max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
pe_tree/__main__.py
lybtongji/pe_tree
1,271
11124947
# # Copyright (c) 2020 BlackBerry Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """PE Tree standalone application""" # Standard imports import os import sys from argparse import ArgumentParser # Qt imports from PyQt5 import QtWidgets # QDarkStyle try: import qdarkstyle HAVE_DARKSTYLE = True except: HAVE_DARKSTYLE = False # PE Tree imports import pe_tree.window import pe_tree.runtime class ApplicationRuntime(pe_tree.runtime.Runtime): """Standalone application runtime""" def __init__(self, widget, args): # Load configuration self.config_file = os.path.join(self.get_temp_dir(), "pe_tree.ini") super(ApplicationRuntime, self).__init__(widget, args) self.pe_tree_form = None def main(args=None): """Create PE Tree Qt standalone application""" # Check command line arguments parser = ArgumentParser(description="PE-Tree") parser.add_argument("filenames", nargs="*", help="Path(s) to file/folder/zip") args = parser.parse_args() # Create PE Tree application application = QtWidgets.QApplication(sys.argv) window = pe_tree.window.PETreeWindow(application, ApplicationRuntime, args) sys.exit(application.exec_()) if __name__ == "__main__": main()
model_to_onnx.py
David-zaiwang/RGBD_segmentation
128
11124953
# -*- coding: utf-8 -*- """ .. codeauthor:: <NAME> <<EMAIL>> .. codeauthor:: <NAME> <<EMAIL>> """ import argparse import os import numpy as np import torch from src.args import ArgumentParserRGBDSegmentation from src.build_model import build_model from src.prepare_data import prepare_data if __name__ == '__main__': # arguments parser = ArgumentParserRGBDSegmentation( description='Efficient RGBD Indoor Sematic Segmentation (ONNX Export)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.set_common_args() parser.add_argument('--onnx_opset_version', type=int, default=11, help='Different versions lead to different results but' 'not all versions are supported for a following' 'TensorRT conversion.') parser.add_argument('--model_output_name', type=str, default='model', help='Name for the onnx model that will be saved.') args = parser.parse_args() args.pretrained_on_imagenet = False dataset, _ = prepare_data(args, with_input_orig=True) model, device = build_model(args, dataset.n_classes_without_void) os.makedirs('./onnx_models', exist_ok=True) # load weights if args.last_ckpt: checkpoint = torch.load(args.last_ckpt, map_location=lambda storage, loc: storage) model.load_state_dict(checkpoint['state_dict'], strict=True) model.eval() model.to(device) rgb = np.random.random(size=(1, 3, args.height, args.width)) rgb = rgb.astype(np.float32) depth = np.random.random(size=(1, 1, args.height, args.width)) depth = depth.astype(np.float32) onnx_file_path = os.path.join('onnx_models', f'{args.model_output_name}.onnx') rgb_torch = torch.from_numpy(rgb) depth_torch = torch.from_numpy(depth) rgb_torch = rgb_torch.to(device) depth_torch = depth_torch.to(device) if args.modality == 'rgbd': # rgbd inp = (rgb_torch, depth_torch) input_names = ['rgb', 'depth'] elif args.modality == 'rgb': # rgb inp = rgb_torch input_names = ['rgb'] else: # depth inp = depth_torch input_names = ['depth'] torch.onnx.export(model, inp, onnx_file_path, export_params=True, input_names=input_names, output_names=['output'], do_constant_folding=True, verbose=False, opset_version=args.onnx_opset_version)
gym_collision_avoidance/envs/policies/CADRL/scripts/multi/global_var.py
echtesmikkelbeer21/gym-collision-avoidance
128
11124986
<reponame>echtesmikkelbeer21/gym-collision-avoidance<filename>gym_collision_avoidance/envs/policies/CADRL/scripts/multi/global_var.py #!/usr/bin/env python # global varibles import numpy as np COLLISION_COST = -0.25 DIST_2_GOAL_THRES = 0.05 GETTING_CLOSE_PENALTY = -0.05 GETTING_CLOSE_RANGE = 0.2 EPS = 1e-5 SMOOTH_COST = -0.5 # terminal states NON_TERMINAL=0 COLLIDED=1 REACHED_GOAL=2 TRAINING_DT=1.0 # plotting colors plt_colors = [] plt_colors.append([0.8500, 0.3250, 0.0980]) # red plt_colors.append([0.0, 0.4470, 0.7410]) # blue plt_colors.append([0.4660, 0.6740, 0.1880]) # green plt_colors.append([0.4940, 0.1840, 0.5560]) # purple plt_colors.append([0.9290, 0.6940, 0.1250]) # orange plt_colors.append([0.3010, 0.7450, 0.9330]) # cyan plt_colors.append([0.6350, 0.0780, 0.1840]) # chocolate # more plotting purpose # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black # plt_colors.append([0.0, 0.0, 0.0]) # black RL_gamma = 0.97 RL_dt_normal = 0.5 # neural network input/output vectors # input_avg_vec = [np.array([10.0, 0.8, 0.7, 0.0, 0.65, 0.0, 0.35]), \ # np.array([0.0, 0.0, 0.0, 0.0, 0.35, 1.50, 8.0, 0.0])] # input_std_vec = [np.array([8.0, 0.4, 0.4, 0.7, 0.5, 0.3, 0.2]), \ # np.array([0.8, 0.8, 8.0, 8.0, 0.2, 1.50, 6.0, 0.5])] # output_avg_vec = np.array([0.5]) # output_std_vec = np.array([0.4]) input_avg_vec = [np.array([7.0, 0.8, 0.7, 0.0, 0.65, 0.0, 0.35]), \ np.array([0.0, 0.0, 0.0, 0.0, 0.35, 0.7, 4.0, 0.5])] input_std_vec = [np.array([5.0, 0.4, 0.4, 0.7, 0.5, 0.3, 0.2]), \ np.array([0.8, 0.8, 4.0, 4.0, 0.2, 0.4, 4.0, 0.5])] output_avg_vec = np.array([0.5]) output_std_vec = np.array([0.4]) NN_ranges = list() NN_ranges.append(input_avg_vec); NN_ranges.append(input_std_vec) NN_ranges.append(output_avg_vec); NN_ranges.append(output_std_vec) # param computed from data # input_avg_vec [ 3.6982656 0.83099974 0.7252522 0.0514733 -0.13318091 0.10315574 # 0.26505782 -0.11795232 0.39575324 0.40368014 0.79943338 0.65456946 # 0.02955785 2.90838236] # input_std_vec [ 2.91446845 0.34856427 0.34699031 0.64742148 0.55879675 0.45500179 # 3.59396867 2.08934841 0.0561011 0.05553664 0.0812654 0.4022663 # 0.23505923 2.642269 ] # out_avg_vec [ 0.43739441] # output_std_vec [ 0.3618484]
PyGithub_examples/get_rate_limit_info.py
DazEB2/SimplePyScripts
117
11125018
<reponame>DazEB2/SimplePyScripts<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # pip install pygithub from github import Github from config import LOGIN, PASSWORD gh = Github(LOGIN, PASSWORD) print('With auth:') print(' rate_limiting:', gh.rate_limiting) print(' rate_limiting_resettime:', gh.rate_limiting_resettime) print(' gh.get_rate_limit():', gh.get_rate_limit()) print() gh = Github() print('Without auth:') print(' rate_limiting:', gh.rate_limiting) print(' rate_limiting_resettime:', gh.rate_limiting_resettime) print(' gh.get_rate_limit():', gh.get_rate_limit())
torchmultimodal/modules/encoders/clip_resnet_encoder.py
facebookresearch/multimodal
128
11125036
<filename>torchmultimodal/modules/encoders/clip_resnet_encoder.py # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # This code is based on https://github.com/openai/CLIP/blob/main/clip/model.py from collections import OrderedDict from typing import Tuple import torch import torch.nn.functional as F from torch import nn EXPANSION = 4 class ResNetForCLIPBottleneck(nn.Module): def __init__(self, inplanes: int, planes: int, stride: int = 1): super().__init__() # all conv layers have stride 1. # an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu2 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * EXPANSION, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * EXPANSION) self.relu3 = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * EXPANSION: # downsampling layer is prepended with an avgpool, # and the subsequent convolution has stride 1 self.downsample = nn.Sequential( OrderedDict( [ ("-1", nn.AvgPool2d(stride)), ( "0", nn.Conv2d( inplanes, planes * EXPANSION, 1, stride=1, bias=False, ), ), ("1", nn.BatchNorm2d(planes * EXPANSION)), ] ) ) def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.relu1(self.bn1(self.conv1(x))) out = self.relu2(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu3(out) return out class AttentionPool2d(nn.Module): def __init__( self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None ): super().__init__() self.positional_embedding = nn.Parameter( torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5 ) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.reshape(x.shape[0], x.shape[1], -1).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat( [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] ), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False, ) return x[0] class ResNetForCLIP(nn.Module): """Modified ResNet used by CLIP. Based on https://github.com/openai/CLIP/blob/main/clip/model.py#L93, this class differs from Torchvision's ResNet in the following ways: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1. - The final pooling layer is a QKV attention instead of an average pool. Args: layers (Tuple[int]): output_dim (int): dimension of output tensor heads (int): number of heads in the attention pooling layer input_resolution (int): resolution of image input to encoder width (int): ResNet width use_clip_init (bool): Whether to use CLIP-specific initialization. Inputs: x (Tensor): Tensor containing image features """ def __init__( self, layers: Tuple[int, int, int, int] = (3, 4, 6, 3), output_dim: int = 512, heads: int = 1024, input_resolution: int = 224, width: int = 64, use_clip_init: bool = True, ): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d( 3, width // 2, kernel_size=3, stride=2, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(width // 2) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d( width // 2, width // 2, kernel_size=3, padding=1, bias=False ) self.bn2 = nn.BatchNorm2d(width // 2) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.relu3 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(2) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d( input_resolution // 32, embed_dim, heads, output_dim ) if use_clip_init: self.initialize_parameters() def _make_layer(self, planes: int, blocks: int, stride=1) -> nn.Module: layers = [ResNetForCLIPBottleneck(self._inplanes, planes, stride)] self._inplanes = planes * EXPANSION for _ in range(1, blocks): layers.append(ResNetForCLIPBottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def initialize_parameters(self): if self.attnpool is not None: std = self.attnpool.c_proj.in_features**-0.5 nn.init.normal_(self.attnpool.q_proj.weight, std=std) nn.init.normal_(self.attnpool.k_proj.weight, std=std) nn.init.normal_(self.attnpool.v_proj.weight, std=std) nn.init.normal_(self.attnpool.c_proj.weight, std=std) # Zero-initialize each block's third batch normalization weights # Based on CLIP initialization in https://git.io/JDbGX for resnet_block in [ self.layer1, self.layer2, self.layer3, self.layer4, ]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) def forward(self, x: torch.Tensor) -> torch.Tensor: def stem(x): x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x
survae/transforms/bijections/permute_axes.py
alisiahkoohi/survae_flows
262
11125083
import torch from collections.abc import Iterable from survae.transforms.bijections import Bijection class PermuteAxes(Bijection): def __init__(self, permutation): super(PermuteAxes, self).__init__() assert isinstance(permutation, Iterable), 'permutation must be an Iterable' assert permutation[0] == 0, 'First element of permutation must be 0 (such that batch dimension stays intact)' self.permutation = permutation self.inverse_permutation = torch.argsort(torch.tensor(self.permutation)).tolist() def forward(self, x): z = x.permute(self.permutation).contiguous() ldj = torch.zeros((x.shape[0],), device=x.device, dtype=x.dtype) return z, ldj def inverse(self, z): x = z.permute(self.inverse_permutation).contiguous() return x
tests/util_test.py
ale180192/googleads-python-lib
601
11125086
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests to cover the errors module.""" from contextlib import contextmanager import logging import os import unittest import googleads.ad_manager import googleads.adwords import googleads.errors import googleads.util from lxml import etree import mock class PatchesTest(unittest.TestCase): """Tests for the PatchHelper utility.""" def setUp(self): oauth_header = {'Authorization': 'header'} oauth2_client = mock.Mock() oauth2_client.CreateHttpHeader.return_value = dict(oauth_header) # AdWordsClient setup client_customer_id = 'client customer id' dev_token = <PASSWORD>' user_agent = '4M153rAb13p1l30F53CR37s' self.adwords_client = googleads.adwords.AdWordsClient( dev_token, oauth2_client, user_agent, client_customer_id=client_customer_id) # AdWordsClient setup (compression enabled) self.adwords_client_with_compression = googleads.adwords.AdWordsClient( dev_token, oauth2_client, user_agent, client_customer_id=client_customer_id, enable_compression=True) self.adwords_version = sorted(googleads.adwords._SERVICE_MAP.keys())[-1] self.adwords_namespace_partial = ( 'https://adwords.google.com/api/adwords/%s/' + self.adwords_version) # AdManagerClient setup network_code = '12345' application_name = 'application name' self.ad_manager_client = googleads.ad_manager.AdManagerClient( oauth2_client, application_name, network_code) self.ad_manager_version = sorted( googleads.ad_manager._SERVICE_MAP.keys())[-1] self.ad_manager_namespace = ( 'https://www.google.com/apis/ads/publisher/%s' % self.ad_manager_version) @contextmanager def mock_fault_response(self, response_file, version): test_dir = os.path.dirname(__file__) with open(os.path.join(test_dir, response_file), 'rb') as handler: response_data = handler.read() response_data = response_data.replace(b'{VERSION}', bytes(version, 'utf-8')) with mock.patch('zeep.transports.Transport.post') as mock_post: reply_instance = mock.Mock() reply_instance.status_code = 500 reply_instance.headers = {} reply_instance.content = response_data mock_post.return_value = reply_instance yield def testSingleErrorListIssue90(self): """Verifies that issue 90 has been resolved with the patch.""" query = 'WHERE 1 = 0' statement = googleads.ad_manager.FilterStatement(query) line_item_service = self.ad_manager_client.GetService('LineItemService') line_item_action = {'xsi_type': 'ActivateLineItems'} st = statement.ToStatement() with self.mock_fault_response( 'test_data/fault_response_envelope.txt', self.ad_manager_version): try: line_item_service.performLineItemAction(line_item_action, st) except googleads.errors.GoogleAdsServerFault as e: self.assertEqual(1, len(e.errors)) def testSingleErrorListIssue90_emptyErrors(self): """Verifies that issue 90 has been resolved with the patch.""" query = 'WHERE 1 = 0' statement = googleads.ad_manager.FilterStatement(query) line_item_service = self.ad_manager_client.GetService('LineItemService') line_item_action = {'xsi_type': 'ActivateLineItems'} st = statement.ToStatement() with self.mock_fault_response( 'test_data/empty_fault_response_envelope.txt', self.ad_manager_version): try: line_item_service.performLineItemAction(line_item_action, st) except googleads.errors.GoogleAdsServerFault as e: self.assertEqual(0, len(e.errors)) def testSingleErrorListIssue90_multipleErrors(self): """Verifies that issue 90 has been resolved with the patch.""" query = 'WHERE 1 = 0' statement = googleads.ad_manager.FilterStatement(query) line_item_service = self.ad_manager_client.GetService('LineItemService') line_item_action = {'xsi_type': 'ActivateLineItems'} st = statement.ToStatement() with self.mock_fault_response( 'test_data/multi_errors_fault_response_envelope.txt', self.ad_manager_version): try: line_item_service.performLineItemAction(line_item_action, st) except googleads.errors.GoogleAdsServerFault as e: self.assertEqual(2, len(e.errors)) class GoogleAdsCommonFilterTest(unittest.TestCase): """Tests for the GoogleAdsCommonFilter utility.""" def setUp(self): self.filter = googleads.util.GetGoogleAdsCommonFilter() self.redacted_text = 'REDACTED' self.dev_token_template = ('<tns:developerToken>%s</tns:developerToken>') def testGetGoogleAdsCommonFilter(self): self.assertIs(self.filter, googleads.util.GetGoogleAdsCommonFilter()) def testFilterAtInfoLevel(self): record = mock.Mock() record.levelno = logging.INFO doc = mock.Mock() doc.str.return_value = self.dev_token_template % 'test' record.args = [doc] self.filter.filter(record) self.assertEqual( record.args, (self.dev_token_template % self.redacted_text,)) def testFilterAtUnfilteredLevel(self): expected_args = (1, 2, 3, 4, 5) record = mock.Mock() record.levelno = logging.DEBUG record.args = expected_args self.filter.filter(record) self.assertEqual(record.args, expected_args) XML_WITH_DEV_TOKEN = ( '<abc xmlns:ns0="http://abc">' '<ns0:developerToken>a token</ns0:developerToken>' '<sdf>hi</sdf>' '</abc>') XML_WITH_DEV_TOKEN_SAFE = etree.fromstring( XML_WITH_DEV_TOKEN.replace('a token', 'REDACTED')) XML_WITH_DEV_TOKEN = etree.fromstring(XML_WITH_DEV_TOKEN) XML_PRETTY = etree.tostring(XML_WITH_DEV_TOKEN, pretty_print=True) XML_PRETTY_SAFE = etree.tostring(XML_WITH_DEV_TOKEN_SAFE, pretty_print=True) XML_PRETTY_SAFE = XML_PRETTY_SAFE.decode('utf-8') XML_WITH_FAULT = etree.fromstring( '<abc xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/">' '<ns0:Header>' '<child><key>value</key></child>' '</ns0:Header>' '<ns0:Fault>' '<faultstring>hi</faultstring>' '</ns0:Fault>' '</abc>') ZEEP_HEADER = {'abc': 'hi', 'authorization': 'secret'} ZEEP_HEADER_SAFE = ZEEP_HEADER.copy() ZEEP_HEADER_SAFE['authorization'] = 'REDACTED' BINDING_OPTIONS = {'address': 'myaddress'} class ZeepLoggerTest(unittest.TestCase): def setUp(self): self.logger = mock.Mock() self.zeep_logger = googleads.util.ZeepLogger() self.zeep_logger._logger = self.logger self.operation = mock.Mock() self.operation.name = 'opname' self.operation.binding.wsdl.services.keys.return_value = ['service_name'] def enable_log_levels(self, *levels): self.logger.isEnabledFor.side_effect = lambda lvl: lvl in levels def testIngressPassesThroughArguments(self): self.enable_log_levels() # This result isn't related to logging, just confirming that the plugin # is passing along the data unmodified. result = self.zeep_logger.ingress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation) self.assertEqual(result, (XML_WITH_DEV_TOKEN, ZEEP_HEADER)) def testIngressNoLoggingByDefault(self): self.enable_log_levels() self.zeep_logger.ingress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation) self.logger.debug.assert_not_called() def testIngressDebugLogging(self): self.enable_log_levels(logging.DEBUG) # Re-using the XML with <developerToken> for convenience, but this # is testing inbound data, which would not have anything sensitive in it. self.zeep_logger.ingress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation) self.logger.debug.assert_called_once_with( googleads.util._RESPONSE_XML_LOG_LINE, XML_PRETTY) def testIngressFaultLogging(self): self.enable_log_levels(logging.WARN) self.zeep_logger.ingress( XML_WITH_FAULT, ZEEP_HEADER, self.operation) self.assertEqual({'faultMessage': 'hi', 'key': 'value', 'methodName': 'opname', 'serviceName': 'service_name'}, self.logger.warn.mock_calls[0][1][1]) def testEgressPassesThroughArguments(self): self.enable_log_levels() self.enable_log_levels(logging.DEBUG) # This result isn't related to logging, just confirming that the plugin # is passing along the data unmodified. result = self.zeep_logger.egress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation, BINDING_OPTIONS) self.assertEqual(result, (XML_WITH_DEV_TOKEN, ZEEP_HEADER)) def testEgressNoLoggingByDefault(self): self.enable_log_levels() self.zeep_logger.egress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation, BINDING_OPTIONS) self.logger.debug.assert_not_called() def testEgressDebugLogging(self): self.enable_log_levels(logging.DEBUG) self.zeep_logger.egress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation, BINDING_OPTIONS) # With egress, they should be redacted. self.logger.debug.assert_called_once_with( googleads.util._REQUEST_XML_LOG_LINE, ZEEP_HEADER_SAFE, XML_PRETTY_SAFE) def testEgressInfoLogging(self): self.enable_log_levels(logging.INFO) self.zeep_logger.egress( XML_WITH_DEV_TOKEN, ZEEP_HEADER, self.operation, BINDING_OPTIONS) self.logger.info.assert_called_once_with( googleads.util._REQUEST_LOG_LINE, 'service_name', 'opname', 'myaddress') if __name__ == '__main__': unittest.main()
tests/nnapi/specs/skip/V1_2/bidirectional_sequence_lstm_norm_fw_output.mod.py
juitem/ONE
255
11125090
<reponame>juitem/ONE # # Copyright (C) 2019 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Bidirectional Sequence LSTM Test: # FLOAT32, Layer Normalization, No Cifg, Peephole, Projection, and No Clipping. # Verifies forward output only. n_batch = 2 n_input = 5 n_cell = 4 n_output = 3 max_time = 3 input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) fw_input_to_input_weights = Input( "fw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_input_to_forget_weights = Input( "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_input_to_cell_weights = Input( "fw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_input_to_output_weights = Input( "fw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_recurrent_to_input_weights = Input( "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) fw_recurrent_to_forget_weights = Input( "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) fw_recurrent_to_cell_weights = Input( "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) fw_recurrent_to_output_weights = Input( "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) fw_cell_to_input_weights = Input( "fw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_cell_to_forget_weights = Input( "fw_cell_to_forget_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_cell_to_output_weights = Input( "fw_cell_to_output_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_input_gate_bias = Input( "fw_input_gate_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_forget_gate_bias = Input( "fw_forget_gate_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_cell_bias = Input( "fw_cell_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_output_gate_bias = Input( "fw_output_gate_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) fw_projection_weights = Input( "fw_projection_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_output, n_cell)) fw_projection_bias = Input( "fw_projection_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_output)) bw_input_to_input_weights = Input( "bw_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_input_to_forget_weights = Input( "bw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_input_to_cell_weights = Input( "bw_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_input_to_output_weights = Input( "bw_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_recurrent_to_input_weights = Input( "bw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) bw_recurrent_to_forget_weights = Input( "bw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) bw_recurrent_to_cell_weights = Input( "bw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) bw_recurrent_to_output_weights = Input( "bw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) bw_cell_to_input_weights = Input( "bw_cell_to_input_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_cell_to_forget_weights = Input( "bw_cell_to_forget_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_cell_to_output_weights = Input( "bw_cell_to_output_weights", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_input_gate_bias = Input( "bw_input_gate_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_forget_gate_bias = Input( "bw_forget_gate_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_cell_bias = Input( "bw_cell_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_output_gate_bias = Input( "bw_output_gate_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_cell)) bw_projection_weights = Input( "bw_projection_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_output, n_cell)) bw_projection_bias = Input( "bw_projection_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_output)) fw_activation_state = Input( "fw_activatiom_state", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_batch, n_output)) fw_cell_state = Input( "fw_cell_state", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_batch, n_cell)) bw_activation_state = Input( "bw_activatiom_state", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_batch, n_output)) bw_cell_state = Input( "bw_cell_state", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_batch, n_cell)) aux_input = Input("input", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_input)) fw_aux_input_to_input_weights = Input( "fw_aux_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_aux_input_to_forget_weights = Input( "fw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_aux_input_to_cell_weights = Input( "fw_aux_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_aux_input_to_output_weights = Input( "fw_aux_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_aux_input_to_input_weights = Input( "bw_aux_input_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_aux_input_to_forget_weights = Input( "bw_input_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_aux_input_to_cell_weights = Input( "bw_aux_input_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) bw_aux_input_to_output_weights = Input( "bw_aux_input_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_input)) fw_input_layer_norm_weights = Input("input_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) fw_forget_layer_norm_weights = Input("forget_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) fw_cell_layer_norm_weights = Input("cell_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) fw_output_layer_norm_weights = Input("output_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) bw_input_layer_norm_weights = Input("input_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) bw_forget_layer_norm_weights = Input("forget_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) bw_cell_layer_norm_weights = Input("cell_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) bw_output_layer_norm_weights = Input("output_layer_norm_weights", "TENSOR_FLOAT32", "{%d}" % n_cell) fw_output=Output("fw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output)) bw_output=IgnoredOutput("bw_output", "TENSOR_FLOAT32", "{{{}, {}, {}}}".format(max_time, n_batch, n_output)) def test( name, input_data=[], fw_input_to_input_weights_data=[], fw_input_to_forget_weights_data=[], fw_input_to_cell_weights_data=[], fw_input_to_output_weights_data=[], fw_recurrent_to_input_weights_data=[], fw_recurrent_to_forget_weights_data=[], fw_recurrent_to_cell_weights_data=[], fw_recurrent_to_output_weights_data=[], fw_cell_to_input_weights_data=[], fw_cell_to_forget_weights_data=[], fw_cell_to_output_weights_data=[], fw_input_gate_bias_data=[], fw_forget_gate_bias_data=[], fw_cell_bias_data=[], fw_output_gate_bias_data=[], fw_projection_weights_data=[], fw_projection_bias_data=[], bw_input_to_input_weights_data=[], bw_input_to_forget_weights_data=[], bw_input_to_cell_weights_data=[], bw_input_to_output_weights_data=[], bw_recurrent_to_input_weights_data=[], bw_recurrent_to_forget_weights_data=[], bw_recurrent_to_cell_weights_data=[], bw_recurrent_to_output_weights_data=[], bw_cell_to_input_weights_data=[], bw_cell_to_forget_weights_data=[], bw_cell_to_output_weights_data=[], bw_input_gate_bias_data=[], bw_forget_gate_bias_data=[], bw_cell_bias_data=[], bw_output_gate_bias_data=[], bw_projection_weights_data=[], bw_projection_bias_data=[], fw_activation_state_data=[], fw_cell_state_data=[], bw_activation_state_data=[], bw_cell_state_data=[], aux_input_data=[], fw_aux_input_to_input_weights_data=[], fw_aux_input_to_forget_weights_data=[], fw_aux_input_to_cell_weights_data=[], fw_aux_input_to_output_weights_data=[], bw_aux_input_to_input_weights_data=[], bw_aux_input_to_forget_weights_data=[], bw_aux_input_to_cell_weights_data=[], bw_aux_input_to_output_weights_data=[], fw_input_layer_norm_weights_data=[], fw_forget_layer_norm_weights_data=[], fw_cell_layer_norm_weights_data=[], fw_output_layer_norm_weights_data=[], bw_input_layer_norm_weights_data=[], bw_forget_layer_norm_weights_data=[], bw_cell_layer_norm_weights_data=[], bw_output_layer_norm_weights_data=[], fw_output_data=[], bw_output_data=[],): activation = Int32Scalar("activation", 4) cell_clip = Float32Scalar("cell_clip", 0.0) proj_clip = Float32Scalar("proj_clip", 0.0) merge_outputs = BoolScalar("merge_outputs", False) time_major = BoolScalar("time_major", True) model = Model().Operation( "BIDIRECTIONAL_SEQUENCE_LSTM", input, fw_input_to_input_weights, fw_input_to_forget_weights, fw_input_to_cell_weights, fw_input_to_output_weights, fw_recurrent_to_input_weights, fw_recurrent_to_forget_weights, fw_recurrent_to_cell_weights, fw_recurrent_to_output_weights, fw_cell_to_input_weights, fw_cell_to_forget_weights, fw_cell_to_output_weights, fw_input_gate_bias, fw_forget_gate_bias, fw_cell_bias, fw_output_gate_bias, fw_projection_weights, fw_projection_bias, bw_input_to_input_weights, bw_input_to_forget_weights, bw_input_to_cell_weights, bw_input_to_output_weights, bw_recurrent_to_input_weights, bw_recurrent_to_forget_weights, bw_recurrent_to_cell_weights, bw_recurrent_to_output_weights, bw_cell_to_input_weights, bw_cell_to_forget_weights, bw_cell_to_output_weights, bw_input_gate_bias, bw_forget_gate_bias, bw_cell_bias, bw_output_gate_bias, bw_projection_weights, bw_projection_bias, fw_activation_state, fw_cell_state, bw_activation_state, bw_cell_state, aux_input, fw_aux_input_to_input_weights, fw_aux_input_to_forget_weights, fw_aux_input_to_cell_weights, fw_aux_input_to_output_weights, bw_aux_input_to_input_weights, bw_aux_input_to_forget_weights, bw_aux_input_to_cell_weights, bw_aux_input_to_output_weights, activation, cell_clip, proj_clip, merge_outputs, time_major, fw_input_layer_norm_weights, fw_forget_layer_norm_weights, fw_cell_layer_norm_weights, fw_output_layer_norm_weights, bw_input_layer_norm_weights, bw_forget_layer_norm_weights, bw_cell_layer_norm_weights, bw_output_layer_norm_weights,).To(fw_output, bw_output) example = Example( { input: input_data, fw_input_to_input_weights: fw_input_to_input_weights_data, fw_input_to_forget_weights: fw_input_to_forget_weights_data, fw_input_to_cell_weights: fw_input_to_cell_weights_data, fw_input_to_output_weights: fw_input_to_output_weights_data, fw_recurrent_to_input_weights: fw_recurrent_to_input_weights_data, fw_recurrent_to_forget_weights: fw_recurrent_to_forget_weights_data, fw_recurrent_to_cell_weights: fw_recurrent_to_cell_weights_data, fw_recurrent_to_output_weights: fw_recurrent_to_output_weights_data, fw_cell_to_input_weights: fw_cell_to_input_weights_data, fw_cell_to_forget_weights: fw_cell_to_forget_weights_data, fw_cell_to_output_weights: fw_cell_to_output_weights_data, fw_input_gate_bias: fw_input_gate_bias_data, fw_forget_gate_bias: fw_forget_gate_bias_data, fw_cell_bias: fw_cell_bias_data, fw_output_gate_bias: fw_output_gate_bias_data, fw_projection_weights: fw_projection_weights_data, fw_projection_bias: fw_projection_bias_data, bw_input_to_input_weights: bw_input_to_input_weights_data, bw_input_to_forget_weights: bw_input_to_forget_weights_data, bw_input_to_cell_weights: bw_input_to_cell_weights_data, bw_input_to_output_weights: bw_input_to_output_weights_data, bw_recurrent_to_input_weights: bw_recurrent_to_input_weights_data, bw_recurrent_to_forget_weights: bw_recurrent_to_forget_weights_data, bw_recurrent_to_cell_weights: bw_recurrent_to_cell_weights_data, bw_recurrent_to_output_weights: bw_recurrent_to_output_weights_data, bw_cell_to_input_weights: bw_cell_to_input_weights_data, bw_cell_to_forget_weights: bw_cell_to_forget_weights_data, bw_cell_to_output_weights: bw_cell_to_output_weights_data, bw_input_gate_bias: bw_input_gate_bias_data, bw_forget_gate_bias: bw_forget_gate_bias_data, bw_cell_bias: bw_cell_bias_data, bw_output_gate_bias: bw_output_gate_bias_data, bw_projection_weights: bw_projection_weights_data, bw_projection_bias: bw_projection_bias_data, fw_activation_state: fw_activation_state_data, fw_cell_state: fw_cell_state_data, bw_activation_state: bw_activation_state_data, bw_cell_state: bw_cell_state_data, aux_input: aux_input_data, fw_aux_input_to_input_weights: fw_aux_input_to_input_weights_data, fw_aux_input_to_forget_weights: fw_aux_input_to_forget_weights_data, fw_aux_input_to_cell_weights: fw_aux_input_to_cell_weights_data, fw_aux_input_to_output_weights: fw_aux_input_to_output_weights_data, bw_aux_input_to_input_weights: bw_aux_input_to_input_weights_data, bw_aux_input_to_forget_weights: bw_aux_input_to_forget_weights_data, bw_aux_input_to_cell_weights: bw_aux_input_to_cell_weights_data, bw_aux_input_to_output_weights: bw_aux_input_to_output_weights_data, fw_input_layer_norm_weights: fw_input_layer_norm_weights_data, fw_forget_layer_norm_weights: fw_forget_layer_norm_weights_data, fw_cell_layer_norm_weights: fw_cell_layer_norm_weights_data, fw_output_layer_norm_weights: fw_output_layer_norm_weights_data, bw_input_layer_norm_weights: bw_input_layer_norm_weights_data, bw_forget_layer_norm_weights: bw_forget_layer_norm_weights_data, bw_cell_layer_norm_weights: bw_cell_layer_norm_weights_data, bw_output_layer_norm_weights: bw_output_layer_norm_weights_data, fw_output: fw_output_data, bw_output: bw_output_data, }, model=model, name=name) fw_input_to_input_weights_data = [ 0.5, 0.6, 0.7, -0.8, -0.9, 0.1, 0.2, 0.3, -0.4, 0.5, -0.8, 0.7, -0.6, 0.5, -0.4, -0.5, -0.4, -0.3, -0.2, -0.1 ] bw_input_to_input_weights_data = fw_input_to_input_weights_data fw_input_to_forget_weights_data = [ -0.6, -0.1, 0.3, 0.2, 0.9, -0.5, -0.2, -0.4, 0.3, -0.8, -0.4, 0.3, -0.5, -0.4, -0.6, 0.3, -0.4, -0.6, -0.5, -0.5 ] bw_input_to_forget_weights_data = fw_input_to_forget_weights_data fw_input_to_cell_weights_data = [ -0.4, -0.3, -0.2, -0.1, -0.5, 0.5, -0.2, -0.3, -0.2, -0.6, 0.6, -0.1, -0.4, -0.3, -0.7, 0.7, -0.9, -0.5, 0.8, 0.6 ] bw_input_to_cell_weights_data = fw_input_to_cell_weights_data fw_input_to_output_weights_data = [ -0.8, -0.4, -0.2, -0.9, -0.1, -0.7, 0.3, -0.3, -0.8, -0.2, 0.6, -0.2, 0.4, -0.7, -0.3, -0.5, 0.1, 0.5, -0.6, -0.4 ] bw_input_to_output_weights_data = fw_input_to_output_weights_data fw_recurrent_to_input_weights_data = [ -0.2, -0.3, 0.4, 0.1, -0.5, 0.9, -0.2, -0.3, -0.7, 0.05, -0.2, -0.6 ] bw_recurrent_to_input_weights_data = fw_recurrent_to_input_weights_data fw_recurrent_to_forget_weights_data = [ -0.5, -0.3, -0.5, -0.2, 0.6, 0.4, 0.9, 0.3, -0.1, 0.2, 0.5, 0.2 ] bw_recurrent_to_forget_weights_data = fw_recurrent_to_forget_weights_data fw_recurrent_to_cell_weights_data = [ -0.3, 0.2, 0.1, -0.3, 0.8, -0.08, -0.2, 0.3, 0.8, -0.6, -0.1, 0.2 ] bw_recurrent_to_cell_weights_data = fw_recurrent_to_cell_weights_data fw_recurrent_to_output_weights_data = [ 0.3, -0.1, 0.1, -0.2, -0.5, -0.7, -0.2, -0.6, -0.1, -0.4, -0.7, -0.2 ] bw_recurrent_to_output_weights_data = fw_recurrent_to_output_weights_data fw_cell_to_input_weights_data = [0.05, 0.1, 0.25, 0.15] bw_cell_to_input_weights_data = fw_cell_to_input_weights_data fw_cell_to_forget_weights_data = [-0.02, -0.15, -0.25, -0.03] bw_cell_to_forget_weights_data = fw_cell_to_forget_weights_data fw_cell_to_output_weights_data = [0.1, -0.1, -0.5, 0.05] bw_cell_to_output_weights_data = fw_cell_to_output_weights_data fw_projection_weights_data = [ -0.1, 0.2, 0.01, -0.2, 0.1, 0.5, 0.3, 0.08, 0.07, 0.2, -0.4, 0.2 ] bw_projection_weights_data = fw_projection_weights_data fw_input_gate_bias_data = [0.03, 0.15, 0.22, 0.38] bw_input_gate_bias_data = fw_input_gate_bias_data fw_forget_gate_bias_data = [0.1, -0.3, -0.2, 0.1] bw_forget_gate_bias_data = fw_forget_gate_bias_data fw_cell_bias_data = [-0.05, 0.72, 0.25, 0.08] bw_cell_bias_data = fw_cell_bias_data fw_output_gate_bias_data = [0.05, -0.01, 0.2, 0.1] bw_output_gate_bias_data = fw_output_gate_bias_data input_layer_norm_weights_data = [0.1, 0.2, 0.3, 0.5] forget_layer_norm_weights_data = [0.2, 0.2, 0.4, 0.3] cell_layer_norm_weights_data = [0.7, 0.2, 0.3, 0.8] output_layer_norm_weights_data = [0.6, 0.2, 0.2, 0.5] input_data = [0.7, 0.8, 0.1, 0.2, 0.3, 0.3, 0.2, 0.9, 0.8, 0.1, 0.8, 0.1, 0.2, 0.4, 0.5, 0.1, 0.5, 0.2, 0.4, 0.2, 0.2, 0.7, 0.7, 0.1, 0.7, 0.6, 0.9, 0.2, 0.5, 0.7] fw_activation_state_data = [0 for _ in range(n_batch * n_output)] bw_activation_state_data = [0 for _ in range(n_batch * n_output)] fw_cell_state_data = [0 for _ in range(n_batch * n_cell)] bw_cell_state_data = [0 for _ in range(n_batch * n_cell)] fw_golden_output_data = [ 0.0244077, 0.128027, -0.00170918, -0.00692428, 0.0848741, 0.063445, 0.0137642, 0.140751, 0.0395835, -0.00403912, 0.139963, 0.072681, -0.00459231, 0.155278, 0.0837377, 0.00752706, 0.161903, 0.0561371, ] bw_golden_output_data = [0 for _ in range(n_batch * max_time * n_output)] test( name="blackbox", input_data=input_data, fw_input_to_input_weights_data=fw_input_to_input_weights_data, fw_input_to_forget_weights_data=fw_input_to_forget_weights_data, fw_input_to_cell_weights_data=fw_input_to_cell_weights_data, fw_input_to_output_weights_data=fw_input_to_output_weights_data, fw_recurrent_to_input_weights_data=fw_recurrent_to_input_weights_data, fw_recurrent_to_forget_weights_data=fw_recurrent_to_forget_weights_data, fw_recurrent_to_cell_weights_data=fw_recurrent_to_cell_weights_data, fw_recurrent_to_output_weights_data=fw_recurrent_to_output_weights_data, fw_cell_to_input_weights_data=fw_cell_to_input_weights_data, fw_cell_to_forget_weights_data=fw_cell_to_forget_weights_data, fw_cell_to_output_weights_data=fw_cell_to_output_weights_data, fw_input_gate_bias_data=fw_input_gate_bias_data, fw_forget_gate_bias_data=fw_forget_gate_bias_data, fw_cell_bias_data=fw_cell_bias_data, fw_output_gate_bias_data=fw_output_gate_bias_data, fw_projection_weights_data=fw_projection_weights_data, bw_input_to_input_weights_data=bw_input_to_input_weights_data, bw_input_to_forget_weights_data=bw_input_to_forget_weights_data, bw_input_to_cell_weights_data=bw_input_to_cell_weights_data, bw_input_to_output_weights_data=bw_input_to_output_weights_data, bw_recurrent_to_input_weights_data=bw_recurrent_to_input_weights_data, bw_recurrent_to_forget_weights_data=bw_recurrent_to_forget_weights_data, bw_recurrent_to_cell_weights_data=bw_recurrent_to_cell_weights_data, bw_recurrent_to_output_weights_data=bw_recurrent_to_output_weights_data, bw_cell_to_input_weights_data=bw_cell_to_input_weights_data, bw_cell_to_forget_weights_data=bw_cell_to_forget_weights_data, bw_cell_to_output_weights_data=bw_cell_to_output_weights_data, bw_input_gate_bias_data=bw_input_gate_bias_data, bw_forget_gate_bias_data=bw_forget_gate_bias_data, bw_cell_bias_data=bw_cell_bias_data, bw_output_gate_bias_data=bw_output_gate_bias_data, bw_projection_weights_data=bw_projection_weights_data, fw_activation_state_data = fw_activation_state_data, bw_activation_state_data = bw_activation_state_data, fw_cell_state_data = fw_cell_state_data, bw_cell_state_data = bw_cell_state_data, fw_input_layer_norm_weights_data = input_layer_norm_weights_data, fw_forget_layer_norm_weights_data = forget_layer_norm_weights_data, fw_cell_layer_norm_weights_data = cell_layer_norm_weights_data, fw_output_layer_norm_weights_data = output_layer_norm_weights_data, bw_input_layer_norm_weights_data = input_layer_norm_weights_data, bw_forget_layer_norm_weights_data = forget_layer_norm_weights_data, bw_cell_layer_norm_weights_data = cell_layer_norm_weights_data, bw_output_layer_norm_weights_data = output_layer_norm_weights_data, fw_output_data=fw_golden_output_data, bw_output_data=bw_golden_output_data )
