max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
shynet/analytics/migrations/0004_auto_20210328_1514.py
f97/shynet
1,904
11120686
<gh_stars>1000+ # Generated by Django 3.1.7 on 2021-03-28 19:14 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ("analytics", "0003_auto_20200502_1227"), ] operations = [ migrations.AlterField( model_name="hit", name="last_seen", field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AlterField( model_name="hit", name="start_time", field=models.DateTimeField( db_index=True, default=django.utils.timezone.now ), ), migrations.AlterField( model_name="session", name="last_seen", field=models.DateTimeField( db_index=True, default=django.utils.timezone.now ), ), migrations.AlterField( model_name="session", name="start_time", field=models.DateTimeField( db_index=True, default=django.utils.timezone.now ), ), migrations.AddIndex( model_name="session", index=models.Index( fields=["service", "-last_seen"], name="analytics_s_service_10bb96_idx" ), ), ]
core/src/epicli/tests/cli/engine/providers/test_provider_class_loader_aws.py
bikramlmsl/epiphany
130
11120690
from cli.engine.providers.provider_class_loader import provider_class_loader from cli.engine.providers.aws.InfrastructureBuilder import InfrastructureBuilder from cli.engine.providers.aws.APIProxy import APIProxy from cli.engine.providers.aws.InfrastructureConfigCollector import InfrastructureConfigCollector def test_provider_class_loader_infrastructurebuilder_aws(): infrastructure_builder = provider_class_loader('aws', 'InfrastructureBuilder') assert infrastructure_builder is InfrastructureBuilder def test_provider_class_loader_apiproxy_aws(): api_proxy = provider_class_loader('aws', 'APIProxy') assert api_proxy is APIProxy def test_provider_class_loader_infrastructureconfigcollector_aws(): infrastructure_config_collector = provider_class_loader('aws', 'InfrastructureConfigCollector') assert infrastructure_config_collector is InfrastructureConfigCollector
Programming Languages/Python/Theory/100_Python_Challenges/Section _1_Basic_Coding_Exercises/20. swap bits in an integer.py
jaswinder9051998/Resources
101
11120709
<filename>Programming Languages/Python/Theory/100_Python_Challenges/Section _1_Basic_Coding_Exercises/20. swap bits in an integer.py """ Write a function that accepts an integer and converts the integer into its binary form. The function should then swap the two bits at positions 3 and 7 (from left) in the binary number and return the result (integer). Example : input = 40 (binary representation - '00101000' ) Expected output = 10 (binary representation - '00001010') """ def swap_bits(num): p = 1 q = 5 if (((num & (1 << p)) >> p) ^ ((num & (1 << q)) >> q)) == 1: num ^= (1 << p) num ^= (1 << q) return num
external/rocksdb/tools/advisor/test/test_db_stats_fetcher.py
cashbitecrypto/cashbite
12,278
11120726
<reponame>cashbitecrypto/cashbite<filename>external/rocksdb/tools/advisor/test/test_db_stats_fetcher.py # Copyright (c) 2011-present, Facebook, Inc. All rights reserved. # This source code is licensed under both the GPLv2 (found in the # COPYING file in the root directory) and Apache 2.0 License # (found in the LICENSE.Apache file in the root directory). from advisor.db_stats_fetcher import LogStatsParser, DatabasePerfContext from advisor.db_timeseries_parser import NO_ENTITY from advisor.rule_parser import Condition, TimeSeriesCondition import os import time import unittest from unittest.mock import MagicMock class TestLogStatsParser(unittest.TestCase): def setUp(self): this_path = os.path.abspath(os.path.dirname(__file__)) stats_file = os.path.join( this_path, 'input_files/log_stats_parser_keys_ts' ) # populate the keys_ts dictionary of LogStatsParser self.stats_dict = {NO_ENTITY: {}} with open(stats_file, 'r') as fp: for line in fp: stat_name = line.split(':')[0].strip() self.stats_dict[NO_ENTITY][stat_name] = {} token_list = line.split(':')[1].strip().split(',') for token in token_list: timestamp = int(token.split()[0]) value = float(token.split()[1]) self.stats_dict[NO_ENTITY][stat_name][timestamp] = value self.log_stats_parser = LogStatsParser('dummy_log_file', 20) self.log_stats_parser.keys_ts = self.stats_dict def test_check_and_trigger_conditions_bursty(self): # mock fetch_timeseries() because 'keys_ts' has been pre-populated self.log_stats_parser.fetch_timeseries = MagicMock() # condition: bursty cond1 = Condition('cond-1') cond1 = TimeSeriesCondition.create(cond1) cond1.set_parameter('keys', 'rocksdb.db.get.micros.p50') cond1.set_parameter('behavior', 'bursty') cond1.set_parameter('window_sec', 40) cond1.set_parameter('rate_threshold', 0) self.log_stats_parser.check_and_trigger_conditions([cond1]) expected_cond_trigger = { NO_ENTITY: {1530896440: 0.9767546362322214} } self.assertDictEqual(expected_cond_trigger, cond1.get_trigger()) # ensure that fetch_timeseries() was called once self.log_stats_parser.fetch_timeseries.assert_called_once() def test_check_and_trigger_conditions_eval_agg(self): # mock fetch_timeseries() because 'keys_ts' has been pre-populated self.log_stats_parser.fetch_timeseries = MagicMock() # condition: evaluate_expression cond1 = Condition('cond-1') cond1 = TimeSeriesCondition.create(cond1) cond1.set_parameter('keys', 'rocksdb.db.get.micros.p50') cond1.set_parameter('behavior', 'evaluate_expression') keys = [ 'rocksdb.manifest.file.sync.micros.p99', 'rocksdb.db.get.micros.p50' ] cond1.set_parameter('keys', keys) cond1.set_parameter('aggregation_op', 'latest') # condition evaluates to FALSE cond1.set_parameter('evaluate', 'keys[0]-(keys[1]*100)>200') self.log_stats_parser.check_and_trigger_conditions([cond1]) expected_cond_trigger = {NO_ENTITY: [1792.0, 15.9638]} self.assertIsNone(cond1.get_trigger()) # condition evaluates to TRUE cond1.set_parameter('evaluate', 'keys[0]-(keys[1]*100)<200') self.log_stats_parser.check_and_trigger_conditions([cond1]) expected_cond_trigger = {NO_ENTITY: [1792.0, 15.9638]} self.assertDictEqual(expected_cond_trigger, cond1.get_trigger()) # ensure that fetch_timeseries() was called self.log_stats_parser.fetch_timeseries.assert_called() def test_check_and_trigger_conditions_eval(self): # mock fetch_timeseries() because 'keys_ts' has been pre-populated self.log_stats_parser.fetch_timeseries = MagicMock() # condition: evaluate_expression cond1 = Condition('cond-1') cond1 = TimeSeriesCondition.create(cond1) cond1.set_parameter('keys', 'rocksdb.db.get.micros.p50') cond1.set_parameter('behavior', 'evaluate_expression') keys = [ 'rocksdb.manifest.file.sync.micros.p99', 'rocksdb.db.get.micros.p50' ] cond1.set_parameter('keys', keys) cond1.set_parameter('evaluate', 'keys[0]-(keys[1]*100)>500') self.log_stats_parser.check_and_trigger_conditions([cond1]) expected_trigger = {NO_ENTITY: { 1530896414: [9938.0, 16.31508], 1530896440: [9938.0, 16.346602], 1530896466: [9938.0, 16.284669], 1530896492: [9938.0, 16.16005] }} self.assertDictEqual(expected_trigger, cond1.get_trigger()) self.log_stats_parser.fetch_timeseries.assert_called_once() class TestDatabasePerfContext(unittest.TestCase): def test_unaccumulate_metrics(self): perf_dict = { "user_key_comparison_count": 675903942, "block_cache_hit_count": 830086, } timestamp = int(time.time()) perf_ts = {} for key in perf_dict: perf_ts[key] = {} start_val = perf_dict[key] for ix in range(5): perf_ts[key][timestamp+(ix*10)] = start_val + (2 * ix * ix) db_perf_context = DatabasePerfContext(perf_ts, 10, True) timestamps = [timestamp+(ix*10) for ix in range(1, 5, 1)] values = [val for val in range(2, 15, 4)] inner_dict = {timestamps[ix]: values[ix] for ix in range(4)} expected_keys_ts = {NO_ENTITY: { 'user_key_comparison_count': inner_dict, 'block_cache_hit_count': inner_dict }} self.assertDictEqual(expected_keys_ts, db_perf_context.keys_ts)
tfprof/server/tfprof.py
alexbriskin/taskflow
3,457
11120736
<reponame>alexbriskin/taskflow #!/usr/bin/env python3 # program: tfprof import logging as logger import time import sys import json import argparse import os import subprocess import requests # run_tfprof (default) # generate profiler data in taskflow profiler format def run_tfprof(args): args.output = os.path.abspath(args.output); logger.info("profiling program \"" + ' '.join(args.program) + "\"") ## open the output file with open(args.output, "w") as ofs: ofs.write('['); os.environ["TF_ENABLE_PROFILER"] = args.output; ## launch the program prob = time.perf_counter(); subprocess.call(args.program); proe = time.perf_counter(); logger.info(f"finished with {(proe - prob)*1000:0.2f} milliseconds"); logger.info(f"saved result to {args.output:s}"); if(args.port == None): return; logger.info(f"sending the result to localhost:{args.port:d}"); # run_chrome (TODO) # generate the profiler data in chrome tracing format # main function def main(): # configure logger logger.basicConfig( #format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', format='%(asctime)s %(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', level=logger.DEBUG ) # parse the input arguments parser = argparse.ArgumentParser(); parser.add_argument( '-o', '--output', type=str, help='file to save the result (default: output.tfp)', default="output.tfp" ) parser.add_argument( '-p', '--port', type=int, help='port number of the profiler server (default: None)', default=None ) parser.add_argument( 'program', nargs=argparse.REMAINDER, help='program to profile (e.g., path/to/binary args)' ) args = parser.parse_args(); if(len(args.program) == 0) : logger.error("no program specified"); sys.exit(1); run_tfprof(args); # main entry if __name__ == "__main__": main();
alipay/aop/api/domain/AnttechBlockchainFinanceMylogisticfinsysContractApplyModel.py
antopen/alipay-sdk-python-all
213
11120746
<filename>alipay/aop/api/domain/AnttechBlockchainFinanceMylogisticfinsysContractApplyModel.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AnttechBlockchainFinanceMylogisticfinsysContractApplyModel(object): def __init__(self): self._contract_name = None @property def contract_name(self): return self._contract_name @contract_name.setter def contract_name(self, value): self._contract_name = value def to_alipay_dict(self): params = dict() if self.contract_name: if hasattr(self.contract_name, 'to_alipay_dict'): params['contract_name'] = self.contract_name.to_alipay_dict() else: params['contract_name'] = self.contract_name return params @staticmethod def from_alipay_dict(d): if not d: return None o = AnttechBlockchainFinanceMylogisticfinsysContractApplyModel() if 'contract_name' in d: o.contract_name = d['contract_name'] return o
Recognition-Algorithms/Recognition_using_NasNet/models/__init__.py
swapnilgarg7/Face-X
175
11120762
<filename>Recognition-Algorithms/Recognition_using_NasNet/models/__init__.py from models.nasnet import *
dmb/data/transforms/builder.py
jiaw-z/DenseMatchingBenchmark
160
11120795
<reponame>jiaw-z/DenseMatchingBenchmark from . import transforms as T def build_transforms(cfg, is_train=True): return None
33. Python Programs/remove_duplicate.py
Ujjawalgupta42/Hacktoberfest2021-DSA
225
11120813
def deleteDuplicates(self, head: Optional[ListNode]) -> Optional[ListNode]: prev = head current = head if head: val = head.val head = head.next while (head != None): if head.val == val: prev.next = head.next head = head.next else: val = head.val prev = head head = head.next return current
factory-ai-vision/DevTools/utils_file.py
kaka-lin/azure-intelligent-edge-patterns
176
11120816
#!/usr/bin/env python """File Utilities """ import logging import os import subprocess from logging import config from logging_config import LOGGING_CONFIG_DEV logger = logging.getLogger(__name__) class FileContext: """File Context""" def __init__(self, file): self.path = os.path.realpath(file) @property def name(self): return os.path.basename(self.path) def __repr__(self): return self.name.__repr__() def __str__(self): return self.name.__str__() @property def dir(self) -> str: """dir Returns: str: dir path """ return os.path.dirname(self.path) @property def git_root(self) -> str: """git_root Returns: str: git root path """ return ( subprocess.Popen( ["git", "rev-parse", "--show-toplevel"], stdout=subprocess.PIPE, cwd=self.dir, ) .communicate()[0] .rstrip() .decode("utf-8") ) def show(self): """show info""" logger.info("Path: %s", self.path) logger.info("Name: %s", self.name) logger.info("Dir: %s", self.dir) logger.info("Git: %s", self.git_root) if __name__ == "__main__": config.dictConfig(LOGGING_CONFIG_DEV) fc = FileContext(__file__) fc.show()
frontera/utils/add_seeds.py
buildfail/frontera
1,267
11120863
# -*- coding: utf-8 -*- from frontera.core.manager import LocalFrontierManager from frontera.settings import Settings from frontera.logger.handlers import CONSOLE from argparse import ArgumentParser import logging from logging.config import fileConfig from os.path import exists logger = logging.getLogger(__name__) def run_add_seeds(settings, seeds_file): fh = open(seeds_file, "rb") logger.info("Starting local seeds addition from file %s", seeds_file) manager = LocalFrontierManager.from_settings(settings) manager.add_seeds(fh) manager.stop() manager.close() logger.info("Seeds addition finished") if __name__ == '__main__': parser = ArgumentParser(description="Frontera local add seeds utility") parser.add_argument('--config', type=str, required=True, help='Settings module name, should be accessible by import') parser.add_argument('--log-level', '-L', type=str, default='INFO', help="Log level, for ex. DEBUG, INFO, WARN, ERROR, FATAL") parser.add_argument('--seeds-file', type=str, required=True, help="Seeds file path") args = parser.parse_args() settings = Settings(module=args.config) logging_config_path = settings.get("LOGGING_CONFIG") if logging_config_path and exists(logging_config_path): fileConfig(logging_config_path, disable_existing_loggers=False) else: logging.basicConfig(level=args.log_level) logger.setLevel(args.log_level) logger.addHandler(CONSOLE) run_add_seeds(settings, args.seeds_file)
test/__init__.py
logilab/rdflib-jsonld
1,424
11120874
from rdflib import plugin from rdflib import serializer from rdflib import parser assert plugin assert serializer assert parser import json
cellrank/external/kernels/__init__.py
WeilerP/cellrank
172
11120902
<gh_stars>100-1000 from cellrank.external.kernels._wot_kernel import WOTKernel from cellrank.external.kernels._statot_kernel import StationaryOTKernel
4dev/style_check.py
joschu/c
698
11120915
<reponame>joschu/c #!/usr/bin/env python import cgt for (name,val) in cgt.__dict__.iteritems(): if not name.startswith("_"): if not val.__doc__: print "API function %s requires docstring!"%name for (name,val) in cgt.core.__dict__.iteritems(): if isinstance(val, type) and issubclass(val, cgt.core.Op): if val.get_native_compile_info == cgt.core.Op.get_native_compile_info: print "Op %s is missing 'get_native_compile_info'!"%name
lulu/extractors/ifeng.py
fakegit/Lulu
922
11120926
<gh_stars>100-1000 #!/usr/bin/env python from html import unescape from lulu.common import ( match1, url_info, print_info, get_content, download_urls, playlist_not_supported, ) __all__ = ['ifeng_download', 'ifeng_download_by_id'] site_info = '凤凰网 ifeng.com' def ifeng_download_by_id(_id, title=None, info_only=False, **kwargs): assert match1( _id, r'([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})' ), _id url = 'http://vxml.ifengimg.com/video_info_new/{}/{}/{}.xml'.format( _id[-2], _id[-2:], _id ) xml = get_content(url) title = match1(xml, r'Name="([^"]+)"') title = unescape(title) url = match1(xml, r'VideoPlayUrl="([^"]+)"') url = url.replace( 'http://wideo.ifeng.com/', 'http://ips.ifeng.com/wideo.ifeng.com/' ) _, ext, size = url_info(url) print_info(site_info, title, ext, size) if not info_only: download_urls([url], title, ext, size, **kwargs) def ifeng_download(url, info_only=False, **kwargs): # old pattern /uuid.shtml # now it could be #uuid _id = match1( url, r'([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})' ) if _id: return ifeng_download_by_id(_id, None, info_only=info_only, **kwargs) html = get_content(url) uuid_pattern = ( r'"([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12})"' ) _id = match1( html, r'var vid="([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-' '[0-9a-f]{12})"' ) if _id is None: video_pattern = r'"vid"\s*:\s*' + uuid_pattern _id = match1(html, video_pattern) assert _id, "Can't find video info" return ifeng_download_by_id(_id, None, info_only=info_only, **kwargs) download = ifeng_download download_playlist = playlist_not_supported(site_info)
2019/08/05/Flask-Praetorian Walkthrough A Library for API Security With JSON Web Tokens JWT/myapi/myapi/models.py
kenjitagawa/youtube_video_code
492
11120944
<filename>2019/08/05/Flask-Praetorian Walkthrough A Library for API Security With JSON Web Tokens JWT/myapi/myapi/models.py<gh_stars>100-1000 from .extensions import db class User(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(50)) password = db.Column(db.Text) @classmethod def lookup(cls, username): return cls.query.filter_by(username=username).one_or_none() @classmethod def identify(cls, id): return cls.query.filter_by(id=id).one_or_none() @property def rolenames(self): return [] @property def identity(self): return self.id
backend/util/environment_loader.py
Purus/LaunchKitDocker
2,341
11120952
<filename>backend/util/environment_loader.py # # Copyright 2016 Cluster Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import glob import json import os import types class EnvironmentLoaderError(RuntimeError): pass class Environment(object): def __init__(self, name, env_dict): self.name = name self._env_dict = env_dict self._module = None def keys(self): return self._env_dict.keys() def get_module(self): if not self._module: self._module = types.ModuleType(self.name) self.annotate_module(self._module) return self._module def annotate_module(self, module): for k,v in self._env_dict.items(): setattr(module, k, v) def load_environments(basedir, default='default', source_replace_dict=None): json_files = {} for filename in glob.glob(os.path.join(basedir, '*.json')): env = os.path.splitext(os.path.basename(filename))[0] with file(filename, 'r') as json_file: content = json_file.read() if source_replace_dict: for k, v in source_replace_dict.items(): content = content.replace(k, v) try: json_files[env] = json.loads(content) except ValueError as e: raise EnvironmentLoaderError('Cannot parse %s.json! %r' % (env, e)) if default not in json_files: raise EnvironmentLoaderError('Cannot find default %s! Choices: %s' % (default, json_files.keys())) default_dict = json_files[default] environments = {} for environment_name, env_specific_dict in json_files.items(): merged_dict = default_dict.copy() for setting in default_dict.keys(): if setting in env_specific_dict: merged_dict[setting] = env_specific_dict[setting] environments[environment_name] = Environment(environment_name, merged_dict) return environments
test/pool-test.py
edisga/scalene
3,952
11120990
<gh_stars>1000+ import multiprocessing pool = multiprocessing.Pool(processes=1) pool.terminate()
junction/proposals/migrations/0003_auto_20150113_1401.py
theSage21/junction
192
11120994
<filename>junction/proposals/migrations/0003_auto_20150113_1401.py<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("proposals", "0002_auto_20150105_2220"), ] operations = [ migrations.AlterField( model_name="proposalsection", name="conferences", field=models.ManyToManyField( to="conferences.Conference", related_name="proposal_sections" ), preserve_default=True, ), migrations.AlterField( model_name="proposaltype", name="conferences", field=models.ManyToManyField( to="conferences.Conference", related_name="proposal_types" ), preserve_default=True, ), ]
String_or_Array/PairSum_is_X.py
Amanjakhetiya/Data_Structures_Algorithms_In_Python
195
11121022
<gh_stars>100-1000 # Find a pair of elements in the array with sum = x """ Method 1: If unsorted array Time Complexity: O(n) Space Complexity: O(n) """ def find_pair_unsorted(arr, x): elem_set = set({}) # To store the indexes of both the elements pair = [-1, -1] for value in arr: # if x - value has already been discovered in the array # Pair found, return the values if (x-value) in elem_set: return x-value, value # else add the current value in the elem_set else: elem_set.add(value) return "Not found" arr = [1, 4, 45, 6, 10, 8] print('Unsorted array:', arr) print('Pair with sum 16 in unsorted array:', find_pair_unsorted(arr, 16)) """ Method 2: If array is sorted Time Complexity: O(n) Space Complexity: O(1) """ def find_pair_sorted(arr, x): # initialize variables to the start and end of the array l = 0 r = len(arr) - 1 while l < r: pair_sum = arr[l] + arr[r] # if pair is found if pair_sum == x: return arr[l], arr[r] # if the pair sum is less than x go to the next bigger value from left elif pair_sum < x: l += 1 # if the pair sum is more than x go to the next lesser value from right else: r -= 1 # If pair not found return "Not found" arr = [2, 6, 10, 15, 18, 20, 23, 25] print('Sorted array:', arr) print('Pair with sum 28 in sorted array:', find_pair_sorted(arr, 28))
dags/ethereum_load_dag.py
saccodd/ethereum-etl-airflow
204
11121026
<reponame>saccodd/ethereum-etl-airflow<gh_stars>100-1000 from __future__ import print_function import logging from ethereumetl_airflow.build_load_dag import build_load_dag from ethereumetl_airflow.build_load_dag_redshift import build_load_dag_redshift from ethereumetl_airflow.variables import read_load_dag_vars from ethereumetl_airflow.variables import read_load_dag_redshift_vars from ethereumetl_airflow.variables import read_var logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) # Default is gcp cloud_provider = read_var('cloud_provider', var_prefix=None, required=False, cloud_provider='gcp') if cloud_provider == 'gcp': # airflow DAG DAG = build_load_dag( dag_id='ethereum_load_dag', chain='ethereum', **read_load_dag_vars( var_prefix='ethereum_', schedule_interval='30 12 * * *' ) ) elif cloud_provider == 'aws': # airflow DAG DAG = build_load_dag_redshift( dag_id='ethereum_load_dag', chain='ethereum', **read_load_dag_redshift_vars( var_prefix='ethereum_', schedule_interval='30 1 * * *' ) ) else: raise ValueError('You must set a valid cloud_provider Airflow variable (gcp,aws)')
pipe-cli/src/utilities/pipeline_run_share_manager.py
AlfiyaRF/cloud-pipeline
126
11121070
<reponame>AlfiyaRF/cloud-pipeline<filename>pipe-cli/src/utilities/pipeline_run_share_manager.py # Copyright 2017-2020 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import click from prettytable import prettytable from src.api.pipeline_run import PipelineRun class PipelineRunShareManager(object): def __init__(self): pass def get(self, run_id): run = PipelineRun.get(run_id) if not run: raise RuntimeError("Failed to load run '%s'" % str(run_id)) if not run.run_sids or len(run.run_sids) == 0: click.echo("Not shared (use 'pipe share add' to configure)") return self._check_run_is_running(run) table = prettytable.PrettyTable() table.field_names = ["User/group", "SSH shared"] table.align = "l" table.header = True for sid in run.run_sids: table.add_row([sid.name, '+' if sid.access_type == 'SSH' else '']) click.echo(table) def add(self, run_id, users, groups, ssh): run = PipelineRun.get(run_id) if not run: click.echo("Failed to load run '%s'" % str(run_id), err=True) sys.exit(1) if not users and not groups or len(users) == 0 and len(groups) == 0: click.echo("Users or groups must be specified", err=True) sys.exit(1) self._check_run_is_running(run) if not run.endpoints and not ssh: click.echo("Run doesn't have endpoints. Please, specify '-ssh' option to share ssh.", err=True) sys.exit(1) existing_users, existing_groups = self._get_existing_sids(run, run_id) self._add_sids(users, existing_users, run_id, ssh, True) self._add_sids(groups, existing_groups, run_id, ssh, False) result = PipelineRun.update_run_sids(run_id, existing_users.values() + existing_groups.values()) if not result: click.echo("Failed to share run '%s'" % str(run_id), err=True) sys.exit(1) click.echo("Done") def remove(self, run_id, users, groups, ssh): run = PipelineRun.get(run_id) if not run: click.echo("Failed to load run '%s'" % str(run_id), err=True) sys.exit(1) self._check_run_is_running(run) if not users and not groups or len(users) == 0 and len(groups) == 0: sids_to_delete = list() click.echo("Run '%s' will be unshared for all users and groups", str(run_id)) else: existing_users, existing_groups = self._get_existing_sids(run, run_id) self._delete_sids(users, existing_users, run_id, ssh, True, run) self._delete_sids(groups, existing_groups, run_id, ssh, False, run) sids_to_delete = self._filter_nulls(existing_users.values()) + self._filter_nulls(existing_groups.values()) result = PipelineRun.update_run_sids(run_id, sids_to_delete) if not result: click.echo("Failed to unshare run '%s'" % str(run_id), err=True) sys.exit(1) click.echo("Done") @staticmethod def _check_run_is_running(run): if run.status != 'RUNNING': click.echo("Run is not running", err=True) sys.exit(1) @staticmethod def _to_json(name, is_principal, access_type, run_id): return { "name": name, "runId": run_id, "isPrincipal": is_principal, "accessType": str(access_type).upper() } @staticmethod def _model_to_json(sid_model, run_id): return PipelineRunShareManager._to_json(sid_model.name, sid_model.is_principal, sid_model.access_type, run_id) @staticmethod def _determine_access_type(ssh): return 'SSH' if ssh else 'ENDPOINT' def _delete_sids(self, sids, existing_sids, run_id, ssh, is_principal, run): if sids: for sid in sids: existing_sid = existing_sids.get(sid) if not existing_sid: click.echo("Run '%s' was not shared for user or group '%s'" % (str(run_id), sid)) continue if ssh and run.endpoints: existing_sids.update({sid: self._to_json(sid, is_principal, 'ENDPOINT', run_id)}) else: existing_sids.update({sid: None}) click.echo("Run '%s' will be unshared for user or group '%s'" % (str(run_id), sid)) @staticmethod def _filter_nulls(sids): return [sid for sid in sids if sid is not None] def _get_existing_sids(self, run, run_id): existing_users = dict() existing_groups = dict() for sid in run.run_sids: if sid.is_principal: existing_users.update({sid.name: self._model_to_json(sid, run_id)}) else: existing_groups.update({sid.name: self._model_to_json(sid, run_id)}) return existing_users, existing_groups def _add_sids(self, sids, existing_sids, run_id, ssh, is_principal): if sids: for sid in sids: existing_sids.update({sid: self._to_json(sid, is_principal, self._determine_access_type(ssh), run_id)})
tests/test_model/test_head/test_mobilenet_v3_head.py
ZJCV/PyCls
110
11121084
<gh_stars>100-1000 # -*- coding: utf-8 -*- """ @date: 2020/12/30 下午9:42 @file: test_mobilenet_v3_head.py @author: zj @description: """ import torch from zcls.model.heads.mobilenetv3_head import MobileNetV3Head def test_mobilenet_v3_head(): data = torch.randn(1, 960, 7, 7) model = MobileNetV3Head( feature_dims=960, inner_dims=1280, num_classes=1000, conv_layer=None, act_layer=None ) print(model) outputs = model(data) print(outputs.shape) assert outputs.shape == (1, 1000) if __name__ == '__main__': test_mobilenet_v3_head()
vit/formatter/due_formatted.py
kinifwyne/vit
179
11121110
<filename>vit/formatter/due_formatted.py from vit.formatter.due import Due class DueFormatted(Due): pass
src/cltk/corpora/lat/phi/file_utils.py
yelircaasi/cltk
757
11121157
<reponame>yelircaasi/cltk<filename>src/cltk/corpora/lat/phi/file_utils.py """Higher-level (i.e., user-friendly) functions for quickly reading PHI5 data after it has been processed by ``TLGU()``. """ import os import regex from cltk.corpora.lat.phi.phi5_index import PHI5_INDEX, PHI5_WORKS_INDEX from cltk.utils.file_operations import make_cltk_path def phi5_plaintext_cleanup(text, rm_punctuation=False, rm_periods=False): """Remove and substitute post-processing for Latin PHI5 text. TODO: Surely more junk to pull out. Please submit bugs! TODO: This is a rather slow now, help in speeding up welcome. """ # This works OK, doesn't get some # Note: rming all characters between {} and () remove_comp = regex.compile( r"-\n|«|»|\<|\>|\.\.\.|‘|’|_|{.+?}|\(.+?\)|\(|\)|“|#|%|⚔|&|=|/|\\|〚|†|『|⚖|–|˘|⚕|☾|◌|◄|►|⌐|⌊|⌋|≈|∷|≈|∞|”|[0-9]" ) text = remove_comp.sub("", text) new_text = None if rm_punctuation: new_text = "" punctuation = [",", ";", ":", '"', "'", "?", "-", "!", "*", "[", "]", "{", "}"] if rm_periods: punctuation += ["."] for char in text: # rm acute combining acute accents made by TLGU # Could be caught by regex, tried and failed, not sure why if bytes(char, "utf-8") == b"\xcc\x81": pass # second try at rming some punctuation; merge with above regex elif char in punctuation: pass else: new_text += char if new_text: text = new_text # replace line breaks w/ space replace_comp = regex.compile(r"\n") text = replace_comp.sub(" ", text) comp_space = regex.compile(r"\s+") text = comp_space.sub(" ", text) return text def assemble_phi5_author_filepaths(): """Reads PHI5 index and builds a list of absolute filepaths.""" plaintext_dir = make_cltk_path("lat/text/phi5/plaintext/") filepaths = [os.path.join(plaintext_dir, x + ".TXT") for x in PHI5_INDEX] return filepaths def assemble_phi5_works_filepaths(): """Reads PHI5 index and builds a list of absolute filepaths.""" plaintext_dir = make_cltk_path("lat/text/phi5/individual_works/") all_filepaths = [] for author_code in PHI5_WORKS_INDEX: author_data = PHI5_WORKS_INDEX[author_code] works = author_data["works"] for work in works: f = os.path.join(plaintext_dir, author_code + ".TXT" + "-" + work + ".txt") all_filepaths.append(f) return all_filepaths
python/dp/triangle.py
googege/algo-learn
153
11121159
<reponame>googege/algo-learn # 三角形的最短路径和 import copy from typing import List class Solution: def minimumTotal_1(self, triangle: List[List[int]]) -> int: dp = copy.copy(triangle) for i in range(len(triangle) - 2, -1, -1): for j in range(len(triangle[i])): dp[i][j] = min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle[i][j] return dp[0][0] # 简化一维的写法 def minimumTotal_2(self, triangle: List[List[int]]) -> int: dp = [0] * (len(triangle) + 1) for i in range(len(triangle) - 1, -1, -1): for j in range(len(triangle[i])): dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j] return dp[0] # 复用自身,不新开数组 def minimumTotal_3(self, triangle: List[List[int]]) -> int: for i in range(len(triangle) - 2, -1, -1): for j in range(len(triangle[i])): triangle[i][j] += min(triangle[i + 1][j + 1], triangle[i + 1][j]) return triangle[0][0]
tests/resources/test_service_desk.py
Glushiator/jira
1,639
11121167
import logging from time import sleep import pytest from tests.conftest import JiraTestCase, broken_test LOGGER = logging.getLogger(__name__) class JiraServiceDeskTests(JiraTestCase): def setUp(self): JiraTestCase.setUp(self) if not self.jira.supports_service_desk(): pytest.skip("Skipping Service Desk not enabled") try: self.jira.delete_project(self.test_manager.project_sd) except Exception: LOGGER.warning("Failed to delete %s", self.test_manager.project_sd) @broken_test(reason="Broken needs fixing") def test_create_customer_request(self): self.jira.create_project( key=self.test_manager.project_sd, name=self.test_manager.project_sd_name, ptype="service_desk", template_name="IT Service Desk", ) service_desks = [] for _ in range(3): service_desks = self.jira.service_desks() if service_desks: break logging.warning("Service desk not reported...") sleep(2) self.assertTrue(service_desks, "No service desks were found!") service_desk = service_desks[0] for _ in range(3): request_types = self.jira.request_types(service_desk) if request_types: logging.warning("Service desk request_types not reported...") break sleep(2) self.assertTrue(request_types, "No request_types for service desk found!") request = self.jira.create_customer_request( dict( serviceDeskId=service_desk.id, requestTypeId=int(request_types[0].id), requestFieldValues=dict( summary="Ticket title here", description="Ticket body here" ), ) ) self.assertEqual(request.fields.summary, "Ticket title here") self.assertEqual(request.fields.description, "Ticket body here")
cross3d/classes/__init__.py
vedantirb/cross3d
129
11121233
<filename>cross3d/classes/__init__.py ## # \namespace cross3d.classes # # \remarks [desc::commented] # # \author Mikeh # \author <NAME> # \date 06/08/11 # from fcurve import FCurve from exceptions import Exceptions from dispatch import Dispatch from clipboard import Clipboard from valuerange import ValueRange from framerange import FrameRange from filesequence import FileSequence from timecode import Timecode from flipbook import FlipBook
python/paddle_fl/mpc/examples/logistic_with_mnist/train_fc_softmax.py
barrierye/PaddleFL
379
11121252
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MNIST CNN Demo (LeNet5) """ import sys import os import errno import numpy as np import time import logging import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle_fl.mpc as pfl_mpc from paddle_fl.mpc.data_utils.data_utils import get_datautils logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) mpc_protocol_name = 'aby3' mpc_du = get_datautils(mpc_protocol_name) role, server, port = sys.argv[1], sys.argv[2], sys.argv[3] # modify host(localhost). pfl_mpc.init(mpc_protocol_name, int(role), "localhost", server, int(port)) role = int(role) # data preprocessing BATCH_SIZE = 128 epoch_num = 1 x = pfl_mpc.data(name='x', shape=[BATCH_SIZE, 1, 28, 28], dtype='int64') y = pfl_mpc.data(name='y', shape=[BATCH_SIZE, 10], dtype='int64') fc_out = pfl_mpc.layers.fc(input=x, size=10) cost, softmax = pfl_mpc.layers.softmax_with_cross_entropy(logits=fc_out, label=y, soft_label=True, return_softmax=True) infer_program = fluid.default_main_program().clone(for_test=False) avg_loss = pfl_mpc.layers.mean(cost) optimizer = pfl_mpc.optimizer.SGD(learning_rate=0.1) optimizer.minimize(avg_loss) # prepare train and test reader mpc_data_dir = "./mpc_data/" if not os.path.exists(mpc_data_dir): raise ValueError("mpc_data_dir is not found. Please prepare encrypted data.") # train_reader feature_reader = mpc_du.load_shares(mpc_data_dir + "mnist10_feature", id=role, shape=(1, 28, 28)) label_reader = mpc_du.load_shares(mpc_data_dir + "mnist10_label", id=role, shape=(10,)) batch_feature = mpc_du.batch(feature_reader, BATCH_SIZE, drop_last=True) batch_label = mpc_du.batch(label_reader, BATCH_SIZE, drop_last=True) # test_reader test_feature_reader = mpc_du.load_shares(mpc_data_dir + "mnist10_test_feature", id=role, shape=(1, 28, 28)) test_label_reader = mpc_du.load_shares(mpc_data_dir + "mnist10_test_label", id=role, shape=(10,)) test_batch_feature = mpc_du.batch(test_feature_reader, BATCH_SIZE, drop_last=True) test_batch_label = mpc_du.batch(test_label_reader, BATCH_SIZE, drop_last=True) place = fluid.CPUPlace() # async data loader loader = fluid.io.DataLoader.from_generator(feed_list=[x, y], capacity=BATCH_SIZE) batch_sample = paddle.reader.compose(batch_feature, batch_label) loader.set_batch_generator(batch_sample, places=place) test_loader = fluid.io.DataLoader.from_generator(feed_list=[x, y], capacity=BATCH_SIZE) test_batch_sample = paddle.reader.compose(test_batch_feature, test_batch_label) test_loader.set_batch_generator(test_batch_sample, places=place) # infer def infer(): """ MPC infer """ mpc_infer_data_dir = "./mpc_infer_data/" if not os.path.exists(mpc_infer_data_dir): try: os.mkdir(mpc_infer_data_dir) except OSError as e: if e.errno != errno.EEXIST: raise prediction_file = mpc_infer_data_dir + "mnist_debug_prediction" prediction_file_part = prediction_file + ".part{}".format(role) if os.path.exists(prediction_file_part): os.remove(prediction_file_part) step = 0 start_time = time.time() for sample in test_loader(): step += 1 prediction = exe.run(program=infer_program, feed=sample, fetch_list=[softmax]) with open(prediction_file_part, 'ab') as f: f.write(np.array(prediction).tostring()) if step % 10 == 0: end_time = time.time() logger.info('MPC infer of step={}, cost time in seconds:{}'.format(step, (end_time - start_time))) end_time = time.time() logger.info('MPC infer time in seconds:{}'.format((end_time - start_time))) # train exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) mpc_model_basedir = "./mpc_model/" logger.info('MPC training start...') for epoch_id in range(epoch_num): step = 0 epoch_start_time = time.time() for sample in loader(): step += 1 step_start_time = time.time() results = exe.run(feed=sample, fetch_list=[softmax]) step_end_time = time.time() if step % 100 == 0: logger.info('MPC training of epoch_id={} step={}, cost time in seconds:{}' .format(epoch_id, step, (step_end_time - step_start_time))) # For each epoch: infer or save infer program #infer() mpc_model_dir = mpc_model_basedir + "epoch{}/party{}".format(epoch_id, role) fluid.io.save_inference_model(dirname=mpc_model_dir, feeded_var_names=["x", "y"], target_vars=[softmax], executor=exe, main_program=infer_program, model_filename="__model__") epoch_end_time = time.time() logger.info('MPC training of epoch_id={} batch_size={}, cost time in seconds:{}' .format(epoch_num, BATCH_SIZE, (epoch_end_time - epoch_start_time))) # infer infer()
src/genie/libs/parser/iosxe/tests/ShowIpNatTranslations/cli/equal/golden_output_vrf_verbose_expected.py
balmasea/genieparser
204
11121260
<gh_stars>100-1000 expected_output = { "vrf": { "genie": { "index": { 1: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "10.144.0.2", "outside_local": "10.1.0.2", "protocol": "any", "time_left": "0:0:-1", }, 2: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "120.1.211", "outside_local": "10.1.2.21", "protocol": "any", "time_left": "0:1:38", }, 3: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "120.1.212", "outside_local": "10.1.2.22", "protocol": "any", "time_left": "0:1:56", }, 4: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "120.1.213", "outside_local": "10.1.2.23", "protocol": "any", "time_left": "0:1:30", }, 5: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "120.1.214", "outside_local": "10.1.2.24", "protocol": "any", "time_left": "0:1:54", }, 6: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "120.1.215", "outside_local": "10.1.2.25", "protocol": "any", "time_left": "0:1:58", }, 7: { "group_id": 0, "inside_global": "---", "inside_local": "---", "outside_global": "120.1.216", "outside_local": "10.1.2.26", "protocol": "any", "time_left": "0:1:30", }, } } } }
tests/test_users.py
hishamnajam/python-wordpress-xmlrpc
218
11121285
from nose.plugins.attrib import attr from tests import WordPressTestCase from wordpress_xmlrpc.methods import users from wordpress_xmlrpc.wordpress import WordPressUser, WordPressBlog, WordPressAuthor class TestUsers(WordPressTestCase): @attr('users') @attr('pycompat') def test_user_repr(self): user = WordPressUser() repr(user) @attr('users') @attr('pycompat') def test_author_repr(self): author = WordPressAuthor() repr(author) @attr('users') def test_get_user(self): user = self.client.call(users.GetUser(self.userid)) self.assertTrue(isinstance(user, WordPressUser)) self.assertEqual(user.username, self.username) @attr('users') def test_get_users(self): user_list = self.client.call(users.GetUsers()) self.assert_list_of_classes(user_list, WordPressUser) found = False for user in user_list: if user.id == self.userid: found = True break self.assertTrue(found) @attr('users') def test_get_profile(self): user = self.client.call(users.GetProfile()) self.assertTrue(isinstance(user, WordPressUser)) self.assertEqual(user.username, self.username) @attr('users') def test_edit_profile(self): user = self.client.call(users.GetProfile()) self.assertTrue(isinstance(user, WordPressUser)) old_first_name = user.first_name new_first_name = '<NAME>' user.first_name = new_first_name result = self.client.call(users.EditProfile(user)) self.assertTrue(result) # check that the value changed user2 = self.client.call(users.GetProfile()) self.assertEqual(new_first_name, user2.first_name) # cleanup user.first_name = old_first_name self.client.call(users.EditProfile(user)) @attr('users') def test_get_user_blogs(self): blogs = self.client.call(users.GetUsersBlogs()) self.assert_list_of_classes(blogs, WordPressBlog) @attr('users') def test_get_authors(self): authors = self.client.call(users.GetAuthors()) self.assert_list_of_classes(authors, WordPressAuthor)
ast/testdata/func_star_arg.py
MaxTurchin/pycopy-lib
126
11121293
<gh_stars>100-1000 def foo(a, b, *c): pass # After vararg, only kwonly's def merge(*iterables, key=None, reverse=False): pass
scripts/eval/combined_demo.py
hansheng0512/LateTemporalModeling3DCNN
144
11121303
