max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
OpenCV/Colorization/colorize_image.py
AathmanT/cv-tricks.com
326
11198601
# Script is based on https://github.com/richzhang/colorization/blob/master/colorization/colorize.py import numpy as np import argparse import cv2 as cv def parse_args(): parser = argparse.ArgumentParser(description='iColor: deep interactive colorization') parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') parser.add_argument('--prototxt', help='Path to colorization_deploy_v2.prototxt', default='colorization_deploy_v2.prototxt',required=True) parser.add_argument('--caffemodel', help='Path to colorization_release_v2.caffemodel',default='colorization_release_v2.caffemodel', required=True) parser.add_argument('--kernel', help='Path to pts_in_hull.npy', default='pts_in_hull.npy', required=True) args = parser.parse_args() return args if __name__ == '__main__': #Network input size W_in = 224 H_in = 224 imshowSize = (640, 480) args = parse_args() # Create network graph and load weights net = cv.dnn.readNetFromCaffe(args.prototxt, args.caffemodel) # load cluster centers pts_in_hull = np.load(args.kernel) # populate cluster centers as 1x1 convolution kernel pts_in_hull = pts_in_hull.transpose().reshape(2, 313, 1, 1) net.getLayer(net.getLayerId('class8_ab')).blobs = [pts_in_hull.astype(np.float32)] net.getLayer(net.getLayerId('conv8_313_rh')).blobs = [np.full([1, 313], 2.606, np.float32)] # Read the input image in BGR format frame=cv.imread(args.input) #convert it to rgb format frame= frame[:,:,[2, 1, 0]] # Scale the image to handle the variations in intensity img_rgb = ( frame * 1.0 / 255).astype(np.float32) #convert to Lab color space img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab) # pull out L channel img_l = img_lab[:,:,0] (H_orig,W_orig) = img_rgb.shape[:2] # original image size # resize image to network input size img_rs = cv.resize(img_rgb, (W_in, H_in)) # resize image to network input size img_lab_rs = cv.cvtColor(img_rs, cv.COLOR_RGB2Lab) img_l_rs = img_lab_rs[:,:,0] # subtract 50 for mean-centering img_l_rs -= 50 # Set the input for forwarding through the openCV DNN module net.setInput(cv.dnn.blobFromImage(img_l_rs)) #Inference on network ab_dec = net.forward('class8_ab')[0,:,:,:].transpose((1,2,0)) # this is our result # Get the a and b channels (H_out,W_out) = ab_dec.shape[:2] #Resize to original size ab_dec_us = cv.resize(ab_dec, (W_orig, H_orig)) # concatenate with original image i.e. L channel img_lab_out = np.concatenate((img_l[:,:,np.newaxis],ab_dec_us),axis=2) # convert to BGR space from Lab space img_bgr_out = cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR) # Clip and then rescale to 0-255 img_bgr_out = 255 * np.clip(img_bgr_out, 0, 1) img_bgr_out = np.uint8(img_bgr_out) #concatenate input and output image to display con = np.hstack([frame,img_bgr_out]) cv.imwrite('out'+args.input,con)
janitor/functions/fill.py
vishalbelsare/pyjanitor
225
11198604
from enum import Enum from operator import methodcaller from typing import Hashable, Iterable, Union import pandas as pd import pandas_flavor as pf from janitor.utils import check, check_column, deprecated_alias from multipledispatch import dispatch @pf.register_dataframe_method def fill_direction(df: pd.DataFrame, **kwargs) -> pd.DataFrame: """ Provide a method-chainable function for filling missing values in selected columns. It is a wrapper for `pd.Series.ffill` and `pd.Series.bfill`, and pairs the column name with one of `up`, `down`, `updown`, and `downup`. Functional usage syntax: ```python import pandas as pd import janitor as jn df = pd.DataFrame(...) df = jn.fill_direction( df = df, column_1 = direction_1, column_2 = direction_2, ) ``` Method-chaining usage syntax: ```python import pandas as pd import janitor as jn df = pd.DataFrame(...) .fill_direction( column_1 = direction_1, column_2 = direction_2, ) ``` :param df: A pandas DataFrame. :param kwargs: Key - value pairs of columns and directions. Directions can be either `down`, `up`, `updown` (fill up then down) and `downup` (fill down then up). :returns: A pandas DataFrame with modified column(s). :raises ValueError: if direction supplied is not one of `down`, `up`, `updown`, or `downup`. """ if not kwargs: return df fill_types = {fill.name for fill in _FILLTYPE} for column_name, fill_type in kwargs.items(): check("column_name", column_name, [str]) check("fill_type", fill_type, [str]) if fill_type.upper() not in fill_types: raise ValueError( """ fill_type should be one of up, down, updown, or downup. """ ) check_column(df, kwargs) new_values = {} for column_name, fill_type in kwargs.items(): direction = _FILLTYPE[f"{fill_type.upper()}"].value if len(direction) == 1: direction = methodcaller(direction[0]) output = direction(df[column_name]) else: direction = [methodcaller(entry) for entry in direction] output = _chain_func(df[column_name], *direction) new_values[column_name] = output return df.assign(**new_values) def _chain_func(column: pd.Series, *funcs): """ Apply series of functions consecutively to a Series. https://blog.finxter.com/how-to-chain-multiple-function-calls-in-python/ """ new_value = column.copy() for func in funcs: new_value = func(new_value) return new_value class _FILLTYPE(Enum): """List of fill types for fill_direction.""" UP = ("bfill",) DOWN = ("ffill",) UPDOWN = "bfill", "ffill" DOWNUP = "ffill", "bfill" @pf.register_dataframe_method @deprecated_alias(columns="column_names") def fill_empty( df: pd.DataFrame, column_names: Union[str, Iterable[str], Hashable], value ) -> pd.DataFrame: """ Fill `NaN` values in specified columns with a given value. Super sugary syntax that wraps `pandas.DataFrame.fillna`. This method mutates the original DataFrame. Functional usage syntax: ```python df = fill_empty(df, column_names=[col1, col2], value=0) ``` Method chaining syntax: ```python import pandas as pd import janitor df = pd.DataFrame(...).fill_empty(column_names=col1, value=0) ``` :param df: A pandas DataFrame. :param column_names: column_names: A column name or an iterable (list or tuple) of column names. If a single column name is passed in, then only that column will be filled; if a list or tuple is passed in, then those columns will all be filled with the same value. :param value: The value that replaces the `NaN` values. :returns: A pandas DataFrame with `NaN` values filled. """ check_column(df, column_names) return _fill_empty(df, column_names, value=value) @dispatch(pd.DataFrame, (list, tuple)) def _fill_empty(df, column_names, value=None): """Fill empty function for the case that column_names is list or tuple.""" fill_mapping = {c: value for c in column_names} return df.fillna(value=fill_mapping) @dispatch(pd.DataFrame, str) # noqa: F811 def _fill_empty(df, column_names, value=None): # noqa: F811 """Fill empty function for the case that column_names is a string.""" fill_mapping = {column_names: value} return df.fillna(value=fill_mapping)
ev3dev2/wheel.py
TheVinhLuong102/ev3dev-lang-python
306
11198660
<filename>ev3dev2/wheel.py #!/usr/bin/env python3 """ Wheel and Rim classes A great reference when adding new wheels is http://wheels.sariel.pl/ """ from math import pi class Wheel(object): """ A base class for various types of wheels, tires, etc. All units are in mm. One scenario where one of the child classes below would be used is when the user needs their robot to drive at a specific speed or drive for a specific distance. Both of those calculations require the circumference of the wheel of the robot. Example: .. code:: python from ev3dev2.wheel import EV3Tire tire = EV3Tire() # calculate the number of rotations needed to travel forward 500 mm rotations_for_500mm = 500 / tire.circumference_mm """ def __init__(self, diameter_mm, width_mm): self.diameter_mm = float(diameter_mm) self.width_mm = float(width_mm) self.circumference_mm = diameter_mm * pi @property def radius_mm(self): return float(self.diameter_mm / 2) class EV3Rim(Wheel): """ part number 56145 comes in set 31313 """ def __init__(self): Wheel.__init__(self, 30, 20) class EV3Tire(Wheel): """ part number 44309 comes in set 31313 """ def __init__(self): Wheel.__init__(self, 43.2, 21) class EV3EducationSetRim(Wheel): """ part number 56908 comes in set 45544 """ def __init__(self): Wheel.__init__(self, 43, 26) class EV3EducationSetTire(Wheel): """ part number 41897 comes in set 45544 """ def __init__(self): Wheel.__init__(self, 56, 28)
research/setup.py
873040/Abhishek
153
11198707
"""Setup script for object_detection.""" from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['Pillow>=1.0', 'Matplotlib>=2.1', 'Cython>=0.28.1'] setup( name='object_detection', version='0.1', install_requires=REQUIRED_PACKAGES, include_package_data=True, packages=[p for p in find_packages() if p.startswith('object_detection')], description='Tensorflow Object Detection Library', )
src/ttkbootstrap/__init__.py
dmalves/ttkbootstrap
406
11198729
from ttkbootstrap.style import Style from ttkbootstrap.style import Bootstyle from ttkbootstrap.widgets import * from ttkbootstrap.window import Window, Toplevel from tkinter.scrolledtext import ScrolledText from tkinter import Variable, StringVar, IntVar, BooleanVar, DoubleVar from tkinter import Canvas, Menu, Text from tkinter import PhotoImage Bootstyle.setup_ttkbootstap_api()
falsy/loader/yaml.py
marco-souza/falsy
127
11198743
<reponame>marco-souza/falsy import os # import pprint import yaml class LoaderMeta(type): def __new__(metacls, __name__, __bases__, __dict__): """Add include constructer to class.""" # register the include constructor on the class cls = super().__new__(metacls, __name__, __bases__, __dict__) cls.add_constructor('!include', cls.construct_include) cls.add_constructor('include!', cls.construct_include) return cls class Loader(yaml.Loader, metaclass=LoaderMeta): """YAML Loader with `!include` constructor.""" def __init__(self, stream): """Initialise Loader.""" try: self._root = os.path.split(stream.name)[0] except AttributeError: self._root = os.path.curdir super().__init__(stream) def construct_include(self, node): """Include file referenced at node.""" filename = os.path.abspath(os.path.join( self._root, self.construct_scalar(node) )) filename = os.path.join(self._root, self.construct_scalar(node)) extension = os.path.splitext(filename)[1].lstrip('.') with open(filename, 'r') as f: if extension in ('yaml', 'yml'): return yaml.load(f, Loader) else: return ''.join(f.readlines()) def load(filename): with open(filename, 'r') as f: data = yaml.load(f, Loader) # pp = pprint.PrettyPrinter(indent=4) # pp.pprint(data) return data
src/yolo_utils.py
greck2908/BMW-YOLOv3-Training-Automation
192
11198766
import os import re import json import subprocess from pathlib import Path from tensorboardX import SummaryWriter current_map: float = None current_iteration: int = 0 tensorboard_writer: bool = False working_dir: str = None summaries_path: Path = None status_path: Path = None pid_path: Path = None # Create summary writer for tensorboard writer: SummaryWriter = SummaryWriter(flush_secs=1) def get_prediction( darknet_path: str, dot_data_path: str, yolo_cfg_path: str, weights_path: str, image: str, ) -> None: command: list = [ darknet_path, "detector", "test", dot_data_path, yolo_cfg_path, weights_path, image, "-dont_show", ] with open(os.devnull, "w") as DEVNULL: subprocess.call(command, stderr=DEVNULL, stdout=DEVNULL) def update_arg(tensorboard: bool, working_directory: str) -> None: global tensorboard_writer tensorboard_writer = tensorboard global working_dir working_dir = working_directory global summaries_path summaries_path = working_dir / "summaries.txt" global status_path status_path = working_dir / "status.txt" global pid_path pid_path = working_dir / "pid.txt" def update_summary_map(summary_map: float) -> int: global current_map global current_iteration current_map = summary_map return current_iteration # Define the summary of the yolo output in the needed format needed by the API def define_summary( current_iter: str, total_loss: str, avg_loss_error: str, current_lr: str, total_time: str, nb_images: str, ) -> dict: global current_map global current_iteration if current_iter: current_iteration = int(current_iter) else: current_iteration += 1 result: dict = { "current_training_iteration": str(current_iteration), "total_loss": total_loss, "average_loss_error": avg_loss_error, "current_learning_rate": current_lr, "total_time": total_time, "number_of_images": nb_images, "mAP": current_map, } return result # Define the status of the yolo output in the needed format needed by the API def define_status( iou: str, _cls: str, region: str, avg_iou: str, avg_giou: str, _class: str, obj: str, no_obj: str, R5: str, R75: str, count: str, ) -> dict: result: dict = { "normalizer": {"iou": iou, "cls": _cls}, "region {}".format(region): {"avg": {"iou": avg_iou, "giou": avg_giou}}, "class": _class, "obj": obj, "no_obj": no_obj, ".5R": R5, ".75R": R75, "count": count, } return result def process_output(line): summary: list = re.findall( "(\d+)(: )(\d+\.\d+)(, )(\d+\.\d+)( avg loss, )(\d+\.\d+)( rate, )(\d+\.\d+)( seconds, )(\d+)( images *\\n*)", line, ) summary_map: list = re.findall( "(mean_average_precision \([email protected]\) *= *)([0-9]*\.[0-9]*)", line ) status: list = re.findall( "(.*iou: *)(\d+\.\d+)(, cls: )(\d+\.\d+)(\) Region *)(\d+)( Avg \(IOU: )(\d+\.\d+)(, *GIOU: )(\d+\.\d+)(\), Class: *)(\d+\.\d+)(, Obj: )(\d+\.\d+)(, No Obj: )(\d+\.\d+)(, .5R: )(\d+\.\d+)(, .75R: )(\d+\.\d+)(, count: )(\d+)", line, ) training_ended: list = re.findall("Saving weights to .*_final.weights", line) global tensorboard_writer global working_dir global writer if summary: last_summary: list = summary[0] result: dict = define_summary( current_iter=last_summary[0], total_loss=last_summary[2], avg_loss_error=last_summary[4], current_lr=last_summary[6], total_time=last_summary[8], nb_images=last_summary[10], ) if tensorboard_writer: writer.add_scalar( "loss", float(result["total_loss"]), int(result["current_training_iteration"]), ) with open(summaries_path, "a") as summaries_file: summaries_file.write("{}\n".format(json.dumps(result))) if status: last_status: list = status[0] result: dict = define_status( iou=last_status[1], _cls=last_status[3], region=last_status[5], avg_iou=last_status[7], avg_giou=last_status[9], _class=last_status[11], obj=last_status[13], no_obj=last_status[15], R5=last_status[17], R75=last_status[19], count=last_status[21], ) with open(status_path, "a") as status_file: status_file.write("{}\n".format(json.dumps(result))) if summary_map: summary_map = summary_map[0][1] iteration_nb: int = update_summary_map(summary_map) if tensorboard_writer: writer.add_scalar("mAP", float(summary_map), int(iteration_nb)) if training_ended: with open(pid_path, "w") as pid: pid.write("Done")
test_project/core/migrations/0003_book_similar_books.py
violuke/djangoql
807
11198783
<filename>test_project/core/migrations/0003_book_similar_books.py # Generated by Django 2.1.2 on 2018-11-11 19:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0002_book_genre'), ] operations = [ migrations.AddField( model_name='book', name='similar_books', field=models.ManyToManyField(to='core.Book', blank=True), ), ]
models/SelectionGAN/semantic_synthesis/models/networks/generator.py
xianjian-xie/pose-generation
445
11198798
<reponame>xianjian-xie/pose-generation """ Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import torch import torch.nn as nn import torch.nn.functional as F from models.networks.base_network import BaseNetwork from models.networks.normalization import get_nonspade_norm_layer from models.networks.architecture import ResnetBlock as ResnetBlock from models.networks.architecture import SPADEResnetBlock as SPADEResnetBlock class SPADEGenerator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.set_defaults(norm_G='spectralspadesyncbatch3x3') parser.add_argument('--num_upsampling_layers', choices=('normal', 'more', 'most'), default='normal', help="If 'more', adds upsampling layer between the two middle resnet blocks. If 'most', also add one more upsampling + resnet layer at the end of the generator") return parser def __init__(self, opt): super().__init__() self.opt = opt nf = opt.ngf self.sw, self.sh = self.compute_latent_vector_size(opt) if opt.use_vae: # In case of VAE, we will sample from random z vector self.fc = nn.Linear(opt.z_dim, 16 * nf * self.sw * self.sh) else: # Otherwise, we make the network deterministic by starting with # downsampled segmentation map instead of random z self.fc = nn.Conv2d(self.opt.semantic_nc, 16 * nf, 3, padding=1) self.head_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt) self.G_middle_0 = SPADEResnetBlock(16 * nf, 16 * nf, opt) self.G_middle_1 = SPADEResnetBlock(16 * nf, 16 * nf, opt) self.up_0 = SPADEResnetBlock(16 * nf, 8 * nf, opt) self.up_1 = SPADEResnetBlock(8 * nf, 4 * nf, opt) self.up_2 = SPADEResnetBlock(4 * nf, 2 * nf, opt) self.up_3 = SPADEResnetBlock(2 * nf, 1 * nf, opt) final_nc = nf if opt.num_upsampling_layers == 'most': self.up_4 = SPADEResnetBlock(1 * nf, nf // 2, opt) final_nc = nf // 2 self.conv_img = nn.Conv2d(final_nc, 3*10, 3, padding=1) self.conv_att = nn.Conv2d(final_nc, 10, kernel_size=1, stride=1, padding=0) self.up = nn.Upsample(scale_factor=2) def compute_latent_vector_size(self, opt): if opt.num_upsampling_layers == 'normal': num_up_layers = 5 elif opt.num_upsampling_layers == 'more': num_up_layers = 6 elif opt.num_upsampling_layers == 'most': num_up_layers = 7 else: raise ValueError('opt.num_upsampling_layers [%s] not recognized' % opt.num_upsampling_layers) sw = opt.crop_size // (2**num_up_layers) sh = round(sw / opt.aspect_ratio) return sw, sh def forward(self, input, z=None): seg = input if self.opt.use_vae: # we sample z from unit normal and reshape the tensor if z is None: z = torch.randn(input.size(0), self.opt.z_dim, dtype=torch.float32, device=input.get_device()) x = self.fc(z) x = x.view(-1, 16 * self.opt.ngf, self.sh, self.sw) else: # we downsample segmap and run convolution x = F.interpolate(seg, size=(self.sh, self.sw)) x = self.fc(x) x = self.head_0(x, seg) x = self.up(x) x = self.G_middle_0(x, seg) if self.opt.num_upsampling_layers == 'more' or \ self.opt.num_upsampling_layers == 'most': x = self.up(x) x = self.G_middle_1(x, seg) x = self.up(x) x = self.up_0(x, seg) x = self.up(x) x = self.up_1(x, seg) x = self.up(x) x = self.up_2(x, seg) x = self.up(x) x = self.up_3(x, seg) if self.opt.num_upsampling_layers == 'most': x = self.up(x) x = self.up_4(x, seg) # x = self.conv_img(F.leaky_relu(x, 2e-1)) # x = F.tanh(x) image = self.conv_img(F.leaky_relu(x, 2e-1)) image = F.tanh(image) image1 = image[:, 0:3, :, :] image2 = image[:, 3:6, :, :] image3 = image[:, 6:9, :, :] image4 = image[:, 9:12, :, :] image5 = image[:, 12:15, :, :] image6 = image[:, 15:18, :, :] image7 = image[:, 18:21, :, :] image8 = image[:, 21:24, :, :] image9 = image[:, 24:27, :, :] image10 = image[:, 27:30, :, :] attention = self.conv_att(F.leaky_relu(x, 2e-1)) softmax_ = torch.nn.Softmax(dim=1) attention = softmax_(attention) attention1_ = attention[:, 0:1, :, :] attention2_ = attention[:, 1:2, :, :] attention3_ = attention[:, 2:3, :, :] attention4_ = attention[:, 3:4, :, :] attention5_ = attention[:, 4:5, :, :] attention6_ = attention[:, 5:6, :, :] attention7_ = attention[:, 6:7, :, :] attention8_ = attention[:, 7:8, :, :] attention9_ = attention[:, 8:9, :, :] attention10_ = attention[:, 9:10, :, :] attention1 = attention1_.repeat(1, 3, 1, 1) attention2 = attention2_.repeat(1, 3, 1, 1) attention3 = attention3_.repeat(1, 3, 1, 1) attention4 = attention4_.repeat(1, 3, 1, 1) attention5 = attention5_.repeat(1, 3, 1, 1) attention6 = attention6_.repeat(1, 3, 1, 1) attention7 = attention7_.repeat(1, 3, 1, 1) attention8 = attention8_.repeat(1, 3, 1, 1) attention9 = attention9_.repeat(1, 3, 1, 1) attention10 = attention10_.repeat(1, 3, 1, 1) output1 = image1 * attention1 output2 = image2 * attention2 output3 = image3 * attention3 output4 = image4 * attention4 output5 = image5 * attention5 output6 = image6 * attention6 output7 = image7 * attention7 output8 = image8 * attention8 output9 = image9 * attention9 output10 = image10 * attention10 final = output1 + output2 + output3 + output4 + output5 + output6 + output7 + output8 + output9 + output10 return final class Pix2PixHDGenerator(BaseNetwork): @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument('--resnet_n_downsample', type=int, default=4, help='number of downsampling layers in netG') parser.add_argument('--resnet_n_blocks', type=int, default=9, help='number of residual blocks in the global generator network') parser.add_argument('--resnet_kernel_size', type=int, default=3, help='kernel size of the resnet block') parser.add_argument('--resnet_initial_kernel_size', type=int, default=7, help='kernel size of the first convolution') parser.set_defaults(norm_G='instance') return parser def __init__(self, opt): super().__init__() input_nc = opt.label_nc + (1 if opt.contain_dontcare_label else 0) + (0 if opt.no_instance else 1) norm_layer = get_nonspade_norm_layer(opt, opt.norm_G) activation = nn.ReLU(False) model = [] # initial conv model += [nn.ReflectionPad2d(opt.resnet_initial_kernel_size // 2), norm_layer(nn.Conv2d(input_nc, opt.ngf, kernel_size=opt.resnet_initial_kernel_size, padding=0)), activation] # downsample mult = 1 for i in range(opt.resnet_n_downsample): model += [norm_layer(nn.Conv2d(opt.ngf * mult, opt.ngf * mult * 2, kernel_size=3, stride=2, padding=1)), activation] mult *= 2 # resnet blocks for i in range(opt.resnet_n_blocks): model += [ResnetBlock(opt.ngf * mult, norm_layer=norm_layer, activation=activation, kernel_size=opt.resnet_kernel_size)] # upsample for i in range(opt.resnet_n_downsample): nc_in = int(opt.ngf * mult) nc_out = int((opt.ngf * mult) / 2) model += [norm_layer(nn.ConvTranspose2d(nc_in, nc_out, kernel_size=3, stride=2, padding=1, output_padding=1)), activation] mult = mult // 2 # final output conv model += [nn.ReflectionPad2d(3), nn.Conv2d(nc_out, opt.output_nc, kernel_size=7, padding=0), nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input, z=None): return self.model(input)
dashlivesim/dashlib/sessionid.py
Dash-Industry-Forum/dash-live-source-simulator
133
11198854
<reponame>Dash-Industry-Forum/dash-live-source-simulator<gh_stars>100-1000 """Session IDs to allow for tracing sessions.""" import random MAX_NUMBER = 2**32 - 1 def generate_session_id(): "Generate a session ID as hex string." return "%08x" % random.randint(0, MAX_NUMBER)
crossplane/errors.py
Triple-Z/crossplane
525
11198865
# -*- coding: utf-8 -*- class NgxParserBaseException(Exception): def __init__(self, strerror, filename, lineno): self.args = (strerror, filename, lineno) self.filename = filename self.lineno = lineno self.strerror = strerror def __str__(self): if self.lineno is not None: return '%s in %s:%s' % self.args else: return '%s in %s' % self.args class NgxParserSyntaxError(NgxParserBaseException): pass class NgxParserDirectiveError(NgxParserBaseException): pass class NgxParserDirectiveArgumentsError(NgxParserDirectiveError): pass class NgxParserDirectiveContextError(NgxParserDirectiveError): pass class NgxParserDirectiveUnknownError(NgxParserDirectiveError): pass
tests/test_imap_utf7.py
thepeshka/imap_tools
344
11198903
import unittest from imap_tools import imap_utf7 class ImapUtf7Test(unittest.TestCase): data = ( ('Test', b'Test'), ('Test One more', b'Test One more'), ('Might & Magic', b'Might &- Magic'), ('Might & magic', b'Might &- magic'), ('Imap&\xffworld', b'Imap&-&AP8-world'), ('\xff\xfe\xfd\xfc', b'&AP8A,gD9APw-'), ('\x00', b'&AAA-'), ('hello, <NAME> 你好,成龙', b'hello, <NAME> &T2BZff8MYhCfmQ-'), # RFC-2060 ('str \t\n\r\f\vwhitespace \t\n\r\f\v', b'str &AAkACgANAAwACw-whitespace &AAkACgANAAwACw-') ) def test_encode(self): for string, code in self.data: self.assertEqual(imap_utf7.encode(string), code) def test_decode(self): for string, code in self.data: self.assertEqual(string, imap_utf7.decode(code)) def test_printable_chars(self): for code in range(32, 127): if code == 38: # & continue self.assertEqual(bytes((code,)), imap_utf7.encode(chr(code))) self.assertEqual(chr(code), imap_utf7.decode(bytes((code,)))) self.assertEqual(imap_utf7.encode('&'), b'&-') self.assertEqual(imap_utf7.decode(b'&-'), '&')
example/with_keras.py
IcyW/stagesepx
369
11198904
<filename>example/with_keras.py """ classify with keras model """ from keras.models import Sequential from stagesepx.cutter import VideoCutter from stagesepx.classifier.keras import KerasClassifier from stagesepx.reporter import Reporter from stagesepx.video import VideoObject video_path = "../demo.mp4" video = VideoObject(video_path) video.load_frames() # --- cutter --- cutter = VideoCutter() res = cutter.cut(video) stable, unstable = res.get_range() data_home = res.pick_and_save(stable, 10) # --- classify --- # We recommend that you read the code (KerasClassifier) directly for better understanding # and actually you can build your own Classifier which based on it class NewKerasClassifier(KerasClassifier): def create_model(self) -> Sequential: # overwrite this method to design your own model structure! # model = Sequential() # ... pass def train(self, data_path: str, *_, **__): # ... pass # or use the default one # and then init it # epochs=1 is just a example cl = KerasClassifier(epochs=1) # train model and save weights cl.train(data_home) cl.save_model("keras_model.h5") # you would better reuse the trained model for less time cost # keras model takes much more time than SVM # cl.load_model("keras_model.h5") classify_result = cl.classify(video, stable, keep_data=True) result_dict = classify_result.to_dict() # --- draw --- r = Reporter() r.draw(classify_result)
wouso/core/ui.py
ruxandraS/wouso
117
11198906
from django.db import models from wouso.core.game.models import Game class BlockLibrary(object): def __init__(self): self.parts = {} def get_blocks(self): return self.parts.keys() def get_block(self, key, context): block = self.parts.get(key, '') if callable(block): return block(context) return block def add(self, key, callback): self.parts[key] = callback _libraries = {} def get_library(library): global _libraries if not _libraries.get(library, None): _libraries[library] = BlockLibrary() return _libraries[library] def get_sidebar(): return get_library('sidebar') def get_header(): return get_library('header') def get_footer(): return get_library('footer') def register_block(library, name, callback): lib = get_library(library) lib.add(name, callback) def register_sidebar_block(name, callback): return register_block('sidebar', name, callback) def register_header_link(name, callback): return register_block('header', name, callback) def register_footer_link(name, callback): return register_block('footer', name, callback)
server/gunicorn_config.py
huhansan666666/flask_reddit
461
11198915
# Refer to the following link for help: # http://docs.gunicorn.org/en/latest/settings.html command = '/home/lucas/www/reddit.lucasou.com/reddit-env/bin/gunicorn' pythonpath = '/home/lucas/www/reddit.lucasou.com/reddit-env/flask_reddit' bind = '127.0.0.1:8040' workers = 1 user = 'lucas' accesslog = '/home/lucas/logs/reddit.lucasou.com/gunicorn-access.log' errorlog = '/home/lucas/logs/reddit.lucasou.com/gunicorn-error.log'
axcell/errors.py
Kabongosalomon/axcell
335
11198959
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved class PipelineError(Exception): pass class UnpackError(PipelineError): pass class LatexConversionError(PipelineError): pass
LeetCode_problems/Running Sum of 1d Array/solution.py
gbrls/CompetitiveCode
165
11198964
<gh_stars>100-1000 class Solution: def runningSum(self, nums: List[int]) -> List[int]: # declare array to return output = list() # compute running sum for each index for i in range(len(nums)): output.append(sum(nums[:i+1])) return output
exercises/fr/exc_01_09.py
Jette16/spacy-course
2,085
11199003
import spacy nlp = spacy.load("fr_core_news_sm") text = "Le constructeur Citröen présente la e-Méhari Courrèges au public." # Traite le texte doc = ____ # Itère sur les entités for ____ in ____.____: # Affiche le texte de l'entité et son label print(____.____, ____.____) # Obtiens la portion pour "e-Méhari Courrèges" e_mehari_courreges = ____ # Affiche la portion de texte print("Entité manquante :", e_mehari_courreges.text)
numpyro/nn/masked_dense.py
karm-patel/numpyro
1,394
11199012
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from jax import random from jax.nn.initializers import glorot_normal, normal import jax.numpy as jnp def MaskedDense(mask, bias=True, W_init=glorot_normal(), b_init=normal()): """ As in jax.example_libraries.stax, each layer constructor function returns an (init_fun, apply_fun) pair, where `init_fun` takes an rng_key key and an input shape and returns an (output_shape, params) pair, and `apply_fun` takes params, inputs, and an rng_key key and applies the layer. :param array mask: Mask of shape (input_dim, out_dim) applied to the weights of the layer. :param bool bias: whether to include bias term. :param array W_init: initialization method for the weights. :param array b_init: initialization method for the bias terms. :return: a (`init_fn`, `update_fn`) pair. """ def init_fun(rng_key, input_shape): k1, k2 = random.split(rng_key) W = W_init(k1, mask.shape) if bias: b = b_init(k2, mask.shape[-1:]) params = (W, b) else: params = W return input_shape[:-1] + mask.shape[-1:], params def apply_fun(params, inputs, **kwargs): if bias: W, b = params return jnp.dot(inputs, W * mask) + b else: W = params return jnp.dot(inputs, W * mask) return init_fun, apply_fun
alipay/aop/api/domain/AlipayCommerceDataSendModel.py
snowxmas/alipay-sdk-python-all
213
11199015
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayCommerceDataSendModel(object): def __init__(self): self._channel = None self._op_code = None self._op_data = None self._scene_code = None self._scene_data = None self._target_id = None self._target_id_type = None self._version = None @property def channel(self): return self._channel @channel.setter def channel(self, value): self._channel = value @property def op_code(self): return self._op_code @op_code.setter def op_code(self, value): self._op_code = value @property def op_data(self): return self._op_data @op_data.setter def op_data(self, value): self._op_data = value @property def scene_code(self): return self._scene_code @scene_code.setter def scene_code(self, value): self._scene_code = value @property def scene_data(self): return self._scene_data @scene_data.setter def scene_data(self, value): self._scene_data = value @property def target_id(self): return self._target_id @target_id.setter def target_id(self, value): self._target_id = value @property def target_id_type(self): return self._target_id_type @target_id_type.setter def target_id_type(self, value): self._target_id_type = value @property def version(self): return self._version @version.setter def version(self, value): self._version = value def to_alipay_dict(self): params = dict() if self.channel: if hasattr(self.channel, 'to_alipay_dict'): params['channel'] = self.channel.to_alipay_dict() else: params['channel'] = self.channel if self.op_code: if hasattr(self.op_code, 'to_alipay_dict'): params['op_code'] = self.op_code.to_alipay_dict() else: params['op_code'] = self.op_code if self.op_data: if hasattr(self.op_data, 'to_alipay_dict'): params['op_data'] = self.op_data.to_alipay_dict() else: params['op_data'] = self.op_data if self.scene_code: if hasattr(self.scene_code, 'to_alipay_dict'): params['scene_code'] = self.scene_code.to_alipay_dict() else: params['scene_code'] = self.scene_code if self.scene_data: if hasattr(self.scene_data, 'to_alipay_dict'): params['scene_data'] = self.scene_data.to_alipay_dict() else: params['scene_data'] = self.scene_data if self.target_id: if hasattr(self.target_id, 'to_alipay_dict'): params['target_id'] = self.target_id.to_alipay_dict() else: params['target_id'] = self.target_id if self.target_id_type: if hasattr(self.target_id_type, 'to_alipay_dict'): params['target_id_type'] = self.target_id_type.to_alipay_dict() else: params['target_id_type'] = self.target_id_type if self.version: if hasattr(self.version, 'to_alipay_dict'): params['version'] = self.version.to_alipay_dict() else: params['version'] = self.version return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayCommerceDataSendModel() if 'channel' in d: o.channel = d['channel'] if 'op_code' in d: o.op_code = d['op_code'] if 'op_data' in d: o.op_data = d['op_data'] if 'scene_code' in d: o.scene_code = d['scene_code'] if 'scene_data' in d: o.scene_data = d['scene_data'] if 'target_id' in d: o.target_id = d['target_id'] if 'target_id_type' in d: o.target_id_type = d['target_id_type'] if 'version' in d: o.version = d['version'] return o
openbook_auth/views/users/serializers.py
TamaraAbells/okuna-api
164
11199023
<reponame>TamaraAbells/okuna-api<gh_stars>100-1000 from rest_framework import serializers from django.conf import settings from openbook_auth.models import UserProfile, User from openbook_auth.validators import username_characters_validator, user_username_exists from openbook_circles.models import Circle from openbook_common.models import Badge, Emoji from openbook_common.serializers_fields.user import FollowersCountField, FollowingCountField, UserPostsCountField, \ IsFollowingField, IsConnectedField, IsFullyConnectedField, ConnectedCirclesField, FollowListsField, \ IsPendingConnectionConfirmation, IsBlockedField, IsUserReportedField, IsFollowedField, \ AreNewPostNotificationsEnabledForUserField, IsPendingFollowRequestApproval, IsFollowRequested from openbook_lists.models import List class GetUserUserProfileBadgeSerializer(serializers.ModelSerializer): class Meta: model = Badge fields = ( 'keyword', 'keyword_description' ) class GetUserUserListEmojiSerializer(serializers.ModelSerializer): class Meta: model = Emoji fields = ( 'id', 'image', 'keyword' ) class GetUserUserListSerializer(serializers.ModelSerializer): emoji = GetUserUserListEmojiSerializer(many=False) class Meta: model = List fields = ( 'id', 'name', 'emoji' ) class GetUserSerializer(serializers.Serializer): username = serializers.CharField(max_length=settings.USERNAME_MAX_LENGTH, allow_blank=False, validators=[username_characters_validator, user_username_exists], required=True) class GetUserUserProfileSerializer(serializers.ModelSerializer): badges = GetUserUserProfileBadgeSerializer(many=True) class Meta: model = UserProfile fields = ( 'name', 'avatar', 'location', 'cover', 'bio', 'url', 'badges' ) class GetUserUserCircleSerializer(serializers.ModelSerializer): class Meta: model = Circle fields = ( 'id', 'name', 'color', 'users_count' ) class GetUserUserListEmojiSerializer(serializers.ModelSerializer): class Meta: model = Emoji fields = ( 'id', 'image', 'keyword' ) class GetUserUserListSerializer(serializers.ModelSerializer): emoji = GetUserUserListEmojiSerializer(many=False) class Meta: model = List fields = ( 'id', 'name', 'emoji' ) class GetUserUserSerializer(serializers.ModelSerializer): profile = GetUserUserProfileSerializer(many=False) followers_count = FollowersCountField() following_count = FollowingCountField() is_following = IsFollowingField() is_followed = IsFollowedField() are_new_post_notifications_enabled = AreNewPostNotificationsEnabledForUserField() is_connected = IsConnectedField() is_fully_connected = IsFullyConnectedField() connected_circles = ConnectedCirclesField(circle_serializer=GetUserUserCircleSerializer) follow_lists = FollowListsField(list_serializer=GetUserUserListSerializer) is_pending_connection_confirmation = IsPendingConnectionConfirmation() is_pending_follow_request_approval = IsPendingFollowRequestApproval() is_follow_requested = IsFollowRequested() is_reported = IsUserReportedField() class Meta: model = User fields = ( 'id', 'username', 'profile', 'followers_count', 'following_count', 'is_following', 'is_followed', 'is_follow_requested', 'are_new_post_notifications_enabled', 'is_connected', 'is_reported', 'is_fully_connected', 'connected_circles', 'follow_lists', 'date_joined', 'is_pending_connection_confirmation', 'is_pending_follow_request_approval', 'visibility' ) class LegacyGetUserUserSerializer(serializers.ModelSerializer): profile = GetUserUserProfileSerializer(many=False) followers_count = FollowersCountField() following_count = FollowingCountField() posts_count = UserPostsCountField() is_following = IsFollowingField() is_followed = IsFollowedField() is_follow_requested = IsFollowRequested() are_new_post_notifications_enabled = AreNewPostNotificationsEnabledForUserField() is_connected = IsConnectedField() is_fully_connected = IsFullyConnectedField() connected_circles = ConnectedCirclesField(circle_serializer=GetUserUserCircleSerializer) follow_lists = FollowListsField(list_serializer=GetUserUserListSerializer) is_pending_connection_confirmation = IsPendingConnectionConfirmation() is_pending_follow_request_approval = IsPendingFollowRequestApproval() is_reported = IsUserReportedField() class Meta: model = User fields = ( 'id', 'username', 'profile', 'followers_count', 'following_count', 'posts_count', 'is_following', 'is_followed', 'is_follow_requested', 'are_new_post_notifications_enabled', 'is_connected', 'is_reported', 'is_fully_connected', 'connected_circles', 'follow_lists', 'date_joined', 'is_pending_connection_confirmation', 'is_pending_follow_request_approval', 'visibility' ) class GetBlockedUserSerializer(serializers.ModelSerializer): is_blocked = IsBlockedField() is_following = IsFollowingField() are_new_post_notifications_enabled = AreNewPostNotificationsEnabledForUserField() is_connected = IsConnectedField() is_fully_connected = IsFullyConnectedField() class Meta: model = User fields = ( 'id', 'is_blocked', 'is_following', 'are_new_post_notifications_enabled', 'is_connected', 'is_fully_connected' ) class SearchUsersSerializer(serializers.Serializer): query = serializers.CharField(max_length=settings.SEARCH_QUERIES_MAX_LENGTH, required=True) count = serializers.IntegerField( required=False, max_value=10 ) class SearchUsersUserProfileBadgeSerializer(serializers.ModelSerializer): class Meta: model = Badge fields = ( 'keyword', 'keyword_description' ) class SearchUsersUserProfileSerializer(serializers.ModelSerializer): badges = SearchUsersUserProfileBadgeSerializer(many=True) class Meta: model = UserProfile fields = ( 'id', 'avatar', 'name', 'badges' ) class SearchUsersUserSerializer(serializers.ModelSerializer): profile = SearchUsersUserProfileSerializer(many=False) is_following = IsFollowingField() are_new_post_notifications_enabled = AreNewPostNotificationsEnabledForUserField() is_connected = IsConnectedField() class Meta: model = User fields = ( 'id', 'profile', 'username', 'is_following', 'are_new_post_notifications_enabled', 'is_connected', 'visibility', ) class SubscribeToUserNewPostNotificationsUserSerializer(serializers.ModelSerializer): are_new_post_notifications_enabled = AreNewPostNotificationsEnabledForUserField() class Meta: model = User fields = ( 'id', 'are_new_post_notifications_enabled', ) class GetUserPostsCountUserSerializer(serializers.ModelSerializer): posts_count = UserPostsCountField() class Meta: model = User fields = ( 'id', 'posts_count', )
data_structures/Queue/python/queue_using_stack.py
avi-pal/al-go-rithms
1,253
11199024
# Using the given stack implementation # Done in the directory data_structures/Stack/Python/Stack.py class Stack(object): def __init__(self, limit = 10): # Initialize stack as empty array self.stack = [] self.limit = limit # Return and remove the last element of the stack array. def pop(self): # If the stack is not empty, pop. if len(self.stack) > 0: return self.stack.pop() # Add an element to the end of the stack array. def push(self, element): if len(self.stack)<self.limit: self.stack.append(element) # Return the last element of the stack array (without removing it). def peek(self): return self.stack[-1] # Return whether the stack is empty or not. def __bool__(self): return len(self.stack) != 0 # Return the size of the stack def size(self): return len(self.stack) # Return a string representation for the stack def __str__(self): return str(self.stack) # Return whether the stack is empty or not. def is_empty(self): return len(self.stack) == 0 class Queue: """Represents a Queue (FIFO) data structure""" def __init__(self, limit = 10): self.primary_stack = Stack(limit) self.secondary_stack = Stack(limit) self.limit = limit def __bool__(self): return bool(self.primary_stack) def __str__(self): return str(self.primary_stack) def enqueue(self, data): """Add an element to the end of queue.""" while not self.primary_stack.is_empty(): self.secondary_stack.push(self.primary_stack.pop()) self.primary_stack.push(data) while not self.secondary_stack.is_empty(): self.primary_stack.push(self.secondary_stack.pop()) def dequeue(self): """Remove and element from the front of queue.""" return self.primary_stack.pop() def front(self): """Return the value of the element in front of the queue.""" return self.primary_stack.peek() def is_empty(self): """Check if the queue is empty.""" return not bool(self.primary_stack) def is_full(self): return self.size() == self.limit def size(self): """Return the size of the queue.""" return self.primary_stack.size() def __contains__(self, data: int): """Check if item is in the queue.""" return data in self.primary_stack def test_queue() -> None: queue = Queue(10) assert queue.is_empty() is True assert queue.is_full() is False assert bool(queue) is False assert str(queue) == "[]" try: queue.dequeue() assert False # This should not happen except: assert True # This should happen try: queue.front() assert False # This should not happen except IndexError: assert True # This should happen for i in range(10): assert queue.size() == i queue.enqueue(i) assert queue.is_full() is True assert queue.is_empty() is False assert queue.dequeue() == 0 assert queue.front() == 1 queue.enqueue(100) assert str(queue) == str([100, 9, 8, 7, 6, 5, 4, 3, 2, 1]) try: queue.enqueue(0) assert False # This should not happen except: assert True # This should happen assert queue.is_empty() is False assert queue.size() == 10 if __name__ == "__main__": test_queue()
bcs-ui/backend/components/bcs_api.py
