max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/test_runtime/async_benchmark.py
evgps/mmdetection_trashcan
367
11070234
<reponame>evgps/mmdetection_trashcan import asyncio import os import shutil import urllib import mmcv import torch from mmdet.apis import (async_inference_detector, inference_detector, init_detector) from mmdet.utils.contextmanagers import concurrent from mmdet.utils.profiling import profile_time async def main(): """Benchmark between async and synchronous inference interfaces. Sample runs for 20 demo images on K80 GPU, model - mask_rcnn_r50_fpn_1x: async sync 7981.79 ms 9660.82 ms 8074.52 ms 9660.94 ms 7976.44 ms 9406.83 ms Async variant takes about 0.83-0.85 of the time of the synchronous interface. """ project_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) project_dir = os.path.join(project_dir, '..') config_file = os.path.join( project_dir, 'configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py') checkpoint_file = os.path.join( project_dir, 'checkpoints/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth') if not os.path.exists(checkpoint_file): url = ('http://download.openmmlab.com/mmdetection/v2.0' '/mask_rcnn/mask_rcnn_r50_fpn_1x_coco' '/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth') print(f'Downloading {url} ...') local_filename, _ = urllib.request.urlretrieve(url) os.makedirs(os.path.dirname(checkpoint_file), exist_ok=True) shutil.move(local_filename, checkpoint_file) print(f'Saved as {checkpoint_file}') else: print(f'Using existing checkpoint {checkpoint_file}') device = 'cuda:0' model = init_detector( config_file, checkpoint=checkpoint_file, device=device) # queue is used for concurrent inference of multiple images streamqueue = asyncio.Queue() # queue size defines concurrency level streamqueue_size = 4 for _ in range(streamqueue_size): streamqueue.put_nowait(torch.cuda.Stream(device=device)) # test a single image and show the results img = mmcv.imread(os.path.join(project_dir, 'demo/demo.jpg')) # warmup await async_inference_detector(model, img) async def detect(img): async with concurrent(streamqueue): return await async_inference_detector(model, img) num_of_images = 20 with profile_time('benchmark', 'async'): tasks = [ asyncio.create_task(detect(img)) for _ in range(num_of_images) ] async_results = await asyncio.gather(*tasks) with torch.cuda.stream(torch.cuda.default_stream()): with profile_time('benchmark', 'sync'): sync_results = [ inference_detector(model, img) for _ in range(num_of_images) ] result_dir = os.path.join(project_dir, 'demo') model.show_result( img, async_results[0], score_thr=0.5, show=False, out_file=os.path.join(result_dir, 'result_async.jpg')) model.show_result( img, sync_results[0], score_thr=0.5, show=False, out_file=os.path.join(result_dir, 'result_sync.jpg')) if __name__ == '__main__': asyncio.run(main())
autogl/module/hpo/suggestion/__init__.py
dedsec-9/AutoGL
824
11070254
# Files in this folder are reproduced from https://github.com/tobegit3hub/advisor with some changes.
gluoncv/auto/estimators/center_net/__init__.py
Kh4L/gluon-cv
5,447
11070256
<gh_stars>1000+ """SSD Estimator implementations""" from .center_net import CenterNetEstimator
ortools/linear_solver/samples/basic_example.py
AlohaChina/or-tools
8,273
11070263
<filename>ortools/linear_solver/samples/basic_example.py #!/usr/bin/env python3 # Copyright 2010-2021 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Minimal example to call the GLOP solver.""" # [START program] # [START import] from ortools.linear_solver import pywraplp from ortools.init import pywrapinit # [END import] def main(): # [START solver] # Create the linear solver with the GLOP backend. solver = pywraplp.Solver.CreateSolver('GLOP') # [END solver] # [START variables] # Create the variables x and y. x = solver.NumVar(0, 1, 'x') y = solver.NumVar(0, 2, 'y') print('Number of variables =', solver.NumVariables()) # [END variables] # [START constraints] # Create a linear constraint, 0 <= x + y <= 2. ct = solver.Constraint(0, 2, 'ct') ct.SetCoefficient(x, 1) ct.SetCoefficient(y, 1) print('Number of constraints =', solver.NumConstraints()) # [END constraints] # [START objective] # Create the objective function, 3 * x + y. objective = solver.Objective() objective.SetCoefficient(x, 3) objective.SetCoefficient(y, 1) objective.SetMaximization() # [END objective] # [START solve] solver.Solve() # [END solve] # [START print_solution] print('Solution:') print('Objective value =', objective.Value()) print('x =', x.solution_value()) print('y =', y.solution_value()) # [END print_solution] if __name__ == '__main__': pywrapinit.CppBridge.InitLogging('basic_example.py') cpp_flags = pywrapinit.CppFlags() cpp_flags.logtostderr = True cpp_flags.log_prefix = False pywrapinit.CppBridge.SetFlags(cpp_flags) main() # [END program]
python/example_code/emr/pyspark_top_product_keyword.py
iconara/aws-doc-sdk-examples
5,166
11070276
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Shows how to write a script that queries historical Amazon review data that is stored in a public Amazon S3 bucket. The query returns the top reviewed products from a category that contain a keyword in their product titles. This script is intended to be run as an Amazon EMR job step and uses PySpark to manage running the query on the cluster instances. To learn more about the Amazon Customer Reviews Dataset, see the README: https://s3.amazonaws.com/amazon-reviews-pds/readme.html """ # snippet-start:[emr.python.spark.top_category_reviews] import argparse from pyspark.sql import SparkSession from pyspark.sql import functions as func def query_review_data(category, title_keyword, count, output_uri): """ Query the Amazon review dataset for top reviews from a category that contain a keyword in their product titles. The output of the query is written as JSON to the specified output URI. :param category: The category to query, such as Books or Grocery. :param title_keyword: The keyword that must be included in each returned product title. :param count: The number of results to return. :param output_uri: The URI where the output JSON files are stored, typically an Amazon S3 bucket, such as 's3://example-bucket/review-output'. """ with SparkSession.builder.getOrCreate() as spark: input_uri = f's3://amazon-reviews-pds/parquet/product_category={category}' df = spark.read.parquet(input_uri) query_agg = df.filter(df.verified_purchase == 'Y') \ .where(func.lower(func.col('product_title')).like(f'%{title_keyword}%')) \ .groupBy('product_title') \ .agg({'star_rating': 'avg', 'review_id': 'count'}) \ .filter(func.col('count(review_id)') >= 50) \ .sort(func.desc('avg(star_rating)')) \ .limit(count) \ .select(func.col('product_title').alias('product'), func.col('count(review_id)').alias('review_count'), func.col('avg(star_rating)').alias('review_avg_stars')) query_agg.write.mode('overwrite').json(output_uri) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--category') parser.add_argument('--title_keyword') parser.add_argument('--count', type=int) parser.add_argument('--output_uri') args = parser.parse_args() query_review_data(args.category, args.title_keyword, args.count, args.output_uri) # snippet-end:[emr.python.spark.top_category_reviews]
pb_bss/evaluation/module_srmr.py
fgnt/pb_bss
171
11070283
<filename>pb_bss/evaluation/module_srmr.py import numpy as np def srmr(signal, sample_rate, n_cochlear_filters=23, low_freq=125, min_cf=4, max_cf=128, fast=False, norm=False,): """ Wrapper around the SRMRpy package to allow an independent axis Note: The results of this implementation are slightly different from the Matlab implementation, but a high correlation between the behavior of both implementations is still present. However, activating the fast implementation or norm drastically changes the absolute values of the results due to changes in the gammatone package. Please make sure to check the correlation between the Matlab implementation and this implementation before activating either the normalized or fast SRMR. >>> import paderbox as pb >>> a = pb.testing.testfile_fetcher.get_file_path('speech_bab_0dB.wav') >>> a = pb.io.load_audio(a) >>> srmr(a, 16000) # doctest: +ELLIPSIS 1.8659610077... >>> srmr([a, a], 16000) array([1.86596101, 1.86596101]) """ try: import srmrpy except ImportError: raise AssertionError( 'To use this srmr implementation, install the SRMRpy package from\n' 'https://github.com/jfsantos/SRMRpy\n' ) signal = np.asarray(signal) if signal.ndim >= 2: for i in range(signal.ndim-1): assert signal.shape[i] < 30, (i, signal.shape) # NOQA srmrs = [] for i in np.ndindex(*signal.shape[:-1]): # TODO: Add option to also return the SRMR per gammatone filterbank (typically unused in evaluations) srmrs.append(srmrpy.srmr(signal[i], sample_rate, n_cochlear_filters=n_cochlear_filters, low_freq=low_freq, min_cf=min_cf, max_cf=max_cf, fast=fast, norm=norm)[0]) return np.array(srmrs).reshape(signal.shape[:-1]) elif signal.ndim == 1: # TODO: Add option to also return the SRMR per gammatone filterbank (typically unused in evaluations) return srmrpy.srmr(signal, sample_rate, n_cochlear_filters=n_cochlear_filters, low_freq=low_freq, min_cf=min_cf, max_cf=max_cf, fast=fast, norm=norm)[0] else: raise NotImplementedError(signal.ndim)
tests/test_wstrust_response.py
Yoni-Mantzur/azure-activedirectory-library-for-python
258
11070285
#------------------------------------------------------------------------------ # # Copyright (c) Microsoft Corporation. # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #------------------------------------------------------------------------------ import unittest import os import six try: from xml.etree import cElementTree as ET except ImportError: from xml.etree import ElementTree as ET from adal.constants import XmlNamespaces, Errors, WSTrustVersion from adal.wstrust_response import WSTrustResponse from adal.wstrust_response import findall_content _namespaces = XmlNamespaces.namespaces _call_context = {'log_context' : {'correlation-id':'test-corr-id'}} class Test_wstrustresponse(unittest.TestCase): def test_parse_error_happy_path(self): errorResponse = ''' <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://www.w3.org/2005/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <a:Action s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/soap/fault</a:Action> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <u:Timestamp u:Id="_0"> <u:Created>2013-07-30T00:32:21.989Z</u:Created> <u:Expires>2013-07-30T00:37:21.989Z</u:Expires> </u:Timestamp> </o:Security> </s:Header> <s:Body> <s:Fault> <s:Code> <s:Value>s:Sender</s:Value> <s:Subcode> <s:Value xmlns:a="http://docs.oasis-open.org/ws-sx/ws-trust/200512">a:RequestFailed</s:Value> </s:Subcode> </s:Code> <s:Reason> <s:Text xml:lang="en-US">MSIS3127: The specified request failed.</s:Text> </s:Reason> </s:Fault> </s:Body> </s:Envelope>''' wstrustResponse = WSTrustResponse(_call_context, errorResponse, WSTrustVersion.WSTRUST13) exception_text = "Server returned error in RSTR - ErrorCode: RequestFailed : FaultMessage: MSIS3127: The specified request failed" with six.assertRaisesRegex(self, Exception, exception_text) as cm: wstrustResponse.parse() def test_token_parsing_happy_path(self): wstrustFile = open(os.path.join(os.getcwd(), 'tests', 'wstrust', 'RSTR.xml')) wstrustResponse = WSTrustResponse(_call_context, wstrustFile.read(), WSTrustVersion.WSTRUST13) wstrustResponse.parse() wstrustFile.close() self.assertEqual(wstrustResponse.token_type, 'urn:oasis:names:tc:SAML:1.0:assertion', 'TokenType did not match expected value: ' + wstrustResponse.token_type) attribute_values = ET.fromstring(wstrustResponse.token).findall('saml:AttributeStatement/saml:Attribute/saml:AttributeValue', _namespaces) self.assertEqual(2, len(attribute_values)) self.assertEqual('1TIu064jGEmmf+hnI+F0Jg==', attribute_values[1].text) def test_rstr_none(self): with six.assertRaisesRegex(self, Exception, 'Received empty RSTR response body.') as cm: wstrustResponse = WSTrustResponse(_call_context, None, WSTrustVersion.WSTRUST13) wstrustResponse.parse() def test_rstr_empty_string(self): with six.assertRaisesRegex(self, Exception, 'Received empty RSTR response body.') as cm: wstrustResponse = WSTrustResponse(_call_context, '', WSTrustVersion.WSTRUST13) wstrustResponse.parse() def test_rstr_unparseable_xml(self): with six.assertRaisesRegex(self, Exception, 'Failed to parse RSTR in to DOM'): wstrustResponse = WSTrustResponse(_call_context, '<This is not parseable as an RSTR', WSTrustVersion.WSTRUST13) wstrustResponse.parse() def test_findall_content_with_comparison(self): content = """ <saml:Assertion xmlns:saml="SAML:assertion"> <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> foo </ds:Signature> </saml:Assertion>""" sample = ('<ns0:Wrapper xmlns:ns0="namespace0">' + content + '</ns0:Wrapper>') # Demonstrating how XML-based parser won't give you the raw content as-is element = ET.fromstring(sample).findall('{SAML:assertion}Assertion')[0] assertion_via_xml_parser = ET.tostring(element) self.assertNotEqual(content, assertion_via_xml_parser) self.assertNotIn(b"<ds:Signature>", assertion_via_xml_parser) # The findall_content() helper, based on Regex, will return content as-is. self.assertEqual([content], findall_content(sample, "Wrapper")) def test_findall_content_for_real(self): with open(os.path.join(os.getcwd(), 'tests', 'wstrust', 'RSTR.xml')) as f: rstr = f.read() wstrustResponse = WSTrustResponse(_call_context, rstr, WSTrustVersion.WSTRUST13) wstrustResponse.parse() self.assertIn("<X509Data>", rstr) self.assertIn(b"<X509Data>", wstrustResponse.token) # It is in bytes if __name__ == '__main__': unittest.main()
py/abd/abdmail_mailer.py
aevri/phabricator-tools
150
11070287
"""Send mails to interested parties about pre-specified conditions.""" # ============================================================================= # CONTENTS # ----------------------------------------------------------------------------- # abdmail_mailer # # Public Classes: # Mailer # .noUsersOnBranch # # ----------------------------------------------------------------------------- # (this contents block is generated, edits will be lost) # ============================================================================= from __future__ import absolute_import from __future__ import division from __future__ import print_function import textwrap import types class Mailer(object): """Send mails to interested parties about pre-specified conditions.""" def __init__(self, mail_sender, admin_emails, repository_name, uri): """Initialise, simply store the supplied parameters. :mail_sender: supports send(to, cc, subject, message) :admin_emails: list of string, who to tell when no appropriate users :repository_name: the repository that is in context :uri: the address of the phabricator instance """ self._mail_sender = mail_sender assert not isinstance( admin_emails, types.StringTypes), "should be list not string" self._admin_emails = admin_emails self._repository_name = repository_name self._uri = uri def noUsersOnBranch(self, branch_name, branch_base, emails): # TODO: determine which of 'emails' we're permitted to send to msg = textwrap.dedent("""\ No registered Phabricator users were found when trying to create a review from a branch. repository: {repo} branch: {branch} base branch: {base_branch} unknown emails: {emails} If you appear in the 'unknown emails' list then please register by visiting this link, simply logging in and registering your email address will resolve the issue: {uri} You are receiving this message because you are either in the unknown email list or an admin. If you want to / have to use a different email address to register with Phabricator then you will need to ensure the latest commit on your branch uses the correct email address. You can view your email address like so: $ git config --global user.email and set it like so: $ git config --global user.email "name@server.<EMAIL>" If you only want to change your email address for the git repo you are currently in, then drop the '--global' bit: $ git config user.email "<EMAIL>" You should push the branches again but with a commit that use the right email address. The no-fuss way to do this is the following: $ git checkout {branch} $ git commit --reuse-message=HEAD --reset-author --allow-empty $ git push origin {branch} This will copy the message from the last commit on the branch and create a new, empty commit with the new authorship information. """).format( repo=self._repository_name, branch=branch_name, base_branch=branch_base, emails=str(emails), uri=self._uri ) to = [] to.extend(self._admin_emails) to.extend(emails) self._mail_sender.send( to_addresses=to, subject="user exception", message=msg) # ----------------------------------------------------------------------------- # Copyright (C) 2013-2014 <NAME> L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------ END-OF-FILE ----------------------------------
pyBN/utils/_tests/test_markov_blanket.py
seuzmj/pyBN
126
11070293
""" ************** Markov Blanket Unit Test ************** """ __author__ = """<NAME> <<EMAIL>>""" import unittest import os from os.path import dirname import numpy as np import pandas as pd from pyBN.readwrite.read import read_bn from pyBN.independence.markov_blanket import markov_blanket class ConstraintTestsTestCase(unittest.TestCase): def setUp(self): self.dpath = os.path.join(dirname(dirname(dirname(dirname(__file__)))),'data') self.bn = read_bn(os.path.join(self.dpath,'cmu.bn')) def tearDown(self): pass def test_markov_blanket(self): self.assertDictEqual(markov_blanket(self.bn), {'Alarm': ['Earthquake', 'Burglary', 'JohnCalls', 'MaryCalls'], 'Burglary': ['Alarm', 'Earthquake'], 'Earthquake': ['Alarm', 'Burglary'], 'JohnCalls': ['Alarm'], 'MaryCalls': ['Alarm']})
pyimgsaliency/__init__.py
yhenon/pyImSaliency
165
11070304
<reponame>yhenon/pyImSaliency from .saliency import * from .binarise import * from .saliency_mbd import * from .evaluate import *
chainer_chemistry/dataset/preprocessors/mol_preprocessor.py
pfnet/chainerchem
184
11070320
from rdkit import Chem from chainer_chemistry.dataset.preprocessors.base_preprocessor import BasePreprocessor # NOQA from chainer_chemistry.datasets.numpy_tuple_dataset import NumpyTupleDataset # NOQA class MolPreprocessor(BasePreprocessor): """preprocessor class specified for rdkit mol instance Args: add_Hs (bool): If True, implicit Hs are added. kekulize (bool): If True, Kekulizes the molecule. """ def __init__(self, add_Hs=False, kekulize=False): super(MolPreprocessor, self).__init__() self.add_Hs = add_Hs self.kekulize = kekulize def prepare_smiles_and_mol(self, mol): """Prepare `smiles` and `mol` used in following preprocessing. This method is called before `get_input_features` is called, by parser class. This method may be overriden to support custom `smile`/`mol` extraction Args: mol (mol): mol instance Returns (tuple): (`smiles`, `mol`) """ # Note that smiles expression is not unique. # we obtain canonical smiles which is unique in `mol` canonical_smiles = Chem.MolToSmiles(mol, isomericSmiles=False, canonical=True) mol = Chem.MolFromSmiles(canonical_smiles) if self.add_Hs: mol = Chem.AddHs(mol) if self.kekulize: Chem.Kekulize(mol) return canonical_smiles, mol def get_label(self, mol, label_names=None): """Extracts label information from a molecule. This method extracts properties whose keys are specified by ``label_names`` from a molecule ``mol`` and returns these values as a list. The order of the values is same as that of ``label_names``. If the molecule does not have a property with some label, this function fills the corresponding index of the returned list with ``None``. Args: mol (rdkit.Chem.Mol): molecule whose features to be extracted label_names (None or iterable): list of label names. Returns: list of str: label information. Its length is equal to that of ``label_names``. If ``label_names`` is ``None``, this function returns an empty list. """ if label_names is None: return [] label_list = [] for label_name in label_names: if mol.HasProp(label_name): label_list.append(mol.GetProp(label_name)) else: label_list.append(None) # TODO(Nakago): Review implementation # Label -1 work in case of classification. # However in regression, assign -1 is not a good strategy... # label_list.append(-1) # Failed to GetProp for label, skip this case. # print('no label') # raise MolFeatureExtractionError return label_list def get_input_features(self, mol): """get molecule's feature representation, descriptor. Each subclass must override this method. Args: mol (Mol): molecule whose feature to be extracted. `mol` is prepared by the method `prepare_smiles_and_mol`. """ raise NotImplementedError def create_dataset(self, *args, **kwargs): return NumpyTupleDataset(*args) def process(self, filepath): # Not used now... pass
projects_oss/detr/detr/__init__.py
sstsai-adl/d2go
687
11070325
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from . import models, util, datasets __all__ = ["models", "util", "datasets"]
tools/setup.py
mrjrty/rpaframework
518
11070329
#!/usr/bin/env python3 import os import sys poetry_path = os.path.expanduser('~/.poetry/lib') sys.path.append(os.path.realpath(poetry_path)) try: from poetry.core.masonry.builders.sdist import SdistBuilder except ImportError: from poetry.masonry.builders.sdist import SdistBuilder from poetry.factory import Factory poetry = Factory().create_poetry(os.getcwd()) builder = SdistBuilder(poetry, None, None) setup = builder.build_setup() with open('setup.py', 'wb') as fd: fd.write(setup)
all_ensemble_models/mean_model.py
LuChungYing/yt8m-ensenble-model
196
11070347
<reponame>LuChungYing/yt8m-ensenble-model import math import models import tensorflow as tf import utils from tensorflow import flags import tensorflow.contrib.slim as slim FLAGS = flags.FLAGS class MeanModel(models.BaseModel): """Mean model.""" def create_model(self, model_input, **unused_params): """Creates a logistic model. model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features. vocab_size: The number of classes in the dataset. Returns: A dictionary with a tensor containing the probability predictions of the model in the 'predictions' key. The dimensions of the tensor are batch_size x num_classes.""" output = tf.reduce_mean(model_input, axis=2) return {"predictions": output}
akshare/economic/cons.py
J-Z-Z/akshare
721
11070354
<filename>akshare/economic/cons.py #!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2019/10/21 21:11 Desc: 宏观经济配置文件 """ # bitcoin bitcoin_url = "https://datacenter-api.jin10.com/crypto_currency/list" bitcoin_payload = { "_": "1572857040275", } bitcoin_headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_bitcoin_current", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.122 Safari/537.36" } # urls-china JS_CHINA_CPI_YEARLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_cpi_yoy_all.js?v={}&_={}" ) JS_CHINA_CPI_MONTHLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_cpi_mom_all.js?v={}&_={}" ) JS_CHINA_M2_YEARLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_m2_money_supply_yoy_all.js?v={}&_={}" ) JS_CHINA_PPI_YEARLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_ppi_yoy_all.js?v={}&_={}" ) JS_CHINA_PMI_YEARLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_manufacturing_pmi_all.js?v={}&_={}" ) JS_CHINA_GDP_YEARLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_gdp_yoy_all.js?v={}&_={}" ) JS_CHINA_CX_PMI_YEARLY_URL = "https://cdn.jin10.com/dc/reports/dc_chinese_caixin_manufacturing_pmi_all.js?v={}&_={}" JS_CHINA_CX_SERVICE_PMI_YEARLY_URL = "https://cdn.jin10.com/dc/reports/dc_chinese_caixin_services_pmi_all.js?v={}&_={}" JS_CHINA_FX_RESERVES_YEARLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_fx_reserves_all.js?v={}&_={}" ) JS_CHINA_ENERGY_DAILY_URL = ( "https://cdn.jin10.com/dc/reports/dc_qihuo_energy_report_all.js?v={}&_={}" ) JS_CHINA_NON_MAN_PMI_MONTHLY_URL = ( "https://cdn.jin10.com/dc/reports/dc_chinese_non_manufacturing_pmi_all.js?v={}&_={}" ) JS_CHINA_RMB_DAILY_URL = "https://cdn.jin10.com/dc/reports/dc_rmb_data_all.js?v={}&_={}" JS_CHINA_MARKET_MARGIN_SZ_URL = "https://cdn.jin10.com/dc/reports/dc_market_margin_sz_all.js?v={}&_={}" JS_CHINA_MARKET_MARGIN_SH_URL = "https://cdn.jin10.com/dc/reports/dc_market_margin_sse_all.js?v={}&_={}" JS_CHINA_REPORT_URL = "https://cdn.jin10.com/dc/reports/dc_sge_report_all.js?v={}&_={}" # urls-usa JS_USA_INTEREST_RATE_URL = ( "https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v={}&_={}" ) JS_USA_NON_FARM_URL = ( "https://cdn.jin10.com/dc/reports/dc_nonfarm_payrolls_all.js?v={}&_={}" ) JS_USA_UNEMPLOYMENT_RATE_URL = ( "https://cdn.jin10.com/dc/reports/dc_usa_unemployment_rate_all.js??v={}&_={}" ) JS_USA_EIA_CRUDE_URL = ( "https://cdn.jin10.com/dc/reports/dc_eia_crude_oil_all.js?v={}&_={}" ) JS_USA_INITIAL_JOBLESS_URL = ( "https://cdn.jin10.com/dc/reports/dc_initial_jobless_all.js?v={}&_={}" ) JS_USA_CORE_PCE_PRICE_URL = ( "https://cdn.jin10.com/dc/reports/dc_usa_core_pce_price_all.js?v={}&_={}" ) JS_USA_CPI_MONTHLY_URL = "https://cdn.jin10.com/dc/reports/dc_usa_cpi_all.js?v={}&_={}" JS_USA_LMCI_URL = "https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v={}&_={}" JS_USA_ADP_NONFARM_URL = ( "https://cdn.jin10.com/dc/reports/dc_adp_nonfarm_employment_all.js?v={}&_={}" ) JS_USA_GDP_MONTHLY_URL = "https://cdn.jin10.com/dc/reports/dc_usa_gdp_all.js?v={}&_={}" JS_USA_EIA_CRUDE_PRODUCE_URL = ( "https://cdn.jin10.com/dc/reports/dc_eia_crude_oil_produce_all.js?v={}&_={}" ) # urls-euro JS_EURO_RATE_DECISION_URL = ( "https://cdn.jin10.com/dc/reports/dc_interest_rate_decision_all.js?v={}&_={}" ) # urls-constitute JS_CONS_GOLD_ETF_URL = "https://cdn.jin10.com/dc/reports/dc_etf_gold_all.js?v={}&_={}" JS_CONS_SLIVER_ETF_URL = ( "https://cdn.jin10.com/dc/reports/dc_etf_sliver_all.js?v={}&_={}" ) JS_CONS_OPEC_URL = "https://cdn.jin10.com/dc/reports/dc_opec_report_all.js??v={}&_={}" usa_name_url_map = { "美联储决议报告": "//datacenter.jin10.com/reportType/dc_usa_interest_rate_decision", "美国非农就业人数报告": "//datacenter.jin10.com/reportType/dc_nonfarm_payrolls", "美国失业率报告": "//datacenter.jin10.com/reportType/dc_usa_unemployment_rate", "美国CPI月率报告": "//datacenter.jin10.com/reportType/dc_usa_cpi", "美国初请失业金人数报告": "//datacenter.jin10.com/reportType/dc_initial_jobless", "美国核心PCE物价指数年率报告": "//datacenter.jin10.com/reportType/dc_usa_core_pce_price", "美国EIA原油库存报告": "//datacenter.jin10.com/reportType/dc_eia_crude_oil", "美联储劳动力市场状况指数报告": "//datacenter.jin10.com/reportType/dc_usa_lmci", "美国ADP就业人数报告": "//datacenter.jin10.com/reportType/dc_adp_nonfarm_employment", "美国国内生产总值(GDP)报告": "//datacenter.jin10.com/reportType/dc_usa_gdp", "美国原油产量报告": "//datacenter.jin10.com/reportType/dc_eia_crude_oil_produce", "美国零售销售月率报告": "//datacenter.jin10.com/reportType/dc_usa_retail_sales", "美国商品期货交易委员会CFTC外汇类非商业持仓报告": "//datacenter.jin10.com/reportType/dc_cftc_nc_report", "美国NFIB小型企业信心指数报告": "//datacenter.jin10.com/reportType/dc_usa_nfib_small_business", "贝克休斯钻井报告": "//datacenter.jin10.com/reportType/dc_rig_count_summary", "美国谘商会消费者信心指数报告": "//datacenter.jin10.com/reportType/dc_usa_cb_consumer_confidence", "美国FHFA房价指数月率报告": "//datacenter.jin10.com/reportType/dc_usa_house_price_index", "美国个人支出月率报告": "//datacenter.jin10.com/reportType/dc_usa_personal_spending", "美国生产者物价指数(PPI)报告": "//datacenter.jin10.com/reportType/dc_usa_ppi", "美国成屋销售总数年化报告": "//datacenter.jin10.com/reportType/dc_usa_exist_home_sales", "美国成屋签约销售指数月率报告": "//datacenter.jin10.com/reportType/dc_usa_pending_home_sales", "美国S&P/CS20座大城市房价指数年率报告": "//datacenter.jin10.com/reportType/dc_usa_spcs20", "美国进口物价指数报告": "//datacenter.jin10.com/reportType/dc_usa_import_price", "美国营建许可总数报告": "//datacenter.jin10.com/reportType/dc_usa_building_permits", "美国商品期货交易委员会CFTC商品类非商业持仓报告": "//datacenter.jin10.com/reportType/dc_cftc_c_report", "美国挑战者企业裁员人数报告": "//datacenter.jin10.com/reportType/dc_usa_job_cuts", "美国实际个人消费支出季率初值报告": "//datacenter.jin10.com/reportType/dc_usa_real_consumer_spending", "美国贸易帐报告": "//datacenter.jin10.com/reportType/dc_usa_trade_balance", "美国经常帐报告": "//datacenter.jin10.com/reportType/dc_usa_current_account", "美国API原油库存报告": "//datacenter.jin10.com/reportType/dc_usa_api_crude_stock", "美国工业产出月率报告": "//datacenter.jin10.com/reportType/dc_usa_industrial_production", "美国耐用品订单月率报告": "//datacenter.jin10.com/reportType/dc_usa_durable_goods_orders", "美国工厂订单月率报告": "//datacenter.jin10.com/reportType/dc_usa_factory_orders", "Markit服务业PMI终值": "//datacenter.jin10.com/reportType/dc_usa_services_pmi", "商业库存月率": "//datacenter.jin10.com/reportType/dc_usa_business_inventories", "美国ISM非制造业PMI": "//datacenter.jin10.com/reportType/dc_usa_ism_non_pmi", "NAHB房产市场指数": "//datacenter.jin10.com/reportType/dc_usa_nahb_house_market_index", "新屋开工总数年化": "//datacenter.jin10.com/reportType/dc_usa_house_starts", "美国新屋销售总数年化": "//datacenter.jin10.com/reportType/dc_usa_new_home_sales", "美国Markit制造业PMI初值报告": "//datacenter.jin10.com/reportType/dc_usa_pmi", "美国ISM制造业PMI报告": "//datacenter.jin10.com/reportType/dc_usa_ism_pmi", "美国密歇根大学消费者信心指数初值报告": "//datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "美国出口价格指数报告": "//datacenter.jin10.com/reportType/dc_usa_export_price", "美国核心生产者物价指数(PPI)报告": "//datacenter.jin10.com/reportType/dc_usa_core_ppi", "美国核心CPI月率报告": "//datacenter.jin10.com/reportType/dc_usa_core_cpi", "美国EIA俄克拉荷马州库欣原油库存报告": "//datacenter.jin10.com/reportType/dc_eia_cushing_oil", "美国EIA精炼油库存报告": "//datacenter.jin10.com/reportType/dc_eia_distillates_stocks", "美国EIA天然气库存报告": "//datacenter.jin10.com/reportType/dc_eia_natural_gas", "美国EIA汽油库存报告": "//datacenter.jin10.com/reportType/dc_eia_gasoline", } china_name_url_map = { "郑州商品交易所期货每日行情": "//datacenter.jin10.com/reportType/dc_czce_futures_data", "中国CPI年率报告": "//datacenter.jin10.com/reportType/dc_chinese_cpi_yoy", "中国PPI年率报告": "//datacenter.jin10.com/reportType/dc_chinese_ppi_yoy", "中国以美元计算出口年率报告": "//datacenter.jin10.com/reportType/dc_chinese_exports_yoy", "中国以美元计算进口年率报告": "//datacenter.jin10.com/reportType/dc_chinese_imports_yoy", "中国以美元计算贸易帐报告": "//datacenter.jin10.com/reportType/dc_chinese_trade_balance", "中国规模以上工业增加值年率报告": "//datacenter.jin10.com/reportType/dc_chinese_industrial_production_yoy", "中国官方制造业PMI报告": "//datacenter.jin10.com/reportType/dc_chinese_manufacturing_pmi", "中国财新制造业PMI终值报告": "//datacenter.jin10.com/reportType/dc_chinese_caixin_manufacturing_pmi", "中国财新服务业PMI报告": "//datacenter.jin10.com/reportType/dc_chinese_caixin_services_pmi", "中国外汇储备报告": "//datacenter.jin10.com/reportType/dc_chinese_fx_reserves", "中国M2货币供应年率报告": "//datacenter.jin10.com/reportType/dc_chinese_m2_money_supply_yoy", "中国GDP年率报告": "//datacenter.jin10.com/reportType/dc_chinese_gdp_yoy", "人民币汇率中间价报告": "//datacenter.jin10.com/reportType/dc_rmb_data", "在岸人民币成交量报告": "//datacenter.jin10.com/reportType/dc_dollar_rmb_report", "上海期货交易所期货合约行情": "//datacenter.jin10.com/reportType/dc_shfe_futures_data", "中国CPI月率报告": "//datacenter.jin10.com/reportType/dc_chinese_cpi_mom", "大连商品交易所期货每日行情": "//datacenter.jin10.com/reportType/dc_dce_futures_data", "中国金融期货交易所期货每日行情": "//datacenter.jin10.com/reportType/dc_cffex_futures_data", "同业拆借报告": "//datacenter.jin10.com/reportType/dc_shibor", "香港同业拆借报告": "//datacenter.jin10.com/reportType/dc_hk_market_info", "深圳融资融券报告": "//datacenter.jin10.com/reportType/dc_market_margin_sz", "上海融资融券报告": "//datacenter.jin10.com/reportType/dc_market_margin_sse", "上海黄金交易所报告": "//datacenter.jin10.com/reportType/dc_sge_report", "上海期货交易所仓单日报": "//datacenter.jin10.com/reportType/dc_shfe_daily_stock", "大连商品交易所仓单日报": "//datacenter.jin10.com/reportType/dc_dce_daily_stock", "郑州商品交易所仓单日报": "//datacenter.jin10.com/reportType/dc_czce_daily_stock", "上海期货交易所指定交割仓库库存周报": "//datacenter.jin10.com/reportType/dc_shfe_weekly_stock", "CCI指数5500大卡动力煤价格报告": "//datacenter.jin10.com/reportType/dc_cci_report", "沿海六大电厂库存动态报告": "//datacenter.jin10.com/reportType/dc_qihuo_energy_report", "国内期货市场实施热度报告": "//datacenter.jin10.com/reportType/dc_futures_market_realtime", "中国官方非制造业PMI报告": "//datacenter.jin10.com/reportType/dc_chinese_non_manufacturing_pmi", } euro_name_url_map = { "欧元区未季调贸易帐报告": "//datacenter.jin10.com/reportType/dc_eurozone_trade_balance_mom", "欧元区季度GDP年率报告": "//datacenter.jin10.com/reportType/dc_eurozone_gdp_yoy", "欧元区CPI年率报告": "//datacenter.jin10.com/reportType/dc_eurozone_cpi_yoy", "欧元区PPI月率报告": "//datacenter.jin10.com/reportType/dc_eurozone_ppi_mom", "欧元区零售销售月率报告": "//datacenter.jin10.com/reportType/dc_eurozone_retail_sales_mom", "欧元区季调后就业人数季率报告": "//datacenter.jin10.com/reportType/dc_eurozone_employment_change_qoq", "欧元区失业率报告": "//datacenter.jin10.com/reportType/dc_eurozone_unemployment_rate_mom", "欧元区CPI月率报告": "//datacenter.jin10.com/reportType/dc_eurozone_cpi_mom", "欧元区经常帐报告": "//datacenter.jin10.com/reportType/dc_eurozone_current_account_mom", "欧元区工业产出月率报告": "//datacenter.jin10.com/reportType/dc_eurozone_industrial_production_mom", "欧元区制造业PMI初值报告": "//datacenter.jin10.com/reportType/dc_eurozone_manufacturing_pmi", "欧元区服务业PMI终值报告": "//datacenter.jin10.com/reportType/dc_eurozone_services_pmi", "欧元区ZEW经济景气指数报告": "//datacenter.jin10.com/reportType/dc_eurozone_zew_economic_sentiment", "欧元区Sentix投资者信心指数报告": "//datacenter.jin10.com/reportType/dc_eurozone_sentix_investor_confidence", } world_central_bank_map = { "美联储决议报告": "//datacenter.jin10.com/reportType/dc_usa_interest_rate_decision", "欧洲央行决议报告": "//datacenter.jin10.com/reportType/dc_interest_rate_decision", "新西兰联储决议报告": "//datacenter.jin10.com/reportType/dc_newzealand_interest_rate_decision", "中国央行决议报告": "//datacenter.jin10.com/reportType/dc_china_interest_rate_decision", "瑞士央行决议报告": "//datacenter.jin10.com/reportType/dc_switzerland_interest_rate_decision", "英国央行决议报告": "//datacenter.jin10.com/reportType/dc_english_interest_rate_decision", "澳洲联储决议报告": "//datacenter.jin10.com/reportType/dc_australia_interest_rate_decision", "日本央行决议报告": "//datacenter.jin10.com/reportType/dc_japan_interest_rate_decision", "印度央行决议报告": "//datacenter.jin10.com/reportType/dc_india_interest_rate_decision", "俄罗斯央行决议报告": "//datacenter.jin10.com/reportType/dc_russia_interest_rate_decision", "巴西央行决议报告": "//datacenter.jin10.com/reportType/dc_brazil_interest_rate_decision", } constitute_report_map = { "全球最大黄金ETF—SPDR Gold Trust持仓报告": "//datacenter.jin10.com/reportType/dc_etf_gold", "全球最大白银ETF--iShares Silver Trust持仓报告": "//datacenter.jin10.com/reportType/dc_etf_sliver", "芝加哥商业交易所(CME)能源类商品成交量报告": "//datacenter.jin10.com/reportType/dc_cme_energy_report", "美国商品期货交易委员会CFTC外汇类非商业持仓报告": "//datacenter.jin10.com/reportType/dc_cftc_nc_report", "美国商品期货交易委员会CFTC商品类非商业持仓报告": "//datacenter.jin10.com/reportType/dc_cftc_c_report", "芝加哥商业交易所(CME)金属类商品成交量报告": "//datacenter.jin10.com/reportType/dc_cme_report", "芝加哥商业交易所(CME)外汇类商品成交量报告": "//datacenter.jin10.com/reportType/dc_cme_fx_report", "伦敦金属交易所(LME)库存报告": "//datacenter.jin10.com/reportType/dc_lme_report", "伦敦金属交易所(LME)持仓报告": "//datacenter.jin10.com/reportType/dc_lme_traders_report", "美国商品期货交易委员会CFTC商品类商业持仓报告": "//datacenter.jin10.com/reportType/dc_cftc_merchant_goods", "美国商品期货交易委员会CFTC外汇类商业持仓报告": "//datacenter.jin10.com/reportType/dc_cftc_merchant_currency", } other_map = { "投机情绪报告": "//datacenter.jin10.com/reportType/dc_ssi_trends", "外汇实时波动监控": "//datacenter.jin10.com/reportType/dc_myFxBook_heat_map", "外汇相关性报告": "//datacenter.jin10.com/reportType/dc_myFxBook_correlation", "加密货币实时行情": "//datacenter.jin10.com/reportType/dc_bitcoin_current", } main_map = { "全球最大黄金ETF—SPDR Gold Trust持仓报告": "//datacenter.jin10.com/reportType/dc_etf_gold", "全球最大白银ETF--iShares Silver Trust持仓报告": "//datacenter.jin10.com/reportType/dc_etf_sliver", "美国非农就业人数报告": "//datacenter.jin10.com/reportType/dc_nonfarm_payrolls", "投机情绪报告": "//datacenter.jin10.com/reportType/dc_ssi_trends", "数据达人 — 复合报告": "//datacenter.jin10.com/reportType/dc_complex_report?complexType=1", "投行订单": "//datacenter.jin10.com/banks_orders", "行情报价": "//datacenter.jin10.com/price_wall", "美国EIA原油库存报告": "//datacenter.jin10.com/reportType/dc_eia_crude_oil", "欧佩克报告": "//datacenter.jin10.com/reportType/dc_opec_report", }
test/run/t69.py
timmartin/skulpt
2,671
11070381
<reponame>timmartin/skulpt<gh_stars>1000+ x = {1:2} del x[1] print len(x)
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/integer_array_casting.py
AlexShypula/CodeGen
241
11070396
<reponame>AlexShypula/CodeGen<filename>codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/integer_array_casting.py import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_196a45f8932c033f06f6a086488b268404e77353d16c9bc6407a417f237da6db( unittest.TestCase ): def test3(self): int0 = f_filled(None) assert 0 == int0 if __name__ == "__main__": unittest.main()
loss/robust_loss_pytorch/tests/distribution_test.py
milesgray/CALAE
522
11070409
<filename>loss/robust_loss_pytorch/tests/distribution_test.py # coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for distribution.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import scipy.stats import torch from robust_loss_pytorch import distribution class TestDistribution(parameterized.TestCase): def setUp(self): self._distribution = distribution.Distribution() super(TestDistribution, self).setUp() torch.manual_seed(0) np.random.seed(0) def testSplineCurveIsC1Smooth(self): """Tests that partition_spline_curve() and its derivative are continuous.""" x1 = np.linspace(0., 8., 10000, dtype=np.float64) x2 = x1 + 1e-7 var_x1 = torch.autograd.Variable(torch.tensor(x1), requires_grad=True) y1 = distribution.partition_spline_curve(var_x1) sum_y1 = torch.sum(y1) sum_y1.backward() dy1 = var_x1.grad.detach().numpy() y1 = y1.detach().numpy() var_x2 = torch.autograd.Variable(torch.tensor(x2), requires_grad=True) y2 = distribution.partition_spline_curve(var_x2) sum_y2 = torch.sum(y2) sum_y2.backward() dy2 = var_x2.grad.detach().numpy() y2 = y2.detach().numpy() np.testing.assert_allclose(y1, y2, atol=1e-6, rtol=1e-6) np.testing.assert_allclose(dy1, dy2, atol=1e-6, rtol=1e-6) def testAnalyaticalPartitionIsCorrect(self): """Tests _analytical_base_partition_function against some golden data.""" # Here we enumerate a set of positive rational numbers n/d alongside # numerically approximated values of Z(n / d) up to 10 digits of precision, # stored as (n, d, Z(n/d)). This was generated with an external mathematica # script. ground_truth_rational_partitions = ( (1, 7, 4.080330073), (1, 6, 4.038544331), (1, 5, 3.984791180), (1, 4, 3.912448576), (1, 3, 3.808203509), (2, 5, 3.735479786), (3, 7, 3.706553276), (1, 2, 3.638993131), (3, 5, 3.553489270), (2, 3, 3.501024540), (3, 4, 3.439385624), (4, 5, 3.404121259), (1, 1, 3.272306973), (6, 5, 3.149249092), (5, 4, 3.119044506), (4, 3, 3.068687433), (7, 5, 3.028084866), (3, 2, 2.965924889), (8, 5, 2.901059987), (5, 3, 2.855391798), (7, 4, 2.794052016), (7, 3, 2.260434598), (5, 2, 2.218882601), (8, 3, 2.190349858), (3, 1, 2.153202857), (4, 1, 2.101960916), (7, 2, 2.121140098), (5, 1, 2.080000512), (9, 2, 2.089161164), (6, 1, 2.067751267), (7, 1, 2.059929623), (8, 1, 2.054500222), (10, 3, 2.129863884), (11, 3, 2.113763384), (13, 3, 2.092928254), (14, 3, 2.085788350), (16, 3, 2.075212740), (11, 2, 2.073116001), (17, 3, 2.071185791), (13, 2, 2.063452243), (15, 2, 2.056990258)) # pyformat: disable for numer, denom, z_true in ground_truth_rational_partitions: z = distribution.analytical_base_partition_function(numer, denom) np.testing.assert_allclose(z, z_true, atol=1e-9, rtol=1e-9) def testSplineCurveInverseIsCorrect(self): """Tests that the inverse curve is indeed the inverse of the curve.""" x_knot = np.arange(0, 16, 0.01, dtype=np.float64) alpha = distribution.inv_partition_spline_curve(x_knot) x_recon = distribution.partition_spline_curve(alpha) np.testing.assert_allclose(x_recon, x_knot) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testLogPartitionInfinityIsAccurate(self, float_dtype): """Tests that the partition function is accurate at infinity.""" alpha = float_dtype(float('inf')) log_z_true = np.float64(0.70526025442) # From mathematica. log_z = self._distribution.log_base_partition_function(alpha) np.testing.assert_allclose(log_z, log_z_true, atol=1e-7, rtol=1e-7) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testLogPartitionFractionsAreAccurate(self, float_dtype): """Test that the partition function is correct for [0/11, ... 22/11].""" numers = range(0, 23) denom = 11 log_zs_true = [ np.log(distribution.analytical_base_partition_function(n, denom)) for n in numers ] log_zs = self._distribution.log_base_partition_function( float_dtype(np.array(numers)) / float_dtype(denom)) np.testing.assert_allclose(log_zs, log_zs_true, atol=1e-7, rtol=1e-7) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testAlphaZeroSamplesMatchACauchyDistribution(self, float_dtype): """Tests that samples when alpha=0 match a Cauchy distribution.""" num_samples = 16384 scale = float_dtype(1.7) samples = self._distribution.draw_samples( np.zeros(num_samples, dtype=float_dtype), scale * np.ones(num_samples, dtype=float_dtype)) # Perform the Kolmogorov-Smirnov test against a Cauchy distribution. ks_statistic = scipy.stats.kstest(samples, 'cauchy', (0., scale * np.sqrt(2.))).statistic np.testing.assert_(ks_statistic < 0.01) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testAlphaTwoSamplesMatchANormalDistribution(self, float_dtype): """Tests that samples when alpha=2 match a normal distribution.""" num_samples = 16384 scale = float_dtype(1.7) samples = self._distribution.draw_samples( 2. * np.ones(num_samples, dtype=float_dtype), scale * np.ones(num_samples, dtype=float_dtype)) # Perform the Kolmogorov-Smirnov test against a normal distribution. ks_statistic = scipy.stats.kstest(samples, 'norm', (0., scale)).statistic np.testing.assert_(ks_statistic < 0.01) @parameterized.named_parameters( ('SingleCPU', np.float32, 'cpu'), ('DoubleCPU', np.float64, 'cpu'), ('SingleGPU', np.float32, 'cuda'), ('DoubleGPU', np.float64, 'cuda')) def testAlphaZeroNllsMatchACauchyDistribution(self, float_dtype, device): """Tests that NLLs when alpha=0 match a Cauchy distribution.""" x = np.linspace(-10., 10, 1000, dtype=float_dtype) scale = np.array(1.7, float_dtype) alpha = np.array(0., float_dtype) nll = self._distribution.nllfun( torch.tensor(x, device=device), torch.tensor(alpha, device=device), torch.tensor(scale, device=device)).cpu().detach() nll_true = -scipy.stats.cauchy(0., scale * np.sqrt(2.)).logpdf(x) np.testing.assert_allclose(nll, nll_true, atol=1e-6, rtol=1e-6) @parameterized.named_parameters( ('SingleCPU', np.float32, 'cpu'), ('DoubleCPU', np.float64, 'cpu'), ('SingleGPU', np.float32, 'cuda'), ('DoubleGPU', np.float64, 'cuda')) def testAlphaTwoNllsMatchANormalDistribution(self, float_dtype, device): """Tests that NLLs when alpha=2 match a normal distribution.""" x = np.linspace(-10., 10, 1000, dtype=float_dtype) scale = np.array(1.7, float_dtype) alpha = np.array(2., float_dtype) nll = self._distribution.nllfun( torch.tensor(x, device=device), torch.tensor(alpha, device=device), torch.tensor(scale, device=device)).cpu().detach() nll_true = -scipy.stats.norm(0., scale).logpdf(x) np.testing.assert_allclose(nll, nll_true, atol=1e-6, rtol=1e-6) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testPdfIntegratesToOne(self, float_dtype): """Tests that the PDF integrates to 1 for different alphas.""" alphas = np.exp(np.linspace(-4., 8., 8, dtype=float_dtype)) scale = float_dtype(1.7) x = np.arange(-128., 128., 1 / 256., dtype=float_dtype) * scale for alpha in alphas: nll = self._distribution.nllfun(x, np.array(alpha), np.array(scale)).detach().numpy() pdf_sum = np.sum(np.exp(-nll)) * (x[1] - x[0]) np.testing.assert_allclose(pdf_sum, 1., atol=0.005, rtol=0.005) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testNllfunPreservesDtype(self, float_dtype): """Checks that the loss's output has the same precision as its input.""" n = 16 x = float_dtype(np.random.normal(size=n)) alpha = float_dtype(np.exp(np.random.normal(size=n))) scale = float_dtype(np.exp(np.random.normal(size=n))) y = self._distribution.nllfun(x, alpha, scale).detach().numpy() np.testing.assert_(y.dtype, float_dtype) @parameterized.named_parameters(('Single', np.float32), ('Double', np.float64)) def testSamplingPreservesDtype(self, float_dtype): """Checks that sampling's output has the same precision as its input.""" n = 16 alpha = float_dtype(np.exp(np.random.normal(size=n))) scale = float_dtype(np.exp(np.random.normal(size=n))) y = self._distribution.draw_samples(alpha, scale).detach().numpy() np.testing.assert_(y.dtype, float_dtype) if __name__ == '__main__': np.testing.run_module_suite()
src/einsteinpy/metric/kerrnewman.py
QMrpy/einsteinpy
485
11070417
import numpy as np from astropy import units as u from einsteinpy import constant from einsteinpy.metric import BaseMetric from einsteinpy.utils import CoordinateError _c = constant.c.value _G = constant.G.value _Cc = constant.coulombs_const.value class KerrNewman(BaseMetric): """ Class for defining Kerr-Newman Goemetry """ @u.quantity_input(M=u.kg, a=u.one, Q=u.C, q=u.C / u.kg) def __init__(self, coords, M, a, Q, q=0.0 * u.C / u.kg): """ Constructor Parameters ---------- coords : ~einsteinpy.coordinates.differential.* Coordinate system, in which Metric is to be represented M : ~astropy.units.quantity.Quantity Mass of gravitating body, e.g. Black Hole a : ~astropy.units.quantity.Quantity Spin Parameter Q : ~astropy.units.quantity.Quantity Charge on gravitating body, e.g. Black Hole q : ~astropy.units.quantity.Quantity, optional Charge, per unit mass, of the test particle Defaults to ``0 C / kg`` """ super().__init__( coords=coords, M=M, a=a, Q=Q, name="Kerr-Newman Metric", metric_cov=self.metric_covariant, christoffels=self._christoffels, f_vec=self._f_vec, ) self.q = q # Precomputed list of tuples, containing indices \ # of non-zero Christoffel Symbols for Kerr-Newman Metric \ # in Boyer-Lindquist Coordinates self._nonzero_christoffels_list_bl = [ (0, 0, 1), (0, 0, 2), (0, 1, 3), (0, 2, 3), (0, 1, 0), (0, 2, 0), (0, 3, 1), (0, 3, 2), (1, 0, 0), (1, 1, 1), (1, 2, 2), (1, 3, 3), (2, 0, 0), (2, 1, 1), (2, 2, 2), (2, 3, 3), (1, 0, 3), (1, 1, 2), (2, 0, 3), (2, 1, 2), (1, 2, 1), (1, 3, 0), (2, 2, 1), (2, 3, 0), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 3), (3, 2, 0), (3, 2, 3), (3, 3, 1), (3, 3, 2), ] def metric_covariant(self, x_vec): """ Returns Covariant Kerr-Newman Metric Tensor \ in chosen Coordinates Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Covariant Kerr-Newman Metric Tensor in chosen Coordinates Numpy array of shape (4,4) Raises ------ CoordinateError Raised, if the metric is not available in \ the supplied Coordinate System """ if self.coords.system == "BoyerLindquist": return self._g_cov_bl(x_vec) raise CoordinateError( "Kerr-Newman Metric is available only in Boyer-Lindquist Coordinates." ) def _g_cov_bl(self, x_vec): """ Returns Covariant Kerr-Newman Metric Tensor \ in Boyer-Lindquist coordinates Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Covariant Kerr-Newman Metric Tensor \ in Boyer-Lindquist coordinates Numpy array of shape (4,4) """ r, th = x_vec[1], x_vec[2] M, a = self.M.value, self.a.value alpha = super().alpha(M, a) rho2, dl = super().rho(r, th, M, a) ** 2, super().delta(r, M, a) g_cov_bl = np.zeros(shape=(4, 4), dtype=float) g_cov_bl[0, 0] = (_c ** 2) * ((dl - ((alpha * np.sin(th)) ** 2)) / (rho2)) g_cov_bl[1, 1] = -rho2 / dl g_cov_bl[2, 2] = -rho2 g_cov_bl[3, 3] = -( (np.sin(th) ** 2) * (((r ** 2 + alpha ** 2) ** 2 - dl * (alpha * np.sin(th)) ** 2) / rho2) ) g_cov_bl[0, 3] = g_cov_bl[3, 0] = _c * ( (-alpha * (np.sin(th) ** 2) * (dl - (r ** 2) - (alpha ** 2))) / rho2 ) return g_cov_bl def _dg_dx_bl(self, x_vec): """ Returns derivative of each Kerr-Newman Metric component \ w.r.t. coordinates in Boyer-Lindquist Coordinate System Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- dgdx : ~numpy.ndarray Array, containing derivative of each Kerr-Newman \ Metric component w.r.t. coordinates \ in Boyer-Lindquist Coordinate System Numpy array of shape (4,4,4) dgdx[0], dgdx[1], dgdx[2] & dgdx[3] contain \ derivatives of metric w.r.t. t, r, theta & phi respectively """ r, th = x_vec[1], x_vec[2] M, a = self.M.value, self.a.value alpha = super().alpha(M, a) rho2, dl = super().rho(r, th, M, a) ** 2, super().delta(r, M, a) dgdx = np.zeros(shape=(4, 4, 4), dtype=float) # Metric is invariant on t & phi # Differentiation of metric wrt r def due_to_r(): nonlocal dgdx drh2dr = 2 * r dddr = 2 * r - self.sch_rad dgdx[1, 0, 0] = ( (_c ** 2) * (dddr * rho2 - drh2dr * (dl - (alpha * np.sin(th)) ** 2)) / (rho2 ** 2) ) dgdx[1, 1, 1] = (-1 / (dl ** 2)) * (drh2dr * dl - dddr * rho2) dgdx[1, 2, 2] = -drh2dr dgdx[1, 3, 3] = ((np.sin(th) / rho2) ** 2) * ( ( ( ((alpha * np.sin(th)) ** 2) * dddr - 4 * (r ** 3) - 4 * (r * (alpha ** 2)) ) * rho2 ) - ( drh2dr * (((alpha * np.sin(th)) ** 2) * dl - ((r ** 2 + alpha ** 2) ** 2)) ) ) dgdx[1, 0, 3] = dgdx[1, 3, 0] = ( _c * (-alpha) * (np.sin(th) ** 2) / (rho2 ** 2) ) * ((dddr - 2 * r) * rho2 - drh2dr * (dl - r ** 2 - alpha ** 2)) # Differentiation of metric wrt theta def due_to_theta(): nonlocal dgdx drh2dth = -(alpha ** 2) * np.sin(2 * th) dgdx[2, 0, 0] = (-((_c / rho2) ** 2)) * ( (drh2dth * (dl - ((alpha * np.sin(th)) ** 2))) + ((alpha ** 2) * rho2 * np.sin(2 * th)) ) dgdx[2, 1, 1] = -drh2dth / dl dgdx[2, 2, 2] = -drh2dth dgdx[2, 3, 3] = (1 / (rho2 ** 2)) * ( (dl * (alpha * np.sin(th)) ** 2) * (2 * rho2 * np.sin(2 * th) - drh2dth * (np.sin(th)) ** 2) - ( ((r ** 2 + alpha ** 2) ** 2) * (rho2 * np.sin(2 * th) - drh2dth * (np.sin(th)) ** 2) ) ) dgdx[2, 0, 3] = dgdx[2, 3, 0] = ( (-alpha * _c * (dl - r ** 2 - alpha ** 2)) / (rho2 ** 2) ) * ((np.sin(2 * th) * rho2) - (drh2dth * (np.sin(th) ** 2))) due_to_r() due_to_theta() return dgdx def _christoffels(self, x_vec): """ Returns Christoffel Symbols for Kerr-Newman Metric in chosen Coordinates Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Christoffel Symbols for Kerr-Newman \ Metric in chosen Coordinates Numpy array of shape (4,4,4) Raises ------ CoordinateError Raised, if the Christoffel Symbols are not \ available in the supplied Coordinate System """ if self.coords.system == "BoyerLindquist": return self._ch_sym_bl(x_vec) raise CoordinateError( "Christoffel Symbols for Kerr-Newman Metric are available only in Boyer-Lindquist Coordinates." ) def _ch_sym_bl(self, x_vec): """ Returns Christoffel Symbols for Kerr-Newman Metric \ in Boyer-Lindquist Coordinates Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Christoffel Symbols for Kerr-Newman Metric \ in Boyer-Lindquist Coordinates Numpy array of shape (4,4,4) """ g_contra = self.metric_contravariant(x_vec) dgdx = self._dg_dx_bl(x_vec) chl = np.zeros(shape=(4, 4, 4), dtype=float) for _, k, l in self._nonzero_christoffels_list_bl[0:4]: val1 = dgdx[l, 0, k] + dgdx[k, 0, l] val2 = dgdx[l, 3, k] + dgdx[k, 3, l] chl[0, k, l] = chl[0, l, k] = 0.5 * ( g_contra[0, 0] * (val1) + g_contra[0, 3] * (val2) ) chl[3, k, l] = chl[3, l, k] = 0.5 * ( g_contra[3, 0] * (val1) + g_contra[3, 3] * (val2) ) for i, k, l in self._nonzero_christoffels_list_bl[8:16]: chl[i, k, l] = 0.5 * ( g_contra[i, i] * (dgdx[l, i, k] + dgdx[k, i, l] - dgdx[i, k, l]) ) for i, k, l in self._nonzero_christoffels_list_bl[16:20]: chl[i, k, l] = chl[i, l, k] = 0.5 * ( g_contra[i, i] * (dgdx[l, i, k] + dgdx[k, i, l] - dgdx[i, k, l]) ) return chl def _f_vec(self, lambda_, vec): """ Returns f_vec for Kerr-Newman Metric in chosen coordinates To be used for solving Geodesics ODE Parameters ---------- lambda_ : float Parameterizes current integration step Used by ODE Solver vec : array_like Length-8 Vector, containing 4-Position & 4-Velocity Returns ------- ~numpy.ndarray f_vec for Kerr-Newman Metric in chosen coordinates Numpy array of shape (8) Raises ------ CoordinateError Raised, if ``f_vec`` is not available in \ the supplied Coordinate System """ if self.coords.system == "BoyerLindquist": return self._f_vec_bl(lambda_, vec) raise CoordinateError( "'f_vec' for Kerr-Newman Metric is available only in Boyer-Lindquist Coordinates." ) def _f_vec_bl(self, lambda_, vec): """ Returns f_vec for Kerr-Newman Metric \ in Boyer-Lindquist Coordinates To be used for solving Geodesics ODE Parameters ---------- lambda_ : float Parameterizes current integration step Used by ODE Solver vec : array_like Length-8 Vector, containing 4-Position & 4-Velocity Returns ------- ~numpy.ndarray f_vec for Kerr-Newman Metric in Boyer-Lindquist Coordinates Numpy array of shape (8) """ chl = self.christoffels(vec[:4]) F_contra = self.em_tensor_contravariant(vec[:4]) g_cov = self.metric_covariant(vec[:4]) vals = np.zeros(shape=vec.shape, dtype=vec.dtype) vals[:4] = vec[4:] vals[4] = -2.0 * ( chl[0, 0, 1] * vec[4] * vec[5] + chl[0, 0, 2] * vec[4] * vec[6] + chl[0, 1, 3] * vec[5] * vec[7] + chl[0, 2, 3] * vec[6] * vec[7] ) vals[5] = -1.0 * ( chl[1, 0, 0] * vec[4] * vec[4] + 2 * chl[1, 0, 3] * vec[4] * vec[7] + chl[1, 1, 1] * vec[5] * vec[5] + 2 * chl[1, 1, 2] * vec[5] * vec[6] + chl[1, 2, 2] * vec[6] * vec[6] + chl[1, 3, 3] * vec[7] * vec[7] ) vals[6] = -1.0 * ( chl[2, 0, 0] * vec[4] * vec[4] + 2 * chl[2, 0, 3] * vec[4] * vec[7] + chl[2, 1, 1] * vec[5] * vec[5] + 2 * chl[2, 1, 2] * vec[5] * vec[6] + chl[2, 2, 2] * vec[6] * vec[6] + chl[2, 3, 3] * vec[7] * vec[7] ) vals[7] = -2.0 * ( chl[3, 0, 1] * vec[4] * vec[5] + chl[3, 0, 2] * vec[4] * vec[6] + chl[3, 1, 3] * vec[5] * vec[7] + chl[3, 2, 3] * vec[6] * vec[7] ) vals[4:] -= self.q.value * (F_contra @ vec[4:] @ g_cov) return vals def em_potential_covariant(self, x_vec): """ Returns Covariant Electromagnetic 4-Potential Specific to Kerr-Newman Geometries Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Covariant Electromagnetic 4-Potential Numpy array of shape (4,) """ _, r, th, _ = x_vec M, a, Q = self.M.value, self.a.value, self.Q.value alpha = super().alpha(M, a) # Geometrized Charge r_Q = np.sqrt((Q ** 2 * _G * _Cc) / _c ** 4) rho2 = super().rho(r, th, M, a) ** 2 A = np.zeros((4,), dtype=float) A[0] = r * r_Q / rho2 A[3] = -r * alpha * r_Q * np.sin(th) ** 2 / rho2 return A def em_potential_contravariant(self, x_vec): """ Returns Contravariant Electromagnetic 4-Potential Specific to Kerr-Newman Geometries Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Contravariant Electromagnetic 4-Potential Numpy array of shape (4,) """ A_cov = self.em_potential_covariant(x_vec) g_contra = self.metric_contravariant(x_vec) return g_contra @ A_cov def em_tensor_covariant(self, x_vec): """ Returns Covariant Electromagnetic Tensor Specific to Kerr-Newman Geometries Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Covariant Electromagnetic Tensor Numpy array of shape (4, 4) """ _, r, th, _ = x_vec M, a, Q = self.M.value, self.a.value, self.Q.value alpha = super().alpha(M, a) r_Q = np.sqrt((Q ** 2 * _G * _Cc) / _c ** 4) rho2 = super().rho(r, th, M, a) ** 2 # Partial derivatives of rho2 drho2_dr = 2 * r drho2_dtheta = -(alpha ** 2 * np.sin(2 * th)) F = np.zeros((4, 4), dtype=float) F[0, 1] = -(r_Q * (rho2 - drho2_dr * r)) / (rho2 ** 2) F[1, 0] = -F[0, 1] F[0, 2] = (r * r_Q * drho2_dtheta) / (rho2 ** 2) F[2, 0] = -F[0, 2] F[1, 3] = ( (1 / rho2 ** 2) * (alpha * r_Q * np.sin(th) ** 2) * (rho2 - 2 * r ** 2) ) F[3, 1] = -F[1, 3] F[2, 3] = ( (1 / rho2 ** 2) * (alpha * r_Q * r * np.sin(2 * th)) * (rho2 + (alpha * np.sin(th)) ** 2) ) F[3, 2] = -F[2, 3] return F def em_tensor_contravariant(self, x_vec): """ Returns Contravariant Electromagnetic Tensor Specific to Kerr-Newman Geometries Parameters ---------- x_vec : array_like Position 4-Vector Returns ------- ~numpy.ndarray Contravariant Electromagnetic Tensor Numpy array of shape (4, 4) """ F_cov = self.em_tensor_covariant(x_vec) g_contra = self.metric_contravariant(x_vec) F_contra = g_contra @ F_cov @ g_contra return F_contra
var/spack/repos/builtin/packages/py-preshed/package.py