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 27 11:49:54 2020 @author: esat """ import os, sys import collections import numpy as np import cv2 import math import random import time import argparse import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets from numpy import linalg as LA from sklearn.metrics import confusion_matrix datasetFolder="../../datasets" sys.path.insert(0, "../../") import models from VideoSpatialPrediction3D import VideoSpatialPrediction3D from VideoSpatialPrediction3D_bert import VideoSpatialPrediction3D_bert os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" model_names = sorted(name for name in models.__dict__ if not name.startswith("__") and callable(models.__dict__[name])) dataset_names = sorted(name for name in datasets.__all__) parser = argparse.ArgumentParser(description='PyTorch Two-Stream Action Recognition RGB Test Case') parser.add_argument('--dataset', '-d', default='hmdb51', choices=["ucf101", "hmdb51"], help='dataset: ucf101 | hmdb51') parser.add_argument('--arch_flow', '-a', metavar='ARCH', default='flow_resneXt3D64f101_bert10_FRMB', choices=model_names) parser.add_argument('--arch_rgb', '-b', metavar='ARCH', default='rgb_resneXt3D64f101_bert10_FRMB', choices=model_names) parser.add_argument('-s', '--split', default=1, type=int, metavar='S', help='which split of data to work on (default: 1)') parser.add_argument('-w', '--window', default=3, type=int, metavar='V', help='validation file index (default: 3)') parser.add_argument('-v', '--val', dest='window_val', action='store_true', help='Window Validation Selection') multiGPUTest=False multiGPUTrain=False ten_crop_enabled = True multiple_clips_enabled = True num_seg_rgb=16 num_seg_pose=16 num_seg_flow=16 len_flow=1 poseEnabled = False num_seg_3D = 1 length_3D = 64 def buildModel(model_path,arch,num_categories): global multiGPUTrain if 'rgb' in arch: model=models.__dict__[arch](modelPath='', num_classes=num_categories,length=num_seg_rgb) elif 'flow' in arch: model=models.__dict__[arch](modelPath='', num_classes=num_categories,length=num_seg_flow) params = torch.load(model_path) if multiGPUTest: model=torch.nn.DataParallel(model) new_dict={"module."+k: v for k, v in params['state_dict'].items()} model.load_state_dict(new_dict) elif multiGPUTrain: new_dict = {k[7:]: v for k, v in params['state_dict'].items()} model_dict=model.state_dict() model_dict.update(new_dict) model.load_state_dict(model_dict) else: model.load_state_dict(params['state_dict']) model.cuda() model.eval() return model def main(): global args args = parser.parse_args() modelLocationRGB="./checkpoint/"+args.dataset+"_"+args.arch_rgb+"_split"+str(args.split) modelLocationFlow="./checkpoint/"+args.dataset+"_"+args.arch_flow+"_split"+str(args.split) model_path_rgb = os.path.join('../../',modelLocationRGB,'model_best.pth.tar') model_path_flow = os.path.join('../../',modelLocationFlow,'model_best.pth.tar') if args.dataset=='ucf101': frameFolderName = "ucf101_frames" elif args.dataset=='hmdb51': frameFolderName = "hmdb51_frames" elif args.dataset=='window': frameFolderName = "window_frames" data_dir=os.path.join(datasetFolder,frameFolderName) if '64f' in args.arch_rgb: rgb_length=64 elif '32f' in args.arch_rgb: rgb_length=32 elif '8f' in args.arch_rgb: rgb_length=8 else: rgb_length=16 if '64f' in args.arch_flow: flow_length=64 elif '32f' in args.arch_flow: flow_length=32 elif '8f' in args.arch_flow: flow_length=8 else: flow_length=16 if args.window_val: val_fileName = "window%d.txt" %(args.window) else: val_fileName = "val_flow_split%d.txt" %(args.split) rgb_extension = 'img_{0:05d}.jpg' if 'ucf101' in args.dataset or 'window' in args.dataset: flow_extension = 'flow_{0}_{1:05d}.jpg' elif 'hmdb51' in args.dataset: flow_extension = 'flow_{0}_{1:05d}' val_file=os.path.join(datasetFolder,'settings',args.dataset,val_fileName) start_frame = 0 if args.dataset=='ucf101': num_categories = 101 elif args.dataset=='hmdb51': num_categories = 51 elif args.dataset=='window': num_categories = 3 model_start_time = time.time() spatial_net = buildModel(model_path_rgb,args.arch_rgb,num_categories) temporal_net = buildModel(model_path_flow,args.arch_flow,num_categories) model_end_time = time.time() model_time = model_end_time - model_start_time print("Action recognition model is loaded in %4.4f seconds." % (model_time)) f_val = open(val_file, "r") val_list = f_val.readlines() print("we got %d test videos" % len(val_list)) line_id = 1 match_count = 0 match_count_top3 = 0 y_true=[] y_pred=[] timeList=[] #result_list = [] for line in val_list: line_info = line.split(" ") clip_path = os.path.join(data_dir,line_info[0]) duration = int(line_info[1]) input_video_label = int(line_info[2]) start = time.time() if not multiple_clips_enabled: _ , spatial_result, _ = VideoSpatialPrediction3D_bert( clip_path, spatial_net, num_categories, args.arch_rgb, start_frame, duration, num_seg=num_seg_3D , length = rgb_length, extension = rgb_extension, ten_crop = ten_crop_enabled) _ , temporal_result, _ = VideoSpatialPrediction3D_bert( clip_path, temporal_net, num_categories, args.arch_flow, start_frame, 0, num_seg=num_seg_3D , length = flow_length, extension = flow_extension, ten_crop = ten_crop_enabled) else: _ , spatial_result, _ = VideoSpatialPrediction3D( clip_path, spatial_net, num_categories, args.arch_rgb, start_frame, duration, length = rgb_length, extension = rgb_extension, ten_crop = ten_crop_enabled) _ , temporal_result, _ = VideoSpatialPrediction3D( clip_path, temporal_net, num_categories, args.arch_flow, start_frame, 0, length = flow_length, extension = flow_extension, ten_crop = ten_crop_enabled) end = time.time() estimatedTime=end-start timeList.append(estimatedTime) spatial_result = spatial_result / LA.norm(spatial_result) temporal_result = temporal_result / LA.norm(temporal_result) combined_result = spatial_result + temporal_result pred_index = np.argmax(combined_result) top3 = combined_result.argsort()[::-1][:3] print("Sample %d/%d: GT: %d, Prediction: %d" % (line_id, len(val_list), input_video_label, pred_index)) print("Estimated Time %0.4f" % estimatedTime) print("------------------") if pred_index == input_video_label: match_count += 1 if input_video_label in top3: match_count_top3 += 1 line_id += 1 y_true.append(input_video_label) y_pred.append(pred_index) print(confusion_matrix(y_true,y_pred)) print("Accuracy with mean calculation is %4.4f" % (float(match_count)/len(val_list))) print("top3 accuracy %4.4f" % (float(match_count_top3)/len(val_list))) print(modelLocationRGB) print(modelLocationFlow) print("Mean Estimated Time %0.4f" % (np.mean(timeList))) if multiple_clips_enabled: print('multiple clips') else: print('one clips') if ten_crop_enabled: print('10 crops') else: print('single crop') resultDict={'y_true':y_true,'y_pred':y_pred} np.save('results/%s.npy' %(args.dataset+'_'+args.arch_rgb+'_'+ args.arch_flow +"_split"+str(args.split)), resultDict) if __name__ == "__main__": main()
libs/dataclass_utils.py
phc-health/covid-data-model
155
11121307
<reponame>phc-health/covid-data-model import dataclasses # TODO(tom): Remove dataclass_with_default_init once we are using Python 3.9. See # https://stackoverflow.com/a/58336722 def dataclass_with_default_init(_cls=None, *args, **kwargs): def wrap(cls): # Save the current __init__ and remove it so dataclass will # create the default __init__. user_init = getattr(cls, "__init__") delattr(cls, "__init__") # let dataclass process our class. result = dataclasses.dataclass(cls, *args, **kwargs) # Restore the user's __init__ save the default init to __default_init__. setattr(result, "__default_init__", result.__init__) setattr(result, "__init__", user_init) # Just in case that dataclass will return a new instance, # (currently, does not happen), restore cls's __init__. if result is not cls: setattr(cls, "__init__", user_init) return result # Support both dataclass_with_default_init() and dataclass_with_default_init if _cls is None: return wrap else: return wrap(_cls)
native_client_sdk/src/build_tools/nacl_sdk_scons/nacl_utils_test.py
Scopetta197/chromium
212
11121352
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unit tests for nacl_utils.py.""" import fileinput import mox import nacl_utils import os import sys import unittest def TestMock(file_path, open_func): temp_file = open_func(file_path) temp_file.close() class TestNaClUtils(unittest.TestCase): """Class for test cases to cover globally declared helper functions.""" def setUp(self): self.script_dir = os.path.abspath(os.path.dirname(__file__)) self.mock_factory = mox.Mox() self.InitializeResourceMocks() def InitializeResourceMocks(self): """Can be called multiple times if multiple functions need to be tested.""" self.fileinput_mock = self.mock_factory.CreateMock(fileinput) self.os_mock = self.mock_factory.CreateMock(os) self.sys_mock = self.mock_factory.CreateMock(sys) def testToolchainPath(self): output = nacl_utils.ToolchainPath('nacl_sdk_root') head, tail = os.path.split(output) base, toolchain = os.path.split(head) self.assertEqual('nacl_sdk_root', base) self.assertEqual('toolchain', toolchain) self.assertRaises(ValueError, nacl_utils.ToolchainPath, 'nacl_sdk_root', arch='nosucharch') self.assertRaises(ValueError, nacl_utils.ToolchainPath, 'nacl_sdk_root', variant='nosuchvariant') def testGetJSONFromNexeSpec(self): valid_empty_json = '{\n "program": {\n }\n}\n' null_json = nacl_utils.GetJSONFromNexeSpec(None) self.assertEqual(null_json, valid_empty_json) empty_json = nacl_utils.GetJSONFromNexeSpec({}) self.assertEqual(empty_json, valid_empty_json) nexes = {'x86-32': 'nacl_x86_32.nexe', 'x86-64': 'nacl_x86_64.nexe', 'arm': 'nacl_ARM.nexe'} json = nacl_utils.GetJSONFromNexeSpec(nexes) # Assert that the resulting JSON has all the right parts: the "nexes" # dict, followed by one entry for each architecture. Also make sure that # the last entry doesn't have a trailing ',' json_lines = json.splitlines() self.assertEqual(len(json_lines), 7) self.assertEqual(json_lines[0], '{') self.assertEqual(json_lines[1], ' "program": {') self.assertTrue(json_lines[2].endswith(',')) self.assertTrue(json_lines[3].endswith(',')) self.assertFalse(json_lines[4].endswith(',')) self.assertEqual(json_lines[5], ' }') self.assertEqual(json_lines[6], '}') # Assert that the key-value pair lines have the right form. The order # of the keys doesn't matter. Note that the key values are enclosed in # "" (e.g. "x86-32") - this is intentional. valid_arch_keys = ['"x86-32"', '"x86-64"', '"arm"'] for line in json_lines[2:4]: key_value = line.split(':') self.assertEqual(len(key_value), 3) self.assertTrue(key_value[0].lstrip().rstrip() in valid_arch_keys) def testGenerateNmf(self): # Assert that failure cases properly fail. self.assertRaises(ValueError, nacl_utils.GenerateNmf, None, None, None) self.assertRaises(ValueError, nacl_utils.GenerateNmf, [], [], {}) def testGetArchFromSpec(self): default_arch, default_subarch = nacl_utils.GetArchFromSpec(None) self.assertEqual(default_arch, nacl_utils.DEFAULT_ARCH) self.assertEqual(default_subarch, nacl_utils.DEFAULT_SUBARCH) default_arch, subarch = nacl_utils.GetArchFromSpec({'subarch': '64'}) self.assertEqual(default_arch, nacl_utils.DEFAULT_ARCH) self.assertEqual(subarch, '64') arch, default_subarch = nacl_utils.GetArchFromSpec({'arch': 'x86'}) self.assertEqual(arch, 'x86') self.assertEqual(default_subarch, nacl_utils.DEFAULT_SUBARCH) arch, subarch = nacl_utils.GetArchFromSpec({'arch': 'x86', 'subarch': '64'}) self.assertEqual(arch, 'x86') self.assertEqual(subarch, '64') def RunTests(): return_value = 1 test_suite = unittest.TestLoader().loadTestsFromTestCase(TestNaClUtils) test_results = unittest.TextTestRunner(verbosity=2).run(test_suite) if test_results.wasSuccessful(): return_value = 0 return return_value if __name__ == '__main__': sys.exit(RunTests())
runway/templates/sls-py/__init__.py
paul-duffy/runway
134
11121364
<reponame>paul-duffy/runway """Empty file for python import traversal.""" # pylint: disable=all
samples/bulk_update.py
oniram22/orionsdk-python
177
11121369
<reponame>oniram22/orionsdk-python import requests from orionsdk import SwisClient npm_server = 'localhost' username = 'admin' password = '' verify = False if not verify: from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) swis = SwisClient(npm_server, username, password) # select the top 3 nodes from the inventory results = swis.query("SELECT TOP 3 N.CustomProperties.Uri FROM Orion.Nodes N") # extract just the Uris from the results uris = [row['Uri'] for row in results['results']] # submit the request swis.bulkupdate(uris, City='Austin', DeviceType='Router', Department='Billing')
siliconcompiler/core.py
siliconcompiler/siliconcompiler
424
11121401
# Copyright 2020 Silicon Compiler Authors. All Rights Reserved. import argparse import base64 import time import datetime import multiprocessing import tarfile import traceback import asyncio from subprocess import run, PIPE import os import glob import pathlib import sys import gzip import re import json import logging import hashlib import shutil import copy import importlib import textwrap import math import pandas import yaml import graphviz import time import uuid import shlex import platform import getpass import csv import distro import netifaces import webbrowser import packaging.version import packaging.specifiers from jinja2 import Environment, FileSystemLoader from pathlib import Path from timeit import default_timer as timer from siliconcompiler.client import * from siliconcompiler.schema import * from siliconcompiler.scheduler import _deferstep from siliconcompiler import leflib from siliconcompiler import utils from siliconcompiler import _metadata import psutil class TaskStatus(): # Could use Python 'enum' class here, but that doesn't work nicely with # schema. PENDING = 'pending' SUCCESS = 'success' ERROR = 'error' class Chip: """Object for configuring and executing hardware design flows. This is the main object used for configuration, data, and execution within the SiliconCompiler platform. Args: design (string): Name of the top level chip design module. Examples: >>> siliconcompiler.Chip(design="top") Creates a chip object with name "top". """ ########################################################################### def __init__(self, design, loglevel=None): # version numbers self.scversion = _metadata.version self.schemaversion = SCHEMA_VERSION # Local variables self.scroot = os.path.dirname(os.path.abspath(__file__)) self.cwd = os.getcwd() self.error = 0 self.cfg = schema_cfg() # The 'status' dictionary can be used to store ephemeral config values. # Its contents will not be saved, and can be set by parent scripts # such as a web server or supervisor process. Currently supported keys: # * 'jobhash': A hash or UUID which can identify jobs in a larger system. # * 'remote_cfg': Dictionary containing remote server configurations # (address, credentials, etc.) # * 'slurm_account': User account ID in a connected slurm HPC cluster. # * 'slurm_partition': Name of the partition in which a task should run # on a connected slurm HPC cluster. # * 'watchdog': Activity-monitoring semaphore for jobs scheduled on an # HPC cluster; expects a 'threading.Event'-like object. # * 'max_fs_bytes': A limit on how much disk space a job is allowed # to consume in a connected HPC cluster's storage. self.status = {} self.builtin = ['minimum','maximum', 'nop', 'mux', 'join', 'verify'] # We set 'design' and 'loglevel' directly in the config dictionary # because of a chicken-and-egg problem: self.set() relies on the logger, # but the logger relies on these values. self.cfg['design']['value'] = design if loglevel: self.cfg['option']['loglevel']['value'] = loglevel self._init_logger() self._loaded_modules = { 'flows': [], 'pdks': [], 'libs': [], 'checklists': [] } ########################################################################### @property def design(self): '''Design name of chip object. This is an immutable property.''' return self.get('design') ########################################################################### def _init_logger(self, step=None, index=None, in_run=False): self.logger = logging.getLogger(uuid.uuid4().hex) # Don't propagate log messages to "root" handler (we get duplicate # messages without this) # TODO: this prevents us from being able to capture logs with pytest: # we should revisit it self.logger.propagate = False loglevel = self.get('option', 'loglevel') if loglevel=='DEBUG': prefix = '| %(levelname)-7s | %(funcName)-10s | %(lineno)-4s' else: prefix = '| %(levelname)-7s' if in_run: flow = self.get('option', 'flow') # Figure out how wide to make step and index fields max_step_len = 2 max_index_len = 2 for future_step in self.getkeys('flowgraph', flow): max_step_len = max(len(future_step) + 1, max_step_len) for future_index in self.getkeys('flowgraph', flow, future_step): max_index_len = max(len(future_index) + 1, max_index_len) jobname = self.get('option', 'jobname') if step is None: step = '-' * max(max_step_len // 4, 1) if index is None: index = '-' * max(max_index_len // 4, 1) run_info = f'%s | %-{max_step_len}s | %-{max_index_len}s' % (jobname, step, index) logformat = ' | '.join([prefix, run_info, '%(message)s']) else: logformat = ' | '.join([prefix, '%(message)s']) handler = logging.StreamHandler() formatter = logging.Formatter(logformat) handler.setFormatter(formatter) # Clear any existing handlers so we don't end up with duplicate messages # if repeat calls to _init_logger are made if len(self.logger.handlers) > 0: self.logger.handlers.clear() self.logger.addHandler(handler) self.logger.setLevel(loglevel) ########################################################################### def _deinit_logger(self): self.logger = None ########################################################################### def _get_switches(self, *keypath): '''Helper function for parsing switches and metavars for a keypath.''' #Switch field fully describes switch format switch = self.get(*keypath, field='switch') if switch is None: switches = [] elif isinstance(switch, list): switches = switch else: switches = [switch] switchstrs = [] # parse out switch from metavar # TODO: should we validate that metavar matches for each switch? for switch in switches: switchmatch = re.match(r'(-[\w_]+)\s+(.*)', switch) gccmatch = re.match(r'(-[\w_]+)(.*)', switch) plusmatch = re.match(r'(\+[\w_\+]+)(.*)', switch) if switchmatch: switchstr = switchmatch.group(1) metavar = switchmatch.group(2) elif gccmatch: switchstr = gccmatch.group(1) metavar = gccmatch.group(2) elif plusmatch: switchstr = plusmatch.group(1) metavar = plusmatch.group(2) switchstrs.append(switchstr) return switchstrs, metavar ########################################################################### def create_cmdline(self, progname, description=None, switchlist=None, input_map=None): """Creates an SC command line interface. Exposes parameters in the SC schema as command line switches, simplifying creation of SC apps with a restricted set of schema parameters exposed at the command line. The order of command line switch settings parsed from the command line is as follows: 1. loglevel 2. fpga_partname 3. load_target('target') 4. read_manifest([cfg]) 5. all other switches The cmdline interface is implemented using the Python argparse package and the following use restrictions apply. * Help is accessed with the '-h' switch. * Arguments that include spaces must be enclosed with double quotes. * List parameters are entered individually. (ie. -y libdir1 -y libdir2) * For parameters with Boolean types, the switch implies "true". * Special characters (such as '-') must be enclosed in double quotes. * Compiler compatible switches include: -D, -I, -O{0,1,2,3} * Verilog legacy switch formats are supported: +libext+, +incdir+ Args: progname (str): Name of program to be executed. description (str): Short program description. switchlist (list of str): List of SC parameter switches to expose at the command line. By default all SC schema switches are available. Parameter switches should be entered based on the parameter 'switch' field in the schema. For parameters with multiple switches, both will be accepted if any one is included in this list. input_map (dict of str): Dictionary mapping file extensions to input filetypes. This is used to automatically assign positional source arguments to ['input', ...] keypaths based on their file extension. If None, the CLI will not accept positional source arguments. Examples: >>> chip.create_cmdline(progname='sc-show',switchlist=['-input','-cfg']) Creates a command line interface for 'sc-show' app. >>> chip.create_cmdline(progname='sc', input_map={'v': 'verilog'}) All sources ending in .v will be stored in ['input', 'verilog'] """ # Argparse parser = argparse.ArgumentParser(prog=progname, prefix_chars='-+', formatter_class=argparse.RawDescriptionHelpFormatter, description=description) # Get all keys from global dictionary or override at command line allkeys = self.getkeys() # Iterate over all keys to add parser arguments for keypath in allkeys: #Fetch fields from leaf cell helpstr = self.get(*keypath, field='shorthelp') typestr = self.get(*keypath, field='type') # argparse 'dest' must be a string, so join keypath with commas dest = '_'.join(keypath) switchstrs, metavar = self._get_switches(*keypath) # Three switch types (bool, list, scalar) if not switchlist or any(switch in switchlist for switch in switchstrs): if typestr == 'bool': parser.add_argument(*switchstrs, nargs='?', metavar=metavar, dest=dest, const='true', help=helpstr, default=argparse.SUPPRESS) #list type arguments elif re.match(r'\[', typestr): #all the rest parser.add_argument(*switchstrs, metavar=metavar, dest=dest, action='append', help=helpstr, default=argparse.SUPPRESS) else: #all the rest parser.add_argument(*switchstrs, metavar=metavar, dest=dest, help=helpstr, default=argparse.SUPPRESS) if input_map is not None: parser.add_argument('source', nargs='*', help='Input files with filetype inferred by extension') #Preprocess sys.argv to enable linux commandline switch formats #(gcc, verilator, etc) scargs = [] # Iterate from index 1, otherwise we end up with script name as a # 'source' positional argument for item in sys.argv[1:]: #Split switches with one character and a number after (O0,O1,O2) opt = re.match(r'(\-\w)(\d+)', item) #Split assign switches (-DCFG_ASIC=1) assign = re.search(r'(\-\w)(\w+\=\w+)', item) #Split plusargs (+incdir+/path) plusarg = re.search(r'(\+\w+\+)(.*)', item) if opt: scargs.append(opt.group(1)) scargs.append(opt.group(2)) elif plusarg: scargs.append(plusarg.group(1)) scargs.append(plusarg.group(2)) elif assign: scargs.append(assign.group(1)) scargs.append(assign.group(2)) else: scargs.append(item) parser.add_argument('-version', action='version', version=_metadata.version) #Grab argument from pre-process sysargs cmdargs = vars(parser.parse_args(scargs)) # Print banner print(_metadata.banner) print("Authors:", ", ".join(_metadata.authors)) print("Version:", _metadata.version, "\n") print("-"*80) os.environ["COLUMNS"] = '80' # 1. set loglevel if set at command line if 'option_loglevel' in cmdargs.keys(): self.logger.setLevel(cmdargs['option_loglevel']) # 2. read in target if set if 'option_target' in cmdargs.keys(): if 'arg_pdk' in cmdargs.keys(): raise NotImplementedError("NOT IMPLEMENTED: ['arg', 'pdk'] parameter with target") if 'arg_flow' in cmdargs.keys(): raise NotImplementedError("NOT IMPLEMENTED: ['arg', 'flow'] parameter with target") if 'fpga_partname' in cmdargs.keys(): self.set('fpga', 'partname', cmdargs['fpga_partname'], clobber=True) # running target command self.load_target(cmdargs['option_target']) # 4. read in all cfg files if 'option_cfg' in cmdargs.keys(): for item in cmdargs['option_cfg']: self.read_manifest(item, clobber=True, clear=True) # Map sources to ['input'] keypath. if 'source' in cmdargs: for source in cmdargs['source']: _, ext = os.path.splitext(source) ext = ext.lstrip('.') if ext in input_map: filetype = input_map[ext] if self.valid('input', filetype, quiet=True): self.add('input', filetype, source) else: self.set('input', filetype, source) self.logger.info(f'Source {source} inferred as {filetype}') else: self.logger.warning('Unable to infer input type for ' f'{source} based on file extension, ignoring. Use the ' '-input flag to provide it explicitly.') # we don't want to handle this in the next loop del cmdargs['source'] # 5. Cycle through all command args and write to manifest for dest, vals in cmdargs.items(): keypath = dest.split('_') # Turn everything into a list for uniformity if not isinstance(vals, list): vals = [vals] # Cycle through all items for item in vals: # Hack to handle the fact that we want optmode stored with an 'O' # prefix. if keypath == ['option', 'optmode']: item = 'O' + item num_free_keys = keypath.count('default') if len(item.split(' ')) < num_free_keys + 1: # Error out if value provided doesn't have enough words to # fill in 'default' keys. switches, metavar = self._get_switches(*keypath) switchstr = '/'.join(switches) self.logger.error(f'Invalid value {item} for switch {switchstr}. Expected format {metavar}.') raise SiliconCompilerError('Invalid CLI arguments') # We replace 'default' in keypath with first N words in provided # value. Remainder is the actual value we want to store in the # parameter. *free_keys, val = item.split(' ', num_free_keys) args = [free_keys.pop(0) if key == 'default' else key for key in keypath] # Storing in manifest self.logger.info(f"Command line argument entered: {args} Value: {val}") typestr = self.get(*keypath, field='type') if typestr.startswith('['): if self.valid(*args, quiet=True): self.add(*args, val) else: self.set(*args, val, clobber=True) else: self.set(*args, val, clobber=True) ######################################################################### def find_function(self, modulename, funcname, moduletype=None): ''' Returns a function attribute from a module on disk. Searches the SC root directory and the 'scpath' parameter for the modulename provided and imports the module if found. If the funcname provided is found in the module, a callable function attribute is returned, otherwise None is returned. The function assumes the following directory structure: * tools/modulename/modulename.py * flows/modulename.py * pdks/modulname.py If the moduletype is None, the module paths are search in the order: 'targets'->'flows'->'tools'->'pdks'->'libs'->'checklists'): Supported functions include: * targets (make_docs, setup) * pdks (make_docs, setup) * flows (make_docs, setup) * tools (make_docs, setup, check_version, runtime_options, pre_process, post_process) * libs (make_docs, setup) Args: modulename (str): Name of module to import. funcname (str): Name of the function to find within the module. moduletype (str): Type of module (flows, pdks, libs, checklists, targets). Examples: >>> setup_pdk = chip.find_function('freepdk45', 'setup', 'pdks') >>> setup_pdk() Imports the freepdk45 module and runs the setup_pdk function ''' # module search path depends on modtype if moduletype is None: for item in ('targets', 'flows', 'tools', 'pdks', 'libs', 'checklists'): fullpath = self.find_function(modulename, funcname, module_type=item) if fullpath: break self.logger.error(f"Could not find module {modulename}") self.error = 1 return None elif moduletype in ('targets','flows', 'pdks', 'libs'): fullpath = self._find_sc_file(f"{moduletype}/{modulename}.py", missing_ok=True) elif moduletype in ('tools', 'checklists'): fullpath = self._find_sc_file(f"{moduletype}/{modulename}/{modulename}.py", missing_ok=True) else: self.logger.error(f"Illegal module type '{moduletype}'.") self.error = 1 return # try loading module if found if fullpath: self.logger.debug(f"Loading function '{funcname}' from module '{modulename}'") try: spec = importlib.util.spec_from_file_location(modulename, fullpath) imported = importlib.util.module_from_spec(spec) spec.loader.exec_module(imported) if hasattr(imported, funcname): function = getattr(imported, funcname) else: function = None return function except: traceback.print_exc() self.logger.error(f"Module setup failed for '{modulename}'") self.error = 1 ########################################################################## def load_target(self, name): """ Loads a target module and runs the setup() function. The function searches the $SCPATH for targets/<name>.py and runs the setup function in that module if found. Args: name (str): Module name flow (str): Target flow to Examples: >>> chip.load_target('freepdk45_demo') Loads the 'freepdk45_demo' target """ self.set('option', 'target', name) func = self.find_function(name, 'setup', 'targets') if func is not None: func(self) else: self.logger.error(f'Target module {name} not found in $SCPATH or siliconcompiler/targets/.') raise SiliconCompilerError(f'Target module {name} not found $SCPATH or siliconcompiler/targets/.') ########################################################################## def load_pdk(self, name): """ Loads a PDK module and runs the setup() function. The function searches the $SCPATH for pdks/<name>.py and runs the setup function in that module if found. Args: name (str): Module name Examples: >>> chip.load_pdk('freepdk45_pdk') Loads the 'freepdk45' pdk """ func = self.find_function(name, 'setup', 'pdks') if func is not None: self.logger.info(f"Loading PDK '{name}'") self._loaded_modules['pdks'].append(name) func(self) else: self.logger.error(f'PDK module {name} not found in $SCPATH or siliconcompiler/pdks/.') raise SiliconCompilerError(f'PDK module {name} not found in $SCPATH or siliconcompiler/pdks/.') ########################################################################## def load_flow(self, name): """ Loads a flow module and runs the setup() function. The function searches the $SCPATH for flows/<name>.py and runs the setup function in that module if found. Args: name (str): Module name Examples: >>> chip.load_flow('asicflow') Loads the 'asicflow' flow """ func = self.find_function(name, 'setup', 'flows') if func is not None: self.logger.info(f"Loading flow '{name}'") self._loaded_modules['flows'].append(name) func(self) else: self.logger.error(f'Flow module {name} not found in $SCPATH or siliconcompiler/flows/.') raise SiliconCompilerError(f'Flow module {name} not found in $SCPATH or siliconcompiler/flows/.') ########################################################################## def load_lib(self, name): """ Loads a library module and runs the setup() function. The function searches the $SCPATH for libs/<name>.py and runs the setup function in that module if found. Args: name (str): Module name Examples: >>> chip.load_lib('nangate45') Loads the 'nangate45' library """ func = self.find_function(name, 'setup', 'libs') if func is not None: self.logger.info(f"Loading library '{name}'") self._loaded_modules['libs'].append(name) func(self) else: self.logger.error(f'Library module {name} not found in $SCPATH or siliconcompiler/libs/.') raise SiliconCompilerError(f'Library module {name} not found in $SCPATH or siliconcompiler/libs/.') ########################################################################## def load_checklist(self, name): """ Loads a checklist module and runs the setup() function. The function searches the $SCPATH for checklist/<name>/<name>.py and runs the setup function in that module if found. Args: name (str): Module name Examples: >>> chip.load_checklist('oh_tapeout') Loads the 'oh_tapeout' checklist """ func = self.find_function(name, 'setup', 'checklists') if func is not None: self.logger.info(f"Loading checklist '{name}'") self._loaded_modules['checklists'].append(name) func(self) else: self.logger.error(f'Checklist module {name} not found in $SCPATH or siliconcompiler/checklists/.') raise SiliconCompilerError(f'Checklist module {name} not found in $SCPATH or siliconcompiler/checklists/.') ########################################################################### def list_metrics(self): ''' Returns a list of all metrics in the schema. ''' return self.getkeys('metric','default','default') ########################################################################### def help(self, *keypath): """ Returns a schema parameter description. Args: *keypath(str): Keypath to parameter. Returns: A formatted multi-line help paragraph for the parameter provided. Examples: >>> print(chip.help('asic','diearea')) Displays help information about the 'asic, diearea' parameter """ self.logger.debug('Fetching help for %s', keypath) #Fetch Values description = self.get(*keypath, field='shorthelp') typestr = self.get(*keypath, field='type') switchstr = str(self.get(*keypath, field='switch')) defstr = str(self.get(*keypath, field='defvalue')) requirement = str(self.get(*keypath, field='require')) helpstr = self.get(*keypath, field='help') example = self.get(*keypath, field='example') examplestr = ("\nExamples: " + example[0] + ''.join( ["\n " + ex for ex in example[1:]])) #Removing multiple spaces and newlines helpstr = helpstr.rstrip() helpstr = helpstr.replace("\n", "") helpstr = ' '.join(helpstr.split()) for idx, item in enumerate(example): example[idx] = ' '.join(item.split()) example[idx] = example[idx].replace(", ", ",") #Wrap text para = textwrap.TextWrapper(width=60) para_list = para.wrap(text=helpstr) #Full Doc String fullstr = ("-"*80 + "\nDescription: " + description + "\nSwitch: " + switchstr + "\nType: " + typestr + "\nRequirement: " + requirement + "\nDefault: " + defstr + examplestr + "\nHelp: " + para_list[0] + "\n") for line in para_list[1:]: fullstr = (fullstr + " "*13 + line.lstrip() + "\n") return fullstr ########################################################################### def valid(self, *args, valid_keypaths=None, quiet=True, default_valid=False): """ Checks validity of a keypath. Checks the validity of a parameter keypath and returns True if the keypath is valid and False if invalid. Args: keypath(list str): Variable length schema key list. valid_keypaths (list of list): List of valid keypaths as lists. If None, check against all keypaths in the schema. quiet (bool): If True, don't display warnings for invalid keypaths. Returns: Boolean indicating validity of keypath. Examples: >>> check = chip.valid('design') Returns True. >>> check = chip.valid('blah') Returns False. """ keypathstr = ','.join(args) keylist = list(args) if default_valid: default = 'default' else: default = None if valid_keypaths is None: valid_keypaths = self.getkeys() # Look for a full match with default playing wild card for valid_keypath in valid_keypaths: if len(keylist) != len(valid_keypath): continue ok = True for i in range(len(keylist)): if valid_keypath[i] not in (keylist[i], default): ok = False break if ok: return True # Match not found if not quiet: self.logger.warning(f"Keypath [{keypathstr}] is not valid") return False ########################################################################### def get(self, *keypath, field='value', job=None, cfg=None): """ Returns a schema parameter field. Returns a schema parameter field based on the keypath provided in the ``*keypath``. See the :ref:`Schema Reference Manual<SiliconCompiler Schema>` for documentation of all supported keypaths. The returned type is consistent with the type field of the parameter. Fetching parameters with empty or undefined value files returns None for scalar types and [] (empty list) for list types. Accessing a non-existent keypath produces a logger error message and raises the Chip object error flag. Args: keypath(list str): Variable length schema key list. field(str): Parameter field to fetch. job (str): Jobname to use for dictionary access in place of the current active jobname. cfg(dict): Alternate dictionary to access in place of the default chip object schema dictionary. Returns: Value found for the keypath and field provided. Examples: >>> foundry = chip.get('pdk', 'foundry') Returns the name of the foundry from the PDK. """ if cfg is None: if job is not None: cfg = self.cfg['history'][job] else: cfg = self.cfg keypathstr = ','.join(keypath) self.logger.debug(f"Reading from [{keypathstr}]. Field = '{field}'") return self._search(cfg, keypathstr, *keypath, field=field, mode='get') ########################################################################### def getkeys(self, *keypath, cfg=None, job=None): """ Returns a list of schema dictionary keys. Searches the schema for the keypath provided and returns a list of keys found, excluding the generic 'default' key. Accessing a non-existent keypath produces a logger error message and raises the Chip object error flag. Args: keypath (list str): Variable length ordered schema key list cfg (dict): Alternate dictionary to access in place of self.cfg job (str): Jobname to use for dictionary access in place of the current active jobname. Returns: List of keys found for the keypath provided. Examples: >>> keylist = chip.getkeys('pdk') Returns all keys for the 'pdk' keypath. >>> keylist = chip.getkeys() Returns all list of all keypaths in the schema. """ if cfg is None: if job is None: cfg = self.cfg else: cfg = self.cfg['history'][job] if len(list(keypath)) > 0: keypathstr = ','.join(keypath) self.logger.debug('Getting schema parameter keys for: %s', keypathstr) keys = list(self._search(cfg, keypathstr, *keypath, mode='getkeys')) if 'default' in keys: keys.remove('default') else: self.logger.debug('Getting all schema parameter keys.') keys = list(self._allkeys(cfg)) return keys ########################################################################### def getdict(self, *keypath, cfg=None): """ Returns a schema dictionary. Searches the schema for the keypath provided and returns a complete dictionary. Accessing a non-existent keypath produces a logger error message and raises the Chip object error flag. Args: keypath(list str): Variable length ordered schema key list cfg(dict): Alternate dictionary to access in place of self.cfg Returns: A schema dictionary Examples: >>> pdk = chip.getdict('pdk') Returns the complete dictionary found for the keypath 'pdk' """ if cfg is None: cfg = self.cfg if len(list(keypath)) > 0: keypathstr = ','.join(keypath) self.logger.debug('Getting cfg for: %s', keypathstr) localcfg = self._search(cfg, keypathstr, *keypath, mode='getcfg') return copy.deepcopy(localcfg) ########################################################################### def set(self, *args, field='value', clobber=True, cfg=None): ''' Sets a schema parameter field. Sets a schema parameter field based on the keypath and value provided in the ``*args``. See the :ref:`Schema Reference Manual<SiliconCompiler Schema>` for documentation of all supported keypaths. New schema dictionaries are automatically created for keypaths that overlap with 'default' dictionaries. The write action is ignored if the parameter value is non-empty and the clobber option is set to False. The value provided must agree with the dictionary parameter 'type'. Accessing a non-existent keypath or providing a value that disagrees with the parameter type produces a logger error message and raises the Chip object error flag. Args: args (list): Parameter keypath followed by a value to set. field (str): Parameter field to set. clobber (bool): Existing value is overwritten if True. cfg(dict): Alternate dictionary to access in place of self.cfg Examples: >>> chip.set('design', 'top') Sets the name of the design to 'top' ''' if cfg is None: cfg = self.cfg # Verify that all keys are strings for key in args[:-1]: if not isinstance(key,str): self.logger.error(f"Key [{key}] is not a string [{args}]") keypathstr = ','.join(args[:-1]) all_args = list(args) # Special case to ensure loglevel is updated ASAP if len(args) == 3 and args[1] == 'loglevel' and field == 'value': self.logger.setLevel(args[2]) self.logger.debug(f"Setting [{keypathstr}] to {args[-1]}") return self._search(cfg, keypathstr, *all_args, field=field, mode='set', clobber=clobber) ########################################################################### def add(self, *args, cfg=None, field='value'): ''' Adds item(s) to a schema parameter list. Adds item(s) to schema parameter list based on the keypath and value provided in the ``*args``. See the :ref:`Schema Reference Manual<SiliconCompiler Schema>` for documentation of all supported keypaths. New schema dictionaries are automatically created for keypaths that overlap with 'default' dictionaries. The value provided must agree with the dictionary parameter 'type'. Accessing a non-existent keypath, providing a value that disagrees with the parameter type, or using add with a scalar parameter produces a logger error message and raises the Chip object error flag. Args: args (list): Parameter keypath followed by a value to add. cfg(dict): Alternate dictionary to access in place of self.cfg field (str): Parameter field to set. Examples: >>> chip.add('source', 'hello.v') Adds the file 'hello.v' to the list of sources. ''' if cfg is None: cfg = self.cfg # Verify that all keys are strings for key in args[:-1]: if not isinstance(key,str): self.logger.error(f"Key [{key}] is not a string [{args}]") keypathstr = ','.join(args[:-1]) all_args = list(args) self.logger.debug(f'Appending value {args[-1]} to [{keypathstr}]') return self._search(cfg, keypathstr, *all_args, field=field, mode='add') ########################################################################### def _allkeys(self, cfg, keys=None, keylist=None): ''' Returns list of all keypaths in the schema. ''' if keys is None: keylist = [] keys = [] for k in cfg: newkeys = keys.copy() newkeys.append(k) if 'defvalue' in cfg[k]: keylist.append(newkeys) else: self._allkeys(cfg[k], keys=newkeys, keylist=keylist) return keylist ########################################################################### def _search(self, cfg, keypath, *args, field='value', mode='get', clobber=True): ''' Internal recursive function that searches the Chip schema for a match to the combination of *args and fields supplied. The function is used to set and get data within the dictionary. Args: cfg(dict): The cfg schema to search keypath (str): Concatenated keypath used for error logging. args (str): Keypath/value variable list used for access field(str): Leaf cell field to access. mode(str): Action (set/get/add/getkeys/getkeys) clobber(bool): Specifies to clobber (for set action) ''' all_args = list(args) param = all_args[0] val = all_args[-1] empty = [None, 'null', [], 'false'] #set/add leaf cell (all_args=(param,val)) if (mode in ('set', 'add')) & (len(all_args) == 2): # clean error if key not found if (not param in cfg) & (not 'default' in cfg): self.logger.error(f"Set/Add keypath [{keypath}] does not exist.") self.error = 1 else: # making an 'instance' of default if not found if (not param in cfg) & ('default' in cfg): cfg[param] = copy.deepcopy(cfg['default']) list_type =bool(re.match(r'\[', cfg[param]['type'])) # checking for illegal fields if not field in cfg[param] and (field != 'value'): self.logger.error(f"Field '{field}' for keypath [{keypath}]' is not a valid field.") self.error = 1 # check legality of value if field == 'value': (type_ok,type_error) = self._typecheck(cfg[param], param, val) if not type_ok: self.logger.error("%s", type_error) self.error = 1 # converting python True/False to lower case string if (field == 'value') and (cfg[param]['type'] == 'bool'): if val == True: val = "true" elif val == False: val = "false" # checking if value has been set # TODO: fix clobber!! selval = cfg[param]['value'] # updating values if cfg[param]['lock'] == "true": self.logger.debug("Ignoring {mode}{} to [{keypath}]. Lock bit is set.") elif (mode == 'set'): if (field != 'value') or (selval in empty) or clobber: if field in ('copy', 'lock'): # boolean fields if val is True: cfg[param][field] = "true" elif val is False: cfg[param][field] = "false" else: self.logger.error(f'{field} must be set to boolean.') self.error = 1 elif field in ('hashalgo', 'scope', 'require', 'type', 'unit', 'shorthelp', 'notes', 'switch', 'help'): # awlays string scalars cfg[param][field] = val elif field in ('example'): # list from default schema (already a list) cfg[param][field] = val elif field in ('signature', 'filehash', 'date', 'author'): # convert to list if appropriate if isinstance(val, list) | (not list_type): cfg[param][field] = val else: cfg[param][field] = [val] elif (not list_type) & (val is None): # special case for None cfg[param][field] = None elif (not list_type) & (not isinstance(val, list)): # convert to string for scalar value cfg[param][field] = str(val) elif list_type & (not isinstance(val, list)): # convert to string for list value cfg[param][field] = [str(val)] elif list_type & isinstance(val, list): # converting tuples to strings if re.search(r'\(', cfg[param]['type']): cfg[param][field] = list(map(str,val)) else: cfg[param][field] = val else: self.logger.error(f"Assigning list to scalar for [{keypath}]") self.error = 1 else: self.logger.debug(f"Ignoring set() to [{keypath}], value already set. Use clobber=true to override.") elif (mode == 'add'): if field in ('filehash', 'date', 'author', 'signature'): cfg[param][field].append(str(val)) elif field in ('copy', 'lock'): self.logger.error(f"Illegal use of add() for scalar field {field}.") self.error = 1 elif list_type & (not isinstance(val, list)): cfg[param][field].append(str(val)) elif list_type & isinstance(val, list): cfg[param][field].extend(val) else: self.logger.error(f"Illegal use of add() for scalar parameter [{keypath}].") self.error = 1 return cfg[param][field] #get leaf cell (all_args=param) elif len(all_args) == 1: if not param in cfg: self.error = 1 self.logger.error(f"Get keypath [{keypath}] does not exist.") elif mode == 'getcfg': return cfg[param] elif mode == 'getkeys': return cfg[param].keys() else: if not (field in cfg[param]) and (field!