max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
venv/Lib/site-packages/zope/interface/common/io.py
asanka9/Quession-Discussion-App-Socket.Io-NLP
275
12624670
<gh_stars>100-1000 ############################################################################## # Copyright (c) 2020 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. ############################################################################## """ Interface definitions paralleling the abstract base classes defined in :mod:`io`. After this module is imported, the standard library types will declare that they implement the appropriate interface. .. versionadded:: 5.0.0 """ from __future__ import absolute_import import io as abc from zope.interface.common import ABCInterface # pylint:disable=inherit-non-class, # pylint:disable=no-member class IIOBase(ABCInterface): abc = abc.IOBase class IRawIOBase(IIOBase): abc = abc.RawIOBase class IBufferedIOBase(IIOBase): abc = abc.BufferedIOBase try: import cStringIO except ImportError: # Python 3 extra_classes = () else: import StringIO extra_classes = (StringIO.StringIO, cStringIO.InputType, cStringIO.OutputType) del cStringIO del StringIO class ITextIOBase(IIOBase): abc = abc.TextIOBase
Python/Numpy/fft.py
Gjacquenot/training-material
115
12624674
<reponame>Gjacquenot/training-material #!/usr/bin/env python from argparse import ArgumentParser from math import ceil import numpy as np import matplotlib.pyplot as plt arg_parser = ArgumentParser(description='plot function and frequency ' 'spectrum') arg_parser.add_argument('output', nargs='?', help='name of output file') arg_parser.add_argument('--noise', type=float, default=0.05, help='amplitude of normally distirbuted noise') options = arg_parser.parse_args() # amplitudes and frequencies of signals ampl = np.array([1.0, 0.75, 0.5, 0.25]) freq = np.array([1.1, 1.9, 3.1, 4.5]) # total number of samples, and number of samples/second n = 2**12 sample_freq = 2**7 # create figure environment plt.figure(1) # compute signal t = np.arange(n, dtype=np.float64) y = np.zeros(len(t)) for i in range(len(ampl)): y += ampl[i]*np.cos(2.0*np.pi*freq[i]*t/sample_freq) noise_ampl = options.noise y += noise_ampl*np.random.randn(len(t)) # plot signal # plt.subplot(2, 1, 1) plt.subplot(2, 1, 1) plt.axis([0.0, 4000, -3.0, 3.0]) plt.plot(t, y) plt.xlabel(r'$t$') plt.ylabel(r'signal') # create a periodic signal for FFT, and compute t = np.arange(2*n, dtype=np.float64) y = np.concatenate((y, y[::-1])) f = np.fft.fftfreq(len(t), 1.0/sample_freq) ty = np.fft.fft(y) rnorm = np.max(np.abs(ty.real)) ty = ty/rnorm # plot normalized frequency spectrum max_freq = ceil(max(freq)) plt.subplot(2, 1, 2) plt.axis([0.0, max_freq, 0.0, 1.0]) plt.plot(f[:n], np.abs(ty[:n])) plt.xlabel(r'$f$') plt.ylabel(r'spectrum') # fix layout problems caused by default axes of subplot plt.tight_layout() # show plot, or save it to a file, if specified if options.output: plt.savefig(options.output) else: plt.show()
third_party/gsutil/test/gsutil_measure_imports.py
tingshao/catapult
2,151
12624676
# -*- coding: utf-8 -*- # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom importer to handle module load times. Wraps gsutil.""" from __future__ import absolute_import import __builtin__ import atexit from collections import OrderedDict from operator import itemgetter import os import sys import timeit # This file will function in an identical manner to 'gsutil'. Instead of calling # 'gsutil some_command' run 'gsutil_measure_imports some_command' from this test # directory. When used, this file will change the MEASURING_TIME_ACTIVE variable # in the gsutil.py file to True, signaling that the we are measuring import # times. In all other cases, this variable will be set to False. This behavior # will allow gsutil developers to analyze which modules are taking the most time # to initialize. This is especially important because not all of those modules # will be used. Therefore it is important to speed up the ones which are not # used and take a significant amount of time to initialize (e.g. 100ms). INITIALIZATION_TIMES = {} real_importer = __builtin__.__import__ def get_sorted_initialization_times(items=10): """Returns a sorted OrderedDict. The keys are module names and the values are the corresponding times taken to import. Args: items: The number of items to return in the list. Returns: An OrderedDict object, sorting initialization times in increasing order. """ return OrderedDict(sorted(INITIALIZATION_TIMES.items(), key=itemgetter(1), reverse=True)[:items]) def print_sorted_initialization_times(): """Prints the most expensive imports in descending order.""" print '\n***Most expensive imports***' for item in get_sorted_initialization_times().iteritems(): print item def timed_importer(name, *args, **kwargs): """Wrapper for the default Python import function. Args: name: The name of the module. *args: A list of arguments passed to import. **kwargs: A dictionary of arguments to pass to import. Returns: The value provided by the default import function. """ # TODO: Build an import tree to better understand which areas need more # attention. import_start_time = timeit.default_timer() import_value = real_importer(name, *args, **kwargs) import_end_time = timeit.default_timer() INITIALIZATION_TIMES[name] = import_end_time - import_start_time return import_value __builtin__.__import__ = timed_importer def initialize(): """Initializes gsutil.""" sys.path.insert(0, os.path.abspath(os.path.join(sys.path[0], '..'))) import gsutil # pylint: disable=g-import-not-at-top atexit.register(print_sorted_initialization_times) gsutil.MEASURING_TIME_ACTIVE = True gsutil.RunMain()
tests/components/overland_flow/test_kinwave_implicit.py
amanaster2/landlab
257
12624682
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Unit tests for KinwaveImplicitOverlandFlowModel. Created on Sat Apr 1 10:49:33 2017 @author: gtucker """ import numpy as np from landlab import RasterModelGrid from landlab.components import KinwaveImplicitOverlandFlow def test_initialization(): """Test initialization with various parameters.""" rg = RasterModelGrid((3, 4), xy_spacing=2.0) rg.add_zeros("topographic__elevation", at="node") kw = KinwaveImplicitOverlandFlow(rg) # Make sure fields have been created for field_name in kw._info: if kw._info[field_name]["mapping"] == "node": assert field_name in kw.grid.at_node elif kw._info[field_name]["mapping"] == "link": assert field_name in kw.grid.at_link # Re-initialize, this time with fields already existing in the grid # (this triggers the "if" instead of "else" in the field setup in init) kw = KinwaveImplicitOverlandFlow(rg) def test_first_iteration(): """Test stuff that happens only on first iteration""" # Create a basic ramp rg = RasterModelGrid((10, 10), xy_spacing=(2, 2)) rg.add_field("topographic__elevation", 0.1 * rg.node_y, at="node") # Create component and run it kw = KinwaveImplicitOverlandFlow(rg) kw.run_one_step(1.0) # Max gradient should be 0.1, and min should be zero assert round(np.amax(kw.grid.at_link["topographic__gradient"]), 2) == 0.1 assert round(np.amin(kw.grid.at_link["topographic__gradient"]), 2) == 0.0 assert round(np.amax(kw._sqrt_slope), 3) == 0.316 assert round(np.amax(kw._grad_width_sum), 3) == 0.632 assert round(np.amax(kw._alpha), 3) == 15.811 def test_steady_basic_ramp(): """Run to steady state with basic ramp""" # Create a basic ramp rg = RasterModelGrid((10, 10), xy_spacing=(2, 2)) rg.add_field("topographic__elevation", 0.1 * rg.node_y, at="node") # Create component and run it kw = KinwaveImplicitOverlandFlow(rg, runoff_rate=0.001 * 3600000.0) for i in range(12): kw.run_one_step(1.0) # Look at a column of nodes down the middle. The inflow from uphill should # be, from top to bottom: 0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.024, 0.028 assert kw._disch_in[85] == 0.0 assert round(kw._disch_in[75], 3) == 0.004 assert round(kw._disch_in[65], 3) == 0.008 assert round(kw._disch_in[55], 3) == 0.012 assert round(kw._disch_in[45], 3) == 0.016 assert round(kw._disch_in[35], 3) == 0.020 assert round(kw._disch_in[25], 3) == 0.024 assert round(kw._disch_in[15], 3) == 0.028 # Try with passing in runoff kw = KinwaveImplicitOverlandFlow(rg, runoff_rate=360.0) kw.depth[:] = 0.0 for i in range(22): kw.run_one_step(1.0) # Again, look at a column of nodes down the middle. The inflow from uphill # should now be 1/10 of the prior example. assert round(kw._disch_in[75], 4) == 0.0004 assert round(kw._disch_in[65], 4) == 0.0008 assert round(kw._disch_in[55], 4) == 0.0012 assert round(kw._disch_in[45], 4) == 0.0016 assert round(kw._disch_in[35], 4) == 0.0020 assert round(kw._disch_in[25], 4) == 0.0024 assert round(kw._disch_in[15], 4) == 0.0028 # Try with default runoff rate of 1 mm/hr = 2.78e-7 m/s kw = KinwaveImplicitOverlandFlow(rg) assert round(kw.runoff_rate * 1.0e7, 2) == 2.78 kw.depth[:] = 0.0 for i in range(18): kw.run_one_step(10.0) # Look at a column of nodes down the middle. The inflow from uphill should # be, from top to bottom: 0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.024, 0.028 assert kw._disch_in[85] == 0.0 assert round(kw._disch_in[75], 7) == 0.0000011 assert round(kw._disch_in[65], 7) == 0.0000022 assert round(kw._disch_in[55], 7) == 0.0000033 assert round(kw._disch_in[45], 7) == 0.0000044 assert round(kw._disch_in[35], 7) == 0.0000055 assert round(kw._disch_in[25], 7) == 0.0000066 assert round(kw._disch_in[15], 7) == 0.0000077 def test_curved_surface(): """Test flow across a curved surface.""" # Create a grid rg = RasterModelGrid((10, 10), xy_spacing=(2, 2)) rg.add_field( "topographic__elevation", 3.0 * rg.node_x ** 2 + rg.node_y ** 2, at="node" ) # Create component and run it kw = KinwaveImplicitOverlandFlow(rg, runoff_rate=0.001 * 3600000.0) for i in range(8): kw.run_one_step(1.0) # The inflow discharge to each cell at steady state should equal the # runoff rate times the "inflow" drainage area, which is the total drainage # area minus the area of the cell itself. Here we'll test a column of core # nodes across the middle of the domain. area = rg.at_node["drainage_area"] runoff_rate = 0.001 unit_area = 4.0 for i in range(15, 95, 10): assert round(kw._disch_in[i], 6) == round( runoff_rate * (area[i] - unit_area), 6 ) if __name__ == "__main__": test_initialization() test_first_iteration() test_steady_basic_ramp() test_curved_surface()
diffxpy/unit_test/test_partition.py
adkinsrs/diffxpy
111
12624692
<gh_stars>100-1000 import unittest import logging import numpy as np import pandas as pd import scipy.stats as stats from batchglm.api.models.numpy.glm_nb import Simulator import diffxpy.api as de class TestPartitionNull(unittest.TestCase): def test_null_distribution_wald(self, n_cells: int = 4000, n_genes: int = 200): """ Test if Partition.wald() generates a uniform p-value distribution if it is given data simulated based on the null model. Returns the p-value of the two-side Kolmgorov-Smirnov test for equality of the observed p-value distribution and a uniform distribution. :param n_cells: Number of cells to simulate (number of observations per test). :param n_genes: Number of genes to simulate (number of tests). """ logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) sim = Simulator(num_observations=n_cells, num_features=n_genes) sim.generate_sample_description(num_batches=0, num_conditions=2) sim.generate() sample_description = pd.DataFrame({ "covar1": np.random.randint(2, size=sim.nobs), "covar2": np.random.randint(2, size=sim.nobs) }) sample_description["cond"] = sim.sample_description["condition"].values partition = de.test.partition( data=sim.x, parts="cond", sample_description=sample_description ) det = partition.wald( factor_loc_totest="covar1", formula_loc="~ 1 + covar1 + covar2", training_strategy="DEFAULT", dtype="float64" ) _ = det.summary() # Compare p-value distribution under null model against uniform distribution. pval_h0 = stats.kstest(det.pval.flatten(), 'uniform').pvalue logging.getLogger("diffxpy").info('KS-test pvalue for null model match of wald(): %f' % pval_h0) assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(pval_h0, 5) return True def test_null_distribution_wald_multi(self, n_cells: int = 4000, n_genes: int = 200): """ Test if de.wald() (multivariate mode) generates a uniform p-value distribution if it is given data simulated based on the null model. Returns the p-value of the two-side Kolmgorov-Smirnov test for equality of the observed p-value distribution and a uniform distribution. :param n_cells: Number of cells to simulate (number of observations per test). :param n_genes: Number of genes to simulate (number of tests). """ logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) sim = Simulator(num_observations=n_cells, num_features=n_genes) sim.generate_sample_description(num_batches=0, num_conditions=2) sim.generate() sample_description = pd.DataFrame({ "covar1": np.random.randint(4, size=sim.nobs), "covar2": np.random.randint(2, size=sim.nobs) }) sample_description["cond"] = sim.sample_description["condition"].values partition = de.test.partition( data=sim.x, parts="cond", sample_description=sample_description ) det = partition.wald( factor_loc_totest="covar1", formula_loc="~ 1 + covar1 + covar2", training_strategy="DEFAULT", dtype="float64" ) _ = det.summary() # Compare p-value distribution under null model against uniform distribution. pval_h0 = stats.kstest(det.pval.flatten(), 'uniform').pvalue logging.getLogger("diffxpy").info('KS-test pvalue for null model match of wald(): %f' % pval_h0) assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(pval_h0, 5) return True def test_null_distribution_lrt(self, n_cells: int = 4000, n_genes: int = 200): """ Test if de.lrt() generates a uniform p-value distribution if it is given data simulated based on the null model. Returns the p-value of the two-side Kolmgorov-Smirnov test for equality of the observed p-value distribution and a uniform distribution. :param n_cells: Number of cells to simulate (number of observations per test). :param n_genes: Number of genes to simulate (number of tests). """ logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) sim = Simulator(num_observations=n_cells, num_features=n_genes) sim.generate_sample_description(num_batches=0, num_conditions=2) sim.generate() sample_description = pd.DataFrame({ "covar1": np.random.randint(2, size=sim.nobs), "covar2": np.random.randint(2, size=sim.nobs) }) sample_description["cond"] = sim.sample_description["condition"].values partition = de.test.partition( data=sim.x, parts="cond", sample_description=sample_description ) det = partition.lrt( full_formula_loc="~ 1 + covar1", full_formula_scale="~ 1", reduced_formula_loc="~ 1", reduced_formula_scale="~ 1", training_strategy="DEFAULT", dtype="float64" ) _ = det.summary() # Compare p-value distribution under null model against uniform distribution. pval_h0 = stats.kstest(det.pval.flatten(), 'uniform').pvalue logging.getLogger("diffxpy").info('KS-test pvalue for null model match of lrt(): %f' % pval_h0) assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(pval_h0, 5) return True def test_null_distribution_ttest(self, n_cells: int = 4000, n_genes: int = 200): """ Test if de.t_test() generates a uniform p-value distribution if it is given data simulated based on the null model. Returns the p-value of the two-side Kolmgorov-Smirnov test for equality of the observed p-value distribution and a uniform distribution. :param n_cells: Number of cells to simulate (number of observations per test). :param n_genes: Number of genes to simulate (number of tests). """ logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) sim = Simulator(num_observations=n_cells, num_features=n_genes) sim.generate_sample_description(num_batches=0, num_conditions=2) sim.generate() sample_description = pd.DataFrame({ "covar1": np.random.randint(2, size=sim.nobs) }) sample_description["cond"] = sim.sample_description["condition"].values partition = de.test.partition( data=sim.x, parts="cond", sample_description=sample_description ) det = partition.t_test( grouping="covar1", is_logged=False, dtype="float64" ) summary = det.summary() # Compare p-value distribution under null model against uniform distribution. pval_h0 = stats.kstest(det.pval.flatten(), 'uniform').pvalue logging.getLogger("diffxpy").info('KS-test pvalue for null model match of t_test(): %f' % pval_h0) assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(pval_h0, 5) return True def test_null_distribution_rank(self, n_cells: int = 4000, n_genes: int = 200): """ Test if rank_test() generates a uniform p-value distribution if it is given data simulated based on the null model. Returns the p-value of the two-side Kolmgorov-Smirnov test for equality of the observed p-value distribution and a uniform distribution. :param n_cells: Number of cells to simulate (number of observations per test). :param n_genes: Number of genes to simulate (number of tests). """ logging.getLogger("tensorflow").setLevel(logging.ERROR) logging.getLogger("batchglm").setLevel(logging.WARNING) logging.getLogger("diffxpy").setLevel(logging.WARNING) sim = Simulator(num_observations=n_cells, num_features=n_genes) sim.generate_sample_description(num_batches=0, num_conditions=2) sim.generate() sample_description = pd.DataFrame({ "covar1": np.random.randint(2, size=sim.nobs) }) sample_description["cond"] = sim.sample_description["condition"].values partition = de.test.partition( data=sim.x, parts="cond", sample_description=sample_description ) det = partition.rank_test( grouping="covar1", dtype="float64" ) summary = det.summary() # Compare p-value distribution under null model against uniform distribution. pval_h0 = stats.kstest(det.pval.flatten(), 'uniform').pvalue logging.getLogger("diffxpy").info('KS-test pvalue for null model match of rank_test(): %f' % pval_h0) assert pval_h0 > 0.05, "KS-Test failed: pval_h0=%f is <= 0.05!" % np.round(pval_h0, 5) return True if __name__ == '__main__': unittest.main()