LiamBindle/spack
2,360
11070464
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) class PyPreshed(PythonPackage): """preshed: Cython Hash Table for Pre-Hashed Keys.""" homepage = "https://github.com/explosion/preshed" pypi = "preshed/preshed-3.0.2.tar.gz" version('3.0.2', sha256='61d73468c97c1d6d5a048de0b01d5a6fd052123358aca4823cdb277e436436cb') depends_on('py-setuptools', type='build') depends_on('[email protected]:2.0', type=('build', 'run')) depends_on('[email protected]:1.0', type=('build', 'run'))
3rdParty/V8/v7.9.317/tools/release/search_related_commits.py
rajeev02101987/arangodb
12,278
11070467
<gh_stars>1000+ #!/usr/bin/env python # Copyright 2015 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # for py2/py3 compatibility from __future__ import print_function import argparse import operator import os import re from sets import Set from subprocess import Popen, PIPE import sys def search_all_related_commits( git_working_dir, start_hash, until, separator, verbose=False): all_commits_raw = _find_commits_inbetween( start_hash, until, git_working_dir, verbose) if verbose: print("All commits between <of> and <until>: " + all_commits_raw) # Adding start hash too all_commits = [start_hash] all_commits.extend(all_commits_raw.splitlines()) all_related_commits = {} already_treated_commits = Set([]) for commit in all_commits: if commit in already_treated_commits: continue related_commits = _search_related_commits( git_working_dir, commit, until, separator, verbose) if len(related_commits) > 0: all_related_commits[commit] = related_commits already_treated_commits.update(related_commits) already_treated_commits.update(commit) return all_related_commits def _search_related_commits( git_working_dir, start_hash, until, separator, verbose=False): if separator: commits_between = _find_commits_inbetween( start_hash, separator, git_working_dir, verbose) if commits_between == "": return [] # Extract commit position original_message = git_execute( git_working_dir, ["show", "-s", "--format=%B", start_hash], verbose) title = original_message.splitlines()[0] matches = re.search("(\{#)([0-9]*)(\})", original_message) if not matches: return [] commit_position = matches.group(2) if verbose: print("1.) Commit position to look for: " + commit_position) search_range = start_hash + ".." + until def git_args(grep_pattern): return [ "log", "--reverse", "--grep=" + grep_pattern, "--format=%H", search_range, ] found_by_hash = git_execute( git_working_dir, git_args(start_hash), verbose).strip() if verbose: print("2.) Found by hash: " + found_by_hash) found_by_commit_pos = git_execute( git_working_dir, git_args(commit_position), verbose).strip() if verbose: print("3.) Found by commit position: " + found_by_commit_pos) # Replace brackets or else they are wrongly interpreted by --grep title = title.replace("[", "\\[") title = title.replace("]", "\\]") found_by_title = git_execute( git_working_dir, git_args(title), verbose).strip() if verbose: print("4.) Found by title: " + found_by_title) hits = ( _convert_to_array(found_by_hash) + _convert_to_array(found_by_commit_pos) + _convert_to_array(found_by_title)) hits = _remove_duplicates(hits) if separator: for current_hit in hits: commits_between = _find_commits_inbetween( separator, current_hit, git_working_dir, verbose) if commits_between != "": return hits return [] return hits def _find_commits_inbetween(start_hash, end_hash, git_working_dir, verbose): commits_between = git_execute( git_working_dir, ["rev-list", "--reverse", start_hash + ".." + end_hash], verbose) return commits_between.strip() def _convert_to_array(string_of_hashes): return string_of_hashes.splitlines() def _remove_duplicates(array): no_duplicates = [] for current in array: if not current in no_duplicates: no_duplicates.append(current) return no_duplicates def git_execute(working_dir, args, verbose=False): command = ["git", "-C", working_dir] + args if verbose: print("Git working dir: " + working_dir) print("Executing git command:" + str(command)) p = Popen(args=command, stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate() rc = p.returncode if rc != 0: raise Exception(err) if verbose: print("Git return value: " + output) return output def _pretty_print_entry(hash, git_dir, pre_text, verbose): text_to_print = git_execute( git_dir, ["show", "--quiet", "--date=iso", hash, "--format=%ad # %H # %s"], verbose) return pre_text + text_to_print.strip() def main(options): all_related_commits = search_all_related_commits( options.git_dir, options.of[0], options.until[0], options.separator, options.verbose) sort_key = lambda x: ( git_execute( options.git_dir, ["show", "--quiet", "--date=iso", x, "--format=%ad"], options.verbose)).strip() high_level_commits = sorted(all_related_commits.keys(), key=sort_key) for current_key in high_level_commits: if options.prettyprint: yield _pretty_print_entry( current_key, options.git_dir, "+", options.verbose) else: yield "+" + current_key found_commits = all_related_commits[current_key] for current_commit in found_commits: if options.prettyprint: yield _pretty_print_entry( current_commit, options.git_dir, "| ", options.verbose) else: yield "| " + current_commit if __name__ == "__main__": # pragma: no cover parser = argparse.ArgumentParser( "This tool analyzes the commit range between <of> and <until>. " "It finds commits which belong together e.g. Implement/Revert pairs and " "Implement/Port/Revert triples. All supplied hashes need to be " "from the same branch e.g. master.") parser.add_argument("-g", "--git-dir", required=False, default=".", help="The path to your git working directory.") parser.add_argument("--verbose", action="store_true", help="Enables a very verbose output") parser.add_argument("of", nargs=1, help="Hash of the commit to be searched.") parser.add_argument("until", nargs=1, help="Commit when searching should stop") parser.add_argument("--separator", required=False, help="The script will only list related commits " "which are separated by hash <--separator>.") parser.add_argument("--prettyprint", action="store_true", help="Pretty prints the output") args = sys.argv[1:] options = parser.parse_args(args) for current_line in main(options): print(current_line)
imageatm/utils/io.py
vishalbelsare/imageatm
215
11070494
import json import yaml from pathlib import Path from typing import Union def load_json(file_path: Path) -> Union[dict, list]: with open(file_path, 'r') as f: return json.load(f) def save_json(data: Union[dict, list], target_file: str): with open(target_file, 'w') as f: json.dump(data, f, indent=2, sort_keys=True) def load_yaml(file_path: str) -> str: with open(file_path, 'r') as f: return yaml.safe_load(f)
cctbx/maptbx/prepare_map_for_docking.py
whart222/cctbx_project
155
11070499
<reponame>whart222/cctbx_project from __future__ import print_function from __future__ import division import math from cctbx.maptbx import mask from scitbx.array_family import flex from scitbx.dtmin.minimizer import Minimizer from scitbx.dtmin.refinebase import RefineBase from scitbx.dtmin.reparams import Reparams from scitbx.dtmin.bounds import Bounds from cctbx import adptbx import sys class RefineCryoemErrors(RefineBase): # Set up refinement class for dtmin minimiser (based on Phaser minimiser) def __init__(self, mc1, mc2, ssqr_bins, target_spectrum, start_x): RefineBase.__init__(self) # Precompute data that will be used repeatedly for fgh evaluation f1 = flex.abs(mc1.data()) f2 = flex.abs(mc2.data()) p1 = mc1.phases().data() p2 = mc2.phases().data() self.sumfsqr_miller = mc1.customized_copy(data=flex.pow2(f1) + flex.pow2(f2)) self.sumfsqr_miller.use_binner_of(mc1) self.f1f2cos_miller = mc1.customized_copy(data=f1 * f2 * flex.cos(p2 - p1)) self.n_bins = mc1.binner().n_bins_used() # Assume consistent binning self.ssqr_bins = ssqr_bins self.unit_cell = mc1.unit_cell() assert (self.n_bins == len(ssqr_bins)) self.target_spectrum = target_spectrum self.start_x = start_x self.x = start_x[:] # Full set of parameters recip_params = self.unit_cell.reciprocal_parameters() astar = recip_params[0] bstar = recip_params[1] cstar = recip_params[2] self.large_shifts_beta = [astar * astar, bstar * bstar, cstar * cstar, astar * bstar, astar * cstar, bstar * cstar] def target_gradient_hessian(self, do_gradient=True, do_hessian=True): if (do_hessian): assert (do_gradient) # Extract parameters into variables with sensible names n_bins = self.n_bins i_par = 0 asqr_scale = self.x[i_par] i_par += 1 sigmaT_bins = self.x[i_par:i_par + n_bins] i_par += n_bins asqr_beta = tuple(self.x[i_par:i_par + 6]) i_par += 6 sigmaE_scale = self.x[i_par] i_par += 1 sigmaE_bins = self.x[i_par:i_par + n_bins] i_par += n_bins sigmaE_beta = tuple(self.x[i_par:i_par + 6]) i_par += 6 assert (i_par == len(self.x)) # Initialise function, gradient and Hessian with zeros f = 0. g = flex.double(self.nmp, 0) h = flex.double(self.nmp * self.nmp, 0) h.reshape(flex.grid(self.nmp, self.nmp)) twologpi = 2 * math.log(math.pi) # Loop over bins to accumulate target, gradient, Hessian ma = self.sumfsqr_miller # Miller array holding associated information i_bin_used = 0 # Keep track in case full range of bins not used for i_bin in ma.binner().range_used(): sel = ma.binner().selection(i_bin) ma_sel = ma.select(sel) # Make Miller array as basis for computing aniso corrections in bin # Let u = A^2*sigmaT to simplify computation of derivatives ones_array = flex.double(ma_sel.size(), 1) all_ones = ma_sel.customized_copy(data=ones_array) beta_miller_A = all_ones.apply_debye_waller_factors( u_star=adptbx.beta_as_u_star(asqr_beta)) u_terms = (asqr_scale * sigmaT_bins[i_bin_used] * self.target_spectrum[i_bin_used]) * beta_miller_A.data() beta_miller_E = all_ones.apply_debye_waller_factors( u_star=adptbx.beta_as_u_star(sigmaE_beta)) sigmaE_terms = ((sigmaE_scale * sigmaE_bins[i_bin_used]) * beta_miller_E.data()) # Variance term per reflection is function of these terms u2sigE = 2 * u_terms + sigmaE_terms var_terms = u2sigE * sigmaE_terms f1f2cos = self.f1f2cos_miller.data().select(sel) sumfsqr = self.sumfsqr_miller.data().select(sel) # Leave out constant twologpi*ma_sel.size() minusLL_terms = (sumfsqr * (u_terms + sigmaE_terms) - 2 * u_terms * f1f2cos) / var_terms + flex.log(var_terms) f += flex.sum(minusLL_terms) if do_gradient: # Define some intermediate results needed below u2sigE2 = flex.pow2(u2sigE) sigmaE_sqr = flex.pow2(sigmaE_terms) sumsqrcos = sumfsqr + 2 * f1f2cos hyposqr = sumfsqr - 2 * f1f2cos if (self.refine_Asqr_scale or self.refine_sigmaT_bins or self.refine_Asqr_beta): dmLL_by_du_terms = (2 * u2sigE - sumsqrcos) / u2sigE2 if (self.refine_sigmaE_scale or self.refine_sigmaE_bins or self.refine_sigmaE_beta): dmLL_by_dsigE_terms = ( (2 * sigmaE_terms - hyposqr) / (2 * sigmaE_sqr) - sumsqrcos / (2 * u2sigE2) + 1. / (u2sigE)) if (self.refine_Asqr_beta or self.refine_sigmaE_beta): h_as_double, k_as_double, l_as_double = ( ma_sel.indices().as_vec3_double().parts()) hh = flex.pow2(h_as_double) kk = flex.pow2(k_as_double) ll = flex.pow2(l_as_double) hk = h_as_double * k_as_double hl = h_as_double * l_as_double kl = k_as_double * l_as_double i_par = 0 # Keep track of index for unrefined parameters i_ref = 0 # Keep track of refined parameters if self.refine_Asqr_scale: # Only affects U du_by_dAsqr_scale = u_terms / asqr_scale g[i_ref] += flex.sum(dmLL_by_du_terms * du_by_dAsqr_scale) i_ref += 1 i_par += 1 if self.refine_sigmaT_bins: # Only affects U, just current bin du_by_dsigmaT_bin = (asqr_scale * self.target_spectrum[i_bin_used]) * beta_miller_A.data() i_sigmaT_bin = i_ref+i_bin_used # Save for restraint terms below g[i_sigmaT_bin] += flex.sum(dmLL_by_du_terms*du_by_dsigmaT_bin) i_ref += self.n_bins i_par += self.n_bins if self.refine_Asqr_beta: # Only affects U du_by_dbetaA11 = -hh * u_terms du_by_dbetaA22 = -kk * u_terms du_by_dbetaA33 = -ll * u_terms du_by_dbetaA12 = -2 * hk * u_terms du_by_dbetaA13 = -2 * hl * u_terms du_by_dbetaA23 = -2 * kl * u_terms g[i_ref] += flex.sum(dmLL_by_du_terms * du_by_dbetaA11) g[i_ref+1] += flex.sum(dmLL_by_du_terms * du_by_dbetaA22) g[i_ref+2] += flex.sum(dmLL_by_du_terms * du_by_dbetaA33) g[i_ref+3] += flex.sum(dmLL_by_du_terms * du_by_dbetaA12) g[i_ref+4] += flex.sum(dmLL_by_du_terms * du_by_dbetaA13) g[i_ref+5] += flex.sum(dmLL_by_du_terms * du_by_dbetaA23) i_ref += 6 i_par += 6 # Note that sigmaE_scale is fixed if sigmaE_bins and/or # sigmaE_beta are refined if self.refine_sigmaE_scale: dsigE_by_dscaleE = sigmaE_terms/sigmaE_scale g[i_ref] += flex.sum(dmLL_by_dsigE_terms * dsigE_by_dscaleE) i_ref += 1 i_par += 1 if self.refine_sigmaE_bins: # Just current bin dsigE_by_dsigmaE_bin = sigmaE_scale*beta_miller_E.data() g[i_ref+i_bin_used] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dsigmaE_bin) i_ref += self.n_bins i_par += self.n_bins if self.refine_sigmaE_beta: # Only affects SigmaE dsigE_by_dbetaE11 = -hh * sigmaE_terms dsigE_by_dbetaE22 = -kk * sigmaE_terms dsigE_by_dbetaE33 = -ll * sigmaE_terms dsigE_by_dbetaE12 = -2 * hk * sigmaE_terms dsigE_by_dbetaE13 = -2 * hl * sigmaE_terms dsigE_by_dbetaE23 = -2 * kl * sigmaE_terms g[i_ref] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dbetaE11) g[i_ref+1] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dbetaE22) g[i_ref+2] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dbetaE33) g[i_ref+3] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dbetaE12) g[i_ref+4] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dbetaE13) g[i_ref+5] += flex.sum( dmLL_by_dsigE_terms * dsigE_by_dbetaE23) i_ref += 6 i_par += 6 assert (i_par == len(self.x)) assert (i_ref == self.nmp) if do_hessian: u2sigE3 = u2sigE * u2sigE2 if (self.refine_Asqr_scale or self.refine_sigmaT_bins or self.refine_Asqr_beta): d2mLL_by_du2_terms = 4 * ( sumsqrcos - 2 * u_terms - sigmaE_terms) / u2sigE3 if (self.refine_sigmaE_scale or self.refine_sigmaE_bins or self.refine_sigmaE_beta): d2mLL_by_dsigE2_terms = ( (hyposqr - sigmaE_terms) / (sigmaE_sqr * sigmaE_terms) + sumsqrcos/u2sigE3 - 1./u2sigE2) if (self.refine_Asqr_beta or self.refine_sigmaE_beta): hh_sqr = flex.pow2(hh) kk_sqr = flex.pow2(kk) ll_sqr = flex.pow2(ll) hk_sqr = flex.pow2(hk) hl_sqr = flex.pow2(hl) kl_sqr = flex.pow2(kl) i_par = 0 # Keep track of index for unrefined parameters i_ref = 0 # Keep track of refined parameters # Note that various second derivatives are zero, i.e. of: # u wrt Asqr_scale and sigmaT_bins # sigmaE wrt sigmaE_bins and sigmaE_scale if self.refine_Asqr_scale: # Only affects U h[i_ref,i_ref] += (flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dAsqr_scale))) i_ref += 1 i_par += 1 if self.refine_sigmaT_bins: # Only affects U, current bin h[i_sigmaT_bin,i_sigmaT_bin] += flex.sum( d2mLL_by_du2_terms * flex.pow2(du_by_dsigmaT_bin)) i_ref += self.n_bins i_par += self.n_bins if self.refine_Asqr_beta: # Only affects U d2u_by_dbetaA11_2 = hh_sqr * u_terms d2u_by_dbetaA22_2 = kk_sqr * u_terms d2u_by_dbetaA33_2 = ll_sqr * u_terms d2u_by_dbetaA12_2 = 4 * hk_sqr * u_terms d2u_by_dbetaA13_2 = 4 * hl_sqr * u_terms d2u_by_dbetaA23_2 = 4 * kl_sqr * u_terms h[i_ref, i_ref] += ( flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dbetaA11)) + flex.sum(dmLL_by_du_terms * d2u_by_dbetaA11_2) ) h[i_ref+1,i_ref+1] += ( flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dbetaA22)) + flex.sum(dmLL_by_du_terms * d2u_by_dbetaA22_2) ) h[i_ref+2,i_ref+2] += ( flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dbetaA33)) + flex.sum(dmLL_by_du_terms * d2u_by_dbetaA33_2) ) h[i_ref+3,i_ref+3] += ( flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dbetaA12)) + flex.sum(dmLL_by_du_terms * d2u_by_dbetaA12_2) ) h[i_ref+4,i_ref+4] += ( flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dbetaA13)) + flex.sum(dmLL_by_du_terms * d2u_by_dbetaA13_2) ) h[i_ref+5,i_ref+5] += ( flex.sum(d2mLL_by_du2_terms * flex.pow2(du_by_dbetaA23)) + flex.sum(dmLL_by_du_terms * d2u_by_dbetaA23_2) ) i_ref += 6 i_par += 6 # Note that sigmaE_scale and either sigmaE_bins or sigmaE_beta are # mutually exclusive in practice. If scale and bins were refined # simultaneously with no restraints, there would be one redundant parameter if self.refine_sigmaE_scale: h[i_ref, i_ref] += flex.sum( d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dscaleE)) i_ref += 1 i_par += 1 if self.refine_sigmaE_bins: h[i_ref+i_bin_used, i_ref+i_bin_used] += flex.sum( d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dsigmaE_bin)) i_ref += self.n_bins i_par += self.n_bins if self.refine_sigmaE_beta: # Only affects SigmaE d2sigE_by_dbetaE11_2 = hh_sqr * sigmaE_terms d2sigE_by_dbetaE22_2 = kk_sqr * sigmaE_terms d2sigE_by_dbetaE33_2 = ll_sqr * sigmaE_terms d2sigE_by_dbetaE12_2 = 4 * hk_sqr * sigmaE_terms d2sigE_by_dbetaE13_2 = 4 * hl_sqr * sigmaE_terms d2sigE_by_dbetaE23_2 = 4 * kl_sqr * sigmaE_terms h[i_ref, i_ref] += ( flex.sum(d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dbetaE11)) + flex.sum(dmLL_by_dsigE_terms * d2sigE_by_dbetaE11_2) ) h[i_ref+1,i_ref+1] += ( flex.sum(d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dbetaE22)) + flex.sum(dmLL_by_dsigE_terms * d2sigE_by_dbetaE22_2) ) h[i_ref+2,i_ref+2] += ( flex.sum(d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dbetaE33)) + flex.sum(dmLL_by_dsigE_terms * d2sigE_by_dbetaE33_2) ) h[i_ref+3,i_ref+3] += ( flex.sum(d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dbetaE12)) + flex.sum(dmLL_by_dsigE_terms * d2sigE_by_dbetaE12_2) ) h[i_ref+4,i_ref+4] += ( flex.sum(d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dbetaE13)) + flex.sum(dmLL_by_dsigE_terms * d2sigE_by_dbetaE13_2) ) h[i_ref+5,i_ref+5] += ( flex.sum(d2mLL_by_dsigE2_terms * flex.pow2(dsigE_by_dbetaE23)) + flex.sum(dmLL_by_dsigE_terms * d2sigE_by_dbetaE23_2) ) i_ref += 6 i_par += 6 assert (i_par == len(self.x)) assert (i_ref == self.nmp) # Add restraint terms # Restrain log of sigmaT_bins to 0, but downweighting low resolution d_bin = math.sqrt(self.ssqr_bins[i_bin_used]) sigmascale = 0.15 + 0.001 / d_bin ** 3 stbin = sigmaT_bins[i_bin_used] logbin = math.log(stbin) f += (logbin/sigmascale)**2 / 2 if (do_gradient and self.refine_sigmaT_bins): g[i_sigmaT_bin] += logbin / (stbin * sigmascale**2) if do_hessian: h[i_sigmaT_bin,i_sigmaT_bin] += (1.-logbin)/(stbin*sigmascale)**2 i_bin_used += 1 return (f, g, h, True) def target(self): f_g_h = self.target_gradient_hessian(do_gradient=False, do_hessian=False) return f_g_h[0] def target_gradient(self): f_g_h = self.target_gradient_hessian(do_hessian=False) f = f_g_h[0] g = f_g_h[1] return (f, g) def get_macrocycle_parameters(self): if len(self.refine_mask) == 0: # All parameters being refined return self.x mp = [] # Parameters for this macrocycle for i in range(len(self.x)): if self.refine_mask[i]: mp.append(self.x[i]) assert (len(mp) == self.nmp) return mp def set_macrocycle_parameters(self, newx): if len(self.refine_mask) == 0: # All parameters being refined self.x = newx else: npref = 0 for i in range(len(self.x)): if self.refine_mask[i]: self.x[i] = newx[npref] npref += 1 assert (npref == self.nmp) def macrocycle_large_shifts(self): i_par = 0 # Keep track of index for unrefined parameters large_shifts = [] if self.refine_Asqr_scale: large_shifts.append(self.start_x[i_par]/10.) i_par += 1 if self.refine_sigmaT_bins: for i_bin in range(self.n_bins): large_shifts.append(0.05) i_par += self.n_bins if self.refine_Asqr_beta: large_shifts.extend(self.large_shifts_beta) i_par += 6 if self.refine_sigmaE_scale: large_shifts.append(0.01) i_par += 1 if self.refine_sigmaE_bins: for i_bin in range(self.n_bins): large_shifts.append(self.start_x[i_par+i_bin]/30.) i_par += self.n_bins if self.refine_sigmaE_beta: large_shifts.extend(self.large_shifts_beta) i_par += 6 assert (i_par == len(self.x)) assert (len(large_shifts) == self.nmp) return large_shifts def set_macrocycle_protocol(self, macrocycle_protocol): # Possible parameters include overall scale of signal, # bin parameters for signal (BEST-like curve), anisotropy tensor for signal, # bin parameters for error, anisotropy tensor for error # Start with everything being refined, turn some things off for different protocols self.refine_mask = [] # Indicates "all" if left empty self.refine_Asqr_scale = True self.refine_sigmaT_bins = True self.refine_Asqr_beta = True self.refine_sigmaE_scale = True self.refine_sigmaE_bins = True self.refine_sigmaE_beta = True # For each protocol, define variables that aren't refined if macrocycle_protocol == ["default"]: self.refine_sigmaE_scale = False elif macrocycle_protocol == ["Eprior"]: self.refine_sigmaE_bins = False self.refine_sigmaE_beta = False else: print("Macrocycle protocol", macrocycle_protocol, " not recognised") sys.stdout.flush() exit # Now accumulate mask self.nmp = 0 if self.refine_Asqr_scale: self.refine_mask.append(True) self.nmp += 1 else: self.refine_mask.append(False) if self.refine_sigmaT_bins: self.refine_mask.extend([True for i in range(self.n_bins)]) self.nmp += self.n_bins else: self.refine_mask.extend([False for i in range(self.n_bins)]) if self.refine_Asqr_beta: self.refine_mask.extend([True for i in range(6)]) self.nmp += 6 else: self.refine_mask.extend([False for i in range(6)]) if self.refine_sigmaE_scale: self.refine_mask.append(True) self.nmp += 1 else: self.refine_mask.append(False) if self.refine_sigmaE_bins: self.refine_mask.extend([True for i in range(self.n_bins)]) self.nmp += self.n_bins else: self.refine_mask.extend([False for i in range(self.n_bins)]) if self.refine_sigmaE_beta: self.refine_mask.extend([True for i in range(6)]) self.nmp += 6 else: self.refine_mask.extend([False for i in range(6)]) assert (len(self.refine_mask) == len(self.x)) def macrocycle_parameter_names(self, full_list=False): parameter_names = [] if full_list or self.refine_Asqr_scale: parameter_names.append("Asqr_scale") if full_list or self.refine_sigmaT_bins: for i in range(self.n_bins): parameter_names.append("SigmaT_bin#" + str(i + 1)) if full_list or self.refine_Asqr_beta: parameter_names.append("Asqr_beta11") parameter_names.append("Asqr_beta22") parameter_names.append("Asqr_beta33") parameter_names.append("Asqr_beta12") parameter_names.append("Asqr_beta13") parameter_names.append("Asqr_beta23") if full_list or self.refine_sigmaE_scale: parameter_names.append("sigmaE_scale") if full_list or self.refine_sigmaE_bins: for i in range(self.n_bins): parameter_names.append("sigmaE_bin#" + str(i + 1)) if full_list or self.refine_sigmaE_beta: parameter_names.append("sigmaE_beta11") parameter_names.append("sigmaE_beta22") parameter_names.append("sigmaE_beta33") parameter_names.append("sigmaE_beta12") parameter_names.append("sigmaE_beta13") parameter_names.append("sigmaE_beta23") if not full_list: assert (len(parameter_names) == self.nmp) else: assert (len(parameter_names) == len(self.x)) return parameter_names def reparameterize(self): i_par = 0 # Keep track of index for unrefined parameters repar = [] if self.refine_Asqr_scale: repar.append(Reparams(True,0.)) i_par += 1 if self.refine_sigmaT_bins: repar.extend([Reparams(True, 0.) for i in range(self.n_bins)]) i_par += self.n_bins if self.refine_Asqr_beta: repar.extend([Reparams(False) for i in range(6)]) i_par += 6 if self.refine_sigmaE_scale: repar.append(Reparams(True,0.)) i_par += 1 if self.refine_sigmaE_bins: repar.extend([Reparams(True, 0.) for i in range(self.n_bins)]) i_par += self.n_bins if self.refine_sigmaE_beta: repar.extend([Reparams(False) for i in range(6)]) i_par += 6 assert (i_par == len(self.x)) assert (len(repar) == self.nmp) return repar def bounds(self): i_par = 0 bounds_list = [] if self.refine_Asqr_scale: this_bound = Bounds() this_bound.lower_on(0.001*self.start_x[i_par]) bounds_list.append(this_bound) i_par += 1 if self.refine_sigmaT_bins: this_bound = Bounds() this_bound.lower_on(0.001) for i in range(self.n_bins): bounds_list.append(this_bound) i_par += self.n_bins if self.refine_Asqr_beta: this_bound = Bounds() this_bound.off() for i in range(6): bounds_list.append(this_bound) i_par += 6 if self.refine_sigmaE_scale: this_bound = Bounds() this_bound.lower_on(0.01) bounds_list.append(this_bound) i_par += 1 if self.refine_sigmaE_bins: for i_bin in range(self.n_bins): this_bound = Bounds() this_bound.lower_on(0.001*self.start_x[i_par+i_bin]) bounds_list.append(this_bound) i_par += self.n_bins if self.refine_sigmaE_beta: this_bound = Bounds() this_bound.off() for i in range(6): bounds_list.append(this_bound) i_par += 6 assert (i_par == len(self.x)) assert (len(bounds_list) == self.nmp) return bounds_list def current_statistics(self, level=3, full_list=False): self.log_tab_printf(1, level, "Log-likelihood: %10.6g\n", -self.target()) self.log_blank(level) parameter_names = self.macrocycle_parameter_names(full_list=full_list) if full_list: self.log_tab(1, level, "All parameters") else: self.log_tab(1, level, "Refined parameters") list_all = (full_list or len(self.refine_mask) == 0) iref = 0 for i in range(len(self.x)): if (list_all or self.refine_mask[i]): self.log_tab_printf(2, level, "%-15s %10.5g\n", (parameter_names[iref], self.x[i])) iref += 1 def initial_statistics(self): level=2 self.log_blank(level) self.log_tab(1, level, "Initial statistics") self.current_statistics(level=level, full_list=True) def final_statistics(self): level=2 self.log_blank(level) self.log_tab(1, level, "Final statistics") self.current_statistics(level=level, full_list=True) def cleanup(self): # Take out overall scale and isotropic B from sigmaT_bins, put into asqr_scale and asqr_beta # Take out overall isotropic B from anisotropy in errors, put into bins n_bins = self.n_bins # Asqr_scale = self.x[0] # Unneeded parameters listed for completeness sigmaT_bins = self.x[1:n_bins + 1] # Asqr_beta = self.x[n_bins + 1 : n_bins + 7] # sigmaE_scale = self.x[n_bins + 7] # sigmaE_bins = self.x[n_bins + 8 : 2*n_bins + 8] sigmaE_beta = tuple(self.x[2*n_bins + 8 : 2*n_bins + 14]) sumw = sumwx = sumwa = sumwx2 = sumwxa = 0. for i_bin in range(n_bins): x = self.ssqr_bins[i_bin] d_bin = math.sqrt(x) a = math.log(sigmaT_bins[i_bin]) sigmascale = 0.15 + 0.001 / d_bin**3 # Downweight low resolution as in refinement w = 1./sigmascale**2 sumw += w sumwx += w * x sumwa += w * a sumwx2 += w * x ** 2 sumwxa += w * x * a if self.refine_sigmaT_bins: # Make sigmaT_bins values as close as possible to 1 by taking out overall scale # and B, and putting them into asqr_scale and asqr_beta terms slope_a = (sumw * sumwxa - (sumwx * sumwa)) / (sumw * sumwx2 - sumwx ** 2) intercept_a = (sumwa - slope_a * sumwx) / sumw scale_a = math.exp(intercept_a) deltaB_a = -4 * slope_a self.x[0] = self.x[0] * scale_a # Update overall scale for i_bin in range(n_bins): # Take slope out of sigmaT_bins self.x[1 + i_bin] = self.x[1 + i_bin] / scale_a * math.exp(deltaB_a * self.ssqr_bins[i_bin] / 4) delta_beta_a = list(adptbx.u_iso_as_beta(self.unit_cell,adptbx.b_as_u(deltaB_a))) for i_beta in range(6): # Then put slope into asqr_beta self.x[1 + n_bins + i_beta] = self.x[1 + n_bins + i_beta] + delta_beta_a[i_beta] if self.refine_sigmaE_beta: # Extract isotropic B from sigmaE_beta, put it into sigmaE_bins sigmaE_u_cart = adptbx.beta_as_u_cart(self.unit_cell, sigmaE_beta) sigmaE_u_iso = adptbx.u_cart_as_u_iso(sigmaE_u_cart) sigmaE_delta_beta = list(adptbx.u_iso_as_beta(self.unit_cell, sigmaE_u_iso)) sigmaE_b_iso = adptbx.u_as_b(sigmaE_u_iso) for i_bin in range(n_bins): # Put isotropic B into bins self.x[8 + n_bins + i_bin] = (self.x[8 + n_bins + i_bin] * math.exp(-sigmaE_b_iso * self.ssqr_bins[i_bin] / 4)) for i_beta in range(6): # Remove isotropic B from sigmaE_beta self.x[8 + 2*n_bins + i_beta] = ( self.x[8 + 2*n_bins + i_beta] - sigmaE_delta_beta[i_beta]) def default_target_spectrum(ssqr): # Placeholder for something better based on analysis of cryoEM reconstructions # Scaled data from BEST curve. Original data obtained from <NAME>, then # rescaled to correspond at higher resolution to the average X-ray scattering # factor from proteins atoms (with average atomic composition) best_data = ((0.009, 3.40735), (0.013092, 2.9006), (0.0171839, 2.33083), (0.0212759, 1.80796), (0.0253679, 1.65133), (0.0294599, 1.75784), (0.0335518, 2.06865), (0.0376438, 2.57016), (0.0417358, 3.13121), (0.0458278, 3.62596), (0.0499197, 3.92071), (0.0540117, 3.98257), (0.0581037, 3.91846), (0.0621956, 3.80829), (0.0662876, 3.69517), (0.0703796, 3.59068), (0.0744716, 3.44971), (0.0785635, 3.30765), (0.0826555, 3.16069), (0.0867475, 2.98656), (0.0908395, 2.77615), (0.0949314, 2.56306), (0.0990234, 2.37314), (0.103115, 2.22874), (0.107207, 2.09477), (0.111299, 1.98107), (0.115391, 1.8652), (0.119483, 1.75908), (0.123575, 1.67093), (0.127667, 1.59257), (0.131759, 1.52962), (0.135851, 1.48468), (0.139943, 1.45848), (0.144035, 1.43042), (0.148127, 1.40953), (0.152219, 1.37291), (0.156311, 1.34217), (0.160403, 1.3308), (0.164495, 1.32782), (0.168587, 1.30862), (0.172679, 1.31319), (0.176771, 1.30907), (0.180863, 1.31456), (0.184955, 1.31055), (0.189047, 1.31484), (0.193139, 1.31828), (0.197231, 1.32321), (0.201323, 1.30853), (0.205415, 1.30257), (0.209507, 1.2851), (0.213599, 1.26912), (0.217691, 1.24259), (0.221783, 1.24119), (0.225875, 1.2382), (0.229967, 1.21605), (0.234059, 1.17269), (0.23815, 1.13909), (0.242242, 1.1165), (0.246334, 1.08484), (0.250426, 1.0495), (0.254518, 1.01289), (0.25861, 0.974819), (0.262702, 0.940975), (0.266794, 0.900938), (0.270886, 0.861657), (0.274978, 0.830192), (0.27907, 0.802167), (0.283162, 0.780746), (0.287254, 0.749194), (0.291346, 0.720884), (0.295438, 0.694409), (0.29953, 0.676239), (0.303622, 0.650672), (0.307714, 0.632438), (0.311806, 0.618569), (0.315898, 0.605762), (0.31999, 0.591398), (0.324082, 0.579308), (0.328174, 0.572076), (0.332266, 0.568138), (0.336358, 0.559537), (0.34045, 0.547927), (0.344542, 0.539319), (0.348634, 0.529009), (0.352726, 0.516954), (0.356818, 0.512218), (0.36091, 0.511836), (0.365002, 0.511873), (0.369094, 0.506957), (0.373186, 0.502738), (0.377278, 0.50191), (0.38137, 0.492422), (0.385462, 0.488461), (0.389553, 0.483436), (0.393645, 0.481468), (0.397737, 0.473786), (0.401829, 0.468684), (0.405921, 0.468291), (0.410013, 0.46645), (0.414105, 0.4643), (0.418197, 0.45641), (0.422289, 0.450462), (0.426381, 0.444678), (0.430473, 0.443807), (0.434565, 0.441158), (0.438657, 0.441303), (0.442749, 0.437144), (0.446841, 0.428504), (0.450933, 0.420459), (0.455025, 0.413754), (0.459117, 0.412064), (0.463209, 0.406677), (0.467301, 0.40253), (0.471393, 0.396454), (0.475485, 0.393192), (0.479577, 0.390452), (0.483669, 0.38408), (0.487761, 0.379456), (0.491853, 0.373123), (0.495945, 0.374026), (0.500037, 0.373344), (0.504129, 0.377639), (0.508221, 0.374029), (0.512313, 0.374691), (0.516405, 0.371632), (0.520497, 0.370724), (0.524589, 0.366095), (0.528681, 0.369447), (0.532773, 0.369043), (0.536865, 0.368967), (0.540956, 0.36583), (0.545048, 0.370593), (0.54914, 0.371047), (0.553232, 0.372723), (0.557324, 0.371915), (0.561416, 0.372882), (0.565508, 0.371052), (0.5696, 0.36775), (0.573692, 0.369884), (0.577784, 0.374098), (0.581876, 0.374169), (0.585968, 0.37261), (0.59006, 0.372356), (0.594152, 0.377055), (0.598244, 0.3817), (0.602336, 0.381867), (0.606428, 0.377746), (0.61052, 0.377157), (0.614612, 0.376604), (0.618704, 0.37532), (0.622796, 0.372488), (0.626888, 0.373312), (0.63098, 0.377505), (0.635072, 0.381011), (0.639164, 0.379326), (0.643256, 0.380193), (0.647348, 0.381122), (0.65144, 0.387213), (0.655532, 0.391928), (0.659624, 0.398986), (0.663716, 0.402951), (0.667808, 0.405893), (0.6719, 0.40217), (0.675992, 0.401806), (0.680084, 0.404238), (0.684176, 0.409404), (0.688268, 0.413486), (0.692359, 0.413167), (0.696451, 0.414008), (0.700543, 0.417128), (0.704635, 0.420275), (0.708727, 0.423617), (0.712819, 0.42441), (0.716911, 0.426445), (0.721003, 0.429012), (0.725095, 0.430132), (0.729187, 0.42992), (0.733279, 0.425202), (0.737371, 0.423159), (0.741463, 0.423913), (0.745555, 0.425542), (0.749647, 0.426682), (0.753739, 0.431186), (0.757831, 0.433959), (0.761923, 0.433839), (0.766015, 0.428679), (0.770107, 0.425968), (0.774199, 0.426528), (0.778291, 0.427093), (0.782383, 0.426848), (0.786475, 0.424549), (0.790567, 0.423785), (0.794659, 0.419892), (0.798751, 0.417391), (0.802843, 0.413128), (0.806935, 0.408498), (0.811027, 0.402764), (0.815119, 0.404852), (0.819211, 0.405915), (0.823303, 0.392919), (0.827395, 0.384632), (0.831487, 0.382626), (0.835579, 0.379891), (0.839671, 0.376414), (0.843762, 0.372915), (0.847854, 0.375089), (0.851946, 0.371918), (0.856038, 0.36652), (0.86013, 0.358529), (0.864222, 0.356496), (0.868314, 0.354707), (0.872406, 0.348802), (0.876498, 0.343693), (0.88059, 0.34059), (0.884682, 0.342432), (0.888774, 0.345099), (0.892866, 0.344524), (0.896958, 0.342489), (0.90105, 0.328009), (0.905142, 0.323685), (0.909234, 0.321378), (0.913326, 0.318832), (0.917418, 0.314999), (0.92151, 0.311775), (0.925602, 0.30844), (0.929694, 0.30678), (0.933786, 0.303484), (0.937878, 0.301197), (0.94197, 0.296788), (0.946062, 0.295353), (0.950154, 0.298028), (0.954246, 0.298098), (0.958338, 0.295081), (0.96243, 0.289337), (0.966522, 0.286116), (0.970614, 0.284319), (0.974706, 0.280972), (0.978798, 0.28015), (0.98289, 0.279016), (0.986982, 0.277532), (0.991074, 0.276013), (0.995165, 0.270923), (0.999257, 0.269446), (1.00335, 0.266567), (1.00744, 0.263561), (1.01153, 0.261002), (1.01563, 0.255349), (1.01972, 0.258644), (1.02381, 0.254974), (1.0279, 0.2523), (1.03199, 0.244489), (1.03609, 0.249418), (1.04018, 0.249519), (1.04427, 0.249316), (1.04836, 0.249197), (1.05245, 0.24415), (1.05655, 0.244556), (1.06064, 0.241169), (1.06473, 0.238484), (1.06882, 0.2392), (1.07291, 0.240651), (1.077, 0.243724), (1.0811, 0.243174), (1.08519, 0.239545), (1.08928, 0.239106), (1.09337, 0.238763), (1.09746, 0.238971), (1.10156, 0.229925), (1.10565, 0.225123), (1.10974, 0.226932), (1.11383, 0.23118), (1.11792, 0.228654), (1.12202, 0.225084), (1.12611, 0.225866), (1.1302, 0.227717), (1.13429, 0.229508), (1.13838, 0.227977), (1.14248, 0.226799), (1.14657, 0.228456), (1.15066, 0.22383), (1.15475, 0.22188), (1.15884, 0.219986), (1.16294, 0.217418), (1.16703, 0.214356), (1.17112, 0.211027), (1.17521, 0.210011), (1.1793, 0.210609), (1.1834, 0.210893), (1.18749, 0.212583), (1.19158, 0.208415), (1.19567, 0.204557), (1.19976, 0.198068), (1.20386, 0.197603), (1.20795, 0.196691), (1.21204, 0.200617), (1.21613, 0.199803), (1.22022, 0.199199), (1.22432, 0.196859), (1.22841, 0.197471), (1.2325, 0.19799)) # 300 data points from 0.009 to 1.2325, so separated by 0.004091973 s1 = (ssqr - 0.009) / 0.004091973 is1 = int(math.floor(s1)) if is1 < 0: return best_data[0][1] # Below low-res limit for BEST data elif is1 >= 299: return best_data[0][299] # Above high-res limit, about 0.9A else: ds = s1 - is1 is2 = is1 + 1 best_val = (1.-ds)*best_data[is1][1] + ds*best_data[is2][1] return best_val def run_refine_cryoem_errors( mmm, d_min, map_1_id="map_manager_1", map_2_id="map_manager_2", sphere_cent=None, radius=None, verbosity=1, prior_params=None, shift_map_origin=True): """ Refine error parameters from half-maps, make weighted map coeffs for region. Compulsory arguments: mmm: map_model_manager object containing two half-maps from reconstruction d_min: target resolution, either best resolution for map or resolution for target region Optional arguments: map_1_id: identifier of first half-map, if different from default of map_manager_1 map_2_id: same for second half-map sphere_cent: center of sphere defining target region for analysis default is center of map radius: radius of sphere default (when sphere center not defined either) is 1/4 narrowest map width prior_params: refined parameters from previous call, usually from the whole reconstruction before focusing on a target region shift_map_origin: should map coefficients be shifted to correspond to original origin, rather than the origin being the corner of the box, default True verbosity: 0/1/2/3/4 for mute/log/verbose/debug/testing """ from scipy import interpolate from libtbx import group_args from iotbx.map_model_manager import map_model_manager # Start from two maps in map_model_manager plus optional mask specification # First get map coefficients for maps after spherical masking ucpars = mmm.map_manager().unit_cell().parameters() if sphere_cent is None: # Default to sphere in center of cell extending halfway to nearest edge sphere_cent = flex.double((ucpars[0], ucpars[1], ucpars[2]))/2. radius = min(ucpars[0], ucpars[1], ucpars[2])/4. else: sphere_cent = flex.double(sphere_cent) # Define box big enough to hold sphere plus soft masking boundary_to_smoothing_ratio = 2 soft_mask_radius = d_min padding = soft_mask_radius * boundary_to_smoothing_ratio cushion = flex.double(3,radius+padding) cart_min = flex.double(sphere_cent) - cushion cart_max = flex.double(sphere_cent) + cushion for i in range(3): # Keep within unit cell cart_min[i] = max(cart_min[i],0) cart_max[i] = min(cart_max[i],ucpars[i]) # Box the map within xyz bounds, converted to map grid units cs = mmm.crystal_symmetry() uc = cs.unit_cell() lower_frac = uc.fractionalize(tuple(cart_min)) upper_frac = uc.fractionalize(tuple(cart_max)) map_data = mmm.map_data() all_orig = map_data.all() lower_bounds = [int(math.floor(f * n)) for f, n in zip(lower_frac, all_orig)] upper_bounds = [int(math.ceil( f * n)) for f, n in zip(upper_frac, all_orig)] working_mmm = mmm.extract_all_maps_with_bounds( lower_bounds=lower_bounds, upper_bounds=upper_bounds) # Make and apply spherical mask working_mmm.create_spherical_mask( soft_mask_radius=soft_mask_radius, boundary_to_smoothing_ratio=boundary_to_smoothing_ratio) working_mmm.apply_mask_to_maps( map_ids=[map_1_id, map_2_id], mask_id='mask') mask_info = working_mmm.mask_info() # Keep track of volume of map (in voxels) for determining relative # scale of sigmaE in different subvolumes weighted_points = mask_info.size*mask_info.mean # Weighted volume # Mean mask value measures the weighted fraction of the volume of the whole # map occupied by the density used. This can be converted into the radius of # a sphere (on a relative scale) that would occupy this volume, and then # the oversampling of the Fourier transform is the ratio of the volume of the # total map box divided by the volume of a cube just enclosing that sphere. relative_radius = (3*mask_info.mean/(4*math.pi))**(1./3.) relative_volume = (2*relative_radius)**3 over_sampling_factor = 1./relative_volume box_volume = uc.volume() * ( working_mmm.map_data().size()/mmm.map_data().size()) masked_volume = box_volume * relative_volume d_max = 2*(radius+padding) + d_min # Size of sphere plus a bit mc1 = working_mmm.map_as_fourier_coefficients(d_min=d_min, d_max=d_max, map_id=map_1_id) mc2 = working_mmm.map_as_fourier_coefficients(d_min=d_min, d_max=d_max, map_id=map_2_id) # Use bins of equal width in d_star_sq, which works well with cubic cell mc1.setup_binner_d_star_sq_bin_size() mc2.use_binner_of(mc1) ssqmin = flex.min(mc1.d_star_sq().data()) ssqmax = flex.max(mc1.d_star_sq().data()) nref = mc1.size() # Initialise parameters. This requires slope and intercept of Wilson plot, # plus mapCC per bin. ssqr_bins = flex.double() target_spectrum = flex.double() meanfsq_bins = flex.double() mapCC_bins = flex.double() sumw = 0 sumwx = 0. sumwy = 0. sumwx2 = 0. sumwxy = 0. for i_bin in mc1.binner().range_used(): sel = mc1.binner().selection(i_bin) mc1sel = mc1.select(sel) mc2sel = mc2.select(sel) mapCC = mc1sel.map_correlation(other=mc2sel) assert (mapCC < 1.) # Ensure these are really independent half-maps mapCC = max(mapCC,0.001) # Avoid zero or negative values mapCC_bins.append(mapCC) ssqr = mc1sel.d_star_sq().data() x = flex.mean_default(ssqr, 0) # Mean 1/d^2 for bin ssqr_bins.append(x) # Save for later fsq = flex.pow2(flex.abs(mc1sel.data())) meanfsq = flex.mean_default(fsq, 0) meanfsq_bins.append(meanfsq) y = math.log(meanfsq) w = fsq.size() sumw += w sumwx += w * x sumwy += w * y sumwx2 += w * x**2 sumwxy += w * x * y target_power = default_target_spectrum(x) # Could have a different target target_spectrum.append(target_power) assert (nref == sumw) # Check no Fourier terms lost outside bins slope = (sumw * sumwxy - (sumwx * sumwy)) / (sumw * sumwx2 - sumwx**2) intercept = (sumwy - slope * sumwx) / sumw wilson_scale_intensity = math.exp(intercept) wilson_b_intensity = -4 * slope n_bins = ssqr_bins.size() if (prior_params is not None): if d_min < 0.99*math.sqrt(1./prior_params['ssqmax']): print("Requested resolution is higher than prior parameters support") sys.stdout.flush() exit ssqr_prior = tuple(prior_params['ssqr_bins']) sigmaT_prior = tuple(prior_params['sigmaT_bins']) sigmaE_prior = tuple(prior_params['sigmaE_bins']) sTinterp = interpolate.interp1d(ssqr_prior,sigmaT_prior,fill_value="extrapolate") sEinterp = interpolate.interp1d(ssqr_prior,sigmaE_prior,fill_value="extrapolate") sigmaT_bins = flex.double(sTinterp(ssqr_bins)) # Start sigmaE_scale at 1 after rescaling sigmaE_bins by volume comparison. # This is then refined because of uncertainty in weighting of volume and # also about whether masking might have been applied to the periphery of the # map used to obtained prior parameters. sigmaE_scale = 1. sigmaE_bins = flex.double(sEinterp(ssqr_bins))*(weighted_points/prior_params['weighted_points']) sigmaE_baniso = prior_params['sigmaE_baniso'] sigmaE_beta = adptbx.u_star_as_beta(adptbx.u_cart_as_u_star(mc1.unit_cell(),adptbx.b_as_u(sigmaE_baniso))) else: sigmaT_bins = [1.]*n_bins # SigmaT_bins correction term for BEST in SigmaT sigmaE_scale = 1. # Fix at 1 sigmaE_bins = [] for i_bin in range(n_bins): sigmaE = meanfsq_bins[i_bin] * (1.-mapCC_bins[i_bin]) sigmaE_bins.append(sigmaE) # Error bin parameter sigmaE_beta = list(adptbx.u_iso_as_beta(mc1.unit_cell(), 0.)) start_params = [] start_params.append(wilson_scale_intensity/3.5) # Asqr_scale, factor out low-res BEST value start_params.extend(sigmaT_bins) wilson_u=adptbx.b_as_u(wilson_b_intensity) asqr_beta=list(adptbx.u_iso_as_beta(mc1.unit_cell(), wilson_u)) start_params.extend(asqr_beta) start_params.append(sigmaE_scale) start_params.extend(sigmaE_bins) start_params.extend(sigmaE_beta) # create inputs for the minimizer's run method if (prior_params is not None): macro = ["Eprior"] # protocol: fix error terms using prior else: macro = ["default"] # protocol: refine sigmaE terms too protocol = [macro, macro] # overall minimization protocol ncyc = 50 # maximum number of microcycles per macrocycle minimizer_type = "bfgs" # minimizer, bfgs or newton study_params = False # flag for calling studyparams procedure output_level=verbosity # 0/1/2/3/4 for mute/log/verbose/debug/testing # create instances of refine and minimizer refine_cryoem_errors = RefineCryoemErrors( mc1=mc1, mc2=mc2, ssqr_bins = ssqr_bins, target_spectrum = target_spectrum, start_x = start_params) minimizer = Minimizer(output_level=output_level) # Run minimizer minimizer.run(refine_cryoem_errors, protocol, ncyc, minimizer_type, study_params) refined_params=refine_cryoem_errors.x # Extract and report refined parameters i_par = 0 asqr_scale = refined_params[i_par] # Not used for correction: leave map on original scale i_par += 1 sigmaT_bins = refined_params[i_par:i_par + n_bins] i_par += n_bins asqr_beta = tuple(refined_params[i_par:i_par + 6]) i_par += 6 sigmaE_scale = refined_params[i_par] # Used here but not saved later i_par += 1 sigmaE_bins = list(sigmaE_scale * flex.double(refined_params[i_par:i_par + n_bins])) i_par += n_bins sigmaE_beta = tuple(refined_params[i_par:i_par + 6]) i_par += 6 assert (i_par == len(refined_params)) # Convert asqr_beta to a_beta for application in weights a_beta = tuple(flex.double(asqr_beta)/2) # Convert beta parameters to Baniso for (optional) use and output a_baniso = adptbx.u_as_b(adptbx.beta_as_u_cart(mc1.unit_cell(), a_beta)) sigmaE_baniso = adptbx.u_as_b(adptbx.beta_as_u_cart(mc1.unit_cell(), sigmaE_beta)) if verbosity > 0: print("\nRefinement of scales and error terms completed\n") print("\nParameters for A and BEST curve correction") print(" A overall scale: ",math.sqrt(asqr_scale)) for i_bin in range(n_bins): print(" Bin #", i_bin + 1, "BEST curve correction: ", sigmaT_bins[i_bin]) print(" A tensor as beta:", a_beta) print(" A tensor as Baniso: ", a_baniso) es = adptbx.eigensystem(a_baniso) a_beta_ev = es.vectors print(" Eigenvalues and eigenvectors:") for iv in range(3): print(" ",es.values()[iv],es.vectors(iv)) print("\nParameters for SigmaE") if (prior_params is not None): print(" SigmaE scale applied to prior bins:", sigmaE_scale) for i_bin in range(n_bins): print(" Bin #", i_bin + 1, "SigmaE base: ", sigmaE_bins[i_bin]) print(" SigmaE tensor as beta:", sigmaE_beta) print(" SigmaE tensor as Baniso (intensity scale): ", sigmaE_baniso) es = adptbx.eigensystem(sigmaE_baniso) sigmaE_beta_ev = es.vectors print(" Eigenvalues and eigenvectors:") for iv in range(3): print(" ",es.values()[iv],es.vectors(iv)) sys.stdout.flush() # Loop over bins to compute expectedE and Dobs for each Fourier term # Start with mean of half-map Fourier terms and make Miller array for Dobs expectE = mc1.customized_copy(data = (mc1.data() + mc2.data())/2) expectE.use_binner_of(mc1) dobs = expectE.customized_copy(data=flex.double(expectE.size(),0)) i_bin_used = 0 # Keep track in case full range of bins not used if verbosity > 0: print("MapCC before and after rescaling as a function of resolution") print("Bin <ssqr> mapCC_before mapCC_after") for i_bin in mc1.binner().range_used(): sel = expectE.binner().selection(i_bin) eEsel = expectE.select(sel) # Make Miller array as basis for computing aniso corrections in this bin ones_array = flex.double(eEsel.size(), 1) all_ones = eEsel.customized_copy(data=ones_array) beta_a_miller = all_ones.apply_debye_waller_factors( u_star=adptbx.beta_as_u_star(a_beta)) beta_sE_miller = all_ones.apply_debye_waller_factors( u_star=adptbx.beta_as_u_star(sigmaE_beta)) # SigmaT is target_spectrum times sigmaT_bins correction factor sigmaT = sigmaT_bins[i_bin_used] * target_spectrum[i_bin_used] abeta_terms = beta_a_miller.data() # Anisotropy correction per reflection a2beta_terms = flex.pow2(abeta_terms) asqrSigmaT = asqr_scale * sigmaT * a2beta_terms sigmaE_terms = sigmaE_bins[i_bin_used] * beta_sE_miller.data() scale_terms = 1./flex.sqrt(asqrSigmaT + sigmaE_terms/2.) dobs_terms = 1./flex.sqrt(1. + sigmaE_terms/(2*asqrSigmaT)) expectE.data().set_selected(sel, expectE.data().select(sel) * scale_terms) dobs.data().set_selected(sel, dobs_terms) # Apply corrections to mc1 and mc2 to compute mapCC after rescaling # SigmaE variance is twice as large for half-maps before averaging scale_terms_12 = 1./(abeta_terms + sigmaE_terms / (asqr_scale * sigmaT * abeta_terms)) mc1.data().set_selected(sel, mc1.data().select(sel) * scale_terms_12) mc2.data().set_selected(sel, mc2.data().select(sel) * scale_terms_12) mc1sel = mc1.select(sel) mc2sel = mc2.select(sel) mapCC = mc1sel.map_correlation(other=mc2sel) if (verbosity > 0): print(i_bin_used+1, ssqr_bins[i_bin_used], mapCC_bins[i_bin_used], mapCC) sys.stdout.flush() mapCC_bins[i_bin_used] = mapCC # Update for returned output i_bin_used += 1 shift_cart = working_mmm.shift_cart() if shift_map_origin: ucwork = expectE.crystal_symmetry().unit_cell() # shift_cart is position of original origin in boxed-map coordinate system # shift_frac should correspond to what has to be done to a model to put it # into the map, i.e. move it in the opposite direction shift_frac = ucwork.fractionalize(shift_cart) shift_frac = tuple(-flex.double(shift_frac)) expectE = expectE.translational_shift(shift_frac) resultsdict = dict( n_bins = n_bins, ssqr_bins = ssqr_bins, ssqmin = ssqmin, ssqmax = ssqmax, weighted_points = weighted_points, asqr_scale = asqr_scale, sigmaT_bins = sigmaT_bins, asqr_beta = asqr_beta, a_baniso = a_baniso, sigmaE_bins = sigmaE_bins, sigmaE_baniso = sigmaE_baniso, mapCC_bins = mapCC_bins) return group_args( shift_cart = shift_cart, expectE = expectE, dobs = dobs, over_sampling_factor = over_sampling_factor, masked_volume = masked_volume, resultsdict = resultsdict) # Command-line interface using argparse def run(): """ Prepare cryo-EM map for docking by preparing weighted MTZ file. Obligatory command-line arguments (no keywords): half_map_1: name of file containing the first half-map from a reconstruction half_map_2: name of file containing the second half-map d_min: desired resolution, either best for whole map or for local region Optional command-line arguments (keyworded): --file_root: root name for output files --mask: optional mask to define map region (not yet implemented) --sphere_cent: Centre of sphere defining target map region defaults to centre of map, unless mask is specified --radius: radius of sphere defaults to narrowest extent of input map divided by 4, unless mask is specified --shift_map_origin: shift output mtz file to match input map on its origin: default --no_shift_map_origin: leave origin of map at lowest corner of the box --write_params: write out refined parameters as a pickle file --read_params: start with refined parameters from earlier run --mute (or -m): mute output --verbose (or -v): verbose output --testing: extra verbose output for debugging """ import argparse import pickle from iotbx.map_model_manager import map_model_manager from iotbx.data_manager import DataManager dm = DataManager() dm.set_overwrite(True) parser = argparse.ArgumentParser( description='Prepare cryo-EM map for docking') parser.add_argument('map1',help='Map file for half-map 1') parser.add_argument('map2', help='Map file for half-map 2') parser.add_argument('d_min', help='d_min for maps', type=float) parser.add_argument('--file_root', help='Root of filenames for output') parser.add_argument('--read_params', help='Filename for prior parameters') parser.add_argument('--write_params', help='Write out refined parameters', action='store_true') parser.add_argument('--shift_map_origin', dest='shift_map_origin', action='store_true') parser.add_argument('--no_shift_map_origin', dest='shift_map_origin', action='store_false') parser.set_defaults(shift_map_origin=True) parser.add_argument('--mask', help='Optional mask to define map region (not implemented)') parser.add_argument('--sphere_cent',help='Centre of sphere for docking', nargs=3, type=float) parser.add_argument('--radius',help='Radius of sphere for docking', type=float) parser.add_argument('-m', '--mute', dest = 'mute', help = 'Mute output', action = 'store_true') parser.add_argument('-v', '--verbose', dest = 'verbose', help = 'Set output as verbose', action = 'store_true') parser.add_argument('--testing', dest = 'testing', help='Set output as testing', action='store_true') args = parser.parse_args() d_min = args.d_min verbosity = 1 if args.mute: verbosity = 0 if args.verbose: verbosity = 2 if args.testing: verbosity = 4 shift_map_origin = args.shift_map_origin mask_specified = True mask = None sphere_cent = None radius = None if args.mask is not None: print("Mask file is not yet implemented") sys.stdout.flush() exit elif args.sphere_cent is not None: assert args.radius is not None sphere_cent = tuple(args.sphere_cent) radius = args.radius else: mask_specified = False # Get prior parameters if provided if (args.read_params is not None): infile = open(args.read_params,"rb") prior_params = pickle.load(infile) infile.close() else: prior_params = None # Create map_model_manager containing half-maps map1_filename = args.map1 mm1 = dm.get_real_map(map1_filename) map2_filename = args.map2 mm2 = dm.get_real_map(map2_filename) mmm = map_model_manager(map_manager_1=mm1, map_manager_2=mm2) if (prior_params is None): # Initial refinement to get overall error parameters results = run_refine_cryoem_errors(mmm, d_min, verbosity=verbosity, shift_map_origin=shift_map_origin) prior_params = results.resultsdict if args.write_params: if (args.file_root is not None): paramsfile = args.file_root + ".pickle" else: paramsfile = "prior_params.pickle" outf = open(paramsfile,"wb") pickle.dump(prior_params,outf,2) outf.close() # The following could loop over different regions if mask_specified: # Refine to get scale and error parameters for docking region results = run_refine_cryoem_errors(mmm, d_min, verbosity=verbosity, sphere_cent=sphere_cent, radius=radius, prior_params=prior_params, shift_map_origin=shift_map_origin) expectE = results.expectE mtz_dataset = expectE.as_mtz_dataset(column_root_label='Emean') dobs = results.dobs mtz_dataset.add_miller_array( dobs,column_root_label='Dobs',column_types='W') mtz_object=mtz_dataset.mtz_object() if (args.file_root is not None): mtzout_file_name = args.file_root + ".mtz" else: mtzout_file_name = "weighted_map_data.mtz" print ("Writing mtz for docking as",mtzout_file_name) if not shift_map_origin: shift_cart = results.shift_cart print ("Origin of full map relative to mtz:", shift_cart) dm.write_miller_array_file(mtz_object, filename=mtzout_file_name) over_sampling_factor = results.over_sampling_factor print ("Over-sampling factor for Fourier terms:",over_sampling_factor) print ("Weighted volume of density:",results.masked_volume) sys.stdout.flush() if (__name__ == "__main__"): run()
src/_dependencies/resolve.py
dry-python/dependencies
175
11070502
<gh_stars>100-1000 from _dependencies.exceptions import DependencyError from _dependencies.state import _State from _dependencies.trace import _Trace class _Resolver: def __init__(self, graph, cache, attrname): self.graph = graph self.state = _State(cache, attrname) self.attrname = attrname def resolve(self): try: return self.find() except RecursionError: message = _Trace(self.state) message.add("Circle error found in definition of the dependency graph") raise DependencyError(message) from None def find(self): while self.attrname not in self.state.cache: spec = self.graph.get(self.state.current) if self.is_optional(spec): continue if self.state.resolved(spec.required, spec.optional): self.create(spec.factory, spec.args) else: self.match(spec.args) return self.state.cache[self.attrname] def is_optional(self, spec): if spec is not None: return False if self.state.have_default: self.state.pop() return True message = _Trace(self.state) message.add(f"Can not resolve attribute {self.state.current!r}") raise DependencyError(message) def create(self, factory, args): try: self.state.store(factory(**self.state.kwargs(args))) except DependencyError as error: message = _Trace(self.state) message.add(error) raise DependencyError(message) from None def match(self, args): for arg, have_default in args.items(): # pragma: no branch if self.state.should(arg, have_default): self.state.add(arg, have_default) break
model/ESTRNN-RAW.py
RunqiuBao/Event_ESTRNN
180
11070577