='value'): self.error = 1 self.logger.error(f"Field '{field}' not found for keypath [{keypath}]") elif field == 'value': #Select default if no value has been set if field not in cfg[param]: selval = cfg[param]['defvalue'] else: selval = cfg[param]['value'] #check for list if bool(re.match(r'\[', cfg[param]['type'])): sctype = re.sub(r'[\[\]]', '', cfg[param]['type']) return_list = [] if selval is None: return None for item in selval: if sctype == 'int': return_list.append(int(item)) elif sctype == 'float': return_list.append(float(item)) elif sctype.startswith('(str,'): if isinstance(item,tuple): return_list.append(item) else: tuplestr = re.sub(r'[\(\)\'\s]','',item) return_list.append(tuple(tuplestr.split(','))) elif sctype.startswith('(float,'): if isinstance(item,tuple): return_list.append(item) else: tuplestr = re.sub(r'[\(\)\s]','',item) return_list.append(tuple(map(float, tuplestr.split(',')))) else: return_list.append(item) return return_list else: if selval is None: # Unset scalar of any type scalar = None elif cfg[param]['type'] == "int": #print(selval, type(selval)) scalar = int(float(selval)) elif cfg[param]['type'] == "float": scalar = float(selval) elif cfg[param]['type'] == "bool": scalar = (selval == 'true') elif re.match(r'\(', cfg[param]['type']): tuplestr = re.sub(r'[\(\)\s]','',selval) scalar = tuple(map(float, tuplestr.split(','))) else: scalar = selval return scalar #all non-value fields are strings (or lists of strings) else: if cfg[param][field] == 'true': return True elif cfg[param][field] == 'false': return False else: return cfg[param][field] #if not leaf cell descend tree else: ##copying in default tree for dynamic trees if not param in cfg and 'default' in cfg: cfg[param] = copy.deepcopy(cfg['default']) elif not param in cfg: self.error = 1 self.logger.error(f"Get keypath [{keypath}] does not exist.") return None all_args.pop(0) return self._search(cfg[param], keypath, *all_args, field=field, mode=mode, clobber=clobber) ########################################################################### def _prune(self, cfg, top=True, keeplists=False): ''' Internal recursive function that creates a local copy of the Chip schema (cfg) with only essential non-empty parameters retained. ''' # create a local copy of dict if top: localcfg = copy.deepcopy(cfg) else: localcfg = cfg #10 should be enough for anyone... maxdepth = 10 i = 0 #Prune when the default & value are set to the following if keeplists: empty = ("null", None) else: empty = ("null", None, []) # When at top of tree loop maxdepth times to make sure all stale # branches have been removed, not elegant, but stupid-simple # "good enough" while i < maxdepth: #Loop through all keys starting at the top for k in list(localcfg.keys()): #removing all default/template keys # reached a default subgraph, delete it if k == 'default': del localcfg[k] # reached leaf-cell elif 'help' in localcfg[k].keys(): del localcfg[k]['help'] elif 'example' in localcfg[k].keys(): del localcfg[k]['example'] elif 'defvalue' in localcfg[k].keys(): if localcfg[k]['defvalue'] in empty: if 'value' in localcfg[k].keys(): if localcfg[k]['value'] in empty: del localcfg[k] else: del localcfg[k] #removing stale branches elif not localcfg[k]: localcfg.pop(k) #keep traversing tree else: self._prune(cfg=localcfg[k], top=False, keeplists=keeplists) if top: i += 1 else: break return localcfg ########################################################################### def _find_sc_file(self, filename, missing_ok=False): """ Returns the absolute path for the filename provided. Searches the SC root directory and the 'scpath' parameter for the filename provided and returns the absolute path. If no valid absolute path is found during the search, None is returned. Shell variables ('$' followed by strings consisting of numbers, underscores, and digits) are replaced with the variable value. Args: filename (str): Relative or absolute filename. Returns: Returns absolute path of 'filename' if found, otherwise returns None. Examples: >>> chip._find_sc_file('flows/asicflow.py') Returns the absolute path based on the sc installation directory. """ # Replacing environment variables filename = self._resolve_env_vars(filename) # If we have a path relative to our cwd or an abs path, pass-through here if os.path.exists(os.path.abspath(filename)): return os.path.abspath(filename) # Otherwise, search relative to scpaths scpaths = [self.scroot, self.cwd] scpaths.extend(self.get('option', 'scpath')) if 'SCPATH' in os.environ: scpaths.extend(os.environ['SCPATH'].split(os.pathsep)) searchdirs = ', '.join(scpaths) self.logger.debug(f"Searching for file {filename} in {searchdirs}") result = None for searchdir in scpaths: if not os.path.isabs(searchdir): searchdir = os.path.join(self.cwd, searchdir) abspath = os.path.abspath(os.path.join(searchdir, filename)) if os.path.exists(abspath): result = abspath break if result is None and not missing_ok: self.error = 1 self.logger.error(f"File {filename} was not found") return result ########################################################################### def find_files(self, *keypath, cfg=None, missing_ok=False, job=None): """ Returns absolute paths to files or directories based on the keypath provided. By default, this function first checks if the keypath provided has its `copy` parameter set to True. If so, it returns paths to the files in the build directory. Otherwise, it resolves these files based on the current working directory and SC path. The keypath provided must point to a schema parameter of type file, dir, or lists of either. Otherwise, it will trigger an error. Args: keypath (list str): Variable length schema key list. cfg (dict): Alternate dictionary to access in place of the default chip object schema dictionary. missing_ok (bool): If True, silently return None when files aren't found. If False, print an error and set the error flag. job (str): Jobname to use for dictionary access in place of the current active jobname. Returns: If keys points to a scalar entry, returns an absolute path to that file/directory, or None if not found. It keys points to a list entry, returns a list of either the absolute paths or None for each entry, depending on whether it is found. Examples: >>> chip.find_files('source') Returns a list of absolute paths to source files, as specified in the schema. """ if cfg is None: cfg = self.cfg copyall = self.get('option', 'copyall', cfg=cfg, job=job) paramtype = self.get(*keypath, field='type', cfg=cfg, job=job) if 'file' in paramtype: copy = self.get(*keypath, field='copy', cfg=cfg, job=job) else: copy = False if 'file' not in paramtype and 'dir' not in paramtype: self.logger.error('Can only call find_files on file or dir types') self.error = 1 return None is_list = bool(re.match(r'\[', paramtype)) paths = self.get(*keypath, cfg=cfg, job=job) # Convert to list if we have scalar if not is_list: paths = [paths] result = [] # Special cases for various ['eda', ...] files that may be implicitly # under the workdir (or refdir in the case of scripts). # TODO: it may be cleaner to have a file resolution scope flag in schema # (e.g. 'scpath', 'workdir', 'refdir'), rather than harcoding special # cases. if keypath[0] == 'tool' and keypath[2] in ('input', 'output', 'report'): step = keypath[3] index = keypath[4] if keypath[2] == 'report': io = "" else: io = keypath[2] + 's' iodir = os.path.join(self._getworkdir(jobname=job, step=step, index=index), io) for path in paths: abspath = os.path.join(iodir, path) if os.path.isfile(abspath): result.append(abspath) return result elif keypath[0] == 'tool' and keypath[2] == 'script': tool = keypath[1] step = keypath[3] index = keypath[4] refdirs = self.find_files('tool', tool, 'refdir', step, index) for path in paths: for refdir in refdirs: abspath = os.path.join(refdir, path) if os.path.isfile(abspath): result.append(abspath) break return result for path in paths: if (copyall or copy) and ('file' in paramtype): name = self._get_imported_filename(path) abspath = os.path.join(self._getworkdir(jobname=job, step='import'), 'outputs', name) if os.path.isfile(abspath): # if copy is True and file is found in import outputs, # continue. Otherwise, fall through to _find_sc_file (the # file may not have been gathered in imports yet) result.append(abspath) continue result.append(self._find_sc_file(path, missing_ok=missing_ok)) # Convert back to scalar if that was original type if not is_list: return result[0] return result ########################################################################### def find_result(self, filetype, step, jobname=None, index='0'): """ Returns the absolute path of a compilation result. Utility function that returns the absolute path to a results file based on the provided arguments. The result directory structure is: <dir>/<design>/<jobname>/<step>/<index>/outputs/<design>.filetype Args: filetype (str): File extension (.v, .def, etc) step (str): Task step name ('syn', 'place', etc) jobname (str): Jobid directory name index (str): Task index Returns: Returns absolute path to file. Examples: >>> manifest_filepath = chip.find_result('.vg', 'syn') Returns the absolute path to the manifest. """ if jobname is None: jobname = self.get('option', 'jobname') workdir = self._getworkdir(jobname, step, index) design = self.get('design') filename = f"{workdir}/outputs/{design}.{filetype}" self.logger.debug("Finding result %s", filename) if os.path.isfile(filename): return filename else: return None ########################################################################### def _abspath(self, cfg): ''' Internal function that goes through provided dictionary and resolves all relative paths where required. ''' for keypath in self.getkeys(cfg=cfg): paramtype = self.get(*keypath, cfg=cfg, field='type') value = self.get(*keypath, cfg=cfg) if value: #only do something if type is file or dir if 'file' in paramtype or 'dir' in paramtype: abspaths = self.find_files(*keypath, cfg=cfg, missing_ok=True) self.set(*keypath, abspaths, cfg=cfg) ########################################################################### def _print_csv(self, cfg, fout): csvwriter = csv.writer(fout) csvwriter.writerow(['Keypath', 'Value']) allkeys = self.getkeys(cfg=cfg) for key in allkeys: keypath = ','.join(key) value = self.get(*key, cfg=cfg) if isinstance(value,list): for item in value: csvwriter.writerow([keypath, item]) else: csvwriter.writerow([keypath, value]) ########################################################################### def _escape_val_tcl(self, val, typestr): '''Recursive helper function for converting Python values to safe TCL values, based on the SC type string.''' if val is None: return '' elif typestr.startswith('('): # Recurse into each item of tuple subtypes = typestr.strip('()').split(',') valstr = ' '.join(self._escape_val_tcl(v, subtype.strip()) for v, subtype in zip(val, subtypes)) return f'[list {valstr}]' elif typestr.startswith('['): # Recurse into each item of list subtype = typestr.strip('[]') valstr = ' '.join(self._escape_val_tcl(v, subtype) for v in val) return f'[list {valstr}]' elif typestr == 'bool': return 'true' if val else 'false' elif typestr == 'str': # Escape string by surrounding it with "" and escaping the few # special characters that still get considered inside "". We don't # use {}, since this requires adding permanent backslashes to any # curly braces inside the string. # Source: https://www.tcl.tk/man/tcl8.4/TclCmd/Tcl.html (section [4] on) escaped_val = (val.replace('\\', '\\\\') # escape '\' to avoid backslash substition (do this first, since other replaces insert '\') .replace('[', '\\[') # escape '[' to avoid command substition .replace('$', '\\$') # escape '$' to avoid variable substition .replace('"', '\\"')) # escape '"' to avoid string terminating early return '"' + escaped_val + '"' elif typestr in ('file', 'dir'): # Replace $VAR with $env(VAR) for tcl val = re.sub(r'\$(\w+)', r'$env(\1)', val) # Same escapes as applied to string, minus $ (since we want to resolve env vars). escaped_val = (val.replace('\\', '\\\\') # escape '\' to avoid backslash substition (do this first, since other replaces insert '\') .replace('[', '\\[') # escape '[' to avoid command substition .replace('"', '\\"')) # escape '"' to avoid string terminating early return '"' + escaped_val + '"' else: # floats/ints just become strings return str(val) ########################################################################### def _print_tcl(self, cfg, fout=None, prefix=""): ''' Prints out schema as TCL dictionary ''' fout.write("#############################################") fout.write("#!!!! AUTO-GENERATED FILE. DO NOT EDIT!!!!!!") fout.write("#############################################\n") allkeys = self.getkeys(cfg=cfg) for key in allkeys: typestr = self.get(*key, cfg=cfg, field='type') value = self.get(*key, cfg=cfg) #create a TCL dict keystr = ' '.join(key) valstr = self._escape_val_tcl(value, typestr) if not (typestr.startswith('[') or typestr.startswith('(')): # treat scalars as lists as well valstr = f'[list {valstr}]' outstr = f"{prefix} {keystr} {valstr}\n" #print out all non default values if 'default' not in key: fout.write(outstr) ########################################################################### def merge_manifest(self, cfg, job=None, clobber=True, clear=True, check=False): """ Merges an external manifest with the current compilation manifest. All value fields in the provided schema dictionary are merged into the current chip object. Dictionaries with non-existent keypath produces a logger error message and raises the Chip object error flag. Args: job (str): Specifies non-default job to merge into clear (bool): If True, disables append operations for list type clobber (bool): If True, overwrites existing parameter value check (bool): If True, checks the validity of each key partial (bool): If True, perform a partial merge, only merging keypaths that may have been updated during run(). Examples: >>> chip.merge_manifest('my.pkg.json') Merges all parameters in my.pk.json into the Chip object """ self._merge_manifest(cfg, job, clobber, clear, check) def _key_may_be_updated(self, keypath): '''Helper that returns whether `keypath` can be updated mid-run.''' # TODO: cleaner way to manage this? if keypath[0] in ('metric', 'record'): return True if keypath[0] == 'flowgraph' and keypath[4] in ('select', 'status'): return True return False ########################################################################### def _merge_manifest(self, cfg, job=None, clobber=True, clear=True, check=False, partial=False): """ Internal merge_manifest() implementation with `partial` arg. partial (bool): If True, perform a partial merge, only merging keypaths that may have been updated during run(). """ if job is not None: # fill ith default schema before populating self.cfg['history'][job] = schema_cfg() dst = self.cfg['history'][job] else: dst = self.cfg for keylist in self.getkeys(cfg=cfg): if partial and not self._key_may_be_updated(keylist): continue if keylist[0] in ('history', 'library'): continue #only read in valid keypaths without 'default' key_valid = True if check: key_valid = self.valid(*keylist, quiet=False, default_valid=True) if key_valid and 'default' not in keylist: # update value, handling scalars vs. lists typestr = self.get(*keylist, cfg=cfg, field='type') val = self.get(*keylist, cfg=cfg) arg = keylist.copy() arg.append(val) if bool(re.match(r'\[', typestr)) & bool(not clear): self.add(*arg, cfg=dst) else: self.set(*arg, cfg=dst, clobber=clobber) # update other fields that a user might modify for field in self.getdict(*keylist, cfg=cfg).keys(): if field in ('value', 'switch', 'type', 'require', 'defvalue', 'shorthelp', 'example', 'help'): # skip these fields (value handled above, others are static) continue v = self.get(*keylist, cfg=cfg, field=field) self.set(*keylist, v, cfg=dst, field=field) ########################################################################### def _keypath_empty(self, key): ''' Utility function to check key for an empty list. ''' emptylist = ("null", None, []) value = self.get(*key) defvalue = self.get(*key, field='defvalue') value_empty = (defvalue in emptylist) and (value in emptylist) return value_empty ########################################################################### def _check_files(self): allowed_paths = [os.path.join(self.cwd, self.get('option', 'builddir'))] allowed_paths.extend(os.environ['SC_VALID_PATHS'].split(os.pathsep)) for keypath in self.getkeys(): if 'default' in keypath: continue paramtype = self.get(*keypath, field='type') #only do something if type is file or dir if ('history' not in keypath and 'library' not in keypath) and ('file' in paramtype or 'dir' in paramtype): if self.get(*keypath) is None: # skip unset values (some directories are None by default) continue abspaths = self.find_files(*keypath, missing_ok=True) if not isinstance(abspaths, list): abspaths = [abspaths] for abspath in abspaths: ok = False if abspath is not None: for allowed_path in allowed_paths: if os.path.commonpath([abspath, allowed_path]) == allowed_path: ok = True continue if not ok: self.logger.error(f'Keypath {keypath} contains path(s) ' 'that do not exist or resolve to files outside of ' 'allowed directories.') return False return True ########################################################################### def check_filepaths(self): ''' Verifies that paths to all files in manifest are valid. ''' allkeys = self.getkeys() for keypath in allkeys: allpaths = [] paramtype = self.get(*keypath, field='type') if 'file' in paramtype or 'dir' in paramtype: if 'dir' not in keypath and self.get(*keypath): allpaths = list(self.get(*keypath)) for path in allpaths: #check for env var m = re.match(r'\$(\w+)(.*)', path) if m: prefix_path = os.environ[m.group(1)] path = prefix_path + m.group(2) file_error = 'file' in paramtype and not os.path.isfile(path) dir_error = 'dir' in paramtype and not os.path.isdir(path) if file_error or dir_error: self.logger.error(f"Paramater {keypath} path {path} is invalid") self.error = 1 ########################################################################### def _check_manifest_dynamic(self, step, index): '''Runtime checks called from _runtask(). - Make sure expected inputs exist. - Make sure all required filepaths resolve correctly. ''' flow = self.get('option', 'flow') tool = self.get('flowgraph', flow, step, index, 'tool') if self.valid('tool', tool, 'input', step, index): required_inputs = self.get('tool', tool, 'input', step, index) else: required_inputs = [] input_dir = os.path.join(self._getworkdir(step=step, index=index), 'inputs') for filename in required_inputs: path = os.path.join(input_dir, filename) if not os.path.isfile(path): self.logger.error(f'Required input {filename} not received for {step}{index}.') self.error = 1 if (not tool in self.builtin) and self.valid('tool', tool, 'require', step, index): all_required = self.get('tool', tool, 'require', step, index) for item in all_required: keypath = item.split(',') paramtype = self.get(*keypath, field='type') if ('file' in paramtype) or ('dir' in paramtype): abspath = self.find_files(*keypath) if abspath is None or (isinstance(abspath, list) and None in abspath): self.logger.error(f"Required file keypath {keypath} can't be resolved.") self.error = 1 # Need to run this check here since file resolution can change in # _runtask(). if 'SC_VALID_PATHS' in os.environ: if not self._check_files(): self.error = 1 return self.error ########################################################################### def check_manifest(self): ''' Verifies the integrity of the pre-run compilation manifest. Checks the validity of the current schema manifest in memory to ensure that the design has been properly set up prior to running compilation. The function is called inside the run() function but can also be called separately. Checks performed by the check_manifest() function include: * Has a flowgraph been defined? * Does the manifest satisfy the schema requirement field settings? * Are all flowgraph input names legal step/index pairs? * Are the tool parameter setting requirements met? Returns: Returns True if the manifest is valid, else returns False. Examples: >>> manifest_ok = chip.check_manifest() Returns True of the Chip object dictionary checks out. ''' # Dynamic checks # We only perform these if arg, step and arg, index are set. # We don't check inputs for skip all # TODO: Need to add skip step cur_step = self.get('arg', 'step') cur_index = self.get('arg', 'index') if cur_step and cur_index and not self.get('option', 'skipall'): return self._check_manifest_dynamic(cur_step, cur_index) design = self.get('design') flow = self.get('option', 'flow') jobname = self.get('option', 'jobname') steplist = self.get('option', 'steplist') if not steplist: steplist = self.list_steps() #1. Checking that flowgraph and steplist are legal if flow not in self.getkeys('flowgraph'): self.error = 1 self.logger.error(f"flowgraph {flow} not defined.") legal_steps = self.getkeys('flowgraph',flow) if 'import' not in legal_steps: self.error = 1 self.logger.error("Flowgraph doesn't contain import step.") indexlist = {} #TODO: refactor for step in steplist: if self.get('option', 'indexlist'): indexlist[step] = self.get('option', 'indexlist') else: indexlist[step] = self.getkeys('flowgraph', flow, step) for step in steplist: for index in indexlist[step]: in_job = None if (step in self.getkeys('option', 'jobinput') and index in self.getkeys('option', 'jobinput', step)): in_job = self.get('option', 'jobinput', step, index) for in_step, in_index in self.get('flowgraph', flow, step, index, 'input'): if in_job is not None: workdir = self._getworkdir(jobname=in_job, step=in_step, index=in_index) cfg = os.path.join(workdir, 'outputs', f'{design}.pkg.json') if not os.path.isfile(cfg): self.logger.error(f'{step}{index} relies on {in_step}{in_index} from job {in_job}, ' 'but this task has not been run.') self.error = 1 continue if in_step in steplist and in_index in indexlist[in_step]: # we're gonna run this step, OK continue if self.get('flowgraph', flow, in_step, in_index, 'status') == TaskStatus.SUCCESS: # this task has already completed successfully, OK continue self.logger.error(f'{step}{index} relies on {in_step}{in_index}, ' 'but this task has not been run and is not in the current steplist.') self.error = 1 #2. Check libary names for item in self.get('asic', 'logiclib'): if item not in self.getkeys('library'): self.error = 1 self.logger.error(f"Target library {item} not found.") #3. Check requirements list allkeys = self.getkeys() for key in allkeys: keypath = ",".join(key) if 'default' not in key and 'history' not in key and 'library' not in key: key_empty = self._keypath_empty(key) requirement = self.get(*key, field='require') if key_empty and (str(requirement) == 'all'): self.error = 1 self.logger.error(f"Global requirement missing for [{keypath}].") elif key_empty and (str(requirement) == self.get('option', 'mode')): self.error = 1 self.logger.error(f"Mode requirement missing for [{keypath}].") #4. Check per tool parameter requirements (when tool exists) for step in steplist: for index in self.getkeys('flowgraph', flow, step): tool = self.get('flowgraph', flow, step, index, 'tool') if (tool not in self.builtin) and (tool in self.getkeys('tool')): # checking that requirements are set if self.valid('tool', tool, 'require', step, index): all_required = self.get('tool', tool, 'require', step, index) for item in all_required: keypath = item.split(',') if self._keypath_empty(keypath): self.error = 1 self.logger.error(f"Value empty for [{keypath}] for {tool}.") if self._keypath_empty(['tool', tool, 'exe']): self.error = 1 self.logger.error(f'Executable not specified for tool {tool}') if 'SC_VALID_PATHS' in os.environ: if not self._check_files(): self.error = 1 if not self._check_flowgraph_io(): self.error = 1 return self.error ########################################################################### def _gather_outputs(self, step, index): '''Return set of filenames that are guaranteed to be in outputs directory after a successful run of step/index.''' flow = self.get('option', 'flow') tool = self.get('flowgraph', flow, step, index, 'tool') outputs = set() if tool in self.builtin: in_tasks = self.get('flowgraph', flow, step, index, 'input') in_task_outputs = [self._gather_outputs(*task) for task in in_tasks] if tool in ('minimum', 'maximum'): if len(in_task_outputs) > 0: outputs = in_task_outputs[0].intersection(*in_task_outputs[1:]) elif tool in ('join', 'nop'): if len(in_task_outputs) > 0: outputs = in_task_outputs[0].union(*in_task_outputs[1:]) else: # TODO: logic should be added here when mux/verify builtins are implemented. self.logger.error(f'Builtin {tool} not yet implemented') else: # Not builtin tool if self.valid('tool', tool, 'output', step, index): outputs = set(self.get('tool', tool, 'output', step, index)) else: outputs = set() if step == 'import': imports = {self._get_imported_filename(p) for p in self._collect_paths()} outputs.update(imports) return outputs ########################################################################### def _check_flowgraph_io(self): '''Check if flowgraph is valid in terms of input and output files. Returns True if valid, False otherwise. ''' flow = self.get('option', 'flow') steplist = self.get('option', 'steplist') if not steplist: steplist = self.list_steps() if len(steplist) < 2: return True for step in steplist: for index in self.getkeys('flowgraph', flow, step): # For each task, check input requirements. tool = self.get('flowgraph', flow, step, index, 'tool') if tool in self.builtin: # We can skip builtins since they don't have any particular # input requirements -- they just pass through what they # receive. continue # Get files we receive from input tasks. in_tasks = self.get('flowgraph', flow, step, index, 'input') if len(in_tasks) > 1: self.logger.error(f'Tool task {step}{index} has more than one input task.') elif len(in_tasks) > 0: in_step, in_index = in_tasks[0] if in_step not in steplist: # If we're not running the input step, the required # inputs need to already be copied into the build # directory. jobname = self.get('option', 'jobname') if self.valid('option', 'jobinput', step, index): in_job = self.get('option', 'jobinput', step, index) else: in_job = jobname workdir = self._getworkdir(jobname=in_job, step=in_step, index=in_index) in_step_out_dir = os.path.join(workdir, 'outputs') inputs = set(os.listdir(in_step_out_dir)) else: inputs = self._gather_outputs(in_step, in_index) else: inputs = set() if self.valid('tool', tool, 'input', step, index): requirements = self.get('tool', tool, 'input', step, index) else: requirements = [] for requirement in requirements: if requirement not in inputs: self.logger.error(f'Invalid flow: {step}{index} will ' f'not receive required input {requirement}.') return False return True ########################################################################### def read_manifest(self, filename, job=None, clear=True, clobber=True): """ Reads a manifest from disk and merges it with the current compilation manifest. The file format read is determined by the filename suffix. Currently json (*.json) and yaml(*.yaml) formats are supported. Args: filename (filepath): Path to a manifest file to be loaded. job (str): Specifies non-default job to merge into. clear (bool): If True, disables append operations for list type. clobber (bool): If True, overwrites existing parameter value. Examples: >>> chip.read_manifest('mychip.json') Loads the file mychip.json into the current Chip object. """ self._read_manifest(filename, job=job, clear=clear, clobber=clobber) ########################################################################### def _read_manifest(self, filename, job=None, clear=True, clobber=True, partial=False): """ Internal read_manifest() implementation with `partial` arg. partial (bool): If True, perform a partial merge, only merging keypaths that may have been updated during run(). """ filepath = os.path.abspath(filename) self.logger.debug(f"Reading manifest {filepath}") if not os.path.isfile(filepath): error_message = f"Manifest file not found {filepath}" self.logger.error(error_message) raise SiliconCompilerError(error_message) #Read arguments from file based on file type if filepath.endswith('.gz'): fin = gzip.open(filepath, 'r') else: fin = open(filepath, 'r') try: if re.search(r'(\.json|\.sup)(\.gz)*$', filepath): localcfg = json.load(fin) elif re.search(r'(\.yaml|\.yml)(\.gz)*$', filepath): localcfg = yaml.load(fin, Loader=yaml.SafeLoader) else: self.logger.error('File format not recognized %s', filepath) self.error = 1 finally: fin.close() if self.get('schemaversion') != localcfg['schemaversion']['value']: self.logger.warning('Attempting to read manifest with incompatible ' 'schema version into current chip object. Skipping...') return # Merging arguments with the Chip configuration self._merge_manifest(localcfg, job=job, clear=clear, clobber=clobber, partial=partial) # Read history if 'history' in localcfg and not partial: for historic_job in localcfg['history'].keys(): self._merge_manifest(localcfg['history'][historic_job], job=historic_job, clear=clear, clobber=clobber, partial=False) if 'library' in localcfg and not partial: for libname in localcfg['library'].keys(): if libname in self.cfg['library']: # TODO: should we make this a proper merge? self.logger.warning(f'Overwriting existing library {libname} ' f'in object with values read from {filename}.') self._import_library(libname, localcfg['library'][libname]) ########################################################################### def write_manifest(self, filename, prune=True, abspath=False, job=None): ''' Writes the compilation manifest to a file. The write file format is determined by the filename suffix. Currently json (*.json), yaml (*.yaml), tcl (*.tcl), and (*.csv) formats are supported. Args: filename (filepath): Output filepath prune (bool): If True, essential non-empty parameters from the the Chip object schema are written to the output file. abspath (bool): If set to True, then all schema filepaths are resolved to absolute filepaths. Examples: >>> chip.write_manifest('mydump.json') Prunes and dumps the current chip manifest into mydump.json ''' filepath = os.path.abspath(filename) self.logger.debug('Writing manifest to %s', filepath) if not os.path.exists(os.path.dirname(filepath)): os.makedirs(os.path.dirname(filepath)) if prune: self.logger.debug('Pruning dictionary before writing file %s', filepath) # Keep empty lists to simplify TCL coding if filepath.endswith('.tcl'): keeplists = True else: keeplists = False cfgcopy = self._prune(self.cfg, keeplists=keeplists) else: cfgcopy = copy.deepcopy(self.cfg) # resolve absolute paths if abspath: self._abspath(cfgcopy) is_csv = re.search(r'(\.csv)(\.gz)*$', filepath) # format specific dumping if filepath.endswith('.gz'): fout = gzip.open(filepath, 'wt', encoding='UTF-8') elif is_csv: # Files written using csv library should be opened with newline='' # https://docs.python.org/3/library/csv.html#id3 fout = open(filepath, 'w', newline='') else: fout = open(filepath, 'w') # format specific printing try: if re.search(r'(\.json|\.sup)(\.gz)*$', filepath): fout.write(json.dumps(cfgcopy, indent=4, sort_keys=True)) elif re.search(r'(\.yaml|\.yml)(\.gz)*$', filepath): fout.write(yaml.dump(cfgcopy, Dumper=YamlIndentDumper, default_flow_style=False)) elif re.search(r'(\.tcl)(\.gz)*$', filepath): self._print_tcl(cfgcopy, prefix="dict set sc_cfg", fout=fout) elif is_csv: self._print_csv(cfgcopy, fout=fout) else: self.logger.error('File format not recognized %s', filepath) self.error = 1 finally: fout.close() ########################################################################### def check_checklist(self, standard, items=None, check_ok=False): ''' Check items in a checklist. Checks the status of items in a checklist for the standard provided. If a specific list of items is unspecified, all items are checked. All items have an associated 'task' parameter, which indicates which tasks can be used to automatically validate the item. For an item to be checked, all tasks must satisfy the item's criteria, unless waivers are provided. In addition, that task must have generated EDA report files for each metric in the criteria. For items without an associated task, the only requirement is that at least one report has been added to that item. When 'check_ok' is True, every item must also have its 'ok' parameter set to True, indicating that a human has reviewed the item. Args: standard (str): Standard to check. items (list of str): Items to check from standard. check_ok (bool): Whether to check item 'ok' parameter. Returns: Status of item check. Examples: >>> status = chip.check_checklist('iso9000', 'd000') Returns status. ''' self.logger.info(f'Checking checklist {standard}') if items is None: items = self.getkeys('checklist', standard) flow = self.get('option', 'flow') for item in items: all_criteria = self.get('checklist', standard, item, 'criteria') for criteria in all_criteria: m = re.match(r'(\w+)([\>\=\<]+)(\w+)', criteria) if not m: self.logger.error(f"Illegal checklist criteria: {criteria}") self.error = 1 return False elif m.group(1) not in self.getkeys('metric', 'default', 'default'): self.logger.error(f"Critera must use legal metrics only: {criteria}") self.error = 1 return False metric = m.group(1) op = m.group(2) goal = float(m.group(3)) tasks = self.get('checklist', standard, item, 'task') for job, step, index in tasks: # Automated checks flow = self.get('option', 'flow', job=job) tool = self.get('flowgraph', flow, step, index, 'tool', job=job) value = self.get('metric', step, index, metric, job=job) criteria_ok = self._safecompare(value, op, goal) if metric in self.getkeys('checklist', standard, item, 'waiver'): waivers = self.get('checklist', standard, item, 'waiver', metric) else: waivers = [] criteria_str = f'{metric}{op}{goal}' if not criteria_ok and waivers: self.logger.warning(f'{item} criteria {criteria_str} unmet by task {step}{index}, but found waivers.') elif not criteria_ok: self.logger.error(f'{item} criteria {criteria_str} unmet by task {step}{index}.') self.error = 1 return False if (step in self.getkeys('tool', tool, 'report', job=job) and index in self.getkeys('tool', tool, 'report', step, job=job) and metric in self.getkeys('tool', tool, 'report', step, index, job=job)): eda_reports = self.find_files('tool', tool, 'report', step, index, metric, job=job) else: eda_reports = None if not eda_reports: self.logger.error(f'No EDA reports generated for metric {metric} in task {step}{index}') self.error = 1 return False for report in eda_reports: if report not in self.get('checklist', standard, item, 'report'): self.add('checklist', standard, item, 'report', report) if len(self.get('checklist', standard, item, 'report')) == 0: # TODO: validate that report exists? self.logger.error(f'No report documenting item {item}') self.error = 1 return False if check_ok and not self.get('checklist', standard, item, 'ok'): self.logger.error(f"Item {item} 'ok' field not checked") self.error = 1 return False self.logger.info('Check succeeded!') return True ########################################################################### def read_file(self, filename, step='import', index='0'): ''' Read file defined in schema. (WIP) ''' return(0) ########################################################################### def update(self): ''' Update the chip dependency graph. 1. Finds all packages in the local cache 2. Fetches all packages in the remote registry 3. Creates a dependency graph based on current chip dependencies and dependencies read from dependency json objects. 4. If autoinstall is set, copy registry packages to local cache. 5. Error out if package is not found in local cache or in registry. 6. Error out if autoinstall is set and registry package is missing. ''' # schema settings design = self.get('design') reglist = self.get('option', 'registry') auto = self.get('option','autoinstall') # environment settings # Local cache location if 'SC_HOME' in os.environ: home = os.environ['SC_HOME'] else: home = os.environ['HOME'] cache = os.path.join(home,'.sc','registry') # Indexing all local cache packages local = self._build_index(cache) remote = self._build_index(reglist) # Cycle through current chip dependencies deps = {} for dep in self.getkeys('package', 'dependency'): deps[dep] = self.get('package', 'dependency', dep) depgraph = self._find_deps(cache, local, remote, design, deps, auto) # Update dependency graph for dep in depgraph: self.set('package', 'depgraph', dep, depgraph[dep]) return depgraph ########################################################################### def _build_index(self, dirlist): ''' Build a package index for a registry. ''' if not isinstance(dirlist, list): dirlist = [dirlist] index = {} for item in dirlist: if re.match(r'http', item): #TODO pass else: packages = os.listdir(item) for i in packages: versions = os.listdir(os.path.join(item, i)) index[i] = {} for j in versions: index[i][j] = item return index ########################################################################### def _install_package(self, cache, dep, ver, remote): ''' Copies a package from remote to local. The remote and local arguments are package indices of format: index['dirname']['dep'] ''' package = f"{dep}-{ver}.sup.gz" self.logger.info(f"Installing package {package} in {cache}") # Check that package exists in remote registry if dep in remote.keys(): if ver not in list(remote[dep].keys()): self.logger.error(f"Package {dep}-{ver} not found in registry.") sys.exit() ifile = os.path.join(remote[dep][ver],dep,ver,package) odir = os.path.join(cache,dep,ver) ofile = os.path.join(odir,package) # Install package os.makedirs(odir, exist_ok=True) shutil.copyfile(ifile, ofile) ########################################################################### def _find_deps(self, cache, local, remote, design, deps, auto, depgraph={}, upstream={}): ''' Recursive function to find and install dependencies. ''' # install missing dependencies depgraph[design] = [] for dep in deps.keys(): #TODO: Proper PEP semver matching ver = list(deps[dep])[0] depgraph[design].append((dep,ver)) islocal = False if dep in local.keys(): if ver in local[dep]: islocal = True # install and update local index if auto and islocal: self.logger.info(f"Found package {dep}-{ver} in cache") elif auto and not islocal: self._install_package(cache, dep, ver, remote) local[dep]=ver # look through dependency package files package = os.path.join(cache,dep,ver,f"{dep}-{ver}.sup.gz") if not os.path.isfile(package): self.logger.error("Package missing. Try 'autoinstall' or install manually.") sys.exit() with gzip.open(package, 'r') as f: localcfg = json.load(f) # done if no more dependencies if 'dependency' in localcfg['package']: subdeps = {} subdesign = localcfg['design']['value'] depgraph[subdesign] = [] for item in localcfg['package']['dependency'].keys(): subver = localcfg['package']['dependency'][item]['value'] if (item in upstream) and (upstream[item] == subver): # Circular imports are not supported. raise SiliconCompilerError(f'Cannot process circular import: {dep}-{ver} <---> {item}-{subver}.') subdeps[item] = subver upstream[item] = subver depgraph[subdesign].append((item, subver)) self._find_deps(cache, local, remote, subdesign, subdeps, auto, depgraph, upstream) return depgraph ########################################################################### def import_library(self, lib_chip): '''Import a Chip object into current Chip as a library. Args: lib_chip (Chip): An instance of Chip to import. ''' self._import_library(lib_chip.design, lib_chip.cfg) ########################################################################### def _import_library(self, libname, libcfg): '''Helper to import library with config 'libconfig' as a library 'libname' in current Chip object.''' self.cfg['library'][libname] = copy.deepcopy(libcfg) if 'pdk' in self.cfg['library'][libname]: del self.cfg['library'][libname]['pdk'] ########################################################################### def write_depgraph(self, filename): ''' Writes the package dependency tree to disk. Supported graphical render formats include png, svg, gif, pdf and a few others. (see https://graphviz.org for more information). Supported text formats include .md, .rst. (see the Linux 'tree' command for more information). ''' return(0) ########################################################################### def write_flowgraph(self, filename, flow=None, fillcolor='#ffffff', fontcolor='#000000', fontsize='14', border=True, landscape=False): '''Renders and saves the compilation flowgraph to a file. The chip object flowgraph is traversed to create a graphviz (\*.dot) file comprised of node, edges, and labels. The dot file is a graphical representation of the flowgraph useful for validating the correctness of the execution flow graph. The dot file is then converted to the appropriate picture or drawing format based on the filename suffix provided. Supported output render formats include png, svg, gif, pdf and a few others. For more information about the graphviz project, see see https://graphviz.org/ Args: filename (filepath): Output filepath flow (str): Name of flowgraph to render fillcolor(str): Node fill RGB color hex value fontcolor (str): Node font RGB color hex value fontsize (str): Node text font size border (bool): Enables node border if True landscape (bool): Renders graph in landscape layout if True Examples: >>> chip.write_flowgraph('mydump.png') Renders the object flowgraph and writes the result to a png file. ''' filepath = os.path.abspath(filename) self.logger.debug('Writing flowgraph to file %s', filepath) fileroot, ext = os.path.splitext(filepath) fileformat = ext.replace(".", "") if flow is None: flow = self.get('option', 'flow') # controlling border width if border: penwidth = '1' else: penwidth = '0' # controlling graph direction if landscape: rankdir = 'LR' else: rankdir = 'TB' dot = graphviz.Digraph(format=fileformat) dot.graph_attr['rankdir'] = rankdir dot.attr(bgcolor='transparent') for step in self.getkeys('flowgraph',flow): irange = 0 for index in self.getkeys('flowgraph', flow, step): irange = irange +1 for i in range(irange): index = str(i) node = step+index # create step node tool = self.get('flowgraph', flow, step, index, 'tool') if tool in self.builtin: labelname = step elif tool is not None: labelname = f"{step}{index}\n({tool})" else: labelname = f"{step}{index}" dot.node(node, label=labelname, bordercolor=fontcolor, style='filled', fontcolor=fontcolor, fontsize=fontsize, ordering="in", penwidth=penwidth, fillcolor=fillcolor) # get inputs all_inputs = [] for in_step, in_index in self.get('flowgraph', flow, step, index, 'input'): all_inputs.append(in_step + in_index) for item in all_inputs: dot.edge(item, node) dot.render(filename=fileroot, cleanup=True) ######################################################################## def _collect_paths(self): ''' Returns list of paths to files that will be collected by import step. See docstring for _collect() for more details. ''' paths = [] copyall = self.get('option', 'copyall') allkeys = self.getkeys() for key in allkeys: leaftype = self.get(*key, field='type') if re.search('file', leaftype): copy = self.get(*key, field='copy') value = self.get(*key) if copyall or copy: for item in value: paths.append(item) return paths ######################################################################## def _collect(self, step, index): ''' Collects files found in the configuration dictionary and places them in inputs/. The function only copies in files that have the 'copy' field set as true. If 'copyall' is set to true, then all files are copied