max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
release/check_preamble.py
sivchand/smart_open
2,047
12602731
# -*- coding: utf-8 -*- # # Copyright (C) 2019 <NAME> <<EMAIL>> # # This code is distributed under the terms and conditions # from the MIT License (MIT). # """Checks preambles of Python script files. We want to ensure they all contain the appropriate license and copyright. For the purposes of this script, the *preamble* is defined as the first lines of the file starting with a hash (#). Any line that does not start with a hash ends the preamble. Usage:: python check_preamble.py --replace /path/to/template.py script.py The above command reads the preamble from ``template.py``, and then copies that preamble into ``script.py``. If ``script.py`` already contains a preamble, then the existing preamble will be replaced **entirely**. Processing entire subdirectories with one command:: find subdir1 subdir2 -iname "*.py" | xargs -n 1 python check_preamble.py --replace template.py """ import argparse import logging import os import sys def extract_preamble(fin): end_preamble = False preamble, body = [], [] for line in fin: if end_preamble: body.append(line) elif line.startswith('#'): preamble.append(line) else: end_preamble = True body.append(line) return preamble, body def main(): parser = argparse.ArgumentParser() parser.add_argument('path', help='the path of the file to check') parser.add_argument('--replace', help='replace the preamble with the one from this file') parser.add_argument('--loglevel', default=logging.INFO) args = parser.parse_args() logging.basicConfig(level=args.loglevel) with open(args.path) as fin: preamble, body = extract_preamble(fin) for line in preamble: logging.info('%s: %s', args.path, line.rstrip()) if not args.replace: sys.exit(0) with open(args.replace) as fin: preamble, _ = extract_preamble(fin) if os.access(args.path, os.X_OK): preamble.insert(0, '#!/usr/bin/env python\n') with open(args.path, 'w') as fout: for line in preamble + body: fout.write(line) if __name__ == '__main__': main()
metadata_in_type_annotations.py
CvanderStoep/VideosSampleCode
285
12602735
<filename>metadata_in_type_annotations.py from typing import Annotated, TypeVar, get_args import struct2 UnsignedShort = Annotated[int, struct2.ctype('H')] SignedChar = Annotated[int, struct2.ctype('b')] assert get_args(UnsignedShort) == (int, struct2.ctype('H')) class Student(struct2.Packed): name: Annotated[str, struct2.ctype("<10s")] serialnum: UnsignedShort school: SignedChar record: bytes = ... student = Student.unpack(record) # Student(name=b'raymond ', serialnum=4658, school=264) record = student.pack() T = TypeVar('T') Const = Annotated[T, my_annotations.CONST] class C: def const_method(self,l: Const[list[int]]) -> int: ...
junc/utils/utils.py
moliushang/wireframe_
148
12602788
from numpy.random import randn import ref import torch import numpy as np def adjust_learning_rate(optimizer, epoch, LR, LR_param): #lr = LR * (0.1 ** (epoch // dropLR)) LR_policy = LR_param.get('lr_policy', 'step') if LR_policy == 'step': steppoints = LR_param.get('steppoints', [4, 7, 9, 10]) lrs = LR_param.get('lrs', [0.01, 0.001, 0.0001, 0.00001, 0.000001]) assert len(lrs) == len(steppoints) + 1 lr = None for idx, steppoint in enumerate(steppoints): if epoch > steppoint: continue elif epoch <= steppoint: lr = lrs[idx] break if lr is None: lr = lrs[-1] for param_group in optimizer.param_groups: param_group['lr'] = lr class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def Rnd(x): return max(-2 * x, min(2 * x, randn() * x)) def Flip(img): return img[:, :, ::-1].copy() def ShuffleLR(x): for e in ref.shuffleRef: x[e[0]], x[e[1]] = x[e[1]].copy(), x[e[0]].copy() return x
doc/examples/scripts/sequence/hcn_similarity.py
alex123012/biotite
208
12602814
""" Similarity of HCN and related channels ====================================== This example creates a simple dendrogram for HCN channels and other proteins of the *cyclic nucleotide–gated* (NCG) ion channel superfamily. As distance measure the deviation from sequence identity is used: For identical sequences the deviation is 0 and for sequences with no similarity the deviation is 1. The tree is created using the UPGMA algorithm. """ # Code source: <NAME> # License: BSD 3 clause import biotite.sequence.io.fasta as fasta import biotite.database.entrez as entrez import biotite.sequence as seq import biotite.application.clustalo as clustalo import biotite.sequence.align as align import biotite.sequence.phylo as phylo import matplotlib.pyplot as plt import biotite.sequence.graphics as graphics UNIPROT_IDS = dict( hHCN1 = "O60741", hHCN2 = "Q9UL51", hHCN3 = "Q9P1Z3", hHCN4 = "Q9Y3Q4", spHCN = "O76977", hEAG1 = "O95259", hERG1 = "Q12809", KAT1 = "Q39128", ) ### fetch sequences for UniProt IDs from NCBI Entrez fasta_file = fasta.FastaFile.read(entrez.fetch_single_file( list(UNIPROT_IDS.values()), None, "protein", "fasta" )) sequences = { name: seq.ProteinSequence(seq_str) for name, seq_str in zip(UNIPROT_IDS.keys(), fasta_file.values()) } ### create a simple phylogenetic tree # create MSA alignment = clustalo.ClustalOmegaApp.align(list(sequences.values())) # build simple tree based on deviation from sequence identity distances = 1 - align.get_pairwise_sequence_identity( alignment, mode="shortest" ) tree = phylo.upgma(distances) ### plot the tree fig, ax = plt.subplots(1, 1, figsize=(8, 5)) graphics.plot_dendrogram( ax, tree, orientation="left", labels=list(UNIPROT_IDS.keys()), show_distance=False, linewidth=2 ) ax.grid(False) ax.set_xticks([]) # distance indicator indicator_len = 0.1 indicator_start = ( ax.get_xlim()[0] + ax.get_xlim()[1]*0.02, ax.get_ylim()[1] - ax.get_ylim()[1]*0.15 ) indicator_stop = ( indicator_start[0] + indicator_len, indicator_start[1] ) indicator_center = ( (indicator_start[0] + indicator_stop[0])/2, (indicator_start[1] + 0.25) ) ax.annotate( "", xy=indicator_start, xytext=indicator_stop, xycoords="data", textcoords="data", arrowprops={"arrowstyle": "|-|", "linewidth": 2} ) ax.annotate( f"{int(indicator_len * 100)} %", xy=indicator_center, ha="center", va="center" ) ax.set_title("Sequence deviation of HCN to other CNG superfamily channels") plt.show()
samples/archive/hls4ml/toynn.py
zzzDavid/heterocl
236
12602820
import heterocl as hcl import numpy as np import numpy.testing as tst import os import urllib.request from hlib.op.extern import ( create_extern_module, register_extern_ip, register_tensors, include_dependency) @register_extern_ip(type="vhls") def toynn_vhls_ip(input_1, output_1, name=None): if name is None: name = "myproject" # Function behavior definition with hcl.Stage("ExternModule.toyNN") as Module: register_tensors([input_1, output_1]) Module.ext_ip_name = name Module.inputs = [input_1, output_1] # Include cpp/hpp files if not os.path.exists("firmware"): urllib.request.urlretrieve("https://raw.githubusercontent.com/Hecmay/debug.trace/main/toynn.tar.gz", filename="toynn.tar.gz") os.system("tar -zxvf toynn.tar.gz") source = [ "firmware/myproject.cpp", "firmware/nnet_utils/", "firmware/weights/" ] Module.source = include_dependency(source) create_extern_module(Module, ip_type="HLS") def test_toy_nn(): dtype = hcl.Float(32) hcl.init(dtype) input_1 = hcl.placeholder((16,), dtype=dtype, name="input_1") output_1 = hcl.placeholder((5,), dtype=dtype, name="output_1") def math_func(input_1, output_1): toynn_vhls_ip(input_1, output_1) target = hcl.Platform.aws_f1 s = hcl.create_schedule([input_1, output_1], math_func) s.to(input_1, target.xcel) s.to(output_1, target.host) target.config(compiler="vitis", mode="debug") code = hcl.build(s, target) assert "nnet::softmax" in code, code os.system("rm -rf firmware toynn.tar.gz") if __name__ == "__main__": test_toy_nn()
sparse_operation_kit/documents/source/util.py
ShaunHeNJU/DeepRec-1
292
12602841
<filename>sparse_operation_kit/documents/source/util.py """ Copyright (c) 2021, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import base64 def convert_pic_to_base64(picname): with open(picname, "rb") as pic: ls_f = base64.b64encode(pic.read()) print(ls_f) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--picname", "-p", type=str, help="the picture name", required=True) args = parser.parse_args() convert_pic_to_base64(args.picname)
artemis/plotting/test_easy_plotting.py
peteroconnor-bc/artemis
235
12602847
<reponame>peteroconnor-bc/artemis import numpy as np from artemis.plotting.easy_plotting import ezplot __author__ = 'peter' class DataContainer(object): def __init__(self, im, line, struct, text, number): self._im = im self._line = line self._struct = struct self._text = text self._number = number def test_easy_plot(): thing = DataContainer( im =np.random.randn(30, 40), line = np.sin(np.arange(100)/10.), struct = {'video': np.random.randn(17, 20, 30)}, text = 'adsagfdsf', number = 5 ) ezplot(thing, hang = False) def test_plot_wmat(): wmat = np.random.randn(7, 28, 28) ezplot(wmat, hang = False) if __name__ == '__main__': test_plot_wmat() test_easy_plot()
saleor/graphql/warehouse/tests/benchmark/test_stocks.py
eanknd/saleor
1,392
12602874
<filename>saleor/graphql/warehouse/tests/benchmark/test_stocks.py import pytest from .....warehouse.models import Stock, Warehouse from ....tests.utils import get_graphql_content @pytest.fixture def stocks(address, variant): warehouses = Warehouse.objects.bulk_create( [ Warehouse( address=address.get_copy(), name=f"Warehouse {i}", slug=f"warehouse_{i}", email=f"<EMAIL>", ) for i in range(10) ] ) return Stock.objects.bulk_create( [ Stock(warehouse=warehouse, product_variant=variant) for warehouse in warehouses ] ) STOCKS_QUERY = """ query { stocks(first: 100) { edges { node { id warehouse { name } } } } } """ @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_stocks_query( staff_api_client, stocks, permission_manage_products, count_queries, ): get_graphql_content( staff_api_client.post_graphql( STOCKS_QUERY, permissions=[permission_manage_products], check_no_permissions=False, ) )
jnpr/openclos/cli_parser.py
rohitt29/OpenClos
114
12602893
#------------------------------------------------------------------------------ # cli_parser.py #------------------------------------------------------------------------------ ''' @author : rgiyer Date : October 20th, 2014 This module is responsible for parsing command model defined in cliCommands.yaml and providing functions for: - Validation of user-input - invoking execution handle for CLI commands or macro expansions - determine possible arg match for command auto-completion based on context ''' # Standard Python libraries import os import re import subprocess import inspect import readline # Packages required for openclos import yaml import collections #import yamlordereddictloader # openclos classes import util import propLoader # cli related classes from cli_handle_impl import CLIImplementor global_needle = None entered_macro = [] #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ class CLICommand: def __init__ ( self, cmd_access, cmd_handle, cmd_macro, cmd_macroname, cmd_desc ): self.cmd_access = cmd_access self.cmd_handle = cmd_handle self.cmd_macro = cmd_macro self.cmd_macroname = cmd_macroname self.cmd_desc = cmd_desc # end class CLICommand #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ class CLIUtil: def __init__ ( self ): commandConfFile = os.path.join ( propLoader.propertyFileLocation, 'cliCommands.yaml' ) self.yaml_file_stream = open ( commandConfFile, 'r' ) raw_graph = yaml.load ( self.yaml_file_stream ) #raw_graph = yaml.load(self.yaml_file_stream, Loader=yamlordereddictloader.Loader) #self.cmd_graph = {} self.cmd_graph=collections.OrderedDict() self.indentation = 8 self.dump_cmd ( raw_graph ) self.yaml_file_stream.close () #------------------------------------------------------------------------------ def get_implementor_handle ( self, class_instance, handle_name ): handles = inspect.getmembers ( class_instance, predicate = inspect.ismethod ) for function_tuple in handles: if ( handle_name == function_tuple [ 0 ] ): return function_tuple [ 1 ] # no match found return 0 #------------------------------------------------------------------------------ # Parse through the dictionary iteratively: def dump_cmd ( self, cmds, cmd_root="", cmd_access="READ", cmd_handle="", cmd_macro="", cmd_macroname="", cmd_desc="", *args ): for cmd in cmds: if ( cmd_root == "" ): cmd_compound = cmd else: cmd_compound = cmd_root + "_" + cmd cmd_data = cmds [ cmd ] # Get command access if cmd_data.has_key ( "Access" ): cmd_access = cmd_data [ "Access" ] # Get command handler if cmd_data.has_key ( "Handle" ): cmd_handle = cmd_data [ "Handle" ] elif ( cmd_handle != "" ): cmd_handle = "" # Get command macro if cmd_data.has_key ( "Macro" ): cmd_macro = cmd_data [ "Macro" ] elif ( cmd_macro != "" ): cmd_macro = "" if cmd_data.has_key ( "MacroName" ): if "-" in cmd_data [ "MacroName" ]: print "Macro name cannot contain the character '-'" print "Excluding the handle" print cmd_compound + "_<" + cmd_data["MacroName"] +">" break cmd_macroname = cmd_data [ "MacroName" ] cmd_compound = cmd_compound + "_<" + cmd_macroname + ">" elif ( cmd_macroname != "" ): cmd_macroname = "" # Get command description if cmd_data.has_key ( "Desc" ): cmd_desc = cmd_data [ "Desc" ] elif ( cmd_desc != "" ): cmd_desc = "" if cmd_data.has_key ( "Handle" ): #if cmd_data.has_key ( "MacroName" ): self.cmd_graph [ cmd_compound ] = CLICommand ( cmd_access, cmd_handle, cmd_macro, cmd_macroname, cmd_desc ) if ( len ( cmd_compound ) > self.indentation ): self.indentation = len ( cmd_compound ) # Parse the arguments if cmd_data.has_key ( "Args" ): cmd_args = cmd_data [ "Args" ] self.dump_cmd ( cmd_args, cmd_compound, cmd_access, cmd_handle, cmd_macro, cmd_macroname, cmd_desc ) #------------------------------------------------------------------------------ def normalize_command ( self, cmd ): return cmd.replace ( " ", "_" ) #------------------------------------------------------------------------------ def return_graph (self): return self.cmd_graph #------------------------------------------------------------------------------ def get_indentation ( self, cmd ): return ( self.indentation + 8 - len ( cmd ) ) #------------------------------------------------------------------------------ def suffix_macro_to_cmd ( self, macro_list, cmd ): ret_cmd = [] for macro in macro_list: ret_cmd.append ( self.normalize_command ( cmd + "_" + macro ) ) return ret_cmd #------------------------------------------------------------------------------ def get_macro_list ( self, class_instance, macro_txt, add_help=None ): fn_macro = self.get_implementor_handle ( class_instance, macro_txt ) prev_macro = self.get_previous_macro() return fn_macro ( prev_macro, add_help ) #------------------------------------------------------------------------------ def include_macro ( self, macro_list, ret_list ): for item in macro_list: ret_list.append ( item ) #------------------------------------------------------------------------------ def string_has_enter ( self, string ): if ( re.search ( "<enter>", string ) != None ): return 1 else: return 0 #------------------------------------------------------------------------------ def add_enter_instruction ( self, result_list ): if ( len ( result_list ) ): string = result_list [ 0 ] if ( self.string_has_enter ( string ) == 1 ): return 0 result_list.insert ( 0, " <enter>" + " " * self.get_indentation ( "<enter" ) + "Execute the current command" ) #------------------------------------------------------------------------------ def match_macro ( self, macro_list, needle, ret_list ): global entered_macro for haystack in macro_list: if ( re.match ( needle, haystack ) != None ): if ( len ( needle ) == len ( haystack ) ): self.add_enter_instruction ( ret_list ) entered_macro.append(haystack) elif ( len ( needle ) < len ( haystack ) ): if haystack not in ret_list: ret_list.append ( haystack ) entered_macro.append(haystack) #else: #print "" #------------------------------------------------------------------------------ def option_exists ( self, consider_option, ret_list ): for option in ret_list: if ( re.match ( option, consider_option ) != None ): return 1 return 0 #------------------------------------------------------------------------------ def complete_command ( self, part_cmd, full_cmd, end_index, cmd_helper, ret_list ): unmatched_string = full_cmd [ end_index: ] # This is an adjustment for "<space>" before tab / ? keypress if ( part_cmd [ -1 ] == "_" ): part_cmd = part_cmd [ 0:-1 ] unmatched_string = "_" + unmatched_string if ( unmatched_string [ 0 ] == "_" ): # attach possible matches possible_option = unmatched_string.replace ( "_", " " ) + ( " " * self.get_indentation ( full_cmd ) ) possible_option = possible_option + "<" + cmd_helper.cmd_desc + ">" ret_list.append ( possible_option ) else: # Get part of the command from part_cmd match_object = re.search ( "_", part_cmd ) while ( match_object != None ): part_cmd = part_cmd [ match_object.end (): ] match_object = re.search ( "_", part_cmd ) # Get rest of the command from unmatched_string match_object = re.search ( "_", unmatched_string ) if ( match_object != None ): unmatched_string = unmatched_string [ :(match_object.end()-1)] complete_word = part_cmd + unmatched_string if ( self.option_exists ( complete_word, ret_list ) == 0 ): ret_list.append ( complete_word ) return ret_list #------------------------------------------------------------------------------ def get_all_cmds ( self ): ret_list = [] for cmd in self.cmd_graph: cmd_str = cmd.replace ( "_", " " ) cmd_str = cmd_str + ( " " * self.get_indentation ( cmd ) ) + "<" + self.cmd_graph [ cmd ].cmd_desc + ">" ret_list.append ( cmd_str ) return ret_list #------------------------------------------------------------------------------ # Lot of reference here to needle and haystack, needle being the current # command context of the CLI, and haystack being the command model dict # created during CLIUtil instantiation #------------------------------------------------------------------------------ def get_match (self, needle): global global_needle global_needle = needle macro_dict = {} ret_list = [] # flag variable to denote if macro has been appended flag=0 if len(needle)==0 or re.search("[a-z|A-Z|0-9]", needle)==None: return self.get_all_cmds() if needle[-1]==" ": needle=needle[0:-1] needle = self.normalize_command(needle) while needle[-1]=="_": needle=needle[0:-1] for haystack_orig in self.cmd_graph: cmd_helper = self.cmd_graph [ haystack_orig ] # Creating macro list for easy lookup and retrieval if cmd_helper.cmd_macro!="": cmd_macro_list = self.get_macro_list(CLIImplementor(),cmd_helper.cmd_macro) macro_dict[cmd_helper.cmd_macroname]=cmd_macro_list # For regex operations haystack = haystack_orig.replace("<","(?P<") haystack = haystack.replace(">", ">.*)") # Matching using regex search and match match_macros = re.search(haystack,needle) if len(haystack_orig)<len(needle): match_object = re.match(haystack_orig,needle) else: match_object = re.match(needle,haystack_orig) # Complete partially entered command if match_object!=None: balance_haystack = haystack_orig[match_object.end():] if balance_haystack!="": if balance_haystack[1]=="<" and cmd_helper.cmd_macro!="": # check to retrieve corresponding macro list if cmd_helper.cmd_macroname in haystack_orig.partition(">")[0]: self.include_macro(macro_dict[cmd_helper.cmd_macroname],ret_list) break haystack_orig=haystack_orig.replace(" ","_") self.complete_command(needle,haystack_orig,match_object.end(), cmd_helper, ret_list) else: self.add_enter_instruction ( ret_list ) # Compare and complete macros elif match_macros!=None: for macro_name in macro_dict.keys(): if macro_name in cmd_helper.cmd_macroname: # try-catch block to get all match groups try: macro_needle = match_macros.group(macro_name) if "_" in macro_needle: continue for each_macro in macro_dict[macro_name]: if macro_needle in each_macro: self.match_macro(macro_dict[macro_name],macro_needle,ret_list) flag=1 break if flag==0: #print "Invalid macro. Possible options:" self.include_macro(macro_dict[macro_name],ret_list) except IndexError: break # Find point of match and return remaining command else: needle_temp = needle haystack_temp = haystack_orig # loop till all macros of commands are validated while True: index_of_diff = 0 for char_a, char_b in zip(list(haystack_temp), list(needle_temp)): if char_a!=char_b: break index_of_diff=index_of_diff+1 if index_of_diff!=0: macro_needle = needle_temp[index_of_diff:] macro_needle = macro_needle.split("_",1)[-1] balance_haystack = haystack_temp[index_of_diff:] if balance_haystack[0]=="_": balance_haystack=balance_haystack[1:] if balance_haystack[0]!="<": match_object = re.match(macro_needle,balance_haystack) if match_object!=None and flag==0: end_pos = haystack_orig.find(balance_haystack) self.complete_command(haystack_orig[:end_pos],haystack_orig,end_pos, cmd_helper, ret_list) if balance_haystack[0]=="<": balance_haystack=balance_haystack.split("_",1)[-1] match_object = re.match(macro_needle, balance_haystack) for key in macro_dict: if macro_needle in macro_dict[key]: end_pos = haystack_orig.find(balance_haystack) self.complete_command(haystack_orig[:end_pos],haystack_orig,end_pos, cmd_helper, ret_list) # When needle ends with a macro if match_object==None or macro_needle=="": #print "Incorrect command. Possible options:" if balance_haystack[0]=="<" and cmd_helper.cmd_macro!="": self.include_macro(macro_dict[cmd_helper.cmd_macroname],ret_list) else: if flag==0: end_pos = haystack_orig.find(balance_haystack) self.complete_command(haystack_orig[:end_pos],haystack_orig,end_pos, cmd_helper, ret_list) break # When needle extends beyond current macro else: haystack_temp = balance_haystack needle_temp = macro_needle else: break else: break return ret_list #------------------------------------------------------------------------------ def chomp ( self, token ): match_object = re.search ( "[a-z|A-Z|0-9]", token ) if ( match_object != None ): token = token [ ( match_object.end () - 1): ] token = token [ ::-1 ] match_object = re.search ( "[a-z|A-Z|0-9]", token ) if ( match_object != None ): token = token [ ( match_object.end () - 1): ] token = token [ ::-1 ] return token #------------------------------------------------------------------------------ def validate_command_and_execute ( self, full_cmd_context ): # We will do the validation again in case this function is called # outside the CLI context best_cmd_match = "" best_cmd_args = "" best_cmd_handle = None for command in self.cmd_graph: cmd_helper = self.cmd_graph[command] # For regex operations command_temp = command.replace("<","(?P<") command_temp = command_temp.replace(">", ">.*)") match_object = re.match ( command_temp, self.normalize_command ( full_cmd_context ) ) if ( match_object != None ): # Okay - we found a match. Get macros if included command_args = "" match_macros = re.search ( command_temp,self.normalize_command(full_cmd_context)) if match_macros != None and cmd_helper.cmd_macroname!="": macro_needle = match_macros.group(cmd_helper.cmd_macroname) command_args = macro_needle #if ( len ( full_cmd_context ) > len ( command ) ): #command_args = self.chomp ( full_cmd_context [ match_object.end (): ] ) command_args = self.chomp (command_args) if ( len ( best_cmd_match ) < len ( command ) ): best_cmd_match = command best_cmd_args = command_args best_cmd_handle = self.get_implementor_handle ( CLIImplementor (), self.cmd_graph [ command ].cmd_handle ) if ( best_cmd_handle != 0 ): return best_cmd_handle ( best_cmd_args ) else: print self.cmd_graph [ best_cmd_match ].cmd_handle + " not implemented" #------------------------------------------------------------------------------ def print_results ( self, result_list ): for result in result_list: print "\t" + result #------------------------------------------------------------------------------ def print_command_graph ( self, cmd_dict ): for keys in cmd_dict: print keys + "=>" cmd = cmd_dict [ keys ] if ( cmd.cmd_desc != "" ): print " " + cmd.cmd_desc print " " + cmd.cmd_access if ( cmd.cmd_macro != "" ): fn_macro = self.get_implementor_handle ( CLIImplementor (), cmd.cmd_macro ) if ( fn_macro != 0 ): print fn_macro () else: print " Macro not implemented" if ( cmd.cmd_handle != "" ): fn_handle = self.get_implementor_handle ( CLIImplementor (), cmd.cmd_handle ) if ( fn_handle != 0 ): fn_handle () else: print " Handler not implemented" #------------------------------------------------------------------------------ def get_previous_macro(self): global global_needle global entered_macro if global_needle[-1]==" ": global_needle=global_needle[0:-1] global_needle = cli_util.normalize_command(global_needle) prev_macro = None for each_macro in entered_macro: if each_macro in global_needle: prev_macro = each_macro return prev_macro # end class CLIUtil #------------------------------------------------------------------------------ # MAIN #------------------------------------------------------------------------------ cli_util = CLIUtil () match_options = [ "create", # "create cabling-plan", # "create cabling-", # "create cabling", # "create cabling-plan pod", # "create cabling-plan pod pod_2", # "create", # "create dev", # "create device-config", # "create device-config p", # "create device-config pod", # "create device-config pod pod_1", # "run", # "update password", # "run r", # "run RE", # "create cab", "update", "deploy", "run", "" ] if __name__ == '__main__': for match in match_options: print "Matching results for " + match + " is:" cli_util.print_results ( cli_util.get_match ( match ) ) print "------------------------------------------------------"
Alignment/CommonAlignmentProducer/python/ALCARECOTkAlCosmics_Output_cff.py
ckamtsikis/cmssw
852
12602898
# Author : <NAME> # Date : July 19th, 2007 # last update: $Date: 2011/02/09 09:10:11 $ by $Author: cerminar $ import FWCore.ParameterSet.Config as cms # AlCaReco for track based alignment using Cosmic muon events OutALCARECOTkAlCosmics_noDrop = cms.PSet( SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('pathALCARECOTkAlCosmicsCTF', 'pathALCARECOTkAlCosmicsCosmicTF', 'pathALCARECOTkAlCosmicsRegional') ), outputCommands = cms.untracked.vstring( # 'keep *_ALCARECOTkAlCosmics*_*_*', # keeps also 0T ones if in same job 'keep *_ALCARECOTkAlCosmicsCTF_*_*', 'keep *_ALCARECOTkAlCosmicsCosmicTF_*_*', 'keep *_ALCARECOTkAlCosmicsRegional_*_*', 'keep siStripDigis_DetIdCollection_*_*', 'keep L1AcceptBunchCrossings_*_*_*', 'keep L1GlobalTriggerReadoutRecord_gtDigis_*_*', 'keep *_TriggerResults_*_*', 'keep DcsStatuss_scalersRawToDigi_*_*', 'keep Si*Cluster*_si*Clusters_*_*', # for cosmics keep original clusters 'keep recoMuons_muons1Leg_*_*') # save muons as timing info is needed for BP corrections in deconvolution ) import copy OutALCARECOTkAlCosmics = copy.deepcopy(OutALCARECOTkAlCosmics_noDrop) OutALCARECOTkAlCosmics.outputCommands.insert(0, "drop *")
chapter2/chapter2_basics_05.py
GoodMonsters/Building-Data-Science-Applications-with-FastAPI
107
12602938
<gh_stars>100-1000 def retrieve_page(page): if page > 3: return {"next_page": None, "items": []} return {"next_page": page + 1, "items": ["A", "B", "C"]} items = [] page = 1 while page is not None: page_result = retrieve_page(page) items += page_result["items"] page = page_result["next_page"] print(items) # ["A", "B", "C", "A", "B", "C", "A", "B", "C"]
care/facility/migrations/0149_auto_20200802_2156.py
gigincg/care
189
12602981
# Generated by Django 2.2.11 on 2020-08-02 16:26 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('facility', '0148_populate_unencrypted_patients'), ] operations = [ migrations.RenameField( model_name='historicalpatientregistration', old_name='address', new_name='address_old', ), migrations.RenameField( model_name='historicalpatientregistration', old_name='name', new_name='name_old', ), migrations.RenameField( model_name='historicalpatientregistration', old_name='phone_number', new_name='phone_number_old', ), migrations.RenameField( model_name='patientregistration', old_name='address', new_name='address_old', ), migrations.RenameField( model_name='patientregistration', old_name='name', new_name='name_old', ), migrations.RenameField( model_name='patientregistration', old_name='phone_number', new_name='phone_number_old', ), ]
alipay/aop/api/domain/Appinfos.py
antopen/alipay-sdk-python-all
213
12602987
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class Appinfos(object): def __init__(self): self._app_name = None self._app_type = None self._mini_app_id = None @property def app_name(self): return self._app_name @app_name.setter def app_name(self, value): self._app_name = value @property def app_type(self): return self._app_type @app_type.setter def app_type(self, value): self._app_type = value @property def mini_app_id(self): return self._mini_app_id @mini_app_id.setter def mini_app_id(self, value): self._mini_app_id = value def to_alipay_dict(self): params = dict() if self.app_name: if hasattr(self.app_name, 'to_alipay_dict'): params['app_name'] = self.app_name.to_alipay_dict() else: params['app_name'] = self.app_name if self.app_type: if hasattr(self.app_type, 'to_alipay_dict'): params['app_type'] = self.app_type.to_alipay_dict() else: params['app_type'] = self.app_type if self.mini_app_id: if hasattr(self.mini_app_id, 'to_alipay_dict'): params['mini_app_id'] = self.mini_app_id.to_alipay_dict() else: params['mini_app_id'] = self.mini_app_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = Appinfos() if 'app_name' in d: o.app_name = d['app_name'] if 'app_type' in d: o.app_type = d['app_type'] if 'mini_app_id' in d: o.mini_app_id = d['mini_app_id'] return o
src/tcclib/payloadobj.py
CollectiveDS/tccprofile
244
12603016
"""Payload Object""" from datetime import datetime from uuid import uuid1 _NOW = datetime.now().strftime('%Y-%m-%d-%H%M%S') class ServicesDict: _REQ_ATTRS = ['identifier', 'identifier_type', 'csreq', 'allowed'] _TCC_SERVICE_PAYLOAD_MAP = {'identifier': 'Identifier', 'identifier_type': 'IdentifierType', 'csreq': 'CodeRequirement', 'allowed': 'Authorization', 'apple_events_identifier': 'AEReceiverIdentifier', 'apple_events_identifier_type': 'AEReceiverIdentifierType', 'apple_events_csreq': 'AEReceiverCodeRequirement'} def __init__(self, **kwargs): """Services Dict""" if not all([_a in kwargs for _a in self.__class__._REQ_ATTRS]): raise AttributeError('{} attributes required.'.format(self.__class__._REQ_ATTRS)) self.service = dict() for _k, _v in kwargs.items(): _attr = self.__class__._TCC_SERVICE_PAYLOAD_MAP.get(_k, None) # Only include the payload attributes that have a value. if _attr and _v: self.service[_attr] = _v def __hash__(self): if not isinstance(self, self.__class__): return NotImplemented else: _hash_str = ','.join(map(str, [self.__dict__.get(_k, 'None') for _k in self.__class__._REQ_ATTRS])) return hash(_hash_str) def __eq__(self, other): """Equal.""" if not isinstance(other, self.__class__): return NotImplemented else: return self.__dict__ == other.__dict__ def __ne__(self, other): """Not Equal.""" if not isinstance(other, self.__class__): return NotImplemented else: return not self.__eq__(other) class PayloadContentDict: """PayloadContent Dict""" _UUID = str(uuid1()).upper() _REQ_ATTRS = {'PayloadDescription': 'PPPCP profile', 'PayloadDisplayName': 'PPPCP profile', 'PayloadIdentifier': 'com.github.carlashley.tccprofile.{}'.format(_UUID), 'PayloadOrganization': 'com.github.carlashley.tccprofile', 'PayloadType': 'com.apple.TCC.configuration-profile-policy', 'PayloadUUID': _UUID, 'PayloadVersion': 1, 'Services': None} _MUTABLE_KEYS = ['PayloadIdentifier', 'PayloadOrganization'] def __init__(self, services, **kwargs): """PPPCP Payload Content""" if not isinstance(services, dict): raise TypeError('\'services\' must be \'dict\'.') self.payload_content = self.__class__._REQ_ATTRS.copy() for _k, _v in kwargs.items(): if _k in self.__class__._MUTABLE_KEYS: if _k == 'PayloadIdentifier': _v = '{}.{}'.format(_v, self.__class__._UUID) self.payload_content[_k] = _v self.payload_content['Services'] = services class ProfileDict: _UUID = str(uuid1()).upper() _REQ_ATTRS = {'PayloadDescription': 'PPPCP Profile generated from TCC databases or templates.', 'PayloadDisplayName': 'PPPCP Profile Generated {}'.format(_NOW), 'PayloadIdentifier': 'com.github.carlashley.tccprofile', 'PayloadOrganization': 'com.github.carlashley.tccprofile', 'PayloadRemovalDisallowed': True, 'PayloadScope': 'system', 'PayloadType': 'Configuration', 'PayloadUUID': _UUID, 'PayloadVersion': 1} _MUTABLE_KEYS = ['PayloadDescription', 'PayloadDisplayName', 'PayloadIdentifier', 'PayloadOrganization', 'PayloadRemovalDisallowed'] def __init__(self, payload_content, **kwargs): """Profile Dict""" self.payload = self.__class__._REQ_ATTRS.copy() for _k, _v in kwargs.items(): if _k in self.__class__._MUTABLE_KEYS: self.payload[_k] = _v self.payload['PayloadContent'] = [payload_content]
orguniqueview.py
Sinamore/orgextended
120
12603033
<reponame>Sinamore/orgextended import sublime, sublime_plugin import logging log = logging.getLogger(__name__) ViewMappings = {} def CreateUniqueViewNamed(name, syntax): # Close the view if it exists win = sublime.active_window() for view in win.views(): if view.name() == name: win.focus_view(view) win.run_command('close') win.run_command('new_file') view = win.active_view() view.set_name(name) view.set_syntax_file("Packages/OrgExtended/{}.sublime-syntax".format(syntax)) return view def CreateOrFindUniqueViewNamed(name, syntax): # Return the view if it exists win = sublime.active_window() for view in win.views(): if view.name() == name: win.focus_view(view) return view win.run_command('new_file') view = win.active_view() view.set_name(name) view.set_syntax_file("Packages/OrgExtended/{}.sublime-syntax".format(syntax)) return view def IsViewActuallyActive(name): win = sublime.active_window() for view in win.views(): if view.name() == name: return True return False def MoveViewToOtherGroup(view,myview): window = sublime.active_window() if (window.num_groups() < 2): #self.window.run_command('clone_file') window.set_layout({ "cols": [0.0, 0.5, 1.0], "rows": [0.0, 1.0], "cells": [[0, 0, 1, 1], [1, 0, 2, 1]] }) mygroup = 0 othergroup = 1 else: window.focus_view(view) mygroup = 1 othergroup = 0 if (window.get_view_index(myview)[0] == 0): othergroup = 1 mygroup = 0 window.focus_view(view) window.run_command('move_to_group', {'group': othergroup}) window.run_command('focus_group', {'group': mygroup}) window.focus_view(myview) class UniqueView: def __init__(self, name, syntax, reuse=False,curview=None): self.name = name if(reuse): self._view = CreateOrFindUniqueViewNamed(name,syntax=syntax) else: self._view = CreateUniqueViewNamed(name,syntax=syntax) self._view.set_name(self.name) if(curview != None): MoveViewToOtherGroup(self._view,curview) self._view.set_read_only(True) self._view.set_scratch(True) # View mappings is required so we can return the # UniqueView rather than the view ViewMappings[name] = self @property def view(self): return self._view @staticmethod def Get(name,syntax="OrgExtended",reuse=True,curview=None): if(name in ViewMappings and IsViewActuallyActive(name)): return ViewMappings[name] else: return UniqueView(name,syntax,reuse,curview) @staticmethod def IsShowing(name): return IsViewActuallyActive(name)
concordia/signals/signals.py
juliecentofanti172/juliecentofanti.github.io
134
12603039
import django.dispatch reservation_obtained = django.dispatch.Signal( providing_args=["asset_pk", "reservation_token"] ) reservation_released = django.dispatch.Signal( providing_args=["asset_pk", "reservation_token"] )
code/LFW/evaluate.py
huangyangyu/SeqFace
136
12603063
#!/usr/bin/env python #coding: utf-8 #author: huangyangyu layer_num = 27 #layer_num = 64 import os import sys import gflags import cPickle import numpy as np root_dir = os.path.dirname(os.path.abspath("__file__")) + "/../../" sys.path.append(root_dir + "code/") if not gflags.FLAGS.has_key("model_dir"): gflags.DEFINE_string("model_dir", root_dir + "model/ResNet-%d/" % layer_num, "set model dir") if not gflags.FLAGS.has_key("feature_layer_names"): gflags.DEFINE_string("feature_layer_names", "['fc5']", "set feature layer names") if not gflags.FLAGS.has_key("device_id"): gflags.DEFINE_integer("device_id", 0, "set device id") if not gflags.FLAGS.has_key("ratio"): gflags.DEFINE_float("ratio", -1.0, "set image ratio") if not gflags.FLAGS.has_key("scale"): gflags.DEFINE_float("scale", 1.1, "set image scale") if not gflags.FLAGS.has_key("resize_height"): gflags.DEFINE_integer("resize_height", 144, "set image height") if not gflags.FLAGS.has_key("resize_width"): gflags.DEFINE_integer("resize_width", 144, "set image width") if not gflags.FLAGS.has_key("raw_scale"): gflags.DEFINE_float("raw_scale", 255.0, "set raw scale") if not gflags.FLAGS.has_key("input_scale"): gflags.DEFINE_float("input_scale", 0.0078125, "set raw scale") if not gflags.FLAGS.has_key("gray"): gflags.DEFINE_boolean("gray", False, "set gray") if not gflags.FLAGS.has_key("oversample"): gflags.DEFINE_boolean("oversample", False, "set oversample") from featurer import Featurer def cos_sim(v1, v2): v1 /= np.linalg.norm(v1) v2 /= np.linalg.norm(v2) dist = np.linalg.norm(np.array(v1)-np.array(v2)) cos = 1 - dist * dist / 2 return cos def test(): image_dir = root_dir + "data/LFW/" # pairs image_files = set() pairs = list() for k, line in enumerate(open(image_dir + "pairs.txt")): item = line.strip().split() item[0] = image_dir + "images/" + item[0] item[1] = image_dir + "images/" + item[1] assert len(item) == 3 pairs.append(tuple(item)) image_files.add(item[0]) image_files.add(item[1]) # features feature_file = image_dir + "feature_%d.pkl" % layer_num if not os.path.exists(feature_file): gflags.FLAGS(sys.argv) model_dir = gflags.FLAGS.model_dir + "/" featurer = Featurer(deploy_prototxt=model_dir + "deploy.prototxt", \ model_file=model_dir + "train.caffemodel", \ mean_file=model_dir + "mean.binaryproto", \ ratio_file=model_dir + "ratio.txt", \ label_file=model_dir + "label.txt", \ device_id=gflags.FLAGS.device_id, \ ratio=gflags.FLAGS.ratio, \ scale=gflags.FLAGS.scale, \ resize_height=gflags.FLAGS.resize_height, \ resize_width=gflags.FLAGS.resize_width, \ raw_scale=gflags.FLAGS.raw_scale, \ input_scale=gflags.FLAGS.input_scale, \ gray=gflags.FLAGS.gray, \ oversample=gflags.FLAGS.oversample, \ feature_layer_names=eval(gflags.FLAGS.feature_layer_names)) features = dict() for k, image_file in enumerate(image_files): if not features.has_key(image_file): features[image_file.replace(root_dir, "")] = featurer.test(image_file=image_file) print "processed:", k sys.stdout.flush() cPickle.dump(features, open(feature_file, "wb")) else: features = cPickle.load(open(feature_file, "rb")) # sims sims = list() for pair in pairs: image_file1, image_file2, tag = pair[:3] # person1 feature1 = features[image_file1.replace(root_dir, "")] # person2 feature2 = features[image_file2.replace(root_dir, "")] # sim sim = cos_sim(feature1, feature2) sims.append((sim, int(tag), image_file1, image_file2)) sims = sorted(sims, key=lambda item: item[0]) # roc tn = 0 fn = 0 tp = len(filter(lambda item: item[1]==1, sims)) fp = len(filter(lambda item: item[1]==0, sims)) best_accuracy = 0.0 best_thred = 0.0 with open(image_dir + "roc_%d.txt" % layer_num, "wb") as f: for k, sim in enumerate(sims): thred, tag, image_file1, image_file2 = sim if tag == 0: tn += 1 fp -= 1 else: fn += 1 tp -= 1 tpr = 1.0 * tp / max(tp + fn, 1) fnr = 1.0 * fn / max(tp + fn, 1) tnr = 1.0 * tn / max(tn + fp, 1) fpr = 1.0 * fp / max(tn + fp, 1) accuracy = 1.0 * (tp + tn) / (tp + fp + tn + fn) if accuracy > best_accuracy: best_accuracy = accuracy best_thred = thred f.write("%.6f %.6f\n" % (tpr, fpr)) print "best:", len(pairs), best_thred, best_accuracy if __name__ == "__main__": test()
backdoors/shell/__pupy/pupy/pupysh.py
mehrdad-shokri/backdoorme
796
12603125