import torch import torch.nn as nn import torch.nn.functional as F from thop import profile from .arches import conv1x1, conv3x3, conv5x5, actFunc, SpaceToDepth from .attention import CBAM # Dense layer class dense_layer(nn.Module): def __init__(self, in_channels, growthRate, activation='relu'): super(dense_layer, self).__init__() self.conv = conv3x3(in_channels, growthRate) self.act = actFunc(activation) def forward(self, x): out = self.act(self.conv(x)) out = torch.cat((x, out), 1) return out # Residual dense block class RDB(nn.Module): def __init__(self, in_channels, growthRate, num_layer, activation='relu'): super(RDB, self).__init__() in_channels_ = in_channels modules = [] for i in range(num_layer): modules.append(dense_layer(in_channels_, growthRate, activation)) in_channels_ += growthRate self.dense_layers = nn.Sequential(*modules) self.conv1x1 = conv1x1(in_channels_, in_channels) def forward(self, x): out = self.dense_layers(x) out = self.conv1x1(out) out += x return out # Middle network of residual dense blocks class RDNet(nn.Module): def __init__(self, in_channels, growthRate, num_layer, num_blocks, activation='relu'): super(RDNet, self).__init__() self.num_blocks = num_blocks self.RDBs = nn.ModuleList() for i in range(num_blocks): self.RDBs.append(RDB(in_channels, growthRate, num_layer, activation)) self.conv1x1 = conv1x1(num_blocks * in_channels, in_channels) self.conv3x3 = conv3x3(in_channels, in_channels) def forward(self, x): out = [] h = x for i in range(self.num_blocks): h = self.RDBs[i](h) out.append(h) out = torch.cat(out, dim=1) out = self.conv1x1(out) out = self.conv3x3(out) return out # DownSampling module class RDB_DS(nn.Module): def __init__(self, in_channels, growthRate, num_layer, activation='relu'): super(RDB_DS, self).__init__() self.rdb = RDB(in_channels, growthRate, num_layer, activation) self.down_sampling = conv5x5(in_channels, 2 * in_channels, stride=2) def forward(self, x): # x: n,c,h,w x = self.rdb(x) out = self.down_sampling(x) return out # Global spatio-temporal attention module class GSA(nn.Module): def __init__(self, para): super(GSA, self).__init__() self.n_feats = para.n_features self.center = para.past_frames self.num_ff = para.future_frames self.num_fb = para.past_frames self.related_f = self.num_ff + 1 + self.num_fb self.F_f = nn.Sequential( nn.Linear(2 * (5 * self.n_feats), 4 * (5 * self.n_feats)), actFunc(para.activation), nn.Linear(4 * (5 * self.n_feats), 2 * (5 * self.n_feats)), nn.Sigmoid() ) # out channel: 160 self.F_p = nn.Sequential( conv1x1(2 * (5 * self.n_feats), 4 * (5 * self.n_feats)), conv1x1(4 * (5 * self.n_feats), 2 * (5 * self.n_feats)) ) # condense layer self.condense = conv1x1(2 * (5 * self.n_feats), 5 * self.n_feats) # fusion layer self.fusion = conv1x1(self.related_f * (5 * self.n_feats), self.related_f * (5 * self.n_feats)) def forward(self, hs): # hs: [(n=4,c=80,h=64,w=64), ..., (n,c,h,w)] self.nframes = len(hs) f_ref = hs[self.center] cor_l = [] for i in range(self.nframes): if i != self.center: cor = torch.cat([f_ref, hs[i]], dim=1) w = F.adaptive_avg_pool2d(cor, (1, 1)).squeeze() # (n,c) : (4, 160) if len(w.shape) == 1: w = w.unsqueeze(dim=0) w = self.F_f(w) w = w.reshape(*w.shape, 1, 1) cor = self.F_p(cor) cor = self.condense(w * cor) cor_l.append(cor) cor_l.append(f_ref) out = self.fusion(torch.cat(cor_l, dim=1)) return out # RDB-based RNN cell class RDBCell(nn.Module): def __init__(self, para): super(RDBCell, self).__init__() self.activation = para.activation self.n_feats = para.n_features self.n_blocks = para.n_blocks self.pixel_unshuffle = nn.Sequential(SpaceToDepth(block_size=2), conv1x1(in_channels=4, out_channels=4), actFunc(act=self.activation)) self.downsampling = nn.Sequential(conv5x5(in_channels=1, out_channels=4, stride=2), actFunc(act=self.activation)) self.F_B0 = nn.Sequential(conv5x5(2 * 4, 2 * self.n_feats, stride=1), actFunc(act=self.activation)) self.cbam = CBAM(2 * self.n_feats, reduction_ratio=4) self.F_B1 = nn.Sequential(RDB(in_channels=2 * self.n_feats, growthRate=self.n_feats, num_layer=3, activation=self.activation), RDB(in_channels=2 * self.n_feats, growthRate=int(self.n_feats * 3 / 2), num_layer=3, activation=self.activation) ) self.F_B2 = RDB_DS(in_channels=2 * self.n_feats, growthRate=2 * self.n_feats, num_layer=3, activation=self.activation) self.F_R = RDNet(in_channels=(1 + 4) * self.n_feats, growthRate=2 * self.n_feats, num_layer=3, num_blocks=self.n_blocks, activation=self.activation) # in: 80 # F_h: hidden state part self.F_h = nn.Sequential( conv3x3((1 + 4) * self.n_feats, self.n_feats), RDB(in_channels=self.n_feats, growthRate=self.n_feats, num_layer=3, activation=self.activation), conv3x3(self.n_feats, self.n_feats) ) def forward(self, x, s_last): out = torch.cat((self.downsampling(x), self.pixel_unshuffle(x)), dim=1) out = self.F_B0(out) out = self.cbam(out) out = self.F_B1(out) out = self.F_B2(out) out = torch.cat([out, s_last], dim=1) out = self.F_R(out) s = self.F_h(out) return out, s # Reconstructor class Reconstructor(nn.Module): def __init__(self, para): super(Reconstructor, self).__init__() self.para = para self.num_ff = para.future_frames self.num_fb = para.past_frames self.related_f = self.num_ff + 1 + self.num_fb self.n_feats = para.n_features self.model = nn.Sequential( nn.ConvTranspose2d((5 * self.n_feats) * (self.related_f), 2 * self.n_feats, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ConvTranspose2d(2 * self.n_feats, self.n_feats, kernel_size=3, stride=2, padding=1, output_padding=1), conv5x5(self.n_feats, 1, stride=1) ) def forward(self, x): return self.model(x) class Model(nn.Module): """ Efficient saptio-temporal recurrent neural network for RAW images (ESTRNN-RAW) """ def __init__(self, para): super(Model, self).__init__() self.para = para self.n_feats = para.n_features self.num_ff = para.future_frames self.num_fb = para.past_frames self.ds_ratio = 4 self.device = torch.device('cuda') self.cell = RDBCell(para) self.recons = Reconstructor(para) self.fusion = GSA(para) def forward(self, x, profile_flag=False): if profile_flag: return self.profile_forward(x) outputs, hs = [], [] batch_size, frames, channels, height, width = x.shape s_height = int(height / self.ds_ratio) s_width = int(width / self.ds_ratio) # forward h structure: (batch_size, channel, height, width) s = torch.zeros(batch_size, self.n_feats, s_height, s_width).to(self.device) for i in range(frames): h, s = self.cell(x[:, i, :, :, :], s) hs.append(h) for i in range(self.num_fb, frames - self.num_ff): out = self.fusion(hs[i - self.num_fb:i + self.num_ff + 1]) out = self.recons(out) outputs.append(out.unsqueeze(dim=1)) return torch.cat(outputs, dim=1) # For calculating GMACs def profile_forward(self, x): outputs, hs = [], [] batch_size, frames, channels, height, width = x.shape s_height = int(height / self.ds_ratio) s_width = int(width / self.ds_ratio) s = torch.zeros(batch_size, self.n_feats, s_height, s_width).to(self.device) for i in range(frames): h, s = self.cell(x[:, i, :, :, :], s) hs.append(h) for i in range(self.num_fb + self.num_ff): hs.append(torch.randn(*h.shape).to(self.device)) for i in range(self.num_fb, frames + self.num_fb): out = self.fusion(hs[i - self.num_fb:i + self.num_ff + 1]) out = self.recons(out) outputs.append(out.unsqueeze(dim=1)) return torch.cat(outputs, dim=1) def feed(model, iter_samples): inputs = iter_samples[0] outputs = model(inputs) return outputs def cost_profile(model, H, W, seq_length): x = torch.randn(1, seq_length, 1, H, W).cuda() profile_flag = True flops, params = profile(model, inputs=(x, profile_flag), verbose=False) return flops / seq_length, params
tilecloud/layout/wms.py
camptocamp/tilecloud
134
11070592
<reponame>camptocamp/tilecloud<filename>tilecloud/layout/wms.py<gh_stars>100-1000 from typing import Any, Dict, Optional from urllib.parse import urlencode from tilecloud import TileCoord, TileGrid, TileLayout class WMSTileLayout(TileLayout): def __init__( self, url: str, layers: str, srs: str, format: str, tilegrid: TileGrid, border: int = 0, params: Optional[Dict[str, str]] = None, ) -> None: if params is None: params = {} self.tilegrid = tilegrid self.url = url self.border = border self.params = { "LAYERS": layers, "FORMAT": format, "TRANSPARENT": "TRUE" if format == "image/png" else "FALSE", "SERVICE": "WMS", "VERSION": "1.1.1", "REQUEST": "GetMap", "STYLES": "", "SRS": srs, } self.params.update(params) if params.get("FILTER", None) is not None: self.params["FILTER"] = params["FILTER"].format(**params) def filename(self, tilecoord: TileCoord, metadata: Optional[Any] = None) -> str: metadata = {} if metadata is None else metadata bbox = self.tilegrid.extent(tilecoord, self.border) size = tilecoord.n * self.tilegrid.tile_size + 2 * self.border params = self.params.copy() for k, v in metadata.items(): if k.startswith("dimension_"): params[k[len("dimension_") :]] = v params["BBOX"] = f"{bbox[0]:f},{bbox[1]:f},{bbox[2]:f},{bbox[3]:f}" params["WIDTH"] = str(size) params["HEIGHT"] = str(size) return self.url + "?" + urlencode(params)
language/serene/util.py
Xtuden-com/language
1,199
11070593
<filename>language/serene/util.py<gh_stars>1000+ # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utilities for fever project.""" import contextlib import json import os import pathlib import random import time import unicodedata from absl import logging import tensorflow.compat.v2 as tf Path = Union[Text, pathlib.PurePath] def safe_path(path): """Return a path that is safe to write to by making intermediate dirs. Args: path: Path to ensure is safe Returns: The original path, converted to Text if it was a PurePath """ if isinstance(path, pathlib.PurePath): path = str(path) directory = os.path.dirname(path) tf.io.gfile.makedirs(directory) return path def safe_copy(src, dst, overwrite=True): """Copy safely from src to dst by creating intermediate directories. Args: src: File to copy dst: Where to copy to overwrite: Whether to overwrite destination if it exists """ if isinstance(src, pathlib.PurePath): src = str(src) dst = safe_path(dst) tf.io.gfile.copy(src, dst, overwrite=overwrite) def safe_open(path, mode = 'r'): """Open the path safely. If in write model, make intermediate directories. Args: path: path to open mode: mode to use Returns: file handler """ if isinstance(path, pathlib.PurePath): path = str(path) if 'w' in mode: directory = os.path.dirname(path) tf.io.gfile.makedirs(directory) return tf.io.gfile.GFile(path, mode) else: return tf.io.gfile.GFile(path, mode) def read_jsonlines(path): """Read jsonlines file from the path. Args: path: Path to json file Returns: List of objects decoded from each line """ entries = [] with safe_open(path) as f: for line in f: entries.append(json.loads(line)) return entries def read_json(path): """Read json file from path and return. Args: path: Path of file to read Returns: JSON object from file """ with safe_open(path) as f: return json.load(f) def write_json(obj, path): """Write json object to the path. Args: obj: Object to write path: path to write """ with safe_open(path, 'w') as f: json.dump(obj, f) def random_string(*, prefix = None): """Return a moderately randomized string, possibly with a prefix. Helpful for generating random directories to write different models to Args: prefix: If not None, prefix this to the random string Returns: Random string, perhaps with a prefix """ # For the use case, this is large enough (unique experiment IDs) postfix = str(random.randrange(1_000_000, 2_000_000)) if prefix is None: return postfix else: return f'{prefix}-{postfix}' @contextlib.contextmanager def log_time(message): """Utility to easily log the runtime of a passage of code with a message. EG. with log_time('hello there'): time.sleep(1) # prints: hello there: 1 seconds Args: message: The message to prepend to the runtime of the code Yields: Nothing, but can be used with "with" statement. """ start = time.time() yield end = time.time() logging.info('%s: %s seconds', message, end - start) def normalize(wikipedia_url): """Unicode normalize the wikipedia title. Args: wikipedia_url: The original title Returns: The unicode normalized title """ return unicodedata.normalize('NFC', wikipedia_url) def tf_to_str(text): """Convert a string-like input to python string. Specifically, this is helpful when its unclear whether a function is expected a tf.Tensor wrapping a string, a bytes object from unwrapping from a tf.Tensor, or the input is already a normal python string. Args: text: A tf.Tensor containing a string, a bytes object that represents a utf-8 string, or a string itself. Returns: Python string of the input """ if isinstance(text, tf.Tensor): text = text.numpy() if isinstance(text, bytes): return text.decode('utf8') elif isinstance(text, Text): return text else: input_type = type(text) raise TypeError(f'Unexpected type: {input_type} for input: {text}')
ocs_ci/ocs/pgsql.py
annagitel/ocs-ci
130
11070638
""" Postgresql workload class """ import logging import random import time from prettytable import PrettyTable from ocs_ci.ocs.benchmark_operator import BenchmarkOperator, BMO_NAME from ocs_ci.utility.utils import TimeoutSampler, run_cmd from ocs_ci.ocs.utils import get_pod_name_by_pattern from ocs_ci.utility import utils, templating from ocs_ci.ocs.exceptions import ( UnexpectedBehaviour, CommandFailed, ResourceWrongStatusException, ) from ocs_ci.ocs.resources.ocs import OCS from ocs_ci.ocs import constants from subprocess import CalledProcessError from ocs_ci.ocs.resources.pod import ( get_all_pods, get_pod_obj, get_operator_pods, get_file_path, get_pod_node, ) from ocs_ci.ocs.resources.pvc import get_all_pvc_objs from ocs_ci.helpers.helpers import ( wait_for_resource_state, create_unique_resource_name, storagecluster_independent_check, ) from ocs_ci.utility.spreadsheet.spreadsheet_api import GoogleSpreadSheetAPI log = logging.getLogger(__name__) class Postgresql(BenchmarkOperator): """ Postgresql workload operation """ def __init__(self, **kwargs): """ Initializer function """ super().__init__(**kwargs) BenchmarkOperator.deploy(self) def setup_postgresql(self, replicas, sc_name=None): """ Deploy postgres sql server Args: replicas (int): Number of postgresql pods to be deployed Raises: CommandFailed: If PostgreSQL server setup fails """ log.info("Deploying postgres database") try: pgsql_service = templating.load_yaml(constants.PGSQL_SERVICE_YAML) pgsql_cmap = templating.load_yaml(constants.PGSQL_CONFIGMAP_YAML) pgsql_sset = templating.load_yaml(constants.PGSQL_STATEFULSET_YAML) pgsql_sset["spec"]["replicas"] = replicas if storagecluster_independent_check(): pgsql_sset["spec"]["volumeClaimTemplates"][0]["spec"][ "storageClassName" ] = constants.DEFAULT_EXTERNAL_MODE_STORAGECLASS_RBD if sc_name: pgsql_sset["spec"]["volumeClaimTemplates"][0]["spec"][ "storageClassName" ] = sc_name self.pgsql_service = OCS(**pgsql_service) self.pgsql_service.create() self.pgsql_cmap = OCS(**pgsql_cmap) self.pgsql_cmap.create() self.pgsql_sset = OCS(**pgsql_sset) self.pgsql_sset.create() self.pod_obj.wait_for_resource( condition="Running", selector="app=postgres", resource_count=replicas, timeout=3600, ) except (CommandFailed, CalledProcessError) as cf: log.error("Failed during setup of PostgreSQL server") raise cf self.pgsql_is_setup = True log.info("Successfully deployed postgres database") def create_pgbench_benchmark( self, replicas, pgbench_name=None, postgres_name=None, clients=None, threads=None, transactions=None, scaling_factor=None, timeout=None, wait=True, ): """ Create pgbench benchmark pods Args: replicas (int): Number of pgbench pods to be deployed pgbench_name (str): Name of pgbench bechmark postgres_name (str): Name of postgres pod clients (int): Number of clients threads (int): Number of threads transactions (int): Number of transactions scaling_factor (int): scaling factor timeout (int): Time in seconds to wait wait (bool): On true waits till pgbench reaches Completed state Returns: List: pgbench pod objects list """ pg_obj_list = [] pgbench_name = pgbench_name if pgbench_name else "pgbench-benchmark" postgres_name = postgres_name if postgres_name else "postgres" for i in range(replicas): log.info("Create resource file for pgbench workload") pg_data = templating.load_yaml(constants.PGSQL_BENCHMARK_YAML) pg_data["metadata"]["name"] = f"{pgbench_name}" + f"{i}" pg_data["spec"]["workload"]["args"]["databases"][0]["host"] = ( f"{postgres_name}-" + f"{i}" + ".postgres" ) if clients is not None: pg_data["spec"]["workload"]["args"]["clients"][0] = clients if threads is not None: pg_data["spec"]["workload"]["args"]["threads"] = threads if transactions is not None: pg_data["spec"]["workload"]["args"]["transactions"] = transactions if scaling_factor is not None: pg_data["spec"]["workload"]["args"]["scaling_factor"] = scaling_factor pg_obj = OCS(**pg_data) pg_obj_list.append(pg_obj) pg_obj.create() if wait: # Confirm that expected pgbench pods are spinned log.info("Searching the pgbench pods by its name pattern") timeout = timeout if timeout else 300 for pgbench_pods in TimeoutSampler( timeout, replicas, get_pod_name_by_pattern, "pgbench-1-dbs-client", BMO_NAME, ): try: if len(pgbench_pods) == replicas: log.info( f"Expected number of pgbench pods are " f"found: {replicas}" ) break except IndexError: log.info( f"Expected number of pgbench pods are {replicas} " f"but only found {len(pgbench_pods)}" ) return pg_obj_list def get_postgres_pvc(self): """ Get all postgres pvc Returns: List: postgres pvc objects list """ return get_all_pvc_objs(namespace=BMO_NAME) def get_postgres_pods(self): """ Get all postgres pods Returns: List: postgres pod objects list """ return get_all_pods(namespace=BMO_NAME, selector=["postgres"]) def get_pgbench_pods(self): """ Get all pgbench pods Returns: List: pgbench pod objects list """ return [ get_pod_obj(pod, BMO_NAME) for pod in get_pod_name_by_pattern("pgbench", BMO_NAME) ] def delete_pgbench_pods(self, pg_obj_list): """ Delete all pgbench pods on cluster Returns: bool: True if deleted, False otherwise """ log.info("Delete pgbench Benchmark") for pgbench_pod in pg_obj_list: pgbench_pod.delete(force=True) def is_pgbench_running(self): """ Check if pgbench is running Returns: bool: True if pgbench is running; False otherwise """ pod_objs = self.get_pgbench_pods() for pod in pod_objs: if ( pod.get().get("status").get("containerStatuses")[0].get("state") == "running" ): log.info("One or more pgbench pods are in running state") return True else: return False break def get_pgbench_status(self, pgbench_pod_name): """ Get pgbench status Args: pgbench_pod_name (str): Name of the pgbench pod Returns: str: state of pgbench pod (running/completed) """ pod_obj = get_pod_obj(pgbench_pod_name, namespace=BMO_NAME) status = pod_obj.get().get("status").get("containerStatuses")[0].get("state") return ( "running" if list(status.keys())[0] == "running" else status["terminated"]["reason"] ) def wait_for_postgres_status(self, status=constants.STATUS_RUNNING, timeout=300): """ Wait for postgres pods status to reach running/completed Args: status (str): status to reach Running or Completed timeout (int): Time in seconds to wait """ log.info(f"Waiting for postgres pods to be reach {status} state") postgres_pod_objs = self.get_postgres_pods() for postgres_pod_obj in postgres_pod_objs: wait_for_resource_state( resource=postgres_pod_obj, state=status, timeout=timeout ) def wait_for_pgbench_status(self, status, timeout=None): """ Wait for pgbench benchmark pods status to reach running/completed Args: status (str): status to reach Running or Completed timeout (int): Time in seconds to wait """ timeout = timeout if timeout else 900 # Wait for pg_bench pods to initialized and running log.info(f"Waiting for pgbench pods to be reach {status} state") pgbench_pod_objs = self.get_pgbench_pods() for pgbench_pod_obj in pgbench_pod_objs: try: wait_for_resource_state( resource=pgbench_pod_obj, state=status, timeout=timeout ) except ResourceWrongStatusException: output = run_cmd(f"oc logs {pgbench_pod_obj.name} -n {BMO_NAME}") error_msg = f"{pgbench_pod_obj.name} did not reach to {status} state after {timeout} sec\n{output}" log.error(error_msg) raise UnexpectedBehaviour(error_msg) def validate_pgbench_run(self, pgbench_pods, print_table=True): """ Validate pgbench run Args: pgbench pods (list): List of pgbench pods Returns: pg_output (list): pgbench outputs in list """ all_pgbench_pods_output = [] for pgbench_pod in pgbench_pods: log.info(f"pgbench_client_pod===={pgbench_pod.name}====") output = run_cmd(f"oc logs {pgbench_pod.name} -n {BMO_NAME}") pg_output = utils.parse_pgsql_logs(output) log.info("*******PGBench output log*********\n" f"{pg_output}") # for data in all_pgbench_pods_output: for data in pg_output: run_id = list(data.keys()) latency_avg = data[run_id[0]]["latency_avg"] if not latency_avg: raise UnexpectedBehaviour( "PGBench failed to run, " "no data found on latency_avg" ) log.info(f"PGBench on {pgbench_pod.name} completed successfully") all_pgbench_pods_output.append((pg_output, pgbench_pod.name)) if print_table: pgbench_pod_table = PrettyTable() pgbench_pod_table.field_names = [ "pod_name", "scaling_factor", "num_clients", "num_threads", "trans_client", "actually_trans", "latency_avg", "lat_stddev", "tps_incl", "tps_excl", ] for pgbench_pod_out in all_pgbench_pods_output: for pod_output in pgbench_pod_out[0]: for pod in pod_output.values(): pgbench_pod_table.add_row( [ pgbench_pod_out[1], pod["scaling_factor"], pod["num_clients"], pod["num_threads"], pod["number_of_transactions_per_client"], pod["number_of_transactions_actually_processed"], pod["latency_avg"], pod["lat_stddev"], pod["tps_incl"], pod["tps_excl"], ] ) log.info(f"\n{pgbench_pod_table}\n") return all_pgbench_pods_output def get_pgsql_nodes(self): """ Get nodes that contain a pgsql app pod Returns: list: Cluster node OCP objects """ pgsql_pod_objs = self.pod_obj.get( selector=constants.PGSQL_APP_LABEL, all_namespaces=True ) log.info("Create a list of nodes that contain a pgsql app pod") nodes_set = set() for pod in pgsql_pod_objs["items"]: log.info( f"pod {pod['metadata']['name']} located on " f"node {pod['spec']['nodeName']}" ) nodes_set.add(pod["spec"]["nodeName"]) return list(nodes_set) def get_pgbench_running_nodes(self): """ get nodes that contains pgbench pods Returns: list: List of pgbench running nodes """ pgbench_nodes = [ get_pod_node(pgbench_pod).name for pgbench_pod in self.get_pgbench_pods() ] return list(set(pgbench_nodes)) def filter_pgbench_nodes_from_nodeslist(self, nodes_list): """ Filter pgbench nodes from the given nodes list Args: nodes_list (list): List of nodes to be filtered Returns: list: List of pgbench not running nodes from the given nodes list """ log.info("Get pgbench running nodes") pgbench_nodes = self.get_pgbench_running_nodes() log.info("Select a node where pgbench is not running from the nodes list") log.info(f"nodes list: {nodes_list}") log.info(f"pgbench running nodes list: {pgbench_nodes}") filtered_nodes_list = list(set(nodes_list) - set(pgbench_nodes)) log.info(f"pgbench is not running on nodes: {filtered_nodes_list}") return filtered_nodes_list def respin_pgsql_app_pod(self): """ Respin the pgsql app pod Returns: pod status """ app_pod_list = get_operator_pods(constants.PGSQL_APP_LABEL, BMO_NAME) app_pod = app_pod_list[random.randint(0, len(app_pod_list) - 1)] log.info(f"respin pod {app_pod.name}") app_pod.delete(wait=True, force=False) wait_for_resource_state( resource=app_pod, state=constants.STATUS_RUNNING, timeout=300 ) def get_pgbech_pod_status_table(self, pgbench_pods): """ Get pgbench pod data and print results on a table Args: pgbench pods (list): List of pgbench pods """ pgbench_pod_table = PrettyTable() pgbench_pod_table.field_names = [ "pod_name", "scaling_factor", "num_clients", "num_threads", "trans_client", "actually_trans", "latency_avg", "lat_stddev", "tps_incl", "tps_excl", ] for pgbench_pod in pgbench_pods: output = run_cmd(f"oc logs {pgbench_pod.name} -n {BMO_NAME}") pg_output = utils.parse_pgsql_logs(output) for pod_output in pg_output: for pod in pod_output.values(): pgbench_pod_table.add_row( [ pgbench_pod.name, pod["scaling_factor"], pod["num_clients"], pod["num_threads"], pod["number_of_transactions_per_client"], pod["number_of_transactions_actually_processed"], pod["latency_avg"], pod["lat_stddev"], pod["tps_incl"], pod["tps_excl"], ] ) log.info(f"\n{pgbench_pod_table}\n") def export_pgoutput_to_googlesheet(self, pg_output, sheet_name, sheet_index): """ Collect pgbench output to google spreadsheet Args: pg_output (list): pgbench outputs in list sheet_name (str): Name of the sheet sheet_index (int): Index of sheet """ # Collect data and export to Google doc spreadsheet g_sheet = GoogleSpreadSheetAPI(sheet_name=sheet_name, sheet_index=sheet_index) log.info("Exporting pgoutput data to google spreadsheet") for pgbench_pod in range(len(pg_output)): for run in range(len(pg_output[pgbench_pod][0])): run_id = list(pg_output[pgbench_pod][0][run].keys())[0] lat_avg = pg_output[pgbench_pod][0][run][run_id]["latency_avg"] lat_stddev = pg_output[pgbench_pod][0][run][run_id]["lat_stddev"] tps_incl = pg_output[pgbench_pod][0][run][run_id]["lat_stddev"] tps_excl = pg_output[pgbench_pod][0][run][run_id]["tps_excl"] g_sheet.insert_row( [ f"Pgbench-pod{pg_output[pgbench_pod][1]}-run-{run_id}", int(lat_avg), int(lat_stddev), int(tps_incl), int(tps_excl), ], 2, ) g_sheet.insert_row( ["", "latency_avg", "lat_stddev", "lat_stddev", "tps_excl"], 2 ) # Capturing versions(OCP, OCS and Ceph) and test run name g_sheet.insert_row( [ f"ocp_version:{utils.get_cluster_version()}", f"ocs_build_number:{utils.get_ocs_build_number()}", f"ceph_version:{utils.get_ceph_version()}", f"test_run_name:{utils.get_testrun_name()}", ], 2, ) def cleanup(self): """ Clean up """ log.info("Deleting postgres pods and configuration") if self.pgsql_is_setup: self.pgsql_sset.delete() self.pgsql_cmap.delete() self.pgsql_service.delete() log.info("Deleting pgbench pods") pods_obj = self.get_pgbench_pods() for pod in pods_obj: pod.delete() pod.ocp.wait_for_delete(pod.name) log.info("Deleting benchmark operator configuration") BenchmarkOperator.cleanup(self) def attach_pgsql_pod_to_claim_pvc( self, pvc_objs, postgres_name, run_benchmark=True, pgbench_name=None ): """ Attaches pgsql pod to created claim PVC Args: pvc_objs (list): List of PVC objs which needs to attached to pod postgres_name (str): Name of the postgres pod run_benchmark (bool): On true, runs pgbench benchmark on postgres pod pgbench_name (str): Name of pgbench benchmark Returns: pgsql_obj_list (list): List of pod objs created """ pgsql_obj_list = [] for pvc_obj in pvc_objs: try: pgsql_sset = templating.load_yaml(constants.PGSQL_STATEFULSET_YAML) del pgsql_sset["spec"]["volumeClaimTemplates"] pgsql_sset["metadata"]["name"] = ( f"{postgres_name}" + f"{pvc_objs.index(pvc_obj)}" ) pgsql_sset["spec"]["template"]["spec"]["containers"][0]["volumeMounts"][ 0 ]["name"] = pvc_obj.name pgsql_sset["spec"]["template"]["spec"]["volumes"] = [ { "name": f"{pvc_obj.name}", "persistentVolumeClaim": {"claimName": f"{pvc_obj.name}"}, } ] pgsql_sset = OCS(**pgsql_sset) pgsql_sset.create() pgsql_obj_list.append(pgsql_sset) self.wait_for_postgres_status( status=constants.STATUS_RUNNING, timeout=300 ) if run_benchmark: pg_data = templating.load_yaml(constants.PGSQL_BENCHMARK_YAML) pg_data["metadata"]["name"] = ( f"{pgbench_name}" + f"{pvc_objs.index(pvc_obj)}" if pgbench_name else create_unique_resource_name("benchmark", "pgbench") ) pg_data["spec"]["workload"]["args"]["databases"][0]["host"] = ( f"{postgres_name}" + f"{pvc_objs.index(pvc_obj)}-0" + ".postgres" ) pg_obj = OCS(**pg_data) pg_obj.create() pgsql_obj_list.append(pg_obj) wait_time = 120 log.info(f"Wait {wait_time} seconds before mounting pod") time.sleep(wait_time) except (CommandFailed, CalledProcessError) as cf: log.error("Failed during creation of postgres pod") raise cf if run_benchmark: log.info("Checking all pgbench benchmark reached Completed state") self.wait_for_pgbench_status( status=constants.STATUS_COMPLETED, timeout=1800 ) return pgsql_obj_list def get_postgres_used_file_space(self, pod_obj_list): """ Get the used file space on a mount point Args: pod_obj_list (POD): List of pod objects Returns: list: List of pod object """ # Get the used file space on a mount point for pod_obj in pod_obj_list: filepath = get_file_path(pod_obj, "pgdata") filespace = pod_obj.exec_cmd_on_pod( command=f"du -sh {filepath}", out_yaml_format=False ) filespace = filespace.split()[0] pod_obj.filespace = filespace return pod_obj_list
xknx/io/const.py
iligiddi/xknx
179
11070645
"""KNX Constants used within io.""" DEFAULT_MCAST_GRP = "172.16.17.32" DEFAULT_MCAST_PORT = 3671 CONNECTION_ALIVE_TIME = 120 CONNECTIONSTATE_REQUEST_TIMEOUT = 10 HEARTBEAT_RATE = CONNECTION_ALIVE_TIME - (CONNECTIONSTATE_REQUEST_TIMEOUT * 5)
checkov/common/checks_infra/solvers/attribute_solvers/base_attribute_solver.py
vangundy-jason-pfg/checkov
4,013
11070653
import concurrent.futures import re from typing import List, Tuple, Dict, Any, Optional, Pattern from networkx import DiGraph from checkov.common.graph.checks_infra.enums import SolverType from checkov.common.graph.checks_infra.solvers.base_solver import BaseSolver from concurrent.futures import ThreadPoolExecutor WILDCARD_PATTERN = re.compile(r"(\S+[.][*][.]*)+") class BaseAttributeSolver(BaseSolver): operator = "" def __init__(self, resource_types: List[str], attribute: Optional[str], value: Any) -> None: super().__init__(SolverType.ATTRIBUTE) self.resource_types = resource_types self.attribute = attribute self.value = value def run(self, graph_connector: DiGraph) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]: executer = ThreadPoolExecutor() jobs = [] passed_vertices: List[Dict[str, Any]] = [] failed_vertices: List[Dict[str, Any]] = [] for _, data in graph_connector.nodes(data=True): jobs.append(executer.submit(self._process_node, data, passed_vertices, failed_vertices)) concurrent.futures.wait(jobs) return passed_vertices, failed_vertices def get_operation(self, vertex: Dict[str, Any]) -> bool: if self.attribute and re.match(WILDCARD_PATTERN, self.attribute): attribute_patterns = self.get_attribute_patterns(self.attribute) attribute_matches = [ attr for attr in vertex if any(re.match(attribute_pattern, attr) for attribute_pattern in attribute_patterns) ] if attribute_matches: return self.resource_type_pred(vertex, self.resource_types) and any( self._get_operation(vertex=vertex, attribute=attr) for attr in attribute_matches ) return self.resource_type_pred(vertex, self.resource_types) and self._get_operation( vertex=vertex, attribute=self.attribute ) def _get_operation(self, vertex: Dict[str, Any], attribute: Optional[str]) -> bool: raise NotImplementedError def _process_node( self, data: Dict[str, Any], passed_vartices: List[Dict[str, Any]], failed_vertices: List[Dict[str, Any]] ) -> None: if not self.resource_type_pred(data, self.resource_types): return if self.get_operation(vertex=data): passed_vartices.append(data) else: failed_vertices.append(data) @staticmethod def get_attribute_patterns(attribute: str) -> Tuple[Pattern[str], Pattern[str]]: index_pattern = r"[\d]+" split_by_dots = attribute.split(".") pattern_parts = [] pattern_parts_without_index = [] for attr_part in split_by_dots: if attr_part == "*": pattern_parts.append(index_pattern) else: attr_part_pattern = f"({attr_part})" pattern_parts.append(attr_part_pattern) pattern_parts_without_index.append(attr_part_pattern) pattern = "[.]".join(pattern_parts) pattern_with_index = re.compile(pattern) pattern = "[.]".join(pattern_parts_without_index) pattern_without_index = re.compile(pattern) return pattern_with_index, pattern_without_index
code/test/AiSpeech/lib/aispeech/api_aispeech.py
FACEGOOD/Audio2BlendshapeWeights
266
11070668
<filename>code/test/AiSpeech/lib/aispeech/api_aispeech.py # -*- coding: utf-8 -*- # !/usr/bin/env python36 """ tgshg/aispeech/api_aispeech.py :copyright:facegood © 2019 by the tang. url: https://help.tgenie.cn/#/ba_token """ import requests import hashlib import time import json class AiSpeech(object): def __init__(self,productId,publicKey,secretKey,productIdChat=None,token = None,expireTimeSecs=5): self.productId = productId self.publicKey = publicKey self.secretKey = secretKey if productIdChat is None: self.productIdChat = productId else: self.productIdChat = productIdChat self.token = token self.expireTime = None # 过期时间 5秒前更新token self.expireTimeSecs = expireTimeSecs def update_token(self,url = None): if url is None: url = "https://api.talkinggenie.com/api/v2/public/authToken" headers = {'Content-Type': 'application/json;charset=UTF-8'} requests_body = {} timeStamp = str(int(time.time()*1000)) # 1565589691183 sign = hashlib.md5((self.publicKey+self.productId+timeStamp+self.secretKey).encode('utf-8')).hexdigest() requests_body['productId'] = self.productId requests_body['publicKey'] = self.publicKey requests_body['sign'] = sign requests_body['timeStamp']=timeStamp r_token = requests.post(url, headers = headers, data=json.dumps(requests_body)) if r_token.status_code != 200: print("error requests post url:",url,"\nheaders:",headers,"\nrequest body:",requests_body,"\ncode:",r_token.status_code) r_data = json.loads(r_token.text) if r_data['code'] == '200': self.token = r_data['result']['token'] self.expireTime = int(r_data['result']['expireTime']) return self.expireTime else: print("ERROR:",r_data) return False def chat(self,url = None,text=None): if url is None: url = "https://api.talkinggenie.com/api/v1/ba" # 判断是否过期 if self.expireTime < int((time.time()+self.expireTimeSecs)*1000): self.update_token() headers = {} headers['Content-Type'] = 'application/json; charset=utf-8' headers['X-AISPEECH-TOKEN']= self.token headers['X-AISPEECH-PRODUCT-ID'] = self.productId requests_body = {} query = { "type":"text", "text":text } context= { "session":"1", "recordId":"100" } dialog={ "productId":self.productIdChat } output = { "type":"text" } requests_body['query'] = query requests_body['dialog'] = dialog requests_body['context'] = context requests_body['output'] = output # print("text chat***********:",json.dumps(requests_body)) r_chat = requests.post(url, headers = headers, data=json.dumps(requests_body)) if r_chat.status_code != 200: print("error requests post url:",url,"\nheaders:",headers,"\nrequest body:",requests_body,"\ncode:",r.status_code) return False r_data = json.loads(r_chat.text) try: if r_data["status"] == 200: question = r_data['result']['query'] answer = r_data['result']['answer'] if question == text: return answer except Exception as error: print(error) print("ERROR:query is not this answer\n","query is:",text,"request is:",r_data) return False def tts(self,url = None,text=None,speaker="zsmeif"): if url is None: url = "https://api.talkinggenie.com/api/v1/ba/tts" # 判断是否过期 if self.expireTime < int((time.time()+self.expireTimeSecs)*1000): self.update_token() headers = {} headers['Content-Type'] = 'application/json;charset=UTF-8' headers['X-AISPEECH-TOKEN']= self.token headers['X-AISPEECH-PRODUCT-ID'] = self.productId requests_body = {} tts = { "speed": 1.1, "volume": 100, "voiceId": speaker, "enableRealTimeFeedback": False, "text": text } audio = { "audioType": "wav", "sampleRate": "16000", "sampleBytes": 2 } requests_body['tts'] = tts requests_body['audio'] = audio requests_body['type'] = "tts" r_tts = requests.post(url, headers = headers, data=json.dumps(requests_body)) if r_tts.status_code == 200: return r_tts.content else: print("ERROR:tts is failed\n","text is:",text) def dm_tts(self,url = None,text=None,speaker="zsmeif"): if url is None: url = "https://api.talkinggenie.com/api/v1/ba" headers = {} headers['Content-Type'] = 'application/json;charset=UTF-8' headers['X-AISPEECH-TOKEN']= self.token headers['X-AISPEECH-PRODUCT-ID'] = self.productId requests_body = { "query":{ "type":"text", "text":text }, "tts":{ "speed": 1.1, "volume": 100, "voiceId": speaker }, "dialog":{ "productId":self.productIdChat }, "output":{ "audio": { "audioType": "wav", "channel":1, "sampleRate": "16000", "sampleBytes": 2 }, "type": "tts" } } r_dm_tts = requests.post(url, headers = headers, data=json.dumps(requests_body)) # print(r_dm_tts) return r_dm_tts # if r_dm_tts.status_code == 200: # return r_dm_tts.content # else: # print("ERROR:tts is failed\n","text is:",text) if __name__ == "__main__": productId = "914008290" publicKey = "<KEY>" secretkey ="<KEY>" productIdChat = "914008349" ai = AiSpeech(productId,publicKey,secretkey,productIdChat) ai.update_token() print(ai.token) dm_tts = ai.dm_tts(text = "你是谁?") dm_tts.status_code dm_tts chat_text = ai.chat(text="你是谁?") b_wav_data = ai.tts(text = chat_text) text_self = "您好!我是子书美,来自数字虚拟世界。我可以告诉你你想知道的一切,想与我面对面聊天吗?12月5日到8日来第十届中国国际新媒体短片节找我!" b_wav_data = ai.tts(text = text_self,speaker = "lchuam") import wave wav_path = "G:/test.wav" f = open(wav_path,"wb") f.write(b_wav_data) f.close() signal = b_wav_data[44:]
apps/user/serializers.py
PyCN/BlogBackendProject
335
11070669
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2017/12/7 上午11:49 # @Author : LennonChin # @Email : <EMAIL> # @File : serializers.py # @Software: PyCharm import re from datetime import datetime, timedelta from rest_framework import serializers from .models import GuestProfile, EmailVerifyRecord from base.const import REGEX_EMAIL class GuestSerializer(serializers.ModelSerializer): is_blogger = serializers.SerializerMethodField() def get_is_blogger(self, guest): if guest.email: return guest.email == '243316474@<EMAIL>' else: return False class Meta: model = GuestProfile fields = ('id', 'nick_name', 'avatar', 'is_blogger') class EmailSerializer(serializers.Serializer): nick_name = serializers.CharField(max_length=50, min_length=1, required=True, label='昵称') email = serializers.EmailField(required=True, label='邮箱') def validate_email(self, email): """ 验证邮箱 :param email: :return: """ # 验证邮箱是否合法 if not re.match(REGEX_EMAIL, email): raise serializers.ValidationError("邮箱格式错误") # 验证发送频率 ten_minutes_ago = datetime.now() - timedelta(hours=0, minutes=0, seconds=30) if EmailVerifyRecord.objects.filter(send_time__gt=ten_minutes_ago, email=email): raise serializers.ValidationError("请求发送过于频繁,请间隔30秒后重试") return email class EmailVerifySerializer(serializers.Serializer): nick_name = serializers.CharField(max_length=50, min_length=1, required=True, label='昵称') email = serializers.EmailField(required=True, label='邮箱') code = serializers.CharField(max_length=4, min_length=4, required=False, label='验证码') def validate_email(self, email): """ 验证邮箱 :param email: :return: """ # 验证邮箱是否合法 if not re.match(REGEX_EMAIL, email): raise serializers.ValidationError("邮箱格式错误") return email
geopyspark/tests/geotrellis/tiled_layer_tests/focal_test.py
geotrellis/geotrellis-python
182
11070676
<reponame>geotrellis/geotrellis-python import numpy as np import os import pytest import unittest from geopyspark.geotrellis import SpatialKey, Extent, Tile, SpatialPartitionStrategy, HashPartitionStrategy from geopyspark.geotrellis.layer import TiledRasterLayer from geopyspark.tests.base_test_class import BaseTestClass from geopyspark.geotrellis.constants import LayerType, Operation, Neighborhood from geopyspark.geotrellis.neighborhood import Square, Annulus, Wedge, Circle, Nesw class FocalTest(BaseTestClass): cells = np.array([[ [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 0.0]]]) tile = Tile.from_numpy_array(cells, -1.0) layer = [(SpatialKey(0, 0), tile), (SpatialKey(1, 0), tile), (SpatialKey(0, 1), tile), (SpatialKey(1, 1), tile)] rdd = BaseTestClass.pysc.parallelize(layer) extent = {'xmin': 0.0, 'ymin': 0.0, 'xmax': 33.0, 'ymax': 33.0} layout = {'layoutCols': 2, 'layoutRows': 2, 'tileCols': 5, 'tileRows': 5} metadata = {'cellType': 'float32ud-1.0', 'extent': extent, 'crs': '+proj=longlat +datum=WGS84 +no_defs ', 'bounds': { 'minKey': {'col': 0, 'row': 0}, 'maxKey': {'col': 1, 'row': 1}}, 'layoutDefinition': { 'extent': extent, 'tileLayout': {'tileCols': 5, 'tileRows': 5, 'layoutCols': 2, 'layoutRows': 2}}} raster_rdd = TiledRasterLayer.from_numpy_rdd(LayerType.SPATIAL, rdd, metadata) @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() def test_focal_sum_square(self): result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=Neighborhood.SQUARE, param_1=1.0, partition_strategy=HashPartitionStrategy()) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 6) def test_focal_sum_wedge(self): neighborhood = Wedge(radius=1.0, start_angle=0.0, end_angle=180.0) self.assertEqual(str(neighborhood), repr(neighborhood)) result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=neighborhood, partition_strategy=HashPartitionStrategy(2)) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 3) def test_focal_sum_circle(self): neighborhood = Circle(radius=1.0) self.assertEqual(str(neighborhood), repr(neighborhood)) result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=neighborhood, partition_strategy=SpatialPartitionStrategy(2)) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 4) def test_focal_sum_nesw(self): neighborhood = Nesw(extent=1.0) self.assertEqual(str(neighborhood), repr(neighborhood)) result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=neighborhood, partition_strategy=SpatialPartitionStrategy()) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 4) def test_focal_sum_annulus(self): neighborhood = Annulus(inner_radius=0.5, outer_radius=1.5) self.assertEqual(str(neighborhood), repr(neighborhood)) result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=neighborhood) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 5.0) def test_square(self): neighborhood = Square(extent=1.0) self.assertEqual(str(neighborhood), repr(neighborhood)) result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=neighborhood) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 6.0) def test_focal_sum_int(self): result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=Neighborhood.SQUARE, param_1=1) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 6) def test_focal_sum_square_with_square(self): square = Square(extent=1.0) result = self.raster_rdd.focal( operation=Operation.SUM, neighborhood=square) self.assertTrue(result.to_numpy_rdd().first()[1].cells[0][1][0] >= 6) def test_focal_min(self): result = self.raster_rdd.focal(operation=Operation.MIN, neighborhood=Neighborhood.ANNULUS, param_1=2.0, param_2=1.0) self.assertEqual(result.to_numpy_rdd().first()[1].cells[0][0][0], -1) def test_focal_min_annulus(self): annulus = Annulus(inner_radius=2.0, outer_radius=1.0) result = self.raster_rdd.focal(operation=Operation.MIN, neighborhood=annulus) self.assertEqual(result.to_numpy_rdd().first()[1].cells[0][0][0], -1) def test_focal_min_int(self): result = self.raster_rdd.focal(operation=Operation.MIN, neighborhood=Neighborhood.ANNULUS, param_1=2, param_2=1) self.assertEqual(result.to_numpy_rdd().first()[1].cells[0][0][0], -1) def test_tobler(self): result = self.raster_rdd.tobler() if __name__ == "__main__": unittest.main() BaseTestClass.pysc.stop()
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/policy/v2020_09_01/models/_models.py
rsdoherty/azure-sdk-for-python
2,728
11070691
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import msrest.serialization class Alias(msrest.serialization.Model): """The alias type. Variables are only populated by the server, and will be ignored when sending a request. :param name: The alias name. :type name: str :param paths: The paths for an alias. :type paths: list[~azure.mgmt.resource.policy.v2020_09_01.models.AliasPath] :param type: The type of the alias. Possible values include: "NotSpecified", "PlainText", "Mask". :type type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.AliasType :param default_path: The default path for an alias. :type default_path: str :param default_pattern: The default pattern for an alias. :type default_pattern: ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPattern :ivar default_metadata: The default alias path metadata. Applies to the default path and to any alias path that doesn't have metadata. :vartype default_metadata: ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPathMetadata """ _validation = { 'default_metadata': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'paths': {'key': 'paths', 'type': '[AliasPath]'}, 'type': {'key': 'type', 'type': 'str'}, 'default_path': {'key': 'defaultPath', 'type': 'str'}, 'default_pattern': {'key': 'defaultPattern', 'type': 'AliasPattern'}, 'default_metadata': {'key': 'defaultMetadata', 'type': 'AliasPathMetadata'}, } def __init__( self, **kwargs ): super(Alias, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.paths = kwargs.get('paths', None) self.type = kwargs.get('type', None) self.default_path = kwargs.get('default_path', None) self.default_pattern = kwargs.get('default_pattern', None) self.default_metadata = None class AliasPath(msrest.serialization.Model): """The type of the paths for alias. Variables are only populated by the server, and will be ignored when sending a request. :param path: The path of an alias. :type path: str :param api_versions: The API versions. :type api_versions: list[str] :param pattern: The pattern for an alias path. :type pattern: ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPattern :ivar metadata: The metadata of the alias path. If missing, fall back to the default metadata of the alias. :vartype metadata: ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPathMetadata """ _validation = { 'metadata': {'readonly': True}, } _attribute_map = { 'path': {'key': 'path', 'type': 'str'}, 'api_versions': {'key': 'apiVersions', 'type': '[str]'}, 'pattern': {'key': 'pattern', 'type': 'AliasPattern'}, 'metadata': {'key': 'metadata', 'type': 'AliasPathMetadata'}, } def __init__( self, **kwargs ): super(AliasPath, self).__init__(**kwargs) self.path = kwargs.get('path', None) self.api_versions = kwargs.get('api_versions', None) self.pattern = kwargs.get('pattern', None) self.metadata = None class AliasPathMetadata(msrest.serialization.Model): """AliasPathMetadata. Variables are only populated by the server, and will be ignored when sending a request. :ivar type: The type of the token that the alias path is referring to. Possible values include: "NotSpecified", "Any", "String", "Object", "Array", "Integer", "Number", "Boolean". :vartype type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPathTokenType :ivar attributes: The attributes of the token that the alias path is referring to. Possible values include: "None", "Modifiable". :vartype attributes: str or ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPathAttributes """ _validation = { 'type': {'readonly': True}, 'attributes': {'readonly': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'attributes': {'key': 'attributes', 'type': 'str'}, } def __init__( self, **kwargs ): super(AliasPathMetadata, self).__init__(**kwargs) self.type = None self.attributes = None class AliasPattern(msrest.serialization.Model): """The type of the pattern for an alias path. :param phrase: The alias pattern phrase. :type phrase: str :param variable: The alias pattern variable. :type variable: str :param type: The type of alias pattern. Possible values include: "NotSpecified", "Extract". :type type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.AliasPatternType """ _attribute_map = { 'phrase': {'key': 'phrase', 'type': 'str'}, 'variable': {'key': 'variable', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(AliasPattern, self).__init__(**kwargs) self.phrase = kwargs.get('phrase', None) self.variable = kwargs.get('variable', None) self.type = kwargs.get('type', None) class DataEffect(msrest.serialization.Model): """The data effect definition. :param name: The data effect name. :type name: str :param details_schema: The data effect details schema. :type details_schema: any """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'details_schema': {'key': 'detailsSchema', 'type': 'object'}, } def __init__( self, **kwargs ): super(DataEffect, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.details_schema = kwargs.get('details_schema', None) class DataManifestCustomResourceFunctionDefinition(msrest.serialization.Model): """The custom resource function definition. :param name: The function name as it will appear in the policy rule. eg - 'vault'. :type name: str :param fully_qualified_resource_type: The fully qualified control plane resource type that this function represents. eg - 'Microsoft.KeyVault/vaults'. :type fully_qualified_resource_type: str :param default_properties: The top-level properties that can be selected on the function's output. eg - [ "name", "location" ] if vault().name and vault().location are supported. :type default_properties: list[str] :param allow_custom_properties: A value indicating whether the custom properties within the property bag are allowed. Needs api-version to be specified in the policy rule eg - vault('2019-06-01'). :type allow_custom_properties: bool """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'fully_qualified_resource_type': {'key': 'fullyQualifiedResourceType', 'type': 'str'}, 'default_properties': {'key': 'defaultProperties', 'type': '[str]'}, 'allow_custom_properties': {'key': 'allowCustomProperties', 'type': 'bool'}, } def __init__( self, **kwargs ): super(DataManifestCustomResourceFunctionDefinition, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.fully_qualified_resource_type = kwargs.get('fully_qualified_resource_type', None) self.default_properties = kwargs.get('default_properties', None) self.allow_custom_properties = kwargs.get('allow_custom_properties', None) class DataPolicyManifest(msrest.serialization.Model): """The data policy manifest. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The ID of the data policy manifest. :vartype id: str :ivar name: The name of the data policy manifest (it's the same as the Policy Mode). :vartype name: str :ivar type: The type of the resource (Microsoft.Authorization/dataPolicyManifests). :vartype type: str :param namespaces: The list of namespaces for the data policy manifest. :type namespaces: list[str] :param policy_mode: The policy mode of the data policy manifest. :type policy_mode: str :param is_built_in_only: A value indicating whether policy mode is allowed only in built-in definitions. :type is_built_in_only: bool :param resource_type_aliases: An array of resource type aliases. :type resource_type_aliases: list[~azure.mgmt.resource.policy.v2020_09_01.models.ResourceTypeAliases] :param effects: The effect definition. :type effects: list[~azure.mgmt.resource.policy.v2020_09_01.models.DataEffect] :param field_values: The non-alias field accessor values that can be used in the policy rule. :type field_values: list[str] :param standard: The standard resource functions (subscription and/or resourceGroup). :type standard: list[str] :param custom: An array of data manifest custom resource definition. :type custom: list[~azure.mgmt.resource.policy.v2020_09_01.models.DataManifestCustomResourceFunctionDefinition] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'namespaces': {'key': 'properties.namespaces', 'type': '[str]'}, 'policy_mode': {'key': 'properties.policyMode', 'type': 'str'}, 'is_built_in_only': {'key': 'properties.isBuiltInOnly', 'type': 'bool'}, 'resource_type_aliases': {'key': 'properties.resourceTypeAliases', 'type': '[ResourceTypeAliases]'}, 'effects': {'key': 'properties.effects', 'type': '[DataEffect]'}, 'field_values': {'key': 'properties.fieldValues', 'type': '[str]'}, 'standard': {'key': 'properties.resourceFunctions.standard', 'type': '[str]'}, 'custom': {'key': 'properties.resourceFunctions.custom', 'type': '[DataManifestCustomResourceFunctionDefinition]'}, } def __init__( self, **kwargs ): super(DataPolicyManifest, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.namespaces = kwargs.get('namespaces', None) self.policy_mode = kwargs.get('policy_mode', None) self.is_built_in_only = kwargs.get('is_built_in_only', None) self.resource_type_aliases = kwargs.get('resource_type_aliases', None) self.effects = kwargs.get('effects', None) self.field_values = kwargs.get('field_values', None) self.standard = kwargs.get('standard', None) self.custom = kwargs.get('custom', None) class DataPolicyManifestListResult(msrest.serialization.Model): """List of data policy manifests. :param value: An array of data policy manifests. :type value: list[~azure.mgmt.resource.policy.v2020_09_01.models.DataPolicyManifest] :param next_link: The URL to use for getting the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[DataPolicyManifest]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(DataPolicyManifestListResult, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = kwargs.get('next_link', None) class ErrorAdditionalInfo(msrest.serialization.Model): """The resource management error additional info. Variables are only populated by the server, and will be ignored when sending a request. :ivar type: The additional info type. :vartype type: str :ivar info: The additional info. :vartype info: any """ _validation = { 'type': {'readonly': True}, 'info': {'readonly': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'info': {'key': 'info', 'type': 'object'}, } def __init__( self, **kwargs ): super(ErrorAdditionalInfo, self).__init__(**kwargs) self.type = None self.info = None class ErrorResponse(msrest.serialization.Model): """Common error response for all Azure Resource Manager APIs to return error details for failed operations. (This also follows the OData error response format.). Variables are only populated by the server, and will be ignored when sending a request. :ivar code: The error code. :vartype code: str :ivar message: The error message. :vartype message: str :ivar target: The error target. :vartype target: str :ivar details: The error details. :vartype details: list[~azure.mgmt.resource.policy.v2020_09_01.models.ErrorResponse] :ivar additional_info: The error additional info. :vartype additional_info: list[~azure.mgmt.resource.policy.v2020_09_01.models.ErrorAdditionalInfo] """ _validation = { 'code': {'readonly': True}, 'message': {'readonly': True}, 'target': {'readonly': True}, 'details': {'readonly': True}, 'additional_info': {'readonly': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[ErrorResponse]'}, 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'}, } def __init__( self, **kwargs ): super(ErrorResponse, self).__init__(**kwargs) self.code = None self.message = None self.target = None self.details = None self.additional_info = None class Identity(msrest.serialization.Model): """Identity for the resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar principal_id: The principal ID of the resource identity. :vartype principal_id: str :ivar tenant_id: The tenant ID of the resource identity. :vartype tenant_id: str :param type: The identity type. This is the only required field when adding a system assigned identity to a resource. Possible values include: "SystemAssigned", "None". :type type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.ResourceIdentityType """ _validation = { 'principal_id': {'readonly': True}, 'tenant_id': {'readonly': True}, } _attribute_map = { 'principal_id': {'key': 'principalId', 'type': 'str'}, 'tenant_id': {'key': 'tenantId', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__( self, **kwargs ): super(Identity, self).__init__(**kwargs) self.principal_id = None self.tenant_id = None self.type = kwargs.get('type', None) class NonComplianceMessage(msrest.serialization.Model): """A message that describes why a resource is non-compliant with the policy. This is shown in 'deny' error messages and on resource's non-compliant compliance results. All required parameters must be populated in order to send to Azure. :param message: Required. A message that describes why a resource is non-compliant with the policy. This is shown in 'deny' error messages and on resource's non-compliant compliance results. :type message: str :param policy_definition_reference_id: The policy definition reference ID within a policy set definition the message is intended for. This is only applicable if the policy assignment assigns a policy set definition. If this is not provided the message applies to all policies assigned by this policy assignment. :type policy_definition_reference_id: str """ _validation = { 'message': {'required': True}, } _attribute_map = { 'message': {'key': 'message', 'type': 'str'}, 'policy_definition_reference_id': {'key': 'policyDefinitionReferenceId', 'type': 'str'}, } def __init__( self, **kwargs ): super(NonComplianceMessage, self).