max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
lldb/packages/Python/lldbsuite/test/commands/command/script/callables.py
medismailben/llvm-project
2,338
12621457
import lldb # bunch of different kinds of python callables that should # all work as commands. def check(debugger, command, context, result, internal_dict): if (not isinstance(debugger, lldb.SBDebugger) or not isinstance(command, str) or not isinstance(result, lldb.SBCommandReturnObject) or not isinstance(internal_dict, dict) or (not context is None and not isinstance(context, lldb.SBExecutionContext))): raise Exception() result.AppendMessage("All good.") def vfoobar(*args): check(*args) def v5foobar(debugger, command, context, result, internal_dict, *args): check(debugger, command, context, result, internal_dict) def foobar(debugger, command, context, result, internal_dict): check(debugger, command, context, result, internal_dict) def foobar4(debugger, command, result, internal_dict): check(debugger, command, None, result, internal_dict) class FooBar: @staticmethod def sfoobar(debugger, command, context, result, internal_dict): check(debugger, command, context, result, internal_dict) @classmethod def cfoobar(cls, debugger, command, context, result, internal_dict): check(debugger, command, context, result, internal_dict) def ifoobar(self, debugger, command, context, result, internal_dict): check(debugger, command, context, result, internal_dict) def __call__(self, debugger, command, context, result, internal_dict): check(debugger, command, context, result, internal_dict) @staticmethod def sfoobar4(debugger, command, result, internal_dict): check(debugger, command, None, result, internal_dict) @classmethod def cfoobar4(cls, debugger, command, result, internal_dict): check(debugger, command, None, result, internal_dict) def ifoobar4(self, debugger, command, result, internal_dict): check(debugger, command, None, result, internal_dict) class FooBar4: def __call__(self, debugger, command, result, internal_dict): check(debugger, command, None, result, internal_dict) FooBarObj = FooBar() FooBar4Obj = FooBar4()
Packs/HealthCheck/Scripts/HealthCheckServerLog/HealthCheckServerLog.py
diCagri/content
799
12621476
import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 # noqa: F401 # noqa: F401 import re def findOldestDate(incidentDate, newDate): incidentDate = datetime.strptime(incidentDate, "%Y-%m-%d %H:%M:%S") newDate = datetime.strptime(newDate, "%Y-%m-%d %H:%M:%S") return min([incidentDate, newDate]) def findNewestDate(incidentDate, newDate): incidentDate = datetime.strptime(incidentDate, "%Y-%m-%d %H:%M:%S") newDate = datetime.strptime(newDate, "%Y-%m-%d %H:%M:%S") return max([incidentDate, newDate]) context = demisto.context() suggestions = [] knownerrors = [ { "Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Get": [ "Error Found: `Got permission denied while trying to connect to the Docker daemon socket at unix`", "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA14u000000HB4oCAG" ] }, { '[Errno 13] Permission denied:': [ 'Error Found: `[Errno 13] Permission denied`', "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA14u000000HB4ZCAW" ] }, { 'config.json: permission denied': [ 'Error Found: `config.json: permission denied`', "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA14u000000HB4tCAG" ] }, { 'Error response from daemon: OCI runtime create failed:': [ 'Error Found: `Error response from daemon: OCI runtime create failed`', "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA14u000000HB4eCAG" ] }, { 'proxyconnect tcp: tls: oversized record received with length 20527': [ 'Error Found: `proxyconnect tcp: tls: oversized record received with length 20527`', "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000PNhpCAG" ] }, { "error: websocket: not a websocket handshake: 'upgrade' token not found in 'Connection' header": [ 'Error Found: `websocket: not a websocket handshake: upgrade token not found in Connection header`', "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000PNiOCAW" ] }, { "Create more free space in thin pool or use dm.min_free_space": [ 'Error Found: `Create more free space in thin pool or use dm.min_free_space`', "Please refer to https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000PNhQCAW" ] }, { "in pool reached high watermark": [ "Error Found: `amount of active containers in pool reached high watermark`", "Check and increase high watermark for docker: https://docs.paloaltonetworks.com/cortex/cortex-xsoar/6-0/" "cortex-xsoar-admin/cortex-xsoar-overview/performance-tuning-of-cortex-xsoar-server" ] }, { "no space left on device": [ "Error Found: `no space left on device`", "Free up Disk Space with Data Archiving: https://docs.paloaltonetworks.com/cortex/cortex-xsoar/6-0/" "cortex-xsoar-admin/manage-data/free-up-disc-space-with-data-archiving" ] }, { "ImportError: No module named": [ "Error Found: `ImportError: No module named`", "Python environment missing dependency or docker image outdated." ] }, { "(error: websocket: close 1006 (abnormal closure): unexpected EOF)": [ " Error Found: `error: websocket: close 1006 (abnormal closure): unexpected EOF`", "WebSocket Configuration: https://docs.paloaltonetworks.com/cortex/cortex-xsoar/6-1/cortex-xsoar-admin/installation/" "post-installation-checklist/websocket-configuration.html#idee004eaa-34d9-41a1-a8d0-aba3bf9f91bb" ] }, { "fatal error: runtime: out of memory": [ "Error Found: `fatal error: runtime: out of memory.`", "Performance Tuning of Cortex XSOAR Server: https://docs.paloaltonetworks.com/cortex/cortex-xsoar/6-0/" "cortex-xsoar-admin/cortex-xsoar-overview/performance-tuning-of-cortex-xsoar-server" ] }, { "error Wrong schedule format": [ "Error Found: `error Wrong schedule format`", "Change jobs.serverSiemIncidents.schedule=<time in minutes> to Xm. for example 5 minuets should be 5m" ] }, { "error Failed on ensure function for": [ "Error Found: `error Failed on ensure function for`", "Reindex the Entire Database: " "https://docs.paloaltonetworks.com/cortex/cortex-xsoar/6-0/cortex-xsoar-admin/manage-data/reindex-the-database" ] }, { "Version didnt change": [ "Error Found: `Version didnt change`", "Upgrade used an older version, Re-run the upgrade with the latest version." ] }, { "layout-edit-.json: invalid argument": [ "Error Found: `layout-edit-.json: invalid argument`", "Please contact customer support" ] }, { "error: unsupported mode": [ "Error Found: `error: unsupported mode`", "Remove old index files under /usr/local/demisto/dist. and do a hard refresh in the browser. " "No service restart needed" ] } ] res = [] context_since = context.get('LogServer', {}).get('since') since = log_until = restartcount = None context_log_until = context.get('LogServer', {}).get('logUntil') context_restartcount = context.get('LogServer', {}).get('restartCount') path = demisto.executeCommand('getFilePath', {'id': demisto.args()['entryID']}) if path[0]['Type'] == entryTypes['error']: demisto.results('File not found') else: try: with open(path[0]['Contents']['path'], 'r') as f: data_line = f.readlines() # find Since and find knownErrors for line in data_line: if 'good luck' in line: if (context_restartcount is None) and (restartcount is None): restartcount = 1 elif (context_restartcount is not None) and (restartcount is None): restartcount = int(context_restartcount) restartcount += 1 elif (context_restartcount is not None) and (restartcount is not None): restartcount += 1 for item in knownerrors: for (err, suggest) in item.items(): if err in line: if suggest not in suggestions: suggestions.append(suggest) if (context_since is None) and (since is None): since = re.findall('(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})', line) oldestDate = since[0] continue elif (context_since is not None) and (since is None): since = re.findall('(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})', line) oldestDate = findOldestDate(since[0], context_since) continue else: continue # find Last Log for line in reversed(data_line): if (context_log_until is None) and (log_until is None): log_until = re.findall('(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})', line) if not log_until: log_until = None continue newestDate = log_until[0] break elif (context_since is not None) and (log_until is None): log_until = re.findall('(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2})', line) if not log_until: continue newestDate = log_until[0] newestDate = findNewestDate(log_until[0], context_log_until) break else: oldestDate = context_since newestDate = context_log_until break demisto.setContext("LogServer.since", str(oldestDate)) demisto.setContext("LogServer.logUntil", str(newestDate)) demisto.setContext("LogServer.restartCount", restartcount) demisto.executeCommand("setIncident", {"healthcheckrestartcount": restartcount, "healthchecklogsince": str(oldestDate), "healthcheckloguntil": str(newestDate)}) if suggestions: for entry in suggestions: res.append({"category": "Log Analysis", "severity": "High", "description": entry[0], "resolution": entry[1]}) results = CommandResults( readable_output="HealthCheckServerLog Done", outputs_prefix="HealthCheck.ActionableItems", outputs=res) return_results(results) except UnicodeDecodeError: demisto.results("Could not read file")
extra_tests/snippets/os_info.py
dbrgn/RustPython
11,058
12621483
import os assert os.name == 'posix' or os.name == 'nt'
release/stubs.min/Autodesk/Revit/DB/Structure/__init___parts/RebarContainerParameterManager.py
htlcnn/ironpython-stubs
182
12621494
<filename>release/stubs.min/Autodesk/Revit/DB/Structure/__init___parts/RebarContainerParameterManager.py class RebarContainerParameterManager(object,IDisposable): """ Provides implementation of RebarContainer parameters overrides. """ def AddOverride(self,paramId,value): """ AddOverride(self: RebarContainerParameterManager,paramId: ElementId,value: int) Adds an override for the given parameter as its value will be displayed for the Rebar Container element. paramId: The id of the parameter value: The override value of the parameter. AddOverride(self: RebarContainerParameterManager,paramId: ElementId,value: float) Adds an override for the given parameter as its value will be displayed for the Rebar Container element. paramId: The id of the parameter value: The override value of the parameter. AddOverride(self: RebarContainerParameterManager,paramId: ElementId,value: ElementId) Adds an override for the given parameter as its value will be displayed for the Rebar Container element. paramId: The id of the parameter value: The override value of the parameter. AddOverride(self: RebarContainerParameterManager,paramId: ElementId,value: str) Adds an override for the given parameter as its value will be displayed for the Rebar Container element. paramId: The id of the parameter value: The override value of the parameter. """ pass def AddSharedParameterAsOverride(self,paramId): """ AddSharedParameterAsOverride(self: RebarContainerParameterManager,paramId: ElementId) Adds a shared parameter as one of the parameter overrides stored by this Rebar Container element. paramId: The id of the shared parameter element """ pass def ClearOverrides(self): """ ClearOverrides(self: RebarContainerParameterManager) Clears any overridden values from all parameters of the associated RebarContainer element. """ pass def Dispose(self): """ Dispose(self: RebarContainerParameterManager) """ pass def IsOverriddenParameterModifiable(self,paramId): """ IsOverriddenParameterModifiable(self: RebarContainerParameterManager,paramId: ElementId) -> bool Checks if overridden parameter is modifiable. paramId: Overridden parameter id Returns: True if the parameter is modifiable,false if the parameter is readonly. """ pass def IsParameterOverridden(self,paramId): """ IsParameterOverridden(self: RebarContainerParameterManager,paramId: ElementId) -> bool Checks if the parameter has an override paramId: The id of the parameter element Returns: True if the parameter has an override """ pass def IsRebarContainerParameter(self,paramId): """ IsRebarContainerParameter(self: RebarContainerParameterManager,paramId: ElementId) -> bool Checks if the parameter is a Rebar Container parameter paramId: The id of the parameter element Returns: True if the parameter is a Rebar Container parameter """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: RebarContainerParameterManager,disposing: bool) """ pass def RemoveOverride(self,paramId): """ RemoveOverride(self: RebarContainerParameterManager,paramId: ElementId) Removes an overridden value from the given parameter. paramId: The id of the parameter """ pass def SetOverriddenParameterModifiable(self,paramId): """ SetOverriddenParameterModifiable(self: RebarContainerParameterManager,paramId: ElementId) Sets this overridden parameter to be modifiable. paramId: Overridden parameter id """ pass def SetOverriddenParameterReadonly(self,paramId): """ SetOverriddenParameterReadonly(self: RebarContainerParameterManager,paramId: ElementId) Sets this overridden parameter to be readonly. paramId: Overridden parameter id """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: RebarContainerParameterManager) -> bool """
src/dialogs/folder.py
Sammmasqw/Facepager
430
12621496
<reponame>Sammmasqw/Facepager from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import QFileDialog, QCheckBox, QHBoxLayout, QLabel class SelectFolderDialog(QFileDialog): """ Create a custom Folder Dialog with an option to import files as nodes """ def __init__(self,*args,**kwargs): super(SelectFolderDialog,self).__init__(*args,**kwargs) self.setOption(QFileDialog.DontUseNativeDialog) self.setFileMode(QFileDialog.Directory) #QFileDialog.getExistingDirectory(self, 'Select Download Folder', datadir)) #, QFileDialog.ShowDirsOnly #self.mainWindow = self.parent() self.optionNodes = QCheckBox("Add selected files as nodes",self) self.optionNodes.clicked.connect(self.optionNodesClick) #self.optionNodes.setCheckState(Qt.CheckState.Checked) layout = self.layout() row = layout.rowCount() layout.addWidget(QLabel('Options'),row,0) options = QHBoxLayout() options.addWidget(self.optionNodes) options.addStretch(1) layout.addLayout(options,row,1,1,2) self.setLayout(layout) #if self.exec_(): #if os.path.isfile(self.selectedFiles()[0]): def optionNodesClick(self): if self.optionNodes.isChecked(): self.setFileMode(QFileDialog.ExistingFiles) else: self.setFileMode(QFileDialog.Directory)
python-package/lightgbm/callback.py
PyVCEchecker/LightGBM
5,753
12621514
<reponame>PyVCEchecker/LightGBM # coding: utf-8 """Callbacks library.""" import collections from functools import partial from typing import Any, Callable, Dict, List, Tuple, Union from .basic import _ConfigAliases, _log_info, _log_warning _EvalResultTuple = Union[ List[Tuple[str, str, float, bool]], List[Tuple[str, str, float, bool, float]] ] def _gt_delta(curr_score: float, best_score: float, delta: float) -> bool: return curr_score > best_score + delta def _lt_delta(curr_score: float, best_score: float, delta: float) -> bool: return curr_score < best_score - delta class EarlyStopException(Exception): """Exception of early stopping.""" def __init__(self, best_iteration: int, best_score: _EvalResultTuple) -> None: """Create early stopping exception. Parameters ---------- best_iteration : int The best iteration stopped. best_score : list of (eval_name, metric_name, eval_result, is_higher_better) tuple or (eval_name, metric_name, eval_result, is_higher_better, stdv) tuple Scores for each metric, on each validation set, as of the best iteration. """ super().__init__() self.best_iteration = best_iteration self.best_score = best_score # Callback environment used by callbacks CallbackEnv = collections.namedtuple( "CallbackEnv", ["model", "params", "iteration", "begin_iteration", "end_iteration", "evaluation_result_list"]) def _format_eval_result(value: _EvalResultTuple, show_stdv: bool = True) -> str: """Format metric string.""" if len(value) == 4: return f"{value[0]}'s {value[1]}: {value[2]:g}" elif len(value) == 5: if show_stdv: return f"{value[0]}'s {value[1]}: {value[2]:g} + {value[4]:g}" else: return f"{value[0]}'s {value[1]}: {value[2]:g}" else: raise ValueError("Wrong metric value") def log_evaluation(period: int = 1, show_stdv: bool = True) -> Callable: """Create a callback that logs the evaluation results. By default, standard output resource is used. Use ``register_logger()`` function to register a custom logger. Note ---- Requires at least one validation data. Parameters ---------- period : int, optional (default=1) The period to log the evaluation results. The last boosting stage or the boosting stage found by using ``early_stopping`` callback is also logged. show_stdv : bool, optional (default=True) Whether to log stdv (if provided). Returns ------- callback : callable The callback that logs the evaluation results every ``period`` boosting iteration(s). """ def _callback(env: CallbackEnv) -> None: if period > 0 and env.evaluation_result_list and (env.iteration + 1) % period == 0: result = '\t'.join([_format_eval_result(x, show_stdv) for x in env.evaluation_result_list]) _log_info(f'[{env.iteration + 1}]\t{result}') _callback.order = 10 # type: ignore return _callback def record_evaluation(eval_result: Dict[str, Dict[str, List[Any]]]) -> Callable: """Create a callback that records the evaluation history into ``eval_result``. Parameters ---------- eval_result : dict Dictionary used to store all evaluation results of all validation sets. This should be initialized outside of your call to ``record_evaluation()`` and should be empty. Any initial contents of the dictionary will be deleted. .. rubric:: Example With two validation sets named 'eval' and 'train', and one evaluation metric named 'logloss' this dictionary after finishing a model training process will have the following structure: .. code-block:: { 'train': { 'logloss': [0.48253, 0.35953, ...] }, 'eval': { 'logloss': [0.480385, 0.357756, ...] } } Returns ------- callback : callable The callback that records the evaluation history into the passed dictionary. """ if not isinstance(eval_result, dict): raise TypeError('eval_result should be a dictionary') def _init(env: CallbackEnv) -> None: eval_result.clear() for data_name, eval_name, _, _ in env.evaluation_result_list: eval_result.setdefault(data_name, collections.OrderedDict()) eval_result[data_name].setdefault(eval_name, []) def _callback(env: CallbackEnv) -> None: if env.iteration == env.begin_iteration: _init(env) for data_name, eval_name, result, _ in env.evaluation_result_list: eval_result[data_name][eval_name].append(result) _callback.order = 20 # type: ignore return _callback def reset_parameter(**kwargs: Union[list, Callable]) -> Callable: """Create a callback that resets the parameter after the first iteration. .. note:: The initial parameter will still take in-effect on first iteration. Parameters ---------- **kwargs : value should be list or callable List of parameters for each boosting round or a callable that calculates the parameter in terms of current number of round (e.g. yields learning rate decay). If list lst, parameter = lst[current_round]. If callable func, parameter = func(current_round). Returns ------- callback : callable The callback that resets the parameter after the first iteration. """ def _callback(env: CallbackEnv) -> None: new_parameters = {} for key, value in kwargs.items(): if isinstance(value, list): if len(value) != env.end_iteration - env.begin_iteration: raise ValueError(f"Length of list {key!r} has to equal to 'num_boost_round'.") new_param = value[env.iteration - env.begin_iteration] else: new_param = value(env.iteration - env.begin_iteration) if new_param != env.params.get(key, None): new_parameters[key] = new_param if new_parameters: env.model.reset_parameter(new_parameters) env.params.update(new_parameters) _callback.before_iteration = True # type: ignore _callback.order = 10 # type: ignore return _callback def early_stopping(stopping_rounds: int, first_metric_only: bool = False, verbose: bool = True, min_delta: Union[float, List[float]] = 0.0) -> Callable: """Create a callback that activates early stopping. Activates early stopping. The model will train until the validation score doesn't improve by at least ``min_delta``. Validation score needs to improve at least every ``stopping_rounds`` round(s) to continue training. Requires at least one validation data and one metric. If there's more than one, will check all of them. But the training data is ignored anyway. To check only the first metric set ``first_metric_only`` to True. The index of iteration that has the best performance will be saved in the ``best_iteration`` attribute of a model. Parameters ---------- stopping_rounds : int The possible number of rounds without the trend occurrence. first_metric_only : bool, optional (default=False) Whether to use only the first metric for early stopping. verbose : bool, optional (default=True) Whether to log message with early stopping information. By default, standard output resource is used. Use ``register_logger()`` function to register a custom logger. min_delta : float or list of float, optional (default=0.0) Minimum improvement in score to keep training. If float, this single value is used for all metrics. If list, its length should match the total number of metrics. Returns ------- callback : callable The callback that activates early stopping. """ best_score = [] best_iter = [] best_score_list: list = [] cmp_op = [] enabled = True first_metric = '' def _init(env: CallbackEnv) -> None: nonlocal best_score nonlocal best_iter nonlocal best_score_list nonlocal cmp_op nonlocal enabled nonlocal first_metric enabled = not any(env.params.get(boost_alias, "") == 'dart' for boost_alias in _ConfigAliases.get("boosting")) if not enabled: _log_warning('Early stopping is not available in dart mode') return if not env.evaluation_result_list: raise ValueError('For early stopping, ' 'at least one dataset and eval metric is required for evaluation') if stopping_rounds <= 0: raise ValueError("stopping_rounds should be greater than zero.") if verbose: _log_info(f"Training until validation scores don't improve for {stopping_rounds} rounds") # reset storages best_score = [] best_iter = [] best_score_list = [] cmp_op = [] first_metric = '' n_metrics = len(set(m[1] for m in env.evaluation_result_list)) n_datasets = len(env.evaluation_result_list) // n_metrics if isinstance(min_delta, list): if not all(t >= 0 for t in min_delta): raise ValueError('Values for early stopping min_delta must be non-negative.') if len(min_delta) == 0: if verbose: _log_info('Disabling min_delta for early stopping.') deltas = [0.0] * n_datasets * n_metrics elif len(min_delta) == 1: if verbose: _log_info(f'Using {min_delta[0]} as min_delta for all metrics.') deltas = min_delta * n_datasets * n_metrics else: if len(min_delta) != n_metrics: raise ValueError('Must provide a single value for min_delta or as many as metrics.') if first_metric_only and verbose: _log_info(f'Using only {min_delta[0]} as early stopping min_delta.') deltas = min_delta * n_datasets else: if min_delta < 0: raise ValueError('Early stopping min_delta must be non-negative.') if min_delta > 0 and n_metrics > 1 and not first_metric_only and verbose: _log_info(f'Using {min_delta} as min_delta for all metrics.') deltas = [min_delta] * n_datasets * n_metrics # split is needed for "<dataset type> <metric>" case (e.g. "train l1") first_metric = env.evaluation_result_list[0][1].split(" ")[-1] for eval_ret, delta in zip(env.evaluation_result_list, deltas): best_iter.append(0) best_score_list.append(None) if eval_ret[3]: # greater is better best_score.append(float('-inf')) cmp_op.append(partial(_gt_delta, delta=delta)) else: best_score.append(float('inf')) cmp_op.append(partial(_lt_delta, delta=delta)) def _final_iteration_check(env: CallbackEnv, eval_name_splitted: List[str], i: int) -> None: nonlocal best_iter nonlocal best_score_list if env.iteration == env.end_iteration - 1: if verbose: best_score_str = '\t'.join([_format_eval_result(x) for x in best_score_list[i]]) _log_info('Did not meet early stopping. ' f'Best iteration is:\n[{best_iter[i] + 1}]\t{best_score_str}') if first_metric_only: _log_info(f"Evaluated only: {eval_name_splitted[-1]}") raise EarlyStopException(best_iter[i], best_score_list[i]) def _callback(env: CallbackEnv) -> None: nonlocal best_score nonlocal best_iter nonlocal best_score_list nonlocal cmp_op nonlocal enabled nonlocal first_metric if env.iteration == env.begin_iteration: _init(env) if not enabled: return for i in range(len(env.evaluation_result_list)): score = env.evaluation_result_list[i][2] if best_score_list[i] is None or cmp_op[i](score, best_score[i]): best_score[i] = score best_iter[i] = env.iteration best_score_list[i] = env.evaluation_result_list # split is needed for "<dataset type> <metric>" case (e.g. "train l1") eval_name_splitted = env.evaluation_result_list[i][1].split(" ") if first_metric_only and first_metric != eval_name_splitted[-1]: continue # use only the first metric for early stopping if ((env.evaluation_result_list[i][0] == "cv_agg" and eval_name_splitted[0] == "train" or env.evaluation_result_list[i][0] == env.model._train_data_name)): _final_iteration_check(env, eval_name_splitted, i) continue # train data for lgb.cv or sklearn wrapper (underlying lgb.train) elif env.iteration - best_iter[i] >= stopping_rounds: if verbose: eval_result_str = '\t'.join([_format_eval_result(x) for x in best_score_list[i]]) _log_info(f"Early stopping, best iteration is:\n[{best_iter[i] + 1}]\t{eval_result_str}") if first_metric_only: _log_info(f"Evaluated only: {eval_name_splitted[-1]}") raise EarlyStopException(best_iter[i], best_score_list[i]) _final_iteration_check(env, eval_name_splitted, i) _callback.order = 30 # type: ignore return _callback
my_projects/mechanism/Linkages_mechanism.py
cigar666/my_manim_projects
159
12621525
<gh_stars>100-1000 from manimlib.imports import * from my_manim_projects.my_projects.mechanism.basic_component import * class Four_bar_linkage(Scene): def construct(self): O1, O2 = LEFT * 2 + DOWN, RIGHT * 2. + DOWN dot_O1 = Dot(O1, color=PINK) dot_O2 = Dot(O2, color=PINK) bar_1 = Bar(O1, 140 * DEGREES, 1., color=ORANGE) bar_2 = Bar(O2, 80 * DEGREES, 2.7, color=BLUE) bar_3 = Rod(bar_1.get_end(), bar_2.get_end(), end_type=[2, 2], color=BLUE) bars = VGroup(bar_1, bar_2, bar_3) t = ValueTracker(140 * DEGREES) w = 1 # ## 两个updater都不太行,在摇杆接近死点时经常不收敛 ## # def update_bars(b): # err = 1e-3 # b[0].reposition_by_angle(t.get_value() * w) # print(t.get_value() * w / PI * 180) # # # b[2].reposition_by_angle(angle=None, start=b[0].get_end()) # b[2].reposition(b[0].get_end(), b[2].get_end()) # print('theta=%.2f, error=%.5f' % (t.get_value() / PI * 180, get_norm(b[1].get_end() - b[2].get_end()))) # while get_norm(b[1].get_end() - b[2].get_end()) > err: # b[1].reposition(b[1].get_start(), b[2].get_end()) # b[2].reposition(b[0].get_end(), b[1].get_end()) # print('theta=%.2f, error=%.5f' % (t.get_value() / PI * 180, get_norm(b[1].get_end() - b[2].get_end()))) def update_bars(b): def l_new(): return get_norm(b[1].get_end() - b[0].get_end()) err = 1e-3 delta_theta = 2 * DEGREES a0 = 0.8 l = b[2].get_rod_length() b[0].reposition_by_angle(t.get_value() * w) d_l = abs(l_new() - l) print('theta=%.2f, error=%.5f' % (t.get_value() / PI * 180, d_l)) while d_l > err: if d_l < err * 50: a0 = 0.6 # elif d_l < err * 15: # a0 = 0.5 elif d_l < err * 5: a0 = 0.4 b[1].rotate_about_start(delta_theta) d_l_new = abs(l_new() - l) if d_l_new < d_l: delta_theta *= a0 d_l = d_l_new else: delta_theta *= -1 d_l = d_l_new print('theta=%.2f, error=%.5f' % (t.get_value() / PI * 180, d_l)) b[2].reposition(b[0].get_end(), b[1].get_end()) bars.add_updater(update_bars) self.add(dot_O1, dot_O2, bars, t) self.wait() # self.play(t.set_value, 4 * 500 * DEGREES, rate_func=linear, run_time=20) t.add_updater(lambda t, dt: t.increment_value(2 * DEGREES)) self.wait(20) class Four_bar_linkage_draw(Scene): def construct(self): grid_n = 4 dots = VGroup(*[Dot(RIGHT * i + UP * j, color=BLUE).scale(0.5) for i in range(grid_n + 1) for j in range(grid_n + 1)]) lines = VGroup(*([Line(ORIGIN, UP * grid_n, stroke_color=BLUE_B, stroke_width=1).shift(i * RIGHT) for i in range(grid_n + 1)] + [Line(ORIGIN, RIGHT * grid_n, stroke_color=BLUE_B, stroke_width=1).shift(i * UP) for i in range(grid_n + 1)])) grid = VGroup(dots, lines) O1, O2 = LEFT * 2 + DOWN * 2.5, RIGHT * 2. + DOWN * 2.5 dot_O1 = Dot(O1, color=PINK) dot_O2 = Dot(O2, color=PINK) bar_1 = Bar(O1, 140 * DEGREES, 1., color=YELLOW) bar_2 = Bar(O2, 80 * DEGREES, 2.7, color=BLUE) bar_3 = Rod(bar_1.get_end(), bar_2.get_end(), end_type=[2, 2], color=BLUE) grid.rotate_about_origin(bar_3.get_angle()).scale(bar_3.get_rod_length()/grid_n, about_point=ORIGIN).shift(bar_3.get_start()) bars = VGroup(bar_1, bar_2, bar_3) t = ValueTracker(140 * DEGREES) w = 1 def update_bars(b): err = 1e-3 b[0].reposition_by_angle(t.get_value() * w) print(t.get_value() * w / PI * 180) # b[2].reposition_by_angle(angle=None, start=b[0].get_end()) b[2].reposition(b[0].get_end(), b[2].get_end()) print('theta=%.2f, error=%.5f' % (t.get_value() / PI * 180, get_norm(b[1].get_end() - b[2].get_end()))) while get_norm(b[1].get_end() - b[2].get_end()) > err: b[1].reposition(b[1].get_start(), b[2].get_end()) b[2].reposition(b[0].get_end(), b[1].get_end()) print('theta=%.2f, error=%.5f' % (t.get_value() / PI * 180, get_norm(b[1].get_end() - b[2].get_end()))) bars.add_updater(update_bars) paths = VGroup(*[TracedPath(dot.get_center, stroke_color=BLUE_B, stroke_width=1.5) for dot in dots]) self.add(dot_O1, dot_O2, bars, t, paths) self.wait() bar_3.add(grid) self.play(ShowCreation(grid), run_time=1.5) self.wait(0.5) self.play(t.set_value, 1 * 500 * DEGREES, rate_func=linear, run_time=25) # t.add_updater(lambda t, dt: t.increment_value(2 * DEGREES)) # self.wait(30) self.wait(2) class Five_bar_linkage(Scene): def construct(self): O1, O2 = LEFT * 2 + DOWN * 2.5, RIGHT * 2. + DOWN * 2.5 dot_O1 = Dot(O1, color=PINK) dot_O2 = Dot(O2, color=PINK) bar_1 = Bar(O1, 140 * DEGREES, 1., color=YELLOW) bar_2 = Bar(O2, 80 * DEGREES, 2.7, color=BLUE) bar_3 = Rod(bar_1.get_end(), bar_2.get_end(), end_type=[2, 2], color=BLUE)
var/spack/repos/builtin/packages/cmockery/package.py
kkauder/spack
2,360
12621533
<reponame>kkauder/spack<gh_stars>1000+ # Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Cmockery(AutotoolsPackage): """A lightweight library to simplify and generalize the process of writing unit tests for C applications.""" homepage = "https://github.com/google/cmockery" url = "https://github.com/google/cmockery/archive/v0.1.2.tar.gz" version('0.1.2', sha256='d40135ae9179201c01bde725fa64fc32d86b5899972e0ce4ad51668d261edbae') version('0.1.1', sha256='a801d17976f781fff6dc49042ff109e55ca4ebe8efb13757fa1a511ca52316be') version('0.1.0', sha256='9e017d48e56ab9d2ebcf5286fa54e37d42fe308d3c01fbc367793da2b9ad95e7') depends_on('m4', type='build') depends_on('autoconf', type='build') depends_on('automake', type='build') depends_on('libtool', type='build') def autoreconf(self, spec, prefix): bash = which('bash') bash('./autogen.sh')
examples/ocr/v20181119/general_fast_ocr.py
snowxmas/tencentcloud-sdk-python
465
12621534
<gh_stars>100-1000 import os from tencentcloud.common import credential from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.common.profile.http_profile import HttpProfile from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException from tencentcloud.ocr.v20181119 import ocr_client, models try: cred = credential.Credential( os.environ.get("TENCENTCLOUD_SECRET_ID"), os.environ.get("TENCENTCLOUD_SECRET_KEY")) httpProfile = HttpProfile() httpProfile.endpoint = "ocr.tencentcloudapi.com" clientProfile = ClientProfile() clientProfile.httpProfile = httpProfile client = ocr_client.OcrClient(cred, "ap-guangzhou", clientProfile) req = models.GeneralFastOCRRequest() req.ImageUrl = "https://mc.qcloudimg.com/static/img/6d4f1676deba26377d4303a462ca5074/image.png" resp = client.GeneralFastOCR(req) print(resp.to_json_string()) except TencentCloudSDKException as err: print(err)
deep_architect/contrib/communicators/mpi_communicator.py
dapatil211/deep_architect
272
12621548
<filename>deep_architect/contrib/communicators/mpi_communicator.py from mpi4py import MPI from deep_architect.contrib.communicators.communicator import Communicator """ Tags for the requests used by the communicator """ READY_REQ = 0 MODEL_REQ = 1 RESULTS_REQ = 2 """ Contains implementation for MPI based Communicator. All requests used are non-blocking unless mentioned otherwise in comments. """ class MPICommunicator(Communicator): def __init__(self): self.comm = MPI.COMM_WORLD super(MPICommunicator, self).__init__(self.comm.Get_size() - 1, self.comm.Get_rank()) self.done = False if self.is_master(): self.ready_requests = [ self.comm.irecv(source=i + 1, tag=READY_REQ) for i in range(self.num_workers) ] self.eval_requests = [ self.comm.irecv(source=i + 1, tag=RESULTS_REQ) for i in range(self.num_workers) ] self.next_worker = -1 def _publish_results_to_master(self, results, evaluation_id, searcher_eval_token): """ Called in worker process only. Synchronously sends the results from worker to master. Returns nothing. """ self.comm.ssend((results, evaluation_id, searcher_eval_token), dest=0, tag=RESULTS_REQ) def _receive_architecture_in_worker(self): """ Called in worker process only. Receives architecture from master. Synchronously sends a ready request to master signalling that worker is ready to receive new architecture. Then does a blocking receive of the architecture sent by master and returns the architecure. If master instead sends a kill signal, returns None for that and any future invocations of _receive_architecture_in_worker. """ if self.done: return None self.comm.ssend([self.rank], dest=0, tag=READY_REQ) (vs, evaluation_id, searcher_eval_token, kill) = self.comm.recv(source=0, tag=MODEL_REQ) if kill: self.done = True return None return vs, evaluation_id, searcher_eval_token def _is_ready_to_publish_architecture(self): """ Called in master process only. Iterates through ready requests and checks if any of them have been returned. If so, set the next worker corresponding to the ready request that returned, and return True. If none of the workers have sent back a ready request, return False. """ for idx, req in enumerate(self.ready_requests): if req: test, msg = req.test() if test: self.next_worker = idx + 1 return True return False def _publish_architecture_to_worker(self, vs, current_evaluation_id, searcher_eval_token): """ Called in master process only. Sends architecture to the worker that was designated as ready in _is_ready_to_publish_architecture. Then resets the ready request for that worker. Returns nothing. """ self.comm.isend((vs, current_evaluation_id, searcher_eval_token, False), dest=self.next_worker, tag=MODEL_REQ) self.ready_requests[self.next_worker - 1] = (self.comm.irecv( source=self.next_worker, tag=READY_REQ)) def _receive_results_in_master(self, src): """ Called in master process only. Checks if the src worker has sent back results. If so, returns the result and resets the request to get results in the future. Else, returns None. """ test, msg = self.eval_requests[src].test() if test: self.eval_requests[src] = self.comm.irecv(source=src + 1, tag=RESULTS_REQ) return msg if test else None def _kill_worker(self): """ Called in master process only. Sends a kill signal to given worker. Doesn't return anything. """ self.comm.isend((0, 0, 0, True), dest=self.next_worker, tag=MODEL_REQ) self.ready_requests[self.next_worker - 1] = None
Grand_Central_Robot_Xylophone/code.py
gamblor21/Adafruit_Learning_System_Guides
665
12621552
<filename>Grand_Central_Robot_Xylophone/code.py # Adafruit Grand Central Robot Xylophone Demo Program # <NAME> and <NAME> for Adafruit Industries # MIT License import time import board from digitalio import DigitalInOut, Direction solenoid_count = 8 # Set the total number of solenoids used start_pin = 2 # Start at pin D2 # Create the input objects list for solenoids solenoid = [] for k in range(start_pin, solenoid_count + start_pin + 1): # get pin # attribute, use string formatting this_solenoid = DigitalInOut(getattr(board, "D{}".format(k))) this_solenoid.direction = Direction.OUTPUT solenoid.append(this_solenoid) STRIKE_TIME = 0.01 # Time between initiating a strike and turning it off TIME_BETWEEN = 0.5 # Time between actions in seconds song = [3, 4, 5, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 5, 4, 3, 3, 3, 2, 2, 3, 4, 5] def play(key, time_to_strike): solenoid[key].value = True time.sleep(time_to_strike) solenoid[key].value = False def rest(time_to_wait): time.sleep(time_to_wait) while True: # Play each of the bars for bar in range(solenoid_count): play(bar, STRIKE_TIME) rest(TIME_BETWEEN) time.sleep(1.0) # Wait a bit before playing the song # Play the notes defined in song # simple example does not vary time between notes for bar in range(len(song)): play(song[bar], STRIKE_TIME) rest(TIME_BETWEEN) time.sleep(1.0)
.venv/lib/python3.8/site-packages/pandas/tests/frame/test_period.py
acrucetta/Chicago_COVI_WebApp
115
12621567
import numpy as np from pandas import DataFrame, Index, PeriodIndex, period_range import pandas._testing as tm class TestPeriodIndex: def test_as_frame_columns(self): rng = period_range("1/1/2000", periods=5) df = DataFrame(np.random.randn(10, 5), columns=rng) ts = df[rng[0]] tm.assert_series_equal(ts, df.iloc[:, 0]) # GH # 1211 repr(df) ts = df["1/1/2000"] tm.assert_series_equal(ts, df.iloc[:, 0]) def test_frame_setitem(self): rng = period_range("1/1/2000", periods=5, name="index") df = DataFrame(np.random.randn(5, 3), index=rng) df["Index"] = rng rs = Index(df["Index"]) tm.assert_index_equal(rs, rng, check_names=False) assert rs.name == "Index" assert rng.name == "index" rs = df.reset_index().set_index("index") assert isinstance(rs.index, PeriodIndex) tm.assert_index_equal(rs.index, rng) def test_frame_index_to_string(self): index = PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M") frame = DataFrame(np.random.randn(3, 4), index=index) # it works! frame.to_string()
selfdrive/dragonpilot/gpxd.py
kansakitw/dragonpilotamd
251
12621577
<reponame>kansakitw/dragonpilotamd #!/usr/bin/env python3 # The MIT License # # Copyright (c) 2019-, <NAME>, dragonpilot community, and a number of other of contributors. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import cereal.messaging as messaging import os import datetime import signal import threading from common.realtime import Ratekeeper # customisable values GPX_LOG_PATH = '/data/media/0/gpx_logs/' LOG_HERTZ = 10 # 10 hz = 0.1 sec, higher for higher accuracy, 10hz seems fine LOG_LENGTH = 10 # mins, higher means it keeps more data in the memory, will take more time to write into a file too. LOST_SIGNAL_COUNT_LENGTH = 30 # secs, output log file if we lost signal for this long # do not change LOST_SIGNAL_COUNT_MAX = LOST_SIGNAL_COUNT_LENGTH * LOG_HERTZ # secs, LOGS_PER_FILE = LOG_LENGTH * 60 * LOG_HERTZ # e.g. 10 * 60 * 10 = 6000 points per file class WaitTimeHelper: ready_event = threading.Event() shutdown = False def __init__(self): signal.signal(signal.SIGTERM, self.graceful_shutdown) signal.signal(signal.SIGINT, self.graceful_shutdown) signal.signal(signal.SIGHUP, self.graceful_shutdown) def graceful_shutdown(self, signum, frame): self.shutdown = True self.ready_event.set() class GpxD(): def __init__(self): self.log_count = 0 self.logs = list() self.lost_signal_count = 0 self.wait_helper = WaitTimeHelper() self.started_time = datetime.datetime.utcnow().isoformat() self.v_ego_prev = 0. self.pause = False def log(self, sm): gps = sm['gpsLocationExternal'] v_ego = sm['carState'].vEgo if abs(v_ego) > 0.: self.pause = False # do not log when no fix or accuracy is too low, add lost_signal_count if gps.flags % 2 == 0 or gps.accuracy > 5.: if self.log_count > 0: self.lost_signal_count += 1 elif self.pause: pass else: self.logs.append([datetime.datetime.utcfromtimestamp(gps.timestamp*0.001).isoformat(), str(gps.latitude), str(gps.longitude), str(gps.altitude)]) self.log_count += 1 self.lost_signal_count = 0 if v_ego == 0. and abs(self.v_ego_prev) > 0.: self.pause = True self.v_ego_prev = v_ego def write_log(self, force = False): if self.log_count == 0: return if force or (self.log_count >= LOGS_PER_FILE or self.lost_signal_count >= LOST_SIGNAL_COUNT_MAX): self._write_gpx() self.lost_signal_count = 0 self.log_count = 0 self.logs.clear() self.started_time = datetime.datetime.utcnow().isoformat() def _write_gpx(self): if len(self.logs) > 1: if not os.path.exists(GPX_LOG_PATH): os.makedirs(GPX_LOG_PATH) filename = self.started_time.replace(':','-') str = '' str += "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"yes\"?>\n" str += "<gpx version=\"1.1\" creator=\"dragonpilot https://github.com/dragonpilot-community/dragonpilot\" xmlns=\"http://www.topografix.com/GPX/1/1\" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:schemaLocation=\"http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd\">\n" str += "<trk>\n" str += " <name>" + self.started_time + "</name>" str += " <trkseg>\n" for trkpt in self.logs: str += self._trkpt_template(trkpt[1], trkpt[2], trkpt[3], trkpt[0]) str += " </trkseg>\n" str += "</trk>\n" str += "</gpx>\n" try: f = open('%s%sZ.gpx' % (GPX_LOG_PATH, filename), 'w') f.write(str) f.close() except: pass def _trkpt_template(self, lat, lon, ele, time): str = "" str += " <trkpt lat=\"" + lat + "\" lon=\"" + lon + "\">\n" str += " <ele>" + ele + "</ele>\n" str += " <time>" + time + "</time>\n" str += " </trkpt>\n" return str def gpxd_thread(sm=None, pm=None): if sm is None: sm = messaging.SubMaster(['gpsLocationExternal', 'carState']) wait_helper = WaitTimeHelper() gpxd = GpxD() rk = Ratekeeper(LOG_HERTZ, print_delay_threshold=None) while True: sm.update(0) gpxd.log(sm) gpxd.write_log() if wait_helper.shutdown: gpxd.write_log(True) break rk.keep_time() def main(sm=None, pm=None): gpxd_thread(sm, pm) if __name__ == "__main__": main()
tests/conftest.py
sdispater/poet
367
12621579
<gh_stars>100-1000 # -*- coding: utf-8 -*- import os import pytest import tempfile import shutil from cleo.inputs.list_input import ListInput from cleo.outputs.console_output import ConsoleOutput from cleo.styles import CleoStyle from poet.console import Application from poet.console.commands.command import Command class DummyCommand(Command): """ Dummy Command. dummy """ def __init__(self): super(DummyCommand, self).__init__() self.input = ListInput([]) self.output = CleoStyle(self.input, ConsoleOutput()) @pytest.fixture def app(): return Application() @pytest.fixture def command(): return DummyCommand() @pytest.fixture def check_output(mocker): outputs = { ('python', '-V'): b'Python 3.6.0' } patched = mocker.patch( 'subprocess.check_output', side_effect=lambda cmd, *args, **kwargs: outputs.get(tuple(cmd), b'') ) return patched @pytest.fixture def tmp_dir(): dir_ = tempfile.mkdtemp(prefix='poet_') yield dir_ shutil.rmtree(dir_) @pytest.fixture def tmp_file(): fd, file_ = tempfile.mkstemp(prefix='poet_') os.close(fd) yield dir_ os.unlink(file_)
tests/test_server.py
pyGrowler/Growler
806
12621609
# # tests/test_server.py # import pytest import asyncio import growler @pytest.fixture def app(event_loop): app = growler.App(loop=event_loop) return app @pytest.fixture def growler_server(app, event_loop, unused_tcp_port): return app.create_server(host='127.0.0.1', port=unused_tcp_port, as_coroutine=True) @pytest.mark.asyncio async def test_post_request(app, growler_server, event_loop, unused_tcp_port): body_data = None response_data = None did_send = False did_receive = False server = await growler_server @app.post('/data') async def post_test(req, res): nonlocal body_data, did_receive body_data = await req.body() did_receive = True res.send_text("OK") async def http_request(): nonlocal did_send, response_data did_send = True r, w = await asyncio.open_connection(host='127.0.0.1', port=unused_tcp_port) data = b'{"somekey": "somevalue"}' request_headers = '\r\n'.join([ 'POST /data HTTP/1.1', 'HOST: localhost', 'Content-Type: application/json', 'ConTent-LENGTH: %d' % len(data), '\r\n', ]).encode() w.write(request_headers) w.write(data) w.write_eof() response_data = await r.read() server.close() await http_request() server.close() assert did_send # assert did_receive assert body_data == b'{"somekey": "somevalue"}' assert response_data.endswith(b'\r\n\r\nOK')
src/timeago/locales/pl.py
nmb10/timeago
220
12621619
<reponame>nmb10/timeago #!/usr/bin/env python # -*- coding: utf-8 -*- ''' Created on 2018-11-11 @author: marcel-odya ''' base = [ ["właśnie teraz", "za chwilę"], ["%s sekund temu", "za %s sekund", "%s sekundy temu", "za %s sekundy"], ["minutę temu", "za minutę"], ["%s minut temu", "za %s minut", "%s minuty temu", "za %s minuty"], ["godzinę temu", "za godzinę"], ["%s godzin temu", "za %s godzin", "%s godziny temu", "za %s godziny"], ["1 dzień temu", "za 1 dzień"], ["%s dni temu", "za %s dni", "%s dni temu", "za %s dni"], ["tydzień temu", "za tydzień"], ["%s tygodni temu", "za %s tygodni", "%s tygodnie temu", "za %s tygodnie"], ["miesiąc temu", "za miesiąc"], ["%s miesięcy temu", "za %s miesięcy", "%s miesiące temu", "za %s miesiące"], ["rok temu", "za rok"], ["%s lat temu", "za %s lat", "%s lata temu", "za %s lata"] ] def generate(row, y): def formatting(time): ''' Uses the 3rd and 4th field of the list in every 2 entries - the ones containing %s, if the diff ends with 2, 3 or 4 but not with 12, 13 or 14. ''' if row % 2 == 0: return base[row][y] last_number = time % 10 last_two_numbers = time % 100 if last_number in range(2, 5) and last_two_numbers not in range(12, 15): return base[row][y + 2] return base[row][y] return formatting LOCALE = generate
RecoTracker/DeDx/python/dedxEstimatorsFromRefitter_cff.py
ckamtsikis/cmssw
852
12621658
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms from RecoTracker.TrackProducer.TrackRefitter_cfi import * RefitterForDeDx = TrackRefitter.clone( TrajectoryInEvent = True ) from RecoTracker.DeDx.dedxEstimators_cff import * dedxHitInfo.tracks="RefitterForDeDx" dedxHitInfo.trajectoryTrackAssociation = "RefitterForDeDx" dedxHarmonic2.tracks="RefitterForDeDx" dedxHarmonic2.trajectoryTrackAssociation = "RefitterForDeDx" dedxTruncated40.tracks="RefitterForDeDx" dedxTruncated40.trajectoryTrackAssociation = "RefitterForDeDx" dedxMedian.tracks="RefitterForDeDx" dedxMedian.trajectoryTrackAssociation = "RefitterForDeDx" dedxUnbinned.tracks="RefitterForDeDx" dedxUnbinned.trajectoryTrackAssociation = "RefitterForDeDx" dedxDiscrimProd.tracks="RefitterForDeDx" dedxDiscrimProd.trajectoryTrackAssociation = "RefitterForDeDx" dedxDiscrimBTag.tracks="RefitterForDeDx" dedxDiscrimBTag.trajectoryTrackAssociation = "RefitterForDeDx" dedxDiscrimSmi.tracks="RefitterForDeDx" dedxDiscrimSmi.trajectoryTrackAssociation = "RefitterForDeDx" dedxDiscrimASmi.tracks="RefitterForDeDx" dedxDiscrimASmi.trajectoryTrackAssociation = "RefitterForDeDx" doAlldEdXEstimatorsTask = cms.Task(RefitterForDeDx, dedxTruncated40, dedxHarmonic2, dedxHitInfo ) doAlldEdXEstimators = cms.Sequence(doAlldEdXEstimatorsTask)
tools/sandbox/c7n_index/setup.py
al3pht/cloud-custodian
2,415
12621687
# Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from setuptools import setup, find_packages setup( name="c7n_indexer", version='0.0.2', description="Cloud Custodian - Metrics/Resource Indexer", classifiers=[ "Topic :: System :: Systems Administration", "Topic :: System :: Distributed Computing" ], url="https://github.com/cloud-custodian/cloud-custodian", license="Apache-2.0", packages=find_packages(), entry_points={ 'console_scripts': [ 'c7n-indexer = c7n_index.metrics:cli']}, install_requires=["c7n", "click", "influxdb", "elasticsearch"], )
ocs_ci/utility/perf_dash/dashboard_api.py
srivickynesh/ocs-ci
130
12621709
<filename>ocs_ci/utility/perf_dash/dashboard_api.py """ API module to interact with the Performance Dashboard In order to push results into the dashboard, and pulling data from it to compare between results. The DB structure is : some tables which use for indexing values and all in the same structure: versions : list of all OCS versions which tested platform : list of tested platform (e.g. AWS / VSphere etc.) az_topology : Topology of the tested environment (e.g. 3-AZ) tests : Tests name which ran (e.g. FIO / SmallFiles etc.) table name : ID (int) : the index - unique number Name (str) : the name to index the `builds` table contain the builds of a particular OCS version table name : builds ID (int) : the index - unique number version (int) : version ID - must be exists in the versions table Name (str) : the name (or number) of the build (e.g. 254 / RC1-312 / GA) the `results` table contain the complete data about individual test table name : results ID (int): the index - unique number sample (int): number of the sample - each test can be run more the one time version (int): version ID - must be exists in the versions table build (int): build ID - must be exists in the builds table platform (int): platform ID - must be exists in the platform table az_topology (int): topology ID - must be exists in the az_topology table test_name (int): test ID - must be exists in the tests table es_link (str): the elasticsearch links to the individual test separated by comma e.g. http://<es_server>:<port>/<sub-test_1>, http://<es_server>:<port>/<sub-test_2> log_file (str): link to full test log One single test test (e.g. FIO) can be split to few sub-tests (by parametrize), e.g. : [CEPHBLOCKPOOL, sequential], [CEPHFILESYSTEM, sequential], [CEPHBLOCKPOOL, random], [CEPHFILESYSTEM, random] but in the dashboard all those tests (4 in the FIO example) are displayed as single test """ # Builtin modules import logging # 3ed party modules import mysql.connector # Local modules from ocs_ci.framework import config from ocs_ci.ocs import exceptions log = logging.getLogger(__name__) class PerfDash(object): """ The API class to connect and managing the performance dashboard database """ def __init__(self): """ Initializing the dashboard object and make a connection Raise: if credential file can not be open / read if the connection failed """ # Reading connection information and credentials from local file # which is not stored in the GitHub repository self.creds = config.AUTH.get("perf_dashboard", None) if self.creds is None: log.error("Dashboard credentials are not defined in configuration") raise exceptions.MissingRequiredConfigKeyError( "The key AUTH:perf_dashboard is missing in configuration file" ) self.creds["raise_on_warnings"] = True self.creds["use_pure"] = True # Connecting to the Dashboard DB self.connect() def connect(self): """ Create DB connection Raise: in case of connection failed - use the exception that caught """ log.info("Creating DB connector and connect to it") try: self.cnx = mysql.connector.connect(**self.creds) self.cursor = self.cnx.cursor() except Exception as err: log.error(f"Can not connect to DB - [{err}]") raise err def _run_query(self, query=None): """ Run an SQL Query Args: query (str): sql query string Returns: bool: True if succeed, otherwise False """ log.debug(f"Try to Execute query : {query}") try: self.cursor.execute(query) return True except Exception as err: log.error(f"Can not execute [{query}]\n{err}") return False def get_id_by_name(self, table=None, name=None): """ Query the ID of specific 'name' value from selected table Args: table (str): The table from which data will be query name (str): The value for the 'name' field in the table to query Returns: int : the value of the ID field in the table, otherwise None """ query = f"SELECT id FROM {table} WHERE name = '{name}' ;" if self._run_query(query=query): for result_id in self.cursor: # The query return a tuple and we need only the firs element return result_id[0] return None def get_name_by_id(self, table=None, recid=None): """ Query the name of specific 'id' value from selected table Args: table (str): The table from which data will be query recid (int): The value for the 'id' field in the table to query Returns: str : the value of the Name field in the table, otherwise None """ query = f"SELECT name FROM {table} WHERE id = {recid} ;" if self._run_query(query=query): for result_name in self.cursor: # The query return a tuple and we need only the first element return result_name[0] return None def insert_single_value(self, table=None, value=None): """ Insert a value to 'table' and return it's ID Args: table (str): The table to insert data into value (str): The value to insert Returns: int : the ID of the value in the table, otherwise None """ # prevent of duplicate records for the same build record_id = self.get_id_by_name(table=table, name=value) if record_id is not None: return record_id query = f"INSERT INTO {table} (name) VALUES ('{value}') ;" if self._run_query(query=query): try: rec_id = self.cursor.lastrowid # Make sure data is committed to the database self.cnx.commit() return rec_id except Exception as err: log.error(f"Can not insert {value} into {table} - [{err}]") return None def get_version_id(self, version=None): """ Query of the ID of version number in the DB Args: version (str): The version number (e.g. 4.9.0) Returns: int : the version ID in the DB """ return self.get_id_by_name("versions", version) def get_test_id(self, test=None): """ Query of the ID of test name in the DB Args: test (str): The test name (e.g. FIO) Returns: int : the Test ID in the DB """ return self.get_id_by_name("tests", test) def get_platform_id(self, platform=None): """ Query of the ID of platform name in the DB Args: platform (str): The platform name (e.g. AWS) Returns: int : the Platform ID in the DB """ return self.get_id_by_name("platform", platform) def get_topology_id(self, topology=None): """ Query of the ID of platform name in the DB Args: topology (str): The Topology name (e.g. 3-AZ) Returns: int : the Topology ID in the DB """ return self.get_id_by_name("az_topology", topology) def get_version_name(self, version=0): """ Query of the Name of version ID in the DB Args: version (int): The version ID Returns: str : the version name in the DB """ return self.get_name_by_id("versions", version) def get_test_name(self, test=0): """ Query of the Name of test ID in the DB Args: test (int): The test ID Returns: str : the Test Name in the DB """ return self.get_name_by_id("tests", test) def get_platform_name(self, platform=0): """ Query of the IName of platform ID in the DB Args: platform (int): The platform ID Returns: str : the Platform Name in the DB """ return self.get_name_by_id("platform", platform) def get_topology_name(self, topology=0): """ Query of the Name of platform ID in the DB Args: topology (int): The Topology ID Returns: str : the Topology Name in the DB """ return self.get_name_by_id("az_topology", topology) def get_version_builds(self, version=None): """ Query the list of build in specific version Args: version (str): The version name (e.g. 4.9.0) Returns: dict : dictionary of (Name: ID), None if not exist """ ver_id = self.get_version_id(version) if ver_id is None: return None results = {} query = f"SELECT id, name FROM builds WHERE version = {ver_id} ;" if self._run_query(query=query): for (build_id, name) in self.cursor: results[name] = build_id return None if results == {} else results def get_build_id(self, version, build): """ Getting the build ID for specific build of version. if the build does not exist, return None Args: version (str): the version name (e.g. 4.9.0) build (str): the build name (e.g. GA) Returns: int : the build ID """ all_builds = self.get_version_builds(version=version) if all_builds: return all_builds.get(build) return None def insert_build(self, version, build): """ Insert a new build to the DB and return it's ID Args: version (str): The version number as string (e.g. 4.9.0) build (str): The build number (e.g. 180 / RC1-200 / GA) Returns: int : the ID of the build in the DB, otherwise None """ # prevent of duplicate records for the same build build_id = self.get_build_id(version=version, build=build) if build_id is not None: return build_id # Try to insert the version into the DB, it will not be inserted twice, # If the version is exists in the DB it will just return the id of it. ver_id = self.insert_single_value(table="versions", value=version) query = f"INSERT INTO builds (version, name) VALUES ({ver_id}, '{build}') ;" if self._run_query(query=query): # Insert the data try: rec_id = self.cursor.lastrowid # Make sure data is committed to the database self.cnx.commit() return rec_id except Exception as err: log.error(f"Can not insert {version}-{build} into builds - [{err}]") return None def get_results(self, version, build, platform, topology, test): """ Getting the results information (es_link, log_file) for all test samples for a particular test configuration. Args: version (str): The version number (e.g. 4.9.0) build (str): The build number (e.g. RC5-180) platform (str): The platform (e.g. Bare-Metal) topology (str): The topology (e.g. 3-AZ) test (str): The test name (e.g. SmallFiles) Returns: dict : dictionary of all test samples as : {sample: {es_link, log_file},} """ def value_verify(value, msg): if value is None: log.error(f"{msg} does not exist in the DB!") return False else: return True ver_id = self.get_version_id(version=version) build_id = self.get_build_id(version=version, build=build) platform_id = self.get_platform_id(platform=platform) topology_id = self.get_topology_id(topology=topology) test_id = self.get_test_id(test=test) if not ( value_verify(ver_id, f"Version : {version}") and value_verify(build_id, f"Build : {version}-{build}") and value_verify(platform_id, f"Platform : {platform}") and value_verify(topology_id, f"Topology : {topology}") and value_verify(test_id, f"Test : {test}") ): return None results = {} query = ( f"SELECT sample,es_link,log_file FROM results WHERE version = {ver_id} " f"AND build = {build_id} AND platform = {platform_id} AND " f"az_topology = {topology_id} AND test_name = {test_id} ;" ) if self._run_query(query=query): for (sample, eslink, logfile) in self.cursor: log.debug(f"{sample}, {eslink}, {logfile}") results[sample] = { "eslink": eslink.rstrip("\r\n"), "log": logfile.rstrip("\r\n"), } return results def get_next_sample(self, version, build, platform, topology, test): """ Getting the the number of the next sample for particular test results. if there are no results in the DB, it will return 0 Args: version (str): The version number (e.g. 4.9.0) build (str): The build number (e.g. RC5-180) platform (str): The platform (e.g. Bare-Metal) topology (str): The topology (e.g. 3-AZ) test (str): The test name (e.g. SmallFiles) Returns: int : the number of the next sample to insert to the DB """ ver_id = self.get_version_id(version=version) if ver_id is None: return 0 build_id = self.get_build_id(version=version, build=build) if build_id is None: return 0 platform_id = self.get_platform_id(platform) if platform_id is None: return 0 topology_id = self.get_topology_id(topology) if topology_id is None: return 0 test_id = self.get_test_id(test) if test_id is None: return 0 results = [] query = ( f"SELECT sample FROM results WHERE version = {ver_id} AND " f"build = {build_id} AND platform = {platform_id} AND " f"az_topology = {topology_id} AND test_name = {test_id} ;" ) if self._run_query(query=query): for sample in self.cursor: results.append(sample[0]) if len(results) == 0: return 0 else: return max(results) + 1 def add_results(self, version, build, platform, topology, test, eslink, logfile): """ Adding results information into the DB. Args: version (str): The version number (e.g. 4.9.0) build (str): The build number (e.g. RC5-180) platform (str): The platform (e.g. Bare-Metal) topology (str): The topology (e.g. 3-AZ) test (str): The test name (e.g. SmallFiles) eslink (str): The elasticsearch link(s) to the results logfile (str): The link to the test log file Returns: bool : True if the operation succeed otherwise False """ ver_id = self.get_version_id(version=version) if ver_id is None: ver_id = self.insert_single_value(table="versions", value=version) if ver_id is None: return False build_id = self.get_build_id(version=version, build=build) if build_id is None: build_id = self.insert_build(version=version, build=build) if build_id is None: return False platform_id = self.get_platform_id(platform) if platform_id is None: platform_id = self.insert_single_value(table="platform", value=platform) if platform_id is None: return False topology_id = self.get_topology_id(topology) if topology_id is None: topology_id = self.insert_single_value(table="az_topology", value=topology) if topology_id is None: return False test_id = self.get_test_id(test) if test_id is None: test_id = self.insert_single_value(table="tests", value=test) if test_id is None: return False sample = self.get_next_sample( version=version, build=build, platform=platform, topology=topology, test=test, ) query = ( f"INSERT INTO results " "(sample, version, build, platform, az_topology, test_name, es_link, log_file) " f"VALUES ({sample}, {ver_id}, {build_id}, {platform_id}, {topology_id}, " f"{test_id}, '{eslink}', '{logfile}') ;" ) if self._run_query(query=query): try: # Make sure data is committed to the database self.cnx.commit() log.info("Test results pushed to the DB!") return True except Exception as err: log.error(f"Can not insert result into the DB - [{err}]") return False def cleanup(self): """ Cleanup and close the DB connection """ log.info("Closing the DB connection") self.cursor.close() self.cnx.close()