in. 1. indexing like in run, job1 2. chdir package 3. run tool to collect files, pickle file in output/design.v 4. copy in rest of the files below 5. record files read in to schema ''' indir = 'inputs' flow = self.get('option', 'flow') if not os.path.exists(indir): os.makedirs(indir) self.logger.info('Collecting input sources') for path in self._collect_paths(): filename = self._get_imported_filename(path) abspath = self._find_sc_file(path) if abspath: self.logger.info(f"Copying {abspath} to '{indir}' directory") shutil.copy(abspath, os.path.join(indir, filename)) else: self._haltstep(step, index) outdir = 'outputs' if not os.path.exists(outdir): os.makedirs(outdir) # Logic to make links from outputs/ to inputs/, skipping anything that # will be output by the tool as well as the manifest. We put this here # so that tools used for the import stage don't have to duplicate this # logic. We skip this logic for 'join'-based single-step imports, since # 'join' does the copy for us. tool = self.get('flowgraph', flow, step, index, 'tool') if tool not in self.builtin: if self.valid('tool', tool, 'output', step, index): outputs = self.get('tool', tool, 'output', step, index) else: outputs = [] design = self.get('design') ignore = outputs + [f'{design}.pkg.json'] utils.copytree(indir, outdir, dirs_exist_ok=True, link=True, ignore=ignore) elif tool not in ('join', 'nop'): self.error = 1 self.logger.error(f'Invalid import step builtin {tool}. Must be tool or join.') ########################################################################### def archive(self, step=None, index=None, all_files=False): '''Archive a job directory. Creates a single compressed archive (.tgz) based on the design, jobname, and flowgraph in the current chip manifest. Individual steps and/or indices can be archived based on argumnets specified. By default, all steps and indices in the flowgraph are archived. By default, only the outputs directory content and the log file are archived. Args: step(str): Step to archive. index (str): Index to archive all_files (bool): If True, all files are archived. ''' design = self.get('design') jobname = self.get('option', 'jobname') buildpath = self.get('option', 'builddir') flow = self.get('option', 'flow') if step: steplist = [step] elif self.get('arg', 'step'): steplist = [self.get('arg', 'step')] elif self.get('option', 'steplist'): steplist = self.get('option', 'steplist') else: steplist = self.list_steps() if step: archive_name = f"{design}_{jobname}_{step}.tgz" else: archive_name = f"{design}_{jobname}.tgz" with tarfile.open(archive_name, "w:gz") as tar: for step in steplist: if index: indexlist = [index] else: indexlist = self.getkeys('flowgraph', flow, step) for item in indexlist: basedir = os.path.join(buildpath, design, jobname, step, item) if all_files: tar.add(os.path.abspath(basedir), arcname=basedir) else: outdir = os.path.join(basedir,'outputs') logfile = os.path.join(basedir, step+'.log') tar.add(os.path.abspath(outdir), arcname=outdir) if os.path.isfile(logfile): tar.add(os.path.abspath(logfile), arcname=logfile) return archive_name ########################################################################### def hash_files(self, *keypath, algo='sha256', update=True): '''Generates hash values for a list of parameter files. Generates a a hash value for each file found in the keypath. If the update variable is True, the has values are recorded in the 'filehash' field of the parameter, following the order dictated by the files within the 'values' parameter field. Files are located using the find_files() function. The file hash calculation is performed basd on the 'algo' setting. Supported algorithms include SHA1, SHA224, SHA256, SHA384, SHA512, and MD5. Args: *keypath(str): Keypath to parameter. algo (str): Algorithm to use for file hash calculation update (bool): If True, the hash values are recorded in the chip object manifest. Returns: A list of hash values. Examples: >>> hashlist = hash_files('sources') Hashlist gets list of hash values computed from 'sources' files. ''' keypathstr = ','.join(keypath) #TODO: Insert into find_files? if 'file' not in self.get(*keypath, field='type'): self.logger.error(f"Illegal attempt to hash non-file parameter [{keypathstr}].") self.error = 1 else: filelist = self.find_files(*keypath) #cycle through all paths hashlist = [] if filelist: self.logger.info(f'Computing hash value for [{keypathstr}]') for filename in filelist: if os.path.isfile(filename): #TODO: Implement algo selection hashobj = hashlib.sha256() with open(filename, "rb") as f: for byte_block in iter(lambda: f.read(4096), b""): hashobj.update(byte_block) hash_value = hashobj.hexdigest() hashlist.append(hash_value) else: self.error = 1 self.logger.info(f"Internal hashing error, file not found") # compare previous hash to new hash oldhash = self.get(*keypath,field='filehash') for i,item in enumerate(oldhash): if item != hashlist[i]: self.logger.error(f"Hash mismatch for [{keypath}]") self.error = 1 self.set(*keypath, hashlist, field='filehash', clobber=True) ########################################################################### def audit_manifest(self): '''Verifies the integrity of the post-run compilation manifest. Checks the integrity of the chip object implementation flow after the run() function has been completed. Errors, warnings, and debug messages are reported through the logger object. Audit checks performed include: * Time stamps * File modifications * Error and warning policy * IP and design origin * User access * License terms * Version checks Returns: Returns True if the manifest has integrity, else returns False. Example: >>> chip.audit_manifest() Audits the Chip object manifest and returns 0 if successful. ''' return 0 ########################################################################### def calc_area(self): '''Calculates the area of a rectilinear diearea. Uses the shoelace formulate to calculate the design area using the (x,y) point tuples from the 'diearea' parameter. If only diearea paramater only contains two points, then the first and second point must be the lower left and upper right points of the rectangle. (Ref: https://en.wikipedia.org/wiki/Shoelace_formula) Returns: Design area (float). Examples: >>> area = chip.calc_area() ''' vertices = self.get('asic', 'diearea') if len(vertices) == 2: width = vertices[1][0] - vertices[0][0] height = vertices[1][1] - vertices[0][1] area = width * height else: area = 0.0 for i in range(len(vertices)): j = (i + 1) % len(vertices) area += vertices[i][0] * vertices[j][1] area -= vertices[j][0] * vertices[i][1] area = abs(area) / 2 return area ########################################################################### def calc_yield(self, model='poisson'): '''Calculates raw die yield. Calculates the raw yield of the design as a function of design area and d0 defect density. Calculation can be done based on the poisson model (default) or the murphy model. The die area and the d0 parameters are taken from the chip dictionary. * Poisson model: dy = exp(-area * d0/100). * Murphy model: dy = ((1-exp(-area * d0/100))/(area * d0/100))^2. Args: model (string): Model to use for calculation (poisson or murphy) Returns: Design yield percentage (float). Examples: >>> yield = chip.calc_yield() Yield variable gets yield value based on the chip manifest. ''' d0 = self.get('pdk', 'd0') diearea = self.calc_area() if model == 'poisson': dy = math.exp(-diearea * d0/100) elif model == 'murphy': dy = ((1-math.exp(-diearea * d0/100))/(diearea * d0/100))**2 return dy ########################################################################## def calc_dpw(self): '''Calculates dies per wafer. Calculates the gross dies per wafer based on the design area, wafersize, wafer edge margin, and scribe lines. The calculation is done by starting at the center of the wafer and placing as many complete design footprints as possible within a legal placement area. Returns: Number of gross dies per wafer (int). Examples: >>> dpw = chip.calc_dpw() Variable dpw gets gross dies per wafer value based on the chip manifest. ''' #PDK information wafersize = self.get('pdk', 'wafersize') edgemargin = self.get('pdk', 'edgemargin') hscribe = self.get('pdk', 'hscribe') vscribe = self.get('pdk', 'vscribe') #Design parameters diesize = self.get('asic', 'diesize').split() diewidth = (diesize[2] - diesize[0])/1000 dieheight = (diesize[3] - diesize[1])/1000 #Derived parameters radius = wafersize/2 -edgemargin stepwidth = (diewidth + hscribe) stepheight = (dieheight + vscribe) #Raster dies out from center until you touch edge margin #Work quadrant by quadrant dies = 0 for quad in ('q1', 'q2', 'q3', 'q4'): x = 0 y = 0 if quad == "q1": xincr = stepwidth yincr = stepheight elif quad == "q2": xincr = -stepwidth yincr = stepheight elif quad == "q3": xincr = -stepwidth yincr = -stepheight elif quad == "q4": xincr = stepwidth yincr = -stepheight #loop through all y values from center while math.hypot(0, y) < radius: y = y + yincr while math.hypot(x, y) < radius: x = x + xincr dies = dies + 1 x = 0 return int(dies) ########################################################################### def grep(self, args, line): """ Emulates the Unix grep command on a string. Emulates the behavior of the Unix grep command that is etched into our muscle memory. Partially implemented, not all features supported. The function returns None if no match is found. Args: arg (string): Command line arguments for grep command line (string): Line to process Returns: Result of grep command (string). """ # Quick return if input is None if line is None: return None # Partial list of supported grep options options = { '-v' : False, # Invert the sense of matching '-i' : False, # Ignore case distinctions in patterns and data '-E' : False, # Interpret PATTERNS as extended regular expressions. '-e' : False, # Safe interpretation of pattern starting with "-" '-x' : False, # Select only matches that exactly match the whole line. '-o' : False, # Print only the match parts of a matching line '-w' : False} # Select only lines containing matches that form whole words. # Split into repeating switches and everything else match = re.match(r'\s*((?:\-\w\s)*)(.*)', args) pattern = match.group(2) # Split space separated switch string into list switches = match.group(1).strip().split(' ') # Find special -e switch update the pattern for i in range(len(switches)): if switches[i] == "-e": if i != (len(switches)): pattern = ' '.join(switches[i+1:]) + " " + pattern switches = switches[0:i+1] break options["-e"] = True elif switches[i] in options.keys(): options[switches[i]] = True elif switches[i] !='': print("ERROR",switches[i]) #REGEX #TODO: add all the other optinos match = re.search(rf"({pattern})", line) if bool(match) == bool(options["-v"]): return None else: return line ########################################################################### def check_logfile(self, jobname=None, step=None, index='0', logfile=None, display=True): ''' Checks logfile for patterns found in the 'regex' parameter. Reads the content of the step's log file and compares the content found in step 'regex' parameter. The matches are stored in the file 'reports/<design>.<suffix>' in the run directory. The matches are printed to STDOUT if display is set to True. Args: step (str): Task step name ('syn', 'place', etc) jobname (str): Jobid directory name index (str): Task index display (bool): If True, printes matches to STDOUT. Examples: >>> chip.check_logfile('place') Searches for regex matches in the place logfile. ''' # Using manifest to get defaults flow = self.get('option', 'flow') if jobname is None: jobname = self.get('option', 'jobname') if logfile is None: logfile = f"{step}.log" if step is None: step = self.get('arg', 'step') if index is None: index = self.getkeys('flowgraph', flow, step)[0] tool = self.get('flowgraph', flow, step, index, 'tool') # Creating local dictionary (for speed) # self.get is slow checks = {} regex_list = [] if self.valid('tool', tool, 'regex', step, index, 'default'): regex_list = self.getkeys('tool', tool, 'regex', step, index) for suffix in regex_list: checks[suffix] = {} checks[suffix]['report'] = open(f"{step}.{suffix}", "w") checks[suffix]['args'] = self.get('tool', tool, 'regex', step, index, suffix) # Looping through patterns for each line with open(logfile) as f: for line in f: for suffix in checks: string = line for item in checks[suffix]['args']: if string is None: break else: string = self.grep(item, string) if string is not None: #always print to file print(string.strip(), file=checks[suffix]['report']) #selectively print to display if display: self.logger.info(string.strip()) ########################################################################### def _find_leaves(self, steplist): '''Helper to find final (leaf) tasks for a given steplist.''' flow = self.get('option', 'flow') # First, iterate over the tasks to generate a set of non-leaf tasks. all_tasks = set() non_leaf_tasks = set() for step in steplist: for index in self.getkeys('flowgraph', flow, step): all_tasks.add((step, index)) for in_step, in_index in self.get('flowgraph', flow, step, index, 'input'): if in_step in steplist: non_leaf_tasks.add((in_step, in_index)) # Then, find all leaf tasks by elimination. return all_tasks.difference(non_leaf_tasks) ########################################################################### def summary(self, steplist=None, show_all_indices=False): ''' Prints a summary of the compilation manifest. Metrics from the flowgraph steps, or steplist parameter if defined, are printed out on a per step basis. All metrics from the metric dictionary with weights set in the flowgraph dictionary are printed out. Args: show_all_indices (bool): If True, displays metrics for all indices of each step. If False, displays metrics only for winning indices. Examples: >>> chip.summary() Prints out a summary of the run to stdout. ''' # display whole flowgraph if no steplist specified flow = self.get('option', 'flow') if not steplist: if self.get('option', 'steplist'): steplist = self.get('option', 'steplist') else: steplist = self.list_steps() # Find all tasks that are part of a "winning" path. selected_tasks = set() to_search = [] # Start search with any successful leaf tasks. leaf_tasks = self._find_leaves(steplist) for task in leaf_tasks: if self.get('flowgraph', flow, *task, 'status') == TaskStatus.SUCCESS: selected_tasks.add(task) to_search.append(task) # Search backwards, saving anything that was selected by leaf tasks. while len(to_search) > 0: task = to_search.pop(-1) for selected in self.get('flowgraph', flow, *task, 'select'): if selected not in selected_tasks: selected_tasks.add(selected) to_search.append(selected) # only report tool based steps functions for step in steplist.copy(): if self.get('flowgraph',flow, step,'0','tool') in self.builtin: index = steplist.index(step) del steplist[index] # job directory jobdir = self._getworkdir() # Custom reporting modes paramlist = [] for item in self.getkeys('option', 'param'): paramlist.append(item+"="+self.get('option', 'param', item)) if paramlist: paramstr = ', '.join(paramlist) else: paramstr = "None" info_list = ["SUMMARY:\n", "design : " + self.get('design'), "params : " + paramstr, "jobdir : "+ jobdir, ] if self.get('option', 'mode') == 'asic': pdk = self.get('option', 'pdk') info_list.extend(["foundry : " + self.get('pdk', pdk, 'foundry'), "process : " + pdk, "targetlibs : "+" ".join(self.get('asic', 'logiclib'))]) elif self.get('option', 'mode') == 'fpga': info_list.extend(["partname : "+self.get('fpga','partname')]) info = '\n'.join(info_list) print("-"*135) print(info, "\n") # Stepping through all steps/indices and printing out metrics data = [] #Creating Header header = [] indices_to_show = {} colwidth = 8 for step in steplist: if show_all_indices: indices_to_show[step] = self.getkeys('flowgraph', flow, step) else: indices_to_show[step] = [] for index in self.getkeys('flowgraph', flow, step): if (step, index) in selected_tasks: indices_to_show[step].append(index) # header for data frame for step in steplist: for index in indices_to_show[step]: header.append(f'{step}{index}'.center(colwidth)) # figure out which metrics have non-zero weights metric_list = [] for step in steplist: for metric in self.getkeys('metric','default','default'): if metric in self.getkeys('flowgraph', flow, step, '0', 'weight'): if self.get('flowgraph', flow, step, '0', 'weight', metric) is not None: if metric not in metric_list: metric_list.append(metric) # print out all metrics metrics = [] for metric in metric_list: metrics.append(" " + metric) row = [] for step in steplist: for index in indices_to_show[step]: value = self.get('metric', step, index, metric) if value is None: value = 'ERR' else: value = str(value) row.append(" " + value.center(colwidth)) data.append(row) pandas.set_option('display.max_rows', 500) pandas.set_option('display.max_columns', 500) pandas.set_option('display.width', 100) df = pandas.DataFrame(data, metrics, header) print(df.to_string()) print("-"*135) # Create a report for the Chip object which can be viewed in a web browser. # Place report files in the build's root directory. web_dir = os.path.join(self.get('option', 'builddir'), self.get('design'), self.get('option', 'jobname')) if os.path.isdir(web_dir): # Gather essential variables. templ_dir = os.path.join(self.scroot, 'templates', 'report') design = self.get('design') flow = self.get('option', 'flow') flow_steps = steplist flow_tasks = {} for step in flow_steps: flow_tasks[step] = self.getkeys('flowgraph', flow, step) # Call 'show()' to generate a low-res PNG of the design. results_gds = self.find_result('gds', step='export') img_data = None if results_gds and not self.get('option', 'nodisplay'): self.show(results_gds, ['-rd', 'screenshot=1', '-rd', 'scr_w=1024', '-rd', 'scr_h=1024', '-z']) result_file = os.path.join(web_dir, f'{design}.png') # Result might not exist if there is no display if os.path.isfile(result_file): with open(result_file, 'rb') as img_file: img_data = base64.b64encode(img_file.read()).decode('utf-8') # Generate results page by passing the Chip manifest into the Jinja2 template. env = Environment(loader=FileSystemLoader(templ_dir)) results_page = os.path.join(web_dir, 'report.html') pruned_cfg = self._prune(self.cfg) if 'history' in pruned_cfg: del pruned_cfg['history'] if 'library' in pruned_cfg: del pruned_cfg['library'] with open(results_page, 'w') as wf: wf.write(env.get_template('sc_report.j2').render( manifest = self.cfg, pruned_cfg = pruned_cfg, metric_keys = metric_list, metrics = self.cfg['metric'], tasks = flow_tasks, img_data = img_data, )) # Try to open the results and layout only if '-nodisplay' is not set. if not self.get('option', 'nodisplay'): try: webbrowser.get(results_page) except webbrowser.Error: # Python 'webbrowser' module includes a limited number of popular defaults. # Depending on the platform, the user may have defined their own with $BROWSER. if 'BROWSER' in os.environ: subprocess.run([os.environ['BROWSER'], results_page]) else: self.logger.warning('Unable to open results page in web browser:\n' + os.path.abspath(os.path.join(web_dir, "report.html"))) ########################################################################### def list_steps(self, flow=None): ''' Returns an ordered list of flowgraph steps. All step keys from the flowgraph dictionary are collected and the distance from the root node (ie. without any inputs defined) is measured for each step. The step list is then sorted based on the distance from root and returned. Returns: A list of steps sorted by distance from the root node. Example: >>> steplist = chip.list_steps() Variable steplist gets list of steps sorted by distance from root. ''' if flow is None: flow = self.get('option', 'flow') #Get length of paths from step to root depth = {} for step in self.getkeys('flowgraph', flow): depth[step] = 0 for path in self._allpaths(self.cfg, flow, step, str(0)): if len(list(path)) > depth[step]: depth[step] = len(path) #Sort steps based on path lenghts sorted_dict = dict(sorted(depth.items(), key=lambda depth: depth[1])) return list(sorted_dict.keys()) ########################################################################### def _allpaths(self, cfg, flow, step, index, path=None): '''Recursive helper for finding all paths from provided step, index to root node(s) with no inputs. Returns a list of lists. ''' if path is None: path = [] inputs = self.get('flowgraph', flow, step, index, 'input', cfg=cfg) if not self.get('flowgraph', flow, step, index, 'input', cfg=cfg): return [path] else: allpaths = [] for in_step, in_index in inputs: newpath = path.copy() newpath.append(in_step + in_index) allpaths.extend(self._allpaths(cfg, flow, in_step, in_index, path=newpath)) return allpaths ########################################################################### def clock(self, pin, period, jitter=0): """ Clock configuration helper function. A utility function for setting all parameters associated with a single clock definition in the schema. The method modifies the following schema parameters: ['datasheet', name, 'pin'] ['datasheet', name, 'period'] ['datasheet', name, 'jitter'] Args: pin (str): Full hiearchical path to clk pin. period (float): Clock period specified in ns. jitter (float): Clock jitter specified in ns. Examples: >>> chip.clock('clk, period=1.0) Create a clock named 'clk' with a 1.0ns period. """ design = self.get('design') self.set('datasheet', design, 'pin', pin, 'type', 'global', 'clk') period_range = (period * 1e-9, period * 1e-9, period * 1e-9) self.set('datasheet', design, 'pin', pin, 'tperiod', 'global', period_range) jitter_range = (jitter * 1e-9, jitter * 1e-9, jitter * 1e-9) self.set('datasheet', design, 'pin', pin, 'tjitter', 'global', jitter_range) ########################################################################### def node(self, flow, step, tool, index=0): ''' Creates a flowgraph node. Creates a flowgraph node by binding a tool to a task. A task is defined as the combination of a step and index. A tool can be an external exeuctable or one of the built in functions in the SiliconCompiler framework). Built in functions include: minimum, maximum, join, mux, verify. The method modifies the following schema parameters: ['flowgraph', flow, step, index, 'tool', tool] ['flowgraph', flow, step, index, 'weight', metric] Args: flow (str): Flow name step (str): Task step name tool (str): Tool (or builtin function) to associate with task. index (int): Task index Examples: >>> chip.node('asicflow', 'place', 'openroad', index=0) Creates a task with step='place' and index=0 and binds it to the 'openroad' tool. ''' # bind tool to node self.set('flowgraph', flow, step, str(index), 'tool', tool) # set default weights for metric in self.getkeys('metric', 'default', 'default'): self.set('flowgraph', flow, step, str(index), 'weight', metric, 0) ########################################################################### def edge(self, flow, tail, head, tail_index=0, head_index=0): ''' Creates a directed edge from a tail node to a head node. Connects the output of a tail node with the input of a head node by setting the 'input' field of the head node in the schema flowgraph. The method modifies the following parameters: ['flowgraph', flow, head, str(head_index), 'input'] Args: flow (str): Name of flow tail (str): Name of tail node head (str): Name of head node tail_index (int): Index of tail node to connect head_index (int): Index of head node to connect Examples: >>> chip.edge('place', 'cts') Creates a directed edge from place to cts. ''' # Handling connecting edges between graphs # Not completely name space safe, but feels like this limitation # is a non-issue module_tail = f"{tail}.export" module_head = f"{head}.import" if module_tail in self.getkeys('flowgraph',flow): tail = module_tail if module_head in self.getkeys('flowgraph',flow): head = module_head #TODO: add error checking # Adding self.add('flowgraph', flow, head, str(head_index), 'input', (tail, str(tail_index))) ########################################################################### def graph(self, flow, subflow, name=None): ''' Instantiates a named flow as a graph in the current flowgraph. Args: flow (str): Name of current flow. subflow (str): Name of flow to instantiate name (str): Name of instance Examples: >>> chip.graph('asicflow') Instantiates Creates a directed edge from place to cts. ''' if flow not in self.getkeys('flowgraph'): self.cfg['flowgraph'][flow] ={} # uniquify each step for step in self.getkeys('flowgraph',subflow): if name is None: newstep = step else: newstep = name + "." + step if newstep not in self.getkeys('flowgraph', flow): self.cfg['flowgraph'][flow][newstep] ={} # recursive copy for key in self._allkeys(self.cfg['flowgraph'][subflow][step]): self._copyparam(self.cfg['flowgraph'][subflow][step], self.cfg['flowgraph'][flow][newstep], key) # update step names for index in self.getkeys('flowgraph', flow, newstep): all_inputs = self.get('flowgraph', flow, newstep, index,'input') self.set('flowgraph', flow, newstep, index,'input',[]) for in_step, in_index in all_inputs: newin = name + "." + in_step self.add('flowgraph', flow, newstep, index,'input',(newin,in_index)) ########################################################################### def pipe(self, flow, plan): ''' Creates a pipeline based on an order list of key values pairs. ''' for item in plan: step = list(item.keys())[0] tool = list(item.values())[0] self.node(flow, step, tool) if step != 'import': self.edge(flow, prevstep, step) prevstep = step ########################################################################### def join(self, *tasks): ''' Merges outputs from a list of input tasks. Args: tasks(list): List of input tasks specified as (step,index) tuples. Returns: Input list Examples: >>> select = chip.join([('lvs','0'), ('drc','0')]) Select gets the list [('lvs','0'), ('drc','0')] ''' tasklist = list(tasks) sel_inputs = tasklist # no score for join, so just return 0 return sel_inputs ########################################################################### def nop(self, *task): ''' A no-operation that passes inputs to outputs. Args: task(list): Input task specified as a (step,index) tuple. Returns: Input task Examples: >>> select = chip.nop(('lvs','0')) Select gets the tuple [('lvs',0')] ''' return list(task) ########################################################################### def minimum(self, *tasks): ''' Selects the task with the minimum metric score from a list of inputs. Sequence of operation: 1. Check list of input tasks to see if all metrics meets goals 2. Check list of input tasks to find global min/max for each metric 3. Select MIN value if all metrics are met. 4. Normalize the min value as sel = (val - MIN) / (MAX - MIN) 5. Return normalized value and task name Meeting metric goals takes precedence over compute metric scores. Only goals with values set and metrics with weights set are considered in the calculation. Args: tasks(list): List of input tasks specified as (step,index) tuples. Returns: tuple containing - score (float): Minimum score - task (tuple): Task with minimum score Examples: >>> (score, task) = chip.minimum([('place','0'),('place','1')]) ''' return self._minmax(*tasks, op="minimum") ########################################################################### def maximum(self, *tasks): ''' Selects the task with the maximum metric score from a list of inputs. Sequence of operation: 1. Check list of input tasks to see if all metrics meets goals 2. Check list of input tasks to find global min/max for each metric 3. Select MAX value if all metrics are met. 4. Normalize the min value as sel = (val - MIN) / (MAX - MIN) 5. Return normalized value and task name Meeting metric goals takes precedence over compute metric scores. Only goals with values set and metrics with weights set are considered in the calculation. Args: tasks(list): List of input tasks specified as (step,index) tuples. Returns: tuple containing - score (float): Maximum score. - task (tuple): Task with minimum score Examples: >>> (score, task) = chip.maximum([('place','0'),('place','1')]) ''' return self._minmax(*tasks, op="maximum") ########################################################################### def _minmax(self, *steps, op="minimum", **selector): ''' Shared function used for min and max calculation. ''' if op not in ('minimum', 'maximum'): raise ValueError('Invalid op') flow = self.get('option', 'flow') steplist = list(steps) # Keeping track of the steps/indexes that have goals met failed = {} for step, index in steplist: if step not in failed: failed[step] = {} failed[step][index] = False if self.get('flowgraph', flow, step, index, 'status') == TaskStatus.ERROR: failed[step][index] = True else: for metric in self.getkeys('metric', step, index): if self.valid('flowgraph', flow, step, index, 'goal', metric): goal = self.get('flowgraph', flow, step, index, 'goal', metric) real = self.get('metric', step, index, metric) if abs(real) > goal: self.logger.warning(f"Step {step}{index} failed " f"because it didn't meet goals for '{metric}' " "metric.") failed[step][index] = True # Calculate max/min values for each metric max_val = {} min_val = {} for metric in self.getkeys('flowgraph', flow, step, '0', 'weight'): max_val[metric] = 0 min_val[metric] = float("inf") for step, index in steplist: if not failed[step][index]: real = self.get('metric', step, index, metric) max_val[metric] = max(max_val[metric], real) min_val[metric] = min(min_val[metric], real) # Select the minimum index best_score = float('inf') if op == 'minimum' else float('-inf') winner = None for step, index in steplist: if failed[step][index]: continue score = 0.0 for metric in self.getkeys('flowgraph', flow, step, index, 'weight'): weight = self.get('flowgraph', flow, step, index, 'weight', metric) if not weight: # skip if weight is 0 or None continue real = self.get('metric', step, index, metric) if not (max_val[metric] - min_val[metric]) == 0: scaled = (real - min_val[metric]) / (max_val[metric] - min_val[metric]) else: scaled = max_val[metric] score = score + scaled * weight if ((op == 'minimum' and score < best_score) or (op == 'maximum' and score > best_score)): best_score = score winner = (step,index) return (best_score, winner) ########################################################################### def verify(self, *tasks, **assertion): ''' Tests an assertion on a list of input tasks. The provided steplist is verified to ensure that all assertions are True. If any of the assertions fail, False is returned. Assertions are passed in as kwargs, with the key being a metric and the value being a number and an optional conditional operator. The allowed conditional operators are: >, <, >=, <= Args: *steps (str): List of steps to verify **assertion (str='str'): Assertion to check on metric Returns: True if all assertions hold True for all steps. Example: >>> pass = chip.verify(['drc','lvs'], errors=0) Pass is True if the error metrics in the drc, lvs steps is 0. ''' #TODO: implement return True ########################################################################### def mux(self, *tasks, **selector): ''' Selects a task from a list of inputs. The selector criteria provided is used to create a custom function for selecting the best step/index pair from the inputs. Metrics and weights are passed in and used to select the step/index based on the minimum or maximum score depending on the 'op' argument. The function can be used to bypass the flows weight functions for the purpose of conditional flow execution and verification. Args: *steps (str): List of steps to verify **selector: Key value selection criteria. Returns: True if all assertions hold True for all steps. Example: >>> sel_stepindex = chip.mux(['route'], wirelength=0) Selects the routing stepindex with the shortest wirelength. ''' #TODO: modify the _minmax function to feed in alternate weight path return None ########################################################################### def _runtask(self, step, index, status): ''' Private per step run method called by run(). The method takes in a step string and index string to indicated what to run. Execution flow: T1. Start wall timer T2. Defer job to compute node if using job scheduler T3. Set up working directory + chdir T4. Merge manifests from all input dependancies T5. Write manifest to input directory for convenience T6. Reset all metrics to 0 (consider removing) T7. Select inputs T8. Copy data from previous step outputs into inputs T9. Check manifest T10. Run pre_process() function T11. Set environment variables T12. Check EXE version T13. Save manifest as TCL/YAML T14. Start CPU timer T15. Run EXE T16. stop CPU timer T17. Run post_process() T18. Check log file T19. Hash all task files T20. Stop Wall timer T21. Make a task record T22. Save manifest to disk T23. Halt if any errors found T24. Clean up T25. chdir Note that since _runtask occurs in its own process with a separate address space, any changes made to the `self` object will not be reflected in the parent. We rely on reading/writing the chip manifest to the filesystem to communicate updates between processes. ''' self._init_logger(step, index, in_run=True) ################## # Shared parameters (long function!) design = self.get('design') flow = self.get('option', 'flow') tool = self.get('flowgraph', flow, step, index, 'tool') quiet = self.get('option', 'quiet') and (step not in self.get('option', 'bkpt')) ################## # 1. Start wall timer wall_start = time.time() ################## # 2. Defer job to compute node # If the job is configured to run on a cluster, collect the schema # and send it to a compute node for deferred execution. # (Run the initial 'import' stage[s] locally) if self.get('option', 'jobscheduler') and \ self.get('flowgraph', flow, step, index, 'input'): # Note: The _deferstep method blocks until the compute node # finishes processing this step, and it sets the active/error bits. _deferstep(self, step, index, status) return ################## # 3. Directory setup # support for sharing data across jobs job = self.get('option', 'jobname') in_job = job if step in self.getkeys('option', 'jobinput'): if index in self.getkeys('option', 'jobinput', step): in_job = self.get('option', 'jobinput', step, index) workdir = self._getworkdir(step=step,index=index) cwd = os.getcwd() if os.path.isdir(workdir): shutil.rmtree(workdir) os.makedirs(workdir, exist_ok=True) os.chdir(workdir) os.makedirs('outputs', exist_ok=True) os.makedirs('reports', exist_ok=True) ################## # 4. Merge manifests from all input dependancies all_inputs = [] if not self.get('option', 'remote'): for in_step, in_index in self.get('flowgraph', flow, step, index, 'input'): in_task_status = status[in_step + in_index] self.set('flowgraph', flow, in_step, in_index, 'status', in_task_status) if in_task_status != TaskStatus.ERROR: cfgfile = f"../../../{in_job}/{in_step}/{in_index}/outputs/{design}.pkg.json" self._read_manifest(cfgfile, clobber=False, partial=True) ################## # 5. Write manifest prior to step running into inputs self.set('arg', 'step', None, clobber=True) self.set('arg', 'index', None, clobber=True) os.makedirs('inputs', exist_ok=True) #self.write_manifest(f'inputs/{design}.pkg.json') ################## # 6. Make metrics zero # TODO: There should be no need for this, but need to fix # without it we need to be more careful with flows to make sure # things like the builtin functions don't look at None values for metric in self.getkeys('metric', 'default', 'default'): self.set('metric', step, index, metric, 0) ################## # 7. Select inputs args = self.get('flowgraph', flow, step, index, 'args') inputs = self.get('flowgraph', flow, step, index, 'input') sel_inputs = [] score = 0 if tool in self.builtin: self.logger.info(f"Running built in task '{tool}'") # Figure out which inputs to select if tool == 'minimum': (score, sel_inputs) = self.minimum(*inputs) elif tool == "maximum": (score, sel_inputs) = self.maximum(*inputs) elif tool == "mux": (score, sel_inputs) = self.mux(*inputs, selector=args) elif tool == "join": sel_inputs = self.join(*inputs) elif tool == "verify": if not self.verify(*inputs, assertion=args): self._haltstep(step, index) else: sel_inputs = self.get('flowgraph', flow, step, index, 'input') if sel_inputs == None: self.logger.error(f'No inputs selected after running {tool}') self._haltstep(step, index) self.set('flowgraph', flow, step, index, 'select', sel_inputs) ################## # 8. Copy (link) output data from previous steps if step == 'import': self._collect(step, index) if not self.get('flowgraph', flow, step, index,'input'): all_inputs = [] elif not self.get('flowgraph', flow, step, index, 'select'): all_inputs = self.get('flowgraph', flow, step, index,'input') else: all_inputs = self.get('flowgraph', flow, step, index, 'select') for in_step, in_index in all_inputs: if self.get('flowgraph', flow, in_step, in_index, 'status') == TaskStatus.ERROR: self.logger.error(f'Halting step due to previous error in {in_step}{in_index}') self._haltstep(step, index) # Skip copying pkg.json files here, since we write the current chip # configuration into inputs/{design}.pkg.json earlier in _runstep. utils.copytree(f"../../../{in_job}/{in_step}/{in_index}/outputs", 'inputs/', dirs_exist_ok=True, ignore=[f'{design}.pkg.json'], link=True) ################## # 9. Check manifest self.set('arg', 'step', step, clobber=True) self.set('arg', 'index', index, clobber=True) if not self.get('option', 'skipcheck'): if self.check_manifest(): self.logger.error(f"Fatal error in check_manifest()! See previous errors.") self._haltstep(step, index) ################## # 10. Run preprocess step for tool if tool not in self.builtin: func = self.find_function(tool, "pre_process", 'tools') if func: func(self) if self.error: self.logger.error(f"Pre-processing failed for '{tool}'") self._haltstep(step, index) ################## # 11. Set environment variables # License file configuration. for item in self.getkeys('tool', tool, 'licenseserver'): license_file = self.get('tool', tool, 'licenseserver', item) if license_file: os.environ[item] = ':'.join(license_file) # Tool-specific environment variables for this task. if (step in self.getkeys('tool', tool, 'env')) and \ (index in self.getkeys('tool', tool, 'env', step)): for item in self.getkeys('tool', tool, 'env', step, index): os.environ[item] = self.get('tool', tool, 'env', step, index, item) ################## # 12. Check exe version vercheck = not self.get('option', 'novercheck') veropt = self.get('tool', tool, 'vswitch') exe = self._getexe(tool) version = None toolpath = exe # For record if exe is not None: exe_path, exe_base = os.path.split(exe) if veropt: cmdlist = [exe] cmdlist.extend(veropt) proc = subprocess.run(cmdlist, stdout=PIPE, stderr=subprocess.STDOUT, universal_newlines=True) parse_version = self.find_function(tool, 'parse_version', 'tools') if parse_version is None: self.logger.error(f'{tool} does not implement parse_version.') self._haltstep(step, index) version = parse_version(proc.stdout) self.logger.info(f"Tool '{exe_base}' found with version '{version}' in directory '{exe_path}'") if vercheck and not self._check_version(version, tool): self._haltstep(step, index) else: self.logger.info(f"Tool '{exe_base}' found in directory '{exe_path}'") elif tool not in self.builtin: exe_base = self.get('tool', tool, 'exe') self.logger.error(f'Executable {exe_base} not found') self._haltstep(step, index) ################## # 13. Write manifest (tool interface) (Don't move this!) suffix = self.get('tool', tool, 'format') if suffix: pruneopt = bool(suffix!='tcl') self.write_manifest(f"sc_manifest.