__init__(**kwargs) self.message = kwargs['message'] self.policy_definition_reference_id = kwargs.get('policy_definition_reference_id', None) class ParameterDefinitionsValue(msrest.serialization.Model): """The definition of a parameter that can be provided to the policy. :param type: The data type of the parameter. Possible values include: "String", "Array", "Object", "Boolean", "Integer", "Float", "DateTime". :type type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.ParameterType :param allowed_values: The allowed values for the parameter. :type allowed_values: list[any] :param default_value: The default value for the parameter if no value is provided. :type default_value: any :param metadata: General metadata for the parameter. :type metadata: ~azure.mgmt.resource.policy.v2020_09_01.models.ParameterDefinitionsValueMetadata """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'allowed_values': {'key': 'allowedValues', 'type': '[object]'}, 'default_value': {'key': 'defaultValue', 'type': 'object'}, 'metadata': {'key': 'metadata', 'type': 'ParameterDefinitionsValueMetadata'}, } def __init__( self, **kwargs ): super(ParameterDefinitionsValue, self).__init__(**kwargs) self.type = kwargs.get('type', None) self.allowed_values = kwargs.get('allowed_values', None) self.default_value = kwargs.get('default_value', None) self.metadata = kwargs.get('metadata', None) class ParameterDefinitionsValueMetadata(msrest.serialization.Model): """General metadata for the parameter. :param additional_properties: Unmatched properties from the message are deserialized to this collection. :type additional_properties: dict[str, any] :param display_name: The display name for the parameter. :type display_name: str :param description: The description of the parameter. :type description: str :param strong_type: Used when assigning the policy definition through the portal. Provides a context aware list of values for the user to choose from. :type strong_type: str :param assign_permissions: Set to true to have Azure portal create role assignments on the resource ID or resource scope value of this parameter during policy assignment. This property is useful in case you wish to assign permissions outside the assignment scope. :type assign_permissions: bool """ _attribute_map = { 'additional_properties': {'key': '', 'type': '{object}'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'strong_type': {'key': 'strongType', 'type': 'str'}, 'assign_permissions': {'key': 'assignPermissions', 'type': 'bool'}, } def __init__( self, **kwargs ): super(ParameterDefinitionsValueMetadata, self).__init__(**kwargs) self.additional_properties = kwargs.get('additional_properties', None) self.display_name = kwargs.get('display_name', None) self.description = kwargs.get('description', None) self.strong_type = kwargs.get('strong_type', None) self.assign_permissions = kwargs.get('assign_permissions', None) class ParameterValuesValue(msrest.serialization.Model): """The value of a parameter. :param value: The value of the parameter. :type value: any """ _attribute_map = { 'value': {'key': 'value', 'type': 'object'}, } def __init__( self, **kwargs ): super(ParameterValuesValue, self).__init__(**kwargs) self.value = kwargs.get('value', None) class PolicyAssignment(msrest.serialization.Model): """The policy assignment. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The ID of the policy assignment. :vartype id: str :ivar type: The type of the policy assignment. :vartype type: str :ivar name: The name of the policy assignment. :vartype name: str :param location: The location of the policy assignment. Only required when utilizing managed identity. :type location: str :param identity: The managed identity associated with the policy assignment. :type identity: ~azure.mgmt.resource.policy.v2020_09_01.models.Identity :param display_name: The display name of the policy assignment. :type display_name: str :param policy_definition_id: The ID of the policy definition or policy set definition being assigned. :type policy_definition_id: str :ivar scope: The scope for the policy assignment. :vartype scope: str :param not_scopes: The policy's excluded scopes. :type not_scopes: list[str] :param parameters: The parameter values for the assigned policy rule. The keys are the parameter names. :type parameters: dict[str, ~azure.mgmt.resource.policy.v2020_09_01.models.ParameterValuesValue] :param description: This message will be part of response in case of policy violation. :type description: str :param metadata: The policy assignment metadata. Metadata is an open ended object and is typically a collection of key value pairs. :type metadata: any :param enforcement_mode: The policy assignment enforcement mode. Possible values are Default and DoNotEnforce. Possible values include: "Default", "DoNotEnforce". Default value: "Default". :type enforcement_mode: str or ~azure.mgmt.resource.policy.v2020_09_01.models.EnforcementMode :param non_compliance_messages: The messages that describe why a resource is non-compliant with the policy. :type non_compliance_messages: list[~azure.mgmt.resource.policy.v2020_09_01.models.NonComplianceMessage] """ _validation = { 'id': {'readonly': True}, 'type': {'readonly': True}, 'name': {'readonly': True}, 'scope': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'identity': {'key': 'identity', 'type': 'Identity'}, 'display_name': {'key': 'properties.displayName', 'type': 'str'}, 'policy_definition_id': {'key': 'properties.policyDefinitionId', 'type': 'str'}, 'scope': {'key': 'properties.scope', 'type': 'str'}, 'not_scopes': {'key': 'properties.notScopes', 'type': '[str]'}, 'parameters': {'key': 'properties.parameters', 'type': '{ParameterValuesValue}'}, 'description': {'key': 'properties.description', 'type': 'str'}, 'metadata': {'key': 'properties.metadata', 'type': 'object'}, 'enforcement_mode': {'key': 'properties.enforcementMode', 'type': 'str'}, 'non_compliance_messages': {'key': 'properties.nonComplianceMessages', 'type': '[NonComplianceMessage]'}, } def __init__( self, **kwargs ): super(PolicyAssignment, self).__init__(**kwargs) self.id = None self.type = None self.name = None self.location = kwargs.get('location', None) self.identity = kwargs.get('identity', None) self.display_name = kwargs.get('display_name', None) self.policy_definition_id = kwargs.get('policy_definition_id', None) self.scope = None self.not_scopes = kwargs.get('not_scopes', None) self.parameters = kwargs.get('parameters', None) self.description = kwargs.get('description', None) self.metadata = kwargs.get('metadata', None) self.enforcement_mode = kwargs.get('enforcement_mode', "Default") self.non_compliance_messages = kwargs.get('non_compliance_messages', None) class PolicyAssignmentListResult(msrest.serialization.Model): """List of policy assignments. :param value: An array of policy assignments. :type value: list[~azure.mgmt.resource.policy.v2020_09_01.models.PolicyAssignment] :param next_link: The URL to use for getting the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[PolicyAssignment]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(PolicyAssignmentListResult, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = kwargs.get('next_link', None) class PolicyDefinition(msrest.serialization.Model): """The policy definition. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The ID of the policy definition. :vartype id: str :ivar name: The name of the policy definition. :vartype name: str :ivar type: The type of the resource (Microsoft.Authorization/policyDefinitions). :vartype type: str :param policy_type: The type of policy definition. Possible values are NotSpecified, BuiltIn, Custom, and Static. Possible values include: "NotSpecified", "BuiltIn", "Custom", "Static". :type policy_type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.PolicyType :param mode: The policy definition mode. Some examples are All, Indexed, Microsoft.KeyVault.Data. :type mode: str :param display_name: The display name of the policy definition. :type display_name: str :param description: The policy definition description. :type description: str :param policy_rule: The policy rule. :type policy_rule: any :param metadata: The policy definition metadata. Metadata is an open ended object and is typically a collection of key value pairs. :type metadata: any :param parameters: The parameter definitions for parameters used in the policy rule. The keys are the parameter names. :type parameters: dict[str, ~azure.mgmt.resource.policy.v2020_09_01.models.ParameterDefinitionsValue] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'policy_type': {'key': 'properties.policyType', 'type': 'str'}, 'mode': {'key': 'properties.mode', 'type': 'str'}, 'display_name': {'key': 'properties.displayName', 'type': 'str'}, 'description': {'key': 'properties.description', 'type': 'str'}, 'policy_rule': {'key': 'properties.policyRule', 'type': 'object'}, 'metadata': {'key': 'properties.metadata', 'type': 'object'}, 'parameters': {'key': 'properties.parameters', 'type': '{ParameterDefinitionsValue}'}, } def __init__( self, **kwargs ): super(PolicyDefinition, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.policy_type = kwargs.get('policy_type', None) self.mode = kwargs.get('mode', "Indexed") self.display_name = kwargs.get('display_name', None) self.description = kwargs.get('description', None) self.policy_rule = kwargs.get('policy_rule', None) self.metadata = kwargs.get('metadata', None) self.parameters = kwargs.get('parameters', None) class PolicyDefinitionGroup(msrest.serialization.Model): """The policy definition group. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the group. :type name: str :param display_name: The group's display name. :type display_name: str :param category: The group's category. :type category: str :param description: The group's description. :type description: str :param additional_metadata_id: A resource ID of a resource that contains additional metadata about the group. :type additional_metadata_id: str """ _validation = { 'name': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'category': {'key': 'category', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'additional_metadata_id': {'key': 'additionalMetadataId', 'type': 'str'}, } def __init__( self, **kwargs ): super(PolicyDefinitionGroup, self).__init__(**kwargs) self.name = kwargs['name'] self.display_name = kwargs.get('display_name', None) self.category = kwargs.get('category', None) self.description = kwargs.get('description', None) self.additional_metadata_id = kwargs.get('additional_metadata_id', None) class PolicyDefinitionListResult(msrest.serialization.Model): """List of policy definitions. :param value: An array of policy definitions. :type value: list[~azure.mgmt.resource.policy.v2020_09_01.models.PolicyDefinition] :param next_link: The URL to use for getting the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[PolicyDefinition]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(PolicyDefinitionListResult, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = kwargs.get('next_link', None) class PolicyDefinitionReference(msrest.serialization.Model): """The policy definition reference. All required parameters must be populated in order to send to Azure. :param policy_definition_id: Required. The ID of the policy definition or policy set definition. :type policy_definition_id: str :param parameters: The parameter values for the referenced policy rule. The keys are the parameter names. :type parameters: dict[str, ~azure.mgmt.resource.policy.v2020_09_01.models.ParameterValuesValue] :param policy_definition_reference_id: A unique id (within the policy set definition) for this policy definition reference. :type policy_definition_reference_id: str :param group_names: The name of the groups that this policy definition reference belongs to. :type group_names: list[str] """ _validation = { 'policy_definition_id': {'required': True}, } _attribute_map = { 'policy_definition_id': {'key': 'policyDefinitionId', 'type': 'str'}, 'parameters': {'key': 'parameters', 'type': '{ParameterValuesValue}'}, 'policy_definition_reference_id': {'key': 'policyDefinitionReferenceId', 'type': 'str'}, 'group_names': {'key': 'groupNames', 'type': '[str]'}, } def __init__( self, **kwargs ): super(PolicyDefinitionReference, self).__init__(**kwargs) self.policy_definition_id = kwargs['policy_definition_id'] self.parameters = kwargs.get('parameters', None) self.policy_definition_reference_id = kwargs.get('policy_definition_reference_id', None) self.group_names = kwargs.get('group_names', None) class PolicyExemption(msrest.serialization.Model): """The policy exemption. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar system_data: Azure Resource Manager metadata containing createdBy and modifiedBy information. :vartype system_data: ~azure.mgmt.resource.policy.v2020_09_01.models.SystemData :ivar id: The ID of the policy exemption. :vartype id: str :ivar name: The name of the policy exemption. :vartype name: str :ivar type: The type of the resource (Microsoft.Authorization/policyExemptions). :vartype type: str :param policy_assignment_id: Required. The ID of the policy assignment that is being exempted. :type policy_assignment_id: str :param policy_definition_reference_ids: The policy definition reference ID list when the associated policy assignment is an assignment of a policy set definition. :type policy_definition_reference_ids: list[str] :param exemption_category: Required. The policy exemption category. Possible values are Waiver and Mitigated. Possible values include: "Waiver", "Mitigated". :type exemption_category: str or ~azure.mgmt.resource.policy.v2020_09_01.models.ExemptionCategory :param expires_on: The expiration date and time (in UTC ISO 8601 format yyyy-MM-ddTHH:mm:ssZ) of the policy exemption. :type expires_on: ~datetime.datetime :param display_name: The display name of the policy exemption. :type display_name: str :param description: The description of the policy exemption. :type description: str :param metadata: The policy exemption metadata. Metadata is an open ended object and is typically a collection of key value pairs. :type metadata: any """ _validation = { 'system_data': {'readonly': True}, 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'policy_assignment_id': {'required': True}, 'exemption_category': {'required': True}, } _attribute_map = { 'system_data': {'key': 'systemData', 'type': 'SystemData'}, 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'policy_assignment_id': {'key': 'properties.policyAssignmentId', 'type': 'str'}, 'policy_definition_reference_ids': {'key': 'properties.policyDefinitionReferenceIds', 'type': '[str]'}, 'exemption_category': {'key': 'properties.exemptionCategory', 'type': 'str'}, 'expires_on': {'key': 'properties.expiresOn', 'type': 'iso-8601'}, 'display_name': {'key': 'properties.displayName', 'type': 'str'}, 'description': {'key': 'properties.description', 'type': 'str'}, 'metadata': {'key': 'properties.metadata', 'type': 'object'}, } def __init__( self, **kwargs ): super(PolicyExemption, self).__init__(**kwargs) self.system_data = None self.id = None self.name = None self.type = None self.policy_assignment_id = kwargs['policy_assignment_id'] self.policy_definition_reference_ids = kwargs.get('policy_definition_reference_ids', None) self.exemption_category = kwargs['exemption_category'] self.expires_on = kwargs.get('expires_on', None) self.display_name = kwargs.get('display_name', None) self.description = kwargs.get('description', None) self.metadata = kwargs.get('metadata', None) class PolicyExemptionListResult(msrest.serialization.Model): """List of policy exemptions. Variables are only populated by the server, and will be ignored when sending a request. :param value: An array of policy exemptions. :type value: list[~azure.mgmt.resource.policy.v2020_09_01.models.PolicyExemption] :ivar next_link: The URL to use for getting the next set of results. :vartype next_link: str """ _validation = { 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[PolicyExemption]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(PolicyExemptionListResult, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = None class PolicySetDefinition(msrest.serialization.Model): """The policy set definition. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The ID of the policy set definition. :vartype id: str :ivar name: The name of the policy set definition. :vartype name: str :ivar type: The type of the resource (Microsoft.Authorization/policySetDefinitions). :vartype type: str :param policy_type: The type of policy definition. Possible values are NotSpecified, BuiltIn, Custom, and Static. Possible values include: "NotSpecified", "BuiltIn", "Custom", "Static". :type policy_type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.PolicyType :param display_name: The display name of the policy set definition. :type display_name: str :param description: The policy set definition description. :type description: str :param metadata: The policy set definition metadata. Metadata is an open ended object and is typically a collection of key value pairs. :type metadata: any :param parameters: The policy set definition parameters that can be used in policy definition references. :type parameters: dict[str, ~azure.mgmt.resource.policy.v2020_09_01.models.ParameterDefinitionsValue] :param policy_definitions: An array of policy definition references. :type policy_definitions: list[~azure.mgmt.resource.policy.v2020_09_01.models.PolicyDefinitionReference] :param policy_definition_groups: The metadata describing groups of policy definition references within the policy set definition. :type policy_definition_groups: list[~azure.mgmt.resource.policy.v2020_09_01.models.PolicyDefinitionGroup] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'policy_type': {'key': 'properties.policyType', 'type': 'str'}, 'display_name': {'key': 'properties.displayName', 'type': 'str'}, 'description': {'key': 'properties.description', 'type': 'str'}, 'metadata': {'key': 'properties.metadata', 'type': 'object'}, 'parameters': {'key': 'properties.parameters', 'type': '{ParameterDefinitionsValue}'}, 'policy_definitions': {'key': 'properties.policyDefinitions', 'type': '[PolicyDefinitionReference]'}, 'policy_definition_groups': {'key': 'properties.policyDefinitionGroups', 'type': '[PolicyDefinitionGroup]'}, } def __init__( self, **kwargs ): super(PolicySetDefinition, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.policy_type = kwargs.get('policy_type', None) self.display_name = kwargs.get('display_name', None) self.description = kwargs.get('description', None) self.metadata = kwargs.get('metadata', None) self.parameters = kwargs.get('parameters', None) self.policy_definitions = kwargs.get('policy_definitions', None) self.policy_definition_groups = kwargs.get('policy_definition_groups', None) class PolicySetDefinitionListResult(msrest.serialization.Model): """List of policy set definitions. :param value: An array of policy set definitions. :type value: list[~azure.mgmt.resource.policy.v2020_09_01.models.PolicySetDefinition] :param next_link: The URL to use for getting the next set of results. :type next_link: str """ _attribute_map = { 'value': {'key': 'value', 'type': '[PolicySetDefinition]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(PolicySetDefinitionListResult, self).__init__(**kwargs) self.value = kwargs.get('value', None) self.next_link = kwargs.get('next_link', None) class ResourceTypeAliases(msrest.serialization.Model): """The resource type aliases definition. :param resource_type: The resource type name. :type resource_type: str :param aliases: The aliases for property names. :type aliases: list[~azure.mgmt.resource.policy.v2020_09_01.models.Alias] """ _attribute_map = { 'resource_type': {'key': 'resourceType', 'type': 'str'}, 'aliases': {'key': 'aliases', 'type': '[Alias]'}, } def __init__( self, **kwargs ): super(ResourceTypeAliases, self).__init__(**kwargs) self.resource_type = kwargs.get('resource_type', None) self.aliases = kwargs.get('aliases', None) class SystemData(msrest.serialization.Model): """Metadata pertaining to creation and last modification of the resource. :param created_by: The identity that created the resource. :type created_by: str :param created_by_type: The type of identity that created the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :type created_by_type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.CreatedByType :param created_at: The timestamp of resource creation (UTC). :type created_at: ~datetime.datetime :param last_modified_by: The identity that last modified the resource. :type last_modified_by: str :param last_modified_by_type: The type of identity that last modified the resource. Possible values include: "User", "Application", "ManagedIdentity", "Key". :type last_modified_by_type: str or ~azure.mgmt.resource.policy.v2020_09_01.models.CreatedByType :param last_modified_at: The timestamp of resource last modification (UTC). :type last_modified_at: ~datetime.datetime """ _attribute_map = { 'created_by': {'key': 'createdBy', 'type': 'str'}, 'created_by_type': {'key': 'createdByType', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'iso-8601'}, 'last_modified_by': {'key': 'lastModifiedBy', 'type': 'str'}, 'last_modified_by_type': {'key': 'lastModifiedByType', 'type': 'str'}, 'last_modified_at': {'key': 'lastModifiedAt', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(SystemData, self).__init__(**kwargs) self.created_by = kwargs.get('created_by', None) self.created_by_type = kwargs.get('created_by_type', None) self.created_at = kwargs.get('created_at', None) self.last_modified_by = kwargs.get('last_modified_by', None) self.last_modified_by_type = kwargs.get('last_modified_by_type', None) self.last_modified_at = kwargs.get('last_modified_at', None)
readthedocs/embed/v3/urls.py
mehrdad-khojastefar/readthedocs.org
2,092
11070743
from django.conf.urls import url from .views import EmbedAPI urlpatterns = [ url(r'', EmbedAPI.as_view(), name='embed_api_v3'), ]
test/streamparse/cli/test_list.py
Pandinosaurus/streamparse
1,050
11070751
import argparse import unittest from streamparse.cli.list import subparser_hook def test_subparser_hook(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() subparser_hook(subparsers) subcommands = parser._optionals._actions[1].choices.keys() assert "list" in subcommands
capirca/lib/nsxv.py
google-admin/capirca
604
11070758
# Copyright 2015 The Capirca Project Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Nsxv generator.""" import datetime import re import xml from absl import logging from capirca.lib import aclgenerator from capirca.lib import nacaddr import six _ACTION_TABLE = { 'accept': 'allow', 'deny': 'deny', 'reject': 'reject', 'reject-with-tcp-rst': 'reject', # tcp rst not supported } _XML_TABLE = { 'actionStart': '<action>', 'actionEnd': '</action>', 'srcIpv4Start': '<source><type>Ipv4Address</type><value>', 'srcIpv4End': '</value></source>', 'destIpv4Start': '<destination><type>Ipv4Address</type><value>', 'destIpv4End': '</value></destination>', 'protocolStart': '<protocol>', 'protocolEnd': '</protocol>', 'serviceStart': '<service>', 'serviceEnd': '</service>', 'appliedToStart': '<appliedTo><type>SecurityGroup</type><value>', 'appliedToEnd': '</value></appliedTo>', 'srcPortStart': '<sourcePort>', 'srcPortEnd': '</sourcePort>', 'destPortStart': '<destinationPort>', 'destPortEnd': '</destinationPort>', 'icmpTypeStart': '<subProtocol>', 'icmpTypeEnd': '</subProtocol>', 'logTrue': '<loggingEnabled>true</loggingEnabled>', 'logFalse': '<loggingEnabled>false</loggingEnabled>', 'sectionStart': '<section>', 'sectionEnd': '</section>', 'nameStart': '<name>', 'nameEnd': '</name>', 'srcIpv6Start': '<source><type>Ipv6Address</type><value>', 'srcIpv6End': '</value></source>', 'destIpv6Start': '<destination><type>Ipv6Address</type><value>', 'destIpv6End': '</value></destination>', 'noteStart': '<notes>', 'noteEnd': '</notes>', } _NSXV_SUPPORTED_KEYWORDS = [ 'name', 'action', 'comment', 'destination_address', 'destination_address_exclude', 'destination_port', 'expiration', 'icmp_type', 'protocol', 'source_address', 'source_address_exclude', 'source_port', 'expiration', 'logging' ] # generic error class class Error(Exception): """Generic error class.""" pass class UnsupportedNsxvAccessListError(Error): """Raised when we're give a non named access list.""" pass class NsxvAclTermError(Error): """Raised when there is a problem in a nsxv access list.""" pass class NsxvDuplicateTermError(Error): """Raised when there is a duplicate.""" pass class Term(aclgenerator.Term): """Creates a single ACL Term for Nsxv.""" def __init__(self, term, filter_type, applied_to=None, af=4): self.term = term # Our caller should have already verified the address family. assert af in (4, 6) self.af = af self.filter_type = filter_type self.applied_to = applied_to def __str__(self): """Convert term to a rule string. Returns: A rule as a string. Raises: NsxvAclTermError: When unknown icmp-types are specified """ # Verify platform specific terms. Skip whole term if platform does not # match. if self.term.platform: if 'nsxv' not in self.term.platform: return '' if self.term.platform_exclude: if 'nsxv' in self.term.platform_exclude: return '' ret_str = [''] # Don't render icmpv6 protocol terms under inet, or icmp under inet6 if ((self.af == 6 and 'icmp' in self.term.protocol) or (self.af == 4 and 'icmpv6' in self.term.protocol)): logging.debug(self.NO_AF_LOG_PROTO.substitute(term=self.term.name, proto=self.term.protocol, af=self.filter_type)) return '' # Term verbatim is not supported if self.term.verbatim: raise NsxvAclTermError( 'Verbatim are not implemented in standard ACLs') # Term option is not supported if self.term.option: for opt in [str(single_option) for single_option in self.term.option]: if((opt.find('tcp-established') == 0) or (opt.find('established') == 0)): return '' else: raise NsxvAclTermError( 'Option are not implemented in standard ACLs') # check for keywords Nsxv does not support term_keywords = self.term.__dict__ unsupported_keywords = [] for key in term_keywords: if term_keywords[key]: # translated is obj attribute not keyword if ('translated' not in key) and (key not in _NSXV_SUPPORTED_KEYWORDS): unsupported_keywords.append(key) if unsupported_keywords: logging.warning('WARNING: The keywords %s in Term %s are not supported ' 'in Nsxv ', unsupported_keywords, self.term.name) name = '%s%s%s' % (_XML_TABLE.get('nameStart'), self.term.name, _XML_TABLE.get('nameEnd')) notes = '' if self.term.comment: for comment in self.term.comment: notes = '%s%s' %(notes, comment) notes = '%s%s%s' % (_XML_TABLE.get('noteStart'), notes, _XML_TABLE.get('noteEnd')) # protocol protocol = None if self.term.protocol: protocol = list(map(self.PROTO_MAP.get, self.term.protocol, self.term.protocol)) # icmp-types icmp_types = [''] if self.term.icmp_type: icmp_types = self.NormalizeIcmpTypes(self.term.icmp_type, self.term.protocol, self.af) # for mixed filter type get both IPV4address and IPv6Address af_list = [] if self.filter_type == 'mixed': af_list = [4, 6] else: af_list = [self.af] source_address = None destination_address = None source_addr = [] destination_addr = [] source_v4_addr = [] source_v6_addr = [] dest_v4_addr = [] dest_v6_addr = [] for af in af_list: # source address if self.term.source_address: source_address = self.term.GetAddressOfVersion('source_address', af) source_address_exclude = self.term.GetAddressOfVersion( 'source_address_exclude', af) if source_address_exclude: source_address = nacaddr.ExcludeAddrs( source_address, source_address_exclude) if source_address: if af == 4: source_v4_addr = source_address else: source_v6_addr = source_address source_addr = source_v4_addr + source_v6_addr # destination address if self.term.destination_address: destination_address = self.term.GetAddressOfVersion( 'destination_address', af) destination_address_exclude = self.term.GetAddressOfVersion( 'destination_address_exclude', af) if destination_address_exclude: destination_address = nacaddr.ExcludeAddrs( destination_address, destination_address_exclude) if destination_address: if af == 4: dest_v4_addr = destination_address else: dest_v6_addr = destination_address destination_addr = dest_v4_addr + dest_v6_addr # Check for mismatch IP for source and destination address for mixed filter if self.filter_type == 'mixed': if source_addr and destination_addr: if source_v4_addr and not dest_v4_addr: source_addr = source_v6_addr elif source_v6_addr and not dest_v6_addr: source_addr = source_v4_addr elif dest_v4_addr and not source_v4_addr: destination_addr = dest_v6_addr elif dest_v6_addr and not source_v6_addr: destination_addr = dest_v4_addr if not source_addr or not destination_addr: logging.warning('Term %s will not be rendered as it has IPv4/IPv6 ' 'mismatch for source/destination for mixed address ' 'family.', self.term.name) return '' # ports source_port = None destination_port = None if self.term.source_port: source_port = self.term.source_port if self.term.destination_port: destination_port = self.term.destination_port # logging log = 'false' if self.term.logging: log = 'true' sources = '' if source_addr: sources = '<sources excluded="false">' for saddr in source_addr: # inet4 if isinstance(saddr, nacaddr.IPv4): if saddr.num_addresses > 1: saddr = '%s%s%s' % (_XML_TABLE.get('srcIpv4Start'), saddr.with_prefixlen, _XML_TABLE.get('srcIpv4End'),) else: saddr = '%s%s%s' % (_XML_TABLE.get('srcIpv4Start'), saddr.network_address, _XML_TABLE.get('srcIpv4End')) sources = '%s%s' %(sources, saddr) # inet6 if isinstance(saddr, nacaddr.IPv6): if saddr.num_addresses > 1: saddr = '%s%s%s' % (_XML_TABLE.get('srcIpv6Start'), saddr.with_prefixlen, _XML_TABLE.get('srcIpv6End'),) else: saddr = '%s%s%s' % ( _XML_TABLE.get('srcIpv6Start'), saddr.network_address, _XML_TABLE.get('srcIpv6End')) sources = '%s%s' %(sources, saddr) sources = '%s%s' %(sources, '</sources>') destinations = '' if destination_addr: destinations = '<destinations excluded="false">' for daddr in destination_addr: # inet4 if isinstance(daddr, nacaddr.IPv4): if daddr.num_addresses > 1: daddr = '%s%s%s' % (_XML_TABLE.get('destIpv4Start'), daddr.with_prefixlen, _XML_TABLE.get('destIpv4End'),) else: daddr = '%s%s%s' % (_XML_TABLE.get('destIpv4Start'), daddr.network_address, _XML_TABLE.get('destIpv4End')) destinations = '%s%s' %(destinations, daddr) # inet6 if isinstance(daddr, nacaddr.IPv6): if daddr.num_addresses > 1: daddr = '%s%s%s' % (_XML_TABLE.get('destIpv6Start'), daddr.with_prefixlen, _XML_TABLE.get('destIpv6End'),) else: daddr = '%s%s%s' % (_XML_TABLE.get('destIpv6Start'), daddr.network_address, _XML_TABLE.get('destIpv6End')) destinations = '%s%s' %(destinations, daddr) destinations = '%s%s' %(destinations, '</destinations>') services = [] if protocol: services.append('<services>') for proto in protocol: if proto != 'any': services.append(self._ServiceToString(proto, source_port, destination_port, icmp_types)) services.append('</services>') service = '' for s in services: service = '%s%s' % (service, s) # applied_to applied_to_list = '' if self.applied_to: applied_to_list = '<appliedToList>' applied_to_element = '%s%s%s' % (_XML_TABLE.get('appliedToStart'), self.applied_to, _XML_TABLE.get('appliedToEnd')) applied_to_list = '%s%s' %(applied_to_list, applied_to_element) applied_to_list = '%s%s' %(applied_to_list, '</appliedToList>') # action action = '%s%s%s' % (_XML_TABLE.get('actionStart'), _ACTION_TABLE.get(str(self.term.action[0])), _XML_TABLE.get('actionEnd')) ret_lines = [] ret_lines.append('<rule logged="%s">%s%s%s%s%s%s%s</rule>' % (log, name, action, sources, destinations, service, applied_to_list, notes)) # remove any trailing spaces and replace multiple spaces with singles stripped_ret_lines = [re.sub(r'\s+', ' ', x).rstrip() for x in ret_lines] ret_str.extend(stripped_ret_lines) return ''.join(ret_str) def _ServiceToString(self, proto, sports, dports, icmp_types): """Converts service to string. Args: proto: str, protocl sports: str list or none, the source port dports: str list or none, the destination port icmp_types: icmp-type numeric specification (if any) Returns: Service definition. """ service = '' # for icmp and icmpv6 if proto == 1 or proto == 58: # handle icmp protocol for icmp_type in icmp_types: icmp_service = '%s%s%s%s' % (_XML_TABLE.get('serviceStart'), _XML_TABLE.get('protocolStart'), proto, _XML_TABLE.get('protocolEnd')) # handle icmp types if icmp_type: icmp_type = '%s%s%s' %(_XML_TABLE.get('icmpTypeStart'), str(icmp_type), _XML_TABLE.get('icmpTypeEnd')) icmp_service = '%s%s' % (icmp_service, icmp_type) icmp_service = '%s%s' % (icmp_service, _XML_TABLE.get('serviceEnd')) service = '%s%s' % (service, icmp_service) else: # handle other protocols service = '%s%s%s%s' % (_XML_TABLE.get('serviceStart'), _XML_TABLE.get('protocolStart'), proto, _XML_TABLE.get('protocolEnd')) # handle source ports if sports: str_sport = [] for sport in sports: if sport[0] != sport[1]: str_sport.append('%s-%s' % (sport[0], sport[1])) else: str_sport.append('%s' % (sport[0])) service = '%s%s%s%s' % (service, _XML_TABLE.get('srcPortStart'), ', '.join(str_sport), _XML_TABLE.get('srcPortEnd')) # handle destination ports if dports: str_dport = [] for dport in dports: if dport[0] != dport[1]: str_dport.append('%s-%s' % (dport[0], dport[1])) else: str_dport.append('%s' % (dport[0])) service = '%s%s%s%s' % (service, _XML_TABLE.get('destPortStart'), ', '.join(str_dport), _XML_TABLE.get('destPortEnd')) service = '%s%s' % (service, _XML_TABLE.get('serviceEnd')) return service class Nsxv(aclgenerator.ACLGenerator): """Nsxv rendering class. This class takes a policy object and renders the output into a syntax which is understood by nsxv policy. Attributes: pol: policy.Policy object Raises: UnsupportedNsxvAccessListError: Raised when we're give a non named access list. """ _PLATFORM = 'nsxv' _DEFAULT_PROTOCOL = 'ip' SUFFIX = '.nsx' _OPTIONAL_SUPPORTED_KEYWORDS = set(['expiration', 'logging', ]) _FILTER_OPTIONS_DICT = {} def _BuildTokens(self): """Build supported tokens for platform. Returns: tuple containing both supported tokens and sub tokens """ supported_tokens, supported_sub_tokens = super()._BuildTokens() supported_tokens |= {'logging'} supported_sub_tokens.update({'action': {'accept', 'deny', 'reject', 'reject-with-tcp-rst'}}) del supported_sub_tokens['option'] return supported_tokens, supported_sub_tokens def _TranslatePolicy(self, pol, exp_info): self.nsxv_policies = [] current_date = datetime.datetime.utcnow().date() exp_info_date = current_date + datetime.timedelta(weeks=exp_info) for header, terms in pol.filters: if self._PLATFORM not in header.platforms: continue filter_options = header.FilterOptions(self._PLATFORM) if len(filter_options) >= 2: filter_name = filter_options[1] # get filter type, section id and applied To self._ParseFilterOptions(filter_options) filter_type = self._FILTER_OPTIONS_DICT['filter_type'] applied_to = self._FILTER_OPTIONS_DICT['applied_to'] term_names = set() new_terms = [] for term in terms: # Check for duplicate terms if term.name in term_names: raise NsxvDuplicateTermError('There are multiple terms named: %s' % term.name) term_names.add(term.name) if term.expiration: if term.expiration <= exp_info_date: logging.info('INFO: Term %s in policy %s expires ' 'in less than two weeks.', term.name, filter_name) if term.expiration <= current_date: logging.warning('WARNING: Term %s in policy %s is expired and ' 'will not be rendered.', term.name, filter_name) continue # Get the mapped action value # If there is no mapped action value term is not rendered mapped_action = _ACTION_TABLE.get(str(term.action[0])) if not mapped_action: logging.warning('WARNING: Action %s in Term %s is not valid and ' 'will not be rendered.', term.action, term.name) continue term.name = self.FixTermLength(term.name) if filter_type == 'inet': af = 'inet' term = self.FixHighPorts(term, af=af) if not term: continue new_terms.append(Term(term, filter_type, applied_to, 4)) if filter_type == 'inet6': af = 'inet6' term = self.FixHighPorts(term, af=af) if not term: continue new_terms.append(Term(term, filter_type, applied_to, 6)) if filter_type == 'mixed': if 'icmpv6' not in term.protocol: inet_term = self.FixHighPorts(term, 'inet') if not inet_term: continue new_terms.append(Term(inet_term, filter_type, applied_to, 4)) else: inet6_term = self.FixHighPorts(term, 'inet6') if not inet6_term: continue new_terms.append(Term(inet6_term, filter_type, applied_to, 6)) self.nsxv_policies.append((header, filter_name, [filter_type], new_terms)) def _ParseFilterOptions(self, filter_options): """Parses the target in header for filter type, section_id and applied_to. Args: filter_options: list of remaining target options Returns: A dictionary that contains fields necessary to create the firewall rule. Raises: UnsupportedNsxvAccessListError: Raised when we're give a non named access list. """ # check for filter type if not 2 <= len(filter_options) <= 5: raise UnsupportedNsxvAccessListError( 'Invalid Number of options specified: %d. Required options ' 'are: filter type and section name. Platform: %s' % ( len(filter_options), self._PLATFORM)) # mandatory section_name section_name = filter_options[0] # mandatory filter_type = filter_options[1] # a mixed filter outputs both ipv4 and ipv6 acls in the same output file good_filters = ['inet', 'inet6', 'mixed'] # check if filter type is renderable if filter_type not in good_filters: raise UnsupportedNsxvAccessListError( 'Access list type %s not supported by %s (good types: %s)' % ( filter_type, self._PLATFORM, str(good_filters))) section_id = 0 applied_to = None filter_opt_len = len(filter_options) if filter_opt_len > 2: for index in range(2, filter_opt_len): if index == 2 and filter_options[2] != 'securitygroup': section_id = filter_options[2] continue if filter_options[index] == 'securitygroup': if index + 1 <= filter_opt_len - 1: applied_to = filter_options[index + 1] break else: raise UnsupportedNsxvAccessListError( 'Security Group Id is not provided for %s' % (self._PLATFORM)) self._FILTER_OPTIONS_DICT['section_name'] = section_name self._FILTER_OPTIONS_DICT['filter_type'] = filter_type self._FILTER_OPTIONS_DICT['section_id'] = section_id self._FILTER_OPTIONS_DICT['applied_to'] = applied_to def __str__(self): """Render the output of the Nsxv policy.""" target_header = [] target = [] # add the p4 tags target.append('<!--') target.extend(aclgenerator.AddRepositoryTags('\n')) target.append('\n') target.append('-->') for (_, _, _, terms) in self.nsxv_policies: section_name = six.ensure_str(self._FILTER_OPTIONS_DICT['section_name']) # check section id value section_id = self._FILTER_OPTIONS_DICT['section_id'] if not section_id or section_id == 0: logging.warning('WARNING: Section-id is 0. A new Section is created ' 'for %s. If there is any existing section, it ' 'will remain unreferenced and should be removed ' 'manually.', section_name) target.append('<section name="%s">' % (section_name.strip(' \t\n\r'))) else: target.append('<section id="%s" name="%s">' % (section_id, section_name.strip(' \t\n\r'))) # now add the terms for term in terms: term_str = str(term) if term_str: target.append(term_str) # ensure that the header is always first target = target_header + target target.append('%s' % (_XML_TABLE.get('sectionEnd'))) target.append('\n') target_as_xml = xml.dom.minidom.parseString(''.join(target)) # TODO(robankeny) utf encoding with refactoring after migration to py3 return target_as_xml.toprettyxml(indent=' ')
src/robotide/application/pluginloader.py
guojiajiaok/RIDE
775
11070798
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import importlib.util import inspect import os from ..context import LOG from ..pluginapi import Plugin from .pluginconnector import PluginFactory class PluginLoader(object): def __init__(self, application, load_dirs, standard_classes): self._load_errors = [] self.plugins = [PluginFactory(application, cls) for cls in standard_classes + self._find_classes(load_dirs)] if self._load_errors: LOG.error('\n\n'.join(self._load_errors)) def enable_plugins(self): for p in self.plugins: p.enable_on_startup() def _find_classes(self, load_dirs): classes = [] for path in self._find_python_files(load_dirs): for cls in self._import_classes(path): if self._is_plugin_class(path, cls): classes.append(cls) return classes def _is_plugin_class(self, path, cls): try: return issubclass(cls, Plugin) and cls is not Plugin except Exception as err: msg = "Finding classes from module '%s' failed: %s" self._load_errors.append(msg % (path, err)) def _find_python_files(self, load_dirs): files = [] for path in load_dirs: if not os.path.exists(path): continue for filename in os.listdir(path): full_path = os.path.join(path, filename) if filename[0].isalpha() and \ os.path.splitext(filename)[1].lower() == ".py": files.append(full_path) elif os.path.isdir(full_path): files.extend(self._find_python_files([full_path])) return files def _import_classes(self, path): dirpath, filename = os.path.split(path) modulename = os.path.splitext(filename)[0] spec = importlib.util.spec_from_file_location(modulename, path) if spec is None: return [] try: m_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(m_module) except Exception as err: self._load_errors.append("Importing plugin module '%s' failed:\n%s" % (path, err)) return [] return [cls for _, cls in inspect.getmembers(m_module, predicate=inspect.isclass)]
test/programytest/clients/test_config.py
RonKhondji/program-y
345
11070868
import unittest from programy.clients.config import ClientConfigurationData from programy.clients.events.console.config import ConsoleConfiguration from programy.config.file.yaml_file import YamlConfigurationFile from programytest.config.bot.test_bot import BotConfigurationTests from programytest.utils.email.test_config import EmailConfigurationTests from programytest.triggers.test_config import TriggersConfigurationTests from programytest.clients.ping.test_config import PingResponderConfigurationTests from programytest.storage.test_config import StorageConfigurationTests from programytest.scheduling.test_config import SchedulerConfigurationTests class ClientConfigurationDataTests(unittest.TestCase): def test_with_data_single_bot(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" console: prompt: ">>>" renderer: programy.clients.render.text.TextRenderer scheduler: name: Scheduler1 debug_level: 0 add_listeners: True remove_all_jobs: True bot_selector: programy.clients.botfactory.DefaultBotSelector bots: bot1: prompt: ">>>" initial_question: Hi, how can I help you today? initial_question_srai: YINITIALQUESTION default_response: Sorry, I don't have an answer for that! default_response_srai: YDEFAULTRESPONSE empty_string: YEMPTY exit_response: So long, and thanks for the fish! exit_response_srai: YEXITRESPONSE override_properties: true max_question_recursion: 1000 max_question_timeout: 60 max_search_depth: 100 max_search_timeout: 60 spelling: load: true classname: programy.spelling.norvig.NorvigSpellingChecker alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' check_before: true check_and_retry: true splitter: classname: programy.dialog.splitter.regex.RegexSentenceSplitter joiner: classname: programy.dialog.joiner.SentenceJoiner conversations: save: true load: false max_histories: 100 restore_last_topic: false initial_topic: TOPIC1 empty_on_start: false from_translator: classname: programy.nlp.translate.textblob_translator.TextBlobTranslator from: fr to: en to_translator: classname: programy.nlp.translate.textblob_translator.TextBlobTranslator from: en to: fr sentiment: classname: programy.nlp.sentiment.textblob_sentiment.TextBlobSentimentAnalyser scores: programy.nlp.sentiment.scores.SentimentScores brain_selector: programy.bot.DefaultBrainSelector brains: brain1: # Overrides overrides: allow_system_aiml: true allow_learn_aiml: true allow_learnf_aiml: true # Defaults defaults: default_get: unknown default_property: unknown default_map: unknown learnf-path: file # Binary binaries: save_binary: true load_binary: true load_aiml_on_binary_fail: true # Braintree braintree: create: true security: authentication: classname: programy.security.authenticate.passthrough.BasicPassThroughAuthenticationService denied_srai: AUTHENTICATION_FAILED authorisation: classname: programy.security.authorise.usergroupsauthorisor.BasicUserGroupAuthorisationService denied_srai: AUTHORISATION_FAILED usergroups: storage: file dynamic: variables: gettime: programy.dynamic.variables.datetime.GetTime sets: numeric: programy.dynamic.sets.numeric.IsNumeric roman: programy.dynamic.sets.roman.IsRomanNumeral maps: romantodec: programy.dynamic.maps.roman.MapRomanToDecimal dectoroman: programy.dynamic.maps.roman.MapDecimalToRoman """, ConsoleConfiguration(), ".") client_config = ClientConfigurationData("console") client_config.load_configuration(yaml, ".") self.assertEqual(1, len(client_config.configurations)) self.assertEqual("programy.clients.botfactory.DefaultBotSelector", client_config.bot_selector) self.assertIsNotNone(client_config.scheduler) self.assertEqual("Scheduler1", client_config.scheduler.name) self.assertEqual(0, client_config.scheduler.debug_level) self.assertTrue(client_config.scheduler.add_listeners) self.assertTrue(client_config.scheduler.remove_all_jobs) self.assertEqual("programy.clients.render.text.TextRenderer", client_config.renderer) def test_with_data_multiple_bots(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" console: prompt: ">>>" renderer: programy.clients.render.text.TextRenderer scheduler: name: Scheduler1 debug_level: 0 add_listeners: True remove_all_jobs: True bot_selector: programy.clients.botfactory.DefaultBotSelector bots: bot1: prompt: ">>>" initial_question: Hi, how can I help you today? initial_question_srai: YINITIALQUESTION default_response: Sorry, I don't have an answer for that! default_response_srai: YDEFAULTRESPONSE empty_string: YEMPTY exit_response: So long, and thanks for the fish! exit_response_srai: YEXITRESPONSE override_properties: true max_question_recursion: 1000 max_question_timeout: 60 max_search_depth: 100 max_search_timeout: 60 spelling: load: true classname: programy.spelling.norvig.NorvigSpellingChecker alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' check_before: true check_and_retry: true splitter: classname: programy.dialog.splitter.regex.RegexSentenceSplitter joiner: classname: programy.dialog.joiner.SentenceJoiner conversations: save: true load: false max_histories: 100 restore_last_topic: false initial_topic: TOPIC1 empty_on_start: false from_translator: classname: programy.nlp.translate.textblob_translator.TextBlobTranslator from: fr to: en to_translator: classname: programy.nlp.translate.textblob_translator.TextBlobTranslator from: en to: fr sentiment: classname: programy.nlp.sentiment.textblob_sentiment.TextBlobSentimentAnalyser scores: programy.nlp.sentiment.scores.SentimentScores brain_selector: programy.bot.DefaultBrainSelector brains: brain1: # Overrides overrides: allow_system_aiml: true allow_learn_aiml: true allow_learnf_aiml: true # Defaults defaults: default_get: unknown default_property: unknown default_map: unknown learnf-path: file # Binary binaries: save_binary: true load_binary: true load_aiml_on_binary_fail: true # Braintree braintree: create: true security: authentication: classname: programy.security.authenticate.passthrough.BasicPassThroughAuthenticationService denied_srai: AUTHENTICATION_FAILED authorisation: classname: programy.security.authorise.usergroupsauthorisor.BasicUserGroupAuthorisationService denied_srai: AUTHORISATION_FAILED usergroups: storage: file dynamic: variables: gettime: programy.dynamic.variables.datetime.GetTime sets: numeric: programy.dynamic.sets.numeric.IsNumeric roman: programy.dynamic.sets.roman.IsRomanNumeral maps: romantodec: programy.dynamic.maps.roman.MapRomanToDecimal dectoroman: programy.dynamic.maps.roman.MapDecimalToRoman bot2: prompt: ">>>" initial_question: Hi, how can I help you today? initial_question_srai: YINITIALQUESTION default_response: Sorry, I don't have an answer for that! default_response_srai: YDEFAULTRESPONSE empty_string: YEMPTY exit_response: So long, and thanks for the fish! exit_response_srai: YEXITRESPONSE override_properties: true max_question_recursion: 1000 max_question_timeout: 60 max_search_depth: 100 max_search_timeout: 60 spelling: load: true classname: programy.spelling.norvig.NorvigSpellingChecker alphabet: 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' check_before: true check_and_retry: true splitter: classname: programy.dialog.splitter.regex.RegexSentenceSplitter joiner: classname: programy.dialog.joiner.SentenceJoiner conversations: save: true load: false max_histories: 100 restore_last_topic: false initial_topic: TOPIC1 empty_on_start: false from_translator: classname: programy.nlp.translate.textblob_translator.TextBlobTranslator from: fr to: en to_translator: classname: programy.nlp.translate.textblob_translator.TextBlobTranslator from: en to: fr sentiment: classname: programy.nlp.sentiment.textblob_sentiment.TextBlobSentimentAnalyser scores: programy.nlp.sentiment.scores.SentimentScores brain_selector: programy.bot.DefaultBrainSelector brains: brain1: # Overrides overrides: allow_system_aiml: true allow_learn_aiml: true allow_learnf_aiml: true # Defaults defaults: default_get: unknown default_property: unknown default_map: unknown learnf-path: file # Binary binaries: save_binary: true load_binary: true load_aiml_on_binary_fail: true # Braintree braintree: create: true security: authentication: classname: programy.security.authenticate.passthrough.BasicPassThroughAuthenticationService denied_srai: AUTHENTICATION_FAILED authorisation: classname: programy.security.authorise.usergroupsauthorisor.BasicUserGroupAuthorisationService denied_srai: AUTHORISATION_FAILED usergroups: storage: file dynamic: variables: gettime: programy.dynamic.variables.datetime.GetTime sets: numeric: programy.dynamic.sets.numeric.IsNumeric roman: programy.dynamic.sets.roman.IsRomanNumeral maps: romantodec: programy.dynamic.maps.roman.MapRomanToDecimal dectoroman: programy.dynamic.maps.roman.MapDecimalToRoman """, ConsoleConfiguration(), ".") client_config = ClientConfigurationData("console") client_config.load_configuration(yaml, ".") self.assertEqual(2, len(client_config.configurations)) self.assertEqual("programy.clients.botfactory.DefaultBotSelector", client_config.bot_selector) self.assertIsNotNone(client_config.scheduler) self.assertEqual("Scheduler1", client_config.scheduler.name) self.assertEqual(0, client_config.scheduler.debug_level) self.assertTrue(client_config.scheduler.add_listeners) self.assertTrue(client_config.scheduler.remove_all_jobs) self.assertEqual("programy.clients.render.text.TextRenderer", client_config.renderer) def test_without_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" console: """, ConsoleConfiguration(), ".") client_config = ClientConfigurationData("console") client_config.load_configuration(yaml, ".") self.assertIsNotNone(client_config.bot_selector) self.assertIsNotNone(client_config.scheduler) self.assertEqual(None, client_config.scheduler.name) self.assertEqual(0, client_config.scheduler.debug_level) self.assertFalse(client_config.scheduler.add_listeners) self.assertFalse(client_config.scheduler.remove_all_jobs) self.assertIsNotNone(client_config.renderer) def test_with_no_data(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" other: """, ConsoleConfiguration(), ".") client_config = ClientConfigurationData("console") client_config.load_configuration(yaml, ".") self.assertIsNotNone(client_config.bot_selector) self.assertIsNotNone(client_config.scheduler) self.assertEqual(None, client_config.scheduler.name) self.assertEqual(0, client_config.scheduler.debug_level) self.assertFalse(client_config.scheduler.add_listeners) self.assertFalse(client_config.scheduler.remove_all_jobs) self.assertIsNotNone(client_config.renderer) def test_defaults(self): client_config = ClientConfigurationData("console") data = {} client_config.to_yaml(data, True) ClientConfigurationDataTests.assert_defaults(self, data) @staticmethod def assert_defaults(test, data): test.assertEqual(data['description'], 'ProgramY AIML2.0 Client') test.assertEqual(data['renderer'], "programy.clients.render.text.TextRenderer") test.assertTrue('scheduler' in data) SchedulerConfigurationTests.assert_defaults(test, data['scheduler']) test.assertTrue('email' in data) EmailConfigurationTests.assert_defaults(test, data['email']) test.assertTrue('triggers' in data) TriggersConfigurationTests.assert_defaults(test, data['triggers']) test.assertTrue('responder' in data) PingResponderConfigurationTests.assert_defaults(test, data['responder']) test.assertTrue('storage' in data) StorageConfigurationTests.assert_defaults(test, data['storage']) test.assertTrue('bots' in data) test.assertTrue('bot' in data['bots']) BotConfigurationTests.assert_defaults(test, data['bots']['bot']) test.assertEqual(data['bot_selector'], "programy.clients.botfactory.DefaultBotSelector")
AppServer/google/net/proto/RawMessage.py
loftwah/appscale
790
11070896
<filename>AppServer/google/net/proto/RawMessage.py #!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This is the Python counterpart to the RawMessage class defined in rawmessage.h. To use this, put the following line in your .proto file: python from google.net.proto.RawMessage import RawMessage """ __pychecker__ = 'no-callinit no-argsused' from google.net.proto import ProtocolBuffer class RawMessage(ProtocolBuffer.ProtocolMessage): """ This is a special subclass of ProtocolMessage that doesn't interpret its data in any way. Instead, it just stores it in a string. See rawmessage.h for more details. """ def __init__(self, initial=None): self.__contents = '' if initial is not None: self.MergeFromString(initial) def contents(self): return self.__contents def set_contents(self, contents): self.__contents = contents def Clear(self): self.__contents = '' def IsInitialized(self, debug_strs=None): return 1 def __str__(self, prefix="", printElemNumber=0): return prefix + self.DebugFormatString(self.__contents) def OutputUnchecked(self, e): e.putRawString(self.__contents) def OutputPartial(self, e): return self.OutputUnchecked(e) def TryMerge(self, d): self.__contents = d.getRawString() def MergeFrom(self, pb): assert pb is not self if pb.__class__ != self.__class__: return 0 self.__contents = pb.__contents return 1 def Equals(self, pb): return self.__contents == pb.__contents def __eq__(self, other): return (other is not None) and (other.__class__ == self.__class__) and self.Equals(other) def __ne__(self, other): return not (self == other) def ByteSize(self): return len(self.__contents) def ByteSizePartial(self): return self.ByteSize()
magenta/common/concurrency_test.py
sandutsar/magenta
16,143
11070917
# Copyright 2022 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for concurrency.""" import threading import time from magenta.common import concurrency import tensorflow.compat.v1 as tf class ConcurrencyTest(tf.test.TestCase): def testSleeper_SleepUntil(self): # Burn in. for _ in range(10): concurrency.Sleeper().sleep(.01) future_time = time.time() + 0.5 concurrency.Sleeper().sleep_until(future_time) self.assertAlmostEqual(time.time(), future_time, delta=0.005) def testSleeper_Sleep(self): # Burn in. for _ in range(10): concurrency.Sleeper().sleep(.01) def sleep_test_thread(duration): start_time = time.time() concurrency.Sleeper().sleep(duration) self.assertAlmostEqual(time.time(), start_time + duration, delta=0.005) threads = [threading.Thread(target=sleep_test_thread, args=[i * 0.1]) for i in range(10)] for t in threads: t.start() for t in threads: t.join() if __name__ == '__main__': tf.test.main()
dash_docs/chapters/reference/index.py