monero/daemon.py
successor1/wownero-python
130
12621716
import six from .backends.jsonrpc import JSONRPCDaemon class Daemon(object): """Monero daemon. Provides interface to a daemon instance. :param backend: a daemon backend :param \\**kwargs: arguments to initialize a :class:`JSONRPCDaemon <monero.backends.jsonrpc.JSONRPCDaemon>` instance if no backend is given """ def __init__(self, backend=None, **kwargs): if backend and len(kwargs): raise ValueError('backend already given, other arguments are extraneous') self._backend = backend if backend else JSONRPCDaemon(**kwargs) def info(self): """ Returns basic information about the daemon. :rtype: dict """ return self._backend.info() @property def net(self): return self._backend.net() def height(self): """ Return daemon's chain height. :rtype: int """ return self._backend.info()['height'] def send_transaction(self, tx, relay=True): """ Sends a transaction generated by a :class:`Wallet <monero.wallet.Wallet>`. :param tx: :class:`Transaction <monero.transaction.Transaction>` :param relay: whether to relay the transaction to peers. If `False`, the daemon will have to mine the transaction itself in order to have it included in the blockchain. """ return self._backend.send_transaction(tx.blob, relay=relay) def mempool(self): """ Returns current mempool contents. :rtype: list of :class:`Transaction <monero.transaction.Transaction>` """ return self._backend.mempool() def headers(self, start_height, end_height=None): """ Returns block headers for given height range. If no :param end_height: is given, it's assumed to be equal to :param start_height: :rtype: list of dict """ return self._backend.headers(start_height, end_height) def block(self, bhash=None, height=None): """ Returns a block of specified height or hash. :param str bhash: block hash, or :param int height: block height :rtype: :class:`Block <monero.block.Block>` """ if height is None and bhash is None: raise ValueError("Height or hash must be specified") return self._backend.block(bhash=bhash, height=height) def transactions(self, hashes): """ Returns transactions matching given hashes. Accepts single hash or a sequence. :param hashes: str or list of str """ if isinstance(hashes, six.string_types): hashes = [hashes] return self._backend.transactions(hashes)
tests/common/test_run/ascend/transdata_matmul_run.py
tianjiashuo/akg
286
12621741
<gh_stars>100-1000 # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import akg.tvm import numpy as np from akg.utils import kernel_exec as utils from akg.ops.math.ascend import MatMul from tests.common.test_run.ascend.matmul_run import * def get_matmul_fractal_shape(x, format='zN'): shape = x.shape m, n = shape[-2], shape[-1] m1, n1 = m // 16, n // 16 m0, n0 = 16, 16 needPad = m % 16 != 0 or n % 16 != 0 if format == 'zN': transpose_axis = [2, 0, 1, 3] new_shape = [n1, m1, m0, n0] elif format == 'zZ': transpose_axis = [0, 2, 1, 3] new_shape = [m1, n1, m0, n0] elif format == 'nZ': transpose_axis = [0, 2, 3, 1] new_shape = [m1, n1, n0, m0] return new_shape def transdata_matmul(x, y, b, out_dtype, left_format="zZ", right_format="nZ", out_format="zN", transpose_x=False, transpose_y=False, attrs={}, target="cce"): x_fractal_shape = get_matmul_fractal_shape(x, 'zN') y_fractal_shape = get_matmul_fractal_shape(y, 'zN') func = akg.tvm.get_global_func("TransData") x = func([x], {"src_format" : "DefaultFormat", "dst_format" : "FRACTAL_NZ", "output_shape": x_fractal_shape}) y = func([y], {"src_format" : "DefaultFormat", "dst_format" : "FRACTAL_NZ", "output_shape": y_fractal_shape}) res, attrs = MatMul(x, y, b, out_dtype, left_format, right_format, out_format, transpose_x, transpose_y, attrs=attrs) return res, attrs def transdata_matmul_compile(shape_x, shape_y, bias, left_format, right_format, output_format, adj_x, adj_y, dtype, bias_dtype, out_dtype, kernel_name, attrs, tuning=False): batch_tuple, m, k, n = extract_dim(shape_x, shape_y, adj_x, adj_y) m = (m + 15) // 16 * 16 n = (n + 15) // 16 * 16 k = (k + 15) // 16 * 16 shape_xx, shape_yy, bias_shape, out_shape, k = get_converted_shapes(m, n, k, batch_tuple, adj_x, adj_y, bias, left_format, right_format, output_format) input_shapes = [shape_x, shape_y, bias_shape] input_types = [dtype, dtype, bias_dtype] has_bias = False if bias == 1: has_bias = True op_attrs = [out_dtype, left_format, right_format, output_format, adj_x, adj_y, attrs] if has_bias == False: input_shapes = [shape_x, shape_y] input_types = [dtype, dtype] op_attrs = [None, out_dtype, left_format, right_format, output_format, adj_x, adj_y, attrs] return utils.op_build_test(transdata_matmul, input_shapes, input_types, op_attrs, kernel_name, attrs=attrs, tuning=tuning) def transdata_matmul_execute(shape_x, shape_y, bias, left_format, right_format, out_format, adj_x, adj_y, dtype, bias_dtype, out_dtype, kernel_name, attrs={}): batch_tuple, m, k, n = extract_dim(shape_x, shape_y, adj_x, adj_y) m = (m + 15) // 16 * 16 n = (n + 15) // 16 * 16 k = (k + 15) // 16 * 16 shape_xx, shape_yy, bias_shape, out_shape, k = get_converted_shapes(m, n, k, batch_tuple, adj_x, adj_y, bias, left_format, right_format, out_format) mod = transdata_matmul_compile(shape_x, shape_y, bias, left_format, right_format, out_format, adj_x, adj_y, dtype, bias_dtype, out_dtype, kernel_name, attrs=attrs) # Generate data m_x_fractal, m_y_fractal, bench_mark, bias_data, m_x, m_y = gen_data_all(batch_tuple, m, k, n, adj_x, adj_y, dtype, bias_dtype, out_dtype, bias, left_format, right_format, out_format) # mod launch output = np.full(bench_mark.shape, np.nan, out_dtype) if bias == 0: output = utils.mod_launch(mod, (m_x, m_y, output), expect=bench_mark) elif bias == 1: output = utils.mod_launch(mod, (m_x, m_y, bias_data, output), expect=bench_mark) # compare result rtol, atol = get_rtol_atol("matmul", dtype) compare_result = compare_tensor(output, bench_mark, rtol=rtol, atol=atol, equal_nan=True) return (m_x, m_y), output, bench_mark, compare_result
ide_server.py
vmr1532/Time2Code
332
12621746
<reponame>vmr1532/Time2Code from flask import Flask, request, render_template, Markup import requests from urllib.parse import urlparse import markdown import os import subprocess import socket app = Flask(__name__) @app.route('/') def time2code(): text = request.args.get('code') lang = request.args.get('lang') straight_text = request.args.get('straight_text') code_text = "" if text: r_text = requests.get(text + "?raw=true") code_text = r_text.text elif straight_text: code_text = straight_text else: code_text = "" if lang: code_lang = lang else: code_lang = "python3" return render_template('index.html', code_text=code_text, code_lang=code_lang) @app.route('/tutorial') def tutorial(): text = request.args.get('code') lang = request.args.get('lang') straight_text = request.args.get('straight_text') get_tut = request.args.get('tut') code_text = "" tut_url = "" mark = "" if get_tut: tut_url = get_tut + "?raw=true" r_tut = requests.get(tut_url) mark = r_tut.text else: tut_url = "https://raw.githubusercontent.com/JockDaRock/Time2Code/master/Sample.md?raw=true" r_tut = requests.get(tut_url) mark = r_tut.text if text: r_text = requests.get(text + "?raw=true") code_text = r_text.text elif straight_text: code_text = straight_text if lang: code_lang = lang else: code_lang = "python3" content = Markup(markdown.markdown(mark, extensions=['pymdownx.github', 'pymdownx.highlight'])) return render_template('index-tutorial.html', markdown=content, code_text=code_text, code_lang=code_lang) if __name__ == '__main__': app.run(host="0.0.0.0", port=5555, debug=True)
tests/rest_framework/__init__.py
A-Ashiq/django-filter
2,512
12621769
<reponame>A-Ashiq/django-filter<filename>tests/rest_framework/__init__.py default_app_config = 'tests.rest_framework.apps.RestFrameworkTestConfig'
corehq/sql_proxy_accessors/migrations/0047_remove_get_case_models_functions.py
dimagilg/commcare-hq
471
12621790
# -*- coding: utf-8 -*- from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('sql_proxy_accessors', '0046_get_ledger_values_for_cases_2'), ] operations = [ migrations.RunSQL('DROP FUNCTION IF EXISTS get_case_transactions(TEXT)'), migrations.RunSQL('DROP FUNCTION IF EXISTS get_case_attachments(TEXT)'), migrations.RunSQL('DROP FUNCTION IF EXISTS get_case_by_id(TEXT)'), migrations.RunSQL('DROP FUNCTION IF EXISTS check_form_exists(TEXT, TEXT)'), migrations.RunSQL('DROP FUNCTION IF EXISTS get_case_indices(TEXT, TEXT)'), migrations.RunSQL('DROP FUNCTION IF EXISTS get_form_attachments(TEXT)'), migrations.RunSQL('DROP FUNCTION IF EXISTS get_form_operations(TEXT);'), ]
migrations/versions/2191c871434_add_snapshot_model.py
vault-the/changes
443
12621793
"""Add snapshot model Revision ID: 2191c871434 Revises: 1<PASSWORD> Create Date: 2014-07-17 17:21:42.915797 """ # revision identifiers, used by Alembic. revision = '2191c871434' down_revision = '1<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): op.create_table( 'snapshot', sa.Column('id', sa.GUID(), nullable=False), sa.Column('project_id', sa.GUID(), nullable=False), sa.Column('build_id', sa.GUID(), nullable=True), sa.Column('status', sa.Enum(), server_default='0', nullable=False), sa.ForeignKeyConstraint(['build_id'], ['build.id'], ), sa.ForeignKeyConstraint(['project_id'], ['project.id'], ondelete='CASCADE'), sa.PrimaryKeyConstraint('id') ) def downgrade(): op.drop_table('snapshot')
Trakttv.bundle/Contents/Libraries/Shared/elapsed/__init__.py
disrupted/Trakttv.bundle
1,346
12621813
from elapsed.main import setup, reset, clock, format_report, print_report __version__ = '1.0.0'
sonnet/src/parallel_linear_test.py
ScriptBox99/deepmind-sonnet
10,287
12621815
<filename>sonnet/src/parallel_linear_test.py<gh_stars>1000+ # Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sonnet.v2.src.parallel_linear.""" from sonnet.src import linear from sonnet.src import parallel_linear from sonnet.src import test_utils import tensorflow as tf class ParallelLinearTest(test_utils.TestCase): def test_output_size_correct(self): layer = parallel_linear.ParallelLinears(3) outputs = layer(tf.ones([4, 2, 6])) self.assertEqual(outputs.shape, [4, 2, 3]) def test_behaves_same_as_stacked_linears(self): w_init = tf.random.normal((3, 5, 7)) b_init = tf.random.normal((3, 1, 7)) inputs = tf.random.normal((3, 2, 5)) parallel = parallel_linear.ParallelLinears( 7, w_init=lambda s, d: w_init, b_init=lambda s, d: b_init) parallel_outputs = parallel(inputs) stacked_outputs = [] for i in range(3): layer = linear.Linear( 7, w_init=lambda s, d, i=i: w_init[i], b_init=lambda s, d, i=i: b_init[i]) stacked_outputs.append(layer(inputs[i])) stacked_outputs = tf.stack(stacked_outputs, axis=0) self.assertAllClose(parallel_outputs.numpy(), stacked_outputs.numpy()) if __name__ == '__main__': tf.test.main()
src/sage/categories/graded_lie_algebras.py
bopopescu/sage
1,742
12621821
r""" Graded Lie Algebras AUTHORS: - <NAME> (2018-08-16): initial version """ # **************************************************************************** # Copyright (C) 2018 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from sage.categories.category_with_axiom import CategoryWithAxiom_over_base_ring from sage.categories.graded_modules import GradedModulesCategory class GradedLieAlgebras(GradedModulesCategory): r""" Category of graded Lie algebras. TESTS:: sage: C = LieAlgebras(QQ).Graded() sage: TestSuite(C).run() """ class SubcategoryMethods: def Stratified(self): r""" Return the full subcategory of stratified objects of ``self``. A Lie algebra is stratified if it is graded and generated as a Lie algebra by its component of degree one. EXAMPLES:: sage: LieAlgebras(QQ).Graded().Stratified() Category of stratified Lie algebras over Rational Field """ return self._with_axiom("Stratified") class Stratified(CategoryWithAxiom_over_base_ring): r""" Category of stratified Lie algebras. A graded Lie algebra `L = \bigoplus_{k=1}^M L_k` (where possibly `M = \infty`) is called *stratified* if it is generated by `L_1`; in other words, we have `L_{k+1} = [L_1, L_k]`. TESTS:: sage: C = LieAlgebras(QQ).Graded().Stratified() sage: TestSuite(C).run() """ class FiniteDimensional(CategoryWithAxiom_over_base_ring): r""" Category of finite dimensional stratified Lie algebras. EXAMPLES:: sage: LieAlgebras(QQ).Graded().Stratified().FiniteDimensional() Category of finite dimensional stratified Lie algebras over Rational Field TESTS:: sage: C = LieAlgebras(QQ).Graded().Stratified().FiniteDimensional() sage: TestSuite(C).run() """ def extra_super_categories(self): """ Implements the fact that a finite dimensional stratified Lie algebra is nilpotent. EXAMPLES:: sage: C = LieAlgebras(QQ).Graded().Stratified().FiniteDimensional() sage: C.extra_super_categories() [Category of nilpotent Lie algebras over Rational Field] sage: C is C.Nilpotent() True sage: C.is_subcategory(LieAlgebras(QQ).Nilpotent()) True """ from sage.categories.lie_algebras import LieAlgebras return [LieAlgebras(self.base_ring()).Nilpotent()]
Python/count_digit.py
OluSure/Hacktoberfest2021-1
215
12621822
# python program to find how many digit in given integer numbers e.g. 123->3 , 737327->6 digit first we take log of base 10 then add 1. from math import log,floor print(floor(log(int(input()),10)+1))
tests/test_cfg.py
mohamedbakrey12/prpjectINDeepLearning
122
12621846
import os import pytest from hydra import compose, initialize from omegaconf import DictConfig config_files = [f.split('.')[0] for f in os.listdir('conf') if 'yaml' in f] @pytest.mark.parametrize('config_name', config_files) def test_cfg(config_name: str) -> None: with initialize(config_path='../conf'): cfg = compose(config_name=config_name, overrides=['private=default']) assert isinstance(cfg, DictConfig)
tensorflow/contrib/mpi_collectives/mpi_ops_test.py
tianyapiaozi/tensorflow
848
12621855
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for tensorflow.contrib.mpi_collectives.mpi_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import itertools import tensorflow as tf import tensorflow.contrib.mpi_collectives as mpi def mpi_env_rank_and_size(): """Get MPI rank and size from environment variables and return them as a tuple of integers. Most MPI implementations have an `mpirun` or `mpiexec` command that will run an MPI executable and set up all communication necessary between the different processors. As part of that set up, they will set environment variables that contain the rank and size of the MPI_COMM_WORLD communicator. We can read those environment variables from Python in order to ensure that `mpi.rank()` and `mpi.size()` return the expected values. Since MPI is just a standard, not an implementation, implementations typically choose their own environment variable names. This function tries to support several different implementation, but really it only needs to support whatever implementation we want to use for the TensorFlow test suite. If this is not running under MPI, then defaults of rank zero and size one are returned. (This is appropriate because when you call MPI_Init in an application not started with mpirun, it will create a new independent communicator with only one process in it.) """ rank_env = "PMI_RANK OMPI_COMM_WORLD_RANK".split() size_env = "PMI_SIZE OMPI_COMM_WORLD_SIZE".split() for rank_var, size_var in zip(rank_env, size_env): rank = os.environ.get(rank_var) size = os.environ.get(size_var) if rank is not None and size is not None: return int(rank), int(size) # Default to rank zero and size one if there are no environment variables return 0, 1 class MPITests(tf.test.TestCase): """ Tests for MPI ops in tensorflow.contrib.mpi_collectives. """ def test_mpi_rank(self): """Test that the rank returned by mpi.rank() is correct.""" true_rank, _ = mpi_env_rank_and_size() with self.test_session() as session: rank = session.run(mpi.rank()) self.assertEqual(true_rank, rank) def test_mpi_size(self): """Test that the size returned by mpi.size() is correct.""" _, true_size = mpi_env_rank_and_size() with self.test_session() as session: size = session.run(mpi.size()) self.assertEqual(true_size, size) def test_mpi_allreduce_cpu(self): """Test on CPU that the allreduce correctly sums 1D, 2D, 3D tensors.""" with self.test_session() as session: size = session.run(mpi.size()) dtypes = [tf.int32, tf.float32] dims = [1, 2, 3] for dtype, dim in itertools.product(dtypes, dims): tf.set_random_seed(1234) tensor = tf.random_uniform([17] * dim, -100, 100, dtype=dtype) summed = mpi.allreduce(tensor, average=False) multiplied = tensor * size max_difference = tf.reduce_max(tf.abs(summed - multiplied)) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: break diff = session.run(max_difference) self.assertTrue(diff <= threshold, "mpi.allreduce produces incorrect results") def test_mpi_allreduce_gpu(self): """Test that the allreduce works on GPUs. This test will crash badly if used with an MPI implementation that does not support GPU memory transfers directly, as it will call MPI_Send on a GPU data pointer.""" # Only do this test if there are GPUs available. if not tf.test.is_gpu_available(cuda_only=True): return no_gpus = tf.GPUOptions(visible_device_list="") cpu_config = tf.ConfigProto(gpu_options=no_gpus) with self.test_session(config=cpu_config) as session: local_rank = session.run(mpi.local_rank()) one_gpu = tf.GPUOptions(visible_device_list=str(local_rank)) gpu_config = tf.ConfigProto(gpu_options=one_gpu) with self.test_session(config=gpu_config) as session: size = session.run(mpi.size()) dtype = tf.float32 dim = 3 with tf.device("/gpu:0"): tf.set_random_seed(1234) tensor = tf.random_uniform([17] * dim, -100, 100, dtype=dtype) summed = mpi.allreduce(tensor, average=False) multiplied = tensor * size max_difference = tf.reduce_max(tf.abs(summed - multiplied)) # Threshold for floating point equality depends on number of # ranks, since we're comparing against precise multiplication. if size <= 3: threshold = 0 elif size < 10: threshold = 1e-4 elif size < 15: threshold = 5e-4 else: return diff = session.run(max_difference) self.assertTrue(diff <= threshold, "mpi.allreduce on GPU produces incorrect results") def test_mpi_allreduce_error(self): """Test that the allreduce raises an error if different ranks try to send tensors of different rank or dimension.""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return # Same rank, different dimension tf.set_random_seed(1234) dims = [17 + rank] * 3 tensor = tf.random_uniform(dims, -1.0, 1.0) with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allreduce(tensor)) # Same number of elements, different rank tf.set_random_seed(1234) if rank == 0: dims = [17, 23 * 57] else: dims = [17, 23, 57] tensor = tf.random_uniform(dims, -1.0, 1.0) with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allreduce(tensor)) def test_mpi_allreduce_type_error(self): """Test that the allreduce raises an error if different ranks try to send tensors of different type.""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return # Same rank, different dimension dims = [17] * 3 tensor = tf.ones(dims, dtype=tf.int32 if rank % 2 == 0 else tf.float32) with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allreduce(tensor)) def test_mpi_allgather(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors.""" with self.test_session() as session: size = session.run(mpi.size()) rank = session.run(mpi.rank()) dtypes = tf.int32, tf.float32 dims = 1, 2, 3 for dtype, dim in itertools.product(dtypes, dims): tensor = tf.ones([17] * dim, dtype=dtype) * rank gathered = mpi.allgather(tensor) gathered_tensor = session.run(gathered) self.assertEqual(list(gathered_tensor.shape), [17 * size] + [17] * (dim - 1)) for i in range(size): rank_tensor = tf.slice(gathered_tensor, [i * 17] + [0] * (dim - 1), [17] + [-1] * (dim - 1)) self.assertEqual(list(rank_tensor.shape), [17] * dim) self.assertTrue(session.run(tf.reduce_all(tf.equal(rank_tensor, i))), "mpi.allgather produces incorrect gathered tensor") def test_mpi_allgather_variable_size(self): """Test that the allgather correctly gathers 1D, 2D, 3D tensors, even if those tensors have different sizes along the first dim.""" with self.test_session() as session: size = session.run(mpi.size()) rank = session.run(mpi.rank()) dtypes = tf.int32, tf.float32 dims = 1, 2, 3 for dtype, dim in itertools.product(dtypes, dims): # Support tests up to MPI Size of 35 if size > 35: break tensor_sizes = [17, 32, 81, 12, 15, 23, 22] * 5 tensor_sizes = tensor_sizes[:size] tensor = tf.ones([tensor_sizes[rank]] + [17] * (dim - 1), dtype=dtype) * rank gathered = mpi.allgather(tensor) gathered_tensor = session.run(gathered) expected_size = sum(tensor_sizes) self.assertEqual(list(gathered_tensor.shape), [expected_size] + [17] * (dim - 1)) for i in range(size): rank_size = [tensor_sizes[i]] + [17] * (dim - 1) rank_tensor = tf.slice(gathered, [sum(tensor_sizes[:i])] + [0] * (dim - 1), rank_size) self.assertEqual(list(rank_tensor.shape), rank_size) self.assertTrue(session.run(tf.reduce_all(tf.equal(rank_tensor, i))), "mpi.allgather produces incorrect gathered tensor") def test_mpi_allgather_error(self): """Test that the allgather returns an error if any dimension besides the first is different among the tensors being gathered.""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return tensor_size = [17] * 3 tensor_size[1] = 10 * (rank + 1) tensor = tf.ones(tensor_size, dtype=tf.float32) * rank with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allgather(tensor)) def test_mpi_allgather_type_error(self): """Test that the allgather returns an error if the types being gathered differ among the processes""" with self.test_session() as session: rank = session.run(mpi.rank()) size = session.run(mpi.size()) # This test does not apply if there is only one worker. if size == 1: return tensor_size = [17] * 3 dtype = tf.int32 if rank % 2 == 0 else tf.float32 tensor = tf.ones(tensor_size, dtype=dtype) * rank with self.assertRaises(tf.errors.FailedPreconditionError): session.run(mpi.allgather(tensor)) if __name__ == '__main__': tf.test.main()
testing/example_scripts/acceptance/fixture_mock_integration.py
markshao/pytest
9,225
12621880
<gh_stars>1000+ """Reproduces issue #3774""" from unittest import mock import pytest config = {"mykey": "ORIGINAL"} @pytest.fixture(scope="function") @mock.patch.dict(config, {"mykey": "MOCKED"}) def my_fixture(): return config["mykey"] def test_foobar(my_fixture): assert my_fixture == "MOCKED"
core/git_mixins/branches.py
timfjord/GitSavvy
2,058
12621934
from collections import namedtuple import re from GitSavvy.core.git_command import mixin_base MYPY = False if MYPY: from typing import Dict, Iterable, Optional, Sequence BRANCH_DESCRIPTION_RE = re.compile(r"^branch\.(.*?)\.description (.*)$") Branch = namedtuple("Branch", ( "name", "remote", "name_with_remote", "commit_hash", "commit_msg", "tracking", "tracking_status", "active", "description" )) class BranchesMixin(mixin_base): def get_current_branch(self): # type: () -> Optional[Branch] for branch in self.get_local_branches(): if branch.active: return branch return None def get_current_branch_name(self): # type: () -> Optional[str] """ Return the name of the current branch. """ branch = self.get_current_branch() if branch: return branch.name return None def get_upstream_for_active_branch(self): # type: () -> Optional[str] """ Return ref for remote tracking branch. """ return self.git( "rev-parse", "--abbrev-ref", "--symbolic-full-name", "@{u}", throw_on_error=False ).strip() or None def get_remote_for_branch(self, branch_name): # type: (str) -> Optional[str] return self.git( "config", "--get", "branch.{}.remote".format(branch_name), throw_on_error=False ).strip() or None def get_local_branch_by_name(self, branch_name): # type: (str) -> Optional[Branch] """ Get a local Branch tuple from branch name. """ for branch in self.get_local_branches(): if branch.name == branch_name: return branch return None def get_local_branches(self): # type: () -> Iterable[Branch] return self.get_branches(refs=["refs/heads"]) def get_branches( self, *, sort_by_recent=False, fetch_descriptions=False, refs=["refs/heads", "refs/remotes"] ): # type: (bool, bool, Sequence[str]) -> Iterable[Branch] """ Return a list of all local and remote branches. """ stdout = self.git( "for-each-ref", "--format=%(HEAD)%00%(refname)%00%(upstream)%00%(upstream:track)%00%(objectname)%00%(contents:subject)", "--sort=-committerdate" if sort_by_recent else None, *refs ) branches = ( branch for branch in ( self._parse_branch_line(line) for line in stdout.split("\n") ) if branch and branch.name != "HEAD" ) if not fetch_descriptions: return branches descriptions = self.fetch_branch_description_subjects() return ( branch._replace(description=descriptions.get(branch.name_with_remote, "")) for branch in branches ) def fetch_branch_description_subjects(self): # type: () -> Dict[str, str] rv = {} for line in self.git( "config", "--get-regex", r"branch\..*\.description", throw_on_error=False ).strip("\n").splitlines(): match = BRANCH_DESCRIPTION_RE.match(line) if match is None: continue branch_name, description = match.group(1), match.group(2) rv[branch_name] = description return rv def _parse_branch_line(self, line): # type: (str) -> Optional[Branch] line = line.strip() if not line: return None head, ref, tracking_branch, tracking_status, commit_hash, commit_msg = line.split("\x00") active = head == "*" is_remote = ref.startswith("refs/remotes/") branch_name = ref[13:] if is_remote else ref[11:] remote = ref[13:].split("/", 1)[0] if is_remote else None tracking_branch = tracking_branch[13:] if tracking_status: # remove brackets tracking_status = tracking_status[1:len(tracking_status) - 1] return Branch( "/".join(branch_name.split("/")[1:]) if is_remote else branch_name, remote, branch_name, commit_hash, commit_msg, tracking_branch, tracking_status, active, description="" ) def merge(self, branch_names): """ Merge `branch_names` into active branch. """ self.git("merge", *branch_names) def branches_containing_commit(self, commit_hash, local_only=True, remote_only=False): """ Return a list of branches which contain a particular commit. """ branches = self.git( "branch", "-a" if not local_only and not remote_only else None, "-r" if remote_only else None, "--contains", commit_hash ).strip().split("\n") return [branch.strip() for branch in branches] def validate_branch_name(self, branch): ref = "refs/heads/{}".format(branch) return self.git("check-ref-format", "--branch", ref, throw_on_error=False).strip()
packages/engine/src/worker/runner/python/fbs/TaskID.py
mschrader15/hash
219
12621939
<gh_stars>100-1000 # automatically generated by the FlatBuffers compiler, do not modify # namespace: import flatbuffers from flatbuffers.compat import import_numpy np = import_numpy() class TaskId(object): __slots__ = ['_tab'] @classmethod def SizeOf(cls): return 16 # TaskId def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # TaskId def Inner(self): return [self._tab.Get(flatbuffers.number_types.Int8Flags, self._tab.Pos + flatbuffers.number_types.UOffsetTFlags.py_type(0 + i * 1)) for i in range(16)] # TaskId def InnerLength(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(0)) if o != 0: return self._tab.VectorLen(o) return 0 # TaskId def InnerIsNone(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(0)) return o == 0 def CreateTaskId(builder, inner): builder.Prep(1, 16) for _idx0 in range(16 , 0, -1): builder.PrependInt8(inner[_idx0-1]) return builder.Offset()
tda/orders/__init__.py
zhangted/tda-api
986
12621969
from enum import Enum from . import common from . import equities from . import generic from . import options import sys assert sys.version_info[0] >= 3 __error_message = ( 'EquityOrderBuilder has been deleted from the library. Please use ' + 'OrderBuilder and its associated templates instead. See here for ' + 'details: https://tda-api.readthedocs.io/en/latest/' + 'order-templates.html#what-happened-to-equityorderbuilder') if sys.version_info[1] >= 7: def __getattr__(name): if name == 'EquityOrderBuilder': raise ImportError(__error_message) raise AttributeError(name) else: # pragma: no cover class EquityOrderBuilder: def __init__(self, *args, **kwargs): raise NotImplementedError(globals()['__error_message'])
release/stubs.min/Autodesk/Revit/DB/__init___parts/WorksharingUtils.py
htlcnn/ironpython-stubs
182
12622027
class WorksharingUtils(object,IDisposable): """ A static class that contains utility functions related to worksharing. """ @staticmethod def CheckoutElements(document,elementsToCheckout,options=None): """ CheckoutElements(document: Document,elementsToCheckout: ICollection[ElementId]) -> ICollection[ElementId] CheckoutElements(document: Document,elementsToCheckout: ISet[ElementId],options: TransactWithCentralOptions) -> ISet[ElementId] """ pass @staticmethod def CheckoutWorksets(document,worksetsToCheckout,options=None): """ CheckoutWorksets(document: Document,worksetsToCheckout: ICollection[WorksetId]) -> ICollection[WorksetId] CheckoutWorksets(document: Document,worksetsToCheckout: ISet[WorksetId],options: TransactWithCentralOptions) -> ISet[WorksetId] """ pass @staticmethod def CreateNewLocal(sourcePath,targetPath): """ CreateNewLocal(sourcePath: ModelPath,targetPath: ModelPath) Takes a path to a central model and copies the model into a new local file for the current user. sourcePath: The path to the central model. targetPath: The path to put the new local file. """ pass def Dispose(self): """ Dispose(self: WorksharingUtils) """ pass @staticmethod def GetCheckoutStatus(document,elementId,owner=None): """ GetCheckoutStatus(document: Document,elementId: ElementId) -> (CheckoutStatus,str) Gets the ownership status and outputs the owner of an element. document: The document containing the element. elementId: The id of the element. Returns: An indication of whether the element is unowned,owned by the current user,or owned by another user. GetCheckoutStatus(document: Document,elementId: ElementId) -> CheckoutStatus Gets the ownership status of an element. document: The document containing the element. elementId: The id of the element. Returns: A summary of whether the element is unowned,owned by the current user,or owned by another user. """ pass @staticmethod def GetModelUpdatesStatus(document,elementId): """ GetModelUpdatesStatus(document: Document,elementId: ElementId) -> ModelUpdatesStatus Gets the status of a single element in the central model. document: The document containing the element. elementId: The id of the element. Returns: The status of the element in the local session versus the central model. """ pass @staticmethod def GetUserWorksetInfo(path): """ GetUserWorksetInfo(path: ModelPath) -> IList[WorksetPreview] Gets information about user worksets in a workshared model file,without fully opening the file. path: The path to the workshared model. Returns: Information about all the user worksets in the model. The list is sorted by workset id. """ pass @staticmethod def GetWorksharingTooltipInfo(document,elementId): """ GetWorksharingTooltipInfo(document: Document,elementId: ElementId) -> WorksharingTooltipInfo Gets worksharing information about an element to display in an in-canvas tooltip. document: The document containing the element elementId: The id of the element in question Returns: Worksharing information about the specified element. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: WorksharingUtils,disposing: bool) """ pass @staticmethod def RelinquishOwnership(document,generalCategories,options): """ RelinquishOwnership(document: Document,generalCategories: RelinquishOptions,options: TransactWithCentralOptions) -> RelinquishedItems Relinquishes ownership by the current user of as many specified elements and worksets as possible, and grants element ownership requested by other users on a first-come,first-served basis. document: The document containing the elements and worksets. generalCategories: General categories of items to relinquish. See RelinquishOptions for details. options: Options to customize access to the central model. ll is allowed and means no customization. Returns: The elements and worksets that were relinquished. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __repr__(self,*args): """ __repr__(self: object) -> str """ pass IsValidObject=property(lambda self: object(),lambda self,v: None,lambda self: None) """Specifies whether the .NET object represents a valid Revit entity. Get: IsValidObject(self: WorksharingUtils) -> bool """
anchore/anchore-modules/queries/list-content-search-matches.py
berez23/anchore
401
12622032
<reponame>berez23/anchore #!/usr/bin/env python import sys import os import re import json import traceback import anchore.anchore_utils # main routine try: config = anchore.anchore_utils.init_query_cmdline(sys.argv, "params: <filename> <filename> ...\nhelp: use 'all' to show all content search match filenames") except Exception as err: print str(err) sys.exit(1) if not config: sys.exit(0) if len(config['params']) <= 0: print "Query requires input: all ..." imageId = config['imgid'] outlist = list() warns = list() outlist.append(["Image_Id", "Repo_Tags", "File", "Match_Regexp", "Match_Line_Numbers"]) try: # handle the good case, something is found resulting in data matching the required columns results = anchore.anchore_utils.load_analysis_output(imageId, 'content_search', 'regexp_matches.all') for thefile in results.keys(): data = json.loads(results[thefile]) for b64regexp in data: theregexp = b64regexp.decode('base64') thelinenos = ','.join([str(x) for x in data[b64regexp]]) outlist.append([config['meta']['shortId'], config['meta']['humanname'], thefile, theregexp, thelinenos]) except Exception as err: # handle the case where something wrong happened import traceback traceback.print_exc() warns.append("Query failed for image ("+str(config['imgid'])+") with exception: " + str(err)) # handle the no match case if len(outlist) < 1: #outlist.append(["NOMATCH", "NOMATCH", "NOMATCH"]) pass anchore.anchore_utils.write_kvfile_fromlist(config['output'], outlist) if len(warns) > 0: anchore.anchore_utils.write_plainfile_fromlist(config['output_warns'], warns) sys.exit(0)
tests/manage/z_cluster/nodes/test_worker_nodes_network_failures.py
annagitel/ocs-ci
130
12622034
<gh_stars>100-1000 import logging import pytest from concurrent.futures import ThreadPoolExecutor from time import sleep from ocs_ci.framework import config from ocs_ci.framework.pytest_customization.marks import ( skipif_aws_i3, skipif_vsphere_ipi, skipif_ibm_power, ) from ocs_ci.framework.testlib import ignore_leftovers, ManageTest, tier4, tier4c from ocs_ci.ocs import constants, machine, node from ocs_ci.ocs.exceptions import ResourceWrongStatusException from ocs_ci.ocs.resources import pod from ocs_ci.utility.utils import ceph_health_check from ocs_ci.helpers import helpers logger = logging.getLogger(__name__) @tier4 @tier4c @skipif_aws_i3 @skipif_vsphere_ipi @skipif_ibm_power @ignore_leftovers class TestWorkerNodesFailure(ManageTest): """ Test all worker nodes simultaneous abrupt network failure for ~300 seconds """ pvc_size = 10 # size in Gi short_nw_fail_time = 300 # Duration in seconds for short network failure @pytest.fixture() def setup( self, request, scenario, nodes, multi_pvc_factory, service_account_factory, dc_pod_factory, ): """ Identify the nodes and start multiple dc pods for the test Args: scenario (str): Scenario of app pods running on OCS or dedicated nodes (eg., 'colocated', 'dedicated') nodes: A fixture to get instance of the relevant platform nodes class multi_pvc_factory: A fixture create a set of new PVCs service_account_factory: A fixture to create a service account dc_pod_factory: A fixture to create dc pod Returns: list: dc pod objs """ worker_nodes = node.get_worker_nodes() ocs_nodes = machine.get_labeled_nodes(constants.OPERATOR_NODE_LABEL) non_ocs_nodes = list(set(worker_nodes) - set(ocs_nodes)) def finalizer(): helpers.remove_label_from_worker_node( node_list=worker_nodes, label_key="nodetype" ) # Check ceph health ceph_health_check(tries=80) request.addfinalizer(finalizer) if (scenario == "dedicated") and len(non_ocs_nodes) == 0: if config.ENV_DATA.get("deployment_type").lower() == "ipi": machines = machine.get_machinesets() node.add_new_node_and_label_it( machines[0], num_nodes=1, mark_for_ocs_label=False ) else: if ( config.ENV_DATA.get("platform").lower() == constants.VSPHERE_PLATFORM ): pytest.skip( "Skipping add node in VSPHERE due to https://bugzilla.redhat.com/show_bug.cgi?id=1844521" ) is_rhel = config.ENV_DATA.get("rhel_workers") or config.ENV_DATA.get( "rhel_user" ) node_type = constants.RHEL_OS if is_rhel else constants.RHCOS node.add_new_node_and_label_upi( node_type=node_type, num_nodes=1, mark_for_ocs_label=False ) non_ocs_nodes = list(set(node.get_worker_nodes()) - set(ocs_nodes)) app_pod_nodes = ocs_nodes if (scenario == "colocated") else non_ocs_nodes # Label nodes to be able to run app pods helpers.label_worker_node( node_list=app_pod_nodes, label_key="nodetype", label_value="app-pod" ) access_modes_rbd = [ constants.ACCESS_MODE_RWO, f"{constants.ACCESS_MODE_RWX}-Block", ] access_modes_cephfs = [constants.ACCESS_MODE_RWO, constants.ACCESS_MODE_RWX] pvcs_rbd = multi_pvc_factory( interface=constants.CEPHBLOCKPOOL, size=self.pvc_size, access_modes=access_modes_rbd, status=constants.STATUS_BOUND, num_of_pvc=len(access_modes_rbd), ) project = pvcs_rbd[0].project pvcs_cephfs = multi_pvc_factory( interface=constants.CEPHFILESYSTEM, project=project, size=self.pvc_size, access_modes=access_modes_cephfs, status=constants.STATUS_BOUND, num_of_pvc=len(access_modes_cephfs), ) pvcs = pvcs_cephfs + pvcs_rbd # Set volume mode on PVC objects for pvc_obj in pvcs: pvc_info = pvc_obj.get() setattr(pvc_obj, "volume_mode", pvc_info["spec"]["volumeMode"]) sa_obj = service_account_factory(project=project) pods = [] # Create pods for pvc_obj in pvcs: if constants.CEPHFS_INTERFACE in pvc_obj.storageclass.name: interface = constants.CEPHFILESYSTEM else: interface = constants.CEPHBLOCKPOOL num_pods = 2 if pvc_obj.access_mode == constants.ACCESS_MODE_RWX else 1 logger.info("Creating app pods") for _ in range(num_pods): pods.append( dc_pod_factory( interface=interface, pvc=pvc_obj, node_selector={"nodetype": "app-pod"}, raw_block_pv=pvc_obj.volume_mode == "Block", sa_obj=sa_obj, ) ) logger.info( f"Created {len(pods)} pods using {len(pvcs_cephfs)} cephfs, {len(pvcs_rbd)} rbd PVCs." ) return pods @pytest.mark.parametrize( argnames=["scenario"], argvalues=[ pytest.param(*["colocated"], marks=pytest.mark.polarion_id("OCS-1432")), pytest.param(*["dedicated"], marks=pytest.mark.polarion_id("OCS-1433")), ], ) def test_all_worker_nodes_short_network_failure( self, nodes, setup, node_restart_teardown ): """ OCS-1432/OCS-1433: - Start DeploymentConfig based app pods - Make all the worker nodes unresponsive by doing abrupt network failure - Reboot the unresponsive node after short duration of ~300 seconds - When unresponsive node recovers, app pods and ceph cluster should recover - Again run IOs from app pods """ pod_objs = setup worker_nodes = node.get_worker_nodes() # Run IO on pods logger.info(f"Starting IO on {len(pod_objs)} app pods") with ThreadPoolExecutor() as executor: for pod_obj in pod_objs: logger.info(f"Starting IO on pod {pod_obj.name}") storage_type = "block" if pod_obj.pvc.volume_mode == "Block" else "fs" executor.submit( pod_obj.run_io, storage_type=storage_type, size="2G", runtime=30, fio_filename=f"{pod_obj.name}_io_f1", ) logger.info(f"IO started on all {len(pod_objs)} app pods") # Wait for IO results for pod_obj in pod_objs: pod.get_fio_rw_iops(pod_obj) # Induce network failure on all worker nodes with ThreadPoolExecutor() as executor: for node_name in worker_nodes: executor.submit(node.node_network_failure, node_name, False) node.wait_for_nodes_status( node_names=worker_nodes, status=constants.NODE_NOT_READY ) logger.info(f"Waiting for {self.short_nw_fail_time} seconds") sleep(self.short_nw_fail_time) # Reboot the worker nodes logger.info(f"Stop and start the worker nodes: {worker_nodes}") nodes.restart_nodes_by_stop_and_start(node.get_node_objs(worker_nodes)) try: node.wait_for_nodes_status( node_names=worker_nodes, status=constants.NODE_READY ) logger.info("Verifying StorageCluster pods are in running/completed state") pod.wait_for_storage_pods(timeout=720) except ResourceWrongStatusException: # Restart nodes nodes.restart_nodes(node.get_node_objs(worker_nodes)) assert ceph_health_check(tries=80), "Ceph cluster health is not OK" logger.info("Ceph cluster health is OK") # Get current info of app pods new_pod_objs = list() for pod_obj in pod_objs: pod_label = pod_obj.labels.get("deploymentconfig") pods_data = pod.get_pods_having_label( f"deploymentconfig={pod_label}", pod_obj.namespace ) current_pods = [ pod_data.get("metadata").get("name") for pod_data in pods_data if "-deploy" not in pod_data.get("metadata").get("name") ] logger.info(f"Pods with label {pod_label}: {current_pods}") # Remove the older pod from the list if pod is rescheduled if len(current_pods) > 1: current_pods.remove(pod_obj.name) new_pod_obj = pod.get_pod_obj(current_pods.pop(), pod_obj.namespace) new_pod_obj.pvc = pod_obj.pvc new_pod_objs.append(new_pod_obj) logger.info("Wait for app pods are in running state") for pod_obj in new_pod_objs: pod_obj.ocp.wait_for_resource( condition=constants.STATUS_RUNNING, resource_name=pod_obj.name, timeout=720, sleep=20, ) logger.info("All the app pods reached running state") # Run more IOs on app pods with ThreadPoolExecutor() as executor: for pod_obj in new_pod_objs: logger.info(f"Starting IO on pod {pod_obj.name}") pod_obj.wl_setup_done = False storage_type = "block" if pod_obj.pvc.volume_mode == "Block" else "fs" executor.submit( pod_obj.run_io, storage_type=storage_type, size="1G", runtime=30, fio_filename=f"{pod_obj.name}_io_f2", ) for pod_obj in new_pod_objs: pod.get_fio_rw_iops(pod_obj)
src/gluonts/model/rotbaum/_model.py
Xiaoxiong-Liu/gluon-ts
2,648
12622049
<reponame>Xiaoxiong-Liu/gluon-ts # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from typing import Dict, List, Optional, Union import copy import numpy as np import pandas as pd import xgboost import gc from collections import defaultdict from gluonts.core.component import validated class QRF: @validated() def __init__(self, params: Optional[dict] = None): """ Implements Quantile Random Forests using skgarden. """ from skgarden import RandomForestQuantileRegressor self.model = RandomForestQuantileRegressor(**params) def fit(self, x_train, y_train): self.model.fit(np.array(x_train), np.array(y_train)) def predict(self, x_test, quantile): return self.model.predict(x_test, quantile=100 * quantile) class QuantileReg: @validated() def __init__(self, quantiles: List, params: Optional[dict] = None): """ Implements quantile regression using lightgbm. """ from lightgbm import LGBMRegressor self.quantiles = quantiles self.models = dict( ( quantile, LGBMRegressor(objective="quantile", alpha=quantile, **params), ) for quantile in quantiles ) def fit(self, x_train, y_train): for model in self.models.values(): model.fit(np.array(x_train), np.array(y_train)) def predict(self, x_test, quantile): return self.models[quantile].predict(x_test) class QRX: @validated() def __init__( self, model=None, xgboost_params: Optional[dict] = None, min_bin_size: int = 100, ): """ QRX is an algorithm that takes a point estimate algorithm and turns it into a probabilistic forecasting algorithm. By default it uses XGBoost. You fit it once, and choose the quantile to predict only at prediction time. Prediction is done by taking empirical quantiles of *true values* associated with point estimate predictions close to the point estimate of the given point. The minimal number of associated true values is determined by min_bin_size. The algorithm is (loosely) inspired by quantile regression forests, in that it is predicts quantiles based on associated true values, where the association is based on a point estimate algorithm. Parameters ---------- model Any point estimate algorithm with .fit and .predict functions. xgboost_params If None, then it uses {"max_depth": 5, "n_jobs": -1, "verbosity": 1, "objective": "reg:squarederror"} min_bin_size Hyperparameter that determines the minimal size of the list of true values associated with each prediction. """ if model: self.model = copy.deepcopy(model) else: self.model = self._create_xgboost_model(xgboost_params) self.min_bin_size = min_bin_size self.sorted_train_preds = None self.x_train_is_dataframe = None self.id_to_bins = None self.preds_to_id = None self.quantile_dicts = defaultdict(dict) @staticmethod def _create_xgboost_model(model_params: Optional[dict] = None): """ Creates an xgboost model using specified or default parameters. """ if model_params is None: model_params = { "max_depth": 5, "n_jobs": -1, "verbosity": 1, "objective": "reg:squarederror", } return xgboost.sklearn.XGBModel(**model_params) def fit( self, x_train: Union[pd.DataFrame, List], y_train: Union[pd.Series, List], max_sample_size: Optional[ int ] = None, # If not None, choose without replacement # replacement min(max_sample_size, len(x_train)) many datapoints # to train on. seed: int = 1, x_train_is_dataframe: bool = False, # This should be False for # XGBoost, but True if one uses lightgbm. model_is_already_trained: bool = False, # True if there is no need to # train self.model **kwargs ): """ Fits self.model and partitions R^n into cells. More accurately, it creates two dictionaries: self.preds_to_ids whose keys are the predictions of the training dataset and whose values are the ids of their associated bins, and self.ids_to_bins whose keys are the ids of the bins and whose values are associated lists of true values. """ self.x_train_is_dataframe = x_train_is_dataframe self.quantile_dicts = defaultdict(dict) if not x_train_is_dataframe: x_train, y_train = np.array(x_train), np.array(y_train) # xgboost # doens't like lists if max_sample_size and x_train_is_dataframe: assert max_sample_size > 0 sample_size = min(max_sample_size, len(x_train)) x_train = x_train.sample( n=min(sample_size, len(x_train)), replace=False, random_state=seed, ) y_train = y_train[x_train.index] elif max_sample_size: assert max_sample_size > 0 sample_size = min(max_sample_size, len(x_train)) np.random.seed(seed) idx = np.random.choice( np.arange(len(x_train)), sample_size, replace=False ) x_train = x_train[idx] y_train = y_train[idx] if not model_is_already_trained: self.model.fit(x_train, y_train, **kwargs) y_train_pred = self.model.predict(x_train) df = pd.DataFrame( { "y_true": y_train, "y_pred": y_train_pred, } ).reset_index(drop=True) self.sorted_train_preds = sorted(df["y_pred"].unique()) cell_values_dict = self.preprocess_df( df, min_bin_size=self.min_bin_size ) del df gc.collect() cell_values_dict_df = pd.DataFrame( cell_values_dict.items(), columns=["keys", "values"] ) cell_values_dict_df["id"] = cell_values_dict_df["values"].apply(id) self.id_to_bins = ( cell_values_dict_df.groupby("id")["values"].first().to_dict() ) self.preds_to_id = ( cell_values_dict_df.groupby("keys")["id"].first().to_dict() ) del cell_values_dict_df del cell_values_dict gc.collect() df = pd.DataFrame({"preds": self.sorted_train_preds}) df["bin_ids"] = df["preds"].apply(lambda x: self.preds_to_id[x]) bin_ids = df["bin_ids"].drop_duplicates().values final_id, penultimate_id = bin_ids[-1], bin_ids[-2] if len(self.id_to_bins[final_id]) < self.min_bin_size: self.id_to_bins[final_id] += self.id_to_bins[penultimate_id] @staticmethod def clump( dic: Dict, min_num: int, sorted_keys: Optional[List] = None ) -> Dict: """ Returns a new dictionary whose keys are the same as dic's keys. Runs over dic's keys, from smallest to largest, and every time that the sum of the lengths of the values goes over min_num, it makes the new dictionary's values for the associated keys reference a single list object whose elements are the with-multiplicity union of the lists that appear as values in dic. Note that in the dictionary that is being output by this function, while the keys are the same number of keys as in dic, the number of objects in the values can be significantly smaller. Examples: >>> QRX.clump({0.1: [3, 3], 0.3: [0], 1.5: [-8]}, 0) {0.1: [3, 3], 0.3: [0], 1.5: [-8]} >>> QRX.clump({0.1: [3, 3], 0.3: [0], 1.5: [-8]}, 1) {0.1: [3, 3], 0.3: [0, -8], 1.5: [0, -8]} >>> QRX.clump({0.1: [3, 3], 0.3: [0], 1.5: [-8]}, 2) {0.1: [3, 3, 0], 0.3: [3, 3, 0], 1.5: [-8]} Parameters ---------- dic: dict float to list min_num: int minimal number of clump size. sorted_keys: list sorted(dic.keys()) or None Returns ------- dict float to list; with the values often having the same list object appear multiple times """ if sorted_keys is None: sorted_keys = sorted(dic) new_dic = {} iter_length = 0 iter_list = [] for key in sorted_keys: iter_length += len(dic[key]) iter_list.extend(dic[key]) new_dic[key] = iter_list # Note that iter_list may change in the # future, and this will change the value of new_dic[key]. This # is intentional. if iter_length > min_num: iter_length = 0 iter_list = [] # This line, of course, doesn't change any # value of new_dic, as it makes iter_list reference a new # list object. return new_dic def preprocess_df(self, df: pd.DataFrame, min_bin_size: int = 100) -> Dict: """ Associates true values to each prediction that appears in train. For the nature of this association, see details in .clump. Parameters ---------- df: pd.DataFrame Dataframe with columns 'y_true' and 'y_pred', of true and predicted values on the training set. min_bin_size Size of clumps to associate to each prediction in the set of predictions on the training set. Returns ------- dict going from predictions from the set of predictions on the training set to lists of associated true values, with the length of each being at least min_bin_size. """ dic = dict(df.groupby("y_pred")["y_true"].apply(list)) dic = self.clump(dic, min_bin_size, self.sorted_train_preds) return dic @classmethod def get_closest_pt(cls, sorted_list: List, num: int) -> int: """ Given a sorted list of floats, returns the number closest to num. Implements a binary search. """ assert sorted_list if len(sorted_list) == 1: return sorted_list[0] else: halfway_indx = (len(sorted_list) - 1) // 2 if sorted_list[halfway_indx] > num: return cls.get_closest_pt(sorted_list[: halfway_indx + 1], num) elif sorted_list[halfway_indx + 1] < num: return cls.get_closest_pt(sorted_list[halfway_indx + 1 :], num) elif abs(sorted_list[halfway_indx] - num) < abs( sorted_list[halfway_indx + 1] - num ): return sorted_list[halfway_indx] else: return sorted_list[halfway_indx + 1] def _get_and_cache_quantile_computation( self, feature_vector_in_train: List, quantile: float ): """ Updates self.quantile_dicts[quantile][feature_vector_in_train] to be the quantile of the associated true value bin. Parameters ---------- feature_vector_in_train: list Feature vector that appears in the training data. quantile: float Returns ------- float The quantile of the associated true value bin. """ if feature_vector_in_train not in self.quantile_dicts[quantile]: self.quantile_dicts[quantile][ feature_vector_in_train ] = np.percentile( self.id_to_bins[self.preds_to_id[feature_vector_in_train]], quantile * 100, ) return self.quantile_dicts[quantile][feature_vector_in_train] def predict( self, x_test: Union[pd.DataFrame, List], quantile: float ) -> List: """ Quantile prediction. Parameters ---------- x_test: pd.DataFrame if self.x_train_is_dataframe, else list of lists quantile: float Returns ------- list list of floats """ if self.x_train_is_dataframe: preds = self.model.predict(x_test) predicted_values = [ self._get_and_cache_quantile_computation( self.get_closest_pt(self.sorted_train_preds, pred), quantile, ) for pred in preds ] else: predicted_values = [] for pt in x_test: pred = self.model.predict(np.array([pt]))[ 0 ] # xgboost doesn't like lists closest_pred = self.get_closest_pt( self.sorted_train_preds, pred ) predicted_values.append( self._get_and_cache_quantile_computation( closest_pred, quantile ) ) return predicted_values def estimate_dist(self, x_test: List[List[float]]) -> List: """ Get estimate of sampling of Y|X=x for each x in x_test Parameters ---------- x_test Returns ------- list list of lists """ predicted_samples = [] for pt in x_test: pred = self.model.predict(np.array([pt]))[0] closest_pred = self.get_closest_pt(self.sorted_train_preds, pred) predicted_samples.append( self.id_to_bins[self.preds_to_id[closest_pred]] ) return predicted_samples LSF = QRX # LSF stands for "Level Set Forecaster". This name emphasizes that # the underlying algorithm can be used with any point forecasting algorithm, # not just XGBoost.