laodiu/bk-bcs
599
11199033
<filename>bcs-ui/backend/components/bcs_api.py # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 TH<NAME>, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Dict from django.conf import settings from requests import PreparedRequest from requests.auth import AuthBase from .base import BaseHttpClient, BkApiClient, ComponentAuth, update_url_parameters class BcsApiConfig: """BcsApi 系统配置对象,为 Client 提供地址等信息""" def __init__(self, host: str): self.host = host # BCS API 系统接口地址 self.query_cluster_id_url = f"{host}/{{env_name}}/rest/clusters/bcs/query_by_id/" self.get_cluster_credentials_url = f"{host}/{{env_name}}/rest/clusters/{{bcs_cluster_id}}/client_credentials" class BcsApiAuth(AuthBase): """用于调用 bcs-api 系统的鉴权对象""" def __init__(self, access_token: str): self.access_token = access_token def __call__(self, r: PreparedRequest): # 从配置文件读取访问系统的通用 Token,置入请求头中 auth_token = getattr(settings, "BCS_AUTH_TOKEN", "") r.headers['Authorization'] = auth_token r.headers['Content-Type'] = 'application/json' # 在 GET 请求参数中追加 access_token r.url = update_url_parameters(r.url, {'access_token': self.access_token}) return r class BcsApiClient(BkApiClient): """访问 BCS API 服务的 Client 对象 :param auth: 包含校验信息的对象 API 方法常用请求参数说明 === :param env_name: 集群环境,比如 stag/prod :param project_id: 项目 ID :param cluster_id: 集群 ID :param bcs_cluster_id: 集群在 BCS 系统中的唯一 ID """ def __init__(self, auth: ComponentAuth): self._config = BcsApiConfig(host=settings.BCS_API_PRE_URL) self._client = BaseHttpClient(BcsApiAuth(auth.access_token)) def query_cluster_id(self, env_name: str, project_id: str, cluster_id: str) -> str: """查询集群在 BCS-Api 中的 ID :returns: 集群 ID 字符串 """ url = self._config.query_cluster_id_url.format(env_name=env_name) resp = self._client.request_json( 'GET', url, params={'project_id': project_id, 'cluster_id': cluster_id}, raise_for_status=False ) return resp['id'] def get_cluster_credentials(self, env_name: str, bcs_cluster_id: str) -> Dict: """ 获取访问集群 apiserver 所需的鉴权信息,比如证书、user_token、server_address_path 等 :returns: 包含集群鉴权信息的字典 """ url = self._config.get_cluster_credentials_url.format(env_name=env_name, bcs_cluster_id=bcs_cluster_id) return self._client.request_json('GET', url, raise_for_status=False)
tests/python/twitter/common/dirutil/test_dirutil.py
zhouyijiaren/commons
1,143
11199045
<reponame>zhouyijiaren/commons<gh_stars>1000+ import atexit import os import tempfile from twitter.common import dirutil import mox import pytest def test_mkdtemp_setup_teardown(): m = mox.Mox() def faux_cleaner(): pass DIR1, DIR2 = 'fake_dir1__does_not_exist', 'fake_dir2__does_not_exist' m.StubOutWithMock(atexit, 'register') m.StubOutWithMock(os, 'getpid') m.StubOutWithMock(tempfile, 'mkdtemp') m.StubOutWithMock(dirutil, 'safe_rmtree') atexit.register(faux_cleaner) # ensure only called once tempfile.mkdtemp(dir='1').AndReturn(DIR1) tempfile.mkdtemp(dir='2').AndReturn(DIR2) os.getpid().MultipleTimes().AndReturn('unicorn') dirutil.safe_rmtree(DIR1) dirutil.safe_rmtree(DIR2) # make sure other "pids" are not cleaned dirutil._MKDTEMP_DIRS['fluffypants'].add('yoyo') try: m.ReplayAll() assert dirutil.safe_mkdtemp(dir='1', cleaner=faux_cleaner) == DIR1 assert dirutil.safe_mkdtemp(dir='2', cleaner=faux_cleaner) == DIR2 assert 'unicorn' in dirutil._MKDTEMP_DIRS assert dirutil._MKDTEMP_DIRS['unicorn'] == set([DIR1, DIR2]) dirutil._mkdtemp_atexit_cleaner() assert 'unicorn' not in dirutil._MKDTEMP_DIRS assert dirutil._MKDTEMP_DIRS['fluffypants'] == set(['yoyo']) finally: dirutil._MKDTEMP_DIRS.pop('unicorn', None) dirutil._MKDTEMP_DIRS.pop('fluffypants', None) dirutil._mkdtemp_unregister_cleaner() m.UnsetStubs() m.VerifyAll()
Training/MOOC Tensorflow 2.0/BeiDa/class2/p19_mse.py
church06/Pythons
177
11199046
import tensorflow as tf import numpy as np SEED = 23455 rdm = np.random.RandomState(seed=SEED) # 生成[0,1)之间的随机数 x = rdm.rand(32, 2) y_ = [[x1 + x2 + (rdm.rand() / 10.0 - 0.05)] for (x1, x2) in x] # 生成噪声[0,1)/10=[0,0.1); [0,0.1)-0.05=[-0.05,0.05) x = tf.cast(x, dtype=tf.float32) w1 = tf.Variable(tf.random.normal([2, 1], stddev=1, seed=1)) epoch = 15000 lr = 0.002 for epoch in range(epoch): with tf.GradientTape() as tape: y = tf.matmul(x, w1) loss_mse = tf.reduce_mean(tf.square(y_ - y)) grads = tape.gradient(loss_mse, w1) w1.assign_sub(lr * grads) if epoch % 500 == 0: print("After %d training steps,w1 is " % (epoch)) print(w1.numpy(), "\n") print("Final w1 is: ", w1.numpy())
tests/check_byte_order_marker_test.py
christhekeele/pre-commit-hooks
2,864
11199055
<gh_stars>1000+ from pre_commit_hooks import check_byte_order_marker def test_failure(tmpdir): f = tmpdir.join('f.txt') f.write_text('ohai', encoding='utf-8-sig') assert check_byte_order_marker.main((str(f),)) == 1 def test_success(tmpdir): f = tmpdir.join('f.txt') f.write_text('ohai', encoding='utf-8') assert check_byte_order_marker.main((str(f),)) == 0
utils/CopyJniFile.py
RookieTerry/520apkhook
390
11199072
#!/usr/bin/python3 # -*- coding: utf-8 -*- import os import shutil def forceMergeFlatDir(srcDir, dstDir): if not os.path.exists(dstDir): os.makedirs(dstDir) for item in os.listdir(srcDir): srcFile = os.path.join(srcDir, item) dstFile = os.path.join(dstDir, item) forceCopyFile(srcFile, dstFile) def forceCopyFile (sfile, dfile): if os.path.isfile(sfile): shutil.copy2(sfile, dfile) def isAFlatDir(sDir): for item in os.listdir(sDir): sItem = os.path.join(sDir, item) if os.path.isdir(sItem): return False return True def CopyTree(src, dst): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isfile(s): if not os.path.exists(dst): os.makedirs(dst) forceCopyFile(s,d) if os.path.isdir(s): isRecursive = not isAFlatDir(s) if isRecursive: CopyTree(s, d) else: forceMergeFlatDir(s, d) if __name__ == '__main__': CopyTree('../libs/ShellDexDir/jni_lib', '../WorkDir/apkfile/apk/lib')
wolframclient/evaluation/cloud/__init__.py
jldohmann/WolframClientForPython
358
11199099
<reponame>jldohmann/WolframClientForPython from __future__ import absolute_import, print_function, unicode_literals from wolframclient.evaluation.cloud.asynccloudsession import ( WolframAPICallAsync, WolframCloudAsyncSession, ) from wolframclient.evaluation.cloud.base import SecuredAuthenticationKey, UserIDPassword from wolframclient.evaluation.cloud.cloudsession import WolframAPICall, WolframCloudSession from wolframclient.evaluation.cloud.server import WolframServer __all__ = [ "WolframServer", "WolframCloudSession", "WolframAPICall", "SecuredAuthenticationKey", "UserIDPassword", "WolframAPICallAsync", "WolframCloudAsyncSession", ]
physt/io/root.py
janpipek/physt
123
11199100
"""ROOT format I/O See also -------- - https://github.com/scikit-hep/uproot - https://root.cern.ch """ import os from typing import Optional import uproot3 from physt.histogram_base import HistogramBase def write_root(histogram: HistogramBase, hfile: uproot3.write.TFile.TFileUpdate, name: str): """Write histogram to an open ROOT file. Parameters ---------- histogram : Any histogram hfile : Updateable uproot file object name : The name of the histogram inside the file """ hfile[name] = histogram def save_root(histogram: HistogramBase, path: str, name: Optional[str] = None): """Write histogram to a (new) ROOT file. Parameters ---------- histogram : Any histogram path: path for the output file (perhaps should not exist?) name : The name of the histogram inside the file """ if name is None: name = histogram.name or histogram.title or repr(histogram) if os.path.isfile(path): # TODO: Not supported currently hfile = uproot3.write.TFile.TFileUpdate(path) else: hfile = uproot3.write.TFile.TFileCreate(path) write_root(histogram, hfile, name) hfile.close()
tests/test_app.py
smallwat3r/shhh
243
11199105
import json import re import unittest from datetime import datetime, timedelta from http import HTTPStatus from types import SimpleNamespace from urllib.parse import urlparse import responses from flask import url_for from shhh.entrypoint import create_app from shhh.extensions import db, scheduler from shhh.models import Entries from shhh.scheduler import tasks class Parse(SimpleNamespace): """Nested dicts to use dot notation for clarity in tests.""" def __init__(self, dictionary, **kwargs): super().__init__(**kwargs) for k, v in dictionary.items(): if isinstance(v, dict): self.__setattr__(k, Parse(v)) else: self.__setattr__(k, v) class TestApplication(unittest.TestCase): """Flask application testing.""" @classmethod def setUpClass(cls): cls.app = create_app(env="testing") cls.db = db cls.db.app = cls.app cls.db.create_all() cls.scheduler = scheduler cls.scheduler.app = cls.app @classmethod def tearDownClass(cls): cls.db.drop_all() cls.scheduler.shutdown(wait=False) def setUp(self): self.client = self.app.test_client() self.app_context = self.app.app_context() self.app_context.push() for table in reversed(self.db.metadata.sorted_tables): self.db.session.execute(table.delete()) # Mock responses from haveibeenpwned. responses.add( responses.GET, re.compile(r"^(https:\/\/api\.pwnedpasswords\.com\/range\/836BA).*"), body=( "BDDC66080E01D52B8272AA9461C69EE0496:12145\n" # Hello123 "00d4f6e8fa6eecad2a3aa415eec418d38ec:2" ), ) responses.add( responses.GET, re.compile(r"^(https:\/\/api\.pwnedpasswords\.com\/)(?!.*836BA).*"), body=( "BDDC66080E01D52B8272AA9461C69EE0496:12145\n" # Hello123 "00d4f6e8fa6eecad2a3aa415eec418d38ec:2" ), ) def tearDown(self): self.db.session.rollback() self.app_context.pop() def test_scheduler_setup(self): jobs = self.scheduler.get_jobs() # Test named scheduled task. self.assertEqual(jobs[0].name, "delete_expired_links") # Test task will run before next minute. scheduled = jobs[0].next_run_time.strftime("%Y-%m-%d %H:%M:%S") next_minute = (datetime.now() + timedelta(minutes=1)).strftime("%Y-%m-%d %H:%M:%S") self.assertTrue(scheduled <= next_minute) def test_scheduler_job(self): # Temporarily pause the scheduler. self.scheduler.pause_job("delete_expired_links") # Add a dummy secret in database with an expired expiry date. slug = "z6HNg2dCcvvaOXli1z3x" encrypted_text = ( b"nKir73XhgyXxjwYyCG-QHQABhqCAAAAAAF6rPvPYX7OYFZRTzy" b"PdIwvdo2SFwAN0VXrfosL54nGHr0MN1YtyoNjx4t5Y6058lFvDH" b"zsnv_Q1KaGFL6adJgLLVreOZ9kt5HpwnEe_Lod5Or85Ig==" ) now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") expired_date = datetime.strptime(now, "%Y-%m-%d %H:%M:%S") - timedelta(days=1) Entries.create( slug_link=slug, encrypted_text=encrypted_text, date_created=now, date_expires=expired_date, ) # Run scheduler task. tasks.delete_expired_links() # Check that the secret has been deleted from the database. link = Entries.query.filter_by(slug_link=slug).first() self.assertIsNone(link) # Resume the scheduler. self.scheduler.resume_job("delete_expired_links") def test_repr_entry(self): slug = "z6HNg2dCcvvaOXli1z3x" encrypted_text = ( b"nKir73XhgyXxjwYyCG-QHQABhqCAAAAAAF6rPvPYX7OYFZRTzy" b"PdIwvdo2SFwAN0VXrfosL54nGHr0MN1YtyoNjx4t5Y6058lFvDH" b"zsnv_Q1KaGFL6adJgLLVreOZ9kt5HpwnEe_Lod5Or85Ig==" ) now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") expired_date = datetime.strptime(now, "%Y-%m-%d %H:%M:%S") - timedelta(days=1) entry = Entries.create( slug_link=slug, encrypted_text=encrypted_text, date_created=now, date_expires=expired_date, ) self.assertEqual(repr(entry), f"<Entry {slug}>") def test_views(self): with self.app.test_request_context(), self.client as c: # 200 self.assertEqual(c.get(url_for("views.create")).status_code, HTTPStatus.OK.value) r = c.get("/robots.txt") r.close() # avoids unclosed file warning. self.assertEqual(r.status_code, HTTPStatus.OK.value) self.assertEqual( c.get(url_for("views.read", slug="fK6YTEVO2bvOln7pHOFi")).status_code, HTTPStatus.OK.value, ) self.assertEqual( c.get( f"{url_for('views.created')}?link=https://shhh-encrypt.herokuapp.com/r/" "z6HNg2dCcvvaOXli1z3x&expires_on=2020-05-01%20" "at%2022:28%20UTC" ).status_code, HTTPStatus.OK.value, ) # 302 self.assertEqual( c.get(f"{url_for('views.created')}?link=only").status_code, HTTPStatus.FOUND.value ) self.assertEqual( c.get(f"{url_for('views.created')}?expires_on=only").status_code, HTTPStatus.FOUND.value, ) self.assertEqual( c.get(f"{url_for('views.created')}?link=only&other=only").status_code, HTTPStatus.FOUND.value, ) # 404 self.assertEqual(c.get("/read").status_code, HTTPStatus.NOT_FOUND.value) self.assertEqual(c.get("/donotexists").status_code, HTTPStatus.NOT_FOUND.value) @responses.activate def test_api_post_missing_all(self): with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret")).get_data()) # Test response request status and error details. r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_too_much_days(self): payload = { "secret": "secret message", "passphrase": "<PASSWORD>", "expires": "12d", } with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Test response request status and error details. r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_wrong_formats(self): payload = {"secret": 1, "passphrase": 1, "expire": "do not exists"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Test response request status and error details. r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_missing_passphrase(self): payload = {"secret": "secret message"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Test response request status and error details. r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_missing_secret(self): payload = {"passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Test response request status and error details. r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_passphrase_pwned(self): payload = {"passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Test response request status and error details. r = Parse(response) self.assertEqual(r.response.status, "error") def test_api_post_haveibeenpwned_not_reachable(self): payload = { "secret": "secret message", "passphrase": "<PASSWORD>", "haveibeenpwned": True, } with self.app.test_request_context(), self.client as c: with responses.RequestsMock() as rsps: rsps.add( responses.GET, re.compile(r"^(https:\/\/api\.pwnedpasswords\.com\/).*"), body=Exception, ) response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # haveibeenpwned wasn't reachable, but secret still created if it has # all mandatory requirements. r = Parse(response) self.assertEqual(r.response.status, "created") @responses.activate def test_api_post_dont_check_haveibeenpwned(self): payload = { "secret": "secret message", "passphrase": "<PASSWORD>", # This passphrase has been pwned in the mock "haveibeenpwned": False, } with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Secret created without check from haveibeenpwned. r = Parse(response) self.assertEqual(r.response.status, "created") @responses.activate def test_api_post_check_haveibeenpwned_success(self): payload = { "secret": "secret message", "passphrase": "<PASSWORD>", "haveibeenpwned": True, } with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Secret created with check from haveibeenpwned. r = Parse(response) self.assertEqual(r.response.status, "created") @responses.activate def test_api_post_check_haveibeenpwned_failed(self): payload = { "secret": "secret message", "passphrase": "<PASSWORD>", # This passphrase has been pwned in the mock "haveibeenpwned": True, } with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) # Secret not created. r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_weak_passphrase(self): # Weak passphrase. payload = {"secret": "secret message", "passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) r = Parse(response) self.assertEqual(r.response.status, "error") # Long but all lowercase and no numbers. payload = {"secret": "secret message", "passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) r = Parse(response) self.assertEqual(r.response.status, "error") # Uppercase, lowercase, numbers, but too short. payload = {"secret": "secret message", "passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) r = Parse(response) self.assertEqual(r.response.status, "error") # Long with numbers, but no uppercase. payload = {"secret": "secret message", "passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) r = Parse(response) self.assertEqual(r.response.status, "error") @responses.activate def test_api_post_created(self): payload = {"secret": "secret message", "passphrase": "<PASSWORD>", "expire": "3d"} with self.app.test_request_context(), self.client as c: response = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) r = Parse(response) # Test secret has been created and expiricy date is correct. self.assertEqual(r.response.status, "created") self.assertEqual( r.response.expires_on.split(" at ")[0], (datetime.now() + timedelta(days=3)).strftime("%B %d, %Y"), ) # Test the link generated is using the test SHHH_HOST variable hostname = urlparse(r.response.link).netloc self.assertEqual(hostname, "test.test") # Test all fields in the response are correct. for field in ("status", "details", "slug", "link", "expires_on"): self.assertIn(field, r.response.__dict__.keys()) # Test the slug link has been saved in the database. slug = r.response.slug link = Entries.query.filter_by(slug_link=slug).first() self.assertEqual(link.slug_link, slug) @responses.activate def test_api_get_wrong_passphrase(self): payload = {"secret": "secret message", "passphrase": "<PASSWORD>"} with self.app.test_request_context(), self.client as c: post = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) response = json.loads( c.get( f"{url_for('api.secret')}?slug={post['response']['slug']}&passphrase=wrong" ).get_data() ) # Test passphrase is invalid. r = Parse(response) self.assertEqual(r.response.status, "invalid") @responses.activate def test_api_get_exceeded_tries(self): payload = { "secret": "secret message", "passphrase": "<PASSWORD>", "tries": 3, } with self.app.test_request_context(), self.client as c: post = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) slug = post["response"]["slug"] for _ in range(payload["tries"]): response = json.loads( c.get( f"{url_for('api.secret')}?slug={post['response']['slug']}&passphrase=wrong" ).get_data() ) r = Parse(response) self.assertEqual(r.response.status, "invalid") # Secret has been deleted in database as number of tries has exceeded link = Entries.query.filter_by(slug_link=slug).first() self.assertIsNone(link) def test_api_get_wrong_slug(self): with self.app.test_request_context(), self.client as c: response = json.loads( c.get(f"{url_for('api.secret')}?slug=hello&passphrase=wrong").get_data() ) # Test slug doesn't exists. r = Parse(response) self.assertEqual(r.response.status, "expired") @responses.activate def test_api_get_decrypt_secret(self): message, passphrase = "<PASSWORD>", "<PASSWORD>" payload = {"secret": message, "passphrase": passphrase} with self.app.test_request_context(), self.client as c: post = json.loads(c.post(url_for("api.secret"), json=payload).get_data()) slug = post["response"]["slug"] response = json.loads( c.get(f"{url_for('api.secret')}?slug={slug}&passphrase={passphrase}").get_data() ) r = Parse(response) # Test if status of the request is correct. self.assertEqual(r.response.status, "success") # Test if message has been decrypted correctly. self.assertEqual(r.response.msg, message) # Test if secret has been deleted in database. link = Entries.query.filter_by(slug_link=slug).first() self.assertIsNone(link) if __name__ == "__main__": unittest.main()
tests/test_gltf.py
thachdo/trimesh
1,882
11199107
<reponame>thachdo/trimesh try: from . import generic as g except BaseException: import generic as g # Khronos' official file validator # can be installed with the helper script: # `trimesh/docker/builds/gltf_validator.bash` _gltf_validator = g.find_executable('gltf_validator') def validate_glb(data): """ Run the Khronos validator on GLB files using subprocess. Parameters ------------ data : bytes GLB export Raises ------------ ValueError If Khronos validator reports errors. """ # subprocess options not in old python if g.PY_VER < (3, 7): return if _gltf_validator is None: g.log.warning('no gltf_validator!') return with g.tempfile.NamedTemporaryFile(suffix='.glb') as f: f.write(data) f.flush() # run the khronos gltf-validator report = g.subprocess.run( [_gltf_validator, f.name, '-o'], capture_output=True) # -o prints JSON to stdout content = report.stdout.decode('utf-8') if report.returncode != 0: # log the whole error report g.log.error(content) raise ValueError('Khronos GLTF validator error!') # log the GLTF validator report if # there are any warnings or hints decode = g.json.loads(content) if any(decode['issues'][i] > 0 for i in ['numWarnings', 'numInfos', 'numHints']): g.log.warning(content) class GLTFTest(g.unittest.TestCase): def test_duck(self): scene = g.get_mesh('Duck.glb', process=False) # should have one mesh assert len(scene.geometry) == 1 # get the mesh geom = next(iter(scene.geometry.values())) # vertex normals should have been loaded assert 'vertex_normals' in geom._cache.cache # should not be watertight assert not geom.is_volume # make sure export doesn't crash export = scene.export(file_type='glb') validate_glb(export) # check a roundtrip reloaded = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') # make basic assertions g.scene_equal(scene, reloaded) # if we merge ugly it should now be watertight geom.merge_vertices( merge_tex=True, merge_norm=True) assert geom.is_volume def test_buffer_dedupe(self): scene = g.trimesh.Scene() box_1 = g.trimesh.creation.box() box_2 = g.trimesh.creation.box() box_3 = g.trimesh.creation.box() box_3.visual.face_colors = [0, 255, 0, 255] tm = g.trimesh.transformations.translation_matrix scene.add_geometry( box_1, 'box_1', transform=tm((1, 1, 1))) scene.add_geometry( box_2, 'box_2', transform=tm((-1, -1, -1))) scene.add_geometry( box_3, 'box_3', transform=tm((-1, 20, -1))) a = g.json.loads(scene.export( file_type='gltf')['model.gltf'].decode('utf-8')) assert len(a['buffers']) <= 3 def test_tex_export(self): # load textured PLY mesh = g.get_mesh('fuze.ply') assert hasattr(mesh.visual, 'uv') # make sure export as GLB doesn't crash on scenes export = mesh.scene().export(file_type='glb') validate_glb(export) # make sure it works on meshes export = mesh.export(file_type='glb') validate_glb(export) def test_cesium(self): # A GLTF with a multi- primitive mesh s = g.get_mesh('CesiumMilkTruck.glb') # should be one Trimesh object per GLTF "primitive" assert len(s.geometry) == 4 # every geometry displayed once, except wheels twice assert len(s.graph.nodes_geometry) == 5 # make sure export doesn't crash export = s.export(file_type='glb') validate_glb(export) reloaded = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') # make basic assertions g.scene_equal(s, reloaded) def test_units(self): # Trimesh will store units as a GLTF extra if they # are defined so check that. original = g.get_mesh('pins.glb') # export it as a a GLB file export = original.export(file_type='glb') validate_glb(export) kwargs = g.trimesh.exchange.gltf.load_glb( g.trimesh.util.wrap_as_stream(export)) # roundtrip it reloaded = g.trimesh.exchange.load.load_kwargs(kwargs) # make basic assertions g.scene_equal(original, reloaded) # make assertions on original and reloaded for scene in [original, reloaded]: # units should be stored as an extra assert scene.units == 'mm' # make sure we have two unique geometries assert len(scene.geometry) == 2 # that should have seven instances assert len(scene.graph.nodes_geometry) == 7 # all meshes should be well constructed assert all(m.is_volume for m in scene.geometry.values()) # check unit conversions for fun extents = scene.extents.copy() as_in = scene.convert_units('in') # should all be exactly mm -> in conversion factor assert g.np.allclose( extents / as_in.extents, 25.4, atol=.001) m = g.get_mesh('testplate.glb') assert m.units == 'meters' def test_basic(self): # split a multibody mesh into a scene scene = g.trimesh.scene.split_scene( g.get_mesh('cycloidal.ply')) # should be 117 geometries assert len(scene.geometry) >= 117 # a dict with {file name: str} export = scene.export(file_type='gltf') # load from just resolver r = g.trimesh.load(file_obj=None, file_type='gltf', resolver=export) # will assert round trip is roughly equal g.scene_equal(r, scene) # try loading from a ZIP archive zipped = g.trimesh.util.compress(export) r = g.trimesh.load( file_obj=g.trimesh.util.wrap_as_stream(zipped), file_type='zip') # try loading from a file name # will require a file path resolver with g.TemporaryDirectory() as d: for file_name, data in export.items(): with open(g.os.path.join(d, file_name), 'wb') as f: f.write(data) # load from file path of header GLTF rd = g.trimesh.load( g.os.path.join(d, 'model.gltf')) # will assert round trip is roughly equal g.scene_equal(rd, scene) def test_merge_buffers(self): # split a multibody mesh into a scene scene = g.trimesh.scene.split_scene( g.get_mesh('cycloidal.ply')) # export a gltf with the merge_buffers option set to true export = scene.export(file_type='gltf', merge_buffers=True) # We should end up with a single .bin and scene.gltf assert len(export.keys()) == 2 # reload the export reloaded = g.trimesh.exchange.load.load_kwargs( g.trimesh.exchange.gltf.load_gltf( file_obj=None, resolver=g.trimesh.visual.resolvers.ZipResolver(export))) # check to make sure the geometry keys are the same assert set(reloaded.geometry.keys()) == set(scene.geometry.keys()) def test_merge_primitives(self): # test to see if the `merge_primitives` logic is working a = g.get_mesh('CesiumMilkTruck.glb') assert len(a.geometry) == 4 # should combine the multiple primitives into a single mesh b = g.get_mesh( 'CesiumMilkTruck.glb', merge_primitives=True) assert len(b.geometry) == 2 def test_write_dir(self): # try loading from a file name # will require a file path resolver original = g.get_mesh('fuze.obj') assert isinstance(original, g.trimesh.Trimesh) s = original.scene() with g.TemporaryDirectory() as d: path = g.os.path.join(d, 'heyy.gltf') s.export(file_obj=path) r = g.trimesh.load(path) assert isinstance(r, g.trimesh.Scene) assert len(r.geometry) == 1 m = next(iter(r.geometry.values())) assert g.np.isclose(original.area, m.area) def test_merge_primitives_materials(self): # test to see if the `merge_primitives` logic is working a = g.get_mesh('rgb_cube_with_primitives.gltf', merge_primitives=True) assert len(a.geometry['Cube'].visual.material) == 3 # what the face materials should be truth = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] assert g.np.allclose( a.geometry['Cube'].visual.face_materials, truth) # make sure copying did the things correctly c = a.copy() assert g.np.allclose( c.geometry['Cube'].visual.face_materials, truth) def test_merge_primitives_materials_roundtrip(self): # test to see if gltf loaded with `merge_primitives` # and then exported back # to gltf, produces a valid gltf. a = g.get_mesh('rgb_cube_with_primitives.gltf', merge_primitives=True) result = a.export(file_type='gltf', merge_buffers=True) with g.TemporaryDirectory() as d: for file_name, data in result.items(): with open(g.os.path.join(d, file_name), 'wb') as f: f.write(data) rd = g.trimesh.load( g.os.path.join(d, 'model.gltf'), merge_primitives=True) assert isinstance(rd, g.trimesh.Scene) # will assert round trip is roughly equal # TODO : restore # g.scene_equal(rd, a) def test_optional_camera(self): gltf_cameras_key = 'cameras' # if there's no camera in the scene, then it shouldn't be added to the gltf box = g.trimesh.creation.box([1, 1, 1]) scene = g.trimesh.Scene(box) export = scene.export(file_type='gltf') assert gltf_cameras_key not in g.json.loads(export['model.gltf'].decode('utf8')) # `scene.camera` creates a camera if it does not exist. # once in the scene, it should be added to the gltf. box = g.trimesh.creation.box([1, 1, 1]) scene = g.trimesh.Scene(box) scene.set_camera() export = scene.export(file_type='gltf') assert gltf_cameras_key in g.json.loads(export['model.gltf'].decode('utf8')) def test_gltf_pole(self): scene = g.get_mesh('simple_pole.glb') # should have multiple primitives assert len(scene.geometry) == 11 export = scene.export(file_type='glb') validate_glb(export) # check a roundtrip reloaded = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') # make basic assertions g.scene_equal(scene, reloaded) def test_material_hash(self): # load mesh twice independently a = g.get_mesh('fuze.obj') b = g.get_mesh('fuze.obj') # move one of the meshes away from the other a.apply_translation([a.scale, 0, 0]) # materials should not be the same object assert id(a.visual.material) != id(b.visual.material) # despite being loaded separately material hash should match assert hash(a.visual.material) == hash(b.visual.material) # create a scene with two meshes scene = g.trimesh.Scene([a, b]) # get the exported GLTF header of a scene with both meshes header = g.json.loads(scene.export( file_type='gltf')['model.gltf'].decode('utf-8')) # header should contain exactly one material assert len(header['materials']) == 1 # both meshes should be contained in the export assert len(header['meshes']) == 2 # get a reloaded version export = scene.export(file_type='glb') validate_glb(export) reloaded = g.trimesh.load( file_obj=g.trimesh.util.wrap_as_stream(export), file_type='glb') # meshes should have survived assert len(reloaded.geometry) == 2 # get meshes back ar, br = reloaded.geometry.values() # should have been loaded as a PBR material assert isinstance(ar.visual.material, g.trimesh.visual.material.PBRMaterial) # materials should have the same memory location assert id(ar.visual.material) == id(br.visual.material) # make sure hash is returning something ahash = hash(ar.visual.material) # should be returning valid material hashes assert isinstance(ahash, int) assert ahash != 0 def test_node_name(self): # Test to see if node names generally survive # an export-import cycle. # a scene s = g.get_mesh('cycloidal.3DXML') # export as GLB then re-load export = s.export(file_type='glb') validate_glb(export) r = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') # make sure we have the same geometries before and after assert set(s.geometry.keys()) == set(r.geometry.keys()) # make sure the node names are the same before and after assert (set(s.graph.nodes_geometry) == set(r.graph.nodes_geometry)) def test_nested_scale(self): # nested transforms with scale s = g.get_mesh('nested.glb') assert len(s.graph.nodes_geometry) == 3 assert g.np.allclose( [[-1.16701, -2.3366, -0.26938], [0.26938, 1., 0.26938]], s.bounds, atol=1e-4) def test_schema(self): # get a copy of the GLTF schema and do simple checks s = g.trimesh.exchange.gltf.get_schema() # make sure it has at least the keys we expect assert set(s['properties'].keys()).issuperset( {'accessors', 'animations', 'asset', 'buffers', 'bufferViews', 'cameras', 'images', 'materials', 'meshes', 'nodes', 'samplers', 'scene', 'scenes', 'skins', 'textures', 'extensions', 'extras'}) # lightly check to see that no references exist assert '$ref' not in g.json.dumps(s) def test_export_custom_attributes(self): # Write and read custom vertex attributes to gltf sphere = g.trimesh.primitives.Sphere() v_count, _ = sphere.vertices.shape sphere.vertex_attributes['_CustomFloat32Scalar'] = g.np.random.rand( v_count, 1).astype( g.np.float32) sphere.vertex_attributes['_CustomUIntScalar'] = g.np.random.randint( 0, 1000, size=(v_count, 1) ).astype(g.np.uintc) sphere.vertex_attributes['_CustomFloat32Vec3'] = g.np.random.rand( v_count, 3).astype(g.np.float32) sphere.vertex_attributes['_CustomFloat32Mat4'] = g.np.random.rand( v_count, 4, 4).astype(g.np.float32) # export as GLB then re-load export = sphere.export(file_type='glb') validate_glb(export) r = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') for _, val in r.geometry.items(): assert set( val.vertex_attributes.keys()) == set( sphere.vertex_attributes.keys()) for key in val.vertex_attributes: is_same = g.np.array_equal( val.vertex_attributes[key], sphere.vertex_attributes[key]) assert is_same is True def test_extras(self): # if GLTF extras are defined, make sure they survive a round trip s = g.get_mesh('cycloidal.3DXML') # some dummy data dummy = {'who': 'likes cheese', 'potatoes': 25} # export as GLB with extras passed to the exporter then re-load s.metadata = dummy export = s.export(file_type='glb') validate_glb(export) r = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') # make sure extras survived a round trip assert all(r.metadata[k] == v for k, v in dummy.items()) def test_extras_nodes(self): test_metadata = { 'test_str': 'test_value', 'test_int': 1, 'test_float': 0.123456789, 'test_bool': True, 'test_array': [1, 2, 3], 'test_dict': {'a': 1, 'b': 2}} sphere1 = g.trimesh.primitives.Sphere(radius=1.0) sphere1.metadata.update(test_metadata) sphere2 = g.trimesh.primitives.Sphere(radius=2.0) sphere2.metadata.update(test_metadata) tf1 = g.trimesh.transformations.translation_matrix([0, 0, -2]) tf2 = g.trimesh.transformations.translation_matrix([5, 5, 5]) s = g.trimesh.scene.Scene() s.add_geometry( sphere1, node_name="Sphere1", geom_name="Geom Sphere1", transform=tf1) s.add_geometry(sphere2, node_name="Sphere2", geom_name="Geom Sphere2", parent_node_name="Sphere1", transform=tf2) # Test extras appear in the exported model nodes files = s.export(None, "gltf") gltf_data = files["model.gltf"] assert 'test_value' in gltf_data.decode('utf8') # Check node extras survive a round trip export = s.export(file_type='glb') validate_glb(export) r = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') files = r.export(None, "gltf") gltf_data = files["model.gltf"] assert 'test_value' in gltf_data.decode('utf8') edge = r.graph.transforms.edge_data[("world", "Sphere1")] assert g.np.allclose(edge['matrix'], tf1) # all geometry should be the same assert set(r.geometry.keys()) == set(s.geometry.keys()) for mesh in r.geometry.values(): # metadata should have all survived assert all(mesh.metadata[k] == v for k, v in test_metadata.items()) def test_read_scene_extras(self): # loads a glb with scene extras scene = g.get_mesh('monkey.glb', process=False) # expected data check = {'name': 'monkey', 'age': 32, 'height': 0.987} meta = scene.metadata for key in check: # \check key existence and value assert key in meta assert meta[key] == check[key] def test_load_empty_nodes(self): # loads a glb with no meshes scene = g.get_mesh('empty_nodes.glb', process=False) # expected data check = {"parent": [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]], "children_1": [[1.0, 0.0, 0.0, -5.0], [0.0, 1.0, 0.0, 5.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]], "children_2": [[1.0, 0.0, 0.0, 5.0], [0.0, 1.0, 0.0, 5.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]} # get the scene nodes objs = scene.graph.to_flattened() # check number assert len(objs) == 3 for key in check: assert key in objs assert objs[key]["transform"] == check[key] def test_same_name(self): s = g.get_mesh('TestScene.gltf') # hardcode correct bounds to check against bounds = g.np.array([[-5., -1.82578002, -5.], [5., 1.86791301, 5.]]) # icosahedrons have two primitives each print(len(s.geometry), len(s.graph.nodes_geometry)) assert len(s.graph.nodes_geometry) == 9 assert len(s.geometry) == 7 assert g.np.allclose(s.bounds, bounds, atol=1e-3) # if merged should have combined the icosahedrons s = g.get_mesh('TestScene.gltf', merge_primitives=True) assert len(s.graph.nodes_geometry) == 7 assert len(s.geometry) == 6 assert g.np.allclose(s.bounds, bounds, atol=1e-3) def test_vertex_colors(self): # get a mesh with face colors m = g.get_mesh('machinist.XAML') # export as GLB then re-import export = m.export(file_type='glb') validate_glb(export) r = next(iter( g.trimesh.load(g.trimesh.util.wrap_as_stream( export), file_type='glb').geometry.values())) # original mesh should have vertex colors assert m.visual.kind == 'face' assert m.visual.vertex_colors.ptp(axis=0).ptp() > 0 # vertex colors should have survived import-export assert g.np.allclose(m.visual.vertex_colors, r.visual.vertex_colors) def test_vertex_attrib(self): # test concatenation with texture m = g.get_mesh('fuze.obj') colors = (g.np.random.random( (len(m.vertices), 4)) * 255).astype(g.np.uint8) # set the color vertex attribute m.visual.vertex_attributes['color'] = colors export = m.export(file_type='glb') validate_glb(export) r = next(iter( g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb').geometry.values())) # make sure the color vertex attributes survived the roundtrip assert g.np.allclose( r.visual.vertex_attributes['color'], colors) def test_export_postprocess(self): scene = g.trimesh.Scene() sphere = g.trimesh.primitives.Sphere() sphere.visual.material = g.trimesh.visual.material.PBRMaterial(name='unlit_test') scene.add_geometry(sphere) def add_unlit(gltf_tree): for material_dict in gltf_tree['materials']: if 'unlit' in material_dict.get('name', '').lower(): material_dict["extensions"] = { "KHR_materials_unlit": {} } gltf_tree["extensionsUsed"] = ["KHR_materials_unlit"] gltf_1 = g.trimesh.exchange.gltf.export_gltf(scene) gltf_2 = g.trimesh.exchange.gltf.export_gltf(scene, tree_postprocessor=add_unlit) def extract_materials(gltf_files): return g.json.loads(gltf_files['model.gltf'].decode('utf8'))['materials'] assert "extensions" not in extract_materials(gltf_1)[-1] assert "extensions" in extract_materials(gltf_2)[-1] def test_primitive_geometry_meta(self): # Model with primitives s = g.get_mesh('CesiumMilkTruck.glb') # Assert that primitive geometries are marked as such assert s.geometry['Cesium_Milk_Truck_0'].metadata['from_gltf_primitive'] # Assert that geometries that are not primitives are not marked as such assert not s.geometry['Wheels'].metadata['from_gltf_primitive'] def test_points(self): # test a simple pointcloud export-import cycle points = g.np.arange(30).reshape((-1, 3)) export = g.trimesh.Scene( g.trimesh.PointCloud(points)).export(file_type='glb') validate_glb(export) reloaded = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb') # make sure points survived export and reload assert g.np.allclose(next(iter(reloaded.geometry.values())).vertices, points) def test_bulk(self): # Try exporting every loadable model to GLTF and checking # the generated header against the schema. # strict mode runs a schema header validation assert g.trimesh.tol.strict # check mesh, path, pointcloud exports for root in [g.dir_models, g.os.path.join(g.dir_models, '2D')]: for fn in g.os.listdir(root): path_in = g.os.path.join(root, fn) try: geom = g.trimesh.load(path_in) if isinstance(geom, g.trimesh.path.path.Path): geom = g.trimesh.Scene(geom) except BaseException as E: print(E) continue # voxels don't have an export to gltf mode if not hasattr(geom, 'export'): continue elif hasattr(geom, 'vertices') and len(geom.vertices) == 0: continue elif hasattr(geom, 'geometry') and len(geom.geometry) == 0: continue g.log.info('Testing: {}'.format(fn)) # check a roundtrip which will validate on export # and crash on reload if we've done anything screwey export = geom.export(file_type='glb') validate_glb(export) # todo : importer breaks on `models/empty*` as it # doesn't know what to do with empty meshes # reloaded = g.trimesh.load( # g.trimesh.util.wrap_as_stream(export), # file_type='glb') def test_equal_by_default(self): # all things being equal we shouldn't be moving things # for the usual load-export loop s = g.get_mesh('fuze.obj') # export as GLB then re-load export = s.export(file_type='glb') validate_glb(export) reloaded = g.trimesh.load( g.trimesh.util.wrap_as_stream(export), file_type='glb', process=False) assert len(reloaded.geometry) == 1 m = next(iter(reloaded.geometry.values())) assert g.np.allclose(m.visual.uv, s.visual.uv) assert g.np.allclose(m.vertices, s.vertices) assert g.np.allclose(m.faces, s.faces) # will run a kdtree check g.texture_equal(s, m) if __name__ == '__main__': g.trimesh.util.attach_to_log() g.unittest.main()
modules/face/samples/landmarks_demo.py
ptelang/opencv_contrib
7,158
11199108