{suffix}", prune=pruneopt, abspath=True) ################## # 14. Start CPU Timer self.logger.debug(f"Starting executable") cpu_start = time.time() ################## # 15. Run executable (or copy inputs to outputs for builtin functions) # TODO: Currently no memory usage tracking in breakpoints, builtins, or unexpected errors. max_mem_bytes = 0 if tool in self.builtin: utils.copytree(f"inputs", 'outputs', dirs_exist_ok=True, link=True) elif not self.get('option', 'skipall'): cmdlist = self._makecmd(tool, step, index) exe_base = os.path.basename(cmdlist[0]) cmdstr = ' '.join([exe_base] + cmdlist[1:]) self.logger.info('Running in %s', workdir) self.logger.info('%s', cmdstr) timeout = self.get('flowgraph', flow, step, index, 'timeout') logfile = step + '.log' if sys.platform in ('darwin', 'linux') and step in self.get('option', 'bkpt'): # When we break on a step, the tool often drops into a shell. # However, our usual subprocess scheme seems to break terminal # echo for some tools. On POSIX-compatible systems, we can use # pty to connect the tool to our terminal instead. This code # doesn't handle quiet/timeout logic, since we don't want either # of these features for an interactive session. Logic for # forwarding to file based on # https://docs.python.org/3/library/pty.html#example. logfile = step + '.log' with open(logfile, 'wb') as log_writer: def read(fd): data = os.read(fd, 1024) log_writer.write(data) return data import pty # Note: this import throws exception on Windows retcode = pty.spawn(cmdlist, read) else: stdout_file = '' stdout_suffix = self.get('tool', tool, 'stdout', step, index, 'suffix') if self.get('tool', tool, 'stdout', step, index, 'destination') == 'log': stdout_file = step + "." + stdout_suffix elif self.get('tool', tool, 'stdout', step, index, 'destination') == 'output': stdout_file = os.path.join('outputs', self.get('design')) + "." + stdout_suffix elif self.get('tool', tool, 'stdout', step, index, 'destination') == 'none': stdout_file = os.devnull else: destination = self.get('tool', tool, 'stdout', step, index, 'destination') self.logger.error(f'stdout/destination has no support for {destination}. Use [log|output|none].') self._haltstep(step, index) stderr_file = '' stderr_suffix = self.get('tool', tool, 'stderr', step, index, 'suffix') if self.get('tool', tool, 'stderr', step, index, 'destination') == 'log': stderr_file = step + "." + stderr_suffix elif self.get('tool', tool, 'stderr', step, index, 'destination') == 'output': stderr_file = os.path.join('outputs', self.get('design')) + "." + stderr_suffix elif self.get('tool', tool, 'stderr', step, index, 'destination') == 'none': stderr_file = os.devnull else: destination = self.get('tool', tool, 'stderr', step, index, 'destination') self.logger.error(f'stderr/destination has no support for {destination}. Use [log|output|none].') self._haltstep(step, index) with open(stdout_file, 'w') as stdout_writer, open(stdout_file, 'r') as stdout_reader, open(stderr_file, 'w') as stderr_writer, open(stderr_file, 'r') as stderr_reader: # Use separate reader/writer file objects as hack to display # live output in non-blocking way, so we can monitor the # timeout. Based on https://stackoverflow.com/a/18422264. is_stdout_log = self.get('tool', tool, 'stdout', step, index, 'destination') == 'log' is_stderr_log = self.get('tool', tool, 'stderr', step, index, 'destination') == 'log' and stderr_file != stdout_file # if STDOUT and STDERR are to be redirected to the same file, # use a single writer if stderr_file == stdout_file: stderr_writer.close() stderr_reader.close() stderr_writer = subprocess.STDOUT cmd_start_time = time.time() proc = subprocess.Popen(cmdlist, stdout=stdout_writer, stderr=stderr_writer) while proc.poll() is None: # Gather subprocess memory usage. try: pproc = psutil.Process(proc.pid) max_mem_bytes = max(max_mem_bytes, pproc.memory_full_info().uss) except psutil.Error: # Process may have already terminated or been killed. # Retain existing memory usage statistics in this case. pass # Loop until process terminates if not quiet: if is_stdout_log: sys.stdout.write(stdout_reader.read()) if is_stderr_log: sys.stdout.write(stderr_reader.read()) if timeout is not None and time.time() - cmd_start_time > timeout: self.logger.error(f'Step timed out after {timeout} seconds') proc.terminate() self._haltstep(step, index) time.sleep(0.1) # Read the remaining if not quiet: if is_stdout_log: sys.stdout.write(stdout_reader.read()) if is_stderr_log: sys.stdout.write(stderr_reader.read()) retcode = proc.returncode if retcode != 0: self.logger.warning('Command failed with code %d. See log file %s', retcode, os.path.abspath(logfile)) if not self.get('tool', tool, 'continue'): self._haltstep(step, index) ################## # 16. Capture cpu runtime and memory footprint. cpu_end = time.time() cputime = round((cpu_end - cpu_start),2) self.set('metric', step, index, 'exetime', cputime) self.set('metric', step, index, 'memory', max_mem_bytes) ################## # 17. Post process (could fail) post_error = 0 if (tool not in self.builtin) and (not self.get('option', 'skipall')) : func = self.find_function(tool, 'post_process', 'tools') if func: post_error = func(self) if post_error: self.logger.error('Post-processing check failed') if not self.get('tool', tool, 'continue'): self._haltstep(step, index) ################## # 18. Check log file (must be after post-process) if (tool not in self.builtin) and (not self.get('option', 'skipall')) : self.check_logfile(step=step, index=index, display=not quiet) ################## # 19. Hash files if self.get('option', 'hash') and (tool not in self.builtin): # hash all outputs self.hash_files('tool', tool, 'output', step, index) # hash all requirements if self.valid('tool', tool, 'require', step, index, quiet=True): for item in self.get('tool', tool, 'require', step, index): args = item.split(',') if 'file' in self.get(*args, field='type'): self.hash_files(*args) ################## # 20. Capture wall runtime and cpu cores wall_end = time.time() walltime = round((wall_end - wall_start),2) self.set('metric',step, index, 'tasktime', walltime) self.logger.info(f"Finished task in {walltime}s") ################## # 21. Make a record if tracking is enabled if self.get('option', 'track'): self._make_record(step, index, wall_start, wall_end, version, toolpath, cmdlist[1:]) ################## # 22. Save a successful manifest self.set('flowgraph', flow, step, index, 'status', TaskStatus.SUCCESS) self.set('arg', 'step', None, clobber=True) self.set('arg', 'index', None, clobber=True) self.write_manifest(os.path.join("outputs", f"{design}.pkg.json")) ################## # 23. Stop if there are errors if self.get('metric',step, index, 'errors') > 0: if not self.get('tool', tool, 'continue'): self._haltstep(step, index) ################## # 24. Clean up non-essential files if self.get('option', 'clean'): self._eda_clean(tool, step, index) ################## # 25. return to original directory os.chdir(cwd) ########################################################################### def _haltstep(self, step, index, log=True): if log: self.logger.error(f"Halting step '{step}' index '{index}' due to errors.") sys.exit(1) ########################################################################### def _eda_clean(self, tool, step, index): '''Cleans up work directory of unecessary files. Assumes our cwd is the workdir for step and index. ''' keep = ['inputs', 'outputs', 'reports', f'{step}.log', 'replay.sh'] manifest_format = self.get('tool', tool, 'format') if manifest_format: keep.append(f'sc_manifest.{manifest_format}') for suffix in self.getkeys('tool', tool, 'regex', step, index): keep.append(f'{step}.{suffix}') # Tool-specific keep files if self.valid('tool', tool, 'keep', step, index): keep.extend(self.get('tool', tool, 'keep', step, index)) for path in os.listdir(): if path in keep: continue if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) ########################################################################### def run(self): ''' Executes tasks in a flowgraph. The run function sets up tools and launches runs for every index in a step defined by a steplist. The steplist is taken from the schema steplist parameter if defined, otherwise the steplist is defined as the list of steps within the schema flowgraph dictionary. Before starting the process, tool modules are loaded and setup up for each step and index based on on the schema eda dictionary settings. Once the tools have been set up, the manifest is checked using the check_manifest() function and files in the manifest are hashed based on the 'hashmode' schema setting. Once launched, each process waits for preceding steps to complete, as defined by the flowgraph 'inputs' parameter. Once a all inputs are ready, previous steps are checked for errors before the process entered a local working directory and starts to run a tool or to execute a built in Chip function. Fatal errors within a step/index process cause all subsequent processes to exit before start, returning control to the the main program which can then exit. Examples: >>> run() Runs the execution flow defined by the flowgraph dictionary. ''' flow = self.get('option', 'flow') # Re-init logger to include run info after setting up flowgraph. self._init_logger(in_run=True) # Run steps if set, otherwise run whole graph if self.get('arg', 'step'): steplist = [self.get('arg', 'step')] elif self.get('option', 'steplist'): steplist = self.get('option', 'steplist') else: steplist = self.list_steps() if not self.get('option', 'resume'): # If no step(list) was specified, the whole flow is being run # start-to-finish. Delete the build dir to clear stale results. cur_job_dir = self._getworkdir() if os.path.isdir(cur_job_dir): shutil.rmtree(cur_job_dir) # List of indices to run per step. Precomputing this ensures we won't # have any problems if [arg, index] gets clobbered, and reduces logic # repetition. indexlist = {} for step in steplist: if self.get('arg', 'index'): indexlist[step] = [self.get('arg', 'index')] elif self.get('option', 'indexlist'): indexlist[step] = self.get("option", 'indexlist') else: indexlist[step] = self.getkeys('flowgraph', flow, step) # Reset flowgraph/records/metrics by probing build directory. We need # to set values to None for steps we may re-run so that merging # manifests from _runtask() actually updates values. should_resume = self.get("option", 'resume') for step in self.getkeys('flowgraph', flow): all_indices_failed = True for index in self.getkeys('flowgraph', flow, step): stepdir = self._getworkdir(step=step, index=index) cfg = f"{stepdir}/outputs/{self.get('design')}.pkg.json" in_steplist = step in steplist and index in indexlist[step] if not os.path.isdir(stepdir) or (in_steplist and not should_resume): # If stepdir doesn't exist, we need to re-run this task. If # we're not running with -resume, we also re-run anything # in the steplist. self.set('flowgraph', flow, step, index, 'status', None) for metric in self.getkeys('metric', 'default', 'default'): self.set('metric', step, index, metric, None) for record in self.getkeys('record', 'default', 'default'): self.set('record', step, index, record, None) elif os.path.isfile(cfg): self.set('flowgraph', flow, step, index, 'status', TaskStatus.SUCCESS) all_indices_failed = False else: self.set('flowgraph', flow, step, index, 'status', TaskStatus.ERROR) if should_resume and all_indices_failed and step in steplist: # When running with -resume, we re-run any step in steplist that # had all indices fail. for index in self.getkeys('flowgraph', flow, step): if index in indexlist[step]: self.set('flowgraph', flow, step, index, 'status', None) for metric in self.getkeys('metric', 'default', 'default'): self.set('metric', step, index, metric, None) for record in self.getkeys('record', 'default', 'default'): self.set('record', step, index, record, None) # Set env variables for envvar in self.getkeys('option', 'env'): val = self.get('option', 'env', envvar) os.environ[envvar] = val # Remote workflow: Dispatch the Chip to a remote server for processing. if self.get('option','remote'): # Load the remote storage config into the status dictionary. if self.get('option','credentials'): # Use the provided remote credentials file. cfg_file = self.get('option','credentials')[-1] cfg_dir = os.path.dirname(cfg_file) else: # Use the default config file path. cfg_dir = os.path.join(Path.home(), '.sc') cfg_file = os.path.join(cfg_dir, 'credentials') if (not os.path.isdir(cfg_dir)) or (not os.path.isfile(cfg_file)): self.logger.error('Could not find remote server configuration - please run "sc-configure" and enter your server address and credentials.') raise SiliconCompilerError('Valid remote credentials could not be found.') with open(cfg_file, 'r') as cfgf: self.status['remote_cfg'] = json.loads(cfgf.read()) if (not 'address' in self.status['remote_cfg']): self.logger.error('Improperly formatted remote server configuration - please run "sc-configure" and enter your server address and credentials.') raise SiliconCompilerError('Valid remote credentials could not be found.') # Pre-process: Run an 'import' stage locally, and upload the # in-progress build directory to the remote server. # Data is encrypted if user / key were specified. # run remote process remote_preprocess(self) # Run the job on the remote server, and wait for it to finish. remote_run(self) # Fetch results (and delete the job's data from the server). fetch_results(self) # Read back configuration from final manifest. cfg = os.path.join(self._getworkdir(),f"{self.get('design')}.pkg.json") if os.path.isfile(cfg): local_dir = self.get('option','builddir') self.read_manifest(cfg, clobber=True, clear=True) self.set('option', 'builddir', local_dir) else: # Hack to find first failed step by checking for presence of # output manifests. # TODO: fetch_results() should return info about step failures. failed_step = steplist[-1] for step in steplist[:-1]: step_has_cfg = False for index in indexlist[step]: stepdir = self._getworkdir(step=step, index=index) cfg = f"{stepdir}/outputs/{self.get('design')}.pkg.json" if os.path.isfile(cfg): step_has_cfg = True break if not step_has_cfg: failed_step = step break stepdir = self._getworkdir(step=failed_step)[:-1] raise SiliconCompilerError(f'Run() failed on step {failed_step}! ' f'See logs in {stepdir} for error details.') else: status = {} # Populate status dict with any flowgraph status values that have already # been set. for step in self.getkeys('flowgraph', flow): for index in self.getkeys('flowgraph', flow, step): stepstr = step + index task_status = self.get('flowgraph', flow, step, index, 'status') if task_status is not None: status[step + index] = task_status else: status[step + index] = TaskStatus.PENDING # Setup tools for all tasks to run. for step in steplist: for index in indexlist[step]: # Setting up tool is optional tool = self.get('flowgraph', flow, step, index, 'tool') if tool not in self.builtin: self.set('arg','step', step) self.set('arg','index', index) func = self.find_function(tool, 'setup', 'tools') if func is None: self.logger.error(f'setup() not found for tool {tool}') sys.exit(1) func(self) # Need to clear index, otherwise we will skip # setting up other indices. Clear step for good # measure. self.set('arg','step', None) self.set('arg','index', None) # Implement auto-update of jobincrement try: alljobs = os.listdir(self.get('option','builddir') + "/" + self.get('design')) if self.get('option','jobincr'): jobid = 0 for item in alljobs: m = re.match(self.get('option','jobname')+r'(\d+)', item) if m: jobid = max(jobid, int(m.group(1))) self.set('option', 'jobid', str(jobid + 1)) except: pass # Check validity of setup self.logger.info("Checking manifest before running.") if not self.get('option','skipcheck'): self.check_manifest() # Check if there were errors before proceeding with run if self.error: self.logger.error(f"Check failed. See previous errors.") raise SiliconCompilerError(f"Manifest checks failed.") # For each task to run, prepare a process and store its dependencies jobname = self.get('option','jobname') tasks_to_run = {} processes = {} for step in steplist: for index in indexlist[step]: if status[step+index] != TaskStatus.PENDING: continue inputs = [step+index for step, index in self.get('flowgraph', flow, step, index, 'input')] if (step in self.getkeys('option','jobinput') and index in self.getkeys('option','jobinput', step) and self.get('option','jobinput', step, index) != jobname): # If we specify a different job as input to this task, # we assume we are good to run it. tasks_to_run[step+index] = [] else: tasks_to_run[step+index] = inputs processes[step+index] = multiprocessing.Process(target=self._runtask, args=(step, index, status)) # We have to deinit the chip's logger before spawning the processes # since the logger object is not serializable. _runtask_safe will # reinitialize the logger in each new process, and we reinitialize # the primary chip's logger after the processes complete. self._deinit_logger() running_tasks = [] while len(tasks_to_run) > 0 or len(running_tasks) > 0: # Check for new tasks that can be launched. for task, deps in list(tasks_to_run.items()): # TODO: breakpoint logic: # if task is bkpt, then don't launch while len(running_tasks) > 0 # Clear any tasks that have finished from dependency list. for in_task in deps.copy(): if status[in_task] != TaskStatus.PENDING: deps.remove(in_task) # If there are no dependencies left, launch this task and # remove from tasks_to_run. if len(deps) == 0: processes[task].start() running_tasks.append(task) del tasks_to_run[task] # Check for situation where we have stuff left to run but don't # have any tasks running. This shouldn't happen, but we will get # stuck in an infinite loop if it does, so we want to break out # with an explicit error. if len(tasks_to_run) > 0 and len(running_tasks) == 0: raise SiliconCompilerError('Tasks left to run, but no ' 'running tasks. Steplist may be invalid.') # Check for completed tasks. # TODO: consider staying in this section of loop until a task # actually completes. for task in running_tasks.copy(): if not processes[task].is_alive(): running_tasks.remove(task) if processes[task].exitcode > 0: status[task] = TaskStatus.ERROR else: status[task] = TaskStatus.SUCCESS # TODO: exponential back-off with max? time.sleep(0.1) self._init_logger() # Make a clean exit if one of the steps failed for step in steplist: index_succeeded = False for index in indexlist[step]: stepstr = step + index if status[stepstr] != TaskStatus.ERROR: index_succeeded = True break if not index_succeeded: raise SiliconCompilerError('Run() failed, see previous errors.') # On success, write out status dict to flowgraph status'. We do this # since certain scenarios won't be caught by reading in manifests (a # failing step doesn't dump a manifest). For example, if the # steplist's final step has two indices and one fails. for step in steplist: for index in indexlist[step]: stepstr = step + index if status[stepstr] != TaskStatus.PENDING: self.set('flowgraph', flow, step, index, 'status', status[stepstr]) # Merge cfg back from last executed runsteps. # Note: any information generated in steps that do not merge into the # last step will not be picked up in this chip object. # TODO: we might as well fix this? We can add a helper function to # find all steps in the steplist that don't lead to others. laststep = steplist[-1] for index in indexlist[laststep]: lastdir = self._getworkdir(step=laststep, index=index) # This no-op listdir operation is important for ensuring we have # a consistent view of the filesystem when dealing with NFS. # Without this, this thread is often unable to find the final # manifest of runs performed on job schedulers, even if they # completed successfully. Inspired by: # https://stackoverflow.com/a/70029046. os.listdir(os.path.dirname(lastdir)) lastcfg = f"{lastdir}/outputs/{self.get('design')}.pkg.json" if status[laststep+index] == TaskStatus.SUCCESS: self._read_manifest(lastcfg, clobber=False, partial=True) else: self.set('flowgraph', flow, laststep, index, 'status', TaskStatus.ERROR) # Clear scratchpad args since these are checked on run() entry self.set('arg', 'step', None, clobber=True) self.set('arg', 'index', None, clobber=True) # Store run in history self.record_history() # Storing manifest in job root directory filepath = os.path.join(self._getworkdir(),f"{self.get('design')}.pkg.json") self.write_manifest(filepath) ########################################################################## def record_history(self): ''' Copies all non-empty parameters from current job into the history dictionary. ''' # initialize new dict jobname = self.get('option','jobname') self.cfg['history'][jobname] = {} # copy in all empty values of scope job allkeys = self.getkeys() for key in allkeys: # ignore history in case of cumulative history if key[0] != 'history': scope = self.get(*key, field='scope') if not self._keypath_empty(key) and (scope == 'job'): self._copyparam(self.cfg, self.cfg['history'][jobname], key) ########################################################################### def _copyparam(self, cfgsrc, cfgdst, keypath): ''' Copies a parameter into the manifest history dictionary. ''' # 1. decend keypath, pop each key as its used # 2. create key if missing in destination dict # 3. populate leaf cell when keypath empty if keypath: key = keypath[0] keypath.pop(0) if key not in cfgdst.keys(): cfgdst[key] = {} self._copyparam(cfgsrc[key], cfgdst[key], keypath) else: for key in cfgsrc.keys(): if key not in ('example', 'switch', 'help'): cfgdst[key] = copy.deepcopy(cfgsrc[key]) ########################################################################### def show(self, filename=None, extra_options=None): ''' Opens a graphical viewer for the filename provided. The show function opens the filename specified using a viewer tool selected based on the file suffix and the 'showtool' schema setup. The 'showtool' parameter binds tools with file suffixes, enabling the automated dynamic loading of tool setup functions from siliconcompiler.tools.<tool>/<tool>.py. Display settings and technology settings for viewing the file are read from the in-memory chip object schema settings. All temporary render and display files are saved in the <build_dir>/_show directory. The show() command can also be used to display content from an SC schema .json filename provided. In this case, the SC schema is converted to html and displayed as a 'dashboard' in the browser. Filenames with .gz and .zip extensions are automatically unpacked before being displayed. Args: filename: Name of file to display Examples: >>> show('build/oh_add/job0/export/0/outputs/oh_add.gds') Displays gds file with a viewer assigned by 'showtool' >>> show('build/oh_add/job0/export/0/outputs/oh_add.pkg.json') Displays manifest in the browser ''' if extra_options is None: extra_options = [] # Finding last layout if no argument specified if filename is None: self.logger.info('Searching build directory for layout to show.') design = self.get('design') # TODO: consider a more flexible approach here. I tried doing a # reverse search through all steps, but when verification steps are # enabled this finds a DEF passed into LVS rather than the GDS # Perhaps we could have a way for flows to register their "final" # output. laststep = 'export' lastindex = '0' lastdir = self._getworkdir(step=laststep, index=lastindex) gds_file= f"{lastdir}/outputs/{design}.gds" def_file = f"{lastdir}/outputs/{design}.def" if os.path.isfile(gds_file): filename = gds_file elif os.path.isfile(def_file): filename = def_file if filename is None: self.logger.error('Unable to automatically find layout in build directory.') self.logger.error('Try passing in a full path to show() instead.') return 1 self.logger.info('Showing file %s', filename) # Parsing filepath filepath = os.path.abspath(filename) basename = os.path.basename(filepath) localfile = basename.replace(".gz","") filetype = os.path.splitext(localfile)[1].lower().replace(".","") #Check that file exists if not os.path.isfile(filepath): self.logger.error(f"Invalid filepath {filepath}.") return 1 # Opening file from temp directory cwd = os.getcwd() showdir = self.get('option','builddir') + "/_show" os.makedirs(showdir, exist_ok=True) os.chdir(showdir) # Uncompress file if necessary if os.path.splitext(filepath)[1].lower() == ".gz": with gzip.open(filepath, 'rb') as f_in: with open(localfile, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) else: shutil.copy(filepath, localfile) #Figure out which tool to use for opening data if filetype in self.getkeys('option','showtool'): # Using env variable and manifest to pass arguments os.environ['SC_FILENAME'] = localfile # Setting up tool tool = self.get('option','showtool', filetype) step = 'show'+filetype index = "0" self.set('arg', 'step', step) self.set('arg', 'index', index) setup_tool = self.find_function(tool, 'setup', 'tools') setup_tool(self, mode='show') self.write_manifest("sc_manifest.tcl", abspath=True) self.write_manifest("sc_manifest.json", abspath=True) self.set('arg', 'step', None) self.set('arg', 'index', None) exe = self._getexe(tool) if shutil.which(exe) is None: self.logger.error(f'Executable {exe} not found.') success = False else: # Running command cmdlist = self._makecmd(tool, step, index, extra_options=extra_options) proc = subprocess.run(cmdlist) success = proc.returncode == 0 else: self.logger.error(f"Filetype '{filetype}' not set up in 'showtool' parameter.") success = False # Returning to original directory os.chdir(cwd) return success def read_lef(self, path, pdkname, stackup): '''Reads tech LEF and imports data into schema. This function reads layer information from a provided tech LEF and uses it to fill out the 'pdk', <pdkname>, 'grid' keypaths of the current chip object. Args: path (str): Path to LEF file. pdkname (str): Name of PDK associated with LEF file. stackup (str): Stackup associated with LEF file. ''' data = leflib.parse(path) layer_index = 1 for name, layer in data['layers'].items(): if layer['type'] != 'ROUTING': # Skip non-routing layers continue sc_name = f'm{layer_index}' layer_index += 1 self.set('pdk', pdkname, 'grid', stackup, name, 'name', sc_name) direction = None if 'direction' in layer: direction = layer['direction'].lower() self.set('pdk', pdkname, 'grid', stackup, name, 'dir', direction) if 'offset' in layer: offset = layer['offset'] if isinstance(offset, float): # Per LEF spec, a single offset value applies to the # preferred routing direction. If one doesn't exist, we'll # just ignore. if direction == 'vertical': self.set('pdk', pdkname, 'grid', stackup, name, 'xoffset', offset) elif direction == 'horizontal': self.set('pdk', pdkname, 'grid', stackup, name, 'yoffset', offset) else: xoffset, yoffset = offset self.set('pdk', pdkname, 'grid', stackup, name, 'xoffset', xoffset) self.set('pdk', pdkname, 'grid', stackup, name, 'yoffset', yoffset) if 'pitch' in layer: pitch = layer['pitch'] if isinstance(pitch, float): # Per LEF spec, a single pitch value applies to both # directions. self.set('pdk', pdkname, 'grid', stackup, name, 'xpitch', pitch) self.set('pdk', pdkname, 'grid', stackup, name, 'ypitch', pitch) else: xpitch, ypitch = pitch self.set('pdk', pdkname, 'grid', stackup, name, 'xpitch', xpitch) self.set('pdk', pdkname, 'grid', stackup, name, 'ypitch', ypitch) ############################################################################ # Chip helper Functions ############################################################################ def _typecheck(self, cfg, leafkey, value): ''' Schema type checking ''' ok = True valuetype = type(value) errormsg = "" if (not re.match(r'\[',cfg['type'])) & (valuetype==list): errormsg = "Value must be scalar." ok = False # Iterate over list else: # Create list for iteration if valuetype == list: valuelist = value else: valuelist = [value] # Make type python compatible cfgtype = re.sub(r'[\[\]]', '', cfg['type']) for item in valuelist: valuetype = type(item) if ((cfgtype != valuetype.__name__) and (item is not None)): tupletype = re.match(r'\([\w\,]+\)',cfgtype) #TODO: check tuples! if tupletype: pass elif cfgtype == 'bool': if not item in ['true', 'false']: errormsg = "Valid boolean values are True/False/'true'/'false'" ok = False elif cfgtype == 'file': pass elif cfgtype == 'dir': pass elif (cfgtype == 'float'): try: float(item) except: errormsg = "Type mismatch. Cannot cast item to float." ok = False elif (cfgtype == 'int'): try: int(item) except: errormsg = "Type mismatch. Cannot cast item to int." ok = False elif item is not None: errormsg = "Type mismach." ok = False # Logger message if type(value) == list: printvalue = ','.join(map(str, value)) else: printvalue = str(value) errormsg = (errormsg + " Key=" + str(leafkey) + ", Expected Type=" + cfg['type'] + ", Entered Type=" + valuetype.__name__ + ", Value=" + printvalue) return (ok, errormsg) ####################################### def _getexe(self, tool): path = self.get('tool', tool, 'path') exe = self.get('tool', tool, 'exe') if exe is None: return None syspath = os.getenv('PATH', os.defpath) if path: # Prepend 'path' schema var to system path syspath = self._resolve_env_vars(path) + os.pathsep + syspath fullexe = shutil.which(exe, path=syspath) return fullexe ####################################### def _makecmd(self, tool, step, index, extra_options=None): ''' Constructs a subprocess run command based on eda tool setup. Creates a replay script in current directory. ''' fullexe = self._getexe(tool) options = [] is_posix = (sys.platform != 'win32') for option in self.get('tool', tool, 'option', step, index): options.extend(shlex.split(option, posix=is_posix)) # Add scripts files if self.valid('tool', tool, 'script', step, index): scripts = self.find_files('tool', tool, 'script', step, index) else: scripts = [] cmdlist = [fullexe] if extra_options: cmdlist.extend(extra_options) cmdlist.extend(options) cmdlist.extend(scripts) runtime_options = self.find_function(tool, 'runtime_options', 'tools') if runtime_options: for option in runtime_options(self): cmdlist.extend(shlex.split(option, posix=is_posix)) envvars = {} for key in self.getkeys('option','env'): envvars[key] = self.get('option','env', key) for item in self.getkeys('tool', tool, 'licenseserver'): license_file = self.get('tool', tool, 'licenseserver', item) if license_file: envvars[item] = ':'.join(license_file) if self.get('tool', tool, 'path'): envvars['PATH'] = self.get('tool', tool, 'path') + os.pathsep + '$PATH' if (step in self.getkeys('tool', tool, 'env') and index in self.getkeys('tool', tool, 'env', step)): for key in self.getkeys('tool', tool, 'env', step, index): envvars[key] = self.get('tool', tool, 'env', step, index, key) #create replay file script_name = 'replay.sh' with open(script_name, 'w') as f: print('#!/bin/bash', file=f) envvar_cmd = 'export' for key, val in envvars.items(): print(f'{envvar_cmd} {key}={val}', file=f) replay_cmdlist = [os.path.basename(cmdlist[0])] + cmdlist[1:] print(' '.join(f'"{arg}"' if ' ' in arg else arg for arg in replay_cmdlist), file=f) os.chmod(script_name, 0o755) return cmdlist ####################################### def _get_cloud_region(self): # TODO: add logic to figure out if we're running on a remote cluster and # extract the region in a provider-specific way. return 'local' ####################################### def _make_record(self, step, index, start, end, toolversion, toolpath, cli_args): ''' Records provenance details for a runstep. ''' self.set('record', step, index, 'scversion', _metadata.version) start_date = datetime.datetime.fromtimestamp(start).strftime('%Y-%m-%d %H:%M:%S') end_date = datetime.datetime.fromtimestamp(end).strftime('%Y-%m-%d %H:%M:%S') userid = getpass.getuser() self.set('record', step, index, 'userid', userid) if toolversion: self.set('record', step, index, 'toolversion', toolversion) self.set('record', step, index, 'starttime', start_date) self.set('record', step, index, 'endtime', end_date) machine = platform.node() self.set('record', step, index, 'machine', machine) self.set('record', step, index, 'region', self._get_cloud_region()) try: gateways = netifaces.gateways() ipaddr, interface = gateways['default'][netifaces.AF_INET] macaddr = netifaces.ifaddresses(interface)[netifaces.AF_LINK][0]['addr'] self.set('record', step, index, 'ipaddr', ipaddr) self.set('record', step, index, 'macaddr', macaddr) except KeyError: self.logger.warning('Could not find default network interface info') system = platform.system() if system == 'Darwin': lower_sys_name = 'macos' else: lower_sys_name = system.lower() self.set('record', step, index, 'platform', lower_sys_name) if system == 'Linux': distro_name = distro.id() self.set('record', step, index, 'distro', distro_name) if system == 'Darwin': osversion, _, _ = platform.mac_ver() elif system == 'Linux': osversion = distro.version() else: osversion = platform.release() self.set('record', step, index, 'osversion', osversion) if system == 'Linux': kernelversion = platform.release() elif system == 'Windows': kernelversion = platform.version() elif system == 'Darwin': kernelversion = platform.release() else: kernelversion = None if kernelversion: self.set('record', step, index, 'kernelversion', kernelversion) arch = platform.machine() self.set('record', step, index, 'arch', arch) self.set('record', step, index, 'toolpath', toolpath) toolargs = ' '.join(f'"{arg}"' if ' ' in arg else arg for arg in cli_args) self.set('record', step, index, 'toolargs', toolargs) ####################################### def _safecompare(self, value, op, goal): # supported relational oprations # >, >=, <=, <. ==, != if op == ">": return(bool(value>goal)) elif op == ">=": return(bool(value>=goal)) elif op == "<": return(bool(value<goal)) elif op == "<=": return(bool(value<=goal)) elif op == "==": return(bool(value==goal)) elif op == "!=": return(bool(value!=goal)) else: self.error = 1 self.logger.error(f"Illegal comparison operation {op}") ####################################### def _getworkdir(self, jobname=None, step=None, index='0'): '''Create a step directory with absolute path ''' if jobname is None: jobname = self.get('option','jobname') dirlist =[self.cwd, self.get('option','builddir'), self.get('design'), jobname] # Return jobdirectory if no step defined # Return index 0 by default if step is not None: dirlist.append(step) dirlist.append(index) return os.path.join(*dirlist) ####################################### def _resolve_env_vars(self, filepath): resolved_path = os.path.expandvars(filepath) # variables that don't exist in environment get ignored by `expandvars`, # but we can do our own error checking to ensure this doesn't result in # silent bugs envvars = re.findall(r'\$(\w+)', resolved_path) for var in envvars: self.logger.warning(f'Variable {var} in {filepath} not defined in environment') return resolved_path ####################################### def _get_imported_filename(self, pathstr): ''' Utility to map collected file to an unambigious name based on its path. The mapping looks like: path/to/file.ext => file_<md5('path/to/file.ext')>.ext ''' path = pathlib.Path(pathstr) ext = ''.join(path.suffixes) # strip off all file suffixes to get just the bare name while path.suffix: path = pathlib.Path(path.stem) filename = str(path) pathhash = hashlib.sha1(pathstr.encode('utf-8')).hexdigest() return f'{filename}_{pathhash}{ext}' def _check_version(self, reported_version, tool): # Based on regex for deprecated "legacy specifier" from PyPA packaging # library. Use this to parse PEP-440ish specifiers with arbitrary # versions. _regex_str = r""" (?P<operator>(==|!=|<=|>=|<|>|~=)) \s* (?P<version> [^,;\s)]* # Since this is a "legacy" specifier, and the version # string can be just about anything, we match everything # except for whitespace, a semi-colon for marker support, # a closing paren since versions can be enclosed in # them, and a comma since it's a version separator. ) """ _regex = re.compile(r"^\s*" + _regex_str + r"\s*$", re.VERBOSE | re.IGNORECASE) normalize_version = self.find_function(tool, 'normalize_version', 'tools') # Version is good if it matches any of the specifier sets in this list. spec_sets = self.get('tool', tool, 'version') for spec_set in spec_sets: split_specs = [s.strip() for s in spec_set.split(",") if s.strip()] specs_list = [] for spec in split_specs: match = re.match(_regex, spec) if match is None: self.logger.warning(f'Invalid version specifier {spec}. Defaulting to =={spec}.') operator = '==' spec_version = spec else: operator = match.group('operator') spec_version = match.group('version') specs_list.append((operator, spec_version)) if normalize_version is None: normalized_version = reported_version normalized_specs = ','.join([f'{op}{ver}' for op, ver in specs_list]) else: normalized_version = normalize_version(reported_version) normalized_specs = ','.join([f'{op}{normalize_version(ver)}' for op, ver in specs_list]) try: version = packaging.version.Version(normalized_version) except packaging.version.InvalidVersion: self.logger.error(f'Version {reported_version} reported by {tool} does not match standard.') if normalize_version is None: self.logger.error('Tool driver should implement normalize_version().') else: self.logger.error(f'normalize_version() returned invalid version {normalized_version}') return False try: spec_set = packaging.specifiers.SpecifierSet(normalized_specs) except packaging.specifiers.InvalidSpecifier: self.logger.error(f'Version specifier set {normalized_specs} does not match standard.') return False if version in spec_set: return True allowedstr = '; '.join(spec_sets) self.logger.error(f"Version check failed for {tool}. Check installation.") self.logger.error(f"Found version {reported_version}, did not satisfy any version specifier set {allowedstr}.") return False ############################################################################### # Package Customization classes ############################################################################### class YamlIndentDumper(yaml.Dumper): def increase_indent(self, flow=False, indentless=False): return super(YamlIndentDumper, self).increase_indent(flow, False) class SiliconCompilerError(Exception): ''' Minimal Exception wrapper used to raise sc runtime errors. ''' def __init__(self, message): super(Exception, self).__init__(message)
uchan/lib/utils.py
alanbato/tchan
120
11121407
<filename>uchan/lib/utils.py import time from werkzeug.exceptions import abort def now(): return int(time.time() * 1000) def ip4_to_str(ip4): outputs = [] for i in range(4): n = (ip4 >> (3 - i) * 8) & 255 outputs.append(str(n)) return '.'.join(outputs) def valid_id_range(id): if type(id) != int or id <= 0 or id > 2 ** 32: abort(400) def get_cookie_domain(app): """Helpful helper method that returns the cookie domain that should be used for the session cookie if session cookies are used. """ if app.config['SESSION_COOKIE_DOMAIN'] is not None: return app.config['SESSION_COOKIE_DOMAIN'] if app.config['SERVER_NAME'] is not None: # chop of the port which is usually not supported by browsers rv = '.' + app.config['SERVER_NAME'].rsplit(':', 1)[0] # Google chrome does not like cookies set to .localhost, so # we just go with no domain then. Flask documents anyways that # cross domain cookies need a fully qualified domain name if rv == '.localhost': rv = None # If we infer the cookie domain from the server name we need # to check if we are in a subpath. In that case we can't # set a cross domain cookie. if rv is not None: # Returns the path for which the cookie should be valid. The # default implementation uses the value from the SESSION_COOKIE_PATH`` # config var if it's set, and falls back to ``APPLICATION_ROOT`` or # uses ``/`` if it's `None`. path = app.config['SESSION_COOKIE_PATH'] or app.config['APPLICATION_ROOT'] or '/' if path != '/': rv = rv.lstrip('.') return rv
paddlespeech/t2s/modules/residual_block.py
jerryuhoo/PaddleSpeech
1,379
11121421
<reponame>jerryuhoo/PaddleSpeech # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any from typing import Dict from typing import List import paddle from paddle import nn from paddle.nn import functional as F from paddlespeech.t2s.modules.activation import get_activation class WaveNetResidualBlock(nn.Layer): """A gated activation unit composed of an 1D convolution, a gated tanh unit and parametric redidual and skip connections. For more details, refer to `WaveNet: A Generative Model for Raw Audio <https://arxiv.org/abs/1609.03499>`_. Args: kernel_size (int, optional): Kernel size of the 1D convolution, by default 3 residual_channels (int, optional): Feature size of the residual output(and also the input), by default 64 gate_channels (int, optional): Output feature size of the 1D convolution, by default 128 skip_channels (int, optional): Feature size of the skip output, by default 64 aux_channels (int, optional): Feature size of the auxiliary input (e.g. spectrogram), by default 80 dropout (float, optional): Probability of the dropout before the 1D convolution, by default 0. dilation (int, optional): Dilation of the 1D convolution, by default 1 bias (bool, optional): Whether to use bias in the 1D convolution, by default True use_causal_conv (bool, optional): Whether to use causal padding for the 1D convolution, by default False """ def __init__(self, kernel_size: int=3, residual_channels: int=64, gate_channels: int=128, skip_channels: int=64, aux_channels: int=80, dropout: float=0., dilation: int=1, bias: bool=True, use_causal_conv: bool=False): super().__init__() self.dropout = dropout if use_causal_conv: padding = (kernel_size - 1) * dilation else: assert kernel_size % 2 == 1 padding = (kernel_size - 1) // 2 * dilation self.use_causal_conv = use_causal_conv self.conv = nn.Conv1D( residual_channels, gate_channels, kernel_size, padding=padding, dilation=dilation, bias_attr=bias) if aux_channels is not None: self.conv1x1_aux = nn.Conv1D( aux_channels, gate_channels, kernel_size=1, bias_attr=False) else: self.conv1x1_aux = None gate_out_channels = gate_channels // 2 self.conv1x1_out = nn.Conv1D( gate_out_channels, residual_channels, kernel_size=1, bias_attr=bias) self.conv1x1_skip = nn.Conv1D( gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias) def forward(self, x, c): """ Args: x (Tensor): the input features. Shape (N, C_res, T) c (Tensor): the auxiliary input. Shape (N, C_aux, T) Returns: res (Tensor): Shape (N, C_res, T), the residual output, which is used as the input of the next ResidualBlock in a stack of ResidualBlocks. skip (Tensor): Shape (N, C_skip, T), the skip output, which is collected among each layer in a stack of ResidualBlocks. """ x_input = x x = F.dropout(x, self.dropout, training=self.training) x = self.conv(x) x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x if c is not None: c = self.conv1x1_aux(c) x += c a, b = paddle.chunk(x, 2, axis=1) x = paddle.tanh(a) * F.sigmoid(b) skip = self.conv1x1_skip(x) res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5) return res, skip class HiFiGANResidualBlock(nn.Layer): """Residual block module in HiFiGAN.""" def __init__( self, kernel_size: int=3, channels: int=512, dilations: List[int]=(1, 3, 5), bias: bool=True, use_additional_convs: bool=True, nonlinear_activation: str="leakyrelu", nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.1}, ): """Initialize HiFiGANResidualBlock module. Args: kernel_size (int): Kernel size of dilation convolution layer. channels (int): Number of channels for convolution layer. dilations (List[int]): List of dilation factors. use_additional_convs (bool): Whether to use additional convolution layers. bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. """ super().__init__() self.use_additional_convs = use_additional_convs self.convs1 = nn.LayerList() if use_additional_convs: self.convs2 = nn.LayerList() assert kernel_size % 2 == 1, "Kernel size must be odd number." for dilation in dilations: self.convs1.append( nn.Sequential( get_activation(nonlinear_activation, ** nonlinear_activation_params), nn.Conv1D( channels, channels, kernel_size, 1, dilation=dilation, bias_attr=bias, padding=(kernel_size - 1) // 2 * dilation, ), )) if use_additional_convs: self.convs2.append( nn.Sequential( get_activation(nonlinear_activation, ** nonlinear_activation_params), nn.Conv1D( channels, channels, kernel_size, 1, dilation=1, bias_attr=bias, padding=(kernel_size - 1) // 2, ), )) def forward(self, x): """Calculate forward propagation. Args: x (Tensor): Input tensor (B, channels, T). Returns: Tensor: Output tensor (B, channels, T). """ for idx in range(len(self.convs1)): xt = self.convs1[idx](x) if self.use_additional_convs: xt = self.convs2[idx](xt) x = xt + x return x
cluster/example.py
SunGuo/500lines
134
11121436
<filename>cluster/example.py import sys import logging from fleet import Ship def key_value_state_machine(state, input_value): print input_value, state if input_value[0] == 'get': return state, state.get(input_value[1], None) elif input_value[0] == 'set': state[input_value[1]] = input_value[2] return state, input_value[2] def main(): logging.basicConfig(format="%(asctime)s - %(name)s - %(message)s", level=logging.WARNING) if sys.argv[1] == '--seed': sys.argv.pop(1) seed = {} else: seed = None ship = Ship(state_machine=key_value_state_machine, port=int(sys.argv[1]), peers=['127.0.0.1-%s' % p for p in sys.argv[2:]], seed=seed) ship.start() for event in ship.events(): print event old = ship.invoke(('get', sys.argv[1])) or 0 print "got", old ship.invoke(('set', sys.argv[1], old + 1)) if __name__ == "__main__": main()
bibliopixel/util/platform.py
rec/leds
253
11121437
import platform, subprocess MAC = 'Darwin' WINDOWS = 'Windows' CPUINFO_FILE = '/proc/cpuinfo' class Platform: def __init__(self): self.platform = platform.system() self.version = platform.version() self.release = platform.release() self.python_version = platform.python_version() try: self.cpuinfo = [i.strip() for i in open(CPUINFO_FILE)] except: self.cpuinfo = [] def is_rpi_line(i): return i.startswith('Hardware') and i.endswith('BCM2708') self.is_raspberry_pi = any(is_rpi_line(i) for i in self.cpuinfo) self.is_linux = (self.platform == 'linux') platform_version = () if self.is_linux: # Use the linux distribution as the name self.platform = platform.linux_distribution()[0].lower() elif self.platform == WINDOWS: platform_version = platform.win32_ver() elif self.platform == MAC: release, versioninfo, machine = platform.mac_ver() platform_version = release, machine # https://boklee.blogspot.com/2012/05/how-to-retrieve-cpuinfo-on-os-x.html for i in 'features', 'brand_string': s = subprocess.check_output(('sysctl', 'machdep.cpu.' + i)) self.cpuinfo.append(s.decode().strip()) self.platform_version = ':'.join(platform_version)
custom_components/trakt/const.py
ProConvenience1/sensor.trakt
288
11121442