<reponame>mehrdad-shokri/backdoorme<filename>backdoors/shell/__pupy/pupy/pupysh.py #!/usr/bin/env python # -*- coding: UTF8 -*- # -------------------------------------------------------------- # Copyright (c) 2015, <NAME> (<EMAIL>) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE # -------------------------------------------------------------- import pupylib.PupyServer import pupylib.PupyCmd import logging import time import traceback import argparse import os import os.path __author__='<NAME>' __version__='v1.0.1-alpha' def print_version(): print("Pupy - %s"%(__version__)) if __name__=="__main__": if os.path.dirname(__file__): os.chdir(os.path.dirname(__file__)) parser = argparse.ArgumentParser(prog='ptrconsole', description="Pupy console") parser.add_argument('--log-lvl', help="change log verbosity", dest="loglevel", choices=["DEBUG","INFO","WARNING","ERROR"], default="WARNING") parser.add_argument('--version', help="print version and exit", action='store_true') args=parser.parse_args() if args.version: print_version() exit(0) loglevel=logging.WARNING if args.loglevel=="ERROR": loglevel=logging.ERROR elif args.loglevel=="DEBUG": loglevel=logging.DEBUG elif args.loglevel=="INFO": loglevel=logging.INFO else: loglevel=logging.WARNING logging.basicConfig(format='%(asctime)-15s - %(levelname)-5s - %(message)s') logging.getLogger().setLevel(loglevel) pupyServer=pupylib.PupyServer.PupyServer() try: import __builtin__ as builtins except ImportError: import builtins builtins.glob_pupyServer=pupyServer # dirty ninja trick for this particular case avoiding to touch rpyc source code pupyServer.start() pcmd=pupylib.PupyCmd.PupyCmd(pupyServer) while True: try: pcmd.cmdloop() except Exception as e: print(traceback.format_exc()) pcmd.intro=''
cd/canary-azure-devops/pipeline_configs/read_config.py
ganesh-k13/citrix-k8s-ingress-controller
315
12603145
<reponame>ganesh-k13/citrix-k8s-ingress-controller import argparse import json class ConfigReader(object): @staticmethod def populate_env(input_params): print(input_params) if input_params.action == 'delete': print('##vso[task.setvariable variable=TEARDOWN_FLAG]True') with open(input_params.config_file) as json_file: json_data = json.load(json_file) print(json_data) if json_data.keys(): for param, value in json_data.iteritems(): print('##vso[task.setvariable variable={}]{}'.format(param, value)) def main(input_params): ConfigReader.populate_env(input_params) def parse_arguments(): parser = argparse.ArgumentParser(description='Config Reader') parser.add_argument('--config_file', nargs='?', default=None, help='json file path') parser.add_argument('--action', nargs='?', default=None, help='apply/delete') return parser.parse_args() if __name__ == "__main__": try: arguments = parse_arguments() main(arguments) except Exception as e: print('Exception occurred with reason: {}'.format(e))
xfel/command_line/cxi_xmerge.py
dperl-sol/cctbx_project
155
12603166
<reponame>dperl-sol/cctbx_project # -*- mode: python; coding: utf-8; indent-tabs-mode: nil; python-indent: 2 -*- # # LIBTBX_SET_DISPATCHER_NAME cxi.xmerge # # $Id$ from __future__ import absolute_import, division, print_function from six.moves import range import iotbx.phil from dials.array_family import flex from cctbx import uctbx from iotbx import mtz from libtbx.utils import Usage, multi_out from libtbx import easy_pickle import os import time import sys from xfel.command_line.cxi_merge import master_phil,scaling_manager from xfel.command_line.cxi_merge import unit_cell_distribution,show_overall_observations from xfel.command_line.cxi_merge import scaling_result from xfel.command_line.cxi_merge import consistent_set_and_model from xfel import column_parser from cctbx import miller from six.moves import zip #----------------------------------------------------------------------- class xscaling_manager (scaling_manager) : def __init__ (self, miller_set, i_model, params, log=None) : scaling_manager.__init__(self,miller_set,i_model,params,log) def scale_all (self) : t1 = time.time() self.read_all_mysql() self.millers = self.millers_mysql self.frames = self.frames_mysql self._frames = self._frames_mysql self.observations = self.observations_mysql self._observations = self._observations_mysql if self.params.model is None: self.n_accepted = len(self.frames["cc"]) self.n_low_corr = 0 self.those_accepted = flex.bool(self.n_accepted, True) else: self.n_accepted = (self.frames["cc"]>self.params.min_corr).count(True) self.n_low_corr = (self.frames["cc"]>self.params.min_corr).count(False) self.those_accepted = (self.frames["cc"]>self.params.min_corr) statsy = flex.mean_and_variance(self.frames["cc"]) print("%5d images, individual image correlation coefficients are %6.3f +/- %5.3f"%( len(self.frames["cc"]), statsy.mean(), statsy.unweighted_sample_standard_deviation(), ), file=self.log) if self.params.scaling.report_ML and "half_mosaicity_deg" in self.frames: mosaic = self.frames["half_mosaicity_deg"].select(self.those_accepted) Mstat = flex.mean_and_variance(mosaic) print("%5d images, half mosaicity is %6.3f +/- %5.3f degrees"%( len(mosaic), Mstat.mean(), Mstat.unweighted_sample_standard_deviation()), file=self.log) domain = self.frames["domain_size_ang"].select(self.those_accepted) Dstat = flex.mean_and_variance(domain) print("%5d images, domain size is %6.0f +/- %5.0f Angstroms"%( len(domain), Dstat.mean(), Dstat.unweighted_sample_standard_deviation()), file=self.log) invdomain = 1./domain Dstat = flex.mean_and_variance(invdomain) print("%5d images, inverse domain size is %f +/- %f Angstroms"%( len(domain), Dstat.mean(), Dstat.unweighted_sample_standard_deviation()), file=self.log) print("%5d images, domain size is %6.0f +/- %5.0f Angstroms"%( len(domain), 1./Dstat.mean(), 1./Dstat.unweighted_sample_standard_deviation()), file=self.log) t2 = time.time() print("", file=self.log) print("#" * 80, file=self.log) print("FINISHED MERGING", file=self.log) print(" Elapsed time: %.1fs" % (t2 - t1), file=self.log) print(" %d integration files were accepted" % ( self.n_accepted), file=self.log) print(" %d rejected due to poor correlation" % \ self.n_low_corr, file=self.log) def read_all_mysql(self): print("reading observations from %s database"%(self.params.backend)) if self.params.backend == 'MySQL': from xfel.merging.database.merging_database import manager elif self.params.backend == 'SQLite': from xfel.merging.database.merging_database_sqlite3 import manager else: from xfel.merging.database.merging_database_fs import manager CART = manager(self.params) self.millers_mysql = CART.read_indices() self.millers = self.millers_mysql self.observations_mysql = CART.read_observations() parser = column_parser() parser.set_int("hkl_id",self.observations_mysql["hkl_id"]) parser.set_double("i",self.observations_mysql["i"]) parser.set_double("sigi",self.observations_mysql["sigi"]) parser.set_int("frame_id",self.observations_mysql["frame_id"]) parser.set_int("H",self.observations_mysql["original_h"]) parser.set_int("K",self.observations_mysql["original_k"]) parser.set_int("L",self.observations_mysql["original_l"]) self._observations_mysql = parser self.observations = dict(hkl_id=parser.get_int("hkl_id"), i=parser.get_double("i"), sigi=parser.get_double("sigi"), frame_id=parser.get_int("frame_id"), H=parser.get_int("H"), K=parser.get_int("K"), L=parser.get_int("L"), ) self.frames_mysql = CART.read_frames() parser = column_parser() parser.set_int("frame_id",self.frames_mysql["frame_id"]) parser.set_double("wavelength",self.frames_mysql["wavelength"]) parser.set_double("cc",self.frames_mysql["cc"]) try: parser.set_double("slope",self.frames_mysql["slope"]) parser.set_double("offset",self.frames_mysql["offset"]) if self.params.scaling.report_ML: parser.set_double("domain_size_ang",self.frames_mysql["domain_size_ang"]) parser.set_double("half_mosaicity_deg",self.frames_mysql["half_mosaicity_deg"]) except KeyError: pass self._frames_mysql = parser CART.join() #----------------------------------------------------------------------- def run(args): phil = iotbx.phil.process_command_line(args=args, master_string=master_phil).show() work_params = phil.work.extract() from xfel.merging.phil_validation import application application(work_params) if ("--help" in args) : libtbx.phil.parse(master_phil.show()) return if ((work_params.d_min is None) or (work_params.data is None) or ( (work_params.model is None) and work_params.scaling.algorithm != "mark1") ) : raise Usage("cxi.merge " "d_min=4.0 " "data=~/scratch/r0220/006/strong/ " "model=3bz1_3bz2_core.pdb") if ((work_params.rescale_with_average_cell) and (not work_params.set_average_unit_cell)) : raise Usage("If rescale_with_average_cell=True, you must also specify "+ "set_average_unit_cell=True.") if work_params.raw_data.sdfac_auto and work_params.raw_data.sdfac_refine: raise Usage("Cannot specify both sdfac_auto and sdfac_refine") if not work_params.include_negatives_fix_27May2018: work_params.include_negatives = False # use old behavior log = open("%s_%s.log" % (work_params.output.prefix,work_params.scaling.algorithm), "w") out = multi_out() out.register("log", log, atexit_send_to=None) out.register("stdout", sys.stdout) # Verify that the externally supplied isomorphous reference, if # present, defines a suitable column of intensities, and exit with # error if it does not. Then warn if it is necessary to generate # Bijvoet mates. Failure to catch these issues here would lead to # possibly obscure problems in cxi/cxi_cc.py later on. try: data_SR = mtz.object(work_params.scaling.mtz_file) except RuntimeError: pass else: array_SR = None obs_labels = [] for array in data_SR.as_miller_arrays(): this_label = array.info().label_string().lower() if array.observation_type() is not None: obs_labels.append(this_label.split(',')[0]) if this_label.find('fobs')>=0: array_SR = array.as_intensity_array() break if this_label.find('imean')>=0: array_SR = array.as_intensity_array() break if this_label.find(work_params.scaling.mtz_column_F)==0: array_SR = array.as_intensity_array() break if array_SR is None: known_labels = ['fobs', 'imean', work_params.scaling.mtz_column_F] raise Usage(work_params.scaling.mtz_file + " does not contain any observations labelled [" + ", ".join(known_labels) + "]. Please set scaling.mtz_column_F to one of [" + ",".join(obs_labels) + "].") elif not work_params.merge_anomalous and not array_SR.anomalous_flag(): print("Warning: Preserving anomalous contributors, but %s " \ "has anomalous contributors merged. Generating identical Bijvoet " \ "mates." % work_params.scaling.mtz_file, file=out) # Read Nat's reference model from an MTZ file. XXX The observation # type is given as F, not I--should they be squared? Check with Nat! print("I model", file=out) if work_params.model is not None: from xfel.merging.general_fcalc import run i_model = run(work_params) work_params.target_unit_cell = i_model.unit_cell() work_params.target_space_group = i_model.space_group_info() i_model.show_summary() else: i_model = None print("Target unit cell and space group:", file=out) print(" ", work_params.target_unit_cell, file=out) print(" ", work_params.target_space_group, file=out) miller_set, i_model = consistent_set_and_model(work_params,i_model) # ---- Augment this code with any special procedures for x scaling scaler = xscaling_manager( miller_set=miller_set, i_model=i_model, params=work_params, log=out) scaler.scale_all() if scaler.n_accepted == 0: return None # --- End of x scaling scaler.uc_values = unit_cell_distribution() for icell in range(len(scaler.frames["unit_cell"])): if scaler.params.model is None: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell]) else: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell], rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr)) scaler.show_unit_cell_histograms() if (work_params.rescale_with_average_cell) : average_cell_abc = scaler.uc_values.get_average_cell_dimensions() average_cell = uctbx.unit_cell(list(average_cell_abc) + list(work_params.target_unit_cell.parameters()[3:])) work_params.target_unit_cell = average_cell print("", file=out) print("#" * 80, file=out) print("RESCALING WITH NEW TARGET CELL", file=out) print(" average cell: %g %g %g %g %g %g" % \ work_params.target_unit_cell.parameters(), file=out) print("", file=out) scaler.reset() scaler = xscaling_manager( miller_set=miller_set, i_model=i_model, params=work_params, log=out) scaler.scale_all() scaler.uc_values = unit_cell_distribution() for icell in range(len(scaler.frames["unit_cell"])): if scaler.params.model is None: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell]) else: scaler.uc_values.add_cell( unit_cell=scaler.frames["unit_cell"][icell], rejected=(scaler.frames["cc"][icell] < scaler.params.min_corr)) scaler.show_unit_cell_histograms() if False : #(work_params.output.show_plots) : try : plot_overall_completeness(completeness) except Exception as e : print("ERROR: can't show plots") print(" %s" % str(e)) print("\n", file=out) reserve_prefix = work_params.output.prefix for data_subset in [1,2,0]: work_params.data_subset = data_subset work_params.output.prefix = "%s_s%1d_%s"%(reserve_prefix,data_subset,work_params.scaling.algorithm) if work_params.data_subset == 0: scaler.frames["data_subset"] = flex.bool(scaler.frames["frame_id"].size(),True) elif work_params.data_subset == 1: scaler.frames["data_subset"] = scaler.frames["odd_numbered"] elif work_params.data_subset == 2: scaler.frames["data_subset"] = scaler.frames["odd_numbered"]==False # --------- New code ------------------ #sanity check for mod,obs in zip(miller_set.indices(), scaler.millers["merged_asu_hkl"]): if mod!=obs: raise Exception("miller index lists inconsistent--check d_min are equal for merge and xmerge scripts") assert mod==obs """Sum the observations of I and I/sig(I) for each reflection. sum_I = flex.double(i_model.size(), 0.) sum_I_SIGI = flex.double(i_model.size(), 0.) scaler.completeness = flex.int(i_model.size(), 0) scaler.summed_N = flex.int(i_model.size(), 0) scaler.summed_wt_I = flex.double(i_model.size(), 0.) scaler.summed_weight = flex.double(i_model.size(), 0.) scaler.n_rejected = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.n_obs = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.d_min_values = flex.double(scaler.frames["frame_id"].size(), 0.) scaler.ISIGI = {}""" from xfel import scaling_results, get_scaling_results, get_isigi_dict results = scaling_results(scaler._observations, scaler._frames, scaler.millers["merged_asu_hkl"],scaler.frames["data_subset"], work_params.include_negatives) results.__getattribute__( work_params.scaling.algorithm)( scaler.params.min_corr, scaler.params.target_unit_cell) sum_I, sum_I_SIGI, \ scaler.completeness, scaler.summed_N, \ scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, scaler.n_obs, \ scaler.d_min_values, hkl_ids, i_sigi_list = get_scaling_results(results) scaler.ISIGI = get_isigi_dict(results) if work_params.merging.refine_G_Imodel: from xfel.cxi.merging.refine import find_scale my_find_scale = find_scale(scaler, work_params) sum_I, sum_I_SIGI, \ scaler.completeness, scaler.summed_N, \ scaler.summed_wt_I, scaler.summed_weight, scaler.n_rejected, \ scaler.n_obs, scaler.d_min_values, hkl_ids, i_sigi_list \ = my_find_scale.get_scaling_results(results, scaler) scaler.ISIGI = get_isigi_dict(results) scaler.wavelength = scaler.frames["wavelength"] scaler.corr_values = scaler.frames["cc"] scaler.rejected_fractions = flex.double(scaler.frames["frame_id"].size(), 0.) for irej in range(len(scaler.rejected_fractions)): if scaler.n_obs[irej] > 0: scaler.rejected_fractions = scaler.n_rejected[irej]/scaler.n_obs[irej] # ---------- End of new code ---------------- if work_params.raw_data.sdfac_refine or work_params.raw_data.errors_from_sample_residuals: if work_params.raw_data.sdfac_refine: if work_params.raw_data.error_models.sdfac_refine.minimizer == 'simplex': from xfel.merging.algorithms.error_model.sdfac_refine import sdfac_refine as error_modeler elif work_params.raw_data.error_models.sdfac_refine.minimizer == 'lbfgs': from xfel.merging.algorithms.error_model.sdfac_refine_lbfgs import sdfac_refine_refltable_lbfgs as error_modeler elif self.params.raw_data.error_models.sdfac_refine.minimizer == 'LevMar': from xfel.merging.algorithms.error_model.sdfac_refine_levmar import sdfac_refine_refltable_levmar as error_modeler if work_params.raw_data.errors_from_sample_residuals: from xfel.merging.algorithms.error_model.errors_from_residuals import errors_from_residuals as error_modeler error_modeler(scaler).adjust_errors() if work_params.raw_data.reduced_chi_squared_correction: from xfel.merging.algorithms.error_model.reduced_chi_squared import reduced_chi_squared reduced_chi_squared(scaler).compute() miller_set_avg = miller_set.customized_copy( unit_cell=work_params.target_unit_cell) table1 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.completeness, redundancy_to_edge=None, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for all reflections", out=out, work_params=work_params) if table1 is None: raise Exception("table could not be constructed") print("", file=out) if work_params.scaling.algorithm == 'mark0': n_refl, corr = scaler.get_overall_correlation(sum_I) else: n_refl, corr = ((scaler.completeness > 0).count(True), 0) print("\n", file=out) table2 = show_overall_observations( obs=miller_set_avg, redundancy=scaler.summed_N, redundancy_to_edge=None, summed_wt_I=scaler.summed_wt_I, summed_weight=scaler.summed_weight, ISIGI=scaler.ISIGI, n_bins=work_params.output.n_bins, title="Statistics for reflections where I > 0", out=out, work_params=work_params) if table2 is None: raise Exception("table could not be constructed") print("", file=out) mtz_file, miller_array = scaler.finalize_and_save_data() loggraph_file = os.path.abspath("%s_graphs.log" % work_params.output.prefix) f = open(loggraph_file, "w") f.write(table1.format_loggraph()) f.write("\n") f.write(table2.format_loggraph()) f.close() result = scaling_result( miller_array=miller_array, plots=scaler.get_plot_statistics(), mtz_file=mtz_file, loggraph_file=loggraph_file, obs_table=table1, all_obs_table=table2, n_reflections=n_refl, overall_correlation=corr) easy_pickle.dump("%s.pkl" % work_params.output.prefix, result) work_params.output.prefix = reserve_prefix # Output table with number of images contribution reflections per # resolution bin. from libtbx import table_utils miller_set_avg.setup_binner( d_max=100000, d_min=work_params.d_min, n_bins=work_params.output.n_bins) table_data = [["Bin", "Resolution Range", "# images", "%accept"]] if work_params.model is None: appropriate_min_corr = -1.1 # lowest possible c.c. else: appropriate_min_corr = work_params.min_corr n_frames = (scaler.frames['cc'] > appropriate_min_corr).count(True) iselect = 1 while iselect<work_params.output.n_bins: col_count1 = results.count_frames(appropriate_min_corr, miller_set_avg.binner().selection(iselect)) print("colcount1",col_count1) if col_count1>0: break iselect +=1 if col_count1==0: raise Exception("no reflections in any bins") for i_bin in miller_set_avg.binner().range_used(): col_count = '%8d' % results.count_frames( appropriate_min_corr, miller_set_avg.binner().selection(i_bin)) col_legend = '%-13s' % miller_set_avg.binner().bin_legend( i_bin=i_bin, show_bin_number=False, show_bin_range=False, show_d_range=True, show_counts=False) xpercent = results.count_frames(appropriate_min_corr, miller_set_avg.binner().selection(i_bin))/float(n_frames) percent = '%5.2f'% (100.*xpercent) table_data.append(['%3d' % i_bin, col_legend, col_count,percent]) table_data.append([""] * len(table_data[0])) table_data.append(["All", "", '%8d' % n_frames]) print(file=out) print(table_utils.format( table_data, has_header=1, justify='center', delim=' '), file=out) reindexing_ops = {"h,k,l":0} # get a list of all reindexing ops for this dataset if work_params.merging.reverse_lookup is not None: for key in scaler.reverse_lookup: if reindexing_ops.get(scaler.reverse_lookup[key], None) is None: reindexing_ops[scaler.reverse_lookup[key]]=0 reindexing_ops[scaler.reverse_lookup[key]]+=1 from xfel.cxi.cxi_cc import run_cc for key in reindexing_ops.keys(): run_cc(work_params,reindexing_op=key,output=out) if isinstance(scaler.ISIGI, dict): from xfel.merging import isigi_dict_to_reflection_table refls = isigi_dict_to_reflection_table(scaler.miller_set.indices(), scaler.ISIGI) else: refls = scaler.ISIGI easy_pickle.dump("%s.refl"%work_params.output.prefix, refls) return result if (__name__ == "__main__"): show_plots = False if ("--plots" in sys.argv) : sys.argv.remove("--plots") show_plots = True result = run(args=sys.argv[1:]) if result is None: sys.exit(1) if (show_plots) : try : result.plots.show_all_pyplot() from wxtbx.command_line import loggraph loggraph.run([result.loggraph_file]) except Exception as e : print("Can't display plots") print("You should be able to view them by running this command:") print(" wxtbx.loggraph %s" % result.loggraph_file) raise e
dp/cloud/python/magma/configuration_controller/request_router/request_router.py
Aitend/magma
539
12603180
""" Copyright 2021 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Dict, List import requests from magma.configuration_controller.request_router.exceptions import ( RequestRouterError, ) class RequestRouter(object): """ This class is responsible for sending requests to SAS and forwarding SAS responses to Radio Controller. """ def __init__( self, sas_url: str, rc_ingest_url: str, cert_path: str, ssl_key_path: str, request_mapping: Dict, ssl_verify: str, ): self.sas_url = sas_url self.rc_ingest_url = rc_ingest_url self.cert_path = cert_path self.ssl_key_path = ssl_key_path self.ssl_verify = ssl_verify self.request_mapping = request_mapping def post_to_sas(self, request_dict: Dict[str, List[Dict]]) -> requests.Response: """ Parse JSON request and send it to the appropriate SAS endpoint. It will only look at the first key of the parsed JSON dict, so if there are multiple request types chunked in one dictionary it will send them to a SAS endpoint pertaining to the first key of the dictionary only. Therefore it is important to pass the requests grouped under one request name Parameters: request_dict: Dictionary with a request name as key and an array of objects as value Returns: requests.Response: Response object with SAS response as json payload Raises: RequestRouterError: General Request Router error """ try: request_name = next(iter(request_dict)) except StopIteration: raise RequestRouterError( "Received an empty requests dictionary", ) try: sas_method = self.request_mapping[request_name] except KeyError: raise RequestRouterError( f'Unable to find SAS method matching {request_name}', ) try: sas_response = requests.post( f'{self.sas_url}/{sas_method}', json=request_dict, cert=(self.cert_path, self.ssl_key_path), verify=self.ssl_verify, ) except Exception as e: raise RequestRouterError(str(e)) return sas_response def redirect_sas_response_to_radio_controller(self, sas_response: requests.Response) -> requests.Response: """ Send Response object to Radio Controller's ingest endpoint Parameters: sas_response: SAS Response object Returns: requests.Response: Radio Controller Response object Raises: RequestRouterError: General Request Router error """ payload = sas_response.json() try: return requests.post(self.rc_ingest_url, json=payload) except Exception as e: raise RequestRouterError(str(e))
app/src/server.py
rgarciajim/minimal-docker-python-setup
165
12603195
<filename>app/src/server.py from flask import Flask, request, jsonify from flask.ext.redis import FlaskRedis app = Flask(__name__) app.config.update( REDIS_URL="redis://redis:6379/0" ) redis_store = FlaskRedis(app) @app.route('/') def index(): addr = request.remote_addr redis_store.incr(addr) visits = redis_store.get(addr) return jsonify({ 'ip': addr, 'visits': visits, })
experiments/list5/calculate_label_prediction_scores.py
Elfsong/pygaggle
166
12603267
import argparse import glob import json import numpy as np from sklearn.metrics import accuracy_score, f1_score from fever_utils import make_sentence_id def calculate_scores(args): evidences = {} with open(args.dataset_file, 'r', encoding='utf-8') as f: for line in f: line_json = json.loads(line.strip()) evidence_sets = [] if line_json['label'] != 'NOT ENOUGH INFO': for annotator in line_json['evidence']: evidence_set = [make_sentence_id(evidence[2], evidence[3]) for evidence in annotator] evidence_sets.append(evidence_set) evidences[line_json['id']] = evidence_sets def aggregate(scores): if args.num_classes == 4: # filter out samples predicted weak and remove weak scores scores = scores[np.argmax(scores, axis=1) != 3][:, :3] if len(scores) == 0: return 1 if args.strategy == 'first': return np.argmax(scores[0]) elif args.strategy == 'sum': return np.argmax(np.sum(np.exp(scores), axis=0)) elif args.strategy == 'nei_default': maxes = np.argmax(scores, axis=1) if (0 in maxes and 2 in maxes) or (0 not in maxes and 2 not in maxes): return 1 elif 0 in maxes: return 0 elif 2 in maxes: return 2 return -1 elif args.strategy == 'max': return np.argmax(np.max(np.exp(scores), axis=0)) return -1 for scores_file in sorted(glob.glob(f'{args.scores_files_prefix}*')): labels = [] pred_labels = [] fever_scores = [] with open(args.id_file, 'r', encoding='utf-8') as f_id, open(scores_file, 'r', encoding='utf-8') as f_scores: curr_query = None curr_label = None # actual label for current query curr_scores = [] curr_evidences = [] for id_line, scores_line in zip(f_id, f_scores): query_id, sent_ids, label_str = id_line.strip().split('\t') query_id = int(query_id) if query_id != curr_query: if curr_query is not None: # aggregate to get predicted label pred_label = aggregate(np.array(curr_scores)) pred_labels.append(pred_label) # calculate FEVER score fever_scores.append(int(pred_label == curr_label and (pred_label == 1 or \ any([set(ev_set).issubset(set(curr_evidences)) for ev_set in evidences[curr_query]])))) curr_query = query_id curr_scores.clear() curr_evidences.clear() # save actual label if label_str == 'false': curr_label = 0 elif label_str == 'weak': curr_label = 1 elif label_str == 'true': curr_label = 2 labels.append(curr_label) # save predicted evidence(s) and scores if args.num_classes == 3: _, false_score, nei_score, true_score = scores_line.strip().split('\t') scores = [float(false_score), float(nei_score), float(true_score)] elif args.num_classes == 4: _, false_score, ignore_score, true_score, nei_score = scores_line.strip().split('\t') scores = [float(false_score), float(nei_score), float(true_score), float(ignore_score)] curr_scores.append(scores) curr_evidences.extend(sent_ids.strip().split(' ')) # handle last query pred_label = aggregate(np.array(curr_scores)) pred_labels.append(pred_label) fever_scores.append(int(pred_label == curr_label and (pred_label == 1 or \ any([set(ev_set).issubset(set(curr_evidences)) for ev_set in evidences[curr_query]])))) print(scores_file) print(f'Label Accuracy: {accuracy_score(labels, pred_labels)}') print(f'Predicted Label F1 Scores: {f1_score(labels, pred_labels, average=None)}') print(f'Predicted Label Distribution: {[pred_labels.count(i) for i in range(args.num_classes)]}') print(f'FEVER Score: {sum(fever_scores) / len(fever_scores)}') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Calculates various metrics of label prediction output files.') parser.add_argument('--id_file', required=True, help='Input query-doc pair ids file.') parser.add_argument('--scores_files_prefix', required=True, help='Prefix of all T5 label prediction scores files.') parser.add_argument('--dataset_file', help='FEVER dataset file.') parser.add_argument('--num_classes', type=int, default=3, help='Number of label prediction classes.') parser.add_argument('--strategy', help='Format of scores file and method of aggregation if applicable.') args = parser.parse_args() calculate_scores(args)
Cktgen/cktgen/cktgen/cktgen_from_json.py
mabrains/ALIGN-public
119
12603275
<filename>Cktgen/cktgen/cktgen/cktgen_from_json.py from .cktgen import * import json if __name__ == "__main__": args,tech = parse_args() assert args.source != '' src = args.source assert args.placer_json != '' with open( args.placer_json, "rt") as fp: placer_results = json.load( fp) with open( "INPUT/%s_global_router_out.json" % src, "rt") as fp: global_router_results = json.load( fp) # print( placer_results) # print( global_router_results) def roundUp( x, f=2): assert x % f == 0 result = f*((x+f-1)//f) assert x == result return result adts = {} for leaf in placer_results['leaves']: leaf_bbox = leaf['bbox'] nm = leaf['template_name'] # leaves x bbox is 1:1 with poly pitch # seems that number for rows is two (FIX this!) adt = ADT( tech, nm, npp=leaf_bbox[2], nr=(leaf_bbox[3]+3)//4) adts[nm] = adt for term in leaf['terminals']: r = term['rect'] if term['layer'] == "metal1": assert r[0] == r[2] adt.addM1Terminal( term['net_name'], rect=r, leaf_bbox=leaf_bbox) elif term['layer'] == "metal2": assert r[1] == r[3] adt.addM2Terminal( term['net_name'], rect=r) elif term['layer'] == "metal3": assert r[0] == r[2] adt.addM3Terminal( term['net_name'], rect=r) elif term['layer'] == "metal4": assert r[1] == r[3] adt.addM4Terminal( term['net_name'], rect=r) elif term['layer'] == "metal5": assert r[0] == r[2] adt.addM5Terminal( term['net_name'], rect=r) else: assert False, term['layer'] # using half (the placer grid) # HACK Dividing by 2 def xg( x): return tech.pitchPoly//2*tech.halfXGRGrid*x def yg( y): return tech.pitchDG //2*tech.halfYGRGrid*y bbox = placer_results['bbox'] netl = Netlist( nm=args.block_name, bbox=Rect( 0,0, xg(roundUp(bbox[2])), yg(roundUp(bbox[3])))) adnetl = ADNetlist( args.block_name) for inst in placer_results['instances']: tN = inst['template_name'] iN = inst['instance_name'] tr = inst['transformation'] print( tr) adnetl.addInstance( ADI( adts[tN], iN, ADITransform( xg(tr['oX']), yg(tr['oY']), tr['sX'], tr['sY']))) for (f,a) in inst['formal_actual_map'].items(): adnetl.connect( iN, f, a) if 'ports' in placer_results: ports = placer_results['ports'] for p in ports: adnetl.addPort( p) adnetl.genNetlist( netl) for wire in global_router_results['wires']: netl.newGR( wire['net_name'], Rect( *wire['rect']), wire['layer'], wire['width']) pathlib.Path("INPUT").mkdir(parents=True, exist_ok=True) tech.write_files( "INPUT", netl.nm, netl.bbox.toList()) netl.write_files( tech, "INPUT", args)
system/t04_mirror/list.py
Yelp/aptly
666
12603306
<filename>system/t04_mirror/list.py<gh_stars>100-1000 from lib import BaseTest import re class ListMirror1Test(BaseTest): """ list mirrors: regular list """ fixtureCmds = [ "aptly mirror create --ignore-signatures mirror1 http://cdn-fastly.deb.debian.org/debian/ stretch", "aptly mirror create -with-sources --ignore-signatures mirror2 http://cdn-fastly.deb.debian.org/debian/ stretch contrib", "aptly -architectures=i386 mirror create --ignore-signatures mirror3 http://cdn-fastly.deb.debian.org/debian/ stretch non-free", "aptly mirror create -ignore-signatures mirror4 http://download.opensuse.org/repositories/Apache:/MirrorBrain/Debian_9.0/ ./", ] runCmd = "aptly mirror list" class ListMirror2Test(BaseTest): """ list mirrors: empty list """ runCmd = "aptly mirror list" class ListMirror3Test(BaseTest): """ list mirrors: raw list """ fixtureDB = True runCmd = "aptly -raw mirror list" class ListMirror4Test(BaseTest): """ list mirrors: raw empty list """ runCmd = "aptly -raw mirror list" class ListMirror5Test(BaseTest): """ list mirrors: json empty list """ runCmd = "aptly mirror list -json" class ListMirror6Test(BaseTest): """ list mirrors: regular list """ fixtureCmds = [ "aptly mirror create --ignore-signatures mirror1 http://cdn-fastly.deb.debian.org/debian/ stretch", "aptly mirror create -with-sources --ignore-signatures mirror2 http://cdn-fastly.deb.debian.org/debian/ stretch contrib", "aptly -architectures=i386 mirror create --ignore-signatures mirror3 http://cdn-fastly.deb.debian.org/debian/ stretch non-free", "aptly mirror create -ignore-signatures mirror4 http://download.opensuse.org/repositories/Apache:/MirrorBrain/Debian_9.0/ ./", ] runCmd = "aptly mirror list -json" def outputMatchPrepare(_, s): return re.sub(r'[ ]*"UUID": "[\w-]+",?\n', '', s)
maha/parsers/rules/distance/values.py
TRoboto/Maha
152
12603323
<reponame>TRoboto/Maha<filename>maha/parsers/rules/distance/values.py<gh_stars>100-1000 from maha.expressions import EXPRESSION_SPACE_OR_NONE from maha.parsers.templates import DistanceUnit, Value from maha.rexy import non_capturing_group from ..common import TWO_SUFFIX, ValueUnit KILO = "كيلو" CENTI = "سا?نتيم?" MILLI = "مي?لي" DECI = "ديسي" ONE_METER = Value(ValueUnit(1, DistanceUnit.METERS), "مترا?") ONE_KILOMETER = Value( ValueUnit(1, DistanceUnit.KILOMETERS), non_capturing_group(KILO + EXPRESSION_SPACE_OR_NONE + ONE_METER, "كم"), ) ONE_CENTIMETER = Value( ValueUnit(1, DistanceUnit.CENTIMETERS), non_capturing_group(CENTI + EXPRESSION_SPACE_OR_NONE + ONE_METER, "سم"), ) ONE_MILLIMETER = Value( ValueUnit(1, DistanceUnit.MILLIMETERS), non_capturing_group(MILLI + EXPRESSION_SPACE_OR_NONE + ONE_METER, "مم"), ) ONE_DECIMETER = Value( ValueUnit(1, DistanceUnit.DECIMETERS), non_capturing_group(DECI + EXPRESSION_SPACE_OR_NONE + ONE_METER, "دسم"), ) ONE_MILE = Value(ValueUnit(1, DistanceUnit.MILES), "ميلا?") ONE_YARD = Value(ValueUnit(1, DistanceUnit.YARDS), "يارد[اةه]?") ONE_FOOT = Value(ValueUnit(1, DistanceUnit.FEET), "قدما?") ONE_INCH = Value( ValueUnit(1, DistanceUnit.INCHES), non_capturing_group("[إا]نشا?", "بوص[ةه]") ) TWO_METERS = Value(ValueUnit(2, DistanceUnit.METERS), "متر" + TWO_SUFFIX) TWO_MILES = Value(ValueUnit(2, DistanceUnit.MILES), "ميل" + TWO_SUFFIX) TWO_FEET = Value(ValueUnit(2, DistanceUnit.FEET), "قدم" + TWO_SUFFIX) TWO_INCHES = Value( ValueUnit(2, DistanceUnit.INCHES), non_capturing_group("[إا]نش" + TWO_SUFFIX, "بوصت" + TWO_SUFFIX), ) SEVERAL_METERS = Value( ValueUnit(1, DistanceUnit.METERS), non_capturing_group("مترات", "[أا]متار") ) SEVERAL_KILOMETERS = Value( ValueUnit(1, DistanceUnit.KILOMETERS), non_capturing_group(KILO + EXPRESSION_SPACE_OR_NONE + SEVERAL_METERS), ) SEVERAL_CENTIMETERS = Value( ValueUnit(1, DistanceUnit.CENTIMETERS), non_capturing_group(CENTI + EXPRESSION_SPACE_OR_NONE + SEVERAL_METERS), ) SEVERAL_MILLIMETERS = Value( ValueUnit(1, DistanceUnit.MILLIMETERS), non_capturing_group(MILLI + EXPRESSION_SPACE_OR_NONE + SEVERAL_METERS), ) SEVERAL_DECIMETERS = Value( ValueUnit(1, DistanceUnit.DECIMETERS), non_capturing_group(DECI + EXPRESSION_SPACE_OR_NONE + SEVERAL_METERS), ) SEVERAL_MILES = Value( ValueUnit(1, DistanceUnit.MILES), non_capturing_group("[اأ]ميال", "ميول") ) SEVERAL_YARDS = Value(ValueUnit(1, DistanceUnit.YARDS), "ياردات") SEVERAL_FEET = Value(ValueUnit(1, DistanceUnit.FEET), "[أا]قدام") SEVERAL_INCHES = Value( ValueUnit(1, DistanceUnit.INCHES), non_capturing_group("[إا]نشات", "بوصات") )
terrascript/data/camptocamp/jwt.py
mjuenema/python-terrascript
507
12603374
# terrascript/data/camptocamp/jwt.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:19:50 UTC) __all__ = []
examples/bayesian-optimization/main-visualize.py
yuki-koyama/mathtoolbox
195
12603399
<gh_stars>100-1000 # # Prerequisites: # pip3 install matplotlib pandas seaborn # # Usage: # python3 main-visualize.py </path/to/rand_result.csv> </path/to/bo_result.csv> </path/to/output.pdf> # from typing import Dict, Tuple import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import sys def process_args() -> Tuple[str, str, str]: assert len(sys.argv) >= 4 return sys.argv[1], sys.argv[2], sys.argv[3] def read_csv_as_data_frame(path: str) -> pd.DataFrame: return pd.read_csv(path, header=None) def calculate_stats(data_frame: pd.DataFrame) -> pd.DataFrame: num_iters = data_frame.shape[0] mean_array = [] lower_array = [] upper_array = [] for iter in range(num_iters): mean = data_frame.loc[iter].mean() stdev = data_frame.loc[iter].std() mean_array.append(mean) lower_array.append(mean - stdev) upper_array.append(mean + stdev) return pd.DataFrame({ "mean": mean_array, "lower": lower_array, "upper": upper_array, }) def visualize_stats(path: str, data: Dict[str, pd.DataFrame]) -> None: FIG_SIZE = (4, 4) CONFIDENT_REGION_ALPHA = 0.2 X_TICKS_SKIP = 2 DPI = 300 num_iters = next(iter(data.values())).shape[0] sns.set() sns.set_context() plt.rcParams['font.sans-serif'] = ["Linux Biolinum"] fig = plt.figure(figsize=FIG_SIZE, dpi=DPI) ax = fig.add_subplot(1, 1, 1) for name, data_frame in data.items(): ax.fill_between(range(1, num_iters + 1), data_frame["lower"], data_frame["upper"], alpha=CONFIDENT_REGION_ALPHA, label=name) for name, data_frame in data.items(): ax.plot(range(1, num_iters + 1), data_frame["mean"], label=name) ax.set_xlim([1, num_iters]) ax.set_xticks(range(1, num_iters + 1, X_TICKS_SKIP)) ax.set_xlabel("#iterations") ax.set_ylabel("Function value") ax.legend(data.keys()) fig.tight_layout() plt.savefig(path) if __name__ == "__main__": rand_csv_path, bo_csv_path, out_path = process_args() rand_data_frame = read_csv_as_data_frame(rand_csv_path) bo_data_frame = read_csv_as_data_frame(bo_csv_path) rand_stats = calculate_stats(rand_data_frame) bo_stats = calculate_stats(bo_data_frame) visualize_stats(out_path, { "Random Sampling": rand_stats, "Bayesian Optimization": bo_stats, })
utils.py
pjbgf/python-paddingoracle
286
12603401
# -*- coding: utf-8 -*- from base64 import urlsafe_b64decode, urlsafe_b64encode def dotnet_b64decode(s): '''Decode .NET Web-Base64 encoded data.''' s, pad_bytes = s[:-1], int(s[-1]) s += ('=' * pad_bytes) return urlsafe_b64decode(s) def dotnet_b64encode(s): '''.NET Web-Base64 encode data.''' s = urlsafe_b64encode(s) pad_bytes = s.count('=') return s[:-pad_bytes or len(s)] + str(pad_bytes) def is_vulnerable(encrypted): ''' Checks encrypted token from ScriptResource.axd or WebResource.axd to determine if application is vulnerable to MS10-070. :returns: True if vulnerable, else False ''' if len(dotnet_b64decode(encrypted)) % 8 == 0: return True return False
openmc/data/resonance_covariance.py
janmalec/openmc
262
12603410