src/ralph/__main__.py
DoNnMyTh/ralph
1,668
12622055
#!/usr/bin/env python import os import sys def main(settings_module='ralph.settings', force=False): if force: os.environ['DJANGO_SETTINGS_MODULE'] = settings_module else: os.environ.setdefault('DJANGO_SETTINGS_MODULE', settings_module) from django.core.management import execute_from_command_line execute_from_command_line(sys.argv) def dev(): main('ralph.settings.dev') def test(): # test only with test settings, not local (or any set by environment # variable DJANGO_SETTINGS_MODULE) main('ralph.settings.test', force=True) def prod(): main('ralph.settings.prod') if __name__ == '__main__': main('ralph.settings.prod')
tests/test_models/test_necks/test_necks.py
gopi231091/mmdetection3d
217
12622071
import pytest import torch from mmdet3d.models.builder import build_backbone, build_neck def test_centerpoint_fpn(): second_cfg = dict( type='SECOND', in_channels=64, out_channels=[64, 128, 256], layer_nums=[3, 5, 5], layer_strides=[2, 2, 2], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), conv_cfg=dict(type='Conv2d', bias=False)) second = build_backbone(second_cfg) # centerpoint usage of fpn centerpoint_fpn_cfg = dict( type='SECONDFPN', in_channels=[64, 128, 256], out_channels=[128, 128, 128], upsample_strides=[0.5, 1, 2], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), upsample_cfg=dict(type='deconv', bias=False), use_conv_for_no_stride=True) # original usage of fpn fpn_cfg = dict( type='SECONDFPN', in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128]) second_fpn = build_neck(fpn_cfg) centerpoint_second_fpn = build_neck(centerpoint_fpn_cfg) input = torch.rand([4, 64, 512, 512]) sec_output = second(input) centerpoint_output = centerpoint_second_fpn(sec_output) second_output = second_fpn(sec_output) assert centerpoint_output[0].shape == torch.Size([4, 384, 128, 128]) assert second_output[0].shape == torch.Size([4, 384, 256, 256]) def test_imvoxel_neck(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') neck_cfg = dict( type='OutdoorImVoxelNeck', in_channels=64, out_channels=256) neck = build_neck(neck_cfg).cuda() inputs = torch.rand([1, 64, 216, 248, 12], device='cuda') outputs = neck(inputs) assert outputs[0].shape == (1, 256, 248, 216)
data structures/stack/python/stack.py
iabhimanyu/Algorithms
715
12622096
class Stack: def __init__(self): self.list = [] def push(self, element): self.list.append(element) def pop(self): assert len(self.list) > 0, "Stack is empty" return self.list.pop() def isEmpty(self): return len(self.list) == 0
bookwyrm/tests/models/test_fields.py
mouse-reeve/fedireads
270
12622103
""" testing models """ from io import BytesIO from collections import namedtuple from dataclasses import dataclass import json import pathlib import re from typing import List from unittest.mock import patch from PIL import Image import responses from django.core.exceptions import ValidationError from django.core.files.base import ContentFile from django.db import models from django.test import TestCase from django.utils import timezone from bookwyrm import activitypub from bookwyrm.activitypub.base_activity import ActivityObject from bookwyrm.models import fields, User, Status, Edition from bookwyrm.models.base_model import BookWyrmModel from bookwyrm.models.activitypub_mixin import ActivitypubMixin from bookwyrm.settings import DOMAIN # pylint: disable=too-many-public-methods @patch("bookwyrm.suggested_users.rerank_suggestions_task.delay") @patch("bookwyrm.activitystreams.populate_stream_task.delay") @patch("bookwyrm.lists_stream.populate_lists_task.delay") class ModelFields(TestCase): """overwrites standard model feilds to work with activitypub""" def test_validate_remote_id(self, *_): """should look like a url""" self.assertIsNone(fields.validate_remote_id("http://www.example.com")) self.assertIsNone(fields.validate_remote_id("https://www.example.com")) self.assertIsNone(fields.validate_remote_id("http://exle.com/dlg-23/x")) self.assertRaises( ValidationError, fields.validate_remote_id, "http:/example.com/dlfjg-23/x" ) self.assertRaises( ValidationError, fields.validate_remote_id, "www.example.com/dlfjg-23/x" ) self.assertRaises( ValidationError, fields.validate_remote_id, "http://www.example.com/dlfjg 23/x", ) def test_activitypub_field_mixin(self, *_): """generic mixin with super basic to and from functionality""" instance = fields.ActivitypubFieldMixin() self.assertEqual(instance.field_to_activity("fish"), "fish") self.assertEqual(instance.field_from_activity("fish"), "fish") self.assertFalse(instance.deduplication_field) instance = fields.ActivitypubFieldMixin( activitypub_wrapper="endpoints", activitypub_field="outbox" ) self.assertEqual(instance.field_to_activity("fish"), {"outbox": "fish"}) self.assertEqual(instance.field_from_activity({"outbox": "fish"}), "fish") self.assertEqual(instance.get_activitypub_field(), "endpoints") instance = fields.ActivitypubFieldMixin() instance.name = "snake_case_name" self.assertEqual(instance.get_activitypub_field(), "snakeCaseName") def test_set_field_from_activity(self, *_): """setter from entire json blob""" @dataclass class TestModel: """real simple mock""" field_name: str mock_model = TestModel(field_name="bip") TestActivity = namedtuple("test", ("fieldName", "unrelated")) data = TestActivity(fieldName="hi", unrelated="bfkjh") instance = fields.ActivitypubFieldMixin() instance.name = "field_name" instance.set_field_from_activity(mock_model, data) self.assertEqual(mock_model.field_name, "hi") def test_set_activity_from_field(self, *_): """set json field given entire model""" @dataclass class TestModel: """real simple mock""" field_name: str unrelated: str mock_model = TestModel(field_name="bip", unrelated="field") instance = fields.ActivitypubFieldMixin() instance.name = "field_name" data = {} instance.set_activity_from_field(data, mock_model) self.assertEqual(data["fieldName"], "bip") def test_remote_id_field(self, *_): """just sets some defaults on charfield""" instance = fields.RemoteIdField() self.assertEqual(instance.max_length, 255) self.assertTrue(instance.deduplication_field) with self.assertRaises(ValidationError): instance.run_validators("http://www.example.com/dlfjg 23/x") def test_username_field(self, *_): """again, just setting defaults on username field""" instance = fields.UsernameField() self.assertEqual(instance.activitypub_field, "preferredUsername") self.assertEqual(instance.max_length, 150) self.assertEqual(instance.unique, True) with self.assertRaises(ValidationError): instance.run_validators("mouse") instance.run_validators("mouseexample.com") instance.run_validators("<EMAIL>") instance.run_validators("@example.com") instance.run_validators("<EMAIL>") instance.run_validators("one [email protected]") instance.run_validators("<EMAIL>") instance.run_validators("<EMAIL> ") self.assertIsNone(instance.run_validators("<EMAIL>")) self.assertIsNone(instance.run_validators("<EMAIL>")) self.assertIsNone(instance.run_validators("<EMAIL>")) self.assertEqual(instance.field_to_activity("<EMAIL>"), "test") def test_privacy_field_defaults(self, *_): """post privacy field's many default values""" instance = fields.PrivacyField() self.assertEqual(instance.max_length, 255) self.assertEqual( [c[0] for c in instance.choices], ["public", "unlisted", "followers", "direct"], ) self.assertEqual(instance.default, "public") self.assertEqual( instance.public, "https://www.w3.org/ns/activitystreams#Public" ) def test_privacy_field_set_field_from_activity(self, *_): """translate between to/cc fields and privacy""" with patch("bookwyrm.models.user.set_remote_server.delay"): test_user = User.objects.create_user( username="<EMAIL>", local=False, remote_id="https://example.com/test_user", inbox="https://example.com/users/test_user/inbox", followers_url="https://example.com/users/test_user/followers", ) @dataclass(init=False) class TestActivity(ActivityObject): """real simple mock""" # pylint: disable=invalid-name to: List[str] cc: List[str] id: str = "http://hi.com" type: str = "Test" attributedTo: str = test_user.remote_id class TestPrivacyModel(ActivitypubMixin, BookWyrmModel): """real simple mock model because BookWyrmModel is abstract""" privacy_field = fields.PrivacyField() mention_users = fields.TagField(User) user = fields.ForeignKey(User, on_delete=models.CASCADE) public = "https://www.w3.org/ns/activitystreams#Public" data = TestActivity( to=[public], cc=["bleh"], ) model_instance = TestPrivacyModel(privacy_field="direct") self.assertEqual(model_instance.privacy_field, "direct") instance = fields.PrivacyField() instance.name = "privacy_field" instance.set_field_from_activity(model_instance, data) self.assertEqual(model_instance.privacy_field, "public") data.to = ["bleh"] data.cc = [] instance.set_field_from_activity(model_instance, data) self.assertEqual(model_instance.privacy_field, "direct") data.to = ["bleh"] data.cc = [public, "waah"] instance.set_field_from_activity(model_instance, data) self.assertEqual(model_instance.privacy_field, "unlisted") data.to = [test_user.followers_url] data.cc = [] instance.set_field_from_activity(model_instance, data) self.assertEqual(model_instance.privacy_field, "followers") data.to = ["http://user_remote/followers"] data.cc = ["http://mentioned_user/remote_id"] instance.set_field_from_activity(model_instance, data) self.assertEqual(model_instance.privacy_field, "followers") @patch("bookwyrm.models.activitypub_mixin.ObjectMixin.broadcast") @patch("bookwyrm.activitystreams.add_status_task.delay") def test_privacy_field_set_activity_from_field(self, *_): """translate between to/cc fields and privacy""" user = User.objects.create_user( "rat", "<EMAIL>", "ratword", local=True, localname="rat" ) public = "https://www.w3.org/ns/activitystreams#Public" followers = f"{user.remote_id}/followers" instance = fields.PrivacyField() instance.name = "privacy_field" model_instance = Status.objects.create(user=user, content="hi") activity = {} instance.set_activity_from_field(activity, model_instance) self.assertEqual(activity["to"], [public]) self.assertEqual(activity["cc"], [followers]) model_instance = Status.objects.create( user=user, content="hi", privacy="unlisted" ) activity = {} instance.set_activity_from_field(activity, model_instance) self.assertEqual(activity["to"], [followers]) self.assertEqual(activity["cc"], [public]) model_instance = Status.objects.create( user=user, content="hi", privacy="followers" ) activity = {} instance.set_activity_from_field(activity, model_instance) self.assertEqual(activity["to"], [followers]) self.assertEqual(activity["cc"], []) model_instance = Status.objects.create( user=user, content="hi", privacy="direct", ) model_instance.mention_users.set([user]) activity = {} instance.set_activity_from_field(activity, model_instance) self.assertEqual(activity["to"], [user.remote_id]) self.assertEqual(activity["cc"], []) def test_foreign_key(self, *_): """should be able to format a related model""" instance = fields.ForeignKey("User", on_delete=models.CASCADE) Serializable = namedtuple("Serializable", ("to_activity", "remote_id")) item = Serializable(lambda: {"a": "b"}, "https://e.b/c") # returns the remote_id field of the related object self.assertEqual(instance.field_to_activity(item), "https://e.b/c") @responses.activate def test_foreign_key_from_activity_str(self, *_): """create a new object from a foreign key""" instance = fields.ForeignKey(User, on_delete=models.CASCADE) datafile = pathlib.Path(__file__).parent.joinpath("../data/ap_user.json") userdata = json.loads(datafile.read_bytes()) # don't try to load the user icon del userdata["icon"] # it shouldn't match with this unrelated user: unrelated_user = User.objects.create_user( "rat", "<EMAIL>", "ratword", local=True, localname="rat" ) # test receiving an unknown remote id and loading data responses.add( responses.GET, "https://example.com/user/mouse", json=userdata, status=200, ) with patch("bookwyrm.models.user.set_remote_server.delay"): value = instance.field_from_activity("https://example.com/user/mouse") self.assertIsInstance(value, User) self.assertNotEqual(value, unrelated_user) self.assertEqual(value.remote_id, "https://example.com/user/mouse") self.assertEqual(value.name, "MOUSE?? MOUSE!!") def test_foreign_key_from_activity_dict(self, *_): """test recieving activity json""" instance = fields.ForeignKey(User, on_delete=models.CASCADE) datafile = pathlib.Path(__file__).parent.joinpath("../data/ap_user.json") userdata = json.loads(datafile.read_bytes()) # don't try to load the user icon del userdata["icon"] # it shouldn't match with this unrelated user: unrelated_user = User.objects.create_user( "rat", "<EMAIL>", "ratword", local=True, localname="rat" ) with patch("bookwyrm.models.user.set_remote_server.delay"): value = instance.field_from_activity(activitypub.Person(**userdata)) self.assertIsInstance(value, User) self.assertNotEqual(value, unrelated_user) self.assertEqual(value.remote_id, "https://example.com/user/mouse") self.assertEqual(value.name, "MOUSE?? MOUSE!!") # et cetera but we're not testing serializing user json def test_foreign_key_from_activity_dict_existing(self, *_): """test receiving a dict of an existing object in the db""" instance = fields.ForeignKey(User, on_delete=models.CASCADE) datafile = pathlib.Path(__file__).parent.joinpath("../data/ap_user.json") userdata = json.loads(datafile.read_bytes()) user = User.objects.create_user( "mouse", "<EMAIL>", "mouseword", local=True, localname="mouse" ) user.remote_id = "https://example.com/user/mouse" user.save(broadcast=False, update_fields=["remote_id"]) User.objects.create_user( "rat", "<EMAIL>", "ratword", local=True, localname="rat" ) with patch("bookwyrm.models.activitypub_mixin.ObjectMixin.broadcast"): value = instance.field_from_activity(activitypub.Person(**userdata)) self.assertEqual(value, user) def test_foreign_key_from_activity_str_existing(self, *_): """test receiving a remote id of an existing object in the db""" instance = fields.ForeignKey(User, on_delete=models.CASCADE) user = User.objects.create_user( "mouse", "<EMAIL>", "mouseword", local=True, localname="mouse" ) User.objects.create_user( "rat", "<EMAIL>", "ratword", local=True, localname="rat" ) value = instance.field_from_activity(user.remote_id) self.assertEqual(value, user) def test_one_to_one_field(self, *_): """a gussied up foreign key""" instance = fields.OneToOneField("User", on_delete=models.CASCADE) Serializable = namedtuple("Serializable", ("to_activity", "remote_id")) item = Serializable(lambda: {"a": "b"}, "https://e.b/c") self.assertEqual(instance.field_to_activity(item), {"a": "b"}) def test_many_to_many_field(self, *_): """lists!""" instance = fields.ManyToManyField("User") Serializable = namedtuple("Serializable", ("to_activity", "remote_id")) Queryset = namedtuple("Queryset", ("all", "instance")) item = Serializable(lambda: {"a": "b"}, "https://e.b/c") another_item = Serializable(lambda: {}, "example.com") items = Queryset(lambda: [item], another_item) self.assertEqual(instance.field_to_activity(items), ["https://e.b/c"]) instance = fields.ManyToManyField("User", link_only=True) instance.name = "snake_case" self.assertEqual(instance.field_to_activity(items), "example.com/snake_case") @responses.activate def test_many_to_many_field_from_activity(self, *_): """resolve related fields for a list, takes a list of remote ids""" instance = fields.ManyToManyField(User) datafile = pathlib.Path(__file__).parent.joinpath("../data/ap_user.json") userdata = json.loads(datafile.read_bytes()) # don't try to load the user icon del userdata["icon"] # test receiving an unknown remote id and loading data responses.add( responses.GET, "https://example.com/user/mouse", json=userdata, status=200 ) with patch("bookwyrm.models.user.set_remote_server.delay"): value = instance.field_from_activity( ["https://example.com/user/mouse", "bleh"] ) self.assertIsInstance(value, list) self.assertEqual(len(value), 1) self.assertIsInstance(value[0], User) def test_tag_field(self, *_): """a special type of many to many field""" instance = fields.TagField("User") Serializable = namedtuple( "Serializable", ("to_activity", "remote_id", "name_field", "name") ) Queryset = namedtuple("Queryset", ("all", "instance")) item = Serializable(lambda: {"a": "b"}, "https://e.b/c", "name", "Name") another_item = Serializable(lambda: {}, "example.com", "", "") items = Queryset(lambda: [item], another_item) result = instance.field_to_activity(items) self.assertIsInstance(result, list) self.assertEqual(len(result), 1) self.assertEqual(result[0].href, "https://e.b/c") self.assertEqual(result[0].name, "Name") self.assertEqual(result[0].type, "Serializable") def test_tag_field_from_activity(self, *_): """loadin' a list of items from Links""" # TODO @patch("bookwyrm.models.activitypub_mixin.ObjectMixin.broadcast") @patch("bookwyrm.suggested_users.remove_user_task.delay") def test_image_field_to_activity(self, *_): """serialize an image field to activitypub""" user = User.objects.create_user( "mouse", "<EMAIL>", "mouseword", local=True, localname="mouse" ) image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/default_avi.jpg" ) image = Image.open(image_file) output = BytesIO() image.save(output, format=image.format) user.avatar.save("test.jpg", ContentFile(output.getvalue())) instance = fields.ImageField() output = instance.field_to_activity(user.avatar) self.assertIsNotNone( re.match( rf"https:\/\/{DOMAIN}\/.*\.jpg", output.url, ) ) self.assertEqual(output.name, "") self.assertEqual(output.type, "Document") @responses.activate def test_image_field_from_activity(self, *_): """load an image from activitypub""" image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/default_avi.jpg" ) instance = fields.ImageField() with open(image_file, "rb") as image_data: responses.add( responses.GET, "http://www.example.com/image.jpg", body=image_data.read(), status=200, content_type="image/jpeg", stream=True, ) loaded_image = instance.field_from_activity("http://www.example.com/image.jpg") self.assertIsInstance(loaded_image, list) self.assertIsInstance(loaded_image[1], ContentFile) @responses.activate def test_image_field_set_field_from_activity(self, *_): """update a model instance from an activitypub object""" image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/default_avi.jpg" ) instance = fields.ImageField(activitypub_field="cover", name="cover") with open(image_file, "rb") as image_data: responses.add( responses.GET, "http://www.example.com/image.jpg", body=image_data.read(), content_type="image/jpeg", status=200, stream=True, ) book = Edition.objects.create(title="hello") MockActivity = namedtuple("MockActivity", ("cover")) mock_activity = MockActivity("http://www.example.com/image.jpg") instance.set_field_from_activity(book, mock_activity) self.assertIsNotNone(book.cover.name) @responses.activate def test_image_field_set_field_from_activity_no_overwrite_no_cover(self, *_): """update a model instance from an activitypub object""" image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/default_avi.jpg" ) instance = fields.ImageField(activitypub_field="cover", name="cover") with open(image_file, "rb") as image_data: responses.add( responses.GET, "http://www.example.com/image.jpg", body=image_data.read(), status=200, content_type="image/jpeg", stream=True, ) book = Edition.objects.create(title="hello") MockActivity = namedtuple("MockActivity", ("cover")) mock_activity = MockActivity("http://www.example.com/image.jpg") instance.set_field_from_activity(book, mock_activity, overwrite=False) self.assertIsNotNone(book.cover.name) @responses.activate def test_image_field_set_field_from_activity_no_overwrite_with_cover(self, *_): """update a model instance from an activitypub object""" image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/default_avi.jpg" ) image = Image.open(image_file) output = BytesIO() image.save(output, format=image.format) another_image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/logo.png" ) another_image = Image.open(another_image_file) another_output = BytesIO() another_image.save(another_output, format=another_image.format) instance = fields.ImageField(activitypub_field="cover", name="cover") responses.add( responses.GET, "http://www.example.com/image.jpg", body=another_image.tobytes(), status=200, ) book = Edition.objects.create(title="hello") book.cover.save("test.jpg", ContentFile(output.getvalue())) cover_size = book.cover.size self.assertIsNotNone(cover_size) MockActivity = namedtuple("MockActivity", ("cover")) mock_activity = MockActivity("http://www.example.com/image.jpg") instance.set_field_from_activity(book, mock_activity, overwrite=False) # same cover as before self.assertEqual(book.cover.size, cover_size) @responses.activate def test_image_field_set_field_from_activity_with_overwrite_with_cover(self, *_): """update a model instance from an activitypub object""" image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/default_avi.jpg" ) image = Image.open(image_file) output = BytesIO() image.save(output, format=image.format) book = Edition.objects.create(title="hello") book.cover.save("test.jpg", ContentFile(output.getvalue())) cover_size = book.cover.size self.assertIsNotNone(cover_size) another_image_file = pathlib.Path(__file__).parent.joinpath( "../../static/images/logo.png" ) instance = fields.ImageField(activitypub_field="cover", name="cover") with open(another_image_file, "rb") as another_image: responses.add( responses.GET, "http://www.example.com/image.jpg", body=another_image.read(), status=200, content_type="image/jpeg", stream=True, ) MockActivity = namedtuple("MockActivity", ("cover")) mock_activity = MockActivity("http://www.example.com/image.jpg") instance.set_field_from_activity(book, mock_activity, overwrite=True) # new cover self.assertIsNotNone(book.cover.name) self.assertNotEqual(book.cover.size, cover_size) def test_datetime_field(self, *_): """this one is pretty simple, it just has to use isoformat""" instance = fields.DateTimeField() now = timezone.now() self.assertEqual(instance.field_to_activity(now), now.isoformat()) self.assertEqual(instance.field_from_activity(now.isoformat()), now) self.assertEqual(instance.field_from_activity("bip"), None) def test_array_field(self, *_): """idk why it makes them strings but probably for a good reason""" instance = fields.ArrayField(fields.IntegerField) self.assertEqual(instance.field_to_activity([0, 1]), ["0", "1"]) def test_html_field(self, *_): """sanitizes html, the sanitizer has its own tests""" instance = fields.HtmlField() self.assertEqual( instance.field_from_activity("<marquee><p>hi</p></marquee>"), "<p>hi</p>" )
Attacks/AttackMethods/DEEPFOOL.py
jiannanWang/DEEPSEC
178
12622106
<filename>Attacks/AttackMethods/DEEPFOOL.py # !/usr/bin/env python # -*- coding: utf-8 -*- # References: S.-M. Moosavi-Dezfooli, et al., "Deepfool: A simple and accurate method to fool deep neural networks," in CVPR, 2016 # Reference Implementation from Authors: https://github.com/LTS4/DeepFool/tree/master/Python # ************************************** # @Time : 2018/10/20 23:31 # @Author : <NAME> and <NAME> # @Lab : nesa.zju.edu.cn # @File : DEEPFOOL.py # ************************************** import numpy as np import torch from torch.autograd.gradcheck import zero_gradients from Attacks.AttackMethods.AttackUtils import tensor2variable from Attacks.AttackMethods.attacks import Attack class DeepFoolAttack(Attack): def __init__(self, model=None, overshoot=0.02, max_iters=50): """ :param model: :param overshoot: :param max_iters: """ super(DeepFoolAttack, self).__init__(model=model) self.model = model self.overshoot = overshoot self.max_iterations = max_iters def perturbation_single(self, sample, device): """ :param sample: :param device: :return: """ assert sample.shape[0] == 1, 'only perturbing one sample' copy_sample = np.copy(sample) var_sample = tensor2variable(torch.from_numpy(copy_sample), device=device, requires_grad=True).float() self.model.eval() prediction = self.model(var_sample) original = torch.max(prediction, 1)[1] current = original # indices of predication in descending order I = np.argsort(prediction.data.cpu().numpy() * -1) perturbation_r_tot = np.zeros(copy_sample.shape, dtype=np.float32) iteration = 0 while (original == current) and (iteration < self.max_iterations): # predication for the adversarial example in i-th iteration zero_gradients(var_sample) self.model.eval() f_kx = self.model(var_sample) current = torch.max(f_kx, 1)[1] # gradient of the original example f_kx[0, I[0, 0]].backward(retain_graph=True) grad_original = np.copy(var_sample.grad.data.cpu().numpy()) # calculate the w_k and f_k for every class label closest_dist = 1e10 for k in range(1, 10): # gradient of adversarial example for k-th label zero_gradients(var_sample) f_kx[0, I[0, k]].backward(retain_graph=True) grad_current = var_sample.grad.data.cpu().numpy().copy() # update w_k and f_k w_k = grad_current - grad_original f_k = (f_kx[0, I[0, k]] - f_kx[0, I[0, 0]]).detach().data.cpu().numpy() # find the closest distance and the corresponding w_k dist_k = np.abs(f_k) / (np.linalg.norm(w_k.flatten()) + 1e-15) if dist_k < closest_dist: closest_dist = dist_k closest_w = w_k # accumulation of perturbation r_i = (closest_dist + 1e-4) * closest_w / np.linalg.norm(closest_w) perturbation_r_tot = perturbation_r_tot + r_i tmp_sample = np.clip((1 + self.overshoot) * perturbation_r_tot + sample, 0.0, 1.0) var_sample = tensor2variable(torch.from_numpy(tmp_sample), device=device, requires_grad=True) iteration += 1 adv = np.clip(sample + (1 + self.overshoot) * perturbation_r_tot, 0.0, 1.0) return adv, perturbation_r_tot, iteration def perturbation(self, xs, device): """ :param xs: batch of samples :param device: :return: batch of adversarial samples """ print('\nThe DeepFool attack perturbs the samples one by one ......\n') adv_samples = [] for i in range(len(xs)): adv_image, _, _ = self.perturbation_single(sample=xs[i: i + 1], device=device) adv_samples.extend(adv_image) return np.array(adv_samples)
server/api/blueprints/teacher.py
brayest/testcode
652
12622118
from datetime import datetime from functools import wraps import flask import requests from flask import Blueprint from flask_babel import gettext from flask_login import current_user, login_required, logout_user from flask_weasyprint import HTML, render_pdf from loguru import logger from sqlalchemy import and_ from server.api.blueprints.login import create_user_from_data from server.api.database.models import ( Day, Appointment, Payment, PaymentType, Report, ReportType, Student, Teacher, User, WorkDay, Kilometer, Car, CarType, ) from server.api.push_notifications import FCM from server.api.utils import jsonify_response, paginate from server.consts import RECEIPT_URL, RECEIPTS_DEVELOPER_EMAIL, WORKDAY_DATE_FORMAT from server.error_handling import NotificationError, RouteError teacher_routes = Blueprint("teacher", __name__, url_prefix="/teacher") def init_app(app): app.register_blueprint(teacher_routes) def teacher_required(func): @wraps(func) def func_wrapper(*args, **kwargs): if not current_user.teacher: raise RouteError("User is not a teacher.", 401) return func(*args, **kwargs) return func_wrapper def like_filter(model, key, value): return getattr(model, key).like(f"%{value}%") @teacher_routes.route("/", methods=["GET"]) @jsonify_response @paginate def teachers(): try: extra_filters = {User: {"name": like_filter}} query = Teacher.query.filter_by(is_approved=True) return Teacher.filter_and_sort( flask.request.args, extra_filters=extra_filters, query=query, with_pagination=True, ) except ValueError: raise RouteError("Wrong parameters passed.") @teacher_routes.route("/work_days", methods=["GET"]) @jsonify_response @login_required @teacher_required def work_days(): """ return work days with filter - only on a specific date, or with no date at all""" try: return { "data": [ day.to_dict() for day in current_user.teacher.filter_work_days(flask.request.args) ] } except ValueError: raise RouteError("Wrong parameters passed.") @teacher_routes.route("/work_days", methods=["POST"]) @jsonify_response @login_required @teacher_required def update_work_days(): data = flask.request.get_json() """ example data: 0: [{from_hour: 8, from_minutes: 0, to_hour: 14}], 1: {}.... OR "03-15-2019": [{from_hour: 8}], "03-16-2019": [].... """ logger.debug(f"WORK DAYS - got the following data") logger.debug(data) for day, hours_list in data.items(): # first, let's delete all current data with this date # TODO better algorithm for that try: day = int(day) params = dict(day=day, teacher=current_user.teacher) WorkDay.query.filter_by(**params).delete() except ValueError: # probably a date params = dict( on_date=datetime.strptime(day, WORKDAY_DATE_FORMAT), teacher=current_user.teacher, ) WorkDay.query.filter_by(**params).delete() for hours in hours_list: from_hour = max(min(int(hours.get("from_hour")), 24), 0) to_hour = max(min(int(hours.get("to_hour")), 24), 0) from_minutes = max(min(int(hours.get("from_minutes")), 60), 0) to_minutes = max(min(int(hours.get("to_minutes")), 60), 0) car = current_user.teacher.cars.filter_by(id=hours.get("car_id")).first() if not car: car = current_user.teacher.cars.first() if from_hour >= to_hour: raise RouteError( "There must be a bigger difference between the two times." ) current_user.teacher.work_days.append( WorkDay( from_hour=from_hour, from_minutes=from_minutes, to_hour=to_hour, to_minutes=to_minutes, car=car, **params, ) ) current_user.save() return {"message": "Days updated."} @teacher_routes.route("/work_days/<int:day_id>", methods=["POST"]) @jsonify_response @login_required @teacher_required def edit_work_day(day_id): day = current_user.teacher.work_days.filter_by(id=day_id).first() if not day: raise RouteError("Day does not exist", 404) data = flask.request.get_json() from_hour = data.get("from_hour", day.from_hour) to_hour = data.get("to_hour", day.to_hour) day.update(from_hour=from_hour, to_hour=to_hour) return {"message": "Day updated successfully."} @teacher_routes.route("/work_days/<int:day_id>", methods=["DELETE"]) @jsonify_response @login_required @teacher_required def delete_work_day(day_id): day = current_user.teacher.work_days.filter_by(id=day_id).first() if not day: raise RouteError("Day does not exist", 404) day.delete() return {"message": "Day deleted."} @teacher_routes.route("/<int:teacher_id>/available_hours", methods=["POST"]) @jsonify_response @login_required def available_hours(teacher_id): data = flask.request.get_json() teacher = Teacher.get_by_id(teacher_id) duration = data.get("duration") if duration: duration = int(duration) only_approved = False student = None if current_user.teacher: only_approved = True else: student = current_user.student places = (data.get("meetup_place_id", None), data.get("dropoff_place_id", None)) return { "data": list( teacher.available_hours( datetime.strptime(data.get("date"), WORKDAY_DATE_FORMAT), student=student, duration=duration, only_approved=only_approved, places=places, ) ) } @teacher_routes.route("/add_payment", methods=["POST"]) @jsonify_response @login_required @teacher_required def add_payment(): data = flask.request.get_json() student = Student.get_by_id(data.get("student_id")) amount = data.get("amount") details = data.get("details") if not student: raise RouteError("Student does not exist.") if not amount: raise RouteError("Amount must not be empty.") if not details: raise RouteError("Details must not be empty.") payment = Payment.create( teacher=current_user.teacher, student=student, amount=amount, payment_type=getattr(PaymentType, data.get("payment_type", ""), 1), details=details, crn=int(data.get("crn")) if data.get("crn") else None, ) # send notification to student if student.user.firebase_token: logger.debug(f"sending fcm to {student.user} for new payment") try: FCM.notify( token=student.user.firebase_token, title=gettext("New Payment"), body=gettext( "%(user)s charged you for %(amount)s", user=current_user.name, amount=amount, ), ) except NotificationError: pass return {"data": payment.to_dict()}, 201 @teacher_routes.route("/students", methods=["GET"]) @jsonify_response @login_required @teacher_required @paginate def students(): """allow filtering by name / area of student, and sort by balance, lesson number""" try: query = current_user.teacher.students args = flask.request.args extra_filters = {User: {"name": like_filter, "area": like_filter}} return Student.filter_and_sort( args, query, extra_filters=extra_filters, with_pagination=True ) except ValueError: raise RouteError("Wrong parameters passed.") @teacher_routes.route("/edit_data", methods=["POST"]) @jsonify_response @login_required @teacher_required def edit_data(): post_data = flask.request.get_json() teacher = current_user.teacher fields = ("price", "lesson_duration") for field in fields: if post_data.get(field): setattr(teacher, field, post_data.get(field)) teacher.save() return {"data": current_user.to_dict()} @teacher_routes.route("/<int:teacher_id>/approve", methods=["GET"]) @jsonify_response @login_required def approve(teacher_id): if not current_user.is_admin: raise RouteError("Not authorized.", 401) teacher = Teacher.get_by_id(teacher_id) teacher.update(is_approved=True) return {"data": teacher.to_dict()} @teacher_routes.route("/ezcount_user", methods=["GET"]) @jsonify_response @login_required @teacher_required def create_ezcount_user(): # https://docs.google.com/document/d/1me6u9CpJtydTIEdMkY3OH1dresZkrPRCK0_xw5Rn0Do/edit# teacher = current_user.teacher if not teacher.crn: return if teacher.invoice_api_key: raise RouteError("Teacher already has an invoice account.") api_key = flask.current_app.config.get("RECEIPTS_API_KEY") payload = { "api_key": api_key, "api_email": RECEIPTS_DEVELOPER_EMAIL, "developer_email": RECEIPTS_DEVELOPER_EMAIL, "create_signature": 1, "company_crn": teacher.crn, "company_email": current_user.email, "user_key": str(current_user.id), "company_name": current_user.name, "company_type": 1, } resp = requests.post(RECEIPT_URL + "api/user/create", json=payload) resp_json = resp.json() if resp_json["success"]: teacher.update( invoice_api_key=resp_json["u_api_key"], invoice_api_uid=resp_json["u_uuid"] ) return {"message": "EZCount user created successfully."} raise RouteError(resp_json["errMsg"]) @teacher_routes.route("/payments/<int:payment_id>/receipt", methods=["GET"]) @jsonify_response @login_required @teacher_required def add_receipt(payment_id): # https://docs.google.com/document/d/1_kSH5xViiZi5Y1tZtWpNrkKiq4Htym7V23TuhL7KlSU/edit# payment = Payment.get_by_id(payment_id) if not payment or payment.teacher != current_user.teacher: raise RouteError("Payment not found.", 404) if not payment.teacher.invoice_api_key: raise RouteError("Teacher does not have an invoice account.") api_key = flask.current_app.config.get("RECEIPTS_API_KEY") payload = { "api_key": payment.teacher.invoice_api_key, "developer_email": RECEIPTS_DEVELOPER_EMAIL, "created_by_api_key": api_key, "transaction_id": payment.id, "type": 320, "customer_name": payment.student.user.name, "customer_email": payment.student.user.email, "customer_crn": payment.crn, "item": { 1: { "details": payment.details, "amount": "1", "price": payment.amount, "price_inc_vat": 1, # this price include the VAT } }, "payment": { 1: {"payment_type": payment.payment_type.value, "payment": payment.amount} }, "price_total": payment.amount, # /*THIS IS A MUST ONLY IN INVOICE RECIEPT*/ } resp = requests.post(RECEIPT_URL + "api/createDoc", json=payload) resp_json = resp.json() if resp_json["success"]: payment.update(pdf_link=resp_json["pdf_link"]) return {"pdf_link": resp_json["pdf_link"]} raise RouteError(resp_json["errMsg"]) @teacher_routes.route("/ezcount", methods=["GET"]) @jsonify_response @login_required @teacher_required def login_to_ezcount(): # https://docs.google.com/document/d/1me6u9CpJtydTIEdMkY3OH1dresZkrPRCK0_xw5Rn0Do/edit# if not current_user.teacher.invoice_api_key: raise RouteError("Teacher does not have an invoice account.") redirect = flask.request.args.get("redirect", "") resp = requests.post( RECEIPT_URL + f"api/getClientSafeUrl/login?redirectTo={redirect}", json={ "api_key": current_user.teacher.invoice_api_key, "api_email": current_user.email, "developer_email": RECEIPTS_DEVELOPER_EMAIL, }, ) return {"url": resp.json()["url"]} @teacher_routes.route("/reports", methods=["POST"]) @jsonify_response @login_required @teacher_required def create_report(): post_data = flask.request.get_json() try: report_type = ReportType[post_data.get("report_type")] except KeyError: raise RouteError("Report type was not found.") car = current_user.teacher.cars.filter_by(id=post_data.get("car")).first() dates = dict() if report_type.name in Report.DATES_REQUIRED: dates["since"] = post_data.get("since") dates["until"] = post_data.get("until") try: dates["since"] = datetime.strptime( dates["since"], WORKDAY_DATE_FORMAT ).replace(second=0, microsecond=0) dates["until"] = datetime.strptime( dates["until"], WORKDAY_DATE_FORMAT ).replace(second=0, microsecond=0) except (ValueError, TypeError): raise RouteError("Dates are not valid.") report = Report.create( report_type=report_type.value, teacher=current_user.teacher, car=car, **dates ) return {"data": report.to_dict()} @teacher_routes.route("/reports/<uuid>", methods=["GET"]) def show_report(uuid): REPORTS = { "students": lambda report: report.teacher.students.filter_by(is_active=True) .join(User, Student.user) .order_by(User.name.asc()), "lessons": lambda report: report.teacher.lessons.filter( and_( Appointment.is_approved == True, Appointment.date < report.until, Appointment.date > report.since, ) ), "kilometers": lambda report: report.teacher.kilometers.filter( and_( Kilometer.date < report.until, Kilometer.date > report.since, Kilometer.car == report.car, ) ), } report = Report.query.filter_by(uuid=uuid).first() if not report: raise RouteError("Report was not found.") report_data = REPORTS.get(report.report_type.name) html = flask.render_template( f"reports/{report.report_type.name}.html", data=report_data(report).all(), teacher=report.teacher, report=report, ) return render_pdf(HTML(string=html)) # return html @teacher_routes.route("/create_student", methods=["POST"]) @jsonify_response @login_required @teacher_required def create_bot_student(): teacher = current_user.teacher data = flask.request.values user = create_user_from_data(data, required=["email", "name", "phone"]) car = teacher.cars.filter_by(id=data.get("car_id")).first() if not car: raise RouteError("Car does not exist.") try: price = int(data.get("price", "")) except ValueError: price = None student = Student.create( user=user, teacher=teacher, creator=current_user, price=price, car=car, is_approved=True, ) return {"data": student.user.to_dict()}, 201 @teacher_routes.route("/<int:teacher_id>/cars", methods=["GET"]) @jsonify_response @login_required def cars(teacher_id): teacher = Teacher.get_by_id(teacher_id) if not teacher: raise RouteError("Teacher not found.") return { "data": [car.to_dict() for car in Car.query.filter_by(teacher=teacher).all()] } @teacher_routes.route("/cars", methods=["POST"]) @jsonify_response @login_required @teacher_required def register_car(): """register a new car for a teacher""" data = flask.request.get_json() number = data.get("number") if not number: raise RouteError("Car number is required.") # if this number already exist, raise error exists = current_user.teacher.cars.filter_by(number=number).first() if exists: raise RouteError("Car already exists.") try: type_ = CarType[data.get("type", "")] except KeyError: type_ = CarType.manual color = data.get("color") car = Car.create( name=data.get("name"), type=type_.value, number=number, teacher=current_user.teacher, color=color[:6] if color else None, ) return {"data": car.to_dict()}, 201 @teacher_routes.route("/cars/<int:id_>", methods=["POST"]) @jsonify_response @login_required @teacher_required def update_car(id_): data = flask.request.get_json() car = current_user.teacher.cars.filter_by(id=id_).first() if not car: raise RouteError("Car does not exist.") number = data.get("number") if not number: raise RouteError("Car number is required.") try: type_ = CarType[data.get("type", "")] except KeyError: type_ = CarType.manual color = data.get("color") car.update( name=data.get("name"), type=type_.value, number=number, color=color[:6] if color else None, ) return {"data": car.to_dict()} @teacher_routes.route("/cars/<int:id_>", methods=["DELETE"]) @jsonify_response @login_required @teacher_required def delete_car(id_): car = current_user.teacher.cars.filter_by(id=id_).first() if not car: raise RouteError("Car does not exist.") car.delete() return {"message": "Car deleted."} @teacher_routes.route("/cars/<int:id_>/kilometer", methods=["POST"]) @jsonify_response @login_required @teacher_required def update_kilometer(id_): """update kilometer for a specific date""" car = current_user.teacher.cars.filter_by(id=id_).first() if not car: raise RouteError("Car does not exist.") data = flask.request.get_json() try: date = datetime.strptime(data.get("date"), WORKDAY_DATE_FORMAT) except (ValueError, TypeError): raise RouteError("Date is not valid.") # if this date exist, delete it first exists = current_user.teacher.kilometers.filter_by(date=date).first() if exists: exists.delete() start, end = data.get("start"), data.get("end") if not start or not end: raise RouteError("All kilometer distances are required.") if end < start: raise RouteError("Ending value must be bigger than starting value.") kilometer = Kilometer.create( date=date, personal=data.get("personal", 0), start_of_day=start, end_of_day=end, car=car, teacher=current_user.teacher, ) return {"data": kilometer.to_dict()}, 201
dfirtrack_main/views/company_views.py
thomas-kropeit/dfirtrack
273
12622119
from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.http import HttpResponse from django.shortcuts import redirect, render from django.urls import reverse from django.views.generic import DetailView, ListView from django.views.generic.edit import CreateView, UpdateView from dfirtrack_main.forms import CompanyForm from dfirtrack_main.logger.default_logger import debug_logger from dfirtrack_main.models import Company class CompanyList(LoginRequiredMixin, ListView): login_url = '/login' model = Company template_name = 'dfirtrack_main/company/company_list.html' context_object_name = 'company_list' def get_queryset(self): debug_logger(str(self.request.user), " COMPANY_LIST_ENTERED") return Company.objects.order_by('company_name') class CompanyDetail(LoginRequiredMixin, DetailView): login_url = '/login' model = Company template_name = 'dfirtrack_main/company/company_detail.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) company = self.object company.logger(str(self.request.user), " COMPANY_DETAIL_ENTERED") return context class CompanyCreate(LoginRequiredMixin, CreateView): login_url = '/login' model = Company form_class = CompanyForm template_name = 'dfirtrack_main/generic_form.html' def get(self, request, *args, **kwargs): form = self.form_class() debug_logger(str(request.user), " COMPANY_ADD_ENTERED") return render( request, self.template_name, { 'form': form, 'title': 'Add', 'object_type': 'company', }, ) def post(self, request, *args, **kwargs): form = self.form_class(request.POST) if form.is_valid(): company = form.save(commit=False) company.save() company.logger(str(request.user), " COMPANY_ADD_EXECUTED") messages.success(request, 'Company added') return redirect(reverse('company_detail', args=(company.company_id,))) else: return render( request, self.template_name, { 'form': form, 'title': 'Add', 'object_type': 'company', }, ) class CompanyCreatePopup(LoginRequiredMixin, CreateView): login_url = '/login' model = Company form_class = CompanyForm template_name = 'dfirtrack_main/generic_form_popup.html' def get(self, request, *args, **kwargs): form = self.form_class() debug_logger(str(request.user), " COMPANY_ADD_POPUP_ENTERED") return render( request, self.template_name, { 'form': form, 'title': 'Add', 'object_type': 'company', }, ) def post(self, request, *args, **kwargs): form = self.form_class(request.POST) if form.is_valid(): company = form.save(commit=False) company.save() company.logger(str(request.user), " COMPANY_ADD_POPUP_EXECUTED") messages.success(request, 'Company added') return HttpResponse( '<script type="text/javascript">window.close();</script>' ) else: return render( request, self.template_name, { 'form': form, 'title': 'Add', 'object_type': 'company', }, ) class CompanyUpdate(LoginRequiredMixin, UpdateView): login_url = '/login' model = Company form_class = CompanyForm template_name = 'dfirtrack_main/generic_form.html' def get(self, request, *args, **kwargs): company = self.get_object() form = self.form_class(instance=company) company.logger(str(request.user), " COMPANY_EDIT_ENTERED") return render( request, self.template_name, { 'form': form, 'title': 'Edit', 'object_type': 'company', 'object_name': company.company_name, }, ) def post(self, request, *args, **kwargs): company = self.get_object() form = self.form_class(request.POST, instance=company) if form.is_valid(): company = form.save(commit=False) company.save() company.logger(str(request.user), " COMPANY_EDIT_EXECUTED") messages.success(request, 'Company edited') return redirect(reverse('company_detail', args=(company.company_id,))) else: return render( request, self.template_name, { 'form': form, 'title': 'Edit', 'object_type': 'company', 'object_name': company.company_name, }, )
examples/python/contrasts.py
CCHiggins/statsmodels
6,931
12622125
<filename>examples/python/contrasts.py #!/usr/bin/env python # coding: utf-8 # DO NOT EDIT # Autogenerated from the notebook contrasts.ipynb. # Edit the notebook and then sync the output with this file. # # flake8: noqa # DO NOT EDIT # # Contrasts Overview import numpy as np import statsmodels.api as sm # This document is based heavily on this excellent resource from UCLA # http://www.ats.ucla.edu/stat/r/library/contrast_coding.htm # A categorical variable of K categories, or levels, usually enters a # regression as a sequence of K-1 dummy variables. This amounts to a linear # hypothesis on the level means. That is, each test statistic for these # variables amounts to testing whether the mean for that level is # statistically significantly different from the mean of the base category. # This dummy coding is called Treatment coding in R parlance, and we will # follow this convention. There are, however, different coding methods that # amount to different sets of linear hypotheses. # # In fact, the dummy coding is not technically a contrast coding. This is # because the dummy variables add to one and are not functionally # independent of the model's intercept. On the other hand, a set of # *contrasts* for a categorical variable with `k` levels is a set of `k-1` # functionally independent linear combinations of the factor level means # that are also independent of the sum of the dummy variables. The dummy # coding is not wrong *per se*. It captures all of the coefficients, but it # complicates matters when the model assumes independence of the # coefficients such as in ANOVA. Linear regression models do not assume # independence of the coefficients and thus dummy coding is often the only # coding that is taught in this context. # # To have a look at the contrast matrices in Patsy, we will use data from # UCLA ATS. First let's load the data. # #### Example Data import pandas as pd url = "https://stats.idre.ucla.edu/stat/data/hsb2.csv" hsb2 = pd.read_table(url, delimiter=",") hsb2.head(10) # It will be instructive to look at the mean of the dependent variable, # write, for each level of race ((1 = Hispanic, 2 = Asian, 3 = African # American and 4 = Caucasian)). hsb2.groupby("race")["write"].mean() # #### Treatment (Dummy) Coding # Dummy coding is likely the most well known coding scheme. It compares # each level of the categorical variable to a base reference level. The base # reference level is the value of the intercept. It is the default contrast # in Patsy for unordered categorical factors. The Treatment contrast matrix # for race would be from patsy.contrasts import Treatment levels = [1, 2, 3, 4] contrast = Treatment(reference=0).code_without_intercept(levels) print(contrast.matrix) # Here we used `reference=0`, which implies that the first level, # Hispanic, is the reference category against which the other level effects # are measured. As mentioned above, the columns do not sum to zero and are # thus not independent of the intercept. To be explicit, let's look at how # this would encode the `race` variable. hsb2.race.head(10) print(contrast.matrix[hsb2.race - 1, :][:20]) pd.get_dummies(hsb2.race.values, drop_first=False) # This is a bit of a trick, as the `race` category conveniently maps to # zero-based indices. If it does not, this conversion happens under the # hood, so this will not work in general but nonetheless is a useful # exercise to fix ideas. The below illustrates the output using the three # contrasts above from statsmodels.formula.api import ols mod = ols("write ~ C(race, Treatment)", data=hsb2) res = mod.fit() print(res.summary()) # We explicitly gave the contrast for race; however, since Treatment is # the default, we could have omitted this. # ### Simple Coding # Like Treatment Coding, Simple Coding compares each level to a fixed # reference level. However, with simple coding, the intercept is the grand # mean of all the levels of the factors. Patsy does not have the Simple # contrast included, but you can easily define your own contrasts. To do so, # write a class that contains a code_with_intercept and a # code_without_intercept method that returns a patsy.contrast.ContrastMatrix # instance from patsy.contrasts import ContrastMatrix def _name_levels(prefix, levels): return ["[%s%s]" % (prefix, level) for level in levels] class Simple(object): def _simple_contrast(self, levels): nlevels = len(levels) contr = -1.0 / nlevels * np.ones((nlevels, nlevels - 1)) contr[1:][np.diag_indices(nlevels - 1)] = (nlevels - 1.0) / nlevels return contr def code_with_intercept(self, levels): contrast = np.column_stack( (np.ones(len(levels)), self._simple_contrast(levels))) return ContrastMatrix(contrast, _name_levels("Simp.", levels)) def code_without_intercept(self, levels): contrast = self._simple_contrast(levels) return ContrastMatrix(contrast, _name_levels("Simp.", levels[:-1])) hsb2.groupby("race")["write"].mean().mean() contrast = Simple().code_without_intercept(levels) print(contrast.matrix) mod = ols("write ~ C(race, Simple)", data=hsb2) res = mod.fit() print(res.summary()) # ### Sum (Deviation) Coding # Sum coding compares the mean of the dependent variable for a given level # to the overall mean of the dependent variable over all the levels. That # is, it uses contrasts between each of the first k-1 levels and level k In # this example, level 1 is compared to all the others, level 2 to all the # others, and level 3 to all the others. from patsy.contrasts import Sum contrast = Sum().code_without_intercept(levels) print(contrast.matrix) mod = ols("write ~ C(race, Sum)", data=hsb2) res = mod.fit() print(res.summary()) # This corresponds to a parameterization that forces all the coefficients # to sum to zero. Notice that the intercept here is the grand mean where the # grand mean is the mean of means of the dependent variable by each level. hsb2.groupby("race")["write"].mean().mean() # ### Backward Difference Coding # In backward difference coding, the mean of the dependent variable for a # level is compared with the mean of the dependent variable for the prior # level. This type of coding may be useful for a nominal or an ordinal # variable. from patsy.contrasts import Diff contrast = Diff().code_without_intercept(levels) print(contrast.matrix) mod = ols("write ~ C(race, Diff)", data=hsb2) res = mod.fit() print(res.summary()) # For example, here the coefficient on level 1 is the mean of `write` at # level 2 compared with the mean at level 1. Ie., res.params["C(race, Diff)[D.1]"] hsb2.groupby("race").mean()["write"][2] - hsb2.groupby( "race").mean()["write"][1] # ### Helmert Coding # Our version of Helmert coding is sometimes referred to as Reverse # Helmert Coding. The mean of the dependent variable for a level is compared # to the mean of the dependent variable over all previous levels. Hence, the # name 'reverse' being sometimes applied to differentiate from forward # Helmert coding. This comparison does not make much sense for a nominal # variable such as race, but we would use the Helmert contrast like so: from patsy.contrasts import Helmert contrast = Helmert().code_without_intercept(levels) print(contrast.matrix) mod = ols("write ~ C(race, Helmert)", data=hsb2) res = mod.fit() print(res.summary()) # To illustrate, the comparison on level 4 is the mean of the dependent # variable at the previous three levels taken from the mean at level 4 grouped = hsb2.groupby("race") grouped.mean()["write"][4] - grouped.mean()["write"][:3].mean() # As you can see, these are only equal up to a constant. Other versions of # the Helmert contrast give the actual difference in means. Regardless, the # hypothesis tests are the same. k = 4 1.0 / k * (grouped.mean()["write"][k] - grouped.mean()["write"][:k - 1].mean()) k = 3 1.0 / k * (grouped.mean()["write"][k] - grouped.mean()["write"][:k - 1].mean()) # ### Orthogonal Polynomial Coding # The coefficients taken on by polynomial coding for `k=4` levels are the # linear, quadratic, and cubic trends in the categorical variable. The # categorical variable here is assumed to be represented by an underlying, # equally spaced numeric variable. Therefore, this type of encoding is used # only for ordered categorical variables with equal spacing. In general, the # polynomial contrast produces polynomials of order `k-1`. Since `race` is # not an ordered factor variable let's use `read` as an example. First we # need to create an ordered categorical from `read`. hsb2["readcat"] = np.asarray(pd.cut(hsb2.read, bins=4)) hsb2["readcat"] = hsb2["readcat"].astype(object) hsb2.groupby("readcat").mean()["write"] from patsy.contrasts import Poly levels = hsb2.readcat.unique() contrast = Poly().code_without_intercept(levels) print(contrast.matrix) mod = ols("write ~ C(readcat, Poly)", data=hsb2) res = mod.fit() print(res.summary()) # As you can see, readcat has a significant linear effect on the dependent # variable `write` but the quadratic and cubic effects are insignificant.
src/Entity/__init__.py
QWERTSKIHACK/peniot
143
12622168
""" This package contains the following entities: 1) Protocol 2) Attack Suite 3) Attack 4) Input Format In this module, we have the backend entities to represent and structure our code And these entities have the following relations in between: (Connection endpoints represent cardinality of entity) - Protocol 1----------* Attack Suite - Attack suite 1----------* Attack - Attack 1----------* Input format """
Clients/ParaView/Testing/Python/VolumeCellSelection.py
xj361685640/ParaView
815
12622193
from paraview.simple import * from paraview import smtesting import vtk from paraview.vtk.vtkCommonCore import vtkCollection; import vtk.vtkRenderingVolume import os paraview.simple._DisableFirstRenderCameraReset() smtesting.ProcessCommandLineArguments() smtesting.LoadServerManagerState(smtesting.StateXMLFileName) view = GetRenderView() view.ViewSize = [400, 400] view.RemoteRenderThreshold = 0 SetActiveView(view) Render() # Select cells from a wavelet volume wav = FindSource('Wavelet1') SetActiveSource(wav) rep = vtkCollection() sources = vtkCollection() view.SelectSurfaceCells([0, 0, 200, 200], rep, sources) sel = sources.GetItemAsObject(0) selPyProxy = servermanager._getPyProxy(sel) extract = ExtractSelection(Selection = selPyProxy) Show() # Hide the volume and show the ExtractSelection filter wav_rep = GetRepresentation(wav) wav_rep.Visibility = False extract_rep = GetRepresentation(extract) extract_rep.Visibility = True ## Compare with baseline if not smtesting.DoRegressionTesting(view.SMProxy): raise smtesting.TestError ('Test failed.') print ('\nTest passed.')