visual_inspector/figure_custom/cloud_figures_custom.py
m4ta1l/deep-neuroevolution
883
11125094
<reponame>m4ta1l/deep-neuroevolution<gh_stars>100-1000 """Customerized Cloud Figures""" from figure_base.cloud_figures import CloudPlot class CloudPlotHDBC(CloudPlot): """Cloud plot to show trajectory as Hi Dim BCs""" def __init__(self, *args, **kwargs): CloudPlot.__init__(self, *args, **kwargs) self.hd_bc, = self.main_ax.plot([], [], color='k', linewidth=3) def show_new_labels_dp(self, thisData): CloudPlot.show_new_labels_dp(self, thisData) self.hd_bc.set_data(thisData.x, thisData.y) def clear_labels(self): CloudPlot.clear_labels(self) self.hd_bc.set_data([], []) class CloudPlotRollout(CloudPlot): """Cloud plot with policy rollout""" def __init__(self, *args, **kwargs): CloudPlot.__init__(self, *args, **kwargs) self.traj_plots = [] def button_3(self, artist, ind): from figure_custom.rollout_trajectory import rolloutMaker print("rolling out!!") gen = self.artist2gen[artist] this_data = self.fetch_data_point(artist, ind) if self.get_policy_file(gen) != None: self.traj_plots.append(rolloutMaker(gen, this_data, self)) class CloudPlotRolloutAtari(CloudPlot): """Cloud plot with policy rollout""" def button_3(self, artist, ind): from figure_custom.rollout_custom import RolloutAtari print("rolling out!!") gen = self.artist2gen[artist] print(gen) this_data = self.fetch_data_point(artist, ind) policy_file = self.get_policy_file(gen) if policy_file is None: return noise_stdev = self.get_parent_op_data(gen)[-1] if this_data.parentOrNot: seed = int(self.get_parent_op_data(gen)[-2]) print(self.get_parent_op_data(gen)) else: seed = int(this_data.child_op_data[-2]) print(this_data.child_op_data) x, y, f = this_data.x[-1], this_data.y[-1], this_data.fitness record = "snapshots/snapshot_gen_{:04}/clips/x_{:.2f}_y_{:.2f}_f{:.2f}".format( this_data.gen, x, y, f) RolloutAtari.setup_and_rollout_policy(policy_file, this_data, noise_stdev=noise_stdev, fixed_seed=seed, render=True, path=self.path, record=record) import subprocess subprocess.call(["open {}/*.mp4".format(self.path+record)], shell=True)
tacker/tests/unit/sol_refactored/objects/test_base.py
h1r0mu/tacker
116
11125107
<gh_stars>100-1000 # Copyright (C) 2021 Nippon Telegraph and Telephone Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime from unittest import mock from oslo_serialization import jsonutils from tacker.sol_refactored.objects import base from tacker.sol_refactored.objects import fields from tacker.tests import base as tests_base @base.TackerObjectRegistry.register class MyObj(base.TackerObject): VERSION = '1.0' fields = { 'id': fields.StringField(nullable=False), 'data': fields.StringField(nullable=False), 'listData': fields.ListOfObjectsField( 'MySubObj', nullable=True), 'createdAt': fields.DateTimeField(nullable=False), } @base.TackerObjectRegistry.register class MySubObj(base.TackerObject): VERSION = '1.0' fields = { 'id': fields.StringField(nullable=False), 'data': fields.StringField(nullable=False), } @base.TackerObjectRegistry.register class MyDBObj(MyObj, base.TackerPersistentObject): pass class TestTackerObject(tests_base.BaseTestCase): def test_tacker_obj_get_changes(self): o = MyObj.from_dict({'id': 'foo', 'data': 'abcde', 'createdAt': '2021-09-01T12:34:56+09:00'}) o.obj_reset_changes() self.assertEqual(o.tacker_obj_get_changes(), {}) o.data = '12345' o.createdAt = datetime.datetime(2021, 8, 7, 6, 5, 44, tzinfo=datetime.timezone(datetime.timedelta(hours=-9))) changes = o.tacker_obj_get_changes() self.assertEqual(len(changes), 2) self.assertIn('data', changes) self.assertIsNone(changes['createdAt'].tzinfo) self.assertEqual(changes['createdAt'].hour, o.createdAt.hour + 9) def test_from_dict(self): o = MyObj.from_dict({'id': 'foo', 'data': 'abcde', 'listData': [ {'id': 'foo1', 'data': 'bar1'}, {'id': 'foo2', 'data': 'bar2'}, ], 'createdAt': '2021-09-01T12:34:56+09:00'}) self.assertEqual(o.id, 'foo') self.assertIsInstance(o.createdAt, datetime.datetime) self.assertEqual(len(o.listData), 2) self.assertEqual(o.listData[1].data, 'bar2') class TestTackerObjectSerializer(tests_base.BaseTestCase): def test_serialize_entity(self): serializer = base.TackerObjectSerializer() o = MyObj.from_dict({'id': 'foo', 'data': 'abcde', 'listData': [ {'id': 'foo1', 'data': 'bar1'}, {'id': 'foo2', 'data': 'bar2'}, ], 'createdAt': '2021-09-01T12:34:56+09:00'}) entity = serializer.serialize_entity(mock.Mock(), o) self.assertEqual(entity['tacker_sol_refactored_object.name'], 'MyObj') self.assertEqual(entity['tacker_sol_refactored_object.namespace'], 'tacker_sol_refactored') data = entity['tacker_sol_refactored_object.data'] self.assertEqual(set(data.keys()), set(['id', 'data', 'listData', 'createdAt'])) o2 = serializer.deserialize_entity(mock.Mock(), entity) self.assertEqual(o2.listData[1].id, o.listData[1].id) self.assertEqual(o2.createdAt, o.createdAt) class TestTackerPersistentObject(tests_base.BaseTestCase): def test_from_db_obj(self): o = MyDBObj.from_db_obj( {'id': 'foo', 'data': 'abcde', 'listData': '[{"id": "foo1", "data": "bar1"},' '{"id": "foo2", "data": "bar2"}]', 'createdAt': datetime.datetime(2021, 9, 1, 12, 34, 56)}) self.assertEqual(o.id, 'foo') self.assertEqual(len(o.listData), 2) self.assertEqual(o.listData[0].data, 'bar1') def test_to_db_obj(self): o = MyDBObj.from_dict({'id': 'foo', 'data': 'abcde', 'listData': [ {'id': 'foo1', 'data': 'bar1'}, {'id': 'foo2', 'data': 'bar2'}, ], 'createdAt': '2021-09-01T12:34:56'}) dbobj = o.to_db_obj() self.assertEqual(jsonutils.loads(dbobj['listData']), [{"id": "foo1", "data": "bar1"}, {"id": "foo2", "data": "bar2"}])
functions/FillRaster.py
mmfink/raster-functions
173
11125109
import numpy as np class FillRaster(): def __init__(self): self.name = "Fill Raster Function" self.description = ("") self.fillValue = 0. def getParameterInfo(self): return [ { 'name': 'raster', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': "Input Raster", 'description': "" }, { 'name': 'value', 'dataType': 'numeric', 'value': 0, 'required': True, 'displayName': "Fill Value", 'description': ("") }, ] def updateRasterInfo(self, **kwargs): b = kwargs['raster_info']['bandCount'] self.fillValue = kwargs.get('value', 0.) kwargs['output_info']['statistics'] = b * ({'minimum': self.fillValue, 'maximum': self.fillValue}, ) kwargs['output_info']['histogram'] = () return kwargs def updatePixels(self, tlc, shape, props, **pixelBlocks): pixelBlocks['output_pixels'] = np.full(shape, self.fillValue, dtype=props['pixelType']) return pixelBlocks
tests/test_issues.py
cstoltze/fhir.resources
144
11125148
<gh_stars>100-1000 # _*_ coding: utf-8 _*_ from pydantic import ValidationError from fhir.resources.patient import Patient __author__ = "<NAME><<EMAIL>>" def test_issue_74(): """When are Falsy values evaluated as None?""" patient = Patient(active=True, address=[]) assert "address" not in patient.dict() assert patient.dict(exclude_none=False)["address"] == [] def test_issue_64(): """Allow empty string """ try: Patient( active=True, address=[ { "use": "old", "line": ["100 LaSalle St", ""], "city": "Chicago", "district": "Cook", "state": "IL", "postalCode": "60606", "country": "USA", } ], ) assert 1 == 2, "Code should not come here, because of empty string validation" except ValidationError: # should raise validation error assert 1 == 1 from fhir.resources.fhirtypes import String String.configure_empty_str(allow=True) try: Patient( active=True, address=[ { "use": "old", "line": ["100 LaSalle St", ""], "city": "Chicago", "district": "Cook", "state": "IL", "postalCode": "60606", "country": "USA", } ], ) assert 1 == 1 except ValidationError: # should not raise validation error assert 1 == 2, "Code should not come here, we allow empty string" String.configure_empty_str(allow=False)
lib/bindings/samples/server/utils/cpp_callback.py
tlalexander/stitchEm
182
11125162
import utils.async import vs class CppCallback(vs.CppCallback): def __init__(self, to_call): super(CppCallback, self).__init__() self.to_call = to_call def __call__(self, payload): #defer to avoid deadlock utils.async.defer(self.to_call, payload)
tests/test_static_graph.py
zbmain/PGL
1,389
11125183
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import numpy as np import paddle import pgl import paddle.nn as nn import pgl.nn as gnn import pgl.nn.functional as F import paddle.static as static class GNNModel(nn.Layer): def __init__(self, input_size, output_size, num_layers=3): super(GNNModel, self).__init__() self.conv_fn = nn.LayerList() self.conv_fn.append(gnn.GCNConv(input_size, output_size)) for i in range(num_layers - 1): self.conv_fn.append(gnn.GCNConv(output_size, output_size)) self.pool_fn = gnn.GraphPool("sum") def forward(self, num_nodes, edges, feature): graph = pgl.Graph(num_nodes=num_nodes, edges=edges) for fn in self.conv_fn: feature = fn(graph, feature) output = self.pool_fn(graph, feature) return output class StaticGraphOpTest(unittest.TestCase): def test_static_graph(self): path = './tmp' dim = 100 # Load DyGraph Model paddle.disable_static() num_nodes = 5 edges = [(0, 1), (1, 2), (3, 4)] nfeat = np.random.randn(num_nodes, dim).astype("float32") model = GNNModel(dim, 10) out = model( paddle.to_tensor(num_nodes), paddle.to_tensor(edges), paddle.to_tensor(nfeat)) out = out.numpy() paddle.save(model.state_dict(), os.path.join(path, "static_gnn.pdparam")) paddle.enable_static() # Run Static Fisrt model2 = GNNModel(dim, 10) input_num_nodes = static.data( name='num_nodes', shape=[-1], dtype='int32') input_edges = static.data(name='edges', shape=[-1, 2], dtype='int32') input_feature = static.data( name="feature", shape=[-1, dim], dtype="float32") output = model2(input_num_nodes, input_edges, input_feature) place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) prog = static.default_main_program() state_dict = paddle.load(os.path.join(path, "static_gnn.pdparam")) model2.set_state_dict(state_dict) feed_dict = { "num_nodes": num_nodes, "edges": np.array( edges, dtype="int32"), "feature": nfeat.astype("float32"), } out2 = exe.run(prog, feed=feed_dict, fetch_list=[output])[0] eps = np.sum((out2 - out)**2) self.assertTrue(eps < 1e-5) import shutil shutil.rmtree(path) if __name__ == "__main__": unittest.main()
tests/system/test__helpers.py
Arushi201296/python-firestore
140
11125201
import os import re from google.cloud.firestore_v1.base_client import _FIRESTORE_EMULATOR_HOST from test_utils.system import unique_resource_id from test_utils.system import EmulatorCreds FIRESTORE_CREDS = os.environ.get("FIRESTORE_APPLICATION_CREDENTIALS") FIRESTORE_PROJECT = os.environ.get("GCLOUD_PROJECT") RANDOM_ID_REGEX = re.compile("^[a-zA-Z0-9]{20}$") MISSING_DOCUMENT = "No document to update: " DOCUMENT_EXISTS = "Document already exists: " UNIQUE_RESOURCE_ID = unique_resource_id("-") EMULATOR_CREDS = EmulatorCreds() FIRESTORE_EMULATOR = os.environ.get(_FIRESTORE_EMULATOR_HOST) is not None
RecoBTag/Combined/python/candidateChargeBTagComputer_cfi.py
ckamtsikis/cmssw
852
11125230
import FWCore.ParameterSet.Config as cms candidateChargeBTagComputer = cms.ESProducer("CandidateChargeBTagESProducer", useCondDB = cms.bool(False), gbrForestLabel = cms.string(""), weightFile = cms.FileInPath('RecoBTag/Combined/data/ChargeBTag_4sep_2016.weights.xml.gz'), useAdaBoost = cms.bool(True), jetChargeExp = cms.double(0.8), svChargeExp = cms.double(0.5) )
bcs-ui/backend/bcs_web/apis/authentication.py
laodiu/bk-bcs
599
11125231
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from rest_framework.authentication import BaseAuthentication from backend.utils.authentication import JWTClient, JWTUser from backend.utils.whitelist import is_app_open_api_trusted from .constants import APIGW_JWT_KEY_NAME, BCS_APP_APIGW_PUBLIC_KEY, USERNAME_KEY_NAME class JWTAuthentication(BaseAuthentication): def authenticate(self, request): client = JWTClient(request.META.get(APIGW_JWT_KEY_NAME, "")) if not client.is_valid(BCS_APP_APIGW_PUBLIC_KEY): return None username = client.user.username if not username and is_app_open_api_trusted(client.app.app_code): username = request.META.get(USERNAME_KEY_NAME, "") user = JWTUser(username=username) user.client = client return (user, None)
tests/unit/output/test_row_formatter.py
tttgm/basketball_reference_web_scraper
325
11125232
<reponame>tttgm/basketball_reference_web_scraper<filename>tests/unit/output/test_row_formatter.py from unittest import TestCase from basketball_reference_web_scraper.data import Team, Location, Outcome, Position from basketball_reference_web_scraper.output.fields import format_value class TestRowFormatter(TestCase): def test_team_enum_value(self): self.assertEqual(format_value(Team.BOSTON_CELTICS), "BOSTON CELTICS") def test_location_enum_value(self): self.assertEqual(format_value(Location.HOME), "HOME") def test_outcome_enum_value(self): self.assertEqual(format_value(Outcome.LOSS), "LOSS") def test_empty_array(self): self.assertEqual(format_value([]), "") def test_empty_set(self): self.assertEqual(format_value(set()), "") def test_position_enum_value(self): self.assertEqual(format_value(Position.POINT_GUARD), "POINT GUARD") def test_positions_array_with_single_position(self): self.assertEqual(format_value([Position.POINT_GUARD]), "POINT GUARD") def test_positions_array_with_multiple_positions(self): self.assertEqual(format_value([Position.POINT_GUARD, Position.SHOOTING_GUARD]), "POINT GUARD-SHOOTING GUARD") def test_positions_set_with_single_position(self): self.assertEqual(format_value({Position.POINT_GUARD}), "POINT GUARD") def test_string_value(self): self.assertEqual(format_value("jaebaebae"), "jaebaebae")
lib/pare/pare/models/backbone/utils.py
YuliangXiu/ICON
486
11125248
<reponame>YuliangXiu/ICON # -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: <EMAIL> def get_backbone_info(backbone): info = { 'resnet18': { 'n_output_channels': 512, 'downsample_rate': 4 }, 'resnet34': { 'n_output_channels': 512, 'downsample_rate': 4 }, 'resnet50': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'resnet50_adf_dropout': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'resnet50_dropout': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'resnet101': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'resnet152': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'resnext50_32x4d': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'resnext101_32x8d': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'wide_resnet50_2': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'wide_resnet101_2': { 'n_output_channels': 2048, 'downsample_rate': 4 }, 'mobilenet_v2': { 'n_output_channels': 1280, 'downsample_rate': 4 }, 'hrnet_w32': { 'n_output_channels': 480, 'downsample_rate': 4 }, 'hrnet_w48': { 'n_output_channels': 720, 'downsample_rate': 4 }, # 'hrnet_w64': {'n_output_channels': 2048, 'downsample_rate': 4}, 'dla34': { 'n_output_channels': 512, 'downsample_rate': 4 }, } return info[backbone]
checkov/terraform/checks/data/__init__.py
cclauss/checkov
4,013
11125306
from checkov.terraform.checks.data.aws import *
itchatmp/views/crypto.py
yf-ftd/itchatmp
1,504
11125340
import os, logging, traceback import hashlib, struct from base64 import b64decode, b64encode try: from Crypto.Cipher import AES except ImportError: from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes from cryptography.hazmat.backends import default_backend def aes_encode(key, data): cryptor = Cipher(algorithms.AES(key), modes.CBC(key[:16]), backend=default_backend()).encryptor() return b64encode(cryptor.update(data) + cryptor.finalize()) def aes_decode(key, data): cryptor = Cipher(algorithms.AES(key), modes.CBC(key[:16]), backend=default_backend()).decryptor() return cryptor.update(b64decode(data)) + cryptor.finalize() else: def aes_encode(key, data): cryptor = AES.new(key, AES.MODE_CBC, key[:16]) return b64encode(cryptor.encrypt(data)) def aes_decode(key, data): cryptor = AES.new(key, AES.MODE_CBC, key[:16]) return cryptor.decrypt(b64decode(data)) from itchatmp.content import ENCRYPT from itchatmp.views import deconstruct_msg, construct_msg logger = logging.getLogger('itchatmp') def decrypt_msg(timestamp, nonce, signature, config, msgDict): ''' decrypt msg from wechat, use AES_CBC decryption return a dict contains encrypted information if decrypt failed, will return an empty dict pass {'echostr': ECHOSTR} into msgDict to decrypt Cop mp oauth ''' if 'echostr' in msgDict: msgDict['Encrypt'] = msgDict['echostr'] elif msgDict.get('MsgType') != ENCRYPT: return msgDict try: text = aes_decode(config._encodingAesKey, msgDict['Encrypt']) text = text[16:-(text[-1] if isinstance(text[-1], int) else ord(text[-1]))] xmlLen = struct.unpack('>I', text[:4])[0] xmlContent = text[4:xmlLen + 4].decode('utf8') fromAppid = text[xmlLen + 4:].decode('utf8') except: logger.debug(traceback.format_exc()) return {} # Check appId if fromAppid not in (config.appId, config.copId): logger.debug('A message from wrong appid is filtered when decrypt: %s' % fromAppid) return {} if 'echostr' in msgDict: return {'echostr': xmlContent} else: return deconstruct_msg(xmlContent) def encrypt_msg(timestamp, nonce, signature, config, replyDict): ''' encrypt msg for sending to wechat * use AES_CBC encryption * return a string ready for sending * as in construct_msg, string in replyDict should be unicode ''' text = construct_msg(replyDict).encode('utf8') text = os.urandom(16) + struct.pack('>I', len(text)) +\ text + config.appId.encode('utf8') paddingAmount = 32 - (len(text) % 32) text += chr(paddingAmount).encode('utf8') * paddingAmount text = aes_encode(config._encodingAesKey, text) # Encrypt generated s = [i.encode('utf8') for i in (timestamp, nonce, config.token)] s += [text]; s.sort(); s = b''.join(s) # Signature generated return construct_msg({ 'FromUserName': replyDict['FromUserName'], 'ToUserName': replyDict['ToUserName'], 'MsgType': ENCRYPT, 'Encrypt': text.decode('utf8'), 'MsgSignature': hashlib.sha1(s).hexdigest(), 'TimeStamp': timestamp, 'Nonce': nonce, }, ) def oauth(timestamp, nonce, signature, token, echostr=None): ''' determine whether signature of request is right * both get and post functions need oauth * msgs we generate for sending don't match this fn * for Cop mp, we need echostr as well ''' s = [timestamp, nonce, token] if echostr is not None: s.append(echostr) s.sort(); s = ''.join(s).encode('utf8') return hashlib.sha1(s).hexdigest() == signature
pythonFiles/tests/unittestadapter/conftest.py
Kelvin-Gamer/vscode-python
1,476
11125376
<reponame>Kelvin-Gamer/vscode-python # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import sys # Ignore the contents of this folder for Python 2 tests. if sys.version_info[0] < 3: collect_ignore_glob = ["*.py"]
.test-infra/jenkins/metrics_report/dashboards_parser.py
eyal0/beam
5,279
11125382
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import re import unittest class Dashboard: def __init__(self, file): self.file = file self.uid, self.queries = self.get_dashboard_uid_and_queries(file) self.regexes = set( self.parse_query_to_regex(query) for query in self.queries) @staticmethod def get_dashboard_uid_and_queries(file): queries = [] with open(file, "r") as f: data = json.load(f) uid = data.get("uid") for panel in data.get("panels", []): for target in panel.get("targets", []): query = target.get("query") queries.append(query) return uid, queries @staticmethod def parse_query_to_regex(query): select_pattern = r"(.*FROM\s)(.*)(\sWHERE.*)" match = re.match(select_pattern, query) if match: from_ = match.group(2) without_quotes = re.sub(r"\"", "", from_) without_retention_policy = without_quotes if re.match(r"(\w+.\.)(.*)", without_quotes): without_retention_policy = re.sub(r"(\w+.)(.*)", r"\2", without_quotes) replaced_parameters = re.sub( r"\$\{\w+\}", r"[\\w\\d]*", without_retention_policy) return replaced_parameters @staticmethod def _get_json_files_from_directory(directory): return [ os.path.join(directory, i) for i in os.listdir(directory) if i.endswith(".json") ] @classmethod def get_dashboards_from_directory(cls, directory): for file in cls._get_json_files_from_directory(directory): yield cls(file) def guess_dashboard_by_measurement( measurement, directory, additional_query_substrings=None): """ Guesses dashboard by measurement name by parsing queries and matching it with measurement. It is done by using regular expressions obtained from queries. Additionally query can be checked for presence of any of the substrings. """ dashboards = list(Dashboard.get_dashboards_from_directory(directory)) ret = [] for dashboard in dashboards: for regex in dashboard.regexes: if additional_query_substrings and not any( substring.lower() in query.lower() for substring in additional_query_substrings for query in dashboard.queries): continue if regex and re.match(regex, measurement): ret.append(dashboard) return list(set(ret)) class TestParseQueryToRegex(unittest.TestCase): def test_parse_query_to_regex_1(self): query = ( 'SELECT "runtimeMs" FROM "forever"."nexmark_${ID}_${processingType}" WHERE ' '"runner" =~ /^$runner$/ AND $timeFilter GROUP BY "runner"') expected = r"nexmark_[\w\d]*_[\w\d]*" result = Dashboard.parse_query_to_regex(query) self.assertEqual(expected, result) def test_parse_query_to_regex_2(self): query = ( 'SELECT mean("value") FROM "python_bqio_read_10GB_results" WHERE "metric" ' '=~ /runtime/ AND $timeFilter GROUP BY time($__interval), "metric"') expected = "python_bqio_read_10GB_results" result = Dashboard.parse_query_to_regex(query) self.assertEqual(expected, result) def test_parse_query_to_regex_3(self): query = ( 'SELECT mean("value") FROM "${sdk}_${processingType}_cogbk_3" WHERE ' '"metric" =~ /runtime/ AND $timeFilter GROUP BY time($__interval), "metric"' ) expected = "[\w\d]*_[\w\d]*_cogbk_3" result = Dashboard.parse_query_to_regex(query) self.assertEqual(expected, result)
qmlt/numerical/plot.py
stjordanis/QMLT
117
11125413
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=too-many-arguments """ Plotting functions ======================================================== **Module name:** :mod:`qmlt.numerical.plot` .. currentmodule:: qmlt.numerical.plot .. codeauthor:: <NAME> <<EMAIL>> This module contains the functions required to plot the parameters of the numeric learner. These are auxillary functions, it is recommended you instead use the plotting method available in the numeric learner, which will provide live plots of the training progress and monitored parameters. This can be turned on by passing the ``plot`` key to the hyperparameters dictionary. For example, >>> hyperparams = {'circuit': circuit, 'log_every': 10, 'plot': True } Here, the integer value of ``log_every`` specifies at how many global steps the live plots should be updated. When the training is complete, the terminal will show the message .. code-block:: console Training complete. Close the live plot window to exit. To use auxillary plotting functions on a logfile: >>> from qmlt.numerical import plot >>> plot.plot_parameter(numerical, y='loss') You can also chain together plots by passing through the returned axes, to display multiple parameters on one plot: >>> ax = plot.plot_parameter(numerical, y='loss') >>> ax = plot.plot_parameter(numerical, y='cost', ax=ax) >>> ax = plot.plot_parameter(numerical, y='regul', ax=ax, ... legend=True, save_filename="test.png") Finally, you can also automatically plot all parameters against the global step, on one figure as multiple subplots: >>> plot.plot_all("numerical/logsNUM/log.csv") Plotting functions ------------------ .. autosummary:: plot_parameter plot_all Auxillary functions ------------------- .. autosummary:: _squareish _plot Code details ------------ """ import os from itertools import zip_longest import numpy as np try: import matplotlib as mpl if os.environ.get('DISPLAY', '') == '': print('no display found. Using non-interactive Agg backend') mpl.use('Agg') from matplotlib import pyplot as plt except: raise ImportError("To use the plotting functions, matplotlib must be installed") def _squareish(n): """Factors an integer to two integers that closesly approximates a square Args: n (int): integer to factor. Returns: tuple(int, int): the squareish integers. """ if n == 1: return (1, 1) if n == 2: return (2, 1) nsqrt = np.ceil(np.sqrt(n)) solution = False x = int(nsqrt) while not solution: y = int(n/x) if y * x == float(n): solution = True else: x -= 1 if n > 1: if x == 1 or y == 1: x = 3 y = int(np.ceil(n/3)) return x, y def _plot(x, y, ax=None, xlabel=None, ylabel=None, **plot_kw): r"""Produces a line plot visualizing settings, training progress, or monitored parameters. Args: x (array): the data to plot on the x-axis. y (array): the data to plot on the y-axis. xlabel (str): the x-axis label. ylabel (str): the y-axis label. **plot_kw: additional keyword arguments to be passed to ``plt.plot``. Returns: axes: returns a tuple containing the figure and axes. """ if ax is None: ax = plt.gca() if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_title(ylabel) ax.plot(x, y, **plot_kw) return ax def plot_parameter(logfile, x='global_step', y='loss', save_filename=None, ax=None, legend=False, style='ggplot', legend_kw=None, fig_kw=None, savefig_kw=None, **plot_kw): # pragma: no cover r"""Produces a line plot visualizing settings, training progress, or monitored parameters. Args: logfile (str): the location of the logfile containing the training progress and parameter values for each global step. x (str): the parameter to plot on the x-axis. By default the global step. y (str): the parameter to plot on the y-axis. By default the loss. save_filename (str): string containing the output image filename, including all relevant paths and file extensions. All image filetypes supported by matplotlib are supported here. By default, the plot is *not* saved. ax (matplotlib.axes.Axes): a matplotlib axes object. If none is provided, this is created automatically. legend (bool): If True, a legend is added containing the y parameter names. style (str): a supported matplotlib style sheet. To see the available styles on your system, please refer to the output of ``matplotlib.pyplot.style.available``. legend_kw (dict): dictionary of additional matplotlib keyword arguments to apss to ``matplotlib.pyplot.legend``. fig_kw (dict): dictionary of additional matplotlib keyword arguments to apss to ``matplotlib.figure.Figure``. savefig_kw (dict): dictionary of additional matplotlib keyword arguments to apss to ``matplotlib.figure.Figure.savefig``. **plot_kw: additional keyword arguments to be passed to ``matplotlib.pyplot.plot``. Returns: matplotlib.axes.Axes: returns the plotting axes. """ # pragma: no cover if fig_kw is None: fig_kw = {'figsize': (12, 8)} if savefig_kw is None: savefig_kw = {} if legend_kw is None: legend_kw = {} data = np.genfromtxt(logfile, dtype=float, delimiter=',', names=True) params = data.dtype.names if x not in params: raise ValueError("The x-axis parameter {} does not exist.".format(x)) if y not in params: raise ValueError("The y-axis parameter {} does not exist.".format(y)) plt.style.use(style) if ax is None: _, ax = plt.subplots(1, 1, squeeze=True, **fig_kw) if legend: ax = _plot(data[x], data[y], label=y, ylabel="", ax=ax, **plot_kw) plt.legend() else: ax = _plot(data[x], data[y], label=y, ylabel=y, xlabel=x, ax=ax, **plot_kw) if save_filename is not None: plt.savefig(save_filename, **savefig_kw) return ax def plot_all(logfile, x='global_step', y=None, save_filename=None, figax=None, style='ggplot', fig_kw=None, savefig_kw=None, **plot_kw): # pragma: no cover r"""Produces a figure containing line plots visualizing settings, training progress, or monitored parameters. Args: filename (str): string containing the output image filename, including all relevant paths and file extensions. All image filetypes supported by matplotlib are supported here. logfile (str): the location of the logfile containing the training progress and parameter values for each global step. x (str): the parameter to plot on the x-axes. By default the global step. y Sequence[str]: the parameters to plot on the figure. By default, all will be plotted. save_filename (str): string containing the output image filename, including all relevant paths and file extensions. All image filetypes supported by matplotlib are supported here. By default, the plot is *not* saved. figax (tuple): a tuple containing the figure and the plotting axes. Created by default if not provided. style (str): a supported matplotlib style sheet. To see the available styles on your system, please refer to the output of ``matplotlib.pyplot.style.available``. fig_kw (dict): dictionary of additional matplotlib keyword arguments to apss to ``matplotlib.figure.Figure``. savefig_kw (dict): dictionary of additional matplotlib keyword arguments to apss to ``matplotlib.figure.Figure.savefig``. **plot_kw: additional keyword arguments to be passed to ``matplotlib.pyplot.plot``. Returns: tuple: returns a tuple containing the figure and the plotting axes. """ if fig_kw is None: fig_kw = {'figsize': (12, 8)} if savefig_kw is None: savefig_kw = {} data = np.genfromtxt(logfile, dtype=float, delimiter=',', names=True) params = data.dtype.names if x not in params: raise ValueError("The x-axis parameter {} does not exist.".format(x)) xdata = data[x] if y is None: ydata = [data[p] for p in params if p != x] ylabels = [p for p in params if p != x] else: try: ydata = [data[p] for p in y] except ValueError: raise ValueError("parameter name does not exist in logfile.") ylabels = y rows, cols = _squareish(len(ydata)) plt.style.use(style) if figax is None: fig, ax = plt.subplots(rows, cols, sharex=True, sharey=False, **fig_kw) else: fig, ax = figax for idx, (yd, yl, a) in enumerate(zip_longest(ydata, ylabels, ax.ravel())): # get 2D grid location loc = np.array(np.unravel_index([idx], (rows, cols))).flatten() # only label x-axis if on the bottom row if yd is not None: if loc[0] == rows - 1: a = _plot(xdata, yd, xlabel=x, ylabel=yl, ax=a, **plot_kw) else: a = _plot(xdata, yd, ylabel=yl, ax=a, **plot_kw) else: a.axis('off') plt.tight_layout() if save_filename is not None: fig.savefig(save_filename, **savefig_kw) return fig, ax
lldb/test/API/tools/lldb-server/TestGdbRemoteSingleStep.py
mkinsner/llvm
2,338
11125430
import gdbremote_testcase from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestGdbRemoteSingleStep(gdbremote_testcase.GdbRemoteTestCaseBase): mydir = TestBase.compute_mydir(__file__) @skipIfWindows # No pty support to test any inferior std -i/e/o @skipIf(triple='^mips') def test_single_step_only_steps_one_instruction_with_s(self): self.build() self.set_inferior_startup_launch() self.single_step_only_steps_one_instruction( use_Hc_packet=True, step_instruction="s")
utilities/diskimage_unittesting/tests/empty_directory_test.py
timgates42/pymacadmin
112
11125493
<filename>utilities/diskimage_unittesting/tests/empty_directory_test.py #!/usr/bin/python2.4 # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Ensure directories that are supposed to be empty actually are.""" __author__ = '<EMAIL> (<NAME>)' import os import macdmgtest class TestEmptyDirectories(macdmgtest.DMGUnitTest): def setUp(self): self.empty_directories = ['var/vm', '/private/tmp', 'Volumes', 'Library/Logs'] def DirectoryEmpty(self, dirname): """Make sure dirname is empty.""" path = self.PathOnDMG(dirname) if os.listdir(path): return False else: return True def testEmptyDirectories(self): """Ensure every directory that is supposed to be empty on the image, is.""" full_dirs = [] for d in self.empty_directories: if not self.DirectoryEmpty(d): full_dirs.append(d) self.assertEqual(len(full_dirs), 0) if __name__ == '__main__': macdmgtest.main()
myia/operations/prim_partial.py
strint/myia
222
11125500
<reponame>strint/myia """Definitions for the primitive `partial`.""" from ..lib import ( AbstractFunction, PartialApplication, Possibilities, standard_prim, ) from . import primitives as P def pyimpl_partial(f, *args): """Implement `partial`.""" def res(*others): return f(*(args + others)) return res @standard_prim(P.partial) async def infer_partial(self, engine, fn, *args): """Infer the return type of primitive `partial`.""" fns = await fn.get() assert isinstance(fns, Possibilities) return AbstractFunction(*[PartialApplication(fn, list(args)) for fn in fns]) __operation_defaults__ = { "name": "partial", "registered_name": "partial", "mapping": P.partial, "python_implementation": pyimpl_partial, } __primitive_defaults__ = { "name": "partial", "registered_name": "partial", "type": "backend", "python_implementation": pyimpl_partial, "inferrer_constructor": infer_partial, "grad_transform": None, }
tests/param/string_to_boolean_test.py
Timothyyung/bravado-core
122
11125590