from collections.abc import MutableSequence import warnings import io import copy import numpy as np import pandas as pd from . import endf import openmc.checkvalue as cv from .resonance import Resonances def _add_file2_contributions(file32params, file2params): """Function for aiding in adding resonance parameters from File 2 that are not always present in File 32. Uses already imported resonance data. Paramaters ---------- file32params : pandas.Dataframe Incomplete set of resonance parameters contained in File 32. file2params : pandas.Dataframe Resonance parameters from File 2. Ordered by energy. Returns ------- parameters : pandas.Dataframe Complete set of parameters ordered by L-values and then energy """ # Use l-values and competitiveWidth from File 2 data # Re-sort File 2 by energy to match File 32 file2params = file2params.sort_values(by=['energy']) file2params.reset_index(drop=True, inplace=True) # Sort File 32 parameters by energy as well (maintaining index) file32params.sort_values(by=['energy'], inplace=True) # Add in values (.values converts to array first to ignore index) file32params['L'] = file2params['L'].values if 'competitiveWidth' in file2params.columns: file32params['competitiveWidth'] = file2params['competitiveWidth'].values # Resort to File 32 order (by L then by E) for use with covariance file32params.sort_index(inplace=True) return file32params class ResonanceCovariances(Resonances): """Resolved resonance covariance data Parameters ---------- ranges : list of openmc.data.ResonanceCovarianceRange Distinct energy ranges for resonance data Attributes ---------- ranges : list of openmc.data.ResonanceCovarianceRange Distinct energy ranges for resonance data """ @property def ranges(self): return self._ranges @ranges.setter def ranges(self, ranges): cv.check_type('resonance ranges', ranges, MutableSequence) self._ranges = cv.CheckedList(ResonanceCovarianceRange, 'resonance range', ranges) @classmethod def from_endf(cls, ev, resonances): """Generate resonance covariance data from an ENDF evaluation. Parameters ---------- ev : openmc.data.endf.Evaluation ENDF evaluation resonances : openmc.data.Resonance object openmc.data.Resonanance object generated from the same evaluation used to import values not contained in File 32 Returns ------- openmc.data.ResonanceCovariances Resonance covariance data """ file_obj = io.StringIO(ev.section[32, 151]) # Determine whether discrete or continuous representation items = endf.get_head_record(file_obj) n_isotope = items[4] # Number of isotopes ranges = [] for iso in range(n_isotope): items = endf.get_cont_record(file_obj) abundance = items[1] fission_widths = (items[3] == 1) # Flag for fission widths n_ranges = items[4] # Number of resonance energy ranges for j in range(n_ranges): items = endf.get_cont_record(file_obj) # Unresolved flags - 0: only scattering radius given # 1: resolved parameters given # 2: unresolved parameters given unresolved_flag = items[2] formalism = items[3] # resonance formalism # Throw error for unsupported formalisms if formalism in [0, 7]: error = 'LRF='+str(formalism)+' covariance not supported '\ 'for this formalism' raise NotImplementedError(error) if unresolved_flag in (0, 1): # Resolved resonance region resonance = resonances.ranges[j] erange = _FORMALISMS[formalism].from_endf(ev, file_obj, items, resonance) ranges.append(erange) elif unresolved_flag == 2: warn = 'Unresolved resonance not supported. Covariance '\ 'values for the unresolved region not imported.' warnings.warn(warn) return cls(ranges) class ResonanceCovarianceRange: """Resonace covariance range. Base class for different formalisms. Parameters ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV Attributes ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV parameters : pandas.DataFrame Resonance parameters covariance : numpy.array The covariance matrix contained within the ENDF evaluation lcomp : int Flag indicating format of the covariance matrix within the ENDF file file2res : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. mpar : int Number of parameters in covariance matrix for each individual resonance formalism : str String descriptor of formalism """ def __init__(self, energy_min, energy_max): self.energy_min = energy_min self.energy_max = energy_max def subset(self, parameter_str, bounds): """Produce a subset of resonance parameters and the corresponding covariance matrix to an IncidentNeutron object. Parameters ---------- parameter_str : str parameter to be discriminated (i.e. 'energy', 'captureWidth', 'fissionWidthA'...) bounds : np.array [low numerical bound, high numerical bound] Returns ------- res_cov_range : openmc.data.ResonanceCovarianceRange ResonanceCovarianceRange object that contains a subset of the covariance matrix (upper triangular) as well as a subset parameters within self.file2params """ # Copy range and prevent change of original res_cov_range = copy.deepcopy(self) parameters = self.file2res.parameters cov = res_cov_range.covariance mpar = res_cov_range.mpar # Create mask mask1 = parameters[parameter_str] >= bounds[0] mask2 = parameters[parameter_str] <= bounds[1] mask = mask1 & mask2 res_cov_range.parameters = parameters[mask] indices = res_cov_range.parameters.index.values # Build subset of covariance sub_cov_dim = len(indices)*mpar cov_subset_vals = [] for index1 in indices: for i in range(mpar): for index2 in indices: for j in range(mpar): if index2*mpar+j >= index1*mpar+i: cov_subset_vals.append(cov[index1*mpar+i, index2*mpar+j]) cov_subset = np.zeros([sub_cov_dim, sub_cov_dim]) tri_indices = np.triu_indices(sub_cov_dim) cov_subset[tri_indices] = cov_subset_vals res_cov_range.file2res.parameters = parameters[mask] res_cov_range.covariance = cov_subset return res_cov_range def sample(self, n_samples): """Sample resonance parameters based on the covariances provided within an ENDF evaluation. Parameters ---------- n_samples : int The number of samples to produce Returns ------- samples : list of openmc.data.ResonanceCovarianceRange objects List of samples size `n_samples` """ warn_str = 'Sampling routine does not guarantee positive values for '\ 'parameters. This can lead to undefined behavior in the '\ 'reconstruction routine.' warnings.warn(warn_str) parameters = self.parameters cov = self.covariance # Symmetrizing covariance matrix cov = cov + cov.T - np.diag(cov.diagonal()) formalism = self.formalism mpar = self.mpar samples = [] # Handling MLBW/SLBW sampling if formalism == 'mlbw' or formalism == 'slbw': params = ['energy', 'neutronWidth', 'captureWidth', 'fissionWidth', 'competitiveWidth'] param_list = params[:mpar] mean_array = parameters[param_list].values mean = mean_array.flatten() par_samples = np.random.multivariate_normal(mean, cov, size=n_samples) spin = parameters['J'].values l_value = parameters['L'].values for sample in par_samples: energy = sample[0::mpar] gn = sample[1::mpar] gg = sample[2::mpar] gf = sample[3::mpar] if mpar > 3 else parameters['fissionWidth'].values gx = sample[4::mpar] if mpar > 4 else parameters['competitiveWidth'].values gt = gn + gg + gf + gx records = [] for j, E in enumerate(energy): records.append([energy[j], l_value[j], spin[j], gt[j], gn[j], gg[j], gf[j], gx[j]]) columns = ['energy', 'L', 'J', 'totalWidth', 'neutronWidth', 'captureWidth', 'fissionWidth', 'competitiveWidth'] sample_params = pd.DataFrame.from_records(records, columns=columns) # Copy ResonanceRange object res_range = copy.copy(self.file2res) res_range.parameters = sample_params samples.append(res_range) # Handling RM sampling elif formalism == 'rm': params = ['energy', 'neutronWidth', 'captureWidth', 'fissionWidthA', 'fissionWidthB'] param_list = params[:mpar] mean_array = parameters[param_list].values mean = mean_array.flatten() par_samples = np.random.multivariate_normal(mean, cov, size=n_samples) spin = parameters['J'].values l_value = parameters['L'].values for sample in par_samples: energy = sample[0::mpar] gn = sample[1::mpar] gg = sample[2::mpar] gfa = sample[3::mpar] if mpar > 3 else parameters['fissionWidthA'].values gfb = sample[4::mpar] if mpar > 3 else parameters['fissionWidthB'].values records = [] for j, E in enumerate(energy): records.append([energy[j], l_value[j], spin[j], gn[j], gg[j], gfa[j], gfb[j]]) columns = ['energy', 'L', 'J', 'neutronWidth', 'captureWidth', 'fissionWidthA', 'fissionWidthB'] sample_params = pd.DataFrame.from_records(records, columns=columns) # Copy ResonanceRange object res_range = copy.copy(self.file2res) res_range.parameters = sample_params samples.append(res_range) return samples class MultiLevelBreitWignerCovariance(ResonanceCovarianceRange): """Multi-level Breit-Wigner resolved resonance formalism covariance data. Parameters ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV Attributes ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV parameters : pandas.DataFrame Resonance parameters covariance : numpy.array The covariance matrix contained within the ENDF evaluation mpar : int Number of parameters in covariance matrix for each individual resonance lcomp : int Flag indicating format of the covariance matrix within the ENDF file file2res : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. formalism : str String descriptor of formalism """ def __init__(self, energy_min, energy_max, parameters, covariance, mpar, lcomp, file2res): super().__init__(energy_min, energy_max) self.parameters = parameters self.covariance = covariance self.mpar = mpar self.lcomp = lcomp self.file2res = copy.copy(file2res) self.formalism = 'mlbw' @classmethod def from_endf(cls, ev, file_obj, items, resonance): """Create MLBW covariance data from an ENDF evaluation. Parameters ---------- ev : openmc.data.endf.Evaluation ENDF evaluation file_obj : file-like object ENDF file positioned at the second record of a resonance range subsection in MF=32, MT=151 items : list Items from the CONT record at the start of the resonance range subsection resonance : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. Returns ------- openmc.data.MultiLevelBreitWignerCovariance Multi-level Breit-Wigner resonance covariance parameters """ # Read energy-dependent scattering radius if present energy_min, energy_max = items[0:2] nro, naps = items[4:6] if nro != 0: params, ape = endf.get_tab1_record(file_obj) # Other scatter radius parameters items = endf.get_cont_record(file_obj) target_spin = items[0] lcomp = items[3] # Flag for compatibility 0, 1, 2 - 2 is compact form nls = items[4] # number of l-values # Build covariance matrix for General Resolved Resonance Formats if lcomp == 1: items = endf.get_cont_record(file_obj) # Number of short range type resonance covariances num_short_range = items[4] # Number of long range type resonance covariances num_long_range = items[5] # Read resonance widths, J values, etc records = [] for i in range(num_short_range): items, values = endf.get_list_record(file_obj) mpar = items[2] num_res = items[5] num_par_vals = num_res*6 res_values = values[:num_par_vals] cov_values = values[num_par_vals:] energy = res_values[0::6] spin = res_values[1::6] gt = res_values[2::6] gn = res_values[3::6] gg = res_values[4::6] gf = res_values[5::6] for i, E in enumerate(energy): records.append([energy[i], spin[i], gt[i], gn[i], gg[i], gf[i]]) # Build the upper-triangular covariance matrix cov_dim = mpar*num_res cov = np.zeros([cov_dim, cov_dim]) indices = np.triu_indices(cov_dim) cov[indices] = cov_values # Compact format - Resonances and individual uncertainties followed by # compact correlations elif lcomp == 2: items, values = endf.get_list_record(file_obj) mean = items num_res = items[5] energy = values[0::12] spin = values[1::12] gt = values[2::12] gn = values[3::12] gg = values[4::12] gf = values[5::12] par_unc = [] for i in range(num_res): res_unc = values[i*12+6 : i*12+12] # Delete 0 values (not provided, no fission width) # DAJ/DGT always zero, DGF sometimes nonzero [1, 2, 5] res_unc_nonzero = [] for j in range(6): if j in [1, 2, 5] and res_unc[j] != 0.0: res_unc_nonzero.append(res_unc[j]) elif j in [0, 3, 4]: res_unc_nonzero.append(res_unc[j]) par_unc.extend(res_unc_nonzero) records = [] for i, E in enumerate(energy): records.append([energy[i], spin[i], gt[i], gn[i], gg[i], gf[i]]) corr = endf.get_intg_record(file_obj) cov = np.diag(par_unc).dot(corr).dot(np.diag(par_unc)) # Compatible resolved resonance format elif lcomp == 0: cov = np.zeros([4, 4]) records = [] cov_index = 0 for i in range(nls): items, values = endf.get_list_record(file_obj) num_res = items[5] for j in range(num_res): one_res = values[18*j:18*(j+1)] res_values = one_res[:6] cov_values = one_res[6:] records.append(list(res_values)) # Populate the coviariance matrix for this resonance # There are no covariances between resonances in lcomp=0 cov[cov_index, cov_index] = cov_values[0] cov[cov_index+1, cov_index+1 : cov_index+2] = cov_values[1:2] cov[cov_index+1, cov_index+3] = cov_values[4] cov[cov_index+2, cov_index+2] = cov_values[3] cov[cov_index+2, cov_index+3] = cov_values[5] cov[cov_index+3, cov_index+3] = cov_values[6] cov_index += 4 if j < num_res-1: # Pad matrix for additional values cov = np.pad(cov, ((0, 4), (0, 4)), 'constant', constant_values=0) # Create pandas DataFrame with resonance data, currently # redundant with data.IncidentNeutron.resonance columns = ['energy', 'J', 'totalWidth', 'neutronWidth', 'captureWidth', 'fissionWidth'] parameters = pd.DataFrame.from_records(records, columns=columns) # Determine mpar (number of parameters for each resonance in # covariance matrix) nparams, params = parameters.shape covsize = cov.shape[0] mpar = int(covsize/nparams) # Add parameters from File 2 parameters = _add_file2_contributions(parameters, resonance.parameters) # Create instance of class mlbw = cls(energy_min, energy_max, parameters, cov, mpar, lcomp, resonance) return mlbw class SingleLevelBreitWignerCovariance(MultiLevelBreitWignerCovariance): """Single-level Breit-Wigner resolved resonance formalism covariance data. Single-level Breit-Wigner resolved resonance data is is identified by LRF=1 in the ENDF-6 format. Parameters ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV Attributes ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV parameters : pandas.DataFrame Resonance parameters covariance : numpy.array The covariance matrix contained within the ENDF evaluation mpar : int Number of parameters in covariance matrix for each individual resonance formalism : str String descriptor of formalism lcomp : int Flag indicating format of the covariance matrix within the ENDF file file2res : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. """ def __init__(self, energy_min, energy_max, parameters, covariance, mpar, lcomp, file2res): super().__init__(energy_min, energy_max, parameters, covariance, mpar, lcomp, file2res) self.formalism = 'slbw' class ReichMooreCovariance(ResonanceCovarianceRange): """Reich-Moore resolved resonance formalism covariance data. Reich-Moore resolved resonance data is identified by LRF=3 in the ENDF-6 format. Parameters ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV Attributes ---------- energy_min : float Minimum energy of the resolved resonance range in eV energy_max : float Maximum energy of the resolved resonance range in eV parameters : pandas.DataFrame Resonance parameters covariance : numpy.array The covariance matrix contained within the ENDF evaluation lcomp : int Flag indicating format of the covariance matrix within the ENDF file mpar : int Number of parameters in covariance matrix for each individual resonance file2res : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. formalism : str String descriptor of formalism """ def __init__(self, energy_min, energy_max, parameters, covariance, mpar, lcomp, file2res): super().__init__(energy_min, energy_max) self.parameters = parameters self.covariance = covariance self.mpar = mpar self.lcomp = lcomp self.file2res = copy.copy(file2res) self.formalism = 'rm' @classmethod def from_endf(cls, ev, file_obj, items, resonance): """Create Reich-Moore resonance covariance data from an ENDF evaluation. Includes the resonance parameters contained separately in File 32. Parameters ---------- ev : openmc.data.endf.Evaluation ENDF evaluation file_obj : file-like object ENDF file positioned at the second record of a resonance range subsection in MF=2, MT=151 items : list Items from the CONT record at the start of the resonance range subsection resonance : openmc.data.Resonance object openmc.data.Resonanance object generated from the same evaluation used to import values not contained in File 32 Returns ------- openmc.data.ReichMooreCovariance Reich-Moore resonance covariance parameters """ # Read energy-dependent scattering radius if present energy_min, energy_max = items[0:2] nro, naps = items[4:6] if nro != 0: params, ape = endf.get_tab1_record(file_obj) # Other scatter radius parameters items = endf.get_cont_record(file_obj) target_spin = items[0] lcomp = items[3] # Flag for compatibility 0, 1, 2 - 2 is compact form nls = items[4] # Number of l-values # Build covariance matrix for General Resolved Resonance Formats if lcomp == 1: items = endf.get_cont_record(file_obj) # Number of short range type resonance covariances num_short_range = items[4] # Number of long range type resonance covariances num_long_range = items[5] # Read resonance widths, J values, etc channel_radius = {} scattering_radius = {} records = [] for i in range(num_short_range): items, values = endf.get_list_record(file_obj) mpar = items[2] num_res = items[5] num_par_vals = num_res*6 res_values = values[:num_par_vals] cov_values = values[num_par_vals:] energy = res_values[0::6] spin = res_values[1::6] gn = res_values[2::6] gg = res_values[3::6] gfa = res_values[4::6] gfb = res_values[5::6] for i, E in enumerate(energy): records.append([energy[i], spin[i], gn[i], gg[i], gfa[i], gfb[i]]) # Build the upper-triangular covariance matrix cov_dim = mpar*num_res cov = np.zeros([cov_dim, cov_dim]) indices = np.triu_indices(cov_dim) cov[indices] = cov_values # Compact format - Resonances and individual uncertainties followed by # compact correlations elif lcomp == 2: items, values = endf.get_list_record(file_obj) num_res = items[5] energy = values[0::12] spin = values[1::12] gn = values[2::12] gg = values[3::12] gfa = values[4::12] gfb = values[5::12] par_unc = [] for i in range(num_res): res_unc = values[i*12+6 : i*12+12] # Delete 0 values (not provided in evaluation) res_unc = [x for x in res_unc if x != 0.0] par_unc.extend(res_unc) records = [] for i, E in enumerate(energy): records.append([energy[i], spin[i], gn[i], gg[i], gfa[i], gfb[i]]) corr = endf.get_intg_record(file_obj) cov = np.diag(par_unc).dot(corr).dot(np.diag(par_unc)) # Create pandas DataFrame with resonacne data columns = ['energy', 'J', 'neutronWidth', 'captureWidth', 'fissionWidthA', 'fissionWidthB'] parameters = pd.DataFrame.from_records(records, columns=columns) # Determine mpar (number of parameters for each resonance in # covariance matrix) nparams, params = parameters.shape covsize = cov.shape[0] mpar = int(covsize/nparams) # Add parameters from File 2 parameters = _add_file2_contributions(parameters, resonance.parameters) # Create instance of ReichMooreCovariance rmc = cls(energy_min, energy_max, parameters, cov, mpar, lcomp, resonance) return rmc _FORMALISMS = { 0: ResonanceCovarianceRange, 1: SingleLevelBreitWignerCovariance, 2: MultiLevelBreitWignerCovariance, 3: ReichMooreCovariance # 7: RMatrixLimitedCovariance }
neural_parts/models/siren.py
naynasa/neural_parts_fork
137
12603437
import torch from torch import nn import numpy as np class SineLayer(nn.Module): def __init__(self, in_dims, out_dims, bias=True, is_first=False, omega_0=30): super().__init__() self.omega_0 = omega_0 self.in_dims = in_dims # If is_first=True, omega_0 is a frequency factor which simply multiplies # the activations before the nonlinearity. Different signals may require # different omega_0 in the first layer - this is a hyperparameter. # If is_first=False, then the weights will be divided by omega_0 so as to # keep the magnitude of activations constant, but boost gradients to the # weight matrix (see supplement Sec. 1.5) self.is_first = is_first self.linear = nn.Linear(in_dims, out_dims, bias=bias) self.init_weights() def init_weights(self): with torch.no_grad(): if self.is_first: self.linear.weight.uniform_(-1 / self.in_dims, 1 / self.in_dims) else: self.linear.weight.uniform_(-np.sqrt(6 / self.in_dims) / self.omega_0, np.sqrt(6 / self.in_dims) / self.omega_0) def forward(self, x): return torch.sin(self.omega_0 * self.linear(x)) class Siren(nn.Module): def __init__(self, in_dims, hidden_dims, hidden_layers, out_dims, outermost_linear=False, first_omega_0=30, hidden_omega_0=30.): super().__init__() self.net = [] self.net.append(SineLayer(in_dims, hidden_dims, is_first=True, omega_0=first_omega_0)) for i in range(hidden_layers): self.net.append(SineLayer(hidden_dims, hidden_dims, is_first=False, omega_0=hidden_omega_0)) if outermost_linear: final_linear = nn.Linear(hidden_dims, out_dims) with torch.no_grad(): final_linear.weight.uniform_(-np.sqrt(6 / hidden_dims) / hidden_omega_0, np.sqrt(6 / hidden_dims) / hidden_omega_0) self.net.append(final_linear) else: self.net.append(SineLayer(hidden_dims, out_dims, is_first=False, omega_0=hidden_omega_0)) self.net = nn.Sequential(*self.net) def forward(self, x): return self.net(x)
functions/KNearestNeighborsClassifier.py
sdash77/raster-functions
173
12603446
<gh_stars>100-1000 import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsClassifier ''' This raster function performs k-nearest neighbors classification using scikit-learn and generates a map of the classification of each pixel. http://scikit-learn.org/stable/documentation.html http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html#numpy.loadtxt ''' class KNNClassifier(): def __init__(self): self.name = 'K-Nearest Neighbor Classifier' self.description = 'This raster function performs k-nearest neighbors classification' \ ' using scikit-learn and generates a map of the classification of' \ ' each pixel.' # The number of neighbors to use self.n_neighbors = None # The CSV file containing the training data # The inputs is a string self.training_data_from_file = None def getParameterInfo(self): return [ { 'name': 'rasters', 'dataType': 'rasters', 'value': None, 'required': True, 'displayName': 'Input Rasters', 'description': 'This should include several individual rasters. The rasters must be in the same order as the columns in the CSV file' }, { 'name': 'n_neighbors', 'dataType': 'numeric', 'value': 5, 'required': True, 'displayName': 'Number of neighbors (integer)', 'description': 'Number of neighbors to use by default for kneighbors queries (integer).' }, { 'name': 'training_data_from_file', 'dataType': 'string', 'value': 'C:\\PROJECTS\\ML\\training_data.csv', 'required': True, 'displayName': 'Training data CSV filepath', 'description': 'Full filepath directory to training data CSV. ' 'Internally this will load from disk and be converted to a pandas dataframe.' } ] def getConfiguration(self, **scalars): return { 'inheritProperties': 1 | 2 | 4 | 8, # inherit all from the raster 'invalidateProperties': 2 | 4 | 8 # reset stats, histogram, key properties } def updateRasterInfo(self, **kwargs): self.n_neighbors = int(kwargs['n_neighbors']) self.datafile = str(kwargs['training_data_from_file']) # Number of output bands: # There should be one band for each neighbor calculated #out_band_count = self.n_neighbors # Output pixel information kwargs['output_info']['pixelType'] = 'f4' kwargs['output_info']['statistics'] = () kwargs['output_info']['histogram'] = () kwargs['output_info']['bandCount'] = 1 return kwargs def updatePixels(self, tlc, shape, props, **pixelBlocks): # Read the input CSV file into a dataframe self.df = pd.read_csv(self.datafile)#(datafile) # Drop the fields that are not involved in predicting or mapping the values. # These fields will generally be things like "OBJECTID". fields_to_drop = ['OBJECTID', 'LOCATION_X', 'LOCATION_Y'] # Fields that aren't used in the analysis self.df.drop(fields_to_drop, axis=1, inplace=True) # Separate dataframe into training environmental variables and observed values. # The environmental values, x_train, are used to train the model # We are trying to map\predict the y_train value y_val = 'VarToPredict' # The value that you probably want to predict x_train = self.df.loc[:, self.df.columns != y_val] y_train = self.df[y_val] # The model won't work if there is missing or null data. # Fill null values with 0 (or some other value) x_train.fillna(0, inplace=True) y_train.fillna(0, inplace=True) # Read pixel blocks pix_blocks = pixelBlocks['rasters_pixels'] # Convert pixel blocks to numpy array pix_array = np.asarray(pix_blocks) # Remove any extra indices pix_array = np.squeeze(pix_array) # Reshape the pixels into a 2D array that is number of pixels x number of predictor variables pixels_reshaped = pix_array.reshape(pix_array.shape[0], -1).transpose() # Classify each point using the k-neighbors classifier knn = KNeighborsClassifier(n_neighbors=self.n_neighbors) pred = knn.fit(x_train, y_train).predict(pixels_reshaped) # Reshape into a 2D array res = pred.reshape((pix_array.shape[1], pix_array.shape[2])) # Write output pixels pixelBlocks['output_pixels'] = res.astype( props['pixelType'], copy=True ) return pixelBlocks def updateKeyMetadata(self, names, bandIndex, **keyMetadata): return keyMetadata
sympy/physics/control/__init__.py
bigfooted/sympy
603
12603471
<gh_stars>100-1000 from .lti import TransferFunction, Series, Parallel, Feedback __all__ = ['TransferFunction', 'Series', 'Parallel', 'Feedback']
utils_cv/classification/widget.py
muminkoykiran/computervision-recipes
7,899
12603478
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import os import bqplot import bqplot.pyplot as bqpyplot import pandas as pd from fastai.data_block import LabelList from ipywidgets import widgets, Layout, IntSlider import numpy as np from utils_cv.common.image import im_width, im_height from utils_cv.common.data import get_files_in_directory class AnnotationWidget(object): IM_WIDTH = 500 # pixels def __init__( self, labels: list, im_dir: str, anno_path: str, im_filenames: list = None, ): """Widget class to annotate images. Args: labels: List of abel names, e.g. ["bird", "car", "plane"]. im_dir: Directory containing the images to be annotated. anno_path: path where to write annotations to, and (if exists) load annotations from. im_fnames: List of image filenames. If set to None, then will auto-detect all images in the provided image directory. """ self.labels = labels self.im_dir = im_dir self.anno_path = anno_path self.im_filenames = im_filenames # Init self.vis_image_index = 0 self.label_to_id = {s: i for i, s in enumerate(self.labels)} if not im_filenames: self.im_filenames = [ os.path.basename(s) for s in get_files_in_directory( im_dir, suffixes=( ".jpg", ".jpeg", ".tif", ".tiff", ".gif", ".giff", ".png", ".bmp", ), ) ] assert ( len(self.im_filenames) > 0 ), f"Not a single image specified or found in directory {im_dir}." # Initialize empty annotations and load previous annotations if file exist self.annos = pd.DataFrame() for im_filename in self.im_filenames: if im_filename not in self.annos: self.annos[im_filename] = pd.Series( {"exclude": False, "labels": []} ) if os.path.exists(self.anno_path): print(f"Loading existing annotation from {self.anno_path}.") with open(self.anno_path, "r") as f: for line in f.readlines()[1:]: vec = line.strip().split("\t") im_filename = vec[0] self.annos[im_filename].exclude = vec[1] == "True" if len(vec) > 2: self.annos[im_filename].labels = vec[2].split(",") # Create UI and "start" widget self._create_ui() def show(self): return self.ui def update_ui(self): im_filename = self.im_filenames[self.vis_image_index] im_path = os.path.join(self.im_dir, im_filename) # Update the image and info self.w_img.value = open(im_path, "rb").read() self.w_filename.value = im_filename self.w_path.value = self.im_dir # Fix the width of the image widget and adjust the height self.w_img.layout.height = ( f"{int(self.IM_WIDTH * (im_height(im_path)/im_width(im_path)))}px" ) # Update annotations self.exclude_widget.value = self.annos[im_filename].exclude for w in self.label_widgets: w.value = False for label in self.annos[im_filename].labels: label_id = self.label_to_id[label] self.label_widgets[label_id].value = True def _create_ui(self): """Create and initialize widgets""" # ------------ # Callbacks + logic # ------------ def skip_image(): """Return true if image should be skipped, and false otherwise.""" # See if UI-checkbox to skip images is checked if not self.w_skip_annotated.value: return False # Stop skipping if image index is out of bounds if ( self.vis_image_index <= 0 or self.vis_image_index >= len(self.im_filenames) - 1 ): return False # Skip if image has annotation im_filename = self.im_filenames[self.vis_image_index] labels = self.annos[im_filename].labels exclude = self.annos[im_filename].exclude if exclude or len(labels) > 0: return True return False def button_pressed(obj): """Next / previous image button callback.""" # Find next/previous image. Variable step is -1 or +1 depending on which button was pressed. step = int(obj.value) self.vis_image_index += step while skip_image(): self.vis_image_index += step self.vis_image_index = min( max(self.vis_image_index, 0), len(self.im_filenames) - 1 ) self.w_image_slider.value = self.vis_image_index self.update_ui() def slider_changed(obj): """Image slider callback. Need to wrap in try statement to avoid errors when slider value is not a number. """ try: self.vis_image_index = int(obj["new"]["value"]) self.update_ui() except Exception: pass def anno_changed(obj): """Label checkbox callback. Update annotation file and write to disk """ # Test if call is coming from the user having clicked on a checkbox to change its state, # rather than a change of state when e.g. the checkbox value was updated programatically. This is a bit # of hack, but necessary since widgets.Checkbox() does not support a on_click() callback or similar. if ( "new" in obj and isinstance(obj["new"], dict) and len(obj["new"]) == 0 ): # If single-label annotation then unset all checkboxes except the one which the user just clicked if not self.w_multi_class.value: for w in self.label_widgets: if w.description != obj["owner"].description: w.value = False # Update annotation object im_filename = self.im_filenames[self.vis_image_index] self.annos[im_filename].labels = [ w.description for w in self.label_widgets if w.value ] self.annos[im_filename].exclude = self.exclude_widget.value # Write to disk as tab-separated file. with open(self.anno_path, "w") as f: f.write( "{}\t{}\t{}\n".format( "IM_FILENAME", "EXCLUDE", "LABELS" ) ) for k, v in self.annos.items(): if v.labels != [] or v.exclude: f.write( "{}\t{}\t{}\n".format( k, v.exclude, ",".join(v.labels) ) ) # ------------ # UI - image + controls (left side) # ------------ w_next_image_button = widgets.Button(description="Next") w_next_image_button.value = "1" w_next_image_button.layout = Layout(width="80px") w_next_image_button.on_click(button_pressed) w_previous_image_button = widgets.Button(description="Previous") w_previous_image_button.value = "-1" w_previous_image_button.layout = Layout(width="80px") w_previous_image_button.on_click(button_pressed) self.w_filename = widgets.Text( value="", description="Name:", layout=Layout(width="200px") ) self.w_path = widgets.Text( value="", description="Path:", layout=Layout(width="200px") ) self.w_image_slider = IntSlider( min=0, max=len(self.im_filenames) - 1, step=1, value=self.vis_image_index, continuous_update=False, ) self.w_image_slider.observe(slider_changed) self.w_img = widgets.Image() self.w_img.layout.width = f"{self.IM_WIDTH}px" w_header = widgets.HBox( children=[ w_previous_image_button, w_next_image_button, self.w_image_slider, self.w_filename, self.w_path, ] ) # ------------ # UI - info (right side) # ------------ # Options widgets self.w_skip_annotated = widgets.Checkbox( value=False, description="Skip annotated images." ) self.w_multi_class = widgets.Checkbox( value=False, description="Allow multi-class labeling" ) # Label checkboxes widgets self.exclude_widget = widgets.Checkbox( value=False, description="EXCLUDE IMAGE" ) self.exclude_widget.observe(anno_changed) self.label_widgets = [ widgets.Checkbox(value=False, description=label) for label in self.labels ] for label_widget in self.label_widgets: label_widget.observe(anno_changed) # Combine UIs into tab widget w_info = widgets.VBox( children=[ widgets.HTML(value="Options:"), self.w_skip_annotated, self.w_multi_class, widgets.HTML(value="Annotations:"), self.exclude_widget, *self.label_widgets, ] ) w_info.layout.padding = "20px" self.ui = widgets.Tab( children=[ widgets.VBox( children=[ w_header, widgets.HBox(children=[self.w_img, w_info]), ] ) ] ) self.ui.set_title(0, "Annotator") # Fill UI with content self.update_ui() class ResultsWidget(object): IM_WIDTH = 500 # pixels def __init__(self, dataset: LabelList, y_score: np.ndarray, y_label: iter): """Helper class to draw and update Image classification results widgets. Args: dataset (LabelList): Data used for prediction, containing ImageList x and CategoryList y. y_score (np.ndarray): Predicted scores. y_label (iterable): Predicted labels. Note, not a true label. """ assert len(y_score) == len(y_label) == len(dataset) self.dataset = dataset self.pred_scores = y_score self.pred_labels = y_label # Init self.vis_image_index = 0 self.labels = dataset.classes self.label_to_id = {s: i for i, s in enumerate(self.labels)} self._create_ui() @staticmethod def _list_sort(list1d, reverse=False, comparison_fn=lambda x: x): """Sorts list1f and returns (sorted list, list of indices)""" indices = list(range(len(list1d))) tmp = sorted(zip(list1d, indices), key=comparison_fn, reverse=reverse) return list(map(list, list(zip(*tmp)))) def show(self): return self.ui def update(self): scores = self.pred_scores[self.vis_image_index] im = self.dataset.x[self.vis_image_index] # fastai Image object _, sort_order = self._list_sort(scores, reverse=True) pred_labels_str = "" for i in sort_order: pred_labels_str += f"{self.labels[i]} ({scores[i]:3.2f})\n" self.w_pred_labels.value = str(pred_labels_str) self.w_image_header.value = f"Image index: {self.vis_image_index}" self.w_img.value = im._repr_png_() # Fix the width of the image widget and adjust the height self.w_img.layout.height = ( f"{int(self.IM_WIDTH * (im.size[0]/im.size[1]))}px" ) self.w_gt_label.value = str(self.dataset.y[self.vis_image_index]) self.w_filename.value = str( self.dataset.items[self.vis_image_index].name ) self.w_path.value = str( self.dataset.items[self.vis_image_index].parent ) bqpyplot.clear() bqpyplot.bar( self.labels, scores, align="center", alpha=1.0, color=np.abs(scores), scales={"color": bqplot.ColorScale(scheme="Blues", min=0)}, ) def _create_ui(self): """Create and initialize widgets""" # ------------ # Callbacks + logic # ------------ def image_passes_filters(image_index): """Return if image should be shown.""" actual_label = str(self.dataset.y[image_index]) bo_pred_correct = actual_label == self.pred_labels[image_index] if (bo_pred_correct and self.w_filter_correct.value) or ( not bo_pred_correct and self.w_filter_wrong.value ): return True return False def button_pressed(obj): """Next / previous image button callback.""" step = int(obj.value) self.vis_image_index += step self.vis_image_index = min( max(0, self.vis_image_index), int(len(self.pred_labels)) - 1 ) while not image_passes_filters(self.vis_image_index): self.vis_image_index += step if ( self.vis_image_index <= 0 or self.vis_image_index >= int(len(self.pred_labels)) - 1 ): break self.vis_image_index = min( max(0, self.vis_image_index), int(len(self.pred_labels)) - 1 ) self.w_image_slider.value = self.vis_image_index self.update() def slider_changed(obj): """Image slider callback. Need to wrap in try statement to avoid errors when slider value is not a number. """ try: self.vis_image_index = int(obj["new"]["value"]) self.update() except Exception: pass # ------------ # UI - image + controls (left side) # ------------ w_next_image_button = widgets.Button(description="Next") w_next_image_button.value = "1" w_next_image_button.layout = Layout(width="80px") w_next_image_button.on_click(button_pressed) w_previous_image_button = widgets.Button(description="Previous") w_previous_image_button.value = "-1" w_previous_image_button.layout = Layout(width="80px") w_previous_image_button.on_click(button_pressed) self.w_filename = widgets.Text( value="", description="Name:", layout=Layout(width="200px") ) self.w_path = widgets.Text( value="", description="Path:", layout=Layout(width="200px") ) self.w_image_slider = IntSlider( min=0, max=len(self.pred_labels) - 1, step=1, value=self.vis_image_index, continuous_update=False, ) self.w_image_slider.observe(slider_changed) self.w_image_header = widgets.Text("", layout=Layout(width="130px")) self.w_img = widgets.Image() self.w_img.layout.width = f"{self.IM_WIDTH}px" w_header = widgets.HBox( children=[ w_previous_image_button, w_next_image_button, self.w_image_slider, self.w_filename, self.w_path, ] ) # ------------ # UI - info (right side) # ------------ w_filter_header = widgets.HTML( value="Filters (use Image +1/-1 buttons for navigation):" ) self.w_filter_correct = widgets.Checkbox( value=True, description="Correct classifications" ) self.w_filter_wrong = widgets.Checkbox( value=True, description="Incorrect classifications" ) w_gt_header = widgets.HTML(value="Ground truth:") self.w_gt_label = widgets.Text(value="") self.w_gt_label.layout.width = "360px" w_pred_header = widgets.HTML(value="Predictions:") self.w_pred_labels = widgets.Textarea(value="") self.w_pred_labels.layout.height = "200px" self.w_pred_labels.layout.width = "360px" w_scores_header = widgets.HTML(value="Classification scores:") self.w_scores = bqpyplot.figure() self.w_scores.layout.height = "250px" self.w_scores.layout.width = "370px" self.w_scores.fig_margin = { "top": 5, "bottom": 80, "left": 30, "right": 5, } # Combine UIs into tab widget w_info = widgets.VBox( children=[ w_filter_header, self.w_filter_correct, self.w_filter_wrong, w_gt_header, self.w_gt_label, w_pred_header, self.w_pred_labels, w_scores_header, self.w_scores, ] ) w_info.layout.padding = "20px" self.ui = widgets.Tab( children=[ widgets.VBox( children=[ w_header, widgets.HBox(children=[self.w_img, w_info]), ] ) ] ) self.ui.set_title(0, "Results viewer") # Fill UI with content self.update()
fig/replaced_by_d3/tanh.py
Zander-Davidson/Neural-Network-Exercise
14,090
12603498
""" tanh ~~~~ Plots a graph of the tanh function.""" import numpy as np import matplotlib.pyplot as plt z = np.arange(-5, 5, .1) t = np.tanh(z) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(z, t) ax.set_ylim([-1.0, 1.0]) ax.set_xlim([-5,5]) ax.grid(True) ax.set_xlabel('z') ax.set_title('tanh function') plt.show()
mudpi/extensions/timer/trigger.py
icyspace/mudpi-core
163
12603517
""" Timer Trigger Interface Calls actions after a configurable elapsed time. """ import time from . import NAMESPACE from mudpi.utils import decode_event_data from mudpi.extensions import BaseInterface from mudpi.extensions.trigger import Trigger from mudpi.logger.Logger import Logger, LOG_LEVEL from mudpi.constants import FONT_RESET, FONT_MAGENTA class Interface(BaseInterface): def load(self, config): """ Load timer trigger component from configs """ trigger = TimerTrigger(self.mudpi, config) self.add_component(trigger) return True def validate(self, config): """ Validate the trigger config """ if not isinstance(config, list): config = [config] for conf in config: if not conf.get('key'): raise ConfigError('Missing `key` in Timer Trigger config.') return config def register_actions(self): """ Register any interface actions """ self.register_component_actions('start', action='start') self.register_component_actions('stop', action='stop') self.register_component_actions('pause', action='pause') self.register_component_actions('reset', action='reset') self.register_component_actions('restart', action='restart') class TimerTrigger(Trigger): """ Timer Trigger Calls actions after set elapsed time """ """ Properties """ @property def id(self): """ Return a unique id for the component """ return self.config['key'] @property def name(self): """ Return the display name of the component """ return self.config.get('name') or f"{self.id.replace('_', ' ').title()}" @property def max_duration(self): """ Return the max_duration of the timer """ return self.config.get('duration', 10) @property def active(self): """ Return if the timer is active or not """ return self._active @property def duration(self): if self.active: self.time_elapsed = (time.perf_counter() - self.time_start) + self._pause_offset return round(self.time_elapsed, 2) """ Methods """ def init(self): """ Init the timer component """ self._listening = False self._active = False self.time_elapsed = 0 self._last_event = None self._pause_offset = 0 self.reset_duration() if self.mudpi.is_prepared: if not self._listening: # TODO: Eventually get a handler returned to unsub just this listener self.mudpi.events.subscribe(f'{NAMESPACE}/{self.id}', self.handle_event) self._listening = True def update(self): """ Get timer data """ if self.duration >= self.max_duration: if self.active: self.stop() self.trigger() return True def reset_duration(self): """ Reset the elapsed duration """ self.time_start = time.perf_counter() return self def handle_event(self, event): """ Process event data for the timer """ _event_data = decode_event_data(event) if _event_data == self._last_event: # Event already handled return self._last_event = _event_data if _event_data.get('event'): try: if _event_data['event'] == 'TimerStart': self.start() Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Started' ) elif _event_data['event'] == 'TimerStop': self.stop() Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Stopped' ) elif _event_data['event'] == 'TimerReset': self.reset() Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Reset' ) elif _event_data['event'] == 'TimerRestart': self.restart() Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Restarted' ) elif _event_data['event'] == 'TimerPause': self.pause() Logger.log( LOG_LEVEL["debug"], f'Timer Triger {FONT_MAGENTA}{self.name}{FONT_RESET} Paused' ) except: Logger.log( LOG_LEVEL["info"], f"Error Decoding Event for Timer Trigger {self.id}" ) """ Actions """ def start(self, data=None): """ Start the timer """ if not self.active: if self.frequency == 'many': self.reset() else: self.reset_duration() self._active = True if self._pause_offset == 0: Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Started' ) else: Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Resumed' ) return self def pause(self, data=None): """ Pause the timer """ if self.active: self._active = False self._pause_offset = self.duration self.reset_duration() return self def stop(self, data=None): """ Stop the timer """ if self.active: self.reset() self._active = False Logger.log( LOG_LEVEL["debug"], f'Timer Trigger {FONT_MAGENTA}{self.name}{FONT_RESET} Stopped' ) return self def reset(self, data=None): """ Reset the timer """ self.reset_duration() self._pause_offset = 0 return self def restart(self, data=None): """ Restart the timer """ self.reset() self.start() return self
doorman/users/mixins.py
haim/doorman
614
12603524
# -*- coding: utf-8 -*- from flask_login import UserMixin class NoAuthUserMixin(UserMixin): def get_id(self): return u'' @property def username(self): return u''
src/xobjc.py