python_modules/dagster-graphql/dagster_graphql_tests/graphql/test_partition_backfill.py
dbatten5/dagster
4,606
12622199
import os from dagster.core.execution.backfill import BulkActionStatus from dagster.seven import get_system_temp_directory from dagster_graphql.client.query import LAUNCH_PARTITION_BACKFILL_MUTATION from dagster_graphql.test.utils import ( execute_dagster_graphql, execute_dagster_graphql_and_finish_runs, infer_repository_selector, ) from .graphql_context_test_suite import ExecutingGraphQLContextTestMatrix PARTITION_PROGRESS_QUERY = """ query PartitionProgressQuery($backfillId: String!) { partitionBackfillOrError(backfillId: $backfillId) { ... on PartitionBackfill { __typename backfillId status numRequested numTotal fromFailure reexecutionSteps } ... on PythonError { message stack } } } """ CANCEL_BACKFILL_MUTATION = """ mutation($backfillId: String!) { cancelPartitionBackfill(backfillId: $backfillId) { ... on CancelBackfillSuccess { __typename backfillId } ... on PythonError { message stack } } } """ RESUME_BACKFILL_MUTATION = """ mutation($backfillId: String!) { resumePartitionBackfill(backfillId: $backfillId) { ... on ResumeBackfillSuccess { __typename backfillId } ... on PythonError { message stack } } } """ class TestDaemonPartitionBackfill(ExecutingGraphQLContextTestMatrix): def test_launch_full_pipeline_backfill(self, graphql_context): repository_selector = infer_repository_selector(graphql_context) result = execute_dagster_graphql( graphql_context, LAUNCH_PARTITION_BACKFILL_MUTATION, variables={ "backfillParams": { "selector": { "repositorySelector": repository_selector, "partitionSetName": "integer_partition", }, "partitionNames": ["2", "3"], } }, ) assert not result.errors assert result.data assert result.data["launchPartitionBackfill"]["__typename"] == "LaunchBackfillSuccess" backfill_id = result.data["launchPartitionBackfill"]["backfillId"] result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "REQUESTED" assert result.data["partitionBackfillOrError"]["numRequested"] == 0 assert result.data["partitionBackfillOrError"]["numTotal"] == 2 def test_launch_partial_backfill(self, graphql_context): # execute a full pipeline, without the failure environment variable repository_selector = infer_repository_selector(graphql_context) partition_set_selector = { "repositorySelector": repository_selector, "partitionSetName": "chained_integer_partition", } # reexecute a partial pipeline partial_steps = ["after_failure"] result = execute_dagster_graphql_and_finish_runs( graphql_context, LAUNCH_PARTITION_BACKFILL_MUTATION, variables={ "backfillParams": { "selector": partition_set_selector, "partitionNames": ["2", "3"], "reexecutionSteps": partial_steps, } }, ) assert not result.errors assert result.data assert result.data["launchPartitionBackfill"]["__typename"] == "LaunchBackfillSuccess" backfill_id = result.data["launchPartitionBackfill"]["backfillId"] result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "REQUESTED" assert result.data["partitionBackfillOrError"]["numRequested"] == 0 assert result.data["partitionBackfillOrError"]["numTotal"] == 2 assert result.data["partitionBackfillOrError"]["reexecutionSteps"] == ["after_failure"] def test_cancel_backfill(self, graphql_context): repository_selector = infer_repository_selector(graphql_context) result = execute_dagster_graphql( graphql_context, LAUNCH_PARTITION_BACKFILL_MUTATION, variables={ "backfillParams": { "selector": { "repositorySelector": repository_selector, "partitionSetName": "integer_partition", }, "partitionNames": ["2", "3"], } }, ) assert not result.errors assert result.data assert result.data["launchPartitionBackfill"]["__typename"] == "LaunchBackfillSuccess" backfill_id = result.data["launchPartitionBackfill"]["backfillId"] result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "REQUESTED" assert result.data["partitionBackfillOrError"]["numRequested"] == 0 assert result.data["partitionBackfillOrError"]["numTotal"] == 2 result = execute_dagster_graphql( graphql_context, CANCEL_BACKFILL_MUTATION, variables={"backfillId": backfill_id} ) assert result.data assert result.data["cancelPartitionBackfill"]["__typename"] == "CancelBackfillSuccess" result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "CANCELED" def test_resume_backfill(self, graphql_context): repository_selector = infer_repository_selector(graphql_context) result = execute_dagster_graphql( graphql_context, LAUNCH_PARTITION_BACKFILL_MUTATION, variables={ "backfillParams": { "selector": { "repositorySelector": repository_selector, "partitionSetName": "integer_partition", }, "partitionNames": ["2", "3"], } }, ) assert not result.errors assert result.data assert result.data["launchPartitionBackfill"]["__typename"] == "LaunchBackfillSuccess" backfill_id = result.data["launchPartitionBackfill"]["backfillId"] result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "REQUESTED" assert result.data["partitionBackfillOrError"]["numRequested"] == 0 assert result.data["partitionBackfillOrError"]["numTotal"] == 2 # manually mark as failed backfill = graphql_context.instance.get_backfill(backfill_id) graphql_context.instance.update_backfill(backfill.with_status(BulkActionStatus.FAILED)) result = execute_dagster_graphql( graphql_context, RESUME_BACKFILL_MUTATION, variables={"backfillId": backfill_id} ) assert result.data assert result.data["resumePartitionBackfill"]["__typename"] == "ResumeBackfillSuccess" result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "REQUESTED" class TestLaunchDaemonBackfillFromFailure(ExecutingGraphQLContextTestMatrix): def test_launch_from_failure(self, graphql_context): repository_selector = infer_repository_selector(graphql_context) partition_set_selector = { "repositorySelector": repository_selector, "partitionSetName": "chained_integer_partition", } # trigger failure in the conditionally_fail solid output_file = os.path.join( get_system_temp_directory(), "chained_failure_pipeline_conditionally_fail" ) try: with open(output_file, "w"): result = execute_dagster_graphql_and_finish_runs( graphql_context, LAUNCH_PARTITION_BACKFILL_MUTATION, variables={ "backfillParams": { "selector": partition_set_selector, "partitionNames": ["2", "3"], } }, ) finally: os.remove(output_file) assert not result.errors assert result.data assert result.data["launchPartitionBackfill"]["__typename"] == "LaunchBackfillSuccess" # re-execute from failure (without the failure file) result = execute_dagster_graphql_and_finish_runs( graphql_context, LAUNCH_PARTITION_BACKFILL_MUTATION, variables={ "backfillParams": { "selector": partition_set_selector, "partitionNames": ["2", "3"], "fromFailure": True, } }, ) assert not result.errors assert result.data assert result.data["launchPartitionBackfill"]["__typename"] == "LaunchBackfillSuccess" backfill_id = result.data["launchPartitionBackfill"]["backfillId"] result = execute_dagster_graphql( graphql_context, PARTITION_PROGRESS_QUERY, variables={"backfillId": backfill_id} ) assert not result.errors assert result.data assert result.data["partitionBackfillOrError"]["__typename"] == "PartitionBackfill" assert result.data["partitionBackfillOrError"]["status"] == "REQUESTED" assert result.data["partitionBackfillOrError"]["numRequested"] == 0 assert result.data["partitionBackfillOrError"]["numTotal"] == 2 assert result.data["partitionBackfillOrError"]["fromFailure"]
addons/dropbox/settings/defaults.py
gaybro8777/osf.io
628
12622215
# OAuth app keys DROPBOX_KEY = None DROPBOX_SECRET = None DROPBOX_AUTH_CSRF_TOKEN = 'dropbox-auth-csrf-token' # Max file size permitted by frontend in megabytes MAX_UPLOAD_SIZE = 150
tests/lazy/test_solve_lazy.py
rodluger/starry
116
12622217
# -*- coding: utf-8 -*- """ Linear solve / likelihood tests. """ import starry import numpy as np from scipy.linalg import cho_solve from scipy.stats import multivariate_normal import pytest import itertools @pytest.fixture(autouse=True) def data(): # Instantiate a dipole map map = starry.Map(ydeg=1, reflected=True) amp_true = 0.75 inc_true = 60 y_true = np.array([1, 0.1, 0.2, 0.3]) map.amp = amp_true map[1, :] = y_true[1:] map.inc = inc_true # Generate a synthetic light curve with just a little noise theta = np.linspace(0, 360, 100) phi = 3.5 * theta xs = np.cos(phi * np.pi / 180) ys = 0.1 * np.cos(phi * np.pi / 180) zs = np.sin(phi * np.pi / 180) kwargs = dict(theta=theta, xs=xs, ys=ys, zs=zs) flux = map.flux(**kwargs).eval() sigma = 1e-5 np.random.seed(1) flux += np.random.randn(len(theta)) * sigma return (map, kwargs, amp_true, inc_true, y_true, sigma, flux) # Parameter combinations we'll test vals = ["scalar", "vector", "matrix", "cholesky"] woodbury = [False, True] solve_inputs = itertools.product(vals, vals) lnlike_inputs = itertools.product(vals, vals, woodbury) @pytest.mark.parametrize("L,C", solve_inputs) def test_solve(L, C, data): map, kwargs, amp_true, inc_true, y_true, sigma, flux = data # Place a generous prior on the map coefficients if L == "scalar": map.set_prior(L=1) elif L == "vector": map.set_prior(L=np.ones(map.Ny)) elif L == "matrix": map.set_prior(L=np.eye(map.Ny)) elif L == "cholesky": map.set_prior(cho_L=np.eye(map.Ny)) # Provide the dataset if C == "scalar": map.set_data(flux, C=sigma ** 2) elif C == "vector": map.set_data(flux, C=np.ones(len(flux)) * sigma ** 2) elif C == "matrix": map.set_data(flux, C=np.eye(len(flux)) * sigma ** 2) elif C == "cholesky": map.set_data(flux, cho_C=np.eye(len(flux)) * sigma) # Solve the linear problem map.inc = inc_true mu, cho_cov = map.solve(**kwargs) mu = mu.eval() cho_cov = cho_cov.eval() # Ensure the likelihood of the true value is close to that of # the MAP solution cov = cho_cov.dot(cho_cov.T) LnL0 = multivariate_normal.logpdf(mu, mean=mu, cov=cov) LnL = multivariate_normal.logpdf(amp_true * y_true, mean=mu, cov=cov) assert LnL0 - LnL < 5.00 # Check that we can draw from the posterior map.draw() @pytest.mark.parametrize("L,C,woodbury", lnlike_inputs) def test_lnlike(L, C, woodbury, data): """Test the log marginal likelihood method.""" map, kwargs, amp_true, inc_true, y_true, sigma, flux = data # Place a generous prior on the map coefficients if L == "scalar": map.set_prior(L=1) elif L == "vector": map.set_prior(L=np.ones(map.Ny)) elif L == "matrix": map.set_prior(L=np.eye(map.Ny)) elif L == "cholesky": map.set_prior(cho_L=np.eye(map.Ny)) # Provide the dataset if C == "scalar": map.set_data(flux, C=sigma ** 2) elif C == "vector": map.set_data(flux, C=np.ones(len(flux)) * sigma ** 2) elif C == "matrix": map.set_data(flux, C=np.eye(len(flux)) * sigma ** 2) elif C == "cholesky": map.set_data(flux, cho_C=np.eye(len(flux)) * sigma) # Compute the marginal log likelihood for different inclinations incs = [15, 30, 45, 60, 75, 90] ll = np.zeros_like(incs, dtype=float) for i, inc in enumerate(incs): map.inc = inc ll[i] = map.lnlike(woodbury=woodbury, **kwargs).eval() # Verify that we get the correct inclination assert incs[np.argmax(ll)] == 60 assert np.allclose(ll[np.argmax(ll)], 974.221605) # benchmarked
niftynet/engine/windows_aggregator_grid.py
tdml13/NiftyNet
1,403
12622230
<gh_stars>1000+ # -*- coding: utf-8 -*- """ windows aggregator decode sampling grid coordinates and image id from batch data, forms image level output and write to hard drive. """ from __future__ import absolute_import, division, print_function import os from collections import OrderedDict import numpy as np import pandas as pd # pylint: disable=too-many-nested-blocks # pylint: disable=too-many-branches import niftynet.io.misc_io as misc_io from niftynet.engine.windows_aggregator_base import ImageWindowsAggregator from niftynet.layer.discrete_label_normalisation import \ DiscreteLabelNormalisationLayer from niftynet.layer.pad import PadLayer class GridSamplesAggregator(ImageWindowsAggregator): """ This class keeps record of the currently cached image, initialised as all zeros, and the values are replaced by image window data decoded from batch. """ def __init__(self, image_reader, name='image', output_path=os.path.join('.', 'output'), window_border=(), interp_order=0, postfix='niftynet_out', fill_constant=0.0): ImageWindowsAggregator.__init__( self, image_reader=image_reader, output_path=output_path) self.name = name self.image_out = None self.csv_out = None self.window_border = window_border self.output_interp_order = interp_order self.postfix = postfix self.fill_constant = fill_constant def decode_batch(self, window, location): """ Function used to save multiple outputs listed in the window dictionary. For the fields that have the keyword 'window' in the dictionary key, it will be saved as image. The rest will be saved as csv. CSV files will contain at saving a first line of 0 (to be changed into the header by the user), the first column being the index of the window, followed by the list of output and the location array for each considered window :param window: dictionary of output :param location: location of the input :return: """ n_samples = location.shape[0] location_cropped = {} for key in window: if 'window' in key: # all outputs to be created as images should # contained the keyword "window" window[key], location_cropped[key] = self.crop_batch( window[key], location, self.window_border) for batch_id in range(n_samples): image_id = location[batch_id, 0] if image_id != self.image_id: # image name changed: # save current result and create an empty result file self._save_current_image() self._save_current_csv() if self._is_stopping_signal(location[batch_id]): return False self.image_out, self.csv_out = {}, {} for key in window: if 'window' in key: # to be saved as image self.image_out[key] = self._initialise_empty_image( image_id=image_id, n_channels=window[key].shape[-1], dtype=window[key].dtype) else: # to be saved as csv file n_elements = np.int64( np.asarray(window[key]).size / n_samples) table_header = [ '{}_{}'.format(key, idx) for idx in range(n_elements) ] if n_elements > 1 else ['{}'.format(key)] table_header += [ 'coord_{}'.format(idx) for idx in range(location.shape[-1]) ] self.csv_out[key] = self._initialise_empty_csv( key_names=table_header) for key in window: if 'window' in key: x_start, y_start, z_start, x_end, y_end, z_end = \ location_cropped[key][batch_id, 1:] self.image_out[key][ x_start:x_end, y_start:y_end, z_start:z_end, ...] = \ window[key][batch_id, ...] else: window[key] = np.asarray(window[key]).reshape( [n_samples, -1]) window_save = window[key][batch_id:batch_id + 1, :] window_loc = location[batch_id:batch_id + 1, :] csv_row = np.concatenate([window_save, window_loc], 1) csv_row = csv_row.ravel() key_names = self.csv_out[key].columns self.csv_out[key] = self.csv_out[key].append( OrderedDict(zip(key_names, csv_row)), ignore_index=True) return True def _initialise_empty_image(self, image_id, n_channels, dtype=np.float): """ Initialise an empty image in which to populate the output :param image_id: image_id to be used in the reader :param n_channels: numbers of channels of the saved output (for multimodal output) :param dtype: datatype used for the saving :return: the initialised empty image """ self.image_id = image_id spatial_shape = self.input_image[self.name].shape[:3] output_image_shape = spatial_shape + (n_channels, ) empty_image = np.zeros(output_image_shape, dtype=dtype) for layer in self.reader.preprocessors: if isinstance(layer, PadLayer): empty_image, _ = layer(empty_image) if self.fill_constant != 0.0: empty_image[:] = self.fill_constant return empty_image def _initialise_empty_csv(self, key_names): """ Initialise a csv output file with a first line of zeros :param n_channel: number of saved fields :return: empty first line of the array to be saved as csv """ return pd.DataFrame(columns=key_names) def _save_current_image(self): """ For all the outputs to be saved as images, go through the dictionary and save the resulting output after reversing the initial preprocessing :return: """ if self.input_image is None: return for layer in reversed(self.reader.preprocessors): if isinstance(layer, PadLayer): for i in self.image_out: self.image_out[i], _ = layer.inverse_op(self.image_out[i]) if isinstance(layer, DiscreteLabelNormalisationLayer): for i in self.image_out: self.image_out[i], _ = layer.inverse_op(self.image_out[i]) subject_name = self.reader.get_subject_id(self.image_id) for i in self.image_out: filename = "{}_{}_{}.nii.gz".format(i, subject_name, self.postfix) source_image_obj = self.input_image[self.name] misc_io.save_data_array(self.output_path, filename, self.image_out[i], source_image_obj, self.output_interp_order) self.log_inferred(subject_name, filename) return def _save_current_csv(self): """ For all output to be saved as csv, loop through the dictionary of output and create the csv :return: """ if self.input_image is None: return subject_name = self.reader.get_subject_id(self.image_id) for i in self.csv_out: filename = "{}_{}_{}.csv".format(i, subject_name, self.postfix) misc_io.save_csv_array(self.output_path, filename, self.csv_out[i]) self.log_inferred(subject_name, filename) return
convoy/data.py
bureado/batch-shipyard
279
12622234
# Copyright (c) Microsoft Corporation # # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # compat imports from __future__ import ( absolute_import, division, print_function, unicode_literals ) from builtins import ( # noqa bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip) # stdlib imports import datetime import fnmatch import logging import math import os try: import pathlib2 as pathlib except ImportError: import pathlib try: from shlex import quote as shellquote except ImportError: from pipes import quote as shellquote import threading import time # non-stdlib imports import azure.batch.models as batchmodels # local imports from . import crypto from . import resource from . import settings from . import storage from . import util from .version import __version__ # create logger logger = logging.getLogger(__name__) util.setup_logger(logger) # global defines _BLOBXFER_VERSION = '1.9.4' _MEGABYTE = 1048576 _MAX_READ_BLOCKSIZE_BYTES = 4194304 _FILE_SPLIT_PREFIX = '_shipyard-' def _get_gluster_paths(config): # type: (dict) -> Tuple[str, str] """Get Gluster paths :param dict config: configuration dict :rtype: tuple :return: (gluster host path, gluster container path) """ gluster_host = None gluster_container = None sdv = settings.global_resources_shared_data_volumes(config) for sdvkey in sdv: if settings.is_shared_data_volume_gluster_on_compute(sdv, sdvkey): gluster_host = '{}/{}'.format( settings.get_host_mounts_path(False), settings.get_gluster_on_compute_volume()) gluster_container = settings.shared_data_volume_container_path( sdv, sdvkey).rstrip('/') break return (gluster_host, gluster_container) def _convert_filter_to_blobxfer_option(includes, excludes): # type: (list, list) -> str """Converts filters to blobxfer options :param list includes: includes :param list excludes: excludes :rtype: str :return: blobxfer options """ if util.is_not_empty(includes): src_incl = [] for include in includes: src_incl.append('--include \"{}\"'.format(include)) else: src_incl = None if util.is_not_empty(excludes): src_excl = [] for exclude in excludes: src_excl.append('--exclude \"{}\"'.format(exclude)) else: src_excl = None return '{} {}'.format( ' '.join(src_incl) if src_incl is not None else '', ' '.join(src_excl) if src_excl is not None else '', ).rstrip() def _process_storage_input_data(config, input_data, on_task): # type: (dict, dict, bool) -> str """Process Azure storage input data to ingress :param dict config: configuration dict :param dict input_data: config spec with input_data :param bool on_task: if this is originating from a task spec :rtype: list :return: args to pass to blobxfer script """ # get gluster host/container paths gluster_host, gluster_container = _get_gluster_paths(config) # parse storage input data blocks encrypt = settings.batch_shipyard_encryption_enabled(config) args = [] for xfer in input_data: storage_settings = settings.credentials_storage( config, settings.data_storage_account_settings(xfer)) remote_path = settings.data_remote_path(xfer) # derive container from remote_path container = settings.data_container_from_remote_path( xfer, rp=remote_path) eo = settings.data_blobxfer_extra_options(xfer) # append appropriate option for fshare if settings.data_is_file_share(xfer) and '--mode file' not in eo: eo = '--mode file {}'.format(eo) if '--mode file' in eo: # create saskey for file share with rl perm saskey = storage.create_file_share_saskey( storage_settings, container, 'ingress') else: # create saskey for container with rl perm saskey = storage.create_blob_container_saskey( storage_settings, container, 'ingress') includes = settings.data_include(xfer) excludes = settings.data_exclude(xfer) # convert include/excludes into extra options filters = _convert_filter_to_blobxfer_option(includes, excludes) local_path = settings.data_local_path(xfer, on_task) # auto replace container path for gluster with host path if (util.is_not_empty(gluster_container) and local_path.startswith(gluster_container)): local_path = local_path.replace(gluster_container, gluster_host, 1) # construct argument # kind:encrypted:<sa:ep:saskey:remote_path>:local_path:eo creds = crypto.encrypt_string( encrypt, '{},{},{},{}'.format( storage_settings.account, storage_settings.endpoint, saskey, remote_path), config) args.append('"{bxver},i,{enc},{creds},{lp},{eo}"'.format( bxver=_BLOBXFER_VERSION, enc=encrypt, creds=creds, lp=local_path, eo=' '.join((filters, eo)).lstrip(), )) return args def _process_batch_input_data(config, input_data, on_task): # type: (dict, dict, bool) -> str """Process Azure batch input data to ingress :param dict config: configuration dict :param dict input_data: config spec with input_data :param bool on_task: if this is originating from a task spec :rtype: list :return: args to pass to task file mover """ # get batch creds bc = settings.credentials_batch(config) # fail (for now) if aad is being used if util.is_none_or_empty(bc.account_key): raise RuntimeError( 'cannot move Azure Batch task input data without an account key') # construct arg encrypt = settings.batch_shipyard_encryption_enabled(config) args = [] for xfer in input_data: jobid = settings.input_data_job_id(xfer) taskid = settings.input_data_task_id(xfer) include = settings.data_include(xfer) if util.is_not_empty(include): include = ';'.join(include) else: include = '' exclude = settings.data_exclude(xfer) if util.is_not_empty(exclude): exclude = ';'.join(exclude) else: exclude = '' local_path = settings.data_local_path(xfer, on_task) creds = crypto.encrypt_string( encrypt, '{};{};{}'.format( bc.account, bc.account_service_url, bc.account_key), config) # construct argument # encrypt,creds,jobid,taskid,incl,excl,lp args.append('"{},{},{},{},{},{},{}"'.format( encrypt, creds, jobid, taskid, include, exclude, local_path)) return args def process_input_data(config, bxfile, spec, on_task=False): # type: (dict, tuple, dict, bool) -> str """Process input data to ingress :param dict config: configuration dict :param tuple bxfile: blobxfer script :param dict spec: config spec with input_data :param bool on_task: if this is originating from a task spec :rtype: str :return: additonal command """ tfmimage = 'mcr.microsoft.com/azure-batch/shipyard:{}-cargo'.format( __version__) is_windows = settings.is_windows_pool(config) if is_windows: bxcmd = ('powershell -ExecutionPolicy Unrestricted -command ' '%AZ_BATCH_NODE_STARTUP_DIR%\\wd\\{} {{}}').format(bxfile[0]) tfmimage = '{}-windows'.format(tfmimage) tfmbind = ( '-v %AZ_BATCH_NODE_ROOT_DIR%:%AZ_BATCH_NODE_ROOT_DIR% ' '-w %AZ_BATCH_TASK_WORKING_DIR% ' '-e "AZ_BATCH_NODE_STARTUP_DIR=' '%AZ_BATCH_NODE_STARTUP_DIR%" ' ) tfmcmd = 'C:\\batch-shipyard\\task_file_mover.cmd' tfmpre = '' tfmpost = '' else: bxcmd = 'set -f; $AZ_BATCH_NODE_STARTUP_DIR/wd/{} {{}}; set +f'.format( bxfile[0]) tfmbind = ( '-v $AZ_BATCH_NODE_ROOT_DIR:$AZ_BATCH_NODE_ROOT_DIR ' '-w $AZ_BATCH_TASK_WORKING_DIR ' '-e "AZ_BATCH_NODE_STARTUP_DIR=' '$AZ_BATCH_NODE_STARTUP_DIR" ' ) tfmcmd = '/opt/batch-shipyard/task_file_mover.sh' tfmpre = 'set -f; ' tfmpost = '; set +f' ret = [] input_data = settings.input_data(spec) if util.is_not_empty(input_data): for key in input_data: if key == 'azure_storage': args = _process_storage_input_data( config, input_data[key], on_task) if is_windows: cmds = [] for arg in args: cmds.append('""{}""'.format(arg)) args = cmds ret.append(bxcmd.format(' '.join(args))) elif key == 'azure_batch': args = _process_batch_input_data( config, input_data[key], on_task) if is_windows: cmds = [] for arg in args: cmds.append('""{}""'.format(arg)) args = cmds ret.append( ('{tfmpre}docker run --rm -t {tfmbind} {tfmimage} ' '{tfmcmd} {args}{tfmpost}').format( tfmpre=tfmpre, tfmbind=tfmbind, tfmimage=tfmimage, tfmcmd=tfmcmd, tfmpost=tfmpost, args=' '.join(args)) ) else: raise ValueError( 'unknown input_data method: {}'.format(key)) if len(ret) > 0: return ';'.join(ret) else: return None def _generate_batch_output_file_spec( is_windows, separator, storage_settings, saskey, container, remote_path, condition, local_path, include): # type: (bool, str, settings.StorageCredentialsSettings, str, str, str, # str, str, str) -> batchmodels.OutputFile """Generate Batch output file spec with given local path and filter :param bool is_windows: is windows pool :param str separator: dir separator :param settings.StorageCredentialsSettings storage_settings: storage settings :param str saskey: sas key :param str container: container :param str remote_path: remote path :param str condition: upload condition :param str local_path: task local path :param str include: include filter :rtype: batchmodels.OutputFile :return: Batch output file spec """ # set file pattern if local_path.endswith(separator): fp = ''.join((local_path, include)) else: fp = separator.join((local_path, include)) # set upload condition if condition == 'taskcompletion': buc = batchmodels.OutputFileUploadCondition.task_completion elif condition == 'taskfailure': buc = batchmodels.OutputFileUploadCondition.task_failure elif condition == 'tasksuccess': buc = batchmodels.OutputFileUploadCondition.task_success # strip container from remote path rp = remote_path.split('/') if len(rp) > 1: rp = rp[1:] if '*' not in fp and '?' not in fp: # limited resolution of file path/pattern if is_windows: tmp = fp.replace( '%AZ_BATCH_TASK_DIR%\\', '').replace( '%AZ_BATCH_TASK_WORKING_DIR%\\', 'wd\\') else: tmp = fp.replace( '$AZ_BATCH_TASK_DIR/', '').replace( '$AZ_BATCH_TASK_WORKING_DIR/', 'wd/') rp.append(tmp) rp = '/'.join(rp) else: rp = '' # generate spec outfile = batchmodels.OutputFile( file_pattern=fp, destination=batchmodels.OutputFileDestination( container=batchmodels.OutputFileBlobContainerDestination( path=rp, container_url='{}?{}'.format( storage.generate_blob_container_uri( storage_settings, container), saskey) ) ), upload_options=batchmodels.OutputFileUploadOptions( upload_condition=buc ), ) return outfile def _process_storage_output_data(config, native, is_windows, output_data): # type: (dict, bool, bool, dict) -> str """Process output data to egress to Azure storage :param dict config: configuration dict :param bool native: is native container pool :param bool is_windows: is windows pool :param dict output_data: config spec with output_data :rtype: list :return: OutputFiles or args to pass to blobxfer script """ # get gluster host/container paths and encryption settings gluster_host, gluster_container = _get_gluster_paths(config) encrypt = settings.batch_shipyard_encryption_enabled(config) # parse storage output data blocks args = [] for xfer in output_data: storage_settings = settings.credentials_storage( config, settings.data_storage_account_settings(xfer)) remote_path = settings.data_remote_path(xfer) # derive container from remote_path container = settings.data_container_from_remote_path( xfer, rp=remote_path) eo = settings.data_blobxfer_extra_options(xfer) if native and util.is_not_empty(eo): raise ValueError( 'native container pool does not support ' 'blobxfer_extra_options') # append appropriate option for fshare if settings.data_is_file_share(xfer) and '--mode file' not in eo: eo = '--mode file {}'.format(eo) if '--mode file' in eo: if native: raise ValueError( 'native container pool does not support fileshares') # create saskey for file share with rwdl perm saskey = storage.create_file_share_saskey( storage_settings, container, 'egress', create_share=True) else: # create saskey for container with rwdl perm saskey = storage.create_blob_container_saskey( storage_settings, container, 'egress', create_container=True) includes = settings.data_include(xfer) excludes = settings.data_exclude(xfer) condition = settings.data_condition(xfer) local_path = settings.data_local_path(xfer, True, task_wd=False) # auto replace container path for gluster with host path if (util.is_not_empty(gluster_container) and local_path.startswith(gluster_container)): local_path = local_path.replace(gluster_container, gluster_host, 1) if native: if util.is_not_empty(excludes): raise ValueError( 'native container pool does not support excludes') if is_windows: separator = '\\' else: separator = '/' if util.is_none_or_empty(includes): includes = ['**{}*'.format(separator)] for include in includes: args.append(_generate_batch_output_file_spec( is_windows, separator, storage_settings, saskey, container, remote_path, condition, local_path, include)) else: # convert include/excludes into extra options filters = _convert_filter_to_blobxfer_option(includes, excludes) # construct argument # kind:encrypted:<sa:ep:saskey:remote_path>:local_path:eo creds = crypto.encrypt_string( encrypt, '{},{},{},{}'.format( storage_settings.account, storage_settings.endpoint, saskey, remote_path), config) args.append('"{bxver},e,{enc},{creds},{lp},{eo},{cond}"'.format( bxver=_BLOBXFER_VERSION, enc=encrypt, creds=creds, lp=local_path, eo=' '.join((filters, eo)).lstrip(), cond=condition, )) return args def process_output_data(config, bxfile, spec): # type: (dict, tuple, dict) -> str """Process output data to egress :param dict config: configuration dict :param tuple bxfile: blobxfer script :param dict spec: config spec with input_data :rtype: str or list :return: additonal commands or list of OutputFiles """ native = settings.is_native_docker_pool(config) is_windows = settings.is_windows_pool(config) if is_windows: bxcmd = ('powershell -ExecutionPolicy Unrestricted -command ' '%AZ_BATCH_NODE_STARTUP_DIR%\\wd\\{} {{}}').format(bxfile[0]) else: bxcmd = 'set -f; $AZ_BATCH_NODE_STARTUP_DIR/wd/{} {{}}; set +f'.format( bxfile[0]) ret = [] output_data = settings.output_data(spec) if util.is_not_empty(output_data): for key in output_data: if key == 'azure_storage': args = _process_storage_output_data( config, native, is_windows, output_data[key]) if native: ret.extend(args) else: if is_windows: cmds = [] for arg in args: cmds.append('""{}""'.format(arg)) args = cmds ret.append(bxcmd.format(' '.join(args))) else: raise ValueError( 'unknown output_data method: {}'.format(key)) if len(ret) > 0: if native: return ret else: return ';'.join(ret) else: return None def _singlenode_transfer(dest, src, dst, username, ssh_private_key, rls): # type: (DestinationSettings, str, str, pathlib.Path, dict) -> None """Transfer data to a single node :param DestinationSettings dest: destination settings :param str src: source path :param str dst: destination path :param str username: username :param pathlib.Path: ssh private key :param dict rls: remote login settings """ # get remote settings _rls = next(iter(rls.values())) ip = _rls.remote_login_ip_address port = _rls.remote_login_port del _rls # modify dst with relative dest if util.is_not_empty(dest.relative_destination_path): dst = '{}{}'.format(dst, dest.relative_destination_path) # create relative path on host logger.debug('creating remote directory: {}'.format(dst)) dirs = ['mkdir -p {}'.format(dst)] mkdircmd = ('ssh -T -x -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} -i {} -p {} {}@{} {}'.format( os.devnull, ssh_private_key, port, username, ip, util.wrap_commands_in_shell(dirs))) rc = util.subprocess_with_output( mkdircmd, shell=True, suppress_output=True) if rc == 0: logger.info('remote directories created on {}'.format(dst)) else: logger.error('remote directory creation failed') return del dirs # determine if recursive flag must be set psrc = pathlib.Path(src) recursive = '-r' if psrc.is_dir() else '' # set command source path and adjust dst path if recursive: cmdsrc = '.' else: cmdsrc = shellquote(src) # transfer data if dest.data_transfer.method == 'scp': cmd = ('scp -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} -p {} {} -i {} ' '-P {} {} {}@{}:"{}"'.format( os.devnull, dest.data_transfer.scp_ssh_extra_options, recursive, ssh_private_key.resolve(), port, cmdsrc, username, ip, shellquote(dst))) elif dest.data_transfer.method == 'rsync+ssh': cmd = ('rsync {} {} -e "ssh -T -x -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} {} -i {} -p {}" {} {}@{}:"{}"'.format( dest.data_transfer.rsync_extra_options, recursive, os.devnull, dest.data_transfer.scp_ssh_extra_options, ssh_private_key.resolve(), port, cmdsrc, username, ip, shellquote(dst))) else: raise ValueError('Unknown transfer method: {}'.format( dest.data_transfer.method)) logger.info('begin ingressing data from {} to {}'.format( src, dst)) start = datetime.datetime.now() rc = util.subprocess_with_output( cmd, shell=True, cwd=src if recursive else None) diff = datetime.datetime.now() - start if rc == 0: logger.info( 'finished ingressing data from {0} to {1} in {2:.2f} sec'.format( src, dst, diff.total_seconds())) else: logger.error( 'data ingress from {} to {} failed with return code: {}'.format( src, dst, rc)) def _multinode_transfer( method, dest, source, dst, username, ssh_private_key, rls, mpt): # type: (str, DestinationSettings, SourceSettings, str, str, # pathlib.Path, dict, int) -> None """Transfer data to multiple destination nodes simultaneously :param str method: transfer method :param DestinationSettings dest: destination settings :param SourceSettings source: source settings :param str dst: destination path :param str username: username :param pathlib.Path: ssh private key :param dict rls: remote login settings :param int mpt: max parallel transfers per node """ src = source.path src_incl = source.include src_excl = source.exclude psrc = pathlib.Path(src) # if source isn't a directory, convert it using src_incl if not psrc.is_dir(): src_excl = None src_incl = [src] src = str(psrc.parent) psrc = psrc.parent # if split is specified, force to multinode_scp if (dest.data_transfer.split_files_megabytes is not None and method != 'multinode_scp'): logger.warning('forcing transfer method to multinode_scp with split') method = 'multinode_scp' buckets = {} files = {} rcodes = {} spfiles = [] spfiles_count = {} spfiles_count_lock = threading.Lock() for rkey in rls: buckets[rkey] = 0 files[rkey] = [] rcodes[rkey] = None # walk the directory structure # 1. construct a set of dirs to create on the remote side # 2. binpack files to different nodes total_files = 0 dirs = set() if dest.relative_destination_path is not None: dirs.add(dest.relative_destination_path) for entry in util.scantree(src): rel = pathlib.Path(entry.path).relative_to(psrc) sparent = str(pathlib.Path(entry.path).relative_to(psrc).parent) if entry.is_file(): srel = str(rel) # check filters if src_excl is not None: inc = not any([fnmatch.fnmatch(srel, x) for x in src_excl]) else: inc = True if src_incl is not None: inc = any([fnmatch.fnmatch(srel, x) for x in src_incl]) if not inc: logger.debug('skipping file {} due to filters'.format( entry.path)) continue if dest.relative_destination_path is None: dstpath = '{}{}'.format(dst, rel) else: dstpath = '{}{}/{}'.format( dst, dest.relative_destination_path, rel) # get key of min bucket values fsize = entry.stat().st_size if (dest.data_transfer.split_files_megabytes is not None and fsize > dest.data_transfer.split_files_megabytes): nsplits = int(math.ceil( fsize / dest.data_transfer.split_files_megabytes)) lpad = int(math.log10(nsplits)) + 1 spfiles.append(dstpath) spfiles_count[dstpath] = nsplits n = 0 curr = 0 while True: end = curr + dest.data_transfer.split_files_megabytes if end > fsize: end = fsize key = min(buckets, key=buckets.get) buckets[key] += (end - curr) if n == 0: dstfname = dstpath else: dstfname = '{}.{}{}'.format( dstpath, _FILE_SPLIT_PREFIX, str(n).zfill(lpad)) files[key].append((entry.path, dstfname, curr, end)) if end == fsize: break curr = end n += 1 else: key = min(buckets, key=buckets.get) buckets[key] += fsize files[key].append((entry.path, dstpath, None, None)) total_files += 1 # add directory to create if sparent != '.': if dest.relative_destination_path is None: dirs.add(sparent) else: dirs.add('{}/{}'.format( dest.relative_destination_path, sparent)) total_size = sum(buckets.values()) if total_files == 0: logger.error('no files to ingress') return # create remote directories via ssh if len(dirs) == 0: logger.debug('no remote directories to create') else: logger.debug('creating remote directories: {}'.format(dirs)) dirs = ['mkdir -p {}'.format(x) for x in list(dirs)] dirs.insert(0, 'cd {}'.format(dst)) _rls = next(iter(rls.values())) ip = _rls.remote_login_ip_address port = _rls.remote_login_port del _rls mkdircmd = ('ssh -T -x -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} -i {} -p {} {}@{} {}'.format( os.devnull, ssh_private_key, port, username, ip, util.wrap_commands_in_shell(dirs))) rc = util.subprocess_with_output( mkdircmd, shell=True, suppress_output=True) if rc == 0: logger.info('remote directories created on {}'.format(dst)) else: logger.error('remote directory creation failed') return del ip del port logger.info( 'ingress data: {0:.4f} MiB in {1} files to transfer, using {2} max ' 'parallel transfers per node'.format( total_size / _MEGABYTE, total_files, mpt)) logger.info('begin ingressing data from {} to {}'.format(src, dst)) nodekeys = list(buckets.keys()) threads = [] start = datetime.datetime.now() for i in range(0, len(buckets)): nkey = nodekeys[i] thr = threading.Thread( target=_multinode_thread_worker, args=(method, mpt, nkey, rcodes, files[nkey], spfiles_count, spfiles_count_lock, rls[nkey].remote_login_ip_address, rls[nkey].remote_login_port, username, ssh_private_key, dest.data_transfer.scp_ssh_extra_options, dest.data_transfer.rsync_extra_options) ) threads.append(thr) thr.start() for i in range(0, len(buckets)): threads[i].join() diff = datetime.datetime.now() - start del threads success = True for nkey in rcodes: if rcodes[nkey] != 0: logger.error('data ingress failed to node: {}'.format(nkey)) success = False if success: logger.info( 'finished ingressing {0:.4f} MB of data in {1} files from {2} to ' '{3} in {4:.2f} sec ({5:.3f} Mbit/s)'.format( total_size / _MEGABYTE, total_files, src, dst, diff.total_seconds(), (total_size * 8 / 1e6) / diff.total_seconds())) def _spawn_next_transfer( method, file, ip, port, username, ssh_private_key, eo, reo, procs, psprocs, psdst): # type: (str, tuple, str, int, str, pathlib.Path, str, str, list, # list, list) -> None """Spawn the next transfer given a file tuple :param str method: transfer method :param tuple file: file tuple :param str ip: ip address :param int port: port :param str username: username :param pathlib.Path: ssh private key :param str eo: extra options :param str reo: rsync extra options :param list procs: process list :param list psprocs: split files process list :param list psdst: split files dstpath list """ src = file[0] dst = file[1] begin = file[2] end = file[3] if method == 'multinode_scp': if begin is None and end is None: cmd = ('scp -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} -p {} -i {} ' '-P {} {} {}@{}:"{}"'.format( os.devnull, eo, ssh_private_key.resolve(), port, shellquote(src), username, ip, shellquote(dst))) else: cmd = ('ssh -T -x -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} {} -i {} ' '-p {} {}@{} \'cat > "{}"\''.format( os.devnull, eo, ssh_private_key.resolve(), port, username, ip, shellquote(dst))) elif method == 'multinode_rsync+ssh': if begin is not None or end is not None: raise RuntimeError('cannot rsync with file offsets') cmd = ('rsync {} -e "ssh -T -x -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} {} -i {} -p {}" {} {}@{}:"{}"'.format( reo, os.devnull, eo, ssh_private_key.resolve(), port, shellquote(src), username, ip, shellquote(dst))) else: raise ValueError('Unknown transfer method: {}'.format(method)) if begin is None and end is None: procs.append(util.subprocess_nowait(cmd, shell=True)) else: proc = util.subprocess_attach_stdin(cmd, shell=True) with open(src, 'rb') as f: f.seek(begin, 0) curr = begin while curr < end: buf = f.read(_MAX_READ_BLOCKSIZE_BYTES) if buf is None or len(buf) == 0: break proc.stdin.write(buf) curr += len(buf) proc.stdin.close() psprocs.append(proc) dstsp = dst.split('.') if dstsp[-1].startswith(_FILE_SPLIT_PREFIX): dstpath = '.'.join(dstsp[:-1]) else: dstpath = dst psdst.append(dstpath) def _multinode_thread_worker( method, mpt, node_id, rcodes, files, spfiles_count, spfiles_count_lock, ip, port, username, ssh_private_key, eo, reo): # type: (str, int, str, dict, list, dict, threading.Lock, str, int, str, # pathlib.Path, str, str) -> None """Worker thread code for data transfer to a node with a file list :param str method: transfer method :param int mpt: max parallel transfers per node :param str node_id: node id :param dict rcodes: return codes dict :param list files: list of files to copy :param dict spfiles_count: split files count dict :param threading.Lock spfiles_count_lock: split files count lock :param str ip: ip address :param int port: port :param str username: username :param pathlib.Path: ssh private key :param str eo: extra options :param str reo: rsync extra options """ procs = [] psprocs = [] psdst = [] completed = 0 i = 0 while completed != len(files): xfers = len(procs) + len(psprocs) while xfers < mpt and i < len(files): file = files[i] _spawn_next_transfer( method, file, ip, port, username, ssh_private_key, eo, reo, procs, psprocs, psdst) xfers = len(procs) + len(psprocs) i += 1 plist, n, rc = util.subprocess_wait_multi(psprocs, procs) if rc != 0: logger.error( 'data ingress to {} failed with return code: {}'.format( node_id, rc)) rcodes[node_id] = rc return if plist == psprocs: dstpath = psdst[n] del psdst[n] del psprocs[n] join = False with spfiles_count_lock: spfiles_count[dstpath] = spfiles_count[dstpath] - 1 if spfiles_count[dstpath] == 0: join = True if join: logger.debug('joining files on compute node to {}'.format( dstpath)) cmds = [ 'cat {}.* >> {}'.format(dstpath, dstpath), 'rm -f {}.*'.format(dstpath) ] joincmd = ('ssh -T -x -o StrictHostKeyChecking=no ' '-o UserKnownHostsFile={} -i {} ' '-p {} {}@{} {}'.format( os.devnull, ssh_private_key, port, username, ip, util.wrap_commands_in_shell(cmds))) procs.append( util.subprocess_nowait(joincmd, shell=True)) else: completed += 1 else: del procs[n] completed += 1 rcodes[node_id] = 0 def _azure_blob_storage_transfer(storage_settings, data_transfer, source): # type: (settings.StorageCredentialsSettings, # settings.DataTransferSettings, # settings.SourceSettings) -> None """Initiate an azure blob storage transfer :param settings.StorageCredentialsSettings storage_settings: storage settings :param settings.DataTransferSettings data_transfer: data transfer settings :param settings.SourceSettings source: source settings """ eo = data_transfer.blobxfer_extra_options # append appropriate option for fshare if data_transfer.is_file_share and '--mode file' not in eo: eo = '--mode file {}'.format(eo) thr = threading.Thread( target=_wrap_blobxfer_subprocess, args=( storage_settings, data_transfer.remote_path, source, eo, ) ) thr.start() return thr def _wrap_blobxfer_subprocess(storage_settings, remote_path, source, eo): # type: (StorageCredentialsSettings, str, SourceSettings, str) -> None """Wrapper function for blobxfer :param StorageCredentialsSettings storage_settings: storage settings :param str remote_path: remote path to transfer to :param SourceSettings source: source settings :param str eo: blobxfer extra options """ # generate include/exclude options filters = _convert_filter_to_blobxfer_option( source.include, source.exclude) # get correct path psrc = pathlib.Path(source.path) cwd = str(psrc.parent) rsrc = psrc.relative_to(psrc.parent) # generate env env = os.environ.copy() env['BLOBXFER_STORAGE_ACCOUNT_KEY'] = storage_settings.account_key # set cmd cmd = [ ('blobxfer upload --storage-account {sa} --remote-path {rp} ' '--local-path {lp} --endpoint {ep} --no-progress-bar ' '{filters} {eo}').format( sa=storage_settings.account, rp=remote_path, lp=rsrc, ep=storage_settings.endpoint, filters=filters, eo=eo) ] logger.info('begin ingressing data from {} to remote path {}'.format( source.path, remote_path)) proc = util.subprocess_nowait_pipe_stdout( util.wrap_local_commands_in_shell(cmd), shell=True, cwd=cwd, env=env) stdout, stderr = proc.communicate() if proc.returncode != 0: if stderr is not None: logger.error(stderr.decode('utf8')) if stdout is not None: logger.error(stdout.decode('utf8')) logger.error('data ingress failed from {} to remote path {}'.format( source.path, remote_path)) else: if stdout is not None: logger.debug(stdout.decode('utf8')) def wait_for_storage_threads(storage_threads): # type: (list) -> None """Wait for storage processes to complete :param list storage_threads: list of storage threads """ if storage_threads is None: return i = 0 nthreads = len(storage_threads) while nthreads > 0: alive = sum(thr.is_alive() for thr in storage_threads) if alive > 0: i += 1 if i % 10 == 0: i = 0 logger.debug( 'waiting for Azure Blob Storage transfer processes ' 'to complete: {} active, {} completed'.format( alive, nthreads - alive)) time.sleep(1) else: for thr in storage_threads: thr.join() if nthreads > 0: logger.info('Azure Blob/File Storage transfer completed') break def ingress_data( batch_client, compute_client, network_client, config, rls=None, kind=None, total_vm_count=None, to_fs=None): # type: (batch.BatchServiceClient, # azure.mgmt.compute.ComputeManagementClient, dict, dict, str, # int, str) -> list """Ingresses data into Azure :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param azure.mgmt.compute.ComputeManagementClient compute_client: compute client :param azure.mgmt.network.NetworkManagementClient network_client: network client :param dict config: configuration dict :param dict rls: remote login settings :param str kind: 'all', 'shared', 'storage', or 'remotefs' :param int total_vm_count: total current vm count :param str to_fs: to remote filesystem :rtype: list :return: list of storage threads """ storage_threads = [] files = settings.global_resources_files(config) if util.is_none_or_empty(files): logger.info('no files to ingress detected') return storage_threads pool = settings.pool_settings(config) is_windows = settings.is_windows_pool(config) for fdict in files: source = settings.files_source_settings(fdict) dest = settings.files_destination_settings(fdict) if (dest.shared_data_volume is not None and dest.storage_account_settings is not None): raise RuntimeError( 'cannot specify both shared data volume and storage for the ' 'destination for source: {}'.format(source.path)) direct_single_node = False if dest.relative_destination_path is not None: if dest.storage_account_settings is not None: raise RuntimeError( 'cannot specify a relative destination path for ingress ' 'to storage; use the --collate option in blobxfer ' 'instead.') # check if this is going to a single vm if dest.shared_data_volume is None: if total_vm_count == 1: direct_single_node = True elif kind == 'storage': # this is to prevent total_vm_count check below for # non shared/all targets and will force continuation # of the loop below direct_single_node = True elif total_vm_count is None: raise ValueError('total_vm_count is not set') else: raise RuntimeError( 'Cannot ingress data directly into compute node ' 'host for pools with more than one node. Please use ' 'a shared data volume as the ingress destination ' 'instead.') if dest.shared_data_volume is not None or direct_single_node: if kind == 'storage': logger.warning( 'skipping data ingress from {} to {} for pool as ingress ' 'to shared file system not specified'.format( source.path, dest.shared_data_volume)) continue if is_windows: logger.error( ('cannot data ingress from {} to pool {} with windows ' 'compute nodes').format(source.path, pool.id)) continue # get rfs settings rfs = None dst_rfs = False # set base dst path dst = '{}/batch/tasks/mounts'.format( settings.temp_disk_mountpoint(config)) # convert shared to actual path if not direct_single_node: sdv = settings.global_resources_shared_data_volumes(config) for sdvkey in sdv: if sdvkey == dest.shared_data_volume: if settings.is_shared_data_volume_gluster_on_compute( sdv, sdvkey): if kind == 'remotefs': continue dst = '{}/{}/'.format( dst, settings.get_gluster_on_compute_volume()) elif settings.is_shared_data_volume_storage_cluster( sdv, sdvkey): if kind != 'remotefs' or sdvkey != to_fs: continue if rfs is None: rfs = settings.remotefs_settings(config, to_fs) dst = rfs.storage_cluster.file_server.mountpoint # add trailing directory separator if needed if dst[-1] != '/': dst = dst + '/' dst_rfs = True else: raise RuntimeError( 'data ingress to {} not supported'.format( sdvkey)) break # skip entries that are a mismatch if remotefs transfer # is selected if kind == 'remotefs': if not dst_rfs: continue else: if dst_rfs: continue # set ssh info if dst_rfs: username = rfs.storage_cluster.ssh.username # retrieve public ips from all vms in named storage cluster rls = {} for i in range(rfs.storage_cluster.vm_count): vm_name = '{}-vm{}'.format( rfs.storage_cluster.hostname_prefix, i) vm = compute_client.virtual_machines.get( resource_group_name=rfs.storage_cluster.resource_group, vm_name=vm_name, ) _, pip = resource.get_nic_and_pip_from_virtual_machine( network_client, rfs.storage_cluster.resource_group, vm) # create compute node rls settings with sc vm ip/port rls[vm_name] = \ batchmodels.ComputeNodeGetRemoteLoginSettingsResult( remote_login_ip_address=pip.ip_address, remote_login_port=22) else: username = pool.ssh.username if rls is None: logger.warning( 'skipping data ingress from {} to {} for pool with no ' 'remote login settings or non-existent pool'.format( source.path, dest.shared_data_volume)) continue if username is None: raise RuntimeError( 'cannot ingress data to shared data volume without a ' 'valid SSH user') # try to get valid ssh private key (from various config blocks) ssh_private_key = dest.data_transfer.ssh_private_key if ssh_private_key is None: ssh_private_key = pool.ssh.ssh_private_key if ssh_private_key is None: ssh_private_key = pathlib.Path(crypto.get_ssh_key_prefix()) if not ssh_private_key.exists(): raise RuntimeError( 'specified SSH private key is invalid or does not ' 'exist') logger.debug('using ssh_private_key from: {}'.format( ssh_private_key)) if (dest.data_transfer.method == 'scp' or dest.data_transfer.method == 'rsync+ssh'): # split/source include/exclude will force multinode # transfer with mpt=1 if (dest.data_transfer.split_files_megabytes is not None or source.include is not None or source.exclude is not None): _multinode_transfer( 'multinode_' + dest.data_transfer.method, dest, source, dst, username, ssh_private_key, rls, 1) else: _singlenode_transfer( dest, source.path, dst, username, ssh_private_key, rls) elif (dest.data_transfer.method == 'multinode_scp' or dest.data_transfer.method == 'multinode_rsync+ssh'): _multinode_transfer( dest.data_transfer.method, dest, source, dst, username, ssh_private_key, rls, dest.data_transfer.max_parallel_transfers_per_node) else: raise RuntimeError( 'unknown transfer method: {}'.format( dest.data_transfer.method)) elif dest.storage_account_settings is not None: if kind == 'shared': logger.warning( 'skipping data ingress from {} for pool as ingress ' 'to Azure Blob/File Storage not specified'.format( source.path)) continue thr = _azure_blob_storage_transfer( settings.credentials_storage( config, dest.storage_account_settings), dest.data_transfer, source) storage_threads.append(thr) else: raise RuntimeError( 'invalid file transfer configuration: {}'.format(fdict)) return storage_threads
common/dataset/__init__.py
AlexTaehwan/kgpolicy
111
12622250
from .preprocess import CKGData
tfjs_graph_converter/convert_fused_depthwise.py
httpsgithu/tfjs-to-tf
114
12622271
# SPDX-License-Identifier: MIT # Copyright © 2020 <NAME> """Functions to rewrite FusedDepthwiseConv2d as native TensorFlow operations""" import tfjs_graph_converter.graph_rewrite_util as util from tfjs_graph_converter.graph_rewrite_util import generate_name_from def _split_fused_depthwise(node: util.NodeDef, input_node_map: util.NameToNode, weight_mods: util.WeightModifiers) -> util.NodeList: """Decompose fused op into DepthwiseConv2dNative + BiasAdd [+ Activation] """ fused_ops = list(s.decode('utf-8') for s in node.attr['fused_ops'].list.s) inputs = node.input names_used = set() def node_name(node_index): """Return unique node names for sub-operations by appending fused-op""" i = min(node_index, len(inputs)-1) # PReLU has 4 inputs, others only 3 name = generate_name_from(inputs[i], input_node_map) if name in names_used: name = generate_name_from(name, input_node_map, suffix=fused_ops[node_index-2]) names_used.add(name) return name op = 'DepthwiseConv2dNative' depthwise = util.make_op_node(op, inputs[0:2], node_name(1)) depthwise = util.copy_op_attrs(source=node, target=depthwise) op = fused_ops[0] bias_add = util.make_op_node(op, [depthwise, inputs[2]], node_name(2)) bias_add = util.copy_op_attrs(source=node, target=bias_add) node_list = [depthwise, bias_add] if len(fused_ops) > 1: # we have an activation function op = fused_ops[1] input_nodes = [bias_add] + inputs[3:] if util.get_op_def(op) is None: # unsupported activation function - just copy type attribute dtype = depthwise.attr['T'].type activation = util.make_op_node(op, input_nodes, node_name(3), dtype) else: # supported activation function - copy applicable attributes activation = util.make_op_node(op, input_nodes, node_name(3)) activation = util.copy_op_attrs(source=node, target=activation) node_list.append(activation) return node_list def split_fused_depthwise(input_graph_def: util.GraphDef) -> util.GraphDef: """Decompose all fused depthwise conv2d operations into separate operations This function looks for fused depthwise operations and splits matching nodes into individual operations. Fused activation functions that aren't supported (e.g. 'Prelu') can be replaced afterwards in a separate processing step. Args: input_graph_def: TF graph_def proto to be processed Returns: Updated copy of the input graph with matching nodes replaced by individual operations """ return util.replace_matching_nodes(input_graph_def, util.is_fused_depthwise, _split_fused_depthwise)
redis/commands/json/__init__.py
utkarshgupta137/redis-py
483
12622288
<reponame>utkarshgupta137/redis-py<filename>redis/commands/json/__init__.py from json import JSONDecodeError, JSONDecoder, JSONEncoder import redis from ..helpers import nativestr from .commands import JSONCommands from .decoders import bulk_of_jsons, decode_list class JSON(JSONCommands): """ Create a client for talking to json. :param decoder: :type json.JSONDecoder: An instance of json.JSONDecoder :param encoder: :type json.JSONEncoder: An instance of json.JSONEncoder """ def __init__( self, client, version=None, decoder=JSONDecoder(), encoder=JSONEncoder() ): """ Create a client for talking to json. :param decoder: :type json.JSONDecoder: An instance of json.JSONDecoder :param encoder: :type json.JSONEncoder: An instance of json.JSONEncoder """ # Set the module commands' callbacks self.MODULE_CALLBACKS = { "JSON.CLEAR": int, "JSON.DEL": int, "JSON.FORGET": int, "JSON.GET": self._decode, "JSON.MGET": bulk_of_jsons(self._decode), "JSON.SET": lambda r: r and nativestr(r) == "OK", "JSON.NUMINCRBY": self._decode, "JSON.NUMMULTBY": self._decode, "JSON.TOGGLE": self._decode, "JSON.STRAPPEND": self._decode, "JSON.STRLEN": self._decode, "JSON.ARRAPPEND": self._decode, "JSON.ARRINDEX": self._decode, "JSON.ARRINSERT": self._decode, "JSON.ARRLEN": self._decode, "JSON.ARRPOP": self._decode, "JSON.ARRTRIM": self._decode, "JSON.OBJLEN": self._decode, "JSON.OBJKEYS": self._decode, "JSON.RESP": self._decode, "JSON.DEBUG": self._decode, } self.client = client self.execute_command = client.execute_command self.MODULE_VERSION = version for key, value in self.MODULE_CALLBACKS.items(): self.client.set_response_callback(key, value) self.__encoder__ = encoder self.__decoder__ = decoder def _decode(self, obj): """Get the decoder.""" if obj is None: return obj try: x = self.__decoder__.decode(obj) if x is None: raise TypeError return x except TypeError: try: return self.__decoder__.decode(obj.decode()) except AttributeError: return decode_list(obj) except (AttributeError, JSONDecodeError): return decode_list(obj) def _encode(self, obj): """Get the encoder.""" return self.__encoder__.encode(obj) def pipeline(self, transaction=True, shard_hint=None): """Creates a pipeline for the JSON module, that can be used for executing JSON commands, as well as classic core commands. Usage example: r = redis.Redis() pipe = r.json().pipeline() pipe.jsonset('foo', '.', {'hello!': 'world'}) pipe.jsonget('foo') pipe.jsonget('notakey') """ if isinstance(self.client, redis.RedisCluster): p = ClusterPipeline( nodes_manager=self.client.nodes_manager, commands_parser=self.client.commands_parser, startup_nodes=self.client.nodes_manager.startup_nodes, result_callbacks=self.client.result_callbacks, cluster_response_callbacks=self.client.cluster_response_callbacks, cluster_error_retry_attempts=self.client.cluster_error_retry_attempts, read_from_replicas=self.client.read_from_replicas, reinitialize_steps=self.client.reinitialize_steps, lock=self.client._lock, ) else: p = Pipeline( connection_pool=self.client.connection_pool, response_callbacks=self.MODULE_CALLBACKS, transaction=transaction, shard_hint=shard_hint, ) p._encode = self._encode p._decode = self._decode return p class ClusterPipeline(JSONCommands, redis.cluster.ClusterPipeline): """Cluster pipeline for the module.""" class Pipeline(JSONCommands, redis.client.Pipeline): """Pipeline for the module."""