# -*- coding: utf-8 -*- import pytest from bravado_core.param import string_to_boolean def test_boolean_true_is_true_or_1(): assert string_to_boolean('true') assert string_to_boolean('tRUe') assert string_to_boolean('1') def test_boolean_false_is_false_or_0(): assert not string_to_boolean('false') assert not string_to_boolean('faLSe') assert not string_to_boolean('0') def test_boolean_cast_failure_raises_value_error(): with pytest.raises(ValueError): string_to_boolean('PIZZA')
DiffAugment-biggan-imagenet/compare_gan/metrics/fid_score_test.py
Rian-T/data-efficient-gans
1,902
11125610
<reponame>Rian-T/data-efficient-gans # coding=utf-8 # Copyright 2018 Google LLC & <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the FID score.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from compare_gan.metrics import fid_score as fid_score_lib import numpy as np import tensorflow as tf class FIDScoreTest(tf.test.TestCase): def test_fid_computation(self): real_data = np.ones((100, 2)) real_data[:50, 0] = 2 gen_data = np.ones((100, 2)) * 9 gen_data[50:, 0] = 2 # mean(real_data) = [1.5, 1] # Cov(real_data) = [[ 0.2525, 0], [0, 0]] # mean(gen_data) = [5.5, 9] # Cov(gen_data) = [[12.37, 0], [0, 0]] result = fid_score_lib.compute_fid_from_activations(real_data, gen_data) self.assertNear(result, 89.091, 1e-4) if __name__ == "__main__": tf.test.main()
test/manualAreplTests/envVarTest.py
manuth/LiveCode
203
11125619
<gh_stars>100-1000 from arepl_dump import dump import os path=os.environ['Path'] test = os.environ['test'] try: shouldFail = os.environ['aofijaef'] except KeyError: print('bad key failed as expected')
apps/point_cloud/image_common/camera_calibration_parsers/src/camera_calibration_parsers/__init__.py
ramonidea/prl_wireless_perception
742
11125628
from camera_calibration_parsers.camera_calibration_parsers_wrapper import __readCalibrationWrapper from sensor_msgs.msg import CameraInfo def readCalibration(file_name): """Read .ini or .yaml calibration file and return (camera name and cameraInfo message). @param file_name: camera calibration file name @type file_name: str @return: (camera name, cameraInfo message) or None on Error @rtype: tuple(str, sensor_msgs.msg.CameraInfo | None """ ret, cn, ci = __readCalibrationWrapper(file_name) if not ret: return None c = CameraInfo() c.deserialize(ci) return cn, c
vscode/wsclient.py
TTitcombe/vscode-ext
140
11125648
import json import uuid import socket import asyncio import websockets class WSClient: """ This class manages the websocket connection. """ BASE_URI = "ws://localhost:" def __init__(self, extension, port: int = None) -> None: self.extension = extension self.port = port self.ws = None self.responses = {} @property def uri(self) -> str: return self.BASE_URI + str(self.port) def run_webserver(self): if self.port is None: self.port = self.get_free_port() async def webserver(): async with websockets.serve(self.handler, "localhost", self.port): print(f"Listening on {self.uri}", flush=True) # js will read this await asyncio.Future() # run forever asyncio.run(webserver()) def get_free_port(self): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("127.0.0.1", 0)) _, port = sock.getsockname() sock.close() return port async def handler(self, websocket, path): self.ws = websocket while True: try: message = await websocket.recv() except websockets.ConnectionClosedOK: break data = json.loads(message) await self.extension.parse_ws_data(data) async def run_code(self, code, wait_for_response=True, thenable=True): if wait_for_response: uid = str(uuid.uuid4()) payload = {"type": 2 if thenable else 3, "code": code, "uuid": uid} await self.ws.send(json.dumps(payload)) return await self.wait_for_response(uid) else: return await self.ws.send(json.dumps({"type": 1, "code": code})) async def wait_for_response(self, uid): while not uid in self.responses: await asyncio.sleep(0.1) return self.responses.pop(uid)
scout/commands/update/genes.py
Clinical-Genomics/scout
111
11125684
<reponame>Clinical-Genomics/scout #!/usr/bin/env python # encoding: utf-8 """ update/genes.py Build a file with genes that are based on hgnc format. Parses ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_complete_set.txt, ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint/ and a biomart dump from ensembl with 'Gene ID' 'Chromosome' 'Gene Start' 'Gene End' 'HGNC symbol' The hgnc file will determine which genes that are added and most of the meta information. The ensembl gene file will add coordinates and the exac file will add pLi scores. Created by <NAME> on 2015-01-14. Copyright (c) 2015 __MoonsoInc__. All rights reserved. """ import logging import os import tempfile import click from flask.cli import current_app, with_appcontext from scout.commands.download.ensembl import ensembl as ensembl_cmd from scout.commands.download.exac import exac as exac_cmd from scout.commands.download.hgnc import hgnc as hgnc_cmd from scout.commands.download.hpo import hpo as hpo_cmd from scout.commands.download.omim import omim as omim_cmd from scout.constants import UPDATE_GENES_RESOURCES from scout.load import load_hgnc_genes, load_transcripts from scout.server.extensions import store from scout.utils.handle import get_file_handle LOG = logging.getLogger(__name__) def download_resources(download_dir, api_key, builds): """Download necessary files to update gene definitions in a temporary directory Args: download_dir(str): path to downloaded resources. Provided by user in the cli command api_key(str): API key for downloading OMIM resources builds(list): a list containing both genome builds or one genome build ['37', '38'] """ ctx = click.get_current_context() if not api_key: LOG.warning("No OMIM API key provided. Please note that some information will be missing.") else: # Download OMIM files ctx.invoke(omim_cmd, out_dir=download_dir, api_key=api_key) # Download HPO definitions ctx.invoke(hpo_cmd, out_dir=download_dir) # Download Exac genes ctx.invoke(exac_cmd, out_dir=download_dir) # Download HGNC genes ctx.invoke(hgnc_cmd, out_dir=download_dir) # Download Ensembl genes for build in builds: ctx.invoke( ensembl_cmd, out_dir=download_dir, skip_tx=False, exons=False, build=build, ) def fetch_downloaded_resources(resources, downloads_folder, builds): """Checks that a resource file exists on disk and has valid data. Return its content as a list of lines Args: resources(dict): Dictionary containing resource files' lines downloads_folder(str): Path to downloaded resources. Provided by user in the cli command builds(list): a list containing both genome builds or one genome build ['37', '38'] """ for resname, filenames in UPDATE_GENES_RESOURCES.items(): for filename in filenames: resource_path = os.path.join(downloads_folder, filename) resource_exists = os.path.isfile(resource_path) if resource_exists: resources[resname] = get_file_handle(resource_path).readlines() # If the resource is manadatory make sure it exists and contains data (OMIM data is NOT mandatory) if resname in ["hpo_genes", "hgnc_lines", "exac_lines"] and not resources.get(resname): LOG.error(f"Missing resource {resname} in downloads path.") raise click.Abort() # Check that the available genes and transcripts file correspond to the required genome build for build in builds: if resname.endswith(build) and resources.get(resname) is False: LOG.error( f"Updating genes for genome build '{build}' requires a resource '{resname}' that is currenly missing in provided path." ) raise click.Abort() # Check that resource lines contain actual data if resname not in resources: continue if "<!DOCTYPE html>" in resources[resname][0] or "<!DOCTYPE html>" in resources[resname][1]: LOG.error(f"Resource file '{resname}' doesn't contain valid data.") raise click.Abort() @click.command("genes", short_help="Update all genes") @click.option( "--build", type=click.Choice(["37", "38"]), help="What genome build should be used. If no choice update 37 and 38.", ) @click.option( "-f", "--downloads_folder", type=click.Path(exists=True, dir_okay=True, readable=True), help="specify path to folder where files necessary to update genes are pre-downloaded", ) @click.option( "--api-key", help="Specify the OMIM downloads api key. Only if downloads_folder is not provided", ) @with_appcontext def genes(build, downloads_folder, api_key): """ Load the hgnc aliases to the mongo database. """ LOG.info("Running scout update genes") adapter = store builds = [build] if build else ["37", "38"] api_key = api_key or current_app.config.get("OMIM_API_KEY") resources = {} # If required resources are missing, download them to a temporary directory if downloads_folder is None: with tempfile.TemporaryDirectory() as tempdir: try: download_resources(tempdir, api_key, builds) except Exception as ex: LOG.error(ex) fetch_downloaded_resources(resources, tempdir, builds) else: # If resources have been previosly downloaded, read those file and return their lines fetch_downloaded_resources(resources, downloads_folder, builds) # Load genes and transcripts info for genome_build in builds: LOG.warning("Dropping all gene information") adapter.drop_genes(genome_build) LOG.warning("Dropping all transcript information") adapter.drop_transcripts(genome_build) ensembl_gene_res = ( resources.get("ensembl_genes_37") if genome_build == "37" else resources.get("ensembl_genes_38") ) # It will be none if everything needs to be downloaded # Load the genes hgnc_genes = load_hgnc_genes( adapter=adapter, ensembl_lines=ensembl_gene_res, hgnc_lines=resources.get("hgnc_lines"), exac_lines=resources.get("exac_lines"), mim2gene_lines=resources.get("mim2genes"), genemap_lines=resources.get("genemap2"), hpo_lines=resources.get("hpo_genes"), build=genome_build, ) ensembl_genes_dict = {} for gene_obj in hgnc_genes: ensembl_id = gene_obj["ensembl_id"] ensembl_genes_dict[ensembl_id] = gene_obj # Load the transcripts ensembl_tx_res = ( resources.get("ensembl_transcripts_37") if genome_build == "37" else resources.get("ensembl_transcripts_38") ) # It will be none if everything needs to be downloaded load_transcripts(adapter, ensembl_tx_res, genome_build, ensembl_genes_dict) LOG.info("Genes and transcripts loaded")
test/run/t310.py
timmartin/skulpt
2,671
11125743
<filename>test/run/t310.py s = set([2,3,4]) t = set([3,4,5]) u = set([1,3,5]) a = s.intersection(t) b = u.intersection(s) c = u.intersection(t) print a print b print c print a == set([3, 4]) print b == set([3]) print c == set([3, 5]) d = s.intersection(t, u) print d print d == set([3])
tests/test_static.py
mblack20/flintrock
615
11125751
<filename>tests/test_static.py import compileall import os import subprocess # External modules import yaml FLINTROCK_ROOT_DIR = ( os.path.dirname( os.path.dirname( os.path.realpath(__file__)))) TEST_TARGETS = [ 'setup.py', 'flintrock/', 'tests/'] TEST_PATHS = [ os.path.join(FLINTROCK_ROOT_DIR, path) for path in TEST_TARGETS] def test_code_compiles(): for path in TEST_PATHS: if os.path.isdir(path): result = compileall.compile_dir(path) else: result = compileall.compile_file(path) # NOTE: This is not publicly documented, but a return of 1 means # the compilation succeeded. # See: http://bugs.python.org/issue25768 assert result == 1 def test_flake8(): ret = subprocess.call(['flake8'], cwd=FLINTROCK_ROOT_DIR) assert ret == 0 def test_config_template_is_valid(): config_template = os.path.join(FLINTROCK_ROOT_DIR, 'flintrock', 'config.yaml.template') with open(config_template) as f: yaml.safe_load(f)
examples/tensorboard/text.py
dwolfschlaeger/guildai
694
11125786
"""Ref: https://www.tensorflow.org/api_docs/python/tf/summary/text """ import argparse import tensorflow as tf p = argparse.ArgumentParser() p.add_argument("--logdir", default="/tmp/text_demo") args = p.parse_args() print("Writing logs to %s" % args.logdir) writer = tf.summary.create_file_writer(args.logdir) with writer.as_default(): tf.summary.text("color", tf.convert_to_tensor("blue"), 10) tf.summary.text( "text", tf.convert_to_tensor( "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed venenatis, " "nisl in lacinia placerat, tortor neque blandit erat, ut auctor dui dolor " "quis elit." ), 10, ) tf.summary.text("color", tf.convert_to_tensor("green"), 20) tf.summary.text( "text", tf.convert_to_tensor( "Vestibulum a tellus accumsan, posuere tellus sed, volutpat elit. Ut " "venenatis in massa ac scelerisque. Ut in risus ut turpis facilisis " "maximus." ), 20, ) tf.summary.text("color", tf.convert_to_tensor("red"), 30) tf.summary.text( "text", tf.convert_to_tensor( "Aenean malesuada risus non laoreet efficitur. Maecenas sit amet laoreet " "sem, ac eleifend augue. Suspendisse potenti. Morbi euismod tempor gravida." ), 30, ) writer.flush()
examples/detection_file_conversions/scripts/correct_frame_ids_in_viame_csv.py
Kitware/VAIME
127
11125844
<filename>examples/detection_file_conversions/scripts/correct_frame_ids_in_viame_csv.py #!/usr/bin/env python import argparse import csv import os import sys F_IMAGE_NAME = 1 F_FRAME_NUMBER = 2 field_types = [ int, str, int, float, float, float, float, float, float, ] #------------------------------------------------------------------------------ def warn(msg, *args, **kwargs): sys.stderr.write('Warning: ' + msg.format(*args, **kwargs) + '\n') #------------------------------------------------------------------------------ def read_image_list(path): images = {} i = 0 with open(path, 'rt') as f: for l in f: images[os.path.basename(l.strip())] = i i += 1 return images #------------------------------------------------------------------------------ def read_records(path): records = [] with open(path, 'rt') as f: reader = csv.reader(f) for row in reader: try: record = [t(v) for t, v in zip(field_types, row)] classifiers = row[len(field_types):] while len(classifiers) >= 2: record += [classifiers[0], float(classifiers[1])] if len(classifiers): warn('ignoring unpaired classification {!r}', classifiers[0]) records.append(record) except ValueError: warn('ignoring row {!r} with malformatted field(s)', row) return records #------------------------------------------------------------------------------ def write_records(records, out_file): writer = csv.writer(out_file, quoting=csv.QUOTE_NONNUMERIC) map(writer.writerow, records) #------------------------------------------------------------------------------ def main(): parser = argparse.ArgumentParser( description='Fix bad frame numbers in a NOAA CSV file ' 'using an image list') output_group = parser.add_mutually_exclusive_group() output_group.add_argument('-o', '--output', type=str, metavar='OUTPUT', help='Output CSV file') output_group.add_argument('-i', '--in-place', action='store_true', help='Rewrite CSV file in place') parser.add_argument('images', metavar='IMAGES', type=str, help='Input image list') parser.add_argument('csv', metavar='INPUT', type=str, help='Input CSV file') args = parser.parse_args() # Read input files images = read_image_list(args.images) records = read_records(args.csv) # Fix record frame numbers using image names and image list for i in range(len(records)): f = records[i][F_IMAGE_NAME] if f in images: records[i][F_FRAME_NUMBER] = images[f] else: warn('no match for image name {!r}: frame number not updated', f) # Write output if args.in_place: out = open(args.csv, 'wt') elif args.output is not None: out = open(args.output, 'wt') else: out = sys.stdout write_records(records, out) #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if __name__ == '__main__': main()
vilya/models/actions/__init__.py
mubashshirjamal/code
1,582
11125862
<reponame>mubashshirjamal/code # -*- coding: utf-8 -*- migrate_type_name = { 'code_review': 'pull_comment', # 'commit': 'pull_commit', } # 迁移数据 def migrate_notif_data(data, receiver): from vilya.models.notification import Notification from vilya.models.actions.commit_comment import migrate_commit_comment from vilya.models.actions.issue import migrate_issue from vilya.models.actions.issue_comment import migrate_issue_comment from vilya.models.actions.pull import migrate_pull_request from vilya.models.actions.pull_comment import migrate_pull_comment from vilya.models.actions.recommend import migrate_recommend from vilya.models.actions.team_add_member import migrate_team_add_member type_migrate_dict = { 'commit_comment': migrate_commit_comment, 'issue': migrate_issue, 'issue_comment': migrate_issue_comment, 'pull_request': migrate_pull_request, 'pull_comment': migrate_pull_comment, # 'pull_commit': migrate_pull_commit, 'recommend': migrate_recommend, 'team_add_member': migrate_team_add_member, } assert data.get('uid') is not None assert data.get('type') is not None uid = data['uid'] action_type = data['type'] if action_type in migrate_type_name: Notification.set_data(receiver, 'type', migrate_type_name[action_type], uid) action_type = migrate_type_name[action_type] migrate_data = type_migrate_dict[action_type] for new, old in migrate_data.iteritems(): if data.get(new) is None: assert type(old) in (str, tuple, list) value = data[old] if isinstance(old, str) else old[1](data.get(old[0])) # noqa Notification.set_data(receiver, new, value, uid) data[new] = value elif type(old) is list: # force update value = data[old] if isinstance(old, str) else old[1](data.get(old[0])) # noqa Notification.set_data(receiver, new, value, uid) data[new] = value data['notif_template'] = action_type + '_notif' data['feed_template'] = action_type + '_feed' return data
examples/torch/common/models/__init__.py
MaximProshin/nncf
310
11125867
<gh_stars>100-1000 from examples.torch.common.models.segmentation import * from examples.torch.common.models.classification import *
python/examples/z_dual_numbers.py
sgillen/tiny-differentiable-simulator
862
11125912
<filename>python/examples/z_dual_numbers.py import pytinydiffsim_dual as pd def auto_diff(f, x): return f(pd.TinyDualDouble(x, 1.)).dual() x = pd.TinyDualDouble(2,1) y = pd.TinyDualDouble(3,0) print(x) print(y) f = (x*x)*x print(f) print("pytinydiffsim.TinyDualDouble") print(auto_diff(lambda x:pd.TinyDualDouble(1.,0)/(x*x*x*x*x), 0.01))
tests/components/guardian/__init__.py
domwillcode/home-assistant
30,023
11125986
"""Tests for the Elexa Guardian integration."""
api/environments/identities/traits/constants.py
mevinbabuc/flagsmith
1,259
11126055
<filename>api/environments/identities/traits/constants.py<gh_stars>1000+ from features.value_types import BOOLEAN, FLOAT, INTEGER, STRING ACCEPTED_TRAIT_VALUE_TYPES = [INTEGER, STRING, BOOLEAN, FLOAT] TRAIT_STRING_VALUE_MAX_LENGTH = 2000
msticpy/vis/matrix_plot.py
kubajir/msticpy
820
11126066
<reponame>kubajir/msticpy<gh_stars>100-1000 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """Bokeh matrix plot.""" import math from typing import List, Optional, Union import attr from bokeh.io import output_notebook, show, reset_output from bokeh.plotting import figure from bokeh.models import ( HoverTool, ColumnDataSource, LayoutDOM, ) import numpy as np import pandas as pd from ..common.utility import check_kwargs from .._version import VERSION __version__ = VERSION __author__ = "<NAME>" @attr.s(auto_attribs=True) class PlotParams: """Plot params for time_duration.""" title: Optional[str] = "Interaction Plot" x: Optional[str] = None x_col: Optional[str] = None y: Optional[str] = None y_col: Optional[str] = None intersect: bool = False height: int = 700 width: int = 900 color: str = "red" value_col: Optional[str] = None dist_count: bool = False log_size: bool = False invert: bool = False sort: Optional[Union[str, bool]] = None sort_x: Optional[Union[str, bool]] = None sort_y: Optional[Union[str, bool]] = None hide: bool = False font_size: Optional[int] = None max_label_font_size: int = 11 @property def x_column(self) -> Optional[str]: """Return the current x column value.""" return self.x or self.x_col @property def y_column(self) -> Optional[str]: """Return the current y column value.""" return self.y or self.y_col @classmethod def field_list(cls) -> List[str]: """Return field names as a list.""" return list(attr.fields_dict(cls).keys()) def plot_matrix(data: pd.DataFrame, **kwargs) -> LayoutDOM: """ Plot data as an intersection matrix. Parameters ---------- data : pd.DataFrame The data to plot. x : str Column to plot on the x (horizontal) axis x_col : str Alias for 'x' y : str Column to plot on the y (vertical) axis y_col : str Alias for 'y' title : str, optional Custom title, default is 'Intersection plot' value_col : str, optional Column from the DataFrame used to size the intersection points. dist_count : bool, optional Calculates a count of distinct values (from `value_col`) and uses this to size the intersection points. Requires `value_col` to be specified. log_size : bool, optional Takes the log of the size value before calculating the intersection display point size. Can be combined with `invert`. invert : bool, optional Takes the inverse of the size value as the basis for calculating the intersection display point size. This is useful for highlighting rare interactions. Can be combined with `log_size`. intersect : bool, optional Plots points of a fixed size, rather than using a sizing value. This is useful for just showing the presence/absence of an interaction. height : int, optional The plot height. Default is 700 width : int The plot width. Default is 900 color : str The color of the plotted points, default is "red" sort : Union[str, bool], optional Sorts the labels of both axes, default is None. Acceptable values are: 'asc' (or string starting with 'asc') - Sort ascending 'desc' (or string starting with 'asc') - Sort descending False or None (no sort) True - Sort ascending sort_x : str, optional Sorts the labels of the x axis (takes precedence over `sort`), default is None. Acceptable values are: 'asc' (or string starting with 'asc') - Sort ascending 'desc' (or string starting with 'asc') - Sort descending False or None (no sort) True - Sort ascending sort_y : str, optional Sorts the labels of the y axis (takes precedence over `sort`), default is None. Acceptable values are: 'asc' (or string starting with 'asc') - Sort ascending 'desc' (or string starting with 'asc') - Sort descending False or None (no sort) True - Sort ascending hide : bool, optional Creates and returns but does not display the plot, default is False. font_size : int, optional Manually specify the font size for axis labels, in points, the default is to automatically calculate a size based on the number of items in each axis. max_label_font_size : int, optional The maximum size, in points, of the X and Y labels, default is 11. Returns ------- LayoutDOM The Bokeh plot """ # Process/extract parameters check_kwargs(kwargs, PlotParams.field_list()) param = PlotParams(**kwargs) if not param.x_column or not param.y_column: raise ValueError("Must supply `x` and `y` column parameters.") reset_output() output_notebook() plot_data = _prep_data(data, param) x_range = _sort_labels(plot_data, param.x_column, param.sort_x or param.sort) y_range = _sort_labels( plot_data, param.y_column, param.sort_y or param.sort, invert=True ) # Rescale the size so that it matches the graph max_size = plot_data["size"].max() plot_data["plt_size"] = plot_data["size"] * 10 / max_size source = ColumnDataSource(data=plot_data) plot = figure( title=param.title, plot_width=param.width, plot_height=param.height, x_range=x_range, y_range=y_range, tools=["wheel_zoom", "box_zoom", "pan", "reset", "save"], toolbar_location="above", ) tool_tips = [ (param.x_column, f"@{param.x_column}"), (param.y_column, f"@{param.y_column}"), ("value", "@size"), ] plot.add_tools(HoverTool(tooltips=tool_tips)) if param.intersect: plot.circle_cross( x=param.x_column, y=param.y_column, source=source, fill_alpha=0.6, line_color=param.color, size=5, ) else: plot.circle( x=param.x_column, y=param.y_column, source=source, fill_alpha=0.6, fill_color=param.color, size="plt_size", ) _set_plot_params(plot) # Calculate appropriate font size for labels x_label_pt_size = param.font_size or max( 5, min( param.max_label_font_size, int(param.width * 0.6 / plot_data[param.x_column].nunique()), ), ) y_label_pt_size = param.font_size or max( 5, min( param.max_label_font_size, int(param.height * 0.6 / plot_data[param.y_column].nunique()), ), ) plot.xaxis.major_label_text_font_size = f"{x_label_pt_size}pt" plot.yaxis.major_label_text_font_size = f"{y_label_pt_size}pt" plot.xaxis.axis_label = param.x_column plot.yaxis.axis_label = param.y_column if not param.hide: show(plot) return plot def _set_plot_params(plot): plot.title.text_font_size = "15pt" plot.outline_line_color = None plot.grid.grid_line_color = "navy" plot.grid.grid_line_alpha = 0.1 plot.axis.axis_line_color = None plot.axis.major_tick_line_color = None plot.xaxis.major_label_orientation = math.pi / 2 plot.xgrid.visible = True plot.ygrid.visible = True plot.axis.major_label_standoff = 0 def _sort_labels(data, column, sort_arg, invert=False): """Sort the labels if required.""" if sort_arg: if isinstance(sort_arg, str): sort_order = sort_arg.casefold().startswith("asc") else: sort_order = True sort_order = not sort_order if invert else sort_order return data[column].sort_values(ascending=sort_order).unique().tolist() return data[column].unique().tolist() def _prep_data(data: pd.DataFrame, param: PlotParams): """Process the data to create size column.""" def _size_scale(value_series, log_size, invert): # local function to scale values if invert: # If invert, calculate inverse values on same # scale as input max_size = value_series.max() # min_size = value_series.min() value_series = (max_size) / value_series if log_size: # calc log of values, if requested return np.log(value_series) return value_series if param.value_col is None: # calculate a count of rows in each group other_cols = list(set(data.columns) - set([param.x_column, param.y_column])) if other_cols: count_col = other_cols[0] else: count_col = data.index.name or "index" data = data.reset_index() count_rows_df = ( data[[param.x_column, param.y_column, count_col]] .groupby([param.x_column, param.y_column]) .count() .rename(columns={count_col: "row_count"}) .reset_index() ) return count_rows_df.assign( size=_size_scale(count_rows_df.row_count, param.log_size, param.invert) ) # if value column was specified, use that if param.dist_count: # If distinct count of values required, get nunique tmp_df = ( data[[param.x_column, param.y_column, param.value_col]] .groupby([param.x_column, param.y_column]) .nunique() .reset_index() ) else: tmp_df = ( data[[param.x_column, param.y_column, param.value_col]] .groupby([param.x_column, param.y_column]) .sum() .reset_index() ) return tmp_df.assign( size=lambda x: _size_scale( tmp_df[param.value_col], param.log_size, param.invert ) )
modules/rfblock.py
ZAKAUDD/LightNet
737
11126110
<reponame>ZAKAUDD/LightNet<gh_stars>100-1000 import time import torch import torch.nn as nn from modules import InPlaceABN from collections import OrderedDict from torch.autograd import Variable class RFBlock(nn.Module): def __init__(self, in_chs, out_chs, scale=0.1, feat_res=(56, 112), aspp_sec=(12, 24, 36), up_ratio=2, norm_act=InPlaceABN): super(RFBlock, self).__init__() self.scale = scale self.down_chs = nn.Sequential(OrderedDict([("norm_act", norm_act(in_chs)), ("down_conv1x1", nn.Conv2d(in_chs, out_chs, kernel_size=1, stride=1, padding=0, bias=False))])) self.gave_pool = nn.Sequential(OrderedDict([("norm_act", norm_act(out_chs)), ("gavg", nn.AdaptiveAvgPool2d((1, 1))), ("conv1_0", nn.Conv2d(out_chs, out_chs, kernel_size=1, stride=1, padding=0, groups=1, bias=False, dilation=1)), ("up0", nn.Upsample(size=feat_res, mode='bilinear'))])) self.branch0 = nn.Sequential(OrderedDict([("norm_act", norm_act(out_chs)), ("conv1x1", nn.Conv2d(out_chs, out_chs, kernel_size=1, stride=1, padding=0, bias=False)), ("norm_act", norm_act(out_chs)), ("aconv1", nn.Conv2d(out_chs, out_chs, kernel_size=3, stride=1, padding=1, dilation=1, bias=False))])) self.branch1 = nn.Sequential(OrderedDict([("norm_act", norm_act(out_chs)), ("conv1x3", nn.Conv2d(out_chs, (out_chs // 2) * 3, kernel_size=(1, 3), stride=1, padding=(0, 1), bias=False)), ("norm_act", norm_act((out_chs // 2) * 3)), ("conv3x1", nn.Conv2d((out_chs // 2) * 3, out_chs, kernel_size=(3, 1), stride=1, padding=(1, 0), bias=False)), ("norm_act", norm_act(out_chs)), ("aconv3", nn.Conv2d(out_chs, out_chs, kernel_size=3, stride=1, padding=aspp_sec[0], dilation=aspp_sec[0], bias=False))])) self.branch2 = nn.Sequential(OrderedDict([("norm_act", norm_act(out_chs)), ("conv1x5", nn.Conv2d(out_chs, (out_chs // 2) * 3, kernel_size=(1, 5), stride=1, padding=(0, 2), bias=False)), ("norm_act", norm_act((out_chs // 2) * 3)), ("conv5x1", nn.Conv2d((out_chs // 2) * 3, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), bias=False)), ("norm_act", norm_act(out_chs)), ("aconv5", nn.Conv2d(out_chs, out_chs, kernel_size=3, stride=1, padding=aspp_sec[1], dilation=aspp_sec[1], bias=False))])) self.branch3 = nn.Sequential(OrderedDict([("norm_act", norm_act(out_chs)), ("conv1x7", nn.Conv2d(out_chs, (out_chs // 2) * 3, kernel_size=(1, 7), stride=1, padding=(0, 3), bias=False)), ("norm_act", norm_act((out_chs // 2) * 3)), ("conv7x1", nn.Conv2d((out_chs // 2) * 3, out_chs, kernel_size=(7, 1), stride=1, padding=(3, 0), bias=False)), ("norm_act", norm_act(out_chs)), ("aconv7", nn.Conv2d(out_chs, out_chs, kernel_size=3, stride=1, padding=aspp_sec[2], dilation=aspp_sec[2], bias=False))])) self.conv_linear = nn.Sequential(OrderedDict([("conv1x1_linear", nn.Conv2d(out_chs * 5, out_chs, kernel_size=1, stride=1, padding=0, bias=False))])) self.upsampling = nn.Upsample(size=(int(feat_res[0] * up_ratio), int(feat_res[1] * up_ratio)), mode='bilinear') def forward(self, x): down = self.down_chs(x) out = torch.cat([self.gave_pool(down.clone()), self.branch0(down.clone()), self.branch1(down.clone()), self.branch2(down.clone()), self.branch3(down.clone())], dim=1) return self.upsampling(torch.add(self.conv_linear(out), self.scale, down)) # out=input+value×other if __name__ == "__main__": from functools import partial from modules import InPlaceABNWrapper input_chs = 712 output_chs = 256 feat_maps = Variable(torch.randn(1, input_chs, 32, 32).cuda()) rfblocka = RFBlock(in_chs=input_chs, out_chs=output_chs, scale=0.1, feat_res=(32, 32), norm_act=partial(InPlaceABNWrapper, activation="leaky_relu", slope=0.1)).cuda() start_time = time.time() _ = rfblocka(feat_maps) end_time = time.time() print("RFBlock: {}s".format(end_time - start_time))
pingo/arduino/test_util_firmata.py
pingo-io/pingo-py
116
11126142
import unittest from util_firmata import pin_list_to_board_dict class FirmataCapabilityDetect(unittest.TestCase): def test_capability_response(self): test_layout = { 'digital': (0, 1), 'analog': (0,), # Analog are numbered from zero 'pwm': (1,), 'i2c': (2,), 'disabled': (0,), } # Eg: (127) unavailible_pin = [ 0x7F, # END_SYSEX (Pin delimiter) ] # Eg: (0, 1, 1, 1, 3, 8, 4, 14, 127) digital_pin = [ 0x00, # INPUT 0x01, 0x01, # OUTPUT 0x01, 0x03, # PWM 0x08, 0x7F, # END_SYSEX (Pin delimiter) ] # Eg. (0, 1, 1, 1, 4, 14, 127) analog_pin = [ 0x00, # INPUT 0x01, 0x01, # OUTPUT 0x01, 0x02, # ANALOG 0x0A, 0x06, # I2C 0x01, 0x7F, # END_SYSEX (Pin delimiter) ] data_arduino = list( # [0x6C] # CAPABILITY_RESPONSE unavailible_pin + digital_pin + analog_pin ) pinmap = pin_list_to_board_dict(data_arduino) for key in test_layout.keys(): self.assertEqual(pinmap[key], test_layout[key]) if __name__ == '__main__': unittest.main()
netpyne/tutorials/netpyne_tut0.py
adamjhn/netpyne
120
11126144
<reponame>adamjhn/netpyne """ Install NetPyNE tutorials """ import os os.system("mkdir netpyne_tuts && cd netpyne_tuts && export PATH=/bin:/usr/bin && python3 -m venv env && source env/bin/activate && python3 -m pip install --upgrade pip && python3 -m pip install --upgrade ipython && python3 -m pip install --upgrade ipykernel && python3 -m pip install --upgrade jupyter && ipython kernel install --user --name=env && python3 -m pip install --upgrade neuron && git clone https://github.com/Neurosim-lab/netpyne.git && python3 -m pip install -e netpyne && cp -r netpyne/netpyne/tutorials . && cd tutorials && jupyter notebook")
src/algorithms/__init__.py
LaudateCorpus1/hermes-5
135
11126162
import cf import content_based import content_based_kmeans import performance_metrics import recommender_helpers import simple_hybrid
tests/test_pandas.py
python-pipe/hellp
123
11126194
import pandas as pd from sspipe import p, px def test_px_slice(): df = pd.DataFrame(dict(x=[1, 2, 0], y=[3, 4, 5])) assert (df | px[(px.x > 1) & (px.x < px.y)].y.sum()) == 4 def test_dataframe(): df = {'x': [0, 1, 2], 'y': [3, 4, 5]} | p(pd.DataFrame) assert df.shape == (3, 2) df = [{'x': 0, 'y': 3}, {'x': 1, 'y': 4}, {'x': 2, 'y': 5}] | p(pd.DataFrame) assert df.shape == (3, 2) def test_loc_tuple(): df = ( {'x': [0, 1, 2], 'y': [3, 4, 5]} | p(pd.DataFrame) | px.loc[px.x > 1, ['y']] ) assert pd.DataFrame({'y': [5]}, index=[2]).equals(df)
applications/CoSimulationApplication/python_scripts/factories/convergence_criterion_factory.py
lkusch/Kratos
778
11126200
<gh_stars>100-1000 from KratosMultiphysics.CoSimulationApplication.factories import base_factory def CreateConvergenceCriterion(convergence_criterion_settings, *args): """This function creates and returns the Convergence Criterion used for CoSimulation""" return base_factory.Create(convergence_criterion_settings, [*args], "KratosMultiphysics.CoSimulationApplication.convergence_criteria")
Python/control/system_id.py
hpbader42/Klampt
238
11126208