import random import numpy as np import cv2 as cv frame1 = cv.imread(cv.samples.findFile('lena.jpg')) if frame1 is None: print("image not found") exit() frame = np.vstack((frame1,frame1)) facemark = cv.face.createFacemarkLBF() try: facemark.loadModel(cv.samples.findFile('lbfmodel.yaml')) except cv.error: print("Model not found\nlbfmodel.yaml can be download at") print("https://raw.githubusercontent.com/kurnianggoro/GSOC2017/master/data/lbfmodel.yaml") cascade = cv.CascadeClassifier(cv.samples.findFile('lbpcascade_frontalface_improved.xml')) if cascade.empty() : print("cascade not found") exit() faces = cascade.detectMultiScale(frame, 1.05, 3, cv.CASCADE_SCALE_IMAGE, (30, 30)) ok, landmarks = facemark.fit(frame, faces=faces) cv.imshow("Image", frame) for marks in landmarks: couleur = (random.randint(0,255), random.randint(0,255), random.randint(0,255)) cv.face.drawFacemarks(frame, marks, couleur) cv.imshow("Image Landmarks", frame) cv.waitKey()
middleware/BaseMiddleWare.py
AxueWong/django-restfulapi
242
11199116
<reponame>AxueWong/django-restfulapi from rest_framework.response import Response from rest_framework import utils import json, os, copy, re, jwt, time from django.shortcuts import render from django.utils.deprecation import MiddlewareMixin from rest_framework import status import urllib from django.http import QueryDict, HttpResponse, JsonResponse from django.conf import settings from django.core.cache import cache from utils.utils import jwt_decode_handler,jwt_encode_handler,jwt_payload_handler,jwt_payload_handler,jwt_response_payload_handler, jwt_get_user_id_from_payload_handler from user.models import User from utils.ECB import ECBCipher from django.db import connection from utils.logger import logger ''' 0 没有错误 1 未知错误 针对此错误 线上版前端弹出网络错误等公共错误 2 前端弹窗错误(包括:字段验证错误、自定义错误、账号或数据不存在、提示错误) ''' # 将 put 请求转为 patch 请求 中间件 class PUTtoPATCHMiddleware(MiddlewareMixin): def process_request(self, request): if request.method == 'PUT': request.method = 'PATCH' # 日志中间件 class LogMiddleware(MiddlewareMixin): def process_request(self, request): try: logger.info('************************************************* 下面是新的一条日志 ***************************************************') logger.info('拦截请求的地址:%s;请求的方法:%s' % (request.path, request.method)) logger.info('==================================== headers 头信息 ====================================================') for key in request.META: if key[:5] == 'HTTP_': logger.debug('%s %s' % (str(key), str(request.META[key]))) logger.info('代理IP:%s' % request.META.get('REMOTE_ADDR')) logger.info('真实IP:%s' % request.META.get('HTTP_X_FORWARDED_FOR')) # HTTP_X_REAL_IP logger.info('==================================== request body信息 ==================================================') logger.info('params参数:%s' % request.GET) if request.path == '/uploadfile/': logger.info('body参数:文件类型') else: logger.info('body参数:%s' % request.body.decode()) # if 'application/x-www-form-urlencoded' in request.META['CONTENT_TYPE']: # print('body参数:', urllib.parse.unquote(request.body.decode())) logger.info('================================== View视图函数内部信息 ================================================') except Exception as e: logger.error('发生错误:已预知的是上传文件导致,非预知错误见下:') logger.error('未知错误:%s' % str(e)) return JsonResponse({"message": "出现了无法预料的错误:%s" % e, "errorCode": 1, "data": {}}) def process_exception(self, request, exception): logger.error('发生错误的请求地址:%s;错误原因:%s' % (request.path, str(exception))) return JsonResponse({"message": "出现了无法预料的view视图错误:%s" % exception.__str__(), "errorCode": 1, "data": {}}) def process_response(self,request,response): if settings.SHOWSQL: for sql in connection.queries: logger.debug(sql) if type(response) == Response: if type(response.data) != utils.serializer_helpers.ReturnList: if type(response.data) == dict and (response.data.get('errorCode') and response.data.get('errorCode') != 0): logger.error('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 出现异常的日志 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<') logger.error(response.data) logger.error('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 异常日志结束 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<') if type(response) == JsonResponse: logger.error('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 出现异常的日志 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<') logger.error(json.loads(response.content.decode())) logger.error('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 异常日志结束 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<') return response # 权限 加密中间件 class PermissionMiddleware(MiddlewareMixin): def process_request(self, request): white_paths = ['/wechat/wxnotifyurl', '/', '/__debug__/', '/__debug__', '/favicon.ico'] if request.path not in white_paths and not re.match(r'/swagger.*', request.path, re.I) and not re.match(r'/redoc/.*', request.path, re.I) and not re.match(r'/export.*', request.path, re.I): # print('查看authkey',request.META.get('HTTP_INTERFACEKEY')) auth_key = request.META.get('HTTP_INTERFACEKEY') # key顺序必须符合要求:毫秒时间戳+后端分配的key+32位随机字符串(uuid更佳) if auth_key: # print('查看秘钥:', cache.get(auth_key)) if cache.get(auth_key): logger.info('发现秘钥被多次使用,应当记录ip加入预备黑名单。') return JsonResponse({"message": "非法访问!已禁止操作!" , "errorCode": 10, "data": {}}) # 先解密 target_obj = ECBCipher(settings.INTERFACE_KEY) target_key = target_obj.decrypted(auth_key) # print('明文:', target_key) # 无法解密时直接禁止访问 if not target_key: return JsonResponse({"message": "非法访问!已禁止操作!" , "errorCode": 10, "data": {}}) # 解密成功后 # 设置一个redis 记录当前时间戳 time_int = int(time.time()) # 记录秒 target_time, backend_key, random_str = target_key.split('+') if backend_key not in settings.DISPATCH_KEYS: return JsonResponse({"message": "非法访问!已禁止操作!" , "errorCode": 10, "data": {}}) if (time_int - int(int(target_time) / 1000)) > settings.INTERFACE_TIMEOUT: logger.info('发现秘钥被多次使用,应当记录ip加入预备黑名单。') return JsonResponse({"message": "非法访问!已禁止操作!" , "errorCode": 10, "data": {}}) cache.set(auth_key, "true", timeout=settings.INTERFACE_TIMEOUT) pass else: return JsonResponse({"message": "接口秘钥未找到!禁止访问!" , "errorCode": 10, "data": {}}) # 格式化返回json中间件 class FormatReturnJsonMiddleware(object): def __init__(self, get_response): self.get_response = get_response def __call__(self, request): response = self.get_response(request) if not type(response) == HttpResponse: try: if hasattr(self, 'process_request'): response = self.process_request(request) if not response: response = self.get_response(request) if hasattr(self, 'process_response'): response = self.process_response(request, response) if request.method == 'DELETE': # print(response.data) if response.status_code == 204: response.data = {"message": '删除成功', "errorCode": 0, "data": {}} else: if response.data.get('detail'): data = {"message": response.data.get('detail'), "errorCode": 2, "data": {}} elif response.data.get('message'): data = response.data else: data = {"message": 'error', "errorCode": 2, "data": response.data} response.data = data response.status_code = 200 response._is_rendered = False response.render() else: white_list = ['/wxnotifyurl', '/alinotifyurl'] if request.path != '/' and request.path not in white_list and request.path != '/wechat/wxnotifyurl' and not re.match(r'/swagger.*', request.path, re.I) and not re.match(r'/redoc/.*', request.path, re.I) and not re.match(r'/export.*', request.path, re.I): # 适配不分页返回数据的格式化 if type(response.data) == utils.serializer_helpers.ReturnList: data = {"message": 'ok', "errorCode": 0,"data": response.data} response.data = data if response.data.get('detail'): data = {"message": response.data.get('detail'), "errorCode": 2, "data": {}} response.data = data elif response.status_code > 200 and response.status_code <= 299: data = {"message": 'ok', "errorCode": 0,"data": response.data} response.data = data elif response.status_code >= 400 and response.status_code <= 499: if response.data.get('message'): # 兼容APIView返回data的设置 pass else: data = {"message": str(response.data), "errorCode": 2,"data": response.data} response.data = data else: if response.data.get('message'): # 兼容APIView返回data的设置 pass elif response.data.get('count') != None: # 兼容分页返回data的设置 response.data['errorCode'] = 0 response.data['message'] = 'ok' else: data = {"message": 'ok', "errorCode": 0, "data": response.data} response.data = data response.status_code = 200 response._is_rendered = False response.render() except Exception as e: logger.error('发生错误:%s' % str(e)) if e.__str__() == "'HttpResponseNotFound' object has no attribute 'data'": return JsonResponse({"message": '路径/页面未找到。', "errorCode": 2,"data": {}}) if e.__str__() == "'JsonResponse' object has no attribute 'data'": return response return JsonResponse({"message": "出现了无法预料的view视图错误:%s" % e.__str__(), "errorCode": 1, "data": {}}) return response # 冻结用户中间件 class BlockUserMiddleware(MiddlewareMixin): def process_request(self, request): if request.META.get('HTTP_AUTHORIZATION'): if ' ' not in request.META.get('HTTP_AUTHORIZATION'): return JsonResponse({"message": 'Token不合法' , "errorCode": 2, "data": {}}) token = (request.META.get('HTTP_AUTHORIZATION').split(' '))[1] try: payload = jwt_decode_handler(token) user_id = jwt_get_user_id_from_payload_handler(payload) if not user_id: return JsonResponse({"message": "用户不存在!" , "errorCode": 2, "data": {}}) now_user = User.objects.values('id', 'is_freeze').filter(id=user_id).first() if not now_user: return JsonResponse({"message": "用户不存在!" , "errorCode": 2, "data": {}}) if now_user.get('is_freeze'): return JsonResponse({"message": "账户被冻结!", "errorCode": 2, "data": {}}) except jwt.ExpiredSignature: return JsonResponse({"message": 'Token过期' , "errorCode": 2, "data": {}}) except jwt.DecodeError: return JsonResponse({"message": 'Token不合法' , "errorCode": 2, "data": {}}) except jwt.InvalidTokenError as e: return JsonResponse({"message": "出现了无法预料的view视图错误:%s" % e, "errorCode": 1, "data": {}})
pgmpy/factors/FactorSet.py
echoyi/pgmpy
2,144
11199126
#!/usr/bin/env python3 from functools import reduce from pgmpy.factors.base import BaseFactor class FactorSet(object): r""" Base class of *DiscreteFactor Sets*. A factor set provides a compact representation of higher dimensional factor :math:`\phi_1\cdot\phi_2\cdots\phi_n` For example the factor set corresponding to factor :math:`\phi_1\cdot\phi_2` would be the union of the factors :math:`\phi_1` and :math:`\phi_2` i.e. factor set :math:`\vec\phi = \phi_1 \cup \phi_2`. """ def __init__(self, *factors_list): """ Initialize the factor set class. Parameters ---------- factors_list: Factor1, Factor2, .... All the factors whose product is represented by the factor set Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set = FactorSet(phi1, phi2) >>> factor_set <pgmpy.factors.FactorSet.FactorSet at 0x7f8e32af6d50> >>> print(factor_set) set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4c2d0>, <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4c710>]) """ if not all(isinstance(phi, BaseFactor) for phi in factors_list): raise TypeError("Input parameters must be child classes of BaseFactor") self.factors = set([factor.copy() for factor in factors_list]) def add_factors(self, *factors): """ Adds factors to the factor set. Parameters ---------- factors: Factor1, Factor2, ...., Factorn factors to be added into the factor set Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8)) >>> factor_set1.add_factors(phi3, phi4) >>> print(factor_set1) set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4ca10>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e4c393690>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b4c750>, <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4cb50>]) """ self.factors.update(factors) def remove_factors(self, *factors): """ Removes factors from the factor set. Parameters ---------- factors: Factor1, Factor2, ...., Factorn factors to be removed from the factor set Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> factor_set1.add_factors(phi3) >>> print(factor_set1) set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b5b050>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b250>, <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b5b150>]) >>> factor_set1.remove_factors(phi1, phi2) >>> print(factor_set1) set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b4cb10>]) """ for factor in factors: self.factors.remove(factor) def get_factors(self): """ Returns all the factors present in factor set. Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> factor_set1.add_factors(phi3) >>> factor_set1.get_factors() {<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f827c0a23c8>, <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f827c0a2358>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f825243f9e8>} """ return self.factors def product(self, factorset, inplace=True): r""" Return the factor sets product with the given factor sets Suppose :math:`\vec\phi_1` and :math:`\vec\phi_2` are two factor sets then their product is a another factors set :math:`\vec\phi_3 = \vec\phi_1 \cup \vec\phi_2`. Parameters ---------- factorsets: FactorSet1, FactorSet2, ..., FactorSetn FactorSets to be multiplied inplace: A boolean (Default value True) If inplace = True , then it will modify the FactorSet object, if False, it will return a new FactorSet object. Returns -------- If inpalce = False, will return a new FactorSet object, which is product of two factors Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8)) >>> factor_set2 = FactorSet(phi3, phi4) >>> print(factor_set2) set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b050>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b690>]) >>> factor_set2.product(factor_set1) >>> print(factor_set2) set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b4c910>, <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b4cc50>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b050>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b690>]) >>> factor_set2 = FactorSet(phi3, phi4) >>> factor_set3 = factor_set2.product(factor_set1, inplace=False) >>> print(factor_set2) set([<DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b060>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b790>]) """ factor_set = self if inplace else self.copy() factor_set1 = factorset.copy() factor_set.add_factors(*factor_set1.factors) if not inplace: return factor_set def divide(self, factorset, inplace=True): r""" Returns a new factor set instance after division by the factor set Division of two factor sets :math:`\frac{\vec\phi_1}{\vec\phi_2}` basically translates to union of all the factors present in :math:`\vec\phi_2` and :math:`\frac{1}{\phi_i}` of all the factors present in :math:`\vec\phi_2`. Parameters ---------- factorset: FactorSet The divisor inplace: A boolean (Default value True) If inplace = True ,then it will modify the FactorSet object, if False then will return a new FactorSet object. Returns -------- If inplace = False, will return a new FactorSet Object which is division of given factors. Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8)) >>> factor_set2 = FactorSet(phi3, phi4) >>> factor_set3 = factor_set2.divide(factor_set1) >>> print(factor_set3) set([<DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f8e32b5ba10>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f8e32b5b650>, <DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f8e32b5b050>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f8e32b5b8d0>]) """ factor_set = self if inplace else self.copy() factor_set1 = factorset.copy() factor_set.add_factors( *[phi.identity_factor() / phi for phi in factor_set1.factors] ) if not inplace: return factor_set def marginalize(self, variables, inplace=True): """ Marginalizes the factors present in the factor sets with respect to the given variables. Parameters ---------- variables: list, array-like List of the variables to be marginalized. inplace: boolean (Default value True) If inplace=True it will modify the factor set itself, would create a new factor set Returns ------- If inplace = False, will return a new marginalized FactorSet object. Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> factor_set1.marginalize('x1') >>> print(factor_set1) set([<DiscreteFactor representing phi(x2:3, x3:2) at 0x7f8e32b4cc10>, <DiscreteFactor representing phi(x3:2, x4:2) at 0x7f8e32b4cf90>]) """ if isinstance(variables, str): raise TypeError("Expected list or array-like type got type str") factor_set = self if inplace else self.copy() factors_to_be_marginalized = set( filter(lambda x: set(x.scope()).intersection(variables), factor_set.factors) ) for factor in factors_to_be_marginalized: variables_to_be_marginalized = list( set(factor.scope()).intersection(variables) ) if inplace: factor.marginalize(variables_to_be_marginalized, inplace=True) else: factor_set.remove_factors(factor) factor_set.add_factors( factor.marginalize(variables_to_be_marginalized, inplace=False) ) if not inplace: return factor_set def __mul__(self, other): return self.product(other) def __truediv__(self, other): return self.divide(other) def __str__(self): return self.factors.__str__() def copy(self): """ Create a copy of factor set. Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set = FactorSet(phi1, phi2) >>> factor_set <pgmpy.factors.FactorSet.FactorSet at 0x7fa68f390320> >>> factor_set_copy = factor_set.copy() >>> factor_set_copy <pgmpy.factors.FactorSet.FactorSet at 0x7f91a0031160> """ # No need to have copies of factors as argument because __init__ method creates copies. return FactorSet(*self.factors) def factorset_product(*factorsets_list): r""" Base method used for product of factor sets. Suppose :math:`\vec\phi_1` and :math:`\vec\phi_2` are two factor sets then their product is a another factors set :math:`\vec\phi_3 = \vec\phi_1 \cup \vec\phi_2`. Parameters ---------- factorsets_list: FactorSet1, FactorSet2, ..., FactorSetn All the factor sets to be multiplied Returns ------- Product of factorset in factorsets_list Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> from pgmpy.factors import factorset_product >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8)) >>> factor_set2 = FactorSet(phi3, phi4) >>> factor_set3 = factorset_product(factor_set1, factor_set2) >>> print(factor_set3) set([<DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7fb3a1933e90>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7fb3a1933f10>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7fb3a1933f90>, <DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7fb3a1933e10>]) """ if not all(isinstance(factorset, FactorSet) for factorset in factorsets_list): raise TypeError("Input parameters must be FactorSet instances") return reduce(lambda x, y: x.product(y, inplace=False), factorsets_list) def factorset_divide(factorset1, factorset2): r""" Base method for dividing two factor sets. Division of two factor sets :math:`\frac{\vec\phi_1}{\vec\phi_2}` basically translates to union of all the factors present in :math:`\vec\phi_2` and :math:`\frac{1}{\phi_i}` of all the factors present in :math:`\vec\phi_2`. Parameters ---------- factorset1: FactorSet The dividend factorset2: FactorSet The divisor Returns ------- The division of factorset1 and factorset2 Examples -------- >>> from pgmpy.factors import FactorSet >>> from pgmpy.factors.discrete import DiscreteFactor >>> from pgmpy.factors import factorset_divide >>> phi1 = DiscreteFactor(['x1', 'x2', 'x3'], [2, 3, 2], range(12)) >>> phi2 = DiscreteFactor(['x3', 'x4', 'x1'], [2, 2, 2], range(8)) >>> factor_set1 = FactorSet(phi1, phi2) >>> phi3 = DiscreteFactor(['x5', 'x6', 'x7'], [2, 2, 2], range(8)) >>> phi4 = DiscreteFactor(['x5', 'x7', 'x8'], [2, 2, 2], range(8)) >>> factor_set2 = FactorSet(phi3, phi4) >>> factor_set3 = factorset_divide(factor_set2, factor_set1) >>> print(factor_set3) set([<DiscreteFactor representing phi(x3:2, x4:2, x1:2) at 0x7f119ad78f90>, <DiscreteFactor representing phi(x5:2, x6:2, x7:2) at 0x7f119ad78e50>, <DiscreteFactor representing phi(x1:2, x2:3, x3:2) at 0x7f119ad78ed0>, <DiscreteFactor representing phi(x5:2, x7:2, x8:2) at 0x7f119ad78e90>]) """ if not isinstance(factorset1, FactorSet) or not isinstance(factorset2, FactorSet): raise TypeError("factorset1 and factorset2 must be FactorSet instances") return factorset1.divide(factorset2, inplace=False)
tensorflow_federated/python/tests/backend_accelerators_test.py
zhihansh/federated-oss
1,918
11199137
# Copyright 2020, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest from absl.testing import parameterized import numpy as np import tensorflow as tf import tensorflow_federated as tff def _create_tff_parallel_clients_with_dataset_reduce(): @tf.function def reduce_fn(x, y): return x + y @tf.function def dataset_reduce_fn(ds, initial_val): return ds.reduce(initial_val, reduce_fn) @tff.tf_computation(tff.SequenceType(tf.int64)) def dataset_reduce_fn_wrapper(ds): initial_val = tf.Variable(np.int64(1.0)) return dataset_reduce_fn(ds, initial_val) @tff.federated_computation(tff.at_clients(tff.SequenceType(tf.int64))) def parallel_client_run(client_datasets): return tff.federated_map(dataset_reduce_fn_wrapper, client_datasets) return parallel_client_run def _create_tff_parallel_clients_with_iter_dataset(): @tf.function def reduce_fn(x, y): return x + y @tf.function def dataset_reduce_fn(ds, initial_val): for batch in iter(ds): initial_val = reduce_fn(initial_val, batch) return initial_val @tff.tf_computation(tff.SequenceType(tf.int64)) def dataset_reduce_fn_wrapper(ds): initial_val = tf.Variable(np.int64(1.0)) return dataset_reduce_fn(ds, initial_val) @tff.federated_computation(tff.at_clients(tff.SequenceType(tf.int64))) def parallel_client_run(client_datasets): return tff.federated_map(dataset_reduce_fn_wrapper, client_datasets) return parallel_client_run class LocalExecutorMultiTPUTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() tpu_devices = tf.config.list_logical_devices('TPU') if len(tpu_devices) < 2: self.skipTest('Skip multi-tpu tests when {} tpus are provided'.format( len(tpu_devices))) @parameterized.named_parameters( ('iter_server_on_cpu', 'CPU', _create_tff_parallel_clients_with_iter_dataset), ('iter_server_on_tpu', 'TPU', _create_tff_parallel_clients_with_iter_dataset), ('reduce_server_on_cpu', 'CPU', _create_tff_parallel_clients_with_dataset_reduce), ('reduce_server_on_tpu', 'TPU', _create_tff_parallel_clients_with_dataset_reduce), ) def test_local_executor_multi_tpus(self, tf_device, create_tff_parallel_clients_fn): self.skipTest('b/157625321') tf_devices = tf.config.list_logical_devices(tf_device) server_tf_device = None if not tf_devices else tf_devices[0] client_devices = tf.config.list_logical_devices('TPU') tff.backends.native.set_local_python_execution_context( server_tf_device=server_tf_device, client_tf_devices=client_devices) parallel_client_run = create_tff_parallel_clients_fn() client_data = [ tf.data.Dataset.range(10), tf.data.Dataset.range(10).map(lambda x: x + 1) ] client_results = parallel_client_run(client_data) self.assertEqual(client_results, [np.int64(46), np.int64(56)]) if __name__ == '__main__': absltest.main()
insights/tests/test_file_permissions.py
lhuett/insights-core
121
11199149
import pytest from insights.util.file_permissions import FilePermissions from insights.core import FileListing from insights.tests import test_file_listing, context_wrap PERMISSIONS_TEST_EXCEPTION_VECTORS = [ ('-rw------ 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', True), ('bash: ls: command not found', True), ('-rw------ 1 root root 762 Se', True), ('-rw------- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False), ('-rw-------. 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False), ('-rw-------@ 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False), ('-rw-------+ 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False), ('-rw-------* 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False), ('-rw-------asdf 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False), ('-rw------- 1 ro:t root 762 Sep 23 002 /etc/ssh/sshd_config', True), ('-rw------- 1 root r:ot 762 Sep 23 002 /etc/ssh/sshd_config', True), ('-rwasdfas- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', True), ('-rwx/----- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', True), ('/usr/bin/ls: cannot access /boot/grub2/grub.cfg: No such file or directory', True), ('cannot access /boot/grub2/grub.cfg: No such file or directory', True), ('No such file or directory', True), ('adsf', True), ] PERMISSIONS_TEST_VECTORS = [ ('-rw------- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False, 'rw-', '---', '---', 'root', 'root', '/etc/ssh/sshd_config', True, True, True, True), ('-rw------- 1 root root 762 Sep 23 002 /a path/with/spaces everywhere', False, 'rw-', '---', '---', 'root', 'root', '/a path/with/spaces everywhere', True, True, True, True), ('-rw------- 1 root root 762 Sep 23 002 no_slash_here', False, 'rw-', '---', '---', 'root', 'root', 'no_slash_here', True, True, True, True), ('-rw-------. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config', False, 'rw-', '---', '---', 'root', 'root', '/etc/ssh/sshd_config', True, True, True, True), ('-rw-rw-rw-. 1 root root 4308 Apr 22 15:57 /etc/ssh/sshd_config', False, 'rw-', 'rw-', 'rw-', 'root', 'root', '/etc/ssh/sshd_config', True, True, False, False), ('-rw-rw---- 1 root user 762 Sep 23 002 /etc/ssh/sshd_config', True, 'rw-', 'rw-', '---', 'root', 'user', '/etc/ssh/sshd_config', True, False, False, False), ('-rw------- 1 root user 762 Sep 23 002 /etc/ssh/sshd_config', False, 'rw-', '---', '---', 'root', 'user', '/etc/ssh/sshd_config', True, False, True, True), ('-rw------- 1 user root 762 Sep 23 002 /etc/ssh/sshd_config', False, 'rw-', '---', '---', 'user', 'root', '/etc/ssh/sshd_config', False, False, False, False), ('-rw-rw---- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', True, 'rw-', 'rw-', '---', 'root', 'root', '/etc/ssh/sshd_config', True, True, True, True), ('-rw-rw-r-- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', True, 'rw-', 'rw-', 'r--', 'root', 'root', '/etc/ssh/sshd_config', True, True, False, True), ('-rw-rw--w- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', True, 'rw-', 'rw-', '-w-', 'root', 'root', '/etc/ssh/sshd_config', True, True, True, False), ('---------- 1 root root 762 Sep 23 002 /etc/ssh/sshd_config', False, '---', '---', '---', 'root', 'root', '/etc/ssh/sshd_config', True, True, True, True), ] def test_permissions(): for vector in PERMISSIONS_TEST_VECTORS: (line, with_group, permissions_owner, permissions_group, permissions_other, owner, group, path, owned_by_root_user, owned_by_root_user_and_group, only_root_can_read, only_root_can_write) = vector p = FilePermissions(line) assert p.perms_owner == permissions_owner assert p.perms_group == permissions_group assert p.perms_other == permissions_other assert p.owner == owner assert p.group == group assert p.owned_by('root', also_check_group=False) == owned_by_root_user assert p.owned_by('root', also_check_group=True) == owned_by_root_user_and_group assert p.only_root_can_read(root_group_can_read=with_group) == only_root_can_read assert p.only_root_can_write(root_group_can_write=with_group) == only_root_can_write assert p.all_zero() == all((p.perms_owner == '---', p.perms_group == '---', p.perms_other == '---')) assert p.owner_can_read() == ('r' in p.perms_owner) assert p.owner_can_write() == ('w' in p.perms_owner) assert p.owner_can_only_read() == ('r--' == p.perms_owner) assert p.group_can_read() == ('r' in p.perms_group) assert p.group_can_write() == ('w' in p.perms_group) assert p.group_can_only_read() == ('r--' == p.perms_group) assert p.others_can_read() == ('r' in p.perms_other) assert p.others_can_write() == ('w' in p.perms_other) assert p.others_can_only_read() == ('r--' == p.perms_other) def test_permissions_invalid(): for vector in PERMISSIONS_TEST_EXCEPTION_VECTORS: garbage, should_raise = vector if should_raise: with pytest.raises(ValueError): FilePermissions(garbage) else: # shouldn't raise an exception FilePermissions(garbage) def test_multiple_directories(): dirs = FileListing(context_wrap(test_file_listing.MULTIPLE_DIRECTORIES)) assert '/etc/sysconfig' in dirs assert 'cbq' in dirs.dirs_of('/etc/sysconfig') # drwxr-xr-x. 2 0 0 41 Jul 6 23:32 cbq obj = FilePermissions.from_dict(dirs.path_entry('/etc/sysconfig/cbq')) assert hasattr(obj, 'name') assert obj.name == 'cbq' assert obj.perms_owner == 'rwx' assert obj.perms_group == 'r-x' assert obj.perms_other == 'r-x'
examples/python/tsa_dates.py
CCHiggins/statsmodels
6,931
11199159
<filename>examples/python/tsa_dates.py #!/usr/bin/env python # coding: utf-8 # DO NOT EDIT # Autogenerated from the notebook tsa_dates.ipynb. # Edit the notebook and then sync the output with this file. # # flake8: noqa # DO NOT EDIT # # Dates in timeseries models import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.tsa.ar_model import AutoReg, ar_select_order plt.rc("figure", figsize=(16, 8)) plt.rc("font", size=14) # ## Getting started data = sm.datasets.sunspots.load() # Right now an annual date series must be datetimes at the end of the # year. from datetime import datetime dates = pd.date_range("1700-1-1", periods=len(data.endog), freq="A-DEC") # ## Using Pandas # # Make a pandas TimeSeries or DataFrame data.endog.index = dates endog = data.endog endog # Instantiate the model selection_res = ar_select_order(endog, 9, old_names=False, seasonal=True, period=11) pandas_ar_res = selection_res.model.fit() # Out-of-sample prediction pred = pandas_ar_res.predict(start="2005", end="2027") print(pred) fig = pandas_ar_res.plot_predict(start="2005", end="2027")
release/stubs.min/Autodesk/Revit/DB/__init___parts/ElementType.py
htlcnn/ironpython-stubs
182
11199164
class ElementType(Element,IDisposable): """ Base class for all Types within Autodesk Revit. """ def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def Duplicate(self,name): """ Duplicate(self: ElementType,name: str) -> ElementType Duplicates an existing element type and assigns it a new name. name: The new name of the element type. Returns: The duplicated element type. """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def GetPreviewImage(self,size): """ GetPreviewImage(self: ElementType,size: Size) -> Bitmap Get the preview image of an element. This image is similar to what is seen in the Revit UI when selecting the type of an element. size: The width and height of the preview image in pixels. Returns: System::Drawing::Bitmap represents the preview image. ll if there is no preview image. """ pass def GetSimilarTypes(self): """ GetSimilarTypes(self: ElementType) -> ICollection[ElementId] Obtains a set of types that are similar to this type. Returns: A set of element IDs of types that are similar to this type. """ pass def IsSimilarType(self,typeId): """ IsSimilarType(self: ElementType,typeId: ElementId) -> bool Checks if given type is similar to this type. typeId: ElementId of the type to check. Returns: True if given type is similar to this type,false otherwise. """ pass def IsValidDefaultFamilyType(self,familyCategoryId): """ IsValidDefaultFamilyType(self: ElementType,familyCategoryId: ElementId) -> bool Identifies if this type is a valid default family type for the given family category id. familyCategoryId: The family category id. Returns: True if this type is a valid default family type for the given family category id. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass CanBeCopied=property(lambda self: object(),lambda self,v: None,lambda self: None) """Determine if this ElementType can create a copy Get: CanBeCopied(self: ElementType) -> bool """ CanBeDeleted=property(lambda self: object(),lambda self,v: None,lambda self: None) """Determine if this ElementType can be deleted Get: CanBeDeleted(self: ElementType) -> bool """ CanBeRenamed=property(lambda self: object(),lambda self,v: None,lambda self: None) """Determine if this ElementType can be renamed Get: CanBeRenamed(self: ElementType) -> bool """ FamilyName=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the family name of this element type. Get: FamilyName(self: ElementType) -> str """ Name=property(lambda self: object(),lambda self,v: None,lambda self: None) """Set the name for the ElementType. Set: Name(self: ElementType)=value """
src/robomaster/servo.py
yukaryote/RoboMaster-SDK
204
11199175
<gh_stars>100-1000 # -*-coding:utf-8-*- # Copyright (c) 2020 DJI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the file LICENSE.txt or at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import module from . import protocol from . import logger from . import dds from . import action import struct __all__ = ['Servo'] class ServoSubject(dds.Subject): name = dds.DDS_SERVO uid = dds.SUB_UID_MAP[name] def __init__(self): self._valid = [0] * 4 self._recv = [0] self._speed = [0] * 4 self._angle = [0] * 4 def servo_data(self): return self._valid, self._speed, self._angle def data_info(self): return self._valid, self._speed, self._angle def decode(self, buf): self._valid[0] = buf[0] & 0x01 self._valid[1] = (buf[0] >> 1) & 0x01 self._valid[2] = (buf[0] >> 2) & 0x01 self._valid[3] = (buf[0] >> 3) & 0x01 [self._recv, self._speed[0], self._speed[1], self._speed[2], self._speed[3], self._angle[0], self._angle[1], self._angle[2], self._angle[3]] = struct.unpack('<Bhhhhhhhh', buf) class ServoSetAngleAction(action.Action): _action_proto_cls = protocol.ProtoServoCtrlSet _push_proto_cls = protocol.ProtoServoCtrlPush _target = protocol.host2byte(3, 6) def __init__(self, index=0, angle=0, **kw): super().__init__(**kw) self._id = index self._value = angle self._angle = 0 def __repr__(self): return "action_id:{0}, state:{1}, percent:{2}, value:{3}".format( self._action_id, self._state, self._percent, self._angle) def encode(self): proto = protocol.ProtoServoCtrlSet() proto._id = self._id proto._value = (self._value+180)*10 return proto def update_from_push(self, proto): if proto.__class__ is not self._push_proto_cls: return self._percent = proto._percent self._update_action_state(proto._action_state) self._angle = proto._value logger.info("{0} update_from_push: {1}".format(self.__class__.__name__, self)) class Servo(module.Module): """ EP 舵机模块 """ _host = protocol.host2byte(3, 5) def __init__(self, robot): super().__init__(robot) self._action_dispatcher = robot.action_dispatcher def moveto(self, index=0, angle=0): """ 舵机绝对位置移动 :param index: int [1, 3],舵机编号 :param angle: int: [-180, 180],舵机旋转角度,单位(°) :return: action对象 """ action = ServoSetAngleAction(index, angle) self._action_dispatcher.send_action(action) return action def drive_speed(self, index=0, speed=0): proto = protocol.ProtoServoModeSet() proto._id = (index << 5) + 0x19 proto._mode = 1 msg = protocol.Msg(self._client.hostbyte, self._host, proto) try: resp_msg = self._client.send_sync_msg(msg) if resp_msg: prot = resp_msg.get_proto() if prot._retcode == 0: proto = protocol.ProtoServoControl() proto._id = (index << 5) + 0x19 proto._enable = 1 proto._value = int(((speed + 49) * 900) / 98) msg = protocol.Msg(self._client.hostbyte, self._host, proto) try: resp_msg = self._client.send_sync_msg(msg) if resp_msg: prot = resp_msg.get_proto() if prot._retcode == 0: return True else: return False else: return False except Exception as e: logger.warning("Servo: drive_speed, e {0}".format(e)) return False else: return False else: return False except Exception as e: logger.warning("Servo: drive_speed, send_sync_msg e {0}".format(e)) return False def pause(self, index=0): """ 停止 :param index: int: [1, 3],舵机编号 :return bool: 调用结果 """ proto = protocol.ProtoServoControl() proto._id = (index << 5) + 0x19 proto._enable = 0 proto._value = 0 msg = protocol.Msg(self._client.hostbyte, self._host, proto) try: resp_msg = self._client.send_sync_msg(msg) if resp_msg: prot = resp_msg.get_proto() if prot._retcode == 0: return True else: return False else: return False except Exception as e: logger.warning("Servo: pause, send_sync_msg e {0}".format(e)) return False def get_angle(self, index=1): """ 获取舵机角度值 :param index: int: [1,3],舵机编号 :return: int 舵机角度 """ proto = protocol.ProtoServoGetAngle() proto._id = (index << 5) + 0x19 msg = protocol.Msg(self._client.hostbyte, self._host, proto) print(proto) try: resp_msg = self._client.send_sync_msg(msg) if resp_msg: prot = resp_msg.get_proto() angle = prot._angle return angle else: return False except Exception as e: logger.warning("Servo: get_angle, send_sync_msg e {0}".format(e)) return False def sub_servo_info(self, freq=5, callback=None, *args, **kw): """ 订阅舵机角度信息 :param freq: enum: (1, 5, 10, 20, 50) 设置数据订阅数据的推送频率,单位 Hz :param callback: 回调函数,返回数据 (valid[4], speed[4], angle[4]): :valid[4]: 4个舵机在线状态 :speed[4]: 4个舵机的速度值 :angle[4]: 4个舵机的角度值 :param args: 可变参数 :param kw: 关键字参数 :return: bool: 数据订阅结果 """ sub = self._robot.dds subject = ServoSubject() subject.freq = freq return sub.add_subject_info(subject, callback, args, kw) def unsub_servo_info(self): """ 取消订阅舵机的角度信息 :return: bool: 调用结果 """ sub_dds = self._robot.dds return sub_dds.del_subject_info(dds.DDS_SERVO)
observations/r/political_knowledge.py
hajime9652/observations
199
11199181
<filename>observations/r/political_knowledge.py<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def political_knowledge(path): """Political knowledge in the US and Europe Data from McChesney and Nichols (2010) on domestic and international knowledge in Denmark, Finland, the UK and the US among college graduates, people with some college, and roughly 12th grade only. A `data.frame` containing 12 columns and 4 rows. country a character vector of Denmark, Finland, UK, and US, being the four countries comparied in this data set. DomesticKnowledge.hs, DomesticKnowledge.sc, DomesticKnowledge.c percent correct answers to calibrated questions regarding knowledge of prominent items in domestic news in a survey of residents of the four countries among college graduates (ending ".c"), some college (".sc") and high school ("hs"). Source: McChesney and Nichols (2010, chapter 1, chart 8). InternationalKnowledge.hs, InternationalKnowledge.sc, InternationalKnowledge.c percent correct answers to calibrated questions regarding knowledge of prominent items in international news in a survey of residents of the four countries by education level as for DomesticKnowledge. Source: McChesney and Nichols (2010, chapter 1, chart 7). PoliticalKnowledge.hs, PoliticalKnowledge.sc, PoliticalKnowledge.c average of domestic and international knowledge PublicMediaPerCapita Per capital spending on public media in 2007 in US dollars from McChesney and Nichols (2010, chapter 4, chart 1) PublicMediaRel2US Spending on public media relative to the US, being `PublicMediaPerCapita / PublicMediaPerCapita[4]`. Author(s) ~~~~~~~~~ <NAME> <NAME> and John Nichols (2010) *The Death and Life of American Journalism* (Nation Books) Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `political_knowledge.csv`. Returns: Tuple of np.ndarray `x_train` with 4 rows and 12 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'political_knowledge.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Ecdat/politicalKnowledge.csv' maybe_download_and_extract(path, url, save_file_name='political_knowledge.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
tests/unit/test_html_conversion.py
joelostblom/dash-docs
379
11199185
import pytest import sys from dash_docs.convert_to_html import convert_to_html @pytest.mark.skipif( sys.version_info < (3, 7), reason="skip non-essential, potentially flaky tests" ) def test_html_conversion(): exceptions = [] success = [] dcc_link = [] from dash_docs.chapter_index import URL_TO_CONTENT_MAP for url in URL_TO_CONTENT_MAP: try: ssr_content = convert_to_html(URL_TO_CONTENT_MAP[url]) if '<dccLink' in ssr_content: dcc_link.append(url) else: success.append(url) except Exception as e: exceptions.append([url, e]) error_message = '' if len(exceptions) > 0: for i in exceptions: error_message += '\n===============\nIssue with ' + i[0] + '\n' + str(i[1]) + '\n\n\n' error_message += '\n\n\nThese URLs were OK:\n{}'.format( '-' + '\n-'.join(success) ) error_message += '\n\n\nThese URLs had exceptions:\n{}'.format( '-' + '\n-'.join([i[0] for i in exceptions]) ) error_message += '\n\n\nThese URLs still had dccLink in their content:\n{}'.format( '-' + '\n-'.join(dcc_link) ) error_message += '\n\n{} OK, {} need to be fixed, {} need dccLink fixed'.format( len(success), len(exceptions), len(dcc_link)) assert len(exceptions) == 0 and len(dcc_link) == 0, error_message
hatsploit/core/utils/update.py
EntySec/HatSploit
139
11199186
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020-2022 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import os import requests import shutil import subprocess from packaging import version from hatsploit.core.cli.badges import Badges from hatsploit.lib.config import Config class Update: config = Config() badges = Badges() def check_update(self): try: remote_config = requests.get( 'https://raw.githubusercontent.com/EntySec/HatSploit/main/hatsploit/config/core_config.yml', stream=True).content except Exception: remote_config = None if remote_config: remote_version = self.config.get_config_file(remote_config)['details']['version'] local_version = self.config.core_config['details']['version'] return version.parse(local_version) < version.parse(remote_version) return remote_config def update(self): if self.check_update(): self.badges.print_process("Updating HatSploit Framework...") shutil.rmtree(os.path.abspath(self.config.path_config['root_path'])) subprocess.call(['pip3', 'install', 'git+https://github.com/EntySec/HatSploit', '--ignore-installed'], shell=False) self.badges.print_success("HatSploit updated successfully!") return self.badges.print_warning("Your HatSploit is up-to-date.")