MustangYM/xia0LLDB
464
12603579
#! /usr/bin/env python3 # ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ # |______|______|______|______|______|______|______|______|______|______|______|______|______|______|______|______|______| # _ ___ _ _ _____ ____ # (_) / _ \| | | | | __ \| _ \ # __ ___ __ _| | | | | | | | | | | |_) | # \ \/ / |/ _` | | | | | | | | | | | _ < # > <| | (_| | |_| | |____| |____| |__| | |_) | # /_/\_\_|\__,_|\___/|______|______|_____/|____/ # ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ # |______|______|______|______|______|______|______|______|______|______|______|______|______|______|______|______|______| import lldb import os import shlex import optparse import json import re import utils def __lldb_init_module(debugger, internal_dict): debugger.HandleCommand('command script add -f xobjc.ivars ivars -h "ivars made by xia0"') debugger.HandleCommand('command script add -f xobjc.methods methods -h "methods made by xia0"') debugger.HandleCommand('command script add -f xobjc.xivars xivars -h "ivars made by xia0 for macOS or ivars not work"') debugger.HandleCommand('command script add -f xobjc.xmethods xmethods -h "methods made by xia0 for macOS or methods not work"') def ivars(debugger, command, exe_ctx, result, internal_dict): def generate_option_parser(): usage = "usage: xmethods" parser = optparse.OptionParser(usage=usage, prog="lookup") parser.add_option("-n", "--name", action="store", default=None, dest="name", help="set the class name for methods") return parser command_args = shlex.split(command, posix=False) parser = generate_option_parser() try: (options, args) = parser.parse_args(command_args) except: result.SetError(parser.usage) return _ = exe_ctx.target _ = exe_ctx.thread if options.name: clzname = options.name clzname = re.search("^\"(.*)\"$", clzname).group(1) utils.ILOG("will get methods for class:\"{}\"".format(clzname)) code = ''' Class clz = objc_getClass(\"{}\"); id ret = [clz _ivarDescription]; ret '''.format(clzname) ret = utils.exe_script(debugger, code) result.AppendMessage(ret) return result clz = args[0] code = ''' id ret = [{} _ivarDescription]; ret '''.format(clz) ret = utils.exe_script(debugger, code) result.AppendMessage(ret) return result def methods(debugger, command, exe_ctx, result, internal_dict): def generate_option_parser(): usage = "usage: xmethods" parser = optparse.OptionParser(usage=usage, prog="lookup") parser.add_option("-n", "--name", action="store", default=None, dest="name", help="set the class name for methods") return parser command_args = shlex.split(command, posix=False) parser = generate_option_parser() try: (options, args) = parser.parse_args(command_args) except: result.SetError(parser.usage) return _ = exe_ctx.target _ = exe_ctx.thread if options.name: clzname = options.name try: clzname = re.search("^\"(.*)\"$", clzname).group(1) except: utils.ELOG("input format error! need \"class name\"") return utils.ILOG("will get methods for class:\"{}\"".format(clzname)) code = ''' Class clz = objc_getClass(\"{}\"); id ret = [clz _shortMethodDescription]; ret '''.format(clzname) ret = utils.exe_script(debugger, code) result.AppendMessage(ret) return result clz = args[0] code = ''' id ret = [{} _shortMethodDescription]; ret '''.format(clz) ret = utils.exe_script(debugger, code) result.AppendMessage(ret) return result def xivars(debugger, command, exe_ctx, result, internal_dict): def generate_option_parser(): usage = "usage: xivars" parser = optparse.OptionParser(usage=usage, prog="lookup") parser.add_option("-a", "--address", action="store", default=None, dest="address", help="set a breakpoint at absolute address") return parser command_args = shlex.split(command, posix=False) parser = generate_option_parser() try: (options, args) = parser.parse_args(command_args) except: result.SetError(parser.usage) return _ = exe_ctx.target _ = exe_ctx.thread result.AppendMessage("command is still developing. please wait...\n") return parser def xmethods(debugger, command, exe_ctx, result, internal_dict): def generate_option_parser(): usage = "usage: xmethods" parser = optparse.OptionParser(usage=usage, prog="lookup") parser.add_option("-a", "--address", action="store", default=None, dest="address", help="set a breakpoint at absolute address") return parser command_args = shlex.split(command, posix=False) parser = generate_option_parser() try: (options, args) = parser.parse_args(command_args) except: result.SetError(parser.usage) return _ = exe_ctx.target _ = exe_ctx.thread result.AppendMessage("command is still developing. please wait...\n") return parser
rules/actions_write/file.bzl
CyberFlameGO/examples
572
12603585
<reponame>CyberFlameGO/examples """Generate a file. In this example, the content is passed via an attribute. If you generate large files with a lot of static content, consider using `ctx.actions.expand_template` instead. """ def file(**kwargs): _file(out = "{name}.txt".format(**kwargs), **kwargs) def _impl(ctx): output = ctx.outputs.out ctx.actions.write(output = output, content = ctx.attr.content) _file = rule( implementation = _impl, attrs = {"content": attr.string(), "out": attr.output()}, )
indy_common/serialization.py
Rob-S/indy-node
627
12603597
from common.serializers.json_serializer import JsonSerializer attrib_raw_data_serializer = JsonSerializer()
wagtail/tests/modeladmintest/migrations/0009_relatedlink.py
brownaa/wagtail
8,851
12603623
<reponame>brownaa/wagtail<filename>wagtail/tests/modeladmintest/migrations/0009_relatedlink.py<gh_stars>1000+ # Generated by Django 3.1.1 on 2020-10-01 18:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0057_page_locale_fields_notnull'), ('modeladmintest', '0008_solobook'), ] operations = [ migrations.CreateModel( name='RelatedLink', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('link', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='wagtailcore.page')), ], ), ]
hs_swat_modelinstance/migrations/0003_auto_20151013_1955.py
hydroshare/hydroshare
178
12603649
<reponame>hydroshare/hydroshare # -*- coding: utf-8 -*- from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('hs_core', '0006_auto_20150917_1515'), ('hs_model_program', '0003_auto_20150813_1730'), ('hs_swat_modelinstance', '0002_auto_20150813_1726'), ] operations = [ migrations.CreateModel( name='SWATModelInstanceResource', fields=[ ], options={ 'ordering': ('_order',), 'verbose_name': 'SWAT Model Instance Resource', 'proxy': True, }, bases=('hs_core.baseresource',), ), migrations.RemoveField( model_name='executedby', name='name', ), migrations.RemoveField( model_name='executedby', name='url', ), migrations.AddField( model_name='executedby', name='model_name', field=models.CharField(default=None, max_length=500, choices=[('-', ' ')]), preserve_default=True, ), migrations.AddField( model_name='executedby', name='model_program_fk', field=models.ForeignKey(related_name='swatmodelinstance', blank=True, to='hs_model_program.ModelProgramResource', null=True), preserve_default=True, ), ]
dockerscan/actions/image/console.py
michalkoczwara/dockerscan
1,286
12603666
<filename>dockerscan/actions/image/console.py import os import logging from dockerscan import get_log_level, run_in_console from .api import * from .model import * from ..helpers import display_results_console log = logging.getLogger('dockerscan') def launch_dockerscan_image_info_in_console(config: DockerImageInfoModel): """Launch in console mode""" log.setLevel(get_log_level(config.verbosity)) with run_in_console(config.debug): log.console("Starting analyzing docker image...") log.console("Selected image: '{}'".format( os.path.basename(config.image_path))) results = run_image_info_dockerscan(config) # Display image summary log.console("Analysis finished. Results:") display_results_console(results, log) def launch_dockerscan_image_extract_in_console(config: DockerImageInfoModel): """Launch in console mode""" log.setLevel(get_log_level(config.verbosity)) with run_in_console(config.debug): log.console("Starting the extraction of docker image...") log.console("Selected image: '{}'".format( os.path.basename(config.image_path))) run_image_extract_dockerscan(config) # Display image summary log.console("Image content extracted") def launch_dockerscan_image_analyze_in_console(config: DockerImageAnalyzeModel): """Launch in console mode""" log.setLevel(get_log_level(config.verbosity)) with run_in_console(config.debug): log.console("Starting the analysis of docker image...") log.console("Selected image: '{}'".format( os.path.basename(config.image_path))) results = run_image_analyze_dockerscan(config) # Display image summary log.console("Analysis finished. Results:") display_results_console(results, log) __all__ = ("launch_dockerscan_image_info_in_console", "launch_dockerscan_image_extract_in_console", "launch_dockerscan_image_analyze_in_console")
tests/components/weathering/test_exponential_weatherer.py
amanaster2/landlab
257
12603670
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri May 1 14:02:18 2020 @author: gtucker """ from landlab import RasterModelGrid from landlab.components import ExponentialWeatherer def test_create_weatherer_and_change_rate(): grid = RasterModelGrid((3, 3), 1.0) grid.add_zeros("soil__depth", at="node") ew = ExponentialWeatherer(grid, soil_production__maximum_rate=0.0001) ew.maximum_weathering_rate = 0.0004 assert ew.maximum_weathering_rate == 0.0004
Site-blocker/web-blocker.py
A-kriti/Amazing-Python-Scripts
930
12603716
<gh_stars>100-1000 import time from datetime import datetime as dt # Windows host file path hostsPath = r"C:\Windows\System32\drivers\etc\hosts" redirect = "127.0.0.1" # Add the website you want to block, in this list websites = [ "www.amazon.in", "www.youtube.com", "youtube.com", "www.facebook.com", "facebook.com" ] while True: # Duration during which, website blocker will work if dt(dt.now().year, dt.now().month, dt.now().day, 9) < dt.now() < dt(dt.now().year, dt.now().month, dt.now().day, 18): print("Access denied to Website") with open(hostsPath, 'r+') as file: content = file.read() for site in websites: if site in content: pass else: file.write(redirect + " " + site + "\n") else: with open(hostsPath, 'r+') as file: content = file.readlines() file.seek(0) for line in content: if not any(site in line for site in websites): file.write(line) file.truncate() print("Allowed access!") time.sleep(5)
numba/tests/test_llvm_pass_timings.py
auderson/numba
6,620
12603718
import unittest from numba import njit from numba.tests.support import TestCase, override_config from numba.misc import llvm_pass_timings as lpt timings_raw1 = """ ===-------------------------------------------------------------------------=== ... Pass execution timing report ... ===-------------------------------------------------------------------------=== Total Execution Time: 0.0001 seconds (0.0001 wall clock) ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name --- 0.0001 ( 90.1%) 0.0001 ( 90.1%) 0.0001 ( 90.1%) 0.0001 ( 90.1%) A1 0.0000 ( 9.9%) 0.0000 ( 9.9%) 0.0000 ( 9.9%) 0.0000 ( 9.9%) A2 0.0001 (100.0%) 0.0001 (100.0%) 0.0001 (100.0%) 0.0001 (100.0%) Total """ # noqa: E501 timings_raw2 = """ ===-------------------------------------------------------------------------=== ... Pass execution timing report ... ===-------------------------------------------------------------------------=== Total Execution Time: 0.0001 seconds (0.0001 wall clock) ---User Time--- --System Time-- --User+System-- ---Wall Time--- --- Name --- 0.0001 ( 90.1%) ----- 0.0001 ( 90.1%) 0.0001 ( 90.1%) A1 0.0000 ( 9.9%) ----- 0.0000 ( 9.9%) 0.0000 ( 9.9%) A2 0.0001 (100.0%) ----- 0.0001 (100.0%) 0.0001 (100.0%) Total """ # noqa: E501 class TestLLVMPassTimings(TestCase): def test_usage(self): @njit def foo(n): c = 0 for i in range(n): c += i return c with override_config('LLVM_PASS_TIMINGS', True): foo(10) md = foo.get_metadata(foo.signatures[0]) timings = md['llvm_pass_timings'] # Check: timing is of correct type self.assertIsInstance(timings, lpt.PassTimingsCollection) # Check: basic for __str__ text = str(timings) self.assertIn("Module passes (full optimization)", text) # Check: there must be more than one record self.assertGreater(len(timings), 0) # Check: __getitem__ last = timings[-1] self.assertIsInstance(last, lpt.NamedTimings) # Check: NamedTimings self.assertIsInstance(last.name, str) self.assertIsInstance(last.timings, lpt.ProcessedPassTimings) def test_analyze(self): @njit def foo(n): c = 0 for i in range(n): for j in range(i): c += j return c with override_config('LLVM_PASS_TIMINGS', True): foo(10) md = foo.get_metadata(foo.signatures[0]) timings_collection = md['llvm_pass_timings'] # Check: get_total_time() self.assertIsInstance(timings_collection.get_total_time(), float) # Check: summary() self.assertIsInstance(timings_collection.summary(), str) # Check: list_longest_first() ordering longest_first = timings_collection.list_longest_first() self.assertEqual(len(longest_first), len(timings_collection)) last = longest_first[0].timings.get_total_time() for rec in longest_first[1:]: cur = rec.timings.get_total_time() self.assertGreaterEqual(last, cur) cur = last def test_parse_raw(self): timings1 = lpt.ProcessedPassTimings(timings_raw1) self.assertAlmostEqual(timings1.get_total_time(), 0.0001) self.assertIsInstance(timings1.summary(), str) timings2 = lpt.ProcessedPassTimings(timings_raw2) self.assertAlmostEqual(timings2.get_total_time(), 0.0001) self.assertIsInstance(timings2.summary(), str) class TestLLVMPassTimingsDisabled(TestCase): def test_disabled_behavior(self): @njit def foo(n): c = 0 for i in range(n): c += i return c with override_config('LLVM_PASS_TIMINGS', False): foo(10) md = foo.get_metadata(foo.signatures[0]) timings = md['llvm_pass_timings'] # Check that the right message is returned self.assertEqual(timings.summary(), "No pass timings were recorded") # Check that None is returned self.assertIsNone(timings.get_total_time()) # Check that empty list is returned self.assertEqual(timings.list_longest_first(), []) if __name__ == "__main__": unittest.main()
modules/dbnd-airflow-monitor/src/airflow_monitor/tracking_service/error_aggregator.py
busunkim96/dbnd
224
12603734
from typing import Optional from weakref import WeakKeyDictionary import attr from dbnd._core.utils.timezone import utcnow @attr.s class ErrorAggregatorResult: message = attr.ib() # type: Optional[str] should_update = attr.ib() # type: bool class ErrorAggregator: def __init__(self): # we use WeakKeyDictionary and not regular dict() since keys used for # reporting can be objects, and we want to make sure to clean up those # keys/messages when then no longer exist. # the main use case is that passed key in function object, in theory it can be # destroyed, in which case it will be stuck here forever (=means reporting to # webserver forever). Practically currently it's not happening since decorators # are on class functions and not on specific objects, but this is just to be # safe. A little bit more real world example would be: # class A: # def something(self): # try: # raise NotImplementedError() # except Exception as e: # report_error(self.something, str(e)) # # for i in range(10): # A().something() # in this case it will be all 10 different "keys" self.active_errors = WeakKeyDictionary() self.last_reported_errors = 0 def report(self, key, message: Optional[str]) -> ErrorAggregatorResult: if message is not None: self.active_errors[key] = (utcnow(), message) elif key in self.active_errors: del self.active_errors[key] elif self.last_reported_errors == len(self.active_errors): # we get here if # * message is None (current invocation was ok) # * key not in self.active_errors (previous invocation was ok) # * # of errors didn't change (no weakref evictions) # => so nothing to update return ErrorAggregatorResult(None, should_update=False) self.last_reported_errors = len(self.active_errors) sorted_message = [ msg for _, msg in sorted(self.active_errors.values(), reverse=True) ] aggregated_error = "\n\n---------\n\n".join(sorted_message) # return None if empty string return ErrorAggregatorResult(aggregated_error or None, should_update=True)
deepchem/molnet/load_function/clintox_datasets.py
cjgalvin/deepchem
3,782
12603811
""" Clinical Toxicity (clintox) dataset loader. @author <NAME> """ import os import deepchem as dc from deepchem.molnet.load_function.molnet_loader import TransformerGenerator, _MolnetLoader from deepchem.data import Dataset from typing import List, Optional, Tuple, Union CLINTOX_URL = "https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/clintox.csv.gz" CLINTOX_TASKS = ['FDA_APPROVED', 'CT_TOX'] class _ClintoxLoader(_MolnetLoader): def create_dataset(self) -> Dataset: dataset_file = os.path.join(self.data_dir, "clintox.csv.gz") if not os.path.exists(dataset_file): dc.utils.data_utils.download_url(url=CLINTOX_URL, dest_dir=self.data_dir) loader = dc.data.CSVLoader( tasks=self.tasks, feature_field="smiles", featurizer=self.featurizer) return loader.create_dataset(dataset_file, shard_size=8192) def load_clintox( featurizer: Union[dc.feat.Featurizer, str] = 'ECFP', splitter: Union[dc.splits.Splitter, str, None] = 'scaffold', transformers: List[Union[TransformerGenerator, str]] = ['balancing'], reload: bool = True, data_dir: Optional[str] = None, save_dir: Optional[str] = None, **kwargs ) -> Tuple[List[str], Tuple[Dataset, ...], List[dc.trans.Transformer]]: """Load ClinTox dataset The ClinTox dataset compares drugs approved by the FDA and drugs that have failed clinical trials for toxicity reasons. The dataset includes two classification tasks for 1491 drug compounds with known chemical structures: #. clinical trial toxicity (or absence of toxicity) #. FDA approval status. List of FDA-approved drugs are compiled from the SWEETLEAD database, and list of drugs that failed clinical trials for toxicity reasons are compiled from the Aggregate Analysis of ClinicalTrials.gov(AACT) database. Random splitting is recommended for this dataset. The raw data csv file contains columns below: - "smiles" - SMILES representation of the molecular structure - "FDA_APPROVED" - FDA approval status - "CT_TOX" - Clinical trial results Parameters ---------- featurizer: Featurizer or str the featurizer to use for processing the data. Alternatively you can pass one of the names from dc.molnet.featurizers as a shortcut. splitter: Splitter or str the splitter to use for splitting the data into training, validation, and test sets. Alternatively you can pass one of the names from dc.molnet.splitters as a shortcut. If this is None, all the data will be included in a single dataset. transformers: list of TransformerGenerators or strings the Transformers to apply to the data. Each one is specified by a TransformerGenerator or, as a shortcut, one of the names from dc.molnet.transformers. reload: bool if True, the first call for a particular featurizer and splitter will cache the datasets to disk, and subsequent calls will reload the cached datasets. data_dir: str a directory to save the raw data in save_dir: str a directory to save the dataset in References ---------- .. [1] Gayvert, <NAME>., <NAME>, and <NAME>. "A data-driven approach to predicting successes and failures of clinical trials." Cell chemical biology 23.10 (2016): 1294-1301. .. [2] <NAME>., et al. "Integrated deep learned transcriptomic and structure-based predictor of clinical trials outcomes." bioRxiv (2016): 095653. .. [3] <NAME>., et al. "SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery." PloS one 8.11 (2013): e79568. .. [4] Aggregate Analysis of ClincalTrials.gov (AACT) Database. https://www.ctti-clinicaltrials.org/aact-database """ loader = _ClintoxLoader(featurizer, splitter, transformers, CLINTOX_TASKS, data_dir, save_dir, **kwargs) return loader.load_dataset('clintox', reload)
src/tfi/doc/template.py
ajbouh/tfi
160
12603842
<gh_stars>100-1000 import base64 from collections import OrderedDict from jinja2 import Template as JinjaTemplate from tfi.format.html.bibtex import citation_bibliography_html from tfi.format.html.python import html_repr from tfi.format.html.rst import parse_rst as _parse_rst from tfi.parse.html import visible_text_for as _visible_text_for from tfi.doc.example_code_generators import example_code_generator as _resolve_language _page_template_path = __file__[:-2] + "html" if _page_template_path.endswith("__init__.html"): _page_template_path = _page_template_path.replace("__init__.html", __name__.split('.')[-1] + '.html') class HtmlRenderer(object): def __init__(self, documentation, include_snapshot, extra_scripts=""): d = documentation self._citation_id = 0 self._citation_label_by_refname = {} self._references = d.references() self._include_snapshot = include_snapshot # TODO(adamb) What about arxiv ids already within []_ ?? parsed = self._rst_to_html(d.overview() or "", 2, 'overview-') body_sections = [] if parsed['body']: forged_body_title = 'Overview' forged_body_id = 'overview' body_sections.append({ 'title': forged_body_title, 'id': forged_body_id, 'body': """<section id="%s"><h2>%s</h2>%s</section>""" % ( forged_body_id, forged_body_title, parsed['body'] ), }) appendix_section_ids = ['overview-dataset'] appendix_sections = [] for section in parsed['sections']: if section['id'] in appendix_section_ids: appendix_sections.append(section) else: body_sections.append(section) # Sort and render method overviews here so that references are properly ordered methods = sorted(d.methods(), key=lambda method: method.name()) method_overviews = { method.name(): self._rst_to_html( method.overview(), initial_header_level=3, id_prefix='method-%s-' % method.name(), )['body'] for method in methods } language_names = ['json', 'tensorflow-grpc-python'] # if include_snapshot: # language_names.append('python') self._template_fields = { 'facets_overview_proto_base64': base64.b64encode(d.facets_overview_proto()).decode('utf-8') if d.facets_overview_proto() else None, 'title': parsed['title'] or d.name(), 'rst_to_html': self._rst_to_html, 'html_repr': html_repr, 'include_snapshot': include_snapshot, 'extra_scripts': extra_scripts, 'subhead': parsed['subtitle'], 'description': _visible_text_for(parsed['subtitle']), 'bibliography_cite': citation_bibliography_html, 'overview': parsed['body'], 'body_sections': body_sections, 'appendix_sections': appendix_sections, 'authors': d.authors(), 'hyperparameters': [ (name, " ".join(["value", "was", repr(value)]), doc) for name, _, value, doc in d.hyperparameters() ], 'implementation_notes': d.implementation_notes(), 'references': OrderedDict([ (refname, self._references[refname]) for refname in self._citation_label_by_refname ]), 'method_overviews': method_overviews, 'languages': [ _resolve_language(language_name) for language_name in language_names ], 'methods': methods, } def _citation_label_by_refname_fn(self, citation_refname): if citation_refname not in self._citation_label_by_refname: self._citation_id += 1 self._citation_label_by_refname[citation_refname] = str(self._citation_id) return self._citation_label_by_refname[citation_refname] def _rst_to_html(self, rst, id_prefix, initial_header_level): if not rst: return { 'body': '', 'sections': {}, 'title': '', 'subtitle': '', } return _parse_rst( rst, source_path="<string>", initial_header_level=initial_header_level, id_prefix=id_prefix, citation_label_by_refname=self._citation_label_by_refname_fn, bibtex_entries_by_refname=lambda citation_refname: self._references[citation_refname], ) def render(self, proto, host): with open(_page_template_path, encoding='utf-8') as f: t = JinjaTemplate(f.read()) return t.render( proto=proto, host=host, **self._template_fields, )
sandbox/__init__.py
kevin-brown/django-cacheback
160
12603844
<gh_stars>100-1000 from .celeryconfig import app as celery_app __all__ = ('celery_app',)
symoroutils/parfile.py
songhongxiang/symoro
109
12603865
<filename>symoroutils/parfile.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # This file is part of the OpenSYMORO project. Please see # https://github.com/symoro/symoro/blob/master/LICENCE for the licence. """ This module performs writing and reading data into PAR file. PAR is a plain text file used to represent the different parameters of the robot. """ import os import re from symoroutils import filemgr from symoroutils import tools from pysymoro import robot _keywords = [ 'ant', 'sigma', 'b', 'd', 'r', 'gamma', 'alpha', 'mu', 'theta', 'XX', 'XY', 'XZ', 'YY', 'YZ', 'ZZ', 'MX', 'MY', 'MZ', 'M', 'IA', 'FV', 'FS', 'FX', 'FY', 'FZ', 'CX', 'CY', 'CZ', 'eta', 'k', 'QP', 'QDP', 'GAM', 'W0', 'WP0', 'V0', 'VP0', 'Z', 'G' ] _NF = ['ant', 'sigma', 'b', 'd', 'r', 'gamma', 'alpha', 'mu', 'theta'] _NJ = ['eta', 'k', 'QP', 'QDP', 'GAM'] _NL = [ 'XX', 'XY', 'XZ', 'YY', 'YZ', 'ZZ', 'MX', 'MY', 'MZ', 'M', 'IA', 'FV', 'FS', 'FX', 'FY', 'FZ', 'CX', 'CY', 'CZ' ] _VEC = ['W0', 'WP0', 'V0', 'VP0'] _ZERO_BASED = {'W0', 'WP0', 'V0', 'VP0', 'Z', 'G'} _bool_dict = { 'True': True, 'False': False, 'true': True, 'false': False, '1': True, '0': False } _keyword_repl = { 'Ant': 'ant', 'Mu': 'mu', 'Sigma': 'sigma', 'B': 'b', 'Alpha': 'alpha', 'Theta': 'theta', 'R': 'r' } def _extract_vals(robo, key, line): line = line.replace('{', '') line = line.replace('}', '') if key in _ZERO_BASED: k = 0 elif (robo.is_floating or robo.is_mobile) and key in _NL: k = 0 else: k = 1 items = line.split(',') items_proc = [] prev_item = False for i, v in enumerate(items): if v.find('atan2') == -1 and not prev_item: items_proc.append(v) elif prev_item: items_proc.append('%s,%s' % (items[i-1], v)) prev_item = False else: prev_item = True for i, v in enumerate(items_proc): if robo.put_val(i+k, key, v.strip()) == tools.FAIL: return tools.FAIL def _write_par_list(robo, f, key, N0, N): f.write('{0} = {{{1}'.format(key, robo.get_val(N0, key))) for i in xrange(N0 + 1, N): f.write(',{0}'.format(robo.get_val(i, key))) f.write('}\n') def writepar(robo): fname = robo.par_file_path with open(fname, 'w') as f: # robot description f.write('(* Robotname = \'{0}\' *)\n'.format(robo.name)) f.write('NL = {0}\n'.format(robo.nl)) f.write('NJ = {0}\n'.format(robo.nj)) f.write('NF = {0}\n'.format(robo.nf)) f.write('Type = {0}\n'.format(tools.TYPES.index(robo.structure))) f.write('is_floating = {0}\n'.format(robo.is_floating)) f.write('is_mobile = {0}\n'.format(robo.is_mobile)) # geometric parameters f.write('\n(* Geometric parameters *)\n') for key in _NF: _write_par_list(robo, f, key, 1, robo.NF) # dynamic parameters f.write('\n(* Dynamic parameters and external forces *)\n') N0 = 0 if robo.is_floating or robo.is_mobile else 1 for key in _NL: _write_par_list(robo, f, key, N0, robo.NL) # joint parameters f.write('\n(* Joint parameters *)\n') for key in _NJ: _write_par_list(robo, f, key, 1, robo.NJ) # base parameters - velocity and acceleration f.write('\n(* Velocity and acceleration of the base *)\n') for key in _VEC: _write_par_list(robo, f, key, 0, 3) # gravity vector f.write('\n(* Acceleration of gravity *)\n') _write_par_list(robo, f, 'G', 0, 3) # base parameters - Z matrix f.write('\n(* Transformation of 0 frame position fT0 *)\n') _write_par_list(robo, f, 'Z', 0, 16) f.write('\n(* End of definition *)\n') def readpar(robo_name, file_path): """Return: robo: an instance of Robot, read from file flag: indicates if any errors accured. (tools.FAIL) """ with open(file_path, 'r') as f: f.seek(0) d = {} is_floating = False is_mobile = False for line in f.readlines(): # check for robot name name_pattern = r"\(\*.*Robotname.*=.*\'([\s\w-]*)\'.*\*\)" match = re.match(name_pattern, line) if match: robo_name = match.group(1).strip() # check for joint numbers, link numbers, type for s in ('NJ', 'NL', 'Type'): match = re.match(r'^%s.*=([\d\s]*)(\(\*.*)?' % s, line) if match: d[s] = int(match.group(1)) continue # check for is_floating match = re.match(r'^is_floating.*=([\w\s]*)(\(\*.*)?', line) if match: is_floating = _bool_dict[(match.group(1).strip())] # check for is_mobile match = re.match(r'^is_mobile.*=([\w\s]*)(\(\*.*)?', line) if match: is_mobile = _bool_dict[(match.group(1).strip())] if len(d) < 2: return None, tools.FAIL NF = d['NJ']*2 - d['NL'] #initialize the Robot instance robo = robot.Robot( name=robo_name, NL=d['NL'], NJ=d['NJ'], NF=NF, structure=tools.TYPES[d['Type']], is_floating=is_floating, is_mobile=is_mobile, directory=os.path.dirname(file_path), par_file_path=file_path ) # fitting the data acc_line = '' key = '' f.seek(0) flag = tools.OK for line in f.readlines(): if line.find('(*') != -1: continue line = line.replace('Pi', 'pi') match = re.match(r'^(.*)=.*\{(.*)', line) if match: acc_line == '' key = match.group(1).strip() acc_line = match.group(2).strip() else: acc_line += line if acc_line.find('}') != -1: if key in _keyword_repl: key = _keyword_repl[key] if key in _keywords: if _extract_vals(robo, key, acc_line) == tools.FAIL: flag = tools.FAIL acc_line = '' key = '' return robo, flag
tests/integration_tests_plugins/dockercompute/setup.py
ilan-WS/cloudify-manager
124
12603949
from setuptools import setup setup(name='dockercompute', packages=['dockercompute'])
virtual_env/lib/python3.5/site-packages/google_compute_engine/accounts/oslogin_utils.py
straydag/To_Due_Backend
322
12603950
<gh_stars>100-1000 #!/usr/bin/python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for provisioning or deprovisioning a Linux user account.""" import errno import os import subprocess import time from google_compute_engine import constants NSS_CACHE_DURATION_SEC = 21600 # 6 hours in seconds. class OsLoginUtils(object): """Utilities for OS Login activation.""" def __init__(self, logger): """Constructor. Args: logger: logger object, used to write to SysLog and serial port. """ self.logger = logger self.oslogin_installed = True self.update_time = 0 def _RunOsLoginControl(self, params): """Run the OS Login control script. Args: params: list, the params to pass to the script Returns: int, the return code from the call, or None if the script is not found. """ try: return subprocess.call([constants.OSLOGIN_CONTROL_SCRIPT] + params) except OSError as e: if e.errno == errno.ENOENT: return None else: raise def _GetStatus(self, two_factor=False): """Check whether OS Login is installed. Args: two_factor: bool, True if two factor should be enabled. Returns: bool, True if OS Login is installed. """ params = ['status'] if two_factor: params += ['--twofactor'] retcode = self._RunOsLoginControl(params) if retcode is None: if self.oslogin_installed: self.logger.warning('OS Login not installed.') self.oslogin_installed = False return None # Prevent log spam when OS Login is not installed. self.oslogin_installed = True if not os.path.exists(constants.OSLOGIN_NSS_CACHE): return False return not retcode def _RunOsLoginNssCache(self): """Run the OS Login NSS cache binary. Returns: int, the return code from the call, or None if the script is not found. """ try: return subprocess.call([constants.OSLOGIN_NSS_CACHE_SCRIPT]) except OSError as e: if e.errno == errno.ENOENT: return None else: raise def _RemoveOsLoginNssCache(self): """Remove the OS Login NSS cache file.""" if os.path.exists(constants.OSLOGIN_NSS_CACHE): try: os.remove(constants.OSLOGIN_NSS_CACHE) except OSError as e: if e.errno != errno.ENOENT: raise def UpdateOsLogin(self, oslogin_desired, two_factor_desired=False): """Update whether OS Login is enabled and update NSS cache if necessary. Args: oslogin_desired: bool, enable OS Login if True, disable if False. two_factor_desired: bool, enable two factor if True, disable if False. Returns: int, the return code from updating OS Login, or None if not present. """ oslogin_configured = self._GetStatus(two_factor=False) if oslogin_configured is None: return None two_factor_configured = self._GetStatus(two_factor=True) # Two factor can only be enabled when OS Login is enabled. two_factor_desired = two_factor_desired and oslogin_desired if oslogin_desired: params = ['activate'] if two_factor_desired: params += ['--twofactor'] # OS Login is desired and not enabled. if not oslogin_configured: self.logger.info('Activating OS Login.') return self._RunOsLoginControl(params) or self._RunOsLoginNssCache() # Enable two factor authentication. if two_factor_desired and not two_factor_configured: self.logger.info('Activating OS Login two factor authentication.') return self._RunOsLoginControl(params) or self._RunOsLoginNssCache() # Deactivate two factor authentication. if two_factor_configured and not two_factor_desired: self.logger.info('Reactivating OS Login with two factor disabled.') return (self._RunOsLoginControl(['deactivate']) or self._RunOsLoginControl(params)) # OS Login features are already enabled. Update the cache if appropriate. current_time = time.time() if current_time - self.update_time > NSS_CACHE_DURATION_SEC: self.update_time = current_time return self._RunOsLoginNssCache() elif oslogin_configured: self.logger.info('Deactivating OS Login.') return (self._RunOsLoginControl(['deactivate']) or self._RemoveOsLoginNssCache()) # No action was needed. return 0
notebook/pandas_normalization.py
vhn0912/python-snippets
174
12603982
import pandas as pd import scipy.stats from sklearn import preprocessing df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=['col1', 'col2', 'col3'], index=['a', 'b', 'c']) print(df) # col1 col2 col3 # a 0 1 2 # b 3 4 5 # c 6 7 8 print((df - df.min()) / (df.max() - df.min())) # col1 col2 col3 # a 0.0 0.0 0.0 # b 0.5 0.5 0.5 # c 1.0 1.0 1.0 print(((df.T - df.T.min()) / (df.T.max() - df.T.min())).T) # col1 col2 col3 # a 0.0 0.5 1.0 # b 0.0 0.5 1.0 # c 0.0 0.5 1.0 print((df - df.values.min()) / (df.values.max() - df.values.min())) # col1 col2 col3 # a 0.000 0.125 0.250 # b 0.375 0.500 0.625 # c 0.750 0.875 1.000 print((df - df.mean()) / df.std()) # col1 col2 col3 # a -1.0 -1.0 -1.0 # b 0.0 0.0 0.0 # c 1.0 1.0 1.0 print((df - df.mean()) / df.std(ddof=0)) # col1 col2 col3 # a -1.224745 -1.224745 -1.224745 # b 0.000000 0.000000 0.000000 # c 1.224745 1.224745 1.224745 print(((df.T - df.T.mean()) / df.T.std()).T) # col1 col2 col3 # a -1.0 0.0 1.0 # b -1.0 0.0 1.0 # c -1.0 0.0 1.0 print(((df.T - df.T.mean()) / df.T.std(ddof=0)).T) # col1 col2 col3 # a -1.224745 0.0 1.224745 # b -1.224745 0.0 1.224745 # c -1.224745 0.0 1.224745 print((df - df.values.mean()) / df.values.std()) # col1 col2 col3 # a -1.549193 -1.161895 -0.774597 # b -0.387298 0.000000 0.387298 # c 0.774597 1.161895 1.549193 print((df - df.values.mean()) / df.values.std(ddof=1)) # col1 col2 col3 # a -1.460593 -1.095445 -0.730297 # b -0.365148 0.000000 0.365148 # c 0.730297 1.095445 1.460593 df_ = df.copy() s = df_['col1'] df_['col1_min_max'] = (s - s.min()) / (s.max() - s.min()) df_['col1_standardization'] = (s - s.mean()) / s.std() print(df_) # col1 col2 col3 col1_min_max col1_standardization # a 0 1 2 0.0 -1.0 # b 3 4 5 0.5 0.0 # c 6 7 8 1.0 1.0 print(scipy.stats.zscore(df)) # [[-1.22474487 -1.22474487 -1.22474487] # [ 0. 0. 0. ] # [ 1.22474487 1.22474487 1.22474487]] print(type(scipy.stats.zscore(df))) # <class 'numpy.ndarray'> print(scipy.stats.zscore(df, axis=None, ddof=1)) # [[-1.46059349 -1.09544512 -0.73029674] # [-0.36514837 0. 0.36514837] # [ 0.73029674 1.09544512 1.46059349]] df_standardization = pd.DataFrame(scipy.stats.zscore(df), index=df.index, columns=df.columns) print(df_standardization) # col1 col2 col3 # a -1.224745 -1.224745 -1.224745 # b 0.000000 0.000000 0.000000 # c 1.224745 1.224745 1.224745 df_ = df.copy() df_['col1_standardization'] = scipy.stats.zscore(df_['col1']) print(df_) # col1 col2 col3 col1_standardization # a 0 1 2 -1.224745 # b 3 4 5 0.000000 # c 6 7 8 1.224745 mm = preprocessing.MinMaxScaler() print(mm.fit_transform(df)) # [[0. 0. 0. ] # [0.5 0.5 0.5] # [1. 1. 1. ]] print(type(mm.fit_transform(df))) # <class 'numpy.ndarray'> print(preprocessing.minmax_scale(df)) # [[0. 0. 0. ] # [0.5 0.5 0.5] # [1. 1. 1. ]] print(type(preprocessing.minmax_scale(df))) # <class 'numpy.ndarray'> df_min_max = pd.DataFrame(mm.fit_transform(df), index=df.index, columns=df.columns) print(df_min_max) # col1 col2 col3 # a 0.0 0.0 0.0 # b 0.5 0.5 0.5 # c 1.0 1.0 1.0 df_ = df.copy() s = df_['col1'].astype(float) df_['col1_min_max'] = preprocessing.minmax_scale(s) df_['col1_standardization'] = preprocessing.scale(s) print(df_) # col1 col2 col3 col1_min_max col1_standardization # a 0 1 2 0.0 -1.224745 # b 3 4 5 0.5 0.000000 # c 6 7 8 1.0 1.224745
tests/dopamine/continuous_domains/run_experiment_test.py
kuldeepbrd1/dopamine
9,825
12604002
# coding=utf-8 # Copyright 2021 The Dopamine Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for run_experiment.""" from typing import Type from unittest import mock from absl.testing import absltest from absl.testing import parameterized from dopamine.continuous_domains import run_experiment from dopamine.discrete_domains import gym_lib from dopamine.discrete_domains import run_experiment as base_run_experiment from dopamine.jax.agents.sac import sac_agent import gin from gym import spaces class RunExperimentTest(parameterized.TestCase): def setUp(self): super(RunExperimentTest, self).setUp() self.env = self.enter_context( mock.patch.object(gym_lib, 'GymPreprocessing', autospec=True)) self.env.observation_space = spaces.Box(0.0, 1.0, (5,)) self.env.action_space = spaces.Box(0.0, 1.0, (4,)) # Required for creating a SAC agent in create_agent tests. gin.bind_parameter( 'circular_replay_buffer.OutOfGraphReplayBuffer.replay_capacity', 10) gin.bind_parameter( 'circular_replay_buffer.OutOfGraphReplayBuffer.batch_size', 2) # Required for creating continuous runners. gin.bind_parameter('ContinuousRunner.create_environment_fn', lambda: self.env) gin.bind_parameter('ContinuousTrainRunner.create_environment_fn', lambda: self.env) def testCreateContinuousAgentReturnsAgent(self): agent = run_experiment.create_continuous_agent(self.env, 'sac') self.assertIsInstance(agent, sac_agent.SACAgent) def testCreateContinuousAgentWithInvalidNameRaisesException(self): with self.assertRaises(ValueError): run_experiment.create_continuous_agent(self.env, 'invalid_name') @parameterized.named_parameters( dict( testcase_name='TrainAndEval', schedule='continuous_train_and_eval', expected=run_experiment.ContinuousRunner), dict( testcase_name='Train', schedule='continuous_train', expected=run_experiment.ContinuousTrainRunner)) def testCreateContinuousRunnerCreatesCorrectRunner( self, schedule: str, expected: Type[base_run_experiment.Runner]): gin.bind_parameter('create_continuous_agent.agent_name', 'sac') runner = run_experiment.create_continuous_runner( self.create_tempdir(), schedule) self.assertIsInstance(runner, expected) def testCreateContinuousRunnerFailsWithInvalidName(self): with self.assertRaises(ValueError): run_experiment.create_continuous_runner('unused_dir', 'invalid_name') if __name__ == '__main__': absltest.main()
code/chapter-15/benchmark.py
dnaveenr/Practical-Deep-Learning-Book
564
12604018
# <NAME> # 2019 Edgise #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import tensorflow as tf import keras from keras.applications.mobilenetv2 import MobileNetV2, preprocess_input, decode_predictions import os #import cv2 import PIL import time execution_path = os.getcwd() print("tf version : " + tf.__version__) print("keras version : " + keras.__version__) # In[2]: # load in the neural network net = MobileNetV2(weights = 'imagenet', include_top = True) # In[3]: input_image_path = os.path.join(execution_path, 'images/cat.jpg') print("input image read from : " + str(input_image_path)) # In[4]: # Installing OpenCV on raspberry pi can be a burden, so let's switch to PIL # However, if OpenCV is installed, it does tend to be a little faster #input_image = cv2.imread(input_image_path) #input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) input_image = PIL.Image.open(input_image_path) input_image = np.asarray(input_image) # In[11]: # Use the MobileNet preprocessing function, # and expand dimensions to create a batch of 1 image preprocessed = preprocess_input(input_image) preprocessed = np.expand_dims(preprocessed, axis=0) print('input tensor shape : ' + str(preprocessed.shape)) # In[12]: # Do 1 warmup prediction, this way we make sure everything is loaded as it should print("warmup prediction") prediction = net.predict(preprocessed) print(decode_predictions(prediction, top=1)[0]) time.sleep(1) # In[13]: print("starting now...") s = time.time() for i in range(0,250,1): prediction = net.predict(preprocessed) e = time.time() print('Time[ms] : ' + str(e-s)) print('FPS : ' + str(1.0/((e-s)/250.0))) # In[ ]: # Save the model to an h5 file net.save('MobileNetV2_ImageNet.h5') print("Model saved.")