<gh_stars>100-1000 """Constants used in the Trakt integration.""" DOMAIN = "trakt" OAUTH2_AUTHORIZE = "https://api-v2launch.trakt.tv/oauth/authorize" OAUTH2_TOKEN = "https://api-v2launch.trakt.tv/oauth/token" ATTRIBUTION = "Data provided by trakt.tv" CONF_DAYS = "days" CONF_EXCLUDE = "exclude" DATA_UPDATED = "trakt_data_updated" DEFAULT_DAYS = 30 DEFAULT_SCAN_INTERVAL = 60 DEFAULT_NAME = "Trakt Upcoming Calendar" CARD_DEFAULT = { "title_default": "$title", "line1_default": "$episode", "line2_default": "$release", "line3_default": "$rating - $runtime", "line4_default": "$number - $studio", "icon": "mdi:arrow-down-bold", }
recipes/Python/577485_Self_Extracting_Archiver/recipe-577485.py
tdiprima/code
2,023
11121451
"""Command-line tool for making self-extracting Python file. Call this program from your command line with one argument: (1) the file that you want to pack and compress (2) the output will be a file with a pyw ending The output can run on Windows where Python is installed.""" ################################################################################ import sys import os.path import bz2 import zlib import base64 ################################################################################ def main(): "Extract the command-line arguments and run the packer." try: pack(sys.argv[1]) except (IndexError, AssertionError): print('Usage: {} <filename>'.format(os.path.basename(sys.argv[0]))) def pack(path): "Get the source, compress it, and create a packed file." data = read_file(path) builder, data = optimize(data) with open(os.path.splitext(path)[0] + '.pyw', 'w') as file: builder(os.path.basename(path), base64.b64encode(data), file) def read_file(path): "Read the entire file content from path in binary mode." assert os.path.isfile(path) with open(path, 'rb') as file: return file.read() def optimize(data): "Compress the data and select the best method to write." bz2_data = bz2.compress(data, 9) zlib_data = zlib.compress(data, 9) sizes = tuple(map(len, (data, bz2_data, zlib_data))) smallest = sizes.index(min(sizes)) if smallest == 1: return build_bz2_extractor, bz2_data if smallest == 2: return build_zlib_extractor, zlib_data return build_b64_extractor, data ################################################################################ def build_bz2_extractor(filename, data, file): "Write a Python program that uses bz2 data compression." print("import base64, bz2, os", file=file) print("data =", data, file=file) print("with open({!r}, 'wb') as file:".format(filename), file=file) print(" file.write(bz2.decompress(base64.b64decode(data)))", file=file) print("os.startfile({!r})".format(filename), file=file) def build_zlib_extractor(filename, data, file): "Pack data into a self-extractor with zlib compression." print("import base64, zlib, os", file=file) print("data =", data, file=file) print("with open({!r}, 'wb') as file:".format(filename), file=file) print(" file.write(zlib.decompress(base64.b64decode(data)))", file=file) print("os.startfile({!r})".format(filename), file=file) def build_b64_extractor(filename, data, file): "Create a Python file that may not utilize compression." print("import base64, os", file=file) print("data =", data, file=file) print("with open({!r}, 'wb') as file:".format(filename), file=file) print(" file.write(base64.b64decode(data))", file=file) print("os.startfile({!r})".format(filename), file=file) ################################################################################ if __name__ == '__main__': main() # Small Program Version # import bz2,base64 as a,os.path as b,sys,zlib;c=sys.argv[1] # with open(c,'rb') as d:d=d.read();e,f=bz2.compress(d),zlib.compress(d,9);g=list(map(len,(d,e,f)));g,h,i,j,k,l=g.index(min(g)),'import base64 as a,os','\nwith open({0!r},"wb") as b:b.write(','.decompress(','a.b64decode({1}))',';os.startfile({0!r})' # if g==1:d,e=e,h+',bz2'+i+'bz2'+j+k+')'+l # elif g==2:d,e=f,h+',zlib'+i+'zlib'+j+k+')'+l # else:e=h+i+k+l # with open(b.splitext(c)[0]+'.pyw','w') as f:f.write(e.format(b.basename(c),a.b64encode(d)))
question/migrations/0002_down_vote_total_view.py
yazdanv/backend
232
11121473
# Generated by Django 2.1.5 on 2019-07-31 19:44 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('question', '0001_initial'), ] operations = [ migrations.AddField( model_name='answer', name='down_vote', field=models.ManyToManyField(related_name='answer_down_votes', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='question', name='down_vote', field=models.ManyToManyField(related_name='question_down_votes', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='question', name='total_view', field=models.IntegerField(default=0), ), ]
mmhuman3d/data/data_converters/mpii.py
ykk648/mmhuman3d
472
11121502
<filename>mmhuman3d/data/data_converters/mpii.py import os from typing import List import h5py import numpy as np from tqdm import tqdm from mmhuman3d.core.conventions.keypoints_mapping import convert_kps from mmhuman3d.data.data_structures.human_data import HumanData from .base_converter import BaseConverter from .builder import DATA_CONVERTERS @DATA_CONVERTERS.register_module() class MpiiConverter(BaseConverter): """MPII Dataset `2D Human Pose Estimation: New Benchmark and State of the Art Analysis' CVPR'2014. More details can be found in the `paper. <http://human-pose.mpi-inf.mpg.de/contents/andriluka14cvpr.pdf>`__ . """ @staticmethod def center_scale_to_bbox(center: float, scale: float) -> List[float]: """Obtain bbox given center and scale.""" w, h = scale * 200, scale * 200 x, y = center[0] - w / 2, center[1] - h / 2 return [x, y, w, h] def convert(self, dataset_path: str, out_path: str) -> dict: """ Args: dataset_path (str): Path to directory where raw images and annotations are stored. out_path (str): Path to directory to save preprocessed npz file Returns: dict: A dict containing keys image_path, bbox_xywh, keypoints2d, keypoints2d_mask stored in HumanData() format """ # use HumanData to store all data human_data = HumanData() # structs we use image_path_, bbox_xywh_, keypoints2d_ = [], [], [] # annotation files annot_file = os.path.join(dataset_path, 'train.h5') # read annotations f = h5py.File(annot_file, 'r') centers, image_path, keypoints2d, scales = \ f['center'], f['imgname'], f['part'], f['scale'] # go over all annotated examples for center, imgname, keypoints2d16, scale in tqdm( zip(centers, image_path, keypoints2d, scales)): imgname = imgname.decode('utf-8') # check if all major body joints are annotated if (keypoints2d16 > 0).sum() < 2 * 16: continue # keypoints keypoints2d16 = np.hstack([keypoints2d16, np.ones([16, 1])]) # bbox bbox_xywh = self.center_scale_to_bbox(center, scale) # store data image_path_.append(os.path.join('images', imgname)) bbox_xywh_.append(bbox_xywh) keypoints2d_.append(keypoints2d16) bbox_xywh_ = np.array(bbox_xywh_).reshape((-1, 4)) bbox_xywh_ = np.hstack([bbox_xywh_, np.ones([bbox_xywh_.shape[0], 1])]) keypoints2d_ = np.array(keypoints2d_).reshape((-1, 16, 3)) keypoints2d_, mask = convert_kps(keypoints2d_, 'mpii', 'human_data') human_data['image_path'] = image_path_ human_data['bbox_xywh'] = bbox_xywh_ human_data['keypoints2d_mask'] = mask human_data['keypoints2d'] = keypoints2d_ human_data['config'] = 'mpii' human_data.compress_keypoints_by_mask() # store the data struct if not os.path.isdir(out_path): os.makedirs(out_path) out_file = os.path.join(out_path, 'mpii_train.npz') human_data.dump(out_file)
algorithm/backtracking_examples.py
ganeshskudva/Algorithm_Templates
190
11121506
<gh_stars>100-1000 from collections import Counter import re # [46] https://leetcode.com/problems/permutations/ # Given a collection of distinct integers, return all possible permutations. def permute(nums): def backtrack(first=0): # if all integers are used up if first == n: output.append(nums[:]) for i in range(first, n): # place i-th integer first # in the current permutation nums[first], nums[i] = nums[i], nums[first] # use next integers to complete the permutations backtrack(first + 1) # backtrack nums[first], nums[i] = nums[i], nums[first] n = len(nums) output = [] backtrack() return output # [51] https://leetcode.com/problems/n-queens/ # Given an integer n, return all distinct solutions to the n-queens puzzle. def solveNQueens(n): result = [] def backtracking(queens, xy_diff, xy_sums): p = len(queens) if p == n: result.append(queens) return for q in range(n): if q not in queens and p - q not in xy_diff and p + q not in xy_sums: backtracking(queens + [q], xy_diff | {p - q}, xy_sums | {p + q}) backtracking([], set(), set()) return [['.' * i + 'Q' + '.' * (n - i - 1) for i in queen] for queen in result] # [37] https://leetcode.com/problems/sudoku-solver/ # Write a program to solve a Sudoku puzzle by filling the empty cells. # # easy-understanding version, not a efficient solution # optimize: use priority queue and bit-manipulation def solveSudoku(board): stack = [(i, j) for i in range(9) for j in range(9) if board[i][j] == "."] def dfs(): if not stack: return x, y = stack.pop() box = [board[x // 3 * 3 + i][y // 3 * 3 + j] for i in range(3) for j in range(3)] row = [board[x][j] for j in range(9)] col = [board[i][y] for i in range(9)] for i in "123456789": if not any([i in box, i in col, i in row]): board[x][y] = i dfs() if not stack: return board[x][y] = "." stack.append((x, y)) dfs() # [79] https://leetcode.com/problems/word-search/ # Given a 2D board and a word, find if the word exists in the grid. def exist(board: 'List[List[str]]', word: str) -> bool: m, n = len(board), len(board[0]) bcnts = Counter(c for r in board for c in r) for w, w_cnt in Counter(word).items(): if w not in bcnts or w_cnt > bcnts[w]: return False def backtrack(i, j, index): if index == len(word) - 1: return True # mark it as visited board[i][j] = '*' for dx, dy in (0, 1), (1, 0), (0, -1), (-1, 0): next_i, next_j = i + dx, j + dy # check before dfs if 0 <= next_i < m and 0 <= next_j < n and word[index + 1] == board[next_i][next_j] and backtrack( next_i, next_j, index + 1): return True # revert the state board[i][j] = word[index] return False for i in range(m): for j in range(n): if board[i][j] == word[0] and backtrack(i, j, 0): return True return False # [351] https://leetcode.com/problems/android-unlock-patterns/ # Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of # unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys. def numberOfPatterns(m: int, n: int) -> int: through_dict = {(1, 3): 2, (4, 6): 5, (7, 9): 8, (1, 7): 4, (2, 8): 5, (3, 9): 6, (1, 9): 5, (3, 7): 5} res = 0 def backtracking(last, used: set, left: set): nonlocal res if len(used) > n: return if m <= len(used) <= n: res += 1 for num in left: if last: key = (last, num) if last < num else (num, last) if key in through_dict: if through_dict[key] in left: continue used.add(num) left.remove(num) backtracking(num, used, left) left.add(num) used.remove(num) backtracking(None, set(), {i for i in range(1, 10)}) return res # [90] https://leetcode.com/problems/subsets-ii/ # Given a collection of integers that might contain duplicates, nums, return all possible subsets (the power set). def subsetsWithDup(nums: 'List[int]') -> 'List[List[int]]': res = [] nums.sort() def backtracking(start, path): # abandon rest numbers res.append(path) for i in range(start, len(nums)): # duplicate element will only add the first one, and skip all nums after it. # equivalent to internal serial number for same element if i > start and nums[i] == nums[i - 1]: continue backtracking(i + 1, path + [nums[i]]) backtracking(0, []) return res # [10] https://leetcode.com/problems/regular-expression-matching/ # Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'. # # The key point to enhance performance is pre-processing pattern # specific optimization, not very scalable, but efficient for this solution. def isMatch(s, p): pattern = re.compile(r'[a-z.]\*?') patterns = re.findall(pattern, p) # specific optimization, not scalable, but efficient for this solution # pre-process patterns, merge same or including patterns def preProcess(patterns): # .* merge all adjacent x* pattern p_count, p_index = 0, -1 # count every time after update patterns while p_count < patterns.count('.*'): index = patterns.index('.*', p_index + 1) index_l, index_r = index - 1, index + 1 while index_l >= 0 and len(patterns[index_l]) == 2: index_l -= 1 while index_r < len(patterns) and len(patterns[index_r]) == 2: index_r += 1 patterns = patterns[0:index_l + 1] + patterns[index:index + 1] + patterns[index_r:] # update p_index after merge p_index = patterns.index('.*', p_index + 1) p_count += 1 # merge a-z* merge all adjacent corresponding a-z and a-z* start_index, i, flag, pattern_ch, new_patterns = 0, 0, False, '', [] for i, pat in enumerate(patterns): if pattern_ch != pat or pattern_ch[0] == '.': if flag: new_patterns.append(pattern_ch) else: new_patterns.extend(patterns[start_index:i]) flag = len(pat) == 2 start_index = i pattern_ch = pat elif not flag and len(pat) == 2: flag = True if flag: new_patterns.append(pattern_ch) else: new_patterns.extend(patterns[start_index:i + 1]) return new_patterns # match pattern by backtracking def isMatchPatterns(s, patterns, index): # if patterns has been matched out, check whether reach the end of s if len(patterns) == 0: return index >= len(s) # if there are remain patterns, if all the remains like x*, match success, otherwise failed. if index >= len(s): return all(len(p) > 1 for p in patterns) p = patterns[0] if len(p) == 1: # when single pattern, if encounter same char or '.', match success, otherwise failed if p[0] == s[index] or p[0] == '.': return isMatchPatterns(s, patterns[1:], index + 1) else: return False elif len(p) == 2: # when pattern with *, if encounter same char or '.', match success, otherwise failed if p[0] == s[index] or p[0] == '.': # when match success, you can continue to use this pattern, or abandon this and match next pattern. return isMatchPatterns(s, patterns, index + 1) or isMatchPatterns(s, patterns[1:], index) # when it failed, match next pattern, not return false, because * can match zero char. else: return isMatchPatterns(s, patterns[1:], index) return isMatchPatterns(s, preProcess(patterns), 0)
dump_match/dataset.py
hoverinc/OANet
209
11121512
<gh_stars>100-1000 import h5py import os import pickle import numpy as np from sequence import Sequence class Dataset(object): def __init__(self, dataset_path, dump_dir, dump_file, seqs, mode, desc_name, vis_th, pair_num, pair_path=None): self.dataset_path = dataset_path self.dump_dir = dump_dir self.dump_file = os.path.join(dump_dir, dump_file) self.seqs = seqs self.mode = mode self.desc_name = desc_name self.vis_th = vis_th self.pair_num = pair_num self.pair_path = pair_path self.dump_data() def collect(self): data_type = ['xs','ys','Rs','ts', 'ratios', 'mutuals',\ 'cx1s', 'cy1s', 'cx2s', 'cy2s', 'f1s', 'f2s'] pair_idx = 0 with h5py.File(self.dump_file, 'w') as f: data = {} for tp in data_type: data[tp] = f.create_group(tp) for seq in self.seqs: print(seq) data_seq = {} for tp in data_type: data_seq[tp] = pickle.load(open(self.dump_dir+'/'+seq+'/'+self.desc_name+'/'+self.mode+'/'+str(tp)+'.pkl','rb')) seq_len = len(data_seq['xs']) for i in range(seq_len): for tp in data_type: data_item = data_seq[tp][i] if tp in ['cx1s', 'cy1s', 'cx2s', 'cy2s', 'f1s', 'f2s']: data_item = np.asarray([data_item]) data_i = data[tp].create_dataset(str(pair_idx), data_item.shape, dtype=np.float32) data_i[:] = data_item.astype(np.float32) pair_idx = pair_idx + 1 print('pair idx now ' +str(pair_idx)) def dump_data(self): # make sure you have already saved the features for seq in self.seqs: pair_name = None if self.pair_path is None else self.pair_path+'/'+seq.rstrip("/")+'-te-'+str(self.pair_num)+'-pairs.pkl' dataset_path = self.dataset_path+'/'+seq+'/'+self.mode dump_dir = self.dump_dir+'/'+seq+'/'+self.desc_name+'/'+self.mode print(dataset_path) dataset = Sequence(dataset_path, dump_dir, self.desc_name, self.vis_th, self.pair_num, pair_name) print('dump intermediate files.') dataset.dump_intermediate() print('dump matches.') dataset.dump_datasets() print('collect pkl.') self.collect()
yamale/validators/__init__.py
basnijholt/Yamale
457
11121602
from .base import Validator from .validators import *
Python/CodeCoverage/functions.py
Gjacquenot/training-material
115
11121606
<gh_stars>100-1000 def fac_r(n): if n < 2: return 1 else: return n*fac_r(n - 1) def fac_i(n): result = 1 for i in range(2, n + 1): result *= i return result
utils/__init__.py
yujiatay/deep-motion-editing
966
11121615
import sys import os BASEPATH = os.path.dirname(__file__) sys.path.insert(0, BASEPATH)
plenum/server/consensus/batch_id.py
jandayanan/indy-plenum
148
11121617
# `view_no` is a view no is the current view_no, but `pp_view_no` is a view no when the given PrePrepare has been # initially created and applied # it's critical to keep the original view no to correctly create audit ledger transaction # (since PrePrepare's view no is present there) # An example when `view_no` != `pp_view_no`, is when view change didn't finish at first round # (next primary is unavailable for example) from typing import NamedTuple BatchID = NamedTuple('BatchID', [('view_no', int), ('pp_view_no', int), ('pp_seq_no', int), ('pp_digest', str)])
tests/test_functional.py
filipmu/fastaudio
152
11121633
import torch from fastai.data.all import test_eq as _test_eq from unittest.mock import patch from fastaudio.augment.functional import region_mask class TestCreateRegionMask: def test_shape(self): _test_eq(region_mask(1, 5, 7, 10).shape, (1, 10)) _test_eq(region_mask(2, 3, 7, 12).shape, (2, 12)) _test_eq(region_mask(4, 0, 3, 3).shape, (4, 3)) def test_max(self): # Test max size with patch( "torch.rand", side_effect=[ torch.Tensor([[[[1.0]]]]), torch.Tensor([[[[0.0]]]]), ], ): _test_eq( region_mask(1, 4, 6, 10), torch.BoolTensor([[[[1] * 6 + [0] * 4]]]), ) def test_min(self): # Test min size with patch( "torch.rand", side_effect=[ torch.Tensor([0.0]), # Test start middle start here too torch.Tensor([0.5]), ], ): _test_eq( region_mask(1, 4, 6, 10), torch.BoolTensor([0] * 3 + [1] * 4 + [0] * 3), ) def test_multiple_masks(self): # Test multiple masks with patch( "torch.rand", side_effect=[ torch.Tensor([[1.0], [0.0]]), torch.Tensor([[0.0], [0.5]]), ], ): _test_eq( region_mask(2, 4, 6, 10), torch.BoolTensor([[1] * 6 + [0] * 4, [0] * 3 + [1] * 4 + [0] * 3]), )
ztag/annotations/scannex.py
justinbastress/ztag
107
11121636
<gh_stars>100-1000 from ztag.annotation import * class NetGearSmartSwitch(Annotation): protocol = protocols.HTTP subprotocol = protocols.HTTP.GET port = None def process(self, obj, meta): if obj["title"] == "ip.buffer webserver": meta.global_metadata.manufacturer = Manufacturer.SCANNEX meta.global_metadata.product = "ip.buffer" meta.global_metadata.device_type = Type.SCADA_GATEWAY meta.tags.add("embedded") return meta
HunterCelery/model/ldap_config.py
tt9133github/hunter
322
11121664
#!/ usr/bin/env # coding=utf-8 # # Copyright 2019 ztosec & https://www.zto.com/ # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ author: b5mali4 """ import threading from peewee import * from common.mysql_util import MysqlManage from model.hunter_model import HunterModel, HunterModelService class LdapConfig(HunterModel): """ LDAP 配置,同于定时同步账号到本地数据库,只能有一条记录 """ ldap_host = TextField(null=True) bind_dn = TextField(null=True) bind_dn_password = TextField(null=True) base_dn = TextField(null=True) search_filter = TextField(null=True) user_name_field = TextField(null=True) full_name_field = TextField(null=True) email_field = TextField(null=True) dept_name_field = TextField(null=True) mobile_field = TextField(null=True) ldap_switch = BooleanField(default=False) class Meta: database = MysqlManage.get_database() class LdapConfigService: """ ldap认证配置服务 """ __ldap_config_single = None _instance_lock = threading.Lock() @staticmethod def get_fields_by_where(**kwargs): """ To use: >>> ldap_config = LdapConfigService.get_fields_by_where(fields=(LdapConfig.ldap_host), where=(LdapConfig.id == 1)) >>> print(ldap_config) :param kwargs: :return: """ return HunterModelService.get_fields_by_where(LdapConfig, **kwargs) @staticmethod def count(**kwargs): """ 数据数量 To use: >>> LdapConfigService.count(where=(LdapConfig.id == 1)) :param kwargs: :return: """ return HunterModelService.count(LdapConfig, **kwargs) @staticmethod def update(**kwargs): """ 更新操作,更新操作之后,需要对单列进行赋值 To use: >>> LdapConfigService.update(fields=({LdapConfig.ldap_host: "777" })) :param kwargs: :return: """ result = HunterModelService.update(LdapConfig, **kwargs) LdapConfigService.get_single_instance(True) return result @staticmethod def save(**kwargs): """ 保存操作,不做第二次 To use: >>> LdapConfigService.save(ldap_host="ldap://127.0.0.1") :param kwargs: :return: """ return HunterModelService.save(LdapConfig, **kwargs) @staticmethod def get_single_instance(refresh=False): """ 获取单列 :param refresh: :return: """ with LdapConfigService._instance_lock: if refresh or LdapConfigService.__ldap_config_single is None: LdapConfigService.__ldap_config_single = LdapConfigService.get_fields_by_where()[0] return LdapConfigService.__ldap_config_single
test/utils_tests.py
seba-1511/randopt
115
11121666
<reponame>seba-1511/randopt #!/usr/bin/env python3 import os import unittest import randopt as ro class TestUtils(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_dict_to_list(self): dictionary = dict(asdf=23, yxcv='vcxy', qwer=1) ref = ['asdf23', 'qwer1', 'yxcvvcxy'] res = ro.dict_to_list(dictionary) self.assertEqual(ref, res) def test_dict_to_constants(self): dictionary = dict(asdf=23, yxcv='vcxy', qwer=1) res = ro.dict_to_constants(dictionary) self.assertTrue(isinstance(res, dict)) for key, value in res.items(): self.assertTrue(isinstance(key, str)) self.assertTrue(isinstance(value, ro.Constant)) def test_dict_to_path(self): dictionary = dict(asdf=23, yxcv='vcxy', qwer=1) res = ro.dict_to_path(dictionary) subs = res.split('/') for sub in subs: self.assertTrue(len(sub) < 255) ref = ro.dict_to_list(dictionary) self.assertEqual(subs, ref) def test_dict_to_(self): dictionary = dict(asdf=23, yxcv='vcxy', qwer=1) res = ro.dict_to_string(dictionary) subs = res.split('-') ref = ro.dict_to_list(dictionary) self.assertEqual(subs, ref) if __name__ == '__main__': unittest.main()
datasets/imagenet/scripts/imagenet.py
dgtlmoon/deepdetect
1,672
11121672
import os, argparse, glob, sys, subprocess from collections import defaultdict def sizeof_fmt(num): for x in ['bytes','KB','MB','GB']: if num < 1024.0 and num > -1024.0: return "%3.1f%s" % (num, x) num /= 1024.0 return "%3.1f%s" % (num, 'TB') class Synset: 'A representation of a category, aka synset' _name = '' _desc = '' _syn = '' _loc = '' _img_count = 0 # number of images in synset _imgs = [] _size = 0 _parent = '' _children = [] def __init__(self, loc): self._loc = loc self._syn = os.path.basename(os.path.normpath(loc)) def print_synset(self): print '----------------------' print self._syn print self._name print self._desc print self._img_count, "images" print sizeof_fmt(self._size) print '----------------------' def load_words(wordsfile): words = {} with open(wordsfile) as f: words = dict(x.rstrip().split(None, 1) for x in f) return words def load_descs(descfile): descs = {} with open(descfile) as f: descs = dict(x.rstrip().split(None,1) for x in f) return descs def load_treemap(treemapfile): tdict = defaultdict(list) with open(treemapfile) as f: for line in f: ls = line.rstrip().split(' ') tdict[ls[0]].append(ls[1]) return tdict def read_synsets(alldirs,synsets,descs,search,lsynsets): synsetsobj = {} for d in alldirs: s = Synset(d) if lsynsets: if not s._syn in lsynsets: continue s._name = synsets[s._syn] if search: if not search in s._name: continue s._desc = descs[s._syn] s._imgs = glob.glob(d + "/*") s._img_count = len(s._imgs) s._size = sum(os.path.getsize(f) for f in s._imgs if os.path.isfile(f)) synsetsobj[s._syn] = s return synsetsobj def find_treemap(lsyn,tmap): # - iterate lsyn # - for each key get the subsynets # - if no subsynets add to temporary lsyn # - otherwise remove key from lsyn (if fact only if no image, so we leave it for now) # - merge lsyn with temporary lsyn clsyn = lsyn tlsyn = [] for key in lsyn: ls = tmap[key] if ls: #tlsyn.remove(key) for l in ls: #tlsyn.append(l) ttlsyn = [] ttlsyn.append(l) ttlsyn = find_treemap(ttlsyn,tmap) #print 'ttlsyn=',ttlsyn tlsyn = tlsyn + ttlsyn #print 'tlsyn=',tlsyn lsyn = clsyn + tlsyn return lsyn def write_dict(files,ffile): f = open(ffile,'w') for key in files: line = str(key) + ' ' + str(files[key]) + '\n' f.write(line) parser = argparse.ArgumentParser(description='Imagenet processing tools') parser.add_argument('repository',type=str,help='location of the imagenet repository') parser.add_argument('--list',dest='list',action='store_true',help='list repository, read-only') parser.add_argument('--dataset',dest='dataset',type=str,help='location of a dataset to be created based on search terms (--search) or list (--synsets) of synsets') parser.add_argument('--trainperc',dest='trainperc',type=float,help='% of the dataset to be used as training set') parser.add_argument('--search',dest='search',type=str,default='',help='search for synsets whose name contains the search term') parser.add_argument('--synsets',dest='synsets',type=str,help='list of synsets, possibly in a file, to be looked up') parser.add_argument('--subsynsets',dest='subsynsets',type=str,default='none',help='use treemaps to retrieve synsets that are part of a higher level synset') args = parser.parse_args() allsynsets = load_words('words.txt') alldescs = load_descs('gloss.txt') alldirs = glob.glob(args.repository + "/n*") print "Found", len(alldirs), "image repositories as synsets" lsynsets = {} if args.synsets: if not '.' in args.synsets: # not a file l = args.synsets.split(',') for e in l: lsynsets[e] = 1 else: with open(args.synsets) as f: lsynsets = dict(x.rstrip().split(None,1) for x in f) if not args.subsynsets == 'none' and not args.subsynsets == '': lsynsets[args.subsynsets] = 1 allsynsetsobj = read_synsets(alldirs,allsynsets,alldescs,args.search,lsynsets) print "Found", len(allsynsetsobj), "relevant synsets" if not args.subsynsets == 'none': treemap = load_treemap('wordnet.is_a.txt') lsyn = [] for key,value in allsynsetsobj.items(): for l in treemap[key]: lsyn.append(l) lsyn = find_treemap(lsyn,treemap) #print len(lsyn) subsynsetsobj = read_synsets(alldirs,allsynsets,alldescs,'',lsyn) allsynsetsobj = dict(allsynsetsobj,**subsynsetsobj) if args.list: totalsize = 0 for key,value in allsynsetsobj.items(): value.print_synset() totalsize = totalsize + value._size print "Found", len(allsynsetsobj), "relevant synsets" print "Number of images:",sum(allsynsetsobj[o]._img_count for o in allsynsetsobj) print "Total size: "+ sizeof_fmt(totalsize) elif args.dataset: try: os.mkdir(args.dataset) except: pass if not args.trainperc: for key,value in allsynsetsobj.items(): os.symlink(value._loc,args.dataset + "/" + value._syn) else: print "Processing dataset", args.dataset trainrep = 'train' valrep = 'val' trainpath = args.dataset + "/" + trainrep valpath = args.dataset + "/" + valrep trainfile = args.dataset + '/train.txt' valfile = args.dataset + '/val.txt' correspfile = args.dataset + '/corresp.txt' tfiles = {} vfiles = {} corresp = {} try: os.mkdir(trainpath) os.mkdir(valpath) except: pass cl = 0 gifconverts = 0 for key,value in allsynsetsobj.items(): thresh = int(len(value._imgs)*args.trainperc/100.0) train_list = value._imgs[0:thresh] val_list = value._imgs[thresh:int(len(value._imgs))] lpath = trainpath + "/" + value._syn if not cl in corresp: corresp[cl] = key + ' ' + value._name try: os.mkdir(lpath) except: pass for f in train_list: fname = os.path.basename(os.path.normpath(f)) if ".gif" in fname: fname = fname + ".jpg" convcmd = f + ' ' + trainpath + '/' + value._syn + '/' + fname os.system("/usr/bin/convert " + convcmd) gifconverts += 1 else: os.symlink(f,trainpath + "/" + value._syn + "/" + fname) tfiles[value._syn + '/' + os.path.basename(fname)] = cl for f in val_list: fname = os.path.basename(os.path.normpath(f)) if ".gif" in fname: fname = fname + ".jpg" convcmd = f + ' ' + valpath + '/' + os.path.basename(fname) os.system("/usr/bin/convert " + convcmd) gifconverts += 1 else: os.symlink(f,valpath + "/" + os.path.basename(fname)) vfiles[os.path.basename(fname)] = cl cl += 1 write_dict(corresp,correspfile) write_dict(tfiles,trainfile) write_dict(vfiles,valfile) print "converted " + str(gifconverts) + " gif files"
release/scripts/presets/camera/Sony_F65.py
rbabari/blender
365
11121709
<gh_stars>100-1000 import bpy bpy.context.camera.sensor_width = 24.33 bpy.context.camera.sensor_height = 12.83 bpy.context.camera.sensor_fit = 'HORIZONTAL'
earthpy/tests/test_epsg.py
nkorinek/earthpy
350
11121721
import pytest import rasterio as rio import os.path as op import earthpy as et import earthpy.spatial as es from earthpy.io import path_to_example @pytest.fixture def output_dir(out_path): return op.dirname(out_path) def test_epsg(): """Unit test for loading EPSG to Proj4 string dictionary.""" assert et.epsg["4326"] == "+proj=longlat +datum=WGS84 +no_defs" def test_crs_check_tif(): """Test crs check works properly.""" crs = es.crs_check(path_to_example("rmnp-rgb.tif")) assert(crs.to_epsg() == 4326) def test_crs_check_bad_file(): with pytest.raises(rio.errors.RasterioIOError, match="Oops, your data ar"): es.crs_check(path_to_example("rmnp.shp")) def test_no_crs_in_file(output_dir): output_path = op.join(output_dir, "no_crs.tif") with rio.open(et.io.path_to_example("green.tif")) as src: data = src.read(1) profile = src.profile profile.update(crs=None) with rio.open(output_path, 'w', **profile) as dst: dst.write(data, 1) with pytest.raises(ValueError, match="No CRS found in data. The raster "): es.crs_check(output_path)
survae/tests/nn/nets/autoregressive/__init__.py
alisiahkoohi/survae_flows
262
11121781
<filename>survae/tests/nn/nets/autoregressive/__init__.py from .made import * from .pixelcnn import * from .transformer import * from .sparse_transformer import *
test_python_toolbox/test_path_tools/test_get_root_path_of_module.py
hboshnak/python_toolbox
119
11121788
<gh_stars>100-1000 # Copyright 2009-2017 <NAME>. # This program is distributed under the MIT license. from python_toolbox.path_tools import get_root_path_of_module def test(): ''' ''' import email.charset assert get_root_path_of_module(email) == \ get_root_path_of_module(email.charset) import python_toolbox.path_tools assert get_root_path_of_module(python_toolbox) == \ get_root_path_of_module(python_toolbox.path_tools)
tests/test_terminal.py
edouard-lopez/colorful
517
11121835
# -*- coding: utf-8 -*- """ colorful ~~~~~~~~ Terminal string styling done right, in Python. :copyright: (c) 2017 by <NAME> <<EMAIL>> :license: MIT, see LICENSE for more details. """ import os import sys import pytest # do not overwrite module os.environ['COLORFUL_NO_MODULE_OVERWRITE'] = '1' import colorful.terminal as terminal # noqa @pytest.mark.skipif(not sys.stdout.isatty(), reason='fails without a tty') @pytest.mark.parametrize('env,expected', [ # test force color settings ({'COLORFUL_DISABLE': '1'}, terminal.NO_COLORS), ({'COLORFUL_FORCE_8_COLORS': '1'}, terminal.ANSI_8_COLORS), ({'COLORFUL_FORCE_16_COLORS': '1'}, terminal.ANSI_16_COLORS), ({'COLORFUL_FORCE_256_COLORS': '1'}, terminal.ANSI_256_COLORS), ({'COLORFUL_FORCE_TRUE_COLORS': '1'}, terminal.TRUE_COLORS), # test recommended $COLORTERM variable ({'COLORTERM': 'truecolor'}, terminal.TRUE_COLORS), ({'COLORTERM': '24bit'}, terminal.TRUE_COLORS), ({'COLORTERM': '8bit'}, terminal.ANSI_256_COLORS), ({'COLORTERM': 'XYZ'}, terminal.ANSI_16_COLORS), # test $TERM_PROGRAM variable ({'TERM_PROGRAM': 'iTerm.app'}, terminal.TRUE_COLORS), ({'TERM_PROGRAM': 'Hyper'}, terminal.TRUE_COLORS), ({'TERM_PROGRAM': 'Apple_Terminal'}, terminal.ANSI_256_COLORS), # test $TERM variable values for 256 ANSI colors ({'TERM': 'screen-256'}, terminal.ANSI_256_COLORS), ({'TERM': 'screen-256color'}, terminal.ANSI_256_COLORS), ({'TERM': 'xterm-256'}, terminal.ANSI_256_COLORS), ({'TERM': 'xterm-256color'}, terminal.ANSI_256_COLORS), # test $TERM variable values for 16 colors ({'TERM': 'screen'}, terminal.ANSI_16_COLORS), ({'TERM': 'xterm'}, terminal.ANSI_16_COLORS), ({'TERM': 'vt100'}, terminal.ANSI_16_COLORS), ({'TERM': 'color'}, terminal.ANSI_16_COLORS), ({'TERM': 'ansi'}, terminal.ANSI_16_COLORS), ({'TERM': 'cygwin'}, terminal.ANSI_16_COLORS), ({'TERM': 'linux'}, terminal.ANSI_16_COLORS), # test fallback to 8 colors ({}, terminal.ANSI_8_COLORS), # force disable overrules force colors ({ 'COLORFUL_DISABLE': '1', 'COLORFUL_FORCE_8_COLORS': '1', 'COLORFUL_FORCE_16_COLORS': '1', 'COLORFUL_FORCE_256_COLORS': '1', 'COLORFUL_FORCE_TRUE_COLORS': '1' }, terminal.NO_COLORS), # force colors overrules $COLORTERM ({ 'COLORFUL_FORCE_TRUE_COLORS': '1', 'COLORTERM': '24bit' }, terminal.TRUE_COLORS), # $COLORTERM overrules $TERM_PROGRAM ({ 'COLORTERM': 'truecolor', 'TERM_PROGRAM': 'iTerm.app' }, terminal.TRUE_COLORS), # $TERM_PROGRAM overrules $TERM with 256 colors ({ 'TERM_PROGRAM': 'iTerm.app', 'TERM': 'xterm-256color' }, terminal.TRUE_COLORS) ]) def test_color_support_detection(env, expected): """ Test the terminal color support auto detection """ assert terminal.detect_color_support(env) == expected
usaspending_api/accounts/models/budget_authority.py
g4brielvs/usaspending-api
217
11121855
from django.db import models class BudgetAuthority(models.Model): agency_identifier = models.TextField(db_index=True) # aka CGAC fr_entity_code = models.TextField(null=True, db_index=True) # aka FREC year = models.IntegerField(null=False) amount = models.BigIntegerField(null=True) class Meta: db_table = "budget_authority" unique_together = (("agency_identifier", "fr_entity_code", "year"),)
RecoLocalTracker/SiStripRecHitConverter/python/SiStripRecHitConverter_cfi.py
ckamtsikis/cmssw
852
11121875
<reponame>ckamtsikis/cmssw<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from RecoLocalTracker.SiStripRecHitConverter.siStripRecHitConverter_cfi import siStripRecHitConverter as _siStripRecHitConverter siStripMatchedRecHits = _siStripRecHitConverter.clone()
tools/getsize.py
bontchev/wlscrape
110
11121906
#!/usr/bin/env python from __future__ import print_function import argparse import locale import json import sys __author__ = "<NAME> <<EMAIL>>" __license__ = "GPL" __VERSION__ = "1.00" def error(e): print("Error: %s." % e, file=sys.stderr) sys.exit(-1) def humanBytes(B): 'Return the given bytes as a human friendly KB, MB, GB, or TB string' B = float(B) KB = float(1024) MB = float(KB ** 2) # 1,048,576 GB = float(KB ** 3) # 1,073,741,824 TB = float(KB ** 4) # 1,099,511,627,776 if B < KB: return '{0} {1}'.format(B,'Bytes' if 0 == B > 1 else 'Byte') elif KB <= B < MB: return '{0:.2f} Kb'.format(B/KB) elif MB <= B < GB: return '{0:.2f} Mb'.format(B/MB) elif GB <= B < TB: return '{0:.2f} Gb'.format(B/GB) elif TB <= B: return '{0:.2f} Tb'.format(B/TB) def getTrueSize(number, unit): if (unit == "B"): return number elif (unit == "KiB"): return number * 1024 elif (unit == "MiB"): return number * 1024 ** 2 elif (unit == "GiB"): return number * 1024 ** 3 else: error("Unknown unit: " + unit) if __name__ == "__main__": parser = argparse.ArgumentParser(version="%(prog)s version " + __VERSION__, description="Computes the total files size of a wlscrape.py output.") parser.add_argument("file", nargs="+", help="JSON data file") args = parser.parse_args() numFiles = 0 totalSize = 0.0 for argument in args.file: try: with open(argument, "r") as contentFile: content = contentFile.read() jsonData = json.loads(content) for element in jsonData: numFiles += 1 parts = element["size"].split(None) totalSize += getTrueSize(float(parts[0]), parts[1]) except Exception as e: error(e) locale.setlocale(locale.LC_ALL, "") print("Number of files found: %s." % locale.format("%d", numFiles, grouping=True), file=sys.stderr) print("Total size: {0}.".format(humanBytes(totalSize)), file=sys.stderr) sys.exit(0)
tests/basics/is_isnot.py
rxchen/micropython
13,648
11121910
print([1, 2] is [1, 2]) a = [1, 2] b = a print(b is a)
keras_cv_attention_models/convnext/convnext.py
dcleres/keras_cv_attention_models
140
11121939
<gh_stars>100-1000 from tensorflow import keras from keras_cv_attention_models.attention_layers import ( activation_by_name, ChannelAffine, conv2d_no_bias, depthwise_conv2d_no_bias, drop_block, layer_norm, HeadInitializer, add_pre_post_process, ) from keras_cv_attention_models.download_and_load import reload_model_weights LAYER_NORM_EPSILON = 1e-6 PRETRAINED_DICT = { "convnext_tiny": {"imagenet": "1deac703865e190528899d5c489afa37"}, "convnext_small": {"imagenet": "7e75873348d445eb2aab4200a5d49f80"}, "convnext_base": { "imagenet": {224: "dddac5dcd13bffc1e05688f529726f8c", 384: "ae8dc9bbca6472dc12de30db95ea1018"}, "imagenet21k-ft1k": {224: "40f78cec6cd327392a9d24f968f9e76b", 384: "4829ff932a930117525920317083d317"}, }, "convnext_large": { "imagenet": {224: "32d401c254b623d36c22f232884000ba", 384: "01b4e72ca589c2f0ac15551e06d29818"}, "imagenet21k-ft1k": {224: "dc211e955875f8ab6de7518253e41a46", 384: "68ef87754d6ca634e32d2326c34ddd0b"}, }, "convnext_xlarge": {"imagenet21k-ft1k": {224: "7c7ab46f41ac34655f3e035b873a2163", 384: "636db850c0a73ba10e8ab32e91c38df6"}}, } def block(inputs, output_channel, layer_scale_init_value=1e-6, drop_rate=0, activation="gelu", name=""): nn = depthwise_conv2d_no_bias(inputs, kernel_size=7, padding="SAME", use_bias=True, name=name) nn = layer_norm(nn, epsilon=LAYER_NORM_EPSILON, name=name) nn = keras.layers.Dense(4 * output_channel, name=name + "up_dense")(nn) nn = activation_by_name(nn, activation, name=name) nn = keras.layers.Dense(output_channel, name=name + "down_dense")(nn) if layer_scale_init_value > 0: nn = ChannelAffine(use_bias=False, weight_init_value=layer_scale_init_value, name=name + "gamma")(nn) nn = drop_block(nn, drop_rate=drop_rate, name=name) return keras.layers.Add(name=name + "output")([inputs, nn]) def ConvNeXt( num_blocks=[3, 3, 9, 3], out_channels=[96, 192, 384, 768], stem_width=-1, layer_scale_init_value=1e-6, head_init_scale=1.0, input_shape=(224, 224, 3), num_classes=1000, activation="gelu", drop_connect_rate=0.1, classifier_activation="softmax", dropout=0, pretrained=None, model_name="convnext", kwargs=None, ): inputs = keras.layers.Input(input_shape) """ Stem """ stem_width = stem_width if stem_width > 0 else out_channels[0] nn = conv2d_no_bias(inputs, stem_width, kernel_size=4, strides=4, padding="VALID", use_bias=True, name="stem_") nn = layer_norm(nn, epsilon=LAYER_NORM_EPSILON, name="stem_") """ Blocks """ total_blocks = sum(num_blocks) global_block_id = 0 for stack_id, (num_block, out_channel) in enumerate(zip(num_blocks, out_channels)): stack_name = "stack{}_".format(stack_id + 1) if stack_id > 0: nn = layer_norm(nn, epsilon=LAYER_NORM_EPSILON, name=stack_name + "downsample_") nn = conv2d_no_bias(nn, out_channel, kernel_size=2, strides=2, use_bias=True, name=stack_name + "downsample_") for block_id in range(num_block): block_name = stack_name + "block{}_".format(block_id + 1) block_drop_rate = drop_connect_rate * global_block_id / total_blocks nn = block(nn, out_channel, layer_scale_init_value, block_drop_rate, activation, name=block_name) global_block_id += 1 """ Output head """ if num_classes > 0: nn = keras.layers.GlobalAveragePooling2D(name="avg_pool")(nn) if dropout > 0: nn = keras.layers.Dropout(dropout, name="head_drop")(nn) nn = layer_norm(nn, epsilon=LAYER_NORM_EPSILON, name="head_") head_init = HeadInitializer(scale=head_init_scale) nn = keras.layers.Dense( num_classes, dtype="float32", activation=classifier_activation, kernel_initializer=head_init, bias_initializer=head_init, name="predictions" )(nn) model = keras.models.Model(inputs, nn, name=model_name) add_pre_post_process(model, rescale_mode="torch") reload_model_weights(model, pretrained_dict=PRETRAINED_DICT, sub_release="convnext", pretrained=pretrained) return model def ConvNeXtTiny(input_shape=(224, 224, 3), num_classes=1000, classifier_activation="softmax", pretrained="imagenet", **kwargs): num_blocks = [3, 3, 9, 3] out_channels = [96, 192, 384, 768] return ConvNeXt(**locals(), model_name="convnext_tiny", **kwargs) def ConvNeXtSmall(input_shape=(224, 224, 3), num_classes=1000, classifier_activation="softmax", pretrained="imagenet", **kwargs): num_blocks = [3, 3, 27, 3] out_channels = [96, 192, 384, 768] return ConvNeXt(**locals(), model_name="convnext_small", **kwargs) def ConvNeXtBase(input_shape=(224, 224, 3), num_classes=1000, classifier_activation="softmax", pretrained="imagenet", **kwargs): num_blocks = [3, 3, 27, 3] out_channels = [128, 256, 512, 1024] return ConvNeXt(**locals(), model_name="convnext_base", **kwargs) def ConvNeXtLarge(input_shape=(224, 224, 3), num_classes=1000, classifier_activation="softmax", pretrained="imagenet", **kwargs): num_blocks = [3, 3, 27, 3] out_channels = [192, 384, 768, 1536] return ConvNeXt(**locals(), model_name="convnext_large", **kwargs) def ConvNeXtXlarge(input_shape=(224, 224, 3), num_classes=1000, classifier_activation="softmax", pretrained="imagenet21k-ft1k", **kwargs): num_blocks = [3, 3, 27, 3] out_channels = [256, 512, 1024, 2048] return ConvNeXt(**locals(), model_name="convnext_xlarge", **kwargs)
test/fixture/python_scanner/imports_unknown_files.py
jcassagnol-public/scons
1,403
11121962
import doesntexist # noqa: F401 import notthere.something # noqa: F401 from notthere import a, few, things # noqa: F401
generate/build_tools/forge/__init__.py
flamencist/browser-extensions
102
11121975
VERSION = '3.3.62' def get_version(): return VERSION class ForgeError(Exception): pass settings = { 'LAST_STABLE': 'v1.4' }
urduhack/normalization/tests/test_character.py
cinfotech94/urduhackk
252
11122003