deps/src/boost_1_65_1/libs/mpi/test/python/ring_test.py
shreyasvj25/turicreate
11,356
11199192
<reponame>shreyasvj25/turicreate # Copyright (C) 2006 <NAME> <<EMAIL>g.gregor -at- gmail.com>. # Use, modification and distribution is subject to the Boost Software # License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # Test basic communication. import boost.parallel.mpi as mpi def ring_test(comm, value, kind, root): next_peer = (comm.rank + 1) % comm.size; prior_peer = (comm.rank + comm.size - 1) % comm.size; if comm.rank == root: print ("Passing %s around a ring from root %d..." % (kind, root)), comm.send(next_peer, 0, value) (other_value, stat) = comm.recv(return_status = True) assert value == other_value assert stat.source == prior_peer assert stat.tag == 0 else: msg = comm.probe() other_value = comm.recv(msg.source, msg.tag) assert value == other_value comm.send(next_peer, 0, other_value) comm.barrier() if comm.rank == root: print "OK" pass if mpi.world.size < 2: print "ERROR: ring_test.py must be executed with more than one process" mpi.world.abort(-1); ring_test(mpi.world, 17, 'integers', 0) ring_test(mpi.world, 17, 'integers', 1) ring_test(mpi.world, 'Hello, World!', 'string', 0) ring_test(mpi.world, 'Hello, World!', 'string', 1) ring_test(mpi.world, ['Hello', 'MPI', 'Python', 'World'], 'list of strings', 0) ring_test(mpi.world, ['Hello', 'MPI', 'Python', 'World'], 'list of strings', 1)
hypernets/dispatchers/process/grpc/process_broker_service.py
Enpen/Hypernets
1,080
11199272
import queue import subprocess import time from threading import Thread from grpc import RpcError from hypernets.dispatchers.process.grpc.proto import proc_pb2_grpc from hypernets.dispatchers.process.grpc.proto.proc_pb2 import DataChunk from hypernets.utils import logging logger = logging.get_logger(__name__) class ProcessBrokerService(proc_pb2_grpc.ProcessBrokerServicer): def __init__(self): super(ProcessBrokerService, self).__init__() @staticmethod def _read_data(f, q, buffer_size, encoding, data_kind): try: data = f.read(buffer_size) while data and len(data) > 0: if encoding: chunk = DataChunk(kind=data_kind, data=data.encode(encoding)) else: chunk = DataChunk(kind=data_kind, data=data) q.put(chunk) data = f.read(buffer_size) except ValueError as e: logger.error(e) def run(self, request_iterator, context): it = iter(request_iterator) request = next(it) program = request.program args = request.args cwd = request.cwd buffer_size = request.buffer_size encoding = request.encoding if encoding is None or len(encoding) == 0: encoding = None with subprocess.Popen(args, buffer_size, program if len(program) > 0 else None, cwd=cwd if len(cwd) > 0 else None, stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding=encoding, shell=False) as p: pid = p.pid start_at = time.time() peer = context.peer() if logger.is_info_enabled(): logger.info(f'[{pid}] started, peer: {peer}, cmd:' + ' '.join(args), ) data_queue = queue.Queue() t_out = Thread(target=self._read_data, args=(p.stdout, data_queue, buffer_size, encoding, DataChunk.OUT)) t_err = Thread(target=self._read_data, args=(p.stderr, data_queue, buffer_size, encoding, DataChunk.ERR)) t_out.start() t_err.start() # report pid to client yield DataChunk(kind=DataChunk.ERR, data=f'pid: {pid}\n'.encode()) try: while next(it): chunk = None while context.is_active() and \ (t_out.is_alive() or t_err.is_alive() or not data_queue.empty()): try: chunk = data_queue.get(False) yield chunk break except queue.Empty: time.sleep(0.1) if not context.is_active(): p.kill() code = 'killed (peer shutdown)' break elif chunk is None: # process exit and no more output code = p.poll() yield DataChunk(kind=DataChunk.END, data=str(code).encode()) # break except StopIteration as e: pass except RpcError as e: logger.error(e) code = 'rpc error' except Exception: import traceback traceback.print_exc() code = 'exception' if logger.is_info_enabled(): logger.info('[%s] done with code %s, elapsed %.3f seconds.' % (pid, code, time.time() - start_at)) def download(self, request, context): try: peer = request.peer path = request.path encoding = request.encoding buffer_size = request.buffer_size if buffer_size is None or buffer_size <= 0: buffer_size = 4096 # check peer here start_at = time.time() total = 0 if encoding: with open(path, 'r', encoding=encoding) as f: data = f.read(buffer_size) while data and len(data) > 0: if not context.is_active(): break encoded_data = data.encode(encoding) chunk = DataChunk(kind=DataChunk.DATA, data=encoded_data) total += len(encoded_data) yield chunk data = f.read(buffer_size) else: with open(path, 'rb') as f: data = f.read(buffer_size) while data and len(data) > 0: if not context.is_active(): break chunk = DataChunk(kind=DataChunk.DATA, data=data) total += len(data) yield chunk data = f.read(buffer_size) if not context.is_active(): if logger.is_info_enabled(): logger.info('download %s broke (peer shutdown), %s bytes sent, elapsed %.3f seconds' % (path, total, time.time() - start_at)) else: yield DataChunk(kind=DataChunk.END, data=b'') if logger.is_info_enabled(): logger.info('download %s (%s bytes) in %.3f seconds, encoding=%s' % (path, total, time.time() - start_at, encoding)) except Exception as e: import traceback import sys msg = f'{e.__class__.__name__}:\n' msg += traceback.format_exc() logger.error(msg) yield DataChunk(kind=DataChunk.EXCEPTION, data=msg.encode()) def serve(addr, max_workers=10): import grpc from concurrent import futures if logger.is_info_enabled(): logger.info(f'start broker at {addr}') service = ProcessBrokerService() server = grpc.server(futures.ThreadPoolExecutor(max_workers=max_workers)) proc_pb2_grpc.add_ProcessBrokerServicer_to_server(service, server) server.add_insecure_port(addr) server.start() return server, service
recipes/msdfgen/all/conanfile.py
rockandsalt/conan-center-index
562
11199276
<filename>recipes/msdfgen/all/conanfile.py from conans import ConanFile, CMake, tools from conans.errors import ConanInvalidConfiguration import os required_conan_version = ">=1.33.0" class MsdfgenConan(ConanFile): name = "msdfgen" description = "Multi-channel signed distance field generator" license = "MIT" topics = ("conan", "msdfgen", "msdf", "shape", "glyph", "font") homepage = "https://github.com/Chlumsky/msdfgen" url = "https://github.com/conan-io/conan-center-index" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "with_openmp": [True, False], "with_skia": [True, False], "utility": [True, False], } default_options = { "shared": False, "fPIC": True, "with_openmp": False, "with_skia": False, "utility": True, } exports_sources = ["CMakeLists.txt", "patches/**"] generators = "cmake", "cmake_find_package" _cmake = None @property def _source_subfolder(self): return "source_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def requirements(self): self.requires("freetype/2.10.4") self.requires("lodepng/cci.20200615") self.requires("tinyxml2/8.0.0") def validate(self): if self.settings.compiler.get_safe("cppstd"): tools.check_min_cppstd(self, 11) if self.settings.compiler == "Visual Studio" and self.options.shared: raise ConanInvalidConfiguration("msdfgen shared not supported by Visual Studio") if self.options.with_skia: raise ConanInvalidConfiguration("skia recipe not available yet in CCI") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _patch_sources(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) cmakelists = os.path.join(self._source_subfolder, "CMakeLists.txt") # unvendor lodepng & tinyxml2 tools.rmdir(os.path.join(self._source_subfolder, "lib")) tools.replace_in_file(cmakelists, "\"lib/*.cpp\"", "") tools.replace_in_file(cmakelists, "target_link_libraries(msdfgen-ext PUBLIC msdfgen::msdfgen Freetype::Freetype)", "target_link_libraries(msdfgen-ext PUBLIC msdfgen::msdfgen ${CONAN_LIBS})") # very weird but required for Visual Studio when libs are unvendored (at least for Ninja generator) if self.settings.compiler == "Visual Studio": tools.replace_in_file(cmakelists, "set_target_properties(msdfgen-standalone PROPERTIES ARCHIVE_OUTPUT_DIRECTORY archive OUTPUT_NAME msdfgen)", "set_target_properties(msdfgen-standalone PROPERTIES OUTPUT_NAME msdfgen IMPORT_PREFIX foo)") def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["MSDFGEN_BUILD_MSDFGEN_STANDALONE"] = self.options.utility self._cmake.definitions["MSDFGEN_USE_OPENMP"] = self.options.with_openmp self._cmake.definitions["MSDFGEN_USE_CPP11"] = True self._cmake.definitions["MSDFGEN_USE_SKIA"] = self.options.with_skia self._cmake.definitions["MSDFGEN_INSTALL"] = True self._cmake.configure() return self._cmake def build(self): self._patch_sources() cmake = self._configure_cmake() cmake.build() def package(self): self.copy("LICENSE.txt", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) def package_info(self): self.cpp_info.names["cmake_find_package"] = "msdfgen" self.cpp_info.names["cmake_find_package_multi"] = "msdfgen" includedir = os.path.join("include", "msdfgen") self.cpp_info.components["_msdfgen"].names["cmake_find_package"] = "msdfgen" self.cpp_info.components["_msdfgen"].names["cmake_find_package_multi"] = "msdfgen" self.cpp_info.components["_msdfgen"].includedirs.append(includedir) self.cpp_info.components["_msdfgen"].libs = ["msdfgen"] self.cpp_info.components["_msdfgen"].defines = ["MSDFGEN_USE_CPP11"] self.cpp_info.components["msdfgen-ext"].names["cmake_find_package"] = "msdfgen-ext" self.cpp_info.components["msdfgen-ext"].names["cmake_find_package_multi"] = "msdfgen-ext" self.cpp_info.components["msdfgen-ext"].includedirs.append(includedir) self.cpp_info.components["msdfgen-ext"].libs = ["msdfgen-ext"] self.cpp_info.components["msdfgen-ext"].requires = [ "_msdfgen", "freetype::freetype", "lodepng::lodepng", "tinyxml2::tinyxml2", ] if self.options.with_skia: self.cpp_info.components["msdfgen-ext"].defines.append("MSDFGEN_USE_SKIA") if self.options.utility: bin_path = os.path.join(self.package_folder, "bin") self.output.info("Appending PATH environment variable: {}".format(bin_path)) self.env_info.PATH.append(bin_path)
tests/exceptions/source/backtrace/nested_wrapping.py
ponponon/loguru
11,391
11199301
import sys from loguru import logger logger.remove() logger.add(sys.stderr, format="", colorize=False, backtrace=True, diagnose=False) def f(i): 1 / i @logger.catch @logger.catch() def a(x): f(x) a(0) with logger.catch(): with logger.catch(): f(0) try: try: f(0) except ZeroDivisionError: logger.exception("") except Exception: logger.exception("")
tests/refinement_test.py
ericwxia/SpectralCluster
327
11199326
import unittest import numpy as np from spectralcluster import refinement ThresholdType = refinement.ThresholdType SymmetrizeType = refinement.SymmetrizeType class TestCropDiagonal(unittest.TestCase): """Tests for the CropDiagonal class.""" def test_3by3_matrix(self): matrix = np.array([[1, 2, 3], [3, 4, 5], [4, 2, 1]]) adjusted_matrix = refinement.CropDiagonal().refine(matrix) expected = np.array([[3, 2, 3], [3, 5, 5], [4, 2, 4]]) self.assertTrue(np.array_equal(expected, adjusted_matrix)) class TestGaussianBlur(unittest.TestCase): """Tests for the GaussianBlur class.""" def test_3by3_matrix(self): matrix = np.array([[1.0, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 1.0]]) adjusted_matrix = refinement.GaussianBlur(sigma=1).refine(matrix) expected = np.array([[2.12, 2.61, 3.10], [2.76, 2.90, 3.06], [3.16, 2.78, 2.46]]) self.assertTrue(np.allclose(expected, adjusted_matrix, atol=0.01)) class TestRowWiseThreshold(unittest.TestCase): """Tests for the RowWiseThreshold class.""" def test_3by3_matrix_percentile(self): matrix = np.array([[0.5, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 1.0]]) adjusted_matrix = refinement.RowWiseThreshold( p_percentile=0.5, thresholding_soft_multiplier=0.01, thresholding_type=ThresholdType.Percentile).refine(matrix) expected = np.array([[0.005, 2.0, 3.0], [0.03, 4.0, 5.0], [4.0, 2.0, 0.01]]) self.assertTrue(np.allclose(expected, adjusted_matrix, atol=0.001)) def test_3by3_matrix_row_max(self): matrix = np.array([[0.5, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 1.0]]) adjusted_matrix = refinement.RowWiseThreshold( p_percentile=0.5, thresholding_soft_multiplier=0.01, thresholding_type=ThresholdType.RowMax).refine(matrix) expected = np.array([[0.005, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 0.01]]) self.assertTrue(np.allclose(expected, adjusted_matrix, atol=0.001)) def test_3by3_matrix_binarization(self): matrix = np.array([[0.5, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 1.0]]) adjusted_matrix = refinement.RowWiseThreshold( p_percentile=0.5, thresholding_soft_multiplier=0.01, thresholding_type=ThresholdType.RowMax, thresholding_with_binarization=True).refine(matrix) expected = np.array([[0.005, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.01]]) self.assertTrue(np.allclose(expected, adjusted_matrix, atol=0.001)) def test_3by3_matrix_preserve_diagonal(self): matrix = np.array([[0.5, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 1.0]]) adjusted_matrix = refinement.RowWiseThreshold( p_percentile=0.5, thresholding_soft_multiplier=0.01, thresholding_type=ThresholdType.RowMax, thresholding_with_binarization=True, thresholding_preserve_diagonal=True).refine(matrix) expected = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) self.assertTrue(np.allclose(expected, adjusted_matrix, atol=0.001)) class TestSymmetrize(unittest.TestCase): """Tests for the Symmetrize class.""" def test_3by3_matrix(self): matrix = np.array([[1, 2, 3], [3, 4, 5], [4, 2, 1]]) adjusted_matrix = refinement.Symmetrize().refine(matrix) expected = np.array([[1, 3, 4], [3, 4, 5], [4, 5, 1]]) self.assertTrue(np.array_equal(expected, adjusted_matrix)) def test_3by3_matrix_symmetrize_average(self): matrix = np.array([[1, 2, 3], [3, 4, 5], [4, 2, 1]]) adjusted_matrix = refinement.Symmetrize( symmetrize_type=SymmetrizeType.Average).refine(matrix) expected = np.array([[1, 2.5, 3.5], [2.5, 4, 3.5], [3.5, 3.5, 1]]) self.assertTrue(np.array_equal(expected, adjusted_matrix)) class TestDiffuse(unittest.TestCase): """Tests for the Diffuse class.""" def test_2by2_matrix(self): matrix = np.array([[1, 2], [3, 4]]) adjusted_matrix = refinement.Diffuse().refine(matrix) expected = np.array([[5, 11], [11, 25]]) self.assertTrue(np.array_equal(expected, adjusted_matrix)) class TestRowWiseNormalize(unittest.TestCase): """Tests for the RowWiseNormalize class.""" def test_3by3_matrix(self): matrix = np.array([[0.5, 2.0, 3.0], [3.0, 4.0, 5.0], [4.0, 2.0, 1.0]]) adjusted_matrix = refinement.RowWiseNormalize().refine(matrix) expected = np.array([[0.167, 0.667, 1.0], [0.6, 0.8, 1.0], [1.0, 0.5, 0.25]]) self.assertTrue(np.allclose(expected, adjusted_matrix, atol=0.001)) if __name__ == "__main__": unittest.main()
installer/core/terraform/resources/aws/cloudwatch.py
jonico/pacbot
1,165
11199330
from core.terraform.resources import TerraformResource from core.config import Settings from core.providers.aws.boto3 import cloudwatch_log from core.providers.aws.boto3 import cloudwatch_event class CloudWatchEventRuleResource(TerraformResource): """ Base resource class for Terraform AWS Cloudwatch event rule resource Attributes: resource_instance_name (str): Type of resource instance available_args (dict): Instance configurations """ resource_instance_name = "aws_cloudwatch_event_rule" available_args = { 'name': {'required': True, 'prefix': True, 'sep': '-'}, 'schedule_expression': {'required': True}, 'event_pattern': {'required': False}, 'role_arn ': {'required': False}, 'is_enabled ': {'required': False}, 'description': {'required': False} } description = Settings.RESOURCE_DESCRIPTION def check_exists_before(self, input, tf_outputs): """ Check if the resource is already exists in AWS Args: input (instance): input object tf_outputs (dict): Terraform output dictionary Returns: exists (boolean): True if already exists in AWS else False checked_details (dict): Status of the existence check """ checked_details = {'attr': "name", 'value': self.get_input_attr('name')} exists = False if not self.resource_in_tf_output(tf_outputs): exists = cloudwatch_event.check_rule_exists( checked_details['value'], input.AWS_AUTH_CRED) return exists, checked_details class CloudWatchEventTargetResource(TerraformResource): resource_instance_name = "aws_cloudwatch_event_target" available_args = { 'rule': {'required': True}, 'target_id': {'required': True}, 'arn': {'required': False}, 'target_input': {'required': False, 'tf_arg_key': 'input'}, 'run_command_targets': {'required': False} } class CloudWatchLogGroupResource(TerraformResource): """ Base resource class for Terraform AWS Cloudwatch log group resource Attributes: resource_instance_name (str): Type of resource instance available_args (dict): Instance configurations """ resource_instance_name = "aws_cloudwatch_log_group" available_args = { 'name': {'required': True, 'prefix': True, 'sep': '/'}, 'name_prefix': {'required': False}, 'retention_in_days': {'required': False}, 'tags': {'required': False} } def check_exists_before(self, input, tf_outputs): """ Check if the resource is already exists in AWS Args: input (instance): input object tf_outputs (dict): Terraform output dictionary Returns: exists (boolean): True if already exists in AWS else False checked_details (dict): Status of the existence check """ checked_details = {'attr': "name", 'value': self.get_input_attr('name')} exists = False if not self.resource_in_tf_output(tf_outputs): exists = cloudwatch_log.check_log_group_exists( checked_details['value'], input.AWS_AUTH_CRED) return exists, checked_details class CloudWatchLogResourcePolicy(TerraformResource): """ Base resource class for Terraform AWS Cloudwatch log policy resource Attributes: resource_instance_name (str): Type of resource instance available_args (dict): Instance configurations """ resource_instance_name = "aws_cloudwatch_log_resource_policy" available_args = { 'policy_name': {'required': True, 'prefix': True, 'sep': '/'}, 'policy_document': {'required': True} }
tests/st/ops/test_sqrt.py
tianjiashuo/akg
286
11199338
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ sqrt test cast """ import os import pytest import akg.utils as utils from tests.common.base import TestBase from tests.common.test_run import sqrt_run class TestSqrt(TestBase): def setup(self): case_name = "test_akg_sqrt_001" case_path = os.getcwd() # params init self.params_init(case_name, case_path) self.caseresult = True self._log.info("============= {0} Setup case============".format(self.casename)) self.testarg = [ # testflag, opfuncname, testRunArgs, dimArgs ("sqrt_01", sqrt_run, ((1, 128), "float16"), ((128, 128), (128, 128))), ("sqrt_02", sqrt_run, ((128, 128), "float16"), ((0, 0), (128, 128))), ("sqrt_03", sqrt_run, ((128, 256), "float16"), ((0, 0), (128, 128))), # ("sqrt_04", sqrt_run, ((2, 1024), "float16"), ((2, 2), (1024, 1024)) ), # ("sqrt_05", sqrt_run, ((30522,), "float16"), ((15261, 15261),) ), # ("sqrt_06", sqrt_run, ((4096, 1024), "float16"), ((16, 16), (1024, 1024))), ("sqrt_07", sqrt_run, ((1,), "float16"), ((1, 1),)), # ("sqrt_08", sqrt_run, ((1024, 4096), "float16"), ((4, 4),(4096, 4096)) ), # ("sqrt_09", sqrt_run, ((4096,), "float16"), ((4096, 4096),) ), # ("sqrt_10", sqrt_run, ((30522, 1024), "float16"), ((16, 16), (1024, 1024))), ("sqrt_11", sqrt_run, ((1024,), "float16"), ((1024, 1024),)), ("sqrt_12", sqrt_run, ((2,), "float16"), ((2, 2),)), ("sqrt_13", sqrt_run, ((512, 1024), "float16"), ((16, 16), (1024, 1024))), ("sqrt_14", sqrt_run, ((1024, 1024), "float16"), ((16, 16), (1024, 1024))), ] self.testarg_cloud = [ ("sqrt_01", sqrt_run, ((1, 128), "float32"), ((128, 128), (128, 128))), ] self.testarg_level1 = [ # testflag, opfuncname, testRunArgs, dimArgs # ("sqrt_01", sqrt_run, ((1, 128), "float16"), ((128, 128), (128, 128))), # ("sqrt_02", sqrt_run, ((128, 128), "float16"), ((0, 0), (128, 128)) ), # ("sqrt_03", sqrt_run, ((128, 256), "float16"), ((0, 0), (128, 128)) ), ("sqrt_04", sqrt_run, ((2, 1024), "float16"), ((2, 2), (1024, 1024))), ("sqrt_05", sqrt_run, ((30522,), "float16"), ((15261, 15261),)), ("sqrt_06", sqrt_run, ((4096, 1024), "float16"), ((16, 16), (1024, 1024))), # run fail("sqrt_07", sqrt_run, ((1,), "float16"), ((1, 1),) ), ("sqrt_08", sqrt_run, ((1024, 4096), "float16"), ((4, 4), (4096, 4096))), ("sqrt_09", sqrt_run, ((4096,), "float16"), ((4096, 4096),)), ("sqrt_10", sqrt_run, ((30522, 1024), "float16"), ((16, 16), (1024, 1024))), # ("sqrt_11", sqrt_run, ((1024,), "float16"), ((1024, 1024),) ), # ("sqrt_12", sqrt_run, ((2,), "float16"), ((2, 2),) ), # ("sqrt_13", sqrt_run, ((512, 1024), "float16"), ((16, 16), (1024, 1024))), # ("sqrt_14", sqrt_run, ((1024, 1024), "float16"), ((16, 16), (1024, 1024))), # ("sqrt_15", sqrt_run, ((128, 1024), "float16"), ((16, 16), (1024, 1024))), ] self.args_default = [ ("000_case", sqrt_run, ((512, 1), 'float32'), ["level0"]), ("001_case", sqrt_run, ((1024, 2), 'float32'), ["level0"]), ("001_case", sqrt_run, ((2, 1024), 'float32'), ["level0"]), ("001_case", sqrt_run, ((1024, 1024), 'float32'), ["level0"]), ] return True @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_level0(self): return self.run_cases(self.args_default, utils.CUDA, "level0") @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_cpu_level0(self): return self.run_cases(self.args_default, utils.LLVM, "level0") @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_run(self): self.common_run(self.testarg) def test_run_cloud(self): self.common_run(self.testarg_cloud) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_run_level1(self): self.common_run(self.testarg_level1) def teardown(self): """ clean environment :return: """ self._log.info("============= {0} Teardown============".format(self.casename)) return
GPU-Re-Ranking/extension/adjacency_matrix/setup.py
TxuanYu/Person_reID_baseline_pytorch
3,358
11199346
<gh_stars>1000+ """ Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Project Page : https://github.com/Xuanmeng-Zhang/gnn-re-ranking Paper: https://arxiv.org/abs/2012.07620v2 ====================================================================== On the Market-1501 dataset, we accelerate the re-ranking processing from 89.2s to 9.4ms with one K40m GPU, facilitating the real-time post-processing. Similarly, we observe that our method achieves comparable or even better retrieval results on the other four image retrieval benchmarks, i.e., VeRi-776, Oxford-5k, Paris-6k and University-1652, with limited time cost. """ from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='build_adjacency_matrix', ext_modules=[ CUDAExtension('build_adjacency_matrix', [ 'build_adjacency_matrix.cpp', 'build_adjacency_matrix_kernel.cu', ]), ], cmdclass={ 'build_ext':BuildExtension })
torchdistill/models/classification/__init__.py
AhmedHussKhalifa/torchdistill
576
11199353
<reponame>AhmedHussKhalifa/torchdistill from torchdistill.models.classification import densenet, resnet, wide_resnet from torchdistill.models.registry import MODEL_FUNC_DICT CLASSIFICATION_MODEL_FUNC_DICT = dict() CLASSIFICATION_MODEL_FUNC_DICT.update(MODEL_FUNC_DICT)
models/match/multiview-simnet/data/preprocess.py
ziyoujiyi/PaddleRec
2,739
11199363
#encoding=utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import io import jieba import numpy as np import random f = io.open("./raw_data.txt", mode="r", encoding='utf-8') lines = f.readlines() f.close() #建立字典 word_dict = {} for line in lines: line = line.strip().split("\t") text = line[0].strip("") + line[1].strip("") text = jieba.cut(text) for word in text: if word in word_dict: continue else: word_dict[word] = len(word_dict) + 1 f = io.open("./raw_data.txt", mode="r", encoding='utf-8') lines = f.readlines() f.close() lines = [line.strip().split("\t") for line in lines] #建立以query为key,以负例为value的字典 neg_dict = {} for line in lines: if line[2] == "0": if line[0] in neg_dict: neg_dict[line[0]].append(line[1]) else: neg_dict[line[0]] = [line[1]] #建立以query为key,以正例为value的字典 pos_dict = {} for line in lines: if line[2] == "1": if line[0] in pos_dict: pos_dict[line[0]].append(line[1]) else: pos_dict[line[0]] = [line[1]] #划分训练集和测试集 query_list = list(pos_dict.keys()) print(len(query_list)) random.shuffle(query_list) train_query = query_list[:11600] test_query = query_list[11600:] #获得训练集 train_set = [] for query in train_query: for pos in pos_dict[query]: if query not in neg_dict: continue for neg in neg_dict[query]: train_set.append([query, pos, neg]) random.shuffle(train_set) #获得测试集 test_set = [] for query in test_query: for pos in pos_dict[query]: test_set.append([query, pos, 1]) if query not in neg_dict: continue for neg in neg_dict[query]: test_set.append([query, neg, 0]) random.shuffle(test_set) #训练集中的query,pos,neg转化格式 _pad_ = 0 f = open("train.txt", "w") for line in train_set: query = jieba.cut(line[0].strip()) pos = jieba.cut(line[1].strip()) neg = jieba.cut(line[2].strip()) query_list = [] for word in query: query_list.append(word_dict[word]) for i in range(79 - len(query_list)): query_list.append(_pad_) pos_list = [] for word in pos: pos_list.append(word_dict[word]) for i in range(99 - len(pos_list)): pos_list.append(_pad_) neg_list = [] for word in neg: neg_list.append(word_dict[word]) for i in range(90 - len(neg_list)): neg_list.append(_pad_) f.write(' '.join(["0:" + str(x) for x in query_list]) + " " + ' '.join([ "1:" + str(x) for x in pos_list ]) + " " + ' '.join(["2:" + str(x) for x in neg_list]) + "\n") f.close() #测试集中的query和pos转化格式 _pad_ = 0 f = open("test.txt", "w") fa = open("label.txt", "w") fb = open("testquery.txt", "w") for line in test_set: query = jieba.cut(line[0].strip()) pos = jieba.cut(line[1].strip()) label = line[2] query_list = [] for word in query: query_list.append(word_dict[word]) for i in range(79 - len(query_list)): query_list.append(_pad_) pos_list = [] for word in pos: pos_list.append(word_dict[word]) for i in range(99 - len(pos_list)): pos_list.append(_pad_) f.write(' '.join(["0:" + str(x) for x in query_list]) + " " + ' '.join( ["1:" + str(x) for x in pos_list]) + "\n") fa.write(str(label) + "\n") fb.write(','.join([str(x) for x in query_list]) + "\n") f.close() fa.close() fb.close()
twitchio/message.py
rn4n/TwitchIO
514
11199392
<filename>twitchio/message.py """ The MIT License (MIT) Copyright (c) 2017-2021 TwitchIO Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime import time from typing import TYPE_CHECKING, Union if TYPE_CHECKING: from .channel import Channel from .chatter import Chatter, PartialChatter class Message: __slots__ = ("_raw_data", "content", "_author", "echo", "_timestamp", "_channel", "_tags", "_id") def __init__(self, **kwargs): self._raw_data = kwargs.get("raw_data") self.content = kwargs.get("content") self._author = kwargs.get("author") self._channel = kwargs.get("channel") self._tags = kwargs.get("tags") self.echo = kwargs.get("echo", False) try: self._id = self._tags["id"] self._timestamp = self._tags["tmi-sent-ts"] except KeyError: self._id = None self._timestamp = time.time() @property def id(self) -> str: """The Message ID.""" return self._id @property def author(self) -> Union["Chatter", "PartialChatter"]: """The User object associated with the Message.""" return self._author @property def channel(self) -> "Channel": """The Channel object associated with the Message.""" return self._channel @property def raw_data(self) -> str: """The raw data received from Twitch for this Message.""" return self._raw_data @property def tags(self) -> dict: """The tags associated with the Message. Could be None. """ return self._tags @property def timestamp(self) -> datetime.datetime: """The Twitch timestamp for this Message. Returns --------- timestamp: UTC datetime object of the Twitch timestamp. """ return datetime.datetime.utcfromtimestamp(int(self._timestamp) / 1000)
tests/save_delete_hooks/models.py
bpeschier/django
5,079
11199399
<reponame>bpeschier/django """ Adding hooks before/after saving and deleting To execute arbitrary code around ``save()`` and ``delete()``, just subclass the methods. """ from __future__ import unicode_literals from django.db import models from django.utils.encoding import python_2_unicode_compatible @python_2_unicode_compatible class Person(models.Model): first_name = models.CharField(max_length=20) last_name = models.CharField(max_length=20) def __init__(self, *args, **kwargs): super(Person, self).__init__(*args, **kwargs) self.data = [] def __str__(self): return "%s %s" % (self.first_name, self.last_name) def save(self, *args, **kwargs): self.data.append("Before save") # Call the "real" save() method super(Person, self).save(*args, **kwargs) self.data.append("After save") def delete(self): self.data.append("Before deletion") # Call the "real" delete() method super(Person, self).delete() self.data.append("After deletion")
ivy/array/device.py
saurbhc/ivy
161
11199400
# global import abc # ToDo: implement all device methods here as public class methods class ArrayWithDevice(abc.ABC): pass
seahub/file_participants/migrations/0001_initial.py
MJochim/seahub
420
11199411
<reponame>MJochim/seahub # -*- coding: utf-8 -*- # Generated by Django 1.11.23 on 2019-08-28 02:07 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import seahub.base.fields class Migration(migrations.Migration): initial = True dependencies = [ ('tags', '0001_initial'), ] operations = [ migrations.CreateModel( name='FileParticipant', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', seahub.base.fields.LowerCaseCharField(max_length=255)), ('uuid', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tags.FileUUIDMap')), ], ), migrations.AlterUniqueTogether( name='fileparticipant', unique_together=set([('uuid', 'username')]), ), ]
examples/pandocfilters/abc.py
jacobwhall/panflute
361
11199437
#!/usr/bin/env python """ Pandoc filter to process code blocks with class "abc" containing ABC notation into images. Assumes that abcm2ps and ImageMagick's convert are in the path. Images are put in the abc-images directory. """ import hashlib import os import sys from pandocfilters import toJSONFilter, Para, Image from subprocess import Popen, PIPE, call imagedir = "abc-images" def sha1(x): return hashlib.sha1(x.encode(sys.getfilesystemencoding())).hexdigest() def abc2eps(abc, filetype, outfile): p = Popen(["abcm2ps", "-O", outfile + '.eps', "-"], stdin=PIPE) p.stdin.write(abc) p.communicate() p.stdin.close() call(["convert", outfile + '.eps', outfile + '.' + filetype]) def abc(key, value, format, meta): if key == 'CodeBlock': [[ident, classes, keyvals], code] = value if "abc" in classes: outfile = imagedir + '/' + sha1(code) if format == "html": filetype = "png" elif format == "latex": filetype = "pdf" else: filetype = "png" src = outfile + '.' + filetype if not os.path.isfile(src): try: os.mkdir(imagedir) sys.stderr.write('Created directory ' + imagedir + '\n') except OSError: pass abc2eps(code.encode("utf-8"), filetype, outfile) sys.stderr.write('Created image ' + src + '\n') return Para([Image(['', [], []], [], [src, ""])]) if __name__ == "__main__": toJSONFilter(abc)
test/geometry/test_homography.py
Ishticode/kornia
418
11199442
import random import pytest import torch from torch.autograd import gradcheck import kornia import kornia.testing as utils from kornia.geometry.homography import ( find_homography_dlt, find_homography_dlt_iterated, oneway_transfer_error, sample_is_valid_for_homography, symmetric_transfer_error, ) from kornia.testing import assert_close class TestSampleValidation: def test_good(self, device, dtype): pts1 = torch.tensor([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [1.0, 0.0]], device=device, dtype=dtype)[None] mask = sample_is_valid_for_homography(pts1, pts1) expected = torch.tensor([True], device=device, dtype=torch.bool) assert torch.equal(mask, expected) def test_bad(self, device, dtype): pts1 = torch.tensor([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]], device=device, dtype=dtype)[None] pts2 = torch.tensor([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]], device=device, dtype=dtype)[None] mask = sample_is_valid_for_homography(pts1, pts2) expected = torch.tensor([False], device=device, dtype=torch.bool) assert torch.equal(mask, expected) def test_batch(self, device, dtype): batch_size = 5 pts1 = torch.rand(batch_size, 4, 2, device=device, dtype=dtype) pts2 = torch.rand(batch_size, 4, 2, device=device, dtype=dtype) mask = sample_is_valid_for_homography(pts1, pts2) assert (mask.shape == torch.Size([batch_size])) class TestOneWayError: def test_smoke(self, device, dtype): pts1 = torch.rand(1, 6, 2, device=device, dtype=dtype) pts2 = torch.rand(1, 6, 2, device=device, dtype=dtype) H = utils.create_random_homography(1, 3).type_as(pts1).to(device) assert oneway_transfer_error(pts1, pts2, H).shape == (1, 6) def test_batch(self, device, dtype): batch_size = 5 pts1 = torch.rand(batch_size, 3, 2, device=device, dtype=dtype) pts2 = torch.rand(batch_size, 3, 2, device=device, dtype=dtype) H = utils.create_random_homography(1, 3).type_as(pts1).to(device) assert oneway_transfer_error(pts1, pts2, H).shape == (batch_size, 3) def test_gradcheck(self, device): # generate input data batch_size, num_points, num_dims = 2, 3, 2 points1 = torch.rand(batch_size, num_points, num_dims, device=device, dtype=torch.float64, requires_grad=True) points2 = torch.rand(batch_size, num_points, num_dims, device=device, dtype=torch.float64) H = utils.create_random_homography(batch_size, 3).type_as(points1).to(device) assert gradcheck(oneway_transfer_error, (points1, points2, H), raise_exception=True) def test_shift(self, device, dtype): pts1 = torch.zeros(3, 2, device=device, dtype=dtype)[None] pts2 = torch.tensor([[1.0, 0.0], [2.0, 0.0], [2.0, 2.0]], device=device, dtype=dtype)[None] H = torch.tensor([[1.0, 0.0, 1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], dtype=dtype, device=device)[None] expected = torch.tensor([0.0, 1.0, 5.0], device=device, dtype=dtype)[None] assert_close(oneway_transfer_error(pts1, pts2, H), expected, atol=1e-4, rtol=1e-4) class TestSymmetricTransferError: def test_smoke(self, device, dtype): pts1 = torch.rand(1, 6, 2, device=device, dtype=dtype) pts2 = torch.rand(1, 6, 2, device=device, dtype=dtype) H = utils.create_random_homography(1, 3).type_as(pts1).to(device) assert symmetric_transfer_error(pts1, pts2, H).shape == (1, 6) def test_batch(self, device, dtype): batch_size = 5 pts1 = torch.rand(batch_size, 3, 2, device=device, dtype=dtype) pts2 = torch.rand(batch_size, 3, 2, device=device, dtype=dtype) H = utils.create_random_homography(1, 3).type_as(pts1).to(device) assert symmetric_transfer_error(pts1, pts2, H).shape == (batch_size, 3) def test_gradcheck(self, device): # generate input data batch_size, num_points, num_dims = 2, 3, 2 points1 = torch.rand(batch_size, num_points, num_dims, device=device, dtype=torch.float64, requires_grad=True) points2 = torch.rand(batch_size, num_points, num_dims, device=device, dtype=torch.float64) H = utils.create_random_homography(batch_size, 3).type_as(points1).to(device) assert gradcheck(symmetric_transfer_error, (points1, points2, H), raise_exception=True) def test_shift(self, device, dtype): pts1 = torch.zeros(3, 2, device=device, dtype=dtype)[None] pts2 = torch.tensor([[1.0, 0.0], [2.0, 0.0], [2.0, 2.0]], device=device, dtype=dtype)[None] H = torch.tensor([[1.0, 0.0, 1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]], dtype=dtype, device=device)[None] expected = torch.tensor([0.0, 2.0, 10.0], device=device, dtype=dtype)[None] assert_close(symmetric_transfer_error(pts1, pts2, H), expected, atol=1e-4, rtol=1e-4) class TestFindHomographyDLT: def test_smoke(self, device, dtype): points1 = torch.rand(1, 4, 2, device=device, dtype=dtype) points2 = torch.rand(1, 4, 2, device=device, dtype=dtype) weights = torch.ones(1, 4, device=device, dtype=dtype) H = find_homography_dlt(points1, points2, weights) assert H.shape == (1, 3, 3) def test_nocrash(self, device, dtype): points1 = torch.rand(1, 4, 2, device=device, dtype=dtype) points2 = torch.rand(1, 4, 2, device=device, dtype=dtype) weights = torch.ones(1, 4, device=device, dtype=dtype) points1[0, 0, 0] = float('nan') H = find_homography_dlt(points1, points2, weights) assert H.shape == (1, 3, 3) @pytest.mark.parametrize("batch_size, num_points", [(1, 4), (2, 5), (3, 6)]) def test_shape(self, batch_size, num_points, device, dtype): B, N = batch_size, num_points points1 = torch.rand(B, N, 2, device=device, dtype=dtype) points2 = torch.rand(B, N, 2, device=device, dtype=dtype) weights = torch.ones(B, N, device=device, dtype=dtype) H = find_homography_dlt(points1, points2, weights) assert H.shape == (B, 3, 3) @pytest.mark.parametrize("batch_size, num_points", [(1, 4), (2, 5), (3, 6)]) def test_shape_noweights(self, batch_size, num_points, device, dtype): B, N = batch_size, num_points points1 = torch.rand(B, N, 2, device=device, dtype=dtype) points2 = torch.rand(B, N, 2, device=device, dtype=dtype) H = find_homography_dlt(points1, points2, None) assert H.shape == (B, 3, 3) @pytest.mark.parametrize("batch_size, num_points", [(1, 4), (2, 5), (3, 6)]) def test_points_noweights(self, batch_size, num_points, device, dtype): B, N = batch_size, num_points points1 = torch.rand(B, N, 2, device=device, dtype=dtype) points2 = torch.rand(B, N, 2, device=device, dtype=dtype) weights = torch.ones(B, N, device=device, dtype=dtype) H_noweights = find_homography_dlt(points1, points2, None) H_withweights = find_homography_dlt(points1, points2, weights) assert H_noweights.shape == (B, 3, 3) and H_withweights.shape == (B, 3, 3) assert_close(H_noweights, H_withweights, rtol=1e-3, atol=1e-4) @pytest.mark.parametrize("batch_size", [1, 2, 5]) def test_clean_points(self, batch_size, device, dtype): # generate input data points_src = torch.rand(batch_size, 10, 2, device=device, dtype=dtype) H = kornia.eye_like(3, points_src) H = H * 0.3 * torch.rand_like(H) H = H / H[:, 2:3, 2:3] points_dst = kornia.geometry.transform_points(H, points_src) weights = torch.ones(batch_size, 10, device=device, dtype=dtype) # compute transform from source to target dst_homo_src = find_homography_dlt(points_src, points_dst, weights) assert_close(kornia.geometry.transform_points(dst_homo_src, points_src), points_dst, rtol=1e-3, atol=1e-4) @pytest.mark.grad @pytest.mark.skipif(torch.__version__ < '1.7', reason="pytorch bug of incopatible types: #33546 fixed in v1.7") def test_gradcheck(self, device): # Save initial seed initial_seed = torch.random.initial_seed() max_number_of_checks = 10 # Test gradients for a max_number_of_checks times current_seed = initial_seed for i in range(max_number_of_checks): torch.manual_seed(current_seed) points_src = torch.rand(1, 10, 2, device=device, dtype=torch.float64, requires_grad=True) points_dst = torch.rand_like(points_src) weights = torch.ones_like(points_src)[..., 0] try: gradcheck( find_homography_dlt, (points_src, points_dst, weights), rtol=1e-6, atol=1e-6, raise_exception=True ) # Gradcheck failed except RuntimeError: # All iterations failed if i == max_number_of_checks - 1: assert gradcheck( find_homography_dlt, (points_src, points_dst, weights), rtol=1e-6, atol=1e-6, raise_exception=True, ) # Next iteration else: current_seed = random.randrange(0xFFFFFFFFFFFFFFFF) continue # Gradcheck succeed torch.manual_seed(initial_seed) return class TestFindHomographyDLTIter: def test_smoke(self, device, dtype): points1 = torch.rand(1, 4, 2, device=device, dtype=dtype) points2 = torch.rand(1, 4, 2, device=device, dtype=dtype) weights = torch.ones(1, 4, device=device, dtype=dtype) H = find_homography_dlt_iterated(points1, points2, weights, 5) assert H.shape == (1, 3, 3) @pytest.mark.parametrize("batch_size, num_points", [(1, 4), (2, 5), (3, 6)]) def test_shape(self, batch_size, num_points, device, dtype): B, N = batch_size, num_points points1 = torch.rand(B, N, 2, device=device, dtype=dtype) points2 = torch.rand(B, N, 2, device=device, dtype=dtype) weights = torch.ones(B, N, device=device, dtype=dtype) H = find_homography_dlt_iterated(points1, points2, weights, 5) assert H.shape == (B, 3, 3) @pytest.mark.parametrize("batch_size", [1, 2]) def test_clean_points(self, batch_size, device, dtype): # generate input data points_src = torch.rand(batch_size, 10, 2, device=device, dtype=dtype) H = kornia.eye_like(3, points_src) H = H * 0.3 * torch.rand_like(H) H = H / H[:, 2:3, 2:3] points_dst = kornia.geometry.transform_points(H, points_src) weights = torch.ones(batch_size, 10, device=device, dtype=dtype) # compute transform from source to target dst_homo_src = find_homography_dlt_iterated(points_src, points_dst, weights, 10) assert_close(kornia.geometry.transform_points(dst_homo_src, points_src), points_dst, rtol=1e-3, atol=1e-4) @pytest.mark.grad @pytest.mark.skipif(torch.__version__ < '1.7', reason="pytorch bug of incopatible types: #33546 fixed in v1.7") def test_gradcheck(self, device): # Save initial seed initial_seed = torch.random.initial_seed() max_number_of_checks = 10 # Test gradients for a max_number_of_checks times current_seed = initial_seed for i in range(max_number_of_checks): torch.manual_seed(current_seed) points_src = torch.rand(1, 10, 2, device=device, dtype=torch.float64, requires_grad=True) points_dst = torch.rand_like(points_src) weights = torch.ones_like(points_src)[..., 0] try: gradcheck( find_homography_dlt_iterated, (points_src, points_dst, weights), rtol=1e-6, atol=1e-6, raise_exception=True, ) # Gradcheck failed except RuntimeError: # All iterations failed if i == max_number_of_checks - 1: assert gradcheck( find_homography_dlt_iterated, (points_src, points_dst, weights), rtol=1e-6, atol=1e-6, raise_exception=True, ) # Next iteration else: current_seed = random.randrange(0xFFFFFFFFFFFFFFFF) continue # Gradcheck succeed torch.manual_seed(initial_seed) return @pytest.mark.grad @pytest.mark.parametrize("batch_size", [1, 2]) def test_dirty_points_and_gradcheck(self, batch_size, device, dtype): # generate input data points_src = torch.rand(batch_size, 10, 2, device=device, dtype=dtype) H = kornia.eye_like(3, points_src) H = H * (1 + torch.rand_like(H)) H = H / H[:, 2:3, 2:3] points_src = 100.0 * torch.rand(batch_size, 20, 2, device=device, dtype=dtype) points_dst = kornia.geometry.transform_points(H, points_src) # making last point an outlier points_dst[:, -1, :] += 20 weights = torch.ones(batch_size, 20, device=device, dtype=dtype) # compute transform from source to target dst_homo_src = find_homography_dlt_iterated(points_src, points_dst, weights, 0.5, 10) assert_close( kornia.geometry.transform_points(dst_homo_src, points_src[:, :-1]), points_dst[:, :-1], rtol=1e-3, atol=1e-3 )
core/dbt/config/renderer.py
tomasfarias/dbt-core
799
11199443