<reponame>hpbader42/Klampt from online_leastsq import OnlineLeastSquares import numpy as np import math class LinearSystemID: """System identification for a system y = Ax + Bu + C with m state variables and n inputs.""" def __init__(self,m,n): self.m,self.n = m,n self.coeffPattern = [None,None,None] self.estimators = [OnlineLeastSquares(self.m+self.n+1) for i in xrange(m)] def setPattern(self,Apattern,Bpattern,Cpattern): """The patterns are list-of-lists of size mxm, mxn, and a list of size m, which indicate whether the (i,j)'th entry of the A,B, and C matrices are fixed (respectively). A None entry indicates a free coefficient, while a numeric entry indicates a fixed coefficient. """ self.coeffPattern = [Apattern,Bpattern,Cpattern] for i in xrange(self.m): self._updateEstimatorSize(i) def fixA(self,i,j,value): """Sets the i,j'th entry of the A matrix to a fixed value""" if self.coeffPattern[0] == None: m,n=self.m,self.n self.coeffPattern[0] = [[None]*m for i in xrange(m)] self.coeffPattern[0][i][j]=value self._updateEstimatorSize(i) def fixB(self,i,j,value): """Sets the i,j'th entry of the B matrix to a fixed value""" if self.coeffPattern[1] == None: m,n=self.m,self.n self.coeffPattern = [[None]*n for i in xrange(m)] self.coeffPattern[1][i][j]=value self._updateEstimatorSize(i) def fixC(self,i,value): """Sets the i'th entry of the C vector to a fixed value""" if self.coeffPattern[2] == None: m,n=self.m,self.n self.coeffPattern[2] = [None]*m self.coeffPattern[2][i]=value self._updateEstimatorSize(i) def add(self,x,u,y,weight=1.0): """Adds a new datapoint to the estimator""" assert(len(y)==self.m) assert(len(x)==self.m) assert(len(u)==self.n) if isinstance(x,np.ndarray): x = x.tolist() if isinstance(u,np.ndarray): u = u.tolist() xu1 = x + u + [1.0] if self.coeffPattern == [None,None,None]: for yi,e in zip(y,self.estimators): e.add(xu1,yi,weight) else: #each row might have some fixed values for i,(yi,e) in enumerate(zip(y,self.estimators)): if e == None: continue (xuc,constOffset) = self._toEstimator(i,x,u) rhs = yi - constOffset e.add(xuc,rhs,weight) return def discount(self,discountFactor,type='geometric'): """Reduces the effects of prior readings.""" for e in self.estimators: e.discount(discountFactor,type) return def setModelPrior(self,A,B,C,priorWeight): """Adds in a prior belief for the model. Must be called AFTER fixing coefficients and BEFORE adding any datapoints.""" Cpattern = self.coeffPattern[2] for i in xrange(self.m): ai = A[i,:].tolist() bi = B[i,:].tolist() (xuc,constant) = self._toEstimator(i,ai,bi) if Cpattern == None or Cpattern[i] == None: xuc[-1] = C[i] self.estimators[i].setPrior(np.array(xuc),priorWeight) return def getModel(self): """Returns the estimated triple (A,B,C) as numpy arrays""" m,n = self.m,self.n A = np.zeros((m,m)) B = np.zeros((m,n)) C = np.zeros(m) Apattern,Bpattern,Cpattern = self.coeffPattern for i,e in enumerate(self.estimators): aofs = 0 bofs = m cofs = m+n if Apattern==None: ai = e.x[aofs:m+aofs] else: bofs=aofs ai = [] for j,pj in enumerate(Apattern[i]): if pj == None: ai.append(e.x[bofs]) bofs += 1 else: ai.append(pj) if Bpattern==None: bi = e.x[bofs:n+bofs] else: cofs=bofs bi = [] for j,pj in enumerate(Bpattern[i]): if pj == None: bi.append(e.x[cofs]) cofs += 1 else: bi.append(pj) if Cpattern==None: ci = e.x[cofs] cofs+=1 else: if Cpattern[i] == None: ci = e.x[cofs] cofs+=1 else: ci = Cpattern[i] assert(cofs == e.n) assert len(ai)==m assert len(bi)==n A[i,:] = ai B[i,:] = bi C[i] = ci return (A,B,C) def getOutput(self,x,u): """Returns the estimate A*x+B*u+c""" assert(len(x)==self.m) assert(len(u)==self.n) if isinstance(x,np.ndarray): x = x.tolist() if isinstance(u,np.ndarray): u = u.tolist() dx = [] if self.coeffPattern == [None,None,None]: xuc = np.array(x + u + [1.0]) for e in self.estimators: dx.append(np.dot(e.x,xuc)) else: for i,e in enumerate(self.estimators): (xuc,constOffset) = self._toEstimator(i,x,u) dx.append(np.dot(e.x,xuc)+constOffset) return dx def _updateEstimatorSize(self,index): """Helper.""" Apattern,Bpattern,Cpattern = self.coeffPattern m,n = self.m,self.n numFixed = 0 if Apattern!=None: numFixed += len(v for v in Apattern[index] if v != None) if Bpattern!=None: numFixed += len(v for v in Bpattern[index] if v != None) if Cpattern!=None: if Cpattern[index]!=None: numFixed += 1 if numFixed==m+n+1: self.estimators[index]=None else: self.estimators[index]=OnlineLeastSquares(m+n+1-numFixed) return def _toEstimator(self,index,x,u): """Helper: Projects x,u to the pattern xe taken by the index'th estimator. Returns the pair (xe,constant offset) where the index'th row of Ax+Bu+C is equal to dot(xe,estimator.coeffs) + constOffset.""" Apattern,Bpattern,Cpattern = self.coeffPattern xuc = [] constOffset = 0 if Apattern == None: xuc += x else: xuc += [xj for (xj,pj) in zip(x,Apattern[index]) if pj == None] constOffset += sum([xj*pj for (xj,pj) in zip(x,Apattern[index]) if pj != None]) if Bpattern == None: xuc += u else: xuc += [uj for (uj,pj) in zip(u,Bpattern[index]) if pj == None] constOffset += sum([uj*pj for (uj,pj) in zip(u,Bpattern[index]) if pj != None]) if Cpattern == None: xuc += [1.0] else: constOffset = Cpattern[index] return (xuc,constOffset) def testLinearSystemID(A,B,C,N,xScale=1,uScale=1): m,n = B.shape sysid = LinearSystemID(m,n) print "Actual model:", print "A:" print A print "B:" print B print "C:" print C X = [np.random.rand(m)*xScale*2-np.ones(m)*xScale for i in range(N)] U = [np.random.rand(n)*uScale-np.ones(n)*uScale for i in range(N)] for x,u in zip(X,U): y = np.dot(A,x)+np.dot(B,u)+C sysid.add(x,u,y) print "Estimated model:", eA,eB,eC=sysid.getModel() print "A:" print eA print "B:" print eB print "C:" print eC resid = 0.0 for x,u in zip(X,U): y = np.dot(A,x)+np.dot(B,u)+C ey = np.dot(eA,x)+np.dot(eB,u)+C #print "Error",np.dot(ey,ey) resid += np.dot(ey-y,ey-y) print "RMSE",math.sqrt(resid/len(X)) def testNonlinearSystemID(func,m,n,N,discountParams,x0,uScale=1): sysid = LinearSystemID(m,n) sysid.add(x0,np.zeros(n),x0) if not hasattr(discountParams,'__iter__'): discountParams = (discountParams,'geometric') #simulate a random trace X = [x0] U = [] for i in xrange(N): u = np.random.rand(n)*uScale*2.0 - np.ones(n)*uScale U.append(u) X.append(func(X[-1],u)) resid = 0.0 discresid = 0.0 errors = [] for x,u,xn in zip(X[:-1],U,X[1:]): xpred = sysid.getOutput(x,u) e2 = np.dot(xn-xpred,xn-xpred) errors.append(e2) resid += e2 discount = discountParams[0] if discountParams[1]=='geometric' else (1.0/discountParams[0]-1)/sysid.estimators[0].sumWeight discresid = discresid*discount + e2 sysid.discount(*discountParams) sysid.add(x,u,xn) print "Nonlinear estimation with discount",discountParams print "Final estimated model:", eA,eB,eC=sysid.getModel() print "A:" print eA print "B:" print eB print "C:" print eC print "RMSE",math.sqrt(resid/(len(X)-1)) print "Discounted squared errors",discresid #print "Errors",errors if __name__=='__main__': print "Testing standard double integrator with offset""" mass = 5.0 f = 1.0 A = np.array([[0,1],[0,0]]) B = np.array([[0],[1/mass]]) C = np.array([0,f/mass]) testLinearSystemID(A,B,C,100) def ABCFunc(x,u): dt = 0.1 return x + dt*(np.dot(A,x)+np.dot(B,u)+C) x0 = np.array([0,0]) """ testNonlinearSystemID(ABCFunc,2,1,100,1.0,x0) testNonlinearSystemID(ABCFunc,2,1,100,0.95,x0) testNonlinearSystemID(ABCFunc,2,1,100,0.9,x0) testNonlinearSystemID(ABCFunc,2,1,100,0.8,x0) exit(1) """ print "Testing damped pendulum with gravity""" def pendulumFunc(x,u): theta,dtheta = x torque = u[0] g = -9.8 dt = 0.1 mass = 1 kD = 0.5 ddtheta = torque/mass + math.sin(theta)*g - kD*dtheta return np.array([theta+dt*dtheta,dtheta+dt*ddtheta]) x0 = np.array([math.pi*0.5,0]) testNonlinearSystemID(pendulumFunc,2,1,1000,1.0,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,0.99,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,0.95,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,(0.01,'hyperbolic'),x0) testNonlinearSystemID(pendulumFunc,2,1,1000,(0.05,'hyperbolic'),x0) testNonlinearSystemID(pendulumFunc,2,1,1000,(0.1,'hyperbolic'),x0) testNonlinearSystemID(pendulumFunc,2,1,1000,(0.2,'hyperbolic'),x0) testNonlinearSystemID(pendulumFunc,2,1,1000,(0.5,'hyperbolic'),x0) testNonlinearSystemID(pendulumFunc,2,1,1000,(0.75,'hyperbolic'),x0) """ testNonlinearSystemID(pendulumFunc,2,1,1000,0.9,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,0.8,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,0.7,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,0.5,x0) testNonlinearSystemID(pendulumFunc,2,1,1000,0.25,x0) """ print "Actual:" print "[q' ] = [ 1, 0.1 ]*[q ] + [0 ]*u + [0 ]" print "[dq'] [ 0, 1 ] [dq] [0.1] [-.98 sin(q) - 0.05 dq]"
conans/server/rest/controller/v2/conan.py
matthiasng/conan
6,205
11126211
<reponame>matthiasng/conan<filename>conans/server/rest/controller/v2/conan.py from bottle import request from conans.errors import NotFoundException from conans.model.ref import ConanFileReference from conans.server.rest.bottle_routes import BottleRoutes from conans.server.rest.controller.v2 import get_package_ref from conans.server.service.v2.service_v2 import ConanServiceV2 class ConanControllerV2(object): @staticmethod def attach_to(app): conan_service = ConanServiceV2(app.authorizer, app.server_store) r = BottleRoutes() @app.route(r.package_revision_files, method=["GET"]) def get_package_file_list(name, version, username, channel, package_id, auth_user, revision, p_revision): pref = get_package_ref(name, version, username, channel, package_id, revision, p_revision) ret = conan_service.get_package_file_list(pref, auth_user) return ret @app.route(r.package_revision_file, method=["GET"]) def get_package_file(name, version, username, channel, package_id, the_path, auth_user, revision, p_revision): pref = get_package_ref(name, version, username, channel, package_id, revision, p_revision) file_generator = conan_service.get_package_file(pref, the_path, auth_user) return file_generator @app.route(r.package_revision_file, method=["PUT"]) def upload_package_file(name, version, username, channel, package_id, the_path, auth_user, revision, p_revision): if "X-Checksum-Deploy" in request.headers: raise NotFoundException("Non checksum storage") pref = get_package_ref(name, version, username, channel, package_id, revision, p_revision) conan_service.upload_package_file(request.body, request.headers, pref, the_path, auth_user) @app.route(r.recipe_revision_files, method=["GET"]) def get_recipe_file_list(name, version, username, channel, auth_user, revision): ref = ConanFileReference(name, version, username, channel, revision) ret = conan_service.get_recipe_file_list(ref, auth_user) return ret @app.route(r.recipe_revision_file, method=["GET"]) def get_recipe_file(name, version, username, channel, the_path, auth_user, revision): ref = ConanFileReference(name, version, username, channel, revision) file_generator = conan_service.get_conanfile_file(ref, the_path, auth_user) return file_generator @app.route(r.recipe_revision_file, method=["PUT"]) def upload_recipe_file(name, version, username, channel, the_path, auth_user, revision): if "X-Checksum-Deploy" in request.headers: raise NotFoundException("Not a checksum storage") ref = ConanFileReference(name, version, username, channel, revision) conan_service.upload_recipe_file(request.body, request.headers, ref, the_path, auth_user)
toyplot/style.py
eaton-lab/toyplot
438
11126239
<gh_stars>100-1000 # Copyright 2014, Sandia Corporation. Under the terms of Contract # DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain # rights in this software. """Functionality for working with CSS style information.""" import numbers import numpy import toyplot.color def require(css, allowed): """Validate that an object is usable as CSS style information. Parameters ---------- css: dict or None The style dictionary to be validated. An exception will be raised if it is not a valid style dictionary or None. allowed: sequence of strings The set of allowed style properties. An exception will be raised if `css` contains any keys that aren't in this sequence. Returns ------- style: dict The validated style dictionary. """ if css is None: return css if not isinstance(css, dict): raise ValueError("Expected a dictionary of CSS styles or None, received %s." % css) # pragma: no cover for key, value in css.items(): if key not in allowed: raise ValueError("Not an allowed CSS style: %s. Use one of: %s" % (key, ", ".join(allowed))) # pragma: no cover if isinstance(value, numpy.ndarray) and value.dtype == toyplot.color.dtype: css[key] = toyplot.color.to_css(value) return css class allowed(object): """Defines groups of allowable CSS property names.""" #: Allowable CSS property names for filling areas. fill = set([ "fill", "fill-opacity", "opacity", "stroke", "stroke-dasharray", "stroke-opacity", "stroke-width", ]) #: Allowable CSS property names for stroking lines. line = set([ "opacity", "stroke", "stroke-dasharray", "stroke-linecap", "stroke-opacity", "stroke-width", ]) #: Allowable CSS property names for :ref:`markers`. marker = set([ "fill", "fill-opacity", "opacity", "stroke", "stroke-opacity", "stroke-width", ]) #: Allowable CSS property names for text. text = set([ "alignment-baseline", "baseline-shift", "fill", "fill-opacity", "font-family", "font-size", "font-weight", "line-height", "opacity", "stroke", "stroke-opacity", "stroke-width", "text-anchor", "text-decoration-line", "text-shadow", "-toyplot-anchor-shift", "-toyplot-text-layout-box-visibility", "-toyplot-text-layout-line-visibility", "-toyplot-text-layout-visibility", "-toyplot-vertical-align", ]) def combine(*styles): """Combine multiple style specifications into one. Parameters ---------- styles: sequence of :class:`dict` instances A collection of dicts containing CSS-compatible name-value pairs. Returns ------- styles: :class:`dict` containing CSS-compatible name-value pairs. """ computed_style = {} for style in styles: if style is not None: computed_style.update(style) return computed_style def parse(css): """Parse a CSS style into a dict.""" result = {} for declaration in css.split(";"): if declaration: key, value = declaration.split(":") result[key] = value.strip() return result def _color_fixup(styles): """It turns-out that many applications and libraries (Inkscape, Adobe Illustrator, Qt) don't handle CSS rgba() colors correctly. So convert them to CSS rgb colors and use fill-opacity / stroke-opacity instead.""" if "fill" in styles: color = toyplot.color.css(styles["fill"]) if color is not None: opacity = float(styles.get("fill-opacity", 1.0)) styles["fill"] = "rgb(%.3g%%,%.3g%%,%.3g%%)" % ( color["r"] * 100, color["g"] * 100, color["b"] * 100) styles["fill-opacity"] = str(color["a"] * opacity) if "stroke" in styles: color = toyplot.color.css(styles["stroke"]) if color is not None: opacity = float(styles.get("stroke-opacity", 1.0)) styles["stroke"] = "rgb(%.3g%%,%.3g%%,%.3g%%)" % ( color["r"] * 100, color["g"] * 100, color["b"] * 100) styles["stroke-opacity"] = str(color["a"] * opacity) return styles def to_css(*styles): """Convert one-or-more dicts containing CSS properties into a single CSS string.""" declarations = [] for key, value in sorted( _color_fixup(combine(*styles)).items()): if isinstance(value, numbers.Number): value = "{:.6g}".format(value) declarations.append("%s:%s" % (key, value)) return ";".join(declarations)
cacreader/swig-4.0.2/Examples/test-suite/python/python_extranative_runme.py
kyletanyag/LL-Smartcard
1,031
11126316
import python_extranative vs = python_extranative.make_vector_string() if not isinstance(vs, python_extranative.VectorString): # will be of type tuple if extranative not working raise RuntimeError("Not of type VectorString") for s1, s2 in zip(vs, ["one", "two"]): if s1 != s2: raise RuntimeError("Mismatch: " + s1 + " " + s2)
depricated/smoothline.py
ksachdeva/distfit
126
11126352
# ---------------------------------------------------- # Name : smoothline.py # Author : E.Taskesen # Contact : <EMAIL> # Licence : MIT # ---------------------------------------------------- import numpy as np from scipy.interpolate import make_interp_spline def smoothline(xs, ys=None, interpol=3, window=1, verbose=3): """Smoothing 1D vector. Description ----------- Smoothing a 1d vector can be challanging if the number of data is low sampled. This smoothing function therefore contains two steps. First interpolation of the input line followed by a convolution. Parameters ---------- xs : array-like Data points for the x-axis. ys : array-like Data points for the y-axis. interpol : int, (default : 3) The interpolation factor. The data is interpolation by a factor n before the smoothing step. window : int, (default : 1) Smoothing window that is used to create the convolution and gradually smoothen the line. verbose : int [1-5], default: 3 Print information to screen. A higher number will print more. Returns ------- xnew : array-like Data points for the x-axis. ynew : array-like Data points for the y-axis. """ if window is not None: if verbose>=3: print('[smoothline] >Smoothing by interpolation..') # Specify number of points to interpolate the data # Interpolate extpoints = np.linspace(0, len(xs), len(xs) * interpol) spl = make_interp_spline(range(0, len(xs)), xs, k=3) # Compute x-labels xnew = spl(extpoints) xnew[window:-window] # First smoothing on the raw input data ynew=None if ys is not None: ys = _smooth(ys,window) # Interpolate ys line spl = make_interp_spline(range(0, len(ys)), ys, k=3) ynew = spl(extpoints) ynew[window:-window] else: xnew, ynew = xs, ys return xnew, ynew def _smooth(X, window): box = np.ones(window) / window X_smooth = np.convolve(X, box, mode='same') return X_smooth
lisa/core/__init__.py
jrespeto/LiSa
244
11126409
""" Core package. """
GPy/examples/__init__.py
ekalosak/GPy
1,685
11126410
# Copyright (c) 2012-2014, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) """ Introduction ^^^^^^^^^^^^ The examples in this package usually depend on `pods <https://github.com/sods/ods>`_ so make sure you have that installed before running examples. The easiest way to do this is to run `pip install pods`. `pods` enables access to 3rd party data required for most of the examples. The examples are executable and self-contained workflows in that they have their own source data, create their own models, kernels and other objects as needed, execute optimisation as required, and display output. Viewing the source code of each model will clarify the steps taken in its execution, and may provide inspiration for developing of user-specific applications of `GPy`. """ from . import classification from . import regression from . import dimensionality_reduction from . import non_gaussian
community-content/tf_agents_bandits_movie_recommendation_with_kfp_and_vertex_sdk/step_by_step_sdk_tf_agents_bandits_movie_recommendation/src/tests/test_policy_util.py
gogasca/vertex-ai-samples
213
11126417
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The unit testing module for policy_util.""" import functools import unittest from src.training import policy_util import tensorflow as tf from tf_agents.bandits.agents import lin_ucb_agent from tf_agents.bandits.environments import environment_utilities from tf_agents.bandits.environments import movielens_py_environment from tf_agents.bandits.metrics import tf_metrics as tf_bandit_metrics from tf_agents.environments import tf_py_environment # Paths and configurations DATA_PATH = "gs://[your-bucket-name]/[your-dataset-dir]/u.data" # FILL IN ROOT_DIR = "gs://[your-bucket-name]/artifacts" # FILL IN ARTIFACTS_DIR = "gs://[your-bucket-name]/artifacts" # FILL IN # Hyperparameters BATCH_SIZE = 8 # MovieLens simulation environment parameters RANK_K = 20 NUM_ACTIONS = 20 PER_ARM = False # Agent parameters TIKHONOV_WEIGHT = 0.001 AGENT_ALPHA = 10.0 # Metric names DEFAULT_METRIC_NAMES = frozenset({ "NumberOfEpisodes", "AverageReturnMetric", "AverageEpisodeLengthMetric"}) class TestPolicyUtil(unittest.TestCase): """Test class for the policy_util module.""" def setUp(self): # pylint: disable=g-missing-super-call # Define RL environment. env = movielens_py_environment.MovieLensPyEnvironment( DATA_PATH, RANK_K, BATCH_SIZE, num_movies=NUM_ACTIONS, csv_delimiter="\t") self.environment = tf_py_environment.TFPyEnvironment(env) # Define RL agent/algorithm. self.agent = lin_ucb_agent.LinearUCBAgent( time_step_spec=self.environment.time_step_spec(), action_spec=self.environment.action_spec(), tikhonov_weight=TIKHONOV_WEIGHT, alpha=AGENT_ALPHA, dtype=tf.float32, accepts_per_arm_features=PER_ARM) # Define RL metric. optimal_reward_fn = functools.partial( environment_utilities.compute_optimal_reward_with_movielens_environment, environment=self.environment) self.regret_metric = tf_bandit_metrics.RegretMetric(optimal_reward_fn) def test_run_training_set_invalid_root_dir(self): """Invalid root directory for saving training artifacts.""" with self.assertRaises(tf.errors.FailedPreconditionError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=False, root_dir="\0", artifacts_dir=ARTIFACTS_DIR) def test_run_training_set_invalid_artifacts_dir(self): """Invalid artifacts directory for saving training artifacts.""" with self.assertRaises(tf.errors.FailedPreconditionError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir="\0") def test_run_training_set_zero_training_loops(self): """Training with zero training loops.""" metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=0, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) self.assertIsInstance(metric_results, dict) self.assertFalse(metric_results) def test_run_training_set_negative_training_loops(self): """Training with a negative number of training loops.""" metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=-1, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) self.assertIsInstance(metric_results, dict) self.assertFalse(metric_results) def test_run_training_set_float_training_loops(self): """Training with a floating-point number of training loops.""" with self.assertRaises(TypeError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=0.5, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) def test_run_training_set_zero_steps_per_loop(self): """Training with a zero number of steps per training loop.""" with self.assertRaises(tf.errors.InvalidArgumentError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=0, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) def test_run_training_set_negative_steps_per_loop(self): """Training with a negative number of steps per training loop.""" with self.assertRaises(tf.errors.InvalidArgumentError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=-1, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) def test_run_training_set_float_steps_per_loop(self): """Training with a floating-point number of steps per training loop.""" with self.assertRaises(TypeError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=0.5, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) def test_run_training_set_no_additional_metrics(self): """Training with default metrics.""" training_loops = 1 metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=training_loops, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) self.assertIsInstance(metric_results, dict) self.assertEqual(metric_results.keys(), DEFAULT_METRIC_NAMES) for metric_name in DEFAULT_METRIC_NAMES: # There are `training_loops` number of intermediate metric values. self.assertEqual(len(metric_results[metric_name]), training_loops) def test_run_training_set_additional_metrics(self): """Training with an additional metric.""" training_loops = 1 metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=training_loops, steps_per_loop=2, additional_metrics=[self.regret_metric], run_hyperparameter_tuning=False, root_dir=ROOT_DIR, artifacts_dir=ARTIFACTS_DIR) self.assertIsInstance(metric_results, dict) total_metric_names = DEFAULT_METRIC_NAMES.union( {type(self.regret_metric).__name__}) self.assertEqual(metric_results.keys(), total_metric_names) for metric_name in total_metric_names: # There are `training_loops` number of intermediate metric values. self.assertEqual(len(metric_results[metric_name]), training_loops) def test_run_hyperparameter_tuning_set_root_dir(self): """Setting root directory for hyperparameter tuning. Hyperparameter tuning doesn't save artifacts to `root_dir`. """ with self.assertRaises(ValueError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=True, root_dir="./") def test_run_hyperparameter_tuning_set_artifacts_dir(self): """Setting artifacts directory for hyperparameter tuning. Hyperparameter tuning doesn't save artifacts to `artifacts_dir`. """ with self.assertRaises(ValueError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=True, artifacts_dir="./") def test_run_hyperparameter_tuning_set_zero_training_loops(self): """Hyperparameter tuning with zero training loops.""" metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=0, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=True) self.assertIsInstance(metric_results, dict) self.assertFalse(metric_results) def test_run_hyperparameter_tuning_set_negative_training_loops(self): """Hyperparameter tuning with a negative number of training loops.""" metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=-1, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=True) self.assertIsInstance(metric_results, dict) self.assertFalse(metric_results) def test_run_hyperparameter_tuning_set_float_training_loops(self): """Hyperparameter tuning with a floating-point number of training loops.""" with self.assertRaises(TypeError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=0.5, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=True) def test_run_hyperparameter_tuning_set_zero_steps_per_loop(self): """Hyperparameter tuning with a zero number of steps per training loop.""" with self.assertRaises(tf.errors.InvalidArgumentError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=0, additional_metrics=[], run_hyperparameter_tuning=True) def test_run_hyperparameter_tuning_set_negative_steps_per_loop(self): """Hyperparameter tuning with a negative number of steps per training loop. """ with self.assertRaises(tf.errors.InvalidArgumentError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=-1, additional_metrics=[], run_hyperparameter_tuning=True) def test_run_hyperparameter_tuning_set_float_steps_per_loop(self): """Hyperparameter tuning with a float number of steps per training loop.""" with self.assertRaises(TypeError): policy_util.train( agent=self.agent, environment=self.environment, training_loops=2, steps_per_loop=0.5, additional_metrics=[], run_hyperparameter_tuning=True) def test_run_hyperparameter_tuning_set_no_additional_metrics(self): """Hyperparameter tuning with default metrics.""" training_loops = 1 metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=training_loops, steps_per_loop=2, additional_metrics=[], run_hyperparameter_tuning=True) self.assertIsInstance(metric_results, dict) self.assertEqual(metric_results.keys(), DEFAULT_METRIC_NAMES) for metric_name in DEFAULT_METRIC_NAMES: # There are `training_loops` number of intermediate metric values. self.assertEqual(len(metric_results[metric_name]), training_loops) def test_run_hyperparameter_tuning_set_additional_metrics(self): """Hyperparameter tuning with an additional metric.""" training_loops = 1 metric_results = policy_util.train( agent=self.agent, environment=self.environment, training_loops=training_loops, steps_per_loop=2, additional_metrics=[self.regret_metric], run_hyperparameter_tuning=True) self.assertIsInstance(metric_results, dict) total_metric_names = DEFAULT_METRIC_NAMES.union( {type(self.regret_metric).__name__}) self.assertEqual(metric_results.keys(), total_metric_names) for metric_name in total_metric_names: # There are `training_loops` number of intermediate metric values. self.assertEqual(len(metric_results[metric_name]), training_loops) if __name__ == "__main__": unittest.main()
libheap/frontend/commands/gdb/mstats.py
saidelike/libheap
498
11126420
<filename>libheap/frontend/commands/gdb/mstats.py<gh_stars>100-1000 from __future__ import print_function import sys try: import gdb except ImportError: print("Not running inside of GDB, exiting...") sys.exit() from libheap.frontend.printutils import print_error from libheap.frontend.printutils import print_value from libheap.frontend.printutils import print_header from libheap.ptmalloc.ptmalloc import ptmalloc from libheap.ptmalloc.malloc_chunk import malloc_chunk from libheap.ptmalloc.malloc_state import malloc_state class mstats(gdb.Command): "print general malloc stats, adapted from malloc.c mSTATs()" def __init__(self, debugger=None, version=None): super(mstats, self).__init__("mstats", gdb.COMMAND_OBSCURE, gdb.COMPLETE_NONE) if debugger is not None: self.dbg = debugger else: print_error("Please specify a debugger") sys.exit() self.version = version def invoke(self, arg, from_tty): "Specify an optional arena addr: print_mstats main_arena=0x12345" ptm = ptmalloc(debugger=self.dbg) if ptm.SIZE_SZ == 0: ptm.set_globals() try: # XXX: add mp_ address guessing via offset without symbols mp = self.dbg.read_variable("mp_") if arg.find("main_arena") == -1: main_arena = self.dbg.read_variable("main_arena") main_arena_address = self.dbg.format_address( main_arena.address) else: arg = arg.split() for item in arg: if item.find("main_arena") != -1: if len(item) < 12: print_error("Malformed main_arena parameter") return else: main_arena_address = int(item[11:], 16) except RuntimeError: print_error("No frame is currently selected.") return except ValueError: print_error("Debug glibc was not found.") return if main_arena_address == 0: print_error("Invalid main_arena address (0)") return in_use_b = mp['mmapped_mem'] system_b = in_use_b print("Malloc Stats", end="\n\n") arena = 0 ar_ptr = malloc_state(main_arena_address, debugger=self.dbg, version=self.version) while(1): ptm.mutex_lock(ar_ptr) # account for top avail = ptm.chunksize(malloc_chunk(ptm.top(ar_ptr), inuse=True, read_data=False, debugger=self.dbg)) nblocks = 1 nfastblocks = 0 fastavail = 0 # traverse fastbins for i in range(ptm.NFASTBINS): p = ptm.fastbin(ar_ptr, i) while p != 0: p = malloc_chunk(p, inuse=False, debugger=self.dbg) nfastblocks += 1 fastavail += ptm.chunksize(p) p = p.fd avail += fastavail # traverse regular bins for i in range(1, ptm.NBINS): b = ptm.bin_at(ar_ptr, i) first = malloc_chunk(b, inuse=False, debugger=self.dbg) first = ptm.first(first) p = malloc_chunk(first, inuse=False, debugger=self.dbg) while p.address != int(b): nblocks += 1 avail += ptm.chunksize(p) p = malloc_chunk(ptm.first(p), inuse=False, debugger=self.dbg) print_header("Arena {}:".format(arena), end="\n") print("{:16} = ".format("system bytes"), end='') print_value("{}".format(ar_ptr.max_system_mem), end='\n') print("{:16} = ".format("in use bytes"), end='') print_value("{}".format(ar_ptr.max_system_mem - avail), end='\n') system_b += ar_ptr.max_system_mem in_use_b += (ar_ptr.max_system_mem - avail) ptm.mutex_unlock(ar_ptr) if ar_ptr.next == main_arena_address: break else: next_addr = self.dbg.format_address(ar_ptr.next) ar_ptr = malloc_state(next_addr, debugger=self.dbg, version=self.version) arena += 1 print_header("\nTotal (including mmap):", end="\n") print("{:16} = ".format("system bytes"), end='') print_value("{}".format(system_b), end='\n') print("{:16} = ".format("in use bytes"), end='') print_value("{}".format(in_use_b), end='\n') # XXX: max_total_mem removed in 2.24 try: # catch the error before we print anything val = mp['max_total_mem'] print("{:16} = ".format("max system bytes"), end='') print_value("{}".format(val), end='\n') except gdb.error: pass print("{:16} = ".format("max mmap regions"), end='') print_value("{}".format(mp['max_n_mmaps']), end='\n') print("{:16} = ".format("max mmap bytes"), end='') print_value("{}".format(mp['max_mmapped_mem']), end='\n')
stats/models/Game.py
twist3dimages/nba-sql
113
11126421
from peewee import ( ForeignKeyField, IntegerField, DateField, Model ) from . import Team class Game(Model): # Primary Key game_id = IntegerField(primary_key=True) # Foreign Keys team_id_home = ForeignKeyField(Team, index=True, null=False, column_name='team_id_home') team_id_away = ForeignKeyField(Team, index=True, null=False, column_name='team_id_away') team_id_winner = ForeignKeyField(Team, index=True, null=False, column_name='team_id_winner') team_id_loser = ForeignKeyField(Team, index=True, null=False, column_name='team_id_loser') # Indexes season_id = IntegerField(index=True, null=False) date = DateField(null=False) class Meta: db_table = 'game'
strawberry/utils/mixins.py
otakuy/strawberry
2,062
11126442
<reponame>otakuy/strawberry from typing import Optional from strawberry.utils.str_converters import to_camel_case class GraphQLNameMixin: python_name: str graphql_name: Optional[str] def get_graphql_name(self, auto_camel_case: bool) -> str: if self.graphql_name is not None: return self.graphql_name assert self.python_name if auto_camel_case: return to_camel_case(self.python_name) return self.python_name
sqlbeautifier.py
V-Darr/SqlBeautifier
179
11126452
<reponame>V-Darr/SqlBeautifier import sublime, sublime_plugin import sys import os sys.path.append(os.path.dirname(__file__)) if sys.version_info >= (3, 0): import sqlparse3 as sqlparse else: import sqlparse2 as sqlparse # for ST2 settings = sublime.load_settings('SQL Beautifier.sublime-settings') # for ST3 def plugin_loaded(): global settings settings = sublime.load_settings('SQL Beautifier.sublime-settings') class SqlBeautifierCommand(sublime_plugin.TextCommand): def format_sql(self, raw_sql): try: formatted_sql = sqlparse.format(raw_sql, keyword_case=settings.get("keyword_case"), identifier_case=settings.get("identifier_case"), strip_comments=settings.get("strip_comments"), indent_tabs=settings.get("indent_tabs"), indent_width=settings.get("indent_width"), reindent=settings.get("reindent") ) if self.view.settings().get('ensure_newline_at_eof_on_save'): formatted_sql += "\n" return formatted_sql except Exception as e: print(e) return None def replace_region_with_formatted_sql(self, edit, region): selected_text = self.view.substr(region) foramtted_text = self.format_sql(selected_text) self.view.replace(edit, region, foramtted_text) def run(self, edit): window = self.view.window() view = window.active_view() for region in self.view.sel(): if region.empty(): selection = sublime.Region(0, self.view.size()) self.replace_region_with_formatted_sql(edit, selection) self.view.set_syntax_file("Packages/SQL/SQL.tmLanguage") else: self.replace_region_with_formatted_sql(edit, region)
exercises/all-your-base/all_your_base.py
kishankj/python
1,177
11126454
def rebase(input_base, digits, output_base): pass
web/webViews/dashboard.py
anbo225/docklet
273
11126474
from flask import session,render_template from webViews.view import normalView from webViews.dockletrequest import dockletRequest class dashboardView(normalView): template_path = "dashboard.html" @classmethod def get(self): result = dockletRequest.post_to_all('/cluster/list/') desc = dockletRequest.getalldesc() allclusters={} for master in result: clusters = result[master].get("clusters") full_clusters = [] data={} for cluster in clusters: data["clustername"] = cluster single_cluster = {} single_cluster['name'] = cluster message = dockletRequest.post("/cluster/info/", data , master.split("@")[0]) if(message): message = message.get("message") single_cluster['status'] = message['status'] single_cluster['id'] = message['clusterid'] single_cluster['proxy_public_ip'] = message['proxy_public_ip'] full_clusters.append(single_cluster) else: self.error() allclusters[master] = full_clusters return self.render(self.template_path, allclusters = allclusters, desc=desc) #else: # self.error() @classmethod def post(self): return self.get()
src/models/model_config.py
zju-3dv/multi-person3dpose
391
11126477
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os class ModelConfig ( object ): model_dir = os.path.abspath ( os.path.join ( os.path.dirname ( __file__ ) ) ) root_dir = os.path.abspath ( os.path.join ( model_dir, '..', '..' ) ) datasets_dir = os.path.join ( root_dir, 'datasets' ) shelf_path = os.path.join ( datasets_dir, 'Shelf' ) campus_path = os.path.join ( datasets_dir, 'CampusSeq1' ) ultimatum1_path = os.path.join ( datasets_dir, '160422_ultimatum1', 'vgaImgs' ) shelf_range = range ( 300, 600 ) campus_range = [i for i in range ( 350, 471 )] + [i for i in range ( 650, 751 )] vga_frame_rate = 25 ultimatum1_range = list ( range ( 17337, 17370 ) ) + list ( range ( 21560, 21660 ) ) joint_num = 17 rerank = False use_mincut = False metric = 'geometry mean' testing_on = 'Shelf' reprojection_refine = False refine_threshold = 1 semantic_matching = False match_SVT = True dual_stochastic_SVT = False lambda_SVT = 50 alpha_SVT = 0.5 eta = 1.5 beta = 0.5 use_bundle = False spectral = True hybrid = True def __repr__(self): if self.semantic_matching: return f'testing_on: {self.testing_on} eta:{self.eta} metric: {self.metric}' elif self.match_SVT: return f'testing_on: {self.testing_on} alpha:{self.alpha_SVT} lambda:{self.lambda_SVT}' else: return f'testing_on: {self.testing_on} beta:{self.beta} metric: {self.metric}' model_cfg = ModelConfig () if model_cfg.root_dir not in sys.path: sys.path.append ( model_cfg.root_dir )
corehq/apps/sso/utils/session_helpers.py
akashkj/commcare-hq
471
11126505
<reponame>akashkj/commcare-hq import logging log = logging.getLogger(__name__) def store_saml_data_in_session(request): """ This stores SAML-related authentication data in the request's session :param request: HttpRequest """ request.session['samlUserdata'] = request.saml2_auth.get_attributes() request.session['samlNameId'] = request.saml2_auth.get_nameid() request.session['samlNameIdFormat'] = request.saml2_auth.get_nameid_format() request.session['samlNameIdNameQualifier'] = request.saml2_auth.get_nameid_nq() request.session['samlNameIdSPNameQualifier'] = request.saml2_auth.get_nameid_spnq() request.session['samlSessionIndex'] = request.saml2_auth.get_session_index() def _get_saml_user_data_property(request, prop_slug): """ Shortcut for getting samlUserData properties generated by python3-saml. These can sometimes manifest as lists or strings. :param request: HttpRequest :param prop_slug: string (property slug) :return: string or None """ value = request.session.get('samlUserdata', {}).get(prop_slug) if isinstance(value, list): # for Azure AD the data is usually returned as a list value = value[0] if value else '' return value def _get_display_name_from_session(request): """ This gets the display name from SSO user data stored in the session SAML data. :param request: HttpRequest :return: string or None """ return _get_saml_user_data_property( request, 'http://schemas.microsoft.com/identity/claims/displayname' ) def get_sso_user_first_name_from_session(request): """ This gets the first name from sso user data stored in the session SAML data. :param request: HttpRequest :return: string or None """ first_name = _get_saml_user_data_property( request, 'http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname' ) if not first_name: display_name = _get_display_name_from_session(request) first_name = display_name.split(' ')[0] if display_name else None return first_name def get_sso_user_last_name_from_session(request): """ This gets the last name from sso user data stored in the session SAML data. :param request: HttpRequest :return: string or None """ last_name = _get_saml_user_data_property( request, 'http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname' ) if not last_name: display_name = _get_display_name_from_session(request) display_name_parts = display_name.split(' ') if display_name else [] if len(display_name_parts) > 1: last_name = ' '.join(display_name_parts[1:]) return last_name