wesleyacheng/dash-docs
379
11070928
import dash import dash_html_components as html import dash_core_components as dcc import textwrap import re import inspect def convert_docstring_to_markdown(docstring): if not docstring: return '\n\(No docstring available)\n' lines = docstring.split('\n') # For some reason the second block of lines is indented docstring = lines[0] + textwrap.dedent('\n'.join(lines[1:])) # Replace ':param <variable>' with `<variable>` docstring = re.sub(r'\:param (\w*)\:', r'**`\1`**\n\n', docstring) docstring = re.sub(r'\:type (\w*)\:', r'\ntype:', docstring) # Remove leading ': from rst Example docstring = docstring.replace(':Example:', 'Example:') docstring = docstring.replace( ':return:', '\n\nreturns:' ) docstring = docstring.replace('``', '`') return docstring app = dash.Dash(__name__) SKIP = ['dash', 'json', 'dedent'] def doc_signature(obj, method, prefix): try: signature = str(inspect.signature(getattr(obj, method))) except: signature = '' try: name = method.__name__ except: name = str(method) if not prefix: try: prefix = obj.__name__ except: prefix = str(obj) prefix_signature = prefix return html.Div( [ html.H2( html.Code("{}.{}".format(prefix, name)), className="docs-article", style={'overflowX': 'auto'} ), html.Pre( className="docs-article", children=html.Code( "{}.{}{}".format( prefix_signature, name, signature .replace(",", ",\n ") .replace("(", "(\n ") .replace(")", "\n)") .replace(" self,\n", "") .replace("\n self\n", ""), ) ), ), ] ) PUBLIC_API = [ # app, # dash.Dash, # dash.resources, dict(obj=dash, prefix='', skip=[ 'fingerprint', ], preamble=dcc.Markdown( ''' # The `dash` module ``` import dash ``` ''' )), dict(obj=app, prefix='app', skip=[ 'css', 'dependencies', 'dispatch', 'exceptions', 'logger', 'registered_paths', 'renderer', 'resources', 'routes', 'scripts', 'serve_component_suites', 'serve_layout', 'serve_reload_hash', 'validation_layout' ], preamble=dcc.Markdown( ''' # The `app` Object ``` import dash app = dash.Dash(__name__) ``` ''' ), override=dict( server=dcc.Markdown( ''' The Flask server associated with this app. Often used in conjunction with `gunicorn` when running the app in production with multiple workers: `app.py` ``` app = dash.Dash(__name__) # expose the flask variable in the file server = app.server ``` `Procfile` ``` gunicorn app:server ``` ''' ), title=dcc.Markdown( ''' Configures the document.title (the text that appears in a browser tab). Default is "Dash". This is now configurable in the `dash.Dash(title='...')` constructor instead of as a property of `app`. We have kept this property in the `app` object for backwards compatibility. ''' ) )), dict(obj=dash.dependencies, prefix='', skip=[], preamble=dcc.Markdown( ''' # The `dash.dependencies` module The classes in `dash.dependencies` are all used in the `app.callback` signature. ''' )), dict(obj=dash.exceptions, prefix='', skip=[], preamble=dcc.Markdown( ''' # The `dash.exceptions` module Dash will raise exceptions under certain scenarios. Dash will always use a special exception class that can be caught to handle this particular scenario. These exception classes are in this module. ''' ), global_override='') ] def public_methods(obj): methods = [] for method in dir(obj): if (obj and not method.startswith('_') and method not in SKIP and 'dash' in str(obj) and 'class' not in method and 'development' not in method): methods.append(method) return methods def create_docstrings(): docstring = [] for docitem in PUBLIC_API: docstring.append(docitem['preamble']), for method in public_methods(docitem['obj']): if method not in docitem['skip']: docstring.append(doc_signature(docitem['obj'], method, docitem['prefix'])) if 'override' in docitem and method in docitem['override']: docstring.append(docitem['override'][method]) elif 'global_override' in docitem: docstring.append(docitem['global_override']) else: docstring.append(dcc.Markdown(convert_docstring_to_markdown(getattr(docitem['obj'], method).__doc__))) docstring.append(html.Hr()) return docstring layout = html.Div([ dcc.Markdown( ''' # API Reference This page displays the docstrings for the public methods of the `dash` module including the `app` object. Curious about the implementation details? [Browse the Dash source code](https://github.com/plotly/dash). ''' ), html.Div(create_docstrings()), ])
examples/run_bidafplus/run_bidafplus_squadv2.py
ishine/SMRCToolkit
1,238
11070929
<reponame>ishine/SMRCToolkit # coding: utf-8 from sogou_mrc.data.vocabulary import Vocabulary from sogou_mrc.data.batch_generator import BatchGenerator from sogou_mrc.dataset.squadv2 import SquadV2Reader, SquadV2Evaluator from sogou_mrc.model.bidafplus_squad2 import BiDAFPlus import tensorflow as tf import logging import json import time import numpy as np import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" tf.logging.set_verbosity(tf.logging.ERROR) logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') train_file = "train-v2.0.json" dev_file = "dev-v2.0.json" t0 = time.time() reader = SquadV2Reader() train_data = reader.read(train_file) eval_data = reader.read(dev_file) evaluator = SquadV2Evaluator(dev_file) cost = time.time() - t0 logging.info("seg cost=%.3f" % cost) t0 = time.time() vocab = Vocabulary(do_lowercase=True) vocab.build_vocab(train_data + eval_data, min_word_count=3, min_char_count=10) word_embedding = vocab.make_word_embedding("glove.840B.300d.txt", init_scale=0.05) cost = time.time() - t0 logging.info("make vocab cost=%.3f" % cost) train_batch_generator = BatchGenerator(vocab, train_data, batch_size=16, training=True, additional_fields=["abstractive_answer_mask"]) eval_batch_generator = BatchGenerator(vocab, eval_data, batch_size=16, training=False, additional_fields=["abstractive_answer_mask"]) use_elmo=True save_path="squad2_elmo" if use_elmo: model = BiDAFPlus(vocab, pretrained_word_embedding=word_embedding, abstractive_answer=[""], use_elmo=True, elmo_local_path="path_to_elmo") else: model = BiDAFPlus(vocab, pretrained_word_embedding=word_embedding, abstractive_answer=[""]) model.compile(tf.train.AdadeltaOptimizer, 1.0) model.train_and_evaluate(train_batch_generator, eval_batch_generator, evaluator, epochs=40, eposides=2, save_dir=save_path)
official/utils/flags/_base.py
873040/Abhishek
357
11070934
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags which will be nearly universal across models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from official.utils.flags._conventions import help_wrap from official.utils.logs import hooks_helper def define_base(data_dir=True, model_dir=True, clean=False, train_epochs=False, epochs_between_evals=False, stop_threshold=False, batch_size=True, num_gpu=False, hooks=False, export_dir=False, distribution_strategy=False, run_eagerly=False): """Register base flags. Args: data_dir: Create a flag for specifying the input data directory. model_dir: Create a flag for specifying the model file directory. clean: Create a flag for removing the model_dir. train_epochs: Create a flag to specify the number of training epochs. epochs_between_evals: Create a flag to specify the frequency of testing. stop_threshold: Create a flag to specify a threshold accuracy or other eval metric which should trigger the end of training. batch_size: Create a flag to specify the batch size. num_gpu: Create a flag to specify the number of GPUs used. hooks: Create a flag to specify hooks for logging. export_dir: Create a flag to specify where a SavedModel should be exported. distribution_strategy: Create a flag to specify which Distribution Strategy to use. run_eagerly: Create a flag to specify to run eagerly op by op. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if data_dir: flags.DEFINE_string( name="data_dir", short_name="dd", default="/tmp", help=help_wrap("The location of the input data.")) key_flags.append("data_dir") if model_dir: flags.DEFINE_string( name="model_dir", short_name="md", default="/tmp", help=help_wrap("The location of the model checkpoint files.")) key_flags.append("model_dir") if clean: flags.DEFINE_boolean( name="clean", default=False, help=help_wrap("If set, model_dir will be removed if it exists.")) key_flags.append("clean") if train_epochs: flags.DEFINE_integer( name="train_epochs", short_name="te", default=1, help=help_wrap("The number of epochs used to train.")) key_flags.append("train_epochs") if epochs_between_evals: flags.DEFINE_integer( name="epochs_between_evals", short_name="ebe", default=1, help=help_wrap("The number of training epochs to run between " "evaluations.")) key_flags.append("epochs_between_evals") if stop_threshold: flags.DEFINE_float( name="stop_threshold", short_name="st", default=None, help=help_wrap("If passed, training will stop at the earlier of " "train_epochs and when the evaluation metric is " "greater than or equal to stop_threshold.")) if batch_size: flags.DEFINE_integer( name="batch_size", short_name="bs", default=32, help=help_wrap("Batch size for training and evaluation. When using " "multiple gpus, this is the global batch size for " "all devices. For example, if the batch size is 32 " "and there are 4 GPUs, each GPU will get 8 examples on " "each step.")) key_flags.append("batch_size") if num_gpu: flags.DEFINE_integer( name="num_gpus", short_name="ng", default=1, help=help_wrap( "How many GPUs to use at each worker with the " "DistributionStrategies API. The default is 1.")) if run_eagerly: flags.DEFINE_boolean( name="run_eagerly", default=False, help="Run the model op by op without building a model function.") if hooks: # Construct a pretty summary of hooks. hook_list_str = ( u"\ufeff Hook:\n" + u"\n".join([u"\ufeff {}".format(key) for key in hooks_helper.HOOKS])) flags.DEFINE_list( name="hooks", short_name="hk", default="LoggingTensorHook", help=help_wrap( u"A list of (case insensitive) strings to specify the names of " u"training hooks.\n{}\n\ufeff Example: `--hooks ProfilerHook," u"ExamplesPerSecondHook`\n See official.utils.logs.hooks_helper " u"for details.".format(hook_list_str)) ) key_flags.append("hooks") if export_dir: flags.DEFINE_string( name="export_dir", short_name="ed", default=None, help=help_wrap("If set, a SavedModel serialization of the model will " "be exported to this directory at the end of training. " "See the README for more details and relevant links.") ) key_flags.append("export_dir") if distribution_strategy: flags.DEFINE_string( name="distribution_strategy", short_name="ds", default="mirrored", help=help_wrap("The Distribution Strategy to use for training. " "Accepted values are 'off', 'one_device', " "'mirrored', 'parameter_server', 'collective', " "case insensitive. 'off' means not to use " "Distribution Strategy; 'default' means to choose " "from `MirroredStrategy` or `OneDeviceStrategy` " "according to the number of GPUs.") ) return key_flags def get_num_gpus(flags_obj): """Treat num_gpus=-1 as 'use all'.""" if flags_obj.num_gpus != -1: return flags_obj.num_gpus from tensorflow.python.client import device_lib # pylint: disable=g-import-not-at-top local_device_protos = device_lib.list_local_devices() return sum([1 for d in local_device_protos if d.device_type == "GPU"])
chrome/test/pyautolib/history_info.py
nagineni/chromium-crosswalk
231
11070986
<filename>chrome/test/pyautolib/history_info.py # Copyright (c) 2011 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """History: python representation for history. Obtain one of these from PyUITestSuite::GetHistoryInfo() call. Example: class MyTest(pyauto.PyUITest): def testBasic(self): url = 'http://www.google.com/' self.NavigateToURL(url) history = self.GetHistoryInfo() self.assertEqual(1, len(history)) self.assertEqual(url, history[0]['url']) See more tests in chrome/test/functional/history.py. """ import simplejson as json from pyauto_errors import JSONInterfaceError class HistoryInfo(object): """Represent info about browsing history. The info is represented as a list of history items containing url, title, time, etc. """ def __init__(self, history_dict): """Initialize a HistoryInfo from a string of json. Args: json_string: a dictionary as returned by the IPC command 'GetHistoryInfo'. A typical dict representing history info looks like: {'history': [ {'url': 'http://www.google.com/', 'title': 'Google', ..., ..., }, ] } Raises: pyauto_errors.JSONInterfaceError if the automation call returns an error. """ # JSON string prepared in GetHistoryInfo() in automation_provider.cc self.historydict = history_dict def History(self): """Get history list. History is ordered latest first, that is in the same order as chrome://history/ would list. Example: [ { u'snippet': u'', u'starred': False, u'time': 1271781612, u'title': u'Google News', u'url': u'http://news.google.com/'}, { u'snippet': u'', u'starred': True, u'time': 1271781602, u'title': u'Google', u'url': u'http://www.google.com/'}] The snippet attribute will be empty in most cases. If GetHistoryInfo() is provided a non-empty search_text arg, the snippet attribute will contain the snippet as it would be visible when searching for that text in the chrome://history/ UI. Returns: [item1, item2, ...] """ return self.historydict.get('history', [])
setup.py
timmahrt/praatIO
208
11070987
<gh_stars>100-1000 #!/usr/bin/env python # encoding: utf-8 """ Created on Aug 29, 2014 @author: tmahrt """ from setuptools import setup import io setup( name="praatio", python_requires=">3.6.0", version="5.0.0", author="<NAME>", author_email="<EMAIL>", url="https://github.com/timmahrt/praatIO", package_dir={"praatio": "praatio"}, packages=["praatio", "praatio.utilities", "praatio.data_classes"], package_data={ "praatio": [ "praatScripts/*.praat", ] }, install_requires=[ "typing_extensions", ], license="LICENSE", description=( "A library for working with praat, textgrids, " "time aligned audio transcripts, and audio files." ), long_description=io.open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", )
examples/units_and_coordinates/AIA_limb_STEREO.py
Octaves0911/sunpy
628
11070992
<filename>examples/units_and_coordinates/AIA_limb_STEREO.py """ =========================================== Drawing the AIA limb on a STEREO EUVI image =========================================== In this example we use a STEREO-B and an SDO image to demonstrate how to overplot the limb as seen by AIA on an EUVI-B image. Then we overplot the AIA coordinate grid on the STEREO image. """ import matplotlib.pyplot as plt import astropy.units as u from astropy.coordinates import SkyCoord import sunpy.coordinates.wcs_utils import sunpy.map from sunpy.net import Fido from sunpy.net import attrs as a ############################################################################### # The first step is to download some data. We download an image from STEREO-A # and an image from SDO, which are separated in longitude. stereo = (a.Source('STEREO_A') & a.Instrument("EUVI") & a.Time('2021-01-01 00:06', '2021-01-01 00:07')) aia = (a.Instrument.aia & a.Sample(24 * u.hour) & a.Time('2021-01-01 00:06', '2021-01-02 00:06')) wave = a.Wavelength(30 * u.nm, 31 * u.nm) result = Fido.search(wave, aia | stereo) ############################################################################### # Let's inspect the result and download the files. print(result) downloaded_files = Fido.fetch(result) print(downloaded_files) ############################################################################## # Let's create a dictionary with the two maps, which we crop to full disk. maps = {m.detector: m.submap(SkyCoord([-1100, 1100], [-1100, 1100], unit=u.arcsec, frame=m.coordinate_frame)) for m in sunpy.map.Map(downloaded_files)} maps['AIA'].plot_settings['vmin'] = 0 # set the minimum plotted pixel value ############################################################################## # Now, let's plot both maps, and we draw the limb as seen by AIA onto the # EUVI image. We remove the part of the limb that is hidden because it is on # the far side of the Sun from STEREO's point of view. fig = plt.figure(figsize=(10, 4)) ax1 = fig.add_subplot(1, 2, 1, projection=maps['AIA']) maps['AIA'].plot(axes=ax1) maps['AIA'].draw_limb() ax2 = fig.add_subplot(1, 2, 2, projection=maps['EUVI']) maps['EUVI'].plot(axes=ax2) visible, hidden = maps['AIA'].draw_limb() hidden.remove() ############################################################################## # Let's plot the helioprojective coordinate grid as seen by SDO on the STEREO # image in a cropped view. Note that only those grid lines that intersect the # edge of the plot will have corresponding ticks and tick labels. fig = plt.figure() ax = plt.subplot(projection=maps['EUVI']) maps['EUVI'].plot() # Crop the view using pixel coordinates ax.set_xlim(500, 1300) ax.set_ylim(100, 900) # Shrink the plot slightly and move the title up to make room for new labels. ax.set_position([0.1, 0.1, 0.8, 0.7]) ax.set_title(ax.get_title(), pad=45) # Change the default grid labels and line properties. stereo_x, stereo_y = ax.coords stereo_x.set_axislabel("Helioprojective Longitude (STEREO B) [arcsec]") stereo_y.set_axislabel("Helioprojective Latitude (STEREO B) [arcsec]") ax.coords.grid(color='white', linewidth=1) # Add a new coordinate overlay in the SDO frame. overlay = ax.get_coords_overlay(maps['AIA'].coordinate_frame) overlay.grid() # Configure the grid: x, y = overlay # Wrap the longitude at 180 deg rather than the default 360. x.set_coord_type('longitude', 180.) # Set the tick spacing x.set_ticks(spacing=250*u.arcsec) y.set_ticks(spacing=250*u.arcsec) # Set the ticks to be on the top and left axes. x.set_ticks_position('tr') y.set_ticks_position('tr') # Change the defaults to arcseconds x.set_major_formatter('s.s') y.set_major_formatter('s.s') # Add axes labels x.set_axislabel("Helioprojective Longitude (SDO) [arcsec]") y.set_axislabel("Helioprojective Latitude (SDO) [arcsec]") plt.show()
src/oci/data_integration/models/oracle_adwc_write_attribute.py
Manny27nyc/oci-python-sdk
249
11070994
<filename>src/oci/data_integration/models/oracle_adwc_write_attribute.py<gh_stars>100-1000 # coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from .abstract_write_attribute import AbstractWriteAttribute from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class OracleAdwcWriteAttribute(AbstractWriteAttribute): """ Properties to configure writing to Oracle Autonomous Data Warehouse Cloud. """ def __init__(self, **kwargs): """ Initializes a new OracleAdwcWriteAttribute object with values from keyword arguments. The default value of the :py:attr:`~oci.data_integration.models.OracleAdwcWriteAttribute.model_type` attribute of this class is ``ORACLEADWCWRITEATTRIBUTE`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param model_type: The value to assign to the model_type property of this OracleAdwcWriteAttribute. Allowed values for this property are: "ORACLEWRITEATTRIBUTE", "ORACLEATPWRITEATTRIBUTE", "ORACLEADWCWRITEATTRIBUTE", "OBJECTSTORAGEWRITEATTRIBUTE", "ORACLE_WRITE_ATTRIBUTE", "ORACLE_ATP_WRITE_ATTRIBUTE", "ORACLE_ADWC_WRITE_ATTRIBUTE", "OBJECT_STORAGE_WRITE_ATTRIBUTE" :type model_type: str :param bucket_name: The value to assign to the bucket_name property of this OracleAdwcWriteAttribute. :type bucket_name: str :param staging_file_name: The value to assign to the staging_file_name property of this OracleAdwcWriteAttribute. :type staging_file_name: str :param staging_data_asset: The value to assign to the staging_data_asset property of this OracleAdwcWriteAttribute. :type staging_data_asset: oci.data_integration.models.DataAsset :param staging_connection: The value to assign to the staging_connection property of this OracleAdwcWriteAttribute. :type staging_connection: oci.data_integration.models.Connection """ self.swagger_types = { 'model_type': 'str', 'bucket_name': 'str', 'staging_file_name': 'str', 'staging_data_asset': 'DataAsset', 'staging_connection': 'Connection' } self.attribute_map = { 'model_type': 'modelType', 'bucket_name': 'bucketName', 'staging_file_name': 'stagingFileName', 'staging_data_asset': 'stagingDataAsset', 'staging_connection': 'stagingConnection' } self._model_type = None self._bucket_name = None self._staging_file_name = None self._staging_data_asset = None self._staging_connection = None self._model_type = 'ORACLEADWCWRITEATTRIBUTE' @property def bucket_name(self): """ Gets the bucket_name of this OracleAdwcWriteAttribute. The bucket name for the attribute. :return: The bucket_name of this OracleAdwcWriteAttribute. :rtype: str """ return self._bucket_name @bucket_name.setter def bucket_name(self, bucket_name): """ Sets the bucket_name of this OracleAdwcWriteAttribute. The bucket name for the attribute. :param bucket_name: The bucket_name of this OracleAdwcWriteAttribute. :type: str """ self._bucket_name = bucket_name @property def staging_file_name(self): """ Gets the staging_file_name of this OracleAdwcWriteAttribute. The file name for the attribute. :return: The staging_file_name of this OracleAdwcWriteAttribute. :rtype: str """ return self._staging_file_name @staging_file_name.setter def staging_file_name(self, staging_file_name): """ Sets the staging_file_name of this OracleAdwcWriteAttribute. The file name for the attribute. :param staging_file_name: The staging_file_name of this OracleAdwcWriteAttribute. :type: str """ self._staging_file_name = staging_file_name @property def staging_data_asset(self): """ Gets the staging_data_asset of this OracleAdwcWriteAttribute. :return: The staging_data_asset of this OracleAdwcWriteAttribute. :rtype: oci.data_integration.models.DataAsset """ return self._staging_data_asset @staging_data_asset.setter def staging_data_asset(self, staging_data_asset): """ Sets the staging_data_asset of this OracleAdwcWriteAttribute. :param staging_data_asset: The staging_data_asset of this OracleAdwcWriteAttribute. :type: oci.data_integration.models.DataAsset """ self._staging_data_asset = staging_data_asset @property def staging_connection(self): """ Gets the staging_connection of this OracleAdwcWriteAttribute. :return: The staging_connection of this OracleAdwcWriteAttribute. :rtype: oci.data_integration.models.Connection """ return self._staging_connection @staging_connection.setter def staging_connection(self, staging_connection): """ Sets the staging_connection of this OracleAdwcWriteAttribute. :param staging_connection: The staging_connection of this OracleAdwcWriteAttribute. :type: oci.data_integration.models.Connection """ self._staging_connection = staging_connection def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
snlds/examples/tensorboard_utils.py
deepneuralmachine/google-research
23,901
11070998
<reponame>deepneuralmachine/google-research<filename>snlds/examples/tensorboard_utils.py<gh_stars>1000+ # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for plotting in Tensorboard.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-import import numpy as np import tensorflow as tf colors = [ (0.21568627450980393, 0.47058823529411764, 0.7490196078431373), # blue (0.8980392156862745, 0.0, 0.0), # red (0.996078431372549, 0.7019607843137254, 0.03137254901960784), # amber (0.4823529411764706, 0.6980392156862745, 0.4549019607843137), # faded green (0.5098039215686274, 0.37254901960784315, 0.5294117647058824), # purple (0.5490196078431373, 0.0, 0.058823529411764705), # crimson (0.6588235294117647, 0.6431372549019608, 0.5843137254901961)] # greyish def plot_to_image(figure): """Converts the matplotlib figure to a PNG image.""" # The function is adapted from # github.com/tensorflow/tensorboard/blob/master/docs/image_summaries.ipynb # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format="png") # Closing the figure prevents it from being displayed directly. plt.close(figure) buf.seek(0) # Convert PNG buffer to TF image image = tf.image.decode_png(buf.getvalue(), channels=4) # tf.summary.image requires 4-D inputs. [num_samples, height, weight, color]. image = tf.expand_dims(image, 0) return image def show_lorenz_attractor_3d(fig_size, inputs, reconstructed_inputs, fig_title=None): """Compare reconstructed lorenz attractor. Args: fig_size: 2-tuple of floats for figure dimension (width, height) in inches. inputs: a `2-D` numpy array, with shape [num_steps, 3]. At each timestep, it records the [x, y, z] position of lorenz attractor. reconstructed_inputs: a `2-D` numpy array, with the same shape as inputs, recording the reconstructed lorenz attractor trajectories. fig_title: Optional. A string to set title of figure. Returns: fig: the Matplotlib figure handle. """ assert inputs.ndim == 2 assert reconstructed_inputs.shape == inputs.shape fig = plt.figure(figsize=fig_size) if fig_title: plt.title(fig_title) ax = fig.add_subplot(1, 2, 1, projection="3d") ax.plot(inputs[:, 0], inputs[:, 1], inputs[:, 2], lw=1, color="k", alpha=0.5) for i in range(3): ax.set_xlabel("$x_{}$".format(i+1), fontsize=12, labelpad=3) ax = fig.add_subplot(1, 2, 2, projection="3d") ax.plot(reconstructed_inputs[:, 0], reconstructed_inputs[:, 1], reconstructed_inputs[:, 2], lw=1, color="k", alpha=0.5) for i in range(3): ax.set_xlabel("$x_{}$".format(i+1), fontsize=12, labelpad=3) return fig def show_lorenz_segmentation(fig_size, inputs, segmentation, fig_title=None): """Show discrete state segmentation on input data along each dimension. Args: fig_size: 2-tuple of floats for figure dimension (width, height) in inches. inputs: a `2-D` numpy array, with shape [num_steps, 3]. At each timestep, it records the [x, y, z] position of lorenz attractor. segmentation: a 1-D numpy array, with shape [num_steps], recoding the most likely states at each time steps. fig_title: Optional. A string to set title of figure. Returns: fig: the Matplotlib figure handle. """ fig = plt.figure(figsize=fig_size) if fig_title: plt.title(fig_title) inputs = np.squeeze(inputs) s_seq = np.squeeze(segmentation) z_cps = np.concatenate(([0], np.where(np.diff(s_seq))[0]+1, [s_seq.size])) for i in range(3): ax = fig.add_subplot(3, 1, i+1) for start, stop in zip(z_cps[:-1], z_cps[1:]): stop = min(s_seq.size, stop+1) ax.plot(np.arange(start, stop), inputs[start:stop, i], lw=1, color=colors[s_seq[start]]) ax.set_ylabel("$x_{}(t)$".format(i+1)) if i < 2: ax.set_xticklabels([]) return fig def show_discrete_states(fig_size, discrete_states_lk, segmentation, fig_title=None): """Show likelihoods of discrete states s[t] and segmentation. Args: fig_size: 2-tuple of floats for figure dimension (width, height) in inches. discrete_states_lk: a 2-D numpy array, with shape [num_steps, num_states], recording the likelihood of each discrete states. segmentation: a 1-D numpy array, with shape [num_steps], recoding the most likely states at each time steps. fig_title: Optional. A string to set title of figure. Returns: fig: the Matplotlib figure handle. """ fig = plt.figure(figsize=fig_size) if fig_title: plt.title(fig_title) ax = fig.add_subplot(1, 1, 1) s_seq = np.squeeze(segmentation) turning_loc = np.concatenate( ([0], np.where(np.diff(s_seq))[0]+1, [s_seq.size])) for i in range(discrete_states_lk.shape[-1]): ax.plot(np.reshape(discrete_states_lk[Ellipsis, i], [-1])) for tl in turning_loc: ax.axvline(tl, color="k", linewidth=2., linestyle="-.") ax.set_ylim(-0.1, 1.1) return fig def show_hidden_states(fig_size, zt, segmentation, fig_title=None): """Show z[t] as series of line plots. Args: fig_size: 2-tuple of floats for figure dimension (width, height) in inches. zt: a 2-D numpy array, with shape [num_steps, num_hidden_states], recording the values of continuous hidden states z[t]. segmentation: a 1-D numpy array, with shape [num_steps], recoding the most likely states at each time steps. fig_title: Optional. A string to set title of figure. Returns: fig: the Matplotlib figure handle. """ fig = plt.figure(figsize=fig_size) if fig_title: plt.title(fig_title) ax = fig.add_subplot(1, 1, 1) s_seq = np.squeeze(segmentation) turning_loc = np.concatenate( ([0], np.where(np.diff(s_seq))[0]+1, [s_seq.size])) for i in range(zt.shape[-1]): ax.plot(zt[:, i]) for tl in turning_loc: ax.axvline(tl, color="k", linewidth=2., linestyle="-.") return fig
aws_inventory/store.py
UA-SOlsen/aws-inventory
594
11071001
"""Data persistence for responses and any exceptions while invoking operations.""" import datetime import json import logging import pickle import string import sys import time import uuid import botocore import config import version LOGGER = logging.getLogger(__name__) class ResponseEncoder(json.JSONEncoder): """Encode responses from operations in order to serialize to JSON.""" def default(self, o): if isinstance(o, datetime.datetime): return o.isoformat() return super(ResponseEncoder, self).default(o) class ResultStore(object): """Storage and serialization for responses and exceptions.""" def __init__(self, profile): self.profile = profile self._response_store = {} # {svc: {region: {svc_op: response}}} self._exception_store = {} # {svc: {svc_op: {region: exception}}} self.run_date = time.strftime('%Y-%m-%d %H:%M:%S %Z') self.commandline = ' '.join(sys.argv) self.version = version.__version__ def add_response(self, service, region, svc_op, resp): """Add a response to the store for a given service for an operation in a region. Replace existing values. :param str service: service name :param str region: region name :param str svc_op: service operation name :param dict resp: response from invoking an API """ svc_store = self._response_store.setdefault(service, {}) svc_store.setdefault(region, {})[svc_op] = resp def add_exception(self, service, region, svc_op, exc): """Add an exception to the store for a given service for an operation in a region. Replace existing values. :param str service: service name :param str region: region name :param str svc_op: service operation name :param dict exc: exception from invoking an API """ svc_store = self._exception_store.setdefault(service, {}) svc_store.setdefault(svc_op, {})[region] = str(exc) def has_exceptions(self, service, svc_op): """Check whether a service operation has any exceptions. :param str service: service name :param str svc_op: service operation name :rtype: bool :return: whether there are exceptions """ try: return len(self._exception_store[service][svc_op]) > 0 except KeyError: return False def get_response_store(self): """Serialize response store to JSON. :rtype: str :return: serialized response store in JSON format """ LOGGER.debug('Building the response store.') return json.dumps(self._response_store, cls=ResponseEncoder) def dump_response_store(self, fp): """Pickle the response store. :param file fp: file to write to """ LOGGER.debug('Writing the response store to file "%s".', fp.name) pickle.dump(self._response_store, fp) def dump_exception_store(self, fp): """Pickle the exception store. :param file fp: file to write to """ LOGGER.debug('Writing the exception store to file "%s".', fp.name) pickle.dump(self._exception_store, fp) def generate_data_file(self, fp): """Generate the data file for consumption by the data GUI. :param file fp: file to write to """ # format of data file for jsTree #[ # { # "text" : "Root node", # "children" : [ # { "text" : "Child node 1" }, # { "text" : "Child node 2" } # ] # } #] def build_children(obj): children = [] if isinstance(obj, dict): for key, val in obj.items(): child = build_children(val) if isinstance(child, (dict, list, tuple)) and child: children.append({'text': key, 'children': child}) else: # leaf node try: children.append({'text': u'{} = {}'.format(key, val)}) except UnicodeDecodeError: # key or value is probably binary. For example, CloudTrail API ListPublicKeys children.append({'text': u'{} = {!r}'.format(key, val)}) elif isinstance(obj, (list, tuple)): for i, val in enumerate(obj): child = build_children(val) if isinstance(child, (dict, list, tuple)) and child: children.append({'text': '[{:d}]'.format(i), 'children': child}) else: # leaf node children.append({'text': child}) else: return obj return children LOGGER.debug('Building the GUI data model.') data = build_children({'[inventory]': self._response_store}) # assign types to nodes so jsTree can handle them appropriately data[0]['type'] = 'root' data[0]['state'] = {'opened': True} for service in data[0]['children']: service['type'] = 'service' service['state'] = {'opened': True} for region in service['children']: region['type'] = 'region' region['state'] = {'opened': True} num_hidden_operations = 0 for operation in region['children']: operation['type'] = 'operation' # add count of non empty response to operation name try: num_non_empty_responses = 0 for response in operation['children']: try: if response['text'] == 'ResponseMetadata': response['type'] = 'response_metadata' continue # ignore metadata nodes in count num_non_empty_responses += 1 if response['children'] else 0 except KeyError: # an empty response pass if num_non_empty_responses: operation['text'] += ' ({:d})'.format(num_non_empty_responses) else: num_hidden_operations += 1 operation['state'] = {"hidden": True} except KeyError: # no response pass region['a_attr'] = {'title': '{:d} hidden operations'.format(num_hidden_operations)} out_obj = {'run_date': self.run_date, 'commandline': self.commandline, 'version': self.version, 'botocore_version': botocore.__version__, 'responses': data} LOGGER.debug('Writing the GUI data model to file "%s".', fp.name) json.dump(out_obj, fp, cls=ResponseEncoder)
pysteps/tests/test_tracking_tdating.py
leabeusch/pysteps
285
11071020
# -*- coding: utf-8 -*- import numpy as np import pytest from pysteps.tracking.tdating import dating from pysteps.utils import to_reflectivity from pysteps.tests.helpers import get_precipitation_fields arg_names = ("source", "dry_input") arg_values = [ ("mch", False), ("mch", False), ("mch", True), ] @pytest.mark.parametrize(arg_names, arg_values) def test_tracking_tdating_dating(source, dry_input): pytest.importorskip("skimage") pandas = pytest.importorskip("pandas") if not dry_input: input, metadata = get_precipitation_fields(0, 2, True, True, 4000, source) input, __ = to_reflectivity(input, metadata) else: input = np.zeros((3, 50, 50)) metadata = {"timestamps": ["00", "01", "02"]} timelist = metadata["timestamps"] output = dating(input, timelist, mintrack=1) # Check output format assert isinstance(output, tuple) assert len(output) == 3 assert isinstance(output[0], list) assert isinstance(output[1], list) assert isinstance(output[2], list) assert len(output[1]) == input.shape[0] assert len(output[2]) == input.shape[0] assert isinstance(output[1][0], pandas.DataFrame) assert isinstance(output[2][0], np.ndarray) assert output[1][0].shape[1] == 9 assert output[2][0].shape == input.shape[1:] if not dry_input: assert len(output[0]) > 0 assert isinstance(output[0][0], pandas.DataFrame) assert output[0][0].shape[1] == 9 else: assert len(output[0]) == 0 assert output[1][0].shape[0] == 0 assert output[2][0].sum() == 0
functions/source/sitewisemonitorfunction/jmespath/__init__.py
jieatelement/quickstart-aws-industrial-machine-connectivity
1,738
11071026
<filename>functions/source/sitewisemonitorfunction/jmespath/__init__.py<gh_stars>1000+ from jmespath import parser from jmespath.visitor import Options __version__ = '0.9.5' def compile(expression): return parser.Parser().parse(expression) def search(expression, data, options=None): return parser.Parser().parse(expression).search(data, options=options)
tests/generators/merkle/main.py
sifraitech/eth2.0-specs
497
11071049
<reponame>sifraitech/eth2.0-specs from eth2spec.test.helpers.constants import ALTAIR, BELLATRIX from eth2spec.gen_helpers.gen_from_tests.gen import run_state_test_generators if __name__ == "__main__": altair_mods = {key: 'eth2spec.test.altair.merkle.test_' + key for key in [ 'single_proof', ]} bellatrix_mods = altair_mods all_mods = { ALTAIR: altair_mods, BELLATRIX: bellatrix_mods, } run_state_test_generators(runner_name="merkle", all_mods=all_mods)
google/colab/_pip.py
figufema/TesteClone
1,521
11071050
<gh_stars>1000+ """Routines for extracting information about pip installed packages. The intent is to provide users a useful warning if they !pip install a package that is already loaded in sys.modules. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import os import re import site import sys from IPython.core.display import _display_mimetype __all__ = ["is_pip_install_command", "print_previous_import_warning"] _COLAB_DATA_MIMETYPE = "application/vnd.colab-display-data+json" def is_pip_install_command(cmd, *args, **kwargs): # pylint: disable=unused-argument """Check if cmd represents a pip command.""" # Check if the command starts with pip/pip2/pip3 and a space. # This won't trigger on every pip invocation, but will catch the most common. return re.match(r"^pip[23]?\s+install", cmd.strip()) def _extract_installed_packages(pip_output): """Extract the list of successfully installed packages from pip output.""" regex = re.compile("^Successfully installed (.*)$", re.MULTILINE) results = regex.findall(pip_output) return itertools.chain(*map(str.split, results)) def _get_distinfo_path(distname, paths): """Find the filesystem path to a package's distribution info. Distribution names must be treated as case-insensitive, with '-' and '_' characters treated as equivalent (See https://www.python.org/dev/peps/pep-0426/#name). Args: distname: distribution name. paths: list of directory path to search Returns: path: (string or None) the valid filesystem path to the distribution. """ paths = [p for p in paths if os.path.exists(p)] if not paths: return None # Python packages can be installed as wheels or as eggs. Account for both # (see https://packaging.python.org/discussions/wheel-vs-egg/) distinfo = ["{}.dist-info".format(distname), "{}.egg-info".format(distname)] def normalize_dist(dist): return dist.lower().replace("_", "-") distinfo = [normalize_dist(info) for info in distinfo] for path in paths: path_map = {normalize_dist(f): f for f in os.listdir(path)} for info in distinfo: if info in path_map: joined = os.path.join(path, path_map[info]) if os.path.isdir(joined): return joined return None def _extract_toplevel_packages(pip_output): """Extract the list of toplevel packages associated with a pip install.""" # Account for default installations and --user installations (most common). # Note: we should possibly also account for --root, --prefix, & -t/--target. sitepackages = site.getsitepackages() + [site.getusersitepackages()] for package in _extract_installed_packages(pip_output): infodir = _get_distinfo_path(package, sitepackages) if not infodir: continue toplevel = os.path.join(infodir, "top_level.txt") if not os.path.exists(toplevel): continue for line in open(toplevel): line = line.strip() if line: yield line def _previously_imported_packages(pip_output): """List all previously imported packages from a pip install.""" installed = set(_extract_toplevel_packages(pip_output)) return sorted(installed.intersection(set(sys.modules))) def print_previous_import_warning(output): """Prints a warning about previously imported packages.""" packages = _previously_imported_packages(output) if packages: # display a list of packages using the colab-display-data mimetype, which # will be printed as a warning + restart button by the Colab frontend. _display_mimetype( _COLAB_DATA_MIMETYPE, ({ "pip_warning": { "packages": packages, } },), raw=True)
solo/methods/swav.py
xwyzsn/solo-learn
693
11071051
<reponame>xwyzsn/solo-learn # Copyright 2021 solo-learn development team. # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE # FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import argparse from typing import Any, Dict, List, Sequence import torch import torch.nn as nn import torch.nn.functional as F from solo.losses.swav import swav_loss_func from solo.methods.base import BaseMethod from solo.utils.sinkhorn_knopp import SinkhornKnopp class SwAV(BaseMethod): def __init__( self, proj_output_dim: int, proj_hidden_dim: int, num_prototypes: int, sk_iters: int, sk_epsilon: float, temperature: float, queue_size: int, epoch_queue_starts: int, freeze_prototypes_epochs: int, **kwargs, ): """Implements SwAV (https://arxiv.org/abs/2006.09882). Args: proj_output_dim (int): number of dimensions of the projected features. proj_hidden_dim (int): number of neurons in the hidden layers of the projector. num_prototypes (int): number of prototypes. sk_iters (int): number of iterations for the sinkhorn-knopp algorithm. sk_epsilon (float): weight for the entropy regularization term. temperature (float): temperature for the softmax normalization. queue_size (int): number of samples to hold in the queue. epoch_queue_starts (int): epochs the queue starts. freeze_prototypes_epochs (int): number of epochs during which the prototypes are frozen. """ super().__init__(**kwargs) self.proj_output_dim = proj_output_dim self.sk_iters = sk_iters self.sk_epsilon = sk_epsilon self.temperature = temperature self.queue_size = queue_size self.epoch_queue_starts = epoch_queue_starts self.freeze_prototypes_epochs = freeze_prototypes_epochs # projector self.projector = nn.Sequential( nn.Linear(self.features_dim, proj_hidden_dim), nn.BatchNorm1d(proj_hidden_dim), nn.ReLU(), nn.Linear(proj_hidden_dim, proj_output_dim), ) # prototypes self.prototypes = nn.utils.weight_norm( nn.Linear(proj_output_dim, num_prototypes, bias=False) ) @staticmethod def add_model_specific_args(parent_parser: argparse.ArgumentParser) -> argparse.ArgumentParser: parent_parser = super(SwAV, SwAV).add_model_specific_args(parent_parser) parser = parent_parser.add_argument_group("swav") # projector parser.add_argument("--proj_output_dim", type=int, default=128) parser.add_argument("--proj_hidden_dim", type=int, default=2048) # queue settings parser.add_argument("--queue_size", default=3840, type=int) # parameters parser.add_argument("--temperature", type=float, default=0.1) parser.add_argument("--num_prototypes", type=int, default=3000) parser.add_argument("--sk_epsilon", type=float, default=0.05) parser.add_argument("--sk_iters", type=int, default=3) parser.add_argument("--freeze_prototypes_epochs", type=int, default=1) parser.add_argument("--epoch_queue_starts", type=int, default=15) return parent_parser @property def learnable_params(self) -> List[dict]: """Adds projector and prototypes parameters to the parent's learnable parameters. Returns: List[dict]: list of learnable parameters. """ extra_learnable_params = [ {"params": self.projector.parameters()}, {"params": self.prototypes.parameters()}, ] return super().learnable_params + extra_learnable_params def on_train_start(self): """Gets the world size and sets it in the sinkhorn and the queue.""" # sinkhorn-knopp needs the world size world_size = self.trainer.world_size if self.trainer else 1 self.sk = SinkhornKnopp(self.sk_iters, self.sk_epsilon, world_size) # queue also needs the world size if self.queue_size > 0: self.register_buffer( "queue", torch.zeros( 2, self.queue_size // world_size, self.proj_output_dim, device=self.device, ), ) def forward(self, X: torch.Tensor, *args, **kwargs) -> Dict[str, Any]: """Performs the forward pass of the backbone, the projector and the prototypes. Args: X (torch.Tensor): a batch of images in the tensor format. Returns: Dict[str, Any]: a dict containing the outputs of the parent, the projected features and the logits. """ out = super().forward(X, *args, **kwargs) z = self.projector(out["feats"]) z = F.normalize(z) p = self.prototypes(z) return {**out, "z": z, "p": p} @torch.no_grad() def get_assignments(self, preds: List[torch.Tensor]) -> List[torch.Tensor]: """Computes cluster assignments from logits, optionally using a queue. Args: preds (List[torch.Tensor]): a batch of logits. Returns: List[torch.Tensor]: assignments for each sample in the batch. """ bs = preds[0].size(0) assignments = [] for i, p in enumerate(preds): # optionally use the queue if self.queue_size > 0 and self.current_epoch >= self.epoch_queue_starts: p_queue = self.prototypes(self.queue[i]) # type: ignore p = torch.cat((p, p_queue)) # compute assignments with sinkhorn-knopp assignments.append(self.sk(p)[:bs]) return assignments def training_step(self, batch: Sequence[Any], batch_idx: int) -> torch.Tensor: """Training step for SwAV reusing BaseMethod training step. Args: batch (Sequence[Any]): a batch of data in the format of [img_indexes, [X], Y], where [X] is a list of size num_crops containing batches of images. batch_idx (int): index of the batch. Returns: torch.Tensor: total loss composed of SwAV loss and classification loss. """ out = super().training_step(batch, batch_idx) class_loss = out["loss"] feats1, feats2 = out["feats"] z1 = F.normalize(self.projector(feats1)) z2 = F.normalize(self.projector(feats2)) p1 = self.prototypes(z1) p2 = self.prototypes(z2) # ------- swav loss ------- preds = [p1, p2] assignments = self.get_assignments(preds) swav_loss = swav_loss_func(preds, assignments, self.temperature) # ------- update queue ------- if self.queue_size > 0: z = torch.stack((z1, z2)) self.queue[:, z.size(1) :] = self.queue[:, : -z.size(1)].clone() self.queue[:, : z.size(1)] = z.detach() self.log("train_swav_loss", swav_loss, on_epoch=True, sync_dist=True) return swav_loss + class_loss def on_after_backward(self): """Zeroes the gradients of the prototypes.""" if self.current_epoch < self.freeze_prototypes_epochs: for p in self.prototypes.parameters(): p.grad = None
scripts/color.py
vfinotti/vhdl-extras
131
11071059
<gh_stars>100-1000 #!usr/bin/python # -*- coding: utf-8 -*- '''Color formatting ''' from __future__ import print_function, division try: import colorama colorama.init() from colorama import Fore, Back, Style except ImportError: def note(t): return t def success(t): return t def warn(t): return t def error(t): return t else: import os _no_color = os.getenv('NO_COLOR', 'false') _no_color = True if _no_color.lower() in ['1', 'true', 't', 'y', 'yes'] else False def stdout_redirected(): return os.fstat(0) != os.fstat(1) _redir_stdout = stdout_redirected() def colorize(t, code): if _no_color or _redir_stdout: return t return ''.join([code, t, Style.RESET_ALL]) def note(t): return colorize(t, Fore.BLUE) def success(t): return colorize(t, Fore.GREEN) def warn(t): return colorize(t, Fore.YELLOW + Style.BRIGHT) def error(t): return colorize(t, Fore.RED + Style.BRIGHT) if __name__ == '__main__': print('Colorized text:\n') print('note("foobar") : ' + note('foobar')) print('success("foobar") : ' + success('foobar')) print('warn("foobar") : ' + warn('foobar')) print('error("foobar") : ' + error('foobar')) #import os #print('redir?', os.fstat(0) == os.fstat(1))
app/tests/challenges_tests/test_models.py
kaczmarj/grand-challenge.org
101
11071090
<gh_stars>100-1000 import pytest from actstream.actions import is_following from actstream.models import Action from django.core.exceptions import ObjectDoesNotExist from django.db.models import ProtectedError from machina.apps.forum_conversation.models import Topic from grandchallenge.challenges.models import Challenge from grandchallenge.notifications.models import Notification from tests.factories import ChallengeFactory, UserFactory from tests.notifications_tests.factories import TopicFactory @pytest.mark.django_db def test_group_deletion(): challenge = ChallengeFactory() participants_group = challenge.participants_group admins_group = challenge.admins_group assert participants_group assert admins_group challenge.page_set.all().delete() challenge.phase_set.all().delete() Challenge.objects.filter(pk__in=[challenge.pk]).delete() with pytest.raises(ObjectDoesNotExist): participants_group.refresh_from_db() with pytest.raises(ObjectDoesNotExist): admins_group.refresh_from_db() @pytest.mark.django_db @pytest.mark.parametrize("group", ["participants_group", "admins_group"]) def test_group_deletion_reverse(group): challenge = ChallengeFactory() participants_group = challenge.participants_group admins_group = challenge.admins_group assert participants_group assert admins_group with pytest.raises(ProtectedError): getattr(challenge, group).delete() @pytest.mark.django_db def test_default_page_is_created(): c = ChallengeFactory() assert c.page_set.count() == 1 @pytest.mark.django_db @pytest.mark.parametrize("group", ("participant", "admin")) def test_participants_follow_forum(group): u = UserFactory() c = ChallengeFactory() add_method = getattr(c, f"add_{group}") remove_method = getattr(c, f"remove_{group}") add_method(user=u) assert is_following(user=u, obj=c.forum) remove_method(user=u) assert is_following(user=u, obj=c.forum) is False # No actions involving the forum should be created for i in Action.objects.all(): assert c.forum != i.target assert c.forum != i.action_object assert c.forum != i.actor @pytest.mark.django_db @pytest.mark.parametrize("group", ("participant", "admin")) def test_non_posters_notified(group): p = UserFactory() u = UserFactory() c = ChallengeFactory() c.add_admin(user=p) add_method = getattr(c, f"add_{group}") add_method(user=u) # delete all notifications for easier testing below Notification.objects.all().delete() TopicFactory(forum=c.forum, poster=p, type=Topic.TOPIC_ANNOUNCE) assert u.user_profile.has_unread_notifications is True assert p.user_profile.has_unread_notifications is False
tools/build/v2/test/property_expansion.py
jmuskaan72/Boost
198
11071116
<reponame>jmuskaan72/Boost<filename>tools/build/v2/test/property_expansion.py #!/usr/bin/python # Copyright 2003 <NAME> # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) # Test that free property inside. import BoostBuild t = BoostBuild.Tester() t.write("jamroot.jam", """ project ; variant debug-AA : debug : <define>AA ; alias all : hello ; exe hello : hello.cpp ; explicit hello ; """) t.write("hello.cpp", """ #ifdef AA int main() {} #endif """) t.run_build_system("debug-AA") t.cleanup()
lib/PyAMF-0.6.1/pyamf/util/__init__.py
MiCHiLU/google_appengine_sdk
790
11071145
<reponame>MiCHiLU/google_appengine_sdk<filename>lib/PyAMF-0.6.1/pyamf/util/__init__.py<gh_stars>100-1000 # Copyright (c) The PyAMF Project. # See LICENSE.txt for details. """ AMF Utilities. @since: 0.1.0 """ import calendar import datetime import inspect import pyamf from pyamf import python try: from cpyamf.util import BufferedByteStream except ImportError: from pyamf.util.pure import BufferedByteStream #: On some Python versions retrieving a negative timestamp, like #: C{datetime.datetime.utcfromtimestamp(-31536000.0)} is broken. negative_timestamp_broken = False def get_timestamp(d): """ Returns a UTC timestamp for a C{datetime.datetime} object. @type d: C{datetime.datetime} @return: UTC timestamp. @rtype: C{float} @see: Inspiration taken from the U{Intertwingly blog <http://intertwingly.net/blog/2007/09/02/Dealing-With-Dates>}. """ if isinstance(d, datetime.date) and not isinstance(d, datetime.datetime): d = datetime.datetime.combine(d, datetime.time(0, 0, 0, 0)) msec = str(d.microsecond).rjust(6).replace(' ', '0') return float('%s.%s' % (calendar.timegm(d.utctimetuple()), msec)) def get_datetime(secs): """ Return a UTC date from a timestamp. @type secs: C{long} @param secs: Seconds since 1970. @return: UTC timestamp. @rtype: C{datetime.datetime} """ if negative_timestamp_broken and secs < 0: return datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=secs) return datetime.datetime.utcfromtimestamp(secs) def get_properties(obj): """ Returns a list of properties for L{obj} @since: 0.5 """ if hasattr(obj, 'keys'): return obj.keys() elif hasattr(obj, '__dict__'): return obj.__dict__.keys() return [] def set_attrs(obj, attrs): """ Applies a collection of attributes C{attrs} to object C{obj} in the most generic way possible. @param obj: An instance implementing C{__setattr__}, or C{__setitem__} @param attrs: A collection implementing the C{iteritems} function @type attrs: Usually a dict """ o = setattr if hasattr(obj, '__setitem__'): o = type(obj).__setitem__ [o(obj, k, v) for k, v in attrs.iteritems()] def get_class_alias(klass): """ Tries to find a suitable L{pyamf.ClassAlias} subclass for C{klass}. """ for k, v in pyamf.ALIAS_TYPES.iteritems(): for kl in v: try: if issubclass(klass, kl): return k except TypeError: # not a class if hasattr(kl, '__call__'): if kl(klass) is True: return k def is_class_sealed(klass): """ Whether or not the supplied class can accept dynamic properties. @rtype: C{bool} @since: 0.5 """ mro = inspect.getmro(klass) new = False if mro[-1] is object: mro = mro[:-1] new = True for kls in mro: if new and '__dict__' in kls.__dict__: return False if not hasattr(kls, '__slots__'): return False return True def get_class_meta(klass): """ Returns a C{dict} containing meta data based on the supplied class, useful for class aliasing. @rtype: C{dict} @since: 0.5 """ if not isinstance(klass, python.class_types) or klass is object: raise TypeError('klass must be a class object, got %r' % type(klass)) meta = { 'static_attrs': None, 'exclude_attrs': None, 'readonly_attrs': None, 'proxy_attrs': None, 'amf3': None, 'dynamic': None, 'alias': None, 'external': None, 'synonym_attrs': None } if not hasattr(klass, '__amf__'): return meta a = klass.__amf__ if type(a) is dict: in_func = lambda x: x in a get_func = a.__getitem__ else: in_func = lambda x: hasattr(a, x) get_func = lambda x: getattr(a, x) for prop in ['alias', 'amf3', 'dynamic', 'external']: if in_func(prop): meta[prop] = get_func(prop) for prop in ['static', 'exclude', 'readonly', 'proxy', 'synonym']: if in_func(prop): meta[prop + '_attrs'] = get_func(prop) return meta def get_module(mod_name): """ Load and return a module based on C{mod_name}. """ if mod_name is '': raise ImportError('Unable to import empty module') mod = __import__(mod_name) components = mod_name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod try: datetime.datetime.utcfromtimestamp(-31536000.0) except ValueError: negative_timestamp_broken = True
rssant/middleware/prometheus.py
zuzhi/rssant
1,176
11071150
<reponame>zuzhi/rssant<gh_stars>1000+ import time from django.http import HttpRequest, HttpResponse from prometheus_client import Histogram from prometheus_client.exposition import choose_encoder, REGISTRY def django_metrics_view(request: HttpRequest) -> HttpResponse: registry = REGISTRY accept = request.headers.get('Accept') encoder, content_type = choose_encoder(accept) if 'name[]' in request.GET: name = request.GET['name[]'] registry = registry.restricted_registry(name) output = encoder(registry) return HttpResponse(content=output, content_type=content_type) API_TIME = Histogram( 'rssant_api_time', 'api execute time', [ 'path', 'method', 'status' ], buckets=( .010, .025, .050, .075, .100, .150, .250, .350, .500, .750, 1.0, 1.5, 2.5, 5.0, 10.0, 15.0, 30.0, 60.0, ) ) class RssantPrometheusMiddleware: """ https://github.com/korfuri/django-prometheus/blob/master/django_prometheus/middleware.py """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request: HttpRequest): t_begin = time.monotonic() response = self.get_response(request) cost = time.monotonic() - t_begin path_name = self._get_path_name(request) status = str(response.status_code) API_TIME.labels(path_name, request.method, status).observe(cost) return response def _get_path_name(self, request): path_name = "<unnamed_path>" if hasattr(request, "resolver_match"): if request.resolver_match is not None: # resolver_match.route requires django 2.2+ if request.resolver_match.route is not None: path_name = request.resolver_match.route return path_name