<filename>core/dbt/config/renderer.py<gh_stars>100-1000 from typing import Dict, Any, Tuple, Optional, Union, Callable from dbt.clients.jinja import get_rendered, catch_jinja from dbt.context.target import TargetContext from dbt.context.secret import SecretContext from dbt.context.base import BaseContext from dbt.contracts.connection import HasCredentials from dbt.exceptions import DbtProjectError, CompilationException, RecursionException from dbt.utils import deep_map_render Keypath = Tuple[Union[str, int], ...] class BaseRenderer: def __init__(self, context: Dict[str, Any]) -> None: self.context = context @property def name(self): return "Rendering" def should_render_keypath(self, keypath: Keypath) -> bool: return True def render_entry(self, value: Any, keypath: Keypath) -> Any: if not self.should_render_keypath(keypath): return value return self.render_value(value, keypath) def render_value(self, value: Any, keypath: Optional[Keypath] = None) -> Any: # keypath is ignored. # if it wasn't read as a string, ignore it if not isinstance(value, str): return value try: with catch_jinja(): return get_rendered(value, self.context, native=True) except CompilationException as exc: msg = f"Could not render {value}: {exc.msg}" raise CompilationException(msg) from exc def render_data(self, data: Dict[str, Any]) -> Dict[str, Any]: try: return deep_map_render(self.render_entry, data) except RecursionException: raise DbtProjectError( f"Cycle detected: {self.name} input has a reference to itself", project=data ) def _list_if_none(value): if value is None: value = [] return value def _dict_if_none(value): if value is None: value = {} return value def _list_if_none_or_string(value): value = _list_if_none(value) if isinstance(value, str): return [value] return value class ProjectPostprocessor(Dict[Keypath, Callable[[Any], Any]]): def __init__(self): super().__init__() self[("on-run-start",)] = _list_if_none_or_string self[("on-run-end",)] = _list_if_none_or_string for k in ("models", "seeds", "snapshots"): self[(k,)] = _dict_if_none self[(k, "vars")] = _dict_if_none self[(k, "pre-hook")] = _list_if_none_or_string self[(k, "post-hook")] = _list_if_none_or_string self[("seeds", "column_types")] = _dict_if_none def postprocess(self, value: Any, key: Keypath) -> Any: if key in self: handler = self[key] return handler(value) return value class DbtProjectYamlRenderer(BaseRenderer): _KEYPATH_HANDLERS = ProjectPostprocessor() def __init__( self, profile: Optional[HasCredentials] = None, cli_vars: Optional[Dict[str, Any]] = None ) -> None: # Generate contexts here because we want to save the context # object in order to retrieve the env_vars. This is almost always # a TargetContext, but in the debug task we want a project # even when we don't have a profile. if cli_vars is None: cli_vars = {} if profile: self.ctx_obj = TargetContext(profile, cli_vars) else: self.ctx_obj = BaseContext(cli_vars) # type:ignore context = self.ctx_obj.to_dict() super().__init__(context) @property def name(self): "Project config" # Uses SecretRenderer def get_package_renderer(self) -> BaseRenderer: return PackageRenderer(self.ctx_obj.cli_vars) def render_project( self, project: Dict[str, Any], project_root: str, ) -> Dict[str, Any]: """Render the project and insert the project root after rendering.""" rendered_project = self.render_data(project) rendered_project["project-root"] = project_root return rendered_project def render_packages(self, packages: Dict[str, Any]): """Render the given packages dict""" package_renderer = self.get_package_renderer() return package_renderer.render_data(packages) def render_selectors(self, selectors: Dict[str, Any]): return self.render_data(selectors) def render_entry(self, value: Any, keypath: Keypath) -> Any: result = super().render_entry(value, keypath) return self._KEYPATH_HANDLERS.postprocess(result, keypath) def should_render_keypath(self, keypath: Keypath) -> bool: if not keypath: return True first = keypath[0] # run hooks are not rendered if first in {"on-run-start", "on-run-end", "query-comment"}: return False # don't render vars blocks until runtime if first == "vars": return False if first in {"seeds", "models", "snapshots", "tests"}: keypath_parts = {(k.lstrip("+ ") if isinstance(k, str) else k) for k in keypath} # model-level hooks if "pre-hook" in keypath_parts or "post-hook" in keypath_parts: return False return True class SecretRenderer(BaseRenderer): def __init__(self, cli_vars: Dict[str, Any] = {}) -> None: # Generate contexts here because we want to save the context # object in order to retrieve the env_vars. self.ctx_obj = SecretContext(cli_vars) context = self.ctx_obj.to_dict() super().__init__(context) @property def name(self): return "Secret" class ProfileRenderer(SecretRenderer): @property def name(self): return "Profile" class PackageRenderer(SecretRenderer): @property def name(self): return "Packages config"
megatron/data/gpt_dataset.py
adammoody/Megatron-DeepSpeed
2,869
11199447
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GPT style dataset.""" import os import time import numpy as np import torch from megatron import mpu, print_rank_0 from megatron.data.blendable_dataset import BlendableDataset from megatron.data.dataset_utils import get_datasets_weights_and_num_samples from megatron.data.dataset_utils import get_train_valid_test_split_ from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset def build_train_valid_test_datasets(data_prefix, data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup): """Build train, valid, and test datasets.""" # Single dataset. if len(data_prefix) == 1: return _build_train_valid_test_datasets(data_prefix[0], data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup) # Blending dataset. # Parse the values. output = get_datasets_weights_and_num_samples(data_prefix, train_valid_test_num_samples) prefixes, weights, datasets_train_valid_test_num_samples = output # Build individual datasets. train_datasets = [] valid_datasets = [] test_datasets = [] for i in range(len(prefixes)): train_ds, valid_ds, test_ds = _build_train_valid_test_datasets( prefixes[i], data_impl, splits_string, datasets_train_valid_test_num_samples[i], seq_length, seed, skip_warmup) if train_ds: train_datasets.append(train_ds) if valid_ds: valid_datasets.append(valid_ds) if test_ds: test_datasets.append(test_ds) # Blend. blending_train_dataset = None if train_datasets: blending_train_dataset = BlendableDataset(train_datasets, weights) blending_valid_dataset = None if valid_datasets: blending_valid_dataset = BlendableDataset(valid_datasets, weights) blending_test_dataset = None if test_datasets: blending_test_dataset = BlendableDataset(test_datasets, weights) return (blending_train_dataset, blending_valid_dataset, blending_test_dataset) def _build_train_valid_test_datasets(data_prefix, data_impl, splits_string, train_valid_test_num_samples, seq_length, seed, skip_warmup): """Build train, valid, and test datasets.""" # Indexed dataset. indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup) total_num_of_documents = indexed_dataset.sizes.shape[0] splits = get_train_valid_test_split_(splits_string, total_num_of_documents) # Print stats about the splits. print_rank_0(' > dataset split:') def print_split_stats(name, index): print_rank_0(' {}:'.format(name)) print_rank_0(' document indices in [{}, {}) total of {} ' 'documents'.format(splits[index], splits[index + 1], splits[index + 1] - splits[index])) print_split_stats('train', 0) print_split_stats('validation', 1) print_split_stats('test', 2) def build_dataset(index, name): dataset = None if splits[index + 1] > splits[index]: documents = np.arange(start=splits[index], stop=splits[index + 1], step=1, dtype=np.int32) dataset = GPTDataset(name, data_prefix, documents, indexed_dataset, train_valid_test_num_samples[index], seq_length, seed) return dataset train_dataset = build_dataset(0, 'train') valid_dataset = build_dataset(1, 'valid') test_dataset = build_dataset(2, 'test') return (train_dataset, valid_dataset, test_dataset) def get_indexed_dataset_(data_prefix, data_impl, skip_warmup): """Build indexed dataset.""" print_rank_0(' > building dataset index ...') start_time = time.time() indexed_dataset = make_indexed_dataset(data_prefix, data_impl, skip_warmup) print_rank_0(' > finished creating indexed dataset in {:4f} ' 'seconds'.format(time.time() - start_time)) print_rank_0(' number of documents: {}'.format( indexed_dataset.sizes.shape[0])) return indexed_dataset class GPTDataset(torch.utils.data.Dataset): def __init__(self, name, data_prefix, documents, indexed_dataset, num_samples, seq_length, seed): self.name = name self.indexed_dataset = indexed_dataset # Checks assert np.min(documents) >= 0 assert np.max(documents) < indexed_dataset.sizes.shape[0] # Build index mappings. self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings( self.name, data_prefix, documents, self.indexed_dataset.sizes, num_samples, seq_length, seed) def __len__(self): # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) return self.sample_idx.shape[0] - 1 def __getitem__(self, idx): # Get the shuffled index. idx = self.shuffle_idx[idx] # Start and end documents and offsets. doc_index_f = self.sample_idx[idx][0] doc_index_l = self.sample_idx[idx + 1][0] offset_f = self.sample_idx[idx][1] offset_l = self.sample_idx[idx + 1][1] # If we are within the same document, just extract the chunk. if doc_index_f == doc_index_l: sample = self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + 1) else: # Otherwise, get the rest of the initial document. sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f)] # Loop over all in between documents and add the entire document. for i in range(doc_index_f + 1, doc_index_l): sample_list.append(self.indexed_dataset.get(self.doc_idx[i])) # And finally add the relevant portion of last document. sample_list.append(self.indexed_dataset.get( self.doc_idx[doc_index_l], length=offset_l + 1)) sample = np.concatenate(sample_list) return {'text': np.array(sample, dtype=np.int64)} def _build_index_mappings(name, data_prefix, documents, sizes, num_samples, seq_length, seed): """Build doc-idx, sample-idx, and shuffle-idx. doc-idx: is an array (ordered) of documents to be used in training. sample-idx: is the start document index and document offset for each training sample. shuffle-idx: maps the sample index into a random index into sample-idx. """ # Number of tokens in each epoch and number of required epochs. tokens_per_epoch = _num_tokens(documents, sizes) num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples) # rng state np_rng = np.random.RandomState(seed=seed) # Filename of the index mappings. _filename = data_prefix _filename += '_{}_indexmap'.format(name) _filename += '_{}ns'.format(num_samples) _filename += '_{}sl'.format(seq_length) _filename += '_{}s'.format(seed) doc_idx_filename = _filename + '_doc_idx.npy' sample_idx_filename = _filename + '_sample_idx.npy' shuffle_idx_filename = _filename + '_shuffle_idx.npy' # Build the indexed mapping if not exist. if torch.distributed.get_rank() == 0: if (not os.path.isfile(doc_idx_filename)) or \ (not os.path.isfile(sample_idx_filename)) or \ (not os.path.isfile(shuffle_idx_filename)): print_rank_0(' > WARNING: could not find index map files, building ' 'the indices on rank 0 ...') # For the last epoch, decide whether include the entire epoch # in the global shuffle or not. # If we need only one epoch, then separating last epoch does # not mean anything. if num_epochs == 1: separate_last_epoch = False print(' > only one epoch required, setting ' 'separate_last_epoch to False', flush=True) else: # Get the number of samples for the last epoch num_samples_from_epochs_minus_one = ( (num_epochs - 1) * tokens_per_epoch - 1) // seq_length last_epoch_num_samples = num_samples - \ num_samples_from_epochs_minus_one assert last_epoch_num_samples >= 0, \ 'last epoch number of samples should be non-negative.' num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length assert last_epoch_num_samples < (num_samples_per_epoch + 1), \ 'last epoch number of samples exceeded max value.' # If we have less than 80% of the samples for the last epoch, # seperate out the epoch and treat it differently. # Note: the 80% number is just based on common sense and can # be adjusted if needed. separate_last_epoch = (last_epoch_num_samples < int(0.80 * num_samples_per_epoch)) if separate_last_epoch: string = ' > last epoch number of samples ({}) is smaller '\ 'than 80% of number of samples per epoch ({}), '\ 'setting separate_last_epoch to True' else: string = ' > last epoch number of samples ({}) is larger '\ 'than 80% of number of samples per epoch ({}), '\ 'setting separate_last_epoch to False' print(string.format(last_epoch_num_samples, num_samples_per_epoch), flush=True) # doc-idx. start_time = time.time() doc_idx = _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch) np.save(doc_idx_filename, doc_idx, allow_pickle=True) print_rank_0(' > elasped time to build and save doc-idx mapping ' '(seconds): {:4f}'.format(time.time() - start_time)) # sample-idx. start_time = time.time() # Use C++ implementation for speed. # First compile and then import. from megatron.data import helpers assert doc_idx.dtype == np.int32 assert sizes.dtype == np.int32 sample_idx = helpers.build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch) # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length, # num_epochs, tokens_per_epoch) np.save(sample_idx_filename, sample_idx, allow_pickle=True) print_rank_0(' > elasped time to build and save sample-idx mapping ' '(seconds): {:4f}'.format(time.time() - start_time)) # shuffle-idx. start_time = time.time() # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) if separate_last_epoch: num_samples_ = num_samples_from_epochs_minus_one else: num_samples_ = sample_idx.shape[0] - 1 shuffle_idx = _build_shuffle_idx(num_samples_, sample_idx.shape[0] - 1, np_rng) np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True) print_rank_0(' > elasped time to build and save shuffle-idx mapping' ' (seconds): {:4f}'.format(time.time() - start_time)) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case counts = torch.cuda.LongTensor([1]) torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group()) assert counts[0].item() == ( torch.distributed.get_world_size() // torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group())) # Load mappings. start_time = time.time() print_rank_0(' > loading doc-idx mapping from {}'.format( doc_idx_filename)) doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode='r') print_rank_0(' > loading sample-idx mapping from {}'.format( sample_idx_filename)) sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode='r') print_rank_0(' > loading shuffle-idx mapping from {}'.format( shuffle_idx_filename)) shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode='r') print_rank_0(' loaded indexed file in {:3.3f} seconds'.format( time.time() - start_time)) print_rank_0(' total number of samples: {}'.format( sample_idx.shape[0])) print_rank_0(' total number of epochs: {}'.format(num_epochs)) return doc_idx, sample_idx, shuffle_idx def _num_tokens(documents, sizes): """Total number of tokens in the dataset.""" return np.sum(sizes[documents]) def _num_epochs(tokens_per_epoch, seq_length, num_samples): """Based on number of samples and sequence lenght, calculate how many epochs will be needed.""" num_epochs = 0 total_tokens = 0 while True: num_epochs += 1 total_tokens += tokens_per_epoch # -1 is because we need to retrieve seq_length + 1 token each time # but the last token will overlap with the first token of the next # sample except for the last sample. if ((total_tokens - 1) // seq_length) >= num_samples: return num_epochs def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch): """Build an array with length = number-of-epochs * number-of-dcuments. Each index is mapped to a corresponding document.""" if not separate_last_epoch or num_epochs == 1: doc_idx = np.mgrid[0:num_epochs, 0:len(documents)][1] doc_idx[:] = documents doc_idx = doc_idx.reshape(-1) doc_idx = doc_idx.astype(np.int32) np_rng.shuffle(doc_idx) return doc_idx doc_idx_first = _build_doc_idx(documents, num_epochs-1, np_rng, False) doc_idx_last = _build_doc_idx(documents, 1, np_rng, False) return np.concatenate((doc_idx_first, doc_idx_last)) def _build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch): """Sample index mapping is a 2D array with sizes [number-of-samples + 1, 2] where [..., 0] contains the index into `doc_idx` and [..., 1] is the starting offset in that document.""" # Total number of samples. For -1 see comments in `_num_epochs`. num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32) # Index into sample_idx. sample_index = 0 # Index into doc_idx. doc_idx_index = 0 # Begining offset for each document. doc_offset = 0 # Start with first document and no offset. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 while sample_index <= num_samples: # Start with a fresh sequence. remaining_seq_length = seq_length + 1 while remaining_seq_length != 0: # Get the document length. doc_id = doc_idx[doc_idx_index] doc_length = sizes[doc_id] - doc_offset # And add it to the current sequence. remaining_seq_length -= doc_length # If we have more than a full sequence, adjust offset and set # remaining length to zero so we return from the while loop. # Note that -1 here is for the same reason we have -1 in # `_num_epochs` calculations. if remaining_seq_length <= 0: doc_offset += (remaining_seq_length + doc_length - 1) remaining_seq_length = 0 else: # Otherwise, start from the begining of the next document. doc_idx_index += 1 doc_offset = 0 # Record the sequence. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 return sample_idx def _build_shuffle_idx(num_samples, total_size, np_rng): """Build the range [0, size) and shuffle.""" print(' > building shuffle index with split [0, {}) and [{}, {}) ' '...'.format(num_samples, num_samples, total_size), flush=True) dtype_ = np.uint32 if total_size >= (np.iinfo(np.uint32).max - 1): dtype_ = np.int64 shuffle_idx_first = np.arange(start=0, stop=num_samples, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_first) if num_samples == total_size: return shuffle_idx_first shuffle_idx_last = np.arange(start=num_samples, stop=total_size, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_last) return np.concatenate((shuffle_idx_first, shuffle_idx_last))
compiler_gym/views/observation.py
sahirgomez1/CompilerGym
562
11199490
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Dict, List from deprecated.sphinx import deprecated from compiler_gym.service.connection import ServiceError from compiler_gym.service.proto import ObservationSpace from compiler_gym.util.gym_type_hints import ( ActionType, ObservationType, RewardType, StepType, ) from compiler_gym.views.observation_space_spec import ObservationSpaceSpec class ObservationView: """A view into the available observation spaces of a service. Example usage: >>> env = gym.make("llvm-v0") >>> env.reset() >>> env.observation.spaces.keys() ["Autophase", "Ir"] >>> env.observation.spaces["Autophase"].space Box(56,) >>> env.observation["Autophase"] [0, 1, ..., 2] >>> observation["Ir"] int main() {...} """ def __init__( self, raw_step: Callable[ [List[ActionType], List[ObservationType], List[RewardType]], StepType ], spaces: List[ObservationSpace], ): if not spaces: raise ValueError("No observation spaces") self.spaces: Dict[str, ObservationSpaceSpec] = {} self._raw_step = raw_step for i, s in enumerate(spaces): self._add_space(ObservationSpaceSpec.from_proto(i, s)) def __getitem__(self, observation_space: str) -> ObservationType: """Request an observation from the given space. :param observation_space: The observation space to query. :return: An observation. :raises KeyError: If the requested observation space does not exist. :raises SessionNotFound: If :meth:`env.reset() <compiler_gym.envs.CompilerEnv.reset>` has not been called. :raises ServiceError: If the backend service fails to compute the observation, or reports that a terminal state has been reached. """ observation_space: ObservationSpaceSpec = self.spaces[observation_space] observations, _, done, info = self._raw_step( actions=[], observations=[observation_space], rewards=[] ) if done: # Computing an observation should never cause a terminal state since # no action has been applied. msg = f"Failed to compute observation '{observation_space.id}'" if info.get("error_details"): msg += f": {info['error_details']}" raise ServiceError(msg) if len(observations) != 1: raise ServiceError( f"Expected 1 '{observation_space.id}' observation " f"but the service returned {len(observations)}" ) return observations[0] def _add_space(self, space: ObservationSpaceSpec): """Register a new space.""" self.spaces[space.id] = space # Bind a new method to this class that is a callback to compute the # given observation space. E.g. if a new space is added with ID # `FooBar`, this observation can be computed using # env.observation.FooBar(). setattr(self, space.id, lambda: self[space.id]) @deprecated( version="0.2.1", reason=( "Use the derived_observation_spaces argument to CompilerEnv constructor. " "See <https://github.com/facebookresearch/CompilerGym/issues/461>." ), ) def add_derived_space( self, id: str, base_id: str, **kwargs, ) -> None: """Alias to :func:`ObservationSpaceSpec.make_derived_space() <compiler_gym.views.ObservationSpaceSpec.make_derived_space>` that adds the derived space to the observation view. Example usage: >>> env.observation.add_derived_space( id="src_len", base_id="src", translate=lambda src: np.array([len(src)], dtype=np.int32), shape=Box(shape=(1,), dtype=np.int32), ) >>> env.observation["src_len"] 1029 :param id: The name of the new observation space. :param base_id: The name of the observation space that this is derived from. :param \\**kwargs: Arguments passed to :func:`ObservationSpaceSpec.make_derived_space <compiler_gym.views.ObservationSpaceSpec.make_derived_space>`. """ base_space = self.spaces[base_id] self._add_space(base_space.make_derived_space(id=id, **kwargs)) # NOTE(github.com/facebookresearch/CompilerGym/issues/461): This method will # be renamed to add_derived_space() once the current method with that name # is removed. def add_derived_space_internal( self, id: str, base_id: str, **kwargs, ) -> None: """Internal API for adding a new observation space.""" base_space = self.spaces[base_id] self._add_space(base_space.make_derived_space(id=id, **kwargs)) def __repr__(self): return f"ObservationView[{', '.join(sorted(self.spaces.keys()))}]"
tests/auths/test_jwt.py
abersheeran/asgi-ratelimit
136
11199492
import jwt import pytest from ratelimit.auths import EmptyInformation from ratelimit.auths.jwt import create_jwt_auth @pytest.mark.parametrize( "scope, user, group", [ ( { "headers": ( ( b"authorization", b"Bearer " + jwt.encode( {"user": "user", "group": "group"}, "test-key", "HS256", ), ), ), }, "user", "group", ), ( { "headers": ( ( b"authorization", b"Bearer " + jwt.encode( {"user": "user", "group": "group"}, "test-key", "HS512", ), ), ), }, "user", "group", ), ( { "headers": ( ( b"authorization", b"Bearer " + jwt.encode({"user": "user"}, "test-key", "HS256"), ), ), }, "user", "default", ), ], ) @pytest.mark.asyncio async def test_jwt_auth(scope, user, group): assert (await create_jwt_auth("test-key", ["HS256", "HS512"])(scope)) == ( user, group, ) @pytest.mark.parametrize( "scope, user, group", [ ( { "headers": ( ( b"authorization", b"Bearer " + jwt.encode({"user_id": "user"}, "test-key", "HS256"), ), ), }, "user", "default", ), ], ) @pytest.mark.asyncio async def test_jwt_auth_other_user_key(scope, user, group): val = await create_jwt_auth("test-key", ["HS256", "HS512"], user_key="user_id")( scope ) assert val == ( user, group, ) @pytest.mark.parametrize( "scope", [ {"headers": ()}, { "headers": ( ( b"wrongkey", b"Bearer " + jwt.encode({"username": "user"}, "test-key", "HS256"), ), ), }, { "headers": ( ( b"authorization", b"Bearer " + jwt.encode({"username": "user"}, "test-key", "HS256"), ), ), }, ], ) @pytest.mark.asyncio async def test_error(scope): with pytest.raises(EmptyInformation): await create_jwt_auth("test-key", ["HS256", "HS512"])(scope)
watchmen/database/table/oracle_table_definition.py
Insurance-Metrics-Measure-Advisory/watchman-data-connector
125
11199523
from sqlalchemy import MetaData, Table, Column, String, CLOB, Date, DateTime, Integer from watchmen_boot.config.config import settings metadata = MetaData() def get_primary_key(table_name): return get_pid(table_name) def get_pid(table_name): if table_name == 'topics': return 'topicId' elif table_name == 'console_space_subjects': return 'subjectId' elif table_name == 'pipelines': return 'pipelineId' elif table_name == 'users': return 'userId' elif table_name == 'console_dashboards': return 'dashboardId' elif table_name == 'pipeline_graph': return 'pipelineGraphId' elif table_name == 'console_spaces': return 'connectId' elif table_name == 'console_space_favorites': return 'userId' elif table_name == 'spaces': return 'spaceId' elif table_name == 'console_space_subjects': return 'subjectId' elif table_name == 'console_reports': return 'reportId' elif table_name == 'user_groups': return 'userGroupId' elif table_name == 'enums': return 'enumId' elif table_name == 'console_reports': return 'reportId' elif table_name == "console_space_last_snapshot": return "userId" elif table_name == "tenants": return "tenantId" elif table_name == "pats": return "patId" elif table_name == "data_sources": return "dataSourceId" elif table_name == "external_writer": return "writerId" elif table_name == "factor_index": return "factorindexid" else: raise Exception("table_name does not exist {0}".format(table_name)) users_table = Table("users", metadata, Column('userid', String(60), primary_key=True), Column('name', String(45), nullable=False), Column('nickname', String(45), nullable=True), Column('password', String(100), nullable=True), Column('is_active', String(5), nullable=True), Column('groupids', CLOB, nullable=True), Column('role', String(45), nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), Column('lastmodified', Date, nullable=True) ) user_groups_table = Table("user_groups", metadata, Column('usergroupid', String(60), primary_key=True), Column('name', String(45), nullable=False), Column('description', String(45), nullable=True), Column('userids', CLOB, nullable=True), Column('spaceids', CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), Column('lastmodified', Date, nullable=True) ) external_writer_table = Table("external_writer", metadata, Column('writerid', String(50), primary_key=True), Column('writercode', String(50), nullable=False), Column('type', String(50), nullable=False), Column('pat', String(50), nullable=False), Column('url', String(50), nullable=False), Column('tenantid', String(60), nullable=True), Column('createtime', String(50), nullable=True), Column('lastmodified', Date, nullable=True) ) console_space_last_snapshot_table = Table("console_space_last_snapshot", metadata, Column('userid', String(60), primary_key=True), Column('language', String(5), nullable=True), Column('lastdashboardid', String(25), nullable=True), Column('admindashboardid', String(25), nullable=True), Column('favoritepin', String(5), nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), Column('lastmodified', Date, nullable=True) ) console_dashboards_table = Table("console_dashboards", metadata, Column('dashboardid', String(60), primary_key=True), Column('name', String(25), nullable=False), Column('reports', CLOB, nullable=True), Column('paragraphs', CLOB, nullable=True), Column('lastvisittime', String(25), nullable=False), Column('userid', String(60), nullable=False), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), Column('lastmodified', DateTime, nullable=True) ) topics_table = Table("topics", metadata, Column("topicid", String(60), primary_key=True), Column("name", String(25), nullable=False), Column("kind", String(10), nullable=True), Column("type", String(10), nullable=True), Column("description", String(250), nullable=True), Column("factors", CLOB, nullable=True), Column("datasourceid", String(60), nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), # Column('last_modified', DateTime, nullable=True), Column('lastmodified', DateTime, nullable=True) ) enums_table = Table("enums", metadata, Column("enumid", String(60), primary_key=True), Column("name", String(25), nullable=False), Column("description", String(25), nullable=True), Column("parentenumid", String(60), nullable=True), Column("items", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), Column('lastmodified', DateTime, nullable=True) ) spaces_table = Table("spaces", metadata, Column("spaceid", String(60), primary_key=True), Column("topicids", CLOB, nullable=True), Column("groupids", CLOB, nullable=True), Column("name", String(25), nullable=False), Column("description", String(25), nullable=True), Column("filters", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), # Column('last_modified', DateTime, nullable=True), Column('lastmodified', DateTime, nullable=True) ) console_space_favorites_table = Table("console_space_favorites", metadata, Column("userid", String(60), primary_key=True), Column("connectedspaceids", CLOB, nullable=True), Column("dashboardids", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), # Column('last_modified', DateTime, nullable=True), Column('lastmodified', DateTime, nullable=True) ) console_space_graph_table = Table("console_space_graph", metadata, Column("connectid", String(60), primary_key=True), Column("topics", CLOB, nullable=True), Column("subjects", CLOB, nullable=True), Column("userid", String(60), nullable=False), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), # Column('last_modified', DateTime, nullable=True), Column('lastmodified', DateTime, nullable=True) ) console_spaces_table = Table("console_spaces", metadata, Column("spaceid", String(60), primary_key=True), Column("topics", CLOB, nullable=True), Column("groupids", CLOB, nullable=True), Column("name", String(25), nullable=False), Column("connectid", String(25), nullable=False), Column("type", String(10), nullable=True), Column('lastvisittime', DateTime, nullable=True), Column("userid", String(60), nullable=True), Column("subjectids", CLOB, nullable=True), Column("istemplate", String(5), default=False), Column("subjects", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), Column('lastmodified', DateTime, nullable=True) ) pipelines_table = Table("pipelines", metadata, Column("pipelineid", String(60), primary_key=True), Column("topicid", String(60), nullable=False), Column("name", String(25), nullable=False), Column("type", String(10), nullable=True), Column("stages", CLOB, nullable=True), Column("conditional", String(5), nullable=True), Column("enabled", String(5), nullable=True), Column("on", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('createtime', String(50), nullable=True), # Column('last_modified', DateTime, nullable=True), Column('lastmodified', DateTime, nullable=True) ) pipeline_graph_table = Table("pipeline_graph", metadata, Column("pipelinegraphid", String(60), nullable=False), Column("name", String(50), nullable=True), Column("userid", String(60), nullable=False), Column("topics", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True) ) console_space_subjects_table = Table("console_space_subjects", metadata, Column("subjectid", String(60), primary_key=True), Column("name", String(50), nullable=False), Column("topiccount", Integer, nullable=True), Column("graphicscount", Integer, nullable=True), Column("reports", CLOB, nullable=True), Column("reportids", CLOB, nullable=True), Column("dataset", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column("lastvisittime", DateTime, nullable=True), Column("createdat", String(50), nullable=True), # Column('lastmodifytime', DateTime, nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True) ) console_reports_table = Table("reports", metadata, Column("reportid", String(60), primary_key=True), Column("name", String(50), nullable=False), Column("indicators", CLOB, nullable=True), Column("dimensions", CLOB, nullable=True), Column("funnels", CLOB, nullable=True), Column("filters", CLOB, nullable=True), Column("description", String(50), nullable=True), Column("rect", CLOB, nullable=True), Column("chart", CLOB, nullable=True), Column('tenantid', String(60), nullable=False), Column("createdat", String(50), nullable=True), Column("lastvisittime", String(50), nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True), Column('simulating', String(5), default=False), Column('simulatedata', CLOB, nullable=True), Column('simulatethumbnail', CLOB, nullable=True) ) pats_table = Table("pats", metadata, Column("patid", String(60), primary_key=True), Column("tokenid", String(50), nullable=False), Column("userid", String(50), nullable=False), Column("username", String(50), nullable=False), Column("tenantid", String(60), nullable=False), Column("note", String(50), nullable=False), Column("expired", Date, nullable=True), Column("permissions", CLOB, nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True) ) tenants_table = Table("tenants", metadata, Column("tenantid", String(60), primary_key=True), Column("name", String(50), nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True) ) key_store_table = Table("key_stores", metadata, Column("tenantid", String(50), primary_key=True), Column("keyType", String(50), nullable=True), Column("params", CLOB, nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True) ) data_sources_table = Table("data_sources", metadata, Column("datasourceid", String(60), primary_key=True), Column("datasourcecode", String(50), nullable=False), Column("datasourcetype", String(50), nullable=False), Column("host", String(50), nullable=True), Column("port", String(50), nullable=True), Column("username", String(60), nullable=True), Column("password", String(50), nullable=True), Column("name", String(50), nullable=True), Column("url", String(60), nullable=True), Column("tenantid", String(50), nullable=False), Column("params", CLOB, nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(50), nullable=True) ) if settings.INDEX_ON: factor_index_table = Table("factor_index", metadata, Column("factorindexid", String(50), primary_key=True), Column("factorid", String(50), nullable=True), Column("tenantid", String(50), nullable=True), Column("topicid", String(50), nullable=True), Column("name", String(50), nullable=True), Column("label", String(50), nullable=True), Column("topicname", String(50), nullable=True), Column("description", String(50)), Column("type", String(50)), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(60), nullable=True) ) pipeline_index_table = Table("pipeline_index", metadata, Column("pipelineindexid", String(50), primary_key=True), Column("factorid", String(50)), Column("pipelineid", String(50)), Column("topicid", String(50)), Column("stageid", String(50), nullable=True), Column("unitid", String(50), nullable=True), Column("actionid", String(50), nullable=True), Column("mappingtofactorid", String(50), nullable=True), Column("mappingtotopicid", String(50), nullable=True), Column("sourcefromfactorid", String(50), nullable=True), Column("sourcefromtopicid", String(50), nullable=True), Column("pipelinename", String(60)), Column("stagename", String(60)), Column("unitname", String(60)), Column("reftype", String(50), nullable=True), Column("tenantid", String(50), nullable=True), Column('lastmodified', DateTime, nullable=True), Column('createtime', String(60), nullable=True) ) def get_table_by_name(table_name): if table_name == "users": return users_table elif table_name == "console_space_last_snapshot": return console_space_last_snapshot_table elif table_name == "console_dashboards": return console_dashboards_table elif table_name == "topics": return topics_table elif table_name == "enums": return enums_table elif table_name == "spaces": return spaces_table elif table_name == "console_space_favorites": return console_space_favorites_table elif table_name == "console_space_graph": return console_space_graph_table elif table_name == "console_spaces": return console_spaces_table elif table_name == "user_groups": return user_groups_table elif table_name == "pipelines": return pipelines_table elif table_name == "pipeline_graph": return pipeline_graph_table elif table_name == "console_space_subjects": return console_space_subjects_table elif table_name == "console_reports": return console_reports_table elif table_name == "pats": return pats_table elif table_name == "tenants": return tenants_table elif table_name == "data_sources": return data_sources_table elif table_name == "external_writer": return external_writer_table elif table_name == "key_stores": return key_store_table elif table_name == "factor_index": return factor_index_table elif table_name == "pipeline_index": return pipeline_index_table else: raise Exception("table_name does not exist {}".format(table_name))
s3prl/downstream/sv_voxceleb1/dataset.py
hhhaaahhhaa/s3prl
856
11199526
<filename>s3prl/downstream/sv_voxceleb1/dataset.py import os import re import sys import time import random import pickle import tqdm import torch import torchaudio import numpy as np from torch import nn from pathlib import Path from sox import Transformer from torchaudio import load from librosa.util import find_files from joblib.parallel import Parallel, delayed from torch.utils.data import DataLoader, Dataset from torchaudio.sox_effects import apply_effects_file EFFECTS = [ ["channels", "1"], ["rate", "16000"], ["gain", "-3.0"], ["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"], ] # Voxceleb 2 Speaker verification class SpeakerVerifi_train(Dataset): def __init__(self, vad_config, key_list, file_path, meta_data, max_timestep=None, n_jobs=12): self.roots = file_path self.root_key = key_list self.max_timestep = max_timestep self.vad_c = vad_config self.dataset = [] self.all_speakers = [] for index in range(len(self.root_key)): cache_path = Path(os.path.dirname(__file__)) / '.wav_lengths' / f'{self.root_key[index]}_length.pt' cache_path.parent.mkdir(exist_ok=True) root = Path(self.roots[index]) if not cache_path.is_file(): def trimmed_length(path): wav_sample, _ = apply_effects_file(path, EFFECTS) wav_sample = wav_sample.squeeze(0) length = wav_sample.shape[0] return length wav_paths = find_files(root) wav_lengths = Parallel(n_jobs=n_jobs)(delayed(trimmed_length)(path) for path in tqdm.tqdm(wav_paths, desc="Preprocessing")) wav_tags = [Path(path).parts[-3:] for path in wav_paths] torch.save([wav_tags, wav_lengths], str(cache_path)) else: wav_tags, wav_lengths = torch.load(str(cache_path)) wav_paths = [root.joinpath(*tag) for tag in wav_tags] speaker_dirs = ([f.stem for f in root.iterdir() if f.is_dir()]) self.all_speakers.extend(speaker_dirs) for path, length in zip(wav_paths, wav_lengths): if length > self.vad_c['min_sec']: self.dataset.append(path) self.all_speakers.sort() self.speaker_num = len(self.all_speakers) def __len__(self): return len(self.dataset) def __getitem__(self, idx): path = self.dataset[idx] wav, _ = apply_effects_file(str(path), EFFECTS) wav = wav.squeeze(0) length = wav.shape[0] if self.max_timestep != None: if length > self.max_timestep: start = random.randint(0, int(length - self.max_timestep)) wav = wav[start : start + self.max_timestep] tags = Path(path).parts[-3:] utterance_id = "-".join(tags).replace(".wav", "") label = self.all_speakers.index(tags[0]) return wav.numpy(), utterance_id, label def collate_fn(self, samples): return zip(*samples) class SpeakerVerifi_test(Dataset): def __init__(self, vad_config, file_path, meta_data): self.root = file_path self.meta_data = meta_data self.necessary_dict = self.processing() self.vad_c = vad_config self.dataset = self.necessary_dict['pair_table'] def processing(self): pair_table = [] with open(self.meta_data, "r") as f: usage_list = f.readlines() for pair in usage_list: list_pair = pair.split() pair_1= os.path.join(self.root, list_pair[1]) pair_2= os.path.join(self.root, list_pair[2]) one_pair = [list_pair[0],pair_1,pair_2 ] pair_table.append(one_pair) return { "spk_paths": None, "total_spk_num": None, "pair_table": pair_table } def __len__(self): return len(self.necessary_dict['pair_table']) def __getitem__(self, idx): y_label, x1_path, x2_path = self.dataset[idx] def path2name(path): return Path("-".join((Path(path).parts)[-3:])).stem x1_name = path2name(x1_path) x2_name = path2name(x2_path) wav1, _ = apply_effects_file(x1_path, EFFECTS) wav2, _ = apply_effects_file(x2_path, EFFECTS) wav1 = wav1.squeeze(0) wav2 = wav2.squeeze(0) return wav1.numpy(), wav2.numpy(), x1_name, x2_name, int(y_label[0]) def collate_fn(self, data_sample): wavs1, wavs2, x1_names, x2_names, ylabels = zip(*data_sample) all_wavs = wavs1 + wavs2 all_names = x1_names + x2_names return all_wavs, all_names, ylabels
desktop/core/ext-py/Pygments-1.3.1/pygments/formatters/terminal.py
kokosing/hue
5,079
11199528
<reponame>kokosing/hue # -*- coding: utf-8 -*- """ pygments.formatters.terminal ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Formatter for terminal output with ANSI sequences. :copyright: Copyright 2006-2010 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.formatter import Formatter from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Token, Whitespace from pygments.console import ansiformat from pygments.util import get_choice_opt __all__ = ['TerminalFormatter'] #: Map token types to a tuple of color values for light and dark #: backgrounds. TERMINAL_COLORS = { Token: ('', ''), Whitespace: ('lightgray', 'darkgray'), Comment: ('lightgray', 'darkgray'), Comment.Preproc: ('teal', 'turquoise'), Keyword: ('darkblue', 'blue'), Keyword.Type: ('teal', 'turquoise'), Operator.Word: ('purple', 'fuchsia'), Name.Builtin: ('teal', 'turquoise'), Name.Function: ('darkgreen', 'green'), Name.Namespace: ('_teal_', '_turquoise_'), Name.Class: ('_darkgreen_', '_green_'), Name.Exception: ('teal', 'turquoise'), Name.Decorator: ('darkgray', 'lightgray'), Name.Variable: ('darkred', 'red'), Name.Constant: ('darkred', 'red'), Name.Attribute: ('teal', 'turquoise'), Name.Tag: ('blue', 'blue'), String: ('brown', 'brown'), Number: ('darkblue', 'blue'), Generic.Deleted: ('red', 'red'), Generic.Inserted: ('darkgreen', 'green'), Generic.Heading: ('**', '**'), Generic.Subheading: ('*purple*', '*fuchsia*'), Generic.Error: ('red', 'red'), Error: ('_red_', '_red_'), } class TerminalFormatter(Formatter): r""" Format tokens with ANSI color sequences, for output in a text console. Color sequences are terminated at newlines, so that paging the output works correctly. The `get_style_defs()` method doesn't do anything special since there is no support for common styles. Options accepted: `bg` Set to ``"light"`` or ``"dark"`` depending on the terminal's background (default: ``"light"``). `colorscheme` A dictionary mapping token types to (lightbg, darkbg) color names or ``None`` (default: ``None`` = use builtin colorscheme). """ name = 'Terminal' aliases = ['terminal', 'console'] filenames = [] def __init__(self, **options): Formatter.__init__(self, **options) self.darkbg = get_choice_opt(options, 'bg', ['light', 'dark'], 'light') == 'dark' self.colorscheme = options.get('colorscheme', None) or TERMINAL_COLORS def format(self, tokensource, outfile): # hack: if the output is a terminal and has an encoding set, # use that to avoid unicode encode problems if not self.encoding and hasattr(outfile, "encoding") and \ hasattr(outfile, "isatty") and outfile.isatty(): self.encoding = outfile.encoding return Formatter.format(self, tokensource, outfile) def format_unencoded(self, tokensource, outfile): for ttype, value in tokensource: color = self.colorscheme.get(ttype) while color is None: ttype = ttype[:-1] color = self.colorscheme.get(ttype) if color: color = color[self.darkbg] spl = value.split('\n') for line in spl[:-1]: if line: outfile.write(ansiformat(color, line)) outfile.write('\n') if spl[-1]: outfile.write(ansiformat(color, spl[-1])) else: outfile.write(value)
grr/client/grr_response_client/client_actions/file_finder_utils/__init__.py
nkrios/grr
4,238
11199530
<gh_stars>1000+ #!/usr/bin/env python """Implementation of utilities used in the client-side file-finder."""