malaya_speech/train/model/glowtts/common.py
ishine/malaya-speech
111
12604021
import numpy as np import tensorflow as tf from ..utils import shape_list def maximum_path(value, mask, max_neg_val=-np.inf): """ Numpy-friendly version. It's about 4 times faster than torch version. value: [b, t_x, t_y] mask: [b, t_x, t_y] """ value = value * mask dtype = value.dtype mask = mask.astype(np.bool) b, t_x, t_y = value.shape direction = np.zeros(value.shape, dtype=np.int64) v = np.zeros((b, t_x), dtype=np.float32) x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1) for j in range(t_y): v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1] v1 = v max_mask = (v1 >= v0) v_max = np.where(max_mask, v1, v0) direction[:, :, j] = max_mask index_mask = (x_range <= j) v = np.where(index_mask, v_max + value[:, :, j], max_neg_val) direction = np.where(mask, direction, 1) path = np.zeros(value.shape, dtype=np.float32) index = mask[:, :, 0].sum(1).astype(np.int64) - 1 index_range = np.arange(b) for j in reversed(range(t_y)): path[index_range, index, j] = 1 index = index + direction[index_range, index, j] - 1 path = path * mask.astype(np.float32) return path def sequence_mask(length, max_length=None): if max_length is None: max_length = tf.reduce_max(length) x = tf.range(max_length, dtype=length.dtype) x = tf.expand_dims(x, 0) x = tf.tile(x, (tf.shape(length)[0], 1)) ones = tf.ones_like(x) zeros = tf.zeros_like(x) return tf.where(x < tf.expand_dims(length, -1), ones, zeros) def generate_path(duration, mask): """ duration: [b, t_x] mask: [b, t_x, t_y] """ b, t_x, t_y = shape_list(mask) cum_duration = tf.math.cumsum(duration, 1) path = tf.zeros((b, t_x, t_y), dtype=mask.dtype) cum_duration_flat = tf.reshape(cum_duration, (b * t_x,)) path = tf.sequence_mask(cum_duration_flat, t_y) path = tf.cast(path, mask.dtype) path = tf.reshape(path, (b, t_x, t_y)) path = path - tf.pad(path, [[0, 0], [1, 0], [0, 0]])[:, :-1] path = path * mask return path def squeeze(x, x_mask=None, n_sqz=2): b, t, c = shape_list(x) t = (t // n_sqz) * n_sqz x = x[:, :t] x_sqz = tf.reshape(x, (b, t//n_sqz, n_sqz, c)) x_sqz = tf.reshape(x_sqz, (b, t//n_sqz, c * n_sqz)) if x_mask is not None: x_mask = x_mask[:, n_sqz-1::n_sqz] else: x_mask = tf.ones((b, t // n_sqz, 1), dtype=x.dtype) return x_sqz * x_mask, x_mask def unsqueeze(x, x_mask=None, n_sqz=2): b, t, c = shape_list(x) x_unsqz = tf.reshape(x, (b, t, n_sqz, c//n_sqz)) x_unsqz = tf.reshape(x_unsqz, (b, t*n_sqz, c//n_sqz)) if x_mask is not None: x_mask = tf.expand_dims(x_mask, 2) x_mask = tf.tile(x_mask, (1, 1, n_sqz, 1)) x_mask = tf.reshape(x_mask, (b, t*n_sqz, 1)) else: x_mask = tf.ones((b, t*n_sqz, 1), dtype=x.dtype) return x_unsqz * x_mask, x_mask
testdata/iris_lightgbm_rf.py
sysutf/leaves
334
12604086
import numpy as np import pickle from sklearn import datasets import lightgbm as lgb from sklearn.model_selection import train_test_split data = datasets.load_iris() X = data['data'] y = data['target'] y[y > 0] = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) n_estimators = 30 d_train = lgb.Dataset(X_train, label=y_train) params = { 'boosting_type': 'rf', 'objective': 'binary', 'bagging_fraction': 0.8, 'feature_fraction': 0.8, 'bagging_freq': 1, } clf = lgb.train(params, d_train, n_estimators) y_pred = clf.predict(X_test) model_filename = 'lg_rf_iris.model' pred_filename = 'lg_rf_iris_true_predictions.txt' # test_filename = 'iris_test.libsvm' clf.save_model(model_filename) np.savetxt(pred_filename, y_pred) # datasets.dump_svmlight_file(X_test, y_test, test_filename)
deploy/scripts/aphros/stat.py
ChristopherKotthoff/Aphros-with-GraphContraction
252
12604093
<gh_stars>100-1000 import os def GetVal(path, colname, t0): s = os.path.join(path, "stat.dat") res = 0. # best tb = None vb = None with open(s) as f: head = f.readline().split() it = head.index('t') iv = head.index(colname) for l in f: t = float(l.split()[it]) v = l.split()[iv] if tb is None or abs(t - t0) < abs(tb - t0): tb = t vb = v return float(vb)
Stock/Data/Viewer/JaccardIndex/DyStockDataJaccardIndexWidgets.py
Leonardo-YXH/DevilYuan
135
12604176
from PyQt5.QtWidgets import QTabWidget from ....Common.DyStockCommon import * from .DyStockDataJaccardIndexWidget import * class DyStockDataJaccardIndexWidgets(QTabWidget): def __init__(self, jaccardDfs): super().__init__() self._jaccardDfs = jaccardDfs self._initUi() self.currentChanged.connect(self._onChange) def _initUi(self): for index in sorted(self._jaccardDfs): widget = DyStockDataJaccardIndexWidget(index, self._jaccardDfs[index]) self.addTab(widget, DyStockCommon.indexes[index]) def getActiveIndexJaccardDf(self): indexName = self.tabText(self.currentIndex()) index = DyStockCommon.getIndexByName(indexName) return index, self._jaccardDfs[index] def setCodeSetWidgets(self, codeSetWidgets): self._codeSetWidgets = codeSetWidgets def _onChange(self): self._codeSetWidgets.blockSignals(True) self._codeSetWidgets.setCurrentIndex(self.currentIndex()) self._codeSetWidgets.blockSignals(False)
src/lib/mailcap.py
DTenore/skulpt
2,671
12604190
<reponame>DTenore/skulpt<gh_stars>1000+ import _sk_fail; _sk_fail._("mailcap")
src/compas/numerical/lma/lma_numpy.py
XingxinHE/compas
235
12604196
# from __future__ import absolute_import # from __future__ import division # from __future__ import print_function # __all__ = ['lma_numpy'] # def objective(qind, E, Ci, Cf, Ct, Cit, pzi, out=2): # q = E.dot(qind) # Q = diags([q.flatten()], [0]) # Di = Cit.dot(Q).dot(Ci) # Df = Cit.dot(Q).dot(Cf) # zi = spsolve(Di, pzi - Df.dot(zf)) # f = zi - zT # if out == 1: # return f # W = diags([zi.flatten()], [0]) # J = spsolve(-D, Cit).dot(W).dot(E) # return f, J # def lma_numpy(cost, x0, args=None, kmax=1000, tau=1e-6, eps1=1e-8, eps2=1e-8): # """Levenberg-Marquardt algorithm for solving least-squares problems. # Parameters # ---------- # cost : callable # The objective or "cost" function. # x0 : array-like # Initial guess for the variables. # args : list, optional # Additional arguments to be passed to the objective function. # kmax : int, optional # The maximum number of iterations. # Default is `1000`. # tau : float, optional # Parameter for finding the step size in the steepest descent direction. # Default is `1e-6`. # eps1 : float, optional # Stopage criterion related to the maximum absolute value of the gradient. # Default is `1e-8`. # eps2 : float, optional # Stopage criterion related to the improvement between iterations. # Default is `1e-8`. # Returns # ------- # list # * The optimal values for the optimization variables. # * The reason for stopping. # * The final iteration. # * The final gradient. # Notes # ----- # References # ---------- # Examples # -------- # >>> # """ # x = asarray(x0).reshape((-1, 1)) # n = len(x) # f, J = cost(x, *args) # A = dot(J.transpose(), J) # a = diagonal(A) # g = dot(J.transpose(), f) # k = 0 # v = 2 # mu = tau * max(a) # stop = 'max(abs(g)): %s > %s' % (max(abs(g)), eps1) # while max(abs(g)) > eps1 : # dx = solve(-(A + mu * eye(n)), g) # xn = x + dx # # should the gain be calculated based on dq rather than dqind? # # differences between iterations become too small # # this means that we are at a local minimum, i think # if norm(dx) <= eps2 * norm(xn) : # stop = 'differences: %s <= %s' % (norm(dx), eps2 * norm(xn)) # break # fn = cost(xn, *args, out=1) # # gain ratio # # assess whether to switch between ... # gain = (0.5 * (sum(power(f, 2)) - sum(power(fn, 2)))) / (0.5 * dx.transpose() * (mu * dx - g)) # if gain > 0 : # x = xn # f, J = cost(x, *args, out=2) # A = dot(J.transpose(), J) # a = diagonal(A) # g = dot(J.transpose(), f) # mu = mu * max([1/3, 1 - (2 * gain - 1)**3]) # v = 2 # else : # mu = mu * v # v = 2 * v # k = k + 1 # if k >= kmax : # stop = 'kmax' # break # return [x, stop, k, g] # # ============================================================================== # # Main # # ============================================================================== # if __name__ == "__main__": # pass
tools/metrics/utils/buildsystem.py
ivafanas/sltbench
146
12604356
from collections import namedtuple MAKE = 'make' NINJA = 'ninja' ALL = [MAKE, NINJA] _BuildSystem = namedtuple('BuildSystem', 'cmake_generator,build_command') def create(args): bs = args.build_system if bs == MAKE: return _BuildSystem(cmake_generator='Unix Makefiles', build_command='make -j 1') if bs == NINJA: return _BuildSystem(cmake_generator='Ninja', build_command='ninja -j 1') raise RuntimeError('Unsupported build system: {}'.format(bs))
rpython/annotator/policy.py
nanjekyejoannah/pypy
381
12604383
# base annotation policy for specialization from rpython.annotator.specialize import default_specialize as default from rpython.annotator.specialize import ( specialize_argvalue, specialize_argtype, specialize_arglistitemtype, specialize_arg_or_var, memo, specialize_call_location) from rpython.flowspace.operation import op from rpython.flowspace.model import Constant from rpython.annotator.model import SomeTuple class AnnotatorPolicy(object): """ Possibly subclass and pass an instance to the annotator to control special-casing during annotation """ def event(pol, bookkeeper, what, *args): pass def get_specializer(pol, directive): if directive is None: return pol.default_specialize # specialize[(args)] directive_parts = directive.split('(', 1) if len(directive_parts) == 1: [name] = directive_parts parms = () else: name, parms = directive_parts try: parms = eval("(lambda *parms: parms)(%s" % parms) except (KeyboardInterrupt, SystemExit): raise except: raise Exception("broken specialize directive parms: %s" % directive) name = name.replace(':', '__') try: specializer = getattr(pol, name) except AttributeError: raise AttributeError("%r specialize tag not defined in annotation" "policy %s" % (name, pol)) else: if not parms: return specializer else: def specialize_with_parms(funcdesc, args_s): return specializer(funcdesc, args_s, *parms) return specialize_with_parms # common specializations default_specialize = staticmethod(default) specialize__memo = staticmethod(memo) specialize__arg = staticmethod(specialize_argvalue) # specialize:arg(N) specialize__arg_or_var = staticmethod(specialize_arg_or_var) specialize__argtype = staticmethod(specialize_argtype) # specialize:argtype(N) specialize__arglistitemtype = staticmethod(specialize_arglistitemtype) specialize__call_location = staticmethod(specialize_call_location) def specialize__ll(pol, *args): from rpython.rtyper.annlowlevel import LowLevelAnnotatorPolicy return LowLevelAnnotatorPolicy.default_specialize(*args) def specialize__ll_and_arg(pol, *args): from rpython.rtyper.annlowlevel import LowLevelAnnotatorPolicy return LowLevelAnnotatorPolicy.specialize__ll_and_arg(*args) def no_more_blocks_to_annotate(pol, annotator): bk = annotator.bookkeeper # hint to all pending specializers that we are done for callback in bk.pending_specializations: callback() del bk.pending_specializations[:] if annotator.added_blocks is not None: all_blocks = annotator.added_blocks else: all_blocks = annotator.annotated for block in list(all_blocks): for i, instr in enumerate(block.operations): if not isinstance(instr, (op.simple_call, op.call_args)): continue v_func = instr.args[0] s_func = annotator.annotation(v_func) if not hasattr(s_func, 'needs_sandboxing'): continue key = ('sandboxing', s_func.const) if key not in bk.emulated_pbc_calls: params_s = s_func.args_s s_result = s_func.s_result from rpython.translator.sandbox.rsandbox import make_sandbox_trampoline sandbox_trampoline = make_sandbox_trampoline( s_func.name, params_s, s_result) sandbox_trampoline._signature_ = [SomeTuple(items=params_s)], s_result bk.emulate_pbc_call(key, bk.immutablevalue(sandbox_trampoline), params_s) else: s_trampoline = bk.emulated_pbc_calls[key][0] sandbox_trampoline = s_trampoline.const new = instr.replace({instr.args[0]: Constant(sandbox_trampoline)}) block.operations[i] = new
armi/bookkeeping/tests/__init__.py
keckler/armi
162
12604391
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bookkeeping test package. This may seem a little bit over-engineered, but the jupyter notebooks that get run by the test_historyTracker are also used in the documentation system, so providing a list of related files from this package is useful. Also, these are organized like this to prevent having to import the world just to get something like a list of strings. """ from ._constants import *
Val_model_subpixel.py
Dai-z/pytorch-superpoint
390
12604418
"""script for subpixel experiment (not tested) """ import numpy as np import torch from torch.autograd import Variable import torch.backends.cudnn as cudnn import torch.optim import torch.nn as nn import torch.nn.functional as F import torch.utils.data from tqdm import tqdm from utils.loader import dataLoader, modelLoader, pretrainedLoader import logging from utils.tools import dict_update from utils.utils import labels2Dto3D, flattenDetection, labels2Dto3D_flattened from utils.utils import pltImshow, saveImg from utils.utils import precisionRecall_torch from utils.utils import save_checkpoint from pathlib import Path @torch.no_grad() class Val_model_subpixel(object): def __init__(self, config, device='cpu', verbose=False): self.config = config self.model = self.config['name'] self.params = self.config['params'] self.weights_path = self.config['pretrained'] self.device=device pass def loadModel(self): # model = 'SuperPointNet' # params = self.config['model']['subpixel']['params'] from utils.loader import modelLoader self.net = modelLoader(model=self.model, **self.params) checkpoint = torch.load(self.weights_path, map_location=lambda storage, loc: storage) self.net.load_state_dict(checkpoint['model_state_dict']) self.net = self.net.to(self.device) logging.info('successfully load pretrained model from: %s', self.weights_path) pass def extract_patches(self, label_idx, img): """ input: label_idx: tensor [N, 4]: (batch, 0, y, x) img: tensor [batch, channel(1), H, W] """ from utils.losses import extract_patches patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(self.device), img.to(self.device), patch_size=patch_size) return patches pass def run(self, patches): """ """ with torch.no_grad(): pred_res = self.net(patches) return pred_res pass if __name__ == '__main__': # filename = 'configs/magicpoint_shapes_subpix.yaml' filename = 'configs/magicpoint_repeatability.yaml' import yaml device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_default_tensor_type(torch.FloatTensor) with open(filename, 'r') as f: config = yaml.load(f) task = config['data']['dataset'] # data loading from utils.loader import dataLoader_test as dataLoader data = dataLoader(config, dataset='hpatches') test_set, test_loader = data['test_set'], data['test_loader'] # take one sample for i, sample in tqdm(enumerate(test_loader)): if i>1: break val_agent = Val_model_subpixel(config['subpixel'], device=device) val_agent.loadModel() # points from heatmap img = sample['image'] print("image: ", img.shape) points = torch.tensor([[1,2], [3,4]]) def points_to_4d(points): num_of_points = points.shape[0] cols = torch.zeros(num_of_points, 1).float() points = torch.cat((cols, cols, points.float()), dim=1) return points label_idx = points_to_4d(points) # concat points to be (batch, 0, y, x) patches = val_agent.extract_patches(label_idx, img) points_res = val_agent.run(patches)
freepie-samples/sample1.py
d2002b/alvr1
1,946
12604469
<gh_stars>1000+ # Click trackpad of first controller by "C" key alvr.buttons[0][alvr.Id("trackpad_click")] = keyboard.getKeyDown(Key.C) alvr.buttons[0][alvr.Id("trackpad_touch")] = keyboard.getKeyDown(Key.C) # Move trackpad position by arrow keys if keyboard.getKeyDown(Key.LeftArrow): alvr.trackpad[0][0] = -1.0 alvr.trackpad[0][1] = 0.0 elif keyboard.getKeyDown(Key.UpArrow): alvr.trackpad[0][0] = 0.0 alvr.trackpad[0][1] = 1.0 elif keyboard.getKeyDown(Key.RightArrow): alvr.trackpad[0][0] = 1.0 alvr.trackpad[0][1] = 0.0 elif keyboard.getKeyDown(Key.DownArrow): alvr.trackpad[0][0] = 0.0 alvr.trackpad[0][1] = -1.0
data_pipeline/helpers/priority_refresh_queue.py
poros/data_pipeline
110
12604482
<reponame>poros/data_pipeline # -*- coding: utf-8 -*- # Copyright 2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import from __future__ import unicode_literals from data_pipeline.schematizer_clientlib.models.refresh import RefreshStatus class EmptyQueueError(Exception): def __init__(self, source_name): Exception.__init__( self, "Trying to pop from empty queue ({})".format(source_name) ) class PriorityRefreshQueue(object): """ PriorityRefreshQueue orders paused/non-started jobs in the queue by: - higher priority > lower priority - paused status > not_started status - older > newer in that order of preference (i.e an older paused job will be beaten by any job with a higher priority) The only public ways to add/remove jobs from this queue are add_refreshes_to_queue and pop. We could implement this faster, but this is unnecessary as we have ample time between schematizer polls. Works for multiple sources within a single namespace but not across namespaces (since source_names are only unique within a namespace). Should only manage jobs that are either paused or non-started. This means when starting a job retrieved from peek, it should be popped from the queue. """ def __init__(self): self.source_to_refresh_queue = {} self.refresh_ref = {} def _add_refresh_to_queue(self, refresh): if refresh.refresh_id not in self.refresh_ref: if refresh.source_name not in self.source_to_refresh_queue: self.source_to_refresh_queue[refresh.source_name] = [] self.source_to_refresh_queue[refresh.source_name].append( refresh.refresh_id ) self.refresh_ref[refresh.refresh_id] = refresh def _top_refresh(self, source_name): return self.refresh_ref[ self.source_to_refresh_queue[source_name][0] ] def _sort_by_ascending_age(self, queue): return sorted( queue, key=lambda refresh_id: self.refresh_ref[refresh_id].created_at ) def _sort_by_paused_first(self, queue): return sorted( queue, key=lambda refresh_id: (0 if self.refresh_ref[refresh_id].status == RefreshStatus.PAUSED else 1) ) def _sort_by_descending_priority(self, queue): return sorted( queue, key=lambda refresh_id: self.refresh_ref[refresh_id].priority, reverse=True ) def _sort_refresh_queue(self, queue): queue = self._sort_by_ascending_age(queue) queue = self._sort_by_paused_first(queue) return self._sort_by_descending_priority(queue) def add_refreshes_to_queue(self, refreshes): for refresh in refreshes: self._add_refresh_to_queue(refresh) for source, queue in self.source_to_refresh_queue.iteritems(): self.source_to_refresh_queue[source] = self._sort_refresh_queue(queue) def peek(self): """Returns a dict of the top refresh for each source in the queue""" return { source_name: self._top_refresh(source_name) for source_name in self.source_to_refresh_queue } def pop(self, source_name): """Removes and returns the top refresh for the given source using its name (Note: source_name does not include its namespace)""" if source_name not in self.source_to_refresh_queue: raise EmptyQueueError(source_name) refresh_id = self.source_to_refresh_queue[source_name].pop(0) item = self.refresh_ref.pop(refresh_id) if not self.source_to_refresh_queue[source_name]: del self.source_to_refresh_queue[source_name] return item
problems/14/solution_14.py
r1cc4rdo/daily_coding_problem
158
12604493
<gh_stars>100-1000 import math import random def coding_problem_14(): """ The area of a circle is defined as $\pi r^2$. Estimate $\pi$ to 3 decimal places using a Monte Carlo method. Example: >>> import math >>> import random >>> random.seed(0xBEEF) >>> pi_approx = coding_problem_14() >>> abs(math.pi - pi_approx) < 1e-2 True Note: the unit test above is not testing for 3 decimal places, but only 2. Getting to 3 significant digits would require too much time each time, since convergence is exponentially slow. Also priming the random number generator to avoid random failure for unlucky distributions of samples. """ inside, total, prev_pi, pi_approx = 0, 0, 0, 1 while abs(pi_approx - prev_pi) > 1e-5: total += 10000 for _ in range(10000): x, y = random.random(), random.random() inside += (x**2 + y**2) < 1 # 1**2 == 1 prev_pi, pi_approx = pi_approx, (4. * inside) / total return pi_approx if __name__ == '__main__': import doctest doctest.testmod(verbose=True)
tests/test_init.py
google/evojax
365
12604569
<reponame>google/evojax<filename>tests/test_init.py # Copyright 2022 The EvoJAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class TestTask: def test_cartpole(self): from evojax.task.cartpole import CartPoleSwingUp _ = CartPoleSwingUp() assert True def test_seq2seq(self): from evojax.task.seq2seq import Seq2seqTask _ = Seq2seqTask() assert True def test_waterworld(self): from evojax.task.waterworld import WaterWorld _ = WaterWorld() assert True def test_waterworld_ma(self): from evojax.task.ma_waterworld import MultiAgentWaterWorld _ = MultiAgentWaterWorld() assert True def test_flocing(self): from evojax.task.flocking import FlockingTask _ = FlockingTask() assert True class TestPolicy: def test_seq2seq(self): from evojax.policy import Seq2seqPolicy _ = Seq2seqPolicy() assert True def test_mlp(self): from evojax.policy import MLPPolicy _ = MLPPolicy(input_dim=16, hidden_dims=(16, 16), output_dim=16) assert True def test_mlp_pi(self): from evojax.policy import PermutationInvariantPolicy _ = PermutationInvariantPolicy(act_dim=16, hidden_dim=16) assert True def test_convnet(self): from evojax.policy import ConvNetPolicy _ = ConvNetPolicy() assert True class TestAlgo: def test_pgpe(self): from evojax.algo import PGPE _ = PGPE(pop_size=16, param_size=16) assert True
pseudo/api_translators/cpp_api_handlers.py
mifieldxu/pseudo-lang
661
12604608
<reponame>mifieldxu/pseudo-lang<gh_stars>100-1000 from pseudo.pseudo_tree import Node, call, method_call, local, assignment, to_node from pseudo.api_handlers import BizarreLeakingNode, NormalLeakingNode class Read(BizarreLeakingNode): ''' transforms `io:read` `a = io:read()` `cin << a` ''' def temp_name(self, target): return '_read_result' def as_expression(self): return [ Node('_cpp_declaration', name='_dummy', args=[], decl_type='String', pseudo_type='Void'), Node('_cpp_cin', args=[local('_dummy', 'String')]) ], None def as_assignment(self, target): return [Node('_cpp_cin', args=[target])] class Slice(BizarreLeakingNode): ''' transforms `List:slice..` ''' def temp_name(self, target): return '_sliced' def as_expression(self): # pseudo_type=self.args[0].pseudo_type begin = method_call(self.args[0], 'begin', [], 'CppIterator') end = method_call(self.args[0], 'end', [], 'CppIterator') if self.name == 'slice_to': from_, to = to_node(0), self.args[1] else: from_, to = self.args[1], self.args[2] if from_.type == 'int' and from_.value == 0: start = begin else: start = Node('binary_op', op='+', left=begin, right=from_, pseudo_type='CppIterator') if self.name == 'slice_from': finish = end elif to.type == 'int' and to.value < 0: finish = Node('binary_op', op='-', left=end, right=to_node(-to.value)) else: finish = Node('binary_op', op='+', left=begin, right=to, pseudo_type='CppIterator') return [ Node('_cpp_declaration', name='_sliced', args=[start, finish], decl_type=self.args[0].pseudo_type, pseudo_type='Void')], None def as_assignment(self, target): expression = self.as_expression()[0][0] expression.name = target.name return [expression] class ReadFile(BizarreLeakingNode): ''' transforms `io:read_file` ''' def temp_name(self, target): return '_file_contents' def as_expression(self): return [Node('_cpp_declaration', name='ifs', args=[to_node('f.py')], decl_type='ifstream', pseudo_type='Void'), Node('_cpp_declaration', name=self.temp_name(None), args=[Node('_cpp_group', value=Node('_cpp_anon_declaration', args=[local('ifs', 'ifstream')], decl_type='istreambuf_iterator<char>', pseudo_type='Void')), Node('_cpp_group', value=Node('_cpp_anon_declaration', args=[], decl_type='istreambuf_iterator<char>', pseudo_type='Void'))], decl_type='String', pseudo_type='Void')], None def as_assignment(self, target): e = self.as_expression()[0] e[1].name = target.name return e
dnachisel/Specification/SpecEvaluation/ProblemConstraintsEvaluations.py
simone-pignotti/DnaChisel
124
12604611
from .SpecEvaluation import SpecEvaluation from .SpecEvaluations import SpecEvaluations class ProblemConstraintsEvaluations(SpecEvaluations): """Special multi-evaluation class for all constraints of a same problem. See submethod ``.from_problem`` """ specifications_role = "constraint" @staticmethod def from_problem(problem, autopass_constraints=True): """Create an instance by evaluating all constraints in the problem. The ``problem`` is a DnaChisel DnaOptimizationProblem. """ def evaluate(constraint): if ( autopass_constraints and constraint.enforced_by_nucleotide_restrictions ): return SpecEvaluation( constraint, problem, score=1, locations=[], message="Enforced by nucleotides restrictions", ) else: return constraint.evaluate(problem) return ProblemConstraintsEvaluations( [evaluate(constraint) for constraint in problem.constraints], problem=problem, ) def success_failure_color(self, evaluation): """Return color #60f979 if evaluation.passes else #f96c60.""" return "#60f979" if evaluation.passes else "#f96c60" def text_summary_message(self): """Return a global SUCCESS or FAILURE message for all evaluations.""" failed = [e for e in self.evaluations if not e.passes] if failed == []: return "SUCCESS - all constraints evaluations pass" else: return "FAILURE: %d constraints evaluations failed" % len(failed)
python/traffic_manager.py
APinkLemon/Learn-Carla
148
12604636
<reponame>APinkLemon/Learn-Carla<gh_stars>100-1000 import argparse import carla import cv2 import logging import time import numpy as np from numpy import random from queue import Queue from queue import Empty def parser(): argparser = argparse.ArgumentParser( description=__doc__) argparser.add_argument( '--host', metavar='H', default='127.0.0.1', help='IP of the host server (default: 127.0.0.1)') argparser.add_argument( '-p', '--port', metavar='P', default=2000, type=int, help='TCP port to listen to (default: 2000)') argparser.add_argument( '-n', '--number-of-vehicles', metavar='N', default=20, type=int, help='number of vehicles (default: 30)') argparser.add_argument( '-d', '--number-of-dangerous-vehicles', metavar='N', default=1, type=int, help='number of dangerous vehicles (default: 3)') argparser.add_argument( '--tm-port', metavar='P', default=8000, type=int, help='port to communicate with TM (default: 8000)') argparser.add_argument( '--sync', action='store_true', default=True, help='Synchronous mode execution') return argparser.parse_args() def sensor_callback(sensor_data, sensor_queue): array = np.frombuffer(sensor_data.raw_data, dtype=np.dtype("uint8")) # image is rgba format array = np.reshape(array, (sensor_data.height, sensor_data.width, 4)) array = array[:, :, :3] sensor_queue.put((sensor_data.frame, array)) def main(): args = parser() logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) vehicles_id_list = [] client = carla.Client(args.host, args.port) client.set_timeout(10.0) synchronous_master = False try: world = client.get_world() origin_settings = world.get_settings() traffic_manager = client.get_trafficmanager(args.tm_port) # every vehicle keeps a distance of 3.0 meter traffic_manager.set_global_distance_to_leading_vehicle(3.0) # Set physical mode only for cars around ego vehicle to save computation traffic_manager.set_hybrid_physics_mode(True) # default speed is 30 traffic_manager.global_percentage_speed_difference(80) # Suggest using syncmode if args.sync: settings = world.get_settings() traffic_manager.set_synchronous_mode(True) if not settings.synchronous_mode: synchronous_master = True settings.synchronous_mode = True # 20fps settings.fixed_delta_seconds = 0.05 world.apply_settings(settings) blueprints_vehicle = world.get_blueprint_library().filter("vehicle.*") # sort the vehicle list by id blueprints_vehicle = sorted(blueprints_vehicle, key=lambda bp: bp.id) spawn_points = world.get_map().get_spawn_points() number_of_spawn_points = len(spawn_points) if args.number_of_vehicles < number_of_spawn_points: random.shuffle(spawn_points) elif args.number_of_vehicles >= number_of_spawn_points: msg = 'requested %d vehicles, but could only find %d spawn points' logging.warning(msg, args.number_of_vehicles, number_of_spawn_points) args.number_of_vehicles = number_of_spawn_points - 1 # Use command to apply actions on batch of data SpawnActor = carla.command.SpawnActor SetAutopilot = carla.command.SetAutopilot # this is equal to int 0 FutureActor = carla.command.FutureActor batch = [] for n, transform in enumerate(spawn_points): if n >= args.number_of_vehicles: break blueprint = random.choice(blueprints_vehicle) if blueprint.has_attribute('color'): color = random.choice(blueprint.get_attribute('color').recommended_values) blueprint.set_attribute('color', color) if blueprint.has_attribute('driver_id'): driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values) blueprint.set_attribute('driver_id', driver_id) # set autopilot blueprint.set_attribute('role_name', 'autopilot') # spawn the cars and set their autopilot all together batch.append(SpawnActor(blueprint, transform) .then(SetAutopilot(FutureActor, True, traffic_manager.get_port()))) # excute the command for (i, response) in enumerate(client.apply_batch_sync(batch, synchronous_master)): if response.error: logging.error(response.error) else: print("Fucture Actor", response.actor_id) vehicles_id_list.append(response.actor_id) vehicles_list = world.get_actors().filter('vehicle.*') # wait for a tick to ensure client receives the last transform of the vehicles we have just created if not args.sync or not synchronous_master: world.wait_for_tick() else: world.tick() # set several of the cars as dangerous car for i in range(args.number_of_dangerous_vehicles): danger_car = vehicles_list[i] # crazy car ignore traffic light, do not keep safe distance, and very fast traffic_manager.ignore_lights_percentage(danger_car, 100) traffic_manager.distance_to_leading_vehicle(danger_car, 0) traffic_manager.vehicle_percentage_speed_difference(danger_car, -50) print('spawned %d vehicles , press Ctrl+C to exit.' % (len(vehicles_list))) # create ego vehicle ego_vehicle_bp = world.get_blueprint_library().find('vehicle.mercedes-benz.coupe') # green color ego_vehicle_bp.set_attribute('color', '0, 255, 0') # set this one as ego ego_vehicle_bp.set_attribute('role_name', 'hero') # get a valid transform that has not been assigned yet transform = spawn_points[len(vehicles_id_list)] ego_vehicle = world.spawn_actor(ego_vehicle_bp, transform) ego_vehicle.set_autopilot(True, args.tm_port) vehicles_id_list.append(ego_vehicle.id) # create sensor queue sensor_queue = Queue(maxsize=10) # create camera camera_bp = world.get_blueprint_library().find('sensor.camera.rgb') # camera relative position related to the vehicle camera_transform = carla.Transform(carla.Location(x=1.5, z=2.4)) camera = world.spawn_actor(camera_bp, camera_transform, attach_to=ego_vehicle) # set the callback function camera.listen(lambda image: sensor_callback(image, sensor_queue)) while True: if args.sync and synchronous_master: world.tick() try: s_frame = sensor_queue.get(True, 1.0) print("Camera Frame: %d" % (s_frame[0])) # show image in a poping window cv2.imshow('camera', s_frame[1]) if cv2.waitKey(1) & 0xFF == ord('q'): break except Empty: print("Some of the sensor information is missed") else: world.wait_for_tick() finally: world.apply_settings(origin_settings) print('\ndestroying %d vehicles' % len(vehicles_id_list)) client.apply_batch([carla.command.DestroyActor(x) for x in vehicles_id_list]) camera.destroy() cv2.destroyAllWindows() time.sleep(0.5) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass finally: print('\ndone.')