tests/activeBlock.py
apple314159/urweb
837
11126520
import unittest import base import time class Suite(base.Base): def test_1(self): """Test case 1""" self.start() alert = self.driver.switch_to.alert self.assertEqual("Error: May not 'sleep' in main thread of 'code' for <active>", alert.text) alert.accept() time.sleep(0.1) alert = self.driver.switch_to.alert self.assertEqual("Hi!", alert.text) alert.accept() button = self.xpath('span[1]/button') button.click() txt = self.body_text() self.assertEqual("Hi! Click me! Success", txt)
inceptor/engine/Filter.py
whitefi/inceptor
743
11126545
class Filter: def __init__(self, include: list = None, exclude: list = None, imode="or", emode="and"): self.include = include if include else [] self.exclude = exclude if exclude else [] self.imode = imode.lower() self.emode = emode.lower() def match(self, target): match_include = match_exclude = True if self.include and len(self.include) > 0: if self.imode == "or": match_include = any([target.find(s) >= 0 for s in self.include]) elif self.imode == "and": match_include = all([target.find(s) >= 0 for s in self.include]) if self.exclude and len(self.exclude) > 0: if self.emode == "or": match_exclude = any([target.find(s) == -1 for s in self.exclude]) elif self.emode == "and": match_exclude = all([target.find(s) == -1 for s in self.exclude]) return match_include and match_exclude def to_string(self): print(f"Include: {','.join(self.include)}, Mode: {self.imode}") print(f"Exclude: {','.join(self.exclude)}, Mode: {self.emode}")
tests/convert_gl2pt_dense.py
naviocean/imgclsmob
2,649
11126608
<filename>tests/convert_gl2pt_dense.py import numpy as np import mxnet as mx import torch from torch.autograd import Variable class GluonModel(mx.gluon.HybridBlock): def __init__(self, **kwargs): super(GluonModel, self).__init__(**kwargs) with self.name_scope(): self.dense = mx.gluon.nn.Dense( units=1000, use_bias=False, in_units=1024) def hybrid_forward(self, F, x): x = self.dense(x) return x class PytorchModel(torch.nn.Module): def __init__(self): super(PytorchModel, self).__init__() self.dense = torch.nn.Linear( in_features=1024, out_features=1000, bias=False) def forward(self, x): x = self.dense(x) return x def main(): success = True for i in range(10): w = np.random.randn(1000, 1024).astype(np.float32) # b = np.random.randn(1000, ).astype(np.float32) x = np.random.randn(1, 1024).astype(np.float32) gl_model = GluonModel() # ctx = mx.cpu() ctx = mx.gpu(0) gl_params = gl_model._collect_params_with_prefix() gl_params['dense.weight']._load_init(mx.nd.array(w, ctx), ctx) # gl_params['dense.bias']._load_init(mx.nd.array(b, ctx), ctx) gl_x = mx.nd.array(x, ctx) gl_y = gl_model(gl_x).asnumpy() pt_model = PytorchModel() pt_model.eval() pt_params = pt_model.state_dict() pt_params['dense.weight'] = torch.from_numpy(w) # pt_params['dense.bias'] = torch.from_numpy(b) pt_model.load_state_dict(pt_params) pt_model = pt_model.cuda() pt_x = Variable(torch.from_numpy(x)).cuda() pt_y = pt_model(pt_x).detach().cpu().numpy() dist = np.sum(np.abs(gl_y - pt_y)) if dist > 1e-5: success = False print("i={}, dist={}".format(i, dist)) # print(gl_y) # print(pt_y) y = np.matmul(w.astype(np.float64), x[0].astype(np.float64)) # y = np.dot(w, x[0]) gl_dist = np.sum(np.abs(gl_y - y)) pt_dist = np.sum(np.abs(pt_y - y)) print("i={}, gl_dist={}".format(i, gl_dist)) print("i={}, pt_dist={}".format(i, pt_dist)) if success: print("All ok.") if __name__ == '__main__': main()
322 Coin Change.py
ChiFire/legend_LeetCode
872
11126698
""" You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1. Example 1: coins = [1, 2, 5], amount = 11 return 3 (11 = 5 + 5 + 1) Example 2: coins = [2], amount = 3 return -1. Note: You may assume that you have an infinite number of each kind of coin. """ import sys __author__ = 'Daniel' class Solution(object): def coinChange(self, coins, amount): """ DP with early prune Let F[i] be the fewest number of coins make to i F[i+k] = min(F[i]+1, \forall k if F[i]) O(NM) :type coins: List[int] :type amount: int :rtype: int """ if amount == 0: return 0 F = [sys.maxint for _ in xrange(amount+1)] for k in coins: if k < amount+1: F[k] = 1 for i in xrange(1, amount+1): if F[i] != sys.maxint: for k in coins: if i+k <= amount: F[i+k] = min(F[i+k], F[i]+1) return F[amount] if F[amount] != sys.maxint else -1 class SolutionTLE(object): def coinChange(self, coins, amount): """ Let F[i] be the fewest number of coins make to i F[i] = min(F[i-k]+1, \forall k) O(NM) :type coins: List[int] :type amount: int :rtype: int """ F = [sys.maxint for _ in xrange(amount+1)] for k in coins: if k < amount + 1: F[k] = 1 for i in xrange(1, amount+1): for k in coins: if i-k > 0 and F[i-k] != sys.maxint: F[i] = min(F[i], F[i-k]+1) return F[amount] if F[amount] != sys.maxint else -1 if __name__ == "__main__": assert Solution().coinChange([243, 291, 335, 209, 177, 345, 114, 91, 313, 331], 7367) == 23
src/genie/libs/parser/iosxe/tests/ShowL2fibBdPort/cli/equal/golden_output2_expected.py
balmasea/genieparser
204
11126735
expected_output = { 'Et0/1:11': { 'type': 'BD_PORT', 'is_path_list': False, 'port': 'Et0/1:11' }, '[IR]20011:2.2.2.2': { 'type':'VXLAN_REP', 'is_path_list': True, 'path_list': { 'id': 1190, 'path_count': 1, 'type': 'VXLAN_REP', 'description': '[IR]20011:2.2.2.2' } }, '[IR]20011:3.3.3.2': { 'type':'VXLAN_REP', 'is_path_list': True, 'path_list': { 'id': 1183, 'path_count': 1, 'type': 'VXLAN_REP', 'description': '[IR]20011:3.3.3.2' } } }
tests/test_node_set/test_bitcoind/test_bitcoind_node.py
ryan-lingle/node-launcher
249
11126755
import pytest from node_launcher.node_set.lib.node_status import NodeStatus from node_launcher.node_set.bitcoind.bitcoind_node import BitcoindNode from node_launcher.node_set.tor.tor_node import TorNode @pytest.fixture def tor_node(): return TorNode() @pytest.fixture def bitcoind_node(): return BitcoindNode() class TestBitcoindNode(object): @pytest.mark.slow def test_start(self, bitcoind_node: BitcoindNode, tor_node: TorNode, qtbot): def handle_tor_node_status_change(status): if status in [NodeStatus.SOFTWARE_DOWNLOADED, NodeStatus.SOFTWARE_READY]: bitcoind_node.software.update() elif status == NodeStatus.SYNCED: bitcoind_node.tor_synced = True bitcoind_node.start_process() tor_node.status.connect(handle_tor_node_status_change) tor_node.software.update() def check_synced(): return bitcoind_node.current_status == NodeStatus.SYNCING qtbot.waitUntil(check_synced, timeout=500000) bitcoind_node.stop() def check_stopped(): return bitcoind_node.current_status == NodeStatus.STOPPED qtbot.waitUntil(check_stopped, timeout=500000)
dpc/run/eval_camera_pose.py
kyuhyoung/differentiable-point-clouds
153
11126761
<reponame>kyuhyoung/differentiable-point-clouds import startup import os import numpy as np import scipy.io import tensorflow as tf from util.simple_dataset import Dataset3D from util.app_config import config as app_config from util.quaternion import quaternion_multiply, quaternion_conjugate from util.camera import quaternion_from_campos def run_eval(): config = tf.ConfigProto( device_count={'GPU': 1} ) cfg = app_config exp_dir = cfg.checkpoint_dir num_views = cfg.num_views g = tf.Graph() with g.as_default(): quat_inp = tf.placeholder(dtype=tf.float64, shape=[1, 4]) quat_inp_2 = tf.placeholder(dtype=tf.float64, shape=[1, 4]) quat_conj = quaternion_conjugate(quat_inp) quat_mul = quaternion_multiply(quat_inp, quat_inp_2) sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) save_pred_name = "{}_{}".format(cfg.save_predictions_dir, cfg.eval_split) save_dir = os.path.join(exp_dir, cfg.save_predictions_dir) reference_rotation = scipy.io.loadmat("{}/final_reference_rotation.mat".format(exp_dir))["rotation"] ref_conj_np = sess.run(quat_conj, feed_dict={quat_inp: reference_rotation}) dataset = Dataset3D(cfg) num_models = dataset.num_samples() model_names = [] angle_error = np.zeros((num_models, num_views), dtype=np.float64) for model_idx in range(num_models): sample = dataset.data[model_idx] print("{}/{}".format(model_idx, num_models)) print(sample.name) model_names.append(sample.name) mat_filename = "{}/{}_pc.mat".format(save_dir, sample.name) data = scipy.io.loadmat(mat_filename) all_cameras = data["camera_pose"] for view_idx in range(num_views): cam_pos = sample.cam_pos[view_idx, :] gt_quat_np = quaternion_from_campos(cam_pos) gt_quat_np = np.expand_dims(gt_quat_np, 0) pred_quat_np = all_cameras[view_idx, :] pred_quat_np /= np.linalg.norm(pred_quat_np) pred_quat_np = np.expand_dims(pred_quat_np, 0) pred_quat_aligned_np = sess.run(quat_mul, feed_dict={ quat_inp: pred_quat_np, quat_inp_2: ref_conj_np }) q1 = gt_quat_np q2 = pred_quat_aligned_np q1_conj = sess.run(quat_conj, feed_dict={quat_inp: q1}) q_diff = sess.run(quat_mul, feed_dict={quat_inp: q1_conj, quat_inp_2: q2}) ang_diff = 2 * np.arccos(q_diff[0, 0]) if ang_diff > np.pi: ang_diff -= 2*np.pi angle_error[model_idx, view_idx] = np.fabs(ang_diff) all_errors = np.reshape(angle_error, (-1)) angle_thresh_rad = cfg.pose_accuracy_threshold / 180.0 * np.pi correct = all_errors < angle_thresh_rad num_predictions = correct.shape[0] accuracy = np.count_nonzero(correct) / num_predictions median_error = np.sort(all_errors)[num_predictions // 2] median_error = median_error / np.pi * 180 print("accuracy:", accuracy, "median angular error:", median_error) scipy.io.savemat(os.path.join(exp_dir, "pose_error_{}.mat".format(save_pred_name)), {"angle_error": angle_error, "accuracy": accuracy, "median_error": median_error}) f = open(os.path.join(exp_dir, "pose_error_{}.txt".format(save_pred_name)), "w") f.write("{} {}\n".format(accuracy, median_error)) f.close() def main(_): run_eval() if __name__ == '__main__': tf.app.run()
pypika/tests/test_drop.py
YiuRULE/pypika
1,616
11126796
<filename>pypika/tests/test_drop.py<gh_stars>1000+ import unittest from pypika import ( Columns, Database, Query, Tables, ) class DropTableTests(unittest.TestCase): database_xyz = Database("mydb") new_table, existing_table = Tables("abc", "efg") foo, bar = Columns(("a", "INT"), ("b", "VARCHAR(100)")) def test_drop_database(self): q1 = Query.drop_database(self.database_xyz) q2 = Query.drop_database(self.database_xyz).if_exists() self.assertEqual('DROP DATABASE "mydb"', str(q1)) self.assertEqual('DROP DATABASE IF EXISTS "mydb"', str(q2)) def test_drop_table(self): q1 = Query.drop_table(self.new_table) q2 = Query.drop_table(self.new_table).if_exists() self.assertEqual('DROP TABLE "abc"', str(q1)) self.assertEqual('DROP TABLE IF EXISTS "abc"', str(q2)) def test_drop_user(self): q1 = Query.drop_user("myuser") q2 = Query.drop_user("myuser").if_exists() self.assertEqual('DROP USER "myuser"', str(q1)) self.assertEqual('DROP USER IF EXISTS "myuser"', str(q2)) def test_drop_view(self): q1 = Query.drop_view("myview") q2 = Query.drop_view("myview").if_exists() self.assertEqual('DROP VIEW "myview"', str(q1)) self.assertEqual('DROP VIEW IF EXISTS "myview"', str(q2))
pydebloatx/gui_main.py
space9bug/PyDebloatX
730
11126863
<filename>pydebloatx/gui_main.py # -*- coding: utf-8 -*- from PySide6.QtWidgets import QFrame, QPushButton, QMainWindow, QWidget, QLabel, QVBoxLayout, QCheckBox, QHBoxLayout, \ QProgressBar, QToolTip from PySide6.QtCore import Qt, QRect, QCoreApplication, QMetaObject, QSize from PySide6.QtGui import QIcon, QKeySequence, QFont, QShortcut from packaging import version from bisect import insort import platform import sys import os def resource_path(relative_path): """Determine resource path if app is built or run natively.""" if hasattr(sys, 'frozen'): return os.path.join(sys._MEIPASS, relative_path) # skipcq: PYL-W0212 return os.path.join(os.path.abspath('.'), relative_path) class Ui_MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowIcon(QIcon(resource_path('icon.ico'))) self.setFixedSize(540, 470) def setupUi(self): self.centralwidget = QWidget(self) with open(resource_path('style.css'), 'r') as file: self.centralwidget.setStyleSheet(file.read()) self.appswidget = QWidget(self.centralwidget) self.appswidget.setGeometry(50, 0, 490, 470) self.appswidget.setProperty('class', 'appswidget') self.sidebar = QFrame(self.centralwidget) self.sidebar.setFrameShape(QFrame.StyledPanel) self.sidebar.setGeometry(0, 0, 50, 470) self.sidebar.setProperty('class', 'sidebar') self.refresh_btn = QPushButton(self.sidebar) self.refresh_btn.setGeometry(QRect(0, 0, 51, 51)) self.refresh_btn.setProperty('class', 'sidebar_btns') self.refresh_btn.setIcon(QIcon(':/icon/refresh_icon.png')) self.refresh_btn.setIconSize(QSize(24, 24)) self.refresh_bind = QShortcut(QKeySequence('Ctrl+R'), self) self.store_btn = QPushButton(self.sidebar) self.store_btn.setGeometry(QRect(0, 51, 51, 51)) self.store_btn.setProperty('class', 'sidebar_btns') self.store_btn.setIcon(QIcon(':/icon/store_icon.png')) self.store_btn.setIconSize(QSize(24, 24)) self.store_bind = QShortcut(QKeySequence('Ctrl+S'), self) self.homepage_btn = QPushButton(self.sidebar) self.homepage_btn.setGeometry(QRect(0, 102, 51, 51)) self.homepage_btn.setProperty('class', 'sidebar_btns') self.homepage_btn.setIcon(QIcon(':/icon/github_icon.png')) self.homepage_btn.setIconSize(QSize(24, 24)) self.homepage_bind = QShortcut(QKeySequence('Ctrl+G'), self) self.about_btn = QPushButton(self.sidebar) self.about_btn.setGeometry(QRect(0, 153, 51, 51)) self.about_btn.setProperty('class', 'sidebar_btns') self.about_btn.setIcon(QIcon(':/icon/about_icon.png')) self.about_btn.setIconSize(QSize(24, 24)) self.about_bind = QShortcut(QKeySequence('Ctrl+A'), self) self.quit_btn = QPushButton(self.sidebar) self.quit_btn.setGeometry(QRect(0, 420, 51, 51)) self.quit_btn.setProperty('class', 'sidebar_btns_quit') self.quit_btn.setIcon(QIcon(':/icon/quit_icon.png')) self.quit_btn.setIconSize(QSize(24, 24)) self.quit_bind = QShortcut(QKeySequence('Ctrl+Q'), self) self.font = QFont() self.font.setPointSize(8) self.font.setStyleStrategy(QFont.PreferAntialias) self.label_refresh = QLabel(self.appswidget) self.label_refresh.setFont(self.font) self.label_refresh.setGeometry(QRect(20, 10, 441, 15)) self.label_info = QLabel(self.appswidget) self.label_info.setFont(self.font) self.label_info.setGeometry(QRect(20, 10, 441, 30)) self.progressbar = QProgressBar(self.appswidget) self.progressbar.setGeometry(QRect(20, 30, 441, 20)) self.layout_widget_checkboxes = QWidget(self.appswidget) self.layout_widget_checkboxes.setGeometry(QRect(20, 55, 155, 311)) self.layout_checkboxes = QVBoxLayout(self.layout_widget_checkboxes) self.layout_checkboxes.setContentsMargins(0, 0, 0, 0) self.layout_widget_checkboxes_2 = QWidget(self.appswidget) self.layout_widget_checkboxes_2.setGeometry(QRect(175, 55, 155, 311)) self.layout_checkboxes_2 = QVBoxLayout(self.layout_widget_checkboxes_2) self.layout_checkboxes_2.setContentsMargins(0, 0, 0, 0) self.layout_widget_checkboxes_3 = QWidget(self.appswidget) self.layout_widget_checkboxes_3.setGeometry(QRect(330, 55, 155, 311)) self.layout_checkboxes_3 = QVBoxLayout(self.layout_widget_checkboxes_3) self.layout_checkboxes_3.setContentsMargins(0, 0, 0, 0) self.layout_widget_labels = QWidget(self.appswidget) self.layout_widget_labels.setGeometry(QRect(20, 390, 350, 16)) self.layout_labels = QHBoxLayout(self.layout_widget_labels) self.layout_labels.setContentsMargins(0, 0, 0, 0) self.label_space = QLabel(self.appswidget) self.label_space.setFont(self.font) self.layout_labels.addWidget(self.label_space) self.label_size = QLabel(self.appswidget) self.label_size.setFont(self.font) self.layout_labels.addWidget(self.label_size) self.layout_widget_buttons = QWidget(self.appswidget) self.layout_widget_buttons.setGeometry(QRect(20, 420, 454, 31)) self.layout_buttons = QHBoxLayout(self.layout_widget_buttons) self.layout_buttons.setContentsMargins(0, 0, 0, 0) self.button_select_all = QPushButton(self.layout_widget_buttons) self.button_select_all.setIcon(QIcon(':/icon/check_icon.png')) self.button_select_all.setIconSize(QSize(18, 18)) self.button_select_all.setLayoutDirection(Qt.RightToLeft) self.layout_buttons.addWidget(self.button_select_all) self.button_select_all.setMinimumSize(100, 30) self.button_select_all.setProperty('class', 'Aqua') self.button_deselect_all = QPushButton(self.layout_widget_buttons) self.button_deselect_all.setIcon(QIcon(':/icon/cancel_icon.png')) self.button_deselect_all.setIconSize(QSize(18, 18)) self.button_deselect_all.setLayoutDirection(Qt.RightToLeft) self.layout_buttons.addWidget(self.button_deselect_all) self.button_deselect_all.setMinimumSize(100, 30) self.button_deselect_all.setProperty('class', 'Aqua') self.layout_buttons.addStretch() self.button_uninstall = QPushButton(self.layout_widget_buttons) self.button_uninstall.setIcon(QIcon(':/icon/trash_icon.png')) self.button_uninstall.setIconSize(QSize(18, 18)) self.button_uninstall.setLayoutDirection(Qt.RightToLeft) self.layout_buttons.addWidget(self.button_uninstall) self.button_uninstall.setMinimumSize(100, 30) self.button_uninstall.setProperty('class', 'Grapefruit') self.setCentralWidget(self.centralwidget) self.retranslateUi() QMetaObject.connectSlotsByName(self) def retranslateUi(self): QToolTip.setFont(self.font) self.setWindowTitle(QCoreApplication.translate("Title", "PyDebloatX")) self.label_info.setText(QCoreApplication.translate("Label", "")) self.app_name_list = list(( # Convert tuple to list, because lupdate ignores initial lists QCoreApplication.translate("AppName", "3D Builder"), QCoreApplication.translate("AppName", "3D Viewer"), QCoreApplication.translate("AppName", "Alarms and Clock"), QCoreApplication.translate("AppName", "Calculator"), QCoreApplication.translate("AppName", "Calendar and Mail"), QCoreApplication.translate("AppName", "Camera"), QCoreApplication.translate("AppName", "Feedback Hub"), QCoreApplication.translate("AppName", "Get Help"), QCoreApplication.translate("AppName", "Groove Music"), QCoreApplication.translate("AppName", "Maps"), QCoreApplication.translate("AppName", "Messaging"), QCoreApplication.translate("AppName", "Mixed Reality Portal"), QCoreApplication.translate("AppName", "Mobile Plans"), QCoreApplication.translate("AppName", "Money"), QCoreApplication.translate("AppName", "Movies && TV"), QCoreApplication.translate("AppName", "News"), QCoreApplication.translate("AppName", "Office"), QCoreApplication.translate("AppName", "OneNote"), QCoreApplication.translate("AppName", "Paint 3D"), QCoreApplication.translate("AppName", "People"), QCoreApplication.translate("AppName", "Photos"), QCoreApplication.translate("AppName", "Print 3D"), QCoreApplication.translate("AppName", "Skype"), QCoreApplication.translate("AppName", "Snip && Sketch"), QCoreApplication.translate("AppName", "Solitaire"), QCoreApplication.translate("AppName", "Sports"), QCoreApplication.translate("AppName", "Spotify"), QCoreApplication.translate("AppName", "Sticky Notes"), QCoreApplication.translate("AppName", "Tips"), QCoreApplication.translate("AppName", "Translator"), QCoreApplication.translate("AppName", "Voice Recorder"), QCoreApplication.translate("AppName", "Weather"), QCoreApplication.translate("AppName", "Xbox"), QCoreApplication.translate("AppName", "Xbox Game Bar"), QCoreApplication.translate("AppName", "Your Phone") )) self.tooltip_list = list(( QCoreApplication.translate("ToolTip", "View, create, and personalize 3D objects."), QCoreApplication.translate("ToolTip", "View 3D models and animations in real-time."), QCoreApplication.translate("ToolTip", "A combination of alarm clock, world clock, timer, and stopwatch."), QCoreApplication.translate("ToolTip", "A calculator that includes standard, scientific, and programmer modes, as well as a unit converter."), QCoreApplication.translate("ToolTip", "Stay up to date with email and schedule managing."), QCoreApplication.translate("ToolTip", "Point and shoot to take pictures on Windows 10."), QCoreApplication.translate("ToolTip", "Provide feedback about Windows and apps by sharing suggestions or problems."), QCoreApplication.translate("ToolTip", "Provide a way to ask a question and get recommended solutions or contact assisted support."), QCoreApplication.translate("ToolTip", "Listen to music on Windows, iOS, and Android devices."), QCoreApplication.translate("ToolTip", "Search for places to get directions, business info, and reviews."), QCoreApplication.translate("ToolTip", "Quick, reliable SMS, MMS and RCS messaging from your phone."), QCoreApplication.translate("ToolTip", "Discover Windows Mixed Reality and dive into more than 3,000 games and VR experiences from Steam VR and Microsoft Store."), QCoreApplication.translate("ToolTip", "Sign up for a data plan and connect with mobile operators in your area. You will need a supported SIM card."), QCoreApplication.translate("ToolTip", "Finance calculators, currency exchange rates and commodity prices from around the world."), QCoreApplication.translate("ToolTip", "All your movies and TV shows, all in one place, on all your devices."), QCoreApplication.translate("ToolTip", "Deliver breaking news and trusted, in-depth reporting from the world\'s best journalists."), QCoreApplication.translate("ToolTip", "Find all your Office apps and files in one place."), QCoreApplication.translate("ToolTip", "Digital notebook for capturing and organizing everything across your devices."), QCoreApplication.translate("ToolTip", "Make 2D masterpieces or 3D models that you can play with from all angles."), QCoreApplication.translate("ToolTip", "Connect with all your friends, family, colleagues, and acquaintances in one place."), QCoreApplication.translate("ToolTip", "View and edit your photos and videos, make movies, and create albums."), QCoreApplication.translate("ToolTip", "Quickly and easily prepare objects for 3D printing on your PC."), QCoreApplication.translate("ToolTip", "Instant message, voice or video call application."), QCoreApplication.translate("ToolTip", "Quickly annotate screenshots, photos and other images and save, paste or share with other apps."), QCoreApplication.translate("ToolTip", "Solitaire is one of the most played computer card games of all time."), QCoreApplication.translate("ToolTip", "Live scores and in-depth game experiences for more than 150 leagues."), QCoreApplication.translate("ToolTip", "Play your favorite songs and albums free on Windows 10 with Spotify."), QCoreApplication.translate("ToolTip", "Create notes, type, ink or add a picture, add text formatting, or stick them to the desktop."), QCoreApplication.translate("ToolTip", "Provide users with information and tips about operating system features."), QCoreApplication.translate("ToolTip", "Translate text and speech, have translated conversations, and even download AI-powered language packs to use offline."), QCoreApplication.translate("ToolTip", "Record sounds, lectures, interviews, and other events."), QCoreApplication.translate("ToolTip", "Latest weather conditions, accurate 10-day and hourly forecasts."), QCoreApplication.translate("ToolTip", "Browse the catalogue, view recommendations, and discover PC games with Xbox Game Pass."), QCoreApplication.translate("ToolTip", "Instant access to widgets for screen capture and sharing, and chatting with Xbox friends."), QCoreApplication.translate("ToolTip", "Link your Android phone and PC to view and reply to text messages, access mobile apps, and receive notifications.") )) self.app_data_list = [ {"name": "*Microsoft.3DBuilder*", "link": "/?PFN=Microsoft.3DBuilder_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.Microsoft3DViewer*", "link": "/?PFN=Microsoft.Microsoft3DViewer_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.WindowsAlarms*", "link": "/?PFN=Microsoft.WindowsAlarms_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.WindowsCalculator*", "link": "/?PFN=Microsoft.WindowsCalculator_8wekyb3d8bbwe", "size": 0}, {"name": "*microsoft.windowscommunicationsapps*", "link": "/?PFN=Microsoft.windowscommunicationsapps_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.WindowsCamera*", "link": "/?PFN=Microsoft.WindowsCamera_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.WindowsFeedbackHub*", "link": "/?PFN=Microsoft.WindowsFeedbackHub_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.GetHelp*", "link": "/?PFN=Microsoft.Gethelp_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.ZuneMusic*", "link": "/?PFN=Microsoft.ZuneMusic_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.WindowsMaps*", "link": "/?PFN=Microsoft.WindowsMaps_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.Messaging*", "link": "/?PFN=Microsoft.Messaging_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.MixedReality.Portal*", "link": "/?PFN=Microsoft.MixedReality.Portal_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.OneConnect*", "link": "/?PFN=Microsoft.OneConnect_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.BingFinance*", "link": "/?PFN=Microsoft.BingFinance_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.ZuneVideo*", "link": "/?PFN=Microsoft.ZuneVideo_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.BingNews*", "link": "/?PFN=Microsoft.BingNews_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.MicrosoftOfficeHub*", "link": "/?PFN=Microsoft.MicrosoftOfficeHub_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.Office.OneNote*", "link": "/?PFN=Microsoft.Office.OneNote_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.MSPaint*", "link": "/?PFN=Microsoft.MSPaint_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.People*", "link": "/?PFN=Microsoft.People_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.Windows.Photos*", "link": "/?PFN=Microsoft.Windows.Photos_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.Print3D*", "link": "/?PFN=Microsoft.Print3D_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.SkypeApp*", "link": "/?PFN=Microsoft.SkypeApp_kzf8qxf38zg5c", "size": 0}, {"name": "*Microsoft.ScreenSketch*", "link": "/?PFN=Microsoft.ScreenSketch_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.MicrosoftSolitaireCollection*", "link": "/?PFN=Microsoft.MicrosoftSolitaireCollection_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.BingSports*", "link": "/?PFN=Microsoft.BingSports_8wekyb3d8bbwe", "size": 0}, {"name": "*SpotifyAB.SpotifyMusic*", "link": "/?PFN=SpotifyAB.SpotifyMusic_zpdnekdrzrea0", "size": 0}, {"name": "*Microsoft.MicrosoftStickyNotes*", "link": "/?PFN=Microsoft.MicrosoftStickyNotes_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.Getstarted*", "link": "/?PFN=Microsoft.Getstarted_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.BingTranslator*", "link": "/?PFN=Microsoft.BingTranslator_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.WindowsSoundRecorder*", "link": "/?PFN=Microsoft.WindowsSoundRecorder_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.BingWeather*", "link": "/?PFN=Microsoft.BingWeather_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.GamingApp*", "link": "/?PFN=Microsoft.GamingApp_8wekyb3d8bbwe", "size": 0}, {"name": "*Xbox*", "link": "/?PFN=Microsoft.XboxGameOverlay_8wekyb3d8bbwe", "size": 0}, {"name": "*Microsoft.YourPhone*", "link": "/?PFN=Microsoft.YourPhone_8wekyb3d8bbwe", "size": 0} ] if version.parse(platform.version()) >= version.parse("10.0.19041"): insort(self.app_name_list, QCoreApplication.translate("AppName", "Cortana")) cortana_index = self.app_name_list.index("Cortana") self.tooltip_list.insert(cortana_index, QCoreApplication.translate("ToolTip", "Personal intelligence assistant.")) self.app_data_list.insert(cortana_index, {"name": "*Microsoft.549981C3F5F10*", "link": "/?PFN=Microsoft.549981C3F5F10_8wekyb3d8bbwe", "size": 0}) self.checkbox_list = [] for i, _ in enumerate(self.app_name_list): self.checkbox_list.append(QCheckBox()) if i % 3 == 2: self.layout_checkboxes_3.addWidget(self.checkbox_list[i]) elif i % 3 == 1: self.layout_checkboxes_2.addWidget(self.checkbox_list[i]) else: self.layout_checkboxes.addWidget(self.checkbox_list[i]) self.apps_dict = {} for i, checkbox in enumerate(self.checkbox_list): checkbox.setText(self.app_name_list[i]) checkbox.setToolTip(self.tooltip_list[i]) checkbox.setFont(self.font) self.apps_dict[checkbox] = self.app_data_list[i] self.label_space.setText(QCoreApplication.translate("Label", "Total amount of disk space:")) self.label_size.setText(QCoreApplication.translate("Label", "0 MB")) self.button_select_all.setText(QCoreApplication.translate("Button", "Select All")) self.button_deselect_all.setText(QCoreApplication.translate("Button", "Deselect All")) self.button_uninstall.setText(QCoreApplication.translate("Button", "Uninstall"))
neural-networks-intro/SimpleNeuralNetwork.py
mervatkheir/kite-python-blog-post-code
238
11126868
#!/usr/bin/env python # coding: utf-8 from numpy import exp, dot, random, array """Python code for simple Artificial Neural Network with one hidden layer""" def initialize_weights(): # Generate random numbers random.seed(1) # Assign random weights to a 3 x 1 matrix synaptic_weights = random.uniform(low=-1, high=1, size=(3, 1)) return synaptic_weights def sigmoid(x): return 1 / (1 + exp(-x)) def sigmoid_derivative(x): return x * (1 - x) def train(inputs, expected_output, synaptic_weights, bias, learning_rate, training_iterations): for epoch in range(training_iterations): # Forward pass -- Pass the training set through the network. predicted_output = learn(inputs, synaptic_weights, bias) # Backaward pass # Calculate the error error = sigmoid_derivative(predicted_output) * (expected_output - predicted_output) # Adjust the weights and bias by a factor weight_factor = dot(inputs.T, error) * learning_rate bias_factor = error * learning_rate # Update the synaptic weights synaptic_weights += weight_factor # Update the bias bias += bias_factor if ((epoch % 1000) == 0): print("Epoch", epoch) print("Predicted Output = ", predicted_output.T) print("Expected Output = ", expected_output.T) print() return synaptic_weights def learn(inputs, synaptic_weights, bias): return sigmoid(dot(inputs, synaptic_weights) + bias) if __name__ == "__main__": # Initialize random weights for the network synaptic_weights = initialize_weights() # The training set inputs = array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # Target set expected_output = array([[1, 0, 1]]).T # Test set test = array([1, 0, 1]) # Train the neural network trained_weights = train(inputs, expected_output, synaptic_weights, bias=0.001, learning_rate=0.98, training_iterations=1000000) # Test the neural network with a test example accuracy = (learn(test, trained_weights, bias=0.01)) * 100 print("accuracy =", accuracy[0], "%")
lightreid/models/heads/__init__.py
nataliamiccini/light-reid
296
11126884
""" Author: <NAME> E-mail: <EMAIL> """ from .build import HEADs_REGISTRY, build_head # import heads, so they will be registered from .bn_head import BNHead from .code_pyramid import CodePyramid from .pcb_head import PCBHead
vae/flax/utils.py
vipavlovic/pyprobml
4,895
11126893
<filename>vae/flax/utils.py import jax import math import jax.numpy as jnp import matplotlib.pyplot as plt def save_image(ndarray, fp, nrow=8, padding=2, pad_value=0.0, format=None): """Make a grid of images and Save it into an image file. Args: ndarray (array_like): 4D mini-batch images of shape (B x H x W x C) fp - A filename(string) or file object nrow (int, optional): Number of images displayed in each row of the grid. The final grid size is ``(B / nrow, nrow)``. Default: ``8``. padding (int, optional): amount of padding. Default: ``2``. scale_each (bool, optional): If ``True``, scale each image in the batch of images separately rather than the (min, max) over all images. Default: ``False``. pad_value (float, optional): Value for the padded pixels. Default: ``0``. format(Optional): If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. """ if not (isinstance(ndarray, jnp.ndarray) or (isinstance(ndarray, list) and all(isinstance(t, jnp.ndarray) for t in ndarray))): raise TypeError('array_like of tensors expected, got {}'.format(type(ndarray))) ndarray = jnp.asarray(ndarray) if ndarray.ndim == 4 and ndarray.shape[-1] == 1: # single-channel images ndarray = jnp.concatenate((ndarray, ndarray, ndarray), -1) # make the mini-batch of images into a grid nmaps = ndarray.shape[0] xmaps = min(nrow, nmaps) ymaps = int(math.ceil(float(nmaps) / xmaps)) height, width = int(ndarray.shape[1] + padding), int(ndarray.shape[2] + padding) num_channels = ndarray.shape[3] grid = jnp.full((height * ymaps + padding, width * xmaps + padding, num_channels), pad_value).astype(jnp.float32) k = 0 for y in range(ymaps): for x in range(xmaps): if k >= nmaps: break grid = jax.ops.index_update( grid, jax.ops.index[y * height + padding:(y + 1) * height, x * width + padding:(x + 1) * width], ndarray[k]) k = k + 1 # Add 0.5 after unnormalizing to [0, 255] to round to nearest integer ndarr = jnp.clip(grid * 255.0, 0, 255).astype(jnp.uint8) plt.imshow(ndarr) plt.savefig(fp) # im = Image.fromarray(ndarr.copy()) # im.save(fp, format=format)
pyrival/graphs/centroid_decomposition.py
MattJDavidson/aoc2021
748
11126903
<filename>pyrival/graphs/centroid_decomposition.py def centroid_decomposition(graph): """ Given a tree, this function is a generator that 1. Roots the tree at its centroid (modifying graph) 2. Yields centroid 3. Removes centroid from the graph 4. Recurses on the forest left after the removal This generator makes working with centroid decomposition easy. It yields the n centroids involved in the decomposition. It also keeps the graph rooted at the yielded centroid by modifying the input variable graph. In total this takes O(n log n) time. Input: graph: list of lists where graph[u] is a list containing all neighbours of node u Example: >>> graph = [[1], [0,2], [1]] >>> for centroid in centroid_decomposition(graph): >>> bfs = [centroid] >>> for node in bfs: >>> bfs += graph[node] # Valid since graph is rooted at the centroid >>> print('BFS from centroid:', bfs) BFS from centroid: [1, 0, 2] BFS from centroid: [0] BFS from centroid: [2] """ n = len(graph) bfs = [n - 1] for node in bfs: bfs += graph[node] for nei in graph[node]: graph[nei].remove(node) size = [0] * n for node in reversed(bfs): size[node] = 1 + sum(size[child] for child in graph[node]) def reroot_centroid(root): N = size[root] while True: for child in graph[root]: if size[child] > N // 2: size[root] = N - size[child] graph[root].remove(child) graph[child].append(root) root = child break else: return root bfs = [n - 1] for node in bfs: centroid = reroot_centroid(node) bfs += graph[centroid] yield centroid
test/test_web.py
complexdb/zincbase
174
11126905
<gh_stars>100-1000 def test_index(server_and_args): app, server, args = server_and_args response = app.test_client().get('/') assert response.status_code == 200 data = response.data.decode('utf-8') assert '<title>Zincbase Graph Server</title>' in data assert 'src="bundle.js"' in data
libweasyl/libweasyl/alembic/versions/c1f8375b5805_split_login_charsettings_to_columns.py
akash143143/weasyl
111
11126923