robot-server/robot_server/service/session/session_types/__init__.py
knownmed/opentrons
235
11199534
<filename>robot-server/robot_server/service/session/session_types/__init__.py from .check_session import CheckSession # noqa: F401 from .tip_length_calibration import TipLengthCalibration # noqa: F401 from .deck_calibration_session import DeckCalibrationSession # noqa: F401 from .pipette_offset_calibration import PipetteOffsetCalibrationSession # noqa: F401 from .base_session import BaseSession, SessionMetaData # noqa: F401 from .protocol.session import ProtocolSession # noqa: F401 from .live_protocol.session import LiveProtocolSession # noqa: F401
pythran/graph.py
jeanlaroche/pythran
1,647
11199573
''' Minimal directed graph replacement for networkx.DiGraph This has the sole advantage of being a standalone file that doesn't bring any dependency with it. ''' class DiGraph(object): def __init__(self): # adjacency[i][j] = True means j is a successor of i self._adjacency = {} self._edges = {} def successors(self, node): return (n for n in self._adjacency[node]) def predecessors(self, node): return (k for k, v in self._adjacency.items() if node in v) def add_node(self, node): self._adjacency.setdefault(node, set()) def add_edge(self, src, dest, **props): self.add_node(dest) self._adjacency.setdefault(src, set()).add(dest) self._edges[(src, dest)] = props @property def edges(self): return self._edges def remove_edge(self, src, dest): self._adjacency[src].remove(dest) del self._edges[(src, dest)] def __len__(self): return len(self._adjacency) def __iter__(self): return iter(self._adjacency.keys()) def __contains__(self, value): return value in self._adjacency def __getitem__(self, node): return self._adjacency[node] class Unfeasible(RuntimeError): pass def has_path(graph, src, dest): visited = set() worklist = [src] while worklist: current = worklist.pop() if current in visited: continue visited.add(current) if dest in graph.successors(current): return True worklist.extend(graph.successors(current)) return False # Copied verbatim from NetworkX 2.6.1 # # NetworkX is distributed with the 3-clause BSD license. # # :: # # Copyright (C) 2004-2021, NetworkX Developers # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of the NetworkX Developers nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def _all_simple_paths_graph(G, source, targets, cutoff): visited = dict.fromkeys([source]) stack = [iter(G[source])] while stack: children = stack[-1] child = next(children, None) if child is None: stack.pop() visited.popitem() elif len(visited) < cutoff: if child in visited: continue if child in targets: yield list(visited) + [child] visited[child] = None if targets - set(visited.keys()): # expand stack until find all targets stack.append(iter(G[child])) else: visited.popitem() # maybe other ways to child else: # len(visited) == cutoff: for target in (targets & (set(children) | {child})) - set(visited.keys()): yield list(visited) + [target] stack.pop() visited.popitem() def all_simple_paths(graph, src, target): return _all_simple_paths_graph(graph, src, {target}, len(graph) - 1)
pypiserver/__init__.py
NoOneSurvives/docker-pypi-server
1,257
11199584
<reponame>NoOneSurvives/docker-pypi-server import functools import pathlib import re as _re import sys import typing as t from pypiserver.bottle import Bottle from pypiserver.config import Config, RunConfig, strtobool version = __version__ = "2.0.0dev1" __version_info__ = tuple(_re.split("[.-]", __version__)) __updated__ = "2020-10-11 11:23:15" __title__ = "pypiserver" __summary__ = "A minimal PyPI server for use with pip/easy_install." __uri__ = "https://github.com/pypiserver/pypiserver" identity = lambda x: x def backwards_compat_kwargs(kwargs: dict, warn: bool = True) -> dict: """Return a dict with deprecated kwargs converted to new kwargs. :param kwargs: the incoming kwargs to convert :param warn: whether to output a warning to stderr if there are deprecated kwargs found in the incoming kwargs """ # A mapping of deprecated kwargs to a 2-tuple of their corresponding updated # kwarg and a function to convert the value of the deprecated kwarg to a # value for the new kwarg. `identity` is just a function that returns # whatever it is passed and is used in cases where the only change from # a legacy kwarg is its name. backwards_compat = { "authenticated": ("authenticate", identity), "passwords": ("<PASSWORD>", identity), # `root` could be a string or an array of strings. Handle both cases, # converting strings to Path instances. "root": ( "roots", lambda root: [ # Convert strings to absolute Path instances pathlib.Path(r).expanduser().resolve() for r in ([root] if isinstance(root, str) else root) ], ), # `redirect_to_fallback` was changed to `disable_fallback` for clearer # use as a flag to disable the default behavior. Since its behavior # is the opposite, we negate it. "redirect_to_fallback": ( "disable_fallback", lambda redirect: not redirect, ), "server": ("server_method", identity), # `welcome_msg` now is just provided as text, so that anyone using # pypiserver as a library doesn't need to worry about distributing # files if they don't need to. If we're still passed an old-style # `welcome_file` argument, we go ahead and resolve it to an absolute # path and read the text. "welcome_file": ( "welcome_msg", lambda p: pathlib.Path(p).expanduser().resolve().read_text(), ), } # Warn the user if they're using any deprecated arguments if warn and any(k in backwards_compat for k in kwargs): # Make nice instructions like `Please replace the following: # 'authenticated' with 'authenticate'` and print to stderr. replacement_strs = ( f"'{k}' with '{backwards_compat[k][0]}'" for k in filter(lambda k: k in kwargs, backwards_compat) ) warn_str = ( "You are using deprecated arguments. Please replace the following: \n" f" {', '.join(replacement_strs)}" ) print(warn_str, file=sys.stderr) # Create an iterable of 2-tuple to collect into the updated dictionary. Each # item will either be the existing key-value pair from kwargs, or, if the # keyword is a legacy keyword, the new key and potentially adjusted value # for that keyword. Note that depending on the order the argument are # specified, this _could_ mean an updated legacy keyword could override # a new argument if that argument is also specified. However, in that # case, our updated kwargs dictionary would have a different number of # keys compared to our incoming dictionary, so we check for that case # below. rv_iter = ( ( (k, v) if k not in backwards_compat else (backwards_compat[k][0], backwards_compat[k][1](v)) ) for k, v in kwargs.items() ) updated_kwargs = dict(rv_iter) # If our dictionaries have different lengths, we must have gotten duplicate # legacy/modern keys. Figure out which keys were dupes and throw an error. if len(updated_kwargs) != len(kwargs): legacy_to_modern = {k: v[0] for k, v in backwards_compat.items()} dupes = [ (k, v) for k, v in legacy_to_modern.items() if k in kwargs and v in kwargs ] raise ValueError( "Keyword arguments for pypiserver app() constructor contained " "duplicate legacy and modern keys. Duplicates are shown below, in " "the form (legacy_key, modern_key):\n" f"{dupes}" ) return updated_kwargs def app(**kwargs: t.Any) -> Bottle: """Construct a bottle app running pypiserver. :param kwds: Any overrides for defaults. Any property of RunConfig (or its base), defined in `pypiserver.config`, may be overridden. """ config = Config.default_with_overrides(**backwards_compat_kwargs(kwargs)) return app_from_config(config) def app_from_config(config: RunConfig) -> Bottle: """Construct a bottle app from the provided RunConfig.""" # The _app module instantiates a Bottle instance directly when it is # imported. That is `_app.app`. We directly mutate some global variables # on the imported `_app` module so that its endpoints will behave as # we expect. _app = __import__("_app", globals(), locals(), ["."], 1) # Because we're about to mutate our import, we pop it out of the imported # modules map, so that any future imports do not receive our mutated version sys.modules.pop("pypiserver._app", None) _app.config = config # Add a reference to our config on the Bottle app for easy access in testing # and other contexts. _app.app._pypiserver_config = config return _app.app T = t.TypeVar("T") def paste_app_factory(_global_config, **local_conf): """Parse a paste config and return an app. The paste config is entirely strings, so we need to parse those strings into values usable for the config, if they're present. """ def to_bool(val: t.Optional[str]) -> t.Optional[bool]: """Convert a string value, if provided, to a bool.""" return val if val is None else strtobool(val) def to_int(val: t.Optional[str]) -> t.Optional[int]: """Convert a string value, if provided, to an int.""" return val if val is None else int(val) def to_list( val: t.Optional[str], sep: str = " ", transform: t.Callable[[str], T] = str.strip, ) -> t.Optional[t.List[T]]: """Convert a string value, if provided, to a list. :param sep: the separator between items in the string representation of the list :param transform: an optional function to call on each string item of the list """ if val is None: return val return list(filter(None, map(transform, val.split(sep)))) def _make_root(root: str) -> pathlib.Path: """Convert a specified string root into an absolute Path instance.""" return pathlib.Path(root.strip()).expanduser().resolve() # A map of config keys we expect in the paste config to the appropriate # function to parse the string config value. This map includes both # current and legacy keys. maps = { "cache_control": to_int, "roots": functools.partial(to_list, sep="\n", transform=_make_root), # root is a deprecated argument for roots "root": functools.partial(to_list, sep="\n", transform=_make_root), "disable_fallback": to_bool, # redirect_to_fallback is a deprecated argument for disable_fallback "redirect_to_fallback": to_bool, "overwrite": to_bool, "authenticate": functools.partial(to_list, sep=" "), # authenticated is a deprecated argument for authenticate "authenticated": functools.partial(to_list, sep=" "), "verbosity": to_int, } # First, convert values from strings to whatever types we need, or leave # them as strings if there's no mapping function available for them. mapped_conf = {k: maps.get(k, identity)(v) for k, v in local_conf.items()} # Convert any legacy key/value pairs into their modern form. updated_conf = backwards_compat_kwargs(mapped_conf) return app(**updated_conf)
server.py
yutiansut/paperbroker
227
11199593
from flask import Flask, request, send_from_directory from paperbroker import PaperBroker from paperbroker.orders import Order import ujson # initialize a PaperBroker with defaults broker = PaperBroker() # set the project root directory as the static folder, you can set others. app = Flask(__name__, static_url_path='') # helper function to return json def json(data): global app response = app.response_class( response=ujson.dumps(data).replace('NaN', 'null'), status=200, mimetype='application/json' ) return response # begin routes @app.route("/quotes/<asset>", methods=['GET']) def get_quote(asset:str): return json(broker.get_quote(asset)) @app.route("/quotes/<asset>/options/<expiration_date>", methods=['GET']) def get_options(asset=None, expiration_date=None, only_priceable=True): if only_priceable: return json([_ for _ in broker.get_options(asset, expiration_date) if _.is_priceable()]) else: return json([_ for _ in broker.get_options(asset, expiration_date)]) @app.route("/expirations/<asset>", methods=['GET']) def get_expiration_dates(asset=None): return json(broker.get_expiration_dates(asset)) @app.route("/accounts", methods=['POST']) @app.route("/accounts/create", methods=['GET']) def open_account(): return json(broker.open_account()) @app.route("/accounts/<account_id>", methods=['GET']) def get_account(account_id: str = None): return json(broker.get_account(account_id=account_id)) @app.route("/accounts/<account_id>/orders/buy_to_open/<asset>", methods=['POST']) def buy_to_open(account_id:str = None, asset:str = None): quantity = int(request.args.get('quantity', 1)) simulate = not ( not (request.args.get('simulate', False) ) ) return json(broker.buy_to_open(account = broker.get_account(account_id=account_id), asset=asset, quantity=quantity, simulate=simulate)) @app.route("/accounts/<account_id>/orders/sell_to_open/<asset>", methods=['POST']) def sell_to_open(account_id:str = None, asset:str = None): quantity = int(request.args.get('quantity', 1)) simulate = not ( not (request.args.get('simulate', False) ) ) return json(broker.sell_to_open(account = broker.get_account(account_id=account_id), asset=asset, quantity=quantity, simulate=simulate)) @app.route("/accounts/<account_id>/orders/buy_to_close/<asset>", methods=['POST']) def buy_to_close(account_id:str = None, asset:str = None): quantity = int(request.args.get('quantity', 1)) simulate = not ( not (request.args.get('simulate', False) ) ) return json(broker.buy_to_close(account = broker.get_account(account_id=account_id), asset=asset, quantity=quantity, simulate=simulate)) @app.route("/accounts/<account_id>/orders/sell_to_close/<asset>", methods=['POST']) def sell_to_close(account_id:str = None, asset:str = None): quantity = int(request.args.get('quantity', 1)) simulate = not ( not (request.args.get('simulate', False) ) ) return json(broker.sell_to_close(account = broker.get_account(account_id=account_id), asset=asset, quantity=quantity, simulate=simulate)) @app.route("/accounts/<account_id>/positions/liquidate", methods=['POST']) def liquidate_account_positions(account_id:str, positions=None, simulate=None): simulate = (not ( not (request.args.get('simulate', False) ) )) if simulate is not None else simulate account = broker.get_account(account_id=account_id) return json(broker.close_positions(account=account, positions=account.positions, simulate=simulate)) @app.route("/accounts/<account_id>/orders/simulate", methods=['POST']) @app.route("/accounts/<account_id>/orders/create/simulate", methods=['GET']) def simulate_order(account_id: str): return enter_order(account_id, simulate=True) @app.route("/accounts/<account_id>/orders", methods=['POST']) @app.route("/accounts/<account_id>/orders/create", methods=['GET']) def enter_order(account_id: str, simulate=None): simulate = not(not(request.args.get('simulate', False))) if simulate is None else simulate order = Order() for x in range(4): if request.args.get('legs[{}][asset]'.format(x-1), None) is not None: asset = request.args.get('legs[{}][asset]'.format(x-1), None) order_type = request.args.get('legs[{}][order_type]'.format(x-1), None) quantity = request.args.get('legs[{}][quantity]'.format(x-1), None) if order_type is None: raise Exception('order_type is a required field') if quantity is None: raise Exception('quantity is a required field') order.add_leg(asset=asset, order_type=order_type, quantity=quantity) account = broker.get_account(account_id=account_id) return json(broker.enter_order(account = account, order=order, simulate=simulate)) @app.route('/<path:path>') def send_static(path): return send_from_directory('static', path or 'index.html') @app.route('/') def send_index(): return send_from_directory('static', 'index.html') if __name__ == "__main__": port = 8231 app.debug = False print("PaperBroker Flask Server is starting on localhost:{}".format(port)) app.run(host = "127.0.0.1", port = port, debug=False)
py/torch_tensorrt/fx/test/passes/test_fuse_permute_linear_trt.py
NVIDIA/Torch-TensorRT
430
11199628
<reponame>NVIDIA/Torch-TensorRT # Owner(s): ["oncall: gpu_enablement"] import torch import torch_tensorrt.fx.tracer.acc_tracer.acc_ops as acc_ops from torch.testing._internal.common_utils import run_tests from torch_tensorrt.fx.passes.lower_basic_pass import ( fuse_permute_linear, trt_transposed_linear, ) from torch_tensorrt.fx.tools.common_fx2trt import AccTestCase class TestFusePermuteLinear(AccTestCase): def test_fuse_permute_linear(self): class TestModule(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear = torch.nn.Linear(in_features, out_features) def forward(self, x): return self.linear(x.permute(0, 2, 1)) inputs = [torch.randn(6, 10, 20)] a = TestModule(10, 30) self.run_test( TestModule(10, 30), inputs, {trt_transposed_linear}, apply_passes=[fuse_permute_linear], ) def test_fuse_permute_linear_keep_permute(self): """ Fusion while keep permute node since permute has more than one consumers """ class TestModule(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear = torch.nn.Linear(in_features, out_features) def forward(self, x): y = x.permute(0, 2, 1) return self.linear(y), y inputs = [torch.randn(6, 10, 20)] a = TestModule(10, 30) self.run_test( TestModule(10, 30), inputs, {acc_ops.permute, trt_transposed_linear}, apply_passes=[fuse_permute_linear], ) def test_multi_fuse_permute_linear(self): """ Fusion when permute output is shared by multiple linears """ class TestModule(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.linear1 = torch.nn.Linear(in_features, out_features) self.linear2 = torch.nn.Linear(in_features, out_features) def forward(self, x): y = x.permute(0, 2, 1) return self.linear1(y) + self.linear2(y) inputs = [torch.randn(8, 10, 20)] a = TestModule(10, 30) self.run_test( TestModule(10, 30), inputs, {trt_transposed_linear}, apply_passes=[fuse_permute_linear], ) if __name__ == "__main__": run_tests()
recipes/sota/2019/lm_analysis/filter_segmentations.py
Zilv1128/test1
5,921
11199718
<reponame>Zilv1128/test1<gh_stars>1000+ import sys from collections import defaultdict def count(MIN_SIL_LENGTH, align_file): lines = [] with open(align_file) as fin: lines = fin.readlines() res = {} res["word_counter"] = [0] * 100 # number of word in each small chunk res["chunk_counter"] = [0] * 100 # number of small chunk per audio stat = defaultdict(list) good_samples = [] for line in lines: sp = line.split("\t") # filename = sp[0] alignments = sp[1].strip().split("\\n") # Parse the alignments chunk_starts = [0] chunk_ends = [] words = [] cur_words = [] cur_end = 0 for i, alignment in enumerate(alignments): sp = alignment.split() begin = float(sp[2]) length = float(sp[3]) word = sp[4] cur_end = begin + length if i == 0: continue if word == "$": if length > MIN_SIL_LENGTH: chunk_ends.append(cur_end) chunk_starts.append(cur_end) words.append(" ".join(cur_words)) cur_words = [] continue cur_words.append(word) if len(cur_words) > 0: chunk_ends.append(cur_end) words.append(" ".join(cur_words)) else: chunk_starts.pop() # res good = True n_chunk = len(words) # filter if n_segments == 1 if n_chunk < 2: good = False res["chunk_counter"][n_chunk] += 1 for word_chunk in words: n_word = len(word_chunk.split()) res["word_counter"][n_word] += 1 stat[n_chunk].append(n_word) # filter if number of words in a segment > 6 if n_word > 6: good = False if good: good_samples.append(line) print(len(good_samples)) return res, stat, good_samples if __name__ == "__main__": align_file = sys.argv[1] original_file = sys.argv[2] res, data, samples = count(0.13, align_file) print(res) fnames = set([line.strip().split("\t")[0].split("/")[-1] for line in samples]) # prepare original filtered file with open(original_file, "r") as f, open( "original.filtered_chunk_g1_ngrams_le6.lst", "w" ) as fout: for line in f: if line.split(" ")[1].split("/")[-1] in fnames: fout.write(line) with open(align_file + ".filtered_chunk_g1_ngrams_le6", "w") as f: for sample in samples: f.write(sample)
netutils_linux_monitoring/layout.py
henkaru/netutils-linux
749
11199720
<filename>netutils_linux_monitoring/layout.py # coding=utf-8 """ Everything about console output's layout """ from prettytable import PrettyTable from six import print_ def make_table(header, align_map=None, rows=None): """ Wrapper for pretty table """ table = PrettyTable() table.horizontal_char = table.vertical_char = table.junction_char = ' ' try: table.field_names = header except Exception as err: print_(header) raise err if align_map: for field, align in zip(header, align_map): table.align[field] = align if rows: for row in rows: if len(row) < len(table.field_names): continue try: table.add_row(row) except Exception as err: print_('fields:', table.field_names) print_('row:', row) print_('rows:', rows) raise err return table
doc/en/example/fixtures/test_fixtures_order_scope.py
markshao/pytest
9,225
11199781
import pytest @pytest.fixture(scope="session") def order(): return [] @pytest.fixture def func(order): order.append("function") @pytest.fixture(scope="class") def cls(order): order.append("class") @pytest.fixture(scope="module") def mod(order): order.append("module") @pytest.fixture(scope="package") def pack(order): order.append("package") @pytest.fixture(scope="session") def sess(order): order.append("session") class TestClass: def test_order(self, func, cls, mod, pack, sess, order): assert order == ["session", "package", "module", "class", "function"]
dizoo/multiagent_particle/config/cooperative_navigation_qtran_config.py
sailxjx/DI-engine
464
11199790
from copy import deepcopy from ding.entry import serial_pipeline from easydict import EasyDict n_agent = 5 collector_env_num = 4 evaluator_env_num = 2 num_landmarks = n_agent main_config = dict( env=dict( num_landmarks=num_landmarks, max_step=100, n_agent=n_agent, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, manager=dict(shared_memory=False, ), n_evaluator_episode=5, stop_value=0, ), policy=dict( model=dict( agent_num=n_agent, obs_shape=2 + 2 + (n_agent - 1) * 2 + num_landmarks * 2, global_obs_shape=n_agent * 2 + num_landmarks * 2 + n_agent * 2, action_shape=5, hidden_size_list=[128], embedding_size=64, lstm_type='gru', dueling=False, ), learn=dict( update_per_collect=100, batch_size=32, learning_rate=0.0005, double_q=True, target_update_theta=0.001, discount_factor=0.99, td_weight=1, opt_weight=0.1, nopt_min_weight=0.0001, ), collect=dict( n_sample=600, unroll_len=16, env_num=collector_env_num, ), eval=dict(env_num=evaluator_env_num, ), other=dict( eps=dict( type='exp', start=1.0, end=0.05, decay=100000, ), replay_buffer=dict( replay_buffer_size=15000, # (int) The maximum reuse times of each data max_reuse=1e+9, max_staleness=1e+9, ), ), ), ) main_config = EasyDict(main_config) create_config = dict( env=dict( import_names=['dizoo.multiagent_particle.envs.particle_env'], type='cooperative_navigation', ), env_manager=dict(type='subprocess'), policy=dict(type='qtran'), ) create_config = EasyDict(create_config) cooperative_navigation_qtran_config = main_config cooperative_navigation_qtran_create_config = create_config def train(args): config = [main_config, create_config] serial_pipeline(config, seed=args.seed) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--seed', '-s', type=int, default=0) args = parser.parse_args() train(args)
neptune/new/attributes/series/series.py
Raalsky/neptune-client
254
11199813
<filename>neptune/new/attributes/series/series.py # # Copyright (c) 2020, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import time from typing import List, Optional, TypeVar, Generic, Union, Iterable from neptune.new.internal.operation import Operation from neptune.new.internal.utils import verify_type, is_collection from neptune.new.types.series.series import Series as SeriesVal from neptune.new.attributes.attribute import Attribute Val = TypeVar("Val", bound=SeriesVal) Data = TypeVar("Data") class Series(Attribute, Generic[Val, Data]): def clear(self, wait: bool = False) -> None: self._clear_impl(wait) @abc.abstractmethod def _get_log_operations_from_value( self, value: Val, step: Optional[float], timestamp: float ) -> List[Operation]: pass # pylint: disable=unused-argument # pylint: disable=assignment-from-none def _get_config_operation_from_value(self, value: Val) -> Optional[Operation]: return None @abc.abstractmethod def _get_clear_operation(self) -> Operation: pass @abc.abstractmethod def _data_to_value(self, values: Iterable, **kwargs) -> Val: pass @abc.abstractmethod def _is_value_type(self, value) -> bool: pass def assign(self, value, wait: bool = False) -> None: if not self._is_value_type(value): value = self._data_to_value(value) clear_op = self._get_clear_operation() config_op = self._get_config_operation_from_value(value) with self._container.lock(): if config_op: self._enqueue_operation(config_op, wait=False) if not value.values: self._enqueue_operation(clear_op, wait=wait) else: self._enqueue_operation(clear_op, wait=False) ts = time.time() ops = self._get_log_operations_from_value(value, None, ts) for op in ops: self._enqueue_operation(op, wait=wait) def log( self, value: Union[Data, Iterable[Data]], step: Optional[float] = None, timestamp: Optional[float] = None, wait: bool = False, **kwargs ) -> None: if is_collection(value): if step is not None and len(value) > 1: raise ValueError( "Collection of values are not supported for explicitly defined 'step'." ) value = self._data_to_value(value, **kwargs) else: value = self._data_to_value([value], **kwargs) if step is not None: verify_type("step", step, (float, int)) if timestamp is not None: verify_type("timestamp", timestamp, (float, int)) if not timestamp: timestamp = time.time() ops = self._get_log_operations_from_value(value, step, timestamp) with self._container.lock(): for op in ops: self._enqueue_operation(op, wait) def _clear_impl(self, wait: bool = False) -> None: op = self._get_clear_operation() with self._container.lock(): self._enqueue_operation(op, wait)
scripts/ltr_msmarco-passage/append_d2q_to_collection_jsonl.py
keleog/pyserini
451
11199828
<reponame>keleog/pyserini # # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import json import os from pyserini.analysis import Analyzer, get_lucene_analyzer """ append d2q prediction as an extra field to collection jsonl """ if __name__ == '__main__': parser = argparse.ArgumentParser( description='Converts MSMARCO\'s tsv collection to Anserini jsonl files.') parser.add_argument('--collection_path', required=True, help='MS MARCO .tsv collection file') parser.add_argument('--predictions', required=True, help='File containing predicted queries.') parser.add_argument('--output_folder', required=True, help='output folder') parser.add_argument('--max_docs_per_file', default=1000000, type=int, help='maximum number of documents in each jsonl file.') args = parser.parse_args() if not os.path.exists(args.output_folder): os.makedirs(args.output_folder) analyzer = Analyzer(get_lucene_analyzer()) print('Converting collection...') file_index = 0 new_words = 0 total_words = 0 with open(args.collection_path) as f_corpus, open(args.predictions) as f_pred: for i, (line_doc, line_pred) in enumerate(zip(f_corpus, f_pred)): # Write to a new file when the current one reaches maximum capacity. if i % args.max_docs_per_file == 0: if i > 0: output_jsonl_file.close() output_path = os.path.join(args.output_folder, f'docs{file_index:02d}.json') output_jsonl_file = open(output_path, 'w') file_index += 1 doc_json = json.loads(line_doc) pred_text = line_pred.rstrip() predict_text = pred_text + ' ' analyzed = analyzer.analyze(predict_text) for token in analyzed: assert ' ' not in token predict = ' '.join(analyzed) doc_json['predict'] = predict output_jsonl_file.write(json.dumps(doc_json) + '\n') if i % 100000 == 0: print('Converted {} docs in {} files'.format(i, file_index)) output_jsonl_file.close() print('Done!')
aws-stackreference-architecture/application/src/backend/helloworld.py
spara/examples
1,628
11199871
<reponame>spara/examples from flask import Flask, request, render_template, jsonify import pg8000 import random import os import requests hash = random.getrandbits(128) app = Flask(__name__) @app.route('/') def helloworld(): return jsonify( message="hello world", hash=str(hash), postgres="please use the /postgres endpoint" ) @app.route('/postgres') def postgres(): conn = pg8000.connect( host=os.environ['DB_HOST'], port=int(os.environ['DB_PORT']), user=os.environ['DB_USERNAME'], password=os.environ['DB_PASSWORD'], database=os.environ['DB_NAME'] ) cursor = conn.cursor() cursor.execute("SELECT version();") results = cursor.fetchall() return jsonify( hash=str(hash), postgres=results ) @app.route('/internet') def connect_to_internet(): hostname = "google.com" # example response = os.system("ping -c 1 " + hostname) # and then check the response... if response == 0: return ("I CAN connect to " + hostname) else: return ("I CAN'T connect to " + hostname) @app.route('/env-variables') def list_all_env_variables(): html = '' for key in os.environ.keys(): html = html + '<p>' + key + ": " + os.environ[key] + '<p>' return html @app.route('/public-ip') def get_my_public_ip(): html = '' external_ip = requests.get('https://jsonip.com/').json()['ip'] html = '<p>my external IP is: ' + \ external_ip + ' (source: jsonip.com) </p>' return html @app.route('/killme') def kill_app(): shutdown_server() return '<p>you have killed me :(<p><p>' + str(hash) + '<p>' def shutdown_server(): func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=80)
chapter2_training/cifar10/train/src/configurations.py
sudabon/ml-system-in-actions
133
11199898
import os from logging import getLogger from src.constants import CONSTANTS, PLATFORM_ENUM logger = getLogger(__name__) class PlatformConfigurations: platform = os.getenv("PLATFORM", PLATFORM_ENUM.DOCKER.value) if not PLATFORM_ENUM.has_value(platform): raise ValueError(f"PLATFORM must be one of {[v.value for v in PLATFORM_ENUM.__members__.values()]}") class PreprocessConfigurations: train_files = [ "data_batch_1", "data_batch_2", "data_batch_3", "data_batch_4", "data_batch_5", ] test_files = ["test_batch"] classes = { 0: "plane", 1: "car", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck", } class ModelConfigurations: pass logger.info(f"{PlatformConfigurations.__name__}: {PlatformConfigurations.__dict__}") logger.info(f"{PreprocessConfigurations.__name__}: {PreprocessConfigurations.__dict__}") logger.info(f"{ModelConfigurations.__name__}: {ModelConfigurations.__dict__}")
agentnet/objective/base.py
mraihan19/AgentNet
337
11199900
from __future__ import division, print_function, absolute_import import theano.tensor as T import theano from ..utils.format import check_list, unpack_list class BaseObjective(object): """ Instance, that: - determines rewards for all actions agent takes given environment state and agent action. """ def reset(self, batch_size): """Performs this action each time a new session [batch] is loaded batch size: size of the new batch """ pass def get_reward(self, last_environment_states, agent_actions, batch_id): """WARNING! This function is computed on a single session, not on a batch! Reward given for taking the action in current environment state. :param last_environment_states: Environment state before taking action. :type last_environment_states: float[time_i, memory_id] :param agent_actions: Agent action at this tick. :type agent_actions: int[time_i] :param batch_id: Session id. :type batch_id: int :return: Reward for taking action. :rtype: float[time_i] """ raise NotImplementedError def get_reward_sequences(self, env_state_sessions, agent_action_sessions): """Computes the rewards given to agent at each time step for each batch. :param env_state_sessions: Environment state [batch_i,seq_i,state_units] history for all sessions. :type env_state_sessions: theano tensor [batch_i,seq_i,state_units] :param agent_action_sessions: Actions chosen by agent at each tick for all sessions. :type agent_action_sessions: int[batch_i,seq_i] :return rewards: What reward was given to an agent for corresponding action from state in that batch. :rtype: float[batch_i,seq_i] """ env_state_sessions = check_list(env_state_sessions) n_states = len(env_state_sessions) agent_action_sessions = check_list(agent_action_sessions) n_actions = len(agent_action_sessions) def compute_reward(batch_i, *args): session_states, session_actions = unpack_list(args, [n_states, n_actions]) return self.get_reward(session_states, session_actions, batch_i) sequences = [T.arange(agent_action_sessions[0].shape[0], ), ] + env_state_sessions + agent_action_sessions rewards, updates = theano.map(compute_reward, sequences=sequences) assert len(updates) == 0 return rewards.reshape(agent_action_sessions[0].shape) # reshape bach to original
corehq/motech/fhir/tests/test_models.py
akashkj/commcare-hq
471
11199904
import doctest from contextlib import contextmanager from django.core.exceptions import ValidationError from django.db import IntegrityError, transaction from django.db.models import ProtectedError from django.test import TestCase from nose.tools import assert_in from corehq.apps.data_dictionary.models import CaseProperty, CaseType from corehq.apps.users.models import CommCareUser from corehq.motech.const import IMPORT_FREQUENCY_DAILY from corehq.motech.exceptions import ConfigurationError from corehq.motech.fhir import models from corehq.motech.models import ConnectionSettings from corehq.motech.value_source import CaseProperty as CasePropertyValueSource from corehq.motech.value_source import ValueSource from ..const import ( FHIR_VERSION_4_0_1, OWNER_TYPE_GROUP, OWNER_TYPE_LOCATION, OWNER_TYPE_USER, ) from ..models import ( FHIRImportConfig, FHIRImportResourceProperty, FHIRImportResourceType, FHIRResourceProperty, FHIRResourceType, ResourceTypeRelationship, ) DOMAIN = 'test-domain' class TestCaseWithConnectionSettings(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.conn = ConnectionSettings.objects.create( domain=DOMAIN, name='Test ConnectionSettings', url='https://example.com/api/', ) @classmethod def tearDownClass(cls): cls.conn.delete() super().tearDownClass() class TestFHIRImportConfig(TestCaseWithConnectionSettings): @classmethod def setUpClass(cls): super().setUpClass() cls.user = CommCareUser( domain=DOMAIN, username=f'<EMAIL>', ) cls.user.save() @classmethod def tearDownClass(cls): cls.user.delete(DOMAIN, deleted_by=None) super().tearDownClass() def test_connection_settings_null(self): import_config = FHIRImportConfig( domain=DOMAIN, owner_id=self.user.user_id, owner_type=OWNER_TYPE_USER, ) with self.assertRaises(ValidationError): import_config.full_clean() with self.assertRaises(IntegrityError), \ transaction.atomic(): import_config.save() def test_connection_settings_protected(self): import_config = FHIRImportConfig.objects.create( domain=DOMAIN, connection_settings=self.conn, owner_id=self.user.user_id, owner_type=OWNER_TYPE_USER, ) self.addCleanup(import_config.delete) with self.assertRaises(ProtectedError): self.conn.delete() def test_fhir_version_good(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, fhir_version=FHIR_VERSION_4_0_1, owner_id=self.user.user_id, owner_type=OWNER_TYPE_USER, ) import_config.full_clean() def test_fhir_version_bad(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, fhir_version='1.0.2', owner_id=self.user.user_id, owner_type=OWNER_TYPE_USER, ) with self.assertRaises(ValidationError): import_config.full_clean() def test_frequency_good(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, frequency=IMPORT_FREQUENCY_DAILY, owner_id=self.user.user_id, owner_type=OWNER_TYPE_USER, ) import_config.full_clean() def test_frequency_bad(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, frequency='annually', owner_id=self.user.user_id, owner_type=OWNER_TYPE_USER, ) with self.assertRaises(ValidationError): import_config.full_clean() def test_owner_id_missing(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_type=OWNER_TYPE_USER, ) with self.assertRaises(ValidationError): import_config.full_clean() def test_owner_id_too_long(self): uuid = '4d4e6255-2139-49e0-98e9-9418e83a4944' import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_id=uuid + 'X', owner_type=OWNER_TYPE_USER, ) try: import_config.full_clean() except ValidationError as err: errors = err.message_dict['owner_id'] self.assertEqual( errors, ['Ensure this value has at most 36 characters (it has 37).'], ) class TestFHIRImportConfigGetOwner(TestCaseWithConnectionSettings): def test_owner_type_missing(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_id='b0b', ) with self.assertRaises(ConfigurationError): import_config.get_owner() def test_owner_type_bad(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_id='b0b', owner_type='0rgunit', ) with self.assertRaises(ConfigurationError): import_config.get_owner() def test_user_does_not_exist(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_id='b0b', owner_type=OWNER_TYPE_USER, ) with self.assertRaises(ConfigurationError): import_config.get_owner() def test_group_does_not_exist(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_id='the-clan-mcb0b', owner_type=OWNER_TYPE_GROUP, ) with self.assertRaises(ConfigurationError): import_config.get_owner() def test_location_does_not_exist(self): import_config = FHIRImportConfig( domain=DOMAIN, connection_settings=self.conn, owner_id='b0bton', owner_type=OWNER_TYPE_LOCATION, ) with self.assertRaises(ConfigurationError): import_config.get_owner() class TestCaseWithReferral(TestCaseWithConnectionSettings): @classmethod def setUpClass(cls): super().setUpClass() cls.import_config = FHIRImportConfig.objects.create( domain=DOMAIN, connection_settings=cls.conn, owner_id='b0b', ) cls.referral = CaseType.objects.create( domain=DOMAIN, name='referral', ) @classmethod def tearDownClass(cls): cls.referral.delete() cls.import_config.delete() super().tearDownClass() class TestFHIRImportResourceType(TestCaseWithReferral): @classmethod def setUpClass(cls): super().setUpClass() cls.mother = CaseType.objects.create( domain=DOMAIN, name='mother', ) @classmethod def tearDownClass(cls): cls.mother.delete() super().tearDownClass() def test_search_params_empty(self): service_request = FHIRImportResourceType.objects.create( import_config=self.import_config, name='ServiceRequest', case_type=self.referral, ) self.assertEqual(service_request.search_params, {}) def test_related_resource_types(self): service_request = FHIRImportResourceType.objects.create( import_config=self.import_config, name='ServiceRequest', case_type=self.referral, ) patient = FHIRImportResourceType.objects.create( import_config=self.import_config, name='Patient', case_type=self.mother, ) ResourceTypeRelationship.objects.create( resource_type=service_request, jsonpath='$.subject.reference', related_resource_type=patient, ) related = service_request.jsonpaths_to_related_resource_types.all() self.assertEqual(len(related), 1) self.assertEqual(related[0].related_resource_type.name, 'Patient') case_type = related[0].related_resource_type.case_type self.assertEqual(case_type.name, 'mother') def test_domain(self): service_request = FHIRImportResourceType.objects.create( import_config=self.import_config, name='ServiceRequest', case_type=self.referral, ) self.assertEqual(service_request.domain, DOMAIN) class TestFHIRImportResourceProperty(TestCaseWithReferral): @classmethod def setUpClass(cls): super().setUpClass() cls.service_request = FHIRImportResourceType.objects.create( import_config=cls.import_config, name='ServiceRequest', case_type=cls.referral, ) cls.status_property = FHIRImportResourceProperty.objects.create( resource_type=cls.service_request, value_source_config={ 'jsonpath': '$.status', 'case_property': 'fhir_status', } ) cls.intent_property = FHIRImportResourceProperty.objects.create( resource_type=cls.service_request, value_source_config={ 'jsonpath': '$.intent', 'case_property': 'fhir_intent', } ) cls.subject_property = FHIRImportResourceProperty.objects.create( resource_type=cls.service_request, value_source_config={ 'jsonpath': '$.subject.reference', # e.g. "Patient/12345" 'case_property': 'fhir_subject', } ) @classmethod def tearDownClass(cls): cls.subject_property.delete() cls.intent_property.delete() cls.status_property.delete() cls.service_request.delete() super().tearDownClass() def test_related_name(self): properties = self.service_request.properties.all() names = sorted([str(p) for p in properties]) self.assertEqual(names, [ 'ServiceRequest.intent', 'ServiceRequest.status', 'ServiceRequest.subject.reference', ]) def test_case_type(self): properties = self.service_request.properties.all() case_types = set(([str(p.case_type) for p in properties])) self.assertEqual(case_types, {'referral'}) def test_jsonpath_set(self): self.assertEqual( self.subject_property.value_source_jsonpath, '$.subject.reference', ) def test_jsonpath_notset(self): priority = FHIRImportResourceProperty( resource_type=self.service_request, value_source_config={ 'case_property': 'fhir_priority', } ) self.assertEqual(priority.value_source_jsonpath, '') def test_value_source_good(self): value_source = self.subject_property.get_value_source() self.assertIsInstance(value_source, ValueSource) self.assertIsInstance(value_source, CasePropertyValueSource) def test_value_source_bad(self): priority = FHIRImportResourceProperty( resource_type=self.service_request, ) with self.assertRaises(ConfigurationError): priority.save() def test_iter_case_property_value_sources(self): FHIRImportResourceProperty.objects.create( resource_type=self.service_request, value_source_config={ 'jsonpath': "$.extension[?url='https://example.com/commcare/case_type'].value", 'case_property': 'case_type', } ) FHIRImportResourceProperty.objects.create( resource_type=self.service_request, value_source_config={ 'jsonpath': "$.extension[?url='https://example.com/commcare/type'].value", 'case_property': 'type', } ) FHIRImportResourceProperty.objects.create( resource_type=self.service_request, value_source_config={ 'jsonpath': "$.extension[?url='https://example.com/commcare/user_id'].value", 'case_property': 'user_id', } ) FHIRImportResourceProperty.objects.create( resource_type=self.service_request, value_source_config={ 'jsonpath': "$.extension[?url='https://example.com/commcare/owner_id'].value", 'case_property': 'owner_id', } ) FHIRImportResourceProperty.objects.create( resource_type=self.service_request, value_source_config={ 'jsonpath': "$.extension[?url='https://example.com/commcare/opened_on'].value", 'case_property': 'opened_on', } ) FHIRImportResourceProperty.objects.create( resource_type=self.service_request, value_source_config={ 'jsonpath': "$.extension[?url='https://example.com/commcare/this_is_fine'].value", 'case_property': 'this_is_fine', } ) props = [ vs.case_property for vs in self.service_request.iter_case_property_value_sources() ] self.assertEqual(props, [ 'fhir_status', 'fhir_intent', 'fhir_subject', 'this_is_fine', ]) class TestConfigurationErrors(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.case_type = CaseType.objects.create( domain=DOMAIN, name='person', ) cls.case_property = CaseProperty.objects.create( case_type=cls.case_type, name='name', ) cls.resource_type = models.FHIRResourceType.objects.create( domain=DOMAIN, case_type=cls.case_type, ) @classmethod def tearDownClass(cls): cls.resource_type.delete() cls.case_property.delete() cls.case_type.delete() super().tearDownClass() def setUp(self): self.resource_type.name = 'Patient' def test_resource_type_name(self): self.resource_type.name = 'Patinet' with self.assertRaisesRegex( ConfigurationError, "^Unknown resource type 'Patinet' for FHIR version 4.0.1$" ): self.resource_type.get_json_schema() def test_case_types_dont_match(self): with case_type_context('child') as child: with case_property_context(child, 'name') as child_name: prop = FHIRResourceProperty( resource_type=self.resource_type, case_property=child_name, jsonpath='name[0].text', ) with self.assertRaisesRegex( ConfigurationError, "^Invalid FHIRResourceProperty: case_property case " "type 'child' does not match resource_type case type " "'person'.$" ): prop.save() def test_value_source_config(self): prop = FHIRResourceProperty( resource_type=self.resource_type, case_property=self.case_property, jsonpath='name[0].text', value_source_config={ 'case_property': 'name', 'jsonpath': 'name[0].text', } ) with self.assertRaisesRegex( ConfigurationError, "^Invalid FHIRResourceProperty: Unable to set " "'value_source_config' when 'case_property', 'jsonpath' or " "'value_map' are set.$" ): prop.save() def test_no_jsonpath(self): prop = FHIRResourceProperty( resource_type=self.resource_type, case_property=self.case_property, ) with self.assertRaisesRegex( ConfigurationError, '^Unable to set FHIR resource property value without case ' 'property and JSONPath.$' ): prop.get_value_source() def test_ok(self): prop = FHIRResourceProperty( resource_type=self.resource_type, case_property=self.case_property, jsonpath='name[0].text', ) prop.save() self.assertIsNotNone(prop.id) value_source = prop.get_value_source() self.assertEqual(value_source.__class__.__name__, 'CaseProperty') self.assertEqual(value_source.case_property, 'name') self.assertEqual(value_source.jsonpath, 'name[0].text') class TestModelIntegrity(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.mother = CaseType.objects.create( domain=DOMAIN, name='mother', ) cls.patient = models.FHIRResourceType.objects.create( domain=DOMAIN, case_type=cls.mother, name='Patient' ) @classmethod def tearDownClass(cls): cls.patient.delete() cls.mother.delete() super().tearDownClass() def test_two_resource_types_one_case_type_bad(self): """ Case type "mother" can't be mapped to both "Patient" and "Person" """ with self.assertRaises(IntegrityError): models.FHIRResourceType.objects.create( domain=DOMAIN, case_type=self.mother, name='Person' ) def test_two_case_types_one_resource_type_ok(self): """ Case types "mother" and "child" can both be mapped to "Patient" """ child = CaseType.objects.create( domain=DOMAIN, name='child', ) self.addCleanup(child.delete) patient_again = models.FHIRResourceType.objects.create( domain=DOMAIN, case_type=child, name='Patient' ) self.addCleanup(patient_again.delete) class TestResourceValidation(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.case_type = CaseType.objects.create( domain=DOMAIN, name='person', ) cls.resource_type = models.FHIRResourceType.objects.create( domain=DOMAIN, case_type=cls.case_type, name='Patient' ) @classmethod def tearDownClass(cls): cls.resource_type.delete() cls.case_type.delete() super().tearDownClass() def test_minimal(self): patient = {'resourceType': 'Patient'} self.resource_type.validate_resource(patient) def test_required_property(self): patient = {} with self.assertRaisesRegex(ConfigurationError, "'resourceType' is a required property"): self.resource_type.validate_resource(patient) def test_bad_data_type(self): patient = { 'birthDate': 1, 'resourceType': 'Patient', } with self.assertRaisesRegex(ConfigurationError, "1 is not of type 'string'"): self.resource_type.validate_resource(patient) def test_bad_format(self): patient = { 'birthDate': '05/05/43', 'resourceType': 'Patient', } with self.assertRaisesRegex(ConfigurationError, "'05/05/43' does not match "): self.resource_type.validate_resource(patient) def test_bad_scalar(self): patient = { 'name': '<NAME>', 'resourceType': 'Patient', } with self.assertRaisesRegex(ConfigurationError, "'<NAME>' is not of type 'array'"): self.resource_type.validate_resource(patient) def test_bad_vector(self): patient = { 'name': [{'family': ['Palin']}], 'resourceType': 'Patient' } with self.assertRaisesRegex(ConfigurationError, r"\['Palin'\] is not of type 'string'"): self.resource_type.validate_resource(patient) def test_names(): names = FHIRResourceType.get_names() assert_in('Patient', names) def test_doctests(): results = doctest.testmod(models, optionflags=doctest.ELLIPSIS) assert results.failed == 0 @contextmanager def case_type_context(name): case_type = CaseType.objects.create( domain=DOMAIN, name=name, ) try: yield case_type finally: case_type.delete() @contextmanager def case_property_context(case_type, name): case_property = CaseProperty.objects.create( case_type=case_type, name=name, ) try: yield case_property finally: case_property.delete()