examples/from-wiki/demo_meta_matrixmul_cheetah.py
hesom/pycuda
1,264
12604647
<filename>examples/from-wiki/demo_meta_matrixmul_cheetah.py #!python #!/usr/bin/env python # -*- coding: utf-8 -*- """ PyCuda Optimized Matrix Multiplication Template Meta-programming Example using Cheetah (modified from SciPy09 Advanced Tutorial) """ # ------------------------------------------------------------------------------ import numpy as np from pycuda import driver, compiler, gpuarray, tools from Cheetah.Template import Template import pycuda.autoinit # -- default parameters DEFAULT_BLOCK_SIZE = 16 DEFAULT_WORK_SIZE = 1 DEFAULT_UNROLL = 0 DEFAULT_SPILL = False DEFAULT_PREFETCH = False from os import path MYPATH = path.dirname(path.abspath(__file__)) TEMPLATE_FILENAME = path.join(MYPATH, "demo_meta_matrixmul_cheetah.template.cu") # ------------------------------------------------------------------------------ def matrixmul_opt(mat_a, mat_b, block_size = DEFAULT_BLOCK_SIZE, work_size = DEFAULT_WORK_SIZE, unroll = DEFAULT_UNROLL, spill = DEFAULT_SPILL, prefetch = DEFAULT_PREFETCH): ah, aw = mat_a.shape bh, bw = mat_b.shape assert aw == bh # -- pad input matrices appropriately ah_padded = int(np.ceil(ah/block_size)) * block_size aw_padded = int(np.ceil(aw/block_size)) * (block_size*work_size) mat_a_padded = np.zeros((ah_padded, aw_padded), np.float32) mat_a_padded[:ah,:aw] = mat_a bh_padded = aw_padded bw_padded = int(np.ceil(bw/(block_size*work_size))) * (block_size*work_size) mat_b_padded = np.zeros((bh_padded, bw_padded), np.float32) mat_b_padded[:bh, :bw] = mat_b ch_padded = ah_padded cw_padded = bw_padded # -- upload padded input matrices to the GPU mat_a_gpu = gpuarray.to_gpu(mat_a_padded) mat_b_gpu = gpuarray.to_gpu(mat_b_padded) # -- create empty container matrix for the result (C = A * B) mat_c_gpu = gpuarray.zeros((ch_padded, cw_padded), np.float32) # -- generate and compile the code # prepare the template parameters template_params = { 'BLOCK_SIZE': block_size, 'WORK_SIZE': work_size, 'UNROLL': unroll, 'SPILL': spill, 'PREFETCH': prefetch, 'A_WIDTH': aw_padded, 'A_HEIGHT': ah_padded, 'B_WIDTH': bw_padded, } # run the template engine to get the code kernel_code = Template( file = TEMPLATE_FILENAME, searchList = [template_params], ) # compile the code module = compiler.SourceModule(kernel_code) # get the kernel from the module matrixmul_func = module.get_function("matrixMul") # some info about the module print("number of registers used:", matrixmul_func.num_regs) # block of threads # ATTENTION: block is (threadDim.x, threadDim.y, threadDim.z) # and not (threadDim.z, threadDim.y, threadDim.x) block = block_size, block_size, 1 # grid of blocks # ATTENTION: it's (blockDim.x, blockDim.y) # and not (blockDim.y, blockDim.x) grid = int(cw_padded/block_size/work_size), int(ch_padded/block_size) # -- call the kernel on the GPU # Note that when we use time_kernel=True pycuda will automatically synchronize the kernel # to make sure that the timing is correct. If you time the code yourself, you'll have to # synchronize the current Context. gpu_time = matrixmul_func( # -- output mat_c_gpu, # -- inputs mat_a_gpu, mat_b_gpu, # -- grid of blocks grid = grid, # -- block of threads block = block, # -- time the kernel (approx.) time_kernel = True, ) # get the GPU matrix back to CPU memory mat_c_padded = mat_c_gpu.get() mat_c = mat_c_padded[:ah, :bw] return mat_c, gpu_time # ------------------------------------------------------------------------------ if __name__ == "__main__": # matrix sizes a_height = 1024 a_width = 1024 b_height = a_width b_width = 1024 # create random square matrices np.random.seed(0) mat_a = np.random.randn(a_height, a_width).astype(np.float32) mat_b = np.random.randn(b_height, b_width).astype(np.float32) # compute reference on the cpu to verify GPU computation mat_ref = np.dot(mat_a, mat_b) # -- this is a good place to auto-tune the code (using the optimization kwargs) # (note that you may need more that one iteration to get accurate timing estimates) mat_c, gpu_time = matrixmul_opt(mat_a, mat_b) # check for correctness diff = mat_c - mat_ref error = np.absolute(diff).max() assert error <= 1e-2 l2norm = np.linalg.norm(diff) print("l2norm: ", l2norm) # print some stats print("gpu time:", gpu_time) gflop = mat_c.size * (a_width * 2.) / (1000**3.) gflops = gflop / gpu_time print("gflops:", gflops)
xmodaler/lr_scheduler/noam_lr.py
cclauss/xmodaler
830
12604677
<reponame>cclauss/xmodaler<gh_stars>100-1000 import torch from xmodaler.config import configurable from .build import LR_SCHEDULER_REGISTRY @LR_SCHEDULER_REGISTRY.register() class NoamLR(torch.optim.lr_scheduler._LRScheduler): @configurable def __init__( self, *, optimizer, model_size, factor, warmup, last_epoch=-1, ): self.warmup = warmup self.factor = factor self.model_size = model_size super(NoamLR, self).__init__(optimizer, last_epoch) @classmethod def from_config(cls, cfg, optimizer, data_size): return { "optimizer": optimizer, "model_size": cfg.LR_SCHEDULER.MODEL_SIZE, "factor": cfg.LR_SCHEDULER.FACTOR, "warmup": cfg.LR_SCHEDULER.WARMUP, # iterations "last_epoch": -1 } def get_lr(self): return [ self.factor * \ (self.model_size ** (-0.5) * min((self.last_epoch + 1) ** (-0.5), (self.last_epoch + 1) * self.warmup ** (-1.5))) for base_lr in self.base_lrs ]
tests/test_utils.py
fluxility/drf-haystack
201
12604713
<reponame>fluxility/drf-haystack # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.test import TestCase from drf_haystack.utils import merge_dict class MergeDictTestCase(TestCase): def setUp(self): self.dict_a = { "person": { "lastname": "Holmes", "combat_proficiency": [ "Pistol", "boxing" ] }, } self.dict_b = { "person": { "gender": "male", "firstname": "Sherlock", "location": { "address": "221B Baker Street" }, "combat_proficiency": [ "sword", "Martial arts", ] } } def test_utils_merge_dict(self): self.assertEqual(merge_dict(self.dict_a, self.dict_b), { "person": { "gender": "male", "firstname": "Sherlock", "lastname": "Holmes", "location": { "address": "221B Baker Street" }, "combat_proficiency": [ "Martial arts", "Pistol", "boxing", "sword", ] } }) def test_utils_merge_dict_invalid_input(self): self.assertEqual(merge_dict(self.dict_a, "I'm not a dict!"), "I'm not a dict!")
tests/test_cswrapper.py
CSchulzeTLK/FMPy
225
12604740
<reponame>CSchulzeTLK/FMPy<filename>tests/test_cswrapper.py import unittest from fmpy import read_model_description, simulate_fmu from fmpy.util import download_test_file from fmpy.cswrapper import add_cswrapper class CSWrapperTest(unittest.TestCase): def test_cswrapper(self): filename = 'CoupledClutches.fmu' download_test_file('2.0', 'ModelExchange', 'MapleSim', '2016.2', 'CoupledClutches', filename) model_description = read_model_description(filename) self.assertIsNone(model_description.coSimulation) add_cswrapper(filename) simulate_fmu(filename, fmi_type='CoSimulation')
st2common/benchmarks/micro/test_mongo_transport_compression.py
momokuri-3/st2
4,920
12604774
<filename>st2common/benchmarks/micro/test_mongo_transport_compression.py<gh_stars>1000+ # Copyright 2021 The StackStorm Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Benchmarks which measure how much overhead enabling transport / network level MongoDB compression adds. """ from st2common.util.monkey_patch import monkey_patch monkey_patch() import os import pytest from oslo_config import cfg from mongoengine.connection import disconnect from st2common.service_setup import db_setup from st2common.models.db.liveaction import LiveActionDB from st2common.persistence.liveaction import LiveAction from common import FIXTURES_DIR from common import PYTEST_FIXTURE_FILE_PARAM_DECORATOR @PYTEST_FIXTURE_FILE_PARAM_DECORATOR @pytest.mark.parametrize( "compression", [ None, "zstd", ], ids=[ "none", "zstd", ], ) @pytest.mark.benchmark(group="test_model_save") def test_save_execution(benchmark, fixture_file: str, compression): with open(os.path.join(FIXTURES_DIR, fixture_file), "rb") as fp: content = fp.read() cfg.CONF.set_override(name="compressors", group="database", override=compression) # NOTE: It's important we correctly reestablish connection before each setting change disconnect() connection = db_setup() if compression is None: assert "compressors" not in str(connection) elif compression == "zstd": assert "compressors=['zstd']" in str(connection) def run_benchmark(): live_action_db = LiveActionDB() live_action_db.status = "succeeded" live_action_db.action = "core.local" live_action_db.result = content inserted_live_action_db = LiveAction.add_or_update(live_action_db) return inserted_live_action_db inserted_live_action_db = benchmark(run_benchmark) assert inserted_live_action_db.result == content @PYTEST_FIXTURE_FILE_PARAM_DECORATOR @pytest.mark.parametrize( "compression", [ None, "zstd", ], ids=[ "none", "zstd", ], ) @pytest.mark.benchmark(group="test_model_read") def test_read_execution(benchmark, fixture_file: str, compression): with open(os.path.join(FIXTURES_DIR, fixture_file), "rb") as fp: content = fp.read() cfg.CONF.set_override(name="compressors", group="database", override=compression) # NOTE: It's important we correctly reestablish connection before each setting change disconnect() connection = db_setup() if compression is None: assert "compressors" not in str(connection) elif compression == "zstd": assert "compressors=['zstd']" in str(connection) live_action_db = LiveActionDB() live_action_db.status = "succeeded" live_action_db.action = "core.local" live_action_db.result = content inserted_live_action_db = LiveAction.add_or_update(live_action_db) def run_benchmark(): retrieved_live_action_db = LiveAction.get_by_id(inserted_live_action_db.id) return retrieved_live_action_db retrieved_live_action_db = benchmark(run_benchmark) # Assert that result is correctly converted back to dict on retrieval assert retrieved_live_action_db == inserted_live_action_db
libtmux/_compat.py
jamosta/libtmux
398
12604779
# -*- coding: utf8 -*- # flake8: NOQA import sys from collections.abc import MutableMapping console_encoding = sys.__stdout__.encoding def console_to_str(s): """From pypa/pip project, pip.backwardwardcompat. License MIT.""" try: return s.decode(console_encoding, 'ignore') except UnicodeDecodeError: return s.decode('utf_8', 'ignore') def reraise(tp, value, tb=None): if value.__traceback__ is not tb: raise (value.with_traceback(tb)) raise value def str_from_console(s): try: return str(s) except UnicodeDecodeError: return str(s, encoding='utf_8')
docs/papers/sc2013/bench/pythran/pi_buffon.py
davidbrochart/pythran
1,647
12604790
#skip.runas pi_estimate(40000000) #pythran export pi_estimate(int) from math import sqrt, pow from random import random def pi_estimate(DARTS): hits = 0 "omp parallel for private(i,x,y,dist), reduction(+:hits)" for i in xrange (0, DARTS): x = random() y = random() dist = sqrt(pow(x, 2) + pow(y, 2)) if dist <= 1.0: hits += 1.0 # hits / throws = 1/4 Pi pi = 4 * (hits / DARTS) return pi
nlt/util/math.py
isabella232/neural-light-transport
176
12604794
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf tf.compat.v1.enable_eager_execution() def sample_pdf(val, weights, n_samples, det=False, eps=1e-5): weights += eps # prevent NaN's pdf = weights / tf.reduce_sum(weights, -1, keepdims=True) cdf = tf.cumsum(pdf, -1) cdf = tf.concat((tf.zeros_like(cdf[:, :1]), cdf), -1) if det: u = tf.linspace(0., 1., n_samples) u = tf.broadcast_to(u, cdf.shape[:-1] + (n_samples,)) else: u = tf.random.uniform(cdf.shape[:-1] + (n_samples,)) # Invert CDF ind = tf.searchsorted(cdf, u, side='right') # (n_rays, n_samples) below = tf.maximum(0, ind - 1) above = tf.minimum(ind, cdf.shape[-1] - 1) ind_g = tf.stack((below, above), -1) # (n_rays, n_samples, 2) cdf_g = tf.gather(cdf, ind_g, axis=-1, batch_dims=len(ind_g.shape) - 2) val_g = tf.gather(val, ind_g, axis=-1, batch_dims=len(ind_g.shape) - 2) denom = cdf_g[:, :, 1] - cdf_g[:, :, 0] # (n_rays, n_samples) denom = tf.where(denom < eps, tf.ones_like(denom), denom) t = (u - cdf_g[:, :, 0]) / denom samples = val_g[:, :, 0] + t * (val_g[:, :, 1] - val_g[:, :, 0]) return samples # (n_rays, n_samples)
goatools/grouper/sorter_nts.py
flying-sheep/goatools
477
12604797
"""Sorts GO IDs or user-provided sections containing GO IDs.""" __copyright__ = "Copyright (C) 2016-2019, <NAME>, <NAME>, All rights reserved." __author__ = "<NAME>" class SorterNts(object): """Handles GO IDs in user-created sections. * Get a 2-D list of sections: sections = [ ['Immune', [ "GO:HHHHHH0", "GO:UUUUU00", ... "GO:UUUUU0N", "GO:HHHHHH1", ...]], ['Neuro', [ "GO:HHHHHH2", "GO:UUUUU20", ... "GO:UUUUU2N", "GO:HHHHHH3", ...]], ] Also contains function for various tasks on grouped GO IDs: * Sort in various ways (sort by: p=value, depth, proximity to leaf-level, etc.): * Header GO ID groups * User GO IDs within a group """ def __init__(self, sortgos, section_sortby=None): # User GO IDs grouped under header GO IDs are not sorted by the Grouper class. # Sort both user GO IDs in a group and header GO IDs across groups with these: # S: section_sortby (T=True, F=False, S=lambda sort function) # H: hdrgo_sortby Sorts hdr GO IDs # U: sortby Sorts user GO IDs # P: hdrgo_prt If True, Removes GO IDs used as GO group headers; Leaves list in # sorted order, but removes header GO IDs which are not user GO IDs. # # rm_h hdr_sort usr_sort S H U P # --- ------------ ------------ _ _ _ - # NO hdrgo_sortby usrgo_sortby T H U T # YES hdrgo_sortby usrgo_sortby T H U F # NO section_order usrgo_sortby F - U T # YES section_order usrgo_sortby F - U F # YES |<----section_sortby---->| S - - - # print("SSSS SorterNts(sortgos, section_sortby={})".format(section_sortby)) self.sortgos = sortgos # SorterGoIds # section_sortby: True, False or None, or a sort_fnc self.section_sortby = section_sortby self.sections = self.sortgos.grprobj.hdrobj.sections # print('IIIIIIIIIIII SorterNts section_sortby', section_sortby) def get_sorted_nts_keep_section(self, hdrgo_prt): """Get 2-D list: 1st level is sections and 2nd level is grouped and sorted namedtuples.""" section_nts = [] # print("SSSS SorterNts:get_sorted_nts_keep_section(hdrgo_prt={})".format(hdrgo_prt)) hdrgos_actual = self.sortgos.grprobj.get_hdrgos() hdrgos_secs = set() hdrgo_sort = False if self.section_sortby is False else True secname_dflt = self.sortgos.grprobj.hdrobj.secdflt for section_name, section_hdrgos_all in self.sections: #section_hdrgos_act = set(section_hdrgos_all).intersection(hdrgos_actual) section_hdrgos_act = [h for h in section_hdrgos_all if h in hdrgos_actual] hdrgos_secs |= set(section_hdrgos_act) nts_section = self.sortgos.get_nts_sorted(hdrgo_prt, section_hdrgos_act, hdrgo_sort) if nts_section: nts_section = self._get_sorted_section(nts_section) section_nts.append((section_name, nts_section)) remaining_hdrgos = hdrgos_actual.difference(hdrgos_secs) # Add GO group headers not yet used under new section, Misc. if remaining_hdrgos: nts_section = self.sortgos.get_nts_sorted(hdrgo_prt, remaining_hdrgos, hdrgo_sort) if nts_section: nts_section = self._get_sorted_section(nts_section) section_nts.append((secname_dflt, nts_section)) return section_nts def get_sorted_nts_omit_section(self, hdrgo_prt, hdrgo_sort): """Return a flat list of sections (wo/section names) with GO terms grouped and sorted.""" nts_flat = [] # print("SSSS SorterNts:get_sorted_nts_omit_section(hdrgo_prt={}, hdrgo_sort={})".format( # hdrgo_prt, hdrgo_sort)) hdrgos_seen = set() hdrgos_actual = self.sortgos.grprobj.get_hdrgos() for _, section_hdrgos_all in self.sections: #section_hdrgos_act = set(section_hdrgos_all).intersection(hdrgos_actual) section_hdrgos_act = [h for h in section_hdrgos_all if h in hdrgos_actual] hdrgos_seen |= set(section_hdrgos_act) self.sortgos.get_sorted_hdrgo2usrgos( section_hdrgos_act, nts_flat, hdrgo_prt, hdrgo_sort) remaining_hdrgos = set(self.sortgos.grprobj.get_hdrgos()).difference(hdrgos_seen) self.sortgos.get_sorted_hdrgo2usrgos(remaining_hdrgos, nts_flat, hdrgo_prt, hdrgo_sort) return nts_flat def _get_sorted_section(self, nts_section): """Sort GO IDs in each section, if requested by user.""" #pylint: disable=unnecessary-lambda if self.section_sortby is True: return sorted(nts_section, key=lambda nt: self.sortgos.usrgo_sortby(nt)) if self.section_sortby is False or self.section_sortby is None: return nts_section # print('SORT GO IDS IN A SECTION') return sorted(nts_section, key=lambda nt: self.section_sortby(nt)) # Copyright (C) 2016-2019, <NAME>, <NAME>, All rights reserved.
atlas/foundations_local_docker_scheduler_plugin/src/test/test_cron_job_scheduler.py
DeepLearnI/atlas
296
12604802
from foundations_spec import * import unittest.mock from foundations_local_docker_scheduler_plugin.cron_job_scheduler import CronJobScheduler, CronJobSchedulerError class TestCronJobScheduler(Spec): mock_get = let_patch_mock('requests.get') mock_delete = let_patch_mock('requests.delete') mock_patch = let_patch_mock('requests.patch') mock_put = let_patch_mock('requests.put') mock_user_token = let_patch_mock('foundations_authentication.user_token.user_token') mock_successful_response_body = let_mock() mock_cron_schedule = let_mock() @let def scheduler_host(self): return self.faker.hostname() @let def scheduler_port(self): return self.faker.random.randint(80, 30000) @let def scheduler_uri(self): return f'http://{self.scheduler_host}:{self.scheduler_port}' @let def default_scheduler_uri(self): return f'http://localhost:5000' @let def scheduler(self): return CronJobScheduler(scheduler_url=self.scheduler_uri) @let def scheduler_default_args(self): return CronJobScheduler() @let def job_id(self): return self.faker.word() @let def error_message(self): return self.faker.sentence() @let def error_response(self): response = Mock() response.text = self.error_message return response @let def success_response_204(self): response = Mock() response.status_code = 204 return response @let def success_response_200(self): response = Mock() response.status_code = 200 response.json.return_value = self.mock_successful_response_body return response @let def project_name(self): return self.faker.word() @set_up def set_up(self): self.mock_delete.return_value = self.success_response_204 self.mock_patch.return_value = self.success_response_204 self.mock_put.return_value = self.success_response_204 self.mock_get.return_value = self.success_response_200 self.mock_user_token.return_value = 'Token' def test_pause_scheduled_job_calls_correct_endpoint(self): self.scheduler.pause_job(self.job_id) request_payload = {'status': 'paused'} self.mock_put.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs/{self.job_id}', headers={'Authorization': 'Bearer Token'}, json=request_payload) def test_pause_scheduled_job_calls_correct_endpoint_when_constructed_with_defaults(self): self.scheduler_default_args.pause_job(self.job_id) request_payload = {'status': 'paused'} self.mock_put.assert_called_once_with(f'{self.default_scheduler_uri}/scheduled_jobs/{self.job_id}', headers={'Authorization': 'Bearer Token'}, json=request_payload) def test_pause_scheduled_job_raises_cron_job_scheduler_error_if_job_does_not_exist(self): self.error_response.status_code = 404 self.mock_put.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.pause_job(self.job_id) self.assertIn(self.error_message, ex.exception.args) def test_pause_scheduled_job_raises_cron_job_scheduler_error_if_bad_request(self): self.error_response.status_code = 400 self.mock_put.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.pause_job(self.job_id) self.assertIn(self.error_message, ex.exception.args) def test_resume_scheduled_job_calls_correct_endpoint(self): self.scheduler.resume_job(self.job_id) request_payload = {'status': 'active'} self.mock_put.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs/{self.job_id}', headers={'Authorization': 'Bearer Token'}, json=request_payload) def test_resume_scheduled_job_raises_cron_job_scheduler_error_if_job_does_not_exist(self): self.error_response.status_code = 404 self.mock_put.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.resume_job(self.job_id) self.assertIn(self.error_message, ex.exception.args) def test_resume_scheduled_job_raises_cron_job_scheduler_error_if_bad_request(self): self.error_response.status_code = 400 self.mock_put.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.resume_job(self.job_id) self.assertIn(self.error_message, ex.exception.args) def test_delete_scheduled_job_calls_correct_endpoint(self): self.scheduler.delete_job(self.job_id) self.mock_delete.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs/{self.job_id}', headers={'Authorization': 'Bearer Token'}) def test_delete_scheduled_job_raises_cron_job_scheduler_error_if_job_does_not_exist(self): self.error_response.status_code = 404 self.mock_delete.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.delete_job(self.job_id) self.assertIn(self.error_message, ex.exception.args) def test_get_scheduled_job_calls_correct_endpoint(self): self.scheduler.get_job(self.job_id) self.mock_get.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs/{self.job_id}', headers={'Authorization': 'Bearer Token'}) def test_get_scheduled_job_returns_job_data_from_scheduler(self): response = self.scheduler.get_job(self.job_id) self.assertEqual(self.mock_successful_response_body, response) def test_get_scheduled_job_raises_cron_job_scheduler_error_if_job_does_not_exist(self): self.error_response.status_code = 404 self.mock_get.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.get_job(self.job_id) self.assertIn(self.error_message, ex.exception.args) def test_get_all_scheduled_jobs_calls_correct_endpoint(self): self.scheduler.get_jobs() self.mock_get.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs', headers={'Authorization': 'Bearer Token'}) def test_get_all_scheduled_jobs_returns_payload_from_request(self): response = self.scheduler.get_jobs() self.assertEqual(self.mock_successful_response_body, response) def test_get_all_scheduled_jobs_raises_cron_job_scheduler_error_if_500(self): self.error_response.status_code = 500 self.mock_get.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.get_jobs() self.assertIn(self.error_message, ex.exception.args) def test_update_job_schedule_calls_correct_endpoint(self): self.scheduler.update_job_schedule(self.job_id, self.mock_cron_schedule) patch_payload = {'schedule': self.mock_cron_schedule} self.mock_patch.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs/{self.job_id}', headers={'Authorization': 'Bearer Token'}, json=patch_payload) def test_update_job_schedule_raises_cron_job_scheduler_error_if_job_does_not_exist(self): self.error_response.status_code = 404 self.mock_patch.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.update_job_schedule(self.job_id, self.mock_cron_schedule) self.assertIn(self.error_message, ex.exception.args) def test_update_job_schedule_raises_cron_job_scheduler_error_if_bad_request(self): self.error_response.status_code = 400 self.mock_patch.return_value = self.error_response with self.assertRaises(CronJobSchedulerError) as ex: self.scheduler.update_job_schedule(self.job_id, self.mock_cron_schedule) self.assertIn(self.error_message, ex.exception.args) def test_get_subset_of_jobs_by_specifying_parameters(self): params = {'project': self.project_name} self.scheduler.get_job_with_params(params) self.mock_get.assert_called_once_with(f'{self.scheduler_uri}/scheduled_jobs', headers={'Authorization': 'Bearer Token'}, params=params)
app/config/urls/rendering_subdomain.py
njmhendrix/grand-challenge.org
101
12604804
from django.http import HttpResponseRedirect from django.template.response import TemplateResponse from django.urls import path from django.views.generic import TemplateView from grandchallenge.workstations.views import SessionDetail, session_proxy def handler404(request, exception): domain = request.site.domain.lower() return HttpResponseRedirect( f"{request.scheme}://{domain}{request.get_full_path()}" ) def handler500(request): context = {"request": request} template_name = "500.html" return TemplateResponse(request, template_name, context, status=500) urlpatterns = [ path( "robots.txt", TemplateView.as_view( template_name="robots.txt", content_type="text/plain" ), ), path( "workstations/<slug>/sessions/<uuid:pk>/", SessionDetail.as_view(), name="session-detail", ), path( "workstations/<slug>/sessions/<uuid:pk>/<path:path>", session_proxy, name="session-proxy", ), ]
seq2seq/dataset/__init__.py
mtran14/pytorch-seq2seq
1,491
12604807
from .fields import SourceField, TargetField
SRT/lib/datasets/VideoDatasetV2.py
yerang823/landmark-detection
612
12604877
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from os import path as osp from copy import deepcopy as copy from tqdm import tqdm import warnings, random, numpy as np from pts_utils import generate_label_map from xvision import denormalize_points from xvision import identity2affine, solve2theta, affine2image from .dataset_utils import pil_loader from .point_meta_v2 import PointMeta2V from .point_meta_v2 import apply_affine2point from .point_meta_v2 import apply_boundary from .optflow_utils import get_optflow_retval import torch import torch.utils.data as data def check_is_image(frames): assert len(frames) > 0, 'this is an empty frame list' is_image = True for frame in frames: if frame != frames[0]: is_image = False return is_image class VideoDatasetV2(data.Dataset): def __init__(self, transform, sigma, downsample, heatmap_type, \ shape, use_gray, mean_file, data_indicator, config, tensor2img): self.transform = transform self.sigma = sigma self.downsample = downsample self.heatmap_type = heatmap_type self.dataset_name = data_indicator self.shape = shape # [H,W] self.use_gray = use_gray self.video_config = copy( config ) self.video_L = config.video_L self.video_R = config.video_R self.opt_backend = config.optflow_backend self.optflow = get_optflow_retval( config.optflow_backend ) self.tensor2img = tensor2img assert self.video_L >= 0 and self.video_R >=0, 'invalid video L and video R : {:} and {:}'.format(self.video_L, self.video_R) assert transform is not None, 'transform : {:}'.format(transform) if mean_file is None: self.mean_data = None warnings.warn('VideolDatasetV2 initialized with mean_data = None') else: assert osp.isfile(mean_file), '{:} is not a file.'.format(mean_file) self.mean_data = torch.load(mean_file) self.reset() print ('The video dataset initialization done : {:}'.format(self)) def __repr__(self): return ('{name}(point-num={NUM_PTS}, shape={shape}, length={length}, sigma={sigma}, heatmap_type={heatmap_type}, range=L.{video_L}~R.{video_R}, backend={opt_backend}, dataset={dataset_name})'.format(name=self.__class__.__name__, **self.__dict__)) def reset(self, num_pts=-1, boxid='default', only_pts=False): self.NUM_PTS = num_pts if only_pts: return self.length = 0 self.datas = [] self.labels = [] self.NormDistances = [] self.BOXID = boxid if self.mean_data is None: self.mean_face = None else: self.mean_face = torch.Tensor(self.mean_data[boxid].copy().T) assert (self.mean_face >= -1).all() and (self.mean_face <= 1).all(), 'mean-{:}-face : {:}'.format(boxid, self.mean_face) self.cache_file2index_DXY = {} #assert self.dataset_name is not None, 'The dataset name is None' def __len__(self): assert len(self.datas) == self.length, 'The length is not correct : {}'.format(self.length) return self.length def append(self, frames, label, distance): for frame in frames: assert osp.isfile(frame), 'can not find the frame path : {:}'.format(frame) self.datas.append( frames ) ; self.labels.append( label ) self.NormDistances.append( distance ) self.length = self.length + 1 self.cache_file2index_DXY[ frames[self.video_L] ] = len(self.datas) - 1 def load_list(self, file_lists, num_pts, boxindicator, normalizeL, reset): if reset: self.reset(num_pts, boxindicator) else : assert self.NUM_PTS == num_pts and self.BOXID == boxindicator, 'The number of point is inconsistance : {:} vs {:}'.format(self.NUM_PTS, num_pts) if isinstance(file_lists, str): file_lists = [file_lists] samples = [] for idx, file_path in enumerate(file_lists): #print (':::: load list {:}/{:} : {:}'.format(idx, len(file_lists), file_path)) xdata = torch.load(file_path) if isinstance(xdata, list) : data = xdata # image or video dataset list elif isinstance(xdata, dict): data = xdata['datas'] # multi-view dataset list else: raise ValueError('Invalid Type Error : {:}'.format( type(xdata) )) samples = samples + data print (':::: load list {:}/{:} : {:70s} || with {:} samples'.format(idx, len(file_lists), file_path, len(data))) # samples is a list, where each element is the annotation. Each annotation is a dict, contains 'points' (3,num_pts), and various box print ('Starting load {:} samples for VideoDataset-V2'.format(len(samples))) # get the forward-backward frames Fprevious, Fnext = {}, {} for index, annotation in tqdm( enumerate(samples) ): ppath, xpath, npath = annotation['previous_frame'], annotation['current_frame'], annotation['next_frame'] if xpath in Fprevious and Fprevious[xpath] is not None and ppath is not None: assert Fprevious[xpath] == ppath, '{:} :: {:} vs. {:}'.format(index, Fprevious[xpath], ppath) else: Fprevious[xpath] = ppath if xpath in Fnext and Fnext[xpath] is not None and npath is not None: assert Fnext[xpath] == npath, '{:} :: {:} vs. {:}'.format(index, Fnext[xpath], npath) else: Fnext[xpath] = npath #for index, annotation in tqdm( enumerate(samples) ): for index in tqdm( range(len(samples)) ): annotation = samples[index] image_path = annotation['current_frame'] points, box = annotation['points'], annotation['box-{:}'.format(boxindicator)] label = PointMeta2V(self.NUM_PTS, points, box, image_path, self.dataset_name) if normalizeL is None: normDistance = None else : normDistance = annotation['normalizeL-{:}'.format(normalizeL)] if annotation['previous_frame'] is None and annotation['next_frame'] is None and annotation['points'] is None: continue # useless data in our framework frames = [None] * self.video_L + [image_path] + [None] * self.video_R temp = Fprevious[image_path] for i in range(self.video_L): if temp is None: frames[self.video_L-i-1] = frames[self.video_L-i] else: frames[self.video_L-i-1] = temp if temp in Fprevious: temp = Fprevious[temp] else : temp = None temp = Fnext[image_path] for i in range(self.video_R): if temp is None: frames[self.video_L+i+1] = frames[self.video_L+i] else: frames[self.video_L+i+1] = temp if temp in Fnext: temp = Fnext[temp] else : temp = None self.append(frames, label, normDistance) assert len(self.datas) == self.length, 'The length and the data is not right {:} vs {:}'.format(self.length, len(self.datas)) assert len(self.labels) == self.length, 'The length and the labels is not right {:} vs {:}'.format(self.length, len(self.labels)) assert len(self.NormDistances) == self.length, 'The length and the NormDistances is not right {:} vs {:}'.format(self.length, len(self.NormDistance)) print ('Load data done for VideoDatasetV2, which has {:} images.'.format(self.length)) def check_is_image(self, index): if index < 0: index = self.length + index assert index >= 0 and index < self.length, 'Invalid index : {:}'.format(index) return check_is_image( self.datas[index] ) def __getitem__(self, index): assert index >= 0 and index < self.length, 'Invalid index : {:}'.format(index) frame_paths = self.datas[index] frames = [pil_loader(f_path, self.use_gray) for f_path in frame_paths] target = self.labels[index].copy() torch_is_image = torch.ByteTensor( [check_is_image(frame_paths)] ) affineFrames, forward_flow, backward_flow, heatmaps, mask, norm_trans_points, THETA, transpose_theta, torch_index, torch_nopoints, torch_shape = self._process_(frames, target, index, check_is_image(frame_paths)) return affineFrames, forward_flow, backward_flow, heatmaps, mask, norm_trans_points, THETA, transpose_theta, torch_index, torch_nopoints, torch_shape, torch_is_image def find_index(self, xpath): assert xpath in self.cache_file2index_DXY, 'Can not find this path : {:}'.format(xpath) index = self.cache_file2index_DXY[ xpath ] points = self.labels[ index ].get_points() return points def _process_(self, pil_frames, target, index, skip_opt): # transform the image and points frames, target, theta = self.transform(pil_frames, target) (C, H, W), (height, width) = frames[0].size(), self.shape # obtain the visiable indicator vector if target.is_none(): nopoints = True else : nopoints = False if isinstance(theta, list) or isinstance(theta, tuple): affineFrames, forward_flow, backward_flow, heatmaps, mask, norm_trans_points, THETA, transpose_theta = [], [], [], [], [], [] for _theta in theta: _affineFrames, _forward_flow, _backward_flow, _heatmaps, _mask, _norm_trans_points, _theta, _transpose_theta \ = self.__process_affine(frames, target, _theta, nopoints, skip_opt) affineFrames.append(_affineFrames) forward_flow.append(_forward_flow) backward_flow.append(_backward_flow) heatmaps.append(_heatmaps) mask.append(_mask) norm_trans_points.append(_norm_trans_points) THETA.append(_theta) transpose_theta.append(_transpose_theta) affineFrames, forward_flow, backward_flow, heatmaps, mask, norm_trans_points, THETA, transpose_theta = \ torch.stack(affineFrames), torch.stack(forward_flow), torch.stack(backward_flow), torch.stack(heatmaps), torch.stack(mask), torch.stack(norm_trans_points), torch.stack(THETA), torch.stack(transpose_theta) else: affineFrames, forward_flow, backward_flow, heatmaps, mask, norm_trans_points, THETA, transpose_theta = self.__process_affine(frames, target, theta, nopoints, skip_opt) torch_index = torch.IntTensor([index]) torch_nopoints = torch.ByteTensor( [ nopoints ] ) torch_shape = torch.IntTensor([H,W]) return affineFrames, forward_flow, backward_flow, heatmaps, mask, norm_trans_points, THETA, transpose_theta, torch_index, torch_nopoints, torch_shape def __process_affine(self, frames, target, theta, nopoints, skip_opt, aux_info=None): frames, target, theta = [frame.clone() for frame in frames], target.copy(), theta.clone() (C, H, W), (height, width) = frames[0].size(), self.shape if nopoints: # do not have label norm_trans_points = torch.zeros((3, self.NUM_PTS)) heatmaps = torch.zeros((self.NUM_PTS+1, height//self.downsample, width//self.downsample)) mask = torch.ones((self.NUM_PTS+1, 1, 1), dtype=torch.uint8) transpose_theta = identity2affine(False) else: norm_trans_points = apply_affine2point(target.get_points(), theta, (H,W)) norm_trans_points = apply_boundary(norm_trans_points) real_trans_points = norm_trans_points.clone() real_trans_points[:2, :] = denormalize_points(self.shape, real_trans_points[:2,:]) heatmaps, mask = generate_label_map(real_trans_points.numpy(), height//self.downsample, width//self.downsample, self.sigma, self.downsample, nopoints, self.heatmap_type) # H*W*C heatmaps = torch.from_numpy(heatmaps.transpose((2, 0, 1))).type(torch.FloatTensor) mask = torch.from_numpy(mask.transpose((2, 0, 1))).type(torch.ByteTensor) if torch.sum(norm_trans_points[2,:] == 1) < 3 or self.mean_face is None: warnings.warn('In GeneralDatasetV2 after transformation, no visiable point, using identity instead. Aux: {:}'.format(aux_info)) transpose_theta = identity2affine(False) else: transpose_theta = solve2theta(norm_trans_points, self.mean_face.clone()) affineFrames = [affine2image(frame, theta, self.shape) for frame in frames] if not skip_opt: Gframes = [self.tensor2img(frame) for frame in affineFrames] forward_flow, backward_flow = [], [] for idx in range( len(Gframes) ): if idx > 0: forward_flow.append( self.optflow.calc(Gframes[idx-1], Gframes[idx], None) ) if idx+1 < len(Gframes): #backward_flow.append( self.optflow.calc(Gframes[idx], Gframes[idx+1], None) ) backward_flow.append( self.optflow.calc(Gframes[idx+1], Gframes[idx], None) ) forward_flow = torch.stack( [torch.from_numpy(x) for x in forward_flow] ) backward_flow = torch.stack( [torch.from_numpy(x) for x in backward_flow] ) else: forward_flow, backward_flow = torch.zeros((len(affineFrames)-1, height, width, 2)), torch.zeros((len(affineFrames)-1, height, width, 2)) # affineFrames #frames x #channel x #height x #width # forward_flow (#frames-1) x #height x #width x 2 # backward_flow (#frames-1) x #height x #width x 2 return torch.stack(affineFrames), forward_flow, backward_flow, heatmaps, mask, norm_trans_points, theta, transpose_theta class SbrBatchSampler(object): def __init__(self, dataset, ibatch, vbatch, sbr_sampler_use_vid): ''' Args: - dataset: an instance of the VideoDatasetV2 class - ibatch: the batch size of images for one iteration - vbatch: the batch size of videos for one iteration ''' super(SbrBatchSampler, self).__init__() self.length = len(dataset) self.IMG_indexes = [] self.VID_indexes = [] for i in range(len(dataset)): if dataset.labels[i].is_none() == False and (sbr_sampler_use_vid or dataset.check_is_image( i )): self.IMG_indexes.append( i ) if dataset.check_is_image( i ) == False: self.VID_indexes.append( i ) self.IMG_batch = ibatch self.VID_batch = vbatch if self.IMG_batch == 0: self.iters = len(self.VID_indexes) // self.VID_batch + 1 else : self.iters = len(self.IMG_indexes) // self.IMG_batch + 1 #assert self.IMG_batch > 0, 'image batch size must be greater than 0' assert len(self.IMG_indexes) >= self.IMG_batch, '{:} vs {:}'.format(len(self.IMG_indexes), self.IMG_batch) assert len(self.VID_indexes) >= self.VID_batch, '{:} vs {:}'.format(len(self.VID_indexes), self.VID_batch) print ('In SbrBatchSampler, sample {:} images and {:} videos from {:} datas'.format(len(self.IMG_indexes), len(self.VID_indexes), len(dataset))) def __iter__(self): # yield a batch of indexes for index in range(self.iters): if self.IMG_batch == 0: images = [] else : images = random.sample(self.IMG_indexes, self.IMG_batch) if self.VID_batch == 0: videos = [] else : videos = random.sample(self.VID_indexes, self.VID_batch) batchlist = images + videos assert len(batchlist) > 0, 'invalid batchlist : {:}'.format(batchlist) batch = torch.LongTensor(batchlist) yield batch def __len__(self): # returns the number of iterations (episodes) per epoch return self.iters