montreal_forced_aligner/multiprocessing/alignment.py
MontrealCorpusTools/Montreal-Forced-Aligner
702
11071153
<reponame>MontrealCorpusTools/Montreal-Forced-Aligner import subprocess import os import re import sys import time import traceback from decimal import Decimal import statistics from collections import defaultdict from multiprocessing import Lock from .helper import make_path_safe, run_mp, run_non_mp, thirdparty_binary from ..textgrid import parse_from_word, parse_from_word_no_cleanup, parse_from_phone, \ ctms_to_textgrids_non_mp, output_textgrid_writing_errors, generate_tiers, export_textgrid, construct_output_path from ..exceptions import AlignmentError import multiprocessing as mp from ..multiprocessing.helper import Stopped from queue import Empty queue_polling_timeout = 1 def acc_stats_func(directory, iteration, job_name, feature_string): log_path = os.path.join(directory, 'log', 'acc.{}.{}.log'.format(iteration, job_name)) model_path = os.path.join(directory, '{}.mdl'.format(iteration)) acc_path = os.path.join(directory, '{}.{}.acc'.format(iteration, job_name)) ali_path = os.path.join(directory, 'ali.{}'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: acc_proc = subprocess.Popen([thirdparty_binary('gmm-acc-stats-ali'), model_path, '{}'.format(feature_string), "ark:" + ali_path, acc_path], stderr=log_file) acc_proc.communicate() def acc_stats(iteration, directory, split_directory, num_jobs, config): """ Multiprocessing function that computes stats for GMM training See http://kaldi-asr.org/doc/gmm-acc-stats-ali_8cc.html for more details on the Kaldi binary this runs. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_mono.sh for the bash script this function was extracted from Parameters ---------- iteration : int Iteration to calculate stats for directory : str Directory of training (monophone, triphone, speaker-adapted triphone training directories) split_directory : str Directory of training data split into the number of jobs num_jobs : int The number of processes to use in calculation """ jobs = [(directory, iteration, x, config.feature_config.construct_feature_proc_string(split_directory, directory, x) ) for x in range(num_jobs)] if config.use_mp: run_mp(acc_stats_func, jobs, config.log_directory) else: run_non_mp(acc_stats_func, jobs, config.log_directory) def compile_train_graphs_func(directory, lang_directory, split_directory, job_name, dictionary_names=None, debug=True): tree_path = os.path.join(directory, 'tree') mdl_path = os.path.join(directory, '0.mdl') if not os.path.exists(mdl_path): mdl_path = os.path.join(directory, 'final.mdl') if dictionary_names is None: log_path = os.path.join(directory, 'log', 'compile-graphs.{}.log'.format(job_name)) fst_scp_path = os.path.join(directory, 'fsts.{}.scp'.format(job_name)) fst_ark_path = os.path.join(directory, 'fsts.{}.ark'.format(job_name)) text_path = os.path.join(split_directory, 'text.{}.int'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: proc = subprocess.Popen([thirdparty_binary('compile-train-graphs'), '--read-disambig-syms={}'.format( os.path.join(lang_directory, 'phones', 'disambig.int')), tree_path, mdl_path, os.path.join(lang_directory, 'L.fst'), "ark:" + text_path, "ark,scp:{},{}".format(fst_ark_path, fst_scp_path)], stderr=log_file) proc.communicate() else: for name in dictionary_names: log_path = os.path.join(directory, 'log', 'compile-graphs.{}.{}.log'.format(job_name, name)) fst_scp_path = os.path.join(directory, 'fsts.{}.{}.scp'.format(job_name, name)) fst_ark_path = os.path.join(directory, 'fsts.{}.{}.ark'.format(job_name, name)) text_path = os.path.join(split_directory, 'text.{}.{}.int'.format(job_name, name)) with open(log_path, 'w', encoding='utf8') as log_file: proc = subprocess.Popen([thirdparty_binary('compile-train-graphs'), '--read-disambig-syms={}'.format( os.path.join(lang_directory, 'phones', 'disambig.int')), tree_path, mdl_path, os.path.join(lang_directory, name, 'dictionary', 'L.fst'), "ark:" + text_path, "ark,scp:{},{}".format(fst_ark_path, fst_scp_path)], stderr=log_file) proc.communicate() fst_scp_path = os.path.join(directory, 'fsts.{}.scp'.format(job_name)) lines = [] for name in dictionary_names: with open(os.path.join(directory, 'fsts.{}.{}.scp'.format(job_name, name)), 'r', encoding='utf8') as inf: for line in inf: lines.append(line) with open(fst_scp_path, 'w', encoding='utf8') as outf: for line in sorted(lines): outf.write(line) def compile_train_graphs(directory, lang_directory, split_directory, num_jobs, aligner, debug=False): """ Multiprocessing function that compiles training graphs for utterances See http://kaldi-asr.org/doc/compile-train-graphs_8cc.html for more details on the Kaldi binary this function calls. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_mono.sh for the bash script that this function was extracted from. Parameters ---------- directory : str Directory of training (monophone, triphone, speaker-adapted triphone training directories) lang_directory : str Directory of the language model used split_directory : str Directory of training data split into the number of jobs num_jobs : int The number of processes to use """ aligner.logger.debug('Compiling training graphs...') begin = time.time() log_directory = os.path.join(directory, 'log') os.makedirs(log_directory, exist_ok=True) jobs = [(directory, lang_directory, split_directory, x, aligner.dictionaries_for_job(x), debug) for x in range(num_jobs)] if aligner.use_mp: run_mp(compile_train_graphs_func, jobs, log_directory) else: run_non_mp(compile_train_graphs_func, jobs, log_directory) aligner.logger.debug(f'Compiling training graphs took {time.time() - begin}') def mono_align_equal_func(mono_directory, job_name, feature_string): fst_path = os.path.join(mono_directory, 'fsts.{}.scp'.format(job_name)) mdl_path = os.path.join(mono_directory, '0.mdl') log_path = os.path.join(mono_directory, 'log', 'align.0.{}.log'.format(job_name)) ali_path = os.path.join(mono_directory, 'ali.{}'.format(job_name)) acc_path = os.path.join(mono_directory, '0.{}.acc'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: align_proc = subprocess.Popen([thirdparty_binary('align-equal-compiled'), "scp:" + fst_path, '{}'.format(feature_string), 'ark:' + ali_path], stderr=log_file) align_proc.communicate() stats_proc = subprocess.Popen([thirdparty_binary('gmm-acc-stats-ali'), '--binary=true', mdl_path, '{}'.format(feature_string), 'ark:' + ali_path, acc_path], stdin=align_proc.stdout, stderr=log_file) stats_proc.communicate() def mono_align_equal(mono_directory, split_directory, num_jobs, config): """ Multiprocessing function that creates equal alignments for base monophone training See http://kaldi-asr.org/doc/align-equal-compiled_8cc.html for more details on the Kaldi binary this function calls. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_mono.sh for the bash script that this function was extracted from. Parameters ---------- mono_directory : str Directory of monophone training split_directory : str Directory of training data split into the number of jobs num_jobs : int The number of processes to use """ jobs = [(mono_directory, x, config.feature_config.construct_feature_proc_string(split_directory, mono_directory, x), ) for x in range(num_jobs)] if config.use_mp: run_mp(mono_align_equal_func, jobs, config.log_directory) else: run_non_mp(mono_align_equal_func, jobs, config.log_directory) def align_func(directory, iteration, job_name, mdl, config, feature_string, output_directory, debug=False): fst_path = os.path.join(directory, 'fsts.{}.scp'.format(job_name)) log_path = os.path.join(output_directory, 'log', 'align.{}.{}.log'.format(iteration, job_name)) ali_path = os.path.join(output_directory, 'ali.{}'.format(job_name)) score_path = os.path.join(output_directory, 'ali.{}.scores'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: log_file.write('DEBUG: {}'.format(debug)) if debug: loglike_path = os.path.join(output_directory, 'ali.{}.loglikes'.format(job_name)) com = [thirdparty_binary('gmm-align-compiled'), '--transition-scale={}'.format(config['transition_scale']), '--acoustic-scale={}'.format(config['acoustic_scale']), '--self-loop-scale={}'.format(config['self_loop_scale']), '--beam={}'.format(config['beam']), '--retry-beam={}'.format(config['retry_beam']), '--careful=false', '--write-per-frame-acoustic-loglikes=ark,t:{}'.format(loglike_path), mdl, "scp:" + fst_path, '{}'.format(feature_string), "ark:" + ali_path, "ark,t:" + score_path] else: com = [thirdparty_binary('gmm-align-compiled'), '--transition-scale={}'.format(config['transition_scale']), '--acoustic-scale={}'.format(config['acoustic_scale']), '--self-loop-scale={}'.format(config['self_loop_scale']), '--beam={}'.format(config['beam']), '--retry-beam={}'.format(config['retry_beam']), '--careful=false', mdl, "scp:" + fst_path, '{}'.format(feature_string), "ark:" + ali_path] align_proc = subprocess.Popen(com, stderr=log_file) align_proc.communicate() def align(iteration, directory, split_directory, optional_silence, num_jobs, config, output_directory=None, speaker_independent=False): """ Multiprocessing function that aligns based on the current model See http://kaldi-asr.org/doc/gmm-align-compiled_8cc.html and http://kaldi-asr.org/doc/gmm-boost-silence_8cc.html for more details on the Kaldi binary this function calls. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/align_si.sh for the bash script this function was based on. Parameters ---------- iteration : int or str Iteration to align directory : str Directory of training (monophone, triphone, speaker-adapted triphone training directories) split_directory : str Directory of training data split into the number of jobs optional_silence : str Colon-separated list of silence phones to boost num_jobs : int The number of processes to use in calculation config : :class:`~aligner.config.MonophoneConfig`, :class:`~aligner.config.TriphoneConfig` or :class:`~aligner.config.TriphoneFmllrConfig` Configuration object for training """ begin = time.time() if output_directory is None: output_directory = directory log_directory = os.path.join(output_directory, 'log') align_model_path = os.path.join(directory, '{}.alimdl'.format(iteration)) if not speaker_independent or not os.path.exists(align_model_path): align_model_path = os.path.join(directory, '{}.mdl'.format(iteration)) if config.boost_silence != 1.0: mdl = "{} --boost={} {} {} - |".format(thirdparty_binary('gmm-boost-silence'), config.boost_silence, optional_silence, make_path_safe(align_model_path)) else: mdl = align_model_path jobs = [(directory, iteration, x, mdl, config.align_options, config.feature_config.construct_feature_proc_string(split_directory, directory, x), output_directory, config.debug) for x in range(num_jobs)] if config.use_mp: run_mp(align_func, jobs, log_directory) else: run_non_mp(align_func, jobs, log_directory) error_logs = [] for i in range(num_jobs): log_path = os.path.join(output_directory, 'log', 'align.{}.{}.log'.format(iteration, i)) with open(log_path, 'r', encoding='utf8') as f: for line in f: if line.strip().startswith('ERROR'): error_logs.append(log_path) break if error_logs: message = 'There were {} job(s) with errors. For more information, please see the following logs:\n\n{}' raise (AlignmentError(message.format(len(error_logs), '\n'.join(error_logs)))) config.logger.debug(f'Alignment round took {time.time() - begin}') def compile_information_func(log_directory, split_directory, job_num): align_path = os.path.join(log_directory, 'align.final.{}.log'.format(job_num)) log_like_pattern = re.compile( r'^LOG .* Overall log-likelihood per frame is (?P<log_like>[-0-9.]+) over (?P<frames>\d+) frames.*$') decode_error_pattern = re.compile(r'^WARNING .* Did not successfully decode file (?P<utt>.*?), .*$') feature_pattern = re.compile(r'Segment (?P<utt>.*?) too short') data = {'unaligned': [], 'too_short': [], 'log_like': 0, 'total_frames': 0} with open(align_path, 'r', encoding='utf8') as f: for line in f: decode_error_match = re.match(decode_error_pattern, line) if decode_error_match: data['unaligned'].append(decode_error_match.group('utt')) continue log_like_match = re.match(log_like_pattern, line) if log_like_match: log_like = log_like_match.group('log_like') frames = log_like_match.group('frames') data['log_like'] = float(log_like) data['total_frames'] = int(frames) features_path = os.path.join(split_directory, 'log', 'make_mfcc.{}.log'.format(job_num)) with open(features_path, 'r', encoding='utf8') as f: for line in f: m = re.search(feature_pattern, line) if m is not None: utt = m.groups('utt') data['too_short'].append(utt) return data def compile_information(model_directory, corpus, num_jobs, config): compile_info_begin = time.time() log_dir = os.path.join(model_directory, 'log') manager = mp.Manager() alignment_info = manager.dict() jobs = [(log_dir, corpus.split_directory(), x) for x in range(num_jobs)] if config.use_mp: run_mp(compile_information_func, jobs, log_dir, alignment_info) else: run_non_mp(compile_information_func, jobs, log_dir) unaligned = {} total_frames = sum(data['total_frames'] for data in alignment_info.values()) average_log_like = 0 for x, data in alignment_info.items(): if total_frames: weight = data['total_frames'] / total_frames average_log_like += data['log_like'] * weight for u in data['unaligned']: unaligned[u] = 'Beam too narrow' for u in data['too_short']: unaligned[u] = 'Segment too short' if not total_frames: corpus.logger.warning('No files were aligned, this likely indicates serious problems with the aligner.') corpus.logger.debug(f'Compiling information took {time.time() - compile_info_begin}') return unaligned, average_log_like def compute_alignment_improvement_func(iteration, data_directory, model_directory, phones_dir, job_name, frame_shift, reversed_phone_mapping, positions): try: text_int_path = os.path.join(data_directory, 'text.{}.int'.format(job_name)) log_path = os.path.join(model_directory, 'log', 'get_ctm.{}.{}.log'.format(iteration, job_name)) ali_path = os.path.join(model_directory, 'ali.{}'.format(job_name)) model_path = os.path.join(model_directory, '{}.mdl'.format(iteration)) phone_ctm_path = os.path.join(model_directory, 'phone.{}.{}.ctm'.format(iteration, job_name)) if os.path.exists(phone_ctm_path): return frame_shift = frame_shift / 1000 with open(log_path, 'w', encoding='utf8') as log_file: lin_proc = subprocess.Popen([thirdparty_binary('linear-to-nbest'), "ark:" + ali_path, "ark:" + text_int_path, '', '', 'ark:-'], stdout=subprocess.PIPE, stderr=log_file) det_proc = subprocess.Popen([thirdparty_binary('lattice-determinize-pruned'), 'ark:-', 'ark:-'], stdin=lin_proc.stdout, stderr=log_file, stdout=subprocess.PIPE) align_proc = subprocess.Popen([thirdparty_binary('lattice-align-words'), os.path.join(phones_dir, 'word_boundary.int'), model_path, 'ark:-', 'ark:-'], stdin=det_proc.stdout, stderr=log_file, stdout=subprocess.PIPE) phone_proc = subprocess.Popen([thirdparty_binary('lattice-to-phone-lattice'), model_path, 'ark:-', "ark:-"], stdin=align_proc.stdout, stdout=subprocess.PIPE, stderr=log_file) nbest_proc = subprocess.Popen([thirdparty_binary('nbest-to-ctm'), '--frame-shift={}'.format(frame_shift), "ark:-", phone_ctm_path], stdin=phone_proc.stdout, stderr=log_file) nbest_proc.communicate() mapping = reversed_phone_mapping actual_lines = [] with open(phone_ctm_path, 'r', encoding='utf8') as f: for line in f: line = line.strip() if line == '': continue line = line.split(' ') utt = line[0] begin = Decimal(line[2]) duration = Decimal(line[3]) end = begin + duration label = line[4] try: label = mapping[int(label)] except KeyError: pass for p in positions: if label.endswith(p): label = label[:-1 * len(p)] actual_lines.append([utt, begin, end, label]) with open(phone_ctm_path, 'w', encoding='utf8') as f: for line in actual_lines: f.write('{}\n'.format(' '.join(map(str, line)))) except Exception as e: raise (Exception(str(e))) def parse_iteration_alignments(directory, iteration, num_jobs): data = {} for j in range(num_jobs): phone_ctm_path = os.path.join(directory, 'phone.{}.{}.ctm'.format(iteration, j)) with open(phone_ctm_path, 'r', encoding='utf8') as f: for line in f: line = line.strip() if line == '': continue line = line.split(' ') utt = line[0] begin = Decimal(line[1]) end = Decimal(line[2]) label = line[3] if utt not in data: data[utt] = [] data[utt].append([begin, end, label]) return data def compare_alignments(alignments_one, alignments_two, frame_shift): utterances_aligned_diff = len(alignments_two) - len(alignments_one) utts_one = set(alignments_one.keys()) utts_two = set(alignments_two.keys()) common_utts = utts_one.intersection(utts_two) differences = [] for u in common_utts: end = alignments_one[u][-1][1] t = Decimal('0.0') one_alignment = alignments_one[u] two_alignment = alignments_two[u] difference = 0 while t < end: one_label = None two_label = None for b, e, l in one_alignment: if t < b: continue if t >= e: break one_label = l for b, e, l in two_alignment: if t < b: continue if t >= e: break two_label = l if one_label != two_label: difference += frame_shift t += frame_shift difference /= end differences.append(difference) if differences: mean_difference = statistics.mean(differences) else: mean_difference = 'N/A' return utterances_aligned_diff, mean_difference def compute_alignment_improvement(iteration, config, model_directory, num_jobs): jobs = [(iteration, config.data_directory, model_directory, config.dictionary.phones_dir, x, config.feature_config.frame_shift, config.dictionary.reversed_phone_mapping, config.dictionary.positions) for x in range(num_jobs)] if config.use_mp: run_mp(compute_alignment_improvement_func, jobs, config.log_directory) else: run_non_mp(compute_alignment_improvement_func, jobs, config.log_directory) alignment_diff_path = os.path.join(model_directory, 'train_change.csv') if iteration == 0 or iteration not in config.realignment_iterations: return ind = config.realignment_iterations.index(iteration) if ind != 0: previous_iteration = config.realignment_iterations[ind - 1] else: previous_iteration = 0 try: previous_alignments = parse_iteration_alignments(model_directory, previous_iteration, num_jobs) except FileNotFoundError: return current_alignments = parse_iteration_alignments(model_directory, iteration, num_jobs) utterance_aligned_diff, mean_difference = compare_alignments(previous_alignments, current_alignments, config.feature_config.frame_shift) if not os.path.exists(alignment_diff_path): with open(alignment_diff_path, 'w', encoding='utf8') as f: f.write('iteration,number_aligned,number_previously_aligned,' 'difference_in_utts_aligned,mean_boundary_change\n') if iteration in config.realignment_iterations: with open(alignment_diff_path, 'a', encoding='utf8') as f: f.write('{},{},{},{},{}\n'.format(iteration, len(current_alignments), len(previous_alignments), utterance_aligned_diff, mean_difference)) if not config.debug: for j in range(num_jobs): phone_ctm_path = os.path.join(model_directory, 'phone.{}.{}.ctm'.format(previous_iteration, j)) os.remove(phone_ctm_path) def ali_to_ctm_func(model_directory, word_path, split_directory, job_name, frame_shift, word_mode=True): text_int_path = os.path.join(split_directory, 'text.{}.int'.format(job_name)) ali_path = os.path.join(model_directory, 'ali.{}'.format(job_name)) model_path = os.path.join(model_directory, 'final.mdl') if word_mode: ctm_path = os.path.join(model_directory, 'word_ctm.{}'.format(job_name)) log_path = os.path.join(model_directory, 'log', 'get_word_ctm_.{}.log'.format(job_name)) else: ctm_path = os.path.join(model_directory, 'phone_ctm.{}'.format(job_name)) log_path = os.path.join(model_directory, 'log', 'get_phone_ctm_.{}.log'.format(job_name)) if os.path.exists(ctm_path): return with open(log_path, 'w', encoding='utf8') as log_file: lin_proc = subprocess.Popen([thirdparty_binary('linear-to-nbest'), "ark:" + ali_path, "ark:" + text_int_path, '', '', 'ark:-'], stdout=subprocess.PIPE, stderr=log_file) align_words_proc = subprocess.Popen([thirdparty_binary('lattice-align-words'), word_path, model_path, 'ark:-', 'ark:-'], stdin=lin_proc.stdout, stdout=subprocess.PIPE, stderr=log_file) if word_mode: nbest_proc = subprocess.Popen([thirdparty_binary('nbest-to-ctm'), '--frame-shift={}'.format(frame_shift), 'ark:-', ctm_path], stderr=log_file, stdin=align_words_proc.stdout) else: phone_proc = subprocess.Popen([thirdparty_binary('lattice-to-phone-lattice'), model_path, 'ark:-', "ark:-"], stdout=subprocess.PIPE, stdin=align_words_proc.stdout, stderr=log_file) nbest_proc = subprocess.Popen([thirdparty_binary('nbest-to-ctm'), '--frame-shift={}'.format(frame_shift), "ark:-", ctm_path], stdin=phone_proc.stdout, stderr=log_file) nbest_proc.communicate() def process_line(line, utt_begin): line = line.split(' ') utt = line[0] begin = round(float(line[2]), 4) duration = float(line[3]) end = round(begin + duration, 4) label = line[4] begin += utt_begin end += utt_begin return utt, begin, end, label class NoCleanupWordCtmProcessWorker(mp.Process): def __init__(self, job_name, ctm_path, to_process_queue, stopped, error_catching, segments, utt_speak_mapping, reversed_word_mapping, speaker_mapping): mp.Process.__init__(self) self.job_name = job_name self.ctm_path = ctm_path self.to_process_queue = to_process_queue self.stopped = stopped self.error_catching = error_catching # Corpus information self.segments = segments self.utt_speak_mapping = utt_speak_mapping # Dictionary information self.reversed_word_mapping = reversed_word_mapping self.speaker_mapping = speaker_mapping def run(self): current_file_data = {} def process_current(cur_utt, cur_file, current_labels): speaker = self.utt_speak_mapping[cur_utt] reversed_word_mapping = self.reversed_word_mapping if self.speaker_mapping is not None: dict_lookup_speaker = speaker if speaker not in self.speaker_mapping: dict_lookup_speaker = 'default' reversed_word_mapping = self.reversed_word_mapping[self.speaker_mapping[dict_lookup_speaker]] actual_labels = parse_from_word_no_cleanup(current_labels, reversed_word_mapping) if speaker not in current_file_data: current_file_data[speaker] = [] current_file_data[speaker].extend(actual_labels) def process_current_file(cur_file): self.to_process_queue.put(('word', cur_file, current_file_data)) cur_utt = None cur_file = None utt_begin = 0 current_labels = [] sum_time = 0 count_time = 0 try: with open(self.ctm_path, 'r') as word_file: for line in word_file: line = line.strip() if not line: continue utt, begin, end, label = process_line(line, utt_begin) if cur_utt is None: cur_utt = utt begin_time = time.time() if cur_utt in self.segments: seg = self.segments[cur_utt] cur_file = seg['file_name'] utt_begin = seg['begin'] else: utt_begin = 0 cur_file = utt begin += utt_begin end += utt_begin if utt != cur_utt: process_current(cur_utt, cur_file, current_labels) cur_utt = utt if cur_utt in self.segments: seg = self.segments[cur_utt] file_name = seg['file_name'] utt_begin = seg['begin'] else: utt_begin = 0 file_name = utt if file_name != cur_file: process_current_file(cur_file) current_file_data = {} sum_time += time.time() - begin_time count_time += 1 begin_time = time.time() cur_file = file_name current_labels = [] current_labels.append([begin, end, label]) if current_labels: process_current(cur_utt, cur_file, current_labels) process_current_file(cur_file) sum_time += time.time() - begin_time count_time += 1 except Exception as e: self.stopped.stop() exc_type, exc_value, exc_traceback = sys.exc_info() self.error_catching[('word', self.job_name)] = '\n'.join( traceback.format_exception(exc_type, exc_value, exc_traceback)) class CleanupWordCtmProcessWorker(mp.Process): def __init__(self, job_name, ctm_path, to_process_queue, stopped, error_catching, segments, text_mapping, utt_speak_mapping, words_mapping, speaker_mapping, punctuation, clitic_set, clitic_markers, compound_markers, oov_int): mp.Process.__init__(self) self.job_name = job_name self.ctm_path = ctm_path self.to_process_queue = to_process_queue self.stopped = stopped self.error_catching = error_catching # Corpus information self.segments = segments self.text_mapping = text_mapping self.utt_speak_mapping = utt_speak_mapping # Dictionary information self.words_mapping = words_mapping self.speaker_mapping = speaker_mapping self.punctuation = punctuation self.clitic_set = clitic_set self.clitic_markers = clitic_markers self.compound_markers = compound_markers self.oov_int = oov_int def run(self): current_file_data = {} def process_current(cur_utt, cur_file, current_labels): text = self.text_mapping[cur_utt].split() speaker = self.utt_speak_mapping[cur_utt] words_mapping = self.words_mapping oov_int = self.oov_int if self.speaker_mapping is not None: dict_lookup_speaker = speaker if speaker not in self.speaker_mapping: dict_lookup_speaker = 'default' words_mapping = self.words_mapping[self.speaker_mapping[dict_lookup_speaker]] oov_int = self.oov_int[self.speaker_mapping[dict_lookup_speaker]] actual_labels = parse_from_word(current_labels, text, words_mapping, self.punctuation, self.clitic_set, self.clitic_markers, self.compound_markers, oov_int) if speaker not in current_file_data: current_file_data[speaker] = [] current_file_data[speaker].extend(actual_labels) def process_current_file(cur_file): self.to_process_queue.put(('word', cur_file, current_file_data)) cur_utt = None cur_file = None utt_begin = 0 current_labels = [] sum_time = 0 count_time = 0 try: with open(self.ctm_path, 'r') as word_file: for line in word_file: line = line.strip() if not line: continue utt, begin, end, label = process_line(line, utt_begin) if cur_utt is None: cur_utt = utt begin_time = time.time() if cur_utt in self.segments: seg = self.segments[cur_utt] cur_file = seg['file_name'] utt_begin = seg['begin'] else: utt_begin = 0 cur_file = utt begin += utt_begin end += utt_begin if utt != cur_utt: process_current(cur_utt, cur_file, current_labels) cur_utt = utt if cur_utt in self.segments: seg = self.segments[cur_utt] file_name = seg['file_name'] utt_begin = seg['begin'] else: utt_begin = 0 file_name = utt if file_name != cur_file: process_current_file(cur_file) current_file_data = {} sum_time += time.time() - begin_time count_time += 1 begin_time = time.time() cur_file = file_name current_labels = [] current_labels.append([begin, end, label]) if current_labels: process_current(cur_utt, cur_file, current_labels) process_current_file(cur_file) sum_time += time.time() - begin_time count_time += 1 except Exception as e: self.stopped.stop() exc_type, exc_value, exc_traceback = sys.exc_info() self.error_catching[('word', self.job_name)] = '\n'.join( traceback.format_exception(exc_type, exc_value, exc_traceback)) class PhoneCtmProcessWorker(mp.Process): def __init__(self, job_name, ctm_path, to_process_queue, stopped, error_catching, segments, utt_speak_mapping, reversed_phone_mapping, speaker_mapping, positions): mp.Process.__init__(self) self.job_name = job_name self.ctm_path = ctm_path self.to_process_queue = to_process_queue self.stopped = stopped self.error_catching = error_catching self.segments = segments self.utt_speak_mapping = utt_speak_mapping self.reversed_phone_mapping = reversed_phone_mapping self.speaker_mapping = speaker_mapping self.positions = positions def run(self): main_begin = time.time() cur_utt = None cur_file = None utt_begin = 0 current_labels = [] sum_time = 0 count_time = 0 current_file_data = {} def process_current_utt(cur_utt, cur_file, current_labels): speaker = self.utt_speak_mapping[cur_utt] reversed_phone_mapping = self.reversed_phone_mapping if self.speaker_mapping is not None: dict_lookup_speaker = speaker if speaker not in self.speaker_mapping: dict_lookup_speaker = 'default' reversed_phone_mapping = self.reversed_phone_mapping[self.speaker_mapping[dict_lookup_speaker]] actual_labels = parse_from_phone(current_labels, reversed_phone_mapping, self.positions) if speaker not in current_file_data: current_file_data[speaker] = [] current_file_data[speaker].extend(actual_labels) def process_current_file(cur_file): self.to_process_queue.put(('phone', cur_file, current_file_data)) try: with open(self.ctm_path, 'r') as word_file: for line in word_file: line = line.strip() if not line: continue utt, begin, end, label = process_line(line, utt_begin) if cur_utt is None: cur_utt = utt begin_time = time.time() if cur_utt in self.segments: seg = self.segments[cur_utt] cur_file = seg['file_name'] utt_begin = seg['begin'] else: utt_begin = 0 cur_file = utt begin += utt_begin end += utt_begin if utt != cur_utt: process_current_utt(cur_utt, cur_file, current_labels) cur_utt = utt if cur_utt in self.segments: seg = self.segments[cur_utt] file_name = seg['file_name'] utt_begin = seg['begin'] else: utt_begin = 0 file_name = utt if file_name != cur_file: process_current_file(cur_file) current_file_data = {} sum_time += time.time() - begin_time count_time += 1 begin_time = time.time() cur_file = file_name current_labels = [] current_labels.append([begin, end, label]) if current_labels: process_current_utt(cur_utt, cur_file, current_labels) process_current_file(cur_file) sum_time += time.time() - begin_time count_time += 1 except Exception as e: self.stopped.stop() exc_type, exc_value, exc_traceback = sys.exc_info() self.error_catching[('phone', self.job_name)] = '\n'.join( traceback.format_exception(exc_type, exc_value, exc_traceback)) class CombineProcessWorker(mp.Process): def __init__(self, job_name, to_process_queue, to_export_queue, stopped, finished_combining, error_catching, silences, multilingual_ipa, words_mapping, speaker_mapping, punctuation, clitic_set, clitic_markers, compound_markers, oov_code, words, strip_diacritics, cleanup_textgrids): mp.Process.__init__(self) self.job_name = job_name self.to_process_queue = to_process_queue self.to_export_queue = to_export_queue self.stopped = stopped self.finished_combining = finished_combining self.error_catching = error_catching self.silences = silences self.multilingual_ipa = multilingual_ipa self.words_mapping = words_mapping self.speaker_mapping = speaker_mapping self.punctuation = punctuation self.clitic_set = clitic_set self.clitic_markers = clitic_markers self.compound_markers = compound_markers self.oov_code = oov_code self.words = words self.strip_diacritics = strip_diacritics self.cleanup_textgrids = cleanup_textgrids def run(self): sum_time = 0 count_time = 0 phone_data = {} word_data = {} while True: try: w_p, file_name, data = self.to_process_queue.get(timeout=queue_polling_timeout) begin_time = time.time() except Empty as error: if self.finished_combining.stop_check(): break continue self.to_process_queue.task_done() if self.stopped.stop_check(): continue if w_p == 'phone': if file_name in word_data: word_ctm = word_data.pop(file_name) phone_ctm = data else: phone_data[file_name] = data continue else: if file_name in phone_data: phone_ctm = phone_data.pop(file_name) word_ctm = data else: word_data[file_name] = data continue try: data = generate_tiers(word_ctm, phone_ctm, self.silences, self.multilingual_ipa, self.words_mapping, self.speaker_mapping, self.punctuation, self.clitic_set, self.clitic_markers, self.compound_markers, self.oov_code, self.words, self.strip_diacritics, cleanup_textgrids=self.cleanup_textgrids) self.to_export_queue.put((file_name, data)) except Exception as e: self.stopped.stop() exc_type, exc_value, exc_traceback = sys.exc_info() self.error_catching[('combining', self.job_name)] = '\n'.join( traceback.format_exception(exc_type, exc_value, exc_traceback)) sum_time += time.time() - begin_time count_time += 1 class ExportTextGridProcessWorker(mp.Process): def __init__(self, for_write_queue, stopped, finished_processing, textgrid_errors, out_directory, backup_output_directory, wav_durations, frame_shift, file_directory_mapping, file_name_mapping, speaker_ordering): mp.Process.__init__(self) self.for_write_queue = for_write_queue self.stopped = stopped self.finished_processing = finished_processing self.textgrid_errors = textgrid_errors self.out_directory = out_directory self.backup_output_directory = backup_output_directory self.wav_durations = wav_durations self.frame_shift = frame_shift self.file_directory_mapping = file_directory_mapping self.file_name_mapping = file_name_mapping self.speaker_ordering = speaker_ordering def run(self): while True: try: file_name, data = self.for_write_queue.get(timeout=queue_polling_timeout) except Empty as error: if self.finished_processing.stop_check(): break continue self.for_write_queue.task_done() if self.stopped.stop_check(): continue overwrite = True speaker = None if len(data) == 1: speaker = next(iter(data)) output_name, output_path = construct_output_path(file_name, self.out_directory, self.file_directory_mapping, self.file_name_mapping, speaker, self.backup_output_directory) max_time = round(self.wav_durations[output_name], 4) try: export_textgrid(file_name, output_path, data, max_time, self.frame_shift, self.speaker_ordering, overwrite) except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() self.textgrid_errors[file_name] = '\n'.join( traceback.format_exception(exc_type, exc_value, exc_traceback)) class ExportPreparationProcessWorker(mp.Process): def __init__(self, to_export_queue, for_write_queue, stopped, finished_combining, file_speaker_mapping): mp.Process.__init__(self) self.to_export_queue = to_export_queue self.for_write_queue = for_write_queue self.stopped = stopped self.finished_combining = finished_combining self.file_speaker_mapping = file_speaker_mapping def run(self): export_data = {} while True: try: file_name, data = self.to_export_queue.get(timeout=queue_polling_timeout) except Empty as error: if self.finished_combining.stop_check(): break continue self.to_export_queue.task_done() if self.stopped.stop_check(): continue if file_name in self.file_speaker_mapping and len(self.file_speaker_mapping[file_name]) > 1: if file_name not in export_data: export_data[file_name] = data else: export_data[file_name].update(data) if len(export_data[file_name]) == len(self.file_speaker_mapping[file_name]): data = export_data.pop(file_name) self.for_write_queue.put((file_name, data)) else: self.for_write_queue.put((file_name, data)) for k, v in export_data.items(): self.for_write_queue.put((k, v)) def ctms_to_textgrids_mp(align_config, output_directory, model_directory, dictionary, corpus, num_jobs): frame_shift = align_config.feature_config.frame_shift / 1000 export_begin = time.time() manager = mp.Manager() textgrid_errors = manager.dict() error_catching = manager.dict() stopped = Stopped() backup_output_directory = None if not align_config.overwrite: backup_output_directory = os.path.join(model_directory, 'textgrids') os.makedirs(backup_output_directory, exist_ok=True) if dictionary.has_multiple: words_mapping = {} words = {} reversed_phone_mapping = {} reversed_word_mapping = {} for name, d in dictionary.dictionary_mapping.items(): words_mapping[name] = d.words_mapping words[name] = d.words reversed_phone_mapping[name] = d.reversed_phone_mapping reversed_word_mapping[name] = d.reversed_word_mapping speaker_mapping = dictionary.speaker_mapping oov_int = {name: d.oov_int for name, d in dictionary.dictionary_mapping.items()} else: words_mapping = dictionary.words_mapping words = dictionary.words reversed_phone_mapping = dictionary.reversed_phone_mapping reversed_word_mapping = dictionary.reversed_word_mapping speaker_mapping = None oov_int = dictionary.oov_int punctuation = dictionary.punctuation clitic_set = dictionary.clitic_set clitic_markers = dictionary.clitic_markers compound_markers = dictionary.compound_markers corpus.logger.debug('Starting combination process...') silences = dictionary.silences corpus.logger.debug('Starting export process...') corpus.logger.debug('Beginning to process ctm files...') ctm_begin_time = time.time() word_procs = [] phone_procs = [] combine_procs = [] finished_signals = [Stopped() for _ in range(num_jobs)] finished_processing = Stopped() to_process_queue = [mp.JoinableQueue() for _ in range(num_jobs)] to_export_queue = mp.JoinableQueue() for_write_queue = mp.JoinableQueue() finished_combining = Stopped() for i in range(num_jobs): word_ctm_path = os.path.join(model_directory, 'word_ctm.{}'.format(i)) phone_ctm_path = os.path.join(model_directory, 'phone_ctm.{}'.format(i)) if align_config.cleanup_textgrids: word_p = CleanupWordCtmProcessWorker(i, word_ctm_path, to_process_queue[i], stopped, error_catching, corpus.segments, corpus.text_mapping, corpus.utt_speak_mapping, words_mapping, speaker_mapping, punctuation, clitic_set, clitic_markers, compound_markers, oov_int) else: print('no clean up!') word_p = NoCleanupWordCtmProcessWorker(i, word_ctm_path, to_process_queue[i], stopped, error_catching, corpus.segments, corpus.utt_speak_mapping, reversed_word_mapping, speaker_mapping) word_procs.append(word_p) word_p.start() phone_p = PhoneCtmProcessWorker(i, phone_ctm_path, to_process_queue[i], stopped, error_catching, corpus.segments, corpus.utt_speak_mapping, reversed_phone_mapping, speaker_mapping, dictionary.positions) phone_p.start() phone_procs.append(phone_p) combine_p = CombineProcessWorker(i, to_process_queue[i], to_export_queue, stopped, finished_signals[i], error_catching, silences, dictionary.multilingual_ipa, words_mapping, speaker_mapping, punctuation, clitic_set, clitic_markers, compound_markers, dictionary.oov_code, words, dictionary.strip_diacritics, align_config.cleanup_textgrids) combine_p.start() combine_procs.append(combine_p) preparation_proc = ExportPreparationProcessWorker(to_export_queue, for_write_queue, stopped, finished_combining, corpus.file_speaker_mapping) preparation_proc.start() export_procs = [] for i in range(num_jobs): export_proc = ExportTextGridProcessWorker(for_write_queue, stopped, finished_processing, textgrid_errors, output_directory, backup_output_directory, corpus.file_durations, frame_shift, corpus.file_directory_mapping, corpus.file_name_mapping, corpus.speaker_ordering) export_proc.start() export_procs.append(export_proc) corpus.logger.debug('Waiting for processes to finish...') for i in range(num_jobs): word_procs[i].join() phone_procs[i].join() finished_signals[i].stop() corpus.logger.debug(f'Ctm parsers took {time.time() - ctm_begin_time} seconds') corpus.logger.debug('Waiting for processes to finish...') for i in range(num_jobs): to_process_queue[i].join() combine_procs[i].join() finished_combining.stop() to_export_queue.join() preparation_proc.join() corpus.logger.debug(f'Combiners took {time.time() - ctm_begin_time} seconds') corpus.logger.debug('Beginning export...') corpus.logger.debug(f'Adding jobs for export took {time.time() - export_begin}') corpus.logger.debug('Waiting for export processes to join...') for_write_queue.join() finished_processing.stop() for i in range(num_jobs): export_procs[i].join() for_write_queue.join() corpus.logger.debug(f'Export took {time.time() - export_begin} seconds') if error_catching: corpus.logger.error('Error was encountered in processing CTMs') for key, error in error_catching.items(): corpus.logger.error(f'{key}:\n\n{error}') raise AlignmentError() output_textgrid_writing_errors(output_directory, textgrid_errors) def convert_ali_to_textgrids(align_config, output_directory, model_directory, dictionary, corpus, num_jobs): """ Multiprocessing function that aligns based on the current model See: - http://kaldi-asr.org/doc/linear-to-nbest_8cc.html - http://kaldi-asr.org/doc/lattice-align-words_8cc.html - http://kaldi-asr.org/doc/lattice-to-phone-lattice_8cc.html - http://kaldi-asr.org/doc/nbest-to-ctm_8cc.html for more details on the Kaldi binaries this function calls. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/get_train_ctm.sh for the bash script that this function was based on. Parameters ---------- output_directory : str Directory to write TextGrid files to model_directory : str Directory of training (monophone, triphone, speaker-adapted triphone training directories) dictionary : :class:`~montreal_forced_aligner.dictionary.Dictionary` Dictionary object that has information about pronunciations corpus : :class:`~montreal_forced_aligner.corpus.AlignableCorpus` Corpus object that has information about the dataset num_jobs : int The number of processes to use in calculation Raises ------ CorpusError If the files per speaker exceeds the number of files that are allowed to be open on the computer (for Unix-based systems) """ log_directory = os.path.join(model_directory, 'log') frame_shift = align_config.feature_config.frame_shift / 1000 word_path = os.path.join(dictionary.phones_dir, 'word_boundary.int') jobs = [(model_directory, word_path, corpus.split_directory(), x, frame_shift, True) # Word CTM jobs for x in range(num_jobs)] jobs += [(model_directory, word_path, corpus.split_directory(), x, frame_shift, False) # Phone CTM jobs for x in range(num_jobs)] corpus.logger.info('Generating CTMs from alignment...') if align_config.use_mp: run_mp(ali_to_ctm_func, jobs, log_directory) else: run_non_mp(ali_to_ctm_func, jobs, log_directory) corpus.logger.info('Finished generating CTMs!') corpus.logger.info('Exporting TextGrids from CTMs...') if align_config.use_mp: ctms_to_textgrids_mp(align_config, output_directory, model_directory, dictionary, corpus, num_jobs) else: ctms_to_textgrids_non_mp(align_config, output_directory, model_directory, dictionary, corpus, num_jobs) corpus.logger.info('Finished exporting TextGrids!') def tree_stats_func(directory, ci_phones, mdl, feature_string, ali_path, job_name): context_opts = [] log_path = os.path.join(directory, 'log', 'acc_tree.{}.log'.format(job_name)) treeacc_path = os.path.join(directory, '{}.treeacc'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: subprocess.call([thirdparty_binary('acc-tree-stats')] + context_opts + ['--ci-phones=' + ci_phones, mdl, '{}'.format(feature_string), "ark:" + ali_path, treeacc_path], stderr=log_file) def tree_stats(directory, align_directory, split_directory, ci_phones, num_jobs, config): """ Multiprocessing function that computes stats for decision tree training See http://kaldi-asr.org/doc/acc-tree-stats_8cc.html for more details on the Kaldi binary this runs. Parameters ---------- directory : str Directory of training (triphone, speaker-adapted triphone training directories) align_directory : str Directory of previous alignment split_directory : str Directory of training data split into the number of jobs ci_phones : str Colon-separated list of context-independent phones num_jobs : int The number of processes to use in calculation """ mdl_path = os.path.join(align_directory, 'final.mdl') jobs = [(directory, ci_phones, mdl_path, config.feature_config.construct_feature_proc_string(split_directory, directory, x), os.path.join(align_directory, 'ali.{}'.format(x)), x) for x in range(num_jobs)] if config.use_mp: run_mp(tree_stats_func, jobs, config.log_directory) else: run_non_mp(tree_stats_func, jobs, config.log_directory) tree_accs = [os.path.join(directory, '{}.treeacc'.format(x)) for x in range(num_jobs)] log_path = os.path.join(directory, 'log', 'sum_tree_acc.log') with open(log_path, 'w', encoding='utf8') as log_file: subprocess.call([thirdparty_binary('sum-tree-stats'), os.path.join(directory, 'treeacc')] + tree_accs, stderr=log_file) # for f in tree_accs: # os.remove(f) def convert_alignments_func(directory, align_directory, job_name): mdl_path = os.path.join(directory, '1.mdl') tree_path = os.path.join(directory, 'tree') ali_mdl_path = os.path.join(align_directory, 'final.mdl') ali_path = os.path.join(align_directory, 'ali.{}'.format(job_name)) new_ali_path = os.path.join(directory, 'ali.{}'.format(job_name)) log_path = os.path.join(directory, 'log', 'convert.{}.log'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: subprocess.call([thirdparty_binary('convert-ali'), ali_mdl_path, mdl_path, tree_path, "ark:" + ali_path, "ark:" + new_ali_path], stderr=log_file) def convert_alignments(directory, align_directory, num_jobs, config): """ Multiprocessing function that converts alignments from previous training See http://kaldi-asr.org/doc/convert-ali_8cc.html for more details on the Kaldi binary this runs. Parameters ---------- directory : str Directory of training (triphone, speaker-adapted triphone training directories) align_directory : str Directory of previous alignment num_jobs : int The number of processes to use in calculation """ jobs = [(directory, align_directory, x) for x in range(num_jobs)] if config.use_mp: run_mp(convert_alignments_func, jobs, config.log_directory) else: run_non_mp(convert_alignments_func, jobs, config.log_directory) def calc_fmllr_func(directory, split_directory, sil_phones, job_name, feature_string, config, initial, model_name='final'): log_path = os.path.join(directory, 'log', 'fmllr.{}.{}.log'.format(model_name, job_name)) ali_path = os.path.join(directory, 'ali.{}'.format(job_name)) mdl_path = os.path.join(directory, '{}.mdl'.format(model_name)) spk2utt_path = os.path.join(split_directory, 'spk2utt.{}'.format(job_name)) if not initial: tmp_trans_path = os.path.join(directory, 'trans.temp.{}'.format(job_name)) else: tmp_trans_path = os.path.join(directory, 'trans.{}'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: post_proc = subprocess.Popen([thirdparty_binary('ali-to-post'), "ark:" + ali_path, 'ark:-'], stderr=log_file, stdout=subprocess.PIPE) weight_proc = subprocess.Popen([thirdparty_binary('weight-silence-post'), '0.0', sil_phones, mdl_path, 'ark:-', 'ark:-'], stderr=log_file, stdin=post_proc.stdout, stdout=subprocess.PIPE) if not initial: trans_path = os.path.join(directory, 'trans.{}'.format(job_name)) cmp_trans_path = os.path.join(directory, 'trans.cmp.{}'.format(job_name)) est_proc = subprocess.Popen([thirdparty_binary('gmm-est-fmllr'), '--verbose=4', '--fmllr-update-type={}'.format(config.fmllr_update_type), '--spk2utt=ark:' + spk2utt_path, mdl_path, '{}'.format(feature_string), 'ark:-', 'ark:-'], stderr=log_file, stdin=weight_proc.stdout, stdout=subprocess.PIPE) comp_proc = subprocess.Popen([thirdparty_binary('compose-transforms'), '--b-is-affine=true', 'ark:-', 'ark:' + trans_path, 'ark:' + cmp_trans_path], stderr=log_file, stdin=est_proc.stdout) comp_proc.communicate() os.remove(trans_path) os.rename(cmp_trans_path, trans_path) else: est_proc = subprocess.Popen([thirdparty_binary('gmm-est-fmllr'), '--verbose=4', '--fmllr-update-type={}'.format(config.fmllr_update_type), '--spk2utt=ark:' + spk2utt_path, mdl_path, '{}'.format(feature_string), 'ark,s,cs:-', 'ark:' + tmp_trans_path], stderr=log_file, stdin=weight_proc.stdout) est_proc.communicate() def calc_fmllr(directory, split_directory, sil_phones, num_jobs, config, initial=False, iteration=None): """ Multiprocessing function that computes speaker adaptation (fMLLR) See: - http://kaldi-asr.org/doc/gmm-est-fmllr_8cc.html - http://kaldi-asr.org/doc/ali-to-post_8cc.html - http://kaldi-asr.org/doc/weight-silence-post_8cc.html - http://kaldi-asr.org/doc/compose-transforms_8cc.html - http://kaldi-asr.org/doc/transform-feats_8cc.html for more details on the Kaldi binary this runs. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/align_fmllr.sh for the original bash script that this function was based on. Parameters ---------- directory : str Directory of training (triphone, speaker-adapted triphone training directories) split_directory : str Directory of training data split into the number of jobs sil_phones : str Colon-separated list of silence phones num_jobs : int The number of processes to use in calculation config : :class:`~aligner.config.TriphoneFmllrConfig` Configuration object for training initial : bool, optional Whether this is the first computation of speaker-adaptation, defaults to False iteration : int or str Specifies the current iteration, defaults to None """ config.logger.info('Calculating fMLLR for speaker adaptation...') begin = time.time() if iteration is None: if initial: model_name = '1' else: model_name = 'final' else: model_name = iteration log_directory = os.path.join(directory, 'log') jobs = [(directory, split_directory, sil_phones, x, config.feature_config.construct_feature_proc_string(split_directory, directory, x), config, initial, model_name) for x in range(num_jobs)] if config.use_fmllr_mp: run_mp(calc_fmllr_func, jobs, log_directory) else: run_non_mp(calc_fmllr_func, jobs, log_directory) config.logger.debug(f'Fmllr calculation took {time.time() - begin}') def acc_stats_two_feats_func(directory, model_path, feature_string, si_feature_string, job_name): log_path = os.path.join(directory, 'log', 'align_model_est.{}.log'.format(job_name)) acc_path = os.path.join(directory, 'align_model.{}.acc'.format(job_name)) with open(log_path, 'w', encoding='utf8') as log_file: ali_to_post_proc = subprocess.Popen([thirdparty_binary('ali-to-post'), 'ark:' + os.path.join(directory, 'ali.{}'.format(job_name)), 'ark:-'], stderr=log_file, stdout=subprocess.PIPE) acc_proc = subprocess.Popen([thirdparty_binary('gmm-acc-stats-twofeats'), model_path, feature_string, si_feature_string, "ark,s,cs:-", acc_path], stderr=log_file, stdin=ali_to_post_proc.stdout) acc_proc.communicate() def create_align_model(directory, split_directory, num_jobs, config): config.logger.info('Creating alignment model for speaker-independent features...') begin = time.time() log_directory = os.path.join(directory, 'log') model_name = 'final' model_path = os.path.join(directory, '{}.mdl'.format(model_name)) align_model_path = os.path.join(directory, '{}.alimdl'.format(model_name)) jobs = [(directory, model_path, config.feature_config.construct_feature_proc_string(split_directory, directory, x), config.feature_config.construct_feature_proc_string(split_directory, directory, x, speaker_independent=True), x) for x in range(num_jobs)] if config.use_mp: run_mp(acc_stats_two_feats_func, jobs, log_directory) else: run_non_mp(acc_stats_two_feats_func, jobs, log_directory) log_path = os.path.join(directory, 'log', 'align_model_est.final.log') with open(log_path, 'w', encoding='utf8') as log_file: acc_files = [os.path.join(directory, 'align_model.{}.acc'.format(x)) for x in range(num_jobs)] est_proc = subprocess.Popen([thirdparty_binary('gmm-est'), "--remove-low-count-gaussians=false", '--power=' + str(config.power), model_path, "{} - {}|".format(thirdparty_binary('gmm-sum-accs'), ' '.join(map(make_path_safe, acc_files))), align_model_path], stderr=log_file) est_proc.communicate() if not config.debug: for f in acc_files: os.remove(f) config.logger.debug(f'Alignment model creation took {time.time() - begin}') def lda_acc_stats_func(directory, feature_string, align_directory, config, ci_phones, i): log_path = os.path.join(directory, 'log', 'ali_to_post.{}.log'.format(i)) with open(log_path, 'w', encoding='utf8') as log_file: ali_to_post_proc = subprocess.Popen([thirdparty_binary('ali-to-post'), 'ark:' + os.path.join(align_directory, 'ali.{}'.format(i)), 'ark:-'], stderr=log_file, stdout=subprocess.PIPE) weight_silence_post_proc = subprocess.Popen([thirdparty_binary('weight-silence-post'), str(config['boost_silence']), ci_phones, os.path.join(align_directory, 'final.mdl'), 'ark:-', 'ark:-'], stdin=ali_to_post_proc.stdout, stderr=log_file, stdout=subprocess.PIPE) acc_lda_post_proc = subprocess.Popen([thirdparty_binary('acc-lda'), '--rand-prune=' + str(config['random_prune']), os.path.join(align_directory, 'final.mdl'), '{}'.format(feature_string), 'ark,s,cs:-', os.path.join(directory, 'lda.{}.acc'.format(i))], stdin=weight_silence_post_proc.stdout, stderr=log_file) acc_lda_post_proc.communicate() def lda_acc_stats(directory, split_directory, align_directory, config, ci_phones, num_jobs): """ Multiprocessing function that accumulates LDA statistics See: - http://kaldi-asr.org/doc/ali-to-post_8cc.html - http://kaldi-asr.org/doc/weight-silence-post_8cc.html - http://kaldi-asr.org/doc/acc-lda_8cc.html - http://kaldi-asr.org/doc/est-lda_8cc.html for more details on the Kaldi binary this runs. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_lda_mllt.sh for the original bash script that this function was based on. Parameters ---------- directory : str Directory of LDA+MLLT training split_directory : str Directory of training data split into the number of jobs align_directory : str Directory of previous alignment config : :class:`~aligner.config.LdaMlltConfig` Configuration object for training ci_phones : str Colon-separated list of context-independent phones num_jobs : int The number of processes to use in calculation """ jobs = [(directory, config.feature_config.construct_feature_proc_string(split_directory, directory, x, splice=True), align_directory, config.lda_options, ci_phones, x) for x in range(num_jobs)] if config.use_mp: run_mp(lda_acc_stats_func, jobs, config.log_directory) else: run_non_mp(lda_acc_stats_func, jobs, config.log_directory) log_path = os.path.join(directory, 'log', 'lda_est.log') acc_list = [] for x in range(num_jobs): acc_list.append(os.path.join(directory, 'lda.{}.acc'.format(x))) with open(log_path, 'w', encoding='utf8') as log_file: est_lda_proc = subprocess.Popen([thirdparty_binary('est-lda'), '--write-full-matrix=' + os.path.join(directory, 'full.mat'), '--dim=' + str(config.lda_dimension), os.path.join(directory, 'lda.mat')] + acc_list, stderr=log_file) est_lda_proc.communicate() def calc_lda_mllt_func(directory, feature_string, sil_phones, job_name, config, initial, model_name='final'): log_path = os.path.join(directory, 'log', 'lda_mllt.{}.{}.log'.format(model_name, job_name)) ali_path = os.path.join(directory, 'ali.{}'.format(job_name)) if not initial: mdl_path = os.path.join(directory, '{}.mdl'.format(model_name)) else: mdl_path = os.path.join(directory, '1.mdl') model_name = 1 # Estimating MLLT with open(log_path, 'a', encoding='utf8') as log_file: post_proc = subprocess.Popen([thirdparty_binary('ali-to-post'), "ark:" + ali_path, 'ark:-'], stdout=subprocess.PIPE, stderr=log_file) weight_proc = subprocess.Popen([thirdparty_binary('weight-silence-post'), '0.0', sil_phones, mdl_path, 'ark:-', 'ark:-'], stdin=post_proc.stdout, stdout=subprocess.PIPE, stderr=log_file) acc_proc = subprocess.Popen([thirdparty_binary('gmm-acc-mllt'), '--rand-prune=' + str(config['random_prune']), mdl_path, '{}'.format(feature_string), 'ark:-', os.path.join(directory, '{}.{}.macc'.format(model_name, job_name))], stdin=weight_proc.stdout, stderr=log_file) acc_proc.communicate() def calc_lda_mllt(directory, data_directory, sil_phones, num_jobs, config, initial=False, iteration=None): """ Multiprocessing function that calculates LDA+MLLT transformations See: - http://kaldi-asr.org/doc/ali-to-post_8cc.html - http://kaldi-asr.org/doc/weight-silence-post_8cc.html - http://kaldi-asr.org/doc/gmm-acc-mllt_8cc.html - http://kaldi-asr.org/doc/est-mllt_8cc.html - http://kaldi-asr.org/doc/gmm-transform-means_8cc.html - http://kaldi-asr.org/doc/compose-transforms_8cc.html for more details on the Kaldi binary this runs. Also see https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_lda_mllt.sh for the original bash script that this function was based on. Parameters ---------- directory : str Directory of LDA+MLLT training data_directory : str Directory of training data split into the number of jobs sil_phones : str Colon-separated list of silence phones num_jobs : int The number of processes to use in calculation config : :class:`~aligner.config.LdaMlltConfig` Configuration object for training initial : bool Flag for first iteration iteration : int Current iteration """ if iteration is None: model_name = 'final' else: model_name = iteration jobs = [(directory, config.feature_config.construct_feature_proc_string(data_directory, directory, x), sil_phones, x, config.lda_options, initial, model_name) for x in range(num_jobs)] if config.use_mp: run_mp(calc_lda_mllt_func, jobs, config.log_directory) else: run_non_mp(calc_lda_mllt_func, jobs, config.log_directory) mdl_path = os.path.join(directory, '{}.mdl'.format(model_name)) log_path = os.path.join(directory, 'log', 'transform_means.{}.log'.format(model_name)) previous_mat_path = os.path.join(directory, 'lda.mat') new_mat_path = os.path.join(directory, 'lda_new.mat') composed_path = os.path.join(directory, 'lda_composed.mat') with open(log_path, 'a', encoding='utf8') as log_file: macc_list = [] for x in range(num_jobs): macc_list.append(os.path.join(directory, '{}.{}.macc'.format(model_name, x))) subprocess.call([thirdparty_binary('est-mllt'), new_mat_path] + macc_list, stderr=log_file) subprocess.call([thirdparty_binary('gmm-transform-means'), new_mat_path, mdl_path, mdl_path], stderr=log_file) if os.path.exists(previous_mat_path): subprocess.call([thirdparty_binary('compose-transforms'), new_mat_path, previous_mat_path, composed_path], stderr=log_file) os.remove(previous_mat_path) os.rename(composed_path, previous_mat_path) else: os.rename(new_mat_path, previous_mat_path)