examples/delete_vowels.py
timmahrt/praatIO
208
11199942
<reponame>timmahrt/praatIO<filename>examples/delete_vowels.py """ Praatio example for deleting the vowels from the textgrids and audio files """ import os from os.path import join import copy from praatio import textgrid from praatio import praatio_scripts from praatio import audio from praatio.utilities import utils def isVowel(label): return any([vowel in label.lower() for vowel in ["a", "e", "i", "o", "u"]]) def deleteVowels(inputTGFN, inputWavFN, outputPath, doShrink, atZeroCrossing=True): utils.makeDir(outputPath) wavFN = os.path.split(inputWavFN)[1] tgFN = os.path.split(inputTGFN)[1] outputWavFN = join(outputPath, wavFN) outputTGFN = join(outputPath, tgFN) if atZeroCrossing is True: zeroCrossingTGPath = join(outputPath, "zero_crossing_tgs") zeroCrossingTGFN = join(zeroCrossingTGPath, tgFN) utils.makeDir(zeroCrossingTGPath) tg = textgrid.openTextgrid(inputTGFN, False) wavObj = audio.WavQueryObj(inputWavFN) praatio_scripts.tgBoundariesToZeroCrossings(tg, wavObj, zeroCrossingTGFN) else: tg = textgrid.openTextgrid(inputTGFN, False) keepList = tg.tierDict["phone"].entryList keepList = [entry for entry in keepList if not isVowel(entry[2])] deleteList = utils.invertIntervalList(keepList, 0, tg.maxTimestamp) wavObj = audio.openAudioFile(inputWavFN, keepList=keepList, doShrink=doShrink) wavObj.save(outputWavFN) shrunkTG = copy.deepcopy(tg) for start, end in sorted(deleteList, reverse=True): shrunkTG = shrunkTG.eraseRegion(start, end, doShrink=doShrink) shrunkTG.save(outputTGFN, "short_textgrid", True) # Shrink files root = join(".", "files") inputTGFN = join(root, "bobby_phones.TextGrid") inputWavFN = join(root, "bobby.wav") outputPath = join(root, "deleted_test") deleteVowels(inputTGFN, inputWavFN, outputPath, True, True) inputTGFN = join(root, "mary.TextGrid") inputWavFN = join(root, "mary.wav") outputPath = join(root, "deleted_test") deleteVowels(inputTGFN, inputWavFN, outputPath, True, True) # Maintain original duration of files inputTGFN = join(root, "bobby_phones.TextGrid") inputWavFN = join(root, "bobby.wav") outputPath = join(root, "deleted_test_no_shrinking") deleteVowels(inputTGFN, inputWavFN, outputPath, False, True) inputTGFN = join(root, "mary.TextGrid") inputWavFN = join(root, "mary.wav") outputPath = join(root, "deleted_test_no_shrinking") deleteVowels(inputTGFN, inputWavFN, outputPath, False, True)
library/mmap.py
creativemindplus/skybison
278
11199952
<filename>library/mmap.py<gh_stars>100-1000 #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. (http://www.facebook.com) # $builtin-init-module$ from _builtins import _builtin, _int_guard, _type_subclass_guard, _unimplemented def _mmap_new(cls, fileno, length, flags, prot, offset): _builtin() ACCESS_READ = 1 ACCESS_WRITE = 2 ACCESS_COPY = 3 class mmap(bootstrap=True): @staticmethod def __new__(cls, fileno, length, flags=1, prot=3, access=0, offset=0): """ Creates a new mmap object. Values for flags are ints: * MAP_SHARED = 1 * MAP_PRIVATE = 2 Values for prot are ints: * PROT_READ = 1 * PROT_WRITE = 2 * PROT_EXEC = 4 Some operating systems / file systems could provide additional values. """ _type_subclass_guard(cls, mmap) _int_guard(fileno) _int_guard(length) _int_guard(flags) _int_guard(prot) _int_guard(access) _int_guard(offset) if length < 0: raise OverflowError("memory mapped length must be positive") if offset < 0: raise OverflowError("memory mapped offset must be positive") if access != 0 and (flags != 1 or prot != 3): raise ValueError("mmap can't specify both access and flags, prot.") if access == ACCESS_READ: flags = 1 prot = 1 elif access == ACCESS_WRITE: flags = 1 prot = 3 elif access == ACCESS_COPY: flags = 2 prot = 3 elif access != 0: raise ValueError("mmap invalid access parameter.") return _mmap_new(cls, fileno, length, flags, prot, offset) def close(self): _builtin()
pahelix/utils/language_model_tools.py
agave233/PaddleHelix
454
11199973
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ | Tools for language models. """ from copy import copy import numpy as np import random def apply_bert_mask(inputs, pad_mask, tokenizer): """ Apply BERT mask to the token_ids. Args: token_ids: The list of token ids. Returns: masked_token_ids: The list of masked token ids. labels: The labels for traininig BERT. """ vocab_size = len(tokenizer.vocab) bert_mask = np.random.uniform(size=inputs.shape) < 0.15 bert_mask &= pad_mask masked_inputs = inputs * ~bert_mask random_uniform = np.random.uniform(size=inputs.shape) token_bert_mask = random_uniform < 0.8 random_bert_mask = random_uniform > 0.9 true_bert_mask = ~token_bert_mask & ~random_bert_mask token_bert_mask = token_bert_mask & bert_mask random_bert_mask = random_bert_mask & bert_mask true_bert_mask = true_bert_mask & bert_mask masked_inputs += tokenizer.mask_token_id * token_bert_mask masked_inputs += np.random.randint(0, vocab_size, size=(inputs.shape)) * random_bert_mask masked_inputs += inputs * true_bert_mask labels = np.where(bert_mask, inputs, -1) return masked_inputs, labels
RecoHI/HiTracking/python/hiTobTecStep_cff.py
malbouis/cmssw
852
11199989
from __future__ import absolute_import import FWCore.ParameterSet.Config as cms import RecoTracker.IterativeTracking.iterativeTkConfig as _cfg from RecoTracker.IterativeTracking.TobTecStep_cff import tobTecStepSeedLayersPair,tobTecStepSeedLayersTripl,tobTecStepHitDoubletsPair,tobTecStepHitDoubletsTripl,tobTecStepHitTripletsTripl,tobTecStepTracks,tobTecStepSeedsPair,tobTecStepSeedsTripl,tobTecStepSeeds,tobTecStepTrajectoryBuilder,tobTecStepInOutTrajectoryFilter,tobTecStepClusterShapeHitFilter,tobTecStepTrajectoryCleanerBySharedHits,tobTecStepChi2Est,tobTecFlexibleKFFittingSmoother,tobTecStepFitterSmoother,tobTecStepRKTrajectorySmoother,tobTecStepRKTrajectoryFitter,tobTecStepFitterSmootherForLoopers,tobTecStepRKTrajectorySmootherForLoopers,tobTecStepRKTrajectoryFitterForLoopers from .HIPixelTripletSeeds_cff import * from .HIPixel3PrimTracks_cfi import * ####################################################################### # Very large impact parameter tracking using TOB + TEC ring 5 seeding # ####################################################################### from RecoHI.HiTracking.hiPixelLessStep_cff import hiPixelLessStepClusters hiTobTecStepClusters = hiPixelLessStepClusters.clone( trajectories = "hiPixelLessStepTracks", overrideTrkQuals = 'hiPixelLessStepSelector:hiPixelLessStep' ) # TRIPLET SEEDING LAYERS tobTecStepSeedLayersTripl.TOB.skipClusters = 'hiTobTecStepClusters' tobTecStepSeedLayersTripl.MTOB.skipClusters = 'hiTobTecStepClusters' tobTecStepSeedLayersTripl.MTEC.skipClusters = 'hiTobTecStepClusters' # Triplet TrackingRegion from RecoHI.HiTracking.hiMixedTripletStep_cff import hiMixedTripletStepTrackingRegionsA as _hiMixedTripletStepTrackingRegionsA hiTobTecStepTrackingRegionsTripl = _hiMixedTripletStepTrackingRegionsA.clone(RegionPSet=dict( fixedError = 5.0,#20.0 ptMin = 0.9,#0.55 originRadius = 3.5, maxPtMin = 1.2,#0.85 )) # Triplet seeding tobTecStepHitDoubletsTripl.clusterCheck = "" tobTecStepHitDoubletsTripl.trackingRegions = "hiTobTecStepTrackingRegionsTripl" tobTecStepSeedLayersPair.TOB.skipClusters = 'hiTobTecStepClusters' tobTecStepSeedLayersPair.TEC.skipClusters = 'hiTobTecStepClusters' # Pair TrackingRegion hiTobTecStepTrackingRegionsPair = hiTobTecStepTrackingRegionsTripl.clone(RegionPSet=dict( fixedError = 7.5,#30.0 originRadius = 6.0, maxPtMin = 1.5,#0.9 )) # Pair seeds tobTecStepHitDoubletsPair.clusterCheck = "" tobTecStepHitDoubletsPair.trackingRegions = "hiTobTecStepTrackingRegionsPair" # QUALITY CUTS DURING TRACK BUILDING (for inwardss and outwards track building steps) from RecoTracker.IterativeTracking.TobTecStep_cff import tobTecStepTrajectoryFilter tobTecStepTrajectoryFilter.minimumNumberOfHits = 5 tobTecStepTrajectoryFilter.minPt = 0.85 # MAKING OF TRACK CANDIDATES from RecoTracker.IterativeTracking.TobTecStep_cff import _tobTecStepTrackCandidatesCkf tobTecStepTrackCandidates = _tobTecStepTrackCandidatesCkf.clone(clustersToSkip = 'hiTobTecStepClusters') # TRACK FITTING hiTobTecStepTracks = tobTecStepTracks.clone() # Final selection import RecoHI.HiTracking.hiMultiTrackSelector_cfi hiTobTecStepSelector = RecoHI.HiTracking.hiMultiTrackSelector_cfi.hiMultiTrackSelector.clone( src = 'hiTobTecStepTracks', useAnyMVA = False, GBRForestLabel = 'HIMVASelectorIter13', GBRForestVars = ['chi2perdofperlayer', 'nhits', 'nlayers', 'eta'], trackSelectors = cms.VPSet( RecoHI.HiTracking.hiMultiTrackSelector_cfi.hiLooseMTS.clone( name = 'hiTobTecStepLoose', applyAdaptedPVCuts = False, useMVA = False, ), #end of pset RecoHI.HiTracking.hiMultiTrackSelector_cfi.hiTightMTS.clone( name = 'hiTobTecStepTight', preFilterName = 'hiTobTecStepLoose', applyAdaptedPVCuts = False, useMVA = False, minMVA = -0.2 ), RecoHI.HiTracking.hiMultiTrackSelector_cfi.hiHighpurityMTS.clone( name = 'hiTobTecStep', preFilterName = 'hiTobTecStepTight', applyAdaptedPVCuts = False, useMVA = False, minMVA = -0.09 ), ) #end of vpset ) #end of clone import RecoTracker.FinalTrackSelectors.trackListMerger_cfi hiTobTecStepQual = RecoTracker.FinalTrackSelectors.trackListMerger_cfi.trackListMerger.clone( TrackProducers = ['hiTobTecStepTracks'], hasSelector = [1], selectedTrackQuals = ["hiTobTecStepSelector:hiTobTecStep"], copyExtras = True, makeReKeyedSeeds = cms.untracked.bool(False), ) hiTobTecStepTask = cms.Task(hiTobTecStepClusters, tobTecStepSeedLayersTripl, hiTobTecStepTrackingRegionsTripl, tobTecStepHitDoubletsTripl, tobTecStepHitTripletsTripl, tobTecStepSeedsTripl, tobTecStepSeedLayersPair, hiTobTecStepTrackingRegionsPair, tobTecStepHitDoubletsPair, tobTecStepSeedsPair, tobTecStepSeeds, tobTecStepTrackCandidates, hiTobTecStepTracks, hiTobTecStepSelector, hiTobTecStepQual ) hiTobTecStep = cms.Sequence(hiTobTecStepTask)
notebook/pandas_str_num_conversion.py
vhn0912/python-snippets
174
12600048
<filename>notebook/pandas_str_num_conversion.py import pandas as pd print(pd.__version__) # 0.23.0 df = pd.DataFrame({'i': [0, 10, 200], 'f': [0, 0.9, 0.09], 's_i': ['0', '10', '200'], 's_f': ['0', '0.9', '0.09']}) print(df) # i f s_i s_f # 0 0 0.00 0 0 # 1 10 0.90 10 0.9 # 2 200 0.09 200 0.09 print(df.dtypes) # i int64 # f float64 # s_i object # s_f object # dtype: object print(df['i'].astype(str)) # 0 0 # 1 10 # 2 200 # Name: i, dtype: object print(df['f'].astype(str)) # 0 0.0 # 1 0.9 # 2 0.09 # Name: f, dtype: object print(df.astype(str)) # i f s_i s_f # 0 0 0.0 0 0 # 1 10 0.9 10 0.9 # 2 200 0.09 200 0.09 print(df.astype(str).dtypes) # i object # f object # s_i object # s_f object # dtype: object print(df['i'].astype(float)) # 0 0.0 # 1 10.0 # 2 200.0 # Name: i, dtype: float64 print(df['f'].astype(int)) # 0 0 # 1 0 # 2 0 # Name: f, dtype: int64 print(df['s_i'].astype(int)) # 0 0 # 1 10 # 2 200 # Name: s_i, dtype: int64 print(df['s_i'].astype(float)) # 0 0.0 # 1 10.0 # 2 200.0 # Name: s_i, dtype: float64 print(df['s_f'].astype(float)) # 0 0.00 # 1 0.90 # 2 0.09 # Name: s_f, dtype: float64 # print(df['s_f'].astype(int)) # ValueError: invalid literal for int() with base 10: '0.1' print(df['s_f'].astype(float).astype(int)) # 0 0 # 1 0 # 2 0 # Name: s_f, dtype: int64 df['i'] = df['i'].astype(str) print(df) # i f s_i s_f # 0 0 0.00 0 0 # 1 10 0.90 10 0.9 # 2 200 0.09 200 0.09 df['f_s'] = df['f'].astype(str) print(df) # i f s_i s_f f_s # 0 0 0.00 0 0 0.0 # 1 10 0.90 10 0.9 0.9 # 2 200 0.09 200 0.09 0.09 print(df.dtypes) # i object # f float64 # s_i object # s_f object # f_s object # dtype: object s_int = pd.Series([0xff, 0o77, 0b11]) print(s_int) # 0 255 # 1 63 # 2 3 # dtype: int64 print(s_int.map(bin)) # 0 0b11111111 # 1 0b111111 # 2 0b11 # dtype: object print(s_int.map(oct)) # 0 0o377 # 1 0o77 # 2 0o3 # dtype: object print(s_int.map(hex)) # 0 0xff # 1 0x3f # 2 0x3 # dtype: object print(s_int.map('{:b}'.format)) # 0 11111111 # 1 111111 # 2 11 # dtype: object print(s_int.map('{:#b}'.format)) # 0 0b11111111 # 1 0b111111 # 2 0b11 # dtype: object print(s_int.map('{:#010b}'.format)) # 0 0b11111111 # 1 0b00111111 # 2 0b00000011 # dtype: object df_str = pd.DataFrame({'bin': ['0b01', '0b10', '0b11'], 'oct': ['0o07', '0o70', '0o77'], 'hex': ['0x0f', '0xf0', '0xff'], 'dec': ['1', '10', '11']}) print(df_str) # bin oct hex dec # 0 0b01 0o07 0x0f 1 # 1 0b10 0o70 0xf0 10 # 2 0b11 0o77 0xff 11 print(df_str.dtypes) # bin object # oct object # hex object # dec object # dtype: object # print(df_str['bin'].astype(int)) # ValueError: invalid literal for int() with base 10: '0b01' print(df_str['bin'].map(lambda x: int(x, 2))) # 0 1 # 1 2 # 2 3 # Name: bin, dtype: int64 print(df_str['oct'].map(lambda x: int(x, 8))) # 0 7 # 1 56 # 2 63 # Name: oct, dtype: int64 print(df_str['hex'].map(lambda x: int(x, 16))) # 0 15 # 1 240 # 2 255 # Name: hex, dtype: int64 print(df_str.applymap(lambda x: int(x, 0))) # bin oct hex dec # 0 1 7 15 1 # 1 2 56 240 10 # 2 3 63 255 11 print(df_str['dec'].map(lambda x: int(x, 2))) # 0 1 # 1 2 # 2 3 # Name: dec, dtype: int64 s_str_dec = pd.Series(['01', '10', '11']) print(s_str_dec) # 0 01 # 1 10 # 2 11 # dtype: object print(s_str_dec.astype(int)) # 0 1 # 1 10 # 2 11 # dtype: int64 # print(s_str_dec.map(lambda x: int(x, 0))) # ValueError: invalid literal for int() with base 0: '01' print(df_str['oct'].map(lambda x: int(x, 8)).map(hex)) # 0 0x7 # 1 0x38 # 2 0x3f # Name: oct, dtype: object s_str = pd.Series(['0', '10', 'xxx']) print(s_str) # 0 0 # 1 10 # 2 xxx # dtype: object print(s_str.str.zfill(8)) # 0 00000000 # 1 00000010 # 2 00000xxx # dtype: object print(s_str.str.rjust(8)) # 0 0 # 1 10 # 2 xxx # dtype: object print(s_str.str.rjust(8, '_')) # 0 _______0 # 1 ______10 # 2 _____xxx # dtype: object print(s_str.str.center(8)) # 0 0 # 1 10 # 2 xxx # dtype: object print(s_str.str.center(8, '_')) # 0 ___0____ # 1 ___10___ # 2 __xxx___ # dtype: object print(s_str.str.ljust(8)) # 0 0 # 1 10 # 2 xxx # dtype: object print(s_str.str.ljust(8, '_')) # 0 0_______ # 1 10______ # 2 xxx_____ # dtype: object s_num = pd.Series([0, 10, 100]) # print(s_num.str.rjust(8, '_')) # AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas print(s_num.astype(str).str.rjust(8, '_')) # 0 _______0 # 1 ______10 # 2 _____100 # dtype: object df = pd.DataFrame({'i': [0, 10, 100], 'f': [0.1234, 1.234, 12.34], 'round': [0.4, 0.5, 0.6]}) print(df) # i f round # 0 0 0.1234 0.4 # 1 10 1.2340 0.5 # 2 100 12.3400 0.6 print(df.dtypes) # i int64 # f float64 # round float64 # dtype: object print(df['i'].map('{:08}'.format)) # 0 00000000 # 1 00000010 # 2 00000100 # Name: i, dtype: object print(df['i'].map('{:_<8}'.format)) # 0 0_______ # 1 10______ # 2 100_____ # Name: i, dtype: object print(df['i'].map('{:x}'.format)) # 0 0 # 1 a # 2 64 # Name: i, dtype: object print(df['i'].map('{:#010b}'.format)) # 0 0b00000000 # 1 0b00001010 # 2 0b01100100 # Name: i, dtype: object print(df['f'].map('{:.2f}'.format)) # 0 0.12 # 1 1.23 # 2 12.34 # Name: f, dtype: object print(df['f'].map('{:.2g}'.format)) # 0 0.12 # 1 1.2 # 2 12 # Name: f, dtype: object print(df['f'].map('{:.2e}'.format)) # 0 1.23e-01 # 1 1.23e+00 # 2 1.23e+01 # Name: f, dtype: object print(df['f'].map('{:.2%}'.format)) # 0 12.34% # 1 123.40% # 2 1234.00% # Name: f, dtype: object print(df['round'].map('{:.0f}'.format)) # 0 0 # 1 0 # 2 1 # Name: round, dtype: object
pnacl/driver/tests/driver_env_test.py
cohortfsllc/cohort-cocl2-sandbox
2,151
12600053
<filename>pnacl/driver/tests/driver_env_test.py #!/usr/bin/python # Copyright (c) 2013 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Tests of the pnacl driver. This tests the driver_env functionality. """ import unittest import driver_env class TestDriverEnv(unittest.TestCase): def test_EnvSetMany(self): myenv = driver_env.Environment() self.assertFalse(myenv.has('foo_str')) self.assertFalse(myenv.has('foo_unicode')) self.assertFalse(myenv.has('foo_list')) myenv.setmany(foo_str='string', foo_unicode=u'unicode', foo_list=['a', 'b', 'c']) self.assertEqual('string', myenv.getone('foo_str')) self.assertEqual(u'unicode', myenv.getone('foo_unicode')) self.assertEqual(['a', 'b', 'c'], myenv.get('foo_list')) if __name__ == '__main__': unittest.main()
backend/django/test/core_utils/test_core_utils_annotate.py
RTIInternational/SMART
185
12600061
<filename>backend/django/test/core_utils/test_core_utils_annotate.py from test.conftest import TEST_QUEUE_LEN from test.util import assert_obj_exists from core.models import AssignedData, Data, DataLabel, DataQueue, Label from core.utils.utils_annotate import ( assign_datum, get_assignments, label_data, move_skipped_to_admin_queue, unassign_datum, ) from core.utils.utils_queue import fill_queue def test_assign_datum_project_queue_returns_datum( db, test_queue, test_profile, test_redis ): """Assign a datum from a project-wide queue (null profile ID).""" fill_queue(test_queue, orderby="random") datum = assign_datum(test_profile, test_queue.project) # Make sure we got the datum assert isinstance(datum, Data) def test_assign_datum_project_queue_correct_assignment( db, test_queue, test_profile, test_redis ): fill_queue(test_queue, orderby="random") datum = assign_datum(test_profile, test_queue.project) # Make sure the assignment is correct assignment = AssignedData.objects.filter(data=datum) assert len(assignment) == 1 assert assignment[0].profile == test_profile assert assignment[0].queue == test_queue assert assignment[0].assigned_timestamp is not None def test_assign_datum_project_queue_pops_queues( db, test_queue, test_profile, test_redis ): fill_queue(test_queue, orderby="random") datum = assign_datum(test_profile, test_queue.project) # Make sure the datum was removed from queues but not set assert test_redis.llen("queue:" + str(test_queue.pk)) == test_queue.length - 1 assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length # but not from the db queue assert test_queue.data.count() == test_queue.length assert datum in test_queue.data.all() def test_assign_datum_profile_queue_returns_correct_datum( db, test_profile_queue, test_profile, test_profile_queue2, test_profile2, test_redis ): fill_queue(test_profile_queue, orderby="random") fill_queue(test_profile_queue2, orderby="random") datum = assign_datum(test_profile, test_profile_queue.project) assert isinstance(datum, Data) def test_assign_datum_profile_queue_correct_assignment( db, test_profile_queue, test_profile, test_profile_queue2, test_profile2, test_redis ): fill_queue(test_profile_queue, orderby="random") fill_queue(test_profile_queue2, orderby="random") datum = assign_datum(test_profile, test_profile_queue.project) assignment = AssignedData.objects.filter(data=datum) assert len(assignment) == 1 assert assignment[0].profile == test_profile assert assignment[0].queue == test_profile_queue assert assignment[0].assigned_timestamp is not None def test_assign_datum_profile_queue_pops_queues( db, test_profile_queue, test_profile, test_profile_queue2, test_profile2, test_redis ): fill_queue(test_profile_queue, orderby="random") fill_queue(test_profile_queue2, orderby="random") datum = assign_datum(test_profile, test_profile_queue.project) # Make sure the datum was removed from the correct queues but not sets assert ( test_redis.llen("queue:" + str(test_profile_queue.pk)) == test_profile_queue.length - 1 ) assert ( test_redis.scard("set:" + str(test_profile_queue.pk)) == test_profile_queue.length ) # ...but not the other queues assert test_profile_queue.data.count() == test_profile_queue.length assert datum in test_profile_queue.data.all() assert ( test_redis.llen("queue:" + str(test_profile_queue2.pk)) == test_profile_queue2.length ) assert ( test_redis.scard("set:" + str(test_profile_queue2.pk)) == test_profile_queue2.length ) assert test_profile_queue2.data.count() == test_profile_queue2.length def test_label_data(db, test_profile, test_queue, test_redis): fill_queue(test_queue, orderby="random") datum = assign_datum(test_profile, test_queue.project) test_label = Label.objects.create(name="test", project=test_queue.project) label_data(test_label, datum, test_profile, 3) # Make sure the label was properly recorded assert datum in test_profile.labeled_data.all() assert_obj_exists( DataLabel, { "data": datum, "profile": test_profile, "label": test_label, "time_to_label": 3, }, ) # Make sure the assignment was removed assert not AssignedData.objects.filter( profile=test_profile, data=datum, queue=test_queue ).exists() def test_get_assignments_no_existing_assignment_one_assignment( db, test_profile, test_project_data, test_queue, test_redis ): fill_queue(test_queue, orderby="random") assert AssignedData.objects.count() == 0 data = get_assignments(test_profile, test_project_data, 1) assert len(data) == 1 assert isinstance(data[0], Data) assert_obj_exists(AssignedData, {"data": data[0], "profile": test_profile}) def test_get_assignments_no_existing_assignment_half_max_queue_length( db, test_profile, test_project_data, test_queue, test_redis ): fill_queue(test_queue, orderby="random") assert AssignedData.objects.count() == 0 data = get_assignments(test_profile, test_project_data, TEST_QUEUE_LEN // 2) assert len(data) == TEST_QUEUE_LEN // 2 for datum in data: assert isinstance(datum, Data) assert_obj_exists(AssignedData, {"data": datum, "profile": test_profile}) def test_get_assignments_no_existing_assignment_max_queue_length( db, test_profile, test_project_data, test_queue, test_redis ): fill_queue(test_queue, orderby="random") assert AssignedData.objects.count() == 0 data = get_assignments(test_profile, test_project_data, TEST_QUEUE_LEN) assert len(data) == TEST_QUEUE_LEN for datum in data: assert isinstance(datum, Data) assert_obj_exists(AssignedData, {"data": datum, "profile": test_profile}) def test_get_assignments_no_existing_assignment_over_max_queue_length( db, test_profile, test_project_data, test_queue, test_redis ): fill_queue(test_queue, orderby="random") assert AssignedData.objects.count() == 0 data = get_assignments(test_profile, test_project_data, TEST_QUEUE_LEN + 10) assert len(data) == TEST_QUEUE_LEN for datum in data: assert isinstance(datum, Data) assert_obj_exists(AssignedData, {"data": datum, "profile": test_profile}) def test_get_assignments_one_existing_assignment( db, test_profile, test_project_data, test_queue, test_redis ): fill_queue(test_queue, orderby="random") assigned_datum = assign_datum(test_profile, test_project_data) data = get_assignments(test_profile, test_project_data, 1) assert isinstance(data[0], Data) # We should just get the datum that was already assigned assert data[0] == assigned_datum def test_get_assignments_multiple_existing_assignments( db, test_profile, test_project_data, test_queue, test_redis ): fill_queue(test_queue, orderby="random") assigned_data = [] for i in range(5): assigned_data.append(assign_datum(test_profile, test_project_data)) data = get_assignments(test_profile, test_project_data, 5) assert len(data) == 5 assert len(data) == len(assigned_data) for datum, assigned_datum in zip(data, assigned_data): assert isinstance(datum, Data) # We should just get the data that was already assigned assert len(data) == len(assigned_data) def test_unassign(db, test_profile, test_project_data, test_queue, test_redis): fill_queue(test_queue, orderby="random") assert test_redis.llen("queue:" + str(test_queue.pk)) == test_queue.length assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length datum = get_assignments(test_profile, test_project_data, 1)[0] assert test_redis.llen("queue:" + str(test_queue.pk)) == (test_queue.length - 1) assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length assert AssignedData.objects.filter(data=datum, profile=test_profile).exists() unassign_datum(datum, test_profile) assert test_redis.llen("queue:" + str(test_queue.pk)) == test_queue.length assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length assert not AssignedData.objects.filter(data=datum, profile=test_profile).exists() # The unassigned datum should be the next to be assigned reassigned_datum = get_assignments(test_profile, test_project_data, 1)[0] assert reassigned_datum == datum def test_unassign_after_fillqueue( db, test_profile, test_project_data, test_queue, test_labels, test_redis ): fill_queue(test_queue, "random") assert test_redis.llen("queue:" + str(test_queue.pk)) == test_queue.length assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length data = get_assignments(test_profile, test_project_data, 10) assert test_redis.llen("queue:" + str(test_queue.pk)) == (test_queue.length - 10) assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length test_label = test_labels[0] for i in range(5): label_data(test_label, data[i], test_profile, 3) assert test_redis.llen("queue:" + str(test_queue.pk)) == (test_queue.length - 10) assert test_redis.scard("set:" + str(test_queue.pk)) == (test_queue.length - 5) fill_queue(test_queue, "random") assert test_redis.llen("queue:" + str(test_queue.pk)) == test_queue.length - 5 assert test_redis.scard("set:" + str(test_queue.pk)) == test_queue.length def test_skip_data(db, test_profile, test_queue, test_admin_queue, test_redis): fill_queue(test_queue, orderby="random") project = test_queue.project datum = assign_datum(test_profile, project) move_skipped_to_admin_queue(datum, test_profile, project) # Make sure the assignment was removed assert not AssignedData.objects.filter( profile=test_profile, data=datum, queue=test_queue ).exists() # make sure the item was re-assigned to the admin queue assert DataQueue.objects.filter(data=datum, queue=test_admin_queue).exists() # make sure not in normal queue assert not DataQueue.objects.filter(data=datum, queue=test_queue).exists()
examples/gdb_api.py
tkmikan/pwntools
8,966
12600067
<filename>examples/gdb_api.py #!/usr/bin/env python3 """An example of using GDB Python API with Pwntools.""" from pwn import * def check_write(gdb, exp_buf): """Check that write() was called with the expected arguments.""" fd = gdb.parse_and_eval('$rdi').cast(gdb.lookup_type('int')) assert fd == 1, fd buf_addr = gdb.parse_and_eval('$rsi').cast(gdb.lookup_type('long')) count = gdb.parse_and_eval('$rdx').cast(gdb.lookup_type('long')) buf = gdb.selected_inferior().read_memory(buf_addr, count).tobytes() assert buf == exp_buf, buf def demo_sync_breakpoint(cat, gdb, txt): """Demonstrate a synchronous breakpoint.""" # set the synchronous breakpoint on ``write`` gdb.Breakpoint('write', temporary=True) # resume the program gdb.continue_nowait() # send the line cat.sendline(txt) # wait until we hit the breakpoint gdb.wait() # inspect program state check_write(gdb, (txt + '\n').encode()) # resume the program gdb.continue_nowait() # expect to observe the line we just sent cat.recvuntil(txt) def demo_async_breakpoint(cat, gdb, txt): """Demonstrate asynchronous breakpoint.""" # set the asynchronous breakpoint on ``write`` class WriteBp(gdb.Breakpoint): def __init__(self): super().__init__('write') self.count = 0 def stop(self): # called in a separate thread check_write(gdb, (txt + '\n').encode()) self.count += 1 bp = WriteBp() # resume the program gdb.continue_nowait() # send the line and immediately expect to observe it cat.sendline(txt) cat.recvuntil(txt) # check that we hit the breakpoint assert bp.count == 1, bp.count # interrupt the program gdb.interrupt_and_wait() # delete the breakpoint bp.delete() # resume the program gdb.continue_nowait() def main(): # start ``cat`` under GDB with gdb.debug('cat', gdbscript=''' set logging on set pagination off ''', api=True) as cat: # the process is stopped # set the synchronous breakpoint on ``read`` cat.gdb.Breakpoint('read', temporary=True) # resume and wait until we hit it cat.gdb.continue_and_wait() # demonstrate a more interesting synchronous breakpoint demo_sync_breakpoint(cat, cat.gdb, 'foo') # terminate GDB cat.gdb.quit() # now start ``cat`` normally with process('cat') as cat: # attach GDB _, cat_gdb = gdb.attach(cat, gdbscript=''' set logging on set pagination off ''', api=True) # the process is stopped # demonstrate asynchronous breakpoint demo_async_breakpoint(cat, cat_gdb, 'bar') # terminate GDB cat_gdb.quit() if __name__ == '__main__': main()
src/sage/tests/books/computational-mathematics-with-sagemath/sol/nonlinear_doctest.py
fchapoton/sage
1,742
12600078
<reponame>fchapoton/sage<gh_stars>1000+ ## -*- encoding: utf-8 -*- """ This file (./sol/nonlinear_doctest.sage) was *autogenerated* from ./sol/nonlinear.tex, with sagetex.sty version 2011/05/27 v2.3.1. It contains the contents of all the sageexample environments from this file. You should be able to doctest this file with: sage -t ./sol/nonlinear_doctest.sage It is always safe to delete this file; it is not used in typesetting your document. Sage example in ./sol/nonlinear.tex, line 17:: sage: def intervalgen(f, phi, s, t): ....: assert (f(s) * f(t) < 0), \ ....: 'Wrong arguments: f(%s) * f(%s) >= 0)'%(s, t) ....: yield s ....: yield t ....: while 1: ....: u = phi(s, t) ....: yield u ....: fu = f(u) ....: if fu == 0: ....: return ....: if fu * f(s) < 0: ....: t = u ....: else: ....: s = u Sage example in ./sol/nonlinear.tex, line 40:: sage: f(x) = 4 * x - 1 sage: a, b = 0, 1 sage: phi(s, t) = (s + t) / 2 sage: list(intervalgen(f, phi, a, b)) [0, 1, 1/2, 1/4] Sage example in ./sol/nonlinear.tex, line 49:: sage: from types import GeneratorType, FunctionType sage: def checklength(u, v, w, prec): ....: return abs(v - u) < 2 * prec sage: def iterate(series,check=checklength,prec=10^-5,maxit=100): ....: assert isinstance(series, GeneratorType) ....: assert isinstance(check, FunctionType) ....: niter = 2 ....: v, w = next(series), next(series) ....: while (niter <= maxit): ....: niter += 1 ....: u, v, w = v, w, next(series) ....: if check(u, v, w, prec): ....: print('After {0} iterations: {1}'.format(niter, w)) ....: return ....: print('Failed after {0} iterations'.format(maxit)) Sage example in ./sol/nonlinear.tex, line 76:: sage: f(x) = 4 * sin(x) - exp(x) / 2 + 1 sage: a, b = RR(-pi), RR(pi) sage: def phi(s, t): return RR.random_element(s, t) sage: random = intervalgen(f, phi, a, b) sage: iterate(random, maxit=10000) # random After 19 iterations: 2.15848379485564 Sage example in ./sol/nonlinear.tex, line 93:: sage: basering.<x> = PolynomialRing(SR, 'x') sage: p = x^2 + x sage: p.roots(multiplicities=False) [-1, 0] Sage example in ./sol/nonlinear.tex, line 101:: sage: from collections import deque sage: basering = PolynomialRing(SR, 'x') sage: q, method = None, None sage: def quadraticgen(f, r, s): ....: global q, method ....: t = r - f(r) / f.derivative()(r) ....: method = 'newton' ....: yield t ....: pts = deque([(p, f(p)) for p in (r, s, t)], maxlen=3) ....: while True: ....: q = basering.lagrange_polynomial(pts) ....: roots = [r for r in q.roots(multiplicities=False) \ ....: if CC(r).is_real()] ....: approx = None ....: for root in roots: ....: if (root - pts[2][0]) * (root - pts[1][0]) < 0: ....: approx = root ....: break ....: elif (root - pts[0][0]) * (root - pts[1][0]) < 0: ....: pts.pop() ....: approx = root ....: break ....: if approx: ....: method = 'quadratic' ....: else: ....: method = 'dichotomy' ....: approx = (pts[1][0] + pts[2][0]) / 2 ....: pts.append((approx, f(approx))) ....: yield pts[2][0] Sage example in ./sol/nonlinear.tex, line 141:: sage: basering = PolynomialRing(SR, 'x') sage: a, b = pi/2, pi sage: f(x) = 4 * sin(x) - exp(x) / 2 + 1 sage: generator = quadraticgen(f, a, b) sage: next(generator) 1/2*pi - (e^(1/2*pi) - 10)*e^(-1/2*pi) """
ding/interaction/base/common.py
sailxjx/DI-engine
464
12600102
import random import string from abc import ABCMeta, abstractmethod from typing import Optional, Callable, Mapping, Any, Dict _LENGTH_OF_RANDOM_TOKEN = 64 def random_token(length: Optional[int] = None) -> str: """ Overview: Generate random hex token Arguments: - length (:obj:`Optional[int]`): Length of the random token (`None` means `64`) Returns: - token (:obj:`str`): Generated random token Example: >>> random_token() # '4eAbd5218e3d0da5e7AAFcBF48Ea0Df2dadED1bdDF0B8724FdE1569AA78F24A7' >>> random_token(24) # 'Cd1CdD98caAb8602ac6501aC' """ return ''.join([random.choice(string.hexdigits) for _ in range(length or _LENGTH_OF_RANDOM_TOKEN)]) class ControllableContext(metaclass=ABCMeta): """ Overview: Basic context-supported class structure Example: - Common usage >>> c = MyControllableContext() # One of the superclasses if ControllableContext >>> c.start() >>> try: >>> pass # do anything you like >>> finally: >>> c.close() - Use with keyword (the same as code above) >>> c = MyControllableContext() # One of the superclasses if ControllableContext >>> with c as cc: # cc is c, have the same id >>> pass # do anything you like """ @abstractmethod def start(self): """ Overview: Start the context """ raise NotImplementedError # pragma: no cover @abstractmethod def close(self): """ Overview: Close the context """ raise NotImplementedError # pragma: no cover def __enter__(self): """ Overview: Enter the context Returns: - self (:obj:`ControllableContext`): Context object itself """ self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): """ Overview: Exit the context """ self.close() class ControllableService(ControllableContext, metaclass=ABCMeta): """ Overview: Controllable service with context support, usually has concurrent feature. Example: - A common usage >>> c = MyControllableService() # One of its superclasses is ControllableService >>> c.start() >>> try: >>> pass # do anything you like >>> finally: >>> c.shutdown() # shutdown the service >>> c.join() # wait until service is down - Use with keyword (the same as code above) >>> c = MyControllableService() # One of its superclasses is ControllableService >>> with c as cc: # cc is c, have the same id >>> pass # do anything you like """ @abstractmethod def start(self): """ Overview: Start the service """ raise NotImplementedError # pragma: no cover @abstractmethod def shutdown(self): """ Overview: Shutdown the service (but service will not down immediately) """ raise NotImplementedError # pragma: no cover @abstractmethod def join(self): """ Overview: Wait until the service is completely down """ raise NotImplementedError # pragma: no cover def close(self): """ Overview: Close the service, wait until the service is down. """ self.shutdown() self.join() def translate_dict_func(d: Mapping[str, Callable[..., Any]]) -> Callable[..., Dict[str, Any]]: """ Overview: Transform dict with funcs to function generating dict. Arguments: - d (:obj:`Mapping[str, Callable[..., Any]]`): Dict with funcs Returns: - func (:obj:`Callable[..., Dict[str, Any]]`): Function generating dict Example: >>> f1 = lambda x, y: x + y >>> f2 = lambda x, y: x - y >>> f3 = lambda x, y: x * y >>> fx = translate_dict_func({'a': f1, 'b': f2, 'c': f3}) >>> fx(2, 3) # {'a': 5, 'b': -1, 'c': 6} >>> fx(5, 11) # ('a': 16, 'b': -6, 'c': 55} """ def _func(*args, **kwargs) -> Dict[str, Any]: return {k: f(*args, **kwargs) for k, f in d.items()} return _func def default_func(return_value=None) -> Callable[[Callable[..., Any]], Callable[..., Any]]: """ Overview: Transform optional function (maybe `None`) to function with default value Argument: - return_value (:obj:): Return value of the default function Returns: - decorator (:obj:`Callable[[Callable[..., Any]], Callable[..., Any]]`): A decorator function \ that can decorator optional function to real function (must be not None) Example: >>> f1 = None >>> f2 = lambda x, y: x + y >>> ff1 = default_func()(f1) >>> ft1 = default_func(0)(f1) >>> ff2 = default_func()(f2) >>> ff1(2, 3) # None >>> ft1(2, 3) # 0 >>> ff2(2, 3) # 5 """ def _decorator(func: Callable[..., Any]) -> Callable[..., Any]: # noinspection PyUnusedLocal def _func(*args, **kwargs): return return_value return func or _func return _decorator
libsaas/services/twilio/numbers.py
MidtownFellowship/libsaas
155
12600109
<gh_stars>100-1000 from libsaas import http, parsers from libsaas.services import base from libsaas.services.twilio import resource class AvailablePhoneNumbersBase(resource.TwilioResource): path = '{0}' def get_url(self): path = self.path.format(self.object_id) return '{0}/{1}'.format(self.parent.get_url(), path) def create(self, *args, **kwargs): raise base.MethodNotSupported() def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class AvailablePhoneNumbersLocal(AvailablePhoneNumbersBase): path = '{0}/Local' @base.apimethod def get(self, AreaCode=None, Contains=None, InRegion=None, InPostalCode=None, NearLatLong=None, NearNumber=None, InLata=None, InRateCenter=None, Distance=None): """ Fetch available local phone numbers for an account. :var AreaCode: Find phone numbers in the specified area code. :vartype AreaCode: str :var Contains: A pattern to match phone numbers on. Valid characters are `*` and [0-9a-zA-Z]. The `*` character will match any single digit. :vartype Contains: str :var InRegion: Limit results to a particular region (State/Province). Given a phone number, search within the same Region as that number. (US and Canada only) :vartype InRegion: str :var InPostalCode: Limit results to a particular postal code. Given a phone number, search within the same postal code as that number. (US and Canada only) :vartype InPostalCode: str :var NearLatLong: Given a latitude/longitude pair lat,long find geographically close numbers within Distance miles. (US and Canada only) :vartype NearLatLong: str :var NearNumber: Given a phone number, find a geographically close number within Distance miles. Distance defaults to 25 miles. (US and Canada only) :vartype NearNumber: str :var InLata: Limit results to a specific Local access and transport area (LATA). Given a phone number, search within the same LATA as that number. (US and Canada only) :vartype InLata: str :var InRateCenter: Limit results to a specific rate center, or given a phone number search within the same rate center as that number. Requires InLata to be set as well. (US and Canada only) :vartype InRateCenter: str :var InDistance: Specifies the search radius for a Near- query in miles. If not specified this defaults to 25 miles. (US and Canada only) :vartype InDistance: int """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json class AvailablePhoneNumbersTollFree(AvailablePhoneNumbersBase): path = '{0}/TollFree' @base.apimethod def get(self, AreaCode=None, Contains=None): """ Fetch available toll-free phone numbers for an account. :var AreaCode: Find phone numbers in the specified area code. :vartype AreaCode: str :var Contains: A pattern to match phone numbers on. Valid characters are `*` and [0-9a-zA-Z]. The `*` character will match any single digit. :vartype Contains: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json class AvailablePhoneNumbers(AvailablePhoneNumbersBase): path = 'AvailablePhoneNumbers' def get(self, *args, **kwargs): raise base.MethodNotSupported() @base.resource(AvailablePhoneNumbersLocal) def local(self, country_code): """ Return a list of local AvailablePhoneNumber resource representations that match the specified filters, each representing a phone number that is currently available for provisioning within this account. """ return AvailablePhoneNumbersLocal(self, country_code) @base.resource(AvailablePhoneNumbersTollFree) def toll_free(self, country_code): """ Return a list of toll-free AvailablePhoneNumber resource representations that match the specified filters, each representing a phone number that is currently available for provisioning within this account. """ return AvailablePhoneNumbersTollFree(self, country_code) class IncomingPhoneNumbersBase(resource.TwilioResource): path = 'IncomingPhoneNumbers' class IncomingPhoneNumber(IncomingPhoneNumbersBase): def create(self, *args, **kwargs): raise base.MethodNotSupported() class IncomingPhoneNumbersMixin(IncomingPhoneNumbersBase): @base.apimethod def get(self, PhoneNumber=None, FriendlyName=None, Page=None, PageSize=None, AfterSid=None): """ Fetch incoming phone numbers list for an account. :var PhoneNumber: Only show the incoming phone number resources that match this pattern. You can specify partial numbers and use `*` as a wildcard for any digit. :vartype PhoneNumber: str :var FriendlyName: Only show the incoming phone number resources with friendly names that exactly match this name. :vartype FriendlyName: str :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported() class IncomingPhoneNumbersLocal(IncomingPhoneNumbersMixin): path = 'Local' class IncomingPhoneNumbersTollFree(IncomingPhoneNumbersMixin): path = 'TollFree' class IncomingPhoneNumbers(IncomingPhoneNumbersMixin): @base.resource(IncomingPhoneNumbersLocal) def local(self): return IncomingPhoneNumbersLocal(self) @base.resource(IncomingPhoneNumbersTollFree) def toll_free(self): return IncomingPhoneNumbersTollFree(self) class OutgoingCallerIdsBase(resource.TwilioResource): path = 'OutgoingCallerIds' class OutgoingCallerId(OutgoingCallerIdsBase): def create(self, *args, **kwargs): raise base.MethodNotSupported() class OutgoingCallerIds(OutgoingCallerIdsBase): @base.apimethod def get(self, PhoneNumber=None, FriendlyName=None, Page=None, PageSize=None, AfterSid=None): """ Fetch outgoing caller ids for an account. :var PhoneNumber: Only show the incoming phone number resources that match this pattern. You can specify partial numbers and use `*` as a wildcard for any digit. :vartype PhoneNumber: str :var FriendlyName: Only show the incoming phone number resources with friendly names that exactly match this name. :vartype FriendlyName: str :var Page: The current page number. Zero-indexed, so the first page is 0. :vartype Page: int :var PageSize: How many resources to return in each list page. The default is 50, and the maximum is 1000. :vartype PageSize: int :var AfterSid: The last Sid returned in the previous page, used to avoid listing duplicated resources if new ones are created while paging. :vartype AfterSid: str """ params = resource.get_params(None, locals()) request = http.Request('GET', self.get_url(), params) return request, parsers.parse_json def update(self, *args, **kwargs): raise base.MethodNotSupported() def delete(self, *args, **kwargs): raise base.MethodNotSupported()