<filename>urduhack/normalization/tests/test_character.py # coding: utf8 """Test cases for character class""" from urduhack import normalize from urduhack.normalization.character import normalize_characters, _CORRECT_URDU_CHARACTERS_MAPPING, \ normalize_combine_characters, \ COMBINE_URDU_CHARACTERS, replace_digits from urduhack.normalization.character import punctuations_space, remove_diacritics from urduhack.urdu_characters import URDU_ALL_CHARACTERS, URDU_ALPHABETS, URDU_DIGITS, URDU_DIACRITICS def test_normalize(): """ Testing main function""" text = "پاکستان ﻤﯿﮟ وسائل کی کوئی کمی نہیں ﮨﮯ۔" expected = normalize(text) assert isinstance(expected, str) for char in expected: if char == " ": continue assert char in URDU_ALL_CHARACTERS def test_normalize_characters(): """Normalize characters Test case arabic words : Urdu words""" words: dict = {"ﻣﯿﺎﮞ": "میاں", "ﺗﮭﺎ": "تھا", "ﻧﮩﯽ": "نہی", "ﺩﺭﺑﺎﻥ": "دربان", "ﺷﺮﯾﮏ": "شریک", "ﻭﺯﯾﺮ": "وزیر", "ﮐﻮﻧﮯ": "کونے", "ﺭﺍﺿﯽ": "راضی", "ﻣﺠﮭ": "مجھ", "ﭼﮭﭙﺮ": "چھپر", "ﻧﻮﺟﻮﺍﻥ": "نوجوان", "ﻣﻨﺰﻝ": "منزل", "ﻟﮕﺎﺗﮯ": "لگاتے", "ﺟﻮﻧﻌﻤﺖ": "جونعمت", "ﻣﺴﻨﺪﻭﮞ": "مسندوں", "ﭘﺎﮎ": "پاک", "ﻋﺎﻓﯿﺖ": "عافیت", "ﺑﺬﺍﺕ": "بذات", "ﻧﮑﻠﻮ": "نکلو", "ﭘﯿﺪﺍ": "پیدا", "ﺗﻮﮌﺍ": "توڑا", "ﮔﯿﺎ": "گیا", "ﺧﯿﺮ": "خیر", "ﺑﻌﺪ": "بعد", "ﭼﺮﺑﯽ": "چربی", "ﺧﺎﻣﻮﺷﯽ": "خاموشی", "ﮨﭩﮯ": "ہٹے", "ﺍﻭﻻﺩ": "اولاد", "ﺩﯾﻨﯽ": "دینی", "ﭼﺎﮨﮯ": "چاہے", "ﮐﮩﺎ": "کہا", "ﺧﺎﻟﯽ": "خالی", "ﻣﺎﻧﮕﯿﮟ": "مانگیں", "ﺭﮨﺘﮯ": "رہتے", "ﻣﻔﻠﺴﯽ": "مفلسی", "ﺩﺭﺑﺎﺭﯼ": "درباری", "ﺑﺘﺎﺋﯿﮟ": "بتائیں", "ﮨﻤﺖ": "ہمت", "ﻣﺮﺩ": "مرد", "ﺩﻭﺳﺖ": "دوست", "ﻋﺎﺷﻘﻮ": "عاشقو", "ﺟﻠﻮﮦ": "جلوہ", "ﺭﮨﺘﺎ": "رہتا", "ﮈﺍﮐﭩﺮ": "ڈاکٹر", "ﺭﻫﺘﯽ": "رھتی", "ﺍﯾﺴﮯ": "ایسے", "ﺻﺎﻑ": "صاف", "ﺗﻌﻠﯿﻢ": "تعلیم", "ﺁﭘﮑﺎ": "آپکا", "ﻣﺮﺩﺍﻥ": "مردان", "ﺣﺮﺍﻣﯽ": "حرامی", "ﻧﮑ": "نک", "ﺯﯾﺎﺩﮦ": "زیادہ", "ﻧﻮﺟﻮﻥ": "نوجون", "ﺧﺎﻧﮯ": "خانے", "ﺭﺍﮦ ﺳﮯ": "راہ سے", "ﻣﺤﺘﺮﻣﮧ": "محترمہ", "ﺟﺎﻧﻮﺭ": "جانور", "ﻧﮯﺍﯾﮏ": "نےایک", "ﻣﺤﺒﻮﺏ": "محبوب", "ﺧﻮﺵ": "خوش", "ﺳﺎﺋﻞ": "سائل", "ﮐﺮ": "کر", "ﮐﮩﺎﮐﮧ": "کہاکہ", "ﻧﺴﻮﺍﻧﯽ": "نسوانی", "ﮨﻤﯿﮟ ﺑﻬﯽ": "ہمیں بھی", "ﺍﺭﺍﺩﮦ ﺑﺘﺎﯾﺎ": "ارادہ بتایا", "ﺑﺎﭖ": "باپ", "ﻟﮕﯿﮟ": "لگیں", "ﺷﺨﺺ": "شخص", "ﺭﮨﺘﺎﮨﮯ": "رہتاہے", "ﻗﺪﺭﺕ": "قدرت", "ﻣﺮﺿﯽ": "مرضی", "ﮔﯿﺎﺍﻭﺭ": "گیااور", "ﮐﭽﮫ": "کچھ", "ﻟﮑﮫ": "لکھ", "ﺍﻋﻈﻢ": "اعظم", "ﺷﺨﺼﯿﺖ": "شخصیت", "ﺧﻼﻑ": "خلاف", "ﻏﯿﺮ": "غیر", "ﺳﻮﺩ": "سود", "ﺑﮩﺘﺮ": "بہتر", "ﻫﻮﺋﮯ": "ھوئے", "ﺳﻼﻣﺖ": "سلامت", "ﺭﺍﺑﻄﮧ": "رابطہ", "ﮨﻮﮔﯽ": "ہوگی", "ﻣﺮﺽ": "مرض", "ﺳﻔﺮ": "سفر", "ﻣﻔﺴﺮ": "مفسر", "ﻧﺼﻒ": "نصف", "ﮨﻮﮞ ﺟﺲ": "ہوں جس", "ﭘﯿﭙﺮﺯ": "پیپرز", "ﺑﻦ": "بن", "ﮔﻨﮩﮕﺎﺭ": "گنہگار", "ﺭﮨﯽ": "رہی", "ﻣ": "م", "ﺧﺎﻭﻧﺪ": "خاوند", "ﺩﮐﮭﺎﺗﺎ": "دکھاتا", "ﺟﺎﺳﮑﺘﮯ": "جاسکتے", "ﺣﻞ": "حل", "ﺗﺠﺮﺑﮧ": "تجربہ", "ﮨﺎﺭﻧﮯ": "ہارنے", "ﺳﺠﺎ": "سجا", "ﺭﻭﻧﻖ": "رونق", "ﺑﻨﻮﮞ": "بنوں", "ﺳﮑﺘﯽ": "سکتی", "ﮐﮧ ﺭﺍﺳﺘﮯ": "کہ راستے", "ﻭﺍﻟﯽ": "والی", "ﺣﻔﺎﻇﺖ": "حفاظت", "ﺳﯿﺪﮬﺎ": "سیدھا", "ﺍﻭﻧﭩﻨﯽ": "اونٹنی", "ﺟﺎﻧﮯ": "جانے", "ﺑﻼﯾﺎ": "بلایا", "ﻓﺎﺋﺪﮦ": "فائدہ", "ﮔﺎﺋﮯ": "گائے", "ﻻﮨﻮﺭ": "لاہور", "ﺑﭩﮭﺎﺅﮞ": "بٹھاؤں", "اشیاﺀ": "اشیاء", "کیلﺌے": "کیلئے", "باعﺚ": "باعث", "كيا خطا": "کیا خطا", "حم مر كر": "حم مر کر", "تم كيا كر": "تم کیا کر", "كن فا يا كن": "کن فا یا کن", "مر كر ﻓﺎﺋﺪﮦ": "مر کر فائدہ", "تم كيا كرو": "تم کیا کرو", "تم کیا کر": "تم کیا کر", "گنہگار مر": "گنہگار مر", "کر موت": "کر موت", "کیا خطا": "کیا خطا", "قريب": "قریب", } for key, val in words.items(): norm = normalize_characters(key) assert val == norm for char in norm: if char == " ": continue assert len(char) == 1 assert char in URDU_ALL_CHARACTERS, norm def test_correct_urdu_characters(): """ Test case """ for char in URDU_ALPHABETS: assert char in _CORRECT_URDU_CHARACTERS_MAPPING for char in URDU_DIGITS: assert char in _CORRECT_URDU_CHARACTERS_MAPPING for _list in _CORRECT_URDU_CHARACTERS_MAPPING.values(): for char in _list: assert char not in URDU_ALL_CHARACTERS for key in _CORRECT_URDU_CHARACTERS_MAPPING: for char in key: assert char in URDU_ALL_CHARACTERS def test_normalize_combine_characters(): """Test case""" words: dict = { "آزاد": "آزاد", "آپ": "آپ", "آدھے": "آدھے", "آج": "آج", "آرام": "آرام", "جرأت": "جرأت", "کوجرأت": "کوجرأت", "أعظم": "أعظم", } for key, val in words.items(): norm = normalize_combine_characters(key) assert val == norm for char in norm: assert char in URDU_ALL_CHARACTERS, norm def test_combine_urdu_characters(): """ Test case """ for chars in COMBINE_URDU_CHARACTERS: assert len(chars) == 2 for char in chars: assert char in URDU_ALL_CHARACTERS for char in COMBINE_URDU_CHARACTERS.values(): assert len(char) == 1 assert char in URDU_ALL_CHARACTERS assert char in _CORRECT_URDU_CHARACTERS_MAPPING for key, value in COMBINE_URDU_CHARACTERS.items(): assert len(key) == 2 assert len(value) == 1 def test_punctuations_space(): """Test cases""" data = {"ہوتا۔ انہوں": "ہوتا۔ انہوں", "ہوتا،انہوں": "ہوتا، انہوں", "۔۔۔۔۔۔۔۔۔": "۔۔۔۔۔۔۔۔۔", "۔۔۔۔،،۔۔۔۔۔": "۔۔۔۔،،۔۔۔۔۔", "ہوتا ہے ۔ ٹائپ": "ہوتا ہے۔ ٹائپ", "ہوتا ہے ۔ٹائپ": "ہوتا ہے۔ ٹائپ", "ہوتا ہے؟ٹائپ": "ہوتا ہے؟ ٹائپ", "ہوتا ہے،ٹائپ": "ہوتا ہے، ٹائپ", "ہوتا ہے ؟ٹائپ": "ہوتا ہے؟ ٹائپ", "ہوتا ہے ؟ ٹائپ": "ہوتا ہے؟ ٹائپ", "ہوتا ہے۔ٹائپ": "ہوتا ہے۔ ٹائپ", "ہوتا ہے ۔ ٹائپ": "ہوتا ہے۔ ٹائپ", "ہوتا ہے ، ٹائپ": "ہوتا ہے، ٹائپ", "ہوتا ہے،\n": "ہوتا ہے،\n", } for key, value in data.items(): assert value == punctuations_space(key) def test_remove_diacritics(): """remove_diacritics Test case""" words: dict = {"اب": "اَب", "شیر پنجاب": "شیرِ پنجاب", "اوگول": "اُوگول", "ای": "اِی", "اباوگل": "اَباُوگل", "شرپن": "شرِپن", "ااایول": "اَاُاِیول", "اے": "اَے", "اوشیر": "اُوشیر", "او": "اَو", } for key, val in words.items(): norm = remove_diacritics(val) assert key == norm for char in norm: assert char not in URDU_DIACRITICS, norm if char != ' ': assert char in URDU_ALPHABETS, norm def test_replace_digits(): """Test Case""" eng_text = 'سکیورٹی حکام کے مطابق جنوبی صوبے 550 میں رات گئے' ur_text = 'سکیورٹی حکام کے مطابق جنوبی صوبے ۵۵۰ میں رات گئے' assert replace_digits(ur_text) == eng_text assert replace_digits(eng_text, with_english=False) == ur_text
pycharm2020.1.3/script/core/tool/incremental_reload.py
LaudateCorpus1/realtime-server
465
11122032
<gh_stars>100-1000 import collections import sys import os from core.mobilelog.LogManager import LogManager class ReloadRecord(object): """ 根据上次启动、reload时记录的文件修改时间,进行增量func code reload 仅支持散包py、pyc文件,暂时不支持zipfile """ def __init__(self): super(ReloadRecord, self).__init__() self._count = 0 self._record = collections.defaultdict(float) self.init_record() def init_record(self): for name, mtime in self.iter_modules(): self._record[name] = mtime @staticmethod def iter_modules(): for name, module in sys.modules.items(): module_file = getattr(module, '__file__', None) if not module_file or not isinstance(module_file, (str, )) or not os.path.isfile(module_file): # module file not found continue if not module_file[-3:].lower() == '.py' and not module_file[-4:].lower() == '.pyc': # not py or pyc continue if module_file.lower().endswith('.pyc') and os.path.isfile(module_file[:-1]): module_file = module_file[:-1] mtime = os.path.getmtime(module_file) yield name, mtime def _generate_diff(self): diff_list = [] for name, mtime in self.iter_modules(): if self._record[name] < mtime: # have modify self._record[name] = mtime diff_list.append(name) return diff_list def generate_diff(self): self._count += 1 return self._generate_diff() _reload_record = ReloadRecord() def init_reload_record(): _reload_record.init_record() def set_base_to_now(): _reload_record.generate_diff() def reload_script(): """ 增量进行funccode reload :return: """ diff_list = _reload_record.generate_diff() if not diff_list: LogManager.get_logger().info('nothing to reload') return False from core.tool import reload_impl for mod_name in diff_list: reload_impl.reload_module(mod_name) return True
pclib/test/TestSynchronizer_test.py
belang/pymtl
206
11122040
<filename>pclib/test/TestSynchronizer_test.py #========================================================================= # TestSynchronizer_test.py #========================================================================= from __future__ import print_function import pytest from pymtl import * from pclib.test import TestSource, TestSink from TestSynchronizer import TestSynchronizer, TestSynchInfo #------------------------------------------------------------------------- # TestHarness #------------------------------------------------------------------------- class TestHarness( Model ): def __init__( s, dtype, msgs1, msgs2, synch_info, src_delay, sink_delay ): s.src1 = TestSource( dtype, msgs1, src_delay ) s.src2 = TestSource( dtype, msgs2, src_delay ) s.synch1 = TestSynchronizer( dtype, 0, synch_info ) s.synch2 = TestSynchronizer( dtype, 1, synch_info ) s.sink1 = TestSink( dtype, msgs1, sink_delay ) s.sink2 = TestSink( dtype, msgs2, sink_delay ) s.synch_info = synch_info s.synch_idx = 0 s.expected_num_msgs = [ i for i, _ in synch_info.synch_table[0] ][ : -1 ] s.connect( s.src1.out, s.synch1.in_ ) s.connect( s.synch1.out, s.sink1.in_ ) s.connect( s.src2.out, s.synch2.in_ ) s.connect( s.synch2.out, s.sink2.in_ ) def check( s ): """ Ensure the synchronization is respected by checking how many messages the sinks received. """ assert s.sink1.sink.idx <= s.expected_num_msgs[0] assert s.sink2.sink.idx <= s.expected_num_msgs[1] if s.sink1.sink.idx == s.expected_num_msgs[0] and \ s.sink2.sink.idx == s.expected_num_msgs[1]: # Once we receive enough messages, mimic the fake synchronizer (idx # 2) to have sent its token. s.synch_info.token_sent( 2 ) s.synch_idx += 1 if s.synch_idx < len( s.synch_info.synch_table ): s.expected_num_msgs[0] += s.synch_info.synch_table[ s.synch_idx ][0][0] s.expected_num_msgs[1] += s.synch_info.synch_table[ s.synch_idx ][1][0] else: # The end of the synch table, so set a large number of expected # messages. s.expected_num_msgs[0] = 10000 s.expected_num_msgs[1] = 10000 def done( s ): return s.src1.done and s.src2.done and s.sink1.done and s.sink2.done def line_trace( s ): return s.src1.line_trace() + " > " + s.sink1.line_trace() + " | " + \ s.src2.line_trace() + " > " + s.sink2.line_trace() + " | " + \ s.synch_info.line_trace() #------------------------------------------------------------------------- # do_test #------------------------------------------------------------------------- def do_test( dump_vcd, src_delay, sink_delay ): # Test messages test_msgs1 = [ 0x0000, 0x0a0a, 0x0b0b, # synch 0 0x0c0c, 0x0d0d, # synch 1 # synch 2 0xf0f0, 0xe0e0, 0xd0d0, 0x1441, 0x2255, 0x1d01, 0xf0f1, # synch 3 0xe011, 0xd022, ] test_msgs2 = [ 0x1234, 0x1122, 0xaabb, 0x00aa, 0x1a1a, 0x21aa, # synch 0 # synch 1 0x0001, 0x1111, 0x4444, 0x1050, # synch 2 0x1100, 0x0099, # synch 3 0x1094, 0x1859, 0x1859, 0x1953, 0x1551, 0x3355, ] # Note that we're using a fake synchronizer at index 2 for testing with # a single token. The test harness will use this to ensure number of # messages that went through is what we expect. synch_table = [ [ [3,0], [6,0], [1,0], ], [ [2,0], [0,0], [1,0], ], [ [0,0], [4,0], [1,0], ], ] synch_info = TestSynchInfo( synch_table ) # Instantiate and elaborate the model model = TestHarness( 16, test_msgs1, test_msgs2, synch_info, src_delay, sink_delay ) model.vcd_file = dump_vcd model.elaborate() # Create a simulator using the simulation tool sim = SimulationTool( model ) # Run the simulation print() sim.reset() while not model.done() and sim.ncycles < 1000: sim.print_line_trace() model.check() sim.cycle() assert model.done() # Add a couple extra ticks so that the VCD dump is nicer sim.cycle() sim.cycle() sim.cycle() @pytest.mark.parametrize( 'src_delay,sink_delay', [ ( 0, 0 ), ( 1, 1 ), ( 1, 0 ), ( 5, 1 ), ( 0, 1 ), ( 1, 5 ), ( 10, 10 ), ]) def test_TestSource( dump_vcd, src_delay, sink_delay ): do_test( dump_vcd, src_delay, sink_delay )
基础教程/A2-神经网络基本原理/第5步 - 非线性分类/src/ch11-NonLinearMultipleClassification/Level1_BankClassifier.py
microsoft/ai-edu
11,094
11122052
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. import numpy as np import matplotlib.pyplot as plt from HelperClass2.NeuralNet_2_2 import * from HelperClass2.Visualizer_1_1 import * train_data_name = "../../Data/ch11.train.npz" test_data_name = "../../Data/ch11.test.npz" if __name__ == '__main__': dataReader = DataReader_2_0(train_data_name, test_data_name) dataReader.ReadData() dataReader.NormalizeY(NetType.MultipleClassifier, base=1) fig = plt.figure(figsize=(6,6)) DrawThreeCategoryPoints(dataReader.XTrainRaw[:,0], dataReader.XTrainRaw[:,1], dataReader.YTrain, "Source Data") plt.show() dataReader.NormalizeX() dataReader.Shuffle() dataReader.GenerateValidationSet() n_input = dataReader.num_feature n_hidden = 3 n_output = dataReader.num_category eta, batch_size, max_epoch = 0.1, 10, 5000 eps = 0.1 hp = HyperParameters_2_0(n_input, n_hidden, n_output, eta, max_epoch, batch_size, eps, NetType.MultipleClassifier, InitialMethod.Xavier) net = NeuralNet_2_2(hp, "Bank_233") #net.LoadResult() net.train(dataReader, 100, True) net.ShowTrainingHistory() fig = plt.figure(figsize=(6,6)) DrawThreeCategoryPoints(dataReader.XTrain[:,0], dataReader.XTrain[:,1], dataReader.YTrain, hp.toString()) ShowClassificationResult25D(net, 50, hp.toString()) plt.show()
tests/integration_tests/test_neuropod.py
dantreiman/ludwig
7,739
11122053
<reponame>dantreiman/ludwig # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import platform import sys from typing import List, Union import numpy as np import pandas as pd import pytest import torch from ludwig.api import LudwigModel from ludwig.constants import NAME, PREDICTIONS, TRAINER from ludwig.utils.neuropod_utils import export_neuropod from tests.integration_tests.utils import ( binary_feature, category_feature, generate_data, LocalTestBackend, number_feature, ) @pytest.mark.skipif(platform.system() == "Windows", reason="Neuropod is not supported on Windows") @pytest.mark.skipif(sys.version_info >= (3, 9), reason="Neuropod does not support Python 3.9") def test_neuropod_torchscript(csv_filename, tmpdir): data_csv_path = os.path.join(tmpdir, csv_filename) # Configure features to be tested: bin_str_feature = binary_feature() input_features = [ bin_str_feature, # binary_feature(), number_feature(), category_feature(vocab_size=3), # TODO: future support # sequence_feature(vocab_size=3), # text_feature(vocab_size=3), # vector_feature(), # image_feature(image_dest_folder), # audio_feature(audio_dest_folder), # timeseries_feature(), # date_feature(), # h3_feature(), # set_feature(vocab_size=3), # bag_feature(vocab_size=3), ] output_features = [ bin_str_feature, # binary_feature(), number_feature(), category_feature(vocab_size=3), # TODO: future support # sequence_feature(vocab_size=3), # text_feature(vocab_size=3), # set_feature(vocab_size=3), # vector_feature() ] backend = LocalTestBackend() config = {"input_features": input_features, "output_features": output_features, TRAINER: {"epochs": 2}} # Generate training data training_data_csv_path = generate_data(input_features, output_features, data_csv_path) # Convert bool values to strings, e.g., {'Yes', 'No'} df = pd.read_csv(training_data_csv_path) false_value, true_value = "No", "Yes" df[bin_str_feature[NAME]] = df[bin_str_feature[NAME]].map(lambda x: true_value if x else false_value) df.to_csv(training_data_csv_path) # Train Ludwig (Pythonic) model: ludwig_model = LudwigModel(config, backend=backend) ludwig_model.train( dataset=training_data_csv_path, skip_save_training_description=True, skip_save_training_statistics=True, skip_save_model=True, skip_save_progress=True, skip_save_log=True, skip_save_processed_input=True, ) # Obtain predictions from Python model preds_dict, _ = ludwig_model.predict(dataset=training_data_csv_path, return_type=dict) # Create graph inference model (Torchscript) from trained Ludwig model. neuropod_path = os.path.join(tmpdir, "neuropod") export_neuropod(ludwig_model, neuropod_path) from neuropod.loader import load_neuropod neuropod_module = load_neuropod(neuropod_path) def to_input(s: pd.Series) -> Union[List[str], torch.Tensor]: if s.dtype == "object": return np.array(s.to_list()) return s.to_numpy().astype(np.float32) df = pd.read_csv(training_data_csv_path) inputs = {name: to_input(df[feature.column]) for name, feature in ludwig_model.model.input_features.items()} outputs = neuropod_module.infer(inputs) # Compare results from Python trained model against Neuropod assert len(preds_dict) == len(outputs) for feature_name, feature_outputs_expected in preds_dict.items(): assert feature_name in outputs output_values_expected = feature_outputs_expected[PREDICTIONS] output_values = outputs[feature_name] if output_values.dtype.type in {np.string_, np.str_}: # Strings should match exactly assert np.all(output_values == output_values_expected), f"feature: {feature_name}, output: predictions" else: assert np.allclose(output_values, output_values_expected), f"feature: {feature_name}, output: predictions"
pyclue/tf1/tasks/sentence_pair/siamese/predict.py
CLUEbenchmark/PyCLUE
122
11122069
#!/usr/bin/python3 """ @Author: <NAME> @Site: https://github.com/liushaoweihua """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import json import numpy as np import tensorflow as tf from pyclue.tf1.open_sources.configs import pretrained_names, pretrained_types from pyclue.tf1.open_sources.download import get_pretrained_model from pyclue.tf1.tasks.sentence_pair.siamese.inputs import Processor from pyclue.tf1.tokenizers.bert_tokenizer import FullTokenizer # Add more tokenizers class Predictor(object): def __init__(self, model_file): self.model_file = os.path.abspath(model_file) # label label_map_reverse_file = os.path.join( self.model_file, 'label_map_reverse.json') with tf.gfile.GFile(label_map_reverse_file, 'r') as f: self.label_map_reverse = json.load(f) self.labels = [item[1] for item in sorted( self.label_map_reverse.items(), key=lambda i: i[0])] # model model_config_file = os.path.join( self.model_file, 'model_config.json') with tf.gfile.GFile(model_config_file, 'r') as f: self.model_config = json.load(f) self.model_name = self.model_config.get('model_name') or None self.model_type = self.model_config.get('model_type') or None self.vocab_file = self.model_config.get('vocab_file') or None self.max_seq_len = self.model_config.get('max_seq_len') or 512 if not self.model_name: assert all([self.vocab_file, self.model_type]), \ 'If not given model_name provided by open_sources, ' \ 'you should specify the model_type and vocab_file.' else: assert self.model_name in pretrained_names, \ '%s not provided by open_sources' % self.model_name self.model_type = pretrained_types.get(self.model_name).split('_')[0] pretrained_dir = get_pretrained_model(pretrained_name=self.model_name) self.vocab_file = os.path.join(pretrained_dir, 'vocab.txt') # tokenizer if self.model_type == 'bert': self.tokenizer = FullTokenizer(self.vocab_file) elif self.model_type == 'albert': self.tokenizer = FullTokenizer(self.vocab_file) else: raise ValueError('model_type %s unknown.' % self.model_type) # processor self._load_processor() # build graph self._build() def _load_processor(self): self.processor = Processor( max_seq_len=self.max_seq_len, tokenizer=self.tokenizer, labels=self.labels) def _build(self): self.graph = tf.Graph() self.sess = tf.Session() self.meta_graph_def = tf.saved_model.loader.load( self.sess, tags=['serve'], export_dir=self.model_file) self.signature = self.meta_graph_def.signature_def self.input_ids_1 = self.signature['serving_default'].inputs['input_ids_1'].name self.input_mask_1 = self.signature['serving_default'].inputs['input_mask_1'].name self.segment_ids_1 = self.signature['serving_default'].inputs['segment_ids_1'].name self.input_ids_2 = self.signature['serving_default'].inputs['input_ids_2'].name self.input_mask_2 = self.signature['serving_default'].inputs['input_mask_2'].name self.segment_ids_2 = self.signature['serving_default'].inputs['segment_ids_2'].name self.label_ids = self.signature['serving_default'].inputs['label_ids'].name self.text_a_embedding = self.signature['serving_default'].outputs['text_a_embedding'].name self.text_b_embedding = self.signature['serving_default'].outputs['text_b_embedding'].name self.cos_sims = self.signature['serving_default'].outputs['cos_sims'].name self.predictions = self.signature['serving_default'].outputs['predictions'].name self.probabilities = self.signature['serving_default'].outputs['probabilities'].name def _predict_for_single_example(self, feature): cos_sim, prediction, probability = self.sess.run( [self.cos_sims, self.predictions, self.probabilities], feed_dict={ self.input_ids_1: [feature.input_ids_1], self.input_mask_1: [feature.input_mask_1], self.segment_ids_1: [feature.segment_ids_1], self.input_ids_2: [feature.input_ids_2], self.input_mask_2: [feature.input_mask_2], self.segment_ids_2: [feature.segment_ids_2], self.label_ids: [feature.label_id]}) return cos_sim, prediction, probability def predict(self, texts): assert isinstance(texts, list), 'texts format should be `list`' assert all([isinstance(item, list) for item in texts]), 'texts item format should be `list`' new_texts = [] for item in texts: if len(item) == 2 or len(item) == 3: new_texts.append([self.labels[0], item[-2], item[-1]]) else: raise ValueError('text item should contain 2 or 3 elements') assert all([len(item) == 3 for item in new_texts]), \ 'texts item should contain 3 elements' features = self.processor.get_features_for_inputs(new_texts) results = [] for text, feature in zip(new_texts, features): cos_sim, prediction, probability = self._predict_for_single_example(feature) results.append({ 'text_a': text[1], 'text_b': text[2], 'cos_sim': np.squeeze(cos_sim).tolist() / 100, 'prediction': self.label_map_reverse[str(np.squeeze(prediction).tolist())], 'probability': np.squeeze(probability).tolist()}) return results def predict_from_file(self, input_file): texts = self.processor.read_file(input_file) texts = np.squeeze(texts).tolist() return self.predict(texts) def quality_inspection(self, input_file, save_path): texts = self.processor.read_file(input_file) if np.array(texts).ndim == 1: texts = [texts] texts = [item for item in texts if len(item) == 3] features = self.processor.get_features_for_inputs(texts) cos_sims, predictions, probabilities = [], [], [] for feature in features: cos_sim, prediction, probability = self._predict_for_single_example(feature) cos_sims.append(cos_sim) predictions.append(prediction) probabilities.append(probability.tolist()) if not tf.gfile.Exists(save_path): tf.gfile.MakeDirs(save_path) with tf.gfile.GFile(os.path.join(save_path, input_file.split('/')[-1]), 'w') as writer: for text, prediction, probability in zip(texts, predictions, probabilities): prediction = self.label_map_reverse[str(np.squeeze(prediction).tolist())] if text[0] != prediction: writer.write( 'text_a = %s, text_b = %s, ' 'true = %s, pred = %s, ' 'probability = %s, cos_sim = %s\n' % (text[1], text[2], text[0], prediction, probability, cos_sim / 100)) def close(self): self.sess.close() def restart(self): self._build()
libs/tracker/gric.py
SimOgaard/DF-VO
361
11122093
'''''' ''' @Author: <NAME> (<EMAIL>) @Date: 2020-03-01 @Copyright: Copyright (C) <NAME> 2020. All rights reserved. Please refer to the license file. @LastEditTime: 2020-05-27 @LastEditors: <NAME> @Description: This file contains functions related to GRIC computation ''' import numpy as np def compute_fundamental_residual(F, kp1, kp2): """ Compute fundamental matrix residual Args: F (array, [3x3]): Fundamental matrix (from view-1 to view-2) kp1 (array, [Nx2]): keypoint 1 kp2 (array, [Nx2]): keypoint 2 Returns: res (array, [N]): residual """ # get homogeneous keypoints (3xN array) m0 = np.ones((3, kp1.shape[0])) m0[:2] = np.transpose(kp1, (1,0)) m1 = np.ones((3, kp2.shape[0])) m1[:2] = np.transpose(kp2, (1,0)) Fm0 = F @ m0 #3xN Ftm1 = F.T @ m1 #3xN m1Fm0 = (np.transpose(Fm0, (1,0)) @ m1).diagonal() res = m1Fm0**2 / (np.sum(Fm0[:2]**2, axis=0) + np.sum(Ftm1[:2]**2, axis=0)) return res def compute_homography_residual(H_in, kp1, kp2): """ Compute homography matrix residual Args: H (array, [3x3]): homography matrix (Transformation from view-1 to view-2) kp1 (array, [Nx2]): keypoint 1 kp2 (array, [Nx2]): keypoint 2 Returns: res (array, [N]): residual """ n = kp1.shape[0] H = H_in.flatten() # get homogeneous keypoints (3xN array) m0 = np.ones((3, kp1.shape[0])) m0[:2] = np.transpose(kp1, (1,0)) m1 = np.ones((3, kp2.shape[0])) m1[:2] = np.transpose(kp2, (1,0)) G0 = np.zeros((3, n)) G1 = np.zeros((3, n)) G0[0]= H[0] - m1[0] * H[6] G0[1]= H[1] - m1[0] * H[7] G0[2]=-m0[0] * H[6] - m0[1] * H[7] - H[8] G1[0]= H[3] - m1[1] * H[6] G1[1]= H[4] - m1[1] * H[7] G1[2]=-m0[0] * H[6] - m0[1] * H[7] - H[8] magG0=np.sqrt(G0[0]*G0[0] + G0[1]*G0[1] + G0[2]*G0[2]) magG1=np.sqrt(G1[0]*G1[0] + G1[1]*G1[1] + G1[2]*G1[2]) magG0G1=G0[0]*G1[0] + G0[1]*G1[1] alpha=np.arccos(magG0G1 /(magG0*magG1)) alg = np.zeros((2, n)) alg[0]= m0[0]*H[0] + m0[1]*H[1] + H[2] - \ m1[0]*(m0[0]*H[6] + m0[1]*H[7] + H[8]) alg[1]= m0[0]*H[3] + m0[1]*H[4] + H[5] - \ m1[1]*(m0[0]*H[6] + m0[1]*H[7] + H[8]) D1=alg[0]/magG0 D2=alg[1]/magG1 res = (D1*D1 + D2*D2 - 2.0*D1*D2*np.cos(alpha))/np.sin(alpha) return res def calc_GRIC(res, sigma, n, model): """Calculate GRIC Args: res (array, [N]): residual sigma (float): assumed variance of the error n (int): number of residuals model (str): model type - FMat - EMat - HMat """ R = 4 sigmasq1 = 1./ sigma**2 K = { "FMat": 7, "EMat": 5, "HMat": 8, }[model] D = { "FMat": 3, "EMat": 3, "HMat": 2, }[model] lam3RD=2.0 * (R-D) sum_ = 0 for i in range(n): tmp=res[i] * sigmasq1 if tmp<=lam3RD: sum_ += tmp else: sum_ += lam3RD sum_ += n * D * np.log(R) + K * np.log(R*n) return sum_
platforms/tinyfpga_bx.py
auscompgeek/litex-buildenv
198
11122124
from litex.build.generic_platform import * from litex.build.lattice import LatticePlatform from litex.build.lattice.programmer import TinyProgProgrammer _io = [ ("user_led", 0, Pins("B3"), IOStandard("LVCMOS33")), ("usb", 0, Subsignal("d_p", Pins("B4")), Subsignal("d_n", Pins("A4")), Subsignal("pullup", Pins("A3")), IOStandard("LVCMOS33") ), ("spiflash", 0, Subsignal("cs_n", Pins("F7"), IOStandard("LVCMOS33")), Subsignal("clk", Pins("G7"), IOStandard("LVCMOS33")), Subsignal("mosi", Pins("G6"), IOStandard("LVCMOS33")), Subsignal("miso", Pins("H7"), IOStandard("LVCMOS33")), Subsignal("wp", Pins("H4"), IOStandard("LVCMOS33")), Subsignal("hold", Pins("J8"), IOStandard("LVCMOS33")) ), ("spiflash4x", 0, Subsignal("cs_n", Pins("F7"), IOStandard("LVCMOS33")), Subsignal("clk", Pins("G7"), IOStandard("LVCMOS33")), Subsignal("dq", Pins("G6 H7 H4 J8"), IOStandard("LVCMOS33")) ), ("clk16", 0, Pins("B2"), IOStandard("LVCMOS33")) ] _connectors = [ # Putting the USB connector at top (similar to TinyFPGA BX documentation card). # A2-H2, Pins 1-13, GPIO:0 --> GPIO:12 - Left side, starting at top going down. # H9-A6, Pins 14-24, GPIO:13 --> GPIO:23 - Right side, starting at bottom going up. ("GPIO", "A2 A1 B1 C2 C1 D2 D1 E2 E1 G2 H1 J1 H2 H9 D9 D8 C9 A9 B8 A8 B7 A7 B6 A6"), # G1-J2, Pins 25-31 EXTRA:0 --> EXTRA:6 - Pads on the bottom of the board. ("EXTRA", "G1 J3 J4 G9 J9 E8 J2") ] class Platform(LatticePlatform): name = "tinyfpga_bx" default_clk_name = "clk16" default_clk_period = 62.5 # TinyFPGA BX normally defines the user bitstream to begin at 0x28000 # and user data to begin at 0x50000; follow the convention here. bootloader_size = 0x28000 gateware_size = 0x50000 - bootloader_size # FIXME: Create a "spi flash module" object in the same way we have SDRAM spiflash_model = "m25p16" spiflash_read_dummy_bits = 8 spiflash_clock_div = 2 spiflash_total_size = int((8/8)*1024*1024) # 8Mbit spiflash_page_size = 256 spiflash_sector_size = 0x10000 def __init__(self): LatticePlatform.__init__(self, "ice40-lp8k-cm81", _io, _connectors, toolchain="icestorm") def create_programmer(self): return TinyProgProgrammer()
cap/BlueFuzz/bluetooth_scanner.py
Charmve/BLE-Security-Att-Def
149
11122131
<gh_stars>100-1000 import bluetooth import subprocess import time import os from obd_generator import * SCANNER_TIME = 3 # NOTE: should be run as root def main(): try: # switch off subprocesses output devs = open(os.devnull,"w") # make directory with root privileges to store pcap output file # tshark output can be stored only in root's directories subprocess.call("mkdir ./capture",shell=True,stdout=devs,stderr=devs) #run tshark with root privileges on bluetooth interface thread=subprocess.Popen(["tshark", "-w", "./capture/capture.pcap", "-i", "bluetooth0"],stdout=devs,stderr=devs) #STEP 1: BLUETOOTH SCANNER devices = bluetooth.discover_devices(lookup_names = True, flush_cache = True, duration = SCANNER_TIME) if len(devices) == 0: print ("No devices found") thread.terminate() quit() i=0 dev_names = [] dev_addr = [] dev_services = [] # print services for each discovered device for addr, name in devices: #device_name = bluetooth.lookup_name(addr) dev_addr.append(addr) dev_names.append(name) print "Device N." + str(i) + ": " + addr + ": " + name services = [] j=0 for service in bluetooth.find_service(address = addr): print " Service N: ", j print " Name: ", service["name"] print " Description: ", service["description"] print " Protocol: ", service["protocol"] print " Provider: ", service["provider"] print " Port: ", service["port"] print " Service id: ", service["service-id"] print "" services.append(service) j=j+1 dev_services.append(services) i=i+1 #STEP 2: DEVICE CHOOSING try: userInput=(raw_input('Chose a device number for pairing (q for quit):')) if userInput == 'q': thread.terminate() quit() deviceNum = int(userInput) except ValueError: print "Not a number" thread.terminate() quit() if deviceNum >= len(devices): print "Input error: no such device" thread.terminate() quit() address = dev_addr[deviceNum] name = dev_names[deviceNum] print "You have chosen device " + str(deviceNum) + ": " + address + "(" + name + ")" #STEP 3: CHOSE SERVICE try: serviceNum = int(raw_input('Chose the service number :')) # RFCOMM port except ValueError: print "Not a number" thread.terminate() quit() chosen_services = dev_services[deviceNum] if serviceNum >= len(chosen_services): print "Input error: no such service" thread.terminate() quit() chosen_service = chosen_services[serviceNum] protocol = chosen_service["protocol"] port = chosen_service["port"] print "protocol: " + protocol print "port: ", port #STEP 4: PAIRING try: # bluetooth protocol for OBD-II interaction: RFCOMM if protocol == "RFCOMM": socket = bluetooth.BluetoothSocket(bluetooth.RFCOMM) elif protocol == "L2CAP": socket = bluetooth.BluetoothSocket(bluetooth.L2CAP) else: print "Protocol not supported" thread.terminate() quit() socket.connect((address,port)) print "Device connected" # the first packet is equal to the first sent by the official application socket.send("ATZ\r") print "Sent: ATZ\r" time.sleep(1) # expected answer is "\r\rELM327 v1.5\r\r" # the second packet is equal to the second sent by the official application socket.send("ATD\r") print "Sent: ATD\r" time.sleep(1) # expected answer is "\rOK\r\r" while True: # send pseudo-random generated data data = generator() socket.send(data) print "Sent: ", data time.sleep(1) ''' #To receive data received = socket.recv(1024) # Buffer size print "received: ", received ''' except bluetooth.btcommon.BluetoothError as err: print err socket.close() thread.terminate() quit() except KeyboardInterrupt: # to intercept CRTL+C interrupt print "\nQuitting..." thread.terminate() quit() if __name__ == "__main__": main()
plugins/aws/test/test_config.py
someengineering/resoto
126
11122148
<filename>plugins/aws/test/test_config.py<gh_stars>100-1000 from resotolib.utils import num_default_threads from resotolib.config import Config from resoto_plugin_aws import AWSCollectorPlugin def test_args(): config = Config("dummy", "dummy") AWSCollectorPlugin.add_config(config) Config.init_default_config() assert Config.aws.access_key_id is None assert Config.aws.secret_access_key is None assert Config.aws.role is None assert Config.aws.role_override is False assert Config.aws.account is None assert Config.aws.region is None assert Config.aws.scrape_org is False assert Config.aws.fork_process is True assert Config.aws.scrape_exclude_account == [] assert Config.aws.assume_current is False assert Config.aws.do_not_scrape_current is False assert Config.aws.account_pool_size == num_default_threads() assert Config.aws.region_pool_size == 20 assert len(Config.aws.collect) == 0 assert len(Config.aws.no_collect) == 0
code_sender/winauto.py
fredcallaway/SendCode
177
11122154
<reponame>fredcallaway/SendCode<gh_stars>100-1000 import ctypes import time import re from ctypes import c_bool, c_uint, c_long, c_size_t, c_wchar # most of them are derived from pywinauto class MENUITEMINFOW(ctypes.Structure): _fields_ = [ ('cbSize', c_uint), ('fMask', c_uint), ('fType', c_uint), ('fState', c_uint), ('wID', c_uint), ('hSubMenu', c_size_t), ('hbmpChecked', c_size_t), ('hbmpUnchecked', c_size_t), ('dwItemData', c_size_t), ('dwTypeData', c_size_t), ('cch', c_uint), ('hbmpItem', c_size_t), ] FindWindow = ctypes.windll.user32.FindWindowW EnumWindowsProc = ctypes.CFUNCTYPE(c_bool, c_size_t, c_size_t) EnumChildWindowsProc = ctypes.CFUNCTYPE(c_bool, c_size_t, c_size_t) IsWindowVisible = ctypes.windll.user32.IsWindowVisible GetWindowText = ctypes.windll.user32.GetWindowTextW GetWindowTextLength = ctypes.windll.user32.GetWindowTextLengthW GetClassName = ctypes.windll.user32.GetClassNameW BringWindowToTop = ctypes.windll.user32.BringWindowToTop GetMenu = ctypes.windll.user32.GetMenu GetMenuItemInfo = ctypes.windll.user32.GetMenuItemInfoW EnumWindows = ctypes.windll.user32.EnumWindows EnumChildWindows = ctypes.windll.user32.EnumChildWindows PostMessage = ctypes.windll.user32.PostMessageA keybd_event = ctypes.windll.user32.keybd_event def get_menu_item_info(menu, index): info = MENUITEMINFOW() info.cbSize = ctypes.sizeof(info) info.fMask = 31 ret = GetMenuItemInfo(menu, c_long(index), True, ctypes.byref(info)) if not ret: raise Exception("menu item not found.") return info def get_menu_item_text(menu, index, info=None): if not info: info = get_menu_item_info(menu, index) if info.cch: buffer_size = info.cch + 1 text = ctypes.create_unicode_buffer(buffer_size) info.dwTypeData = ctypes.addressof(text) info.cch = buffer_size GetMenuItemInfo(menu, c_long(index), True, ctypes.byref(info)) return text.value else: return "" def get_window_text(hwnd): length = GetWindowTextLength(hwnd) buff = ctypes.create_unicode_buffer(length + 1) GetWindowText(hwnd, buff, length + 1) if buff.value: return buff.value else: return "" def get_class(hwnd): className = (c_wchar * 257)() GetClassName(hwnd, ctypes.byref(className), 256) return className.value def enum_windows(callback): proc = EnumWindowsProc(callback) EnumWindows(proc, 0) def enum_child_windows(hwnd, callback): proc = EnumChildWindowsProc(callback) EnumChildWindows(hwnd, proc, 0) def find_window(title=None, classname=None): windows = [] def loop_over_windows(hwnd, _): if windows or not IsWindowVisible(hwnd): return True if (not title or re.match(title, get_window_text(hwnd))) and \ (not classname or get_class(hwnd) == classname): windows.append(hwnd) return True try: enum_windows(loop_over_windows) except Exception: pass if windows: window = windows[0] return window def find_rgui(): rgui = find_window(r"R Console.*", "Rgui") if not rgui: rgui = find_window(classname="Rgui Workspace") if not rgui: raise Exception("window not found.") return rgui def bring_rgui_to_top(rid): BringWindowToTop(rid) if get_class(rid) == "Rgui Workspace": def bring_child(hwnd, _): if get_window_text(hwnd).startswith("R Console"): BringWindowToTop(hwnd) return True try: enum_child_windows(rid, bring_child) except Exception: pass def paste_to_rgui(rid): menu = GetMenu(rid) if get_menu_item_text(menu, 0): # non-fullscreen mdi mode submenu = get_menu_item_info(menu, 1).hSubMenu else: # fullscreen mdi mode or sdi mode submenu = get_menu_item_info(menu, 2).hSubMenu pasteid = get_menu_item_info(submenu, 1).wID PostMessage(rid, 7, pasteid, 0) # set forcues time.sleep(0.01) PostMessage(rid, 273, pasteid, 0) # click time.sleep(0.01) def find_rstudio(): rgui = find_window(r".*RStudio", "Qt5QWindowIcon") if not rgui: raise Exception("window not found.") return rgui def paste_to_rstudio(rid, from_view=True): time.sleep(0.01) if not from_view: keybd_event(18, 0, 2, 0) # alt up keybd_event(16, 0, 2, 0) # shift up time.sleep(0.01) keybd_event(17, 0, 0, 0) # ctrl down time.sleep(0.01) PostMessage(rid, 256, ord("V"), 0) time.sleep(0.01) if not from_view: keybd_event(17, 0, 2, 0) # ctrl up time.sleep(0.01) PostMessage(rid, 7, 0, 0) time.sleep(0.01) PostMessage(rid, 256, 13, 0) time.sleep(0.01)
py/demo/app.py
swt2c/wave
3,013
11122158
<filename>py/demo/app.py from h2o_wave import main, app, Q from .dashboard_red import show_red_dashboard from .dashboard_blue import show_blue_dashboard from .dashboard_orange import show_orange_dashboard from .dashboard_cyan import show_cyan_dashboard from .dashboard_grey import show_grey_dashboard from .dashboard_mint import show_mint_dashboard from .dashboard_purple import show_purple_dashboard @app('/') async def serve(q: Q): route = q.args['#'] q.page.drop() if route == 'dashboards/red': await show_red_dashboard(q) elif route == 'dashboards/blue': await show_blue_dashboard(q) elif route == 'dashboards/orange': await show_orange_dashboard(q) elif route == 'dashboards/cyan': await show_cyan_dashboard(q) elif route == 'dashboards/grey': await show_grey_dashboard(q) elif route == 'dashboards/mint': await show_mint_dashboard(q) elif route == 'dashboards/purple': await show_purple_dashboard(q) else: await show_red_dashboard(q)
test/speed.py
wazenmai/Python-WORLD
113
11122166
<filename>test/speed.py # built-in imports import timeit # 3rd-party imports import numpy as np from scipy.io.wavfile import read as wavread from scipy.io.wavfile import write # local imports from world import main fs, x_int16 = wavread('test-mwm.wav') x = x_int16 / (2 ** 15 - 1) vocoder = main.World() # profile print(timeit.timeit("vocoder.encode(fs, x, f0_method='harvest')", globals=globals(), number=1))
src/pathpicker/state_files.py
houbie/PathPicker
5,167
11122170
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import List FPP_DIR = os.environ.get("FPP_DIR") or "~/.cache/fpp" PICKLE_FILE = ".pickle" SELECTION_PICKLE = ".selection.pickle" OUTPUT_FILE = ".fpp.sh" LOGGER_FILE = ".fpp.log" def assert_dir_created() -> None: path = os.path.expanduser(FPP_DIR) if os.path.isdir(path): return try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise def get_pickle_file_path() -> str: assert_dir_created() return os.path.expanduser(os.path.join(FPP_DIR, PICKLE_FILE)) def get_selection_file_path() -> str: assert_dir_created() return os.path.expanduser(os.path.join(FPP_DIR, SELECTION_PICKLE)) def get_script_output_file_path() -> str: assert_dir_created() return os.path.expanduser(os.path.join(FPP_DIR, OUTPUT_FILE)) def get_logger_file_path() -> str: assert_dir_created() return os.path.expanduser(os.path.join(FPP_DIR, LOGGER_FILE)) def get_all_state_files() -> List[str]: # keep this update to date! We do not include # the script output path since that gets cleaned automatically return [ get_pickle_file_path(), get_selection_file_path(), get_logger_file_path(), get_script_output_file_path(), ]
how-to-use-azureml/reinforcement-learning/multiagent-particle-envs/files/util.py
lobrien/MachineLearningNotebooks
3,074
11122216
<filename>how-to-use-azureml/reinforcement-learning/multiagent-particle-envs/files/util.py import argparse import os import re from rllib_multiagent_particle_env import CUSTOM_SCENARIOS def parse_args(): parser = argparse.ArgumentParser('MADDPG with OpenAI MPE') # Environment parser.add_argument('--scenario', type=str, default='simple', choices=['simple', 'simple_speaker_listener', 'simple_crypto', 'simple_push', 'simple_tag', 'simple_spread', 'simple_adversary' ] + CUSTOM_SCENARIOS, help='name of the scenario script') parser.add_argument('--max-episode-len', type=int, default=25, help='maximum episode length') parser.add_argument('--num-episodes', type=int, default=60000, help='number of episodes') parser.add_argument('--num-adversaries', type=int, default=0, help='number of adversaries') parser.add_argument('--good-policy', type=str, default='maddpg', help='policy for good agents') parser.add_argument('--adv-policy', type=str, default='maddpg', help='policy of adversaries') # Core training parameters parser.add_argument('--lr', type=float, default=1e-2, help='learning rate for Adam optimizer') parser.add_argument('--gamma', type=float, default=0.95, help='discount factor') # NOTE: 1 iteration = sample_batch_size * num_workers timesteps * num_envs_per_worker parser.add_argument('--sample-batch-size', type=int, default=25, help='number of data points sampled /update /worker') parser.add_argument('--train-batch-size', type=int, default=1024, help='number of data points /update') parser.add_argument('--n-step', type=int, default=1, help='length of multistep value backup') parser.add_argument('--num-units', type=int, default=64, help='number of units in the mlp') parser.add_argument('--final-reward', type=int, default=-400, help='final reward after which to stop training') # Checkpoint parser.add_argument('--checkpoint-freq', type=int, default=200, help='save model once every time this many iterations are completed') parser.add_argument('--local-dir', type=str, default='./logs', help='path to save checkpoints') parser.add_argument('--restore', type=str, default=None, help='directory in which training state and model are loaded') # Parallelism parser.add_argument('--num-workers', type=int, default=1) parser.add_argument('--num-envs-per-worker', type=int, default=4) parser.add_argument('--num-gpus', type=int, default=0) return parser.parse_args() def find_final_checkpoint(start_dir): def find(pattern, path): result = [] for root, _, files in os.walk(path): for name in files: if pattern.match(name): result.append(os.path.join(root, name)) return result cp_pattern = re.compile('.*checkpoint-\\d+$') checkpoint_files = find(cp_pattern, start_dir) checkpoint_numbers = [] for file in checkpoint_files: checkpoint_numbers.append(int(file.split('-')[-1])) final_checkpoint_number = max(checkpoint_numbers) return next( checkpoint_file for checkpoint_file in checkpoint_files if checkpoint_file.endswith(str(final_checkpoint_number)))
slidedeck/create.py
SunPowered/slidedeck
187
11122227
<gh_stars>100-1000 """Code to create a template project """ import os import shutil TEMPLATE_VARIABLE = 'SLIDEDECK_TEMPLATE' def curdir(directory): return os.path.abspath(os.path.join(os.path.dirname(__file__), directory)) def check_env(): ''' Check the current user's environment to return important settings ''' sd_template = os.environ.get(TEMPLATE_VARIABLE, None) or curdir('data') return {'template_dir': sd_template} def create_project(directory, template=None): """ Create a project and copy the template files into it. """ if os.path.exists(directory): raise OSError("Directory '%s' already exists" % directory) settings = check_env() template = template or settings.get('template_dir', None) if not os.path.exists(template): raise OSError("Template directory '%s' does not exist" % template) def callback(src, names): base = os.path.relpath(src, template) for name in names: print("\033[92mcreate\033[0m {:s}".format(os.path.join(directory, base, name))) return [] shutil.copytree(template, directory, ignore=callback)
web-scraping/pdf-url-extractor/pdf_link_extractor_regex.py
caesarcc/python-code-tutorials
1,059
11122233
<filename>web-scraping/pdf-url-extractor/pdf_link_extractor_regex.py import fitz # pip install PyMuPDF import re # a regular expression of URLs url_regex = r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)" # extract raw text from pdf # file = "1710.05006.pdf" file = "1810.04805.pdf" # open the PDF file with fitz.open(file) as pdf: text = "" for page in pdf: # extract text of each PDF page text += page.getText() urls = [] # extract all urls using the regular expression for match in re.finditer(url_regex, text): url = match.group() print("[+] URL Found:", url) urls.append(url) print("[*] Total URLs extracted:", len(urls))
cort/test/core/test_external_data.py
leonardoboliveira/cort
141
11122242
from cort.core.external_data import GenderData __author__ = 'smartschat' import unittest class TestGenderData(unittest.TestCase): def setUp(self): self.gender_data = GenderData.get_instance() def test_look_up(self): self.assertEqual("NEUTRAL", self.gender_data.look_up({"tokens": ["snafu"]})) self.assertEqual("FEMALE", self.gender_data.look_up( {"tokens": ["Barbara", "Bush"], "head": ["Barbara", "Bush"]})) self.assertEqual("MALE", self.gender_data.look_up({ "tokens": ["Footballer", "Zidane"], "head": ["Zidane"]})) if __name__ == '__main__': unittest.main()
securityheaders/models/xxssprotection/__init__.py
th3cyb3rc0p/securityheaders
151
11122266
<reponame>th3cyb3rc0p/securityheaders from .xxssprotectiondirective import XXSSProtectionDirective from .xxssprotectionkeyword import XXSSProtectionKeyword from .xxssprotection import XXSSProtection __all__ = ['XXSSProtectionDirective', 'XXSSProtectionKeyword','XXSSProtection']
tests/integration_tests_plugins/version_aware_v2/setup.py
ilan-WS/cloudify-manager
124
11122308
from setuptools import setup setup( name='version_aware', version='2.0', packages=['version_aware'], )