data/synthia_dataset.py
Jo-wang/ProDA
193
12624693
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import sys import torch import numpy as np from PIL import Image import random import imageio from data import BaseDataset from data.randaugment import RandAugmentMC class Synthia_loader(BaseDataset): """ Synthia synthetic dataset for domain adaptation to Cityscapes """ def __init__(self, opt, logger, augmentations=None): self.opt = opt self.root = opt.src_rootpath self.augmentations = augmentations self.randaug = RandAugmentMC(2, 10) self.n_classes = opt.n_class self.img_size = (1280, 760) self.mean = [0.0, 0.0, 0.0] #TODO: calculating the mean value of rgb channels on GTA5 self.image_base_path = os.path.join(self.root, 'RGB') self.label_base_path = os.path.join(self.root, 'GT/LABELS') self.distribute = np.zeros(self.n_classes, dtype=float) ids = os.listdir(self.image_base_path) self.ids = [] for i in range(len(ids)): self.ids.append(os.path.join(self.label_base_path, ids[i])) if self.n_classes == 19: self.valid_classes = [3,4,2,21,5,7,15,9,6,16,1,10,17,8,18,19,20,12,11,] self.class_names = ["unlabelled","Road","Sidewalk","Building","Wall", "Fence","Pole","Traffic_light","Traffic_sign","Vegetation", "Terrain","sky","Pedestrian","Rider","Car", "Truck","Bus","Train","Motorcycle","Bicycle", ] elif self.n_classes == 16: self.valid_classes = [3,4,2,21,5,7,15,9,6,1,10,17,8,19,12,11,] self.class_names = ["unlabelled","Road","Sidewalk","Building","Wall", "Fence","Pole","Traffic_light","Traffic_sign","Vegetation", "sky","Pedestrian","Rider","Car","Bus", "Motorcycle","Bicycle", ] elif self.n_classes == 13: self.valid_classes = [3,4,2,15,9,6,1,10,17,8,19,12,11,] self.class_names = ["unlabelled","Road","Sidewalk","Building","Traffic_light", "Traffic_sign","Vegetation","sky","Pedestrian","Rider", "Car","Bus","Motorcycle","Bicycle", ] self.ignore_index = 250 self.class_map = dict(zip(self.valid_classes, range(self.n_classes))) imageio.plugins.freeimage.download() if len(self.ids) == 0: raise Exception( "No files found in %s" % (self.image_base_path) ) print("Found {} images".format(len(self.ids))) def __len__(self): return len(self.ids) def __getitem__(self, index): """__getitem__ param: index """ id = self.ids[index] img_path = os.path.join(self.image_base_path, id.split('/')[-1]) lbl_path = id img = Image.open(img_path) lbl = np.asarray(imageio.imread(lbl_path, format='PNG-FI'))[:,:,0] lbl = Image.fromarray(lbl) img = img.resize(self.img_size, Image.BILINEAR) lbl = lbl.resize(self.img_size, Image.NEAREST) img = np.asarray(img, dtype=np.uint8) # lbl = lbl.convert('L') lbl = np.asarray(lbl, dtype=np.uint8) lbl = self.encode_segmap(np.array(lbl, dtype=np.uint8)) input_dict = {} if self.augmentations!=None: img, lbl, _, _, _ = self.augmentations(img, lbl) img_strong, params = self.randaug(Image.fromarray(img)) img_strong, _ = self.transform(img_strong, lbl) input_dict['img_strong'] = img_strong input_dict['params'] = params img, lbl = self.transform(img, lbl) input_dict['img'] = img input_dict['label'] = lbl input_dict['img_path'] = self.ids[index] return input_dict def encode_segmap(self, lbl): label_copy = 250 * np.ones(lbl.shape, dtype=np.uint8) for k, v in list(self.class_map.items()): label_copy[lbl == k] = v return label_copy # def decode_segmap(self, temp): # r = temp.copy() # g = temp.copy() # b = temp.copy() # for l in range(0, self.n_classes): # r[temp == l] = self.label_colours[l][0] # g[temp == l] = self.label_colours[l][1] # b[temp == l] = self.label_colours[l][2] # rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) # rgb[:, :, 0] = r / 255.0 # rgb[:, :, 1] = g / 255.0 # rgb[:, :, 2] = b / 255.0 # return rgb def transform(self, img, lbl): """transform img, lbl """ # img = m.imresize( # img, self.img_size, # ) img = np.array(img) # img = img[:, :, ::-1] # RGB -> BGR img = img.astype(np.float64) img -= self.mean img = img.astype(float) / 255.0 img = img.transpose(2, 0, 1) classes = np.unique(lbl) lbl = np.array(lbl) lbl = lbl.astype(float) # lbl = m.imresize(lbl, self.img_size, "nearest", mode='F') lbl = lbl.astype(int) if not np.all(classes == np.unique(lbl)): print("WARN: resizing labels yielded fewer classes") #TODO: compare the original and processed ones if not np.all(np.unique(lbl[lbl != self.ignore_index]) < self.n_classes): print("after det", classes, np.unique(lbl)) raise ValueError("Segmentation map contained invalid class values") img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() return img, lbl def get_cls_num_list(self): return None
Tilemap_Game_With_CircuitPython/tilegame_assets/text_helper.py
gamblor21/Adafruit_Learning_System_Guides
665
12624714
# SPDX-FileCopyrightText: 2020 FoamyGuy for Adafruit Industries # # SPDX-License-Identifier: MIT def wrap_nicely(string, max_chars): """ From: https://www.richa1.com/RichardAlbritton/circuitpython-word-wrap-for-label-text/ A helper that will return the string with word-break wrapping. :param str string: The text to be wrapped. :param int max_chars: The maximum number of characters on a line before wrapping. """ string = string.replace("\n", "").replace("\r", "") # strip confusing newlines words = string.split(" ") the_lines = [] the_line = "" for w in words: if len(the_line + " " + w) <= max_chars: the_line += " " + w else: the_lines.append(the_line) the_line = w if the_line: the_lines.append(the_line) the_lines[0] = the_lines[0][1:] the_newline = "" for w in the_lines: the_newline += "\n" + w return the_newline
pyretri/utils/module_base.py
dongan-beta/PyRetri
1,063
12624759
<reponame>dongan-beta/PyRetri # -*- coding: utf-8 -*- from abc import ABCMeta from copy import deepcopy from typing import Dict class ModuleBase: """ The base class of all classes. You can access default hyper-parameters by Class. And set hyper-parameters for each instance at the initialization. """ __metaclass__ = ABCMeta default_hyper_params = dict() def __init__(self, hps: Dict or None = None): """ Args: hps (dict): default hyper parameters in a dict (keys, values). """ # copy hyper_params from class attribute. self._hyper_params = deepcopy(self.default_hyper_params) if hps is not None: self._set_hps(hps) def __setattr__(self, key, value) -> None: assert key != "hyper_params", "default Hyper-Parameters can not be set in each instance" self.__dict__[key] = value def get_hps(self) -> Dict: return self._hyper_params def _set_hps(self, hps: Dict or None = None): for key in hps: if key not in self._hyper_params: raise KeyError self._hyper_params[key] = hps[key]
sympy/solvers/tests/test_polysys.py
bigfooted/sympy
603
12624761
"""Tests for solvers of systems of polynomial equations. """ from sympy import (flatten, I, Integer, Poly, QQ, Rational, S, sqrt, solve, symbols) from sympy.abc import x, y, z from sympy.polys import PolynomialError from sympy.solvers.polysys import (solve_poly_system, solve_triangulated, solve_biquadratic, SolveFailed) from sympy.polys.polytools import parallel_poly_from_expr from sympy.testing.pytest import raises def test_solve_poly_system(): assert solve_poly_system([x - 1], x) == [(S.One,)] assert solve_poly_system([y - x, y - x - 1], x, y) is None assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)] assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \ [(Rational(3, 2), Integer(2), Integer(10))] assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \ [(0, 0), (2, -sqrt(2)), (2, sqrt(2))] assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \ [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))] f_1 = x**2 + y + z - 1 f_2 = x + y**2 + z - 1 f_3 = x + y + z**2 - 1 a, b = sqrt(2) - 1, -sqrt(2) - 1 assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)] solution = [(1, -1), (1, 1)] assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution assert solve_poly_system([x**2 - y**2, x - 1]) == solution assert solve_poly_system( [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)] raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y)) raises(NotImplementedError, lambda: solve_poly_system( [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2])) raises(PolynomialError, lambda: solve_poly_system([1/x], x)) def test_solve_biquadratic(): x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r') f_1 = (x - 1)**2 + (y - 1)**2 - r**2 f_2 = (x - 2)**2 + (y - 2)**2 - r**2 s = sqrt(2*r**2 - 1) a = (3 - s)/2 b = (3 + s)/2 assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)] f_1 = (x - 1)**2 + (y - 2)**2 - r**2 f_2 = (x - 1)**2 + (y - 1)**2 - r**2 assert solve_poly_system([f_1, f_2], x, y) == \ [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)), (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))] query = lambda expr: expr.is_Pow and expr.exp is S.Half f_1 = (x - 1 )**2 + (y - 2)**2 - r**2 f_2 = (x - x1)**2 + (y - 1)**2 - r**2 result = solve_poly_system([f_1, f_2], x, y) assert len(result) == 2 and all(len(r) == 2 for r in result) assert all(r.count(query) == 1 for r in flatten(result)) f_1 = (x - x0)**2 + (y - y0)**2 - r**2 f_2 = (x - x1)**2 + (y - y1)**2 - r**2 result = solve_poly_system([f_1, f_2], x, y) assert len(result) == 2 and all(len(r) == 2 for r in result) assert all(len(r.find(query)) == 1 for r in flatten(result)) s1 = (x*y - y, x**2 - x) assert solve(s1) == [{x: 1}, {x: 0, y: 0}] s2 = (x*y - x, y**2 - y) assert solve(s2) == [{y: 1}, {x: 0, y: 0}] gens = (x, y) for seq in (s1, s2): (f, g), opt = parallel_poly_from_expr(seq, *gens) raises(SolveFailed, lambda: solve_biquadratic(f, g, opt)) seq = (x**2 + y**2 - 2, y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == [ (-1, -1), (-1, 1), (1, -1), (1, 1)] ans = [(0, -1), (0, 1)] seq = (x**2 + y**2 - 1, y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == ans seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == ans def test_solve_triangulated(): f_1 = x**2 + y + z - 1 f_2 = x + y**2 + z - 1 f_3 = x + y + z**2 - 1 a, b = sqrt(2) - 1, -sqrt(2) - 1 assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0)] dom = QQ.algebraic_field(sqrt(2)) assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)] def test_solve_issue_3686(): roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y) assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))] roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y) # TODO: does this really have to be so complicated?! assert len(roots) == 2 assert roots[0][0] == 0 assert roots[0][1].epsilon_eq(-499.474999374969, 1e12) assert roots[1][0] == 0 assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
tick/survival/simu_coxreg.py
sumau/tick
411
12624794
<filename>tick/survival/simu_coxreg.py # License: BSD 3 clause import numpy as np from tick.base.simulation import SimuWithFeatures from tick.preprocessing.features_binarizer import FeaturesBinarizer # TODO: something better to tune the censoring level than this censoring factor class SimuCoxReg(SimuWithFeatures): """Simulation of a Cox regression for proportional hazards Parameters ---------- coeffs : `numpy.ndarray`, shape=(n_coeffs,) The array of coefficients of the model features : `numpy.ndarray`, shape=(n_samples, n_features), default=`None` The features matrix to use. If None, it is simulated n_samples : `int`, default=200 Number of samples times_distribution : `str`, default="weibull" The distrubution of times. Only ``"weibull"`` is implemented for now scale : `float`, default=1.0 Scaling parameter to use in the distribution of times shape : `float`, default=1.0 Shape parameter to use in the distribution of times censoring_factor : `float`, default=2.0 Level of censoring. Increasing censoring_factor leads to less censored times and conversely. features_type : `str`, default="cov_toeplitz" The type of features matrix to simulate * If ``"cov_toeplitz"`` : a Gaussian distribution with Toeplitz correlation matrix * If ``"cov_uniform"`` : a Gaussian distribution with correlation matrix given by O.5 * (U + U.T), where U is uniform on [0, 1] and diagonal filled with ones. cov_corr : `float`, default=0.5 Correlation to use in the Toeplitz correlation matrix features_scaling : `str`, default="none" The way the features matrix is scaled after simulation * If ``"standard"`` : the columns are centered and normalized * If ``"min-max"`` : remove the minimum and divide by max-min * If ``"norm"`` : the columns are normalized but not centered * If ``"none"`` : nothing is done to the features seed : `int`, default=None The seed of the random number generator. If `None` it is not seeded verbose : `bool`, default=True If True, print things Attributes ---------- features : `numpy.ndarray`, shape=(n_samples, n_features) The simulated (or given) features matrix times : `numpy.ndarray`, shape=(n_samples,) Simulated times censoring : `numpy.ndarray`, shape=(n_samples,) Simulated censoring indicator, where ``censoring[i] == 1`` indicates that the time of the i-th individual is a failure time, and where ``censoring[i] == 0`` means that the time of the i-th individual is a censoring time time_start : `str` Start date of the simulation time_elapsed : `int` Duration of the simulation, in seconds time_end : `str` End date of the simulation dtype : `{'float64', 'float32'}`, default='float64' Type of the generated arrays. Used in the case features is None Notes ----- There is no intercept in this model """ _attrinfos = { "times": { "writable": False }, "censoring": { "writable": False }, "_times_distribution": { "writable": False }, "_scale": { "writable": False }, "_shape": { "writable": False } } def __init__(self, coeffs: np.ndarray, features: np.ndarray = None, n_samples: int = 200, times_distribution: str = "weibull", shape: float = 1., scale: float = 1., censoring_factor: float = 2., features_type: str = "cov_toeplitz", cov_corr: float = 0.5, features_scaling: str = "none", seed: int = None, verbose: bool = True, dtype="float64"): n_features = coeffs.shape[0] # intercept=None in this model SimuWithFeatures.