vivisect/tests/testreports.py
pombredanne/vivisect
716
12622294
import unittest import vivisect.reports as v_reports import vivisect.tests.helpers as helpers class ReportsTest(unittest.TestCase): ''' Test each of the base report modules. ''' @classmethod def setUpClass(cls): cls.vw = helpers.getTestWorkspace('windows', 'i386', 'helloworld.exe') def test_overlap(self): cols, retn = v_reports.runReportModule(self.vw, 'vivisect.reports.overlaplocs') self.assertEqual(cols, (("Overlap Size", int), ("This Location", str), ("Other Location", str))) self.assertGreater(len(retn), 0) for va, meta in retn.items(): size, baserepr, othrrepr = meta self.assertGreater(size, 0) self.assertNotEqual(baserepr, '') self.assertNotEqual(othrrepr, '') def test_undef(self): cols, retn = v_reports.runReportModule(self.vw, 'vivisect.reports.undeftargets') self.assertEqual(cols, (("Bytes", str), ("Name", str))) self.assertGreater(len(retn), 0) for va, undef in retn.items(): byts, mesg = undef self.assertIsNone(self.vw.getLocation(va)) self.assertGreater(len(byts), 0) self.assertGreater(len(mesg), 0) def test_locationdist(self): cols, retn = v_reports.runReportModule(self.vw, 'vivisect.reports.locationdist') self.assertEqual(cols, (("Location Type", str), ("Instance Count", int), ("Size (bytes)", int), ("Size (percent)", int))) self.assertEqual(retn, self.vw.getLocationDistribution()) def test_funcomp(self): cols, retn = v_reports.runReportModule(self.vw, 'vivisect.reports.funccomplexity') self.assertEqual(cols, (("Code Blocks", int), ("Mnem Dist", int))) vw = self.vw self.assertGreater(len(retn), 0) for fva, comp in retn.items(): blks, mdist = comp self.assertEqual(blks, len(vw.getFunctionBlocks(fva))) self.assertEqual(mdist, vw.getFunctionMeta(fva, 'MnemDist', -1))
more_autograding_examples/python_random_input_output/submissions/solution.py
elihschiff/Submitty
411
12622335
<filename>more_autograding_examples/python_random_input_output/submissions/solution.py<gh_stars>100-1000 import sys def percent_change(old,new): return int(100*(float(new)-old)/old) def print_change(old1, new1, old2, new2): p1 = percent_change(old1,new1) p2 = percent_change(old2,new2) print (p1, "vs", p2) print ("#icebucketchallenge vs #alsicebucketchallenge, percentage change") print_change(200,500,100,300) print_change(500,2000,300,1500) print_change(2000,12000,1500,13000) print_change(12000,24000,13000,25000) print_change(24000,65000,25000,105000) print_change(65000,70000,105000,85000) # read the last test case from an input file (if provided) if (len(sys.argv) > 1): inputfile=sys.argv[1] f=open(inputfile,"r") contents=f.read().split(",") o1=int(contents[0],10) n1=int(contents[1],10) o2=int(contents[2],10) n2=int(contents[3],10) print_change(o1,n1,o2,n2)
settings.py
mdgrotheer/twitter-intelligence
202
12622342
GOOGLE_MAP_API_KEY = 'YOUR_API_KEY' PORT = 5000
tests/unit/test_objector.py
nickatnight/praw
2,360
12622359
<filename>tests/unit/test_objector.py import pytest from praw.exceptions import ClientException, RedditAPIException from . import UnitTest class TestObjector(UnitTest): def test_objectify_returns_None_for_None(self): assert self.reddit._objector.objectify(None) is None def test_parse_error(self): objector = self.reddit._objector assert objector.parse_error({}) is None assert objector.parse_error([]) is None assert objector.parse_error({"asdf": 1}) is None error_response = { "json": {"errors": [["USER_REQUIRED", "Please log in to do that.", None]]} } error = objector.parse_error(error_response) assert isinstance(error, RedditAPIException) error_response = {"json": {"errors": []}} with pytest.raises(ClientException): objector.parse_error(error_response) error_response = { "json": { "errors": [ ["USER_REQUIRED", "Please log in to do that.", None], ["NO_SUBJECT", "please enter a subject", "subject"], ] } } assert isinstance(objector.parse_error(error_response), RedditAPIException) def test_check_error(self): objector = self.reddit._objector objector.check_error({"asdf": 1}) error_response = { "json": {"errors": [["USER_REQUIRED", "Please log in to do that.", None]]} } with pytest.raises(RedditAPIException): objector.check_error(error_response)
perma_web/perma/migrations/0008_auto_20160602_1911.py
rachelaus/perma
317
12622362
<reponame>rachelaus/perma<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models def set_registrar_status(apps, schema_editor): Registrar = apps.get_model('perma', 'Registrar') Registrar.objects.filter(is_approved=True).update(status='approved') Registrar.objects.filter(is_approved=False).update(status='pending') HistoricalRegistrar = apps.get_model('perma','HistoricalRegistrar') HistoricalRegistrar.objects.filter(is_approved=True).update(status='approved') HistoricalRegistrar.objects.filter(is_approved=False).update(status='pending') class Migration(migrations.Migration): dependencies = [ ('perma', '0007_auto_20160527_1625'), ] operations = [ migrations.AddField( model_name='historicalregistrar', name='status', field=models.CharField(default=b'pending', max_length=20, choices=[(b'pending', b'pending'), (b'approved', b'approved'), (b'denied', b'denied')]), ), migrations.AddField( model_name='registrar', name='status', field=models.CharField(default=b'pending', max_length=20, choices=[(b'pending', b'pending'), (b'approved', b'approved'), (b'denied', b'denied')]), ), migrations.RunPython(set_registrar_status), migrations.RemoveField( model_name='historicalregistrar', name='is_approved', ), migrations.RemoveField( model_name='registrar', name='is_approved', ), ]
annotation-vocab/tools/vocab_tester.py
ziransun/wpt
2,479
12622364
# Author: <NAME> (<EMAIL>) # License: Apache2 # Last Modified: 2016-09-02 from __future__ import print_function import json from rdflib import ConjunctiveGraph, URIRef from pyld import jsonld from pyld.jsonld import compact, expand, frame, from_rdf, to_rdf, JsonLdProcessor import urllib # Stop code from looking up the contexts online for every operation docCache = {} def fetch(url): fh = urllib.urlopen(url) data = fh.read() fh.close() return data def load_document_and_cache(url): if docCache.has_key(url): return docCache[url] doc = { 'contextUrl': None, 'documentUrl': None, 'document': '' } data = fetch(url) doc['document'] = data; docCache[url] = doc return doc jsonld.set_document_loader(load_document_and_cache) class Validator(object): def __init__(self): self.rdflib_class_map = { "Annotation": "oa:Annotation", "Dataset": "dctypes:Dataset", "Image": "dctypes:StillImage", "Video": "dctypes:MovingImage", "Audio": "dctypes:Sound", "Text": "dctypes:Text", "TextualBody": "oa:TextualBody", "ResourceSelection": "oa:ResourceSelection", "SpecificResource": "oa:SpecificResource", "FragmentSelector": "oa:FragmentSelector", "CssSelector": "oa:CssSelector", "XPathSelector": "oa:XPathSelector", "TextQuoteSelector": "oa:TextQuoteSelector", "TextPositionSelector": "oa:TextPositionSelector", "DataPositionSelector": "oa:DataPositionSelector", "SvgSelector": "oa:SvgSelector", "RangeSelector": "oa:RangeSelector", "TimeState": "oa:TimeState", "HttpState": "oa:HttpRequestState", "CssStylesheet": "oa:CssStyle", "Choice": "oa:Choice", "Composite": "oa:Composite", "List": "oa:List", "Independents": "oa:Independents", "Person": "foaf:Person", "Software": "as:Application", "Organization": "foaf:Organization", "AnnotationCollection": "as:OrderedCollection", "AnnotationPage": "as:OrderedCollectionPage", "Audience": "schema:Audience" } def _clean_bnode_ids(self, js): new = {} for (k,v) in js.items(): if k == 'id' and v.startswith("_:"): continue elif type(v) == dict: # recurse res = self._clean_bnode_ids(v) new[k] = res else: new[k] = v return new def _mk_rdflib_jsonld(self, js): # rdflib's json-ld implementation sucks # Pre-process to make it work # recurse the structure looking for types, and replacing them. new = {} for (k,v) in js.items(): if k == 'type': if type(v) == list: nl = [] for i in v: if self.rdflib_class_map.has_key(i): nl.append(self.rdflib_class_map[i]) new['type'] = nl else: if self.rdflib_class_map.has_key(v): new['type'] = self.rdflib_class_map[v] elif type(v) == dict: # recurse res = self._mk_rdflib_jsonld(v) new[k] = res else: new[k] = v return new def json_to_rdf(self, js, fmt=None): d2 = self._mk_rdflib_jsonld(js) js = json.dumps(d2) g = ConjunctiveGraph() g.parse(data=js, format='json-ld') if fmt: out = g.serialize(format=fmt) return out else: return g def rdf_to_jsonld(self, rdf, fmt): g = ConjunctiveGraph() g.parse(data=rdf, format=fmt) out = g.serialize(format='json-ld') j2 = json.loads(out) j2 = {"@context": context_js, "@graph": j2} framed = frame(j2, frame_js) out = compact(framed, context_js) # recursively clean blank node ids #out = self._clean_bnode_ids(out) return out def compact_and_clean(self, js): newjs = compact(js, context_js) newjs['@context'] = context if newjs.has_key("@graph"): for k,v in newjs['@graph'].items(): newjs[k] = v del newjs['@graph'] return newjs validator = Validator() example = "https://raw.githubusercontent.com/w3c/web-annotation/gh-pages/model/wd2/examples/correct/anno4.json" example_ttl = "https://raw.githubusercontent.com/w3c/web-annotation/gh-pages/vocab/wd/examples/correct/anno1.ttl" context = "http://www.w3.org/ns/anno.jsonld" frameURI = "https://raw.githubusercontent.com/w3c/web-annotation/gh-pages/jsonld/annotation_frame.jsonld" # ontology = "https://www.w3.org/ns/oa.ttl" ontology = "https://raw.githubusercontent.com/w3c/web-annotation/gh-pages/vocab/wd/ontology/oa.ttl" data = fetch(context) context_js = json.loads(data) data = fetch(example) example_js = json.loads(data) data = fetch(frameURI) frame_js = json.loads(data) # Test1: JSON-LD context document can be parsed without errors by JSON-LD validators # Context document is parsable if it can be loaded and used to expand the example try: expanded = expand(example_js, context_js) except: print("Context is invalid, failed Test 1") # Test2: JSON-LD context document can be used to convert JSON-LD serialized Annotations into RDF triples. try: jsonld_nq = to_rdf(example_js, {"base": "http://example.org/", "format": "application/nquads"}) except: print("Cannot use context to convert JSON-LD to NQuads") # Test3: Graphs produced are isomorphic try: rl_g = validator.json_to_rdf(example_js) g = ConjunctiveGraph() js_g = g.parse(data=jsonld_nq, format="nt") rl_g_nq = rl_g.serialize(format="nquads") assert(len(rl_g.store) == len(js_g.store)) assert(rl_g.isomorphic(js_g)) except: print("Different triples from two parsers, or non-isomorphic graphs") # Test4: The graphs produced can be converted back into JSON-LD without loss of information try: js = validator.rdf_to_jsonld(jsonld_nq, "nt") js2 = validator.compact_and_clean(js) assert(js2 == example_js) except: print("Failed to recompact parsed data") raise # Test5: ontology documents can be parsed without errors by validators try: g = ConjunctiveGraph().parse(ontology, format="turtle") except: raise # Test6: ontology is internally consistent with respect to domains, ranges, etc # step 1: find all the classes. rdftype = URIRef("http://www.w3.org/1999/02/22-rdf-syntax-ns#type") rdfsdomain = URIRef("http://www.w3.org/2000/01/rdf-schema#domain") rdfsrange = URIRef("http://www.w3.org/2000/01/rdf-schema#range") rdfsresource = URIRef("http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource") rdfssco = URIRef("http://www.w3.org/2000/01/rdf-schema#subClassOf") asColl = URIRef("http://www.w3.org/ns/activitystreams#OrderedCollection") skosConcept = URIRef("http://www.w3.org/2004/02/skos/core#Concept") otherClasses = [asColl, skosConcept] classes = list(g.subjects(rdftype, URIRef("http://www.w3.org/2000/01/rdf-schema#Class"))) props = list(g.subjects(rdftype, URIRef("http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"))) for p in props: domains = list(g.objects(p, rdfsdomain)) for d in domains: assert(d in classes) for p in props: ranges = list(g.objects(p, rdfsrange)) for r in ranges: if not r in classes and not str(r).startswith("http://www.w3.org/2001/XMLSchema#") and \ not r == rdfsresource: print("Found inconsistent property: %s has unknown range" % p) for c in classes: parents = list(g.objects(c, rdfssco)) for p in parents: if not p in classes and not p in otherClasses: print("Found inconsistent class: %s has unknown superClass" % c) print("Done.")
lbry/wallet/server/db/__init__.py
nishp77/lbry-sdk
4,996
12622370
<filename>lbry/wallet/server/db/__init__.py import enum @enum.unique class DB_PREFIXES(enum.Enum): claim_to_support = b'K' support_to_claim = b'L' claim_to_txo = b'E' txo_to_claim = b'G' claim_to_channel = b'I' channel_to_claim = b'J' claim_short_id_prefix = b'F' effective_amount = b'D' claim_expiration = b'O' claim_takeover = b'P' pending_activation = b'Q' activated_claim_and_support = b'R' active_amount = b'S' repost = b'V' reposted_claim = b'W' undo = b'M' claim_diff = b'Y' tx = b'B' block_hash = b'C' header = b'H' tx_num = b'N' tx_count = b'T' tx_hash = b'X' utxo = b'u' hashx_utxo = b'h' hashx_history = b'x' db_state = b's' channel_count = b'Z' support_amount = b'a' block_txs = b'b'
src/webdav/__init__.py
rbanffy/Zope
289
12622381
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## """The webdav package provides WebDAV capability for common Zope objects. Current WebDAV support in Zope provides for the correct handling of HTTP GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE, PROPFIND, PROPPATCH, MKCOL, COPY and MOVE methods, as appropriate for the object that is the target of the operation. Objects which do not support a given operation should respond appropriately with a "405 Method Not Allowed" response. Note that the ability of a Zope installation to support WebDAV HTTP methods depends on the willingness of the web server to defer handling of those methods to the Zope process. In most cases, servers will allow the process to handle any request, so the Zope portion of your url namespace may well be able to handle WebDAV operations even though your web server software is not WebDAV-aware itself. Zope installations which use bundled server implementations such as ZopeHTTPServer or ZServer should fully support WebDAV functions. References: [WebDAV] <NAME>, <NAME>, Jr., <NAME>, <NAME>, D. Jensen, "HTTP Extensions for Distributed Authoring - WebDAV." RFC 2518. Microsoft, U.C. Irvine, Netscape, Novell. February, 1999.""" enable_ms_public_header = False
python/fcdd/runners/argparse_configs.py
kyungmin96/myfcdd
152
12622388
import os.path as pt from argparse import ArgumentParser import numpy as np from fcdd.datasets import DS_CHOICES, PREPROC_CHOICES from fcdd.datasets.noise_modes import MODES from fcdd.models import choices from fcdd.training.setup import OBJECTIVES, SUPERVISE_MODES class DefaultConfig(object): def __call__(self, parser: ArgumentParser) -> ArgumentParser: """ Defines all the arguments for running an FCDD experiment. :param parser: instance of an ArgumentParser. :return: the parser with added arguments """ # define directories for datasets and logging parser.add_argument( '--logdir', type=str, default=pt.join('..', '..', 'data', 'results', 'fcdd_{t}'), help='Directory where log data is to be stored. The pattern {t} is replaced by the start time. ' 'Defaults to ../../data/results/fcdd_{t}. ' ) parser.add_argument( '--logdir-suffix', type=str, default='', help='String suffix for log directory, again {t} is replaced by the start time. ' ) parser.add_argument( '--datadir', type=str, default=pt.join('..', '..', 'data', 'datasets'), help='Directory where datasets are found or to be downloaded to. Defaults to ../../data/datasets.', ) parser.add_argument( '--viz-ids', type=str, default=None, help='Directory that contains log data of an old experiment. ' 'When given, in addition to the usual log data and heatmaps, the training produces heatmaps for the ' 'same images that have been logged in the according seeds and class runs found in the directory.' ) parser.add_argument( '--readme', type=str, default='', help='Some notes to be stored in the automatically created config.txt configuration file.' ) # training parameters parser.add_argument( '--objective', type=str, default='fcdd', choices=OBJECTIVES, help='Chooses the objective to run explanation baseline experiments. Defaults to FCDD.' ) parser.add_argument('-b', '--batch-size', type=int, default=128) parser.add_argument('-e', '--epochs', type=int, default=200) parser.add_argument('-w', '--workers', type=int, default=4) parser.add_argument('-lr', '--learning_rate', type=float, default=1e-3) parser.add_argument('-wd', '--weight-decay', type=float, default=1e-6) parser.add_argument( '--optimizer-type', type=str, default='sgd', choices=['sgd', 'adam'], help='The type of optimizer. Defaults to "sgd". ' ) parser.add_argument( '--scheduler-type', type=str, default='lambda', choices=['lambda', 'milestones'], help='The type of learning rate scheduler. Either "lambda", which reduces the learning rate each epoch ' 'by a certain factor, or "milestones", which sets the learning rate to certain values at certain ' 'epochs. Defaults to "lambda"' ) parser.add_argument( '--lr-sched-param', type=float, nargs='*', default=[0.985], help='Sequence of learning rate scheduler parameters. ' 'For the "lambda" scheduler, just one parameter is allowed, ' 'which sets the factor the learning rate is reduced per epoch. ' 'For the "milestones" scheduler, at least two parameters are needed, ' 'the first determining the factor by which the learning rate is reduced at each milestone, ' 'and the others being each a milestone. For instance, "0.1 100 200 300" reduces the learning rate ' 'by 0.1 at epoch 100, 200, and 300. ' ) parser.add_argument( '--load', type=str, default=None, help='Path to a file that contains a snapshot of the network model. ' 'When given, the network loads the found weights and state of the training. ' 'If epochs are left to be trained, the training is continued. ' 'Note that only one snapshot is given, thus using a runner that trains for multiple different classes ' 'to be nominal is not applicable. ' ) parser.add_argument('-d', '--dataset', type=str, default='custom', choices=DS_CHOICES) parser.add_argument( '-n', '--net', type=str, default='FCDD_CNN224_VGG_F', choices=choices(), help='Chooses a network architecture to train. Note that not all architectures fit every objective. ' ) parser.add_argument( '--preproc', type=str, default='aug1', choices=PREPROC_CHOICES, help='Determines the kind of preprocessing pipeline (augmentations and such). ' 'Have a look at the code (dataset implementation, e.g. fcdd.datasets.cifar.py) for details.' ) parser.add_argument( '--acc-batches', type=int, default=1, help='To speed up data loading, ' 'this determines the number of batches that are accumulated to be used for training. ' 'For instance, acc_batches=2 iterates the data loader two times, concatenates the batches, and ' 'passes the result to the further training procedure. This has no impact on the performance ' 'if the batch size is reduced accordingly (e.g. one half in this example), ' 'but can decrease training time. ' ) parser.add_argument('--no-bias', dest='bias', action='store_false', help='Uses no bias in network layers.') parser.add_argument('--cpu', dest='cuda', action='store_false', help='Trains on CPU only.') # artificial anomaly settings parser.add_argument( '--supervise-mode', type=str, default='noise', choices=SUPERVISE_MODES, help='This determines the kind of artificial anomalies. ' '"unsupervised" uses no anomalies at all. ' '"other" uses ground-truth anomalies. ' '"noise" uses pure noise images or Outlier Exposure. ' '"malformed_normal" adds noise to nominal images to create malformed nominal anomalies. ' '"malformed_normal_gt" is like malformed_normal, but with ground-truth anomaly heatmaps for training. ' ) parser.add_argument( '--noise-mode', type=str, default='imagenet22k', choices=MODES, help='The type of noise used when artificial anomalies are activated. Dataset names refer to OE. ' 'See fcdd.datasets.noise_modes.py.' ) parser.add_argument( '--oe-limit', type=int, default=np.infty, help='Determines the amount of different samples used for Outlier Exposure. ' 'Has no impact on synthetic anomalies.' ) parser.add_argument( '--offline-supervision', dest='online_supervision', action='store_false', help='Instead of sampling artificial anomalies during training by having a 50%% chance to ' 'replace nominal samples, this mode samples them once at the start of the training and adds them to ' 'the training set. ' 'This yields less performance and higher RAM utilization, but reduces the training time. ' ) parser.add_argument( '--nominal-label', type=int, default=0, help='Determines the label that marks nominal samples. ' 'Note that this is not the class that is considered nominal! ' 'For instance, class 5 is the nominal class, which is labeled with the nominal label 0.' ) # heatmap generation parameters parser.add_argument( '--blur-heatmaps', dest='blur_heatmaps', action='store_true', help='Blurs heatmaps, like done for the explanation baseline experiments in the paper.' ) parser.add_argument( '--gauss-std', type=float, default=10, help='Sets a constant value for the standard deviation of the Gaussian kernel used for upsampling and ' 'blurring.' ) parser.add_argument( '--quantile', type=float, default=0.97, help='The quantile that is used to normalize the generated heatmap images. ' 'This is explained in the Appendix of the paper.' ) parser.add_argument( '--resdown', type=int, default=64, help='Sets the maximum resolution of logged images (per heatmap), images will be downsampled ' 'if they exceed this threshold. For instance, resdown=64 makes every image of heatmaps contain ' 'individual heatmaps and inputs of width 64 and height 64 at most.' ) parser.set_defaults(cuda=True, bias=True, blur_heatmaps=False, online_supervision=True) return parser class DefaultFmnistConfig(DefaultConfig): def __call__(self, parser: ArgumentParser) -> ArgumentParser: parser = super().__call__(parser) parser.set_defaults( batch_size=128, epochs=400, learning_rate=1e-2, weight_decay=1e-6, lr_sched_param=[0.98], dataset='fmnist', net='FCDD_CNN28_W', quantile=0.85, noise_mode='cifar100', preproc='lcnaug1', gauss_std=1.2, ) return parser class DefaultCifar10Config(DefaultConfig): def __call__(self, parser: ArgumentParser) -> ArgumentParser: parser = super().__call__(parser) parser.set_defaults( batch_size=20, acc_batches=10, epochs=600, optimizer_type='adam', scheduler_type='milestones', lr_sched_param=[0.1, 400, 500], dataset='cifar10', net='FCDD_CNN32_LW3K', quantile=0.85, noise_mode='cifar100', gauss_std=1.2, ) return parser class DefaultMvtecConfig(DefaultConfig): def __call__(self, parser: ArgumentParser) -> ArgumentParser: parser = super().__call__(parser) parser.set_defaults( batch_size=16, acc_batches=8, supervise_mode='malformed_normal', gauss_std=12, weight_decay=1e-4, epochs=200, preproc='lcnaug1', quantile=0.99, net='FCDD_CNN224_VGG_F', dataset='mvtec', noise_mode='confetti' ) return parser class DefaultImagenetConfig(DefaultConfig): def __call__(self, parser: ArgumentParser) -> ArgumentParser: parser = super().__call__(parser) parser.set_defaults( batch_size=20, acc_batches=10, epochs=600, optimizer_type='adam', scheduler_type='milestones', lr_sched_param=[0.1, 400, 500], noise_mode='imagenet22k', dataset='imagenet', gauss_std=8, net='FCDD_CNN224_VGG_NOPT' ) return parser class DefaultPascalvocConfig(DefaultConfig): def __call__(self, parser: ArgumentParser): parser = super().__call__(parser) parser.set_defaults( batch_size=20, acc_batches=10, epochs=600, optimizer_type='adam', scheduler_type='milestones', lr_sched_param=[0.1, 400, 500], dataset='pascalvoc', noise_mode='imagenet', net='FCDD_CNN224_VGG_NOPT', nominal_label=1, gauss_std=8, quantile=0.99, ) return parser
test/test_seed_schema.py
aviv-julienjehannet/GenSON
377
12622396
<reponame>aviv-julienjehannet/GenSON<filename>test/test_seed_schema.py from . import base class TestSeedTuple(base.SchemaNodeTestCase): def test_tuple(self): self.add_schema({'type': 'array', 'items': []}) self.add_object([None]) self.assertResult({'type': 'array', 'items': [{'type': 'null'}]}) class TestPatternProperties(base.SchemaNodeTestCase): def test_single_pattern(self): self.add_schema({'type': 'object', 'patternProperties': { r'^\d$': None}}) self.add_object({'0': 0, '1': 1, '2': 2}) self.assertResult({'type': 'object', 'patternProperties': { r'^\d$': {'type': 'integer'}}}) def test_multi_pattern(self): self.add_schema({'type': 'object', 'patternProperties': { r'^\d$': None, r'^[a-z]$': None}}) self.add_object({'0': 0, '1': 1, 'a': True, 'b': False}) self.assertResult({'type': 'object', 'patternProperties': { r'^\d$': {'type': 'integer'}, r'^[a-z]$': {'type': 'boolean'}}}) def test_multi_pattern_multi_object(self): self.add_schema({'type': 'object', 'patternProperties': { r'^\d$': None, r'^[a-z]$': None}}) self.add_object({'0': 0}) self.add_object({'1': 1}) self.add_object({'a': True}) self.add_object({'b': False}) self.assertResult({'type': 'object', 'patternProperties': { r'^\d$': {'type': 'integer'}, r'^[a-z]$': {'type': 'boolean'}}}) def test_existing_schema(self): self.add_schema({'type': 'object', 'patternProperties': { r'^\d$': {'type': 'boolean'}}}) self.add_object({'0': 0, '1': 1, '2': 2}) self.assertResult({'type': 'object', 'patternProperties': { r'^\d$': {'type': ['boolean', 'integer']}}}) def test_prefers_existing_properties(self): self.add_schema({'type': 'object', 'properties': {'0': None}, 'patternProperties': {r'^\d$': None}}) self.add_object({'0': 0, '1': 1, '2': 2}) self.assertResult({'type': 'object', 'properties': {'0': {'type': 'integer'}}, 'patternProperties': {r'^\d$': {'type': 'integer'}}, 'required': ['0']}) def test_keeps_unrecognized_properties(self): self.add_schema({'type': 'object', 'patternProperties': {r'^\d$': None}}) self.add_object({'0': 0, '1': 1, '2': 2, 'a': True}) self.assertResult({'type': 'object', 'properties': {'a': {'type': 'boolean'}}, 'patternProperties': {r'^\d$': {'type': 'integer'}}, 'required': ['a']})
gunnery/account/urls.py
timgates42/gunnery
314
12622425
from django.conf.urls import patterns, url from views import modal_permissions, profile_page urlpatterns = patterns('', url(r'^account/profile/(?P<user_id>[\d]+)/$', profile_page, name='profile'), url(r'^account/login/$', 'django.contrib.auth.views.login', {'template_name': 'page/login.html'}), url(r'^account/logout/$', 'django.contrib.auth.views.logout_then_login', name='logout'), url(r'^account/password_reset/$', 'django.contrib.auth.views.password_reset', name='password_reset'), url(r'^account/password_reset_done$', 'django.contrib.auth.views.password_reset_done', name='password_reset_done'), url(r'^account/password_reset_confirm/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>.+)/$', 'django.contrib.auth.views.password_reset_confirm', name='password_reset_confirm'), url(r'^account/password_reset_complete$', 'django.contrib.auth.views.password_reset_complete', name='password_reset_complete'), url(r'^modal/permissions/(?P<group_id>[\d]+)/$', modal_permissions, name='modal_permissions'), )
brainstorm/hooks.py
PyCN/brainstorm
1,473
12622435
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals import math import signal import sys from collections import OrderedDict import h5py import numpy as np from six import string_types from brainstorm.describable import Describable from brainstorm import optional from brainstorm.structure.network import Network from brainstorm.tools import evaluate from brainstorm.utils import get_by_path, progress_bar, get_brainstorm_info class Hook(Describable): __undescribed__ = { '__name__', # the name is saved in the trainer 'run_verbosity' } __default_values__ = { 'timescale': 'epoch', 'interval': 1, 'verbose': None } def __init__(self, name=None, timescale='epoch', interval=1, verbose=None): self.timescale = timescale self.interval = interval self.__name__ = name or self.__class__.__name__ self.priority = 0 self.verbose = verbose self.run_verbosity = None def start(self, net, stepper, verbose, named_data_iters): if self.verbose is None: self.run_verbosity = verbose else: self.run_verbosity = self.verbose def message(self, msg): """Print an output message if :attr:`run_verbosity` is True.""" if self.run_verbosity: print("{} >> {}".format(self.__name__, msg)) def __call__(self, epoch_nr, update_nr, net, stepper, logs): pass # -------------------------------- Saviors ---------------------------------- # class SaveBestNetwork(Hook): """ Check to see if the specified log entry is at it's best value and if so, save the network to a specified file. Can save the network when the log entry is at its minimum (such as an error) or maximum (such as accuracy) according to the ``criterion`` argument. The ``timescale`` and ``interval`` should be the same as those for the monitoring hook which logs the quantity of interest. Args: log_name: Name of the log entry to be checked for improvement. It should be in the form <monitorname>.<log_name> where log_name itself may be a nested dictionary key in dotted notation. filename: Name of the HDF5 file to which the network should be saved. criterion: Indicates whether training should be stopped when the log entry is at its minimum or maximum value. Must be either 'min' or 'max'. Defaults to 'min'. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'SaveBestNetwork'. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. Examples: Add a hook to monitor a quantity of interest: >>> scorer = bs.scorers.Accuracy() >>> trainer.add_hook(bs.hooks.MonitorScores('valid_getter', [scorer], ... name='validation')) Check every epoch and save the network if validation accuracy rises: >>> trainer.add_hook(bs.hooks.SaveBestNetwork('validation.Accuracy', ... filename='best_acc.h5', ... criterion='max')) Check every epoch and save the network if validation loss drops: >>> trainer.add_hook(bs.hooks.SaveBestNetwork('validation.total_loss', ... filename='best_loss.h5', ... criterion='min')) """ __undescribed__ = {'parameters': None} __default_values__ = {'filename': None} def __init__(self, log_name, filename=None, criterion='max', name=None, timescale='epoch', interval=1, verbose=None): super(SaveBestNetwork, self).__init__(name, timescale, interval, verbose) self.log_name = log_name self.filename = filename self.best_parameters = None assert criterion == 'min' or criterion == 'max' self.best_so_far = np.inf if criterion == 'min' else -np.inf self.best_t = None self.criterion = criterion def __call__(self, epoch_nr, update_nr, net, stepper, logs): if epoch_nr == 0: try: e = get_by_path(logs, self.log_name) except KeyError: return e = get_by_path(logs, self.log_name) last = e[-1] if self.criterion == 'min': imp = last < self.best_so_far else: imp = last > self.best_so_far if imp: self.best_so_far = last self.best_t = epoch_nr if self.timescale == 'epoch' else update_nr params = net.get('parameters') if self.filename is not None: self.message("{} improved (criterion: {}). Saving network to " "{}".format(self.log_name, self.criterion, self.filename)) net.save_as_hdf5(self.filename) else: self.message("{} improved (criterion: {}). Caching parameters". format(self.log_name, self.criterion)) self.parameters = params else: self.message("Last saved parameters at {} {} when {} was {}". format(self.timescale, self.best_t, self.log_name, self.best_so_far)) def load_best_network(self): return Network.from_hdf5(self.filename) if self.filename is not None \ else self.parameters class SaveLogs(Hook): """ Periodically Save the trainer logs dictionary to an HDF5 file. Default behavior is to save every epoch. """ def __init__(self, filename, name=None, timescale='epoch', interval=1): super(SaveLogs, self).__init__(name, timescale, interval) self.filename = filename def __call__(self, epoch_nr, update_nr, net, stepper, logs): with h5py.File(self.filename, 'w') as f: f.attrs.create('info', get_brainstorm_info()) f.attrs.create('format', b'Logs file v1.0') SaveLogs._save_recursively(f, logs) @staticmethod def _save_recursively(group, logs): for name, log in logs.items(): if isinstance(log, dict): subgroup = group.create_group(name) SaveLogs._save_recursively(subgroup, log) else: group.create_dataset(name, data=np.array(log)) class SaveNetwork(Hook): """ Periodically save the weights of the network to the given file. Default behavior is to save the network after every training epoch. """ def __init__(self, filename, name=None, timescale='epoch', interval=1): super(SaveNetwork, self).__init__(name, timescale, interval) self.filename = filename def __call__(self, epoch_nr, update_nr, net, stepper, logs): net.save_as_hdf5(self.filename) def load_network(self): return Network.from_hdf5(self.filename) # -------------------------------- Monitors --------------------------------- # class MonitorLayerDeltas(Hook): """ Monitor some statistics about all the deltas of a layer. """ def __init__(self, layer_name, name=None, timescale='epoch', interval=1, verbose=None): if name is None: name = "MonitorDeltas_{}".format(layer_name) super(MonitorLayerDeltas, self).__init__(name, timescale, interval, verbose) self.layer_name = layer_name def start(self, net, stepper, verbose, named_data_iters): assert self.layer_name in net.layers.keys(), \ "{} >> No layer named {} present in network. Available layers " \ "are {}.".format(self.__name__, self.layer_name, net.layers.keys()) def __call__(self, epoch_nr, update_nr, net, stepper, logs): log = OrderedDict() for key, v in net.buffer[self.layer_name].internals.items(): v = net.handler.get_numpy_copy(v) log[key] = OrderedDict() log[key]['min'] = v.min() log[key]['avg'] = v.mean() log[key]['max'] = v.max() out_deltas_log = log['output_deltas'] = OrderedDict() for key, v in net.buffer[self.layer_name].output_deltas.items(): v = net.handler.get_numpy_copy(v) key_log = out_deltas_log[key] = OrderedDict() key_log['min'] = v.min() key_log['avg'] = v.mean() key_log['max'] = v.max() in_deltas_log = log['input_deltas'] = OrderedDict() for key, v in net.buffer[self.layer_name].input_deltas.items(): key_log = in_deltas_log[key] = OrderedDict() v = net.handler.get_numpy_copy(v) key_log[key]['min'] = v.min() key_log[key]['avg'] = v.mean() key_log[key]['max'] = v.max() return log class MonitorLayerGradients(Hook): """ Monitor some statistics about all the gradients of a layer. """ def __init__(self, layer_name, name=None, timescale='epoch', interval=1, verbose=None): if name is None: name = "MonitorGradients_{}".format(layer_name) super(MonitorLayerGradients, self).__init__(name, timescale, interval, verbose) self.layer_name = layer_name def start(self, net, stepper, verbose, named_data_iters): assert self.layer_name in net.layers.keys(), \ "{} >> No layer named {} present in network. Available layers " \ "are {}.".format(self.__name__, self.layer_name, net.layers.keys()) def __call__(self, epoch_nr, update_nr, net, stepper, logs): log = OrderedDict() for key, v in net.buffer[self.layer_name].gradients.items(): v = net.handler.get_numpy_copy(v) log[key] = OrderedDict() log[key]['min'] = v.min() log[key]['avg'] = v.mean() log[key]['max'] = v.max() return log class MonitorLayerInOuts(Hook): """ Monitor some statistics about all the inputs and outputs of a layer. """ def __init__(self, layer_name, name=None, timescale='epoch', interval=1, verbose=None): if name is None: name = "MonitorInOuts_{}".format(layer_name) super(MonitorLayerInOuts, self).__init__(name, timescale, interval, verbose) self.layer_name = layer_name def start(self, net, stepper, verbose, named_data_iters): assert self.layer_name in net.layers.keys(), \ "{} >> No layer named {} present in network. Available layers " \ "are {}.".format(self.__name__, self.layer_name, net.layers.keys()) def __call__(self, epoch_nr, update_nr, net, stepper, logs): log = OrderedDict() input_log = log['inputs'] = OrderedDict() for key, v in net.buffer[self.layer_name].inputs.items(): v = net.handler.get_numpy_copy(v) key_log = input_log[key] = OrderedDict() key_log['min'] = v.min() key_log['avg'] = v.mean() key_log['max'] = v.max() output_log = log['outputs'] = OrderedDict() for key, v in net.buffer[self.layer_name].outputs.items(): key_log = output_log[key] = OrderedDict() v = net.handler.get_numpy_copy(v) key_log['min'] = v.min() key_log['avg'] = v.mean() key_log['max'] = v.max() return log class MonitorLayerParameters(Hook): """ Monitor some statistics about all the parameters of a layer. """ def __init__(self, layer_name, name=None, timescale='epoch', interval=1, verbose=None): if name is None: name = "MonitorParameters_{}".format(layer_name) super(MonitorLayerParameters, self).__init__(name, timescale, interval, verbose) self.layer_name = layer_name def start(self, net, stepper, verbose, named_data_iters): assert self.layer_name in net.layers.keys(), \ "{} >> No layer named {} present in network. Available layers " \ "are {}.".format(self.__name__, self.layer_name, net.layers.keys()) def __call__(self, epoch_nr, update_nr, net, stepper, logs): log = OrderedDict() for key, v in net.buffer[self.layer_name].parameters.items(): v = net.handler.get_numpy_copy(v) log[key] = OrderedDict() log[key]['min'] = v.min() log[key]['avg'] = v.mean() log[key]['max'] = v.max() if len(v.shape) > 1: log[key]['min_L2_norm'] = np.sqrt(np.sum(v ** 2, axis=1)).min() log[key]['avg_L2_norm'] = np.sqrt(np.sum(v ** 2, axis=1)).mean() log[key]['max_L2_norm'] = np.sqrt(np.sum(v ** 2, axis=1)).max() return log class MonitorLoss(Hook): """ Monitor the losses computed by the network on a dataset using a given data iterator. """ def __init__(self, iter_name, name=None, timescale='epoch', interval=1, verbose=None): super(MonitorLoss, self).__init__(name, timescale, interval, verbose) self.iter_name = iter_name self.iter = None def start(self, net, stepper, verbose, named_data_iters): super(MonitorLoss, self).start(net, stepper, verbose, named_data_iters) if self.iter_name not in named_data_iters: raise KeyError("{} >> {} is not present in named_data_iters. " "Remember to pass it as a kwarg to Trainer.train()" .format(self.__name__, self.iter_name)) self.iter = named_data_iters[self.iter_name] def __call__(self, epoch_nr, update_nr, net, stepper, logs): return evaluate(net, self.iter, scorers=()) class MonitorScores(Hook): """ Monitor the losses and optionally several scores using a given data iterator. Args: iter_name (str): name of the data iterator to use (as specified in the train() call) scorers (List[brainstorm.scorers.Scorer]): List of Scorers to evaluate. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'MonitorScores' timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. See Also: MonitorLoss: monitor the overall loss of the network. """ def __init__(self, iter_name, scorers, name=None, timescale='epoch', interval=1, verbose=None): super(MonitorScores, self).__init__(name, timescale, interval, verbose) self.iter_name = iter_name self.iter = None self.scorers = scorers def start(self, net, stepper, verbose, named_data_iters): super(MonitorScores, self).start(net, stepper, verbose, named_data_iters) if self.iter_name not in named_data_iters: raise KeyError("{} >> {} is not present in named_data_iters. " "Remember to pass it as a kwarg to Trainer.train()" .format(self.__name__, self.iter_name)) self.iter = named_data_iters[self.iter_name] def __call__(self, epoch_nr, update_nr, net, stepper, logs): return evaluate(net, self.iter, self.scorers) # -------------------------------- Stoppers --------------------------------- # class EarlyStopper(Hook): """ Stop the training if a log entry does not improve for some time. Can stop training when the log entry is at its minimum (such as an error) or maximum (such as accuracy) according to the ``criterion`` argument. The ``timescale`` and ``interval`` should be the same as those for the monitoring hook which logs the quantity of interest. Args: log_name: Name of the log entry to be checked for improvement. It should be in the form <monitorname>.<log_name> where log_name itself may be a nested dictionary key in dotted notation. patience: Number of log updates to wait before stopping training. Default is 1. criterion: Indicates whether training should be stopped when the log entry is at its minimum or maximum value. Must be either 'min' or 'max'. Defaults to 'min'. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'EarlyStopper'. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. Examples: Add a hook to monitor a quantity of interest: >>> scorer = bs.scorers.Accuracy() >>> trainer.add_hook(bs.hooks.MonitorScores('valid_getter', [scorer], ... name='validation')) Stop training if validation set accuracy does not rise for 10 epochs: >>> trainer.add_hook(bs.hooks.EarlyStopper('validation.Accuracy', ... patience=10, ... criterion='max')) Stop training if loss on validation set does not drop for 5 epochs: >>> trainer.add_hook(bs.hooks.EarlyStopper('validation.total_loss', ... patience=5, ... criterion='min')) """ __default_values__ = {'patience': 1} def __init__(self, log_name, patience=1, criterion='min', name=None, timescale='epoch', interval=1, verbose=None): super(EarlyStopper, self).__init__(name, timescale, interval, verbose) self.log_name = log_name self.patience = patience if criterion not in ['min', 'max']: raise ValueError("Unknown criterion: '{}'" "(Should be 'min' or 'max')".format(criterion)) self.criterion = criterion def __call__(self, epoch_nr, update_nr, net, stepper, logs): if epoch_nr == 0: try: e = get_by_path(logs, self.log_name) except KeyError: return e = get_by_path(logs, self.log_name) best_idx = np.argmin(e) if self.criterion == 'min' else np.argmax(e) if len(e) > best_idx + self.patience: self.message("Stopping because {} did not improve for {} checks " "(criterion used : {}).".format(self.log_name, self.patience, self.criterion)) raise StopIteration() class StopAfterEpoch(Hook): """ Stop the training after a specified number of epochs. Args: max_epochs (int): The number of epochs to train. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'StopAfterEpoch'. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. """ def __init__(self, max_epochs, name=None, timescale='epoch', interval=1, verbose=None): super(StopAfterEpoch, self).__init__(name, timescale, interval, verbose) self.max_epochs = max_epochs def __call__(self, epoch_nr, update_nr, net, stepper, logs): if epoch_nr >= self.max_epochs: self.message("Stopping because the maximum number of epochs ({}) " "was reached.".format(self.max_epochs)) raise StopIteration() class StopAfterThresholdReached(Hook): """ Stop the training if a log entry reaches the given threshold Can stop training when the log entry becomes sufficiently small (such as an error) or sufficiently large (such as accuracy) according to the threshold. Args: log_name: Name of the log entry to be checked for improvement. It should be in the form <monitorname>.<log_name> where log_name itself may be a nested dictionary key in dotted notation. threshold: The threshold value to reach criterion: Indicates whether training should be stopped when the log entry is at its minimum or maximum value. Must be either 'min' or 'max'. Defaults to 'min'. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'StopAfterThresholdReached'. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. Examples: Stop training if validation set accuracy is at least 97 %: >>> trainer.add_hook(StopAfterThresholdReached('validation.Accuracy', ... threshold=0.97, ... criterion='max')) Stop training if loss on validation set goes below 0.2: >>> trainer.add_hook(StopAfterThresholdReached('validation.total_loss', ... threshold=0.2, ... criterion='min')) """ def __init__(self, log_name, threshold, criterion='min', name=None, timescale='epoch', interval=1, verbose=None): super(StopAfterThresholdReached, self).__init__(name, timescale, interval, verbose) self.log_name = log_name self.threshold = threshold if criterion not in ['min', 'max']: raise ValueError("Unknown criterion: '{}'" "(Must be 'min' or 'max')".format(criterion)) self.criterion = criterion def __call__(self, epoch_nr, update_nr, net, stepper, logs): e = get_by_path(logs, self.log_name) is_threshold_reached = False if self.criterion == 'max' and max(e) >= self.threshold: is_threshold_reached = True elif self.criterion == 'min' and min(e) <= self.threshold: is_threshold_reached = True if is_threshold_reached: self.message("Stopping because {} has reached the threshold {} " "(criterion used : {})".format( self.log_name, self.threshold, self.criterion)) raise StopIteration() class StopOnNan(Hook): """ Stop the training if infinite or NaN values are found in parameters. This hook can also check a list of logs for invalid values. Args: logs_to_check (Optional[list, tuple]): A list of trainer logs to check in dotted notation. Defaults to (). check_parameters (Optional[bool]): Indicates whether the parameters should be checked for NaN. Defaults to True. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'StopOnNan'. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. """ def __init__(self, logs_to_check=(), check_parameters=True, check_training_loss=True, name=None, timescale='epoch', interval=1, verbose=None): super(StopOnNan, self).__init__(name, timescale, interval, verbose) self.logs_to_check = ([logs_to_check] if isinstance(logs_to_check, string_types) else logs_to_check) self.check_parameters = check_parameters self.check_training_loss = check_training_loss def __call__(self, epoch_nr, update_nr, net, stepper, logs): for log_name in self.logs_to_check: log = get_by_path(logs, log_name) if not np.all(np.isfinite(log)): self.message("NaN or inf detected in {}!".format(log_name)) raise StopIteration() if self.check_parameters: if not net.handler.is_fully_finite(net.buffer.parameters): self.message("NaN or inf detected in parameters!") raise StopIteration() if self.check_training_loss and 'rolling_training' in logs: rtrain = logs['rolling_training'] if 'total_loss' in rtrain: loss = rtrain['total_loss'] else: loss = rtrain['Loss'] if not np.all(np.isfinite(loss)): self.message("NaN or inf detected in rolling training loss!") raise StopIteration() class StopOnSigQuit(Hook): """ Stop training after the next call if it received a SIGQUIT (Ctrl + \). This hook makes it possible to exit the training loop and continue with the rest of the program execution. Args: name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'StopOnSigQuit'. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch'. interval (Optional[int]): This monitor should be called every ``interval`` epochs/updates. Default is 1. verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. """ __undescribed__ = {'quit': False} def __init__(self, name=None, timescale='epoch', interval=1, verbose=None): super(StopOnSigQuit, self).__init__(name, timescale, interval, verbose=verbose) self.quit = False def start(self, net, stepper, verbose, named_data_iters): super(StopOnSigQuit, self).start(net, stepper, verbose, named_data_iters) self.quit = False signal.signal(signal.SIGQUIT, self.receive_signal) def receive_signal(self, signum, stack): self.message('Interrupting') self.quit = True def __call__(self, epoch_nr, update_nr, net, stepper, logs): if self.quit: raise StopIteration('Received SIGQUIT signal.') # ------------------------------ Visualizers -------------------------------- # if not optional.has_bokeh: BokehVisualizer = optional.bokeh_mock else: import bokeh.plotting as bk import warnings class BokehVisualizer(Hook): """ Visualizes log values in your browser during training time using the Bokeh plotting library. Before running the trainer the user is required to have the Bokeh Server running. By default the visualization is discarded upon closing the webbrowser. However if an output file is specified then the .html file will be saved after each iteration at the specified location. Args: log_names (list, array): Contains the name of the logs that are being recorded to be visualized. log_names should be of the form <monitorname>.<log_name> where log_name itself may be a nested dictionary key in dotted notation. filename (Optional, str): The location to which the .html file containing the accuracy plot should be saved. timescale (Optional[str]): Specifies whether the Monitor should be called after each epoch or after each update. Default is 'epoch' interval (Optional[int]): This monitor should be called every ``interval`` number of epochs/updates. Default is 1. name (Optional[str]): Name of this monitor. This name is used as a key in the trainer logs. Default is 'MonitorScores' verbose: bool, optional Specifies whether the logs of this monitor should be printed, and acts as a fallback verbosity for the used data iterator. If not set it defaults to the verbosity setting of the trainer. """ def __init__(self, log_names, filename=None, timescale='epoch', interval=1, name=None, verbose=None): super(BokehVisualizer, self).__init__(name, timescale, interval, verbose) if isinstance(log_names, string_types): self.log_names = [log_names] elif isinstance(log_names, (tuple, list)): self.log_names = log_names else: raise ValueError('log_names must be either str or list but' ' was {}'.format(type(log_names))) self.filename = filename self.bk = bk self.TOOLS = "resize,crosshair,pan,wheel_zoom,box_zoom,reset,save" self.colors = ['blue', 'green', 'red', 'olive', 'cyan', 'aqua', 'gray'] warnings.filterwarnings('error') try: self.bk.output_server(self.__name__) warnings.resetwarnings() except Warning: raise StopIteration('Bokeh server is not running') self.fig = self.bk.figure( title=self.__name__, x_axis_label=self.timescale, y_axis_label='value', tools=self.TOOLS, plot_width=1000, x_range=(0, 25), y_range=(0, 1)) def start(self, net, stepper, verbose, named_data_iters): count = 0 # create empty line objects for log_name in self.log_names: self.fig.line([], [], legend=log_name, line_width=2, color=self.colors[count % len(self.colors)], name=log_name) count += 1 self.bk.show(self.fig) self.bk.output_file('bokeh_visualisation.html', title=self.__name__, mode='cdn') def __call__(self, epoch_nr, update_nr, net, stepper, logs): if epoch_nr == 0: return for log_name in self.log_names: renderer = self.fig.select(dict(name=log_name)) datasource = renderer[0].data_source datasource.data["y"] = get_by_path(logs, log_name) datasource.data["x"] = range(len(datasource.data["y"])) self.bk.cursession().store_objects(datasource) if self.filename is not None: self.bk.save(self.fig, filename=self.filename + ".html") class ProgressBar(Hook): """ Adds a progress bar to show the training progress. """ def __init__(self): super(ProgressBar, self).__init__(None, 'update', 1) self.length = None self.bar = None def start(self, net, stepper, verbose, named_data_iters): assert 'training_data_iter' in named_data_iters self.length = named_data_iters['training_data_iter'].length def __call__(self, epoch_nr, update_nr, net, stepper, logs): assert epoch_nr == 0 or math.ceil(update_nr / self.length) == epoch_nr if update_nr % self.length == 1: self.bar = progress_bar(self.length) print(next(self.bar), end='') sys.stdout.flush() elif update_nr % self.length == 0: if self.bar: print(self.bar.send(self.length)) else: print(self.bar.send(update_nr % self.length), end='') sys.stdout.flush() # ----------------------------- Miscellaneous ------------------------------- # class InfoUpdater(Hook): """ Save the information from logs to the Sacred custom info dict""" def __init__(self, run, name=None, timescale='epoch', interval=1): super(InfoUpdater, self).__init__(name, timescale, interval) self.run = run def __call__(self, epoch_nr, update_nr, net, stepper, logs): info = self.run.info info['epoch_nr'] = epoch_nr info['update_nr'] = update_nr info['logs'] = logs if 'nr_parameters' not in info: info['nr_parameters'] = net.buffer.parameters.size class ModifyStepperAttribute(Hook): """Modify an attribute of the training stepper.""" def __init__(self, schedule, attr_name='learning_rate', timescale='epoch', interval=1, name=None, verbose=None): super(ModifyStepperAttribute, self).__init__(name, timescale, interval, verbose) self.schedule = schedule self.attr_name = attr_name def start(self, net, stepper, verbose, monitor_kwargs): super(ModifyStepperAttribute, self).start(net, stepper, verbose, monitor_kwargs) assert hasattr(stepper, self.attr_name), \ "The stepper {} does not have the attribute {}".format( stepper.__class__.__name__, self.attr_name) def __call__(self, epoch_nr, update_nr, net, stepper, logs): setattr(stepper, self.attr_name, self.schedule(epoch_nr, update_nr, self.timescale, self.interval, net, stepper, logs))
src/encoded/tests/test_schema_computational_model.py
procha2/encoded
102
12622443
import pytest def test_unique_software(testapp, computational_model_unique_software): res = testapp.post_json('/computational_model', computational_model_unique_software, expect_errors=True) assert res.status_code == 201 def test_non_unique_software(testapp, computational_model_non_unique_software): res = testapp.post_json('/computational_model',computational_model_non_unique_software, expect_errors=True) assert res.status_code == 422
qttbx/viewers/chimerax.py
dperl-sol/cctbx_project
155
12622454
<reponame>dperl-sol/cctbx_project """ Interface for ChimeraX using ISOLDE REST API client https://www.cgl.ucsf.edu/chimerax/ https://isolde.cimr.cam.ac.uk/what-isolde/ """ from __future__ import absolute_import, division, print_function import os import subprocess import sys import tempfile from libtbx.utils import to_str, Sorry from qttbx.viewers import ModelViewer # ============================================================================= class ChimeraXViewer(ModelViewer): viewer_name = 'ChimeraX' # --------------------------------------------------------------------------- def start_viewer(self): self.run_basic_checks() # write script with tempfile.NamedTemporaryFile(mode='w', suffix='.cxc', delete=False) as self.script: self.script.write('isolde remote rest start port {port}'.format(port=self.port)) # start viewer command = [self.command, self.script.name] self.process = subprocess.Popen(args=command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False) # connect to viewer #self._connect() # --------------------------------------------------------------------------- def close_viewer(self): if os.path.isfile(self.script.name): os.remove(self.script.name) # --------------------------------------------------------------------------- def load_model(self, filename=None): model_id = None if os.path.isfile(filename): model_id = self._client.load_model(filename) else: raise Sorry('Model file ({filename}) is not found.'.format(filename=filename)) return model_id # --------------------------------------------------------------------------- def _connect(self): # find client.py in ISOLDE client_path = None with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as python_script: python_script.write("""\ from chimerax import isolde print(isolde.__file__) """) command = [self.command, '--nogui', '--exit', '--script', python_script.name] python_process = subprocess.Popen(args=command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False) stdout, stderr = python_process.communicate() python_process.wait() if python_process.returncode != 0: raise Sorry('The ISOLDE installation location could not be found.') else: if os.path.isfile(python_script.name): try: os.remove(python_script.name) except IOError: pass stdout = to_str(stdout).split('\n') line = None for line in stdout: if 'isolde' in line: break client_path = os.path.abspath( os.path.join(line, '..', 'remote_control', 'rest_server', 'client.py')) if client_path is not None and os.path.isfile(client_path): # import from file if sys.version_info.major > 2: import importlib.util spec = importlib.util.spec_from_file_location('client', client_path) client = importlib.util.module_from_spec(spec) spec.loader.exec_module(client) else: import imp client = imp.load_source('client', client_path) self._client = client.IsoldeRESTClient('localhost', self.port) self._client.connect() self._connected = True # =============================================================================
RecoParticleFlow/PFClusterProducer/python/particleFlowZeroSuppressionECAL_cff.py
ckamtsikis/cmssw
852
12622467
import FWCore.ParameterSet.Config as cms pfZeroSuppressionThresholds_EB = [0.080]*170 pfZeroSuppressionThresholds_EEminus = [0.300]*39 pfZeroSuppressionThresholds_EEplus = pfZeroSuppressionThresholds_EEminus # # These are expected to be adjusted soon, while the thresholds for older setups will remain unchanged. # _pfZeroSuppressionThresholds_EB_2017 = pfZeroSuppressionThresholds_EB _pfZeroSuppressionThresholds_EEminus_2017 = pfZeroSuppressionThresholds_EEminus _pfZeroSuppressionThresholds_EEplus_2017 = _pfZeroSuppressionThresholds_EEminus_2017 # # The three different set of thresholds will be used to study # possible new thresholds of pfrechits and effects on high level objects # The values proposed (A, B, C) are driven by expected noise levels # A ~ 2.0 sigma noise equivalent thresholds # B ~ 1.0 sigma noise equivalent thresholds # C ~ 0.5 sigma noise equivalent thresholds # # A _pfZeroSuppressionThresholds_EB_2018_A = [0.180]*170 _pfZeroSuppressionThresholds_EEminus_2018_A = [0.22, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.34, 0.36, 0.36, 0.38, 0.38, 0.4, 0.44, 0.46, 0.5, 0.54, 0.58, 0.62, 0.68, 0.72, 0.78, 0.84, 0.9, 1.0, 1.14, 1.36, 1.68, 2.14, 2.8, 3.76, 5.1, 6.94, 9.46, 12.84, 17.3, 23.2, 30.8] _pfZeroSuppressionThresholds_EEplus_2018_A = _pfZeroSuppressionThresholds_EEminus_2018_A _particle_flow_zero_suppression_ECAL_2018_A = cms.PSet( thresholds = cms.vdouble(_pfZeroSuppressionThresholds_EB_2018_A + _pfZeroSuppressionThresholds_EEminus_2018_A + _pfZeroSuppressionThresholds_EEplus_2018_A ) ) # B _pfZeroSuppressionThresholds_EB_2018_B = [0.140]*170 _pfZeroSuppressionThresholds_EEminus_2018_B = [0.11, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.17, 0.18, 0.18, 0.19, 0.19, 0.20, 0.22, 0.23, 0.25, 0.27, 0.29, 0.31, 0.34, 0.36, 0.39, 0.42, 0.45, 0.50, 0.57, 0.68, 0.84, 1.07, 1.40, 1.88, 2.55, 3.47, 4.73, 6.42, 8.65, 11.6, 15.4] _pfZeroSuppressionThresholds_EEplus_2018_B = _pfZeroSuppressionThresholds_EEminus_2018_B _particle_flow_zero_suppression_ECAL_2018_B = cms.PSet( thresholds = cms.vdouble(_pfZeroSuppressionThresholds_EB_2018_B + _pfZeroSuppressionThresholds_EEminus_2018_B + _pfZeroSuppressionThresholds_EEplus_2018_B ) ) # C _pfZeroSuppressionThresholds_EB_2018_C = [0.100]*170 _pfZeroSuppressionThresholds_EEminus_2018_C = [0.055, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.085, 0.09, 0.09, 0.095, 0.095, 0.1, 0.11, 0.115, 0.125, 0.135, 0.145, 0.155, 0.17, 0.18, 0.195, 0.21, 0.225, 0.25, 0.285, 0.34, 0.42, 0.535, 0.7, 0.94, 1.275, 1.735, 2.365, 3.21, 4.325, 5.8, 7.7 ] _pfZeroSuppressionThresholds_EEplus_2018_C = _pfZeroSuppressionThresholds_EEminus_2018_C _particle_flow_zero_suppression_ECAL_2018_C = cms.PSet( thresholds = cms.vdouble(_pfZeroSuppressionThresholds_EB_2018_C + _pfZeroSuppressionThresholds_EEminus_2018_C + _pfZeroSuppressionThresholds_EEplus_2018_C ) ) particle_flow_zero_suppression_ECAL = cms.PSet( thresholds = cms.vdouble(pfZeroSuppressionThresholds_EB + pfZeroSuppressionThresholds_EEminus + pfZeroSuppressionThresholds_EEplus ) ) _particle_flow_zero_suppression_ECAL_2017 = cms.PSet( thresholds = cms.vdouble(_pfZeroSuppressionThresholds_EB_2017 + _pfZeroSuppressionThresholds_EEminus_2017 + _pfZeroSuppressionThresholds_EEplus_2017 ) ) # # The thresholds have been temporarily removed (lowered to 80 MeV in EB and 300 MeV in EE, # then overseeded by the gathering and seeding PF cluster thresholds) # Later, we may need to reintroduce eta dependent thresholds # to mitigate the effect of the noise # from Configuration.Eras.Modifier_run2_ECAL_2017_cff import run2_ECAL_2017 run2_ECAL_2017.toReplaceWith(particle_flow_zero_suppression_ECAL, _particle_flow_zero_suppression_ECAL_2017) from Configuration.Eras.Modifier_phase2_ecal_cff import phase2_ecal phase2_ecal.toReplaceWith(particle_flow_zero_suppression_ECAL, _particle_flow_zero_suppression_ECAL_2017)