examples/basics/subscribe.py
muhammadvellani/Adafruit_IO_Python
136
11122318
""" 'subscribe.py' ========================== Subscribes to an Adafruit IO Feed Author(s): <NAME>, <NAME> for Adafruit Industries """ # Import standard python modules. import sys # This example uses the MQTTClient instead of the REST client from Adafruit_IO import MQTTClient # Set to your Adafruit IO key. # Remember, your key is a secret, # so make sure not to publish it when you publish this code! ADAFRUIT_IO_KEY = 'YOUR_AIO_KEY' # Set to your Adafruit IO username. # (go to https://accounts.adafruit.com to find your username) ADAFRUIT_IO_USERNAME = 'YOUR_AIO_USERNAME' # Set to the ID of the feed to subscribe to for updates. FEED_ID = 'counter' # Define callback functions which will be called when certain events happen. def connected(client): """Connected function will be called when the client is connected to Adafruit IO.This is a good place to subscribe to feed changes. The client parameter passed to this function is the Adafruit IO MQTT client so you can make calls against it easily. """ # Subscribe to changes on a feed named Counter. print('Subscribing to Feed {0}'.format(FEED_ID)) client.subscribe(FEED_ID) print('Waiting for feed data...') def disconnected(client): """Disconnected function will be called when the client disconnects.""" sys.exit(1) def message(client, feed_id, payload): """Message function will be called when a subscribed feed has a new value. The feed_id parameter identifies the feed, and the payload parameter has the new value. """ print('Feed {0} received new value: {1}'.format(feed_id, payload)) # Create an MQTT client instance. client = MQTTClient(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY) # Setup the callback functions defined above. client.on_connect = connected client.on_disconnect = disconnected client.on_message = message # Connect to the Adafruit IO server. client.connect() # The first option is to run a thread in the background so you can continue # doing things in your program. client.loop_blocking()
utils/loss/hnm_loss.py
ZHANGHeng19931123/MutualGuide
124
11122338
<gh_stars>100-1000 #!/usr/bin/python # -*- coding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F class HNMLoss(nn.Module): def __init__(self, ratio=3.0, loss_weight=1.0): super(HNMLoss, self).__init__() self.ratio = ratio self.loss_weight = loss_weight def forward(self, pred, target, mask, reduction='mean'): pred, target = pred[mask], target[mask] with torch.no_grad(): num_pos = target.sum().item() pt = pred.sigmoid() * (1 - target) + 2.0 * target mask = torch.topk(pt, int((1+self.ratio)*num_pos))[1] loss = F.binary_cross_entropy_with_logits(pred[mask], target[mask], reduction='none') if reduction == 'sum': return loss.sum() elif reduction == 'mean': return loss.sum() / num_pos else: return loss
fna_det/configs/fna_ssdlite_retrain.py
BaiYuYuan/FNA
173
11122340
# model settings input_size = 300 model = dict( type='SingleStageDetector', pretrained=dict( use_load=True, load_path='./seed_mbv2.pt', seed_num_layers=[1, 1, 2, 3, 4, 3, 3, 1, 1] # mbv2 ), backbone=dict( type='FNA_SSDLite', input_size=input_size, net_config="""[[32, 16], ['k3_e1'], 1]| [[16, 24], ['k5_e6', 'skip', 'skip', 'skip'], 2]| [[24, 32], ['k5_e6', 'k5_e6', 'k3_e6', 'k5_e6'], 2]| [[32, 64], ['k5_e6', 'k7_e6', 'k3_e6', 'skip'], 2]| [[64, 96], ['k7_e6', 'k7_e6', 'k7_e6', 'k7_e6'], 1]| [[96, 160], ['k5_e6', 'k7_e6', 'k7_e6', 'skip'], 2]| [[160, 320], ['k7_e6'], 1]""", out_feature_indices=(6, 8), # l2_norm_scale=20, ), neck=None, bbox_head=dict( type='SSDLightHead', input_size=input_size, in_channels=(576, 1280, 512, 256, 256, 128), num_classes=81, anchor_strides=(16, 32, 64, 107, 160, 320), basesize_ratio_range=(0.2, 0.95), anchor_ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]), target_means=(.0, .0, .0, .0), target_stds=(0.1, 0.1, 0.2, 0.2))) # training and testing settings train_cfg = dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0, ignore_iof_thr=-1, gt_max_assign_all=False), smoothl1_beta=1., allowed_border=-1, pos_weight=-1, neg_pos_ratio=3, debug=False) test_cfg = dict( # nms_pre=1000, min_bbox_size=0, score_thr=0.02, nms=dict(type='nms', iou_thr=0.6), max_per_img=200) # dataset settings dataset_type = 'CocoDataset' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) data = dict( imgs_per_gpu=64, workers_per_gpu=2, train=dict( type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file= 'annotations/instances_train2017.json', img_prefix= 'train2017/', img_scale=(320, 320), img_norm_cfg=img_norm_cfg, size_divisor=None, flip_ratio=0.5, with_mask=False, with_crowd=False, with_label=True, test_mode=False, extra_aug=dict( photo_metric_distortion=dict( brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), expand=dict( mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), random_crop=dict( min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3)), resize_keep_ratio=False)), val=dict( type=dataset_type, ann_file='annotations/instances_val2017.json', img_prefix='val2017/', img_scale=(320, 320), img_norm_cfg=img_norm_cfg, size_divisor=None, flip_ratio=0, with_mask=False, # with_crowd=False, with_label=False, test_mode=True, resize_keep_ratio=False), test=dict( type=dataset_type, ann_file='annotations/instances_val2017.json', img_prefix='val2017/', img_scale=(320, 320), img_norm_cfg=img_norm_cfg, size_divisor=None, flip_ratio=0, with_mask=False, # with_crowd=False, with_label=False, test_mode=True, resize_keep_ratio=False)) # optimizer optimizer = dict(type='RMSprop', lr=0.2, eps=1.0, weight_decay=0.00004, momentum=0.9) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[36, 50, 56]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=200, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 60 use_syncbn = True image_size_madds = (320, 320) # device_ids = range(8) dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/ssd300_coco' load_from = None resume_from = None workflow = [('train', 1)]
training/criterion.py
HappyBelief/ContraD
168
11122343
<reponame>HappyBelief/ContraD import torch import torch.nn as nn import torch.nn.functional as F from third_party.gather_layer import GatherLayer def target_nll_loss(inputs, targets, reduction='none'): inputs_t = -F.nll_loss(inputs, targets, reduction='none') logit_diff = inputs - inputs_t.view(-1, 1) logit_diff = logit_diff.scatter(1, targets.view(-1, 1), -1e8) diff_max = logit_diff.max(1)[0] if reduction == 'sum': return diff_max.sum() elif reduction == 'mean': return diff_max.mean() elif reduction == 'none': return diff_max else: raise NotImplementedError() def nt_xent(out1, out2, temperature=0.1, distributed=False, normalize=False): """Compute NT_xent loss""" assert out1.size(0) == out2.size(0) if normalize: out1 = F.normalize(out1) out2 = F.normalize(out2) if distributed: out1 = torch.cat(GatherLayer.apply(out1), dim=0) out2 = torch.cat(GatherLayer.apply(out2), dim=0) N = out1.size(0) _out = [out1, out2] outputs = torch.cat(_out, dim=0) sim_matrix = outputs @ outputs.t() sim_matrix = sim_matrix / temperature sim_matrix.fill_diagonal_(-5e4) sim_matrix = F.log_softmax(sim_matrix, dim=1) loss = -torch.sum(sim_matrix[:N, N:].diag() + sim_matrix[N:, :N].diag()) / (2*N) return loss
scenic/projects/vivit/train_utils.py
techthiyanes/scenic
688
11122402
"""Training Utilities for ViViT.""" import functools from typing import Callable, Dict, List, Optional, Tuple, Union from absl import logging from flax import jax_utils import flax.linen as nn import jax from jax.experimental.optimizers import clip_grads import jax.numpy as jnp import jax.profiler import matplotlib.pyplot as plt import ml_collections import numpy as np from scenic.dataset_lib import dataset_utils from scenic.model_lib.base_models import model_utils from scenic.train_lib import optimizers from scenic.train_lib import train_utils import seaborn as sns # Aliases for custom types: Array = Union[jnp.ndarray, np.ndarray] Batch = Dict[str, jnp.ndarray] MetricFn = Callable[[jnp.ndarray, Dict[str, jnp.ndarray]], Dict[str, Tuple[float, int]]] LossFn = Callable[[jnp.ndarray, Batch, Optional[jnp.ndarray]], float] def to_cpu(array: jnp.ndarray): """Transfers array (replicated on multiple hosts) to a single host. Args: array: Replicated array of shape [num_hosts, num_devices, local_batch_size, ...] Returns: array of shape [global_batch_size, ...] where global_batch_size = num_devices * local_batch_size """ return jax.device_get(dataset_utils.unshard(jax_utils.unreplicate(array))) def train_step( train_state: train_utils.TrainState, batch: Batch, *, flax_model: nn.Module, learning_rate_fn: Callable[[int], float], loss_fn: LossFn, metrics_fn: MetricFn, config: ml_collections.ConfigDict, debug: Optional[bool] = False ) -> Tuple[train_utils.TrainState, Dict[str, Tuple[float, int]], float]: """Runs a single step of training. Given the state of the training and a batch of data, computes the loss and updates the parameters of the model. Note that in this code, the buffers of the first (train_state) and second (batch) arguments are donated to the computation. Args: train_state: The state of training including the current global_step, model_state, rng, and optimizer. The buffer of this argument can be donated to the computation. batch: A single batch of data. The buffer of this argument can be donated to the computation. flax_model: A Flax model. learning_rate_fn: learning rate scheduler which give the global_step generates the learning rate. loss_fn: A loss function that given logits, a batch, and parameters of the model calculates the loss. metrics_fn: A metrics function that given logits and batch of data, calculates the metrics as well as the loss. config: Configuration of the experiment. debug: Whether the debug mode is enabled during training. `debug=True` enables model specific logging/storing some values using jax.host_callback. Returns: Updated state of training, computed metrics, and learning rate for logging. """ new_rng, rng = jax.random.split(train_state.rng) if config.get('mixup') and config.mixup.alpha: mixup_rng, rng = jax.random.split(rng, 2) mixup_rng = train_utils.bind_rng_to_host_device( mixup_rng, axis_name='batch', bind_to=config.mixup.get('bind_to', 'device')) batch = dataset_utils.mixup( batch, config.mixup.alpha, config.mixup.get('image_format', 'NTHWC'), rng=mixup_rng) # Bind the rng to the host/device we are on for dropout. dropout_rng = train_utils.bind_rng_to_host_device( rng, axis_name='batch', bind_to='device') def training_loss_fn(params): variables = {'params': params, **train_state.model_state} logits, new_model_state = flax_model.apply( variables, batch['inputs'], mutable=['batch_stats'], train=True, rngs={'dropout': dropout_rng}, debug=debug) loss = loss_fn(logits, batch, variables['params']) return loss, (new_model_state, logits) compute_gradient_fn = jax.value_and_grad(training_loss_fn, has_aux=True) step = train_state.global_step lr = learning_rate_fn(step) if config.get('sam_rho', None) is None: # Normal training (train_cost, (new_model_state, logits)), grad = compute_gradient_fn(train_state.optimizer.target) else: # SAM training, taken from cl/373487774 def dual_vector(y: jnp.ndarray) -> jnp.ndarray: """Returns the solution of max_x y^T x s.t. ||x||_2 <= 1.""" gradient_norm = jnp.sqrt(sum( [jnp.sum(jnp.square(e)) for e in jax.tree_util.tree_leaves(y)])) normalized_gradient = jax.tree_map( lambda x: x / (gradient_norm + 1e-7), y) return normalized_gradient g_sam, _ = jax.grad(training_loss_fn, has_aux=True)( train_state.optimizer.target) g_sam = dual_vector(g_sam) target_sam = jax.tree_multimap(lambda a, b: a + config.get('sam_rho') * b, train_state.optimizer.target, g_sam) (train_cost, (new_model_state, logits)), grad = compute_gradient_fn(target_sam) # TODO(dehghani,aarnab): Check how to move this after the pmeam. if config.get('max_grad_norm', None) is not None: grad = clip_grads(grad, config.max_grad_norm) del train_cost # Re-use same axis_name as in the call to `pmap(...train_step...)` below. grad = jax.lax.pmean(grad, axis_name='batch') new_optimizer = train_state.optimizer.apply_gradient(grad, learning_rate=lr) # Explicit weight decay, if necessary. if config.get('explicit_weight_decay', None) is not None: new_optimizer = new_optimizer.replace( target=optimizers.tree_map_with_names( functools.partial( optimizers.decay_weight_fn, lr=lr, decay=config.explicit_weight_decay), new_optimizer.target, match_name_fn=lambda name: 'kernel' in name)) metrics = metrics_fn(logits, batch) new_train_state = train_state.replace( # pytype: disable=attribute-error global_step=step + 1, optimizer=new_optimizer, model_state=new_model_state, rng=new_rng) return new_train_state, metrics, lr def eval_step( train_state: train_utils.TrainState, batch: Batch, *, flax_model: nn.Module, metrics_fn: MetricFn, return_logits_and_labels: bool = False, return_confusion_matrix: bool = False, debug: Optional[bool] = False ) -> Union[Tuple[Dict[str, Tuple[float, int]], jnp.ndarray, jnp.array], Tuple[Dict[str, Tuple[float, int]], jnp.ndarray], Dict[str, Tuple[float, int]]]: """Runs a single step of training. Note that in this code, the buffer of the second argument (batch) is donated to the computation. Assumed API of metrics_fn is: ```metrics = metrics_fn(logits, batch) where batch is yielded by the batch iterator, and metrics is a dictionary mapping metric name to a vector of per example measurements. eval_step will aggregate (by summing) all per example measurements and divide by the aggregated normalizers. For each given metric we compute: 1/N sum_{b in batch_iter} metric(b), where N is the sum of normalizer over all batches. Args: train_state: TrainState, the state of training including the current global_step, model_state, rng, and optimizer. The buffer of this argument can be donated to the computation. batch: A single batch of data. a metrics function, that given logits and batch of data, calculates the metrics as well as the loss. flax_model: A Flax model. metrics_fn: A metrics function, that given logits and batch of data, calculates the metrics as well as the loss. return_logits_and_labels: If true, returns logits and labels. Can be used for calculating the Mean Average Precision for multi-label problems. Only one of "return_logits_and_labels" and "return_confusion_matrix" should be true, with the latter taking precedence if both are set as true. return_confusion_matrix: If true, returns confusion matrix. Can be used to calculate additional metrics for k-way classification problems. debug: Whether the debug mode is enabled during evaluation. `debug=True` enables model specific logging/storing some values using jax.host_callback. Returns: Calculated metrics [and optionally logits or confusion matrix]. """ variables = { 'params': train_state.optimizer.target, **train_state.model_state } logits = flax_model.apply( variables, batch['inputs'], train=False, mutable=False, debug=debug) metrics = metrics_fn(logits, batch) if return_confusion_matrix: confusion_matrix = get_confusion_matrix( labels=batch['label'], logits=logits, batch_mask=batch['batch_mask']) confusion_matrix = jax.lax.all_gather(confusion_matrix, 'batch') return metrics, confusion_matrix if return_logits_and_labels: logits = jax.lax.all_gather(logits, 'batch') labels = jax.lax.all_gather(batch['label'], 'batch') return metrics, logits, labels return metrics def test_step( train_state: train_utils.TrainState, batch: Batch, *, flax_model: nn.Module, metrics_fn: MetricFn, n_clips: int = 2, return_logits_and_labels: bool = False, softmax_logits: bool = False, debug: bool = False ) -> Union[Dict[str, Tuple[float, int]], Tuple[Dict[str, Tuple[float, int]], jnp.array, jnp.array]]: """Runs a single step of testing. For multi-crop testing, we assume that num_crops consecutive entries in the batch are from the same example. And we average the logits over these examples We assume that the batch contains different crops of the same original example. Therefore, we can average all the logits of it. This assumption is true when local_batch_size = num_local_devices Args: train_state: The state of training including the current global_step, model_state, rng, and optimizer, and other metadata. batch: Dictionary with keys 'inputs', 'labels', 'batch_mask'. We assume that all the inputs correspond to the same original example in the test set. The input shapes to this function are batch['inputs'] = [num_crops, t, h, w, c] batch['labels'] = [num_crops, num_classes] However, for classification, the labels for all the crops are the same. batch['batch_mask'] = [num_crops] flax_model: A Flax model. metrics_fn: Metrics function for the model. n_clips: The number of clips to process at a time by each device. Set due to memory constraints. return_logits_and_labels: Whether return logits of the model or not. softmax_logits: Whether to softmax-normalise the logits before averaging debug: Whether the debug mode is enabled during evaluation. `debug=True` enables model specific logging/storing some values using jax.host_callback. Returns: Calculated metrics [and optionally averaged logits that are of shape `[1, num_classes]`]. """ all_logits = jnp.zeros(batch['label'].shape[1]) assert len(batch['batch_mask'].shape) == 1, ( 'Spatial padding is not supported in multi-crop evaluation.') num_crops = batch['inputs'].shape[0] variables = { 'params': train_state.optimizer.target, **train_state.model_state } for idx in range(0, num_crops, n_clips): temp_input = batch['inputs'][idx:idx + n_clips] logits = flax_model.apply( variables, temp_input, train=False, mutable=False, debug=debug) if softmax_logits: logits = nn.softmax(logits, axis=-1) logits = jnp.sum(logits, axis=0) all_logits = all_logits + logits all_logits = all_logits / num_crops all_logits = jnp.expand_dims(all_logits, axis=0) batch['label'] = jnp.expand_dims(batch['label'][0], axis=0) batch['batch_mask'] = jnp.expand_dims(batch['batch_mask'][0], axis=0) metrics = metrics_fn(all_logits, batch) if return_logits_and_labels: return metrics, all_logits, batch['label'] return metrics def get_confusion_matrix(labels: Array, logits: Array, batch_mask: Array) -> Array: """Computes confusion matrix from predictions. Args: labels: [n_batch] or [n_batch, n_classes] array. In the latter case, labels are assumed to be one-hot, since the confusion matrix is only defined when each example has one label. logits: [n_batch, n_classes] array, which are the predictions of the model. batch_mask: [n_batch] array. Entries should be 1 or 0, and indicate if the example is valid or not. Returns: confusion_matrix of shape [1, n_classes, n_classes] """ if labels.ndim == logits.ndim: # one-hot targets y_true = jnp.argmax(labels, axis=-1) else: y_true = labels y_pred = jnp.argmax(logits, axis=-1) # Prepare sample weights for confusion matrix: weights = batch_mask.astype(jnp.float32) confusion_matrix = model_utils.confusion_matrix( y_true=y_true, y_pred=y_pred, num_classes=logits.shape[-1], weights=weights) confusion_matrix = confusion_matrix[jnp.newaxis, ...] # Dummy batch dim. return confusion_matrix def render_confusion_matrices(confusion_matrices: List[Array], normalization_method: str = 'cols', figsize: Tuple[int, int] = (12, 12), dpi: int = 100, font_scale: int = 3) -> Array: """Render confusion matrix so that it can be logged to Tensorboard. Args: confusion_matrices: List of [n_batch, n_class, n_class] confusion matrices. The first two dimensions will be summed over to get an [n_class, n_class] matrix for rendering. normalization_method: Method of normalizing the confusion matrix before plotting. Supported values are one of "cols", "rows" and "none". If any other value, no normalization is performed. figsize: The figure size used by matplotlib and seaborn. dpi: The dpi used by matplotlib and seaborn. font_scale: The font scale used by seaborn. Returns: image: Rendered image of the confusion matrix for plotting. Data type is uint8 and values are in range [0, 255]. Shape is [1, figsize * dpi, figsize * dpi, 3] """ conf_matrix = np.sum(confusion_matrices, axis=0) # Sum over eval batches. if conf_matrix.ndim != 3: raise AssertionError( 'Expecting confusion matrix to have shape ' f'[batch_size, num_classes, num_classes], got {conf_matrix.shape}.') conf_matrix = np.sum(conf_matrix, axis=0) # Sum over batch dimension. if normalization_method not in {'rows', 'cols', 'none'}: logging.warning('Normalizer must be one of {rows, cols, none}.' 'Defaulting to none.') sns.set(font_scale=font_scale) fig = plt.figure(figsize=figsize, dpi=dpi) # Normalize entries of the confusion matrix. if normalization_method == 'rows': normalizer = conf_matrix.sum(axis=1)[:, np.newaxis] elif normalization_method == 'cols': normalizer = conf_matrix.sum(axis=0)[np.newaxis, :] else: normalizer = 1 normalized_matrix = np.nan_to_num(conf_matrix / normalizer) if np.sum(normalized_matrix) > 0: sns.heatmap( normalized_matrix, annot=True, linewidths=0.5, square=True, cbar=False, cmap='jet', annot_kws={'size': 18}) fig.tight_layout(pad=0.0) fig.canvas.draw() ncols, nrows = fig.canvas.get_width_height() image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8) image = image.reshape(nrows, ncols, 3) return np.expand_dims(image, axis=0)
Arduino/speedTest.py
yuliya-sm7/EvoArm
110
11122414
import serial import sys import threading import binascii import time ser = serial.Serial('COM3', 250000) def checksum(bytes): sum = 0 for b in bytes: sum += ord(b) return chr((~sum) & 0xFF) def genPacket(data): try: bytes = binascii.unhexlify(data) num = len(bytes)+3 bytes = chr(0) + chr(num) + '\xFF\xFF' + bytes + checksum(bytes) return bytes except: print('Bad input {0}'.format(data)) return None def send(): packet = genPacket('020201') ser.write(packet) # get response #print('Response >> {0}'.format(binascii.hexlify(receive()))) def receive(): while ser.in_waiting < 1: pass return ser.read_all() time.sleep(2) timer = time.clock() for i in xrange(100): send() receive() print('{0:.3f}s'.format(time.clock()-timer))
observations/r/australian_elections.py
hajime9652/observations
199
11122422
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def australian_elections(path): """elections to Australian House of Representatives, 1949-2007 Aggregate data on the 24 elections to Australia's House of Representatives, 1949 to 2007. A data frame with the following variables: `date` date of election, stored using the `Date` class `Seats` numeric, number of seats in the House of Representatives `Uncontested` numeric, number of uncontested seats `ALPSeats` numeric, number of seats won by the Australian Labor Party `LPSeats` numeric, number of seats won by the Liberal Party `NPSeats` numeric, number of seats won by the National Party (previously known as the Country Party) `OtherSeats` numeric, number of seats won by other parties and/or independent candidates `ALP` numeric, percentage of first preference votes cast for Australian Labor Party candidates `ALP2PP` numeric, percentage of the two-party preferred vote won by Australian Labor Party candidates `LP` numeric, percent of first preference votes cast for Liberal Party candidates `NP` numeric, percent of first preference votes cast for National Party (Country Party) candidates `DLP` numeric, percent of first preference votes cast for Democratic Labor Party candidates `Dem` numeric, percent of first preference votes cast for Australian Democrat candidates `Green` numeric, percent of first preference votes cast for Green Party candidates `Hanson` numeric, percent of first preference votes cast for candidates from Pauline Hanson's One Nation party `Com` numeric, percent of first preference votes cast for Communist Party candidates `AP` numeric, percent of first preference votes cast for Australia Party candidates `Informal` numeric, percent of ballots cast that are spoiled, blank, or otherwise uncountable (usually because of errors in enumerating preferences) `Turnout` numeric, percent of enrolled voters recorded as having turned out to vote (Australia has compulsory voting) Australian Electoral Commission. http://www.aec.gov.au. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `australian_elections.csv`. Returns: Tuple of np.ndarray `x_train` with 24 rows and 19 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'australian_elections.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/pscl/AustralianElections.csv' maybe_download_and_extract(path, url, save_file_name='australian_elections.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
src/c3nav/api/apps.py
johnjohndoe/c3nav
132
11122440
<filename>src/c3nav/api/apps.py<gh_stars>100-1000 from django.apps import AppConfig from django.conf import settings from django.db.models.signals import post_save class APIConfig(AppConfig): name = 'c3nav.api' def ready(self): from c3nav.api.signals import remove_tokens_on_user_save post_save.connect(remove_tokens_on_user_save, sender=settings.AUTH_USER_MODEL)
tests/java.py
codelv/enaml-native
237
11122466
""" Copyright (c) 2017-2018, <NAME>. Distributed under the terms of the MIT License. The full license is in the file LICENSE, distributed with this software. Created on Jan 18, 2018 @author """ import hashlib from textwrap import dedent from enamlnative.android.bridge import ( JavaBridgeObject, JavaMethod, JavaStaticMethod, JavaField, JavaCallback, JavaProxy ) def get_member_id(cls, m): """ Parameters ---------- cls m Returns ------- """ return hashlib. def find_java_classes(cls): """ Find all java classes. Pulled from Parameters ---------- cls: Type or Class Class to find Returns ------- result: List All of subclasses of the given class References ----------- - https://stackoverflow.com/questions/3862310/ """ all_subclasses = [] for subclass in cls.__subclasses__(): all_subclasses.append(subclass) all_subclasses.extend(find_java_classes(subclass)) return all_subclasses def generate_source(cls): """ Generate java source to decode and use the object directly without reflection. Parameters ---------- cls: JavaBridgeObject Class to generate jova source for Returns ------- """ #: Java class name classname = cls.__nativeclass__.default_value_mode[-1] source = dedent(""" package com.codelv.enamlnative.gen; class Bridge{classname} implements BridgeInterface {{ public {classname} createObject(int constructorId, Value[] args) {{ switch (constructorId) {{ {constructors} }} }} public Object invokeStatic(int methodId, Value[] args) {{ switch (methodId) {{ {staticmethods} }} }} public Object invokeMethod(Object objRef, int methodId, Value[] args) {{ switch (methodId) {{ {methods} }} }} public void setField(Object objRef, int fieldId, Value[] args) {{ {classname} obj = ({classname}) objRef; switch (fieldId) {{ {fields} }} }} }} """) #: Find all java fields, methods, etc... methods = [] fields = [] static_methods = [] for m in cls.members().values(): if isinstance(m, JavaMethod): if m.__returns__: methods.append(dedent(""" case {id}: return obj.{m.name}({method_args}); """)) else: methods.append(dedent(""" case {id}: obj.{m.name}({method_args}); break; """)) elif isinstance(m, JavaField): fields.append(dedent(""" case {id}: obj.{m.name} = {value}; break; """).format(m=m, id=get_member_id(cls, m))) elif isinstance(m, JavaStaticMethod): if m.__returns__: static_methods.append(dedent(""" case {id}: return obj.{m.name}({method_args}); """)) else: static_methods.append(dedent(""" case {method_id}: obj.{method_name}({method_args}); break; """)) #: Return the rendered source return source.format(classname=classname, methods="\n ".join(methods), static_methods="\n ".join(static_methods), fields="\n ".join(fields)) def generate(): """ Generate the Java source used to eliminate the need for using reflection over the bridge. """ #: Import all the classes first from enamlnative.android import api from enamlnative.android.factories import ANDROID_FACTORIES for name, factory in ANDROID_FACTORIES.items(): factory() #: Now gather them all java_classes = find_java_classes(JavaBridgeObject) #: Now generate it for cls in java_classes: generate_source(cls)
deepcpg/evaluation.py
cangermueller/deepcpg2
151
11122471
"""Functions for evaluating prediction performance.""" from __future__ import division from __future__ import print_function from collections import OrderedDict import numpy as np import pandas as pd import sklearn.metrics as skm from scipy.stats import kendalltau from six.moves import range from .data import CPG_NAN, OUTPUT_SEP from .utils import get_from_module def cor(y, z): """Compute Pearson's correlation coefficient.""" return np.corrcoef(y, z)[0, 1] def kendall(y, z, nb_sample=100000): """Compute Kendall's correlation coefficient.""" if len(y) > nb_sample: idx = np.arange(len(y)) np.random.shuffle(idx) idx = idx[:nb_sample] y = y[idx] z = z[idx] return kendalltau(y, z)[0] def mad(y, z): """Compute mean absolute deviation.""" return np.mean(np.abs(y - z)) def mse(y, z): """Compute mean squared error.""" return np.mean((y - z)**2) def rmse(y, z): """Compute root mean squared error.""" return np.sqrt(mse(y, z)) def auc(y, z, round=True): """Compute area under the ROC curve.""" if round: y = y.round() if len(y) == 0 or len(np.unique(y)) < 2: return np.nan return skm.roc_auc_score(y, z) def acc(y, z, round=True): """Compute accuracy.""" if round: y = np.round(y) z = np.round(z) return skm.accuracy_score(y, z) def tpr(y, z, round=True): """Compute true positive rate.""" if round: y = np.round(y) z = np.round(z) return skm.recall_score(y, z) def tnr(y, z, round=True): """Compute true negative rate.""" if round: y = np.round(y) z = np.round(z) c = skm.confusion_matrix(y, z) return c[0, 0] / c[0].sum() def mcc(y, z, round=True): """Compute Matthew's correlation coefficient.""" if round: y = np.round(y) z = np.round(z) return skm.matthews_corrcoef(y, z) def f1(y, z, round=True): """Compute F1 score.""" if round: y = np.round(y) z = np.round(z) return skm.f1_score(y, z) def cat_acc(y, z): """Compute categorical accuracy given one-hot matrices.""" return np.mean(y.argmax(axis=1) == z.argmax(axis=1)) # Classification metrics. CLA_METRICS = [auc, acc, tpr, tnr, f1, mcc] # Regression metrics. REG_METRICS = [mse, mad, cor] # Categorical metrics. CAT_METRICS = [cat_acc] def evaluate(y, z, mask=CPG_NAN, metrics=CLA_METRICS): """Compute multiple performance metrics. Computes evaluation metrics using functions in `metrics`. Parameters ---------- y: :class:`numpy.ndarray` :class:`numpy.ndarray` vector with labels. z: :class:`numpy.ndarray` :class:`numpy.ndarray` vector with predictions. mask: scalar Value to mask unobserved labels in `y`. metrics: list List of evaluation functions to be used. Returns ------- Ordered dict Ordered dict with name of evaluation functions as keys and evaluation metrics as values. """ z = z.ravel() if mask is not None: t = y != mask y = y[t] z = z[t] p = OrderedDict() for metric in metrics: if len(y): p[metric.__name__] = metric(y, z) else: p[metric.__name__] = np.nan p['n'] = len(y) return p def evaluate_cat(y, z, metrics=CAT_METRICS, binary_metrics=None): """Compute multiple performance metrics for categorical outputs. Computes evaluation metrics for categorical (one-hot encoded labels) using functions in `metrics`. Parameters ---------- y: :class:`numpy.ndarray` :class:`numpy.ndarray` matrix with one-hot encoded labels. z: :class:`numpy.ndarray` :class:`numpy.ndarray` matrix with class probabilities in rows. metrics: list List of evaluation functions to be used. binary_metrics: list List of binary evaluation metrics to be computed for each category, e.g. class, separately. Will be encoded as `name_i` in the output dictionary, where `name` is the name of the evaluation metrics and `i` the index of the category. Returns ------- Ordered dict Ordered dict with name of evaluation functions as keys and evaluation metrics as values. """ idx = y.sum(axis=1) > 0 y = y[idx] z = z[idx] p = OrderedDict() for metric in metrics: p[metric.__name__] = metric(y, z) if binary_metrics: for i in range(y.shape[1]): for metric in binary_metrics: p['%s_%d' % (metric.__name__, i)] = metric(y[:, i], z[:, i]) p['n'] = len(y) return p def get_output_metrics(output_name): """Return list of evaluation metrics for model output name.""" _output_name = output_name.split(OUTPUT_SEP) if _output_name[0] == 'cpg': metrics = CLA_METRICS elif _output_name[0] == 'bulk': metrics = REG_METRICS + CLA_METRICS elif _output_name[-1] in ['diff', 'mode', 'cat2_var']: metrics = CLA_METRICS elif _output_name[-1] == 'mean': metrics = REG_METRICS + CLA_METRICS + [kendall] elif _output_name[-1] == 'var': metrics = REG_METRICS + [kendall] else: raise ValueError('Invalid output name "%s"!' % output_name) return metrics def evaluate_outputs(outputs, preds): """Evaluate performance metrics of multiple outputs. Given the labels and predictions of multiple outputs, chooses and computes performance metrics of each output depending on its name. Parameters ---------- outputs: dict `dict` with the name of outputs as keys and a :class:`numpy.ndarray` vector with labels as value. preds: dict `dict` with the name of outputs as keys and a :class:`numpy.ndarray` vector with predictions as value. Returns ------- :class:`pandas.DataFrame` :class:`pandas.DataFrame` with columns `metric`, `output`, `value`. """ perf = [] for output_name in outputs: _output_name = output_name.split(OUTPUT_SEP) if _output_name[-1] in ['cat_var']: tmp = evaluate_cat(outputs[output_name], preds[output_name], binary_metrics=[auc]) else: metrics = get_output_metrics(output_name) tmp = evaluate(outputs[output_name], preds[output_name], metrics=metrics) tmp = pd.DataFrame({'output': output_name, 'metric': list(tmp.keys()), 'value': list(tmp.values())}) perf.append(tmp) perf = pd.concat(perf) perf = perf[['metric', 'output', 'value']] perf.sort_values(['metric', 'value'], inplace=True) return perf def is_binary_output(output_name): """Return `True` if `output_name` is binary.""" _output_name = output_name.split(OUTPUT_SEP) if _output_name[0] == 'cpg': return True elif _output_name[-1] in ['diff', 'mode', 'cat2_var']: return True else: return False def evaluate_curve(outputs, preds, fun=skm.roc_curve, mask=CPG_NAN, nb_point=None): """Evaluate performance curves of multiple outputs. Given the labels and predictions of multiple outputs, computes a performance a curve, e.g. ROC or PR curve, for each output. Parameters ---------- outputs: dict `dict` with the name of outputs as keys and a :class:`numpy.ndarray` vector with labels as value. preds: dict `dict` with the name of outputs as keys and a :class:`numpy.ndarray` vector with predictions as value. fun: function Function to compute the performance curves. mask: scalar Value to mask unobserved labels in `y`. nb_point: int Maximum number of points to curve to reduce memory. Returns ------- :class:`pandas.DataFrame` :class:`pandas.DataFrame` with columns `output`, `x`, `y`, `thr`. """ curves = [] for output_name in outputs.keys(): if not is_binary_output(output_name): continue output = outputs[output_name].round().squeeze() pred = preds[output_name].squeeze() idx = output != CPG_NAN output = output[idx] pred = pred[idx] x, y, thr = fun(output, pred) length = min(len(x), len(y), len(thr)) if nb_point and length > nb_point: idx = np.linspace(0, length - 1, nb_point).astype(np.int32) else: idx = slice(0, length) x = x[idx] y = y[idx] thr = thr[idx] curve = OrderedDict() curve['output'] = output_name curve['x'] = x curve['y'] = y curve['thr'] = thr curve = pd.DataFrame(curve) curves.append(curve) if not curves: return None else: curves = pd.concat(curves) return curves def unstack_report(report): """Unstack performance report. Reshapes a :class:`pandas.DataFrame` of :func:`evaluate_outputs` such that performance metrics are listed as columns. Parameters ---------- report: :class:`pandas.DataFrame` :class:`pandas.DataFrame` from :func:`evaluate_outputs`. Returns ------- :class:`pandas.DataFrame` :class:`pandas.DataFrame` with performance metrics as columns. """ index = list(report.columns[~report.columns.isin(['metric', 'value'])]) report = pd.pivot_table(report, index=index, columns='metric', values='value') report.reset_index(index, inplace=True) report.columns.name = None # Sort columns columns = list(report.columns) sorted_columns = [] for fun in CAT_METRICS + CLA_METRICS + REG_METRICS: for i, column in enumerate(columns): if column.startswith(fun.__name__): sorted_columns.append(column) sorted_columns = index + sorted_columns sorted_columns += [col for col in columns if col not in sorted_columns] report = report[sorted_columns] order = [] if 'auc' in report.columns: order.append(('auc', False)) elif 'mse' in report.columns: order.append(('mse', True)) elif 'acc' in report.columns: order.append(('acc', False)) report.sort_values([x[0] for x in order], ascending=[x[1] for x in order], inplace=True) return report def get(name): """Return object from module by its name.""" return get_from_module(name, globals())
sendrecv/gst-sharp/nuget.py
heftig/gstwebrtc-demos
451
11122480
#!/usr/bin/python3 import argparse import getpass import os import sys import shutil import subprocess from datetime import datetime from urllib.request import urlretrieve from zipfile import ZipFile NUSPEC_TEMPLATE = """<?xml version="1.0" encoding="utf-8"?> <package xmlns="http://schemas.microsoft.com/packaging/2011/08/nuspec.xsd"> <metadata> <id>{package_name}</id> <authors>{author}</authors> <owners>{owner}</owners> <licenseUrl>{license_url}</licenseUrl> <projectUrl>{project_url}</projectUrl> <iconUrl>{icon_url}</iconUrl> <requireLicenseAcceptance>false</requireLicenseAcceptance> <description>{description}.</description> <copyright>{copyright}</copyright> <tags>{tags}</tags> <version>{version}</version> <dependencies> {dependencies} </dependencies> </metadata> <files> {files} </files> </package> """ TARGETS_TEMPLATE = r"""<?xml version="1.0" encoding="utf-8"?> <Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <Target Name="{package_name}CopyMapConfigs" AfterTargets="AfterBuild"> <CreateItem Include="$(MSBuildThisFileDirectory)\{frameworkdir}\*.config"> <Output TaskParameter="Include" ItemName="MapConfigs" /> </CreateItem> <Copy SourceFiles="@(MapConfigs)" DestinationFiles="@(MapConfigs->'$(OutDir)\%(RecursiveDir)%(Filename)%(Extension)')" /> </Target> </Project>""" class Nugetifier: def cleanup_args(self): self.nugetdir = os.path.join(self.builddir, self.package_name + 'nupkg') self.frameworkdir = 'net45' self.nuget_build_dir = os.path.join( self.nugetdir, 'build', self.frameworkdir) self.nuget_lib_dir = os.path.join( self.nugetdir, 'lib', self.frameworkdir) self.nuspecfile = os.path.join( self.nugetdir, '%s.nuspec' % self.package_name) self.nugettargets = os.path.join( self.nuget_build_dir, "%s.targets" % self.package_name) self.nuget = shutil.which('nuget') if not self.nuget: print("Could not find the `nuget` tool, install it and retry!") return -1 for d in [self.nugetdir, self.nuget_lib_dir, self.nuget_build_dir]: os.makedirs(d, exist_ok=True) if not self.description: self.description = "%s c# bindings" % self.package_name if not self.copyright: self.copyright = "Copyright %s" % datetime.now().year if not self.tags: self.tags = self.package_name return 0 def run(self): res = self.cleanup_args() if res: return res self.files = '' def add_file(path, target="lib"): f = ' <file src="%s" target="%s"/>\n' % ( path, os.path.join(target, os.path.basename(path))) self.files += f self.dependencies = '' for dependency in self.dependency: _id, version = dependency.split(":") self.dependencies += ' <dependency id="%s" version="%s" />\n' % ( _id, version) for assembly in self.assembly: add_file(assembly, os.path.join('lib', self.frameworkdir)) for f in [assembly + '.config', assembly[:-3] + 'pdb']: if os.path.exists(f): add_file(f, os.path.join('build', self.frameworkdir)) with open(self.nugettargets, 'w') as _: print(TARGETS_TEMPLATE.format(**self.__dict__), file=_) add_file(self.nugettargets, 'build') with open(self.nuspecfile, 'w') as _: print(NUSPEC_TEMPLATE.format(**self.__dict__), file=_) subprocess.check_call([self.nuget, 'pack', self.nuspecfile], cwd=self.builddir) class NugetDownloader: def reporthook(self, blocknum, blocksize, totalsize): readsofar = blocknum * blocksize if totalsize > 0: percent = readsofar * 1e2 / totalsize s = "\r%5.1f%% %*d / %d" % ( percent, len(str(totalsize)), readsofar, totalsize) sys.stderr.write(s) if readsofar >= totalsize: # near the end sys.stderr.write("\n") else: # total size is unknown sys.stderr.write("read %d\n" % (readsofar,)) def run(self): url = "https://www.nuget.org/api/v2/package/{nuget_name}/{nuget_version}".format( **self.__dict__) workdir = os.path.join(self.current_builddir, self.nuget_name, self.nuget_version) os.makedirs(workdir, exist_ok=True) try: with open(os.path.join(workdir, 'linkline'), 'r') as f: print(f.read()) return except FileNotFoundError: pass nugetpath = os.path.join(workdir, self.nuget_name) + '.zip' print("Downloading %s into %s" % (url, nugetpath), file=sys.stderr) urlretrieve(url, nugetpath, self.reporthook) lib_paths = [os.path.join('lib', self.csharp_version), 'lib'] build_path = os.path.join('build', self.csharp_version) dll_path = os.path.join(self.nuget_name, self.nuget_version) extract_dir = os.path.join(self.current_builddir, dll_path) os.makedirs(extract_dir, exist_ok=True) linkline = '' print("%s - %s" % (self.builddir, extract_dir), file=sys.stderr) configs = [] dlldir = None with ZipFile(nugetpath) as zip: for lib_path in lib_paths: for f in zip.infolist(): if f.filename.startswith(lib_path) or f.filename.startswith(build_path): zip.extract(f, path=extract_dir) if f.filename.endswith('.dll'): fpath = os.path.relpath(os.path.join(extract_dir, f.filename), self.builddir) linkline += ' -r:' + fpath dlldir = os.path.dirname(os.path.join(extract_dir, f.filename)) elif f.filename.endswith('.dll.config'): configs.append(os.path.join(extract_dir, f.filename)) if dlldir: break print(dlldir, file=sys.stderr) for config in configs: print(config, file=sys.stderr) print(os.path.join(dlldir, os.path.basename(config)), file=sys.stderr) os.rename(config, os.path.join(dlldir, os.path.basename(config))) with open(os.path.join(workdir, 'linkline'), 'w') as f: print(linkline.strip(), file=f) print(linkline.strip()) if __name__ == "__main__": if "get" not in sys.argv: parser = argparse.ArgumentParser() parser.add_argument('--builddir') parser.add_argument('--package-name') parser.add_argument('--author', default=getpass.getuser()) parser.add_argument('--owner', default=getpass.getuser()) parser.add_argument('--native', action='append', default=[]) parser.add_argument('--assembly', action='append', default=[]) parser.add_argument('--out') parser.add_argument('--description') parser.add_argument('--copyright') parser.add_argument('--version') parser.add_argument('--icon-url', default='') parser.add_argument('--project-url', default='') parser.add_argument('--license-url', default='') parser.add_argument('--tags', default='') parser.add_argument('--dependency', default=[], action='append') runner = Nugetifier() else: sys.argv.remove('get') parser = argparse.ArgumentParser() parser.add_argument('--builddir') parser.add_argument('--current-builddir') parser.add_argument('--nuget-name') parser.add_argument('--nuget-version') parser.add_argument('--csharp-version') runner = NugetDownloader() options = parser.parse_args(namespace=runner) exit(runner.run())