__init__(self, None, features, n_samples, n_features, features_type, cov_corr, features_scaling, seed, verbose, dtype=dtype) self.coeffs = coeffs self.shape = shape self.scale = scale self.censoring_factor = censoring_factor self.times_distribution = times_distribution self.features = None self.times = None self.censoring = None def simulate(self): """Launch simulation of the data Returns ------- features : `numpy.ndarray`, shape=(n_samples, n_features) The simulated (or given) features matrix times : `numpy.ndarray`, shape=(n_samples,) Simulated times censoring : `numpy.ndarray`, shape=(n_samples,) Simulated censoring indicator, where ``censoring[i] == 1`` indicates that the time of the i-th individual is a failure time, and where ``censoring[i] == 0`` means that the time of the i-th individual is a censoring time """ return SimuWithFeatures.simulate(self) @property def times_distribution(self): return self._times_distribution @times_distribution.setter def times_distribution(self, val): if val != "weibull": raise ValueError("``times_distribution`` was not " "understood, try using 'weibull' instead") self._set("_times_distribution", val) @property def shape(self): return self._shape @shape.setter def shape(self, val): if val <= 0: raise ValueError("``shape`` must be strictly positive") self._set("_shape", val) @property def scale(self): return self._scale @scale.setter def scale(self, val): if val <= 0: raise ValueError("``scale`` must be strictly positive") self._set("_scale", val) def _simulate(self): # The features matrix already exists, and is created by the # super class features = self.features n_samples, n_features = features.shape u = features.dot(self.coeffs) # Simulation of true times E = np.random.exponential(scale=1., size=n_samples) E *= np.exp(-u) scale = self.scale shape = self.shape if self.times_distribution == "weibull": T = 1. / scale * E ** (1. / shape) else: # There is not point in this test, but let's do it like that # since we're likely to implement other distributions T = 1. / scale * E ** (1. / shape) m = T.mean() # Simulation of the censoring c = self.censoring_factor C = np.random.exponential(scale=c * m, size=n_samples) # Observed time self._set("times", np.minimum(T, C).astype(self.dtype)) # Censoring indicator: 1 if it is a time of failure, 0 if it's # censoring. It is as int8 and not bool as we might need to # construct a memory access on it later censoring = (T <= C).astype(np.ushort) self._set("censoring", censoring) return self.features, self.times, self.censoring def _as_dict(self): dd = SimuWithFeatures._as_dict(self) dd.pop("features", None) dd.pop("times", None) dd.pop("censoring", None) return dd class SimuCoxRegWithCutPoints(SimuWithFeatures): """Simulation of a Cox regression for proportional hazards with cut-points effects in the features Parameters ---------- features : `numpy.ndarray`, shape=(n_samples, n_features), default=`None` The features matrix to use. If None, it is simulated n_samples : `int`, default=200 Number of samples n_features : `int`, default=5 Number of features times_distribution : `str`, default="weibull" The distrubution of times. Only ``"weibull"`` is implemented for now scale : `float`, default=1.0 Scaling parameter to use in the distribution of times shape : `float`, default=1.0 Shape parameter to use in the distribution of times censoring_factor : `float`, default=2.0 Level of censoring. Increasing censoring_factor leads to less censored times and conversely. features_type : `str`, default="cov_toeplitz" The type of features matrix to simulate * If ``"cov_toeplitz"`` : a Gaussian distribution with Toeplitz correlation matrix * If ``"cov_uniform"`` : a Gaussian distribution with correlation matrix given by O.5 * (U + U.T), where U is uniform on [0, 1] and diagonal filled with ones. cov_corr : `float`, default=0.5 Correlation to use in the Toeplitz correlation matrix features_scaling : `str`, default="none" The way the features matrix is scaled after simulation * If ``"standard"`` : the columns are centered and normalized * If ``"min-max"`` : remove the minimum and divide by max-min * If ``"norm"`` : the columns are normalized but not centered * If ``"none"`` : nothing is done to the features seed : `int`, default=None The seed of the random number generator. If `None` it is not seeded verbose : `bool`, default=True If True, print things n_cut_points : `int`, default="none" Number of cut-points generated per feature. If `None` it is sampled from a geometric distribution of parameter n_cut_points_factor. n_cut_points_factor : `float`, default=0.7 Parameter of the geometric distribution used to generate the number of cut-points when n_cut_points is `None`. Increasing n_cut_points_factor leads to less cut-points per feature on average. sparsity : `float`, default=0 Percentage of block sparsity induced in the coefficient vector. Must be in [0, 1]. Attributes ---------- features : `numpy.ndarray`, shape=(n_samples, n_features) The simulated (or given) features matrix times : `numpy.ndarray`, shape=(n_samples,) Simulated times censoring : `numpy.ndarray`, shape=(n_samples,) Simulated censoring indicator, where ``censoring[i] == 1`` indicates that the time of the i-th individual is a failure time, and where ``censoring[i] == 0`` means that the time of the i-th individual is a censoring time Notes ----- There is no intercept in this model """ _attrinfos = { "times": { "writable": False }, "censoring": { "writable": False }, "_times_distribution": { "writable": False }, "_scale": { "writable": False }, "_shape": { "writable": False }, "_sparsity": { "writable": False } } def __init__(self, features: np.ndarray = None, n_samples: int = 200, n_features: int = 5, n_cut_points: int = None, n_cut_points_factor: float = .7, times_distribution: str = "weibull", shape: float = 1., scale: float = 1., censoring_factor: float = 2., features_type: str = "cov_toeplitz", cov_corr: float = 0.5, features_scaling: str = "none", seed: int = None, verbose: bool = True, sparsity=0): # intercept=None in this model SimuWithFeatures.__init__(self, None, features, n_samples, n_features, features_type, cov_corr, features_scaling, seed, verbose) self.shape = shape self.scale = scale self.censoring_factor = censoring_factor self.times_distribution = times_distribution self.n_cut_points = n_cut_points self.n_cut_points_factor = n_cut_points_factor self.sparsity = sparsity self.features = None self.times = None self.censoring = None def simulate(self): """Launch simulation of the data Returns ------- features : `numpy.ndarray`, shape=(n_samples, n_features) The simulated (or given) features matrix times : `numpy.ndarray`, shape=(n_samples,) Simulated times censoring : `numpy.ndarray`, shape=(n_samples,) Simulated censoring indicator, where ``censoring[i] == 1`` indicates that the time of the i-th individual is a failure time, and where ``censoring[i] == 0`` means that the time of the i-th individual is a censoring time """ return SimuWithFeatures.simulate(self) @property def times_distribution(self): return self._times_distribution @times_distribution.setter def times_distribution(self, val): if val != "weibull": raise ValueError("``times_distribution`` was not " "understood, try using 'weibull' instead") self._set("_times_distribution", val) @property def shape(self): return self._shape @shape.setter def shape(self, val): if val <= 0: raise ValueError("``shape`` must be strictly positive") self._set("_shape", val) @property def scale(self): return self._scale @scale.setter def scale(self, val): if val <= 0: raise ValueError("``scale`` must be strictly positive") self._set("_scale", val) @property def sparsity(self): return self._sparsity @sparsity.setter def sparsity(self, val): if not 0 <= val <= 1: raise ValueError("``sparsity`` must be in (0, 1)") self._set("_sparsity", val) def _simulate(self): # The features matrix already exists, and is created by the # super class features = self.features n_samples, n_features = features.shape # Simulation of cut-points n_cut_points = self.n_cut_points n_cut_points_factor = self.n_cut_points_factor sparsity = self.sparsity s = round(n_features * sparsity) # sparsity index set S = np.random.choice(n_features, s, replace=False) if n_cut_points is None: n_cut_points = np.random.geometric(n_cut_points_factor, n_features) else: n_cut_points = np.repeat(n_cut_points, n_features) cut_points = {} coeffs_binarized = np.array([]) for j in range(n_features): feature_j = features[:, j] quantile_cuts = np.linspace(10, 90, 10) candidates = np.percentile(feature_j, quantile_cuts, interpolation="nearest") cut_points_j = np.random.choice(candidates, n_cut_points[j], replace=False) cut_points_j = np.sort(cut_points_j) cut_points_j = np.insert(cut_points_j, 0, -np.inf) cut_points_j = np.append(cut_points_j, np.inf) cut_points[str(j)] = cut_points_j # generate beta star if j in S: coeffs_block = np.zeros(n_cut_points[j] + 1) else: coeffs_block = np.random.normal(1, .5, n_cut_points[j] + 1) # make sure 2 consecutive coeffs are different enough coeffs_block = np.abs(coeffs_block) coeffs_block[::2] *= -1 # sum-to-zero constraint in each block coeffs_block = coeffs_block - coeffs_block.mean() coeffs_binarized = np.append(coeffs_binarized, coeffs_block) binarizer = FeaturesBinarizer(method='given', bins_boundaries=cut_points) binarized_features = binarizer.fit_transform(features) u = binarized_features.dot(coeffs_binarized) # Simulation of true times E = np.random.exponential(scale=1., size=n_samples) E *= np.exp(-u) scale = self.scale shape = self.shape if self.times_distribution == "weibull": T = 1. / scale * E ** (1. / shape) else: # There is not point in this test, but let's do it like that # since we're likely to implement other distributions T = 1. / scale * E ** (1. / shape) m = T.mean() # Simulation of the censoring c = self.censoring_factor C = np.random.exponential(scale=c * m, size=n_samples) # Observed time self._set("times", np.minimum(T, C).astype(self.dtype)) # Censoring indicator: 1 if it is a time of failure, 0 if censoring. censoring = (T <= C).astype(np.ushort) self._set("censoring", censoring) return self.features, self.times, self.censoring, cut_points, \ coeffs_binarized, S def _as_dict(self): dd = SimuWithFeatures._as_dict(self) dd.pop("features", None) dd.pop("times", None) dd.pop("censoring", None) return dd
awsiot/iotshadow.py
vietmaiquoc/aws-iot-device-sdk-python-v2
224
12624830
<reponame>vietmaiquoc/aws-iot-device-sdk-python-v2 # Copyright Amazon.com, Inc. or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0. # This file is generated import awsiot import concurrent.futures import datetime import typing class IotShadowClient(awsiot.MqttServiceClient): def publish_delete_named_shadow(self, request, qos): # type: (DeleteNamedShadowRequest, int) -> concurrent.futures.Future """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#delete-pub-sub-topic Args: request: `DeleteNamedShadowRequest` instance. qos: The Quality of Service guarantee of this message Returns: A Future whose result will be None if the request is successfully published. The Future's result will be an exception if the request cannot be published. """ if not request.shadow_name: raise ValueError("request.shadow_name is required") if not request.thing_name: raise ValueError("request.thing_name is required") return self._publish_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/delete'.format(request), qos=qos, payload=request.to_payload()) def publish_delete_shadow(self, request, qos): # type: (DeleteShadowRequest, int) -> concurrent.futures.Future """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#delete-pub-sub-topic Args: request: `DeleteShadowRequest` instance. qos: The Quality of Service guarantee of this message Returns: A Future whose result will be None if the request is successfully published. The Future's result will be an exception if the request cannot be published. """ if not request.thing_name: raise ValueError("request.thing_name is required") return self._publish_operation( topic='$aws/things/{0.thing_name}/shadow/delete'.format(request), qos=qos, payload=request.to_payload()) def publish_get_named_shadow(self, request, qos): # type: (GetNamedShadowRequest, int) -> concurrent.futures.Future """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#get-pub-sub-topic Args: request: `GetNamedShadowRequest` instance. qos: The Quality of Service guarantee of this message Returns: A Future whose result will be None if the request is successfully published. The Future's result will be an exception if the request cannot be published. """ if not request.shadow_name: raise ValueError("request.shadow_name is required") if not request.thing_name: raise ValueError("request.thing_name is required") return self._publish_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/get'.format(request), qos=qos, payload=request.to_payload()) def publish_get_shadow(self, request, qos): # type: (GetShadowRequest, int) -> concurrent.futures.Future """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#get-pub-sub-topic Args: request: `GetShadowRequest` instance. qos: The Quality of Service guarantee of this message Returns: A Future whose result will be None if the request is successfully published. The Future's result will be an exception if the request cannot be published. """ if not request.thing_name: raise ValueError("request.thing_name is required") return self._publish_operation( topic='$aws/things/{0.thing_name}/shadow/get'.format(request), qos=qos, payload=request.to_payload()) def publish_update_named_shadow(self, request, qos): # type: (UpdateNamedShadowRequest, int) -> concurrent.futures.Future """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-pub-sub-topic Args: request: `UpdateNamedShadowRequest` instance. qos: The Quality of Service guarantee of this message Returns: A Future whose result will be None if the request is successfully published. The Future's result will be an exception if the request cannot be published. """ if not request.shadow_name: raise ValueError("request.shadow_name is required") if not request.thing_name: raise ValueError("request.thing_name is required") return self._publish_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/update'.format(request), qos=qos, payload=request.to_payload()) def publish_update_shadow(self, request, qos): # type: (UpdateShadowRequest, int) -> concurrent.futures.Future """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-pub-sub-topic Args: request: `UpdateShadowRequest` instance. qos: The Quality of Service guarantee of this message Returns: A Future whose result will be None if the request is successfully published. The Future's result will be an exception if the request cannot be published. """ if not request.thing_name: raise ValueError("request.thing_name is required") return self._publish_operation( topic='$aws/things/{0.thing_name}/shadow/update'.format(request), qos=qos, payload=request.to_payload()) def subscribe_to_delete_named_shadow_accepted(self, request, qos, callback): # type: (DeleteNamedShadowSubscriptionRequest, int, typing.Callable[[DeleteShadowResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#delete-accepted-pub-sub-topic Args: request: `DeleteNamedShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `DeleteShadowResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/delete/accepted'.format(request), qos=qos, callback=callback, payload_to_class_fn=DeleteShadowResponse.from_payload) def subscribe_to_delete_named_shadow_rejected(self, request, qos, callback): # type: (DeleteNamedShadowSubscriptionRequest, int, typing.Callable[[ErrorResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#delete-rejected-pub-sub-topic Args: request: `DeleteNamedShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ErrorResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/delete/rejected'.format(request), qos=qos, callback=callback, payload_to_class_fn=ErrorResponse.from_payload) def subscribe_to_delete_shadow_accepted(self, request, qos, callback): # type: (DeleteShadowSubscriptionRequest, int, typing.Callable[[DeleteShadowResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#delete-accepted-pub-sub-topic Args: request: `DeleteShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `DeleteShadowResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/delete/accepted'.format(request), qos=qos, callback=callback, payload_to_class_fn=DeleteShadowResponse.from_payload) def subscribe_to_delete_shadow_rejected(self, request, qos, callback): # type: (DeleteShadowSubscriptionRequest, int, typing.Callable[[ErrorResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#delete-rejected-pub-sub-topic Args: request: `DeleteShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ErrorResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/delete/rejected'.format(request), qos=qos, callback=callback, payload_to_class_fn=ErrorResponse.from_payload) def subscribe_to_get_named_shadow_accepted(self, request, qos, callback): # type: (GetNamedShadowSubscriptionRequest, int, typing.Callable[[GetShadowResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#get-accepted-pub-sub-topic Args: request: `GetNamedShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `GetShadowResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/get/accepted'.format(request), qos=qos, callback=callback, payload_to_class_fn=GetShadowResponse.from_payload) def subscribe_to_get_named_shadow_rejected(self, request, qos, callback): # type: (GetNamedShadowSubscriptionRequest, int, typing.Callable[[ErrorResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#get-rejected-pub-sub-topic Args: request: `GetNamedShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ErrorResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/get/rejected'.format(request), qos=qos, callback=callback, payload_to_class_fn=ErrorResponse.from_payload) def subscribe_to_get_shadow_accepted(self, request, qos, callback): # type: (GetShadowSubscriptionRequest, int, typing.Callable[[GetShadowResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#get-accepted-pub-sub-topic Args: request: `GetShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `GetShadowResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/get/accepted'.format(request), qos=qos, callback=callback, payload_to_class_fn=GetShadowResponse.from_payload) def subscribe_to_get_shadow_rejected(self, request, qos, callback): # type: (GetShadowSubscriptionRequest, int, typing.Callable[[ErrorResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#get-rejected-pub-sub-topic Args: request: `GetShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ErrorResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/get/rejected'.format(request), qos=qos, callback=callback, payload_to_class_fn=ErrorResponse.from_payload) def subscribe_to_named_shadow_delta_updated_events(self, request, qos, callback): # type: (NamedShadowDeltaUpdatedSubscriptionRequest, int, typing.Callable[[ShadowDeltaUpdatedEvent], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-delta-pub-sub-topic Args: request: `NamedShadowDeltaUpdatedSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ShadowDeltaUpdatedEvent`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/update/delta'.format(request), qos=qos, callback=callback, payload_to_class_fn=ShadowDeltaUpdatedEvent.from_payload) def subscribe_to_named_shadow_updated_events(self, request, qos, callback): # type: (NamedShadowUpdatedSubscriptionRequest, int, typing.Callable[[ShadowUpdatedEvent], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-documents-pub-sub-topic Args: request: `NamedShadowUpdatedSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ShadowUpdatedEvent`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.shadow_name: raise ValueError("request.shadow_name is required") if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/update/documents'.format(request), qos=qos, callback=callback, payload_to_class_fn=ShadowUpdatedEvent.from_payload) def subscribe_to_shadow_delta_updated_events(self, request, qos, callback): # type: (ShadowDeltaUpdatedSubscriptionRequest, int, typing.Callable[[ShadowDeltaUpdatedEvent], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-delta-pub-sub-topic Args: request: `ShadowDeltaUpdatedSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ShadowDeltaUpdatedEvent`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/update/delta'.format(request), qos=qos, callback=callback, payload_to_class_fn=ShadowDeltaUpdatedEvent.from_payload) def subscribe_to_shadow_updated_events(self, request, qos, callback): # type: (ShadowUpdatedSubscriptionRequest, int, typing.Callable[[ShadowUpdatedEvent], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-documents-pub-sub-topic Args: request: `ShadowUpdatedSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ShadowUpdatedEvent`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/update/documents'.format(request), qos=qos, callback=callback, payload_to_class_fn=ShadowUpdatedEvent.from_payload) def subscribe_to_update_named_shadow_accepted(self, request, qos, callback): # type: (UpdateNamedShadowSubscriptionRequest, int, typing.Callable[[UpdateShadowResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-accepted-pub-sub-topic Args: request: `UpdateNamedShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `UpdateShadowResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/update/accepted'.format(request), qos=qos, callback=callback, payload_to_class_fn=UpdateShadowResponse.from_payload) def subscribe_to_update_named_shadow_rejected(self, request, qos, callback): # type: (UpdateNamedShadowSubscriptionRequest, int, typing.Callable[[ErrorResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-rejected-pub-sub-topic Args: request: `UpdateNamedShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ErrorResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not request.shadow_name: raise ValueError("request.shadow_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/name/{0.shadow_name}/update/rejected'.format(request), qos=qos, callback=callback, payload_to_class_fn=ErrorResponse.from_payload) def subscribe_to_update_shadow_accepted(self, request, qos, callback): # type: (UpdateShadowSubscriptionRequest, int, typing.Callable[[UpdateShadowResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-accepted-pub-sub-topic Args: request: `UpdateShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `UpdateShadowResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/update/accepted'.format(request), qos=qos, callback=callback, payload_to_class_fn=UpdateShadowResponse.from_payload) def subscribe_to_update_shadow_rejected(self, request, qos, callback): # type: (UpdateShadowSubscriptionRequest, int, typing.Callable[[ErrorResponse], None]) -> typing.Tuple[concurrent.futures.Future, str] """ API Docs: https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html#update-rejected-pub-sub-topic Args: request: `UpdateShadowSubscriptionRequest` instance. qos: The Quality of Service guarantee of this message callback: Callback to invoke each time the event is received. The callback should take 1 argument of type `ErrorResponse`. The callback is not expected to return anything. Returns: Tuple with two values. The first is a Future which will contain a result of `None` when the server has acknowledged the subscription, or an exception if the subscription fails. The second value is a topic which may be passed to `unsubscribe()` to stop receiving messages. Note that messages may arrive before the subscription is acknowledged. """ if not request.thing_name: raise ValueError("request.thing_name is required") if not callable(callback): raise ValueError("callback is required") return self._subscribe_operation( topic='$aws/things/{0.thing_name}/shadow/update/rejected'.format(request), qos=qos, callback=callback, payload_to_class_fn=ErrorResponse.from_payload) class DeleteNamedShadowRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) shadow_name (str) thing_name (str) Attributes: client_token (str) shadow_name (str) thing_name (str) """ __slots__ = ['client_token', 'shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['client_token', 'shadow_name', 'thing_name'], args): setattr(self, key, val) def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.client_token is not None: payload['clientToken'] = self.client_token return payload class DeleteNamedShadowSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: shadow_name (str) thing_name (str) Attributes: shadow_name (str) thing_name (str) """ __slots__ = ['shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['shadow_name', 'thing_name'], args): setattr(self, key, val) class DeleteShadowRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) thing_name (str) Attributes: client_token (str) thing_name (str) """ __slots__ = ['client_token', 'thing_name'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val) def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.client_token is not None: payload['clientToken'] = self.client_token return payload class DeleteShadowResponse(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) timestamp (datetime.datetime) version (int) Attributes: client_token (str) timestamp (datetime.datetime) version (int) """ __slots__ = ['client_token', 'timestamp', 'version'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.timestamp = kwargs.get('timestamp') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['timestamp', 'version'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> DeleteShadowResponse new = cls() val = payload.get('clientToken') if val is not None: new.client_token = val val = payload.get('timestamp') if val is not None: new.timestamp = datetime.datetime.fromtimestamp(val) val = payload.get('version') if val is not None: new.version = val return new class DeleteShadowSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: thing_name (str) Attributes: thing_name (str) """ __slots__ = ['thing_name'] def __init__(self, *args, **kwargs): self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val) class ErrorResponse(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) code (int) message (str) timestamp (datetime.datetime) Attributes: client_token (str) code (int) message (str) timestamp (datetime.datetime) """ __slots__ = ['client_token', 'code', 'message', 'timestamp'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.code = kwargs.get('code') self.message = kwargs.get('message') self.timestamp = kwargs.get('timestamp') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['client_token', 'code', 'message', 'timestamp'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ErrorResponse new = cls() val = payload.get('clientToken') if val is not None: new.client_token = val val = payload.get('code') if val is not None: new.code = val val = payload.get('message') if val is not None: new.message = val val = payload.get('timestamp') if val is not None: new.timestamp = datetime.datetime.fromtimestamp(val) return new class GetNamedShadowRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) shadow_name (str) thing_name (str) Attributes: client_token (str) shadow_name (str) thing_name (str) """ __slots__ = ['client_token', 'shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['client_token', 'shadow_name', 'thing_name'], args): setattr(self, key, val) def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.client_token is not None: payload['clientToken'] = self.client_token return payload class GetNamedShadowSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: shadow_name (str) thing_name (str) Attributes: shadow_name (str) thing_name (str) """ __slots__ = ['shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['shadow_name', 'thing_name'], args): setattr(self, key, val) class GetShadowRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) thing_name (str) Attributes: client_token (str) thing_name (str) """ __slots__ = ['client_token', 'thing_name'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val) def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.client_token is not None: payload['clientToken'] = self.client_token return payload class GetShadowResponse(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) metadata (ShadowMetadata) state (ShadowStateWithDelta) timestamp (datetime.datetime) version (int) Attributes: client_token (str) metadata (ShadowMetadata) state (ShadowStateWithDelta) timestamp (datetime.datetime) version (int) """ __slots__ = ['client_token', 'metadata', 'state', 'timestamp', 'version'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.metadata = kwargs.get('metadata') self.state = kwargs.get('state') self.timestamp = kwargs.get('timestamp') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['metadata', 'state', 'timestamp', 'version'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> GetShadowResponse new = cls() val = payload.get('clientToken') if val is not None: new.client_token = val val = payload.get('metadata') if val is not None: new.metadata = ShadowMetadata.from_payload(val) val = payload.get('state') if val is not None: new.state = ShadowStateWithDelta.from_payload(val) val = payload.get('timestamp') if val is not None: new.timestamp = datetime.datetime.fromtimestamp(val) val = payload.get('version') if val is not None: new.version = val return new class GetShadowSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: thing_name (str) Attributes: thing_name (str) """ __slots__ = ['thing_name'] def __init__(self, *args, **kwargs): self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val) class NamedShadowDeltaUpdatedSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: shadow_name (str) thing_name (str) Attributes: shadow_name (str) thing_name (str) """ __slots__ = ['shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['shadow_name', 'thing_name'], args): setattr(self, key, val) class NamedShadowUpdatedSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: shadow_name (str) thing_name (str) Attributes: shadow_name (str) thing_name (str) """ __slots__ = ['shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['shadow_name', 'thing_name'], args): setattr(self, key, val) class ShadowDeltaUpdatedEvent(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: metadata (typing.Dict[str, typing.Any]) state (typing.Dict[str, typing.Any]) timestamp (datetime.datetime) version (int) Attributes: metadata (typing.Dict[str, typing.Any]) state (typing.Dict[str, typing.Any]) timestamp (datetime.datetime) version (int) """ __slots__ = ['metadata', 'state', 'timestamp', 'version'] def __init__(self, *args, **kwargs): self.metadata = kwargs.get('metadata') self.state = kwargs.get('state') self.timestamp = kwargs.get('timestamp') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['metadata', 'state', 'timestamp', 'version'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ShadowDeltaUpdatedEvent new = cls() val = payload.get('metadata') if val is not None: new.metadata = val val = payload.get('state') if val is not None: new.state = val val = payload.get('timestamp') if val is not None: new.timestamp = datetime.datetime.fromtimestamp(val) val = payload.get('version') if val is not None: new.version = val return new class ShadowDeltaUpdatedSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: thing_name (str) Attributes: thing_name (str) """ __slots__ = ['thing_name'] def __init__(self, *args, **kwargs): self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val) class ShadowMetadata(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: desired (typing.Dict[str, typing.Any]) reported (typing.Dict[str, typing.Any]) Attributes: desired (typing.Dict[str, typing.Any]) reported (typing.Dict[str, typing.Any]) """ __slots__ = ['desired', 'reported'] def __init__(self, *args, **kwargs): self.desired = kwargs.get('desired') self.reported = kwargs.get('reported') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['desired', 'reported'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ShadowMetadata new = cls() val = payload.get('desired') if val is not None: new.desired = val val = payload.get('reported') if val is not None: new.reported = val return new class ShadowState(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: desired (typing.Dict[str, typing.Any]) reported (typing.Dict[str, typing.Any]) Attributes: desired (typing.Dict[str, typing.Any]) reported (typing.Dict[str, typing.Any]) """ __slots__ = ['desired', 'reported'] def __init__(self, *args, **kwargs): self.desired = kwargs.get('desired') self.reported = kwargs.get('reported') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['desired', 'reported'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ShadowState new = cls() val = payload.get('desired') if val is not None: new.desired = val val = payload.get('reported') if val is not None: new.reported = val return new def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.desired is not None: payload['desired'] = self.desired if self.reported is not None: payload['reported'] = self.reported return payload class ShadowStateWithDelta(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: delta (typing.Dict[str, typing.Any]) desired (typing.Dict[str, typing.Any]) reported (typing.Dict[str, typing.Any]) Attributes: delta (typing.Dict[str, typing.Any]) desired (typing.Dict[str, typing.Any]) reported (typing.Dict[str, typing.Any]) """ __slots__ = ['delta', 'desired', 'reported'] def __init__(self, *args, **kwargs): self.delta = kwargs.get('delta') self.desired = kwargs.get('desired') self.reported = kwargs.get('reported') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['delta', 'desired', 'reported'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ShadowStateWithDelta new = cls() val = payload.get('delta') if val is not None: new.delta = val val = payload.get('desired') if val is not None: new.desired = val val = payload.get('reported') if val is not None: new.reported = val return new class ShadowUpdatedEvent(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: current (ShadowUpdatedSnapshot) previous (ShadowUpdatedSnapshot) timestamp (datetime.datetime) Attributes: current (ShadowUpdatedSnapshot) previous (ShadowUpdatedSnapshot) timestamp (datetime.datetime) """ __slots__ = ['current', 'previous', 'timestamp'] def __init__(self, *args, **kwargs): self.current = kwargs.get('current') self.previous = kwargs.get('previous') self.timestamp = kwargs.get('timestamp') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['current', 'previous', 'timestamp'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ShadowUpdatedEvent new = cls() val = payload.get('current') if val is not None: new.current = ShadowUpdatedSnapshot.from_payload(val) val = payload.get('previous') if val is not None: new.previous = ShadowUpdatedSnapshot.from_payload(val) val = payload.get('timestamp') if val is not None: new.timestamp = datetime.datetime.fromtimestamp(val) return new class ShadowUpdatedSnapshot(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: metadata (ShadowMetadata) state (ShadowState) version (int) Attributes: metadata (ShadowMetadata) state (ShadowState) version (int) """ __slots__ = ['metadata', 'state', 'version'] def __init__(self, *args, **kwargs): self.metadata = kwargs.get('metadata') self.state = kwargs.get('state') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['metadata', 'state', 'version'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> ShadowUpdatedSnapshot new = cls() val = payload.get('metadata') if val is not None: new.metadata = ShadowMetadata.from_payload(val) val = payload.get('state') if val is not None: new.state = ShadowState.from_payload(val) val = payload.get('version') if val is not None: new.version = val return new class ShadowUpdatedSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: thing_name (str) Attributes: thing_name (str) """ __slots__ = ['thing_name'] def __init__(self, *args, **kwargs): self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val) class UpdateNamedShadowRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) shadow_name (str) state (ShadowState) thing_name (str) version (int) Attributes: client_token (str) shadow_name (str) state (ShadowState) thing_name (str) version (int) """ __slots__ = ['client_token', 'shadow_name', 'state', 'thing_name', 'version'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.shadow_name = kwargs.get('shadow_name') self.state = kwargs.get('state') self.thing_name = kwargs.get('thing_name') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['client_token', 'shadow_name', 'state', 'thing_name', 'version'], args): setattr(self, key, val) def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.client_token is not None: payload['clientToken'] = self.client_token if self.state is not None: payload['state'] = self.state.to_payload() if self.version is not None: payload['version'] = self.version return payload class UpdateNamedShadowSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: shadow_name (str) thing_name (str) Attributes: shadow_name (str) thing_name (str) """ __slots__ = ['shadow_name', 'thing_name'] def __init__(self, *args, **kwargs): self.shadow_name = kwargs.get('shadow_name') self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['shadow_name', 'thing_name'], args): setattr(self, key, val) class UpdateShadowRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) state (ShadowState) thing_name (str) version (int) Attributes: client_token (str) state (ShadowState) thing_name (str) version (int) """ __slots__ = ['client_token', 'state', 'thing_name', 'version'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.state = kwargs.get('state') self.thing_name = kwargs.get('thing_name') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['client_token', 'state', 'thing_name', 'version'], args): setattr(self, key, val) def to_payload(self): # type: () -> typing.Dict[str, typing.Any] payload = {} # type: typing.Dict[str, typing.Any] if self.client_token is not None: payload['clientToken'] = self.client_token if self.state is not None: payload['state'] = self.state.to_payload() if self.version is not None: payload['version'] = self.version return payload class UpdateShadowResponse(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: client_token (str) metadata (ShadowMetadata) state (ShadowState) timestamp (datetime.datetime) version (int) Attributes: client_token (str) metadata (ShadowMetadata) state (ShadowState) timestamp (datetime.datetime) version (int) """ __slots__ = ['client_token', 'metadata', 'state', 'timestamp', 'version'] def __init__(self, *args, **kwargs): self.client_token = kwargs.get('client_token') self.metadata = kwargs.get('metadata') self.state = kwargs.get('state') self.timestamp = kwargs.get('timestamp') self.version = kwargs.get('version') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['client_token', 'metadata', 'state', 'timestamp', 'version'], args): setattr(self, key, val) @classmethod def from_payload(cls, payload): # type: (typing.Dict[str, typing.Any]) -> UpdateShadowResponse new = cls() val = payload.get('clientToken') if val is not None: new.client_token = val val = payload.get('metadata') if val is not None: new.metadata = ShadowMetadata.from_payload(val) val = payload.get('state') if val is not None: new.state = ShadowState.from_payload(val) val = payload.get('timestamp') if val is not None: new.timestamp = datetime.datetime.fromtimestamp(val) val = payload.get('version') if val is not None: new.version = val return new class UpdateShadowSubscriptionRequest(awsiot.ModeledClass): """ All attributes are None by default, and may be set by keyword in the constructor. Keyword Args: thing_name (str) Attributes: thing_name (str) """ __slots__ = ['thing_name'] def __init__(self, *args, **kwargs): self.thing_name = kwargs.get('thing_name') # for backwards compatibility, read any arguments that used to be accepted by position for key, val in zip(['thing_name'], args): setattr(self, key, val)
torch_kalman/kalman_filter/__init__.py
strongio/torch_kalman
105
12624836
from .base import KalmanFilter
test/run.py
miaopei/deep_landmark
327
12624852
#!/usr/bin/env python2.7 # coding: utf-8 """ This file use Caffe model to predict data from http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm """ import os, sys from functools import partial import cv2 from common import getDataFromTxt, createDir, logger, drawLandmark from common import level1, level2, level3 TXT = 'dataset/test/lfpw_test_249_bbox.txt' if __name__ == '__main__': assert(len(sys.argv) == 2) level = int(sys.argv[1]) if level == 0: P = partial(level1, FOnly=True) elif level == 1: P = level1 elif level == 2: P = level2 else: P = level3 OUTPUT = 'dataset/test/out_{0}'.format(level) createDir(OUTPUT) data = getDataFromTxt(TXT, with_landmark=False) for imgPath, bbox in data: img = cv2.imread(imgPath) assert(img is not None) imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) logger("process %s" % imgPath) landmark = P(imgGray, bbox) landmark = bbox.reprojectLandmark(landmark) drawLandmark(img, bbox, landmark) cv2.imwrite(os.path.join(OUTPUT, os.path.basename(imgPath)), img)
a02_TextCNN/data_util.py
sunshinenum/text_classification
7,723
12624872
<reponame>sunshinenum/text_classification # -*- coding: utf-8 -*- import codecs import random import numpy as np from tflearn.data_utils import pad_sequences from collections import Counter import os import pickle PAD_ID = 0 UNK_ID=1 _PAD="_PAD" _UNK="UNK" def load_data_multilabel(traning_data_path,vocab_word2index, vocab_label2index,sentence_len,training_portion=0.95): """ convert data as indexes using word2index dicts. :param traning_data_path: :param vocab_word2index: :param vocab_label2index: :return: """ file_object = codecs.open(traning_data_path, mode='r', encoding='utf-8') lines = file_object.readlines() random.shuffle(lines) label_size=len(vocab_label2index) X = [] Y = [] for i,line in enumerate(lines): raw_list = line.strip().split("__label__") input_list = raw_list[0].strip().split(" ") input_list = [x.strip().replace(" ", "") for x in input_list if x != ''] x=[vocab_word2index.get(x,UNK_ID) for x in input_list] label_list = raw_list[1:] label_list=[l.strip().replace(" ", "") for l in label_list if l != ''] label_list=[vocab_label2index[label] for label in label_list] y=transform_multilabel_as_multihot(label_list,label_size) X.append(x) Y.append(y) if i<10:print(i,"line:",line) X = pad_sequences(X, maxlen=sentence_len, value=0.) # padding to max length number_examples = len(lines) training_number=int(training_portion* number_examples) train = (X[0:training_number], Y[0:training_number]) valid_number=min(1000,number_examples-training_number) test = (X[training_number+ 1:training_number+valid_number+1], Y[training_number + 1:training_number+valid_number+1]) return train,test def transform_multilabel_as_multihot(label_list,label_size): """ convert to multi-hot style :param label_list: e.g.[0,1,4], here 4 means in the 4th position it is true value(as indicate by'1') :param label_size: e.g.199 :return:e.g.[1,1,0,1,0,0,........] """ result=np.zeros(label_size) #set those location as 1, all else place as 0. result[label_list] = 1 return result #use pretrained word embedding to get word vocabulary and labels, and its relationship with index def create_vocabulary(training_data_path,vocab_size,name_scope='cnn'): """ create vocabulary :param training_data_path: :param vocab_size: :param name_scope: :return: """ cache_vocabulary_label_pik='cache'+"_"+name_scope # path to save cache if not os.path.isdir(cache_vocabulary_label_pik): # create folder if not exists. os.makedirs(cache_vocabulary_label_pik) # if cache exists. load it; otherwise create it. cache_path =cache_vocabulary_label_pik+"/"+'vocab_label.pik' print("cache_path:",cache_path,"file_exists:",os.path.exists(cache_path)) if os.path.exists(cache_path): with open(cache_path, 'rb') as data_f: return pickle.load(data_f) else: vocabulary_word2index={} vocabulary_index2word={} vocabulary_word2index[_PAD]=PAD_ID vocabulary_index2word[PAD_ID]=_PAD vocabulary_word2index[_UNK]=UNK_ID vocabulary_index2word[UNK_ID]=_UNK vocabulary_label2index={} vocabulary_index2label={} #1.load raw data file_object = codecs.open(training_data_path, mode='r', encoding='utf-8') lines=file_object.readlines() #2.loop each line,put to counter c_inputs=Counter() c_labels=Counter() for line in lines: raw_list=line.strip().split("__label__") input_list = raw_list[0].strip().split(" ") input_list = [x.strip().replace(" ", "") for x in input_list if x != ''] label_list=[l.strip().replace(" ","") for l in raw_list[1:] if l!=''] c_inputs.update(input_list) c_labels.update(label_list) #return most frequency words vocab_list=c_inputs.most_common(vocab_size) label_list=c_labels.most_common() #put those words to dict for i,tuplee in enumerate(vocab_list): word,_=tuplee vocabulary_word2index[word]=i+2 vocabulary_index2word[i+2]=word for i,tuplee in enumerate(label_list): label,_=tuplee;label=str(label) vocabulary_label2index[label]=i vocabulary_index2label[i]=label #save to file system if vocabulary of words not exists. if not os.path.exists(cache_path): with open(cache_path, 'ab') as data_f: pickle.dump((vocabulary_word2index,vocabulary_index2word,vocabulary_label2index,vocabulary_index2label), data_f) return vocabulary_word2index,vocabulary_index2word,vocabulary_label2index,vocabulary_index2label def load_data(cache_file_h5py,cache_file_pickle): """ load data from h5py and pickle cache files, which is generate by take step by step of pre-processing.ipynb :param cache_file_h5py: :param cache_file_pickle: :return: """ if not os.path.exists(cache_file_h5py) or not os.path.exists(cache_file_pickle): raise RuntimeError("############################ERROR##############################\n. " "please download cache file, it include training data and vocabulary & labels. " "link can be found in README.md\n download zip file, unzip it, then put cache files as FLAGS." "cache_file_h5py and FLAGS.cache_file_pickle suggested location.") print("INFO. cache file exists. going to load cache file") f_data = h5py.File(cache_file_h5py, 'r') print("f_data.keys:",list(f_data.keys())) train_X=f_data['train_X'] # np.array( print("train_X.shape:",train_X.shape) train_Y=f_data['train_Y'] # np.array( print("train_Y.shape:",train_Y.shape,";") vaild_X=f_data['vaild_X'] # np.array( valid_Y=f_data['valid_Y'] # np.array( test_X=f_data['test_X'] # np.array( test_Y=f_data['test_Y'] # np.array( #print(train_X) #f_data.close() word2index, label2index=None,None with open(cache_file_pickle, 'rb') as data_f_pickle: word2index, label2index=pickle.load(data_f_pickle) print("INFO. cache file load successful...") return word2index, label2index,train_X,train_Y,vaild_X,valid_Y,test_X,test_Y #training_data_path='../data/sample_multiple_label3.txt' #vocab_size=100 #create_voabulary(training_data_path,vocab_size)
Hackathon/hackerearth_improved_table.py
elawang9/Scripting-and-Web-Scraping
119
12624913
<reponame>elawang9/Scripting-and-Web-Scraping<filename>Hackathon/hackerearth_improved_table.py # Install PhantomJS to use this script from selenium import webdriver from bs4 import BeautifulSoup from time import sleep from terminaltables import DoubleTable from colorclass import Color print('--- Fetching hackathons--- \n') driver = webdriver.PhantomJS() driver.get('https://www.hackerearth.com/challenges/') res = driver.page_source soup = BeautifulSoup(res, 'lxml') upcoming = soup.find('div',{'class':'upcoming challenge-list'}) all_hackathons = upcoming.find_all('div',{'class':'challenge-content'}) table_data = [['S.No', 'Name', 'Type', 'Timings']] for s_no,hackathon in enumerate(all_hackathons,1): row = [] challenge_type = hackathon.find('div',{'class':'challenge-type'}).text.replace("\n"," ").strip() challenge_name = hackathon.find('div',{'class':'challenge-name'}).text.replace("\n"," ").strip() date_time = hackathon.find('div',{'class':'challenge-list-meta challenge-card-wrapper'}).text.replace("\n"," ").strip() row.extend((Color('{autoyellow}' + str(s_no) + '.' + '{/autoyellow}'), Color('{autocyan}' + challenge_name + '{/autogreen}'), Color('{autogreen}' + challenge_type + '{/autoyellow}'), Color('{autoyellow}' + date_time + '{/autoyellow}'))) table_data.append(row) table_instance = DoubleTable(table_data) table_instance.inner_row_border = True print(table_instance.table) print()
pwnlib/commandline/unhex.py
IMULMUL/python3-pwntools
325
12624914
<filename>pwnlib/commandline/unhex.py #!/usr/bin/env python3 import argparse import re import sys from pwnlib.util.fiddling import unhex parser = argparse.ArgumentParser(description=''' Decodes hex-encoded data provided on the command line or via stdin. ''') parser.add_argument('hex', nargs='*', help='Hex bytes to decode') def main(): args = parser.parse_args() try: if not args.hex: s = sys.stdin.read() s = re.sub(r'\s', '', s) sys.stdout.buffer.write(unhex(s)) else: sys.stdout.buffer.write(unhex(''.join(sys.argv[1:]))) except TypeError as e: sys.stderr.write(str(e) + '\n') if __name__ == '__main__': main()
tests/plugins/slow_init.py
Bladez1753/lightning
2,288
12624933
<gh_stars>1000+ #!/usr/bin/env python3 from pyln.client import Plugin import os import time plugin = Plugin() @plugin.init() def init(options, configuration, plugin): plugin.log("slow_init.py initializing {}".format(configuration)) time.sleep(int(os.getenv('SLOWINIT_TIME', "0"))) plugin.run()
etc/release/bootstrap.py
quepop/scancode-toolkit
1,511
12624951
<gh_stars>1000+ #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # import itertools import click import utils_thirdparty from utils_thirdparty import Environment from utils_thirdparty import PypiPackage @click.command() @click.option('-r', '--requirements-file', type=click.Path(exists=True, readable=True, path_type=str, dir_okay=False), metavar='FILE', multiple=True, default=['requirements.txt'], show_default=True, help='Path to the requirements file(s) to use for thirdparty packages.', ) @click.option('-d', '--thirdparty-dir', type=click.Path(exists=True, readable=True, path_type=str, file_okay=False), metavar='DIR', default=utils_thirdparty.THIRDPARTY_DIR, show_default=True, help='Path to the thirdparty directory where wheels are built and ' 'sources, ABOUT and LICENSE files fetched.', ) @click.option('-p', '--python-version', type=click.Choice(utils_thirdparty.PYTHON_VERSIONS), metavar='PYVER', default=utils_thirdparty.PYTHON_VERSIONS, show_default=True, multiple=True, help='Python version(s) to use for this build.', ) @click.option('-o', '--operating-system', type=click.Choice(utils_thirdparty.PLATFORMS_BY_OS), metavar='OS', default=tuple(utils_thirdparty.PLATFORMS_BY_OS), multiple=True, show_default=True, help='OS(ses) to use for this build: one of linux, mac or windows.', ) @click.option('-l', '--latest-version', is_flag=True, help='Get the latest version of all packages, ignoring version specifiers.', ) @click.option('--sync-dejacode', is_flag=True, help='Synchronize packages with DejaCode.', ) @click.option('--with-deps', is_flag=True, help='Also include all dependent wheels.', ) @click.help_option('-h', '--help') def bootstrap( requirements_file, thirdparty_dir, python_version, operating_system, with_deps, latest_version, sync_dejacode, build_remotely=False, ): """ Boostrap a thirdparty Python packages directory from pip requirements. Fetch or build to THIRDPARTY_DIR all the wheels and source distributions for the pip ``--requirement-file`` requirements FILE(s). Build wheels compatible with all the provided ``--python-version`` PYVER(s) and ```--operating_system`` OS(s) defaulting to all supported combinations. Create or fetch .ABOUT and .LICENSE files. Optionally ignore version specifiers and use the ``--latest-version`` of everything. Sources and wheels are fetched with attempts first from PyPI, then our remote repository. If missing wheels are built as needed. """ # rename variables for clarity since these are lists requirements_files = requirements_file python_versions = python_version operating_systems = operating_system # create the environments we need evts = itertools.product(python_versions, operating_systems) environments = [Environment.from_pyver_and_os(pyv, os) for pyv, os in evts] # collect all packages to process from requirements files # this will fail with an exception if there are packages we cannot find required_name_versions = set() for req_file in requirements_files: nvs = utils_thirdparty.load_requirements( requirements_file=req_file, force_pinned=False) required_name_versions.update(nvs) if latest_version: required_name_versions = set((name, None) for name, _ver in required_name_versions) print(f'PROCESSING {len(required_name_versions)} REQUIREMENTS in {len(requirements_files)} FILES') # fetch all available wheels, keep track of missing # start with local, then remote, then PyPI print('==> COLLECTING ALREADY LOCALLY AVAILABLE REQUIRED WHEELS') # list of all the wheel filenames either pre-existing, fetched or built # updated as we progress available_wheel_filenames = [] local_packages_by_namever = { (p.name, p.version): p for p in