baselines/baseline_simple.py
Qin-Folks/graph-generation
532
12600126
<gh_stars>100-1000 from main import * from scipy.linalg import toeplitz import pyemd import scipy.optimize as opt def Graph_generator_baseline_train_rulebased(graphs,generator='BA'): graph_nodes = [graphs[i].number_of_nodes() for i in range(len(graphs))] graph_edges = [graphs[i].number_of_edges() for i in range(len(graphs))] parameter = {} for i in range(len(graph_nodes)): nodes = graph_nodes[i] edges = graph_edges[i] # based on rule, calculate optimal parameter if generator=='BA': # BA optimal: nodes = n; edges = (n-m)*m n = nodes m = (n - np.sqrt(n**2-4*edges))/2 parameter_temp = [n,m,1] if generator=='Gnp': # Gnp optimal: nodes = n; edges = ((n-1)*n/2)*p n = nodes p = float(edges)/((n-1)*n/2) parameter_temp = [n,p,1] # update parameter list if nodes not in parameter.keys(): parameter[nodes] = parameter_temp else: count = parameter[nodes][-1] parameter[nodes] = [(parameter[nodes][i]*count+parameter_temp[i])/(count+1) for i in range(len(parameter[nodes]))] parameter[nodes][-1] = count+1 # print(parameter) return parameter def Graph_generator_baseline(graph_train, pred_num=1000, generator='BA'): graph_nodes = [graph_train[i].number_of_nodes() for i in range(len(graph_train))] graph_edges = [graph_train[i].number_of_edges() for i in range(len(graph_train))] repeat = pred_num//len(graph_train) graph_pred = [] for i in range(len(graph_nodes)): nodes = graph_nodes[i] edges = graph_edges[i] # based on rule, calculate optimal parameter if generator=='BA': # BA optimal: nodes = n; edges = (n-m)*m n = nodes m = int((n - np.sqrt(n**2-4*edges))/2) for j in range(repeat): graph_pred.append(nx.barabasi_albert_graph(n,m)) if generator=='Gnp': # Gnp optimal: nodes = n; edges = ((n-1)*n/2)*p n = nodes p = float(edges)/((n-1)*n/2) for j in range(repeat): graph_pred.append(nx.fast_gnp_random_graph(n, p)) return graph_pred def emd_distance(x, y, distance_scaling=1.0): support_size = max(len(x), len(y)) d_mat = toeplitz(range(support_size)).astype(np.float) distance_mat = d_mat / distance_scaling # convert histogram values x and y to float, and make them equal len x = x.astype(np.float) y = y.astype(np.float) if len(x) < len(y): x = np.hstack((x, [0.0] * (support_size - len(x)))) elif len(y) < len(x): y = np.hstack((y, [0.0] * (support_size - len(y)))) emd = pyemd.emd(x, y, distance_mat) return emd # def Loss(x,args): # ''' # # :param x: 1-D array, parameters to be optimized # :param args: tuple (n, G, generator, metric). # n: n for pred graph; # G: real graph in networkx format; # generator: 'BA', 'Gnp', 'Powerlaw'; # metric: 'degree', 'clustering' # :return: Loss: emd distance # ''' # # get argument # generator = args[2] # metric = args[3] # # # get real and pred graphs # G_real = args[1] # if generator=='BA': # G_pred = nx.barabasi_albert_graph(args[0],int(np.rint(x))) # if generator=='Gnp': # G_pred = nx.fast_gnp_random_graph(args[0],x) # # # define metric # if metric == 'degree': # G_real_hist = np.array(nx.degree_histogram(G_real)) # G_real_hist = G_real_hist / np.sum(G_real_hist) # G_pred_hist = np.array(nx.degree_histogram(G_pred)) # G_pred_hist = G_pred_hist/np.sum(G_pred_hist) # if metric == 'clustering': # G_real_hist, _ = np.histogram( # np.array(list(nx.clustering(G_real).values())), bins=50, range=(0.0, 1.0), density=False) # G_real_hist = G_real_hist / np.sum(G_real_hist) # G_pred_hist, _ = np.histogram( # np.array(list(nx.clustering(G_pred).values())), bins=50, range=(0.0, 1.0), density=False) # G_pred_hist = G_pred_hist / np.sum(G_pred_hist) # # loss = emd_distance(G_real_hist,G_pred_hist) # return loss def Loss(x,n,G_real,generator,metric): ''' :param x: 1-D array, parameters to be optimized :param n: n for pred graph; G: real graph in networkx format; generator: 'BA', 'Gnp', 'Powerlaw'; metric: 'degree', 'clustering' :return: Loss: emd distance ''' # get argument # get real and pred graphs if generator=='BA': G_pred = nx.barabasi_albert_graph(n,int(np.rint(x))) if generator=='Gnp': G_pred = nx.fast_gnp_random_graph(n,x) # define metric if metric == 'degree': G_real_hist = np.array(nx.degree_histogram(G_real)) G_real_hist = G_real_hist / np.sum(G_real_hist) G_pred_hist = np.array(nx.degree_histogram(G_pred)) G_pred_hist = G_pred_hist/np.sum(G_pred_hist) if metric == 'clustering': G_real_hist, _ = np.histogram( np.array(list(nx.clustering(G_real).values())), bins=50, range=(0.0, 1.0), density=False) G_real_hist = G_real_hist / np.sum(G_real_hist) G_pred_hist, _ = np.histogram( np.array(list(nx.clustering(G_pred).values())), bins=50, range=(0.0, 1.0), density=False) G_pred_hist = G_pred_hist / np.sum(G_pred_hist) loss = emd_distance(G_real_hist,G_pred_hist) return loss def optimizer_brute(x_min, x_max, x_step, n, G_real, generator, metric): loss_all = [] x_list = np.arange(x_min,x_max,x_step) for x_test in x_list: loss_all.append(Loss(x_test,n,G_real,generator,metric)) x_optim = x_list[np.argmin(np.array(loss_all))] return x_optim def Graph_generator_baseline_train_optimizationbased(graphs,generator='BA',metric='degree'): graph_nodes = [graphs[i].number_of_nodes() for i in range(len(graphs))] parameter = {} for i in range(len(graph_nodes)): print('graph ',i) nodes = graph_nodes[i] if generator=='BA': n = nodes m = optimizer_brute(1,10,1, nodes, graphs[i], generator, metric) parameter_temp = [n,m,1] elif generator=='Gnp': n = nodes p = optimizer_brute(1e-6,1,0.01, nodes, graphs[i], generator, metric) ## if use evolution # result = opt.differential_evolution(Loss,bounds=[(0,1)],args=(nodes, graphs[i], generator, metric),maxiter=1000) # p = result.x parameter_temp = [n, p, 1] # update parameter list if nodes not in parameter.keys(): parameter[nodes] = parameter_temp else: count = parameter[nodes][2] parameter[nodes] = [(parameter[nodes][i]*count+parameter_temp[i])/(count+1) for i in range(len(parameter[nodes]))] parameter[nodes][2] = count+1 print(parameter) return parameter def Graph_generator_baseline_test(graph_nodes, parameter, generator='BA'): graphs = [] for i in range(len(graph_nodes)): nodes = graph_nodes[i] if not nodes in parameter.keys(): nodes = min(parameter.keys(), key=lambda k: abs(k - nodes)) if generator=='BA': n = int(parameter[nodes][0]) m = int(np.rint(parameter[nodes][1])) print(n,m) graph = nx.barabasi_albert_graph(n,m) if generator=='Gnp': n = int(parameter[nodes][0]) p = parameter[nodes][1] print(n,p) graph = nx.fast_gnp_random_graph(n,p) graphs.append(graph) return graphs if __name__ == '__main__': args = Args() print('File name prefix', args.fname) ### load datasets graphs = [] # synthetic graphs if args.graph_type=='ladder': graphs = [] for i in range(100, 201): graphs.append(nx.ladder_graph(i)) args.max_prev_node = 10 if args.graph_type=='tree': graphs = [] for i in range(2,5): for j in range(3,5): graphs.append(nx.balanced_tree(i,j)) args.max_prev_node = 256 if args.graph_type=='caveman': graphs = [] for i in range(5,10): for j in range(5,25): graphs.append(nx.connected_caveman_graph(i, j)) args.max_prev_node = 50 if args.graph_type=='grid': graphs = [] for i in range(10,20): for j in range(10,20): graphs.append(nx.grid_2d_graph(i,j)) args.max_prev_node = 40 if args.graph_type=='barabasi': graphs = [] for i in range(100,200): graphs.append(nx.barabasi_albert_graph(i,2)) args.max_prev_node = 130 # real graphs if args.graph_type == 'enzymes': graphs= Graph_load_batch(min_num_nodes=10, name='ENZYMES') args.max_prev_node = 25 if args.graph_type == 'protein': graphs = Graph_load_batch(min_num_nodes=20, name='PROTEINS_full') args.max_prev_node = 80 if args.graph_type == 'DD': graphs = Graph_load_batch(min_num_nodes=100, max_num_nodes=500, name='DD',node_attributes=False,graph_labels=True) args.max_prev_node = 230 graph_nodes = [graphs[i].number_of_nodes() for i in range(len(graphs))] graph_edges = [graphs[i].number_of_edges() for i in range(len(graphs))] args.max_num_node = max(graph_nodes) # show graphs statistics print('total graph num: {}'.format(len(graphs))) print('max number node: {}'.format(args.max_num_node)) print('max previous node: {}'.format(args.max_prev_node)) # start baseline generation method generator = args.generator_baseline metric = args.metric_baseline print(args.fname_baseline + '.dat') if metric=='general': parameter = Graph_generator_baseline_train_rulebased(graphs,generator=generator) else: parameter = Graph_generator_baseline_train_optimizationbased(graphs,generator=generator,metric=metric) graphs_generated = Graph_generator_baseline_test(graph_nodes, parameter,generator) save_graph_list(graphs_generated,args.fname_baseline + '.dat')
tests/test_config.py
upwork/python-upwork
150
12600138
<reponame>upwork/python-upwork from upwork import config def test_config_initialization(): cfg = config.Config( { "consumer_key": "keyxxxxxxxxxxxxxxxxxxxx", "consumer_secret": "<KEY>", "access_token": "<KEY>", "access_token_secret": "<KEY>", } ) assert cfg.consumer_key == "keyxxxxxxxxxxxxxxxxxxxx" assert cfg.consumer_secret == "<KEY>" assert cfg.access_token == "<KEY>" assert cfg.access_token_secret == "<KEY>"
parsing/sym2id.py
mfernezir/YellowFin
455
12600151
from __future__ import print_function from utils import _build_vocab import sys if __name__ == '__main__': if len(sys.argv) != 2: print('usage: python sym2id.py train.gz') sys.exit(0) vocabs = _build_vocab(sys.argv[1]) for word, i in vocabs.iteritems(): print(word, i)
main_extract_TrainingSet_P.py
ryanxingql/MFQEv2.0
117
12600153
"""Extract training set. Randomly select frame to patch. Patches are stored in several npys. Each npy contains several batches. So there are n x batch_size patches in each npy. Return: a few npy with shape (n x width_patch x width_height x 1), dtype=np.float32 \in [0,1].""" import os, glob, gc, h5py import numpy as np import random, math def y_import(video_path, height_frame, width_frame, nfs, startfrm, bar=True, opt_clear=True): """Import Y channel from a yuv video. startfrm: start from 0 return: (nfs * height * width), dtype=uint8""" fp = open(video_path, 'rb') # target at startfrm blk_size = int(height_frame * width_frame * 3 / 2) fp.seek(blk_size * startfrm, 0) d0 = height_frame // 2 d1 = width_frame // 2 Yt = np.zeros((height_frame, width_frame), dtype=np.uint8) # 0-255 for ite_frame in range(nfs): for m in range(height_frame): for n in range(width_frame): Yt[m,n] = ord(fp.read(1)) for m in range(d0): for n in range(d1): fp.read(1) for m in range(d0): for n in range(d1): fp.read(1) if ite_frame == 0: Y = Yt[np.newaxis, :, :] else: Y = np.vstack((Y, Yt[np.newaxis, :, :])) if bar: print("\r%4d | %4d" % (ite_frame + 1, nfs), end="", flush=True) if opt_clear: print("\r ", end="\r") fp.close() return Y def func_PatchFrame(info_patch, num_patch, ite_npy, mode): """Patch and store four npys with a same index. Shuffle the patches inside these four npys before saving.""" order_FirstFrame, order_FirstPatch, order_LastFrame, order_LastPatch, list_CmpVideo, \ VideoIndex_list_list, MidIndex_list_list, PreIndex_list_list, SubIndex_list_list, dir_save_stack = info_patch[:] ### Init stack stack_pre = np.zeros((num_patch, height_patch, width_patch, 1), dtype=np.float32) stack_cmp = np.zeros((num_patch, height_patch, width_patch, 1), dtype=np.float32) stack_sub = np.zeros((num_patch, height_patch, width_patch, 1), dtype=np.float32) stack_raw = np.zeros((num_patch, height_patch, width_patch, 1), dtype=np.float32) ### Extract patches cal_patch_total = 0 num_frame_total = order_LastFrame - order_FirstFrame + 1 for ite_frame, order_frame in enumerate(range(order_FirstFrame, order_LastFrame + 1)): print("\rframe %d | %d" % (ite_frame + 1, num_frame_total), end="") cal_patch_frame = 0 ### Extract basic information index_video = VideoIndex_list_list[order_frame] index_Mid = MidIndex_list_list[order_frame] index_Pre = PreIndex_list_list[order_frame] index_Sub = SubIndex_list_list[order_frame] cmp_path = list_CmpVideo[index_video] cmp_name = cmp_path.split("/")[-1].split(".")[0] raw_name = cmp_name raw_name = raw_name + ".yuv" raw_path = os.path.join(dir_raw, raw_name) dims_str = raw_name.split("_")[1] width_frame = int(dims_str.split("x")[0]) height_frame = int(dims_str.split("x")[1]) ### Cal step step_height = int((height_frame - height_patch) / (num_patch_height - 1)) step_width = int((width_frame - width_patch) / (num_patch_width - 1)) ### Load frames Y_raw = np.squeeze(y_import(raw_path, height_frame, width_frame, 1, index_Mid, bar=False, opt_clear=False)) Y_cmp = np.squeeze(y_import(cmp_path, height_frame, width_frame, 1, index_Mid, bar=False, opt_clear=False)) Y_pre = np.squeeze(y_import(cmp_path, height_frame, width_frame, 1, index_Pre, bar=False, opt_clear=False)) Y_sub = np.squeeze(y_import(cmp_path, height_frame, width_frame, 1, index_Sub, bar=False, opt_clear=False)) ### Patch for ite_patch_height in range(num_patch_height): start_height = ite_patch_height * step_height for ite_patch_width in range(num_patch_width): if (order_frame == order_FirstFrame) and (cal_patch_frame < order_FirstPatch): cal_patch_frame += 1 continue if (order_frame == order_LastFrame) and (cal_patch_frame > order_LastPatch): cal_patch_frame += 1 continue start_width = ite_patch_width * step_width stack_pre[cal_patch_total, 0:height_patch, 0:width_patch, 0] = Y_pre[start_height:(start_height+height_patch), start_width:(start_width+width_patch)] / 255.0 stack_cmp[cal_patch_total, 0:height_patch, 0:width_patch, 0] = Y_cmp[start_height:(start_height+height_patch), start_width:(start_width+width_patch)] / 255.0 stack_sub[cal_patch_total, 0:height_patch, 0:width_patch, 0] = Y_sub[start_height:(start_height+height_patch), start_width:(start_width+width_patch)] / 255.0 stack_raw[cal_patch_total, 0:height_patch, 0:width_patch, 0] = Y_raw[start_height:(start_height+height_patch), start_width:(start_width+width_patch)] / 255.0 cal_patch_total += 1 cal_patch_frame += 1 ### Shuffle and save npy print("\nsaving 1/4...", end="") random.seed(100) random.shuffle(stack_pre) save_path = os.path.join(dir_save_stack, "stack_" + mode + "_pre_" + str(ite_npy) + ".hdf5") f = h5py.File(save_path, "w") f.create_dataset('stack_pre', data=stack_pre) f.close() stack_pre = [] gc.collect() print("\rsaving 2/4...", end="") random.seed(100) random.shuffle(stack_cmp) save_path = os.path.join(dir_save_stack, "stack_" + mode + "_cmp_" + str(ite_npy) + ".hdf5") f = h5py.File(save_path, "w") f.create_dataset('stack_cmp', data=stack_cmp) f.close() stack_cmp = [] gc.collect() print("\rsaving 3/4...", end="") random.seed(100) random.shuffle(stack_sub) save_path = os.path.join(dir_save_stack, "stack_" + mode + "_sub_" + str(ite_npy) + ".hdf5") f = h5py.File(save_path, "w") f.create_dataset('stack_sub', data=stack_sub) f.close() stack_sub = [] gc.collect() print("\rsaving 4/4...", end="") random.seed(100) random.shuffle(stack_raw) save_path = os.path.join(dir_save_stack, "stack_" + mode + "_raw_" + str(ite_npy) + ".hdf5") f = h5py.File(save_path, "w") f.create_dataset('stack_raw', data=stack_raw) f.close() stack_raw = [] gc.collect() print("\r ", end="\r") # clear bar def main_extract_TrainingSet(): """Extract training setself. Select a non-PQF between each pair of PQFs. Randomly select up to 20 non-PQFs each video.""" for QP in QP_list: dir_cmp = dir_cmp_pre + str(QP) dir_PQFLabel = dir_PQFLabel_pre + str(QP) ### List all cmp video list_CmpVideo = glob.glob(os.path.join(dir_cmp, "*.yuv")) num_CmpVideo = len(list_CmpVideo) ### Init dir_save_stack for this QP dir_save_stack = dir_save_stack_pre + str(QP) if not os.path.exists(dir_save_stack): os.makedirs(dir_save_stack) ### List all randomly selected non-PQFs with their pre/sub PQFs and calculate the num of patches VideoIndex_list_list = [] MidIndex_list_list = [] PreIndex_list_list = [] SubIndex_list_list = [] cal_frame = 0 for ite_CmpVideo in range(num_CmpVideo): # video by video cmp_name = list_CmpVideo[ite_CmpVideo].split("/")[-1].split(".")[0] # load PQF label PQFLabel_path = os.path.join(dir_PQFLabel, "PQFLabel_" + cmp_name + PQFLabel_sub) PQF_label = h5py.File(PQFLabel_path,'r')['PQF_label'][:] # locate PQFs PQFIndex_list = [i for i in range(len(PQF_label)) if PQF_label[i] == 1] num_PQF = len(PQFIndex_list) # MidIndex_list = PQFIndex_list[1: (num_PQF - 1)] PreIndex_list = PQFIndex_list[0: (num_PQF - 2)] SubIndex_list = PQFIndex_list[2: num_PQF] # randomly select maximum allowable pairs random.seed(666) random.shuffle(PreIndex_list) random.seed(666) random.shuffle(SubIndex_list) random.seed(666) random.shuffle(MidIndex_list) num_pairs = len(PreIndex_list) if num_pairs > max_NonPQF_OneVideo: PreIndex_list = PreIndex_list[0: max_NonPQF_OneVideo] SubIndex_list = SubIndex_list[0: max_NonPQF_OneVideo] MidIndex_list = MidIndex_list[0: max_NonPQF_OneVideo] # record cal_frame += len(PreIndex_list) VideoIndex_list_list += [ite_CmpVideo] * len(PreIndex_list) # video index for all selected non-PQFs PreIndex_list_list += PreIndex_list MidIndex_list_list += MidIndex_list SubIndex_list_list += SubIndex_list num_patch_available = cal_frame * num_patch_PerFrame print("Available frames: %d - patches: %d" % (cal_frame, num_patch_available)) ### Shuffle the numbering of all frames random.seed(888) random.shuffle(VideoIndex_list_list) random.seed(888) random.shuffle(MidIndex_list_list) random.seed(888) random.shuffle(PreIndex_list_list) random.seed(888) random.shuffle(SubIndex_list_list) ### Cut down the num of frames max_patch_total = int(num_patch_available / batch_size) * batch_size max_frame_total = math.ceil(max_patch_total / num_patch_PerFrame) # may need one more frame to patch VideoIndex_list_list = VideoIndex_list_list[0: max_frame_total] MidIndex_list_list = MidIndex_list_list[0: max_frame_total] PreIndex_list_list = PreIndex_list_list[0: max_frame_total] SubIndex_list_list = SubIndex_list_list[0: max_frame_total] ### Cal num of batch for each npy, including training and validation num_patch_val = int(int((1 - ratio_training) * max_patch_total) / batch_size) * batch_size num_patch_tra = max_patch_total - num_patch_val # we can make sure that it is a multiple of batch size num_batch_tra = int(num_patch_tra / batch_size) num_batch_val = int(num_patch_val / batch_size) num_npy_tra = int(num_batch_tra / max_batch_PerNpy) num_batch_PerNpy_list_tra = [max_batch_PerNpy] * num_npy_tra if (num_batch_tra % max_batch_PerNpy) > 0: num_batch_PerNpy_list_tra.append(num_batch_tra - max_batch_PerNpy * num_npy_tra) num_npy_val = int(num_batch_val / max_batch_PerNpy) num_batch_PerNpy_list_val = [max_batch_PerNpy] * num_npy_val if (num_batch_val % max_batch_PerNpy) > 0: num_batch_PerNpy_list_val.append(num_batch_val - max_batch_PerNpy * num_npy_val) ### Patch and stack # some frames may be partly patched. for ite_npy_tra in range(len(num_batch_PerNpy_list_tra)): print("stacking tra npy %d / %d..." % (ite_npy_tra + 1, len(num_batch_PerNpy_list_tra))) # Cal the position of the first patch and the last patch of this npy first_patch_cal = sum(num_batch_PerNpy_list_tra[0: ite_npy_tra]) * batch_size + 1 order_FirstFrame = math.ceil(first_patch_cal / num_patch_PerFrame) - 1 order_FirstPatch = first_patch_cal - order_FirstFrame * num_patch_PerFrame - 1 last_patch_cal = sum(num_batch_PerNpy_list_tra[0: ite_npy_tra + 1]) * batch_size order_LastFrame = math.ceil(last_patch_cal / num_patch_PerFrame) - 1 order_LastPatch = last_patch_cal - order_LastFrame * num_patch_PerFrame - 1 # patch num_patch = num_batch_PerNpy_list_tra[ite_npy_tra] * batch_size info_patch = (order_FirstFrame, order_FirstPatch, order_LastFrame, order_LastPatch, list_CmpVideo, \ VideoIndex_list_list, MidIndex_list_list, PreIndex_list_list, SubIndex_list_list, dir_save_stack) func_PatchFrame(info_patch, num_patch=num_patch, ite_npy=ite_npy_tra, mode="tra") for ite_npy_val in range(len(num_batch_PerNpy_list_val)): print("stacking val npy %d / %d..." % (ite_npy_val + 1, len(num_batch_PerNpy_list_val))) # Cal the position of the first patch and the last patch of this npy first_patch_cal = (sum(num_batch_PerNpy_list_tra) + sum(num_batch_PerNpy_list_val[0: ite_npy_val])) * batch_size + 1 order_FirstFrame = math.ceil(first_patch_cal / num_patch_PerFrame) - 1 order_FirstPatch = first_patch_cal - order_FirstFrame * num_patch_PerFrame - 1 last_patch_cal = (sum(num_batch_PerNpy_list_tra) + sum(num_batch_PerNpy_list_val[0: ite_npy_val + 1])) * batch_size order_LastFrame = math.ceil(last_patch_cal / num_patch_PerFrame) - 1 order_LastPatch = last_patch_cal - order_LastFrame * num_patch_PerFrame - 1 # patch num_patch = num_batch_PerNpy_list_val[ite_npy_val] * batch_size info_patch = (order_FirstFrame, order_FirstPatch, order_LastFrame, order_LastPatch, list_CmpVideo, \ VideoIndex_list_list, MidIndex_list_list, PreIndex_list_list, SubIndex_list_list, dir_save_stack) func_PatchFrame(info_patch, num_patch=num_patch, ite_npy=ite_npy_val, mode="val") if __name__ == '__main__': QP_list = [32,42] ### Settings num_patch_width = 26 num_patch_height = 16 height_patch = 64 width_patch = 64 num_patch_PerFrame = num_patch_width * num_patch_height dir_database = "/home/x/SCI_1/Database/" dir_raw = os.path.join(dir_database, "train_108/raw") dir_cmp_pre = os.path.join(dir_database, "train_108/LDP_HM16.5/QP") dir_PQFLabel_pre = "/home/x/SCI_1/MFQEv2.0/Database/PQF_label/ground_truth/train_108/QP" dir_save_stack_pre = "/home/x/SCI_1/MFQEv2.0/Database/PQF_enhancement/QP" PQFLabel_sub = "_MaxNfs_300.hdf5" batch_size = 64 max_batch_PerNpy = 14500 ratio_training = 1.0 # we select a small part of test set for validation max_NonPQF_OneVideo = 20 main_extract_TrainingSet()
Chapter18/SQLite/insert_data.py
add54/ADMIN_SYS_PYTHON
116
12600158
import sqlite3 con_obj = sqlite3.connect("test.db") with con_obj: cur_obj = con_obj.cursor() cur_obj.execute("INSERT INTO books VALUES ('Pride and Prejudice', '<NAME>')") cur_obj.execute("INSERT INTO books VALUES ('<NAME>', '<NAME>')") cur_obj.execute("INSERT INTO books VALUES ('The Lord of the Rings', '<NAME>')") cur_obj.execute("INSERT INTO books VALUES ('Murder on the Orient Express', '<NAME>')") cur_obj.execute("INSERT INTO books VALUES ('A Study in Scarlet', '<NAME>')") con_obj.commit() print("Data inserted Successfully !!")
lib/model/pcl/pcl.py
BarneyQiao/pcl.pytorch
233
12600240
from __future__ import absolute_import import torch import torch.nn as nn import torch.nn.functional as F import utils.boxes as box_utils import utils.blob as blob_utils import utils.net as net_utils from core.config import cfg import numpy as np from sklearn.cluster import KMeans try: xrange # Python 2 except NameError: xrange = range # Python 3 def PCL(boxes, cls_prob, im_labels, cls_prob_new): cls_prob = cls_prob.data.cpu().numpy() cls_prob_new = cls_prob_new.data.cpu().numpy() if cls_prob.shape[1] != im_labels.shape[1]: cls_prob = cls_prob[:, 1:] eps = 1e-9 cls_prob[cls_prob < eps] = eps cls_prob[cls_prob > 1 - eps] = 1 - eps cls_prob_new[cls_prob_new < eps] = eps cls_prob_new[cls_prob_new > 1 - eps] = 1 - eps proposals = _get_graph_centers(boxes.copy(), cls_prob.copy(), im_labels.copy()) labels, cls_loss_weights, gt_assignment, bbox_targets, bbox_inside_weights, bbox_outside_weights \ = get_proposal_clusters(boxes.copy(), proposals, im_labels.copy()) return {'labels' : labels.reshape(1, -1).astype(np.int64).copy(), 'cls_loss_weights' : cls_loss_weights.reshape(1, -1).astype(np.float32).copy(), 'gt_assignment' : gt_assignment.reshape(1, -1).astype(np.float32).copy(), 'bbox_targets' : bbox_targets.astype(np.float32).copy(), 'bbox_inside_weights' : bbox_inside_weights.astype(np.float32).copy(), 'bbox_outside_weights' : bbox_outside_weights.astype(np.float32).copy()} def OICR(boxes, cls_prob, im_labels, cls_prob_new): cls_prob = cls_prob.data.cpu().numpy() cls_prob_new = cls_prob_new.data.cpu().numpy() if cls_prob.shape[1] != im_labels.shape[1]: cls_prob = cls_prob[:, 1:] eps = 1e-9 cls_prob[cls_prob < eps] = eps cls_prob[cls_prob > 1 - eps] = 1 - eps proposals = _get_highest_score_proposals(boxes, cls_prob, im_labels) labels, cls_loss_weights, gt_assignment, bbox_targets, bbox_inside_weights, bbox_outside_weights \ = get_proposal_clusters(boxes.copy(), proposals, im_labels.copy()) return {'labels' : labels.reshape(1, -1).astype(np.int64).copy(), 'cls_loss_weights' : cls_loss_weights.reshape(1, -1).astype(np.float32).copy(), 'gt_assignment' : gt_assignment.reshape(1, -1).astype(np.float32).copy(), 'bbox_targets' : bbox_targets.astype(np.float32).copy(), 'bbox_inside_weights' : bbox_inside_weights.astype(np.float32).copy(), 'bbox_outside_weights' : bbox_outside_weights.astype(np.float32).copy()} def _get_highest_score_proposals(boxes, cls_prob, im_labels): """Get proposals with highest score.""" num_images, num_classes = im_labels.shape assert num_images == 1, 'batch size shoud be equal to 1' im_labels_tmp = im_labels[0, :] gt_boxes = np.zeros((0, 4), dtype=np.float32) gt_classes = np.zeros((0, 1), dtype=np.int32) gt_scores = np.zeros((0, 1), dtype=np.float32) for i in xrange(num_classes): if im_labels_tmp[i] == 1: cls_prob_tmp = cls_prob[:, i].copy() max_index = np.argmax(cls_prob_tmp) gt_boxes = np.vstack((gt_boxes, boxes[max_index, :].reshape(1, -1))) gt_classes = np.vstack((gt_classes, (i + 1) * np.ones((1, 1), dtype=np.int32))) gt_scores = np.vstack((gt_scores, cls_prob_tmp[max_index] * np.ones((1, 1), dtype=np.float32))) cls_prob[max_index, :] = 0 proposals = {'gt_boxes' : gt_boxes, 'gt_classes': gt_classes, 'gt_scores': gt_scores} return proposals def _get_top_ranking_propoals(probs): """Get top ranking proposals by k-means""" kmeans = KMeans(n_clusters=cfg.TRAIN.NUM_KMEANS_CLUSTER, random_state=cfg.RNG_SEED).fit(probs) high_score_label = np.argmax(kmeans.cluster_centers_) index = np.where(kmeans.labels_ == high_score_label)[0] if len(index) == 0: index = np.array([np.argmax(probs)]) return index def _build_graph(boxes, iou_threshold): """Build graph based on box IoU""" overlaps = box_utils.bbox_overlaps( boxes.astype(dtype=np.float32, copy=False), boxes.astype(dtype=np.float32, copy=False)) return (overlaps > iou_threshold).astype(np.float32) def _get_graph_centers(boxes, cls_prob, im_labels): """Get graph centers.""" num_images, num_classes = im_labels.shape assert num_images == 1, 'batch size shoud be equal to 1' im_labels_tmp = im_labels[0, :].copy() gt_boxes = np.zeros((0, 4), dtype=np.float32) gt_classes = np.zeros((0, 1), dtype=np.int32) gt_scores = np.zeros((0, 1), dtype=np.float32) for i in xrange(num_classes): if im_labels_tmp[i] == 1: cls_prob_tmp = cls_prob[:, i].copy() idxs = np.where(cls_prob_tmp >= 0)[0] idxs_tmp = _get_top_ranking_propoals(cls_prob_tmp[idxs].reshape(-1, 1)) idxs = idxs[idxs_tmp] boxes_tmp = boxes[idxs, :].copy() cls_prob_tmp = cls_prob_tmp[idxs] graph = _build_graph(boxes_tmp, cfg.TRAIN.GRAPH_IOU_THRESHOLD) keep_idxs = [] gt_scores_tmp = [] count = cls_prob_tmp.size while True: order = np.sum(graph, axis=1).argsort()[::-1] tmp = order[0] keep_idxs.append(tmp) inds = np.where(graph[tmp, :] > 0)[0] gt_scores_tmp.append(np.max(cls_prob_tmp[inds])) graph[:, inds] = 0 graph[inds, :] = 0 count = count - len(inds) if count <= 5: break gt_boxes_tmp = boxes_tmp[keep_idxs, :].copy() gt_scores_tmp = np.array(gt_scores_tmp).copy() keep_idxs_new = np.argsort(gt_scores_tmp)\ [-1:(-1 - min(len(gt_scores_tmp), cfg.TRAIN.MAX_PC_NUM)):-1] gt_boxes = np.vstack((gt_boxes, gt_boxes_tmp[keep_idxs_new, :])) gt_scores = np.vstack((gt_scores, gt_scores_tmp[keep_idxs_new].reshape(-1, 1))) gt_classes = np.vstack((gt_classes, (i + 1) * np.ones((len(keep_idxs_new), 1), dtype=np.int32))) # If a proposal is chosen as a cluster center, # we simply delete a proposal from the candidata proposal pool, # because we found that the results of different strategies are similar and this strategy is more efficient cls_prob = np.delete(cls_prob.copy(), idxs[keep_idxs][keep_idxs_new], axis=0) boxes = np.delete(boxes.copy(), idxs[keep_idxs][keep_idxs_new], axis=0) proposals = {'gt_boxes' : gt_boxes, 'gt_classes': gt_classes, 'gt_scores': gt_scores} return proposals def _compute_targets(ex_rois, gt_rois, labels): """Compute bounding-box regression targets for an image.""" assert ex_rois.shape[0] == gt_rois.shape[0] assert ex_rois.shape[1] == 4 assert gt_rois.shape[1] == 4 targets = box_utils.bbox_transform_inv(ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS) return np.hstack((labels[:, np.newaxis], targets)).astype( np.float32, copy=False) def _expand_bbox_targets(bbox_target_data): """Bounding-box regression targets are stored in a compact form in the roidb. This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). The loss weights are similarly expanded. Returns: bbox_target_data (ndarray): N x 4K blob of regression targets bbox_inside_weights (ndarray): N x 4K blob of loss weights """ num_bbox_reg_classes = cfg.MODEL.NUM_CLASSES + 1 clss = bbox_target_data[:, 0] bbox_targets = blob_utils.zeros((clss.size, 4 * num_bbox_reg_classes)) bbox_inside_weights = blob_utils.zeros(bbox_targets.shape) inds = np.where(clss > 0)[0] for ind in inds: cls = int(clss[ind]) start = 4 * cls end = start + 4 bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] bbox_inside_weights[ind, start:end] = (1.0, 1.0, 1.0, 1.0) return bbox_targets, bbox_inside_weights def get_proposal_clusters(all_rois, proposals, im_labels): """Generate a random sample of RoIs comprising foreground and background examples. """ num_images, num_classes = im_labels.shape assert num_images == 1, 'batch size shoud be equal to 1' # overlaps: (rois x gt_boxes) gt_boxes = proposals['gt_boxes'] gt_labels = proposals['gt_classes'] gt_scores = proposals['gt_scores'] overlaps = box_utils.bbox_overlaps( all_rois.astype(dtype=np.float32, copy=False), gt_boxes.astype(dtype=np.float32, copy=False)) gt_assignment = overlaps.argmax(axis=1) max_overlaps = overlaps.max(axis=1) labels = gt_labels[gt_assignment, 0] cls_loss_weights = gt_scores[gt_assignment, 0] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = np.where(max_overlaps >= cfg.TRAIN.FG_THRESH)[0] # Select background RoIs as those with < FG_THRESH overlap bg_inds = np.where(max_overlaps < cfg.TRAIN.FG_THRESH)[0] ig_inds = np.where(max_overlaps < cfg.TRAIN.BG_THRESH)[0] cls_loss_weights[ig_inds] = 0.0 labels[bg_inds] = 0 if cfg.MODEL.WITH_FRCNN: bbox_targets = _compute_targets(all_rois, gt_boxes[gt_assignment, :], labels) bbox_targets, bbox_inside_weights = _expand_bbox_targets(bbox_targets) bbox_outside_weights = np.array( bbox_inside_weights > 0, dtype=bbox_inside_weights.dtype) \ * cls_loss_weights.reshape(-1, 1) else: bbox_targets, bbox_inside_weights, bbox_outside_weights = np.array([0]), np.array([0]), np.array([0]) gt_assignment[bg_inds] = -1 return labels, cls_loss_weights, gt_assignment, bbox_targets, bbox_inside_weights, bbox_outside_weights class PCLLosses(nn.Module): def forward(ctx, pcl_probs, labels, cls_loss_weights, gt_assignments): cls_loss = 0.0 weight = cls_loss_weights.view(-1).float() labels = labels.view(-1) gt_assignments = gt_assignments.view(-1) for gt_assignment in gt_assignments.unique(): inds = torch.nonzero(gt_assignment == gt_assignments, as_tuple=False).view(-1) if gt_assignment == -1: assert labels[inds].sum() == 0 cls_loss -= (torch.log(pcl_probs[inds, 0].clamp(1e-9, 10000)) * weight[inds]).sum() else: assert labels[inds].unique().size(0) == 1 label_cur = labels[inds[0]] cls_loss -= torch.log( pcl_probs[inds, label_cur].clamp(1e-9, 10000).mean() ) * weight[inds].sum() return cls_loss / max(float(pcl_probs.size(0)), 1.) class OICRLosses(nn.Module): def __init__(self): super(OICRLosses, self).__init__() def forward(self, prob, labels, cls_loss_weights, gt_assignments, eps = 1e-6): loss = torch.log(prob + eps)[range(prob.size(0)), labels] loss *= -cls_loss_weights ret = loss.mean() return ret
Stereo_Online_Adaptation.py
wtyuan96/Real-time-self-adaptive-deep-stereo
385
12600252
import tensorflow as tf import numpy as np import argparse import Nets import os import sys import time import cv2 import json import datetime import shutil from matplotlib import pyplot as plt from Data_utils import data_reader,weights_utils,preprocessing from Losses import loss_factory from Sampler import sampler_factory #static params MAX_DISP=256 PIXEL_TH = 3 def scale_tensor(tensor,scale): return preprocessing.rescale_image(tensor,[tf.shape(tensor)[1]//scale,tf.shape(tensor)[2]//scale]) def softmax(x): """Compute softmax values for each sets of scores in x.""" return np.exp(x) / np.sum(np.exp(x), axis=0) def main(args): #load json file config with open(args.blockConfig) as json_data: train_config = json.load(json_data) #read input data with tf.variable_scope('input_reader'): data_set = data_reader.dataset( args.list, batch_size = 1, crop_shape=args.imageShape, num_epochs=1, augment=False, is_training=False, shuffle=False ) left_img_batch, right_img_batch, gt_image_batch = data_set.get_batch() inputs={ 'left':left_img_batch, 'right':right_img_batch, 'target':gt_image_batch } #build inference network with tf.variable_scope('model'): net_args = {} net_args['left_img'] = left_img_batch net_args['right_img'] = right_img_batch net_args['split_layers'] = [None] net_args['sequence'] = True net_args['train_portion'] = 'BEGIN' net_args['bulkhead'] = True if args.mode=='MAD' else False stereo_net = Nets.get_stereo_net(args.modelName, net_args) print('Stereo Prediction Model:\n', stereo_net) predictions = stereo_net.get_disparities() full_res_disp = predictions[-1] #build real full resolution loss with tf.variable_scope('full_res_loss'): # reconstruction loss between warped right image and original left image full_reconstruction_loss = loss_factory.get_reprojection_loss('mean_SSIM_l1',reduced=True)(predictions,inputs) #build validation ops with tf.variable_scope('validation_error'): # compute error against gt abs_err = tf.abs(full_res_disp - gt_image_batch) valid_map = tf.where(tf.equal(gt_image_batch, 0), tf.zeros_like(gt_image_batch, dtype=tf.float32), tf.ones_like(gt_image_batch, dtype=tf.float32)) filtered_error = abs_err * valid_map abs_err = tf.reduce_sum(filtered_error) / tf.reduce_sum(valid_map) bad_pixel_abs = tf.where(tf.greater(filtered_error, PIXEL_TH), tf.ones_like(filtered_error, dtype=tf.float32), tf.zeros_like(filtered_error, dtype=tf.float32)) bad_pixel_perc = tf.reduce_sum(bad_pixel_abs) / tf.reduce_sum(valid_map) #build train ops disparity_trainer = tf.train.MomentumOptimizer(args.lr,0.9) train_ops = [] if args.mode == 'MAD': #build train ops for separate portion of the network predictions = predictions[:-1] #remove full res disp inputs_modules = { 'left':scale_tensor(left_img_batch,args.reprojectionScale), 'right':scale_tensor(right_img_batch,args.reprojectionScale), 'target':scale_tensor(gt_image_batch,args.reprojectionScale)/args.reprojectionScale } assert(len(predictions)==len(train_config)) for counter,p in enumerate(predictions): print('Build train ops for disparity {}'.format(counter)) #rescale predictions to proper resolution multiplier = tf.cast(tf.shape(left_img_batch)[1]//tf.shape(p)[1],tf.float32) p = preprocessing.resize_to_prediction(p,inputs_modules['left'])*multiplier #compute reprojection error with tf.variable_scope('reprojection_'+str(counter)): reconstruction_loss = loss_factory.get_reprojection_loss('mean_SSIM_l1',reduced=True)([p],inputs_modules) #build train op layer_to_train = train_config[counter] print('Going to train on {}'.format(layer_to_train)) var_accumulator=[] for name in layer_to_train: var_accumulator+=stereo_net.get_variables(name) print('Number of variable to train: {}'.format(len(var_accumulator))) #add new training op train_ops.append(disparity_trainer.minimize(reconstruction_loss,var_list=var_accumulator)) print('Done') print('='*50) #create Sampler to fetch portions to train sampler = sampler_factory.get_sampler(args.sampleMode,args.numBlocks,args.fixedID) elif args.mode=='FULL': #build single train op for the full network train_ops.append(disparity_trainer.minimize(full_reconstruction_loss)) if args.summary: #add summaries tf.summary.scalar('EPE',abs_err) tf.summary.scalar('bad3',bad_pixel_perc) tf.summary.image('full_res_disp',preprocessing.colorize_img(full_res_disp,cmap='jet'),max_outputs=1) tf.summary.image('gt_disp',preprocessing.colorize_img(gt_image_batch,cmap='jet'),max_outputs=1) #create summary logger summary_op = tf.summary.merge_all() logger = tf.summary.FileWriter(args.output) #start session gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: #init stuff sess.run([tf.global_variables_initializer(),tf.local_variables_initializer()]) #restore disparity inference weights var_to_restore = weights_utils.get_var_to_restore_list(args.weights, []) assert(len(var_to_restore)>0) restorer = tf.train.Saver(var_list=var_to_restore) restorer.restore(sess,args.weights) print('Disparity Net Restored?: {}, number of restored variables: {}'.format(True,len(var_to_restore))) num_actions=len(train_ops) if args.mode=='FULL': selected_train_ops = train_ops else: selected_train_ops = [tf.no_op()] epe_accumulator = [] bad3_accumulator = [] time_accumulator = [] exec_time = 0 fetch_counter=[0]*num_actions sample_distribution=np.zeros(shape=[num_actions]) temp_score = np.zeros(shape=[num_actions]) loss_t_2 = 0 loss_t_1 = 0 expected_loss = 0 last_trained_blocks = [] reset_counter=0 step=0 max_steps=data_set.get_max_steps() try: start_time = time.time() while True: #fetch new network portion to train if step%args.sampleFrequency==0 and args.mode=='MAD': #Sample distribution = softmax(sample_distribution) blocks_to_train = sampler.sample(distribution) selected_train_ops = [train_ops[i] for i in blocks_to_train] #accumulate sampling statistics for l in blocks_to_train: fetch_counter[l]+=1 #build list of tensorflow operations that needs to be executed #errors and full resolution loss tf_fetches = [abs_err,bad_pixel_perc,full_reconstruction_loss] if args.summary and step%100==0: #summaries tf_fetches = tf_fetches + [summary_op] #update ops tf_fetches = tf_fetches+selected_train_ops if args.logDispStep!=-1 and step%args.logDispStep==0: #prediction for serialization to disk tf_fetches=tf_fetches + [full_res_disp] #run network fetches = sess.run(tf_fetches) new_loss = fetches[2] if args.mode == 'MAD': #update sampling probabilities if step==0: loss_t_2 = new_loss loss_t_1 = new_loss expected_loss = 2*loss_t_1-loss_t_2 gain_loss=expected_loss-new_loss sample_distribution = 0.99*sample_distribution for i in last_trained_blocks: sample_distribution[i] += 0.01*gain_loss last_trained_blocks=blocks_to_train loss_t_2 = loss_t_1 loss_t_1 = new_loss #accumulate performance metrics epe_accumulator.append(fetches[0]) bad3_accumulator.append(fetches[1]) if step%100==0: #log on terminal fbTime = (time.time()-start_time) exec_time += fbTime fbTime = fbTime/100 if args.summary: logger.add_summary(fetches[3],global_step=step) missing_time=(max_steps-step)*fbTime print('Step:{:4d}\tbad3:{:.2f}\tEPE:{:.2f}\tSSIM:{:.2f}\tf/b time:{:3f}\tMissing time:{}'.format(step,fetches[1], fetches[0],new_loss,fbTime,datetime.timedelta(seconds=missing_time))) start_time = time.time() #reset network if necessary if new_loss>args.SSIMTh: restorer.restore(sess,args.weights) reset_counter+=1 #save disparity if requested if args.logDispStep!=-1 and step%args.logDispStep==0: dispy=fetches[-1] dispy_to_save = np.clip(dispy[0], 0, MAX_DISP) dispy_to_save = (dispy_to_save*256.0).astype(np.uint16) cv2.imwrite(os.path.join(args.output, 'disparities/disparity_{}.png'.format(step)), dispy_to_save) step+=1 except tf.errors.OutOfRangeError: pass finally: epe_array = epe_accumulator bad3_array = bad3_accumulator epe_accumulator = np.sum(epe_accumulator) bad3_accumulator = np.sum(bad3_accumulator) with open(os.path.join(args.output, 'stats.csv'), 'w+') as f_out: # report series f_out.write('Metrics,cumulative,average\n') f_out.write('EPE,{},{}\n'.format(epe_accumulator,epe_accumulator/step)) f_out.write('bad3,{},{}\n'.format(bad3_accumulator,bad3_accumulator/step)) f_out.write('time,{},{}\n'.format(exec_time,exec_time/step)) f_out.write('FPS,{}\n'.format(1/(exec_time/step))) f_out.write('#resets,{}\n'.format(reset_counter)) f_out.write('Blocks') for n in range(len(predictions)): f_out.write(',{}'.format(n)) f_out.write(',final\n') f_out.write('fetch_counter') for c in fetch_counter: f_out.write(',{}'.format(c)) f_out.write('\n') for c in sample_distribution: f_out.write(',{}'.format(c)) f_out.write('\n') step_time = exec_time/step time_array = [str(x*step_time) for x in range(len(epe_array))] with open(os.path.join(args.output,'series.csv'),'w+') as f_out: f_out.write('Iteration,Time,EPE,bad3\n') for i,(t,e,b) in enumerate(zip(time_array,epe_array,bad3_array)): f_out.write('{},{},{},{}\n'.format(i,t,e,b)) print('Result saved in {}'.format(args.output)) print('All Done, Bye Bye!') if __name__=='__main__': parser=argparse.ArgumentParser(description='Script for online Adaptation of a Deep Stereo Network') parser.add_argument("-l","--list", help='path to the list file with frames to be processed', required=True) parser.add_argument("-o","--output", help="path to the output folder where the results will be saved", required=True) parser.add_argument("--weights",help="path to the initial weights for the disparity estimation network",required=True) parser.add_argument("--modelName", help="name of the stereo model to be used", default="Dispnet", choices=Nets.STEREO_FACTORY.keys()) parser.add_argument("--numBlocks", help="number of CNN portions to train at each iteration",type=int,default=1) parser.add_argument("--lr", help="value for learning rate",default=0.0001, type=float) parser.add_argument("--blockConfig",help="path to the block_config json file",required=True) parser.add_argument("--sampleMode",help="choose the sampling heuristic to use",choices=sampler_factory.AVAILABLE_SAMPLER,default='SAMPLE') parser.add_argument("--fixedID",help="index of the portions of network to train, used only if sampleMode=FIXED",type=int,nargs='+',default=[0]) parser.add_argument("--reprojectionScale",help="compute all loss function at 1/reprojectionScale",default=1,type=int) parser.add_argument("--summary",help='flag to enable tensorboard summaries',action='store_true') parser.add_argument("--imageShape", help='two int for the size of the crop extracted from each image [height,width]', nargs='+', type=int, default=[320,1216]) parser.add_argument("--SSIMTh",help="reset network to initial configuration if loss is above this value",type=float,default=0.5) parser.add_argument("--sampleFrequency",help="sample new network portions to train every K frame",type=int,default=1) parser.add_argument("--mode",help="online adaptation mode: NONE - perform only inference, FULL - full online backprop, MAD - backprop only on portions of the network", choices=['NONE','FULL','MAD'], default='MAD') parser.add_argument("--logDispStep", help="save disparity every K step, -1 to disable", default=-1, type=int) args=parser.parse_args() if not os.path.exists(args.output): os.makedirs(args.output) if args.logDispStep!=-1 and not os.path.exists(os.path.join(args.output, 'disparities')): os.makedirs(os.path.join(args.output, 'disparities')) shutil.copy(args.blockConfig,os.path.join(args.output,'config.json')) with open(os.path.join(args.output, 'params.sh'), 'w+') as out: sys.argv[0] = os.path.join(os.getcwd(), sys.argv[0]) out.write('#!/bin/bash\n') out.write('python3 ') out.write(' '.join(sys.argv)) out.write('\n') main(args)
osp/citations/validate_config.py
davidmcclure/open-syllabus-project
220
12600260
<gh_stars>100-1000 import inflect from osp.citations.utils import tokenize_field from osp.common.utils import read_yaml class Validate_Config: def __init__(self, package='osp.citations', path='config/validate.yml'): """ Read the config file. """ self.config = read_yaml(package, path) @property def max_fuzz(self): """ Get the max fuzz value. Returns: float """ return self.config.get('max_fuzz', float('inf')) @property def blacklisted_titles(self): """ Pluralize the blacklisted titles. Returns: list """ p = inflect.engine() singulars = self.config.get('blacklisted_titles', []) return map( tokenize_field, singulars + [p.plural(s) for s in singulars], ) @property def blacklisted_surnames(self): """ Pluralize the blacklisted surnames. Returns: list """ return map( tokenize_field, self.config.get('blacklisted_surnames', []) ) @property def whitelist(self): """ Get the set of whitelisted ids. Returns: list """ return self.config.get('whitelist', [])