<reponame>akash143143/weasyl<gh_stars>100-1000 """Split login charsettings to columns, removing birthday reset Removes login.settings, replacing with a distinct column (login.force_password_reset) for forced password resets. Drops forced resets of birthdays entirely, and opts to leverage existing permaban/suspension tables for determining if a user is banned or suspended. Revision ID: c1f8375b5805 Revises: <PASSWORD> Create Date: 2020-02-14 02:29:53.525649 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<PASSWORD>' from alembic import op # lgtm[py/unused-import] import sqlalchemy as sa # lgtm[py/unused-import] def upgrade(): op.add_column('login', sa.Column('force_password_reset', sa.Boolean(), server_default='f', nullable=False)) op.execute("UPDATE login SET force_password_reset = TRUE WHERE settings ~ 'p'") # NB: Bans/suspensions based on the contents of the permaban/suspension tables, so no replacement column needed # during upgrade() op.drop_column('login', 'settings') def downgrade(): op.add_column('login', sa.Column('settings', sa.VARCHAR(length=20), server_default=sa.text(u"''::character varying"), autoincrement=False, nullable=False)) op.execute("UPDATE login SET settings = settings || 'p' WHERE force_password_reset") # Restore the ban flag ('b') op.execute(""" UPDATE login SET settings = settings || 'b' FROM permaban WHERE login.userid = permaban.userid """) # Restore the suspended flag ('s') op.execute(""" UPDATE login SET settings = login.settings || 's' FROM suspension WHERE login.userid = suspension.userid """) op.drop_column('login', 'force_password_reset')
bin/config.py
hhcho/ample
176
11126936
<gh_stars>100-1000 import fileinput import sys data_names = None if data_names is None: if len(sys.argv) == 1: print('Enter data names followed by EOF/Ctrl-D:') data_names = [] for line in fileinput.input(): fields = line.rstrip().split(',') for f in fields: if f.strip() == '': continue data_names.append(f) print('Data names loaded')
src/arcrest/manageportal/administration.py
kevinsigwart/ArcREST
208
11126961
""" The ArcREST API allows you to perform administrative tasks not available in the Portal for ArcGIS website. The API is organized into resources and operations. Resources are entities within Portal for ArcGIS that hold some information and have a well-defined state. Operations act on these resources and update their information or state. Resources and operations are hierarchical and have unique universal resource locators (URLs). """ from __future__ import absolute_import from __future__ import print_function import json import tempfile from datetime import datetime from .._abstract.abstract import BaseAGOLClass from ..security import PortalTokenSecurityHandler,ArcGISTokenSecurityHandler,OAuthSecurityHandler ######################################################################## class _Federation(BaseAGOLClass): """ """ _resources = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler, proxy_url=None, proxy_port=None, initialize=False): """Constructor""" if url.lower().endswith("/federation") == False: url = url + "/federation" self._url = url self._securityHandler = securityHandler self._proxy_url = proxy_url self._proxy_port = proxy_port if initialize: self.__init() #---------------------------------------------------------------------- def __init(self): """ initializes the site properties """ params = { "f" : "json", } json_dict = self._get(self._url, params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) self._json_dict = json_dict self._json = json.dumps(json_dict) attributes = [attr for attr in dir(self) if not attr.startswith('__') and \ not attr.startswith('_')] for k,v in json_dict.items(): if k in attributes: setattr(self, "_"+ k, json_dict[k]) else: print( k, " - attribute not implemented in manageportal.administration._Federation class.") #---------------------------------------------------------------------- @property def servers(self): """ This resource returns detailed information about the ArcGIS Servers registered with Portal for ArcGIS, such as the ID of the server, name of the server, ArcGIS Web Adaptor URL, administration URL, and if the server is set as a hosting server. """ params = {"f" : "json"} url = self._url + "/servers" return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def unfederate(self, serverId): """ This operation unfederates an ArcGIS Server from Portal for ArcGIS """ url = self._url + "/servers/{serverid}/unfederate".format( serverid=serverId) params = {"f" : "json"} return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_ur) #---------------------------------------------------------------------- def updateServer(self, serverId, serverRole): """ This operation unfederates an ArcGIS Server from Portal for ArcGIS Parameters: serverRole - Whether the server is a hosting server for the portal, a federated server, or a server with restricted access to publishing. The allowed values are FEDERATED_SERVER, FEDERATED_SERVER_WITH_RESTRICTED_PUBLISHING, or HOSTING_SERVER. serverId - unique id of the server """ url = self._url + "/servers/{serverid}/update".format( serverid=serverId) params = {"f" : "json", "serverRole" : serverRole} return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_ur) #---------------------------------------------------------------------- def validateServer(self, serverId): """ This operation provides status information about a specific ArcGIS Server federated with Portal for ArcGIS. Parameters: serverId - unique id of the server """ url = self._url + "/servers/{serverid}/validate".format( serverid=serverId) params = {"f" : "json"} return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_ur) #---------------------------------------------------------------------- def validateAllServers(self): """ This operation provides status information about a specific ArcGIS Server federated with Portal for ArcGIS. Parameters: serverId - unique id of the server """ url = self._url + "/servers/validate" params = {"f" : "json"} return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_ur) ######################################################################## class _log(BaseAGOLClass): """handles the portal log information at 10.3.1+""" _url = None _securityHandler = None _proxy_url = None _proxy_port = None _json = None _json_dict = None _resources = None _operations = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler, proxy_url=None, proxy_port=None, initialize=False): """Constructor""" if url.lower().endswith("/logs") == False: url = url + "/logs" self._url = url self._securityHandler = securityHandler self._proxy_url = proxy_url self._proxy_port = proxy_port if initialize: self.__init() #---------------------------------------------------------------------- def __init(self): """ initializes the site properties """ params = { "f" : "json", } json_dict = self._get(self._url, params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) self._json_dict = json_dict self._json = json.dumps(json_dict) attributes = [attr for attr in dir(self) if not attr.startswith('__') and \ not attr.startswith('_')] for k,v in json_dict.items(): if k in attributes: setattr(self, "_"+ k, json_dict[k]) else: print( k, " - attribute not implemented in manageportal.administration.log class.") #---------------------------------------------------------------------- def __str__(self): """returns object as string""" if self._json is None: self.__init() return self._json #---------------------------------------------------------------------- @property def resources(self): """returns the admin sites resources""" if self._resources is None: self.__init() return self._resources #---------------------------------------------------------------------- @property def operations(self): """lists operations available to user""" if self._operations is None: self.__init() return self._operations #---------------------------------------------------------------------- @property def settings(self): """returns the log settings for portal""" url = self._url + "/settings" params = { "f" : "json", } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def editLogSettings(self, logLocation, logLevel="WARNING", maxLogFileAge=90): """ edits the log settings for the portal site Inputs: logLocation - file path to where you want the log files saved on disk logLevel - this is the level of detail saved in the log files Levels are: OFF, SEVERE, WARNING, INFO, FINE, VERBOSE, and DEBUG maxLogFileAge - the numbers of days to keep a single log file """ url = self._url + "/settings/edit" params = { "f" : "json", "logDir" : logLocation, "logLevel" : logLevel, "maxLogFileAge" : maxLogFileAge } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def query(self, logLevel="WARNING", source="ALL", startTime=None, endTime=None, logCodes=None, users=None, messageCount=1000): """ allows users to look at the log files from a the REST endpoint Inputs: logLevel - this is the level of detail saved in the log files Levels are: OFF, SEVERE, WARNING, INFO, FINE, VERBOSE, and DEBUG source - the type of information to search. Allowed values are: ALL, PORTAL_ADMIN, SHARING, PORTAL startTime - datetime object to start search at endTime - datetime object to end search logCodes - comma seperate list of codes to search users - comma seperated list of users to query messageCount - integer number of the max number of log entries to return to the user. """ url = self._url + "/query" filter_value = {"codes":[], "users":[], "source": "*"} if source.lower() == "all": filter_value['source'] = "*" else: filter_value['source'] = [source] params = { "f" : "json", "level" : logLevel } if not startTime is None and \ isinstance(startTime, datetime): params['startTime'] = startTime.strftime("%Y-%m-%dT%H:%M:%S")#2015-01-31T15:00:00 if not endTime is None and \ isinstance(endTime, datetime): params['endTime'] = startTime.strftime("%Y-%m-%dT%H:%M:%S") if not logCodes is None: filter_value['codes'] = logCodes.split(',') if not users is None: filter_value['users'] = users.split(',') if messageCount is None: params['pageSize'] = 1000 elif isinstance(messageCount, (int, long, float)): params['pageSize'] = int(messageCount) else: params['pageSize'] = 1000 params['filter'] = filter_value return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def cleanLogs(self): """erases all the log data""" url = self._url + "/clean" params = { "f":"json" } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) ######################################################################## class _Security(BaseAGOLClass): """ The security resource is the root of all the security configurations and operations in the portal. Through this resource, you can change the identity providers and the authentication mode for your portal. """ _securityHandler = None _url = None _proxy_url = None _proxy_port = None _json = None _json_dict = None _resources = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler, proxy_url=None, proxy_port=None, initialize=False): """Constructor""" if securityHandler is None: pass elif isinstance(securityHandler, PortalTokenSecurityHandler) or \ isinstance(securityHandler, ArcGISTokenSecurityHandler) or \ isinstance(securityHandler, OAuthSecurityHandler): self._securityHandler = securityHandler self._referer_url = securityHandler.referer_url self._proxy_url = proxy_url self._proxy_port = proxy_port self._url = url if initialize: self.__init() #---------------------------------------------------------------------- def __init(self): """ initializes the site properties """ params = { "f" : "json", } json_dict = self._get(self._url, params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) self._json_dict = json_dict self._json = json.dumps(json_dict) attributes = [attr for attr in dir(self) if not attr.startswith('__') and \ not attr.startswith('_')] for k,v in json_dict.items(): if k in attributes: setattr(self, "_"+ k, json_dict[k]) else: print( k, " - attribute not implemented in manageportal.administration.log class.") #---------------------------------------------------------------------- def __str__(self): """returns object as string""" if self._json is None: self.__init() return self._json #---------------------------------------------------------------------- @property def resources(self): """returns the admin sites resources""" if self._resources is None: self.__init() return self._resources #---------------------------------------------------------------------- def createUser(self, username, password, firstName, lastName, email, role="org_user", provider="arcgis", description="", idpUsername=None): """ This operation is used to create a new user account in the portal. Inputs: username - The name of the user account. password - The password for the account. This is a required parameter only if the provider is arcgis; otherwise, the password parameter is ignored. firstName - first name of the user account lastName - last name of the user account email - The email address for the user account. description - An optional description string for the user account. role - The role for the user account. The default value is org_user. Values: org_user | org_publisher | org_admin provider - The provider for the account. The default value is arcgis. Values: arcgis | webadaptor | enterprise idpUsername - name of the user on the domain controller. Ex: domain\account """ url = self._url + "/users/createUser" params = { "f" : "json", "username" : username, "password" : password, "firstname" : firstName, "lastname" : lastName, "email" : email, "role" : role, "provider" : provider, "description" : description } if idpUsername is None: params['idpUsername'] = idpUsername return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def deleteCertificate(self, certName): """ This operation deletes an SSL certificate from the key store. Once a certificate is deleted, it cannot be retrieved or used to enable SSL. Inputs: certName - name of the cert to delete """ params = {"f" : "json"} url = self._url + "/sslCertificates/{cert}/delete".format( cert=certName) return self._post(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def exportCertificate(self, certName, outFolder=None): """ This operation downloads an SSL certificate. The file returned by the server is an X.509 certificate. The downloaded certificate can be imported into a client that is making HTTP requests. Inputs: certName - name of the cert to export outFolder - folder on disk to save the certificate. """ params = {"f" : "json"} url = self._url + "/sslCertificates/{cert}/export".format( cert=certName) if outFolder is None: outFolder = tempfile.gettempdir() return self._post(url=url, param_dict=params, out_folder=outFolder, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def generateCertificate(self, alias, commonName, organizationalUnit, city, state, country, keyalg="RSA", keysize=1024, sigalg="SHA256withRSA", validity=90 ): """ Use this operation to create a self-signed certificate or as a starting point for getting a production-ready CA-signed certificate. The portal will generate a certificate for you and store it in its keystore. """ params = {"f" : "json", "alias" : alias, "commonName" : commonName, "organizationalUnit" : organizationalUnit, "city" : city, "state" : state, "country" : country, "keyalg" : keyalg, "keysize" : keysize, "sigalg" : sigalg, "validity" : validity } url = self._url + "/SSLCertificate/ generateCertificate" return self._post(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def generateCSR(self, certName): """ """ url = self._url + "/sslCertificates/{cert}/generateCsr".format(cert=certName) params = {"f" : "json"} return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def getAppInfo(self, appId): """ Every application registered with Portal for ArcGIS has a unique client ID and a list of redirect URIs that are used for OAuth. This operation returns these OAuth-specific properties of an application. You can use this information to update the redirect URIs by using the Update App Info operation. Input: appId - unique id of the application to get the information about. """ params = { "f" : "json", "appID" : appId } url = self._url + "/oauth/getAppInfo" return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def getUsersEnterpriseGroups(self, username, searchFilter, maxCount=100): """ This operation lists the groups assigned to a user account in the configured enterprise group store. You can use the filter parameter to narrow down the search results. Inputs: username - name of the user to find searchFilter - helps narrow down results maxCount - maximum number of results to return """ params = { "f" : "json", "username" : username, "filter" : searchFilter, "maxCount" : maxCount } url = self._url + "/Groups/getEnterpriseGroupsForUser" return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def getEnterpriseUser(self, username): """""" url = self._url + "/users/getEnterpriseUser" params = { "f" : "json", "username" : username } return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def getUsersWithinEnterpriseGroup(self, groupName, searchFilter=None, maxCount=10): """ This operation returns the users that are currently assigned to the enterprise group within the enterprise user/group store. You can use the filter parameter to narrow down the user search. Inputs: groupName - name of the group searchFilter - string used to narrow down the search maxCount - maximum number of users to return """ params = { "f" : "json", "groupName" : groupName, "maxCount" : maxCount } if searchFilter: params['filters'] = searchFilter url = self._url + "/groups/getUsersWithinEnterpriseGroup" return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def importExistingServerCertificate(self, alias, certPassword, certFile): """ This operation imports an existing server certificate, stored in the PKCS #12 format, into the keystore. If the certificate is a CA signed certificate, you must first import the CA Root or Intermediate certificate using the Import Root or Intermediate Certificate operation. Parameters alias - certificate name certPassword - <PASSWORD> certFile - certificate file """ url = self._url + "/sslCertificates/importExistingServerCertificate" files = {} files['certFile'] = certFile params = { "f" : "json", "alias" : alias, "certPassword" : <PASSWORD> } return self._post(url=url, param_dict=params, files=files, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def importRootOrIntermediate(self, alias, rootCSCertificate): """""" params = { "alias" : alias, "f" : "json" } files = { "rootCSCertificate" : rootCSCertificate } url = self._url + "/sslCertificates/importRootOrIntermediate" return self._post(url=url, param_dict=params, files=files, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def importSignedCertificate(self, alias, certFile): """ This operation imports a certificate authority (CA) signed SSL certificate into the key store. """ params = { "f" : "json" } files = {"file" : certFile} url = self._url + \ "/sslCertificates/{cert}/importSignedCertificate".format(cert=alias) return self._post(url=url, files=files, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def oauth(self): """ The OAuth resource contains a set of operations that update the OAuth2-specific properties of registered applications in Portal for ArcGIS. """ url = self._url + "/oauth" params = {"f" : "json"} return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def refreshGroupMembership(self, groups): """ This operation iterates over every enterprise account configured in the portal and determines if the user account is a part of the input enterprise group. If there are any change in memberships, the database and the indexes are updated for each group. While portal automatically refreshes the memberships during a user login and during a periodic refresh configured through the Update Identity Store operation, this operation allows an administrator to force a refresh. Parameters: groups - comma seperated list of group names """ params = { "f" : "json", "groups" : groups } url = self._url + "/groups/refreshMembership" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def refreshUserMembership(self, users): """ This operation iterates over every enterprise group configured in the portal and determines if the input user accounts belong to any of the configured enterprise groups. If there is any change in membership, the database and the indexes are updated for each user account. While portal automatically refreshes the memberships during a user login and during a periodic refresh (configured through the Update Identity Store operation), this operation allows an administrator to force a refresh. Parameters: users - comma seperated list of user names """ params = { "f" : "json", "users" : users } url = self._url + "/users/refreshMembership" return self._post(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def searchEnterpriseGroups(self, searchFilter="", maxCount=100): """ This operation searches groups in the configured enterprise group store. You can narrow down the search using the search filter parameter. Parameters: searchFilter - text value to narrow the search down maxCount - maximum number of records to return """ params = { "f" : "json", "filter" : searchFilter, "maxCount" : maxCount } url = self._url + "/groups/searchEnterpriseGroups" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def searchEnterpriseUsers(self, searchFilter="", maxCount=100): """ This operation searches users in the configured enterprise user store. You can narrow down the search using the search filter parameter. Parameters: searchFilter - text value to narrow the search down maxCount - maximum number of records to return """ params = { "f" : "json", "filter" : searchFilter, "maxCount" : maxCount } url = self._url + "/users/searchEnterpriseUsers" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def SSLCertificates(self): """ Lists certificates. """ url = self._url + "/SSLCertificate" params = {"f" : "json"} return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def getSSLCertificate(self, alias): """""" url = self._url + "/sslCertificates/{cert}".format(cert=alias) params = {"f": "json"} return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def testIdentityStore(self): """ This operation can be used to test the connection to a user or group store. """ params = {"f" : "json"} url = self._url + "/config/testIdentityStore" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def user_count(self): """ The users resource is an umbrella for operations to manage members within Portal for ArcGIS. The resource returns the total number of members in the system. As an administrator, you can register enterprise accounts in your portal instance by using the Create User operation. When automatic sign-in for users is disabled in the security configuration, registered enterprise accounts can sign in as members of the portal. This gives you full control on all the accounts within a portal instance. """ params = {"f" : "json"} url = self._url + "/users" return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def updateAppInfo(self, appInfo): """ This operation allows you to update the OAuth-specific properties associated with an application. Use the Get App Info operation to obtain the existing OAuth properties that can be edited. """ params = {"f" : "json", "appInfo" : appInfo} url = self._url + "/oauth/updateAppInfo" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def updateEnterpriseUser(self, username, idpUsername): """ This operation allows an administrator to update the idpUsername for an enterprise user in the portal. This is used when migrating from accounts used with web-tier authentication to SAML authentication. Parameters: username - username of the enterprise account idpUsername - username used by the SAML identity provider """ params = { "f" : "json", "username" : username, "idpUsername" : idpUsername } url = self._url + "/users/updateEnterpriseUser" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def updateWebServerCertificate(self, webServerCertificateAlias, sslProtocols, cipherSuites): """""" params = { "f" : "json", "webServerCertificateAlias": webServerCertificateAlias, "sslProtocols" : sslProtocols, "cipherSuites" : cipherSuites } url = self._url + "/sslcertificates/update" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def updateSecurityConfiguration(self, enableAutomaticAccountCreation=False, disableServicesDirectory=False ): """ This operation can be used to update the portal's security settings such as whether or not enterprise accounts are automatically registered as members of your ArcGIS organization the first time they accesses the portal. The security configuration is stored as a collection of properties in a JSON object. The following properties are supported: enableAutomaticAccountCreation disableServicesDirectory The automatic account creation flag (enableAutomaticAccountCreation) determines the behavior for unregistered enterprise accounts the first time they access the portal. When the value for this property is set to false, first time users are not automatically registered as members of your ArcGIS organization, and have the same access privileges as other nonmembers. For these accounts to sign in, an administrator must register the enterprise accounts using the Create User operation. The default value for the enableAutomaticAccountCreation property is false. When this value is set to true, portal will add enterprise accounts automatically as members of your ArcGIS organization. The disableServicesDirectory property controls whether the HTML pages of the services directory should be accessible to the users. The default value for this property is false, meaning the services directory HTML pages are accessible to everyone. """ url = self._url + "/config/update" params = { "f" : "json", "enableAutomaticAccountCreation": enableAutomaticAccountCreation, "disableServicesDirectory" : disableServicesDirectory } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def updateIdenityStore(self, userPassword, user, userFullnameAttribute, ldapURLForUsers, userEmailAttribute, usernameAttribute, isPasswordEncrypted=False, caseSensitive=True): r""" You can use this operation to change the identity provider configuration in your portal. When Portal for ArcGIS is first installed, it supports token-based authentication using the built-in identity store for accounts. To configure your portal to connect to your enterprise authentication mechanism, it must be configured to use an enterprise identity store such as Windows Active Directory or LDAP. Inputs: userPassword -The password for the domain account, for example, secret. isPasswordEncrypted - Indicates if the userPassword property is an encrypted password or plain text. If the property is false, the API will encrypt the password automatically. user - A user account with at least read permissions to look up the email addresses and user names of users in your organization. If possible, use an account whose password does not expire. Windows Active Directory example: mydomain\\winaccount LDAP example: uid=admin\,ou=system userFullnameAttribute - The attribute in Windows Active Directory or LDAP that contains the full name of the users, for example, cn. ldapURLForUsers - The URL to your LDAP that points to the user accounts, for example, ldap://bar2:10389/ou=users\,ou=ags\,dc=example\,dc=com. The URL to your LDAP will need to be provided by your LDAP administrator. This property is not applicable when configuring Windows Active Directory. userEmailAttribute - The attribute in Windows Active Directory or LDAP that contains the email addresses of the users, for example, email. usernameAttribute - The LDAP attribute of the user entry that is to be treated as the user name, for example, cn. This property is not applicable when configuring Windows Active Directory. caseSensitive - In the rare case where your Windows Active Directory is configured to be case sensitive, set this property to true. If your LDAP is configured to be case insensitive, set parameter to false. """ url = self._url + "/config/updateIdentityStore" params = { "f" : "json", "userPassword" : <PASSWORD>, "isPasswordEncrypted" : isPasswordEncrypted, "user" : user, "userFullnameAttribute": userFullnameAttribute, "ldapURLForUsers" : ldapURLForUsers, "userEmailAttribute" : userEmailAttribute, "usernameAttribute" : usernameAttribute, "caseSensitive" : caseSensitive } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def updateTokenConfiguration(self, sharedKey): """ You can use this operation to change the shared key for the token configuration. Shared keys are used to generate tokens and must be of a suitable length to ensure strong encryption. Input: sharedKey - key used to generate token """ url = self._url + "/tokens/update" params = { "f" : "json", "tokenConfig" : {"sharedKey" : sharedKey} } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def tokenConfigurations(self): """ This resource represents the token configuration within your portal Use the Update Token Configuration operation to change the configuration properties of the token service. """ url = self._url + "/tokens" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def securityConfiguration(self): """ The security configuration consists of the identity store configuration. If your portal will be authenticated through ArcGIS Web Adaptor, you must set up your preferred authentication on your web server. Use the Update Identity Store operation to configure your portal to connect to your enterprise identity provider such as Windows Domain or LDAP. By default, Portal for ArcGIS is configured to use the built-in store and token-based authentication. """ url = self._url + "/config" params = { "f" : "json", } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def users(self): """ returns the number of registered users on site """ url = self._url + "/users" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) ######################################################################## class _System(BaseAGOLClass): """ This resource is an umbrella for a collection of system-wide resources for your portal. This resource provides access to the ArcGIS Web Adaptor configuration, portal directories, database management server, indexing capabilities, license information, and the properties of your portal. """ _securityHandler = None _url = None _proxy_url = None _proxy_port = None #---------------------------------------------------------------------- def __init__(self, url, securityHandler, proxy_url=None, proxy_port=None): """Constructor""" if securityHandler is not None: self._securityHandler = securityHandler self._referer_url = securityHandler.referer_url self._proxy_url = proxy_url self._proxy_port = proxy_port self._url = url #---------------------------------------------------------------------- @property def webAdaptors(self): """ The Web Adaptors resource lists the ArcGIS Web Adaptor configured with your portal. You can configure the Web Adaptor by using its configuration web page or the command line utility provided with the installation. """ url = self._url + "/webadaptors" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def webAdaptor(self, webAdaptorID): """ The ArcGIS Web Adaptor is a web application that runs in a front-end web server. One of the Web Adaptor's primary responsibilities is to forward HTTP requests from end users to Portal for ArcGIS. The Web Adaptor acts a reverse proxy, providing the end users with an entry point to the system, hiding the back-end servers, and providing some degree of immunity from back-end failures. The front-end web server can authenticate incoming requests against your enterprise identity stores and provide specific authentication schemes such as Integrated Windows Authentication (IWA), HTTP Basic, or Digest. Most importantly, a Web Adaptor provides your end users with a well-defined entry point to your system without exposing the internal details of your portal. Portal for ArcGIS will trust requests being forwarded by the Web Adaptor and will not challenge the user for any credentials. However, the authorization of the request (by looking up roles and permissions) is still enforced by the portal's sharing rules. Input: webAdaptorID - id of the web adaptor """ url = self._url + "/webadaptors/%s" % webAdaptorID params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def unregisterWebAdaptor(self, webAdaptorID): """ You can use this operation to unregister the ArcGIS Web Adaptor from your portal. Once a Web Adaptor has been unregistered, your portal will no longer trust the Web Adaptor and will not accept any credentials from it. This operation is typically used when you want to register a new Web Adaptor or when your old Web Adaptor needs to be updated. Input: webAdaptorID - id of the web adaptor """ url = self._url + "/webadaptors/%s/unregister" % webAdaptorID params = { "f" : "json" } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def updateWebAdaptorsConfiguration(self, webAdaptorsConfig): """ This operation is used to change the common properties and configuration of the ArcGIS Web Adaptor configured with the portal. The properties are stored as a JSON object and, therefore, every update must include all the necessary properties. Inputs: webAdaptorsConfig - The JSON object containing all the properties in the configuration. """ url = self._url + "/webadaptors/config/update" params = { "f" : "json", "webAdaptorsConfig" : webAdaptorsConfig } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def webAdaptorsConfiguration(self): """ This resource is a collection of configuration properties that apply to the ArcGIS Web Adaptor configured with the portal. The Web Adaptor fetches these properties periodically, which alters its behavior. Only one property is supported: sharedSecret - This property represents credentials that are shared with the Web Adaptor. The Web Adaptor uses these credentials to communicate with the portal. """ url = self._url + "/webadaptors/config" params = { "f" : "json", } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def directories(self): """ The directories resource is a collection of directories that are used by the portal to store and manage content. At 10.2.1, Portal for ArcGIS supports five types of directories: Content directory-The content directory contains the data associated with every item in the portal. Database directory-The built-in security store and sharing rules are stored in a Database server that places files in the database directory. Temporary directory-The temporary directory is used as a scratch workspace for all the portal's runtime components. Index directory-The index directory contains all the indexes associated with the content in the portal. The indexes are used for quick retrieval of information and for querying purposes. Logs directory-Errors and warnings are written to text files in the log file directory. Each day, if new errors or warnings are encountered, a new log file is created. If you would like to change the path for a directory, you can use the Edit Directory operation. """ url = self._url + "/directories" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def directory(self, directoryName): """ A directory is a file system-based folder that contains a specific type of content for the portal. The physicalPath property of a directory locates the actual path of the folder on the file system. At 10.2.1, Portal for ArcGIS supports local directories and network shares as valid locations. During the Portal for ArcGIS installation, the setup program asks you for the root portal directory (that will contain all the portal's sub directories). However, you can change each registered directory through this API. Input: directoryName - name of diretory category """ url = self._url + "/directories/%s" % directoryName params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def editDirectory(self, directoryName, physicalPath, description): """ The edit operation on a directory can be used to change the physical path and description properties of the directory. This is useful when changing the location of a directory from a local path to a network share. However, the API does not copy your content and data from the old path to the new path. This has to be done independently by the system administrator. Input: directoryName - name of the directory to change physicalPath - new path for directroy description - new description of the directory """ url = self._url + "/directories/%s/edit" % directoryName params = { "f" : "json", "physicalPath": physicalPath, "description" : description } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def getEntitlements(self, appId): """ This operation returns the currently queued entitlements for a product, such as ArcGIS Pro or Navigator for ArcGIS, and applies them when their start dates become effective. It's possible that all entitlements imported using the Import Entitlements operation are effective immediately and no entitlements are added to the queue. In this case, the operation returns an empty result. """ params = { "f" : "json", "appId" : appId } url = self._url + "/licenses/getEntitlements" return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def importEntitlements(self, entitlementFile, appId): """""" params = { "f" : "json", "appId" : appId } url = self._url + "/licenses/importEntitlements" files = {"file" : entitlementFile} return self._post(url=url, param_dict=params, files=files, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def languages(self): """ This resource lists which languages will appear in portal content search results. """ params = {"f" : "json"} url = self._url + "/languages" return self._get(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def releaseLicense(self, username): """ If a user checks out an ArcGIS Pro license for offline or disconnected use, this operation releases the license for the specified account. A license can only be used with a single device running ArcGIS Pro. To check in the license, a valid access token and refresh token is required. If the refresh token for the device is lost, damaged, corrupted, or formatted, the user will not be able to check in the license. This prevents the user from logging in to ArcGIS Pro from any other device. As an administrator, you can release the license. This frees the outstanding license and allows the user to check out a new license or use ArcGIS Pro in a connected environment. Parameters: username - username of the account """ url = self._url + "/licenses/releaseLicense" params = { "username" : username, "f" : "json" } return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def removeAllEntitlements(self, appId): """ This operation removes all entitlements from the portal for ArcGIS Pro or additional products such as Navigator for ArcGIS and revokes all entitlements assigned to users for the specified product. The portal is no longer a licensing portal for that product. License assignments are retained on disk. Therefore, if you decide to configure this portal as a licensing portal for the product again in the future, all licensing assignments will be available in the website. Parameters: appId - The identifier for the application for which the entitlements are being removed. """ params = { "f" : "json", "appId" : appId } url = self._url + "/licenses/removeAllEntitlements" return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def system_properties(self): """ This resource lists system properties that have been modified to control the portal's environment. """ params = {"f" : "json"} url = self._url + "/properties" return self._get(url=url, param_dict=params, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def updateLanguages(self, languages): """ You can use this operation to change which languages will have content displayed in portal search results. Parameters: languages - The JSON object containing all of the possible portal languages and their corresponding status (true or false). """ url = self._url = "/languages/update" params = { "f" : "json", "languages" : languages } return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- def updateLicenseManager(self, licenseManagerInfo): """ ArcGIS License Server Administrator works with your portal and enforces licenses for ArcGIS Pro. This operation allows you to change the license server connection information for your portal. When you import entitlements into portal using the Import Entitlements operation, a license server is automatically configured for you. If your license server changes after the entitlements have been imported, you only need to change the license server connection information. You can register a backup license manager for high availability of your licensing portal. When configuring a backup license manager, you need to make sure that the backup license manager has been authorized with the same organizational entitlements. After configuring the backup license manager, Portal for ArcGIS is restarted automatically. When the restart completes, the portal is configured with the backup license server you specified. Parameters: licenseManagerInfo - The JSON representation of the license server connection information. """ url = self._url + "/licenses/updateLicenseManager" params = { "f" : "json", "licenseManagerInfo" : licenseManagerInfo } return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def database(self): """ The database resource represents the database management system (DBMS) that contains all of the portal's configuration and relationship rules. This resource also returns the name and version of the database server currently running in the portal. You can use the Update Database Account operation to edit the administrative database account that is used by components within the portal to communicate with the database server. """ url = self._url + "/database" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def updateDatabaseAccount(self, username, password): """ By default, the initial administrator account you define during the Create Site operation is used as the database administrator account. However, you can use this operation to change the database administrator account credentials. To change just the password for the account, provide the password parameter. If you want to create a completely new account for the database, provide new values for the username and password parameters. Input: username - database user name password - <PASSWORD> """ url = self._url + "/database/updateAdminAccount" params = { "f" : "json", "username" : username, "password" : password } return self._post(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def indexer(self): """ The indexer resource contains connection information to the default indexing service. You can change its configuration properties such as the port number and host name if you want the portal sharing API to connect to and access another indexing service. """ url = self._url + "/indexer" params = { "f" : "json", } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def indexerStatus(self): """ The status resource allows you to view the status of the indexing service. You can view the number of users, groups, relationships, and search items in both the database (store) and the index. If the database and index do not match, indexing is either in progress or there is a problem with the index. It is recommended that you reindex to correct any issues. If indexing is in progress, you can monitor the status by refreshing the page. """ url = self._url + "/indexer/status" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def reindex(self, mode, includes=""): """ This operation allows you to generate or update the indexes for content; such as users, groups, and items stored in the database (store). During the process of upgrading an earlier version of Portal for ArcGIS, you are required to update the indexes by running this operation. You can check the status of your indexes using the status resource. Input: mode - The mode in which the indexer should run. Values: USER_MODE | GROUP_MODE | RELATION_MODE | SEARCH_MODEL | FULL includes An optional comma separated list of elements to include in the index. This is useful if you want to only index certain items or user accounts. """ url = self._url + "/indexer/reindex" params = { "f" : "json", "mode" : mode, "includes" : includes } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- def updateIndexConfiguration(self, indexerHost="localhost", indexerPort=7199): """ You can use this operation to change the connection information for the indexing service. By default, Portal for ArcGIS runs an indexing service that runs on port 7199. If you want the sharing API to refer to the indexing service on another instance, you need to provide the host and port parameters. Input: indexerHost - The name of the server (hostname) on which the index service runs. The default value is localhost indexerPort - The port number on which the index service is listening. The default value is 7199 """ url = self._url + "/indexer/update" params = { "f" : "json", "indexerHost": indexerHost, "indexerPort": indexerPort } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) #---------------------------------------------------------------------- @property def licenses(self): """ Portal for ArcGIS requires a valid license to function correctly. This resource returns the current status of the license. """ url = self._url + "/licenses" params = { "f" : "json" } return self._get(url=url, param_dict=params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) ######################################################################## class PortalAdministration(BaseAGOLClass): """ This is the root resource for administering your portal. Starting from this root, all of the portal's environment is organized into a hierarchy of resources and operations. After installation, the portal can be configured using the Create Site operation. Once initialized, the portal environment is available through System and Security resources. """ _siteKey = None _securityHandler = None _url = None _proxy_url = None _proxy_port = None _resources = None _version = None _json = None _json_dict = None #---------------------------------------------------------------------- def __init__(self, admin_url, securityHandler, proxy_url=None, proxy_port=None, initalize=False): """Constructor""" if admin_url.endswith("/portaladmin") == False: admin_url = admin_url + "/portaladmin" if securityHandler is not None: self._securityHandler = securityHandler self._referer_url = securityHandler.referer_url self._proxy_url = proxy_url self._proxy_port = proxy_port self._url = admin_url if initalize: self.__init() #---------------------------------------------------------------------- def __init(self): """ initializes the site properties """ params = { "f" : "json", } json_dict = self._get(self._url, params, securityHandler=self._securityHandler, proxy_port=self._proxy_port, proxy_url=self._proxy_url) self._json_dict = json_dict self._json = json.dumps(json_dict) attributes = [attr for attr in dir(self) if not attr.startswith('__') and \ not attr.startswith('_')] for k,v in json_dict.items(): if k in attributes: setattr(self, "_"+ k, json_dict[k]) else: setattr(self, k, v) print( k, " - attribute not implemented in manageportal.administration class.") #---------------------------------------------------------------------- def __str__(self): """returns object as string""" if self._json is None: self.__init() return self._json #---------------------------------------------------------------------- def __iter__(self): """returns the raw key/values for the object""" if self._json_dict is None: self.__init() for k,v in self._json_dict.items(): yield [k,v] #---------------------------------------------------------------------- @property def siteKey(self): """gets the portal siteKey property""" if self._siteKey is None: self.__init() return self._siteKey #---------------------------------------------------------------------- @property def resources(self): """returns the admin sites resources""" if self._resources is None: self.__init() return self._resources #---------------------------------------------------------------------- @property def version(self): """returns the portal version""" if self._version is None: self.__init() return self._version #---------------------------------------------------------------------- def createSite(self, username, password, fullname, email, description, securityQuestionIdx, secuirtyQuestionAns, contentDir ): """ The create site operation initializes and configures Portal for ArcGIS for use. It must be the first operation invoked after installation. Creating a new site involves: Creating the initial administrator account Creating a new database administrator account (which is same as the initial administrator account) Creating token shared keys Registering directories This operation is time consuming, as the database is initialized and populated with default templates and content. If the database directory is not empty, this operation attempts to migrate the database to the current version while keeping its data intact. At the end of this operation, the web server that hosts the API is restarted. Inputs: username - The initial administrator account name password - <PASSWORD> fullname - The full name for the initial administrator account email - The account email address description - An optional description for the account securityQuestionIdx - The index of the secret question to retrieve a forgotten password securityQuestionAns - The answer to the secret question contentDir - The path to the location of the site's content """ params = { "username" : username, "password" : password, "fullname" : fullname, "email" : email, "description" : description, "secuirtyQuestionAns" : secuirtyQuestionAns, "securityQuestionIdx" : securityQuestionIdx, "contentDir" : contentDir } url = self._url + "/createNewSite" return self._get(url=url, param_dict=params) #---------------------------------------------------------------------- def exportSite(self, location): """ This operation exports the portal site configuration to a location you specify. """ params = { "location" : location, "f" : "json" } url = self._url + "/exportSite" return self._post(url=url, param_dict=params) #---------------------------------------------------------------------- def importSite(self, location): """ This operation imports the portal site configuration to a location you specify. """ params = { "location" : location, "f" : "json" } url = self._url + "/importSite" return self._post(url=url, param_dict=params) #---------------------------------------------------------------------- def joinSite(self, machineAdminUrl, username, password): """ The joinSite operation connects a portal machine to an existing site. You must provide an account with administrative privileges to the site for the operation to be successful. """ params = { "machineAdminUrl" : machineAdminUrl, "username" : username, "password" : password, "f" : "json" } url = self._url + "/joinSite" return self._post(url=url, param_dict=params) #---------------------------------------------------------------------- def unregisterMachine(self, machineName): """ This operation unregisters a portal machine from a portal site. The operation can only performed when there are two machines participating in a portal site. """ url = self._url + "/machines/unregister" params = { "f" : "json", "machineName" : machineName } return self._post(url=url, param_dict=params, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def federation(self): """returns the class that controls federation""" url = self._url + "/federation" return _Federation(url=url, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def system(self): """ Creates a reference to the System operations for Portal """ url = self._url + "/system" return _System(url=url, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def security(self): """ Creates a reference to the Security operations for Portal """ url = self._url + "/security" return _Security(url=url, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def logs(self): """returns the portals log information""" url = self._url + "/logs" return _log(url=url, securityHandler=self._securityHandler, proxy_url=self._proxy_url, proxy_port=self._proxy_port) #---------------------------------------------------------------------- @property def root(self): """gets/sets the root admin url""" return self._url #---------------------------------------------------------------------- @root.setter def root(self, value): """gets/sets the root admin url""" if self._url != value: self._url = value
tests/pydbgen_test.py
alexwohletz/pydbgen
221
11126969
from fakedbclass import fakedb fdb = fakedb() for _ in range(10): print (fdb.ph())
src/genie/libs/parser/iosxe/tests/ShowDeviceTrackingFeatures/cli/equal/golden_output_expected.py
balmasea/genieparser
204
11127002
expected_output = { "features":{ "DHCP Guard":{ "feature":"DHCP Guard", "priority":200, "state":"READY" }, "RA guard":{ "feature":"RA guard", "priority":192, "state":"READY" } } }
examples.py/3D/Form/CubicGrid.py
timgates42/processing.py
1,224
11127064
""" Cubic Grid by <NAME>. 3D translucent colored grid uses nested pushMatrix() and popMatrix() functions. """ boxSize = 40 margin = boxSize*2 depth = 400 def setup(): size(640, 360, P3D) noStroke() def draw(): background(255) # Center and spin grid translate(width/2, height/2, -depth) rotateY(frameCount * 0.01) rotateX(frameCount * 0.01) # Build grid using multiple translations i = -depth/2+margin while i <= depth/2-margin: pushMatrix() j = -height+margin while j <= height-margin: pushMatrix() k = -width + margin while k <= width-margin: # Base fill color on counter values, abs function # ensures values stay within legal range boxFill = color(abs(i), abs(j), abs(k), 50) pushMatrix() translate(k, j, i) fill(boxFill) box(boxSize, boxSize, boxSize) popMatrix() k += boxSize popMatrix() j += boxSize popMatrix() i += boxSize
datasets/chinese_bert_dataset.py
chinaliwenbo/ChineseBert
298
11127075
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- """ @file : chinese_bert_dataset.py @author: zijun @contact : <EMAIL> @date : 2021/6/29 17:35 @version: 1.0 @desc : Base Class for dataset """ import json import os from typing import List import tokenizers from pypinyin import pinyin, Style from tokenizers import BertWordPieceTokenizer from torch.utils.data import Dataset class ChineseBertDataset(Dataset): def __init__(self, data_path, chinese_bert_path, max_length: int = 512): """ Dataset Base class Args: data_path: dataset file path chinese_bert_path: pretrain model path max_length: max sentence length """ super().__init__() self.vocab_file = os.path.join(chinese_bert_path, 'vocab.txt') self.config_path = os.path.join(chinese_bert_path, 'config') self.data_path = data_path self.max_length = max_length self.tokenizer = BertWordPieceTokenizer(self.vocab_file) # load pinyin map dict with open(os.path.join(self.config_path, 'pinyin_map.json'), encoding='utf8') as fin: self.pinyin_dict = json.load(fin) # load char id map tensor with open(os.path.join(self.config_path, 'id2pinyin.json'), encoding='utf8') as fin: self.id2pinyin = json.load(fin) # load pinyin map tensor with open(os.path.join(self.config_path, 'pinyin2tensor.json'), encoding='utf8') as fin: self.pinyin2tensor = json.load(fin) self.lines = self.get_lines() @property def get_lines(self): """read data lines""" raise NotImplementedError def convert_sentence_to_pinyin_ids(self, sentence: str, tokenizer_output: tokenizers.Encoding) -> List[List[int]]: # get pinyin of a sentence pinyin_list = pinyin(sentence, style=Style.TONE3, heteronym=True, errors=lambda x: [['not chinese'] for _ in x]) pinyin_locs = {} # get pinyin of each location for index, item in enumerate(pinyin_list): pinyin_string = item[0] # not a Chinese character, pass if pinyin_string == "not chinese": continue if pinyin_string in self.pinyin2tensor: pinyin_locs[index] = self.pinyin2tensor[pinyin_string] else: ids = [0] * 8 for i, p in enumerate(pinyin_string): if p not in self.pinyin_dict["char2idx"]: ids = [0] * 8 break ids[i] = self.pinyin_dict["char2idx"][p] pinyin_locs[index] = ids # find chinese character location, and generate pinyin ids pinyin_ids = [] for idx, (token, offset) in enumerate(zip(tokenizer_output.tokens, tokenizer_output.offsets)): if offset[1] - offset[0] != 1: pinyin_ids.append([0] * 8) continue if offset[0] in pinyin_locs: pinyin_ids.append(pinyin_locs[offset[0]]) else: pinyin_ids.append([0] * 8) return pinyin_ids
lib/utils/video.py
wjbKimberly/DetectAndTrack-wjb
1,007
11127099
<gh_stars>1000+ ############################################################## # Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. ############################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import cv2 import os import numpy as np import scipy.sparse from tqdm import tqdm import logging import sys import math from core.config import cfg import utils.general as gen_utils # OpenCL is enabled by default in OpenCV3 and it is not thread-safe leading # to huge GPU memory allocations. See https://fburl.com/9d7tvusd try: cv2.ocl.setUseOpenCL(False) except AttributeError: pass FORMAT = '%(levelname)s %(filename)s:%(lineno)4d: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(__name__) def get_video_info(roidb): """ For each entry in roidb, returns a dictionary with (video_name, key_frame, flipped or not) """ video_frames = {} for i, entry in enumerate(roidb): if entry['dataset'].frames_from_video: # For a video dataset like Kinetics video_name = entry['image'] key_frame = entry['frame_id'] else: video_name = os.path.dirname(entry['image']) key_frame = int(os.path.splitext(os.path.basename( entry['image']))[0]) video_frames[i] = (video_name, key_frame, entry['flipped']) return video_frames def _center_crop_list(l, sz): assert(len(l) >= sz) start_pt = (len(l) // 2) - (sz // 2) res = l[start_pt: (start_pt + sz)] assert len(res) == sz, 'Make sure got right number of elts' assert res[len(res) // 2] == l[len(l) // 2], 'Make sure got the center correct' return res def _combine_clips(entry): """ entry[clip_ids] contains the various frames. Combine them all into the main entry to construct tubes etc. """ new_entry = {} new_entry['image'] = [clip['image'] for clip in entry['clip_ids']] # take a subset of the clip ids now for the remaining stuff assert(cfg.VIDEO.NUM_FRAMES_MID <= cfg.VIDEO.NUM_FRAMES) entry['clip_ids'] = _center_crop_list(entry['clip_ids'], cfg.VIDEO.NUM_FRAMES_MID) copy_fields = [ 'dataset', 'has_visible_keypoints', 'id', 'nframes', 'width', 'head_boxes', 'is_labeled', 'frame_id', 'height', 'flipped', ] for field_name in copy_fields: if field_name in entry: new_entry[field_name] = entry[field_name] outframes = range(len(entry['clip_ids'])) # union all the track ids all_track_ids = np.array(list(set(gen_utils.flatten_list([ clip['tracks'].reshape((-1,)).tolist() for clip in entry['clip_ids']]))), dtype=entry['tracks'].dtype) new_entry['tracks'] = all_track_ids ntracks = len(all_track_ids) noutframes = len(outframes) new_entry['all_frame_ids'] = [clip['frame_id'] for clip in entry['clip_ids']] if 'original_file_name' in entry.keys(): new_entry['original_file_name'] = [ clip['original_file_name'] for clip in entry['clip_ids']] new_entry['gt_keypoints'] = np.zeros(( ntracks, noutframes, entry['gt_keypoints'].shape[-2], entry['gt_keypoints'].shape[-1]), dtype=entry['gt_keypoints'].dtype) new_entry['boxes'] = np.zeros((ntracks, 4 * noutframes), dtype=entry['boxes'].dtype) new_entry['is_crowd'] = np.zeros((ntracks,), dtype=entry['is_crowd'].dtype) new_entry['gt_overlaps'] = scipy.sparse.csr_matrix(np.zeros( (ntracks, entry['gt_overlaps'].shape[1]), dtype=entry['gt_overlaps'].dtype)) new_entry['gt_classes'] = np.zeros((ntracks,), dtype=entry['gt_classes'].dtype) new_entry['track_visible'] = np.full((ntracks, noutframes), False) new_entry['segms'] = [[]] * ntracks new_entry['box_to_gt_ind_map'] = np.arange( ntracks, dtype=entry['box_to_gt_ind_map'].dtype) # Just assume 1-class for now => has to be the "person" class new_entry['max_classes'] = np.ones( (ntracks,), dtype=entry['max_classes'].dtype) # All GT, so 1.0 overlap new_entry['max_overlaps'] = np.ones((ntracks,), dtype=entry['max_overlaps'].dtype) # This isn't really used, so just set to 1s new_entry['seg_areas'] = np.ones((ntracks,), dtype=entry['seg_areas'].dtype) for cur_track_pos, track_id in enumerate(all_track_ids): for cur_frame_pos, frame_id in enumerate(outframes): tracks = entry['clip_ids'][frame_id]['tracks'].reshape((-1,)).tolist() track_pos = tracks.index(track_id) if track_id in tracks else -1 if track_pos >= 0: new_entry['boxes'][cur_track_pos, cur_frame_pos * 4: (cur_frame_pos + 1) * 4] = \ entry['clip_ids'][frame_id]['boxes'][track_pos] new_entry['gt_keypoints'][cur_track_pos, cur_frame_pos, ...] = \ entry['clip_ids'][frame_id]['gt_keypoints'][track_pos] new_entry['track_visible'][cur_track_pos, cur_frame_pos] = True new_entry['gt_classes'][cur_track_pos] = \ entry['clip_ids'][frame_id]['gt_classes'][track_pos] new_entry['gt_overlaps'][cur_track_pos, 1] = 1.0 # Since boxes were defined as Nx(4*T+1), I'm modifying the keypoints from # NxTx3x17 to Nx3x(17*T). This make the blob dimensions consistent with # 2D cases, saving a lot of "if" conditions in the future. Can simply # think of predicting 17*T keypoints for a T-length video instead of 17. # Also, since 17 is not a fixed number, I can always compute T using # the "boxes" entry, as T = boxes.shape[-1] // 4 (a box is always 4 numbers) nkpts = new_entry['gt_keypoints'].shape[-1] new_entry['gt_keypoints'] = new_entry['gt_keypoints'].transpose( (0, 2, 1, 3)).reshape((ntracks, 3, noutframes * nkpts)) return new_entry def get_clip(roidb, remove_imperfect=False): """ Add a 'clip_ids' field to each entry of roidb, which contains pointers to other elements of roidb that contain the other frames that should go with this frame in case of a video. """ video_info = get_video_info(roidb) # is a dict video_info_to_pos = {} for el_id, el in video_info.items(): video_info_to_pos[el] = el_id half_T = (cfg.VIDEO.NUM_FRAMES - 1) / 2 vid_list = range(int(math.floor(-half_T)), int(math.floor(half_T)) + 1) assert(len(vid_list) == cfg.VIDEO.NUM_FRAMES) assert(vid_list[len(vid_list) // 2] == 0) new_roidb = [] for i, entry in enumerate(tqdm(roidb, desc='Video-fying the roidb')): # extract video and frame number information this_video_info = video_info[i] # collect the clips of T length roidb_indexes = [None] * cfg.VIDEO.NUM_FRAMES for dt_i, dt in enumerate(vid_list): target = ( this_video_info[0], this_video_info[1] + dt * cfg.VIDEO.TIME_INTERVAL, this_video_info[2]) if target in video_info_to_pos.keys(): pos = video_info_to_pos[target] # roidb_indexes.append( # video_info.keys()[video_info.values().index(target)]) # The pointers are not good enough.. On removing the empty # clips the pointers would break roidb_indexes[dt_i] = roidb[pos] if len([el for el in roidb_indexes if el is None]) > 0 and remove_imperfect: continue else: last_non_none = None for k in range(cfg.VIDEO.NUM_FRAMES // 2, -1, -1): if roidb_indexes[k] is not None: last_non_none = roidb_indexes[k] if roidb_indexes[k] is None: roidb_indexes[k] = last_non_none last_non_none = None for k in range(cfg.VIDEO.NUM_FRAMES // 2, cfg.VIDEO.NUM_FRAMES): if roidb_indexes[k] is not None: last_non_none = roidb_indexes[k] if roidb_indexes[k] is None: roidb_indexes[k] = last_non_none assert(len([el for el in roidb_indexes if el is None]) == 0) entry['clip_ids'] = roidb_indexes entry = _combine_clips(entry) new_roidb.append(entry) logger.info('Video-fied roidb contains {} elements'.format(len(new_roidb))) return new_roidb
create_caffemodel.py
lFatality/tensorflow2caffe
115
11127103
from __future__ import print_function, division caffe_root = '/TUB/robo/caffe-master/' import sys sys.path.insert(0, caffe_root+'python') import caffe import numpy as np #load the data file data_file = np.load('vgg_net_19_112.npy') #get the weights and biases out of the array #the weights have to be transposed because of differences between Caffe and Tensorflow #format filter weights: #Tensorflow: [height (0), width (1), depth (2), number of filters (3)] #Caffe: [number of filters (3), depth (2), height (0), width (1)] weights1 = data_file[0][0].transpose((3,2,0,1)) bias1 = data_file[0][1] weights2 = data_file[1][0].transpose((3,2,0,1)) bias2 = data_file[1][1] weights3 = data_file[2][0].transpose((3,2,0,1)) bias3 = data_file[2][1] weights4 = data_file[3][0].transpose((3,2,0,1)) bias4 = data_file[3][1] weights5 = data_file[4][0].transpose((3,2,0,1)) bias5 = data_file[4][1] weights6 = data_file[5][0].transpose((3,2,0,1)) bias6 = data_file[5][1] weights7 = data_file[6][0].transpose((3,2,0,1)) bias7 = data_file[6][1] weights8 = data_file[7][0].transpose((3,2,0,1)) bias8 = data_file[7][1] weights9 = data_file[8][0].transpose((3,2,0,1)) bias9 = data_file[8][1] weights10 = data_file[9][0].transpose((3,2,0,1)) bias10 = data_file[9][1] weights11 = data_file[10][0].transpose((3,2,0,1)) bias11 = data_file[10][1] weights12 = data_file[11][0].transpose((3,2,0,1)) bias12 = data_file[11][1] weights13 = data_file[12][0].transpose((3,2,0,1)) bias13 = data_file[12][1] weights14 = data_file[13][0].transpose((3,2,0,1)) bias14 = data_file[13][1] weights15 = data_file[14][0].transpose((3,2,0,1)) bias15 = data_file[14][1] weights16 = data_file[15][0].transpose((3,2,0,1)) bias16 = data_file[15][1] #connecting the tensor after last pooling layer with the first fully-connected layer #here is the link to the video where this part is explained (https://youtu.be/kvXHOIn3-8s?t=3m38s) fc1_w = data_file[16][0].reshape((4,4,512,4096)) fc1_w = fc1_w.transpose((3,2,0,1)) fc1_w = fc1_w.reshape((4096,8192)) fc1_b = data_file[16][1] #fully connected layer format: #Tensorflow: [number of inputs (0), number of outputs (1)] #Caffe: [number of outputs (1), number of inputs (0)] fc2_w = data_file[17][0].transpose((1,0)) fc2_b = data_file[17][1] fc3_w = data_file[18][0].transpose((1,0)) fc3_b = data_file[18][1] #define architecture net = caffe.Net('vgg_net_19.prototxt', caffe.TEST) #load parameters net.params['conv1'][0].data[...] = weights1 net.params['conv1'][1].data[...] = bias1 net.params['conv2'][0].data[...] = weights2 net.params['conv2'][1].data[...] = bias2 net.params['conv3'][0].data[...] = weights3 net.params['conv3'][1].data[...] = bias3 net.params['conv4'][0].data[...] = weights4 net.params['conv4'][1].data[...] = bias4 net.params['conv5'][0].data[...] = weights5 net.params['conv5'][1].data[...] = bias5 net.params['conv6'][0].data[...] = weights6 net.params['conv6'][1].data[...] = bias6 net.params['conv7'][0].data[...] = weights7 net.params['conv7'][1].data[...] = bias7 net.params['conv8'][0].data[...] = weights8 net.params['conv8'][1].data[...] = bias8 net.params['conv9'][0].data[...] = weights9 net.params['conv9'][1].data[...] = bias9 net.params['conv10'][0].data[...] = weights10 net.params['conv10'][1].data[...] = bias10 net.params['conv11'][0].data[...] = weights11 net.params['conv11'][1].data[...] = bias11 net.params['conv12'][0].data[...] = weights12 net.params['conv12'][1].data[...] = bias12 net.params['conv13'][0].data[...] = weights13 net.params['conv13'][1].data[...] = bias13 net.params['conv14'][0].data[...] = weights14 net.params['conv14'][1].data[...] = bias14 net.params['conv15'][0].data[...] = weights15 net.params['conv15'][1].data[...] = bias15 net.params['conv16'][0].data[...] = weights16 net.params['conv16'][1].data[...] = bias16 net.params['fc1'][0].data[...] = fc1_w net.params['fc1'][1].data[...] = fc1_b net.params['fc2'][0].data[...] = fc2_w net.params['fc2'][1].data[...] = fc2_b net.params['fc3'][0].data[...] = fc3_w net.params['fc3'][1].data[...] = fc3_b #save caffemodel net.save('vgg_net_19.caffemodel')
tests/test_backends.py
Zagrebelin/django_mail_admin
179
11127145
<gh_stars>100-1000 from django.core.mail import send_mail from django.core.mail.backends.base import BaseEmailBackend from django.test import TestCase from django.test.utils import override_settings from django_mail_admin.mail import send from django_mail_admin.settings import get_backend from django_mail_admin.backends import CustomEmailBackend from django_mail_admin.models import Outbox, OutgoingEmail class ErrorRaisingBackend(BaseEmailBackend): """ An EmailBackend that always raises an error during sending to test if django_mailer handles sending error correctly """ def send_messages(self, email_messages): raise Exception('Fake Error') class BackendTest(TestCase): # @override_settings(EMAIL_BACKEND='django.core.mail.backends.locmem.EmailBackend') def test_get_invalid_backend(self): with self.assertRaises(ValueError): send('<EMAIL>', backend='some_non_existing') @override_settings(DJANGO_MAIL_ADMIN={'EMAIL_BACKEND': 'test'}) def test_old_settings(self): backend = get_backend() self.assertEqual(backend, 'test') @override_settings(DJANGO_MAIL_ADMIN={}, EMAIL_BACKEND='django_mail_admin.backends.CustomEmailBackend') def test_backend_fallback(self): backend = get_backend() self.assertEqual(backend, 'django_mail_admin.backends.CustomEmailBackend') def test_custom_email_backend(self): outbox = Outbox.objects.create(name='test', email_host='example.com', email_host_user='<EMAIL>', email_host_password='<PASSWORD>', active=True) backend = CustomEmailBackend() self.assertEqual(backend.host, outbox.email_host) self.assertEqual(backend.password, outbox.email_host_password) outbox.delete() with self.assertRaises(ValueError): backend2 = CustomEmailBackend() @override_settings(DJANGO_MAIL_ADMIN={}, EMAIL_BACKEND='django_mail_admin.backends.OutboxEmailBackend') def test_outbox_email_backend(self): count_before = len(OutgoingEmail.objects.all()) sent_count = send_mail( subject='Test subject', message='message.', from_email='<EMAIL>', recipient_list=['<EMAIL>'], fail_silently=False) self.assertEqual(sent_count, 1) count_after = len(OutgoingEmail.objects.all()) self.assertEqual(count_after, count_before + 1)
Utils/Arguments.py
GingerNg/SDNet
112
11127149
<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os class Arguments: def __init__(self, confFile): if not os.path.exists(confFile): raise Exception("The argument file does not exist: " + confFile) self.confFile = confFile def is_int(self, s): try: int(s) return True except ValueError: return False def is_float(self, s): try: float(s) return True except ValueError: return False def is_bool(self, s): return s.lower() == 'true' or s.lower() == 'false' def readHyperDriveArguments(self, arguments): hyperdrive_opts = {} for i in range(0, len(arguments), 2): hp_name, hp_value = arguments[i:i+2] hp_name = hp_name.replace("--", "") if self.is_int(hp_value): hp_value = int(hp_value) elif self.is_float(hp_value): hp_value = float(hp_value) hyperdrive_opts[hp_name] = hp_value return hyperdrive_opts def readArguments(self): opt = {} with open(self.confFile, encoding='utf-8') as f: for line in f: l = line.replace('\t', ' ').strip() if l.startswith("#"): continue parts = l.split() if len(parts) == 1: key = parts[0] if not key in opt: opt[key] = True if len(parts) == 2: key = parts[0] value = parts[1] if not key in opt: opt[key] = value if self.is_int(value): opt[key] = int(value) elif self.is_float(value): opt[key] = float(value) elif self.is_bool(value): opt[key] = value.lower() == 'true' else: print('Warning: key %s already exists' % key) return opt
sample_files/sample_CSV/verify.py
elihschiff/Submitty
411
11127150