utils_thirdparty.get_local_packages(directory=thirdparty_dir) } # list of (name, version, environment) not local and to fetch name_version_envt_to_fetch = [] # start with a local check for (name, version), envt in itertools.product(required_name_versions, environments): local_pack = local_packages_by_namever.get((name, version,)) if local_pack: supported_wheels = list(local_pack.get_supported_wheels(environment=envt)) if supported_wheels: available_wheel_filenames.extend(w.filename for w in supported_wheels) print(f'====> No fetch or build needed. ' f'Local wheel already available for {name}=={version} ' f'on os: {envt.operating_system} for Python: {envt.python_version}') continue name_version_envt_to_fetch.append((name, version, envt,)) print(f'==> TRYING TO FETCH #{len(name_version_envt_to_fetch)} REQUIRED WHEELS') # list of (name, version, environment) not fetch and to build name_version_envt_to_build = [] # then check if the wheel can be fetched without building from remote and Pypi for name, version, envt in name_version_envt_to_fetch: fetched_fwn = utils_thirdparty.fetch_package_wheel( name=name, version=version, environment=envt, dest_dir=thirdparty_dir, ) if fetched_fwn: available_wheel_filenames.append(fetched_fwn) else: name_version_envt_to_build.append((name, version, envt,)) # At this stage we have all the wheels we could obtain without building for name, version, envt in name_version_envt_to_build: print(f'====> Need to build wheels for {name}=={version} on os: ' f'{envt.operating_system} for Python: {envt.python_version}') packages_and_envts_to_build = [ (PypiPackage(name, version), envt) for name, version, envt in name_version_envt_to_build ] print(f'==> BUILDING #{len(packages_and_envts_to_build)} MISSING WHEELS') package_envts_not_built, wheel_filenames_built = utils_thirdparty.build_missing_wheels( packages_and_envts=packages_and_envts_to_build, build_remotely=build_remotely, with_deps=with_deps, dest_dir=thirdparty_dir, ) if wheel_filenames_built: available_wheel_filenames.extend(available_wheel_filenames) for pack, envt in package_envts_not_built: print( f'====> FAILED to build any wheel for {pack.name}=={pack.version} ' f'on os: {envt.operating_system} for Python: {envt.python_version}' ) print(f'==> FETCHING SOURCE DISTRIBUTIONS') # fetch all sources, keep track of missing # This is a list of (name, version) utils_thirdparty.fetch_missing_sources(dest_dir=thirdparty_dir) print(f'==> FETCHING ABOUT AND LICENSE FILES') utils_thirdparty.add_fetch_or_update_about_and_license_files(dest_dir=thirdparty_dir) ############################################################################ if sync_dejacode: print(f'==> SYNC WITH DEJACODE') # try to fetch from DejaCode any missing ABOUT # create all missing DejaCode packages pass utils_thirdparty.find_problems(dest_dir=thirdparty_dir) if __name__ == '__main__': bootstrap()
contrib/python/CUBRIDdb/FIELD_TYPE.py
eido5/cubrid
253
12624954
<gh_stars>100-1000 """CUBRID FIELD_TYPE Constants These constants represent the various column (field) types that are supported by CUBRID. """ CHAR = 1 VARCHAR = 2 NCHAR = 3 VARNCHAR = 4 BIT = 5 VARBIT = 6 NUMERIC = 7 INT = 8 SMALLINT = 9 MONETARY = 10 BIGINT = 21 FLOAT = 11 DOUBLE = 12 DATE = 13 TIME = 14 TIMESTAMP = 15 OBJECT = 19 SET = 32 MULTISET = 64 SEQUENCE = 96 BLOB = 254 CLOB = 255 STRING = VARCHAR
nebula2/data/DataObject.py
xiaoronghuang/nebula-python
110
12624987
#!/usr/bin/env python # --coding:utf-8-- # Copyright (c) 2020 vesoft inc. All rights reserved. # # This source code is licensed under Apache 2.0 License, # attached with Common Clause Condition 1.0, found in the LICENSES directory. import pytz from datetime import datetime, timezone, timedelta from nebula2.Exception import ( InvalidValueTypeException, InvalidKeyException, OutOfRangeException ) from nebula2.common.ttypes import Value, Vertex, Edge, NullType, DateTime, Time def date_time_convert_with_timezone(date_time: DateTime, timezone_offset: int): """the function to convert utc date_time to local date_time :param date_time: the utc date_time :param timezone_offset: the timezone offset :return: the date_time with timezone """ native_date_time = datetime(date_time.year, date_time.month, date_time.day, date_time.hour, date_time.minute, date_time.sec, date_time.microsec, pytz.timezone("utc")) local_date_time = native_date_time.astimezone(timezone(timedelta(seconds=timezone_offset))) new_date_time = DateTime() new_date_time.year = local_date_time.year new_date_time.month = local_date_time.month new_date_time.day = local_date_time.day new_date_time.hour = local_date_time.hour new_date_time.minute = local_date_time.minute new_date_time.sec = local_date_time.second new_date_time.microsec = local_date_time.microsecond return new_date_time def time_convert_with_timezone(n_time: Time, timezone_offset: int): """the function to convert utc date_time to local date_time :param n_time: the utc time :param timezone_offset: the timezone offset :return: the time with the timezone """ native_date_time = datetime(1, 1, 1, n_time.hour, n_time.minute, n_time.sec, n_time.microsec, pytz.timezone("utc")) local_date_time = native_date_time.astimezone(timezone(timedelta(seconds=timezone_offset))) local_time = Time() local_time.hour = local_date_time.hour local_time.minute = local_date_time.minute local_time.sec = local_date_time.second local_time.microsec = local_date_time.microsecond return local_time class BaseObject(object): def __init__(self): self._decode_type = 'utf-8' self._timezone_offset = 0 def set_decode_type(self, decode_type): self._decode_type = decode_type return self def set_timezone_offset(self, timezone_offset): self._timezone_offset = timezone_offset return self def get_decode_type(self): return self._decode_type def get_timezone_offset(self): return self._timezone_offset class Record(object): def __init__(self, values, names, decode_type='utf-8', timezone_offset: int = 0): assert len(names) == len(values),\ 'len(names): {} != len(values): {}, names: {}, values: {}'.format( len(names), len(values), str(names), str(values)) self._record = list() self._names = names for val in values: self._record.append(ValueWrapper(val, decode_type=decode_type, timezone_offset=timezone_offset)) def __iter__(self): return iter(self._record) def size(self): """the size of record :return: record size """ return len(self._names) def get_value(self, index): """get value by specified index :param index: the index of column :return: ValueWrapper """ if index >= len(self._names): raise OutOfRangeException() return self._record[index] def get_value_by_key(self, key): """get value by key :return: Value """ try: return self._record[self._names.index(key)] except Exception: raise InvalidKeyException(key) def keys(self): """get column names of record :return: the column names """ return self._names def values(self): """get all values :return: values """ return self._record def __repr__(self): return "{}".format('\n'.join([str(val_wrap) for val_wrap in self._record])) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class DataSetWrapper(object): def __init__(self, data_set, decode_type='utf-8', timezone_offset: int = 0): assert data_set is not None self._decode_type = decode_type self._timezone_offset = timezone_offset self._data_set = data_set self._column_names = [] self._key_indexes = {} self._pos = -1 for index, name in enumerate(self._data_set.column_names): d_name = name.decode(self._decode_type) self._column_names.append(d_name) self._key_indexes[d_name] = index def get_row_size(self): return len(self._data_set.rows) def get_col_names(self): return self._column_names def get_rows(self): return self._data_set.rows def get_row_types(self): """Get row types :param empty :return: list<int> ttypes.Value.__EMPTY__ = 0 ttypes.Value.NVAL = 1 ttypes.Value.BVAL = 2 ttypes.Value.IVAL = 3 ttypes.Value.FVAL = 4 ttypes.Value.SVAL = 5 ttypes.Value.DVAL = 6 ttypes.Value.TVAL = 7 ttypes.Value.DTVAL = 8 ttypes.Value.VVAL = 9 ttypes.Value.EVAL = 10 ttypes.Value.PVAL = 11 ttypes.Value.LVAL = 12 ttypes.Value.MVAL = 13 ttypes.Value.UVAL = 14 ttypes.Value.GVAL = 15 """ if len(self._data_set.rows) == 0: return [] return [(value.getType()) for value in self._data_set.rows[0].values] def row_values(self, row_index): """get row values :param row_index: the Record index :return: list<ValueWrapper> """ if row_index >= len(self._data_set.rows): raise OutOfRangeException() return [(ValueWrapper(value=value, decode_type=self._decode_type, timezone_offset=self._timezone_offset)) for value in self._data_set.rows[row_index].values] def column_values(self, key): """get column values :param key: the col name :return: list<ValueWrapper> """ if key not in self._column_names: raise InvalidKeyException(key) return [(ValueWrapper(value=row.values[self._key_indexes[key]], decode_type=self._decode_type, timezone_offset=self._timezone_offset)) for row in self._data_set.rows] def __iter__(self): self._pos = -1 return self def __next__(self): """The record iterator :return: record """ if len(self._data_set.rows) == 0 or self._pos >= len(self._data_set.rows) - 1: raise StopIteration self._pos = self._pos + 1 return Record(values=self._data_set.rows[self._pos].values, names=self._column_names, decode_type=self._decode_type, timezone_offset=self._timezone_offset) def __repr__(self): data_str = [] for i in range(self.get_row_size()): data_str.append(str(self.row_values(i))) value_str = ','.join(data_str) return 'keys: {}, values: {}'.format(self._column_names, value_str) class Null(object): __NULL__ = NullType.__NULL__ NaN = NullType.NaN BAD_DATA = NullType.BAD_DATA BAD_TYPE = NullType.BAD_TYPE ERR_OVERFLOW = NullType.ERR_OVERFLOW UNKNOWN_PROP = NullType.UNKNOWN_PROP DIV_BY_ZERO = NullType.DIV_BY_ZERO OUT_OF_RANGE = NullType.OUT_OF_RANGE def __init__(self, type): self._type = type def __repr__(self): return NullType._VALUES_TO_NAMES[self._type] def __eq__(self, other): return self._type == other._type class ValueWrapper(object): def __init__(self, value, decode_type='utf-8', timezone_offset: int = 0): self._value = value self._decode_type = decode_type self._timezone_offset = timezone_offset def get_value(self): """get raw data :return: Value """ return self._value def is_null(self): """judge the value if is Null type :return: true or false """ return self._value.getType() == Value.NVAL def is_empty(self): """judge the value if is Empty type :return: true or false """ return self._value.getType() == Value.__EMPTY__ def is_bool(self): """judge the value if is Bool type :return: true or false """ return self._value.getType() == Value.BVAL def is_int(self): """judge the value if is Int type :return: true or false """ return self._value.getType() == Value.IVAL def is_double(self): """judge the value if is Double type :return: true or false """ return self._value.getType() == Value.FVAL def is_string(self): """judge the value if is String type :return: true or false """ return self._value.getType() == Value.SVAL def is_list(self): """judge the value if is List type :return: true or false """ return self._value.getType() == Value.LVAL def is_set(self): """judge the value if is Set type :return: true or false """ return self._value.getType() == Value.UVAL def is_map(self): """judge the value if is Map type :return: true or false """ return self._value.getType() == Value.MVAL def is_time(self): """judge the value if is Time type :return: true or false """ return self._value.getType() == Value.TVAL def is_date(self): """judge the value if is Date type :return: true or false """ return self._value.getType() == Value.DVAL def is_datetime(self): """judge the value if is Datetime type :return: true or false """ return self._value.getType() == Value.DTVAL def is_vertex(self): """judge the value if is Vertex type :return: true or false """ return self._value.getType() == Value.VVAL def is_edge(self): """judge the value if is Edge type :return: true or false """ return self._value.getType() == Value.EVAL def is_path(self): """judge the value if is Path type :return: true or false """ return self._value.getType() == Value.PVAL def as_null(self): """converts the original data type to Null type :return: Null value """ if self._value.getType() == Value.NVAL: return Null(self._value.get_nVal()) raise InvalidValueTypeException("expect NULL type, but is " + self._get_type_name()) def as_bool(self): """converts the original data type to Bool type :return: Bool value """ if self._value.getType() == Value.BVAL: return self._value.get_bVal() raise InvalidValueTypeException("expect bool type, but is " + self._get_type_name()) def as_int(self): """converts the original data type to Int type :return: Int value """ if self._value.getType() == Value.IVAL: return self._value.get_iVal() raise InvalidValueTypeException("expect bool type, but is " + self._get_type_name()) def as_double(self): """converts the original data type to Double type :return: Double value """ if self._value.getType() == Value.FVAL: return self._value.get_fVal() raise InvalidValueTypeException("expect int type, but is " + self._get_type_name()) def as_string(self): """converts the original data type to String type :return: String value """ if self._value.getType() == Value.SVAL: return self._value.get_sVal().decode(self._decode_type) raise InvalidValueTypeException("expect string type, but is " + self._get_type_name()) def as_time(self): """converts the original data type to Time type :return: Time value """ if self._value.getType() == Value.TVAL: return TimeWrapper(self._value.get_tVal()).set_timezone_offset(self._timezone_offset) raise InvalidValueTypeException("expect time type, but is " + self._get_type_name()) def as_date(self): """converts the original data type to Date type :return: Date value """ if self._value.getType() == Value.DVAL: return DateWrapper(self._value.get_dVal()) raise InvalidValueTypeException("expect date type, but is " + self._get_type_name()) def as_datetime(self): """converts the original data type to Datetime type :return: Datetime value """ if self._value.getType() == Value.DTVAL: return DateTimeWrapper(self._value.get_dtVal()).set_timezone_offset(self._timezone_offset) raise InvalidValueTypeException("expect datetime type, but is " + self._get_type_name()) def as_list(self): """converts the original data type to list of ValueWrapper :return: list<ValueWrapper> """ if self._value.getType() == Value.LVAL: result = [] for val in self._value.get_lVal().values: result.append(ValueWrapper(val, decode_type=self._decode_type, timezone_offset=self._timezone_offset)) return result raise InvalidValueTypeException("expect list type, but is " + self._get_type_name()) def as_set(self): """converts the original data type to set of ValueWrapper :return: set<ValueWrapper> """ if self._value.getType() == Value.UVAL: result = set() for val in self._value.get_uVal().values: result.add(ValueWrapper(val, decode_type=self._decode_type, timezone_offset=self._timezone_offset)) return result raise InvalidValueTypeException("expect set type, but is " + self._get_type_name()) def as_map(self): """converts the original data type to map type :return: map<String, ValueWrapper> """ if self._value.getType() == Value.MVAL: result = {} kvs = self._value.get_mVal().kvs for key in kvs.keys(): result[key.decode(self._decode_type)] = ValueWrapper(kvs[key], decode_type=self._decode_type, timezone_offset=self._timezone_offset) return result raise InvalidValueTypeException("expect map type, but is " + self._get_type_name()) def as_node(self): """converts the original data type to Node type :return: Node type """ if self._value.getType() == Value.VVAL: return Node(self._value.get_vVal())\ .set_decode_type(self._decode_type)\ .set_timezone_offset(self._timezone_offset) raise InvalidValueTypeException("expect vertex type, but is " + self._get_type_name()) def as_relationship(self): """converts the original data type to Relationship type :return: Relationship type """ if self._value.getType() == Value.EVAL: return Relationship(self._value.get_eVal())\ .set_decode_type(self._decode_type)\ .set_timezone_offset(self._timezone_offset) raise InvalidValueTypeException("expect edge type, but is " + self._get_type_name()) def as_path(self): """converts the original data type to PathWrapper type :return: PathWrapper type """ if self._value.getType() == Value.PVAL: return PathWrapper(self._value.get_pVal())\ .set_decode_type(self._decode_type)\ .set_timezone_offset(self._timezone_offset) raise InvalidValueTypeException("expect path type, but is " + self._get_type_name()) def _get_type_name(self): if self.is_empty(): return "empty" if self.is_null(): return "null" if self.is_bool(): return "bool" if self.is_int(): return "int" if self.is_double(): return "double" if self.is_string(): return "string" if self.is_list(): return "list" if self.is_set(): return "set" if self.is_map(): return "map" if self.is_time(): return "time" if self.is_date(): return "date" if self.is_datetime(): return "datetime" if self.is_vertex(): return "vertex" if self.is_edge(): return "edge" if self.is_path(): return "path" return "unknown" def __eq__(self, o: object) -> bool: if not isinstance(o, self.