example/cifar10/resnet56_jpeg.py
KuanKuanQAQ/ares
206
11071167
from ares.utils import get_res_path from ares.defense.jpeg_compression import jpeg_compression import resnet56 MODEL_PATH = get_res_path('./cifar10/resnet56.ckpt') def load(session): model = ResNet56_JPEG() model.load(MODEL_PATH, session) return model @jpeg_compression() class ResNet56_JPEG(resnet56.ResNet56): pass if __name__ == '__main__': resnet56.download(MODEL_PATH)
package_control/file_not_found_error.py
William-Cao/Less-
3,373
11071169
import sys class FileNotFoundError(Exception): """If a file is not found""" def __unicode__(self): return self.args[0] def __str__(self): if sys.version_info < (3,): return self.__bytes__() return self.__unicode__() def __bytes__(self): return self.__unicode__().encode('utf-8')
tests/test_dataset/test_test_time_aug.py
yuexy/mmocr
2,261
11071172
<filename>tests/test_dataset/test_test_time_aug.py # Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest from mmocr.datasets.pipelines.test_time_aug import MultiRotateAugOCR def test_resize_ocr(): input_img1 = np.ones((64, 256, 3), dtype=np.uint8) input_img2 = np.ones((64, 32, 3), dtype=np.uint8) rci = MultiRotateAugOCR(transforms=[], rotate_degrees=[0, 90, 270]) # test invalid arguments with pytest.raises(AssertionError): MultiRotateAugOCR(transforms=[], rotate_degrees=[45]) with pytest.raises(AssertionError): MultiRotateAugOCR(transforms=[], rotate_degrees=[20.5]) # test call with input_img1 results = {'img_shape': input_img1.shape, 'img': input_img1} results = rci(results) assert np.allclose([64, 256, 3], results['img_shape']) assert len(results['img']) == 1 assert len(results['img_shape']) == 1 assert np.allclose([64, 256, 3], results['img_shape'][0]) # test call with input_img2 results = {'img_shape': input_img2.shape, 'img': input_img2} results = rci(results) assert np.allclose([64, 32, 3], results['img_shape']) assert len(results['img']) == 3 assert len(results['img_shape']) == 3 assert np.allclose([64, 32, 3], results['img_shape'][0])
typed_python/compiler/merge_type_wrappers_test.py
APrioriInvestments/typed_python
105
11071173
from typed_python.compiler.merge_type_wrappers import mergeTypes from typed_python import OneOf, Value, Class class Base(Class): pass class Child(Base): pass def test_merge_types(): assert mergeTypes([float, int]) == OneOf(float, int) assert mergeTypes([float, Value(1)]) == OneOf(1, float) assert mergeTypes([float, Value(1.5)]) == float assert mergeTypes([OneOf(1, float), int]) == OneOf(float, int) assert mergeTypes([OneOf(float, Child), OneOf(int, Base)]) == OneOf(Base, float, int) assert mergeTypes([object, str]) == object assert mergeTypes([OneOf(str, None), object]) == object
SoftLayer/CLI/dedicatedhost/cancel_guests.py
dvzrv/softlayer-python
126
11071203
<gh_stars>100-1000 """Cancel a dedicated host.""" # :license: MIT, see LICENSE for more details. import click import SoftLayer from SoftLayer.CLI import environment from SoftLayer.CLI import exceptions from SoftLayer.CLI import formatting from SoftLayer.CLI import helpers @click.command() @click.argument('identifier') @environment.pass_env def cli(env, identifier): """Cancel all virtual guests of the dedicated host immediately. Use the 'slcli vs cancel' command to cancel an specific guest """ dh_mgr = SoftLayer.DedicatedHostManager(env.client) host_id = helpers.resolve_id(dh_mgr.resolve_ids, identifier, 'dedicated host') if not (env.skip_confirmations or formatting.no_going_back(host_id)): raise exceptions.CLIAbort('Aborted') table = formatting.Table(['id', 'server name', 'status']) result = dh_mgr.cancel_guests(host_id) if result: for status in result: table.add_row([ status['id'], status['fqdn'], status['status'] ]) env.fout(table) else: click.secho('There is not any guest into the dedicated host %s' % host_id, fg='red')
dizoo/mujoco/envs/mujoco_env.py
LuciusMos/DI-engine
464
11071223
from typing import Any, Union, List import copy import numpy as np from easydict import EasyDict from ding.envs import BaseEnv, BaseEnvTimestep, BaseEnvInfo, update_shape from ding.envs.common.env_element import EnvElement, EnvElementInfo from ding.envs.common.common_function import affine_transform from ding.torch_utils import to_ndarray, to_list from ding.utils import ENV_REGISTRY from .mujoco_wrappers import wrap_mujoco MUJOCO_INFO_DICT = { 'Ant-v3': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(111, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(8, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'Hopper-v2': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(11, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(3, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'Walker2d-v2': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(17, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(6, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'HalfCheetah-v3': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(17, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(6, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'Hopper-v3': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(11, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(3, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'InvertedPendulum-v2': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(4, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(1, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'InvertedDoublePendulum-v2': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(11, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(1, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'Reacher-v2': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(11, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(2, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), 'Walker2d-v3': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(17, ), value={ 'min': np.float64("-inf"), 'max': np.float64("inf"), 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(6, ), value={ 'min': -1.0, 'max': 1.0, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=1, value={ 'min': np.float64("-inf"), 'max': np.float64("inf") }, ), use_wrappers=None, ), } @ENV_REGISTRY.register('mujoco') class MujocoEnv(BaseEnv): @classmethod def default_config(cls: type) -> EasyDict: cfg = EasyDict(copy.deepcopy(cls.config)) cfg.cfg_type = cls.__name__ + 'Dict' return cfg config = dict( use_act_scale=False, delay_reward_step=0, ) def __init__(self, cfg: dict) -> None: self._cfg = cfg self._use_act_scale = cfg.use_act_scale if 'delay_reward_step' in cfg: self._delay_reward_step = cfg.delay_reward_step else: self._delay_reward_step = self.default_config().delay_reward_step self._init_flag = False def reset(self) -> np.ndarray: if not self._init_flag: self._env = self._make_env(only_info=False) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) obs = self._env.reset() obs = to_ndarray(obs).astype('float32') self._final_eval_reward = 0. if self._delay_reward_step > 1: self._delay_reward_duration = 0 self._current_delay_reward = 0. return obs def close(self) -> None: if self._init_flag: self._env.close() self._init_flag = False def seed(self, seed: int, dynamic_seed: bool = True) -> None: self._seed = seed self._dynamic_seed = dynamic_seed np.random.seed(self._seed) def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: action = to_ndarray(action) if self._use_act_scale: action_range = self.info().act_space.value action = affine_transform(action, min_val=action_range['min'], max_val=action_range['max']) obs, rew, done, info = self._env.step(action) self._final_eval_reward += rew obs = to_ndarray(obs).astype('float32') if self._delay_reward_step > 1: self._current_delay_reward += rew self._delay_reward_duration += 1 if done or self._delay_reward_duration >= self._delay_reward_step: rew = to_ndarray([self._current_delay_reward]) self._current_delay_reward = 0. self._delay_reward_duration = 0 else: rew = to_ndarray([0.]) else: rew = to_ndarray([rew]) # wrapped to be transfered to a array with shape (1,) if done: info['final_eval_reward'] = self._final_eval_reward return BaseEnvTimestep(obs, rew, done, info) def info(self) -> BaseEnvInfo: if self._cfg.env_id in MUJOCO_INFO_DICT: info = copy.deepcopy(MUJOCO_INFO_DICT[self._cfg.env_id]) info.use_wrappers = self._make_env(only_info=True) obs_shape, act_shape, rew_shape = update_shape( info.obs_space.shape, info.act_space.shape, info.rew_space.shape, info.use_wrappers.split('\n') ) info.obs_space.shape = obs_shape info.act_space.shape = act_shape info.rew_space.shape = rew_shape return info else: keys = MUJOCO_INFO_DICT.keys() raise NotImplementedError('{} not found in MUJOCO_INFO_DICT [{}]'.format(self._cfg.env_id, keys)) def _make_env(self, only_info=False): return wrap_mujoco( self._cfg.env_id, norm_obs=self._cfg.get('norm_obs', None), norm_reward=self._cfg.get('norm_reward', None), only_info=only_info ) def __repr__(self) -> str: return "DI-engine Mujoco Env({})".format(self._cfg.env_id) @staticmethod def create_collector_env_cfg(cfg: dict) -> List[dict]: collector_cfg = copy.deepcopy(cfg) collector_env_num = collector_cfg.pop('collector_env_num', 1) return [collector_cfg for _ in range(collector_env_num)] @staticmethod def create_evaluator_env_cfg(cfg: dict) -> List[dict]: evaluator_cfg = copy.deepcopy(cfg) evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) evaluator_cfg.norm_reward.use_norm = False return [evaluator_cfg for _ in range(evaluator_env_num)]
python-threatexchange/threatexchange/dataset.py
b-bold/ThreatExchange
997
11071224
<filename>python-threatexchange/threatexchange/dataset.py #!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ A wrapper around loading and storing ThreatExchange data from files. There are a few categories of state that this wraps: 1. Checkpoints - state about previous fetches 2. Collaboration Indicator Dumps - Raw output from threat_updates 3. Index state - serializations of indexes for SignalType """ import json import pathlib import typing as t from . import collab_config from .content_type import meta from .signal_type import signal_base from .signal_type import index class FetchCheckpoint(t.NamedTuple): last_full_fetch: float last_fetch: float def next(self, fetch_start_time: float, full_fetch: bool) -> "FetchCheckpoint": full_fetch = full_fetch or not self.last_full_fetch return FetchCheckpoint( fetch_start_time if full_fetch else self.last_full_fetch, fetch_start_time ) def serialize(self) -> str: return f"{self.last_full_fetch} {self.last_fetch}" @classmethod def deserialize(cls, s: str) -> "FetchCheckpoint": last_full, _, last = s.partition(" ") return cls(float(last_full), float(last)) class Dataset: EXTENSION = ".te" def __init__( self, config: collab_config.CollaborationConfig, state_dir: t.Optional[pathlib.Path] = None, ) -> None: self.config = config if state_dir is None: state_dir = pathlib.Path.home() / config.default_state_dir_name assert not state_dir.is_file() self.state_dir = state_dir @property def is_cache_empty(self) -> bool: return not ( self.state_dir.exists() and any(self.state_dir.glob(f"*{self.EXTENSION}")) ) def _fetch_checkpoint_path(self) -> pathlib.Path: return self.state_dir / f"fetch_checkpoint{self.EXTENSION}" def _indicator_checkpoint_path(self, privacy_group: int) -> pathlib.Path: return ( self.state_dir / f"indicators/{privacy_group}/_checkpoint{self.EXTENSION}" ) def clear_cache(self) -> None: for p in self.state_dir.iterdir(): if p.suffix == self.EXTENSION: p.unlink() def record_fetch_checkpoint( self, fetch_started_timestamp: float, full_fetch: bool ) -> None: prev = self.get_fetch_checkpoint() with self._fetch_checkpoint_path().open("w+") as f: f.write(prev.next(fetch_started_timestamp, full_fetch).serialize()) def get_fetch_checkpoint(self) -> FetchCheckpoint: checkpoint = self._fetch_checkpoint_path() if not checkpoint.exists(): return FetchCheckpoint(0, 0) return FetchCheckpoint.deserialize(checkpoint.read_text()) def _signal_state_file(self, signal_type: signal_base.SignalType) -> pathlib.Path: return self.state_dir / f"{signal_type.get_name()}{self.EXTENSION}" def _index_file(self, signal_type: signal_base.SignalType) -> pathlib.Path: return self.state_dir / f"{signal_type.get_name()}.index{self.EXTENSION}" def store_cache(self, signal_type: signal_base.SignalType) -> None: if not self.state_dir.exists(): self.state_dir.mkdir() signal_type.store(self._signal_state_file(signal_type)) def load_cache( self, signal_types: t.Optional[t.Iterable[signal_base.SignalType]] = None ) -> t.List[signal_base.SignalType]: """Load everything in the state directory and initialize signal types""" if signal_types is None: signal_types = [s() for s in meta.get_all_signal_types()] ret = [] for signal_type in signal_types: signal_state_file = self._signal_state_file(signal_type) if signal_state_file.exists(): signal_type.load(signal_state_file) ret.append(signal_type) return ret def store_index(self, signal_type: signal_base.SignalType, index) -> None: if not self.state_dir.exists(): self.state_dir.mkdir() path = self._index_file(signal_type) if index is None: if path.exists(): path.unlink() return with path.open("wb") as fout: index.serialize(fout) def load_index( self, signal_type: signal_base.SignalType ) -> t.Optional[index.SignalTypeIndex]: path = self._index_file(signal_type) if not path.exists(): return None with path.open("rb") as fin: return signal_type.get_index_cls.deserialize(fin)
tests/extmod/ucryptolib_aes128_ctr.py
sebastien-riou/micropython
13,648
11071230
try: from ucryptolib import aes except ImportError: print("SKIP") raise SystemExit def _new(k, ctr_initial): return aes(k, 6, ctr_initial) try: _new(b"x" * 16, b"x" * 16) except ValueError as e: # is CTR support disabled? if e.args[0] == "mode": print("SKIP") raise SystemExit raise e crypto = _new(b"1234" * 4, b"5678" * 4) enc = crypto.encrypt(b"a") print(enc) enc += crypto.encrypt(b"b" * 1000) print(enc) crypto = _new(b"1234" * 4, b"5678" * 4) print(crypto.decrypt(enc))
openproblems/tasks/denoising/api.py
bendemeo/SingleCellOpenProblems
134
11071250
from ...data.sample import load_sample_data import numpy as np def check_dataset(adata): """Check that dataset output fits expected API.""" assert "train" in adata.obsm assert "test" in adata.obsm assert adata.obsm["train"].shape == adata.X.shape assert adata.obsm["test"].shape == adata.X.shape return True def check_method(adata): """Check that method output fits expected API.""" assert "denoised" in adata.obsm assert adata.obsm["denoised"].shape == adata.X.shape return True def sample_dataset(): """Create a simple dataset to use for testing methods in this task.""" adata = load_sample_data() adata.obsm["train"] = adata.X.toarray() adata.obsm["train"] = np.random.binomial( n=adata.obsm["train"].astype(int), p=0.8, size=adata.obsm["train"].shape ).astype(float) adata.obsm["test"] = adata.X.toarray() adata.obsm["test"].data = np.random.binomial( n=adata.obsm["test"].astype(int), p=0.2, size=adata.obsm["test"].shape ).astype(float) return adata def sample_method(adata): """Create sample method output for testing metrics in this task.""" adata.obsm["denoised"] = adata.X.toarray() * 0.2 return adata
test/test_correlog.py
butala/spectrum
261
11071254
from spectrum import CORRELOGRAMPSD, CORRELATION, pcorrelogram, marple_data from spectrum import data_two_freqs from pylab import log10, plot, savefig, linspace from numpy.testing import assert_array_almost_equal, assert_almost_equal def test_correlog(): psd = CORRELOGRAMPSD(marple_data, marple_data, lag=15) assert_almost_equal(psd[0], 0.138216970) assert_almost_equal(psd[1000-1], 7.900110787) assert_almost_equal(psd[2000-1], 0.110103858) assert_almost_equal(psd[3000-1], 0.222184134) assert_almost_equal(psd[4000-1], -0.036255277) assert_almost_equal(psd[4096-1], 0.1391839711) return psd def test_correlog_auto_cross(): """Same as test_correlog but x and y provided""" psd1 = CORRELOGRAMPSD(marple_data, lag=16) psd2 = CORRELOGRAMPSD(marple_data, marple_data, lag=16) assert_array_almost_equal(psd1, psd2) psd1 = CORRELOGRAMPSD(marple_data, lag=16, correlation_method='CORRELATION') psd2 = CORRELOGRAMPSD(marple_data, marple_data, lag=16, correlation_method='CORRELATION') assert_array_almost_equal(psd1, psd2) def test_correlog_correlation_method(): """test correlogramPSD playing with method argument""" psd1 = CORRELOGRAMPSD(marple_data, lag=16, correlation_method='CORRELATION') psd2 = CORRELOGRAMPSD(marple_data, marple_data, lag=16, correlation_method='xcorr') assert_array_almost_equal(psd1, psd2) def test_pcorrelogram_class(): p = pcorrelogram(marple_data, lag=16) p() print(p) p = pcorrelogram(data_two_freqs(), lag=16) p.plot() print(p) def test_CORRELOGRAMPSD_others(): p = CORRELOGRAMPSD(marple_data, marple_data, lag=16, NFFT=None) def create_figure(): psd = test_correlog() f = linspace(-0.5, 0.5, len(psd)) psd = cshift(psd, len(psd)/2) plot(f, 10*log10(psd/max(psd))) savefig('psd_corr.png') if __name__ == "__main__": create_figure()
tests/components/p1_monitor/__init__.py
MrDelik/core
30,023
11071256
"""Tests for the P1 Monitor integration."""
coin_monitor/system_info.py
TST-Group-BE/chia_plot_manager
365
11071259
<gh_stars>100-1000 #!/usr/bin/python3 # -*- coding: utf-8 -*- """ system_info.py for use with coin_monitor.py """ VERSION = "V0.2 (2021-03-23)" ## Set Notification Accounts# alert_email = ['<EMAIL>', '<EMAIL>'] new_coin_email = ['<EMAIL>', '<EMAIL>'] twilio_from = '+10000000' twilio_account = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' twilio_token = '<PASSWORD>' twilio_to = ['+17763540098', '+17763540086'] pushbilletAPI = "<KEY>" # pushbullet API token (http://www.pushbullet.com) def main(): print("This script is not intended to be run directly.") print("This is the systemwide Credentials & Settings module.") print("It is called by other modules.") exit() if __name__ == '__main__': main()
language/mentionmemory/tasks/memory_generation_task_test.py
urikz/language
1,199
11071264
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for EaE task.""" import copy import itertools import os from absl.testing import absltest from absl.testing import parameterized import jax from language.mentionmemory.encoders import eae_encoder # pylint: disable=unused-import from language.mentionmemory.tasks import memory_generation_task from language.mentionmemory.utils import data_utils from language.mentionmemory.utils import test_utils import ml_collections import numpy as np # easiest to define as constant here MENTION_SIZE = 2 def gen_eae_test_list(): text_lengths = [0, 50, 128] n_mention_list = [0, 5, 10, 15] n_linked_mention_list = [0, 3, 5, 8, 10, 12, 15] # pylint: disable=g-complex-comprehension test_list = [ (text_length, n_mentions, n_linked_mentions) for ( text_length, n_mentions, n_linked_mentions, ) in itertools.product(text_lengths, n_mention_list, n_linked_mention_list) if not (n_mentions * MENTION_SIZE >= text_length or n_linked_mentions > n_mentions) ] return test_list class MemoryGenerationTaskTest(parameterized.TestCase): """Tests for MemoryGeneration task.""" encoder_config = { 'dtype': 'float32', 'vocab_size': 1000, 'entity_vocab_size': 1000, 'max_positions': 512, 'max_length': 128, 'hidden_size': 64, 'intermediate_dim': 128, 'entity_dim': 3, 'num_attention_heads': 2, 'num_initial_layers': 1, 'num_final_layers': 1, 'dropout_rate': 0.1, } model_config = { 'encoder_config': encoder_config, 'encoder_name': 'eae', 'dtype': 'float32', } config = { 'model_config': model_config, 'task_name': 'memory_generation', 'seed': 0, 'per_device_batch_size': 2, 'samples_per_example': 1, 'memory_dim': 3, 'mask_rate': 0, 'mention_mask_rate': 0, 'max_mlm_targets': 0, 'max_mention_targets': 10, 'max_mentions': 20, 'max_mentions_per_sample': 11, 'min_distance_from_passage_boundary': 2, } @parameterized.parameters(gen_eae_test_list()) def test_prediction_fn(self, text_length, n_mentions, n_linked_mentions): """Test loss function runs and produces expected values.""" config = copy.deepcopy(self.config) config = ml_collections.FrozenConfigDict(config) max_length = config.model_config.encoder_config.max_length preprocess_fn = memory_generation_task.MemoryGenerationTask.make_preprocess_fn( config) collater_fn = memory_generation_task.MemoryGenerationTask.make_collater_fn( config) model = memory_generation_task.MemoryGenerationTask.build_model( config.model_config) dummy_input = memory_generation_task.MemoryGenerationTask.dummy_input( config) init_rng = jax.random.PRNGKey(0) init_parameters = model.init(init_rng, dummy_input, True) raw_example = test_utils.gen_mention_pretraining_sample( text_length, n_mentions, n_linked_mentions, max_length=max_length) processed_example = preprocess_fn(raw_example) batch = { key: np.tile(value, (config.per_device_batch_size, 1)) for key, value in processed_example.items() } batch = collater_fn(batch) batch = jax.tree_map(np.asarray, batch) predict_fn = memory_generation_task.MemoryGenerationTask.make_prediction_fn( config) predictions = predict_fn( model_config=config.model_config, model_params=init_parameters['params'], model_vars={}, batch=batch, ) self.assertSequenceEqual(predictions['values'].shape, (config.max_mention_targets * config.per_device_batch_size, config.memory_dim)) def gen_memory_saver_test_list(): num_total_memories_list = [1, 20, 50] batch_size_list = [1, 5, 10] n_mentions_per_batch_list = [1, 10] num_shards_list = [1, 2, 3] n_devices_list = [1, 2, 3] shard_size_divisible_list = [1, 3, 5] test_list = list( itertools.product(num_total_memories_list, batch_size_list, n_mentions_per_batch_list, n_devices_list, num_shards_list, shard_size_divisible_list)) return test_list class MemorySaverTest(parameterized.TestCase): """Tests for MemoryGeneration task.""" memory_dim = 3 memory_key_dim = 2 text_length = 2 max_mentions_per_sample = 3 def _stack(self, d): self.assertNotEmpty(d) keys = d[0].keys() result = {} for key in keys: result[key] = np.stack([x[key] for x in d]) return result def _sample_batch(self, batch_index, batch_size, n_mentions_per_batch): mention_target_weights = np.random.randint(2, size=(n_mentions_per_batch,)) # Unique mention ID per sample mention_target_ids = 1 + np.arange( n_mentions_per_batch) + batch_index * n_mentions_per_batch mention_batch_positions = np.random.randint( batch_size, size=(n_mentions_per_batch,)) text_identifiers = 1 + mention_batch_positions + batch_index * batch_size # mention hashes and encodings are same as entity IDs mention_encodings = np.expand_dims(mention_target_ids, 1) mention_encodings = np.tile(mention_encodings, self.memory_dim) text_ids = 1 + np.arange(batch_size) + batch_index * batch_size text_ids = np.expand_dims(text_ids, 1) text_ids = np.tile(text_ids, self.text_length) # Collect unique entity IDs per every passage text_entities = [set() for _ in range(batch_size)] for m_index in range(n_mentions_per_batch): if mention_target_weights[m_index] > 0: text_entities[mention_batch_positions[m_index]].add( mention_target_ids[m_index]) unique_mention_ids = np.zeros((batch_size, self.max_mentions_per_sample), dtype=np.int32) # pylint:disable=g-explicit-length-test for i in range(batch_size): text_entities[i] = np.array(list(text_entities[i]), dtype=np.int32) num_unique_entities = len(text_entities[i]) if num_unique_entities > self.max_mentions_per_sample: unique_mention_ids[i] = text_entities[i][:self.max_mentions_per_sample] elif num_unique_entities > 0: unique_mention_ids[i, :num_unique_entities] = text_entities[i] else: # i-th sample doesn't contain any entities pass batch = { 'mention_target_weights': mention_target_weights, 'mention_target_ids': mention_target_ids, 'target_text_identifiers': text_identifiers, 'target_mention_hashes': mention_target_ids, 'text_ids': text_ids, 'mention_target_batch_positions': mention_batch_positions, 'mention_target_start_positions': mention_target_ids, 'mention_target_end_positions': mention_target_ids, 'unique_mention_ids': unique_mention_ids, } predictions = { 'values': mention_encodings, 'keys': mention_encodings[:, :self.memory_key_dim], } return batch, predictions @parameterized.parameters(gen_memory_saver_test_list()) def test_memory_saver(self, num_total_memories, batch_size, n_mentions_per_batch, n_devices, num_shards, shard_size_divisible): memory_saver = memory_generation_task.MemorySaver( num_total_memories, self.memory_dim, self.text_length, self.max_mentions_per_sample, self.memory_key_dim) mention_to_batch = [] batch_to_set_of_mentions = {} batch_index = 0 while True: all_batch = [] all_predictions = [] for _ in range(n_devices): batch, predictions = self._sample_batch(batch_index, batch_size, n_mentions_per_batch) for i in range(n_mentions_per_batch): if batch['mention_target_weights'][i] == 1: current_batch_index = batch['target_text_identifiers'][i] entity_id = batch['mention_target_ids'][i] mention_to_batch.append((entity_id, current_batch_index)) if current_batch_index not in batch_to_set_of_mentions: batch_to_set_of_mentions[current_batch_index] = set() batch_to_set_of_mentions[current_batch_index].add(entity_id) batch_index += 1 all_batch.append(batch) all_predictions.append(predictions) all_batch = self._stack(all_batch) all_predictions = self._stack(all_predictions) memory_saver.add_memories(all_batch, all_predictions) if memory_saver.get_num_memories() >= num_total_memories: break # Keep only first num_total_memories memories mention_to_batch = dict(mention_to_batch[:num_total_memories]) tmp_dir = self.create_tempdir() memory_saver.save(tmp_dir.full_path, num_shards, 1, 0, shard_size_divisible) def load_array(suffix): return data_utils.load_sharded_array( os.path.join(tmp_dir.full_path, suffix + '-?????-of-%05d' % num_shards), 1, 0) mention_encodings = load_array('encodings') mention_target_ids = load_array('labels') text_identifiers = load_array('hashes') mention_hashes = load_array('mention_hashes') texts = load_array('texts') positions = load_array('positions') text_entities = load_array('text_entities') self.assertSetEqual( set(mention_to_batch.keys()), set(mention_target_ids[mention_target_ids > 0])) for i in range(len(mention_target_ids)): if mention_target_ids[i] > 0: batch_index = mention_to_batch[mention_target_ids[i]] self.assertEqual(text_identifiers[i], batch_index) self.assertTrue(np.all(texts[i] == batch_index)) self.assertEqual(mention_hashes[i], mention_target_ids[i]) self.assertTrue(np.all(mention_encodings[i] == mention_target_ids[i])) self.assertTrue(np.all(positions[i] == mention_target_ids[i])) current_text_entities = [x for x in text_entities[i] if x != 0] self.assertSequenceEqual( sorted(current_text_entities), sorted(list(set(current_text_entities)))) current_text_entities = set(current_text_entities) # These two sets might not be exactly equal, since `text_entities` # contains at most `max_mentions_per_sample` unique entities for every # mention. self.assertContainsSubset(current_text_entities, batch_to_set_of_mentions[batch_index]) if __name__ == '__main__': absltest.main()
tests/core/asyncio/test_endpoint_local_broadcast.py
gsalgado/lahja
400
11071266
import asyncio import pytest from lahja import BaseEvent, BaseRequestResponseEvent @pytest.mark.asyncio async def test_local_broadcast_is_connected_to_self(endpoint): assert endpoint.is_connected_to(endpoint.name) @pytest.mark.asyncio async def test_local_broadcast_wait_until_connected_to(endpoint): await asyncio.wait_for(endpoint.wait_until_connected_to(endpoint.name), timeout=0.1) @pytest.mark.asyncio async def test_local_broadcast_result_in_being_present_in_remotes(endpoint): names = {name for name, _ in endpoint.get_connected_endpoints_and_subscriptions()} assert endpoint.name in names class BroadcastEvent(BaseEvent): pass @pytest.mark.asyncio async def test_local_broadcast_wait_until_endpoint_subscriptions_change(endpoint): ready = asyncio.Event() done = asyncio.Event() async def do_wait(): ready.set() await endpoint.wait_until_endpoint_subscriptions_change() done.set() asyncio.ensure_future(do_wait()) await ready.wait() assert not done.is_set() endpoint.subscribe(BroadcastEvent, lambda ev: None) await asyncio.wait_for(done.wait(), timeout=0.1) @pytest.mark.asyncio async def test_subscribe_and_broadcast_to_self(endpoint): got_event = asyncio.Event() endpoint.subscribe(BroadcastEvent, lambda ev: got_event.set()) assert not got_event.is_set() await endpoint.broadcast(BroadcastEvent()) await asyncio.wait_for(got_event.wait(), timeout=0.1) assert got_event.is_set() @pytest.mark.asyncio async def test_wait_for_and_broadcast_to_self(endpoint): ready = asyncio.Event() got_event = asyncio.Event() async def do_wait_for(): ready.set() await endpoint.wait_for(BroadcastEvent) got_event.set() asyncio.ensure_future(do_wait_for()) await ready.wait() assert not got_event.is_set() await endpoint.broadcast(BroadcastEvent()) await asyncio.wait_for(got_event.wait(), timeout=0.1) assert got_event.is_set() @pytest.mark.asyncio async def test_stream_and_broadcast_to_self(endpoint): ready = asyncio.Event() finished_stream = asyncio.Event() async def do_stream(): ready.set() async for ev in endpoint.stream(BroadcastEvent, num_events=3): pass finished_stream.set() asyncio.ensure_future(do_stream()) await ready.wait() assert not finished_stream.is_set() await endpoint.broadcast(BroadcastEvent()) await endpoint.broadcast(BroadcastEvent()) await endpoint.broadcast(BroadcastEvent()) await asyncio.wait_for(finished_stream.wait(), timeout=0.1) assert finished_stream.is_set() class Response(BaseEvent): def __init__(self, value): self.value = value class Request(BaseRequestResponseEvent[Response]): @staticmethod def expected_response_type(): return Response def __init__(self, value): self.value = value @pytest.mark.asyncio async def test_request_response_and_broadcast_to_self(endpoint): ready = asyncio.Event() async def do_response(): ready.set() req = await endpoint.wait_for(Request) await endpoint.broadcast(Response(req.value), req.broadcast_config()) asyncio.ensure_future(do_response()) await ready.wait() resp = await asyncio.wait_for(endpoint.request(Request("test")), timeout=0.1) assert isinstance(resp, Response) assert resp.value == "test"
lte/gateway/python/magma/enodebd/main.py
Aitend/magma
849
11071268
<reponame>Aitend/magma """ Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from threading import Thread from typing import List from unittest import mock from lte.protos.mconfig import mconfigs_pb2 from magma.common.sentry import sentry_init from magma.common.service import MagmaService from magma.enodebd.enodeb_status import ( get_operational_states, get_service_status_old, ) from magma.enodebd.logger import EnodebdLogger as logger from magma.enodebd.state_machines.enb_acs_manager import StateMachineManager from orc8r.protos.service303_pb2 import State from .enodebd_iptables_rules import set_enodebd_iptables_rule from .rpc_servicer import EnodebdRpcServicer from .stats_manager import StatsManager from .tr069.server import tr069_server def get_context(ip: str): with mock.patch('spyne.server.wsgi.WsgiApplication') as MockTransport: MockTransport.req_env = {"REMOTE_ADDR": ip} with mock.patch('spyne.server.wsgi.WsgiMethodContext') as MockContext: MockContext.transport = MockTransport return MockContext def main(): """ Top-level function for enodebd """ service = MagmaService('enodebd', mconfigs_pb2.EnodebD()) logger.init() # Optionally pipe errors to Sentry sentry_init(service_name=service.name, sentry_mconfig=service.shared_mconfig.sentry_config) # State machine manager for tracking multiple connected eNB devices. state_machine_manager = StateMachineManager(service) # Statistics manager stats_mgr = StatsManager(state_machine_manager) stats_mgr.run() # Start TR-069 thread server_thread = Thread( target=tr069_server, args=(state_machine_manager,), daemon=True, ) server_thread.start() # Add all servicers to the server enodebd_servicer = EnodebdRpcServicer(state_machine_manager) enodebd_servicer.add_to_server(service.rpc_server) # Register function to get service status def get_enodebd_status(): return get_service_status_old(state_machine_manager) service.register_get_status_callback(get_enodebd_status) # Register a callback function for GetOperationalStates service303 function def get_enodeb_operational_states() -> List[State]: return get_operational_states(state_machine_manager, service.mconfig) service.register_operational_states_callback(get_enodeb_operational_states) # Set eNodeBD iptables rules due to exposing public IP to eNodeB service.loop.create_task(set_enodebd_iptables_rule()) # Run the service loop service.run() # Cleanup the service service.close() def call_repeatedly(loop, interval, function, *args, **kwargs): """ Wrapper function to schedule function periodically """ # Schedule next call loop.call_later( interval, call_repeatedly, loop, interval, function, *args, **kwargs, ) # Call function function(*args, **kwargs) if __name__ == "__main__": main()
src/pretix/api/views/__init__.py
fabm3n/pretix
1,248
11071275
<gh_stars>1000+ # # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 <NAME> and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # from calendar import timegm from django.db.models import Max from django.http import HttpResponse from django.utils.http import http_date, parse_http_date_safe from rest_framework.filters import OrderingFilter class RichOrderingFilter(OrderingFilter): def filter_queryset(self, request, queryset, view): ordering = self.get_ordering(request, queryset, view) if ordering: if hasattr(view, 'ordering_custom'): newo = [] for ordering_part in ordering: ob = view.ordering_custom.get(ordering_part) if ob: ob = dict(ob) newo.append(ob.pop('_order')) queryset = queryset.annotate(**ob) else: newo.append(ordering_part) ordering = newo return queryset.order_by(*ordering) return queryset class ConditionalListView: def list(self, request, **kwargs): if_modified_since = request.headers.get('If-Modified-Since') if if_modified_since: if_modified_since = parse_http_date_safe(if_modified_since) if_unmodified_since = request.headers.get('If-Unmodified-Since') if if_unmodified_since: if_unmodified_since = parse_http_date_safe(if_unmodified_since) if not hasattr(request, 'event'): return super().list(request, **kwargs) lmd = request.event.logentry_set.filter( content_type__model=self.get_queryset().model._meta.model_name, content_type__app_label=self.get_queryset().model._meta.app_label, ).aggregate( m=Max('datetime') )['m'] if lmd: lmd_ts = timegm(lmd.utctimetuple()) if if_unmodified_since and lmd and lmd_ts > if_unmodified_since: return HttpResponse(status=412) if if_modified_since and lmd and lmd_ts <= if_modified_since: return HttpResponse(status=304) resp = super().list(request, **kwargs) if lmd: resp['Last-Modified'] = http_date(lmd_ts) return resp
zeus/networks/pytorch/customs/nago.py
shaido987/vega
240
11071282
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """The NAGO model.""" import logging import numpy as np from zeus.modules.module import Module from zeus.common import ClassType, ClassFactory from .utils.logical_graph import GeneratorSolution, LogicalMasterGraph from .utils.layer import MasterNetwork logger = logging.getLogger(__name__) @ClassFactory.register(ClassType.NETWORK) class NAGO(Module): """Search space of NAGO.""" def __init__(self, **kwargs): """Construct the Hierarchical Neural Architecture Generator class. :param net_desc: config of the searched structure """ super(NAGO, self).__init__() logger.info("start init NAGO") # to prevent invalid graphs with G_nodes <= G_k kwargs['G1_K'] = int(np.min([kwargs['G1_nodes'] - 1, kwargs['G1_K']])) kwargs['G3_K'] = int(np.min([kwargs['G3_nodes'] - 1, kwargs['G3_K']])) logger.info("NAGO desc: {}".format(kwargs)) top_graph_params = ['WS', kwargs['G1_nodes'], kwargs['G1_P'], kwargs['G1_K']] mid_graph_params = ['ER', kwargs['G2_nodes'], kwargs['G2_P']] bottom_graph_params = ['WS', kwargs['G3_nodes'], kwargs['G3_P'], kwargs['G3_K']] channel_ratios = [kwargs['ch1_ratio'], kwargs['ch2_ratio'], kwargs['ch3_ratio']] stage_ratios = [kwargs['stage1_ratio'], kwargs['stage2_ratio'], kwargs['stage3_ratio']] conv_type = 'normal' top_merge_dist = [1.0, 0.0, 0.0] mid_merge_dist = [1.0, 0.0, 0.0] bottom_merge_dist = [1.0, 0.0, 0.0] op_dist = np.array([1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) solution = GeneratorSolution(top_graph_params, mid_graph_params, bottom_graph_params, stage_ratios, channel_ratios, op_dist, conv_type, top_merge_dist, mid_merge_dist, bottom_merge_dist) # Generate an architecture from the generator model_frame = LogicalMasterGraph(solution) # Compute the channel multipler factor based on the parameter count limit n_params_base = model_frame._get_param_count() multiplier = int(np.sqrt(float(kwargs['n_param_limit']) / n_params_base)) self.model = MasterNetwork(model_frame, multiplier, kwargs['image_size'], kwargs['num_classes'], None, False) def forward(self, x): """Calculate the output of the model. :param x: input tensor :return: output tensor of the model """ y, aux_logits = self.model(x) return y
cmsplugin_cascade/generic/settings.py
teklager/djangocms-cascade
139
11071295
<reponame>teklager/djangocms-cascade<gh_stars>100-1000 CASCADE_PLUGINS = ['custom_snippet', 'heading', 'horizontal_rule', 'simple_wrapper', 'text_image'] def set_defaults(config): from cmsplugin_cascade.extra_fields.config import PluginExtraFieldsConfig config.setdefault('plugins_with_extra_fields', {}) plugins_with_extra_fields = config['plugins_with_extra_fields'] plugins_with_extra_fields.setdefault('HorizontalRulePlugin', PluginExtraFieldsConfig( inline_styles={ 'extra_fields:Border': ['border-top'], 'extra_fields:Border Radius': ['border-radius'], 'extra_units:Border Radius': 'px,rem', }, allow_override=False, ))
advisor_server/suggestion/migrations/0001_initial.py
silvery107/advisor
1,498
11071329
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-10-02 08:01 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Algorithm', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('status', models.CharField(max_length=128)), ('created_time', models.DateTimeField(auto_now_add=True)), ('updated_time', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Study', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128, unique=True)), ('study_configuration', models.TextField()), ('algorithm', models.CharField(max_length=128)), ('status', models.CharField(max_length=128)), ('created_time', models.DateTimeField(auto_now_add=True)), ('updated_time', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='Trial', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('study_name', models.CharField(max_length=128)), ('name', models.CharField(max_length=128)), ('parameter_values', models.TextField(blank=True, null=True)), ('objective_value', models.FloatField(blank=True, null=True)), ('status', models.CharField(max_length=128)), ('created_time', models.DateTimeField(auto_now_add=True)), ('updated_time', models.DateTimeField(auto_now=True)), ], ), migrations.CreateModel( name='TrialMetric', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('trial_id', models.IntegerField()), ('training_step', models.IntegerField(blank=True, null=True)), ('objective_value', models.FloatField(blank=True, null=True)), ('created_time', models.DateTimeField(auto_now_add=True)), ('updated_time', models.DateTimeField(auto_now=True)), ], ), ]
spotify_confidence/analysis/frequentist/z_test_linreg.py
danielsaaf/confidence
107
11071337
# Copyright 2017-2020 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union, Iterable from pandas import DataFrame from spotify_confidence.analysis.constants import BONFERRONI, METHOD_COLUMN_NAME from .experiment import Experiment from ..abstract_base_classes.confidence_computer_abc import ConfidenceComputerABC from ..abstract_base_classes.confidence_grapher_abc import ConfidenceGrapherABC class ZTestLinreg(Experiment): def __init__( self, data_frame: DataFrame, numerator_column: str, numerator_sum_squares_column: Union[str, None], denominator_column: str, feature_column: Union[str, None], feature_sum_squares_column: Union[str, None], feature_cross_sum_column: Union[str, None], categorical_group_columns: Union[str, Iterable], ordinal_group_column: Union[str, None] = None, metric_column: Union[str, None] = None, treatment_column: Union[str, None] = None, interval_size: float = 0.95, power: float = 0.8, correction_method: str = BONFERRONI, confidence_computer: ConfidenceComputerABC = None, confidence_grapher: ConfidenceGrapherABC = None, ): super().__init__( data_frame=data_frame.assign(**{METHOD_COLUMN_NAME: "z-test-linreg"}), numerator_column=numerator_column, numerator_sum_squares_column=numerator_sum_squares_column, denominator_column=denominator_column, categorical_group_columns=categorical_group_columns, ordinal_group_column=ordinal_group_column, interval_size=interval_size, correction_method=correction_method, confidence_computer=confidence_computer, confidence_grapher=confidence_grapher, method_column=METHOD_COLUMN_NAME, metric_column=metric_column, treatment_column=treatment_column, power=power, feature_column=feature_column, feature_sum_squares_column=feature_sum_squares_column, feature_cross_sum_column=feature_cross_sum_column, )
test/benchmark/fannkuch.py
CohenArthur/wren
2,712
11071347
# The Computer Language Benchmarks Game # http://benchmarksgame.alioth.debian.org/ # contributed by <NAME> # converted to Java by <NAME> # converted to Python by <NAME> # modified by <NAME> def fannkuch(n): maxFlipsCount = 0 permSign = True checksum = 0 perm1 = list(range(n)) count = perm1[:] rxrange = range(2, n - 1) nm = n - 1 while 1: k = perm1[0] if k: perm = perm1[:] flipsCount = 1 kk = perm[k] while kk: perm[:k+1] = perm[k::-1] flipsCount += 1 k = kk kk = perm[kk] if maxFlipsCount < flipsCount: maxFlipsCount = flipsCount checksum += flipsCount if permSign else -flipsCount # Use incremental change to generate another permutation if permSign: perm1[0],perm1[1] = perm1[1],perm1[0] permSign = False else: perm1[1],perm1[2] = perm1[2],perm1[1] permSign = True for r in rxrange: if count[r]: break count[r] = r perm0 = perm1[0] perm1[:r+1] = perm1[1:r+2] perm1[r+1] = perm0 else: r = nm if not count[r]: print( checksum ) return maxFlipsCount count[r] -= 1 n = 9 print(( "Pfannkuchen(%i) = %i" % (n, fannkuch(n)) ))
tests/test_RI_CEPA.py
andyj10224/psi4numpy
214
11071351
<gh_stars>100-1000 from addons import * from utils import * import pytest tdir = 'Coupled-Electron-Pair-Approximation' def test_LCCD(workspace): exe_py(workspace, tdir, 'LCCD') def test_LCCSD(workspace): exe_py(workspace, tdir, 'LCCSD') def test_OLCCD(workspace): exe_py(workspace, tdir, 'OLCCD') def test_DFLCCD(workspace): exe_py(workspace, tdir, 'DF-LCCD') def test_DFLCCSD(workspace): exe_py(workspace, tdir, 'DF-LCCSD')
samples/vsphere/appliances/list_service.py
JKraftman/vsphere-automation-sdk-python
589
11071352
<reponame>JKraftman/vsphere-automation-sdk-python #!/usr/bin/env python """ * ******************************************************* * Copyright (c) VMware, Inc. 2019. All Rights Reserved. * SPDX-License-Identifier: MIT * ******************************************************* * * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """ __author__ = 'VMware, Inc.' __vcenter_version__ = '6.7+' from vmware.vapi.vsphere.client import create_vsphere_client from samples.vsphere.common import (sample_cli, sample_util) from samples.vsphere.common.ssl_helper import get_unverified_session """ Description: Demonstrates services api workflow 1.List all services """ parser = sample_cli.build_arg_parser() args = sample_util.process_cli_args(parser.parse_args()) session = get_unverified_session() if args.skipverification else None client = create_vsphere_client(server=args.server, username=args.username, password=<PASSWORD>, session=session) service_list = client.appliance.Services.list() print("Example: List Appliance Services:") print("-------------------\n") for key, values in service_list.items(): print("Service Name : {} ".format(key)) print("value : {}".format(values.description)) print("State: {} \n".format(values.state))
butterfree/transform/utils/window_spec.py
fossabot/butterfree
208
11071356
"""Holds function for defining window in DataFrames.""" from typing import Any, List, Optional, Union from pyspark import sql from pyspark.sql import Column, WindowSpec, functions from butterfree.constants.columns import TIMESTAMP_COLUMN from butterfree.constants.window_definitions import ALLOWED_WINDOWS class FrameBoundaries: """Utility functions for defining the frame boundaries. Args: mode: available modes to be used in time aggregations. window_definition: time ranges to be used in the windows, it can be second(s), minute(s), hour(s), day(s), week(s) and year(s), """ def __init__(self, mode: Optional[str], window_definition: str): self.mode = mode self.window_definition = window_definition @property def window_size(self) -> int: """Returns window size.""" if int(self.window_definition.split()[0]) <= 0: raise KeyError(f"{self.window_definition} have negative element.") return int(self.window_definition.split()[0]) @property def window_unit(self) -> str: """Returns window unit.""" unit = self.window_definition.split()[1] if unit not in ALLOWED_WINDOWS and self.mode != "row_windows": raise ValueError("Not allowed") return unit def get(self, window: WindowSpec) -> Any: """Returns window with or without the frame boundaries.""" if self.mode is None: return window if self.mode == "row_windows": span = self.window_size - 1 return window.rowsBetween(-span, 0) if self.mode == "fixed_windows": span = ALLOWED_WINDOWS[self.window_unit] * self.window_size return window.rangeBetween(-span, 0) class Window: """Utility functions for defining a window specification. Args: partition_by: he partitioning defined. order_by: the ordering defined. mode: available modes to be used in time aggregations. window_definition: time ranges to be used in the windows, it can be second(s), minute(s), hour(s), day(s), week(s) and year(s), Use the static methods in :class:`Window` to create a :class:`WindowSpec`. """ DEFAULT_SLIDE_DURATION: str = "1 day" def __init__( self, window_definition: str, partition_by: Optional[Union[Column, str, List[str]]] = None, order_by: Optional[Union[Column, str]] = None, mode: str = None, slide: str = None, ): self.partition_by = partition_by self.order_by = order_by or TIMESTAMP_COLUMN self.frame_boundaries = FrameBoundaries(mode, window_definition) self.slide = slide or self.DEFAULT_SLIDE_DURATION def get_name(self) -> str: """Return window suffix name based on passed criteria.""" return "_".join( [ "over", f"{self.frame_boundaries.window_size}", f"{self.frame_boundaries.window_unit}", self.frame_boundaries.mode, ] ) def get(self) -> Any: """Defines a common window to be used both in time and rows windows.""" if self.frame_boundaries.mode == "rolling_windows": return functions.window( TIMESTAMP_COLUMN, self.frame_boundaries.window_definition, slideDuration=self.slide, ) elif self.order_by == TIMESTAMP_COLUMN: w = sql.Window.partitionBy(self.partition_by).orderBy( # type: ignore functions.col(TIMESTAMP_COLUMN).cast("long") ) else: w = sql.Window.partitionBy(self.partition_by).orderBy( # type: ignore self.order_by ) return self.frame_boundaries.get(w)
thrift/test/py/constants_test.py
laohubuzaijia/fbthrift
2,112
11071383
<filename>thrift/test/py/constants_test.py # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest class TestPythonConstants(unittest.TestCase): def testStrings(self): from .constants import constants self.assertEquals(constants.apostrophe, "'") self.assertEquals(constants.tripleApostrophe, "'''") self.assertEquals(constants.quotationMark, '"') self.assertEquals(constants.quote, 'this is a "quote"') self.assertEquals(constants.backslash, "\\") self.assertEquals(constants.escaped_a, "a") def testDict(self): from .constants import constants self.assertEquals(constants.escapeChars['apostrophe'], "'") self.assertEquals(constants.escapeChars['quotationMark'], '"') self.assertEquals(constants.escapeChars['backslash'], "\\") self.assertEquals(constants.escapeChars['escaped_a'], "a") self.assertEquals(constants.char2ascii["'"], 39) self.assertEquals(constants.char2ascii['"'], 34) self.assertEquals(constants.char2ascii["\\"], 92) self.assertEquals(constants.char2ascii["a"], 97) def testStruct(self): from .constants import constants self.assertEquals(constants.str2struct["foo"].bar, {"baz": "qux"}) if __name__ == '__main__': unittest.main()
pbctf2020/amazing_rop/exploit.py
nhtri2003gmail/ctf-write-ups
101
11071415
#!/usr/bin/env python3 from pwn import * binary = context.binary = ELF('./bof') if args.REMOTE: p = remote('maze.chal.perfect.blue', 1) else: p = process(binary.path) ''' // This is what you need to do to get the first flag // void print_flag() { // asm volatile("mov $1, %%eax; mov $0x31337, %%edi; mov $0x1337, %%esi; int3" ::: "eax"); // } ''' # 0x00001396: pop esi; pop edi; pop ebp; ret; binary.symbols['pop_esi_edi_edp'] = 0x00001396 # ropper did not find this ''' 13ad: 58 pop eax 13ae: cc int3 13af: c3 ret ''' binary.symbols['pop_eax_int3'] = 0x13ad p.sendlineafter('Do you want color in the visualization? (Y/n) ', 'n') for i in range(10): _ = p.recvline().strip().decode().split(' ') return_addr = int(''.join(_[2:6][::-1]),16) log.info('return_addr: ' + hex(return_addr)) binary.address = return_addr - ((return_addr & 0xFFF) - (binary.sym.main & 0xFFF)) - binary.sym.main log.info('binary.address: ' + hex(binary.address)) payload = b'' payload += (0x40 - 0x10) * b'A' payload += b'flag' payload += (0x40 - len(payload)) * b'A' payload += p32(binary.sym.pop_esi_edi_edp) payload += p32(0x1337) payload += p32(0x31337) payload += p32(0xdeadba5e) payload += p32(binary.sym.pop_eax_int3) payload += p32(1) p.sendlineafter('Input some text: ', payload) p.stream()
wsltools/utils/faker/providers/ssn/en_US/__init__.py
Symbo1/wsltools
412
11071423
# -*- coding: UTF-8 -*- from __future__ import unicode_literals from .. import Provider as BaseProvider class Provider(BaseProvider): INVALID_SSN_TYPE = 'INVALID_SSN' SSN_TYPE = 'SSN' ITIN_TYPE = 'ITIN' EIN_TYPE = 'EIN' def itin(self): """Generate a random United States Individual Taxpayer Identification Number (ITIN). An United States Individual Taxpayer Identification Number (ITIN) is a tax processing number issued by the Internal Revenue Service. It is a nine-digit number that always begins with the number 9 and has a range of 70-88 in the fourth and fifth digit. Effective April 12, 2011, the range was extended to include 900-70-0000 through 999-88-9999, 900-90-0000 through 999-92-9999 and 900-94-0000 through 999-99-9999. https://www.irs.gov/individuals/international-taxpayers/general-itin-information """ area = self.random_int(min=900, max=999) serial = self.random_int(min=0, max=9999) # The group number must be between 70 and 99 inclusively but not 89 or 93 group = self.random_element([x for x in range(70, 100) if x not in [89, 93]]) itin = "{:03d}-{:02d}-{:04d}".format(area, group, serial) return itin def ein(self): """Generate a random United States Employer Identification Number (EIN). An United States An Employer Identification Number (EIN) is also known as a Federal Tax Identification Number, and is used to identify a business entity. EINs follow a format of a two-digit prefix followed by a hyphen and a seven-digit sequence: ##-###### https://www.irs.gov/businesses/small-businesses-self-employed/employer-id-numbers """ # Only certain EIN Prefix values are assigned: # # https://www.irs.gov/businesses/small-businesses-self-employed/how-eins-are-assigned-and-valid-ein-prefixes ein_prefix_choices = [ '01', '02', '03', '04', '05', '06', '10', '11', '12', '13', '14', '15', '16', '20', '21', '22', '23', '24', '25', '26', '27', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '71', '72', '73', '74', '75', '76', '77', '80', '81', '82', '83', '84', '85', '86', '87', '88', '90', '91', '92', '93', '94', '95', '98', '99'] ein_prefix = self.random_element(ein_prefix_choices) sequence = self.random_int(min=0, max=9999999) ein = "{:s}-{:07d}".format(ein_prefix, sequence) return ein def invalid_ssn(self): """ Generate a random invalid United States Social Security Identification Number (SSN). Invalid SSNs have the following characteristics: Cannot begin with the number 9 Cannot begin with 666 in positions 1 - 3 Cannot begin with 000 in positions 1 - 3 Cannot contain 00 in positions 4 - 5 Cannot contain 0000 in positions 6 - 9 https://www.ssa.gov/kc/SSAFactSheet--IssuingSSNs.pdf Additionally, return an invalid SSN that is NOT a valid ITIN by excluding certain ITIN related "group" values """ itin_group_numbers = [ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 99] area = self.random_int(min=0, max=999) if area < 900 and area not in {666, 0}: random_group_or_serial = self.random_int(min=1, max=1000) if random_group_or_serial <= 500: group = 0 serial = self.random_int(0, 9999) else: group = self.random_int(0, 99) serial = 0 elif area in {666, 0}: group = self.random_int(0, 99) serial = self.random_int(0, 9999) else: group = self.random_element([x for x in range(0, 100) if x not in itin_group_numbers]) serial = self.random_int(0, 9999) invalid_ssn = "{:03d}-{:02d}-{:04d}".format(area, group, serial) return invalid_ssn def ssn(self, taxpayer_identification_number_type=SSN_TYPE): """ Generate a random United States Taxpayer Identification Number of the specified type. If no type is specified, a US SSN is returned. """ if taxpayer_identification_number_type == self.ITIN_TYPE: return self.itin() elif taxpayer_identification_number_type == self.EIN_TYPE: return self.ein() elif taxpayer_identification_number_type == self.INVALID_SSN_TYPE: return self.invalid_ssn() elif taxpayer_identification_number_type == self.SSN_TYPE: # Certain numbers are invalid for United States Social Security # Numbers. The area (first 3 digits) cannot be 666 or 900-999. # The group number (middle digits) cannot be 00. The serial # (last 4 digits) cannot be 0000. area = self.random_int(min=1, max=899) if area == 666: area += 1 group = self.random_int(1, 99) serial = self.random_int(1, 9999) ssn = "{:03d}-{:02d}-{:04d}".format(area, group, serial) return ssn else: raise ValueError("taxpayer_identification_number_type must be one of 'SSN', 'EIN', 'ITIN'," " or 'INVALID_SSN'.")