pex/sorted_tuple.py
alexey-tereshenkov-oxb/pex
2,160
12604946
<reponame>alexey-tereshenkov-oxb/pex<gh_stars>1000+ # Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import from pex.typing import TYPE_CHECKING, Generic, cast, overload if TYPE_CHECKING: from typing import Any, Iterable, Iterator, Optional, Protocol, TypeVar, Union class Comparable(Protocol): def __lt__(self, other): # type: (Any) -> bool pass _CT = TypeVar("_CT", bound=Comparable) _T = TypeVar("_T", bound=Comparable) class Comparator(Protocol): def __call__(self, item): # type: (Any) -> Comparable pass class SortedTuple(Generic["_CT"], tuple): @overload def __new__(cls): # type: () -> SortedTuple[Any] pass @overload def __new__( cls, iterable, # type: Iterable[_CT] key=None, # type: None reverse=False, # type: bool ): # type: (...) -> SortedTuple[_CT] pass @overload def __new__( cls, iterable, # type: Iterable[Any] key, # type: Comparator reverse=False, # type: bool ): # type: (...) -> SortedTuple[_CT] pass def __new__( cls, iterable=None, # type: Union[None, Iterable[_CT], Iterable[Any]] key=None, # type: Optional[Comparator] reverse=False, # type: bool ): # type: (...) -> SortedTuple[_CT] return super(SortedTuple, cls).__new__( cls, sorted(iterable, key=key, reverse=reverse) if iterable else () ) @overload def __getitem__(self, index): # type: (int) -> _CT pass @overload def __getitem__(self, slice_spec): # type: (slice) -> SortedTuple[_CT] pass def __getitem__(self, item): # type: (Union[int, slice]) -> Union[_CT, SortedTuple[_CT]] return cast("Union[_CT, SortedTuple[_CT]]", tuple.__getitem__(self, item)) def __iter__(self): # type: () -> Iterator[_CT] return tuple.__iter__(self)
venv/Lib/site-packages/altair/vegalite/schema.py
ajayiagbebaku/NFL-Model
6,831
12604977
"""Altair schema wrappers""" # flake8: noqa from .v4.schema import *
common/dataset/ShapeNetV2.py
hyunynim/DIST-Renderer
176
12604992
<gh_stars>100-1000 import os, sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) from geometry import Shape import json from tqdm import tqdm def read_split_file(split_file): with open(split_file, 'r') as f: split = json.load(f) key_list = list(split.keys()) assert(len(key_list) == 1) dataset = key_list[0] data = split[dataset] key_list = list(data.keys()) assert(len(key_list) == 1) class_name = key_list[0] instance_list = split[dataset][class_name] return instance_list def filter_shape(shape_list, split_file): instance_list = read_split_file(split_file) new_list = [] for shape in tqdm(shape_list): if shape.shape_md5 in instance_list: new_list.append(shape) return new_list class ShapeNetV2(object): def __init__(self, data_dir): self.data_dir = data_dir self.shape_name_pairs = [('02691156', 'plane'), ('02834778', 'bicycle'), ('02858304', 'boat'), ('02876657', 'bottle'), ('02924116', 'bus'), ('02958343', 'car'), ('03001627', 'chair'), ('04379243', 'table'), ('03790512', 'motorbike'), ('04256520', 'sofa'), ('04468005', 'train'), ('03211117', 'tvmonitor')] self.shape_class_ids = [x[0] for x in self.shape_name_pairs] self.shape_names = [x[1] for x in self.shape_name_pairs] def get_class_id_from_name(self, name): if not (name in self.shape_names): raise ValueError('class name {0} not found.'.format(name)) idx = self.shape_names.index(name) return self.shape_class_ids[idx] def get_name_from_class_id(self, class_id): if not (class_id in self.shape_class_ids): raise ValueError('class id {0} not found.'.format(class_id)) idx = self.shape_class_ids.index(class_id) return self.shape_names[idx] def get_split_file_name(self, name, mode='train'): nowpath = os.path.dirname(os.path.abspath(__file__)) basepath = os.path.join(nowpath, '..', '..') split_file = os.path.join(basepath, 'examples', 'splits', 'sv2_{0}s_{1}.json'.format(name, mode)) return split_file def get_shape_list_from_name(self, name, use_split_file=None, mode='train'): class_id = self.get_class_id_from_name(name) return self.get_shape_list_from_class_id(class_id, use_split_file=use_split_file, mode=mode) def get_shape_list_from_class_id(self, class_id, use_split_file=None, mode='train'): path = os.path.join(self.data_dir, class_id) if not os.path.exists(path): return [] shape_md5_list = os.listdir(path) shape_list = [Shape(class_id, shape_md5, os.path.join(path, shape_md5, 'models/model_normalized.obj')) for shape_md5 in shape_md5_list] if use_split_file is not None: name = self.get_name_from_class_id(class_id) split_file = self.get_split_file_name(name, mode=mode) shape_list = filter_shape(shape_list, split_file) return shape_list def get_shape_from_instance_name(self, class_id, instance_name): path = os.path.join(self.data_dir, class_id) shape = Shape(class_id, instance_name, os.path.join(path, instance_name, 'models/model_normalized.obj')) return shape
migrations/versions/4d302aa44bc8_add_additional_revis.py
vault-the/changes
443
12605008
<filename>migrations/versions/4d302aa44bc8_add_additional_revis.py """Add additional revision data Revision ID: 4d302aa44bc8 Revises: 215db24a630a Create Date: 2013-11-26 16:20:59.454360 """ # revision identifiers, used by Alembic. revision = '4d302aa44bc8' down_revision = '215db24a630a' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('revision', sa.Column('committer_id', sa.GUID(), nullable=True)) op.add_column('revision', sa.Column('date_committed', sa.DateTime(), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('revision', 'date_committed') op.drop_column('revision', 'committer_id') ### end Alembic commands ###
tests/Exscript/QueueTest.py
saveshodhan/exscript
226
12605045
<gh_stars>100-1000 from builtins import object import sys import unittest import re import os.path import warnings sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) warnings.simplefilter('ignore', DeprecationWarning) import shutil import time import ctypes from functools import partial from tempfile import mkdtemp from multiprocessing import Value from multiprocessing.managers import BaseManager from Exscript import Queue, Account, AccountPool, FileLogger from Exscript.protocols import Protocol, Dummy from Exscript.interpreter.exception import FailException from Exscript.util.decorator import bind from Exscript.util.log import log_to def count_calls(job, data, **kwargs): assert hasattr(job, 'start') assert 'testarg' in kwargs data.value += 1 def count_calls2(job, host, conn, data, **kwargs): assert isinstance(conn, Protocol) count_calls(job, data, **kwargs) def count_and_fail(job, data, **kwargs): count_calls(job, data, **kwargs) raise FailException('intentional error') def spawn_subtask(job, host, conn, queue, data, **kwargs): count_calls2(job, host, conn, data, **kwargs) func = bind(count_calls2, data, testarg=1) task = queue.priority_run('subtask', func) task.wait() def do_nothing(job, host, conn): pass def say_hello(job, host, conn): conn.send('hello') def error(job, host, conn): say_hello(job, host, conn) raise FailException('intentional error') def fatal_error(job, host, conn): say_hello(job, host, conn) raise Exception('intentional fatal error') class MyProtocol(Dummy): pass def raise_if_not_myprotocol(job, host, conn): if not isinstance(conn, MyProtocol): raise Exception('not a MyProtocol instance') class Log(object): data = '' def write(self, data): self.data += data def flush(self): pass def read(self): return self.data class LogManager(BaseManager): pass LogManager.register('Log', Log) class QueueTest(unittest.TestCase): CORRELATE = Queue mode = 'threading' def createQueue(self, logdir=None, **kwargs): if self.queue: self.queue.destroy() self.out = self.manager.Log() self.err = self.manager.Log() self.queue = Queue(mode=self.mode, stdout=self.out, stderr=self.err, **kwargs) self.accm = self.queue.account_manager if logdir is not None: self.logger = FileLogger(logdir) def setUp(self): self.tempdir = mkdtemp() self.queue = None self.logger = None self.manager = LogManager() self.manager.start() self.createQueue(verbose=-1, logdir=self.tempdir) def tearDown(self): shutil.rmtree(self.tempdir) try: self.queue.destroy() except: pass # queue already destroyed self.manager.shutdown() def assertVerbosity(self, channel, expected): data = channel.read() if expected == 'no_tb': self.assertTrue('error' in data, data) self.assertNotIn('Traceback', data) elif expected == 'tb': self.assertTrue('error' in data, data) self.assertIn('Traceback', data) elif expected == '': self.assertEqual(data, '') else: msg = repr(expected) + ' not in ' + repr(data) self.assertTrue(expected in data, msg) def testConstructor(self): self.assertEqual(1, self.queue.get_max_threads()) # Test all verbosity levels. levels = ( (-1, 1, ('', ''), ('', ''), ('', 'tb')), (-1, 2, ('', ''), ('', ''), ('', 'tb')), (0, 1, ('', ''), ('', 'no_tb'), ('', 'tb')), (0, 2, ('', ''), ('', 'no_tb'), ('', 'tb')), (1, 1, ('hello', ''), ('hello', 'no_tb'), ('hello', 'tb')), (1, 2, ('[', ''), ('[', 'no_tb'), ('[', 'tb')), (2, 1, ('hello', ''), ('hello', 'tb'), ('hello', 'tb')), (2, 2, ('[', ''), ('[', 'tb'), ('[', 'tb')), (3, 1, ('hello', ''), ('hello', 'tb'), ('hello', 'tb')), (3, 2, ('[', ''), ('[', 'tb'), ('[', 'tb')), (4, 1, ('hello', ''), ('hello', 'tb'), ('hello', 'tb')), (4, 2, ('[', ''), ('[', 'tb'), ('[', 'tb')), (5, 1, ('hello', ''), ('hello', 'tb'), ('hello', 'tb')), (5, 2, ('[', ''), ('[', 'tb'), ('[', 'tb')), ) for level, max_threads, with_simple, with_error, with_fatal in levels: # print("S:", level, max_threads, with_simple, with_error,) # with_fatal stdout, stderr = with_simple self.createQueue(verbose=level, max_threads=max_threads) self.queue.run('dummy://mytest', say_hello) self.queue.join() self.assertVerbosity(self.out, stdout) self.assertVerbosity(self.err, stderr) # print("E:", level, max_threads, with_simple, with_error,) # with_fatal stdout, stderr = with_error self.createQueue(verbose=level, max_threads=max_threads) self.queue.run('dummy://mytest', error) self.queue.join() self.assertVerbosity(self.out, stdout) self.assertVerbosity(self.err, stderr) # print("F:", level, max_threads, with_simple, with_error,) # with_fatal stdout, stderr = with_fatal self.createQueue(verbose=level, max_threads=max_threads) self.queue.run('dummy://mytest', fatal_error) self.queue.join() self.assertVerbosity(self.out, stdout) self.assertVerbosity(self.err, stderr) def testCreatePipe(self): account = Account('user', 'test') self.accm.add_account(account) pipe = self.queue._create_pipe() pipe.send(('acquire-account', None)) response = pipe.recv() expected = (account.__hash__(), account.get_name(), account.get_password(), account.get_authorization_password(), account.get_key()) self.assertEqual(response, expected) pipe.send(('release-account', account.__hash__())) response = pipe.recv() self.assertEqual(response, 'ok') pipe.close() def testSetMaxThreads(self): self.assertEqual(1, self.queue.get_max_threads()) self.queue.set_max_threads(2) self.assertEqual(2, self.queue.get_max_threads()) def testGetMaxThreads(self): pass # Already tested in testSetMaxThreads(). def testGetProgress(self): self.assertEqual(0.0, self.queue.get_progress()) self.testIsCompleted() self.assertEqual(100.0, self.queue.get_progress()) def testAddAccount(self): self.assertEqual(0, self.accm.default_pool.n_accounts()) account = Account('user', 'test') self.queue.add_account(account) self.assertEqual(1, self.accm.default_pool.n_accounts()) def testAddAccountPool(self): self.assertEqual(0, self.accm.default_pool.n_accounts()) account = Account('user', 'test') self.queue.add_account(account) self.assertEqual(1, self.accm.default_pool.n_accounts()) def match_cb(data, host): data['match-called'].value = True return True def start_cb(data, job, host, conn): account = conn.account_factory(None) data['start-called'].value = True data['account-hash'].value = account.__hash__() account.release() # Replace the default pool. pool1 = AccountPool() self.queue.add_account_pool(pool1) self.assertEqual(self.accm.default_pool, pool1) # Add another pool, making sure that it does not replace # the default pool. pool2 = AccountPool() account2 = Account('user', 'test') pool2.add_account(account2) match_called = Value(ctypes.c_bool, False) start_called = Value(ctypes.c_bool, False) account_hash = Value(ctypes.c_long, 0) data = {'match-called': match_called, 'start-called': start_called, 'account-hash': account_hash} self.queue.add_account_pool(pool2, partial(match_cb, data)) self.assertEqual(self.accm.default_pool, pool1) # Make sure that pool2 is chosen (because the match function # returns True). self.queue.run('dummy://dummy', partial(start_cb, data)) self.queue.shutdown() data = dict((k, v.value) for (k, v) in list(data.items())) self.assertEqual(data, {'match-called': True, 'start-called': True, 'account-hash': account2.__hash__()}) def startTask(self): self.testAddAccount() hosts = ['dummy://dummy1', 'dummy://dummy2'] task = self.queue.run(hosts, log_to(self.logger)(do_nothing)) self.assertTrue(task is not None) return task def testIsCompleted(self): self.assertTrue(self.queue.is_completed()) task = self.startTask() self.assertFalse(self.queue.is_completed()) task.wait() self.assertTrue(task.is_completed()) self.assertTrue(self.queue.is_completed()) def testJoin(self): task = self.startTask() self.queue.join() self.assertTrue(task.is_completed()) self.assertTrue(self.queue.is_completed()) def testShutdown(self): task = self.startTask() # this also adds an account self.queue.shutdown() self.assertTrue(task.is_completed()) self.assertTrue(self.queue.is_completed()) self.assertEqual(self.accm.default_pool.n_accounts(), 1) def testDestroy(self): task = self.startTask() # this also adds an account self.queue.destroy() self.assertTrue(self.queue.is_completed()) self.assertEqual(self.accm.default_pool.n_accounts(), 0) def testReset(self): self.testAddAccount() self.queue.reset() self.assertEqual(self.accm.default_pool.n_accounts(), 0) def testExceptionCallback(self): self.exc = {} def my_exc_cb(jobname, exc_info): self.exc[jobname] = exc_info self.createQueue(exc_cb=my_exc_cb) self.queue.run('dummy://mytest', error) self.queue.join() self.assertIn("mytest", self.exc) self.assertIsInstance(self.exc["mytest"][1], FailException) def testRun(self): data = Value('i', 0) hosts = ['dummy://dummy1', 'dummy://dummy2'] func = bind(count_calls2, data, testarg=1) self.queue.run(hosts, func) self.queue.run('dummy://dummy3', func) self.queue.shutdown() self.assertEqual(data.value, 3) self.queue.run('dummy://dummy4', func) self.queue.destroy() self.assertEqual(data.value, 4) def testRunOrIgnore(self): data = Value('i', 0) hosts = ['dummy://dummy1', 'dummy://dummy2', 'dummy://dummy1'] func = bind(count_calls2, data, testarg=1) self.queue.workqueue.pause() self.queue.run_or_ignore(hosts, func) self.queue.run_or_ignore('dummy://dummy2', func) self.queue.workqueue.unpause() self.queue.shutdown() self.assertEqual(data.value, 2) self.queue.run_or_ignore('dummy://dummy4', func) self.queue.destroy() self.assertEqual(data.value, 3) def testPriorityRun(self): def write(data, value, *args): data.value = value data = Value('i', 0) self.queue.workqueue.pause() self.queue.enqueue(partial(write, data, 1)) self.queue.priority_run('dummy://dummy', partial(write, data, 2)) self.queue.workqueue.unpause() self.queue.destroy() # The 'dummy' job should run first, so the value must # be overwritten by the other process. self.assertEqual(data.value, 1) def testPriorityRunOrRaise(self): data = Value('i', 0) hosts = ['dummy://dummy1', 'dummy://dummy2', 'dummy://dummy1'] func = bind(count_calls2, data, testarg=1) self.queue.workqueue.pause() self.queue.priority_run_or_raise(hosts, func) self.queue.priority_run_or_raise('dummy://dummy2', func) self.queue.workqueue.unpause() self.queue.shutdown() self.assertEqual(data.value, 2) self.queue.priority_run_or_raise('dummy://dummy4', func) self.queue.destroy() self.assertEqual(data.value, 3) def testForceRun(self): data = Value('i', 0) hosts = ['dummy://dummy1', 'dummy://dummy2'] func = bind(count_calls2, data, testarg=1) # By setting max_threads to 0 we ensure that the 'force' part is # actually tested; the thread should run regardless. self.queue.set_max_threads(0) self.queue.force_run(hosts, func) self.queue.destroy() self.assertEqual(data.value, 2) def testEnqueue(self): data = Value('i', 0) func = bind(count_calls, data, testarg=1) self.queue.enqueue(func) self.queue.enqueue(func) self.queue.shutdown() self.assertEqual(data.value, 2) self.queue.enqueue(func) self.queue.shutdown() self.assertEqual(data.value, 3) func = bind(count_and_fail, data, testarg=1) self.queue.enqueue(func, attempts=7) self.queue.destroy() self.assertEqual(data.value, 10) # FIXME: Not a method test; this should probably be elsewhere. def testLogging(self): task = self.startTask() while not task.is_completed(): time.sleep(.1) # The following function is not synchronous with the above, so add # a timeout to avoid races. time.sleep(.1) self.assertTrue(self.queue.is_completed()) logfiles = os.listdir(self.tempdir) self.assertEqual(2, len(logfiles)) self.assertIn('dummy1.log', logfiles) self.assertIn('dummy2.log', logfiles) for file in logfiles: with open(os.path.join(self.tempdir, file)) as fp: content = fp.read() class QueueTestMultiProcessing(QueueTest): mode = 'multiprocessing' def suite(): loader = unittest.TestLoader() suite1 = loader.loadTestsFromTestCase(QueueTest) suite2 = loader.loadTestsFromTestCase(QueueTestMultiProcessing) return unittest.TestSuite((suite1, suite2)) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite())
rest_registration/verification_notifications.py
psibean/django-rest-registration
329
12605075
<reponame>psibean/django-rest-registration<filename>rest_registration/verification_notifications.py<gh_stars>100-1000 from typing import TYPE_CHECKING, Dict from rest_framework.request import Request from rest_registration.exceptions import VerificationTemplatesNotFound from rest_registration.notifications.email import send_verification_notification from rest_registration.notifications.enums import NotificationMethod, NotificationType from rest_registration.settings import registration_settings from rest_registration.signers.register import RegisterSigner from rest_registration.signers.register_email import RegisterEmailSigner from rest_registration.signers.reset_password import ResetPasswordSigner from rest_registration.utils.users import get_user_verification_id from rest_registration.utils.verification import select_default_templates if TYPE_CHECKING: from django.contrib.auth.base_user import AbstractBaseUser def send_register_verification_email_notification( request: Request, user: 'AbstractBaseUser', ) -> None: signer = RegisterSigner({ 'user_id': get_user_verification_id(user), }, request=request) template_config_data = _get_email_template_config_data( request, user, NotificationType.REGISTER_VERIFICATION) notification_data = { 'params_signer': signer, } send_verification_notification( NotificationType.REGISTER_VERIFICATION, user, notification_data, template_config_data) def send_register_email_verification_email_notification( request: Request, user: 'AbstractBaseUser', email: str, email_already_used: bool = False, ) -> None: signer = RegisterEmailSigner({ 'user_id': get_user_verification_id(user), 'email': email, }, request=request) notification_data = { 'params_signer': signer, 'email_already_used': email_already_used, } template_config_data = _get_email_template_config_data( request, user, NotificationType.REGISTER_EMAIL_VERIFICATION) send_verification_notification( NotificationType.REGISTER_EMAIL_VERIFICATION, user, notification_data, template_config_data, custom_user_address=email) def send_reset_password_verification_email_notification( request: Request, user: 'AbstractBaseUser', ) -> None: signer = ResetPasswordSigner({ 'user_id': get_user_verification_id(user), }, request=request) template_config_data = _get_email_template_config_data( request, user, NotificationType.RESET_PASSWORD_VERIFICATION) notification_data = { 'params_signer': signer, } send_verification_notification( NotificationType.RESET_PASSWORD_VERIFICATION, user, notification_data, template_config_data) def _get_email_template_config_data( request: Request, user: 'AbstractBaseUser', notification_type: NotificationType, ) -> Dict[str, str]: template_selector = registration_settings.VERIFICATION_TEMPLATES_SELECTOR notification_method = NotificationMethod.EMAIL try: template_config_data = template_selector( request=request, user=user, notification_method=notification_method, notification_type=notification_type, ) except (VerificationTemplatesNotFound, LookupError): template_config_data = select_default_templates( request=request, user=user, notification_method=notification_method, notification_type=notification_type, ) return template_config_data
tests/components/image/__init__.py
tbarbette/core
30,023
12605091
<reponame>tbarbette/core """Tests for the Image integration."""
tools/authgen.py
abharath27/azure-libraries-for-net
365
12605109
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import subprocess import json import re # Endpoints p = subprocess.Popen('az cloud show -o json --query "{managementURI: endpoints.management, baseURL: endpoints.resourceManager, authURL: endpoints.activeDirectory, graphURL: endpoints.activeDirectoryGraphResourceId}"', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.wait() cloud = json.loads(p.stdout.read().decode("utf8")) # Subscription p = subprocess.Popen('az account show -o json --query "{subscription: id}"', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.wait() account = json.loads(p.stdout.read().decode("utf8")) # Service principal p = subprocess.Popen('az ad sp create-for-rbac -o json --query "{client: appId, key: password, tenant: tenant}"', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.wait() out = p.stdout.read() out = re.sub(b"[^.]*{", b"{", out) sp = json.loads(out.decode("utf8")) for key,value in sp.items(): print(key + "=" + value) for key,value in account.items(): print(key + "=" + value) for key,value in cloud.items(): if (not value.endswith("/")): value = value + "/" print(key + "=" + value.replace("https://", r"https\://"))
leetcode.com/python/373_Find_K_Pairs_with_Smallest_Sums.py
vansh-tiwari/coding-interview-gym
713
12605119
<gh_stars>100-1000 import heapq class Solution(object): def kSmallestPairs(self, nums1, nums2, k): """ :type nums1: List[int] :type nums2: List[int] :type k: int :rtype: List[List[int]] """ maxHeap = [] for nums1Idx in range(min(k, len(nums1))): for nums2Idx in range(min(k, len(nums2))): currentPairSum = nums1[nums1Idx] + nums2[nums2Idx] if len(maxHeap) < k: heapq.heappush(maxHeap, (-currentPairSum, nums1Idx, nums2Idx)) else: if currentPairSum < (-maxHeap[0][0]): heapq.heappop(maxHeap) heapq.heappush(maxHeap, (-currentPairSum, nums1Idx, nums2Idx)) else: break smallestPairs = [] for (currentPairSum, nums1Idx, nums2Idx) in maxHeap: smallestPairs.append([nums1[nums1Idx], nums2[nums2Idx]]) return smallestPairs
src/genie/libs/parser/iosxr/tests/ShowProcessMemory/cli/equal/golden_output_expected.py
balmasea/genieparser
204
12605183
expected_output = { 'jid': {1: {'index': {1: {'data': 344, 'dynamic': 0, 'jid': 1, 'process': 'init', 'stack': 136, 'text': 296}}}, 51: {'index': {1: {'data': 1027776, 'dynamic': 5668, 'jid': 51, 'process': 'processmgr', 'stack': 136, 'text': 1372}}}, 53: {'index': {1: {'data': 342500, 'dynamic': 7095, 'jid': 53, 'process': 'dsr', 'stack': 136, 'text': 32}}}, 111: {'index': {1: {'data': 531876, 'dynamic': 514, 'jid': 111, 'process': 'devc-conaux-aux', 'stack': 136, 'text': 8}}}, 112: {'index': {1: {'data': 861144, 'dynamic': 957, 'jid': 112, 'process': 'qsm', 'stack': 136, 'text': 144}}}, 113: {'index': {1: {'data': 400776, 'dynamic': 671, 'jid': 113, 'process': 'spp', 'stack': 136, 'text': 328}}}, 114: {'index': {1: {'data': 531912, 'dynamic': 545, 'jid': 114, 'process': 'devc-conaux-con', 'stack': 136, 'text': 8}}}, 115: {'index': {1: {'data': 662452, 'dynamic': 366, 'jid': 115, 'process': 'syslogd_helper', 'stack': 136, 'text': 52}}}, 118: {'index': {1: {'data': 200748, 'dynamic': 426, 'jid': 118, 'process': 'shmwin_svr', 'stack': 136, 'text': 56}}}, 119: {'index': {1: {'data': 397880, 'dynamic': 828, 'jid': 119, 'process': 'syslog_dev', 'stack': 136, 'text': 12}}}, 121: {'index': {1: {'data': 470008, 'dynamic': 6347, 'jid': 121, 'process': 'calv_alarm_mgr', 'stack': 136, 'text': 504}}}, 122: {'index': {1: {'data': 1003480, 'dynamic': 2838, 'jid': 122, 'process': 'udp', 'stack': 136, 'text': 180}}}, 123: {'index': {1: {'data': 529852, 'dynamic': 389, 'jid': 123, 'process': 'enf_broker', 'stack': 136, 'text': 40}}}, 124: {'index': {1: {'data': 200120, 'dynamic': 351, 'jid': 124, 'process': 'procfs_server', 'stack': 168, 'text': 20}}}, 125: {'index': {1: {'data': 333592, 'dynamic': 1506, 'jid': 125, 'process': 'pifibm_server_rp', 'stack': 136, 'text': 312}}}, 126: {'index': {1: {'data': 399332, 'dynamic': 305, 'jid': 126, 'process': 'ltrace_sync', 'stack': 136, 'text': 28}}}, 127: {'index': {1: {'data': 797548, 'dynamic': 2573, 'jid': 127, 'process': 'ifindex_server', 'stack': 136, 'text': 96}}}, 128: {'index': {1: {'data': 532612, 'dynamic': 3543, 'jid': 128, 'process': 'eem_ed_test', 'stack': 136, 'text': 44}}}, 130: {'index': {1: {'data': 200120, 'dynamic': 257, 'jid': 130, 'process': 'igmp_policy_reg_agent', 'stack': 136, 'text': 8}}}, 132: {'index': {1: {'data': 200628, 'dynamic': 280, 'jid': 132, 'process': 'show_mediang_edm', 'stack': 136, 'text': 20}}}, 134: {'index': {1: {'data': 466168, 'dynamic': 580, 'jid': 134, 'process': 'ipv4_acl_act_agent', 'stack': 136, 'text': 28}}}, 136: {'index': {1: {'data': 997196, 'dynamic': 5618, 'jid': 136, 'process': 'resmon', 'stack': 136, 'text': 188}}}, 137: {'index': {1: {'data': 534184, 'dynamic': 2816, 'jid': 137, 'process': 'bundlemgr_local', 'stack': 136, 'text': 612}}}, 138: {'index': {1: {'data': 200652, 'dynamic': 284, 'jid': 138, 'process': 'chkpt_proxy', 'stack': 136, 'text': 16}}}, 139: {'index': {1: {'data': 200120, 'dynamic': 257, 'jid': 139, 'process': 'lisp_xr_policy_reg_agent', 'stack': 136, 'text': 8}}}, 141: {'index': {1: {'data': 200648, 'dynamic': 246, 'jid': 141, 'process': 'linux_nto_misc_showd', 'stack': 136, 'text': 20}}}, 143: {'index': {1: {'data': 200644, 'dynamic': 247, 'jid': 143, 'process': 'procfind', 'stack': 136, 'text': 20}}}, 146: {'index': {1: {'data': 200240, 'dynamic': 275, 'jid': 146, 'process': 'bgp_policy_reg_agent', 'stack': 136, 'text': 28}}}, 147: {'index': {1: {'data': 201332, 'dynamic': 418, 'jid': 147, 'process': 'type6_server', 'stack': 136, 'text': 68}}}, 149: {'index': {1: {'data': 663524, 'dynamic': 1297, 'jid': 149, 'process': 'clns', 'stack': 136, 'text': 188}}}, 152: {'index': {1: {'data': 532616, 'dynamic': 3541, 'jid': 152, 'process': 'eem_ed_none', 'stack': 136, 'text': 52}}}, 154: {'index': {1: {'data': 729896, 'dynamic': 1046, 'jid': 154, 'process': 'ipv4_acl_mgr', 'stack': 136, 'text': 140}}}, 155: {'index': {1: {'data': 200120, 'dynamic': 261, 'jid': 155, 'process': 'ospf_policy_reg_agent', 'stack': 136, 'text': 12}}}, 157: {'index': {1: {'data': 200908, 'dynamic': 626, 'jid': 157, 'process': 'ssh_key_server', 'stack': 136, 'text': 44}}}, 158: {'index': {1: {'data': 200628, 'dynamic': 285, 'jid': 158, 'process': 'heap_summary_edm', 'stack': 136, 'text': 20}}}, 161: {'index': {1: {'data': 200640, 'dynamic': 297, 'jid': 161, 'process': 'cmp_edm', 'stack': 136, 'text': 16}}}, 162: {'index': {1: {'data': 267456, 'dynamic': 693, 'jid': 162, 'process': 'ip_aps', 'stack': 136, 'text': 52}}}, 166: {'index': {1: {'data': 935480, 'dynamic': 8194, 'jid': 166, 'process': 'mpls_lsd', 'stack': 136, 'text': 1108}}}, 167: {'index': {1: {'data': 730776, 'dynamic': 3649, 'jid': 167, 'process': 'ipv6_ma', 'stack': 136, 'text': 540}}}, 168: {'index': {1: {'data': 266788, 'dynamic': 589, 'jid': 168, 'process': 'nd_partner', 'stack': 136, 'text': 36}}}, 169: {'index': {1: {'data': 735000, 'dynamic': 6057, 'jid': 169, 'process': 'ipsub_ma', 'stack': 136, 'text': 680}}}, 171: {'index': {1: {'data': 266432, 'dynamic': 530, 'jid': 171, 'process': 'shelf_mgr_proxy', 'stack': 136, 'text': 16}}}, 172: {'index': {1: {'data': 200604, 'dynamic': 253, 'jid': 172, 'process': 'early_fast_discard_verifier', 'stack': 136, 'text': 16}}}, 174: {'index': {1: {'data': 200096, 'dynamic': 256, 'jid': 174, 'process': 'bundlemgr_checker', 'stack': 136, 'text': 56}}}, 175: {'index': {1: {'data': 200120, 'dynamic': 248, 'jid': 175, 'process': 'syslog_infra_hm', 'stack': 136, 'text': 12}}}, 177: {'index': {1: {'data': 200112, 'dynamic': 241, 'jid': 177, 'process': 'meminfo_svr', 'stack': 136, 'text': 8}}}, 178: {'index': {1: {'data': 468272, 'dynamic': 2630, 'jid': 178, 'process': 'accounting_ma', 'stack': 136, 'text': 264}}}, 180: {'index': {1: {'data': 1651090, 'dynamic': 242, 'jid': 180, 'process': 'aipc_cleaner', 'stack': 136, 'text': 8}}}, 181: {'index': {1: {'data': 201280, 'dynamic': 329, 'jid': 181, 'process': 'nsr_ping_reply', 'stack': 136, 'text': 16}}}, 182: {'index': {1: {'data': 334236, 'dynamic': 843, 'jid': 182, 'process': 'spio_ma', 'stack': 136, 'text': 4}}}, 183: {'index': {1: {'data': 266788, 'dynamic': 607, 'jid': 183, 'process': 'statsd_server', 'stack': 136, 'text': 40}}}, 184: {'index': {1: {'data': 407016, 'dynamic': 8579, 'jid': 184, 'process': 'subdb_svr', 'stack': 136, 'text': 368}}}, 186: {'index': {1: {'data': 932992, 'dynamic': 3072, 'jid': 186, 'process': 'smartlicserver', 'stack': 136, 'text': 16}}}, 187: {'index': {1: {'data': 200120, 'dynamic': 259, 'jid': 187, 'process': 'rip_policy_reg_agent', 'stack': 136, 'text': 8}}}, 188: {'index': {1: {'data': 533704, 'dynamic': 3710, 'jid': 188, 'process': 'eem_ed_nd', 'stack': 136, 'text': 60}}}, 189: {'index': {1: {'data': 401488, 'dynamic': 3499, 'jid': 189, 'process': 'ifmgr', 'stack': 136, 'text': 4}}}, 190: {'index': {1: {'data': 1001552, 'dynamic': 3082, 'jid': 190, 'process': 'rdsfs_svr', 'stack': 136, 'text': 196}}}, 191: {'index': {1: {'data': 398300, 'dynamic': 632, 'jid': 191, 'process': 'hostname_sync', 'stack': 136, 'text': 12}}}, 192: {'index': {1: {'data': 466168, 'dynamic': 570, 'jid': 192, 'process': 'l2vpn_policy_reg_agent', 'stack': 136, 'text': 20}}}, 193: {'index': {1: {'data': 665096, 'dynamic': 1405, 'jid': 193, 'process': 'ntpd', 'stack': 136, 'text': 344}}}, 194: {'index': {1: {'data': 794692, 'dynamic': 2629, 'jid': 194, 'process': 'nrssvr', 'stack': 136, 'text': 180}}}, 195: {'index': {1: {'data': 531776, 'dynamic': 748, 'jid': 195, 'process': 'ipv4_io', 'stack': 136, 'text': 256}}}, 196: {'index': {1: {'data': 200624, 'dynamic': 274, 'jid': 196, 'process': 'domain_sync', 'stack': 136, 'text': 16}}}, 197: {'index': {1: {'data': 1015252, 'dynamic': 21870, 'jid': 197, 'process': 'parser_server', 'stack': 136, 'text': 304}}}, 198: {'index': {1: {'data': 532612, 'dynamic': 3540, 'jid': 198, 'process': 'eem_ed_config', 'stack': 136, 'text': 56}}}, 199: {'index': {1: {'data': 200648, 'dynamic': 282, 'jid': 199, 'process': 'cerrno_server', 'stack': 136, 'text': 48}}}, 200: {'index': {1: {'data': 531264, 'dynamic': 1810, 'jid': 200, 'process': 'ipv4_arm', 'stack': 136, 'text': 344}}}, 201: {'index': {1: {'data': 268968, 'dynamic': 1619, 'jid': 201, 'process': 'session_mon', 'stack': 136, 'text': 68}}}, 202: {'index': {1: {'data': 864208, 'dynamic': 3472, 'jid': 202, 'process': 'netio', 'stack': 136, 'text': 292}}}, 204: {'index': {1: {'data': 268932, 'dynamic': 2122, 'jid': 204, 'process': 'ether_caps_partner', 'stack': 136, 'text': 152}}}, 205: {'index': {1: {'data': 201168, 'dynamic': 254, 'jid': 205, 'process': 'sunstone_stats_svr', 'stack': 136, 'text': 28}}}, 206: {'index': {1: {'data': 794684, 'dynamic': 2967, 'jid': 206, 'process': 'sysdb_shared_nc', 'stack': 136, 'text': 4}}}, 207: {'index': {1: {'data': 601736, 'dynamic': 2823, 'jid': 207, 'process': 'yang_server', 'stack': 136, 'text': 268}}}, 208: {'index': {1: {'data': 200096, 'dynamic': 251, 'jid': 208, 