__class__): return False if self.get_value().getType() != o.get_value().getType(): return False if self.is_empty(): return o.is_empty() elif self.is_null(): return self.as_null() == o.as_null() elif self.is_bool(): return self.as_bool() == o.as_bool() elif self.is_int(): return self.as_int() == o.as_int() elif self.is_double(): return self.as_double() == o.as_double() elif self.is_string(): return self.as_string() == o.as_string() elif self.is_list(): return self.as_list() == o.as_list() elif self.is_set(): return self.as_set() == o.as_set() elif self.is_map(): return self.as_map() == o.as_map() elif self.is_vertex(): return self.as_node() == o.as_node() elif self.is_edge(): return self.as_relationship() == o.as_relationship() elif self.is_path(): return self.as_path() == o.as_path() elif self.is_time(): return self.as_time() == self.as_time() elif self.is_date(): return self.as_date() == self.as_date() elif self.is_datetime(): return self.as_datetime() == self.as_datetime() else: raise RuntimeError('Unsupported type:{} to compare'.format(self._get_type_name())) return False def __repr__(self): if self.is_empty(): return '__EMPTY__' elif self.is_null(): return str(self.as_null()) elif self.is_bool(): return 'True' if self.as_bool() else 'False' elif self.is_int(): return str(self.as_int()) elif self.is_double(): return str(self.as_double()) elif self.is_string(): return '\"{}\"'.format(self.as_string()) elif self.is_list(): return str(self.as_list()) elif self.is_set(): return str(self.as_set()) elif self.is_map(): return str(self.as_map()) elif self.is_vertex(): return str(self.as_node()) elif self.is_edge(): return str(self.as_relationship()) elif self.is_path(): return str(self.as_path()) elif self.is_time(): return str(self.as_time()) elif self.is_date(): return str(self.as_date()) elif self.is_datetime(): return str(self.as_datetime()) else: raise RuntimeError('Unsupported type:{} to compare'.format(self._get_type_name())) return False def __hash__(self): return self._value.__hash__() class TimeWrapper(BaseObject): def __init__(self, time): super(TimeWrapper, self).__init__() self._time = time def get_hour(self): """get utc hour :return: hour """ return self._time.hour def get_minute(self): """get utc minute :return: minute """ return self._time.minute def get_sec(self): """get utc second :return: second """ return self._time.sec def get_microsec(self): """get utc microseconds :return: microseconds """ return self._time.microsec def get_time(self): """get utc time :return: Time value """ return self._time def get_local_time(self): """get time with the timezone from graph service :return: Time value with timezone offset """ return time_convert_with_timezone(self._time, self.get_timezone_offset()) def get_local_time_by_timezone_offset(self, timezone_offset): """get local time with the specified timezone by user :return: Time value with timezone offset """ return time_convert_with_timezone(self._time, timezone_offset) def get_local_time_str(self): """convert local time string format :return: return local time string format """ local_time = time_convert_with_timezone(self._time, self.get_timezone_offset()) return "%02d:%02d:%02d.%06d" % (local_time.hour, local_time.minute, local_time.sec, local_time.microsec) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self._time.hour == other.get_hour() and \ self._time.minute == other.get_minute() and \ self._time.sec == other.get_sec() and \ self._time.microsec == self.get_microsec() def __repr__(self): return "utc time: %02d:%02d:%02d.%06d, timezone_offset: %d" % ( self._time.hour, self._time.minute, self._time.sec, self._time.microsec, self.get_timezone_offset()) class DateWrapper(object): def __init__(self, date): self._date = date def get_year(self): """get year :return: year """ return self._date.year def get_month(self): """get month :return: month """ return self._date.month def get_day(self): """get day :return: day """ return self._date.day def get_date(self): """get original date :return: Date """ return self._date def __eq__(self, other): if not isinstance(other, self.__class__): return False return self._date.year == other.get_year() and \ self._date.month == other.get_month() and \ self._date.day == other.get_day() def __repr__(self): return "%d-%02d-%02d" % (self._date.year, self._date.month, self._date.day) class DateTimeWrapper(BaseObject): def __init__(self, date_time): super(DateTimeWrapper, self).__init__() self._date_time = date_time def get_year(self): """get utc year :return: year """ return self._date_time.year def get_month(self): """get utc month :return: month """ return self._date_time.month def get_day(self): """get utc day :return: day """ return self._date_time.day def get_hour(self): """get utc hour :return: hour """ return self._date_time.hour def get_minute(self): """get utc minute :return: minute """ return self._date_time.minute def get_sec(self): """get utc seconds :return: seconds """ return self._date_time.sec def get_microsec(self): """get utc microseconds :return: microseconds """ return self._date_time.microsec def get_datetime(self): """get utc datetime :return: datetime """ return self._date_time def get_local_datetime(self): """get datetime with the timezone from graph service :return: Datetime value with timezone offset """ return date_time_convert_with_timezone(self._date_time, self.get_timezone_offset()) def get_local_datetime_by_timezone_offset(self, timezone_offset): """get local datetime with the specified timezone by user :return: Time value with timezone offset """ return date_time_convert_with_timezone(self._date_time, timezone_offset) def get_local_datetime_str(self): """convert local datetime string format :return: return local datetime string format """ local_date_time = date_time_convert_with_timezone(self._date_time, self.get_timezone_offset()) return "%d-%02d-%02dT%02d:%02d:%02d.%06d" % (local_date_time.year, local_date_time.month, local_date_time.day, local_date_time.hour, local_date_time.minute, local_date_time.sec, local_date_time.microsec) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self._date_time.year == other.get_year() and \ self._date_time.month == other.get_month() and \ self._date_time.day == other.get_day() and \ self._date_time.hour == other.get_hour() and \ self._date_time.minute == other.get_minute() and \ self._date_time.sec == other.get_sec() and \ self._date_time.microsec == other.get_microsec() def __repr__(self): return "utc datetime: %d-%02d-%02dT%02d:%02d:%02d.%06d, timezone_offset: %d" % ( self._date_time.year, self._date_time.month, self._date_time.day, self._date_time.hour, self._date_time.minute, self._date_time.sec, self._date_time.microsec, self.get_timezone_offset()) class GenValue(object): @classmethod def gen_vertex(cls, vid, tags): vertex = Vertex() vertex.vid = vid vertex.tags = tags return vertex @classmethod def gen_edge(cls, src_id, dst_id, type, edge_name, ranking, props): edge = Edge() edge.src = src_id edge.dst = dst_id edge.type = type edge.name = edge_name edge.ranking = ranking edge.props = props return edge @classmethod def gen_segment(cls, start_node, end_node, relationship): segment = Segment() segment.start_node = start_node segment.end_node = end_node segment.relationship = relationship return segment class Node(BaseObject): def __init__(self, vertex): super(Node, self).__init__() self._value = vertex self._tag_indexes = dict() for index, tag in enumerate(self._value.tags, start=0): self._tag_indexes[tag.name.decode(self.get_decode_type())] = index def get_id(self): """get the vid of Node :return: ValueWrapper type vid """ return ValueWrapper(value=self._value.vid, decode_type=self.get_decode_type(), timezone_offset=self.get_timezone_offset()) def tags(self): """get tag names :return: the list of tag name """ return list(self._tag_indexes.keys()) def has_tag(self, tag): """whether the specified tag is included :param tag: the tag name :return: true or false """ return True if tag in self._tag_indexes.keys() else False def properties(self, tag): """get all properties of the specified tag :param tag: the tag name :return: the properties """ if tag not in self._tag_indexes.keys(): raise InvalidKeyException(tag) props = self._value.tags[self._tag_indexes[tag]].props result_props = {} if props is None: return result_props for key in props.keys(): result_props[key.decode(self.get_decode_type())] = ValueWrapper(props[key], decode_type=self.get_decode_type(), timezone_offset=self._timezone_offset) return result_props def prop_names(self, tag): """get the property names of the specified tag :param tag: the tag name :return: property name list """ if tag not in self._tag_indexes.keys(): raise InvalidKeyException(tag) index = self._tag_indexes[tag] props = self._value.tags[index].props if props is None: return [] return [(key.decode(self.get_decode_type())) for key in self._value.tags[index].props.keys()] def prop_values(self, tag): """get all property values of the specified tag :param tag: the tag name :return: property name list """ if tag not in self._tag_indexes.keys(): raise InvalidKeyException(tag) index = self._tag_indexes[tag] props = self._value.tags[index].props if props is None: return [] return [(ValueWrapper(value, decode_type=self.get_decode_type(), timezone_offset=self._timezone_offset)) for value in self._value.tags[index].props.values()] def __repr__(self): tag_str_list = list() for tag in self._tag_indexes.keys(): prop_strs = ['%s: %s' % (key, str(val)) for key, val in self.properties(tag).items()] tag_str_list.append(':%s{%s}' % (tag, ', '.join(prop_strs))) return '({} {})'.format(str(self.get_id()), ' '.join(tag_str_list)) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.get_id() == other.get_id() def __ne__(self, other): return not (self == other) class Relationship(BaseObject): def __init__(self, edge: Edge): super(Relationship, self).__init__() self._value = edge def start_vertex_id(self): """get start vertex vid, if your space vid_type is int, you can use start_vertex_id().as_int(), if your space vid_type is fixed_string, you can use start_vertex_id().as_string() :return: ValueWrapper type vid """ if self._value.type > 0: return ValueWrapper(self._value.src, self.get_decode_type()) else: return ValueWrapper(self._value.dst, self.get_decode_type()) def end_vertex_id(self): """get end vertex vid, if your space vid_type is int, you can use end_vertex_id().as_int(), if your space vid_type is fixed_string, you can use end_vertex_id().as_string() :return: ValueWrapper type vid """ if self._value.type > 0: return ValueWrapper(self._value.dst, self.get_decode_type()) else: return ValueWrapper(self._value.src, self.get_decode_type()) def edge_name(self): """get the edge name :return: edge name """ return self._value.name.decode(self.get_decode_type()) def ranking(self): """get the edge ranking :return: ranking """ return self._value.ranking def properties(self): """get all properties :return: the properties """ props = {} if self._value.props is None: return props for key in self._value.props.keys(): props[key.decode(self.get_decode_type())] = ValueWrapper(self._value.props[key], decode_type=self.get_decode_type(), timezone_offset=self.get_timezone_offset()) return props def keys(self): """get all property names :return: the property names """ if self._value.props is None: return [] return [(key.decode(self._decode_type)) for key in self._value.props.keys()] def values(self): """get all property values :return: the property values """ if self._value.props is None: return [] return [(ValueWrapper(value, decode_type=self.get_decode_type(), timezone_offset=self.get_timezone_offset())) for value in self._value.props.values()] def __repr__(self): prop_strs = ['%s: %s' % (key, str(val)) for key, val in self.properties().items()] return "(%s)-[:%s@%d{%s}]->(%s)" % (str(self.start_vertex_id()), self.edge_name(), self.ranking(), ', '.join(prop_strs), str(self.end_vertex_id())) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.start_vertex_id() == other.start_vertex_id() \ and self.end_vertex_id() == other.end_vertex_id() \ and self.edge_name() == other.edge_name() \ and self.ranking() == self.ranking() def __ne__(self, other): return not (self == other) class Segment: start_node = None end_node = None relationship = None def __repr__(self): return "{}-[:{}@{}{}]->{}".format(self.start_node, self.relationship.edge_name(), self.relationship.ranking(), self.relationship.properties(), self.end_node) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.start_node == other.start_node \ and self.end_node == other.end_node \ and self.relationship == other.relationship class PathWrapper(BaseObject): """ PathWrapper is wrapper handling for the Path from the service """ def __init__(self, path): super(PathWrapper, self).__init__() self._nodes = list() self._segments = list() self._relationships = list() self._path = path self._nodes.append(Node(path.src) .set_decode_type(self.get_decode_type()) .set_timezone_offset(self.get_timezone_offset())) vids = [] vids.append(path.src.vid) for step in self._path.steps: type = step.type if step.type > 0: start_node = self._nodes[-1] end_node = Node(step.dst)\ .set_decode_type(self.get_decode_type())\ .set_timezone_offset(self.get_timezone_offset()) src_id = vids[-1] dst_id = step.dst.vid else: type = -type end_node = self._nodes[-1] start_node = Node(step.dst)\ .set_decode_type(self.get_decode_type())\ .set_timezone_offset(self.get_timezone_offset()) dst_id = vids[-1] src_id = step.dst.vid vids.append(step.dst.vid) relationship = Relationship(GenValue.gen_edge(src_id, dst_id, type, step.name, step.ranking, step.props))\ .set_decode_type(self.get_decode_type())\ .set_timezone_offset(self.get_timezone_offset()) self._relationships.append(relationship) segment = GenValue.gen_segment(start_node, end_node, relationship) if segment.start_node == self._nodes[-1]: self._nodes.append(segment.end_node) elif segment.end_node == self._nodes[-1]: self._nodes.append(segment.start_node) else: raise Exception("Relationship [{}] does not connect to the last node". format(relationship)) self._segments.append(segment) def __iter__(self): return iter(self._segments) def start_node(self): """get start node of the Path :return: start node """ if len(self._nodes) == 0: return None return self._nodes[0] def length(self): """get the length of the path :return: path length """ return len(self._segments) def contain_node(self, node): """whether the node is in the path :param node: the specified node :return: true or false """ return True if node in self._nodes else False def contain_relationship(self, relationship): """whether the relationship is in the path :param relationship: the specified relationship :return: true or false """ return True if relationship in self._relationships else False def nodes(self): """get all nodes of the path :return: nodes """ return self._nodes def relationships(self): """get all relationships of the path :return: relationships """ return self._relationships def segments(self): """get all segments of the path :return: segments """ return self._segments def __repr__(self): edge_strs = [] for step in self._path.steps: relationship = Relationship(GenValue.gen_edge(step.dst.vid, step.dst.vid, type, step.name, step.ranking, step.props))\ .set_decode_type(self.get_decode_type())\ .set_timezone_offset(self.get_timezone_offset()) edge_str = '' prop_strs = ['%s: %s' % (key, str(val)) for key, val in relationship.properties().items()] if step.type > 0: edge_str = '-[:%s@%d{%s}]->%s' % (relationship.edge_name(), relationship.ranking(), ', '.join(prop_strs), Node(step.dst) .set_decode_type(self.get_decode_type()) .set_timezone_offset(self.get_timezone_offset())) else: edge_str = "<-[:%s@%d{%s}]-%s" % (relationship.edge_name(), relationship.ranking(), ', '.join(prop_strs), Node(step.dst) .set_decode_type(self.get_decode_type()) .set_timezone_offset(self.get_timezone_offset()) ) edge_strs.append(edge_str) return '{}{}'.format(Node(self._path.src) .set_decode_type(self.get_decode_type()) .set_timezone_offset(self.get_timezone_offset()), ''.join(edge_strs)) def __eq__(self, other): if not isinstance(other, self.__class__): return False return self._segments == other.segments() def __ne__(self, other): return not (self == other)
openbook_connections/serializers.py
TamaraAbells/okuna-api
164
12624989
