates = [ self.trials[info["id"]] for info in past_round_info if info["id"] not in already_selected ] candidates = [t for t in candidates if t.status == "COMPLETED"] if len(candidates) > past_size - size: sorted_candidates = sorted( candidates, key=lambda t: t.score, reverse=self.objective.direction == "max", ) best_trial = sorted_candidates[0] values = best_trial.hyperparameters.values.copy() values["tuner/trial_id"] = best_trial.trial_id values["tuner/epochs"] = self._get_epochs( bracket_num, round_num ) values["tuner/initial_epoch"] = self._get_epochs( bracket_num, round_num - 1 ) values["tuner/bracket"] = self._current_bracket values["tuner/round"] = round_num round_info.append( {"past_id": best_trial.trial_id, "id": trial_id} ) return {"status": "RUNNING", "values": values} # This is reached if no trials from current brackets can be run. # Max sweeps has been reached, no more brackets should be created. if ( self._current_bracket == 0 and self._current_iteration + 1 >= self.hyperband_iterations ): # Stop creating new brackets, but wait to complete other brackets. if self.ongoing_trials: return {"status": "IDLE"} else: self._increment_bracket_num() return {"status": "STOPPED"} # Create a new bracket. else: self._increment_bracket_num() self._start_new_bracket() return self._random_trial(trial_id, self._brackets[-1]) def _start_new_bracket(self): rounds = [] for _ in range(self._get_num_rounds(self._current_bracket)): rounds.append([]) bracket = {"bracket_num": self._current_bracket, "rounds": rounds} self._brackets.append(bracket) def _increment_bracket_num(self): self._current_bracket -= 1 if self._current_bracket < 0: self._current_bracket = self._get_num_brackets() - 1 self._current_iteration += 1 if self._current_iteration > self.hyperband_iterations: self._current_bracket = 0 def _remove_completed_brackets(self): # Filter out completed brackets. def _bracket_is_incomplete(bracket): bracket_num = bracket["bracket_num"] rounds = bracket["rounds"] last_round = len(rounds) - 1 if len(rounds[last_round]) == self._get_size(bracket_num, last_round): # All trials have been created for the current bracket. return False return True self._brackets = list(filter(_bracket_is_incomplete, self._brackets)) def _random_trial(self, trial_id, bracket): bracket_num = bracket["bracket_num"] rounds = bracket["rounds"] values = self._random_values() if values: values["tuner/epochs"] = self._get_epochs(bracket_num, 0) values["tuner/initial_epoch"] = 0 values["tuner/bracket"] = self._current_bracket values["tuner/round"] = 0 rounds[0].append({"past_id": None, "id": trial_id}) return {"status": "RUNNING", "values": values} elif self.ongoing_trials: # Can't create new random values, but successive halvings may still # be needed. return {"status": "IDLE"} else: # Collision and no ongoing trials should trigger an exit. return {"status": "STOPPED"} def _get_size(self, bracket_num, round_num): # Set up so that each bracket takes approx. the same amount of resources. bracket0_end_size = math.ceil(1 + math.log(self.max_epochs, self.factor)) bracket_end_size = bracket0_end_size / (bracket_num + 1) return math.ceil(bracket_end_size * self.factor ** (bracket_num - round_num)) def _get_epochs(self, bracket_num, round_num): return math.ceil(self.max_epochs / self.factor ** (bracket_num - round_num)) def _get_num_rounds(self, bracket_num): # Bracket 0 just runs random search, others do successive halving. return bracket_num + 1 def _get_num_brackets(self): epochs = self.max_epochs brackets = 0 while epochs >= self.min_epochs: epochs = epochs / self.factor brackets += 1 return brackets def get_state(self): state = super(HyperbandOracle, self).get_state() state.update( { "hyperband_iterations": self.hyperband_iterations, "max_epochs": self.max_epochs, "min_epochs": self.min_epochs, "factor": self.factor, "brackets": self._brackets, "current_bracket": self._current_bracket, "current_iteration": self._current_iteration, } ) return state def set_state(self, state): super(HyperbandOracle, self).set_state(state) self.hyperband_iterations = state["hyperband_iterations"] self.max_epochs = state["max_epochs"] self.min_epochs = state["min_epochs"] self.factor = state["factor"] self._brackets = state["brackets"] self._current_bracket = state["current_bracket"] self._current_iteration = state["current_iteration"] class Hyperband(tuner_module.Tuner): """Variation of HyperBand algorithm. Reference: <NAME>, and <NAME>. ["Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization." Journal of Machine Learning Research 18 (2018): 1-52]( http://jmlr.org/papers/v18/16-558.html). Args: hypermodel: Instance of `HyperModel` class (or callable that takes hyperparameters and returns a `Model` instance). It is optional when `Tuner.run_trial()` is overriden and does not use `self.hypermodel`. objective: A string or `keras_tuner.Objective` instance. If a string, the direction of the optimization (min or max) will be inferred. It is optional when `Tuner.run_trial()` or `HyperModel.fit()` returns a single float as the objective to minimize. max_epochs: Integer, the maximum number of epochs to train one model. It is recommended to set this to a value slightly higher than the expected epochs to convergence for your largest Model, and to use early stopping during training (for example, via `tf.keras.callbacks.EarlyStopping`). Defaults to 100. factor: Integer, the reduction factor for the number of epochs and number of models for each bracket. Defaults to 3. hyperband_iterations: Integer, at least 1, the number of times to iterate over the full Hyperband algorithm. One iteration will run approximately `max_epochs * (math.log(max_epochs, factor) ** 2)` cumulative epochs across all trials. It is recommended to set this to as high a value as is within your resource budget. Defaults to 1. seed: Optional integer, the random seed. hyperparameters: Optional HyperParameters instance. Can be used to override (or register in advance) hyperparameters in the search space. tune_new_entries: Boolean, whether hyperparameter entries that are requested by the hypermodel but that were not specified in `hyperparameters` should be added to the search space, or not. If not, then the default value for these parameters will be used. Defaults to True. allow_new_entries: Boolean, whether the hypermodel is allowed to request hyperparameter entries not listed in `hyperparameters`. Defaults to True. **kwargs: Keyword arguments relevant to all `Tuner` subclasses. Please see the docstring for `Tuner`. """ def __init__( self, hypermodel=None, objective=None, max_epochs=100, factor=3, hyperband_iterations=1, seed=None, hyperparameters=None, tune_new_entries=True, allow_new_entries=True, **kwargs ): oracle = HyperbandOracle( objective, max_epochs=max_epochs, factor=factor, hyperband_iterations=hyperband_iterations, seed=seed, hyperparameters=hyperparameters, tune_new_entries=tune_new_entries, allow_new_entries=allow_new_entries, ) super(Hyperband, self).__init__( oracle=oracle, hypermodel=hypermodel, **kwargs ) def run_trial(self, trial, *fit_args, **fit_kwargs): hp = trial.hyperparameters if "tuner/epochs" in hp.values: fit_kwargs["epochs"] = hp.values["tuner/epochs"] fit_kwargs["initial_epoch"] = hp.values["tuner/initial_epoch"] return super(Hyperband, self).run_trial(trial, *fit_args, **fit_kwargs) def _build_model(self, hp): model = super(Hyperband, self)._build_model(hp) if "tuner/trial_id" in hp.values: trial_id = hp.values["tuner/trial_id"] history_trial = self.oracle.get_trial(trial_id) # Load best checkpoint from this trial. model.load_weights( self._get_checkpoint_fname( history_trial.trial_id, history_trial.best_step ) ) return model