def parse_assigned_zones(): allowed_str = 'ABCDEFGHJKLMNPUZ' assigned_zone_dict = {} with open('exam1_seating.txt', 'r') as assigned: for line in assigned: line = line.strip() line_list = line.split(' ') line_list = [ line_.strip() for line_ in line_list ] line_list = [ line_ for line_ in line_list if len(line_) > 0 ] if len(line_list) == 3: assigned_zone = 'U' elif len(line_list) == 6: assigned_zone = line_list[-1] else: assigned_zone = line_list[-2] if assigned_zone == 'UNASSIGNED': assigned_zone = None assert assigned_zone is None or assigned_zone in allowed_str student_rcs = line_list[2] assigned_zone_dict[student_rcs] = assigned_zone return assigned_zone_dict def get_actual_zone_dict(): actual_dict = {} showed_dict = {} assigned_zone_dict = parse_assigned_zones() direct_list = ['CSCI_1100_Exam_1'] for direct in direct_list: with open('%s/9_Zone_Assignment.csv' % (direct, ), 'r') as zones: # Get header row contents header_str = zones.readline() header_list = header_str.strip().split(',')[6: -3] line_list = zones.readlines() # Trim last three rows line_list = line_list[:-3] for index, line in enumerate(line_list): line = line.strip() if len(line) > 0: record = line.split(',') student_name = record[1] student_rcs = record[2] assigned_zone = assigned_zone_dict[student_rcs] actual_list = record[6: -3] actual_index = actual_list.index('true') actual_zone = header_list[actual_index] actual_dict[student_rcs] = actual_zone if assigned_zone == actual_zone: if assigned_zone not in showed_dict: showed_dict[assigned_zone] = 0 showed_dict[assigned_zone] += 1 else: print('%s (%s)' % (student_name, student_rcs, )) print('\tAssigned: %s' % (assigned_zone, )) print('\tActual: %s' % (actual_zone, )) for key in sorted(showed_dict.keys()): print('Zone % 2s: %d' % (key, showed_dict[key])) return actual_dict if __name__ == '__main__': get_actual_zone_dict()
lib/discoverlib/coords.py
Pandinosaurus/roadtracer
171
11127165
<filename>lib/discoverlib/coords.py import geom import math ORIGIN_SHIFT = 2 * math.pi * 6378137 / 2.0 def lonLatToMeters(p): mx = p.x * ORIGIN_SHIFT / 180.0 my = math.log(math.tan((90 + p.y) * math.pi / 360.0)) / (math.pi / 180.0) my = my * ORIGIN_SHIFT / 180.0 return geom.FPoint(mx, my) def metersToLonLat(p): lon = (p.x / ORIGIN_SHIFT) * 180.0 lat = (p.y / ORIGIN_SHIFT) * 180.0 lat = 180 / math.pi * (2 * math.atan(math.exp(lat * math.pi / 180.0)) - math.pi / 2.0) return geom.FPoint(lon, lat) def getMetersPerPixel(zoom): return 2 * math.pi * 6378137 / (2**zoom) / 256 def lonLatToPixel(p, origin, zoom): p = lonLatToMeters(p).sub(lonLatToMeters(origin)) p = p.scale(1 / getMetersPerPixel(zoom)) p = geom.FPoint(p.x, -p.y) p = p.add(geom.FPoint(256, 256)) return p def pixelToLonLat(p, origin, zoom): p = p.sub(geom.FPoint(256, 256)) p = geom.FPoint(p.x, -p.y) p = p.scale(getMetersPerPixel(zoom)) p = metersToLonLat(p.add(lonLatToMeters(origin))) return p def lonLatToMapboxTile(p, zoom): n = 2**zoom xtile = int((p.x + 180.0) / 360 * n) ytile = int((1 - math.log(math.tan(p.y * math.pi / 180) + (1 / math.cos(p.y * math.pi / 180))) / math.pi) / 2 * n) return (xtile, ytile) def lonLatToMapbox(p, zoom, origin_tile): n = 2**zoom x = (p.x + 180.0) / 360 * n y = (1 - math.log(math.tan(p.y * math.pi / 180) + (1 / math.cos(p.y * math.pi / 180))) / math.pi) / 2 * n xoff = x - origin_tile[0] yoff = y - origin_tile[1] return geom.FPoint(xoff, yoff).scale(256) def mapboxToLonLat(p, zoom, origin_tile): n = 2**zoom x = p.x / 256.0 + origin_tile[0] y = p.y / 256.0 + origin_tile[1] x = x * 360.0 / n - 180 y = math.atan(math.sinh(math.pi * (1 - 2.0 * y / n))) y = y * 180 / math.pi return geom.FPoint(x, y)
plaso/formatters/winlnk.py
cugu-stars/plaso
1,253
11127216
<reponame>cugu-stars/plaso<filename>plaso/formatters/winlnk.py<gh_stars>1000+ # -*- coding: utf-8 -*- """Windows Shortcut (LNK) custom event formatter helpers.""" from plaso.formatters import interface from plaso.formatters import manager class WindowsShortcutLinkedPathFormatterHelper( interface.CustomEventFormatterHelper): """Windows Shortcut (LNK) linked path formatter helper.""" IDENTIFIER = 'windows_shortcut_linked_path' def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ linked_path = event_values.get('local_path', None) if not linked_path: linked_path = event_values.get('network_path', None) if not linked_path: linked_path = event_values.get('relative_path', None) if linked_path: working_directory = event_values.get('working_directory', None) if working_directory: linked_path = '\\'.join([working_directory, linked_path]) event_values['linked_path'] = linked_path or 'Unknown' manager.FormattersManager.RegisterEventFormatterHelper( WindowsShortcutLinkedPathFormatterHelper)
tests/unit/operations/test_configops.py
myungseokang/aws-elastic-beanstalk-cli
110
11127227
# -*- coding: utf-8 -*- # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import unittest import mock from ebcli.operations import configops from ebcli.objects.exceptions import InvalidSyntaxError from yaml.scanner import ScannerError from json import JSONDecodeError class TestConfigOperations(unittest.TestCase): app_name = 'ebcli-app' env_name = 'ebcli-env' platform_arn = 'arn:aws:elasticbeanstalk:us-east-1::platform/Platform1/1.0.0' new_platform_arn = 'arn:aws:elasticbeanstalk:us-east-1::platform/Platform2/1.0.0' file_location = '/wow/eb/white space/.intere-sting' editor = 'emacs' nohang = False changes = [{'Namespace': 'aws:autoscaling:asg', 'OptionName': 'MaxSize', 'Value': '6'}] remove = [{'Namespace': 'aws:autoscaling:asg', 'OptionName': 'MinSize'}] api_model = {'PlatformArn': platform_arn} usr_model = {'PlatformArn': new_platform_arn} usr_modification = '{"OptionsToRemove":{"aws:autoscaling:asg":["MinSize"]},"OptionSettings":{' \ '"aws:autoscaling:asg":{"MaxSize":"6"}}} ' usr_modification_file = 'file://' + file_location @mock.patch('ebcli.operations.configops.commonops') @mock.patch('ebcli.operations.configops.EnvironmentSettings') @mock.patch('ebcli.operations.configops.elasticbeanstalk') @mock.patch('ebcli.operations.configops.fileoperations') def test_update_environment_configuration_solution_stack_changed(self, mock_fileops, mock_elasticbeanstalk, mock_env_settings, mock_commonops): mock_elasticbeanstalk.describe_configuration_settings.return_value = self.api_model mock_fileops.get_environment_from_file.return_value = self.usr_model mock_env_settings.return_value = mock_env_settings mock_env_settings.convert_api_to_usr_model.return_value = self.usr_model mock_env_settings.collect_changes.return_value = self.changes, self.remove mock_fileops.save_env_file.return_value = self.file_location configops.update_environment_configuration(self.app_name, self.env_name, self.nohang) # verify that changes will be made mock_commonops.update_environment.assert_called_with(self.env_name, self.changes, self.nohang, platform_arn=self.new_platform_arn, remove=self.remove, timeout=None, solution_stack_name=None) @mock.patch('ebcli.operations.configops.commonops') @mock.patch('ebcli.operations.configops.EnvironmentSettings') @mock.patch('ebcli.operations.configops.elasticbeanstalk') @mock.patch('ebcli.operations.configops.fileoperations') def test_update_environment_configuration_no_change(self, mock_fileops, mock_elasticbeanstalk, mock_env_settings, mock_commonops): mock_elasticbeanstalk.describe_configuration_settings.return_value = self.usr_model mock_fileops.get_environment_from_file.return_value = self.usr_model mock_env_settings.return_value = mock_env_settings mock_env_settings.convert_api_to_usr_model.return_value = self.usr_model mock_env_settings.collect_changes.return_value = None, None mock_fileops.save_env_file.return_value = self.file_location configops.update_environment_configuration(self.app_name, self.env_name, self.nohang) mock_commonops.update_environment.assert_not_called() @mock.patch('ebcli.operations.configops.commonops') @mock.patch('ebcli.operations.configops.EnvironmentSettings') @mock.patch('ebcli.operations.configops.elasticbeanstalk') @mock.patch('ebcli.operations.configops.fileoperations') def test_update_environment_configuration_bad_usr_modification(self, mock_fileops, mock_elasticbeanstalk, mock_env_settings, mock_commonops): mock_elasticbeanstalk.describe_configuration_settings.return_value = self.usr_model mock_fileops.get_environment_from_file.side_effect = InvalidSyntaxError("Bad user changes") mock_env_settings.return_value = mock_env_settings mock_env_settings.convert_api_to_usr_model.return_value = self.usr_model mock_fileops.save_env_file.return_value = self.file_location configops.update_environment_configuration(self.app_name, self.env_name, self.nohang) mock_commonops.update_environment.assert_not_called() @mock.patch('ebcli.operations.configops.commonops') def test_modify_environment_configuration(self, mock_commonops): configops.modify_environment_configuration(self.env_name, self.usr_modification, self.nohang) # verify that changes will be made mock_commonops.update_environment.assert_called_with(self.env_name, self.changes, self.nohang, platform_arn=None, remove=self.remove, timeout=None, solution_stack_name=None) @mock.patch('ebcli.operations.configops.safe_load') @mock.patch('ebcli.operations.configops.loads') def test_modify_environment_configuration_bad_usr_modification(self, mock_loads, mock_safe_load): mock_safe_load.side_effect = ScannerError("Bad user changes") mock_loads.side_effect = JSONDecodeError("Bad user changes", "", 0) with self.assertRaises(InvalidSyntaxError) as context_manager: configops.modify_environment_configuration(self.env_name, self.usr_modification, self.nohang) self.assertEqual( 'The environment configuration contains invalid syntax. Be sure your input matches one of the ' 'supported formats: yaml, json', str(context_manager.exception) )
interpreter.py
aluo-x/shape2prog
109
11127237
<reponame>aluo-x/shape2prog<gh_stars>100-1000 from __future__ import print_function import numpy as np class Interpreter(object): """interpreting program vectors into understandable program strings""" def __init__(self, translate, rotate, end): self.translate = translate self.rotate = rotate self.end = end def interpret(self, pgm, param): n_block = pgm.shape[0] param = np.round(param).astype(np.int32) result = "" for i in range(n_block): res = self.interpret_block(pgm[i], param[i]) if res is None: continue else: result += res result += "\n" return result def interpret_block(self, pgm, param): """ interpret each block """ flag = 1 block_res = [] if pgm[0] == self.translate: if pgm[1] == self.translate: if 1 <= pgm[2] < self.translate: sentence = "for(i<{}, 'Trans', u1=({},{},{}))"\ .format(param[0, 0], param[0, 1], param[0, 2], param[0, 3]) block_res.append(sentence) sentence = "for(i<{}, 'Trans', u2=({},{},{}))"\ .format(param[1, 0], param[1, 1], param[1, 2], param[1, 3]) block_res.append(" "+sentence) sentence = self.interpret_sentence(pgm[2], param[2], num_trans=2, num_rot=0) block_res.append(" "+sentence) else: pass elif 1 <= pgm[1] < self.translate: sentence = "for(i<{}, 'Trans', u=({},{},{}))" \ .format(param[0, 0], param[0, 1], param[0, 2], param[0, 3]) block_res.append(sentence) sentence = self.interpret_sentence(pgm[1], param[1], num_trans=1, num_rot=0) block_res.append(" " + sentence) else: pass elif pgm[0] == self.rotate: if pgm[1] == 10 or pgm[1] == 17: sentence = "for(i<{}, 'Rot', theta={}\N{DEGREE SIGN}, axis=({},{},{})"\ .format(param[0, 0], int(360/param[0,0]), param[1, 0], param[1, 1], param[1, 2]) block_res.append(sentence) sentence = self.interpret_sentence(pgm[1], param[1], num_trans=0, num_rot=1) block_res.append(" " + sentence) else: pass elif 1 <= pgm[0] < self.translate: sentence = self.interpret_sentence(pgm[0], param[0], num_trans=0, num_rot=0) block_res.append(sentence) else: pass if len(block_res) == 0: return None else: res = '' for i in range(len(block_res)): res += block_res[i] + '\n' return res def interpret_sentence(self, pgm, param, num_trans=0, num_rot=0): """ interpret each sentence """ if num_trans == 0 and num_rot == 0: if pgm == 1: sentence = "draw('Leg', 'Cub', P=({},{},{}), G=({},{},{}))"\ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 2: sentence = "draw('Top', 'Rec', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 3: sentence = "draw('Top', 'Square', P=({},{},{}), G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 4: sentence = "draw('Top', 'Circle', P=({},{},{}), G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 5: sentence = "draw('Layer', 'Rec', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 6: sentence = "draw('Sup', 'Cylinder', P=({},{},{}), G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 7: sentence = "draw('Sup', 'Cub', P=({},{},{}), G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 8: sentence = "draw('Base', 'Circle', P=({},{},{}), G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 9: sentence = "draw('Base', 'Square', P=({},{},{}), G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 10: angle = round(param[5]) % 4 if angle == 0: p1, p2, p3 = param[0], param[1], param[2] - param[4] elif angle == 1: p1, p2, p3 = param[0], param[1] + param[4], param[2] elif angle == 2: p1, p2, p3 = param[0], param[1], param[2] + param[4] elif angle == 3: p1, p2, p3 = param[0], param[1] - param[4], param[2] else: raise ValueError("The angle type of the cross is wrong") sentence = "draw('Base', 'Line', P1=({},{},{}), P2=({},{},{}))" \ .format(param[0], param[1], param[2], p1, p2, p3) elif pgm == 11: sentence = "draw('Sideboard', 'Cub', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 12: sentence = "draw('Hori_Bar', 'Cub', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 13: sentence = "draw('Vert_Board', 'Cub', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 14: sentence = "draw('Locker', 'Cub', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 15: theta = np.arctan(float(param[6])/param[3]) / np.pi * 180 sentence = "draw('Back', 'Cub', P=({},{},{}), G=({},{},{}), theta={}\N{DEGREE SIGN})" \ .format(param[0], param[1], param[2], param[3], param[4], param[5], int(theta)) elif pgm == 16: sentence = "draw('Chair_Beam', 'Cub', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 17: sentence = "draw('Connect', 'Line', P1=({},{},{}), P2=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 18: sentence = "draw('Back_sup', 'Cub', P=({},{},{}), G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif self.translate <= pgm <= self.end: sentence = None else: sentence = None elif num_trans == 1 and num_rot == 0: if pgm == 1: sentence = "draw('Leg', 'Cub', P=({},{},{})+i*u, G=({},{},{}))"\ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 2: sentence = "draw('Top', 'Rec', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 3: sentence = "draw('Top', 'Square', P=({},{},{})+i*u, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 4: sentence = "draw('Top', 'Circle', P=({},{},{})+i*u, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 5: sentence = "draw('Layer', 'Rec', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 6: sentence = "draw('Sup', 'Cylinder', P=({},{},{})+i*u, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 7: sentence = "draw('Sup', 'Cub', P=({},{},{})+i*u, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 8: sentence = "draw('Base', 'Circle', P=({},{},{})+i*u, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 9: sentence = "draw('Base', 'Square', P=({},{},{})+i*u, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 10: angle = round(param[5]) % 4 if angle == 0: p1, p2, p3 = param[0], param[1], param[2] - param[4] elif angle == 1: p1, p2, p3 = param[0], param[1] + param[4], param[2] elif angle == 2: p1, p2, p3 = param[0], param[1], param[2] + param[4] elif angle == 3: p1, p2, p3 = param[0], param[1] - param[4], param[2] else: raise ValueError("The angle type of the cross is wrong") sentence = "draw('Base', 'Line', P1=({},{},{})+i*u, P2=({},{},{}))+i*u" \ .format(param[0], param[1], param[2], p1, p2, p3) elif pgm == 11: sentence = "draw('Sideboard', 'Cub', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 12: sentence = "draw('Hori_Bar', 'Cub', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 13: sentence = "draw('Vert_Board', 'Cub', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 14: sentence = "draw('Locker', 'Cub', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 15: theta = np.arctan(float(param[6])/param[3]) / np.pi * 180 sentence = "draw('Back', 'Cub', P=({},{},{})+i*u, G=({},{},{}), theta={}\N{DEGREE SIGN})" \ .format(param[0], param[1], param[2], param[3], param[4], param[5], int(theta)) elif pgm == 16: sentence = "draw('Chair_Beam', 'Cub', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 17: sentence = "draw('Connect', 'Line', P1=({},{},{})+i*u, P2=({},{},{}))+i*u" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 18: sentence = "draw('Back_sup', 'Cub', P=({},{},{})+i*u, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif self.translate <= pgm <= self.end: sentence = None else: sentence = None elif num_trans == 2 and num_rot == 0: if pgm == 1: sentence = "draw('Leg', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))"\ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 2: sentence = "draw('Top', 'Rec', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 3: sentence = "draw('Top', 'Square', P=({},{},{})+i*u1+j*u2, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 4: sentence = "draw('Top', 'Circle', P=({},{},{})+i*u1+j*u2, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 5: sentence = "draw('Layer', 'Rec', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 6: sentence = "draw('Sup', 'Cylinder', P=({},{},{})+i*u1+j*u2, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 7: sentence = "draw('Sup', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 8: sentence = "draw('Base', 'Circle', P=({},{},{})+i*u1+j*u2, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 9: sentence = "draw('Base', 'Square', P=({},{},{})+i*u1+j*u2, G=({},{}))" \ .format(param[0], param[1], param[2], param[3], param[4]) elif pgm == 10: angle = round(param[5]) % 4 if angle == 0: p1, p2, p3 = param[0], param[1], param[2] - param[4] elif angle == 1: p1, p2, p3 = param[0], param[1] + param[4], param[2] elif angle == 2: p1, p2, p3 = param[0], param[1], param[2] + param[4] elif angle == 3: p1, p2, p3 = param[0], param[1] - param[4], param[2] else: raise ValueError("The angle type of the cross is wrong") sentence = "draw('Base', 'Line', P1=({},{},{})+i*u1+j*u2, P2=({},{},{}))+i*u1+j*u2" \ .format(param[0], param[1], param[2], p1, p2, p3) elif pgm == 11: sentence = "draw('Sideboard', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 12: sentence = "draw('Hori_Bar', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 13: sentence = "draw('Vert_Board', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 14: sentence = "draw('Locker', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 15: theta = np.arctan(float(param[6])/param[3]) / np.pi * 180 sentence = "draw('Back', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}), theta={}\N{DEGREE SIGN})" \ .format(param[0], param[1], param[2], param[3], param[4], param[5], int(theta)) elif pgm == 16: sentence = "draw('Chair_Beam', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 17: sentence = "draw('Connect', 'Line', P1=({},{},{})+i*u1+j*u2, P2=({},{},{}))+i*u" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif pgm == 18: sentence = "draw('Back_sup', 'Cub', P=({},{},{})+i*u1+j*u2, G=({},{},{}))" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) elif self.translate <= pgm <= self.end: sentence = None else: sentence = None elif num_trans == 0 and num_rot == 1: if pgm == 10: angle = round(param[5]) % 4 if angle == 0: p1, p2, p3 = param[0], param[1], param[2] - param[4] elif angle == 1: p1, p2, p3 = param[0], param[1] + param[4], param[2] elif angle == 2: p1, p2, p3 = param[0], param[1], param[2] + param[4] elif angle == 3: p1, p2, p3 = param[0], param[1] - param[4], param[2] else: raise ValueError("The angle type of the cross is wrong") sentence = "draw('Base', 'Line', P1=({},{},{}), P2=({},{},{}), theta*i, axis)" \ .format(param[0], param[1], param[2], p1, p2, p3) elif pgm == 17: sentence = "draw('Base', 'Line', P1=({},{},{}), P2=({},{},{}), theta*i, axis)" \ .format(param[0], param[1], param[2], param[3], param[4], param[5]) else: sentence = None else: sentence = None return sentence
nodes/2.x/python/View.Phase.py
andydandy74/ClockworkForDynamo
147
11127287
<filename>nodes/2.x/python/View.Phase.py import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * clr.AddReference("RevitNodes") import Revit clr.ImportExtensions(Revit.Elements) def GetViewPhase(view): try: return view.Document.GetElement(view.get_Parameter(BuiltInParameter.VIEW_PHASE).AsElementId()) except: return None views = UnwrapElement(IN[0]) if isinstance(IN[0], list): OUT = [GetViewPhase(x) for x in views] else: OUT = GetViewPhase(views)
bark/python_wrapper/tests/py_renderer_tests.py
xmyqsh/bark
174
11127293
try: import debug_settings except: pass import unittest # BARK from bark.core.world.renderer import * from bark.core.geometry import * class RendererTests(unittest.TestCase): def test_renderer(self): renderer = Renderer() renderer.Clear() def test_line2d_primitive(self): renderer = Renderer() renderer.Clear() l = Line2d() l.AddPoint(Point2d(10, 4)) l.AddPoint(Point2d(1.555555, 1.244222)) line_primitive = RenderPrimitive(l) renderer.Add("line_prim_0", line_primitive) renderer.Add("line_prim_0", line_primitive) renderer.Add("line_prim_1", line_primitive) # asserts rp = renderer.primitives self.assertTrue(len(rp) == 2) self.assertTrue( (l.ToArray() == rp["line_prim_0"][0].object.ToArray()).all()) self.assertTrue( (l.ToArray() == rp["line_prim_0"][1].object.ToArray()).all()) self.assertTrue( (l.ToArray() == rp["line_prim_1"][0].object.ToArray()).all()) def test_polygon_primitive(self): renderer = Renderer() renderer.Clear() polygon = Polygon2d( [0, 0, 0], [Point2d(-1,-1), Point2d(-1,1), Point2d(1,1), Point2d(1,-1)]) poly_primitive = RenderPrimitive(polygon) renderer.Add("poly_prim_0", poly_primitive) renderer.Add("poly_prim_0", poly_primitive) renderer.Add("poly_prim_1", poly_primitive) # asserts rp = renderer.primitives self.assertTrue(len(rp) == 2) self.assertTrue( (polygon.ToArray() == rp["poly_prim_0"][0].object.ToArray()).all()) self.assertTrue( (polygon.ToArray() == rp["poly_prim_0"][1].object.ToArray()).all()) self.assertTrue( (polygon.ToArray() == rp["poly_prim_1"][0].object.ToArray()).all()) if __name__ == '__main__': unittest.main()
src/super_gradients/training/utils/export_utils.py
Deci-AI/super-gradients
308
11127309
import torch import torch.nn as nn import torch.nn.functional as F class ExportableHardswish(nn.Module): ''' Export-friendly version of nn.Hardswish() ''' @staticmethod def forward(x): return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX class ExportableSiLU(nn.Module): """ Export-friendly version of nn.SiLU() From https://github.com/ultralytics/yolov5 """ @staticmethod def forward(x): return x * torch.sigmoid(x) def fuse_conv_bn(model: nn.Module, replace_bn_with_identity: bool = False): """ Fuses consecutive nn.Conv2d and nn.BatchNorm2d layers recursively inplace in all of the model :param replace_bn_with_identity: if set to true, bn will be replaced with identity. otherwise, bn will be removed :param model: the target model :return: the number of fuses executed """ children = list(model.named_children()) counter = 0 for i in range(len(children) - 1): if isinstance(children[i][1], torch.nn.Conv2d) and isinstance(children[i + 1][1], torch.nn.BatchNorm2d): setattr(model, children[i][0], torch.nn.utils.fuse_conv_bn_eval(children[i][1], children[i + 1][1])) if replace_bn_with_identity: setattr(model, children[i + 1][0], nn.Identity()) else: delattr(model, children[i + 1][0]) counter += 1 for child_name, child in children: counter += fuse_conv_bn(child, replace_bn_with_identity) return counter
tests/models/siamese_bilstm/test_siamese_matching_bilstm.py
tjaffri/paraphrase-id-tensorflow
354
11127312
<reponame>tjaffri/paraphrase-id-tensorflow<filename>tests/models/siamese_bilstm/test_siamese_matching_bilstm.py from overrides import overrides import math import tensorflow as tf from duplicate_questions.data.data_manager import DataManager from duplicate_questions.data.embedding_manager import EmbeddingManager from duplicate_questions.models.siamese_bilstm.siamese_matching_bilstm import ( SiameseMatchingBiLSTM ) from duplicate_questions.data.instances.sts_instance import STSInstance from ...common.test_case import DuplicateTestCase class TestSiameseMatchingBiLSTM(DuplicateTestCase): @overrides def setUp(self): super(TestSiameseMatchingBiLSTM, self).setUp() self.write_duplicate_questions_train_file() self.write_duplicate_questions_validation_file() self.write_duplicate_questions_test_file() self.data_manager = DataManager(STSInstance) self.batch_size = 2 self.get_train_gen, self.train_size = self.data_manager.get_train_data_from_file( [self.TRAIN_FILE]) self.get_val_gen, self.val_size = self.data_manager.get_validation_data_from_file( [self.VALIDATION_FILE]) self.get_test_gen, self.test_size = self.data_manager.get_test_data_from_file( [self.TEST_FILE]) self.embedding_manager = EmbeddingManager(self.data_manager.data_indexer) self.word_embedding_dim = 5 self.embedding_matrix = self.embedding_manager.get_embedding_matrix( self.word_embedding_dim) self.rnn_hidden_size = 6 self.output_keep_prob = 1.0 self.share_encoder_weights = True self.config_dict = { "mode": "train", "word_vocab_size": self.data_manager.data_indexer.get_vocab_size(), "word_embedding_dim": self.word_embedding_dim, "fine_tune_embeddings": False, "word_embedding_matrix": self.embedding_matrix, "rnn_hidden_size": self.rnn_hidden_size, "output_keep_prob": self.output_keep_prob, "share_encoder_weights": self.share_encoder_weights } self.num_train_steps_per_epoch = int(math.ceil(self.train_size / self.batch_size)) self.num_val_steps = int(math.ceil(self.val_size / self.batch_size)) self.num_test_steps = int(math.ceil(self.test_size / self.batch_size)) def test_default_does_not_crash(self): # Initialize the model model = SiameseMatchingBiLSTM(self.config_dict) model.build_graph() # Train the model model.train(get_train_instance_generator=self.get_train_gen, get_val_instance_generator=self.get_val_gen, batch_size=self.batch_size, num_train_steps_per_epoch=self.num_train_steps_per_epoch, num_epochs=2, num_val_steps=self.num_val_steps, save_path=self.TEST_DIR, log_path=self.TEST_DIR, log_period=2, val_period=2, save_period=2, patience=0) tf.reset_default_graph() # Load and predict with the model self.config_dict["mode"] = "test" del self.config_dict["word_embedding_matrix"] loaded_model = SiameseMatchingBiLSTM(self.config_dict) loaded_model.build_graph() loaded_model.predict(get_test_instance_generator=self.get_test_gen, model_load_dir=self.TEST_DIR, batch_size=self.batch_size, num_test_steps=self.num_test_steps) def test_non_sharing_encoders_does_not_crash(self): # Initialize the model self.config_dict["share_encoder_weights"] = False model = SiameseMatchingBiLSTM(self.config_dict) model.build_graph() # Train the model model.train(get_train_instance_generator=self.get_train_gen, get_val_instance_generator=self.get_val_gen, batch_size=self.batch_size, num_train_steps_per_epoch=self.num_train_steps_per_epoch, num_epochs=2, num_val_steps=self.num_val_steps, save_path=self.TEST_DIR, log_path=self.TEST_DIR, log_period=2, val_period=2, save_period=2, patience=0) tf.reset_default_graph() # Load and predict with the model self.config_dict["mode"] = "test" del self.config_dict["word_embedding_matrix"] loaded_model = SiameseMatchingBiLSTM(self.config_dict) loaded_model.build_graph() loaded_model.predict(get_test_instance_generator=self.get_test_gen, model_load_dir=self.TEST_DIR, batch_size=self.batch_size, num_test_steps=self.num_test_steps)
python/eet/transformers/modeling_bert.py
NetEase-FuXi/EET
174
11127333
# # Created by djz on 2021/01/21. # """EET transformers bert model. """ import math import time import torch import torch.nn as nn import numpy as np from torch import Tensor from typing import Any, Dict, List, Optional, Tuple from transformers import BertModel from EET import MetaDesc as meta_desc from EET import FeedForwardNetwork as eet_ffn from EET import MultiHeadAttention as eet_attention from EET import Embedding as eet_embedding BEGIN_OF_PARAM = 8 __all__ = [ 'EETBertEmbedding', 'EETBertFeedforward', 'EETBertAttention', 'EETBertEncoderLayer', 'EETBertEncoder', 'EETBertModel' ] class EETBertEmbedding(): def __init__(self,config,embedding_dict,data_type = torch.float32): self.if_layernorm = True self.embedding_weights = embedding_dict['embeddings.word_embeddings.weight'].cuda().type(data_type) self.position_weights = embedding_dict['embeddings.position_embeddings.weight'].cuda().type(data_type) self.token_type_weights = embedding_dict['embeddings.token_type_embeddings.weight'].cuda().type(data_type) self.Layernorm_weights = embedding_dict['embeddings.LayerNorm.weight'].cuda().type(data_type) self.Layernorm_bias = embedding_dict['embeddings.LayerNorm.bias'].cuda().type(data_type) self.embedding = eet_embedding(config,self.embedding_weights,self.position_weights,self.token_type_weights,self.Layernorm_weights,self.Layernorm_bias) def __call__(self, input_ids, position_ids, token_type_ids): return self.embedding.forward_transformers(input_ids,position_ids,token_type_ids,self.if_layernorm) @staticmethod def from_torch(config,embedding_dict,data_type = torch.float32): feedforward = EETBertEmbedding(config,embedding_dict,data_type = data_type) return feedforward class EETBertFeedforward(): def __init__(self,config,model_dict,layer_id,data_type = torch.float32): self.intermediate_weights = torch.t([x[1] for x in model_dict.items() if 'intermediate.dense.weight' in x[0]][0]).contiguous().cuda().type(data_type) self.intermediate_bias = [x[1] for x in model_dict.items() if 'intermediate.dense.bias' in x[0]][0].cuda().type(data_type) self.output_weights = torch.t([x[1] for x in model_dict.items() if str(layer_id)+'.output.dense.weight' in x[0]][0]).contiguous().cuda().type(data_type) self.output_bias = [x[1] for x in model_dict.items() if str(layer_id)+'.output.dense.bias' in x[0]][0].cuda().type(data_type) self.layernorm_weights = [x[1] for x in model_dict.items() if str(layer_id)+'.output.LayerNorm.weight' in x[0]][0].cuda().type(data_type) self.layernorm_bias = [x[1] for x in model_dict.items() if str(layer_id)+'.output.LayerNorm.bias' in x[0]][0].cuda().type(data_type) self.ffn = eet_ffn(config,self.intermediate_weights,self.intermediate_bias,self.output_weights,self.output_bias,self.layernorm_weights,self.layernorm_bias) def __call__(self, input_id, pre_layernorm = True, add_redusial = True): return self.ffn.forward(input_id,pre_layernorm,add_redusial) @staticmethod def from_torch(config,model_dict,layer_id,data_type = torch.float32): feedforward = EETBertFeedforward(config,model_dict,layer_id,data_type = data_type) return feedforward class EETBertAttention(): def __init__(self,config, model_dict,layer_id,data_type = torch.float32): q_weights = [x[1] for x in model_dict.items() if 'self.query.weight' in x[0]][0].contiguous().cuda().type(data_type) k_weights = [x[1] for x in model_dict.items() if 'self.key.weight' in x[0]][0].contiguous().cuda().type(data_type) v_weights = [x[1] for x in model_dict.items() if 'self.value.weight' in x[0]][0].contiguous().cuda().type(data_type) self.qkv_weight = torch.cat((q_weights,k_weights,v_weights),0).transpose(0,1).contiguous() self.q_bias = [x[1] for x in model_dict.items() if 'self.query.bias' in x[0]][0].cuda().type(data_type) self.k_bias = [x[1] for x in model_dict.items() if 'self.key.bias' in x[0]][0].cuda().type(data_type) self.v_bias = [x[1] for x in model_dict.items() if 'self.value.bias' in x[0]][0].cuda().type(data_type) self.out_weights = torch.t([x[1] for x in model_dict.items() if 'attention.output.dense.weight' in x[0]][0]).contiguous().cuda().type(data_type) self.out_bias = [x[1] for x in model_dict.items() if 'attention.output.dense.bias' in x[0]][0].cuda().type(data_type) self.layernorm_weights = [x[1] for x in model_dict.items() if 'attention.output.LayerNorm.weight' in x[0]][0].cuda().type(data_type) self.layernorm_bias = [x[1] for x in model_dict.items() if 'attention.output.LayerNorm.bias' in x[0]][0].cuda().type(data_type) self.attention = eet_attention(config,self.qkv_weight,self.q_bias,self.k_bias,self.v_bias,self.out_weights,self.out_bias,self.layernorm_weights,self.layernorm_bias) def __call__(self, input_id, pre_padding_len, pre_layernorm = False, add_redusial = True): return self.attention.forward(input_id,pre_padding_len,pre_layernorm,add_redusial) @staticmethod def from_torch(config,model_dict,layer_id,data_type = torch.float32): attention = EETBertAttention(config,model_dict,layer_id,data_type = data_type) return attention class EETBertEncoderLayer(): def __init__(self, config, attention,feedforward): self.attetion = attention self.feedforward = feedforward def __call__(self, x, pre_padding_len = None, normalize_before = False): ''' gpt2 model struct ''' ''' layernorm->self_attention-> project->addinputbias->layernorm->ffn->addinputbias''' self_attn_out = self.attetion(input_id = x, pre_padding_len = pre_padding_len, pre_layernorm = normalize_before, add_redusial = True) out = self.feedforward(self_attn_out, pre_layernorm = normalize_before, add_redusial = True) return out @staticmethod def from_torch(config, model_dict,layer_id,data_type = torch.float32): attention = EETBertAttention.from_torch(config = config, model_dict = model_dict, layer_id = layer_id,data_type = data_type) feedforward = EETBertFeedforward.from_torch(config = config, model_dict = model_dict, layer_id = layer_id,data_type = data_type) layer = EETBertEncoderLayer(config, attention, feedforward) return layer class EETBertEncoder(): def __init__(self,EncoderLayers): self.layers = EncoderLayers def __call__( self, x, pre_padding_len = None, normalize_before = False ): for layer in self.layers: x = layer(x, pre_padding_len = pre_padding_len, normalize_before = False) return x @staticmethod def from_torch(layer_model_dict,config,layer_num,data_type = torch.float32): """from torch.""" EncoderLayers = [] for i in range(layer_num): if i < 10: EncoderLayers.extend( [ EETBertEncoderLayer.from_torch(config,layer_model_dict['layer.'+str(i)+'.'],i,data_type = data_type) ] ) else: EncoderLayers.extend( [ EETBertEncoderLayer.from_torch(config,layer_model_dict['layer.'+str(i)],i,data_type = data_type) ] ) eet_encoder = EETBertEncoder(EncoderLayers) return eet_encoder class EETBertModel(): def __init__(self,config,embedding,encoder): self.embedding = embedding self.encoder = encoder self.pre_padding_len = torch.empty(0).long() self.position_ids = torch.arange(0,config.max_position_embeddings).reshape(1,config.max_position_embeddings).cuda() def __call__( self, input_ids, position_ids = None, token_type_ids = None, attention_mask = None, ): ''' attention_mask:attention_padding_mask(:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on the padding token indices of the encoder input.) Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. ''' input_shape = input_ids.size() position_ids = self.position_ids[:, :input_shape[1]] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=input_ids.device) if attention_mask is None: pre_padding_len = self.pre_padding_len else: # transformers 0 - padding;1 - nopadding pre_padding_len = torch.sum(1 - attention_mask,1).long().cuda() embedding_out = self.embedding(input_ids,position_ids,token_type_ids) encoder_out = self.encoder(embedding_out, pre_padding_len = pre_padding_len, normalize_before = False) return encoder_out @staticmethod def from_pretrained(model_id_or_path: str,max_batch, data_type): """from torch.""" torch.set_grad_enabled(False) model_dict = {} embedding_dict = {} torch_model = BertModel.from_pretrained(model_id_or_path) cfg = torch_model.config for k, v in torch_model.state_dict().items(): if 'embeddings' in k: embedding_dict[k] = v if 'layer' in k: #BEGIN_OF_PARAM(Length of the beginning of the parameter): #like 'encoder.layer.0.attention.self.query.weight',the BEGIN_OF_PARAM is the length of 'encoder.'-->8 k = k[BEGIN_OF_PARAM:] model_dict[k] = v from itertools import groupby layer_model_dict = {k: dict(v) for k, v in groupby(list(model_dict.items()), lambda item: item[0][:BEGIN_OF_PARAM])} device = "cuda:0" activation_fn = cfg.hidden_act batch_size = max_batch config = meta_desc(batch_size, cfg.num_attention_heads, cfg.hidden_size, cfg.num_hidden_layers , cfg.max_position_embeddings, cfg.max_position_embeddings, data_type, device, False, activation_fn) embedding = EETBertEmbedding.from_torch(config,embedding_dict,data_type) # embedding = None encoder = EETBertEncoder.from_torch(layer_model_dict,config, cfg.num_hidden_layers,data_type) eet_model = EETBertModel(cfg,embedding, encoder) return eet_model