tia/bbg/example.py
AmarisAI/tia
366
11071431
<reponame>AmarisAI/tia<gh_stars>100-1000 import pandas as pd from tia.bbg import LocalTerminal if __name__ == '__main__': d = pd.datetools.BDay(-4).apply(pd.datetime.now()) m = pd.datetools.BMonthBegin(-2).apply(pd.datetime.now()) def banner(msg): print '*' * 25 print msg print '*' * 25 banner('ReferenceDataRequest: single security, single field, frame response') response = LocalTerminal.get_reference_data('msft us equity', 'px_last') print response.as_map() print response.as_frame() banner('ReferenceDataRequest: single security, multi-field (with bulk), frame response') response = LocalTerminal.get_reference_data('eurusd curncy', ['px_last', 'fwd_curve']) print response.as_map() rframe = response.as_frame() print rframe.columns # show frame within a frame print rframe.ix[0, 'fwd_curve'].tail() banner('ReferenceDataRequest: multi security, multi-field, bad field') response = LocalTerminal.get_reference_data(['eurusd curncy', 'msft us equity'], ['px_last', 'fwd_curve'], ignore_field_error=1) print response.as_frame()['fwd_curve']['eurusd curncy'] banner('HistoricalDataRequest: multi security, multi-field, daily data') response = LocalTerminal.get_historical(['eurusd curncy', 'msft us equity'], ['px_last', 'px_open'], start=d) print response.as_map() print response.as_frame().head(5) banner('HistoricalDataRequest: multi security, multi-field, weekly data') response = LocalTerminal.get_historical(['eurusd curncy', 'msft us equity'], ['px_last', 'px_open'], start=m, period='WEEKLY') print '--------- AS SINGLE TABLE ----------' print response.as_frame().head(5) # # HOW TO # # - Retrieve an fx vol surface: BbgReferenceDataRequest('eurusd curncy', 'DFLT_VOL_SURF_MID') # - Retrieve a fx forward curve: BbgReferenceDataRequest('eurusd curncy', 'FWD_CURVE') # - Retrieve dividends: BbgReferenceDataRequest('csco us equity', 'BDVD_PR_EX_DTS_DVD_AMTS_W_ANN')
warehouse/migrations/versions/701c2fba1f5f_cascade_release_deletion_to_files.py
fairhopeweb/warehouse
3,103
11071451
<gh_stars>1000+ # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Cascade Release deletion to Files Revision ID: <KEY> Revises: <PASSWORD> Create Date: 2018-03-09 23:06:05.382680 """ from alembic import op revision = "<KEY>" down_revision = "<PASSWORD>" def upgrade(): op.drop_constraint("release_files_name_fkey", "release_files", type_="foreignkey") op.create_foreign_key( "release_files_name_fkey", "release_files", "releases", ["name", "version"], ["name", "version"], onupdate="CASCADE", ondelete="CASCADE", ) def downgrade(): op.drop_constraint("release_files_name_fkey", "release_files", type_="foreignkey") op.create_foreign_key( "release_files_name_fkey", "release_files", "releases", ["name", "version"], ["name", "version"], onupdate="CASCADE", )
contrib/one_shot_models/examples/sider_alternate_weave.py
cjgalvin/deepchem
3,782
11071453
""" Script that trains Weave models on SIDER dataset. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals import numpy as np np.random.seed(123) import tensorflow as tf tf.set_random_seed(123) import deepchem as dc sider_tasks, sider_datasets, transformers = dc.molnet.load_sider( featurizer='Weave') train_dataset, valid_dataset, test_dataset = sider_datasets # Fit models metric = dc.metrics.Metric( dc.metrics.roc_auc_score, np.mean, mode="classification") max_atoms_train = max([mol.get_num_atoms() for mol in train_dataset.X]) max_atoms_valid = max([mol.get_num_atoms() for mol in valid_dataset.X]) max_atoms_test = max([mol.get_num_atoms() for mol in test_dataset.X]) max_atoms = max([max_atoms_train, max_atoms_valid, max_atoms_test]) n_atom_feat = 75 n_pair_feat = 14 # Batch size of models batch_size = 64 n_feat = 128 graph = dc.nn.AlternateSequentialWeaveGraph( batch_size, max_atoms=max_atoms, n_atom_feat=n_atom_feat, n_pair_feat=n_pair_feat) graph.add(dc.nn.AlternateWeaveLayer(max_atoms, 75, 14)) #graph.add(dc.nn.AlternateWeaveLayer(max_atoms, 50, 50)) graph.add(dc.nn.Dense(n_feat, 50, activation='tanh')) graph.add(dc.nn.BatchNormalization(epsilon=1e-5, mode=1)) graph.add( dc.nn.AlternateWeaveGather( batch_size, n_input=n_feat, gaussian_expand=True)) model = dc.models.MultitaskGraphClassifier( graph, len(sider_tasks), n_feat, batch_size=batch_size, learning_rate=1e-3, learning_rate_decay_time=1000, optimizer_type="adam", beta1=.9, beta2=.999) # Fit trained model model.fit(train_dataset, nb_epoch=20, log_every_N_batches=5) print("Evaluating model") train_scores = model.evaluate(train_dataset, [metric], transformers) valid_scores = model.evaluate(valid_dataset, [metric], transformers) print("Train scores") print(train_scores) print("Validation scores") print(valid_scores)
venv/lib/python2.7/site-packages/werkzeug/testsuite/contrib/sessions.py
Christian-Castro/castro_odoo8
21,684
11071491
# -*- coding: utf-8 -*- """ werkzeug.testsuite.sessions ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Added tests for the sessions. :copyright: (c) 2014 by <NAME>. :license: BSD, see LICENSE for more details. """ import os import unittest import shutil from tempfile import mkdtemp, gettempdir from werkzeug.testsuite import WerkzeugTestCase from werkzeug.contrib.sessions import FilesystemSessionStore class SessionTestCase(WerkzeugTestCase): def setup(self): self.session_folder = mkdtemp() def teardown(self): shutil.rmtree(self.session_folder) def test_default_tempdir(self): store = FilesystemSessionStore() assert store.path == gettempdir() def test_basic_fs_sessions(self): store = FilesystemSessionStore(self.session_folder) x = store.new() assert x.new assert not x.modified x['foo'] = [1, 2, 3] assert x.modified store.save(x) x2 = store.get(x.sid) assert not x2.new assert not x2.modified assert x2 is not x assert x2 == x x2['test'] = 3 assert x2.modified assert not x2.new store.save(x2) x = store.get(x.sid) store.delete(x) x2 = store.get(x.sid) # the session is not new when it was used previously. assert not x2.new def test_non_urandom(self): urandom = os.urandom del os.urandom try: store = FilesystemSessionStore(self.session_folder) store.new() finally: os.urandom = urandom def test_renewing_fs_session(self): store = FilesystemSessionStore(self.session_folder, renew_missing=True) x = store.new() store.save(x) store.delete(x) x2 = store.get(x.sid) assert x2.new def test_fs_session_lising(self): store = FilesystemSessionStore(self.session_folder, renew_missing=True) sessions = set() for x in range(10): sess = store.new() store.save(sess) sessions.add(sess.sid) listed_sessions = set(store.list()) assert sessions == listed_sessions def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(SessionTestCase)) return suite
src/python/lista_encadeada_desordenada.py
danilolmoura/Algoritmos-e-Estruturas-de-Dados
653
11071520
<filename>src/python/lista_encadeada_desordenada.py """ Implementação de uma lista encadeada desordenada """ class Node: def __init__(self, value, next_node=None): self.__value = value self.next_node = next_node @property def value(self): return self.__value class LinkedList: def __init__(self, *nodes): self.nodes = nodes def sorted(self): tmp_nodes = {node.next_node: node for node in self.nodes} sorted_nodes = list() current_node = None while current_node in tmp_nodes: current_node = tmp_nodes[current_node] sorted_nodes.insert(0, current_node) return sorted_nodes if __name__ == '__main__': e = Node(5) d = Node(4, next_node=e) c = Node(3, next_node=d) b = Node(2, next_node=c) a = Node(1, next_node=b) linked_list = LinkedList(c, a, d, b, e) print('Unsorted linked list:') for node in linked_list.nodes: print(node.value) print('Sorted linked list:') for node in linked_list.sorted(): print(node.value)
ipymarkup/__init__.py
natasha/ipymarkup
108
11071531
from .span import format_span_box_markup, show_span_box_markup # noqa from .span import format_span_line_markup, show_span_line_markup # noqa from .span import format_span_ascii_markup, show_span_ascii_markup # noqa from .dep import format_dep_markup, show_dep_markup # noqa from .dep import format_dep_ascii_markup, show_dep_ascii_markup # noqa # legacy show_box_markup = show_span_box_markup show_line_markup = show_span_line_markup show_ascii_markup = show_span_ascii_markup
tfx/components/example_gen/utils_test.py
avelez93/tfx
1,813
11071534
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.components.example_gen.utils.""" import os import re import tensorflow as tf from tfx.components.example_gen import utils from tfx.dsl.io import fileio from tfx.orchestration import data_types from tfx.proto import example_gen_pb2 from tfx.proto import range_config_pb2 from tfx.utils import io_utils from tfx.utils import json_utils class UtilsTest(tf.test.TestCase): def setUp(self): super().setUp() # Create input splits. test_dir = os.path.join( os.environ.get('TEST_UNDECLARED_OUTPUTS_DIR', self.get_temp_dir()), self._testMethodName) self._input_base_path = os.path.join(test_dir, 'input_base') fileio.makedirs(self._input_base_path) def testDictToExample(self): instance_dict = { 'int': 10, 'float': 5.0, 'str': 'abc', 'int_list': [1, 2], 'float_list': [3.0], 'str_list': ['ab', 'cd'], 'none': None, 'empty_list': [], } example = utils.dict_to_example(instance_dict) self.assertProtoEquals( """ features { feature { key: "empty_list" value { } } feature { key: "float" value { float_list { value: 5.0 } } } feature { key: "float_list" value { float_list { value: 3.0 } } } feature { key: "int" value { int64_list { value: 10 } } } feature { key: "int_list" value { int64_list { value: 1 value: 2 } } } feature { key: "none" value { } } feature { key: "str" value { bytes_list { value: "abc" } } } feature { key: "str_list" value { bytes_list { value: "ab" value: "cd" } } } } """, example) def testMakeOutputSplitNames(self): split_names = utils.generate_output_split_names( input_config=example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='train', pattern='train/*'), example_gen_pb2.Input.Split(name='eval', pattern='eval/*') ]), output_config=example_gen_pb2.Output()) self.assertListEqual(['train', 'eval'], split_names) split_names = utils.generate_output_split_names( input_config=example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='single', pattern='single/*') ]), output_config=example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig(splits=[ example_gen_pb2.SplitConfig.Split(name='train', hash_buckets=2), example_gen_pb2.SplitConfig.Split(name='eval', hash_buckets=1) ]))) self.assertListEqual(['train', 'eval'], split_names) def testMakeDefaultOutputConfig(self): output_config = utils.make_default_output_config( utils.make_default_input_config()) self.assertEqual(2, len(output_config.split_config.splits)) output_config = utils.make_default_output_config( example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='train', pattern='train/*'), example_gen_pb2.Input.Split(name='eval', pattern='eval/*') ])) self.assertEqual(0, len(output_config.split_config.splits)) def testMakeOutputSplitNamesWithParameter(self): split_name_param = data_types.RuntimeParameter( name='split-name', ptype=str, default=u'train') split_names = utils.generate_output_split_names( input_config={ 'splits': [{ 'name': split_name_param, 'pattern': 'train/*' }, { 'name': 'eval', 'pattern': 'eval/*' }] }, output_config=example_gen_pb2.Output()) # Assert the json serialized version because RuntimeParameters only get # serialized after that. self.assertEqual( json_utils.dumps([split_name_param, 'eval']), json_utils.dumps(split_names)) split_names = utils.generate_output_split_names( input_config=example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='single', pattern='single/*') ]), output_config={ 'split_config': { 'splits': [{ 'name': split_name_param, 'hash_buckets': 2 }, { 'name': 'eval', 'hash_buckets': 1 }] } }) # Assert the json serialized version because RuntimeParameters only get # serialized after that. self.assertEqual( json_utils.dumps([split_name_param, 'eval']), json_utils.dumps(split_names)) def testMakeDefaultOutputConfigWithParameter(self): split_name_param = data_types.RuntimeParameter( name='split-name', ptype=str, default=u'train') output_config = utils.make_default_output_config({ 'splits': [{ 'name': split_name_param, 'pattern': 'train/*' }, { 'name': 'eval', 'pattern': 'eval/*' }] }) self.assertEqual(0, len(output_config.split_config.splits)) def testGlobToRegex(self): glob_pattern = 'a(b)c' self.assertEqual(1, re.compile(glob_pattern).groups) regex_pattern = utils._glob_to_regex(glob_pattern) # pylint: disable=protected-access self.assertEqual(0, re.compile(regex_pattern).groups) self.assertEqual(glob_pattern, re.match(regex_pattern, glob_pattern).group()) def testCalculateSplitsFingerprint(self): split1 = os.path.join(self._input_base_path, 'split1', 'data') io_utils.write_string_file(split1, 'testing') os.utime(split1, (0, 1)) split2 = os.path.join(self._input_base_path, 'split2', 'data') io_utils.write_string_file(split2, 'testing2') os.utime(split2, (0, 3)) splits = [ example_gen_pb2.Input.Split(name='s1', pattern='split1/*'), example_gen_pb2.Input.Split(name='s2', pattern='split2/*') ] fingerprint, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual( fingerprint, 'split:s1,num_files:1,total_bytes:7,xor_checksum:1,sum_checksum:1\n' 'split:s2,num_files:1,total_bytes:8,xor_checksum:3,sum_checksum:3') self.assertEqual(span, 0) self.assertIsNone(version) def testSpanNoMatching(self): splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN}/split1/*'), example_gen_pb2.Input.Split(name='s2', pattern='span{SPAN}/split2/*') ] with self.assertRaisesRegex(ValueError, 'Cannot find matching for split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testVersionNoMatching(self): span_dir = os.path.join(self._input_base_path, 'span01', 'wrong', 'data') io_utils.write_string_file(span_dir, 'testing_version_no_matching') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/version{VERSION}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Cannot find matching for split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testSpanWrongFormat(self): wrong_span = os.path.join(self._input_base_path, 'spanx', 'split1', 'data') io_utils.write_string_file(wrong_span, 'testing_wrong_span') splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Cannot find span number'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testVersionWrongFormat(self): wrong_version = os.path.join(self._input_base_path, 'span01', 'versionx', 'split1', 'data') io_utils.write_string_file(wrong_version, 'testing_wrong_version') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/version{VERSION}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Cannot find version number'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testMultipleSpecs(self): splits1 = [ example_gen_pb2.Input.Split( name='s1', pattern='span1{SPAN}/span2{SPAN}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Only one {SPAN} is allowed'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits1) splits2 = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver1{VERSION}/ver2{VERSION}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Only one {VERSION} is allowed'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits2) splits3 = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}-{MM}-{DD}-{MM}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Exactly one of each date spec'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits3) def testHaveSpanNoVersion(self): # Test specific behavior when Span spec is present but Version is not. split1 = os.path.join(self._input_base_path, 'span1', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 1) self.assertIsNone(version) def testHaveSpanAndVersion(self): # Test specific behavior when both Span and Version are present. split1 = os.path.join(self._input_base_path, 'span1', 'version1', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/version{VERSION}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 1) self.assertEqual(version, 1) def testHaveVersionNoSpan(self): # Test specific behavior when Version spec is present but Span is not. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='version{VERSION}/split1/*') ] with self.assertRaisesRegex( ValueError, 'Version spec provided, but Span or Date spec is not present'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testNoSpanOrVersion(self): # Test specific behavior when neither Span nor Version spec is present. split1 = os.path.join(self._input_base_path, 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [example_gen_pb2.Input.Split(name='s1', pattern='split1/*')] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 0) self.assertIsNone(version) def testNewSpanWithOlderVersionAlign(self): # Test specific behavior when a newer Span has older Version. span1_ver2 = os.path.join(self._input_base_path, 'span1', 'ver2', 'split1', 'data') io_utils.write_string_file(span1_ver2, 'testing') span2_ver1 = os.path.join(self._input_base_path, 'span2', 'ver1', 'split1', 'data') io_utils.write_string_file(span2_ver1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver{VERSION}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 2) self.assertEqual(version, 1) def testDateSpecPartiallyMissing(self): splits1 = [ example_gen_pb2.Input.Split(name='s1', pattern='{YYYY}-{MM}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Exactly one of each date spec'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits1) def testBothSpanAndDate(self): splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}-{MM}-{DD}/{SPAN}/split1/*') ] with self.assertRaisesRegex( ValueError, 'Either span spec or date specs must be specified exclusively'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testDateBadFormat(self): # Test improperly formed date. split1 = os.path.join(self._input_base_path, 'yyyymmdd', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Cannot find span number using date'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testInvalidDate(self): split1 = os.path.join(self._input_base_path, '20201301', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Retrieved date is invalid'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testHaveDateNoVersion(self): # Test specific behavior when Date spec is present but Version is not. split1 = os.path.join(self._input_base_path, '19700102', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 1) self.assertIsNone(version) def testHaveDateAndVersion(self): # Test specific behavior when both Date and Version are present. split1 = os.path.join(self._input_base_path, '19700102', 'ver1', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 1) self.assertEqual(version, 1) def testSpanInvalidWidth(self): splits = [ example_gen_pb2.Input.Split(name='s1', pattern='{SPAN:x}/split1/*') ] with self.assertRaisesRegex( ValueError, 'Width modifier in span spec is not a positive integer'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testVersionInvalidWidth(self): splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{SPAN}/{VERSION:x}/split1/*') ] with self.assertRaisesRegex( ValueError, 'Width modifier in version spec is not a positive integer'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) def testSpanWidth(self): split1 = os.path.join(self._input_base_path, 'span1', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN:2}/split1/*') ] # TODO(jjma): find a better way of describing this error to user. with self.assertRaisesRegex(ValueError, 'Glob pattern does not match regex pattern'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN:1}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 1) self.assertIsNone(version) def testVersionWidth(self): split1 = os.path.join(self._input_base_path, 'span1', 'ver1', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver{VERSION:2}/split1/*') ] # TODO(jjma): find a better way of describing this error to user. with self.assertRaisesRegex(ValueError, 'Glob pattern does not match regex pattern'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver{VERSION:1}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 1) self.assertEqual(version, 1) def testSpanVersionWidthNoSeperator(self): split1 = os.path.join(self._input_base_path, '1234', 'split1', 'data') io_utils.write_string_file(split1, 'testing') splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{SPAN:2}{VERSION:2}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 12) self.assertEqual(version, 34) def testCalculateSplitsFingerprintSpanAndVersionWithSpan(self): # Test align of span and version numbers. span1_v1_split1 = os.path.join(self._input_base_path, 'span01', 'ver01', 'split1', 'data') io_utils.write_string_file(span1_v1_split1, 'testing11') span1_v1_split2 = os.path.join(self._input_base_path, 'span01', 'ver01', 'split2', 'data') io_utils.write_string_file(span1_v1_split2, 'testing12') span2_v1_split1 = os.path.join(self._input_base_path, 'span02', 'ver01', 'split1', 'data') io_utils.write_string_file(span2_v1_split1, 'testing21') # Test if error raised when span does not align. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver{VERSION}/split1/*'), example_gen_pb2.Input.Split( name='s2', pattern='span{SPAN}/ver{VERSION}/split2/*') ] with self.assertRaisesRegex( ValueError, 'Latest span should be the same for each split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) span2_v1_split2 = os.path.join(self._input_base_path, 'span02', 'ver01', 'split2', 'data') io_utils.write_string_file(span2_v1_split2, 'testing22') span2_v2_split1 = os.path.join(self._input_base_path, 'span02', 'ver02', 'split1', 'data') io_utils.write_string_file(span2_v2_split1, 'testing21') # Test if error raised when span aligns but version does not. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver{VERSION}/split1/*'), example_gen_pb2.Input.Split( name='s2', pattern='span{SPAN}/ver{VERSION}/split2/*') ] with self.assertRaisesRegex( ValueError, 'Latest version should be the same for each split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) span2_v2_split2 = os.path.join(self._input_base_path, 'span02', 'ver02', 'split2', 'data') io_utils.write_string_file(span2_v2_split2, 'testing22') # Test if latest span and version is selected when aligned for each split. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='span{SPAN}/ver{VERSION}/split1/*'), example_gen_pb2.Input.Split( name='s2', pattern='span{SPAN}/ver{VERSION}/split2/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 2) self.assertEqual(version, 2) self.assertEqual(splits[0].pattern, 'span02/ver02/split1/*') self.assertEqual(splits[1].pattern, 'span02/ver02/split2/*') def testCalculateSplitsFingerprintSpanAndVersionWithDate(self): # Test align of span and version numbers. span1_v1_split1 = os.path.join(self._input_base_path, '19700102', 'ver01', 'split1', 'data') io_utils.write_string_file(span1_v1_split1, 'testing11') span1_v1_split2 = os.path.join(self._input_base_path, '19700102', 'ver01', 'split2', 'data') io_utils.write_string_file(span1_v1_split2, 'testing12') span2_v1_split1 = os.path.join(self._input_base_path, '19700103', 'ver01', 'split1', 'data') io_utils.write_string_file(span2_v1_split1, 'testing21') # Test if error raised when date does not align. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split1/*'), example_gen_pb2.Input.Split( name='s2', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split2/*') ] with self.assertRaisesRegex( ValueError, 'Latest span should be the same for each split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) span2_v1_split2 = os.path.join(self._input_base_path, '19700103', 'ver01', 'split2', 'data') io_utils.write_string_file(span2_v1_split2, 'testing22') span2_v2_split1 = os.path.join(self._input_base_path, '19700103', 'ver02', 'split1', 'data') io_utils.write_string_file(span2_v2_split1, 'testing21') # Test if error raised when date aligns but version does not. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split1/*'), example_gen_pb2.Input.Split( name='s2', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split2/*') ] with self.assertRaisesRegex( ValueError, 'Latest version should be the same for each split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) span2_v2_split2 = os.path.join(self._input_base_path, '19700103', 'ver02', 'split2', 'data') io_utils.write_string_file(span2_v2_split2, 'testing22') # Test if latest span and version is selected when aligned for each split. splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split1/*'), example_gen_pb2.Input.Split( name='s2', pattern='{YYYY}{MM}{DD}/ver{VERSION}/split2/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits) self.assertEqual(span, 2) self.assertEqual(version, 2) self.assertEqual(splits[0].pattern, '19700103/ver02/split1/*') self.assertEqual(splits[1].pattern, '19700103/ver02/split2/*') def testRangeConfigWithNonexistentSpan(self): # Test behavior when specified span in RangeConfig does not exist. span1_split1 = os.path.join(self._input_base_path, 'span01', 'split1', 'data') io_utils.write_string_file(span1_split1, 'testing11') range_config = range_config_pb2.RangeConfig( static_range=range_config_pb2.StaticRange( start_span_number=2, end_span_number=2)) splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN:2}/split1/*') ] with self.assertRaisesRegex(ValueError, 'Cannot find matching for split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits, range_config=range_config) def testSpanAlignWithRangeConfig(self): span1_split1 = os.path.join(self._input_base_path, 'span01', 'split1', 'data') io_utils.write_string_file(span1_split1, 'testing11') span2_split1 = os.path.join(self._input_base_path, 'span02', 'split1', 'data') io_utils.write_string_file(span2_split1, 'testing21') # Test static range in RangeConfig. range_config = range_config_pb2.RangeConfig( static_range=range_config_pb2.StaticRange( start_span_number=1, end_span_number=1)) splits = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN:2}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits, range_config) self.assertEqual(span, 1) self.assertIsNone(version) self.assertEqual(splits[0].pattern, 'span01/split1/*') def testRangeConfigSpanWidthPresence(self): # Test RangeConfig.static_range behavior when span width is not given. span1_split1 = os.path.join(self._input_base_path, 'span01', 'split1', 'data') io_utils.write_string_file(span1_split1, 'testing11') range_config = range_config_pb2.RangeConfig( static_range=range_config_pb2.StaticRange( start_span_number=1, end_span_number=1)) splits1 = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN}/split1/*') ] # RangeConfig cannot find zero padding span without width modifier. with self.assertRaisesRegex(ValueError, 'Cannot find matching for split'): utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits1, range_config=range_config) splits2 = [ example_gen_pb2.Input.Split(name='s1', pattern='span{SPAN:2}/split1/*') ] # With width modifier in span spec, RangeConfig.static_range makes # correct zero-padded substitution. _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits2, range_config=range_config) self.assertEqual(span, 1) self.assertIsNone(version) self.assertEqual(splits2[0].pattern, 'span01/split1/*') def testRangeConfigWithDateSpec(self): span1_split1 = os.path.join(self._input_base_path, '19700102', 'split1', 'data') io_utils.write_string_file(span1_split1, 'testing11') start_span = utils.date_to_span_number(1970, 1, 2) end_span = utils.date_to_span_number(1970, 1, 2) range_config = range_config_pb2.RangeConfig( static_range=range_config_pb2.StaticRange( start_span_number=start_span, end_span_number=end_span)) splits = [ example_gen_pb2.Input.Split( name='s1', pattern='{YYYY}{MM}{DD}/split1/*') ] _, span, version = utils.calculate_splits_fingerprint_span_and_version( self._input_base_path, splits, range_config=range_config) self.assertEqual(span, 1) self.assertIsNone(version) self.assertEqual(splits[0].pattern, '19700102/split1/*') def testGetQueryForSpan(self): query = 'select * from table' self.assertEqual(utils.get_query_for_span(query, 1), 'select * from table') query = 'select * from table where date=@span_yyyymmdd_utc' self.assertEqual( utils.get_query_for_span(query, 1), "select * from table where date='19700102'") query = ('select * from table where ' 'ts>=TIMESTAMP_SECONDS(@span_begin_timestamp) and ' 'ts<TIMESTAMP_SECONDS(@span_end_timestamp)') self.assertEqual( utils.get_query_for_span(query, 2), 'select * from table where ts>=TIMESTAMP_SECONDS(172800) and ts<TIMESTAMP_SECONDS(259200)' ) if __name__ == '__main__': tf.test.main()
NTM-One-Shot-TF/MANN/Utils/Metrics.py
dhruvramani/ContinualLearningExperiments
265
11071545
<filename>NTM-One-Shot-TF/MANN/Utils/Metrics.py<gh_stars>100-1000 import tensorflow as tf import numpy as np from .tf_utils import update_tensor # prediction is the argmax def accuracy_instance(predictions, targets, n=[1, 2, 3, 4, 5, 10], nb_classes=5, nb_samples_per_class=10, batch_size=1): targets = tf.cast(targets, predictions.dtype) accuracy = tf.constant(value=0, shape=(batch_size, nb_samples_per_class), dtype=tf.float32) indices = tf.constant(value=0, shape=(batch_size, nb_classes+1), dtype=tf.float32) def step_((accuracy, indices), (p, t)): """with tf.variable_scope("Metric_step_var", reuse=True): accuracy = tf.get_variable(name="accuracy", shape=(batch_size, nb_samples_per_class), initializer=tf.constant_initializer(0), dtype=tf.float32) indices = tf.get_variable(name="indices", shape=(batch_size, nb_classes + 1), initializer=tf.constant_initializer(0), dtype=tf.float32)""" p = tf.cast(p, tf.int32) t = tf.cast(t, tf.int32) ##Accuracy Update batch_range = tf.cast(tf.range(0, batch_size), dtype=tf.int32) gather = tf.cast(tf.gather_nd(indices,tf.stack([tf.range(0,p.get_shape().as_list()[0]), t], axis=1)), tf.int32) index = tf.cast(tf.stack([batch_range, gather], axis=1), dtype=tf.int64) val = tf.cast(tf.equal(p, t), tf.float32) delta = tf.SparseTensor(indices=index, values=val, dense_shape=tf.cast(accuracy.get_shape().as_list(), tf.int64)) accuracy = accuracy + tf.sparse_tensor_to_dense(delta) ##Index Update index = tf.cast(tf.stack([batch_range, t], axis=1), dtype=tf.int64) val = tf.constant(1.0, shape=[batch_size]) delta = tf.SparseTensor(indices=index, values=val, dense_shape=tf.cast(indices.get_shape().as_list(), dtype=tf.int64)) indices = indices + tf.sparse_tensor_to_dense(delta) return [accuracy, indices] accuracy, indices = tf.scan(step_, elems=(tf.transpose(predictions, perm=[1, 0]), tf.transpose(targets, perm=[1, 0])),initializer=[accuracy, indices], name="Scan_Metric_Last") accuracy = accuracy[-1] accuracy = tf.reduce_mean(accuracy / nb_classes , axis=0) return accuracy
tests/test_utils_system.py
Muflhi01/videoflow
1,022
11071550
import pytest import videoflow.utils.system as system def test_gpus_available_1(monkeypatch): monkeypatch.setenv('CUDA_VISIBLE_DEVICES', '') gpus = system.get_gpus_available_to_process() assert len(gpus) == 0 monkeypatch.setenv('CUDA_VISIBLE_DEVICES', '0') gpus = system.get_gpus_available_to_process() assert len(gpus) == 0 def test_gpus_available_2(monkeypatch): def get_system_gpus_mock(): return set([0]) monkeypatch.setattr(system, 'get_system_gpus', get_system_gpus_mock) monkeypatch.setenv('CUDA_VISIBLE_DEVICES', '') gpus = system.get_gpus_available_to_process() assert len(gpus) == 0 monkeypatch.setenv('CUDA_VISIBLE_DEVICES', '0') gpus = system.get_gpus_available_to_process() assert len(gpus) == 1 assert 0 in gpus def test_gpus_available_3(monkeypatch): def get_system_gpus_mock(): return set([0, 1]) monkeypatch.setattr(system, 'get_system_gpus', get_system_gpus_mock) monkeypatch.setenv('CUDA_VISIBLE_DEVICES', '1, 2') gpus = system.get_gpus_available_to_process() assert len(gpus) == 1 assert 1 in gpus monkeypatch.setenv('CUDA_VISIBLE_DEVICES', '2, 3') gpus = system.get_gpus_available_to_process() assert len(gpus) == 0 monkeypatch.setenv('CUDA_VISIBLE_DEVICES', 'asdfa, 1, 0, asdf') gpus = system.get_gpus_available_to_process() assert len(gpus) == 2 if __name__ == "__main__": pytest.main([__file__])
vel/rl/buffers/backend/circular_vec_buffer_backend.py
galatolofederico/vel
273
11071566
import gym import numpy as np from vel.exceptions import VelException def take_along_axis(large_array, indexes): """ Take along axis """ # Reshape indexes into the right shape if len(large_array.shape) > len(indexes.shape): indexes = indexes.reshape(indexes.shape + tuple([1] * (len(large_array.shape) - len(indexes.shape)))) return np.take_along_axis(large_array, indexes, axis=0) class CircularVecEnvBufferBackend: """ Backend class for replay buffer that uses a circular buffer - new experience overwrites the oldest one Version supporting multiple environments. Frame stack compensation - if environment has a framestack built in, we will store only the last action """ def __init__(self, buffer_capacity: int, num_envs: int, observation_space: gym.Space, action_space: gym.Space, frame_stack_compensation: bool=False, frame_history: int=1): # Maximum number of items in the buffer self.buffer_capacity = buffer_capacity self.frame_stack_compensation = frame_stack_compensation # Number of parallel envs to record self.num_envs = num_envs # How many elements have been inserted in the buffer self.current_size = 0 # Index of last inserted element self.current_idx = -1 # How many frames are stacked into each observation self.frame_history = frame_history # Data buffers if self.frame_stack_compensation: self.state_buffer = np.zeros( [self.buffer_capacity, self.num_envs] + list(observation_space.shape)[:-1] + [observation_space.shape[-1] // self.frame_history], dtype=observation_space.dtype ) else: self.state_buffer = np.zeros( [self.buffer_capacity, self.num_envs] + list(observation_space.shape), dtype=observation_space.dtype ) self.action_buffer = np.zeros( [self.buffer_capacity, self.num_envs] + list(action_space.shape), dtype=action_space.dtype ) self.reward_buffer = np.zeros([self.buffer_capacity, self.num_envs], dtype=np.float32) self.dones_buffer = np.zeros([self.buffer_capacity, self.num_envs], dtype=bool) self.extra_data = {} # Just a sentinel to simplify further calculations self.dones_buffer[self.current_idx] = True def store_transition(self, frame, action, reward, done, extra_info=None): """ Store given transition in the backend """ self.current_idx = (self.current_idx + 1) % self.buffer_capacity if self.frame_stack_compensation: # Compensate for frame stack built into the environment idx_range = np.arange(-frame.shape[-1] // self.frame_history, 0) frame = np.take(frame, indices=idx_range, axis=-1) self.state_buffer[self.current_idx] = frame self.action_buffer[self.current_idx] = action self.reward_buffer[self.current_idx] = reward self.dones_buffer[self.current_idx] = done if extra_info is not None: for name in extra_info: if name not in self.extra_data: assert self.current_size == 0, f"New data {name} encountered in the middle of the training" array = extra_info[name] self.extra_data[name] = np.zeros([self.buffer_capacity] + list(array.shape), dtype=array.dtype) self.extra_data[name][self.current_idx] = extra_info[name] if self.current_size < self.buffer_capacity: self.current_size += 1 return self.current_idx def get_frame_with_future(self, frame_idx, env_idx): """ Return frame from the buffer together with the next frame """ if frame_idx == self.current_idx: raise VelException("Cannot provide enough future for the frame") past_frame = self.get_frame(frame_idx, env_idx) if not self.dones_buffer[frame_idx, env_idx]: # We're not done next_idx = (frame_idx + 1) % self.buffer_capacity next_frame = self.state_buffer[next_idx, env_idx] if self.frame_history > 1: future_frame = np.concatenate([ past_frame.take(indices=np.arange(1, past_frame.shape[-1]), axis=-1), next_frame ], axis=-1) else: future_frame = next_frame else: # We are done future_frame = np.zeros_like(past_frame) return past_frame, future_frame def get_frame_with_future_forward_steps(self, frame_idx, env_idx, forward_steps, discount_factor): """ Return frame from the buffer together with the next frame """ index_array = np.arange(frame_idx, frame_idx+forward_steps) % self.current_size if self.current_idx in index_array: raise VelException("Cannot provide enough future for the frame") past_frame = self.get_frame(frame_idx, env_idx) dones_array = self.dones_buffer[index_array, env_idx] rewards_array = self.reward_buffer[index_array, env_idx] discounted_rewards_array = rewards_array * (discount_factor ** np.arange(forward_steps)) if dones_array.any(): # Are we done between current frame and frame + n done = True dones_shifted = np.zeros_like(dones_array) dones_shifted[1:] = dones_array[:-1] reward = discounted_rewards_array[~np.logical_or.accumulate(dones_shifted)].sum() future_frame = np.zeros_like(past_frame) else: done = False reward = discounted_rewards_array.sum() if forward_steps >= self.frame_history: frame_indices = (index_array[:self.frame_history] + 1) % self.buffer_capacity future_frame = np.moveaxis(self.state_buffer[frame_indices, env_idx], 0, -2).reshape(past_frame.shape) else: frame_candidate = np.moveaxis( self.state_buffer[(index_array + 1) % self.buffer_capacity, env_idx], 0, -2 ) frame_candidate_target_shape = ( list(frame_candidate.shape[:-2]) + [frame_candidate.shape[-2] * frame_candidate.shape[-1]] ) future_frame = np.concatenate([ past_frame[..., (frame_candidate_target_shape[-1] - past_frame.shape[-1]):], frame_candidate.reshape(frame_candidate_target_shape) ], -1) return past_frame, future_frame, reward, done def get_frame(self, frame_idx, env_idx): """ Return frame from the buffer """ if frame_idx >= self.current_size: raise VelException("Requested frame beyond the size of the buffer") accumulator = [] last_frame = self.state_buffer[frame_idx, env_idx] accumulator.append(last_frame) for i in range(self.frame_history - 1): prev_idx = (frame_idx - 1) % self.buffer_capacity if prev_idx == self.current_idx: raise VelException("Cannot provide enough history for the frame") elif self.dones_buffer[prev_idx, env_idx]: # If previous frame was done - just append zeroes accumulator.append(np.zeros_like(last_frame)) else: frame_idx = prev_idx accumulator.append(self.state_buffer[frame_idx, env_idx]) # We're pushing the elements in reverse order return np.concatenate(accumulator[::-1], axis=-1) def get_transition(self, frame_idx, env_idx): """ Single transition with given index """ past_frame, future_frame = self.get_frame_with_future(frame_idx, env_idx) data_dict = { 'observations': past_frame, 'observations_next': future_frame, 'actions': self.action_buffer[frame_idx, env_idx], 'rewards': self.reward_buffer[frame_idx, env_idx], 'dones': self.dones_buffer[frame_idx, env_idx], } for name in self.extra_data: data_dict[name] = self.extra_data[name][frame_idx, env_idx] return data_dict def get_transitions(self, indexes): """ Get dictionary of transition data """ assert indexes.shape[1] == self.state_buffer.shape[1], \ "Must have the same number of indexes as there are environments" frame_batch_shape = ( [indexes.shape[0], indexes.shape[1]] + list(self.state_buffer.shape[2:-1]) + [self.state_buffer.shape[-1] * self.frame_history] ) past_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype) future_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype) for buffer_idx, frame_row in enumerate(indexes): for env_idx, frame_idx in enumerate(frame_row): past_frame_buffer[buffer_idx, env_idx], future_frame_buffer[buffer_idx, env_idx] = ( self.get_frame_with_future(frame_idx, env_idx) ) actions = take_along_axis(self.action_buffer, indexes) rewards = take_along_axis(self.reward_buffer, indexes) dones = take_along_axis(self.dones_buffer, indexes) transition_tensors = { 'observations': past_frame_buffer, 'actions': actions, 'rewards': rewards, 'observations_next': future_frame_buffer, 'dones': dones.astype(np.float32), } for name in self.extra_data: transition_tensors[name] = take_along_axis(self.extra_data[name], indexes) return transition_tensors def get_transitions_forward_steps(self, indexes, forward_steps, discount_factor): """ Get dictionary of a transition data - where the target of a transition is n steps forward along the trajectory. Rewards are properly aggregated according to the discount factor, and the process stops when trajectory is done. """ frame_batch_shape = ( [indexes.shape[0], indexes.shape[1]] + list(self.state_buffer.shape[2:-1]) + [self.state_buffer.shape[-1] * self.frame_history] ) simple_batch_shape = [indexes.shape[0], indexes.shape[1]] past_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype) future_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype) reward_buffer = np.zeros(simple_batch_shape, dtype=np.float32) dones_buffer = np.zeros(simple_batch_shape, dtype=bool) for buffer_idx, frame_row in enumerate(indexes): for env_idx, frame_idx in enumerate(frame_row): past_frame, future_frame, reward, done = self.get_frame_with_future_forward_steps( frame_idx, env_idx, forward_steps=forward_steps, discount_factor=discount_factor ) past_frame_buffer[buffer_idx, env_idx] = past_frame future_frame_buffer[buffer_idx, env_idx] = future_frame reward_buffer[buffer_idx, env_idx] = reward dones_buffer[buffer_idx, env_idx] = done actions = take_along_axis(self.action_buffer, indexes) transition_tensors = { 'observations': past_frame_buffer, 'actions': actions, 'rewards': reward_buffer, 'observations_next': future_frame_buffer, 'dones': dones_buffer.astype(np.float32), } for name in self.extra_data: transition_tensors[name] = take_along_axis(self.extra_data[name], indexes) return transition_tensors def get_trajectories(self, indexes, rollout_length): """ Return batch consisting of *consecutive* transitions """ # assert indexes.shape[0] > 1, "There must be multiple indexes supplied" assert rollout_length > 1, "Rollout length must be greater than 1" batch_indexes = ( indexes.reshape(1, indexes.shape[0]) - np.arange(rollout_length - 1, -1, -1).reshape(rollout_length, 1) ) return self.get_transitions(batch_indexes) def sample_batch_transitions(self, batch_size, forward_steps=1): """ Return indexes of next sample""" results = [] for i in range(self.num_envs): results.append(self.sample_frame_single_env(batch_size, forward_steps=forward_steps)) return np.stack(results, axis=-1) def sample_batch_trajectories(self, rollout_length): """ Return indexes of next random rollout """ results = [] for i in range(self.num_envs): results.append(self.sample_rollout_single_env(rollout_length)) return np.stack(results, axis=-1) def sample_rollout_single_env(self, rollout_length): """ Return indexes of next sample""" # Sample from up to total size if self.current_size < self.buffer_capacity: if rollout_length + 1 > self.current_size: raise VelException("Not enough elements in the buffer to sample the rollout") # -1 because we cannot take the last one return np.random.choice(self.current_size - rollout_length) + rollout_length - 1 else: if rollout_length + self.frame_history > self.current_size: raise VelException("Not enough elements in the buffer to sample the rollout") candidate = np.random.choice(self.buffer_capacity) # These are the elements we cannot draw, as then we don't have enough history forbidden_ones = ( np.arange(self.current_idx, self.current_idx + self.frame_history + rollout_length - 1) % self.buffer_capacity ) # Exclude these frames for learning as they may have some part of history overwritten while candidate in forbidden_ones: candidate = np.random.choice(self.buffer_capacity) return candidate def sample_frame_single_env(self, batch_size, forward_steps=1): """ Return an in index of a random set of frames from a buffer, that have enough history and future """ # Whole idea of this function is to make sure that sample we take is far away from the point which we are # currently writing to the buffer, which is 'discontinuous' if self.current_size < self.buffer_capacity: # Sample from up to total size of the buffer # -1 because we cannot take the last one return np.random.choice(self.current_size - forward_steps, batch_size, replace=False) else: candidate = np.random.choice(self.buffer_capacity, batch_size, replace=False) forbidden_ones = ( np.arange(self.current_idx - forward_steps + 1, self.current_idx + self.frame_history) % self.buffer_capacity ) # Exclude these frames for learning as they may have some part of history overwritten while any(x in candidate for x in forbidden_ones): candidate = np.random.choice(self.buffer_capacity, batch_size, replace=False) return candidate
tests/integration_tests/test_mxnet.py
captain-pool/optuna
1,300
11071606
from typing import Union import mxnet as mx import numpy as np import pytest import optuna from optuna.integration.mxnet import MXNetPruningCallback from optuna.testing.integration import DeterministicPruner def test_mxnet_pruning_callback() -> None: def objective(trial: optuna.trial.Trial, eval_metric: Union[list, str]) -> float: # Symbol. data = mx.symbol.Variable("data") data = mx.symbol.FullyConnected(data=data, num_hidden=1) data = mx.symbol.Activation(data=data, act_type="sigmoid") mlp = mx.symbol.SoftmaxOutput(data=data, name="softmax") # Optimizer. optimizer = mx.optimizer.RMSProp() # Dataset. train_data = mx.io.NDArrayIter( data=np.zeros((16, 20), np.float32), label=np.zeros((16,), np.int32), batch_size=1, shuffle=True, ) eval_data = mx.io.NDArrayIter( data=np.zeros((5, 20), np.float32), label=np.zeros((5,), np.int32), batch_size=1, shuffle=True, ) model = mx.mod.Module(symbol=mlp) model.fit( train_data=train_data, eval_data=eval_data, eval_metric=eval_metric, optimizer=optimizer, num_epoch=1, eval_end_callback=MXNetPruningCallback(trial, "accuracy"), ) return 1.0 study = optuna.create_study(pruner=DeterministicPruner(True)) study.optimize(lambda trial: objective(trial, "accuracy"), n_trials=1) assert study.trials[0].state == optuna.trial.TrialState.PRUNED study = optuna.create_study(pruner=DeterministicPruner(False)) study.optimize(lambda trial: objective(trial, "accuracy"), n_trials=1) assert study.trials[0].state == optuna.trial.TrialState.COMPLETE assert study.trials[0].value == 1.0 with pytest.raises(ValueError): objective(optuna.trial.Trial(study, 0), []) objective(optuna.trial.Trial(study, 0), ["mae"]) study.optimize(lambda trial: objective(trial, ["accuracy", "mae"]), n_trials=1)
powerline/segments/common/vcs.py
MrFishFinger/powerline
11,435
11071612
<reponame>MrFishFinger/powerline<filename>powerline/segments/common/vcs.py<gh_stars>1000+ # vim:fileencoding=utf-8:noet from __future__ import (unicode_literals, division, absolute_import, print_function) from powerline.lib.vcs import guess, tree_status from powerline.segments import Segment, with_docstring from powerline.theme import requires_segment_info, requires_filesystem_watcher @requires_filesystem_watcher @requires_segment_info class BranchSegment(Segment): divider_highlight_group = None @staticmethod def get_directory(segment_info): return segment_info['getcwd']() def __call__(self, pl, segment_info, create_watcher, status_colors=False, ignore_statuses=()): name = self.get_directory(segment_info) if name: repo = guess(path=name, create_watcher=create_watcher) if repo is not None: branch = repo.branch() scol = ['branch'] if status_colors: try: status = tree_status(repo, pl) except Exception as e: pl.exception('Failed to compute tree status: {0}', str(e)) status = '?' else: status = status and status.strip() if status in ignore_statuses: status = None scol.insert(0, 'branch_dirty' if status else 'branch_clean') return [{ 'contents': branch, 'highlight_groups': scol, 'divider_highlight_group': self.divider_highlight_group, }] branch = with_docstring(BranchSegment(), '''Return the current VCS branch. :param bool status_colors: Determines whether repository status will be used to determine highlighting. Default: False. :param list ignore_statuses: List of statuses which will not result in repo being marked as dirty. Most useful is setting this option to ``["U"]``: this will ignore repository which has just untracked files (i.e. repository with modified, deleted or removed files will be marked as dirty, while just untracked files will make segment show clean repository). Only applicable if ``status_colors`` option is True. Highlight groups used: ``branch_clean``, ``branch_dirty``, ``branch``. ''') @requires_filesystem_watcher @requires_segment_info class StashSegment(Segment): divider_highlight_group = None @staticmethod def get_directory(segment_info): return segment_info['getcwd']() def __call__(self, pl, segment_info, create_watcher): name = self.get_directory(segment_info) if name: repo = guess(path=name, create_watcher=create_watcher) if repo is not None: stash = getattr(repo, 'stash', None) if stash: stashes = stash() if stashes: return [{ 'contents': str(stashes), 'highlight_groups': ['stash'], 'divider_highlight_group': self.divider_highlight_group }] stash = with_docstring(StashSegment(), '''Return the number of current VCS stash entries, if any. Highlight groups used: ``stash``. ''')