python/mleap/sklearn/base.py
neilsummers/mleap
1,401
12622517
<filename>python/mleap/sklearn/base.py # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from sklearn.linear_model import LinearRegression from mleap.bundle.serialize import MLeapSerializer, MLeapDeserializer import uuid import os import numpy as np def serialize_to_bundle(self, path, model_name): serializer = SimpleSerializer() return serializer.serialize_to_bundle(self, path, model_name) def deserialize_from_bundle(self, path, node_name): serializer = SimpleSerializer() return serializer.deserialize_from_bundle(self, path, node_name) def mleap_init(self, input_features, prediction_column): self.input_features = input_features self.prediction_column = prediction_column self.name = "{}_{}".format(self.op, uuid.uuid1()) setattr(LinearRegression, 'op', 'linear_regression') setattr(LinearRegression, 'mlinit', mleap_init) setattr(LinearRegression, 'serialize_to_bundle', serialize_to_bundle) setattr(LinearRegression, 'deserialize_from_bundle', deserialize_from_bundle) setattr(LinearRegression, 'serializable', True) class SimpleSerializer(MLeapSerializer, MLeapDeserializer): def __init__(self): super(SimpleSerializer, self).__init__() @staticmethod def set_prediction_column(transformer, prediction_column): transformer.prediction_column = prediction_column @staticmethod def set_input_features(transformer, input_features): transformer.input_features = input_features def serialize_to_bundle(self, transformer, path, model_name): # compile tuples of model attributes to serialize attributes = list() attributes.append(('intercept', transformer.intercept_.tolist()[0])) attributes.append(('coefficients', transformer.coef_.tolist()[0])) # define node inputs and outputs inputs = [{ "name": transformer.input_features, "port": "features" }] outputs = [{ "name": transformer.prediction_column, "port": "prediction" }] self.serialize(transformer, path, model_name, attributes, inputs, outputs) def deserialize_from_bundle(self, transformer, node_path, node_name): attributes_map = { 'coefficients': 'coef_', 'intercept': 'intercept_' } # Set serialized attributes full_node_path = os.path.join(node_path, node_name) transformer = self.deserialize_single_input_output(transformer, full_node_path, attributes_map) # Set Additional Attributes if 'intercept_' in transformer.__dict__: transformer.fit_intercept = True else: transformer.fit_intercept = False transformer.coef_ = np.array([transformer.coef_]) return transformer
ppci/lang/python/python2ir.py
kl4w3i/ppci
161
12622525
<reponame>kl4w3i/ppci """ Python to IR compilation. """ import logging import ast import contextlib import inspect from ... import ir, irutils from ...common import SourceLocation, CompilerError from ...binutils import debuginfo def python_to_ir(f, imports=None): """Compile a piece of python code to an ir module. Args: f (file-like-object): a file like object containing the python code imports: Dictionary with symbols that are present. Returns: A :class:`ppci.ir.Module` module .. doctest:: >>> import io >>> from ppci.lang.python import python_to_ir >>> f = io.StringIO("def calc(x: int) -> int: return x + 133") >>> python_to_ir(f) <ppci.ir.Module object at ...> """ mod = PythonToIrCompiler().compile(f, imports=imports) return mod class Var: def __init__(self, value, lvalue, ty): self.value = value self.lvalue = lvalue self.ty = ty class PythonToIrCompiler: """ Not peer-to-peer but python to ppci :) """ logger = logging.getLogger("p2p") def __init__(self): self.type_mapping = {"int": ir.i64, "float": ir.f64, "str": ir.ptr} def compile(self, f, imports=None): """Convert python into IR-code. Arguments: f: the with the python code Returns: the ir-module. """ self.debug_db = debuginfo.DebugDb() src = f.read() self._filename = getattr(f, "name", None) # Parse python code: x = ast.parse(src) self.function_map = {} self.builder = irutils.Builder() self.builder.prepare() self.builder.set_module(ir.Module("foo", debug_db=self.debug_db)) if imports: # Fill imported functions: for name, signature in imports.items(): self.gen_import(name, signature) for df in x.body: self.logger.debug("Processing %s", df) if isinstance(df, ast.FunctionDef): self.gen_function(df) else: self.not_impl(df) mod = self.builder.module irutils.verify_module(mod) return mod def gen_import(self, name, signature): # Determine function type: if isinstance(signature, tuple): return_type, arg_types = signature else: # Assume that we have a function: signature = inspect.signature(signature) if signature.return_annotation is inspect.Signature.empty: return_type = None else: return_type = signature.return_annotation arg_types = [p.annotation for p in signature.parameters.values()] # Create external function: ir_arg_types = [self.get_ty(t) for t in arg_types] if return_type: ir_function = ir.ExternalFunction( name, ir_arg_types, self.get_ty(return_type) ) else: ir_function = ir.ExternalProcedure(name, ir_arg_types) self.builder.module.add_external(ir_function) self.function_map[name] = ir_function, return_type, arg_types def gen_function(self, df): """ Transform a python function into an IR-function """ self.local_map = {} function_name = df.name binding = ir.Binding.GLOBAL dbg_int = debuginfo.DebugBaseType("int", 8, 1) return_type = self.get_ty(df.returns) if return_type: ir_function = self.builder.new_function( function_name, binding, return_type ) else: ir_function = self.builder.new_procedure(function_name, binding) dbg_args = [] arg_types = [] for arg in df.args.args: if not arg.annotation: self.error(arg, "Need type annotation for {}".format(arg.arg)) aty = self.get_ty(arg.annotation) arg_types.append(aty) arg_name = arg.arg # Debug info: param = ir.Parameter(arg_name, aty) dbg_args.append(debuginfo.DebugParameter(arg_name, dbg_int)) ir_function.add_parameter(param) # Register function as known: self.function_map[function_name] = ir_function, return_type, arg_types self.logger.debug("Created function %s", ir_function) self.builder.block_number = 0 self.builder.set_function(ir_function) dfi = debuginfo.DebugFunction( ir_function.name, SourceLocation("foo.py", 1, 1, 1), dbg_int, dbg_args, ) self.debug_db.enter(ir_function, dfi) first_block = self.builder.new_block() self.builder.set_block(first_block) ir_function.entry = first_block # Copy the parameters to variables (so they can be modified): for parameter in ir_function.arguments: # self.local_map[name] = Var(param, False, aty) para_var = self.get_variable(df, parameter.name, ty=parameter.ty) self.emit(ir.Store(parameter, para_var.value)) self.block_stack = [] self.gen_statement(df.body) assert not self.block_stack # Return if not yet done if not self.builder.block.is_closed: if return_type: if self.builder.block.is_empty: pass else: raise NotImplementedError() else: self.emit(ir.Exit()) # TODO: ugly: ir_function.delete_unreachable() def gen_statement(self, statement): """ Generate code for a statement """ if isinstance(statement, list): for inner_statement in statement: self.gen_statement(inner_statement) else: with self.use_location(statement): if isinstance(statement, ast.Pass): pass # No comments :) elif isinstance(statement, ast.Return): self.gen_return(statement) elif isinstance(statement, ast.If): self.gen_if(statement) elif isinstance(statement, ast.While): self.gen_while(statement) elif isinstance(statement, ast.Break): self.gen_break(statement) elif isinstance(statement, ast.Continue): self.gen_continue(statement) elif isinstance(statement, ast.For): self.gen_for(statement) elif isinstance(statement, ast.Assign): self.gen_assign(statement) elif isinstance(statement, ast.Expr): self.gen_expr(statement.value) elif isinstance(statement, ast.AugAssign): self.gen_aug_assign(statement) else: # pragma: no cover self.not_impl(statement) def gen_break(self, statement): break_block = self.block_stack[-1][1] self.builder.emit_jump(break_block) unreachable_block = self.builder.new_block() self.builder.set_block(unreachable_block) def gen_continue(self, statement): continue_block = self.block_stack[-1][0] self.builder.emit_jump(continue_block) unreachable_block = self.builder.new_block() self.builder.set_block(unreachable_block) def gen_return(self, statement): """ Compile return statement. """ if self.builder.function.is_procedure: if statement.value: self.error( statement, "Cannot return a value from a function without return type.", ) self.builder.emit_exit() else: if not statement.value: self.error( statement, "Must return a value from this function." ) value = self.gen_expr(statement.value) self.builder.emit_return(value) void_block = self.builder.new_block() self.builder.set_block(void_block) def gen_if(self, statement): """ Compile a python if-statement. """ ja_block = self.builder.new_block() else_block = self.builder.new_block() continue_block = self.builder.new_block() self.gen_cond(statement.test, ja_block, else_block) # Yes self.builder.set_block(ja_block) self.gen_statement(statement.body) self.builder.emit_jump(continue_block) # Else: self.builder.set_block(else_block) self.gen_statement(statement.orelse) self.builder.emit_jump(continue_block) self.builder.set_block(continue_block) def gen_while(self, statement): """ Compile python while-statement. """ if statement.orelse: self.error(statement, "while-else not supported") test_block = self.builder.new_block() body_block = self.builder.new_block() final_block = self.builder.new_block() # Test: self.builder.emit_jump(test_block) self.builder.set_block(test_block) self.gen_cond(statement.test, body_block, final_block) # Body: self.enter_loop(test_block, final_block) self.builder.set_block(body_block) self.gen_statement(statement.body) self.builder.emit_jump(test_block) self.leave_loop() # The end: self.builder.set_block(final_block) def gen_for(self, statement): """ Compile python for-statement. """ # Check else-clause: if statement.orelse: self.error(statement, "for-else not supported") # Allow for loop with range in it: if not isinstance(statement.iter, ast.Call): self.error(statement.iter, "Only range supported in for loops") if statement.iter.func.id != "range": self.error(statement.iter, "Only range supported in for loops") # Determine start and end values: ra = statement.iter.args if len(ra) == 1: i_init = self.builder.emit_const(0, ir.i64) n2 = self.gen_expr(ra[0]) elif len(ra) == 2: i_init = self.gen_expr(ra[0]) n2 = self.gen_expr(ra[1]) else: self.error( statement.iter, "Does not support {} arguments".format(len(ra)), ) entry_block = self.builder.block test_block = self.builder.new_block() body_block = self.builder.new_block() final_block = self.builder.new_block() self.emit(ir.Jump(test_block)) # Test block: self.builder.set_block(test_block) i_phi = self.emit(ir.Phi("i_phi", ir.i64)) i_phi.set_incoming(entry_block, i_init) self.emit(ir.CJump(i_phi, "<", n2, body_block, final_block)) # Publish looping variable: self.local_map[statement.target.id] = Var(i_phi, False, ir.i64) # Body: self.enter_loop(test_block, final_block) self.builder.set_block(body_block) self.gen_statement(statement.body) self.leave_loop() # Increment loop variable: one = self.builder.emit_const(1, ir.i64) i_inc = self.builder.emit_add(i_phi, one, ir.i64) i_phi.set_incoming(body_block, i_inc) # Jump to start again: self.builder.emit_jump(test_block) # The end: self.builder.set_block(final_block) def gen_assign(self, statement): """ Compile assignment-statement. """ if len(statement.targets) == 1: target = statement.targets[0] else: self.error( statement, "Only a single assignment target is supported." ) if isinstance(target, ast.Name): value = self.gen_expr(statement.value) self.store_value(target, value) elif isinstance(target, ast.Tuple): # Tuple assign like: 'a, b, c = 1, 2, 3' assert isinstance(statement.value, ast.Tuple) values = statement.value.elts targets = target.elts assert len(statement.value.elts) == len(targets) values = [self.gen_expr(v) for v in values] for target, value in zip(targets, values): self.store_value(target, value) else: # pragma: no cover self.not_impl(statement) def gen_aug_assign(self, statement): """Compile augmented assign. For example: 'a += 2' """ target = statement.target if isinstance(target, ast.Name): name = target.id assert isinstance(name, str) var = self.get_variable(target, name) assert var.lvalue lhs = self.builder.emit_load(var.value, var.ty) rhs = self.gen_expr(statement.value) op = self.binop_map[type(statement.op)] value = self.emit(ir.Binop(lhs, op, rhs, "augassign", var.ty)) self.emit(ir.Store(value, var.value)) else: # pragma: no cover self.not_impl(statement) def store_value(self, target, value): """ Store an IR-value into a target node. """ assert isinstance(target, ast.Name) name = target.id var = self.get_variable(target, name, ty=value.ty) assert var.lvalue self.emit(ir.Store(value, var.value)) def gen_cond(self, condition, yes_block, no_block): """ Compile a condition. """ if isinstance(condition, ast.Compare): self.gen_compare(condition, yes_block, no_block) elif isinstance(condition, ast.BoolOp): self.gen_bool_op(condition, yes_block, no_block) else: # pragma: no cover self.not_impl(condition) def gen_compare(self, condition, yes_block, no_block): # print(dir(c), c.ops, c.comparators) # TODO: chained operators! ( 'a < b < c < d' ) assert len(condition.ops) == len(condition.comparators) assert len(condition.ops) == 1 op_map = { ast.Gt: ">", ast.GtE: ">=", ast.Lt: "<", ast.LtE: "<=", ast.Eq: "==", ast.NotEq: "!=", } a = self.gen_expr(condition.left) op = op_map[type(condition.ops[0])] b = self.gen_expr(condition.comparators[0]) if a.ty is not b.ty: self.error(condition, "Type mismatch, types must be the same.") self.emit(ir.CJump(a, op, b, yes_block, no_block)) def gen_bool_op(self, condition, yes_block, no_block): """ Compile a boolean operator such as 'and' """ assert len(condition.values) >= 1 first_values = condition.values[:-1] last_value = condition.values[-1] if isinstance(condition.op, ast.And): # All values must be true here, # so bail out on first false value. for value in first_values: all_true_block = self.builder.new_block() self.gen_cond(value, all_true_block, no_block) self.builder.set_block(all_true_block) self.gen_cond(last_value, yes_block, no_block) elif isinstance(condition.op, ast.Or): # The first true value is enough to make this work! for value in first_values: all_false_block = self.builder.new_block() self.gen_cond(value, yes_block, all_false_block) self.builder.set_block(all_false_block) self.gen_cond(last_value, yes_block, no_block) else: # pragma: no cover self.not_impl(condition) def gen_expr(self, expr): """ Generate code for a single expression """ with self.use_location(expr): if isinstance(expr, ast.BinOp): value = self.gen_binop(expr) elif isinstance(expr, ast.Name): value = self.gen_name(expr) elif isinstance(expr, ast.Call): value = self.gen_call(expr) elif hasattr(ast, "Constant") and isinstance(expr, ast.Constant): # Exists in Python 3.6+, generated in Python 3.8+ value = expr.value if isinstance(value, str): value = self.gen_string_constant(expr, value) elif isinstance(value, (int, float)): value = self.gen_num(expr, value) else: # pragma: no cover self.not_impl(condition) elif isinstance(expr, ast.Num): # Python < 3.8 value = self.gen_num(expr, expr.n) elif isinstance(expr, ast.Str): # Python < 3.8 value = self.gen_string_constant(expr, expr.s) else: # pragma: no cover self.not_impl(expr) return value def gen_name(self, expr): """ Compile name node access. """ var = self.local_map[expr.id] if var.lvalue: value = self.builder.emit_load(var.value, var.ty) else: value = var.value return value binop_map = { ast.Add: "+", ast.Sub: "-", ast.Mult: "*", ast.Div: "/", ast.FloorDiv: "/", } def gen_binop(self, expr): """ Compile binary operator. """ a = self.gen_expr(expr.left) b = self.gen_expr(expr.right) if a.ty is not b.ty: self.error(expr, "Type mismatch, types must be the same.") # TODO: automatic coercion # TODO: assume type of a? ty = a.ty op_typ = type(expr.op) if op_typ in self.binop_map: op = self.binop_map[op_typ] else: self.not_impl(expr) value = self.builder.emit_binop(a, op, b, ty) return value def gen_call(self, expr): """ Compile call-expression. """ assert isinstance(expr.func, ast.Name) name = expr.func.id # Lookup function and check types: ir_function, return_type, arg_types = self.function_map[name] self.logger.warning("Function arguments not type checked!") # Evaluate arguments: args = [self.gen_expr(a) for a in expr.args] # Emit call: if return_type: value = self.emit( ir.FunctionCall(ir_function, args, "res", return_type) ) else: self.emit(ir.ProcedureCall(ir_function, args)) value = None return value def gen_num(self, expr, num): if isinstance(num, int): value = self.builder.emit_const(num, ir.i64) elif isinstance(num, float): value = self.builder.emit_const(num, ir.f64) else: # pragma: no cover self.not_impl(expr) return value def gen_string_constant(self, expr, value): data = value.encode("utf8") + bytes([0]) string_constant = self.emit(ir.LiteralData(data, "string_constant")) value = self.emit(ir.AddressOf(string_constant, "string_constant_ptr")) return value # Helper functions: def get_variable(self, node, name, ty=None): """Retrieve a variable, or create it if type is given.""" if name in self.local_map: var = self.local_map[name] else: # Create a variable with the given name # TODO: for now i64 is assumed to be the only type! if ty is None: self.error(node, "Undefined variable") else: mem = self.emit(ir.Alloc("alloc_{}".format(name), 8, 8)) addr = self.emit(ir.AddressOf(mem, "addr_{}".format(name))) var = Var(addr, True, ty) self.local_map[name] = var return var def common_type(self, ty1, ty2): """Determine the best target type for two input types. For example, (float, int) -> float (int, int) -> int """ type_ranks = { float: 10, int: 5, } pass def coerce(self, value, ty): """ Try to fit the value into a new value of a type. """ return value def not_impl(self, node): # pragma: no cover print(dir(node)) self.error(node, "Cannot do {}".format(node)) def node_location(self, node): """ Create a source code location for the given node. """ location = SourceLocation( self._filename, node.lineno, node.col_offset + 1, 1 ) return location def error(self, node, message): """ Raise a nice error message as feedback """ location = self.node_location(node) raise CompilerError(message, location) def emit(self, instruction): """ Emit an instruction """ self.builder.emit(instruction) return instruction def get_ty(self, annotation) -> ir.Typ: """ Get the type based on type annotation """ if isinstance(annotation, type): type_name = annotation.__name__ elif annotation is None: return else: if ( isinstance(annotation, ast.NameConstant) and annotation.value is None ): return type_name = annotation.id if type_name in self.type_mapping: return self.type_mapping[type_name] else: self.error(annotation, "Unhandled type: {}".format(type_name)) def enter_loop(self, continue_block, break_block): self.block_stack.append((continue_block, break_block)) def leave_loop(self): self.block_stack.pop() @contextlib.contextmanager def use_location(self, node): """Use the location of the node for all code generated within the with clause. """ location = self.node_location(node) self.builder.push_location(location) yield self.builder.pop_location()
api/utils/local.py
wkma/bk-sops
881
12622544
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from contextlib import contextmanager try: from greenlet import getcurrent as get_ident except ImportError: try: from six.moves._thread import get_ident except ImportError: from _thread import get_ident __all__ = ["local", "Local", "get_ident"] """Thread-local/Greenlet-local objects Thread-local/Greenlet-local objects support the management of thread-local/greenlet-local data. If you have data that you want to be local to a thread/greenlet, simply create a thread-local/greenlet-local object and use its attributes: >>> mydata = Local() >>> mydata.number = 42 >>> mydata.number 42 >>> hasattr(mydata, 'number') True >>> hasattr(mydata, 'username') False Reference : from threading import local """ class Localbase(object): __slots__ = ("__storage__", "__ident_func__") def __new__(cls, *args, **kwargs): self = object.__new__(cls, *args, **kwargs) object.__setattr__(self, "__storage__", {}) object.__setattr__(self, "__ident_func__", get_ident) return self class Local(Localbase): def __iter__(self): ident = self.__ident_func__() try: return iter(list(self.__storage__[ident].items())) except KeyError: return iter([]) def __release_local__(self): self.__storage__.pop(self.__ident_func__(), None) def __getattr__(self, name): ident = self.__ident_func__() try: return self.__storage__[ident][name] except KeyError: raise AttributeError(name) def __setattr__(self, name, value): if name in ("__storage__", "__ident_func__"): raise AttributeError("%r object attribute '%s' is read-only" % (self.__class__.__name__, name)) ident = self.__ident_func__() storage = self.__storage__ if ident not in storage: storage[ident] = dict() storage[ident][name] = value def __delattr__(self, name): if name in ("__storage__", "__ident_func__"): raise AttributeError("%r object attribute '%s' is read-only" % (self.__class__.__name__, name)) ident = self.__ident_func__() try: del self.__storage__[ident][name] if len(self.__storage__[ident]) == 0: self.__release_local__() except KeyError: raise AttributeError(name) def clear(self): self.__release_local__() local = Local() @contextmanager def with_request_local(): local_vars = {} for k in ["operator", "username", "current_request"]: if hasattr(local, k): local_vars[k] = getattr(local, k) delattr(local, k) try: yield local finally: for k, v in list(local_vars.items()): setattr(local, k, v) @contextmanager def with_client_user(username): with with_request_local() as local: local.username = username yield @contextmanager def with_client_operator(update_user): with with_request_local() as local: local.operator = update_user yield
learntools/sql/ex5.py
roannav/learntools
359
12622562
<reponame>roannav/learntools<filename>learntools/sql/ex5.py from google.cloud import bigquery from learntools.core import * # Setup (4.57s on Kaggle) client = bigquery.Client() # (3) YearDistrib rides_per_year_query = """ SELECT EXTRACT(YEAR FROM trip_start_timestamp) AS year, COUNT(1) AS num_trips FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` GROUP BY year ORDER BY year """ rides_per_year_query_job = client.query(rides_per_year_query) rides_per_year_answer = rides_per_year_query_job.to_dataframe() # (4) MonthDistrib rides_per_month_query = """ SELECT EXTRACT(MONTH FROM trip_start_timestamp) AS month, COUNT(1) AS num_trips FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE EXTRACT(YEAR FROM trip_start_timestamp) = 2017 GROUP BY month ORDER BY month """ rides_per_month_query_job = client.query(rides_per_month_query) rides_per_month_answer = rides_per_month_query_job.to_dataframe() # (5) TheLongQuery speeds_query = """ WITH RelevantRides AS ( SELECT EXTRACT(HOUR FROM trip_start_timestamp) AS hour_of_day, trip_miles, trip_seconds FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE trip_start_timestamp > '2017-01-01' AND trip_start_timestamp < '2017-07-01' AND trip_seconds > 0 AND trip_miles > 0 ) SELECT hour_of_day, COUNT(1) AS num_trips, 3600 * SUM(trip_miles) / SUM(trip_seconds) AS avg_mph FROM RelevantRides GROUP BY hour_of_day ORDER BY hour_of_day """ speeds_query_job = client.query(speeds_query) speeds_answer = speeds_query_job.to_dataframe() # (1) class GetTableName(EqualityCheckProblem): _var = 'table_name' _expected = 'taxi_trips' _solution = CS(""" # List all the tables in the dataset tables = list(client.list_tables(dataset)) # Print names of all tables in the dataset (there is only one!) for table in tables: print(table.table_id) table_name = 'taxi_trips' """) # (2) class WhatsWrongWithData(ThoughtExperiment): _solution = \ """ You can see the data by calling: ```python # Construct a reference to the "taxi_trips" table table_ref = dataset_ref.table("taxi_trips") # API request - fetch the table table = client.get_table(table_ref) # Preview the first five lines of the "taxi_trips" table client.list_rows(table, max_results=5).to_dataframe() ``` Some trips in the top few rows have `trip_seconds` or `trip_miles` values of 0. Other location fields have values of `None`. That is a problem if we want to use those fields. """ # (3) class YearDistrib(CodingProblem): _var = 'rides_per_year_result' def check(self, results): # check 1: column names results.columns = [c.lower() for c in results.columns] assert ('year' in results.columns), ('Your results should have a `year` column. But your columns are {}.'.format(list(results.columns))) assert ('num_trips' in results.columns), ('Your results should have a `num_trips` column. But your columns are {}.'.format(list(results.columns))) # check 2: length of dataframe assert (len(results) == len(rides_per_year_answer)), ("The results don't look right. Try again.") # check 3: one value in particular year_to_check = list(rides_per_year_answer["year"])[0] correct_number = int(rides_per_year_answer.loc[rides_per_year_answer["year"]==year_to_check]["num_trips"].values) submitted_number = int(results.loc[results["year"]==year_to_check]["num_trips"].values) assert (correct_number == submitted_number), ("The results don't look right. Try again.") _hint = "Start your query with `SELECT EXTRACT(YEAR FROM trip_start_timestamp) AS year, COUNT(1) AS num_trips`." _solution = CS( """ rides_per_year_query = \""" SELECT EXTRACT(YEAR FROM trip_start_timestamp) AS year, COUNT(1) AS num_trips FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` GROUP BY year ORDER BY year \""" # Set up the query (cancel the query if it would use too much of # your quota) safe_config = bigquery.QueryJobConfig(maximum_bytes_billed=10**10) rides_per_year_query_job = client.query(rides_per_year_query, job_config=safe_config) # API request - run the query, and return a pandas DataFrame rides_per_year_result = rides_per_year_query_job.to_dataframe() """ ) # (4) class MonthDistrib(CodingProblem): _var = 'rides_per_month_result' def check(self, results): # check 1: column names results.columns = [c.lower() for c in results.columns] assert ('month' in results.columns), ('Your results should have a `month` column. But your columns are {}.'.format(list(results.columns))) # check 2: length of dataframes assert (len(results) == len(rides_per_month_answer)), ("The results don't look right. Try again.") # check 3: one value in particular month_to_check = list(rides_per_month_answer["month"])[0] correct_number = rides_per_month_answer.loc[rides_per_month_answer["month"]==month_to_check].values[0][1] submitted_number = results.loc[results["month"]==month_to_check].values[0][1] assert(correct_number==submitted_number), ("The results don't look right. Try again.") _hint = "Start your query with `SELECT EXTRACT(MONTH FROM trip_start_timestamp) AS month, COUNT(1) AS num_trips`." _solution = CS( """ rides_per_month_query = \""" SELECT EXTRACT(MONTH FROM trip_start_timestamp) AS month, COUNT(1) AS num_trips FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE EXTRACT(YEAR FROM trip_start_timestamp) = 2017 GROUP BY month ORDER BY month \""" # Set up the query (cancel the query if it would use too much of # your quota) safe_config = bigquery.QueryJobConfig(maximum_bytes_billed=10**10) rides_per_month_query_job = client.query(rides_per_month_query, job_config=safe_config) # API request - run the query, and return a pandas DataFrame rides_per_month_result = rides_per_month_query_job.to_dataframe() """ ) # (5) class TheLongQuery(CodingProblem): _var = 'speeds_result' def check(self, results): # check 1: check column names results.columns = [c.lower() for c in results.columns] assert('hour_of_day' in results.columns), ("Your results should have an `hour_of_day` column.") assert('num_trips' in results.columns), ("Your results should have an `num_trips` column.") assert('avg_mph' in results.columns), ("Your results should have an `avg_mph` column.") # check 2: length of dataframe assert(results.shape[0] == speeds_answer.shape[0]), ('You should have {} rows in your results.'.format(speeds_answer.shape[0])) # check 3: particular values hour_to_check = list(speeds_answer['hour_of_day'])[0] # check first value correct_num_trips = speeds_answer.loc[speeds_answer['hour_of_day'] == hour_to_check]['num_trips'].values[0] user_num_trips = results.loc[results['hour_of_day'] == hour_to_check]['num_trips'].values[0] assert(correct_num_trips==user_num_trips), ("The results don't look right. Try again.") # check second value correct_avg_mph = round(speeds_answer.loc[speeds_answer['hour_of_day'] == hour_to_check]['avg_mph'].values[0], 3) user_avg_mph = round(results.loc[results['hour_of_day'] == hour_to_check]['avg_mph'].values[0], 3) assert(correct_avg_mph==user_avg_mph), ("The results don't look right. Try again.") _solution = CS( """ speeds_query = \""" WITH RelevantRides AS ( SELECT EXTRACT(HOUR FROM trip_start_timestamp) AS hour_of_day, trip_miles, trip_seconds FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE trip_start_timestamp > '2017-01-01' AND trip_start_timestamp < '2017-07-01' AND trip_seconds > 0 AND trip_miles > 0 ) SELECT hour_of_day, COUNT(1) AS num_trips, 3600 * SUM(trip_miles) / SUM(trip_seconds) AS avg_mph FROM RelevantRides GROUP BY hour_of_day ORDER BY hour_of_day \""" # Set up the query (cancel the query if it would use too much of # your quota) safe_config = bigquery.QueryJobConfig(maximum_bytes_billed=10**10) speeds_query_job = client.query(speeds_query, job_config=safe_config) # API request - run the query, and return a pandas DataFrame speeds_result = speeds_query_job.to_dataframe() # View results print(speeds_result) """ ) class AllRidesInTheMorning(ThoughtExperiment): _solution = \ """ The results show rides with hours 1-12. But there should be results in the afternoon (hours 13-24). Perhaps the raw data has lost the distinction between AM and PM values. You can review 200 rows of the raw data with the commands: ```python # Construct a reference to the "taxi_trips" table table_ref = dataset_ref.table("taxi_trips") # API request - fetch the table table = client.get_table(table_ref) # Preview the first five lines of the "taxi_trips" table client.list_rows(table, max_results=200).to_dataframe() ``` You'll see that the timestamps are all in the AM hours (hours are less than or equal to 12.) At first you might worry that the data is coming back sorted by time, but the variety of dates suggests that's not the case. Part of data science is tracking down exactly this type of problem. If you were in an organization working on this, you could show the evidence you've just collected (e.g. the breakdown of trips by hour) to someone responsible for collecting the data, and help them debug the data collection and storage process. """ qvars = bind_exercises(globals(), [ GetTableName, WhatsWrongWithData, YearDistrib, MonthDistrib, TheLongQuery, AllRidesInTheMorning ], var_format='q_{n}', ) __all__ = list(qvars)
selfdrive/can/packer.py
BoneE562/openpilot
114
12622589
# pylint: skip-file import os import subprocess can_dir = os.path.dirname(os.path.abspath(__file__)) subprocess.check_call(["make", "packer_impl.so"], cwd=can_dir) from selfdrive.can.packer_impl import CANPacker assert CANPacker
app/demo/countries/migrations/0016_person_smart.py
sesostris/django-material-admin
270
12622590
# Generated by Django 3.0 on 2019-12-12 20:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('countries', '0015_auto_20190719_1539'), ] operations = [ migrations.AddField( model_name='person', name='smart', field=models.BooleanField(default=True), ), ]
text_extensions_for_pandas/io/conll.py
CODAIT/text-extensions-for-pandas
193
12622592
<filename>text_extensions_for_pandas/io/conll.py # # Copyright (c) 2020 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ # conll.py """ The ``io.conll`` module contains I/O functions related to CoNLL-2003 file format and its derivatives, including CoNLL-U. """ from typing import * import numpy as np import pandas as pd import regex import requests import os from zipfile import ZipFile from text_extensions_for_pandas.array.span import SpanArray from text_extensions_for_pandas.array.token_span import ( TokenSpan, TokenSpanArray, ) # Special token that CoNLL-2003 format uses to delineate the documents in # the collection. _CONLL_DOC_SEPARATOR = "-DOCSTART-" _EWT_DOC_SEPERATOR = "# newdoc id" # _PUNCT_REGEX = regex.compile(f"[{string.punctuation}]+") _PUNCT_OR_RIGHT_PAREN_REGEX = regex.compile( # Punctuation, right paren, or apostrophe followed by 1-2 lowercase letters # But not single or double quote, which could either begin or end a quotation "[!#%)*+,-./:;=>?@\\]^_`|}~]|'[a-zA-Z]{1,2}" ) # Tokens that behave like left parentheses for whitespace purposes, # including dollar signs ("$100", not "$ 100") _LEFT_PAREN_REGEX = regex.compile(r"[(<\[{$]+") # _PUNCT_MATCH_FN = np.vectorize(lambda s: _PUNCT_REGEX.fullmatch(s) is not None) _SPACE_BEFORE_MATCH_FN = np.vectorize( lambda s: _PUNCT_OR_RIGHT_PAREN_REGEX.fullmatch(s) is not None ) _SPACE_AFTER_MATCH_FN = np.vectorize( lambda s: _LEFT_PAREN_REGEX.fullmatch(s) is not None ) def default_conll_u_field_names() -> List[str]: """ :returns: The default set of field names (not including the required first two fields) to use when parsing CoNLL-U files. """ return [ "lemma", "upostag", "xpostag", "features", "head", "deprel", "deps", "misc", ] def default_conll_u_numeric_cols() -> List[str]: return [ "head", "line_num", ] def default_ewt_metadata() -> Dict[str, str]: """ :returns: What metadata to log from conllu (especially ewt) files. This is a dict as follows: tag_in_file -> desired name. When the tag in the file is seen in a comment, the following value will be stored and be assumed to apply to all elements in that document. """ return { "sent_id": "sentence_id", "newpar id": "paragraph_id", "newdoc id": "doc_id", } # Note, Index in sentence is explicit; starts one further long # for more information see https://universaldependencies.org/docs/format.html def _make_empty_meta_values( column_names: List[str], iob_columns: List[bool] ) -> Dict[str, List[Optional[Union[str, int]]]]: ret = {} for i in range(len(column_names)): name = column_names[i] if i >= len(iob_columns) or not iob_columns[i]: ret[name] = [] else: ret[f"{name}_iob"] = [] ret[f"{name}_type"] = [] return ret class _SentenceData: """ Data structure that encapsulates one sentence's worth of data from a parsed CoNLL-2003 file. Not intended for use outside this file. """ def __init__( self, column_names: List[str], iob_columns: List[bool], predicate_args: bool, conllu_metadata_cols: List[str] = None, ): self._column_names = column_names self._iob_columns = iob_columns self._num_standard_cols = len(self._column_names) # metadata-- init to None self._token_metadata = None # Surface form of token self._tokens = [] # Type: List[str] # Line numbers for each token from the file self._line_nums = [] # Type: List[int] # metadata from conll_u file self._conllu_metadata = ( dict.fromkeys(conllu_metadata_cols, "") if conllu_metadata_cols is not None else None ) self._conllu_metadata_exists = False self._conll_09_format = predicate_args @property def num_tokens(self) -> int: return len(self._tokens) @property def tokens(self) -> List[str]: return self._tokens @property def token_metadata(self) -> Dict[str, List[str]]: return self._token_metadata @property def line_nums(self): return self._line_nums @property def column_names(self): return self._column_names @property def conll_u_metadata_feilds(self) -> List[str]: return ( list(self._conllu_metadata.keys()) if self._conllu_metadata is not None else None ) @property def has_conll_u_metadata(self): return self._conllu_metadata_exists @property def conll_09_format(self): return self._conll_09_format def set_conll_u_metadata(self, field: str, val: str): if str != "": self._conllu_metadata_exists = True self._conllu_metadata[field] = val self._update_conllu_metadata_exists() def set_batch_conll_u_metadata(self, metadata: Dict[str, str]): assert metadata.keys() <= self._conllu_metadata.keys() self._conllu_metadata.update(metadata) self._update_conllu_metadata_exists() def get_conll_u_metadata(self, field: str) -> str: return self._conllu_metadata[field] def _update_conllu_metadata_exists(self): self._conllu_metadata_exists = any( [v is not None and v != "" for v in self._conllu_metadata.values()] ) def _process_line_tags( self, raw_tags: List[str], line_num: int, line_elems: List[str], is_conll_u: bool = False, ): if self._token_metadata is None: self._token_metadata = _make_empty_meta_values( self._column_names, self._iob_columns ) for i in range(len(raw_tags)): raw_tag = raw_tags[i] name = self._column_names[i] if not self._iob_columns[i]: # non-IOB data self._token_metadata[name].append(raw_tag) else: # IOB-format data; split into two values if raw_tag.startswith("I-") or raw_tag.startswith("B-"): # Tokens that are entities are tagged with tags like # "I-PER" or "B-MISC". tag, entity = raw_tag.split("-") elif raw_tag == "O": tag = raw_tag entity = None elif (not is_conll_u) and raw_tag == "-X-": # Special metadata value for -DOCSTART- tags in the CoNLL corpus. tag = "O" entity = None else: raise ValueError( f"Tag '{raw_tag}' of IOB-format field {i} at line " f"{line_num} does not start with 'I-', 'O', " f"or 'B-'.\n" f"Fields of line are: {line_elems}" ) self._token_metadata[f"{name}_iob"].append(tag) self._token_metadata[f"{name}_type"].append(entity) def add_line(self, line_num: int, line_elems: List[str]): """ :param line_num: Location in file, for error reporting :param line_elems: Fields of a line, pre-split """ if len(line_elems) != 1 + len(self._column_names): raise ValueError( f"Unexpected number of elements {len(line_elems)} " f"at line {line_num}; expected " f"{1 + len(self._column_names)} elements." ) token = line_elems[0] raw_tags = line_elems[1:] self._tokens.append(token) self._line_nums.append(line_num) self._process_line_tags(raw_tags, line_num, line_elems, is_conll_u=False) def add_line_conllu(self, line_num: int, line_elems: List[str]): """ Similar to add_line, but handles additional logic for conllu files. This includes the additional ignored entries on the left for word indexes within :param line_num: Location in file, for error reporting :param line_elems: Fields of a line, pre-split """ if len(line_elems) < 2 + len(self._column_names): if len(line_elems) >= 2 + self._num_standard_cols: line_elems.extend( ["_" for _ in range(2 + len(self._column_names) - len(line_elems))] ) else: raise ValueError( f"Unexpected number of elements {len(line_elems)} " f"at line {line_num}; expected " f"{2 + len(self._column_names)} elements, " f"got {len(line_elems)} instead." f" min_num: {self._num_standard_cols}" f"\nline reads: '{' '.join(line_elems) }'" ) if ( len(line_elems) > 2 + len(self._column_names) and self._conll_09_format and self.num_tokens == 0 ): # only modify once per sentence additional_lines = len(line_elems) - (3 + len(self._column_names)) self._column_names.append("predicate") addnl_col_names = [f"pred{i}arg" for i in range(additional_lines)] self._column_names.extend(addnl_col_names) self._iob_columns.extend([False for _ in range(additional_lines + 1)]) # print(f"found Conll9 format. Added{additional_lines} columns. cols are now {self._column_names}") assert len(self._column_names) + 2 == len(line_elems) token = line_elems[1] raw_tags = line_elems[2:len(self._column_names) + 2] raw_tags = [None if tag == "_" else tag for tag in raw_tags] self._tokens.append(token) self._line_nums.append(line_num) # because we do not combine self._process_line_tags(raw_tags, line_num, line_elems, is_conll_u=True) def _parse_conll_file( input_file: str, column_names: List[str], iob_columns: List[bool] ) -> List[List[_SentenceData]]: """ Parse the CoNLL-2003 file format for training/test data to Python objects. The format is especially tricky, so everything here is straight non-vectorized Python code. If you want performance, write the contents of your CoNLL files back out into a file format that supports performance. :param input_file: Location of the file to read :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned data structure will contain *two* columns, holding IOB tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :returns: A list of lists of _SentenceData objects. The top list has one entry per document. The next level lists have one entry per sentence. """ with open(input_file, "r") as f: lines = f.readlines() # Build up a list of document metadata as Python objects docs = [] # Type: List[List[Dict[str, List[str]]]] current_sentence = _SentenceData(column_names, iob_columns, False) # Information about the current document sentences = [] # Type: SentenceData for i in range(len(lines)): line = lines[i].strip() if 0 == len(line): # Blank line is the sentence separator if current_sentence.num_tokens > 0: sentences.append(current_sentence) current_sentence = _SentenceData(column_names, iob_columns, False) else: # Not at the end of a sentence line_elems = line.split(" ") current_sentence.add_line(i, line_elems) if line_elems[0] == _CONLL_DOC_SEPARATOR and i > 0: # End of document. Wrap up this document and start a new one. # # Note that the special "start of document" token is considered part # of the document. If you do not follow this convention, the # result sets from CoNLL 2003 won't line up. # Note also that `current_sentence` is not in `sentences` and will be # added to the next document. docs.append(sentences) sentences = [] # Close out the last sentence and document, if needed if current_sentence.num_tokens > 0: sentences.append(current_sentence) if len(sentences) > 0: docs.append(sentences) return docs def _parse_conll_u_file( input_file: str, column_names: List[str], iob_columns: List[bool], predicate_args: bool = True, merge_subtokens: bool = False, merge_subtoken_separator: str = "|", metadata_fields: Dict[str, str] = None, doc_seperator=_EWT_DOC_SEPERATOR ) -> List[List[_SentenceData]]: """ The format is especially tricky, so everything here is straight non-vectorized Python code. If you want performance, write the contents of your CoNLL files back out into a file format that supports performance. :param input_file: Location of the file to read :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned data structure will contain *two* columns, holding IOB tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :param predicate_args: whether or not predicate arguments are stored in this file format. :param metadata_fields: Optional. The types of metadata fields you want to store from the document. Stored in the form of dictionary: tag_in_text -> "pretty" tag (i.e. what you want to show in the output). If no value is provided, then the return value of :func:`default_ewt_metadata()` will be used. :returns: A list of lists of _SentenceData objects. The top list has one entry per document. The next level lists have one entry per sentence. """ if metadata_fields is None: metadata_fields = default_ewt_metadata() with open(input_file, "r") as f: lines = f.readlines() # Build up a list of document metadata as Python objects docs = [] # Type: List[List[Dict[str, List[str]]]] # metadata specific to conll_u metadata_names = list(metadata_fields.values()) u_metadata = dict.fromkeys(metadata_names, "") current_sentence = _SentenceData( column_names.copy(), iob_columns.copy(), predicate_args, metadata_names ) # Information about the current document sentences = [] # Type: SentenceData # if we merge subtokens we need additional logic in_subtok = False # set this flag when inside of subtoken subtok_end = None # only valid when in subtok for i in range(len(lines)): line = lines[i].strip() if 0 == len(line): # Blank line is the sentence separator if current_sentence.num_tokens > 0: sentences.append(current_sentence) current_sentence = _SentenceData( column_names.copy(), iob_columns.copy(), predicate_args, metadata_names, ) current_sentence.set_batch_conll_u_metadata(u_metadata) elif line[0] == "#": line_elems = line.split(" = ") if line_elems[0] == doc_seperator: if i > 0 and len(sentences) > 0: # End of document. Wrap up this document and start a new one. # docs.append(sentences) sentences = [] # reset doc, paragraph and sentence id's # now check for metadata line_elems[0] = line_elems[0].strip("# ") if line_elems[0] in metadata_fields.keys(): key = metadata_fields[line_elems[0]] current_sentence.set_conll_u_metadata(key, line_elems[1]) u_metadata[key] = line_elems[1] elif not in_subtok: # Not at the end of a sentence, or in a subtok line_elems = line.split("\t") # Ignore multi-word tokens for now; just use word sequence; may want to change, but we'd need to # interpret each sub-word's info if "-" not in line_elems[0]: # checks if has range current_sentence.add_line_conllu(i, line_elems) elif merge_subtokens: in_subtok = True # find start and end of range start, end = line_elems[0].split("-") subtok_end = ( int(end) - int(start) + i + 1 ) # the end (inclusive) of subtoken, by global index comb_elem_list = [[] for i in range(len(line_elems))] for subtoken in lines[i + 1:subtok_end + 1]: subtok_elems = subtoken.split("\t") for field in range(2, len(line_elems)): if subtok_elems[field] != "_": comb_elem_list[field].append(subtok_elems[field]) combined_elems = line_elems[0:2] # first line is the same for elem_list in comb_elem_list[2:]: combined_elems.append(merge_subtoken_separator.join(elem_list)) current_sentence.add_line_conllu(i, combined_elems) if in_subtok and i >= subtok_end: in_subtok = False subtok_end = None # Close out the last sentence and document, if needed if current_sentence.num_tokens > 0: sentences.append(current_sentence) if len(sentences) > 0: docs.append(sentences) return docs def _parse_conll_output_file( doc_dfs: List[pd.DataFrame], input_file: str ) -> List[Dict[str, List[str]]]: """ Parse the CoNLL-2003 file format for output data to Python objects. This format is similar to the format that `_parse_conll_file` produces, but without the token and document boundary information. :param doc_dfs: List of `pd.DataFrame`s of token information from the corresponding training data file, one `DataFrame` per document. Used for determining document boundaries, which are not encoded in CoNLL-2003 output file format. :param input_file: Location of the file to read :returns: A list of dicts. The top list has one entry per document. The next level contains lists under the following keys: * `iob`: List of IOB2 tags as strings. This function does **NOT** correct for the silly way that CoNLL-format uses "B" tags. See `_fix_iob_tags()` for that correction. * `entity`: List of entity tags where `iob` contains I's or B's. `None` everywhere else. """ with open(input_file, "r") as f: lines = f.readlines() # Build up a list of document metadata as Python objects docs = [] # Type: List[Dict[str, List[str]]] # Position in the corpus doc_num = 0 num_tokens_in_doc = len(doc_dfs[doc_num].index) token_num = 0 # Information about the current document's tokens iobs = [] # Type: List[str] entities = [] # Type: List[str] for i in range(len(lines)): line = lines[i].strip() if 0 == len(line): # Blank line is the sentence separator. continue if " " in line: raise ValueError( f"Line {i} contains unexpected space character.\n" f"Line was: '{line}'" ) raw_tag = line if raw_tag.startswith("I") or raw_tag.startswith("B"): # Tokens that are entities are tagged with tags like # "I-PER" or "B-MISC". tag, entity = raw_tag.split("-") elif raw_tag == "O": tag = raw_tag entity = None else: raise ValueError( f"Unexpected tag {raw_tag} at line {i}.\n" f"Line was: '{line}'" ) iobs.append(tag) entities.append(entity) token_num += 1 if token_num == num_tokens_in_doc: # End of current document, advance to next docs.append({"iob": iobs, "entity": entities}) iobs = [] entities = [] doc_num += 1 token_num = 0 if doc_num < len(doc_dfs): num_tokens_in_doc = len(doc_dfs[doc_num].index) if doc_num < len(doc_dfs): print( f"WARNING: Corpus has {len(doc_dfs)} documents, but " f"only found outputs for {doc_num} of them." ) # raise ValueError(f"Corpus has {len(doc_dfs)} documents, but " # f"only found outputs for {doc_num} of them.") return docs def _iob_to_iob2( df: pd.DataFrame, column_names: List[str], iob_columns: List[bool] ) -> pd.DataFrame: """ In CoNLL-2003 format, entities are stored in IOB format, where the first token of an entity is only tagged "B" when there are two entities of the same type back-to-back. This format makes downstream processing difficult. If a given position has an `I` tag, that position may or may not be the first token of an entity. Code will need to inspect both the I/O/B tags *and* the entity type of multiple other tokens *and* the boundaries between sentences to disambiguate between those two cases. This function converts these IOB tags to the easier-to-consume IOB2 format; see https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) for details. Basically, every entity in IOB2 format begins with a `B` tag. The `I` tag is only used for the second, third, etc. tokens of an entity. :param df: A `pd.DataFrame` with one row per token of the document. In addition to the metadata columns corresponding to `column_names`, this dataframe must also contain sentence information in a column called `sentence`. :param column_names: Names for the metadata columns in the original data file that were used to generate the names of the columns of `df`. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. :returns: A version of `df` with corrected IOB2 tags in the `ent_iob` column. The original dataframe is not modified. """ ret = df.copy() sentence_begins = df["sentence"].values.begin_token for col_num in range(len(iob_columns)): if iob_columns[col_num]: name = column_names[col_num] iobs = df[f"{name}_iob"].values.copy() # Modified in place entities = df[f"{name}_type"].values # Special-case the first one if iobs[0] == "I": iobs[0] = "B" for iob_num in range(1, len(iobs)): tag = iobs[iob_num] prev_tag = iobs[iob_num - 1] if tag == "I": if ( prev_tag == "O" # Previous token not an entity or ( prev_tag in ("I", "B") and entities[iob_num] != entities[iob_num - 1] ) # Previous token a different type of entity or ( sentence_begins[iob_num] != sentence_begins[iob_num - 1] ) # Start of new sentence ): iobs[iob_num] = "B" ret[f"{name}_iob"] = iobs return ret def _doc_to_df( doc: List[_SentenceData], column_names: List[str], iob_columns: List[bool], space_before_punct: bool, conll_u: bool = False, ) -> pd.DataFrame: """ Convert the "Python objects" representation of a document from a CoNLL-2003 file into a `pd.DataFrame` of token metadata. :param doc: List of Python objects that represents the document. :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned dataframe will contain *two* columns, holding IOB2 tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :param space_before_punct: If `True`, add whitespace before punctuation characters (and after left parentheses) when reconstructing the text of the document. :return: DataFrame with four columns: * `span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `ent_iob`: IOB2-format tags of tokens, exactly as they appeared in the original file, with no corrections applied. * `ent_type`: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. * `line_num`: line number of each token in the parsed file """ # Character offsets of tokens in the reconstructed document begins_list = [] # Type: List[np.ndarray] ends_list = [] # Type: List[np.ndarray] # Reconstructed text of each sentence sentences_list = [] # Type: List[np.ndarray] # Token offsets of sentences containing each token in the document. sentence_begins_list = [] # Type: List[np.ndarray] sentence_ends_list = [] # Type: List[np.ndarray] # conll_u metadata information. conll_u_ids_exsist = doc is not None and len(doc) != 0 and doc[0].has_conll_u_metadata conll_2009_format = doc is not None and len(doc) != 0 and doc[0].conll_09_format # this should be the same for all sentences so we check the first if conll_2009_format: max_list = max(doc, key=lambda sent: len(sent.column_names)).column_names if len(max_list) > len(column_names): column_names = max_list # Token metadata column values. Key is column name, value is metadata for # each token. if conll_u_ids_exsist: meta_lists = _make_empty_meta_values( column_names + doc[0].conll_u_metadata_feilds, iob_columns ) else: meta_lists = _make_empty_meta_values(column_names, iob_columns) # Line numbers of the parsed file for each token in the doc doc_line_nums = [] char_position = 0 token_position = 0 for sentence_num in range(len(doc)): sentence = doc[sentence_num] tokens = sentence.tokens # Don't put spaces before punctuation in the reconstituted string. no_space_before_mask = ( np.zeros(len(tokens), dtype=bool) if space_before_punct else _SPACE_BEFORE_MATCH_FN(tokens) ) no_space_after_mask = ( np.zeros(len(tokens), dtype=bool) if space_before_punct else _SPACE_AFTER_MATCH_FN(tokens) ) no_space_before_mask[0] = True # No space before first token no_space_after_mask[-1] = True # No space after last token shifted_no_space_after_mask = np.roll(no_space_after_mask, 1) prefixes = np.where( np.logical_or(no_space_before_mask, shifted_no_space_after_mask), "", " " ) string_parts = np.ravel((prefixes, tokens), order="F") sentence_text = "".join(string_parts) sentences_list.append(sentence_text) lengths = np.array([len(t) for t in tokens]) prefix_lengths = np.array([len(p) for p in prefixes]) # Begin and end offsets, accounting for which tokens have spaces # before them. e = np.cumsum(lengths + prefix_lengths) b = e - lengths begins_list.append(b + char_position) ends_list.append(e + char_position) sentence_begin_token = token_position sentence_end_token = token_position + len(e) sentence_begins = np.repeat(sentence_begin_token, len(e)) sentence_ends = np.repeat(sentence_end_token, len(e)) sentence_begins_list.append(sentence_begins) sentence_ends_list.append(sentence_ends) for k in meta_lists.keys(): if k in sentence.token_metadata.keys(): meta_lists[k].extend(sentence.token_metadata[k]) elif conll_u_ids_exsist and k in sentence.conll_u_metadata_feilds: data = sentence.get_conll_u_metadata(k) meta_lists[k].extend([data for _ in range(sentence.num_tokens)]) else: meta_lists[k].extend([None for _ in range(sentence.num_tokens)]) char_position += e[-1] + 1 # "+ 1" to account for newline token_position += len(e) doc_line_nums.extend(sentence.line_nums) # move "head" indices so they point at the right words if conll_u and "head" in column_names: for i in range(sentence_begin_token, sentence_end_token): val = meta_lists["head"][i] if val is not None: points_to = int(val) meta_lists["head"][i] = ( points_to + sentence_begin_token - 1 if points_to != 0 else -1 ) begins = np.concatenate(begins_list) ends = np.concatenate(ends_list) doc_text = "\n".join(sentences_list) char_spans = SpanArray(doc_text, begins, ends) sentence_spans = TokenSpanArray( char_spans, np.concatenate(sentence_begins_list), np.concatenate(sentence_ends_list), ) ret = pd.DataFrame({"span": char_spans}) for k, v in meta_lists.items(): ret[k] = v ret["sentence"] = sentence_spans ret["line_num"] = pd.Series(doc_line_nums) if conll_u and "head" in column_names: ret = ret.astype({"head": "Int64"}, errors="ignore") ret.loc[ret["head"] == -1, "head"] = pd.NA return ret def _output_doc_to_df( tokens: pd.DataFrame, outputs: Dict[str, List[str]], column_name: str, copy_tokens: bool, ) -> pd.DataFrame: """ Convert the "Python objects" representation of a document from a CoNLL-2003 file into a `pd.DataFrame` of token metadata. :param tokens: `pd.DataFrame` containing metadata about the tokens of this document, as returned by `conll_2003_to_dataframe` :param outputs: Dictionary containing outputs for this document, with fields "iob" and "entity". :param column_name: Name for the metadata value that the IOB-tagged data in `input_file` encodes. If this name is present in `doc_dfs`, its value will be replaced with the data from `input_file`; otherwise a new column will be added to each dataframe. :param copy_tokens: `True` if token information should be deep-copied. :return: DataFrame with four columns: * `span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `ent_iob`: IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * `ent_type`: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. """ if copy_tokens: return pd.DataFrame( { "span": tokens["span"].copy(), f"{column_name}_iob": np.array(outputs["iob"]), f"{column_name}_type": np.array(outputs["entity"]), "sentence": tokens["sentence"].copy(), } ) else: return pd.DataFrame( { "span": tokens["span"], f"{column_name}_iob": np.array(outputs["iob"]), f"{column_name}_type": np.array(outputs["entity"]), "sentence": tokens["sentence"], } ) ##################################################### # External API functions below this line def iob_to_spans( token_features: pd.DataFrame, iob_col_name: str = "ent_iob", span_col_name: str = "span", entity_type_col_name: str = "ent_type", ): """ Convert token tags in Inside–Outside–Beginning (IOB2) format to a series of :class:`TokenSpan` objects of entities. See See wikipedia_ for more information on the IOB2 format. .. _wikipedia: https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) :param token_features: DataFrame of token features in the format returned by :func:`make_tokens_and_features`. :param iob_col_name: Name of a column in ``token_features`` that contains the IOB2 tags as strings, "I", "O", or "B". :param span_col_name: Name of a column in ``token_features`` that contains the tokens as a :class:`SpanArray`. :param entity_type_col_name: Optional name of a column in ``token_features`` that contains entity type information; or ``None`` if no such column exists. :returns: A :class:`pd.DataFrame` with the following columns: * ``span``: Span (with token offsets) of each entity * ``<value of entity_type_col_name>``: (optional) Entity type """ # Start out with 1-token prefixes of all entities. begin_mask = token_features[iob_col_name] == "B" first_tokens = token_features[begin_mask].index if entity_type_col_name is None: entity_types = np.zeros(len(first_tokens)) else: entity_types = token_features[begin_mask][entity_type_col_name] # Add an extra "O" tag to the end of the IOB column to simplify the logic # for handling the case where the document ends with an entity. iob_series = ( token_features[iob_col_name].append(pd.Series(["O"])).reset_index(drop=True) ) entity_prefixes = pd.DataFrame( { "ent_type": entity_types, "begin": first_tokens, # Inclusive "end": first_tokens + 1, # Exclusive "next_tag": iob_series.iloc[first_tokens + 1].values, } ) df_list = [] # Type: pd.DataFrame if len(entity_prefixes.index) == 0: # Code below needs at least one element in the list for schema df_list = [entity_prefixes] # Iteratively expand the prefixes while len(entity_prefixes.index) > 0: complete_mask = entity_prefixes["next_tag"].isin(["O", "B"]) complete_entities = entity_prefixes[complete_mask] incomplete_entities = entity_prefixes[~complete_mask].copy() incomplete_entities["end"] = incomplete_entities["end"] + 1 incomplete_entities["next_tag"] = iob_series.iloc[ incomplete_entities["end"] ].values df_list.append(complete_entities) entity_prefixes = incomplete_entities all_entities = pd.concat(df_list) # Sort spans by location, not length. all_entities.sort_values("begin", inplace=True) # Convert [begin, end) pairs to spans entity_spans_array = TokenSpanArray( token_features[span_col_name].values, all_entities["begin"].values, all_entities["end"].values, ) if entity_type_col_name is None: return pd.DataFrame({"span": entity_spans_array}) else: return pd.DataFrame( { "span": entity_spans_array, entity_type_col_name: all_entities["ent_type"].values, } ) def spans_to_iob( token_spans: Union[TokenSpanArray, List[TokenSpan], pd.Series], span_ent_types: Union[str, Iterable, np.ndarray, pd.Series] = None, ) -> pd.DataFrame: """ Convert a series of :class:`TokenSpan` objects of entities to token tags in Inside–Outside–Beginning (IOB2) format. See wikipedia_ for more information on the IOB2 format. .. _wikipedia: https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) :param token_spans: An object that can be converted to a :class:`TokenSpanArray` via :func:`TokenSpanArray.make_array`. Should contain :class:`TokenSpan` objects aligned with the target tokenization. All spans must be from the same document. Usually you create this array by calling :func:`TokenSpanArray.align_to_tokens`. :param span_ent_types: List of entity type strings corresponding to each of the elements of ``token_spans``, or ``None`` to indicate null entity tags. :returns: A :class:`pd.DataFrame` with two columns: * "ent_iob": IOB2 tags as strings "ent_iob" * "ent_type": Entity type strings (or NaN values if ``ent_types`` is ``None``) """ # Normalize inputs token_spans = TokenSpanArray.make_array(token_spans) if span_ent_types is None: span_ent_types = [None] * len(token_spans) elif isinstance(span_ent_types, str): span_ent_types = [span_ent_types] * len(token_spans) elif isinstance(span_ent_types, pd.Series): span_ent_types = span_ent_types.values # Define the IOB categorical type with "O" == 0, "B"==1, "I"==2 iob2_dtype = pd.CategoricalDtype(["O", "B", "I"], ordered=False) # Handle an empty token span array if len(token_spans) == 0: return pd.DataFrame( { "ent_iob": pd.Series(dtype=iob2_dtype), "ent_type": pd.Series(dtype="string"), } ) # All code that follows assumes at least one input span. All spans should # be from the same document; otherwise there isn't a meaningful IOB # representation of the entities. if not token_spans.is_single_tokenization: raise ValueError( f"All input spans must be from the same tokenization of " f"the same document " f"(spans are {token_spans})" ) tokens = token_spans.tokens[0] # Initialize an IOB series with all 'O' entities iob_data = np.zeros_like(tokens.begin, dtype=np.int64) iob_tags = pd.Categorical.from_codes(codes=iob_data, dtype=iob2_dtype) # Assign the begin tags iob_tags[token_spans.begin_token] = "B" # Fill in the remaining inside tags i_lengths = token_spans.end_token - (token_spans.begin_token + 1) i_mask = i_lengths > 0 i_begins = token_spans.begin_token[i_mask] + 1 i_ends = token_spans.end_token[i_mask] for begin, end in zip(i_begins, i_ends): iob_tags[begin:end] = "I" # Use a similar process to generate entity type tags ent_types = np.full(len(tokens), np.object_(None), dtype=object) for ent_type, begin, end in zip( span_ent_types, token_spans.begin_token, token_spans.end_token ): ent_types[begin:end] = ent_type return pd.DataFrame( {"ent_iob": iob_tags, "ent_type": pd.Series(ent_types, dtype="string")} ) def conll_2003_to_dataframes( input_file: str, column_names: List[str], iob_columns: List[bool], space_before_punct: bool = False, ) -> List[pd.DataFrame]: """ Parse a file in CoNLL-2003 training/test format into a DataFrame. CoNLL-2003 training/test format looks like this:: -DOCSTART- -X- -X- O CRICKET NNP I-NP O - : O O LEICESTERSHIRE NNP I-NP I-ORG TAKE NNP I-NP O OVER IN I-PP O AT NNP I-NP O Note the presence of the surface forms of tokens at the beginning of the lines. :param input_file: Location of input file to read. :param space_before_punct: If ``True``, add whitespace before punctuation characters when reconstructing the text of the document. :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned dataframe will contain *two* columns, holding **IOB2** tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :returns: A list containing, for each document in the input file, a separate :class:`pd.DataFrame` of four columns: * **span**: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * **ent_iob** IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * **ent_type**: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. """ parsed_docs = _parse_conll_file(input_file, column_names, iob_columns) doc_dfs = [ _doc_to_df(d, column_names, iob_columns, space_before_punct) for d in parsed_docs ] return [_iob_to_iob2(d, column_names, iob_columns) for d in doc_dfs] def conll_u_to_dataframes( input_file: str, column_names: List[str] = None, iob_columns: List[bool] = None, has_predicate_args: bool = True, space_before_punct: bool = False, merge_subtokens: bool = False, merge_subtoken_separator: str = "|", numeric_cols: List[str] = None, metadata_fields: Dict[str, str] = None, separate_sentences_by_doc: bool = False ) -> List[pd.DataFrame]: """ Parses a file from :param input_file: Location of input file to read. :param space_before_punct: If `True`, add whitespace before punctuation characters when reconstructing the text of the document. :param column_names: Optional. Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. If no value is provided, these default to the list returned by :func:`default_conll_u_field_names`, which is also the format defined at https://universaldependencies.org/docs/format.html. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned dataframe will contain *two* columns, holding **IOB2** tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". By default in CONLL_U or EWT formats this is all false. :param has_predicate_args: Whether or not the file format includes predicate args. True by default, and should support most files in the conllu format, but will assume that any tabs in the last element are additional predicate arguments :param merge_subtokens: dictates how to handle tokens that are smaller than one word. By default, we keep the subtokens as two seperate entities, but if this is set to ``True``, the subtokens will be merged into a single entity, of the same length as the token, and their attributes will be concatenated :param merge_subtoken_separator: If merge subtokens is selected, concatenate the attributes with this separator, by default '|' :param numeric_cols: Optional: Names of numeric columns drawn from `column_names`, plus the default "built-in" column name `line_num`. Any column whose name is in this list will be considered to hold numeric values. Column names not present in the `column_names` argument will be ignored. If no value is provided, then the return value of :func:`default_conll_u_numeric_cols` will be used. :param metadata_fields: Optional. Types of metadata fields you want to store from the document, in the form of a dictionary: tag_in_text -> "pretty" tag (i.e. what you want to show in the output). If no value is provided, then the return value of :func:`default_ewt_metadata()` will be used. :param separate_sentences_by_doc: Optional. If ``False`` (the default behavior), use the document boundaries defined in the CoNLL-U file. If ``True``, then treat each sentence in the input file as a separate document. :returns: A list containing, for each document in the input file, a separate `pd.DataFrame` of four columns: * `span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `ent_iob`: IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * `ent_type`: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. """ # Fill in default values if column_names is None: column_names = default_conll_u_field_names() if iob_columns is None: iob_columns = [False] * len(column_names) # fill with falses if not specified if metadata_fields is None: metadata_fields = default_ewt_metadata() if numeric_cols is None: numeric_cols = default_conll_u_numeric_cols() # split_doc_by = "# text" if separate_sentences_by_doc else _EWT_DOC_SEPERATOR parsed_docs = _parse_conll_u_file( input_file, column_names, iob_columns, has_predicate_args, merge_subtokens=merge_subtokens, merge_subtoken_separator=merge_subtoken_separator, metadata_fields=metadata_fields, doc_seperator=split_doc_by ) doc_dfs = [ _doc_to_df(d, column_names, iob_columns, space_before_punct, conll_u=True) for d in parsed_docs ] ret = [_iob_to_iob2(d, column_names, iob_columns) for d in doc_dfs] for d in ret: for col in numeric_cols: if col in d: d[col] = pd.to_numeric(d[col], errors="coerce") return ret def conll_2003_output_to_dataframes( doc_dfs: List[pd.DataFrame], input_file: str, column_name: str = "ent", copy_tokens: bool = False, ) -> List[pd.DataFrame]: """ Parse a file in CoNLL-2003 output format into a DataFrame. CoNLL-2003 output format looks like this:: O O I-LOC O O I-PER I-PER Note the lack of any information about the tokens themselves. Note also the lack of any information about document boundaries. :param doc_dfs: List of :class:`pd.DataFrame`s of token information, as returned by :func:`conll_2003_to_dataframes`. This is needed because CoNLL-2003 output format does not include any information about document boundaries. :param input_file: Location of input file to read. :param column_name: Name for the metadata value that the IOB-tagged data in ``input_file`` encodes. If this name is present in ``doc_dfs``, its value will be replaced with the data from ``input_file``; otherwise a new column will be added to each dataframe. :param copy_tokens: If ``True``, deep-copy token series from the elements of `doc_dfs` instead of using pointers. :returns: A list containing, for each document in the input file, a separate :class:`pd.DataFrame` of four columns: * **span**: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * **token_span**: Span of each token, with token offsets. Backed by the contents of the `span` column. * **<column_name>_iob**: IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * **<column_name>_type**: Entity type names for tokens tagged "I" or "B" in the ``<column_name>_iob`` column; ``None`` everywhere else. """ docs_list = _parse_conll_output_file(doc_dfs, input_file) return [ _iob_to_iob2( _output_doc_to_df(tokens, outputs, column_name, copy_tokens), [column_name], [True], ) for tokens, outputs in zip(doc_dfs, docs_list) ] def make_iob_tag_categories( entity_types: List[str], ) -> Tuple[pd.CategoricalDtype, List[str], Dict[str, int]]: """ Enumerate all the possible token categories for combinations of IOB tags and entity types (for example, ``I + "PER" ==> "I-PER"``). Generate a consistent mapping from these strings to integers. :param entity_types: Allowable entity type strings for the corpus :returns: A triple of: * Pandas CategoricalDtype * mapping from integer to string label, as a list. This mapping is guaranteed to be consistent with the mapping in the Pandas CategoricalDtype in the first return value. * mapping string label to integer, as a dict; the inverse of the second return value. """ int_to_label = ["O"] + [f"{x}-{y}" for x in ["B", "I"] for y in entity_types] label_to_int = {int_to_label[i]: i for i in range(len(int_to_label))} token_class_dtype = pd.CategoricalDtype(categories=int_to_label) return token_class_dtype, int_to_label, label_to_int def add_token_classes( token_features: pd.DataFrame, token_class_dtype: pd.CategoricalDtype = None, iob_col_name: str = "ent_iob", entity_type_col_name: str = "ent_type", ) -> pd.DataFrame: """ Add additional columns to a dataframe of IOB-tagged tokens containing composite string and integer category labels for the tokens. :param token_features: Dataframe of tokens with IOB tags and entity type strings :param token_class_dtype: Optional Pandas categorical dtype indicating how to map composite tags like `I-PER` to integer values. You can use :func:`make_iob_tag_categories` to generate this dtype. If this parameter is not provided, this function will use an arbitrary mapping using the values that appear in this dataframe. :param iob_col_name: Optional name of a column in `token_features` that contains the IOB2 tags as strings, "I", "O", or "B". :param entity_type_col_name: Optional name of a column in `token_features` that contains entity type information; or `None` if no such column exists. :returns: A copy of `token_features` with two additional columns, `token_class` (string class label) and `token_class_id` (integer label). If `token_features` contains columns with either of these names, those columns will be overwritten in the returned copy of `token_features`. """ if token_class_dtype is None: empty_mask = token_features[entity_type_col_name].isna() | ( token_features[entity_type_col_name] == "" ) token_class_type, _, label_to_int = make_iob_tag_categories( list(token_features[~empty_mask][entity_type_col_name].unique()) ) else: label_to_int = { token_class_dtype.categories[i]: i for i in range(len(token_class_dtype.categories)) } elems = [] # Type: str for index, row in token_features[[iob_col_name, entity_type_col_name]].iterrows(): if row[iob_col_name] == "O": elems.append("O") else: elems.append(f"{row[iob_col_name]}-{row[entity_type_col_name]}") ret = token_features.copy() ret["token_class"] = pd.Categorical(elems, dtype=token_class_dtype) ret["token_class_id"] = [label_to_int[elem] for elem in elems] return ret def decode_class_labels(class_labels: Iterable[str]): """ Decode the composite labels that :func:`add_token_classes` creates. :param class_labels: Iterable of string class labels like "I-LOC" :returns: A tuple of (IOB2 tags, entity type strings) corresponding to the class labels. """ iobs = ["O" if t == "O" else t[:1] for t in class_labels] types = [None if t == "O" else t.split("-")[1] for t in class_labels] return iobs, types def maybe_download_conll_data(target_dir: str) -> Dict[str, str]: """ Download and cache a copy of the CoNLL-2003 named entity recognition data set. **NOTE: This data set is licensed for research use only.** Be sure to adhere to the terms of the license when using this data set! :param target_dir: Directory where this function should write the corpus files, if they are not already present. :returns: Dictionary containing a mapping from fold name to file name for each of the three folds (`train`, `test`, `dev`) of the corpus. """ _CONLL_DOWNLOAD_BASE_URL = ( "https://github.com/patverga/torch-ner-nlp-from-scratch/raw/master/" "data/conll2003/" ) _TRAIN_FILE_NAME = "eng.train" _DEV_FILE_NAME = "eng.testa" _TEST_FILE_NAME = "eng.testb" _TRAIN_FILE = f"{target_dir}/{_TRAIN_FILE_NAME}" _DEV_FILE = f"{target_dir}/{_DEV_FILE_NAME}" _TEST_FILE = f"{target_dir}/{_TEST_FILE_NAME}" def download_file(url, destination): data = requests.get(url) open(destination, "wb").write(data.content) if not os.path.exists(_TRAIN_FILE): download_file(_CONLL_DOWNLOAD_BASE_URL + _TRAIN_FILE_NAME, _TRAIN_FILE) if not os.path.exists(_DEV_FILE): download_file(_CONLL_DOWNLOAD_BASE_URL + _DEV_FILE_NAME, _DEV_FILE) if not os.path.exists(_TEST_FILE): download_file(_CONLL_DOWNLOAD_BASE_URL + _TEST_FILE_NAME, _TEST_FILE) return {"train": _TRAIN_FILE, "dev": _DEV_FILE, "test": _TEST_FILE} def maybe_download_dataset_data( target_dir: str, document_url: str, fname: str = None ) -> Union[str, List[str]]: """ If the file found at the url is not found in the target directory, downloads it, and saves it to that place in downloads. Returns the path to the file. If a zip archive is downloaded, only files that are not already in the target directory will be fetched, and if an alternate_name is given only that file will be operated on. Note if a Zip archive is downloaded it will be unpacked so verify that the url being used is safe. :param target_dir: Directory where this function should write the document :param document_url: url from which to download the docuemnt. If no alternate name is specified, it is assumed that the string after the last slash is the name of the file. :param fname: if given, the name of the file that is checked in the target directory, as well as what is used to save the file if no such file is found. If a zip file is downloaded, and a file of this name exists in in the archive, only it will be extracted. :returns: the path to the file, or None if downloading was not successful If the file found at the url is not found in the target directory, downloads it, and saves it to that place in downloads """ file_name = ( fname if fname is not None else document_url.split("/")[-1] ) full_path = target_dir + "/" + file_name # if no directory exists, create one if not os.path.exists(target_dir): os.mkdir(target_dir) # special logic for zip files if document_url.split(".")[-1] == "zip" and ( fname is None or not os.path.exists(full_path) ): # if we have a zip file already, don't re-download it zip_path = target_dir + "/" + document_url.split("/")[-1] if not os.path.exists(zip_path): data = requests.get(document_url) open(zip_path, "wb").write(data.content) # if need be, extract the zipfile documents with ZipFile(zip_path, "r") as zipf: fnames = zipf.namelist() if fname is not None and fname in fnames: zipf.extract(fname, target_dir) return full_path for fname in fnames: if not os.path.exists(target_dir + fname): zipf.extract(fname, target_dir) if len(fnames) == 1: full_path = target_dir + "/" + fnames[0] else: return [target_dir + "/" + fname for fname in fnames] # regular logic elif not os.path.exists(full_path): data = requests.get(document_url) open(full_path, "wb").write(data.content) return full_path def _prep_for_stacking(fold_name: str, doc_num: int, df: pd.DataFrame) -> pd.DataFrame: """ Subroutine of combine_folds() """ df_values = { "fold": fold_name, "doc_num": doc_num, } for colname in df.columns: df_values[colname] = df[colname] return pd.DataFrame(df_values) def combine_folds(fold_to_docs: Dict[str, List[pd.DataFrame]]): """ Merge together multiple parts of a corpus (i.e. train, test, validation) into a single DataFrame of all tokens in the corpus. :param fold_to_docs: Mapping from fold name ("train", "test", etc.) to list of per-document DataFrames as produced by :func:`util.conll_to_bert`. All DataFrames must have the same schema, but any schema is ok. :returns: corpus wide DataFrame with some additional leading columns `fold` and `doc_num` to tell what fold and document number within the fold each row of the dataframe comes from. """ to_stack = [] # Type: List[pd.DataFrame] for fold_name, docs_in_fold in fold_to_docs.items(): to_stack.extend( [ _prep_for_stacking(fold_name, i, docs_in_fold[i]) for i in range(len(docs_in_fold)) ] ) return pd.concat(to_stack).reset_index(drop=True) def compute_accuracy_by_document( corpus_dfs: Dict[Tuple[str, int], pd.DataFrame], output_dfs: Dict[Tuple[str, int], pd.DataFrame], ) -> pd.DataFrame: """ Compute precision, recall, and F1 scores by document. :param corpus_dfs: Gold-standard span/entity type pairs, as either: * a dictionary of DataFrames, one DataFrames per document, indexed by tuples of (collection name, offset into collection) * a list of DataFrames, one per document as returned by :func:`conll_2003_output_to_dataframes()` :param output_dfs: Model outputs, in the same format as `gold_dfs` (i.e. exactly the same column names). This is the format that produces. """ if isinstance(corpus_dfs, list): if not isinstance(output_dfs, list): raise TypeError( f"corpus_dfs is a list, but output_dfs is of type " f"'{type(output_dfs)}', which is not a list." ) corpus_dfs = {("", i): corpus_dfs[i] for i in range(len(corpus_dfs))} output_dfs = {("", i): output_dfs[i] for i in range(len(output_dfs))} # Note that it's important for all of these lists to be in the same # order; hence these expressions all iterate over gold_dfs.keys() num_true_positives = [ len(corpus_dfs[k].merge(output_dfs[k]).index) for k in corpus_dfs.keys() ] num_extracted = [len(output_dfs[k].index) for k in corpus_dfs.keys()] num_entities = [len(corpus_dfs[k].index) for k in corpus_dfs.keys()] collection_name = [t[0] for t in corpus_dfs.keys()] doc_num = [t[1] for t in corpus_dfs.keys()] stats_by_doc = pd.DataFrame( { "fold": collection_name, "doc_num": doc_num, "num_true_positives": num_true_positives, "num_extracted": num_extracted, "num_entities": num_entities, } ) stats_by_doc["precision"] = ( stats_by_doc["num_true_positives"] / stats_by_doc["num_extracted"] ) stats_by_doc["recall"] = ( stats_by_doc["num_true_positives"] / stats_by_doc["num_entities"] ) stats_by_doc["F1"] = ( 2.0 * (stats_by_doc["precision"] * stats_by_doc["recall"]) / (stats_by_doc["precision"] + stats_by_doc["recall"]) ) return stats_by_doc def compute_global_accuracy(stats_by_doc: pd.DataFrame): """ Compute collection-wide precision, recall, and F1 score from the output of :func:`compute_f1_by_document`. :param stats_by_doc: Output of :func:`make_stats_df` :returns: A Python dictionary of collection-level statistics about result quality. """ num_true_positives = stats_by_doc["num_true_positives"].sum() num_entities = stats_by_doc["num_entities"].sum() num_extracted = stats_by_doc["num_extracted"].sum() precision = num_true_positives / num_extracted recall = num_true_positives / num_entities f1 = 2.0 * (precision * recall) / (precision + recall) return { "num_true_positives": num_true_positives, "num_entities": num_entities, "num_extracted": num_extracted, "precision": precision, "recall": recall, "F1": f1, }
prepare_dataset.py
scripples/scripp_gpt-2
105
12622618
#!/usr/bin/env python3 # Usage: # PYTHONPATH=src ./encode.py <file|directory|glob> /path/to/output.npz # PYTHONPATH=src ./train --dataset /path/to/output.npz import argparse import numpy as np import sys import tqdm from ftfy import fix_text import tflex_utils parser = argparse.ArgumentParser( description='Use FTFY to prepare a dataset for training.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('infile', metavar='PATH', type=str, help='Input file, directory, or glob pattern (utf-8 text).') parser.add_argument('--outfile', default="-", type=str, help='Output file path, or - for stdout') def main(): args = parser.parse_args() out = sys.stdout if args.outfile == '-' else open(args.outfile, "w") for i, line in tflex_utils.for_each_line(args.infile, message='Fixing'): fixed = fix_text(line) out.write(fixed) if i % 100 == 0: out.flush() if __name__ == '__main__': main()
benchmark_scripts/train.py
qq456cvb/KeypointNet
117
12622627
import os import hydra import torch import logging logger = logging.getLogger(__name__) import omegaconf import importlib from tqdm import tqdm from utils import AverageMeter, ModelWrapper import dataset import utils def train(cfg): KeypointDataset = getattr(dataset, 'Keypoint{}Dataset'.format(cfg.task.capitalize())) log_dir = os.path.curdir train_dataset = KeypointDataset(cfg, 'train') train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.batch_size, shuffle=True, num_workers=cfg.num_workers, drop_last=True) val_dataset = KeypointDataset(cfg, 'val') val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=cfg.batch_size, num_workers=cfg.num_workers) cfg.num_classes = train_dataset.nclasses model_impl = getattr(importlib.import_module('.{}'.format(cfg.network.name), package='models'), '{}Model'.format(cfg.task.capitalize()))(cfg).cuda() model = ModelWrapper(model_impl).cuda() logger.info('Start training on {} keypoint detection...'.format(cfg.task)) optimizer = torch.optim.Adam( model.parameters(), lr=1e-3 ) criterion = getattr(utils, '{}Criterion'.format(cfg.task.capitalize()))().cuda() meter = AverageMeter() best_loss = 1e10 for epoch in range(cfg.max_epoch + 1): train_iter = tqdm(train_dataloader) # Training meter.reset() model.train() for i, data in enumerate(train_iter): outputs = model(data) loss = criterion(data, outputs) optimizer.zero_grad() loss.backward() optimizer.step() train_iter.set_postfix(loss=loss.item()) meter.update(loss.item()) logger.info( f'Epoch: {epoch}, Average Train loss: {meter.avg}' ) # validation loss model.eval() meter.reset() val_iter = tqdm(val_dataloader) for i, data in enumerate(val_iter): with torch.no_grad(): outputs = model(data) loss = criterion(data, outputs) val_iter.set_postfix(loss=loss.item()) meter.update(loss.item()) if meter.avg < best_loss: logger.info("best epoch: {}".format(epoch)) best_loss = meter.avg torch.save(model.state_dict(), os.path.join(log_dir, 'best.pth')) logger.info( f'Epoch: {epoch}, Average Val loss: {meter.avg}' ) @hydra.main(config_path='config', config_name='config') def main(cfg): omegaconf.OmegaConf.set_struct(cfg, False) cfg.log_path = '{}_log'.format(cfg.task) logger.info(cfg.pretty()) train(cfg) if __name__ == '__main__': main()
tools/rename.py
gatehouse/cppcms
388
12622632
<reponame>gatehouse/cppcms #!/usr/bin/env python # # Copyright <NAME> 2009. Use, modification and # distribution is subject to the Boost Software License, Version # 1.0. (See accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # import re import sys import os import os.path import StringIO class SyntaxError(Exception): def __init__(self,message): self.message=message class tockenizer: def __init__(self,input): self.input=input def chr_end(self,line,pos,c): size=len(line) while pos<size: if line[pos:pos+2]=="\\\\" or line[pos:pos+2]=='\\'+c: pos+=2 elif line[pos]==c: return pos+1 else: pos+=1 return -1 def tockens(self): line=self.input.readline() while line: size=len(line) i=0 while i<size: if line[i].isalpha() or line[i]=='_': n=1 while i+n<size and (line[i+n].isalpha() or line[i+n]=='_' or line[i+n].isdigit()): n+=1 yield line[i:i+n] i+=n elif line[i:i+2]==r'//': yield line[i:] i=size elif line[i:i+2]==r'/*': end=line.find(r'*/',i) if end!=-1: yield line[i:end+2] i=end+2 else: res=line[i:] line=self.input.readline() while line: end=line.find(r'*/') if end==-1: res+=line line=self.input.readline() else: res+=line[:end+2] size=len(line) i=end+2; yield res break size=len(line) elif line[i]=='"' or line[i]=="'": c=line[i] end=self.chr_end(line,i+1,c) if end!=-1: yield line[i:end] i=end else: res=line[i:] line=self.input.readline() while line: end=self.chr_end(line,0,c) if end==-1: res+=line line=self.input.readline() else: res+=line[:end] size=len(line) i=end; yield res break size=len(line) elif i+1==size and line[i:i+1]=='\\\n': yield '\\\n' i+=2 else: yield line[i] i+=1 line=self.input.readline() class renamer: fname=re.compile(r'^(\w+)$') ident=re.compile(r'^[a-zA-Z_][a-zA-Z_0-9]*$') def __init__(self,input,output,namespace,newdir=''): self.input=input self.output=output self.namespace=namespace self.newdir=newdir def process_tocken(self,tocken): if self.ident.match(tocken): tocken=tocken.replace('BOOST',namespace.upper()) tocken=tocken.replace('boost',namespace) self.output.write(tocken) def process_all(self,lst): for tocken in lst: self.process_tocken(tocken) def convert_path(self,lst): self.output.write('<'+self.newdir) self.process_all(lst[2:]) def rename(self): parser=tockenizer(self.input) state='Normal' substate=None lst=[] inc=re.compile(r'^"boost(/.*)"$') for tocken in parser.tockens(): lst.append(tocken) if state=='Normal' and tocken=='<': state='<' continue elif state=='<' and tocken=='boost': state='boost' continue elif state=='boost' and tocken=='/': state='/' continue elif state=='/' and self.fname.match(tocken): state='dir' continue elif state=='dir' and tocken=='/': state='/' continue elif state=='dir' and tocken=='.': state='.' continue elif state=='.' and (tocken=='ipp' or tocken=='h' or tocken=='hpp'): state='hpp' continue elif state=='dir' and tocken=='>': self.convert_path(lst) lst=[] elif state=='hpp' and tocken=='>': self.convert_path(lst) lst=[] elif state=='Normal' and inc.match(tocken): m=inc.match(tocken) lst[0]='"'+self.newdir+m.group(1)+'"' state='Normal' self.process_all(lst) lst=[] def is_cpp(name): for suffix in ['.hpp','.h','.ipp','.cpp','.c','.inl','inc','.SUNWCCh','.cxx','.cc' ]: if name.endswith(suffix): return True if os.path.basename(os.path.dirname(name)) in ['tr1','cpp_c_headers']: return True return False def is_ign(name): ign=['.vcproj', '.sln', '.v2', '.html', '.cmake', '.txt', '.qbk',\ '.mak', '.sh', '.pl', '.r', '.css', '.png', '.doc', '.vsprops','.mcp'\ '.xml','.xsd','.jam','.htm','.bat','.xml','.dtd','.zip',\ '.gif','.sty','.pdf','.csh','.w','.fig','.graffle','.jpg',\ '.dot','.cfg','.dimacs','.expected','.dat','.js','.py','.svg','.jpeg','.mml',\ '.input','.flex','.hdf','.manifest','.xsl','.m4','.rst','.rsa','.pyste',\ '.ok','.err1','.err2','.err3','.mini','.db','.toyxml','.quickbook','.gold',\ '.cmd','.toc','.pem','.xls','.rsp','.reno','.output','.log','.in','.am'] for suffix in ign: if name.endswith(suffix): return True if os.path.basename(os.path.dirname(name)) in ['doc','boehm_gc','debian']: return True name=os.path.basename(name) if name in ['Jamfile', 'Makefile','Jamroot','INSTALL','README','LICENSE','Thumbs.db','TODO','NEWS','configure','sublibs','Changelog']: return True return False def rename_one(name,namespace,newdir): if is_cpp(name): print "Processing file %s" % name fin=file(name) buffer=StringIO.StringIO() ren=renamer(fin,buffer,namespace,newdir) ren.rename() fin.close() fout=file(name,'w') buffer.seek(0) line=buffer.readline() while line: fout.write(line) line=buffer.readline() fout.close() elif is_ign(name): pass else: print "Warning!!!!!!!!!! Unlnown file type %s" % name print "--------------------Ignoring----------------" rep=file('warning.log','a') rep.write('Unlnown file type %s\n' % name) rep.close() def rename_recursively(dir,namespace,newdir): for root,dirs,files in os.walk(dir): for file in files: rename_one(os.path.join(root,file),namespace,newdir) if __name__=='__main__': if len(sys.argv)<3: print "Usage rename.py path newnamespace" print "for example: rename.py boost_1_39_0 mybst" sys.exit(1) path=sys.argv[1] namespace=sys.argv[2] if namespace.lower()!=namespace: print "Namespace should be lowercase" sys.exit(1) newdir=namespace ren=rename_recursively(path,namespace,newdir) boost_dir=os.path.join(path,'boost') new_dir=os.path.join(path,newdir) if os.path.isdir(boost_dir): os.rename(boost_dir,new_dir)
slackbot/management/commands/sendtestslack.py
mepsd/CLAC
126
12622634
<filename>slackbot/management/commands/sendtestslack.py import djclick as click from django.conf import settings from django.core.management.base import CommandError from slackbot.bot import sendmsg from calc.site_utils import absolutify_url @click.command() def command() -> None: url = absolutify_url('/') if not settings.SLACKBOT_WEBHOOK_URL: raise CommandError("SLACKBOT_WEBHOOK_URL must be configured.") if not sendmsg(f"Hi, this is a test message from <{url}|CALC>!"): raise CommandError("Sending test Slack message failed.") print("Test Slack message sent successfully!")
zincbase/web/__init__.py
complexdb/zincbase
174
12622638
class GraphCaster: def __init__(self, redis_address='redis://'): """Create a graph cast, so that a KB can be displayed on localhost:5000. It won't work if you installed basic Zincbase -- try `pip install zincbase[web]`. :param str redis_address: URL of the redis instance the graph cast should use. For local use, let the default stand, provided you have `docker run -p 6379:6379 -d redis` """ try: from flask_socketio import SocketIO, emit except ImportError: print('Please install zincbase[web]') return False self.redis = redis_address self.socketio = SocketIO(message_queue=self.redis) self.socketio.emit('reset') self.node_update_queue = [] self.edge_update_queue = [] def add_node(self, node): """Add a node to the graph cast. :param Node node: A node in the KB. """ attrs = { 'id': str(node) } attrs.update(node.attrs) self.socketio.emit('addNode', attrs, json=True) def add_edge(self, from_node, to_node, attributes): """Add an edge to the graph cast. """ attrs = { 'source': str(from_node), 'target': str(to_node) } attrs.update(attributes) self.socketio.emit('addLink', attrs, json=True) def update_node(self, node, defer=False): """Update a node in the graph cast with its current attributes in the KB. :param Node node: The node to update :param bool defer: If False, send immediately (and cause immediate re-rendering on the client.) If True, batch and wait until `batch_update()` to send updates together and re-render only once. """ attrs = { 'id': str(node) } attrs.update({ 'attributes': node.attrs }) if not defer: self.socketio.emit('updateNode', attrs, json=True) else: self.node_update_queue.append(attrs) def update_edge(self, edge, defer=False): """Update an edge in the graph cast with its current attributes in the KB. :param str sub, pred, obj: The edge, described as subject, predicate, object :param KB kb: The knowledge base in which the edge exists :param bool defer: If False, send immediately (and cause immediate re-rendering on the client.) If True, batch and wait until `batch_update()` to send updates together and re-render only once. """ attrs = { 'attributes': edge.attrs } attrs.update({'from': edge._sub, 'pred': edge._pred, 'to': edge._ob}) if not defer: self.socketio.emit('updateEdge', attrs, json=True) else: self.edge_update_queue.append(attrs) def batch_update(self): """Perform a batch update. Any `update_node` or `update_edge` calls that were made with `defer=True` will now be sent to the frontend. """ self.socketio.emit('batchUpdateNode', self.node_update_queue, json=True) self.socketio.emit('batchUpdateEdge', self.edge_update_queue, json=True) self.node_update_queue = [] self.edge_update_queue = [] def reset(self): """If any web client was already listening, reset it""" self.socketio.emit('reset') def render(self, node_color=0x11bb88, node_size=10, node_opacity=0.9, node_label='id', node_visibility=True, edge_label='pred', edge_opacity=1, edge_color=0x333333, edge_size=0, edge_visibility=True, arrow_size=0, arrow_color=0x000001, label_node=False, label_node_color='black', label_node_height=3, label_node_offset=1, label_edge=False, label_edge_color='black', label_edge_height=3, label_edge_offset=1, bg_color=0xffffff, engine='d3'): """Perform the initial setup/rendering of the current graph. :param node_color: Either a 24bit RGB int (such as 0xFF001A) or a string containing a Javascript function which takes `node` as an argument, for example `node => node.color` :param node_size: Either a number >= 0 or a string containing a Javascript function, for example `node => Math.log(node.enormity)` :param node_label: Either a string representing a property of the node to display (on hover) as its label, or a Javascript function returning a string. All nodes have a property called `id` which is their name/string repr. :param node_visibility: Either a string representing a property of the node which evaluates truthy/falsy (in Javascript) to determine whether to display the node, or a JS function that returns true or false, or True/False. :param label_node: If True, nodes will be labeled with `node_label`. Unlike `node_label`, which only displays on hover, this is a permanent text. Note that the value updates when the value of `node[node_label]` changes (in Python). :param label_node_color: RGB value for the color of a node's permanent label :param label_node_height: Text height for the node's permanent label :param label_node_offset: Integer specifying how far out from the node the label should appear. Default is 1 unit on the z-axis. :param edge_visibility: Either a string representing a property of the edge which evaluates truthy/falsy (in Javascript) to determine whether to display the edge, or a JS function that returns true or false, or True/False. :param edge_label: Either a string representing a property of an edge to display (on hover) as its label, or a Javascript function returning a string. Defaults to the predicate. :param float edge_opacity: Opacity of the edges, from 0-1 :param edge_color: Either a 24bit RGB int or a string containing a Javascript function which takes `edge` as an argument, for example `edge => edge.color`. :param edge_size: The width of an edge. Either a number >= 0 (where 0 means 1px) or a string containing a Javascript function. :param label_edge: If True, nodes will be labeled with `edge_label`. Unlike `edge_label`, which only displays on hover, this is a permanent text. Note that the value updates when the value of `edge[edge_label]` changes (in Python). :param label_edge_color: RGB value for the color of a edge's permanent label :param label_edge_height: Text height for the edge's permanent label :param label_edge_offset: Integer specifying how far out from the edge the label should appear. Default is 1 unit on the z-axis. :param int arrow_size: If >0, display directional arrows on edges of that size. :param int arrow_color: Color of arrows (if arrow_size > 0) :param int bg_color: Hex background color for the graph, e.g. 0xFF0000 is red. :param str engine: Specify d3 or ngraph. ngraph is faster but can be buggy, and is only really suitable for static graphs. The layouts can look different also. """ if label_node: label_node = { 'color': 'black', 'height': 3, 'offset': node_size + label_node_offset } if label_edge: label_edge = { 'color': 'black', 'height': 3, 'offset': edge_size + label_edge_offset } attributes = { 'node_color': node_color, 'node_size': node_size, 'node_opacity': node_opacity, 'node_label': node_label, 'node_visibility': node_visibility, 'edge_visibility': edge_visibility, 'edge_opacity': edge_opacity, 'edge_color': edge_color, 'edge_size': edge_size, 'edge_label': edge_label, 'arrow_size': arrow_size, 'arrow_color': arrow_color, 'label_node': label_node, 'label_edge': label_edge, 'engine': engine, 'bg_color': bg_color } self.socketio.emit('render', attributes, json=True) def from_kb(self, kb): # TODO Permit this to work with subsampling the KB for node in kb.G.nodes: self.add_node(kb.node(node)) for from_node, to_node, edge_attributes in kb.G.edges.data(): self.add_edge(from_node=from_node, to_node=to_node, attributes=edge_attributes)
ParlAI/tests/test_params.py
UmaTaru/run
163
12622648
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Test ParlaiParser and other opt/params.py code.""" import os import json import unittest from parlai.core.params import ParlaiParser import parlai.core.agents as agents import parlai.core.testing_utils as testing_utils class _ExampleUpgradeOptAgent(agents.Agent): def __init__(self, opt, shared=None): super().__init__(opt) assert 'is_upgraded' in opt assert opt['is_upgraded'] is True @classmethod def upgrade_opt(cls, opt): opt = super(_ExampleUpgradeOptAgent, cls).upgrade_opt(opt) assert 'is_upgraded' not in opt opt['is_upgraded'] = True return opt class TestParlaiParser(unittest.TestCase): """Test ParlaiParser.""" def test_upgrade_opt(self): """Test whether upgrade_opt works.""" with testing_utils.tempdir() as tmp: with testing_utils.capture_output() as _: modfn = os.path.join(tmp, 'model') with open(modfn, 'w') as f: f.write('Test.') optfn = modfn + '.opt' base_opt = { 'model': 'tests.test_params:_ExampleUpgradeOptAgent', 'dict_file': modfn + '.dict', 'model_file': modfn, } with open(optfn, 'w') as f: json.dump(base_opt, f) pp = ParlaiParser(True, True) opt = pp.parse_args(['--model-file', modfn]) agents.create_agent(opt) if __name__ == '__main__': unittest.main()
crfnet/model/losses_neural_filter.py
XiaoJake/CameraRadarFusionNet
256
12622681
##### NEURAL FILTER LOSSES ##### import tensorflow as tf def binary_focal_loss(loss_fn, threshold=0.5, alpha=0.2, gamma=2.0): """ Compared to focal loss, the binary focal loss :param alpha: Scale the focal weight with alpha. :param gamma: Take the power of the focal weight with gamma. """ def _binary_focal_loss(y_true, y_pred): # apply threshold to get clearly positive and negative predictions y_true_binary = tf.keras.backend.greater(y_true, threshold) # compute the focal loss alpha_factor = tf.keras.backend.ones_like(y_true, dtype=tf.float32) * alpha # create an array with alpha values, same shape as y_true alpha_factor = tf.where(y_true_binary, alpha_factor, 1 - alpha_factor) # alpha on true, 1-alpha on false alpha_factor = alpha_factor * 2 # we don't want to half the learning rate focal_weight = tf.where(y_true_binary, 1 - y_pred, y_pred) # this is needed, because the output contains 0.0 after applying to the input grid focal_weight = tf.clip_by_value(focal_weight, tf.keras.backend.epsilon(), 1.0) focal_weight = alpha_factor * focal_weight**gamma focal_weight = tf.squeeze(focal_weight, axis=-1) focal_weight = tf.identity(focal_weight, name="focal_weight") cls_loss = focal_weight * loss_fn(y_true, y_pred) cls_loss = tf.identity(cls_loss, name="cls_loss") # compute the normalizer: the number of positive anchors normalizer = tf.where(y_true_binary) normalizer = tf.keras.backend.cast(tf.keras.backend.shape(normalizer)[0], tf.keras.backend.floatx()) normalizer = tf.keras.backend.maximum(tf.keras.backend.cast_to_floatx(1), normalizer) cls_loss_sum = tf.keras.backend.sum(cls_loss) loss = cls_loss_sum / normalizer loss = tf.identity(loss, name="focal_loss") return loss #tf.keras.backend.sum(cls_loss) / normalizer return _binary_focal_loss def roc_auc_score(y_true, y_pred): """ ROC AUC Score. Source: https://github.com/tflearn/tflearn/blob/master/tflearn/objectives.py Modifications: argument order y_pred and y_true Approximates the Area Under Curve score, using approximation based on the Wilcoxon-Mann-Whitney U statistic. <NAME>., <NAME>., <NAME>., & <NAME>. (2003). Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic. Measures overall performance for a full range of threshold levels. Arguments: y_true: `Tensor` . Targets (labels), a probability distribution. y_pred: `Tensor`. Predicted values. """ with tf.name_scope("RocAucScore"): pos = tf.boolean_mask(y_pred, tf.cast(y_true, tf.bool)) neg = tf.boolean_mask(y_pred, ~tf.cast(y_true, tf.bool)) pos = tf.expand_dims(pos, 0) neg = tf.expand_dims(neg, 1) # original paper suggests performance is robust to exact parameter choice gamma = 0.2 p = 3 difference = tf.zeros_like(pos * neg) + pos - neg - gamma masked = tf.boolean_mask(difference, difference < 0.0) return tf.reduce_sum(tf.pow(-masked, p))
sdk/agrifood/azure-agrifood-farming/azure/agrifood/farming/operations/_planting_data_operations.py
rsdoherty/azure-sdk-for-python
2,728
12622685
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import datetime from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class PlantingDataOperations(object): """PlantingDataOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.agrifood.farming.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_farmer_id( self, farmer_id, # type: str min_avg_planting_rate=None, # type: Optional[float] max_avg_planting_rate=None, # type: Optional[float] min_total_material=None, # type: Optional[float] max_total_material=None, # type: Optional[float] min_avg_material=None, # type: Optional[float] max_avg_material=None, # type: Optional[float] sources=None, # type: Optional[List[str]] associated_boundary_ids=None, # type: Optional[List[str]] operation_boundary_ids=None, # type: Optional[List[str]] min_operation_start_date_time=None, # type: Optional[datetime.datetime] max_operation_start_date_time=None, # type: Optional[datetime.datetime] min_operation_end_date_time=None, # type: Optional[datetime.datetime] max_operation_end_date_time=None, # type: Optional[datetime.datetime] min_operation_modified_date_time=None, # type: Optional[datetime.datetime] max_operation_modified_date_time=None, # type: Optional[datetime.datetime] min_area=None, # type: Optional[float] max_area=None, # type: Optional[float] ids=None, # type: Optional[List[str]] names=None, # type: Optional[List[str]] property_filters=None, # type: Optional[List[str]] statuses=None, # type: Optional[List[str]] min_created_date_time=None, # type: Optional[datetime.datetime] max_created_date_time=None, # type: Optional[datetime.datetime] min_last_modified_date_time=None, # type: Optional[datetime.datetime] max_last_modified_date_time=None, # type: Optional[datetime.datetime] max_page_size=50, # type: Optional[int] skip_token=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.PlantingDataListResponse"] """Returns a paginated list of planting data resources under a particular farm. :param farmer_id: ID of the associated farmer. :type farmer_id: str :param min_avg_planting_rate: Minimum AvgPlantingRate value(inclusive). :type min_avg_planting_rate: float :param max_avg_planting_rate: Maximum AvgPlantingRate value (inclusive). :type max_avg_planting_rate: float :param min_total_material: Minimum TotalMaterial value(inclusive). :type min_total_material: float :param max_total_material: Maximum TotalMaterial value (inclusive). :type max_total_material: float :param min_avg_material: Minimum AvgMaterial value(inclusive). :type min_avg_material: float :param max_avg_material: Maximum AvgMaterial value (inclusive). :type max_avg_material: float :param sources: Sources of the operation data. :type sources: list[str] :param associated_boundary_ids: Boundary IDs associated with operation data. :type associated_boundary_ids: list[str] :param operation_boundary_ids: Operation boundary IDs associated with operation data. :type operation_boundary_ids: list[str] :param min_operation_start_date_time: Minimum start date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type min_operation_start_date_time: ~datetime.datetime :param max_operation_start_date_time: Maximum start date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type max_operation_start_date_time: ~datetime.datetime :param min_operation_end_date_time: Minimum end date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type min_operation_end_date_time: ~datetime.datetime :param max_operation_end_date_time: Maximum end date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type max_operation_end_date_time: ~datetime.datetime :param min_operation_modified_date_time: Minimum modified date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type min_operation_modified_date_time: ~datetime.datetime :param max_operation_modified_date_time: Maximum modified date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type max_operation_modified_date_time: ~datetime.datetime :param min_area: Minimum area for which operation was applied (inclusive). :type min_area: float :param max_area: Maximum area for which operation was applied (inclusive). :type max_area: float :param ids: Ids of the resource. :type ids: list[str] :param names: Names of the resource. :type names: list[str] :param property_filters: Filters on key-value pairs within the Properties object. eg. "{testKey} eq {testValue}". :type property_filters: list[str] :param statuses: Statuses of the resource. :type statuses: list[str] :param min_created_date_time: Minimum creation date of resource (inclusive). :type min_created_date_time: ~datetime.datetime :param max_created_date_time: Maximum creation date of resource (inclusive). :type max_created_date_time: ~datetime.datetime :param min_last_modified_date_time: Minimum last modified date of resource (inclusive). :type min_last_modified_date_time: ~datetime.datetime :param max_last_modified_date_time: Maximum last modified date of resource (inclusive). :type max_last_modified_date_time: ~datetime.datetime :param max_page_size: Maximum number of items needed (inclusive). Minimum = 10, Maximum = 1000, Default value = 50. :type max_page_size: int :param skip_token: Skip token for getting next set of results. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PlantingDataListResponse or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.agrifood.farming.models.PlantingDataListResponse] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PlantingDataListResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-31-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_farmer_id.metadata['url'] # type: ignore path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'farmerId': self._serialize.url("farmer_id", farmer_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if min_avg_planting_rate is not None: query_parameters['minAvgPlantingRate'] = self._serialize.query("min_avg_planting_rate", min_avg_planting_rate, 'float') if max_avg_planting_rate is not None: query_parameters['maxAvgPlantingRate'] = self._serialize.query("max_avg_planting_rate", max_avg_planting_rate, 'float') if min_total_material is not None: query_parameters['minTotalMaterial'] = self._serialize.query("min_total_material", min_total_material, 'float') if max_total_material is not None: query_parameters['maxTotalMaterial'] = self._serialize.query("max_total_material", max_total_material, 'float') if min_avg_material is not None: query_parameters['minAvgMaterial'] = self._serialize.query("min_avg_material", min_avg_material, 'float') if max_avg_material is not None: query_parameters['maxAvgMaterial'] = self._serialize.query("max_avg_material", max_avg_material, 'float') if sources is not None: query_parameters['sources'] = [self._serialize.query("sources", q, 'str') if q is not None else '' for q in sources] if associated_boundary_ids is not None: query_parameters['associatedBoundaryIds'] = [self._serialize.query("associated_boundary_ids", q, 'str') if q is not None else '' for q in associated_boundary_ids] if operation_boundary_ids is not None: query_parameters['operationBoundaryIds'] = [self._serialize.query("operation_boundary_ids", q, 'str') if q is not None else '' for q in operation_boundary_ids] if min_operation_start_date_time is not None: query_parameters['minOperationStartDateTime'] = self._serialize.query("min_operation_start_date_time", min_operation_start_date_time, 'iso-8601') if max_operation_start_date_time is not None: query_parameters['maxOperationStartDateTime'] = self._serialize.query("max_operation_start_date_time", max_operation_start_date_time, 'iso-8601') if min_operation_end_date_time is not None: query_parameters['minOperationEndDateTime'] = self._serialize.query("min_operation_end_date_time", min_operation_end_date_time, 'iso-8601') if max_operation_end_date_time is not None: query_parameters['maxOperationEndDateTime'] = self._serialize.query("max_operation_end_date_time", max_operation_end_date_time, 'iso-8601') if min_operation_modified_date_time is not None: query_parameters['minOperationModifiedDateTime'] = self._serialize.query("min_operation_modified_date_time", min_operation_modified_date_time, 'iso-8601') if max_operation_modified_date_time is not None: query_parameters['maxOperationModifiedDateTime'] = self._serialize.query("max_operation_modified_date_time", max_operation_modified_date_time, 'iso-8601') if min_area is not None: query_parameters['minArea'] = self._serialize.query("min_area", min_area, 'float') if max_area is not None: query_parameters['maxArea'] = self._serialize.query("max_area", max_area, 'float') if ids is not None: query_parameters['ids'] = [self._serialize.query("ids", q, 'str') if q is not None else '' for q in ids] if names is not None: query_parameters['names'] = [self._serialize.query("names", q, 'str') if q is not None else '' for q in names] if property_filters is not None: query_parameters['propertyFilters'] = [self._serialize.query("property_filters", q, 'str') if q is not None else '' for q in property_filters] if statuses is not None: query_parameters['statuses'] = [self._serialize.query("statuses", q, 'str') if q is not None else '' for q in statuses] if min_created_date_time is not None: query_parameters['minCreatedDateTime'] = self._serialize.query("min_created_date_time", min_created_date_time, 'iso-8601') if max_created_date_time is not None: query_parameters['maxCreatedDateTime'] = self._serialize.query("max_created_date_time", max_created_date_time, 'iso-8601') if min_last_modified_date_time is not None: query_parameters['minLastModifiedDateTime'] = self._serialize.query("min_last_modified_date_time", min_last_modified_date_time, 'iso-8601') if max_last_modified_date_time is not None: query_parameters['maxLastModifiedDateTime'] = self._serialize.query("max_last_modified_date_time", max_last_modified_date_time, 'iso-8601') if max_page_size is not None: query_parameters['$maxPageSize'] = self._serialize.query("max_page_size", max_page_size, 'int', maximum=1000, minimum=10) if skip_token is not None: query_parameters['$skipToken'] = self._serialize.query("skip_token", skip_token, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'farmerId': self._serialize.url("farmer_id", farmer_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('PlantingDataListResponse', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_farmer_id.metadata = {'url': '/farmers/{farmerId}/planting-data'} # type: ignore def list( self, min_avg_planting_rate=None, # type: Optional[float] max_avg_planting_rate=None, # type: Optional[float] min_total_material=None, # type: Optional[float] max_total_material=None, # type: Optional[float] min_avg_material=None, # type: Optional[float] max_avg_material=None, # type: Optional[float] sources=None, # type: Optional[List[str]] associated_boundary_ids=None, # type: Optional[List[str]] operation_boundary_ids=None, # type: Optional[List[str]] min_operation_start_date_time=None, # type: Optional[datetime.datetime] max_operation_start_date_time=None, # type: Optional[datetime.datetime] min_operation_end_date_time=None, # type: Optional[datetime.datetime] max_operation_end_date_time=None, # type: Optional[datetime.datetime] min_operation_modified_date_time=None, # type: Optional[datetime.datetime] max_operation_modified_date_time=None, # type: Optional[datetime.datetime] min_area=None, # type: Optional[float] max_area=None, # type: Optional[float] ids=None, # type: Optional[List[str]] names=None, # type: Optional[List[str]] property_filters=None, # type: Optional[List[str]] statuses=None, # type: Optional[List[str]] min_created_date_time=None, # type: Optional[datetime.datetime] max_created_date_time=None, # type: Optional[datetime.datetime] min_last_modified_date_time=None, # type: Optional[datetime.datetime] max_last_modified_date_time=None, # type: Optional[datetime.datetime] max_page_size=50, # type: Optional[int] skip_token=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.PlantingDataListResponse"] """Returns a paginated list of planting data resources across all farmers. :param min_avg_planting_rate: Minimum AvgPlantingRate value(inclusive). :type min_avg_planting_rate: float :param max_avg_planting_rate: Maximum AvgPlantingRate value (inclusive). :type max_avg_planting_rate: float :param min_total_material: Minimum TotalMaterial value(inclusive). :type min_total_material: float :param max_total_material: Maximum TotalMaterial value (inclusive). :type max_total_material: float :param min_avg_material: Minimum AvgMaterial value(inclusive). :type min_avg_material: float :param max_avg_material: Maximum AvgMaterial value (inclusive). :type max_avg_material: float :param sources: Sources of the operation data. :type sources: list[str] :param associated_boundary_ids: Boundary IDs associated with operation data. :type associated_boundary_ids: list[str] :param operation_boundary_ids: Operation boundary IDs associated with operation data. :type operation_boundary_ids: list[str] :param min_operation_start_date_time: Minimum start date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type min_operation_start_date_time: ~datetime.datetime :param max_operation_start_date_time: Maximum start date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type max_operation_start_date_time: ~datetime.datetime :param min_operation_end_date_time: Minimum end date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type min_operation_end_date_time: ~datetime.datetime :param max_operation_end_date_time: Maximum end date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type max_operation_end_date_time: ~datetime.datetime :param min_operation_modified_date_time: Minimum modified date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type min_operation_modified_date_time: ~datetime.datetime :param max_operation_modified_date_time: Maximum modified date-time of the operation data, sample format: yyyy-MM-ddTHH:mm:ssZ (inclusive). :type max_operation_modified_date_time: ~datetime.datetime :param min_area: Minimum area for which operation was applied (inclusive). :type min_area: float :param max_area: Maximum area for which operation was applied (inclusive). :type max_area: float :param ids: Ids of the resource. :type ids: list[str] :param names: Names of the resource. :type names: list[str] :param property_filters: Filters on key-value pairs within the Properties object. eg. "{testKey} eq {testValue}". :type property_filters: list[str] :param statuses: Statuses of the resource. :type statuses: list[str] :param min_created_date_time: Minimum creation date of resource (inclusive). :type min_created_date_time: ~datetime.datetime :param max_created_date_time: Maximum creation date of resource (inclusive). :type max_created_date_time: ~datetime.datetime :param min_last_modified_date_time: Minimum last modified date of resource (inclusive). :type min_last_modified_date_time: ~datetime.datetime :param max_last_modified_date_time: Maximum last modified date of resource (inclusive). :type max_last_modified_date_time: ~datetime.datetime :param max_page_size: Maximum number of items needed (inclusive). Minimum = 10, Maximum = 1000, Default value = 50. :type max_page_size: int :param skip_token: Skip token for getting next set of results. :type skip_token: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PlantingDataListResponse or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.agrifood.farming.models.PlantingDataListResponse] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PlantingDataListResponse"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-31-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if min_avg_planting_rate is not None: query_parameters['minAvgPlantingRate'] = self._serialize.query("min_avg_planting_rate", min_avg_planting_rate, 'float') if max_avg_planting_rate is not None: query_parameters['maxAvgPlantingRate'] = self._serialize.query("max_avg_planting_rate", max_avg_planting_rate, 'float') if min_total_material is not None: query_parameters['minTotalMaterial'] = self._serialize.query("min_total_material", min_total_material, 'float') if max_total_material is not None: query_parameters['maxTotalMaterial'] = self._serialize.query("max_total_material", max_total_material, 'float') if min_avg_material is not None: query_parameters['minAvgMaterial'] = self._serialize.query("min_avg_material", min_avg_material, 'float') if max_avg_material is not None: query_parameters['maxAvgMaterial'] = self._serialize.query("max_avg_material", max_avg_material, 'float') if sources is not None: query_parameters['sources'] = [self._serialize.query("sources", q, 'str') if q is not None else '' for q in sources] if associated_boundary_ids is not None: query_parameters['associatedBoundaryIds'] = [self._serialize.query("associated_boundary_ids", q, 'str') if q is not None else '' for q in associated_boundary_ids] if operation_boundary_ids is not None: query_parameters['operationBoundaryIds'] = [self._serialize.query("operation_boundary_ids", q, 'str') if q is not None else '' for q in operation_boundary_ids] if min_operation_start_date_time is not None: query_parameters['minOperationStartDateTime'] = self._serialize.query("min_operation_start_date_time", min_operation_start_date_time, 'iso-8601') if max_operation_start_date_time is not None: query_parameters['maxOperationStartDateTime'] = self._serialize.query("max_operation_start_date_time", max_operation_start_date_time, 'iso-8601') if min_operation_end_date_time is not None: query_parameters['minOperationEndDateTime'] = self._serialize.query("min_operation_end_date_time", min_operation_end_date_time, 'iso-8601') if max_operation_end_date_time is not None: query_parameters['maxOperationEndDateTime'] = self._serialize.query("max_operation_end_date_time", max_operation_end_date_time, 'iso-8601') if min_operation_modified_date_time is not None: query_parameters['minOperationModifiedDateTime'] = self._serialize.query("min_operation_modified_date_time", min_operation_modified_date_time, 'iso-8601') if max_operation_modified_date_time is not None: query_parameters['maxOperationModifiedDateTime'] = self._serialize.query("max_operation_modified_date_time", max_operation_modified_date_time, 'iso-8601') if min_area is not None: query_parameters['minArea'] = self._serialize.query("min_area", min_area, 'float') if max_area is not None: query_parameters['maxArea'] = self._serialize.query("max_area", max_area, 'float') if ids is not None: query_parameters['ids'] = [self._serialize.query("ids", q, 'str') if q is not None else '' for q in ids] if names is not None: query_parameters['names'] = [self._serialize.query("names", q, 'str') if q is not None else '' for q in names] if property_filters is not None: query_parameters['propertyFilters'] = [self._serialize.query("property_filters", q, 'str') if q is not None else '' for q in property_filters] if statuses is not None: query_parameters['statuses'] = [self._serialize.query("statuses", q, 'str') if q is not None else '' for q in statuses] if min_created_date_time is not None: query_parameters['minCreatedDateTime'] = self._serialize.query("min_created_date_time", min_created_date_time, 'iso-8601') if max_created_date_time is not None: query_parameters['maxCreatedDateTime'] = self._serialize.query("max_created_date_time", max_created_date_time, 'iso-8601') if min_last_modified_date_time is not None: query_parameters['minLastModifiedDateTime'] = self._serialize.query("min_last_modified_date_time", min_last_modified_date_time, 'iso-8601') if max_last_modified_date_time is not None: query_parameters['maxLastModifiedDateTime'] = self._serialize.query("max_last_modified_date_time", max_last_modified_date_time, 'iso-8601') if max_page_size is not None: query_parameters['$maxPageSize'] = self._serialize.query("max_page_size", max_page_size, 'int', maximum=1000, minimum=10) if skip_token is not None: query_parameters['$skipToken'] = self._serialize.query("skip_token", skip_token, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('PlantingDataListResponse', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/planting-data'} # type: ignore def get( self, farmer_id, # type: str planting_data_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.PlantingData" """Get a specified planting data resource under a particular farmer. :param farmer_id: ID of the associated farmer resource. :type farmer_id: str :param planting_data_id: ID of the planting data resource. :type planting_data_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PlantingData, or the result of cls(response) :rtype: ~azure.agrifood.farming.models.PlantingData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PlantingData"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-31-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'farmerId': self._serialize.url("farmer_id", farmer_id, 'str'), 'plantingDataId': self._serialize.url("planting_data_id", planting_data_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('PlantingData', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/farmers/{farmerId}/planting-data/{plantingDataId}'} # type: ignore def create_or_update( self, farmer_id, # type: str planting_data_id, # type: str planting_data=None, # type: Optional["_models.PlantingData"] **kwargs # type: Any ): # type: (...) -> "_models.PlantingData" """Creates or updates an planting data resource under a particular farmer. :param farmer_id: ID of the associated farmer. :type farmer_id: str :param planting_data_id: ID of the planting data resource. :type planting_data_id: str :param planting_data: Planting data resource payload to create or update. :type planting_data: ~azure.agrifood.farming.models.PlantingData :keyword callable cls: A custom type or function that will be passed the direct response :return: PlantingData, or the result of cls(response) :rtype: ~azure.agrifood.farming.models.PlantingData :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PlantingData"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-31-preview" content_type = kwargs.pop("content_type", "application/merge-patch+json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'farmerId': self._serialize.url("farmer_id", farmer_id, 'str'), 'plantingDataId': self._serialize.url("planting_data_id", planting_data_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if planting_data is not None: body_content = self._serialize.body(planting_data, 'PlantingData') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('PlantingData', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('PlantingData', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/farmers/{farmerId}/planting-data/{plantingDataId}'} # type: ignore def delete( self, farmer_id, # type: str planting_data_id, # type: str **kwargs # type: Any ): # type: (...) -> None """Deletes a specified planting data resource under a particular farmer. :param farmer_id: ID of the associated farmer resource. :type farmer_id: str :param planting_data_id: ID of the planting data. :type planting_data_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-31-preview" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'Endpoint': self._serialize.url("self._config.endpoint", self._config.endpoint, 'str', skip_quote=True), 'farmerId': self._serialize.url("farmer_id", farmer_id, 'str'), 'plantingDataId': self._serialize.url("planting_data_id", planting_data_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/farmers/{farmerId}/planting-data/{plantingDataId}'} # type: ignore
translators/objects/archive_assembly.py
Mango-3/blenderseed
256
12622706
# # This source file is part of appleseed. # Visit http://appleseedhq.net/ for additional information and resources. # # This software is released under the MIT license. # # Copyright (c) 2019 <NAME>, The appleseedhq Organization # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import appleseed as asr from ..assethandlers import AssetType from ..translator import Translator from ...logger import get_logger logger = get_logger() class ArchiveAssemblyTranslator(Translator): def __init__(self, archive_obj, asset_handler): logger.debug(f"appleseed: Creating archive asset translator for {archive_obj.name_full}") super().__init__(archive_obj, asset_handler) self.__instance_lib = asr.BlTransformLibrary() self.__ass = None self.__ass_name = None self._bl_obj.appleseed.obj_name = self._bl_obj.name_full @property def orig_name(self): return self._bl_obj.appleseed.obj_name @property def instances_size(self): return len(self.__instance_lib) def create_entities(self, bl_scene, context=None): logger.debug(f"appleseed: Creating archive asset entity for {self.orig_name}") self.__ass_name = f"{self.orig_name}_ass" file_path = self._asset_handler.process_path(self._bl_obj.appleseed.archive_path, AssetType.ARCHIVE_ASSET) ass_options = {'filename': file_path} self.__ass = asr.Assembly("archive_assembly", self.__ass_name, ass_options) def add_instance_step(self, time, instance_id, bl_matrix): self.__instance_lib.add_xform_step(time, instance_id, self._convert_matrix(bl_matrix)) def set_deform_key(self, time, depsgraph, index): pass def flush_entities(self, as_scene, as_main_assembly, as_project): logger.debug(f"appleseed: Flushing archive asset entity for {self.orig_name} to project") as_main_assembly.assemblies().insert(self.__ass) self.__ass = as_main_assembly.assemblies().get_by_name(self.__ass_name) self.flush_instances(as_main_assembly) def flush_instances(self, as_main_assembly): self.__instance_lib.flush_instances(as_main_assembly, self.__ass_name) def update_archive_ass(self, depsgraph): logger.debug(f"appleseed: Updating archive asset entity for {self.orig_name}") file_path = self._asset_handler.process_path(self._bl_obj.appleseed.archive_path, AssetType.ARCHIVE_ASSET) ass_options = {'filename': file_path} self.__ass.set_parameters(ass_options) def clear_instances(self, as_main_assembly): self.__instance_lib.clear_instances(as_main_assembly) def delete_object(self, as_main_assembly): logger.debug(f"appleseed: Deleting archive asset entity for {self.orig_name}") self.clear_instances(as_main_assembly) as_main_assembly.assemblies().remove(self.__ass) self.__ass = None
modules/ssl/update_policies.py
kulikjak/httpd
2,529
12622710
<gh_stars>1000+ #!/usr/bin/env python import json import os import sys from httplib import HTTPSConnection # The location were Mozilla defines the *current* TLS Security in JSON format # MOZ_TLS_CONF_SERVER = "statics.tls.security.mozilla.org" MOZ_TLS_CONF_PATH = "/server-side-tls-conf.json" MOZ_TLS_CONF_URL = "https://%s%s" % (MOZ_TLS_CONF_SERVER, MOZ_TLS_CONF_PATH) # The version we already know. Accept nothing less. # MOZ_TLS_CONF_VERSION_MIN = 4.0 # keys inside the JSON document # KEY_CONF = 'configurations' KEY_HREF = 'href' KEY_OSSL_CIPHERS = 'openssl_ciphersuites' KEY_TLS_VERSIONS = 'tls_versions' KEY_VERSION = 'version' # TLS Versions we know how to handle # TLS_VERSIONS = { 'TLSv1.3' : "SSL_PROTOCOL_TLSV1_3", # Mozilla does not list TLSv1.3 yet, but we want it in there! 'TLSv1.2' : "(SSL_PROTOCOL_TLSV1_2|SSL_PROTOCOL_TLSV1_3)", #'TLSv1.2' : "SSL_PROTOCOL_TLSV1_2", 'TLSv1.1' : "SSL_PROTOCOL_TLSV1_1", 'TLSv1' : "SSL_PROTOCOL_TLSV1", 'SSLv3' : "SSL_PROTOCOL_CONSTANTS_SSLV3", } TLS_1_X_VERSIONS = [ 'TLSv1.2', 'TLSv1.3' ] # the Security configurations to extract POLICY_NAMES = [ 'modern', 'intermediate', 'old' ] def fail(msg): sys.stderr.write(msg) sys.exit(1) def proto_string(tls_version): if tls_version in TLS_VERSIONS: return TLS_VERSIONS[tls_version] fail("Unknown TLS protocol '%s'" % tls_version) def proto_conf(tls_versions): if len(TLS_VERSIONS) < len(tls_versions): fail("more TLS versions used than we know: %s" % tls_versions) if len(tls_versions) == 1: return proto_string(tls_versions[0]) missing = [] for tls in TLS_VERSIONS: if not tls in tls_versions: missing.append(proto_string(tls)) if len(missing): return "(SSL_PROTOCOL_ALL & ~(%s))" % "|".join(missing) return "SSL_PROTOCOL_ALL" # return an #ifdef required for a policy or None # def required_ifdef(conf): for tlsv in conf[KEY_TLS_VERSIONS]: # if it has a non-1_X protocol, it works without OpenSSL 1.0.2 if not tlsv in TLS_1_X_VERSIONS: return None return "HAVE_TLSV1_X" def getPolicyDef(): c = HTTPSConnection(MOZ_TLS_CONF_SERVER) c.request('GET', MOZ_TLS_CONF_PATH) data = c.getresponse().read() c.close() return data def printPolicies(doc): print "#define SSL_POLICY_MOZILLA_VERSION %s" % doc[KEY_VERSION] print "" for pname in POLICY_NAMES: prefix = "SSL_POLICY_%s" % pname.upper() if not pname in doc[KEY_CONF]: vars[prefix] = 0 continue p = doc[KEY_CONF][pname] ifdef = required_ifdef(p) if ifdef: print "#ifdef %s" % ifdef print "#define %s 1" % prefix print "#define %s_SSL_CIPHERS \"%s\"" % (prefix, p[KEY_OSSL_CIPHERS]) # Mozilla has not specced this yet print "#define %s_TLS13_CIPHERS NULL" % (prefix) print "#define %s_PROTOCOLS %s" % (prefix, proto_conf(p[KEY_TLS_VERSIONS])) if ifdef: print "#else /* ifdef %s */" % ifdef print "#define %s 0" % prefix print "#endif /* ifdef %s, else part */" % ifdef print "" def main(argv): data = getPolicyDef() doc = json.loads(data) if MOZ_TLS_CONF_URL != doc[KEY_HREF]: fail("ERROR: Unexpected href in policy document: %s\n" % doc[KEY_HREF]) if doc[KEY_VERSION] < MOZ_TLS_CONF_VERSION_MIN: fail("ERROR: Expected at least version %s, but policy document has %s\n" \ % (MOZ_TLS_CONF_VERSION_MIN, doc[KEY_VERSION])) if 1 == len(argv): printPolicies(doc) elif 2 == len(argv): with open(argv[1]) as f: for line in f: if line == "@MOZILLA_SECURITY_POLICIES@\n": printPolicies(doc) else: sys.stdout.write(line) else: fail("usage: %s [file] \nDownload and print/replace the Mozilla TLS Security policies" % argv[0]) if __name__ == "__main__": main(sys.argv)
test/native/test_query.py
hugovk/pg8000
337
12622815
import pytest from pg8000.native import DatabaseError, to_statement # Tests relating to the basic operation of the database driver, driven by the # pg8000 custom interface. @pytest.fixture def db_table(request, con): con.run( "CREATE TEMPORARY TABLE t1 (f1 int primary key, " "f2 bigint not null, f3 varchar(50) null) " ) def fin(): try: con.run("drop table t1") except DatabaseError: pass request.addfinalizer(fin) return con def test_database_error(con): with pytest.raises(DatabaseError): con.run("INSERT INTO t99 VALUES (1, 2, 3)") # Run a query on a table, alter the structure of the table, then run the # original query again. def test_alter(db_table): db_table.run("select * from t1") db_table.run("alter table t1 drop column f3") db_table.run("select * from t1") # Run a query on a table, drop then re-create the table, then run the # original query again. def test_create(db_table): db_table.run("select * from t1") db_table.run("drop table t1") db_table.run("create temporary table t1 (f1 int primary key)") db_table.run("select * from t1") def test_parametrized(db_table): res = db_table.run("SELECT f1, f2, f3 FROM t1 WHERE f1 > :f1", f1=3) for row in res: f1, f2, f3 = row def test_insert_returning(db_table): db_table.run("CREATE TEMPORARY TABLE t2 (id serial, data text)") # Test INSERT ... RETURNING with one row... res = db_table.run("INSERT INTO t2 (data) VALUES (:v) RETURNING id", v="test1") row_id = res[0][0] res = db_table.run("SELECT data FROM t2 WHERE id = :v", v=row_id) assert "test1" == res[0][0] assert db_table.row_count == 1 # Test with multiple rows... res = db_table.run( "INSERT INTO t2 (data) VALUES (:v1), (:v2), (:v3) " "RETURNING id", v1="test2", v2="test3", v3="test4", ) assert db_table.row_count == 3 ids = [x[0] for x in res] assert len(ids) == 3 def test_row_count_select(db_table): expected_count = 57 for i in range(expected_count): db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=i, v2=i, v3=None ) db_table.run("SELECT * FROM t1") # Check row_count assert expected_count == db_table.row_count # Should be -1 for a command with no results db_table.run("DROP TABLE t1") assert -1 == db_table.row_count def test_row_count_delete(db_table): db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=1, v2=1, v3=None ) db_table.run("DELETE FROM t1") assert db_table.row_count == 1 def test_row_count_update(db_table): db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=1, v2=1, v3=None ) db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=2, v2=10, v3=None ) db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=3, v2=100, v3=None ) db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=4, v2=1000, v3=None ) db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=5, v2=10000, v3=None ) db_table.run("UPDATE t1 SET f3 = :v1 WHERE f2 > 101", v1="Hello!") assert db_table.row_count == 2 def test_int_oid(con): # https://bugs.launchpad.net/pg8000/+bug/230796 con.run("SELECT typname FROM pg_type WHERE oid = :v", v=100) def test_unicode_query(con): con.run( "CREATE TEMPORARY TABLE \u043c\u0435\u0441\u0442\u043e " "(\u0438\u043c\u044f VARCHAR(50), " "\u0430\u0434\u0440\u0435\u0441 VARCHAR(250))" ) def test_transactions(db_table): db_table.run("start transaction") db_table.run( "INSERT INTO t1 (f1, f2, f3) VALUES (:v1, :v2, :v3)", v1=1, v2=1, v3="Zombie" ) db_table.run("rollback") db_table.run("select * from t1") assert db_table.row_count == 0 def test_in(con): ret = con.run("SELECT typname FROM pg_type WHERE oid = any(:v)", v=[16, 23]) assert ret[0][0] == "bool" # An empty query should raise a ProgrammingError def test_empty_query(con): with pytest.raises(DatabaseError): con.run("") def test_rollback_no_transaction(con): # Remove any existing notices con.notices.clear() # First, verify that a raw rollback does produce a notice con.run("rollback") assert 1 == len(con.notices) # 25P01 is the code for no_active_sql_tronsaction. It has # a message and severity name, but those might be # localized/depend on the server version. assert con.notices.pop().get(b"C") == b"25P01" def test_close_prepared_statement(con): ps = con.prepare("select 1") ps.run() res = con.run("select count(*) from pg_prepared_statements") assert res[0][0] == 1 # Should have one prepared statement ps.close() res = con.run("select count(*) from pg_prepared_statements") assert res[0][0] == 0 # Should have no prepared statements def test_no_data(con): assert con.run("START TRANSACTION") is None def test_multiple_statements(con): statements = "SELECT 5; SELECT '<NAME>';" assert con.run(statements) == [[5], ["<NAME>"]] def test_unexecuted_connection_row_count(con): assert con.row_count is None def test_unexecuted_connection_columns(con): assert con.columns is None def test_sql_prepared_statement(con): con.run("PREPARE gen_series AS SELECT generate_series(1, 10);") con.run("EXECUTE gen_series") def test_to_statement(): new_query, _ = to_statement( "SELECT sum(x)::decimal(5, 2) :f_2, :f1 FROM t WHERE a=:f_2" ) expected = "SELECT sum(x)::decimal(5, 2) $1, $2 FROM t WHERE a=$1" assert new_query == expected
tests/test_pyenv_feature_help.py
jmscraig/pyenv-win
1,454
12622821
<reponame>jmscraig/pyenv-win from test_pyenv import TestPyenvBase from test_pyenv_helpers import run_pyenv_test class TestPyenvFeatureGlobal(TestPyenvBase): def test_help(self, setup): def commands(ctx): stdout, stderr = ctx.pyenv("help") stdout = "\r\n".join(stdout.splitlines()[:2]) assert (stdout.strip(), stderr) == ("Usage: pyenv <command> [<args>]", "") run_pyenv_test({}, commands)
brew/selection/pruning/base.py
va26/brew
344
12622839
<gh_stars>100-1000 class Prunner(object): def __init__(self): pass def fit(self, ensemble, X, y): return self def get(self, p=0.1): return self.ensemble[:int(p * len(self.ensemble))]
sktime_dl/utils/__init__.py
talhaanwarch/sktime-dl
510
12622843
__all__ = [ "check_and_clean_data", "check_and_clean_validation_data", "check_is_fitted", "save_trained_model" ] from sktime_dl.utils._data import check_and_clean_data from sktime_dl.utils._data import check_and_clean_validation_data from sktime_dl.utils._models import check_is_fitted from sktime_dl.utils._models import save_trained_model
predict.py
mariomeissner/lightning-transformers
451
12622865
<gh_stars>100-1000 """The shell entry point `$ pl-transformers-predict` is also available.""" import hydra from omegaconf import DictConfig from lightning_transformers.cli.predict import main @hydra.main(config_path="./conf", config_name="config") def hydra_entry(cfg: DictConfig) -> None: main(cfg) if __name__ == "__main__": hydra_entry()
slac_tf/slac/agents/slac/ablation_model_distribution_network.py
alfaevc/vlRLstack
147
12622884
from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import gin import numpy as np from slac.agents.slac.model_distribution_network import Bernoulli from slac.agents.slac.model_distribution_network import Compressor from slac.agents.slac.model_distribution_network import ConstantMultivariateNormalDiag from slac.agents.slac.model_distribution_network import Decoder from slac.agents.slac.model_distribution_network import MultivariateNormalDiag from slac.agents.slac.model_distribution_network import Normal from slac.utils import nest_utils import tensorflow as tf import tensorflow_probability as tfp from tf_agents.trajectories import time_step as ts tfd = tfp.distributions @gin.configurable class SlacModelDistributionNetwork(tf.Module): """Equivalent to model_distribution_network.ModelDistributionNetwork. We keep the implementations separate to minimize cluttering the implementation of the main method. """ def __init__(self, observation_spec, action_spec, latent1_first_prior_distribution_ctor=ConstantMultivariateNormalDiag, latent1_prior_distribution_ctor=MultivariateNormalDiag, latent1_posterior_distribution_ctor=MultivariateNormalDiag, latent2_prior_distribution_ctor=MultivariateNormalDiag, latent2_posterior_distribution_ctor=MultivariateNormalDiag, base_depth=32, latent1_size=32, latent2_size=256, kl_analytic=True, skip_first_kl=False, sequential_latent1_prior=True, sequential_latent2_prior=True, sequential_latent1_posterior=True, sequential_latent2_posterior=True, model_reward=False, model_discount=False, decoder_stddev=np.sqrt(0.1, dtype=np.float32), reward_stddev=None, name=None): super(SlacModelDistributionNetwork, self).__init__(name=name) self.observation_spec = observation_spec self.action_spec = action_spec self.base_depth = base_depth self.latent1_size = latent1_size self.latent2_size = latent2_size self.kl_analytic = kl_analytic self.skip_first_kl = skip_first_kl self.model_reward = model_reward self.model_discount = model_discount # p(z_1^1) self.latent1_first_prior = latent1_first_prior_distribution_ctor(latent1_size) # p(z_1^2 | z_1^1) self.latent2_first_prior = latent2_prior_distribution_ctor(8 * base_depth, latent2_size) if sequential_latent1_prior: # p(z_{t+1}^1 | z_t^2, a_t) self.latent1_prior = latent1_prior_distribution_ctor(8 * base_depth, latent1_size) else: # p(z_{t+1}^1) self.latent1_prior = lambda prev_latent, prev_action: self.latent1_first_prior(prev_latent[..., 0]) # prev_latent is only used to determine the batch shape if sequential_latent2_prior: # p(z_{t+1}^2 | z_{t+1}^1, z_t^2, a_t) self.latent2_prior = latent2_prior_distribution_ctor(8 * base_depth, latent2_size) else: # p(z_{t+1}^2 | z_{t+1}^1) self.latent2_prior = lambda latent1, prev_latent2, prev_action: self.latent2_first_prior(latent1) # q(z_1^1 | x_1) self.latent1_first_posterior = latent1_posterior_distribution_ctor(8 * base_depth, latent1_size) # q(z_1^2 | z_1^1) = p(z_1^2 | z_1^1) if latent2_posterior_distribution_ctor == latent2_prior_distribution_ctor: self.latent2_first_posterior = self.latent2_first_prior # share else: self.latent2_first_posterior = latent2_posterior_distribution_ctor(8 * base_depth, latent2_size) if sequential_latent1_posterior: # q(z_{t+1}^1 | x_{t+1}, z_t^2, a_t) self.latent1_posterior = latent1_posterior_distribution_ctor(8 * base_depth, latent1_size) else: # q(z_{t+1}^1 | x_{t+1}) self.latent1_posterior = lambda feature, prev_latent2, prev_action: self.latent1_first_posterior(feature) if sequential_latent2_posterior: # q(z_{t+1}^2 | z_{t+1}^1, z_t^2, a_t) = p(z_{t+1}^2 | z_{t+1}^1, z_t^2, a_t) if latent2_posterior_distribution_ctor == latent2_prior_distribution_ctor: self.latent2_posterior = self.latent2_prior else: self.latent2_posterior = latent2_posterior_distribution_ctor(8 * base_depth, latent2_size) else: # q(z_{t+1}^2 | z_{t+1}^1) = p(z_{t+1}^2 | z_{t+1}^1) self.latent2_posterior = lambda latent1, prev_latent2, prev_action: self.latent2_first_posterior(latent1) # compresses x_t into a vector self.compressor = Compressor(base_depth, 8 * base_depth) # p(x_t | z_t^1, z_t^2) self.decoder = Decoder(base_depth, scale=decoder_stddev) if self.model_reward: # p(r_t | z_t^1, z_t^2, a_t, z_{t+1}^1, z_{t+1}^2) self.reward_predictor = Normal(8 * base_depth, scale=reward_stddev) else: self.reward_predictor = None if self.model_discount: # p(d_t | z_{t+1}^1, z_{t+1}^2) self.discount_predictor = Bernoulli(8 * base_depth) else: self.discount_predictor = None @property def state_size(self): return self.latent1_size + self.latent2_size def compute_loss(self, images, actions, step_types, rewards=None, discounts=None, latent_posterior_samples_and_dists=None): sequence_length = step_types.shape[1].value - 1 if latent_posterior_samples_and_dists is None: latent_posterior_samples_and_dists = self.sample_posterior(images, actions, step_types) (latent1_posterior_samples, latent2_posterior_samples), (latent1_posterior_dists, latent2_posterior_dists) = ( latent_posterior_samples_and_dists) (latent1_prior_samples, latent2_prior_samples), _ = self.sample_prior_or_posterior(actions, step_types) # for visualization (latent1_conditional_prior_samples, latent2_conditional_prior_samples), _ = self.sample_prior_or_posterior( actions, step_types, images=images[:, :1]) # for visualization. condition on first image only def where_and_concat(reset_masks, first_prior_tensors, after_first_prior_tensors): after_first_prior_tensors = tf.where(reset_masks[:, 1:], first_prior_tensors[:, 1:], after_first_prior_tensors) prior_tensors = tf.concat([first_prior_tensors[:, 0:1], after_first_prior_tensors], axis=1) return prior_tensors reset_masks = tf.concat([tf.ones_like(step_types[:, 0:1], dtype=tf.bool), tf.equal(step_types[:, 1:], ts.StepType.FIRST)], axis=1) latent1_reset_masks = tf.tile(reset_masks[:, :, None], [1, 1, self.latent1_size]) latent1_first_prior_dists = self.latent1_first_prior(step_types) # these distributions start at t=1 and the inputs are from t-1 latent1_after_first_prior_dists = self.latent1_prior( latent2_posterior_samples[:, :sequence_length], actions[:, :sequence_length]) latent1_prior_dists = nest_utils.map_distribution_structure( functools.partial(where_and_concat, latent1_reset_masks), latent1_first_prior_dists, latent1_after_first_prior_dists) latent2_reset_masks = tf.tile(reset_masks[:, :, None], [1, 1, self.latent2_size]) latent2_first_prior_dists = self.latent2_first_prior(latent1_posterior_samples) # these distributions start at t=1 and the last 2 inputs are from t-1 latent2_after_first_prior_dists = self.latent2_prior( latent1_posterior_samples[:, 1:sequence_length+1], latent2_posterior_samples[:, :sequence_length], actions[:, :sequence_length]) latent2_prior_dists = nest_utils.map_distribution_structure( functools.partial(where_and_concat, latent2_reset_masks), latent2_first_prior_dists, latent2_after_first_prior_dists) outputs = {} if self.kl_analytic: latent1_kl_divergences = tfd.kl_divergence(latent1_posterior_dists, latent1_prior_dists) else: latent1_kl_divergences = (latent1_posterior_dists.log_prob(latent1_posterior_samples) - latent1_prior_dists.log_prob(latent1_posterior_samples)) if self.skip_first_kl: latent1_kl_divergences = latent1_kl_divergences[:, 1:] latent1_kl_divergences = tf.reduce_sum(latent1_kl_divergences, axis=1) outputs.update({ 'latent1_kl_divergence': tf.reduce_mean(latent1_kl_divergences), }) if self.latent2_posterior == self.latent2_prior: latent2_kl_divergences = 0.0 else: if self.kl_analytic: latent2_kl_divergences = tfd.kl_divergence(latent2_posterior_dists, latent2_prior_dists) else: latent2_kl_divergences = (latent2_posterior_dists.log_prob(latent2_posterior_samples) - latent2_prior_dists.log_prob(latent2_posterior_samples)) if self.skip_first_kl: latent2_kl_divergences = latent2_kl_divergences[:, 1:] latent2_kl_divergences = tf.reduce_sum(latent2_kl_divergences, axis=1) outputs.update({ 'latent2_kl_divergence': tf.reduce_mean(latent2_kl_divergences), }) outputs.update({ 'kl_divergence': tf.reduce_mean(latent1_kl_divergences + latent2_kl_divergences), }) likelihood_dists = self.decoder(latent1_posterior_samples, latent2_posterior_samples) likelihood_log_probs = likelihood_dists.log_prob(images) likelihood_log_probs = tf.reduce_sum(likelihood_log_probs, axis=1) reconstruction_error = tf.reduce_sum(tf.square(images - likelihood_dists.distribution.loc), axis=list(range(-len(likelihood_dists.event_shape), 0))) reconstruction_error = tf.reduce_sum(reconstruction_error, axis=1) outputs.update({ 'log_likelihood': tf.reduce_mean(likelihood_log_probs), 'reconstruction_error': tf.reduce_mean(reconstruction_error), }) # summed over the time dimension elbo = likelihood_log_probs - latent1_kl_divergences - latent2_kl_divergences if self.model_reward: reward_dists = self.reward_predictor( latent1_posterior_samples[:, :sequence_length], latent2_posterior_samples[:, :sequence_length], actions[:, :sequence_length], latent1_posterior_samples[:, 1:sequence_length + 1], latent2_posterior_samples[:, 1:sequence_length + 1]) reward_valid_mask = tf.cast(tf.not_equal(step_types[:, :sequence_length], ts.StepType.LAST), tf.float32) reward_log_probs = reward_dists.log_prob(rewards[:, :sequence_length]) reward_log_probs = tf.reduce_sum(reward_log_probs * reward_valid_mask, axis=1) reward_reconstruction_error = tf.square(rewards[:, :sequence_length] - reward_dists.loc) reward_reconstruction_error = tf.reduce_sum(reward_reconstruction_error * reward_valid_mask, axis=1) outputs.update({ 'reward_log_likelihood': tf.reduce_mean(reward_log_probs), 'reward_reconstruction_error': tf.reduce_mean(reward_reconstruction_error), }) elbo += reward_log_probs if self.model_discount: discount_dists = self.discount_predictor( latent1_posterior_samples[:, 1:sequence_length + 1], latent2_posterior_samples[:, 1:sequence_length + 1]) discount_log_probs = discount_dists.log_prob(discounts[:, :sequence_length]) discount_log_probs = tf.reduce_sum(discount_log_probs, axis=1) discount_accuracy = tf.cast( tf.equal(tf.cast(discount_dists.mode(), tf.float32), discounts[:, :sequence_length]), tf.float32) discount_accuracy = tf.reduce_sum(discount_accuracy, axis=1) outputs.update({ 'discount_log_likelihood': tf.reduce_mean(discount_log_probs), 'discount_accuracy': tf.reduce_mean(discount_accuracy), }) elbo += discount_log_probs # average over the batch dimension loss = -tf.reduce_mean(elbo) posterior_images = likelihood_dists.mean() prior_images = self.decoder(latent1_prior_samples, latent2_prior_samples).mean() conditional_prior_images = self.decoder(latent1_conditional_prior_samples, latent2_conditional_prior_samples).mean() outputs.update({ 'elbo': tf.reduce_mean(elbo), 'images': images, 'posterior_images': posterior_images, 'prior_images': prior_images, 'conditional_prior_images': conditional_prior_images, }) return loss, outputs def sample_prior_or_posterior(self, actions, step_types=None, images=None): """Samples from the prior, except for the first time steps in which conditioning images are given.""" if step_types is None: batch_size = tf.shape(actions)[0] sequence_length = actions.shape[1].value # should be statically defined step_types = tf.fill( [batch_size, sequence_length + 1], ts.StepType.MID) else: sequence_length = step_types.shape[1].value - 1 actions = actions[:, :sequence_length] if images is not None: features = self.compressor(images) # swap batch and time axes actions = tf.transpose(actions, [1, 0, 2]) step_types = tf.transpose(step_types, [1, 0]) if images is not None: features = tf.transpose(features, [1, 0, 2]) latent1_dists = [] latent1_samples = [] latent2_dists = [] latent2_samples = [] for t in range(sequence_length + 1): is_conditional = images is not None and (t < images.shape[1].value) if t == 0: if is_conditional: latent1_dist = self.latent1_first_posterior(features[t]) else: latent1_dist = self.latent1_first_prior(step_types[t]) # step_types is only used to infer batch_size latent1_sample = latent1_dist.sample() if is_conditional: latent2_dist = self.latent2_first_posterior(latent1_sample) else: latent2_dist = self.latent2_first_prior(latent1_sample) latent2_sample = latent2_dist.sample() else: reset_mask = tf.equal(step_types[t], ts.StepType.FIRST) if is_conditional: latent1_first_dist = self.latent1_first_posterior(features[t]) latent1_dist = self.latent1_posterior(features[t], latent2_samples[t-1], actions[t-1]) else: latent1_first_dist = self.latent1_first_prior(step_types[t]) latent1_dist = self.latent1_prior(latent2_samples[t-1], actions[t-1]) latent1_dist = nest_utils.map_distribution_structure( functools.partial(tf.where, reset_mask), latent1_first_dist, latent1_dist) latent1_sample = latent1_dist.sample() if is_conditional: latent2_first_dist = self.latent2_first_posterior(latent1_sample) latent2_dist = self.latent2_posterior(latent1_sample, latent2_samples[t-1], actions[t-1]) else: latent2_first_dist = self.latent2_first_prior(latent1_sample) latent2_dist = self.latent2_prior(latent1_sample, latent2_samples[t-1], actions[t-1]) latent2_dist = nest_utils.map_distribution_structure( functools.partial(tf.where, reset_mask), latent2_first_dist, latent2_dist) latent2_sample = latent2_dist.sample() latent1_dists.append(latent1_dist) latent1_samples.append(latent1_sample) latent2_dists.append(latent2_dist) latent2_samples.append(latent2_sample) try: latent1_dists = nest_utils.map_distribution_structure(lambda *x: tf.stack(x, axis=1), *latent1_dists) except: latent1_dists = None latent1_samples = tf.stack(latent1_samples, axis=1) try: latent2_dists = nest_utils.map_distribution_structure(lambda *x: tf.stack(x, axis=1), *latent2_dists) except: latent2_dists = None latent2_samples = tf.stack(latent2_samples, axis=1) return (latent1_samples, latent2_samples), (latent1_dists, latent2_dists) def sample_posterior(self, images, actions, step_types, features=None): sequence_length = step_types.shape[1].value - 1 actions = actions[:, :sequence_length] if features is None: features = self.compressor(images) # swap batch and time axes features = tf.transpose(features, [1, 0, 2]) actions = tf.transpose(actions, [1, 0, 2]) step_types = tf.transpose(step_types, [1, 0]) latent1_dists = [] latent1_samples = [] latent2_dists = [] latent2_samples = [] for t in range(sequence_length + 1): if t == 0: latent1_dist = self.latent1_first_posterior(features[t]) latent1_sample = latent1_dist.sample() latent2_dist = self.latent2_first_posterior(latent1_sample) latent2_sample = latent2_dist.sample() else: prev_latent2_sample = latent2_samples[t-1] reset_mask = tf.equal(step_types[t], ts.StepType.FIRST) latent1_first_dist = self.latent1_first_posterior(features[t]) latent1_dist = self.latent1_posterior(features[t], prev_latent2_sample, actions[t-1]) latent1_dist = nest_utils.map_distribution_structure( functools.partial(tf.where, reset_mask), latent1_first_dist, latent1_dist) latent1_sample = latent1_dist.sample() latent2_first_dist = self.latent2_first_posterior(latent1_sample) latent2_dist = self.latent2_posterior(latent1_sample, prev_latent2_sample, actions[t-1]) latent2_dist = nest_utils.map_distribution_structure( functools.partial(tf.where, reset_mask), latent2_first_dist, latent2_dist) latent2_sample = latent2_dist.sample() latent1_dists.append(latent1_dist) latent1_samples.append(latent1_sample) latent2_dists.append(latent2_dist) latent2_samples.append(latent2_sample) latent1_dists = nest_utils.map_distribution_structure(lambda *x: tf.stack(x, axis=1), *latent1_dists) latent1_samples = tf.stack(latent1_samples, axis=1) latent2_dists = nest_utils.map_distribution_structure(lambda *x: tf.stack(x, axis=1), *latent2_dists) latent2_samples = tf.stack(latent2_samples, axis=1) return (latent1_samples, latent2_samples), (latent1_dists, latent2_dists) @gin.configurable class SimpleModelDistributionNetwork(tf.Module): def __init__(self, observation_spec, action_spec, base_depth=32, latent_size=256, kl_analytic=True, sequential_latent_prior=True, sequential_latent_posterior=True, model_reward=False, model_discount=False, decoder_stddev=np.sqrt(0.1, dtype=np.float32), reward_stddev=None, name=None): super(SimpleModelDistributionNetwork, self).__init__(name=name) self.observation_spec = observation_spec self.action_spec = action_spec self.base_depth = base_depth self.latent_size = latent_size self.kl_analytic = kl_analytic self.model_reward = model_reward self.model_discount = model_discount # p(z_1) self.latent_first_prior = ConstantMultivariateNormalDiag(latent_size) if sequential_latent_prior: # p(z_{t+1} | z_t, a_t) self.latent_prior = MultivariateNormalDiag(8 * base_depth, latent_size) else: # p(z_{t+1}) self.latent_prior = lambda prev_latent, prev_action: self.latent_first_prior(prev_latent[..., 0]) # prev_latent is only used to determine the batch shape # q(z_1 | x_1) self.latent_first_posterior = MultivariateNormalDiag(8 * base_depth, latent_size) if sequential_latent_posterior: # q(z_{t+1} | x_{t+1}, z_t, a_t) self.latent_posterior = MultivariateNormalDiag(8 * base_depth, latent_size) else: # q(z_{t+1} | x_{t+1}) self.latent_posterior = lambda feature, prev_latent, prev_action: self.latent_first_posterior(feature) # compresses x_t into a vector self.compressor = Compressor(base_depth, 8 * base_depth) # p(x_t | z_t) self.decoder = Decoder(base_depth, scale=decoder_stddev) if self.model_reward: # p(r_t | z_t, a_t, z_{t+1}) self.reward_predictor = Normal(8 * base_depth, scale=reward_stddev) else: self.reward_predictor = None if self.model_discount: # p(d_t | z_{t+1}) self.discount_predictor = Bernoulli(8 * base_depth) else: self.discount_predictor = None @property def state_size(self): return self.latent_size def compute_loss(self, images, actions, step_types, rewards=None, discounts=None, latent_posterior_samples_and_dists=None): sequence_length = step_types.shape[1].value - 1 if latent_posterior_samples_and_dists is None: latent_posterior_samples_and_dists = self.sample_posterior(images, actions, step_types) latent_posterior_samples, latent_posterior_dists = latent_posterior_samples_and_dists latent_prior_samples, _ = self.sample_prior_or_posterior(actions, step_types) # for visualization latent_conditional_prior_samples, _ = self.sample_prior_or_posterior( actions, step_types, images=images[:, :1]) # for visualization. condition on first image only def where_and_concat(reset_masks, first_prior_tensors, after_first_prior_tensors): after_first_prior_tensors = tf.where(reset_masks[:, 1:], first_prior_tensors[:, 1:], after_first_prior_tensors) prior_tensors = tf.concat([first_prior_tensors[:, 0:1], after_first_prior_tensors], axis=1) return prior_tensors reset_masks = tf.concat([tf.ones_like(step_types[:, 0:1], dtype=tf.bool), tf.equal(step_types[:, 1:], ts.StepType.FIRST)], axis=1) latent_reset_masks = tf.tile(reset_masks[:, :, None], [1, 1, self.latent_size]) latent_first_prior_dists = self.latent_first_prior(step_types) # these distributions start at t=1 and the inputs are from t-1 latent_after_first_prior_dists = self.latent_prior( latent_posterior_samples[:, :sequence_length], actions[:, :sequence_length]) latent_prior_dists = nest_utils.map_distribution_structure( functools.partial(where_and_concat, latent_reset_masks), latent_first_prior_dists, latent_after_first_prior_dists) outputs = {} if self.kl_analytic: latent_kl_divergences = tfd.kl_divergence(latent_posterior_dists, latent_prior_dists) else: latent_kl_divergences = (latent_posterior_dists.log_prob(latent_posterior_samples) - latent_prior_dists.log_prob(latent_posterior_samples)) latent_kl_divergences = tf.reduce_sum(latent_kl_divergences, axis=1) outputs.update({ 'latent_kl_divergence': tf.reduce_mean(latent_kl_divergences), }) outputs.update({ 'kl_divergence': tf.reduce_mean(latent_kl_divergences), }) likelihood_dists = self.decoder(latent_posterior_samples) likelihood_log_probs = likelihood_dists.log_prob(images) likelihood_log_probs = tf.reduce_sum(likelihood_log_probs, axis=1) reconstruction_error = tf.reduce_sum(tf.square(images - likelihood_dists.distribution.loc), axis=list(range(-len(likelihood_dists.event_shape), 0))) reconstruction_error = tf.reduce_sum(reconstruction_error, axis=1) outputs.update({ 'log_likelihood': tf.reduce_mean(likelihood_log_probs), 'reconstruction_error': tf.reduce_mean(reconstruction_error), }) # summed over the time dimension elbo = likelihood_log_probs - latent_kl_divergences if self.model_reward: reward_dists = self.reward_predictor( latent_posterior_samples[:, :sequence_length], actions[:, :sequence_length], latent_posterior_samples[:, 1:sequence_length + 1]) reward_valid_mask = tf.cast(tf.not_equal(step_types[:, :sequence_length], ts.StepType.LAST), tf.float32) reward_log_probs = reward_dists.log_prob(rewards[:, :sequence_length]) reward_log_probs = tf.reduce_sum(reward_log_probs * reward_valid_mask, axis=1) reward_reconstruction_error = tf.square(rewards[:, :sequence_length] - reward_dists.loc) reward_reconstruction_error = tf.reduce_sum(reward_reconstruction_error * reward_valid_mask, axis=1) outputs.update({ 'reward_log_likelihood': tf.reduce_mean(reward_log_probs), 'reward_reconstruction_error': tf.reduce_mean(reward_reconstruction_error), }) elbo += reward_log_probs if self.model_discount: discount_dists = self.discount_predictor( latent_posterior_samples[:, 1:sequence_length + 1]) discount_log_probs = discount_dists.log_prob(discounts[:, :sequence_length]) discount_log_probs = tf.reduce_sum(discount_log_probs, axis=1) discount_accuracy = tf.cast( tf.equal(tf.cast(discount_dists.mode(), tf.float32), discounts[:, :sequence_length]), tf.float32) discount_accuracy = tf.reduce_sum(discount_accuracy, axis=1) outputs.update({ 'discount_log_likelihood': tf.reduce_mean(discount_log_probs), 'discount_accuracy': tf.reduce_mean(discount_accuracy), }) elbo += discount_log_probs # average over the batch dimension loss = -tf.reduce_mean(elbo) posterior_images = likelihood_dists.mean() prior_images = self.decoder(latent_prior_samples).mean() conditional_prior_images = self.decoder(latent_conditional_prior_samples).mean() outputs.update({ 'elbo': tf.reduce_mean(elbo), 'images': images, 'posterior_images': posterior_images, 'prior_images': prior_images, 'conditional_prior_images': conditional_prior_images, }) return loss, outputs def sample_prior_or_posterior(self, actions, step_types=None, images=None): """Samples from the prior, except for the first time steps in which conditioning images are given.""" if step_types is None: batch_size = tf.shape(actions)[0] sequence_length = actions.shape[1].value # should be statically defined step_types = tf.fill( [batch_size, sequence_length + 1], ts.StepType.MID) else: sequence_length = step_types.shape[1].value - 1 actions = actions[:, :sequence_length] if images is not None: features = self.compressor(images) # swap batch and time axes actions = tf.transpose(actions, [1, 0, 2]) step_types = tf.transpose(step_types, [1, 0]) if images is not None: features = tf.transpose(features, [1, 0, 2]) latent_dists = [] latent_samples = [] for t in range(sequence_length + 1): is_conditional = images is not None and (t < images.shape[1].value) if t == 0: if is_conditional: latent_dist = self.latent_first_posterior(features[t]) else: latent_dist = self.latent_first_prior(step_types[t]) # step_types is only used to infer batch_size latent_sample = latent_dist.sample() else: reset_mask = tf.equal(step_types[t], ts.StepType.FIRST) if is_conditional: latent_first_dist = self.latent_first_posterior(features[t]) latent_dist = self.latent_posterior(features[t], latent_samples[t-1], actions[t-1]) else: latent_first_dist = self.latent_first_prior(step_types[t]) latent_dist = self.latent_prior(latent_samples[t-1], actions[t-1]) latent_dist = nest_utils.map_distribution_structure( functools.partial(tf.where, reset_mask), latent_first_dist, latent_dist) latent_sample = latent_dist.sample() latent_dists.append(latent_dist) latent_samples.append(latent_sample) latent_dists = nest_utils.map_distribution_structure(lambda *x: tf.stack(x, axis=1), *latent_dists) latent_samples = tf.stack(latent_samples, axis=1) return latent_samples, latent_dists def sample_posterior(self, images, actions, step_types, features=None): sequence_length = step_types.shape[1].value - 1 actions = actions[:, :sequence_length] if features is None: features = self.compressor(images) # swap batch and time axes features = tf.transpose(features, [1, 0, 2]) actions = tf.transpose(actions, [1, 0, 2]) step_types = tf.transpose(step_types, [1, 0]) latent_dists = [] latent_samples = [] for t in range(sequence_length + 1): if t == 0: latent_dist = self.latent_first_posterior(features[t]) latent_sample = latent_dist.sample() else: reset_mask = tf.equal(step_types[t], ts.StepType.FIRST) latent_first_dist = self.latent_first_posterior(features[t]) latent_dist = self.latent_posterior(features[t], latent_samples[t-1], actions[t-1]) latent_dist = nest_utils.map_distribution_structure( functools.partial(tf.where, reset_mask), latent_first_dist, latent_dist) latent_sample = latent_dist.sample() latent_dists.append(latent_dist) latent_samples.append(latent_sample) latent_dists = nest_utils.map_distribution_structure(lambda *x: tf.stack(x, axis=1), *latent_dists) latent_samples = tf.stack(latent_samples, axis=1) return latent_samples, latent_dists
00Python/day07/basic01.py
HaoZhang95/PythonAndMachineLearning
937
12622885
""" 缺省函数,就是参数可以有默认值,跟kotlin一样 返回值也可以简写,省略 -> int: """ def print_info(name, age=20): print("姓名:%s, 年龄:%s" % (name, age)) print_info("张三", 28) print_info("李四") """ 元组[]不定长参数,参数的数量不确定, 调用类似于位置参数 参数名之前加上*表示这个星号表明参数的类型为元祖,但是传入实参的时候不需要中括号[] """ def my_func01(*args): print(type(args)) print(args[0]) my_func01(1, 3, 5) my_func01(1, 3, 5, 7) """ 字典类型{}的不定长参数, 调用类似于关键字参数name=的形式 参数名前面加上**两个星号,表明这个参数为一个字典,传入的时候不需要写{},但是只能传入一个字典 """ def my_func02(**kwargs): print(type(kwargs)) print(kwargs["name"]) print(kwargs["age"]) my_func02(name="小明", age=12) """ 一个函数的包含多return个 """ def my_func03(score: int) -> str: if score >= 70: return "优秀" elif score >= 30: return "中性" else: return "差" print(my_func03(50)) """ 处理多个返回值的方式 1- return ["小明", 28] 2- return {"name":"小明","age":28] 2- return 返回值1, 返回值2 """ def my_func04(name, age): return name, age print(my_func04("张三",28)[0]) print(my_func04("张三",28)[1]) """ python中的拆包(列表,字典,多个返回值): 一次性初始化多个变量的值 如果返回值是列表,字典,或者多个返回值,可以直接用来赋值多个变量的方式就叫做拆包,简化代码量 """ num01, num02, num03, num04 = 1, 3.14, True, "Hello World" num05, num06, num07, num08 = [1, 3.14, True, "Hello World"] name, age = my_func04("李四", 28) print(name, "-->", age) """ 拆包中python快速交换两个变量的值, 免去了temp中间值 """ a, b = 4, 5 a, b = b, a # b的引用给a, a的引用给b,快速交换值
src/scholarutil.py
moorage/synthetic-computer-vision
940
12622956
import sys, pickle, os, time, yaml cur_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(cur_dir, 'scholar_py')) import scholar cache_file = os.path.join(cur_dir, 'papers.pkl') yaml_cache_file = os.path.join(cur_dir, 'papers_cache.yml') def get_paper_data(querier, paper): if type(paper) is dict: title = paper.get('title') cluster_id = paper.get('cluster_id') elif type(paper) is str: title = paper else: raise "Input arg paper is of an invalid format %s" % repr(paper) if cluster_id: print 'Query by cluster_id' query = scholar.ClusterScholarQuery(cluster = cluster_id) else: print 'Query by title "%s"' % title query = scholar.SearchScholarQuery() query.set_phrase(title) query.set_num_page_results(1) # This is important, set this to 1 can reduce the possiblility of get blocked by google querier.send_query(query) scholar.txt(querier, with_globals=True) articles = querier.articles time.sleep(1) # for art in articles: # print(encode(art.as_txt()) + '\n') return articles[0] # Only return the top result def get_scholar_data(paper_list): querier = scholar.ScholarQuerier() settings = scholar.ScholarSettings() settings.set_citation_format(scholar.ScholarSettings.CITFORM_BIBTEX) querier.apply_settings(settings) scholar.ScholarConf.LOG_LEVEL = 3 cache = read_cache(cache_file) assert(cache != None) if cache.get('paper_list') == paper_list: print 'Use cache from file %s' % cache_file # Use cache to reduce the number of google scholar request else: # Update cache, instead of flushing a complete new one print 'Get data from google scholar' cache_paper_title = [p['title'] for p in cache['paper_list']] missing_paper = [p for p in paper_list if p['title'] not in cache_paper_title] missing_scholar_data = [get_paper_data(querier, v) for v in missing_paper] # update cache cache['paper_list'] += missing_paper cache['scholar_data'] += missing_scholar_data save_cache(cache_file, cache) save_cache(cache_file, cache) # Enforce to flush cache return cache['scholar_data'] def read_pickle_cache(cache_file): # Use pickle to implement cache print 'Load cache from file %s' % cache_file if not os.path.isfile(cache_file): empty_db = dict(paper_list = [], scholar_data = []) return empty_db with open(cache_file, 'r') as f: db = pickle.load(f) assert(db.get('paper_list')) assert(db.get('scholar_data')) assert(len(db['paper_list']) == len(db['scholar_data'])) return db def save_pickle_cache(cache_file, obj): print 'Save obj to cache %s' % cache_file with open(cache_file, 'w') as f: pickle.dump(obj, f) read_cache = read_pickle_cache save_cache = save_pickle_cache def read_yaml_cache(cache_file): print 'Load cache from file %s' % cache_file if not os.path.isfile(cache_file): return None with open(cache_file, 'r') as f: return yaml.load(f) def save_yaml_cache(cache_file, obj): print 'Save obj to cache %s' % cache_file with open(cache_file, 'w') as f: yaml.dump(obj, f)
Tools/smoke.py
isabella232/MissilesPerfectMaster
158
12622971
<gh_stars>100-1000 import sys import os import math import random from PIL import Image from PIL import ImageDraw from PIL import ImageFilter def crop(src_pixels, dst_pixels, x, y, w, h, dx, dy): for ky in range(h): for kx in range(w): p = src_pixels[x+kx, y+ky]; dst_pixels[dx+kx, dy+ky] = p #end #end #end def convert(srcimg): w, h = srcimg.size #print("%d,%d" % (w, h)) src_pixels = srcimg.load() tmpimg = Image.new('RGBA', [w, h], (0x00,0x00,0x00,0x00)) tmp_pixels = tmpimg.load() for ky in range(h): for kx in range(w): p = src_pixels[kx, ky]; tmp_pixels[kx, ky] = (0xff, 0xff, 0xff, p[3]) #end #end tmpimg.save("out2.png") dstimg = Image.new('RGBA', [512, 512], (0x00,0x00,0x00,0x00)) s = 0 d = 0 src_pixels = tmpimg.load() dst_pixels = dstimg.load() for i in range(4): #region = srcimg.crop((0, s, 128, s+512)) #dstimg.paste(region, (d, 0)) crop(src_pixels, dst_pixels, 0, s, 128, 512, d, 0) s += 512 d += 128 #end return dstimg #end if __name__ == '__main__': args = sys.argv src = args[1] srcimg = Image.open(src, 'r') dstimg = convert(srcimg) dstimg.save("out.png") #EOF
pytorchvideo/data/encoded_video_decord.py
kevinmtian/pytorchvideo
2,391
12622976
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import logging import math from typing import BinaryIO, Dict, Optional, TypeVar import torch from .utils import thwc_to_cthw from .video import Video logger = logging.getLogger(__name__) try: import decord except ImportError: _HAS_DECORD = False else: _HAS_DECORD = True if _HAS_DECORD: decord.bridge.set_bridge("torch") DecordDevice = TypeVar("DecordDevice") class EncodedVideoDecord(Video): """ Accessing clips from an encoded video using Decord video reading API as the decoding backend. For more details, please refer to - `Decord <https://github.com/dmlc/decord>` """ def __init__( self, file: BinaryIO, video_name: Optional[str] = None, decode_audio: bool = True, sample_rate: int = 44100, mono: bool = True, width: int = -1, height: int = -1, num_threads: int = 0, fault_tol: int = -1, ) -> None: """ Args: file (BinaryIO): a file-like object (e.g. io.BytesIO or io.StringIO) that contains the encoded video. video_name (str): An optional name assigned to the video. decode_audio (bool): If disabled, audio is not decoded. sample_rate: int, default is -1 Desired output sample rate of the audio, unchanged if `-1` is specified. mono: bool, default is True Desired output channel layout of the audio. `True` is mono layout. `False` is unchanged. width : int, default is -1 Desired output width of the video, unchanged if `-1` is specified. height : int, default is -1 Desired output height of the video, unchanged if `-1` is specified. num_threads : int, default is 0 Number of decoding thread, auto if `0` is specified. fault_tol : int, default is -1 The threshold of corupted and recovered frames. This is to prevent silent fault tolerance when for example 50% frames of a video cannot be decoded and duplicate frames are returned. You may find the fault tolerant feature sweet in many cases, but not for training models. Say `N = # recovered frames` If `fault_tol` < 0, nothing will happen. If 0 < `fault_tol` < 1.0, if N > `fault_tol * len(video)`, raise `DECORDLimitReachedError`. If 1 < `fault_tol`, if N > `fault_tol`, raise `DECORDLimitReachedError`. """ self._decode_audio = decode_audio self._video_name = video_name if not _HAS_DECORD: raise ImportError( "decord is required to use EncodedVideoDecord decoder. Please " "install with 'pip install decord' for CPU-only version and refer to" "'https://github.com/dmlc/decord' for GPU-supported version" ) try: if self._decode_audio: self._av_reader = decord.AVReader( uri=file, ctx=decord.cpu(0), sample_rate=sample_rate, mono=mono, width=width, height=height, num_threads=num_threads, fault_tol=fault_tol, ) else: self._av_reader = decord.VideoReader( uri=file, ctx=decord.cpu(0), width=width, height=height, num_threads=num_threads, fault_tol=fault_tol, ) except Exception as e: raise RuntimeError(f"Failed to open video {video_name} with Decord. {e}") if self._decode_audio: self._fps = self._av_reader._AVReader__video_reader.get_avg_fps() else: self._fps = self._av_reader.get_avg_fps() self._duration = float(len(self._av_reader)) / float(self._fps) @property def name(self) -> Optional[str]: """ Returns: name: the name of the stored video if set. """ return self._video_name @property def duration(self) -> float: """ Returns: duration: the video's duration/end-time in seconds. """ return self._duration def close(self): if self._av_reader is not None: del self._av_reader self._av_reader = None def get_clip( self, start_sec: float, end_sec: float ) -> Dict[str, Optional[torch.Tensor]]: """ Retrieves frames from the encoded video at the specified start and end times in seconds (the video always starts at 0 seconds). Args: start_sec (float): the clip start time in seconds end_sec (float): the clip end time in seconds Returns: clip_data: A dictionary mapping the entries at "video" and "audio" to a tensors. "video": A tensor of the clip's RGB frames with shape: (channel, time, height, width). The frames are of type torch.float32 and in the range [0 - 255]. "audio": A tensor of the clip's audio samples with shape: (samples). The samples are of type torch.float32 and in the range [0 - 255]. Returns None if no video or audio found within time range. """ if start_sec > end_sec or start_sec > self._duration: raise RuntimeError( f"Incorrect time window for Decord decoding for video: {self._video_name}." ) start_idx = math.ceil(self._fps * start_sec) end_idx = math.ceil(self._fps * end_sec) end_idx = min(end_idx, len(self._av_reader)) frame_idxs = list(range(start_idx, end_idx)) audio = None try: outputs = self._av_reader.get_batch(frame_idxs) except Exception as e: logger.debug(f"Failed to decode video with Decord: {self._video_name}. {e}") raise e if self._decode_audio: audio, video = outputs if audio is not None: audio = list(audio) audio = torch.cat(audio, dim=1) audio = torch.flatten(audio) audio = audio.to(torch.float32) else: video = outputs if video is not None: video = video.to(torch.float32) video = thwc_to_cthw(video) return { "video": video, "audio": audio, }
Dynamic Programming/Editing Distance/python/editing_distance.py
iabhimanyu/Algorithms
715
12622990
# Uses python2 def edit_distance(s, t): m, n = len(s), len(t) dp = [[0]*(n + 1) for i in xrange(m + 1)] for i in xrange(m + 1): for j in xrange(n + 1): if i == 0: dp[i][j] = j elif j == 0: dp[i][j] = i elif s[i - 1] == t[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = 1 + min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) return dp[m][n] if __name__ == "__main__": print(edit_distance(raw_input(), raw_input()))