'process': 'ipodwdm', 'stack': 136, 'text': 16}}}, 209: {'index': {1: {'data': 200656, 'dynamic': 253, 'jid': 209, 'process': 'crypto_edm', 'stack': 136, 'text': 24}}}, 210: {'index': {1: {'data': 878632, 'dynamic': 13237, 'jid': 210, 'process': 'nvgen_server', 'stack': 136, 'text': 244}}}, 211: {'index': {1: {'data': 334080, 'dynamic': 2169, 'jid': 211, 'process': 'pfilter_ma', 'stack': 136, 'text': 228}}}, 213: {'index': {1: {'data': 531840, 'dynamic': 1073, 'jid': 213, 'process': 'kim', 'stack': 136, 'text': 428}}}, 216: {'index': {1: {'data': 267224, 'dynamic': 451, 'jid': 216, 'process': 'showd_lc', 'stack': 136, 'text': 64}}}, 217: {'index': {1: {'data': 406432, 'dynamic': 4666, 'jid': 217, 'process': 'pppoe_ma', 'stack': 136, 'text': 520}}}, 218: {'index': {1: {'data': 664484, 'dynamic': 2602, 'jid': 218, 'process': 'l2rib', 'stack': 136, 'text': 484}}}, 220: {'index': {1: {'data': 598812, 'dynamic': 3443, 'jid': 220, 'process': 'eem_ed_syslog', 'stack': 136, 'text': 60}}}, 221: {'index': {1: {'data': 267264, 'dynamic': 290, 'jid': 221, 'process': 'lpts_fm', 'stack': 136, 'text': 52}}}, 222: {'index': {1: {'data': 205484, 'dynamic': 5126, 'jid': 222, 'process': 'mpa_fm_svr', 'stack': 136, 'text': 12}}}, 243: {'index': {1: {'data': 267576, 'dynamic': 990, 'jid': 243, 'process': 'spio_ea', 'stack': 136, 'text': 8}}}, 244: {'index': {1: {'data': 200632, 'dynamic': 247, 'jid': 244, 'process': 'mempool_edm', 'stack': 136, 'text': 8}}}, 245: {'index': {1: {'data': 532624, 'dynamic': 3541, 'jid': 245, 'process': 'eem_ed_counter', 'stack': 136, 'text': 48}}}, 247: {'index': {1: {'data': 1010268, 'dynamic': 1923, 'jid': 247, 'process': 'cfgmgr-rp', 'stack': 136, 'text': 344}}}, 248: {'index': {1: {'data': 465260, 'dynamic': 1243, 'jid': 248, 'process': 'alarm-logger', 'stack': 136, 'text': 104}}}, 249: {'index': {1: {'data': 797376, 'dynamic': 1527, 'jid': 249, 'process': 'locald_DLRSC', 'stack': 136, 'text': 604}}}, 250: {'index': {1: {'data': 265800, 'dynamic': 438, 'jid': 250, 'process': 'lcp_mgr', 'stack': 136, 'text': 12}}}, 251: {'index': {1: {'data': 265840, 'dynamic': 712, 'jid': 251, 'process': 'tamfs', 'stack': 136, 'text': 32}}}, 252: {'index': {1: {'data': 531384, 'dynamic': 7041, 'jid': 252, 'process': 'sysdb_svr_local', 'stack': 136, 'text': 4}}}, 253: {'index': {1: {'data': 200672, 'dynamic': 256, 'jid': 253, 'process': 'tty_show_users_edm', 'stack': 136, 'text': 32}}}, 254: {'index': {1: {'data': 534032, 'dynamic': 4463, 'jid': 254, 'process': 'eem_ed_generic', 'stack': 136, 'text': 96}}}, 255: {'index': {1: {'data': 201200, 'dynamic': 409, 'jid': 255, 'process': 'ipv6_acl_cfg_agent', 'stack': 136, 'text': 32}}}, 256: {'index': {1: {'data': 334104, 'dynamic': 756, 'jid': 256, 'process': 'mpls_vpn_mib', 'stack': 136, 'text': 156}}}, 257: {'index': {1: {'data': 267888, 'dynamic': 339, 'jid': 257, 'process': 'bundlemgr_adj', 'stack': 136, 'text': 156}}}, 258: {'index': {1: {'data': 1651090, 'dynamic': 244, 'jid': 258, 'process': 'file_paltx', 'stack': 136, 'text': 16}}}, 259: {'index': {1: {'data': 1000600, 'dynamic': 6088, 'jid': 259, 'process': 'ipv6_nd', 'stack': 136, 'text': 1016}}}, 260: {'index': {1: {'data': 533044, 'dynamic': 1793, 'jid': 260, 'process': 'sdr_instagt', 'stack': 136, 'text': 260}}}, 261: {'index': {1: {'data': 334860, 'dynamic': 806, 'jid': 261, 'process': 'ipsec_pp', 'stack': 136, 'text': 220}}}, 266: {'index': {1: {'data': 266344, 'dynamic': 717, 'jid': 266, 'process': 'pm_server', 'stack': 136, 'text': 92}}}, 267: {'index': {1: {'data': 598760, 'dynamic': 2768, 'jid': 267, 'process': 'object_tracking', 'stack': 136, 'text': 204}}}, 268: {'index': {1: {'data': 200700, 'dynamic': 417, 'jid': 268, 'process': 'wdsysmon_fd_edm', 'stack': 136, 'text': 20}}}, 269: {'index': {1: {'data': 664752, 'dynamic': 2513, 'jid': 269, 'process': 'eth_mgmt', 'stack': 136, 'text': 60}}}, 270: {'index': {1: {'data': 200064, 'dynamic': 257, 'jid': 270, 'process': 'gcp_fib_verifier', 'stack': 136, 'text': 20}}}, 271: {'index': {1: {'data': 400624, 'dynamic': 2348, 'jid': 271, 'process': 'rsi_agent', 'stack': 136, 'text': 580}}}, 272: {'index': {1: {'data': 794692, 'dynamic': 1425, 'jid': 272, 'process': 'nrssvr_global', 'stack': 136, 'text': 180}}}, 273: {'index': {1: {'data': 494124, 'dynamic': 19690, 'jid': 273, 'process': 'invmgr_proxy', 'stack': 136, 'text': 112}}}, 275: {'index': {1: {'data': 199552, 'dynamic': 264, 'jid': 275, 'process': 'nsr_fo', 'stack': 136, 'text': 12}}}, 276: {'index': {1: {'data': 202328, 'dynamic': 436, 'jid': 276, 'process': 'mpls_fwd_show_proxy', 'stack': 136, 'text': 204}}}, 277: {'index': {1: {'data': 267112, 'dynamic': 688, 'jid': 277, 'process': 'tam_sync', 'stack': 136, 'text': 44}}}, 278: {'index': {1: {'data': 200120, 'dynamic': 259, 'jid': 278, 'process': 'mldp_policy_reg_agent', 'stack': 136, 'text': 8}}}, 290: {'index': {1: {'data': 200640, 'dynamic': 262, 'jid': 290, 'process': 'sh_proc_mem_edm', 'stack': 136, 'text': 20}}}, 291: {'index': {1: {'data': 794684, 'dynamic': 3678, 'jid': 291, 'process': 'sysdb_shared_sc', 'stack': 136, 'text': 4}}}, 293: {'index': {1: {'data': 200120, 'dynamic': 259, 'jid': 293, 'process': 'pim6_policy_reg_agent', 'stack': 136, 'text': 8}}}, 294: {'index': {1: {'data': 267932, 'dynamic': 1495, 'jid': 294, 'process': 'issumgr', 'stack': 136, 'text': 560}}}, 295: {'index': {1: {'data': 266744, 'dynamic': 296, 'jid': 295, 'process': 'vlan_ea', 'stack': 136, 'text': 220}}}, 296: {'index': {1: {'data': 796404, 'dynamic': 1902, 'jid': 296, 'process': 'correlatord', 'stack': 136, 'text': 292}}}, 297: {'index': {1: {'data': 201304, 'dynamic': 367, 'jid': 297, 'process': 'imaedm_server', 'stack': 136, 'text': 56}}}, 298: {'index': {1: {'data': 200224, 'dynamic': 246, 'jid': 298, 'process': 'ztp_cfg', 'stack': 136, 'text': 12}}}, 299: {'index': {1: {'data': 268000, 'dynamic': 459, 'jid': 299, 'process': 'ipv6_ea', 'stack': 136, 'text': 92}}}, 301: {'index': {1: {'data': 200644, 'dynamic': 250, 'jid': 301, 'process': 'sysmgr_show_proc_all_edm', 'stack': 136, 'text': 88}}}, 303: {'index': {1: {'data': 399360, 'dynamic': 882, 'jid': 303, 'process': 'tftp_fs', 'stack': 136, 'text': 68}}}, 304: {'index': {1: {'data': 202220, 'dynamic': 306, 'jid': 304, 'process': 'ncd', 'stack': 136, 'text': 32}}}, 305: {'index': {1: {'data': 1001716, 'dynamic': 9508, 'jid': 305, 'process': 'gsp', 'stack': 136, 'text': 1096}}}, 306: {'index': {1: {'data': 794684, 'dynamic': 1792, 'jid': 306, 'process': 'sysdb_svr_admin', 'stack': 136, 'text': 4}}}, 308: {'index': {1: {'data': 333172, 'dynamic': 538, 'jid': 308, 'process': 'devc-vty', 'stack': 136, 'text': 8}}}, 309: {'index': {1: {'data': 1012628, 'dynamic': 9404, 'jid': 309, 'process': 'tcp', 'stack': 136, 'text': 488}}}, 310: {'index': {1: {'data': 333572, 'dynamic': 2092, 'jid': 310, 'process': 'daps', 'stack': 136, 'text': 512}}}, 312: {'index': {1: {'data': 200620, 'dynamic': 283, 'jid': 312, 'process': 'ipv6_assembler', 'stack': 136, 'text': 36}}}, 313: {'index': {1: {'data': 199844, 'dynamic': 551, 'jid': 313, 'process': 'ssh_key_client', 'stack': 136, 'text': 48}}}, 314: {'index': {1: {'data': 332076, 'dynamic': 371, 'jid': 314, 'process': 'timezone_config', 'stack': 136, 'text': 28}}}, 316: {'index': {1: {'data': 531560, 'dynamic': 2016, 'jid': 316, 'process': 'bcdls', 'stack': 136, 'text': 112}}}, 317: {'index': {1: {'data': 531560, 'dynamic': 2015, 'jid': 317, 'process': 'bcdls', 'stack': 136, 'text': 112}}}, 318: {'index': {1: {'data': 532344, 'dynamic': 2874, 'jid': 318, 'process': 'bcdls', 'stack': 136, 'text': 112}}}, 319: {'index': {1: {'data': 532344, 'dynamic': 2874, 'jid': 319, 'process': 'bcdls', 'stack': 136, 'text': 112}}}, 320: {'index': {1: {'data': 531556, 'dynamic': 2013, 'jid': 320, 'process': 'bcdls', 'stack': 136, 'text': 112}}}, 326: {'index': {1: {'data': 398256, 'dynamic': 348, 'jid': 326, 'process': 'sld', 'stack': 136, 'text': 116}}}, 327: {'index': {1: {'data': 997196, 'dynamic': 3950, 'jid': 327, 'process': 'eem_policy_dir', 'stack': 136, 'text': 268}}}, 329: {'index': {1: {'data': 267464, 'dynamic': 434, 'jid': 329, 'process': 'mpls_io_ea', 'stack': 136, 'text': 108}}}, 332: {'index': {1: {'data': 332748, 'dynamic': 276, 'jid': 332, 'process': 'redstatsd', 'stack': 136, 'text': 20}}}, 333: {'index': {1: {'data': 799488, 'dynamic': 4511, 'jid': 333, 'process': 'rsi_master', 'stack': 136, 'text': 404}}}, 334: {'index': {1: {'data': 333648, 'dynamic': 351, 'jid': 334, 'process': 'sconbkup', 'stack': 136, 'text': 12}}}, 336: {'index': {1: {'data': 199440, 'dynamic': 204, 'jid': 336, 'process': 'pam_manager', 'stack': 136, 'text': 12}}}, 337: {'index': {1: {'data': 600644, 'dynamic': 3858, 'jid': 337, 'process': 'nve_mgr', 'stack': 136, 'text': 204}}}, 339: {'index': {1: {'data': 266800, 'dynamic': 679, 'jid': 339, 'process': 'rmf_svr', 'stack': 136, 'text': 140}}}, 341: {'index': {1: {'data': 465864, 'dynamic': 1145, 'jid': 341, 'process': 'ipv6_io', 'stack': 136, 'text': 160}}}, 342: {'index': {1: {'data': 864468, 'dynamic': 1011, 'jid': 342, 'process': 'syslogd', 'stack': 136, 'text': 224}}}, 343: {'index': {1: {'data': 663932, 'dynamic': 1013, 'jid': 343, 'process': 'ipv6_acl_daemon', 'stack': 136, 'text': 212}}}, 344: {'index': {1: {'data': 996048, 'dynamic': 2352, 'jid': 344, 'process': 'plat_sl_client', 'stack': 136, 'text': 108}}}, 346: {'index': {1: {'data': 598152, 'dynamic': 778, 'jid': 346, 'process': 'cinetd', 'stack': 136, 'text': 136}}}, 347: {'index': {1: {'data': 200648, 'dynamic': 261, 'jid': 347, 'process': 'debug_d', 'stack': 136, 'text': 24}}}, 349: {'index': {1: {'data': 200612, 'dynamic': 284, 'jid': 349, 'process': 'debug_d_admin', 'stack': 136, 'text': 20}}}, 350: {'index': {1: {'data': 399188, 'dynamic': 1344, 'jid': 350, 'process': 'vm-monitor', 'stack': 136, 'text': 72}}}, 352: {'index': {1: {'data': 465844, 'dynamic': 1524, 'jid': 352, 'process': 'lpts_pa', 'stack': 136, 'text': 308}}}, 353: {'index': {1: {'data': 1002896, 'dynamic': 5160, 'jid': 353, 'process': 'call_home', 'stack': 136, 'text': 728}}}, 355: {'index': {1: {'data': 994116, 'dynamic': 7056, 'jid': 355, 'process': 'eem_server', 'stack': 136, 'text': 292}}}, 356: {'index': {1: {'data': 200720, 'dynamic': 396, 'jid': 356, 'process': 'tcl_secure_mode', 'stack': 136, 'text': 8}}}, 357: {'index': {1: {'data': 202040, 'dynamic': 486, 'jid': 357, 'process': 'tamsvcs_tamm', 'stack': 136, 'text': 36}}}, 359: {'index': {1: {'data': 531256, 'dynamic': 1788, 'jid': 359, 'process': 'ipv6_arm', 'stack': 136, 'text': 328}}}, 360: {'index': {1: {'data': 201196, 'dynamic': 363, 'jid': 360, 'process': 'fwd_driver_partner', 'stack': 136, 'text': 88}}}, 361: {'index': {1: {'data': 533872, 'dynamic': 2637, 'jid': 361, 'process': 'ipv6_mfwd_partner', 'stack': 136, 'text': 836}}}, 362: {'index': {1: {'data': 932680, 'dynamic': 3880, 'jid': 362, 'process': 'arp', 'stack': 136, 'text': 728}}}, 363: {'index': {1: {'data': 202024, 'dynamic': 522, 'jid': 363, 'process': 'cepki', 'stack': 136, 'text': 96}}}, 364: {'index': {1: {'data': 1001736, 'dynamic': 4343, 'jid': 364, 'process': 'fib_mgr', 'stack': 136, 'text': 3580}}}, 365: {'index': {1: {'data': 269016, 'dynamic': 2344, 'jid': 365, 'process': 'pim_ma', 'stack': 136, 'text': 56}}}, 368: {'index': {1: {'data': 1002148, 'dynamic': 3111, 'jid': 368, 'process': 'raw_ip', 'stack': 136, 'text': 124}}}, 369: {'index': {1: {'data': 464272, 'dynamic': 625, 'jid': 369, 'process': 'ltrace_server', 'stack': 136, 'text': 40}}}, 371: {'index': {1: {'data': 200572, 'dynamic': 279, 'jid': 371, 'process': 'netio_debug_partner', 'stack': 136, 'text': 24}}}, 372: {'index': {1: {'data': 200120, 'dynamic': 259, 'jid': 372, 'process': 'pim_policy_reg_agent', 'stack': 136, 'text': 8}}}, 373: {'index': {1: {'data': 333240, 'dynamic': 1249, 'jid': 373, 'process': 'policymgr_rp', 'stack': 136, 'text': 592}}}, 375: {'index': {1: {'data': 200624, 'dynamic': 290, 'jid': 375, 'process': 'loopback_caps_partner', 'stack': 136, 'text': 32}}}, 376: {'index': {1: {'data': 467420, 'dynamic': 3815, 'jid': 376, 'process': 'eem_ed_sysmgr', 'stack': 136, 'text': 76}}}, 377: {'index': {1: {'data': 333636, 'dynamic': 843, 'jid': 377, 'process': 'mpls_io', 'stack': 136, 'text': 140}}}, 378: {'index': {1: {'data': 200120, 'dynamic': 258, 'jid': 378, 'process': 'ospfv3_policy_reg_agent', 'stack': 136, 'text': 8}}}, 380: {'index': {1: {'data': 333604, 'dynamic': 520, 'jid': 380, 'process': 'fhrp_output', 'stack': 136, 'text': 124}}}, 381: {'index': {1: {'data': 533872, 'dynamic': 2891, 'jid': 381, 'process': 'ipv4_mfwd_partner', 'stack': 136, 'text': 828}}}, 382: {'index': {1: {'data': 465388, 'dynamic': 538, 'jid': 382, 'process': 'packet', 'stack': 136, 'text': 132}}}, 383: {'index': {1: {'data': 333284, 'dynamic': 359, 'jid': 383, 'process': 'dumper', 'stack': 136, 'text': 40}}}, 384: {'index': {1: {'data': 200636, 'dynamic': 244, 'jid': 384, 'process': 'showd_server', 'stack': 136, 'text': 12}}}, 385: {'index': {1: {'data': 603424, 'dynamic': 3673, 'jid': 385, 'process': 'ipsec_mp', 'stack': 136, 'text': 592}}}, 388: {'index': {1: {'data': 729160, 'dynamic': 836, 'jid': 388, 'process': 'bcdl_agent', 'stack': 136, 'text': 176}}}, 389: {'index': {1: {'data': 729880, 'dynamic': 1066, 'jid': 389, 'process': 'bcdl_agent', 'stack': 136, 'text': 176}}}, 390: {'index': {1: {'data': 663828, 'dynamic': 1384, 'jid': 390, 'process': 'bcdl_agent', 'stack': 136, 'text': 176}}}, 391: {'index': {1: {'data': 795416, 'dynamic': 1063, 'jid': 391, 'process': 'bcdl_agent', 'stack': 136, 'text': 176}}}, 401: {'index': {1: {'data': 466148, 'dynamic': 579, 'jid': 401, 'process': 'es_acl_act_agent', 'stack': 136, 'text': 20}}}, 402: {'index': {1: {'data': 597352, 'dynamic': 1456, 'jid': 402, 'process': 'vi_config_replicator', 'stack': 136, 'text': 40}}}, 403: {'index': {1: {'data': 532624, 'dynamic': 3546, 'jid': 403, 'process': 'eem_ed_timer', 'stack': 136, 'text': 64}}}, 405: {'index': {1: {'data': 664196, 'dynamic': 2730, 'jid': 405, 'process': 'pm_collector', 'stack': 136, 'text': 732}}}, 406: {'index': {1: {'data': 868076, 'dynamic': 5739, 'jid': 406, 'process': 'ppp_ma', 'stack': 136, 'text': 1268}}}, 407: {'index': {1: {'data': 794684, 'dynamic': 1753, 'jid': 407, 'process': 'sysdb_shared_data_nc', 'stack': 136, 'text': 4}}}, 408: {'index': {1: {'data': 415316, 'dynamic': 16797, 'jid': 408, 'process': 'statsd_manager_l', 'stack': 136, 'text': 4}}}, 409: {'index': {1: {'data': 946780, 'dynamic': 16438, 'jid': 409, 'process': 'iedged', 'stack': 136, 'text': 1824}}}, 411: {'index': {1: {'data': 542460, 'dynamic': 17658, 'jid': 411, 'process': 'sysdb_mc', 'stack': 136, 'text': 388}}}, 412: {'index': {1: {'data': 1003624, 'dynamic': 5783, 'jid': 412, 'process': 'l2fib_mgr', 'stack': 136, 'text': 1808}}}, 413: {'index': {1: {'data': 401532, 'dynamic': 2851, 'jid': 413, 'process': 'aib', 'stack': 136, 'text': 256}}}, 414: {'index': {1: {'data': 266776, 'dynamic': 440, 'jid': 414, 'process': 'rmf_cli_edm', 'stack': 136, 'text': 32}}}, 415: {'index': {1: {'data': 399116, 'dynamic': 895, 'jid': 415, 'process': 'ether_sock', 'stack': 136, 'text': 28}}}, 416: {'index': {1: {'data': 200980, 'dynamic': 275, 'jid': 416, 'process': 'shconf-edm', 'stack': 136, 'text': 32}}}, 417: {'index': {1: {'data': 532108, 'dynamic': 3623, 'jid': 417, 'process': 'eem_ed_stats', 'stack': 136, 'text': 60}}}, 418: {'index': {1: {'data': 532288, 'dynamic': 2306, 'jid': 418, 'process': 'ipv4_ma', 'stack': 136, 'text': 540}}}, 419: {'index': {1: {'data': 689020, 'dynamic': 15522, 'jid': 419, 'process': 'sdr_invmgr', 'stack': 136, 'text': 144}}}, 420: {'index': {1: {'data': 466456, 'dynamic': 1661, 'jid': 420, 'process': 'http_client', 'stack': 136, 'text': 96}}}, 421: {'index': {1: {'data': 201152, 'dynamic': 285, 'jid': 421, 'process': 'pak_capture_partner', 'stack': 136, 'text': 16}}}, 422: {'index': {1: {'data': 200016, 'dynamic': 267, 'jid': 422, 'process': 'bag_schema_svr', 'stack': 136, 'text': 36}}}, 424: {'index': {1: {'data': 604932, 'dynamic': 8135, 'jid': 424, 'process': 'issudir', 'stack': 136, 'text': 212}}}, 425: {'index': {1: {'data': 466796, 'dynamic': 1138, 'jid': 425, 'process': 'l2snoop', 'stack': 136, 'text': 104}}}, 426: {'index': {1: {'data': 331808, 'dynamic': 444, 'jid': 426, 'process': 'ssm_process', 'stack': 136, 'text': 56}}}, 427: {'index': {1: {'data': 200120, 'dynamic': 245, 'jid': 427, 'process': 'media_server', 'stack': 136, 'text': 16}}}, 428: {'index': {1: {'data': 267340, 'dynamic': 432, 'jid': 428, 'process': 'ip_app', 'stack': 136, 'text': 48}}}, 429: {'index': {1: {'data': 269032, 'dynamic': 2344, 'jid': 429, 'process': 'pim6_ma', 'stack': 136, 'text': 56}}}, 431: {'index': {1: {'data': 200416, 'dynamic': 390, 'jid': 431, 'process': 'local_sock', 'stack': 136, 'text': 16}}}, 432: {'index': {1: {'data': 265704, 'dynamic': 269, 'jid': 432, 'process': 'crypto_monitor', 'stack': 136, 'text': 68}}}, 433: {'index': {1: {'data': 597624, 'dynamic': 1860, 'jid': 433, 'process': 'ema_server_sdr', 'stack': 136, 'text': 112}}}, 434: {'index': {1: {'data': 200120, 'dynamic': 259, 'jid': 434, 'process': 'isis_policy_reg_agent', 'stack': 136, 'text': 8}}}, 435: {'index': {1: {'data': 200120, 'dynamic': 261, 'jid': 435, 'process': 'eigrp_policy_reg_agent', 'stack': 136, 'text': 12}}}, 437: {'index': {1: {'data': 794096, 'dynamic': 776, 'jid': 437, 'process': 'cdm_rs', 'stack': 136, 'text': 80}}}, 1003: {'index': {1: {'data': 798196, 'dynamic': 3368, 'jid': 1003, 'process': 'eigrp', 'stack': 136, 'text': 936}}}, 1011: {'index': {1: {'data': 1006776, 'dynamic': 8929, 'jid': 1011, 'process': 'isis', 'stack': 136, 'text': 4888}}}, 1012: {'index': {1: {'data': 1006776, 'dynamic': 8925, 'jid': 1012, 'process': 'isis', 'stack': 136, 'text': 4888}}}, 1027: {'index': {1: {'data': 1012376, 'dynamic': 14258, 'jid': 1027, 'process': 'ospf', 'stack': 136, 'text': 2880}}}, 1046: {'index': {1: {'data': 804288, 'dynamic': 8673, 'jid': 1046, 'process': 'ospfv3', 'stack': 136, 'text': 1552}}}, 1066: {'index': {1: {'data': 333188, 'dynamic': 1084, 'jid': 1066, 'process': 'autorp_candidate_rp', 'stack': 136, 'text': 52}}}, 1067: {'index': {1: {'data': 532012, 'dynamic': 1892, 'jid': 1067, 'process': 'autorp_map_agent', 'stack': 136, 'text': 84}}}, 1071: {'index': {1: {'data': 998992, 'dynamic': 5498, 'jid': 1071, 'process': 'msdp', 'stack': 136, 'text': 484}}}, 1074: {'index': {1: {'data': 599436, 'dynamic': 1782, 'jid': 1074, 'process': 'rip', 'stack': 136, 'text': 296}}}, 1078: {'index': {1: {'data': 1045796, 'dynamic': 40267, 'jid': 1078, 'process': 'bgp', 'stack': 136, 'text': 2408}}}, 1093: {'index': {1: {'data': 668844, 'dynamic': 3577, 'jid': 1093, 'process': 'bpm', 'stack': 136, 'text': 716}}}, 1101: {'index': {1: {'data': 266776, 'dynamic': 602, 'jid': 1101, 'process': 'cdp_mgr', 'stack': 136, 'text': 24}}}, 1113: {'index': {1: {'data': 200096, 'dynamic': 251, 'jid': 1113, 'process': 'eigrp_uv', 'stack': 136, 'text': 48}}}, 1114: {'index': {1: {'data': 1084008, 'dynamic': 45594, 'jid': 1114, 'process': 'emsd', 'stack': 136, 'text': 10636}}}, 1128: {'index': {1: {'data': 200156, 'dynamic': 284, 'jid': 1128, 'process': 'isis_uv', 'stack': 136, 'text': 84}}}, 1130: {'index': {1: {'data': 599144, 'dynamic': 2131, 'jid': 1130, 'process': 'lldp_agent', 'stack': 136, 'text': 412}}}, 1135: {'index': {1: {'data': 1052648, 'dynamic': 24083, 'jid': 1135, 'process': 'netconf', 'stack': 136, 'text': 772}}}, 1136: {'index': {1: {'data': 600036, 'dynamic': 795, 'jid': 1136, 'process': 'netconf_agent_tty', 'stack': 136, 'text': 20}}}, 1139: {'index': {1: {'data': 200092, 'dynamic': 259, 'jid': 1139, 'process': 'ospf_uv', 'stack': 136, 'text': 48}}}, 1140: {'index': {1: {'data': 200092, 'dynamic': 258, 'jid': 1140, 'process': 'ospfv3_uv', 'stack': 136, 'text': 32}}}, 1147: {'index': {1: {'data': 808524, 'dynamic': 5098, 'jid': 1147, 'process': 'sdr_mgbl_proxy', 'stack': 136, 'text': 464}}}, 1221: {'index': {1: {'data': 200848, 'dynamic': 503, 'jid': 1221, 'process': 'ssh_conf_verifier', 'stack': 136, 'text': 32}}}, 1233: {'index': {1: {'data': 399212, 'dynamic': 1681, 'jid': 1233, 'process': 'mpls_static', 'stack': 136, 'text': 252}}}, 1234: {'index': {1: {'data': 464512, 'dynamic': 856, 'jid': 1234, 'process': 'lldp_mgr', 'stack': 136, 'text': 100}}}, 1235: {'index': {1: {'data': 665416, 'dynamic': 1339, 'jid': 1235, 'process': 'intf_mgbl', 'stack': 136, 'text': 212}}}, 1236: {'index': {1: {'data': 546924, 'dynamic': 17047, 'jid': 1236, 'process': 'statsd_manager_g', 'stack': 136, 'text': 4}}}, 1237: {'index': {1: {'data': 201996, 'dynamic': 1331, 'jid': 1237, 'process': 'ipv4_mfwd_ma', 'stack': 136, 'text': 144}}}, 1238: {'index': {1: {'data': 1015244, 'dynamic': 22504, 'jid': 1238, 'process': 'ipv4_rib', 'stack': 136, 'text': 1008}}}, 1239: {'index': {1: {'data': 201364, 'dynamic': 341, 'jid': 1239, 'process': 'ipv6_mfwd_ma', 'stack': 136, 'text': 136}}}, 1240: {'index': {1: {'data': 951448, 'dynamic': 26381, 'jid': 1240, 'process': 'ipv6_rib', 'stack': 136, 'text': 1160}}}, 1241: {'index': {1: {'data': 873952, 'dynamic': 11135, 'jid': 1241, 'process': 'mrib', 'stack': 136, 'text': 1536}}}, 1242: {'index': {1: {'data': 873732, 'dynamic': 11043, 'jid': 1242, 'process': 'mrib6', 'stack': 136, 'text': 1516}}}, 1243: {'index': {1: {'data': 800236, 'dynamic': 3444, 'jid': 1243, 'process': 'policy_repository', 'stack': 136, 'text': 472}}}, 1244: {'index': {1: {'data': 399440, 'dynamic': 892, 'jid': 1244, 'process': 'ipv4_mpa', 'stack': 136, 'text': 160}}}, 1245: {'index': {1: {'data': 399444, 'dynamic': 891, 'jid': 1245, 'process': 'ipv6_mpa', 'stack': 136, 'text': 160}}}, 1246: {'index': {1: {'data': 200664, 'dynamic': 261, 'jid': 1246, 'process': 'eth_gl_cfg', 'stack': 136, 'text': 20}}}, 1247: {'index': {1: {'data': 941936, 'dynamic': 13246, 'jid': 1247, 'process': 'igmp', 'stack': 144, 'text': 980}}}, 1248: {'index': {1: {'data': 267440, 'dynamic': 677, 'jid': 1248, 'process': 'ipv4_connected', 'stack': 136, 'text': 4}}}, 1249: {'index': {1: {'data': 267424, 'dynamic': 677, 'jid': 1249, 'process': 'ipv4_local', 'stack': 136, 'text': 4}}}, 1250: {'index': {1: {'data': 267436, 'dynamic': 680, 'jid': 1250, 'process': 'ipv6_connected', 'stack': 136, 'text': 4}}}, 1251: {'index': {1: {'data': 267420, 'dynamic': 681, 'jid': 1251, 'process': 'ipv6_local', 'stack': 136, 'text': 4}}}, 1252: {'index': {1: {'data': 940472, 'dynamic': 12973, 'jid': 1252, 'process': 'mld', 'stack': 136, 'text': 928}}}, 1253: {'index': {1: {'data': 1018740, 'dynamic': 22744, 'jid': 1253, 'process': 'pim', 'stack': 136, 'text': 4424}}}, 1254: {'index': {1: {'data': 1017788, 'dynamic': 22444, 'jid': 1254, 'process': 'pim6', 'stack': 136, 'text': 4544}}}, 1255: {'index': {1: {'data': 799148, 'dynamic': 4916, 'jid': 1255, 'process': 'bundlemgr_distrib', 'stack': 136, 'text': 2588}}}, 1256: {'index': {1: {'data': 999524, 'dynamic': 7871, 'jid': 1256, 'process': 'bfd', 'stack': 136, 'text': 1512}}}, 1257: {'index': {1: {'data': 268092, 'dynamic': 1903, 'jid': 1257, 'process': 'bgp_epe', 'stack': 136, 'text': 60}}}, 1258: {'index': {1: {'data': 268016, 'dynamic': 493, 'jid': 1258, 'process': 'domain_services', 'stack': 136, 'text': 136}}}, 1259: {'index': {1: {'data': 201184, 'dynamic': 272, 'jid': 1259, 'process': 'ethernet_stats_controller_edm', 'stack': 136, 'text': 32}}}, 1260: {'index': {1: {'data': 399868, 'dynamic': 874, 'jid': 1260, 'process': 'ftp_fs', 'stack': 136, 'text': 64}}}, 1261: {'index': {1: {'data': 206536, 'dynamic': 2468, 'jid': 1261, 'process': 'python_process_manager', 'stack': 136, 'text': 12}}}, 1262: {'index': {1: {'data': 200360, 'dynamic': 421, 'jid': 1262, 'process': 'tty_verifyd', 'stack': 136, 'text': 8}}}, 1263: {'index': {1: {'data': 265924, 'dynamic': 399, 'jid': 1263, 'process': 'ipv4_rump', 'stack': 136, 'text': 60}}}, 1264: {'index': {1: {'data': 265908, 'dynamic': 394, 'jid': 1264, 'process': 'ipv6_rump', 'stack': 136, 'text': 108}}}, 1265: {'index': {1: {'data': 729900, 'dynamic': 1030, 'jid': 1265, 'process': 'es_acl_mgr', 'stack': 136, 'text': 56}}}, 1266: {'index': {1: {'data': 530424, 'dynamic': 723, 'jid': 1266, 'process': 'rt_check_mgr', 'stack': 136, 'text': 104}}}, 1267: {'index': {1: {'data': 336304, 'dynamic': 2594, 'jid': 1267, 'process': 'pbr_ma', 'stack': 136, 'text': 184}}}, 1268: {'index': {1: {'data': 466552, 'dynamic': 2107, 'jid': 1268, 'process': 'qos_ma', 'stack': 136, 'text': 876}}}, 1269: {'index': {1: {'data': 334576, 'dynamic': 975, 'jid': 1269, 'process': 'vservice_mgr', 'stack': 136, 'text': 60}}}, 1270: {'index': {1: {'data': 1000676, 'dynamic': 5355, 'jid': 1270, 'process': 'mpls_ldp', 'stack': 136, 'text': 2952}}}, 1271: {'index': {1: {'data': 1002132, 'dynamic': 6985, 'jid': 1271, 'process': 'xtc_agent', 'stack': 136, 'text': 1948}}}, 1272: {'index': {1: {'data': 1017288, 'dynamic': 14858, 'jid': 1272, 'process': 'l2vpn_mgr', 'stack': 136, 'text': 5608}}}, 1273: {'index': {1: {'data': 424, 'dynamic': 0, 'jid': 1273, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 1274: {'index': {1: {'data': 202200, 'dynamic': 1543, 'jid': 1274, 'process': 'cmpp', 'stack': 136, 'text': 60}}}, 1275: {'index': {1: {'data': 334624, 'dynamic': 1555, 'jid': 1275, 'process': 'l2tp_mgr', 'stack': 136, 'text': 960}}}, 1276: {'index': {1: {'data': 223128, 'dynamic': 16781, 'jid': 1276, 'process': 'schema_server', 'stack': 136, 'text': 80}}}, 1277: {'index': {1: {'data': 670692, 'dynamic': 6660, 'jid': 1277, 'process': 'sdr_instmgr', 'stack': 136, 'text': 1444}}}, 1278: {'index': {1: {'data': 1004336, 'dynamic': 436, 'jid': 1278, 'process': 'snmppingd', 'stack': 136, 'text': 24}}}, 1279: {'index': {1: {'data': 200120, 'dynamic': 263, 'jid': 1279, 'process': 'ssh_backup_server', 'stack': 136, 'text': 100}}}, 1280: {'index': {1: {'data': 398960, 'dynamic': 835, 'jid': 1280, 'process': 'ssh_server', 'stack': 136, 'text': 228}}}, 1281: {'index': {1: {'data': 399312, 'dynamic': 1028, 'jid': 1281, 'process': 'tc_server', 'stack': 136, 'text': 240}}}, 1282: {'index': {1: {'data': 200636, 'dynamic': 281, 'jid': 1282, 'process': 'wanphy_proc', 'stack': 136, 'text': 12}}}, 67280: {'index': {1: {'data': 204, 'dynamic': 0, 'jid': 67280, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 67321: {'index': {1: {'data': 132, 'dynamic': 0, 'jid': 67321, 'process': 'sh', 'stack': 136, 'text': 1016}}}, 67322: {'index': {1: {'data': 204, 'dynamic': 0, 'jid': 67322, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 67338: {'index': {1: {'data': 40, 'dynamic': 0, 'jid': 67338, 'process': 'cgroup_oom', 'stack': 136, 'text': 8}}}, 67493: {'index': {1: {'data': 176, 'dynamic': 0, 'jid': 67493, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 67499: {'index': {1: {'data': 624, 'dynamic': 0, 'jid': 67499, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 67513: {'index': {1: {'data': 256, 'dynamic': 0, 'jid': 67513, 'process': 'inotifywait', 'stack': 136, 'text': 24}}}, 67514: {'index': {1: {'data': 636, 'dynamic': 0, 'jid': 67514, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 67563: {'index': {1: {'data': 8408, 'dynamic': 0, 'jid': 67563, 'process': 'dbus-daemon', 'stack': 136, 'text': 408}}}, 67582: {'index': {1: {'data': 440, 'dynamic': 0, 'jid': 67582, 'process': 'sshd', 'stack': 136, 'text': 704}}}, 67592: {'index': {1: {'data': 200, 'dynamic': 0, 'jid': 67592, 'process': 'rpcbind', 'stack': 136, 'text': 44}}}, 67686: {'index': {1: {'data': 244, 'dynamic': 0, 'jid': 67686, 'process': 'rngd', 'stack': 136, 'text': 20}}}, 67692: {'index': {1: {'data': 176, 'dynamic': 0, 'jid': 67692, 'process': 'syslogd', 'stack': 136, 'text': 44}}}, 67695: {'index': {1: {'data': 3912, 'dynamic': 0, 'jid': 67695, 'process': 'klogd', 'stack': 136, 'text': 28}}}, 67715: {'index': {1: {'data': 176, 'dynamic': 0, 'jid': 67715, 'process': 'xinetd', 'stack': 136, 'text': 156}}}, 67758: {'index': {1: {'data': 748, 'dynamic': 0, 'jid': 67758, 'process': 'crond', 'stack': 524, 'text': 56}}}, 68857: {'index': {1: {'data': 672, 'dynamic': 0, 'jid': 68857, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 68876: {'index': {1: {'data': 744, 'dynamic': 0, 'jid': 68876, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 68881: {'index': {1: {'data': 82976, 'dynamic': 0, 'jid': 68881, 'process': 'dev_inotify_hdlr', 'stack': 136, 'text': 12}}}, 68882: {'index': {1: {'data': 82976, 'dynamic': 0, 'jid': 68882, 'process': 'dev_inotify_hdlr', 'stack': 136, 'text': 12}}}, 68909: {'index': {1: {'data': 88312, 'dynamic': 0, 'jid': 68909, 'process': 'ds', 'stack': 136, 'text': 56}}}, 69594: {'index': {1: {'data': 199480, 'dynamic': 173, 'jid': 69594, 'process': 'tty_exec_launcher', 'stack': 136, 'text': 16}}}, 70487: {'index': {1: {'data': 200108, 'dynamic': 312, 'jid': 70487, 'process': 'tams_proc', 'stack': 136, 'text': 440}}}, 70709: {'index': {1: {'data': 200200, 'dynamic': 342, 'jid': 70709, 'process': 'tamd_proc', 'stack': 136, 'text': 32}}}, 73424: {'index': {1: {'data': 200808, 'dynamic': 0, 'jid': 73424, 'process': 'attestation_agent', 'stack': 136, 'text': 108}}}, 75962: {'index': {1: {'data': 206656, 'dynamic': 0, 'jid': 75962, 'process': 'pyztp2', 'stack': 136, 'text': 8}}}, 76021: {'index': {1: {'data': 1536, 'dynamic': 0, 'jid': 76021, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 76022: {'index': {1: {'data': 1784, 'dynamic': 0, 'jid': 76022, 'process': 'bash', 'stack': 136, 'text': 1016}}}, 76639: {'index': {1: {'data': 16480, 'dynamic': 0, 'jid': 76639, 'process': 'perl', 'stack': 136, 'text': 8}}}, 76665: {'index': {1: {'data': 487380, 'dynamic': 0, 'jid': 76665, 'process': 'pam_cli_agent', 'stack': 136, 'text': 1948}}}, 76768: {'index': {1: {'data': 24868, 'dynamic': 0, 'jid': 76768, 'process': 'perl', 'stack': 136, 'text': 8}}}, 76784: {'index': {1: {'data': 17356, 'dynamic': 0, 'jid': 76784, 'process': 'perl', 'stack': 136, 'text': 8}}}, 76802: {'index': {1: {'data': 16280, 'dynamic': 0, 'jid': 76802, 'process': 'perl', 'stack': 136, 'text': 8}}}, 77304: {'index': {1: {'data': 598100, 'dynamic': 703, 'jid': 77304, 'process': 'exec', 'stack': 136, 'text': 76}}}, 80488: {'index': {1: {'data': 172, 'dynamic': 0, 'jid': 80488, 'process': 'sleep', 'stack': 136, 'text': 32}}}, 80649: {'index': {1: {'data': 172, 'dynamic': 0, 'jid': 80649, 'process': 'sleep', 'stack': 136, 'text': 32}}}, 80788: {'index': {1: {'data': 1484, 'dynamic': 2, 'jid': 80788, 'process': 'sleep', 'stack': 136, 'text': 32}}}, 80791: {'index': {1: {'data': 420, 'dynamic': 0, 'jid': 80791, 'process': 'sh', 'stack': 136, 'text': 1016}}}, 80792: {'index': {1: {'data': 133912, 'dynamic': 194, 'jid': 80792, 'process': 'sh_proc_mem_cli', 'stack': 136, 'text': 12}}}, 80796: {'index': {1: {'data': 484, 'dynamic': 0, 'jid': 80796, 'process': 'sh', 'stack': 136, 'text': 1016}}}, 80797: {'index': {1: {'data': 133916, 'dynamic': 204, 'jid': 80797, 'process': 'sh_proc_memory', 'stack': 136, 'text': 12 } } } } }
opencga-app/build/analysis/tabix-0.2.6/tabix.py
roalva1/opencga
125
12605231
#!/usr/bin/env python # Author: <NAME> and <NAME> # License: MIT/X11 import sys from ctypes import * from ctypes.util import find_library import glob, platform def load_shared_library(lib, _path='.', ver='*'): """Search for and load the tabix library. The expectation is that the library is located in the current directory (ie. "./") """ # find from the system path path = find_library(lib) if (path == None): # if fail, search in the custom directory s = platform.system() if (s == 'Darwin'): suf = ver+'.dylib' elif (s == 'Linux'): suf = '.so'+ver candidates = glob.glob(_path+'/lib'+lib+suf); if (len(candidates) == 1): path = candidates[0] else: return None cdll.LoadLibrary(path) return CDLL(path) def tabix_init(): """Initialize and return a tabix reader object for subsequent tabix_get() calls. """ tabix = load_shared_library('tabix') if (tabix == None): return None tabix.ti_read.restype = c_char_p # on Mac OS X 10.6, the following declarations are required. tabix.ti_open.restype = c_void_p tabix.ti_querys.argtypes = [c_void_p, c_char_p] tabix.ti_querys.restype = c_void_p tabix.ti_query.argtypes = [c_void_p, c_char_p, c_int, c_int] tabix.ti_query.restype = c_void_p tabix.ti_read.argtypes = [c_void_p, c_void_p, c_void_p] tabix.ti_iter_destroy.argtypes = [c_void_p] tabix.ti_close.argtypes = [c_void_p] # FIXME: explicit declarations for APIs not used in this script return tabix # OOP interface class Tabix: def __init__(self, fn, fnidx=0): self.tabix = tabix_init(); if (self.tabix == None): sys.stderr.write("[Tabix] Please make sure the shared library is compiled and available.\n") return self.fp = self.tabix.ti_open(fn, fnidx); def __del__(self): if (self.tabix): self.tabix.ti_close(self.fp) def fetch(self, chr, start=-1, end=-1): """Generator function that will yield each interval within the requested range from the requested file. """ if (self.tabix == None): return if (start < 0): iter = self.tabix.ti_querys(self.fp, chr) # chr looks like: "chr2:1,000-2,000" or "chr2" else: iter = self.tabix.ti_query(self.fp, chr, start, end) # chr must be a sequence name if (iter == None): sys.stderr.write("[Tabix] Malformatted query or wrong sequence name.\n") return while (1): # iterate s = self.tabix.ti_read(self.fp, iter, 0) if (s == None): break yield s self.tabix.ti_iter_destroy(iter) # command-line interface def main(): if (len(sys.argv) < 3): sys.stderr.write("Usage: tabix.py <in.gz> <reg>\n") sys.exit(1) # report the features in the requested interval tabix = Tabix(sys.argv[1]) for line in tabix.fetch(sys.argv[2]): print line if __name__ == '__main__': main()
virtual/lib/python3.8/site-packages/openapi_spec_validator/handlers/utils.py
dan-mutua/flaskwk3
201
12605241
import os.path from six.moves.urllib.parse import urlparse, unquote from six.moves.urllib.request import url2pathname def uri_to_path(uri): parsed = urlparse(uri) host = "{0}{0}{mnt}{0}".format(os.path.sep, mnt=parsed.netloc) return os.path.normpath( os.path.join(host, url2pathname(unquote(parsed.path))) )
Trakttv.bundle/Contents/Libraries/Shared/plugin/core/backup/tasks/__init__.py
disrupted/Trakttv.bundle
1,346
12605258
from plugin.core.backup.tasks.archive import ArchiveTask from plugin.core.backup.tasks.compact import CompactTask
src/strategy/python/strategy.py
oxnz/design-patterns
117
12605281
'''http://stackoverflow.com/questions/963965/how-is-this-strategy-pattern-written-in-python-the-sample-in-wikipedia''' import types class StrategyExample: def __init__(self, func=None): self.name = "Strategy Example 0" if func : self.execute = types.MethodType(func, self) def execute(self): print(self.name) def executeReplacement1(self): print(self.name + " from execute 1") def executeReplacement2(self): print(self.name + " from execute 2") if __name__ == "__main__": strat0 = StrategyExample() strat1 = StrategyExample(executeReplacement1) strat1.name = "Strategy Example 1" strat2 = StrategyExample(executeReplacement2) strat2.name = "Strategy Example 2" strat0.execute() strat1.execute() strat2.execute()