from django.conf import settings from rest_framework import serializers from openbook_auth.models import User, UserProfile from openbook_auth.validators import user_username_exists, username_characters_validator from openbook_circles.models import Circle from openbook_circles.validators import circle_id_exists from openbook_common.models import Badge from openbook_common.serializers_fields.user import IsConnectedField, ConnectedCirclesField, IsFollowingField, \ IsPendingConnectionConfirmation, IsFullyConnectedField, AreNewPostNotificationsEnabledForUserField from openbook_connections.models import Connection class ConnectWithUserSerializer(serializers.Serializer): username = serializers.CharField( max_length=settings.USERNAME_MAX_LENGTH, allow_blank=False, validators=[ username_characters_validator, user_username_exists ], required=False ) circles_ids = serializers.ListSerializer( child=serializers.IntegerField(required=True, validators=[circle_id_exists]) ) class ConnectionUserProfileBadgeSerializer(serializers.ModelSerializer): class Meta: model = Badge fields = ( 'keyword', 'keyword_description' ) class ConnectionUserProfileSerializer(serializers.ModelSerializer): badges = ConnectionUserProfileBadgeSerializer(many=True) class Meta: model = UserProfile fields = ( 'name', 'avatar', 'badges' ) class ConnectionUserCircleSerializer(serializers.ModelSerializer): class Meta: model = Circle fields = ( 'id', 'name', 'color', 'users_count' ) class ConnectionUserSerializer(serializers.ModelSerializer): profile = ConnectionUserProfileSerializer(many=False) is_connected = IsConnectedField() is_following = IsFollowingField() are_new_post_notifications_enabled = AreNewPostNotificationsEnabledForUserField() connected_circles = ConnectedCirclesField(circle_serializer=ConnectionUserCircleSerializer) is_pending_connection_confirmation = IsPendingConnectionConfirmation() is_fully_connected = IsFullyConnectedField() class Meta: model = User fields = ( 'id', 'username', 'profile', 'is_connected', 'is_fully_connected', 'is_following', 'are_new_post_notifications_enabled', 'connected_circles', 'is_pending_connection_confirmation' ) class ConnectionSerializer(serializers.ModelSerializer): target_user = ConnectionUserSerializer(many=False) class Meta: model = Connection fields = ( 'id', 'user', 'circles', 'target_user', ) class DisconnectFromUserSerializer(serializers.Serializer): username = serializers.CharField( max_length=settings.USERNAME_MAX_LENGTH, allow_blank=False, validators=[ username_characters_validator, user_username_exists ], required=False ) class UpdateConnectionSerializer(serializers.Serializer): username = serializers.CharField( max_length=settings.USERNAME_MAX_LENGTH, allow_blank=False, validators=[ username_characters_validator, user_username_exists ], required=False ) circles_ids = serializers.ListSerializer( child=serializers.IntegerField(required=True, validators=[circle_id_exists]) ) class ConfirmConnectionSerializer(serializers.Serializer): username = serializers.CharField( max_length=settings.USERNAME_MAX_LENGTH, allow_blank=False, validators=[ username_characters_validator, user_username_exists ], required=False ) circles_ids = serializers.ListSerializer( required=False, child=serializers.IntegerField(validators=[circle_id_exists]) )
python/tvm/autotvm/tuner/metric.py
jiangzoi/incubator-tvm
286
12625001
<reponame>jiangzoi/incubator-tvm<gh_stars>100-1000 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Metrics for evaluating tuning process""" import numpy as np from ..util import get_rank def max_curve(trial_scores): """ f(n) = max([s[i] fo i < n]) Parameters ---------- trial_scores: Array of float the score of i th trial Returns ------- curve: Array of float function values """ ret = np.empty(len(trial_scores)) keep = -1e9 for i, score in enumerate(trial_scores): keep = max(keep, score) ret[i] = keep return ret def mean_curve(trial_scores): """ f(n) = mean([s[i] fo i < n]) Parameters ---------- trial_scores: Array of float the score of i th trial Returns ------- curve: Array of float function values """ ret = np.empty(len(trial_scores)) keep = 0 for i, score in enumerate(trial_scores): keep += score ret[i] = keep / (i+1) return ret def recall_curve(trial_ranks, top=None): """ if top is None, f(n) = sum([I(rank[i] < n) for i < n]) / n if top is K, f(n) = sum([I(rank[i] < K) for i < n]) / K Parameters ---------- trial_ranks: Array of int the rank of i th trial in labels top: int or None top-n recall Returns ------- curve: Array of float function values """ if not isinstance(trial_ranks, np.ndarray): trial_ranks = np.array(trial_ranks) ret = np.zeros(len(trial_ranks)) if top is None: for i in range(len(trial_ranks)): ret[i] = np.sum(trial_ranks[:i] <= i) / (i+1) else: for i in range(len(trial_ranks)): ret[i] = 1.0 * np.sum(trial_ranks[:i] < top) / top return ret def cover_curve(trial_ranks): """ f(n) = max k s.t. {1,2,...,k} is a subset of {ranks[i] for i < n} Parameters ---------- trial_ranks: Array of int the rank of i th trial in labels Returns ------- curve: Array of float function values """ ret = np.empty(len(trial_ranks)) keep = -1 cover = set() for i, rank in enumerate(trial_ranks): cover.add(rank) while keep+1 in cover: keep += 1 ret[i] = keep + 1 return ret / len(trial_ranks) def average_recall(preds, labels, N): """evaluate average recall-n for predictions and labels""" trials = np.argsort(preds)[::-1] ranks = get_rank(labels[trials]) curve = recall_curve(ranks) return np.sum(curve[:N]) / N
examples/copy_boot_volume_backup_example.py
Manny27nyc/oci-python-sdk
249
12625005
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. # This example demonstrates how to copy boot volume backups to a different region and wait on the copy status. # # # USAGE: # `python examples/copy_boot_volume_backup_example.py \ # --boot-volume-backup-id 'foo' \ # --destination-region '<destination_region>' \ # --display_name 'bar' \ # --kms-key-id 'baz'` # # Example (copying from us-phoenix-1 to eu-frankfurt-1 : # `python examples/copy_boot_volume_backup_example.py \ # --boot-volume-backup-id 'ocid1.bootvolumebackup.oc1.phx.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' \ # --destination-region 'us-ashburn-1' # --display-name 'copied backup from phoenix' \ # --kms-key-id '<KEY>'` # # This script accepts up to for arguments: # - boot-volume-backup-id: is the OCID of the boot volume backup to copy. # - destination-region: is the name of the region to copy the boot volume backup to. # - display_name (optional): is the new display name of the copied boot volume backup. # If omitted, the copied boot volume backup will have the same display name as the source backup. # - kms-key-id (optional): is the OCID of the kms key to use in the destination region to encrypt # the copied backup with. If not specified, a platform ad-master key will be used. import oci import argparse # parse arguments parser = argparse.ArgumentParser() parser.add_argument('--boot-volume-backup-id', help='the OCID of the boot volume backup to copy', required=True ) parser.add_argument('--destination-region', help='the name of the destination region to copy the backup to', required=True ) parser.add_argument('--display-name', help='the display name of the copied boot volume backup. If not specified, ' 'defaults to the same as the original backup\'s display name', required=False ) parser.add_argument('--kms-key-id', help='the OCID of the kms key in the destination region to encrypt the copied boot volume backup', required=False ) args = parser.parse_args() source_backup_id = args.boot_volume_backup_id destination_region = args.destination_region kms_key_id = args.kms_key_id display_name = args.display_name # load config and create clients one for BlockstorageClient and another for BlockstorageClientCompositeOperations. source_config = oci.config.from_file() print('Copying boot volume backup with ID {} from {} to {} using new display name: {} and kms key id: {} \n'.format( source_backup_id, source_config["region"], destination_region, display_name, kms_key_id)) blockstorage_client = oci.core.BlockstorageClient(source_config) blockstorage_composite_client = oci.core.BlockstorageClientCompositeOperations(blockstorage_client) copied_backup = blockstorage_composite_client.copy_boot_volume_backup_and_wait_for_work_request( boot_volume_backup_id=source_backup_id, copy_boot_volume_backup_details=oci.core.models.CopyBootVolumeBackupDetails( destination_region=destination_region, display_name=display_name, kms_key_id=kms_key_id )).data print('Backup successfully copied: {}'.format(copied_backup)) print('Example script done')
cacreader/swig-4.0.2/Examples/test-suite/python/cpp11_null_pointer_constant_runme.py
kyletanyag/LL-Smartcard
1,031
12625022
<reponame>kyletanyag/LL-Smartcard import cpp11_null_pointer_constant a = cpp11_null_pointer_constant.A() if a._myA != None: raise RuntimeError, ( "cpp11_null_pointer_constant: _myA should be None, but is ", a._myA) b = cpp11_null_pointer_constant.A() if a._myA != b._myA: raise RuntimeError, ( "cpp11_null_pointer_constant: a._myA should be the same as b._myA, but ", a._myA, "!=", b._myA) a._myA = cpp11_null_pointer_constant.A() if a._myA == None: raise RuntimeError, ( "cpp11_null_pointer_constant: _myA should be object, but is None")
src/gausskernel/dbmind/tools/ai_server/common/logger.py
Yanci0/openGauss-server
360
12625053
<reponame>Yanci0/openGauss-server #!/usr/bin/python3 # -*- coding: utf-8 -*- ############################################################################# # Copyright (c): 2021, Huawei Tech. Co., Ltd. # FileName : logger.py # Version : # Date : 2021-4-7 # Description : Logger for project ############################################################################# try: import os import sys from configparser import ConfigParser sys.path.insert(0, os.path.dirname(__file__)) from common.utils import Common, CONFIG_PATH except ImportError as err: sys.exit("logger.py: Failed to import module: %s." % str(err)) class CreateLogger: def __init__(self, level, log_name): self.level = level self.log_name = log_name def create_log(self): config = ConfigParser() config.read(CONFIG_PATH) log_path = os.path.realpath(config.get("log", "log_path")) if not os.path.isdir(log_path): os.makedirs(log_path) logger = Common.create_logger(level=self.level, log_name=self.log_name, log_path=os.path.join(log_path, self.log_name)) return logger
bibliopixel/util/threads/task_thread.py
rec/leds
253
12625097
import collections, threading from . import runnable class Task(object): def __init__(self, task=None, event=None): self.task = task or (lambda: None) self.event = event or threading.Event() def run(self, next_task): """Wait for the event, run the task, trigger the next task.""" self.event.wait() self.task() self.event.clear() next_task.event.set() class TaskThread(runnable.LoopThread): def __init__(self, producer_task, consumer_task, daemon=True, **kwds): super().__init__(daemon=daemon, **kwds) self.producer_task = producer_task self.consumer_task = consumer_task def produce(self): self.producer_task.run(self.consumer_task) def run_once(self): self.consumer_task.run(self.producer_task)
tools/cr/cr/targets/chrome.py
iplo/Chain
231
12625107
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Module for the chrome targets.""" import cr class ChromeTarget(cr.NamedTarget): NAME = 'chrome' DEFAULT = cr.Config.From( # CR_URL is the page to open when the target is run. CR_URL='https://www.google.com/', ) CONFIG = cr.Config.From( CR_RUN_ARGUMENTS=cr.Config.Optional('-d "{CR_URL!e}"'), CR_TARGET_NAME='Chrome', ) class ChromeTestTarget(cr.NamedTarget): NAME = 'chrome_test' CONFIG = cr.Config.From( CR_TARGET_NAME='ChromeTest', )
chainer/links/activation/simplified_dropconnect.py
zaltoprofen/chainer
3,705
12625118
<gh_stars>1000+ import numpy from chainer.functions.noise import simplified_dropconnect from chainer import initializers from chainer import link from chainer import variable class SimplifiedDropconnect(link.Link): """Fully-connected layer with simplified dropconnect regularization. Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the current implementation and the original one. The original version uses sampling with gaussian distribution before passing activation function, whereas the current implementation averages before activation. Args: in_size (int): Dimension of input vectors. If ``None``, parameter initialization will be deferred until the first forward data pass at which time the size will be determined. out_size (int): Dimension of output vectors. nobias (bool): If ``True``, then this link does not use the bias term. initialW (:ref:`initializer <initializer>`): Initializer to initialize the weight. When it is :class:`numpy.ndarray`, its ``ndim`` should be 3. initial_bias (:ref:`initializer <initializer>`): Initializer to initialize the bias. If ``None``, the bias will be initialized to zero. When it is :class:`numpy.ndarray`, its ``ndim`` should be 2. Attributes: W (~chainer.Variable): Weight parameter. b (~chainer.Variable): Bias parameter. .. seealso:: :func:`~chainer.functions.simplified_dropconnect` .. seealso:: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. (2013). Regularization of Neural Network using DropConnect. International Conference on Machine Learning. `URL <https://cs.nyu.edu/~wanli/dropc/>`_ """ def __init__(self, in_size, out_size, ratio=.5, nobias=False, initialW=None, initial_bias=None): super(SimplifiedDropconnect, self).__init__() self.out_size = out_size self.ratio = ratio if initialW is None: initialW = initializers.HeNormal(1. / numpy.sqrt(2)) with self.init_scope(): W_initializer = initializers._get_initializer(initialW) self.W = variable.Parameter(W_initializer) if in_size is not None: self._initialize_params(in_size) if nobias: self.b = None else: if initial_bias is None: initial_bias = initializers.Constant(0) bias_initializer = initializers._get_initializer(initial_bias) self.b = variable.Parameter(bias_initializer, out_size) def _initialize_params(self, in_size): self.W.initialize((self.out_size, in_size)) def forward(self, x, train=True, mask=None, use_batchwise_mask=True): """Applies the simplified dropconnect layer. Args: x (chainer.Variable or :ref:`ndarray`): Batch of input vectors. Its first dimension ``n`` is assumed to be the *minibatch dimension*. train (bool): If ``True``, executes simplified dropconnect. Otherwise, simplified dropconnect link works as a linear unit. mask (None or chainer.Variable or :ref:`ndarray`): If ``None``, randomized simplified dropconnect mask is generated. Otherwise, The mask must be ``(n, M, N)`` or ``(M, N)`` shaped array, and `use_batchwise_mask` is ignored. Main purpose of this option is debugging. `mask` array will be used as a dropconnect mask. use_batchwise_mask (bool): If ``True``, dropped connections depend on each sample in mini-batch. Returns: ~chainer.Variable: Output of the simplified dropconnect layer. """ if self.W.array is None: self._initialize_params(x.size // len(x)) if mask is not None and 'mask' not in self.__dict__: self.add_persistent('mask', mask) return simplified_dropconnect.simplified_dropconnect( x, self.W, self.b, self.ratio, train, mask, use_batchwise_mask)
glucosetracker/blogs/views.py
arhanair/glucose-tracker-monitor
134
12625120
<filename>glucosetracker/blogs/views.py from django.views.generic.base import ContextMixin from django.views.generic import DetailView, ListView from taggit.models import TaggedItem from .models import Blog, BlogAd class BlogBaseView(ContextMixin): def get_context_data(self, **kwargs): context = super(BlogBaseView, self).get_context_data(**kwargs) context['blog_tags'] = TaggedItem.tags_for(Blog).order_by('name') context['recent_blog_list'] = Blog.objects.recent_posts() return context class BlogDetailView(DetailView, BlogBaseView): model = Blog def get_queryset(self): """ Only return the object if it's public, unless the user is a superuser. """ if self.request.user.is_authenticated() and \ self.request.user.is_superuser: return Blog.objects.all() else: return Blog.objects.publicly_viewable() def get_context_data(self, **kwargs): context = super(BlogDetailView, self).get_context_data(**kwargs) context['ad_top'] = BlogAd.objects.filter(position=BlogAd.TOP)\ .order_by('?').first() context['ad_middle'] = BlogAd.objects.filter(position=BlogAd.MIDDLE)\ .order_by('?').first() context['ad_bottom'] = BlogAd.objects.filter(position=BlogAd.BOTTOM)\ .order_by('?').first() return context class BlogListView(ListView, BlogBaseView): model = Blog paginate_by = 15 def get_queryset(self): """ Only return public blog posts. """ return Blog.objects.publicly_viewable() class BlogTagListView(BlogListView): """ Display a Blog List page filtered by tag. """ def get_queryset(self): result = super(BlogTagListView, self).get_queryset() return result.filter(tags__name=self.kwargs.get('tag'))
vumi/errors.py
seidu626/vumi
199
12625125
class VumiError(Exception): pass class InvalidMessage(VumiError): pass class InvalidMessageType(VumiError): pass class MissingMessageField(InvalidMessage): pass class InvalidMessageField(InvalidMessage): pass class DuplicateConnectorError(VumiError): pass class InvalidEndpoint(VumiError): """Raised when attempting to send a message to an invalid endpoint.""" class DispatcherError(VumiError): """Raised when an error is encounter while dispatching a message.""" # Re-export this for compatibility. from confmodel.errors import ConfigError ConfigError
tests/test_serialization_format.py
hsadeghidw/dimod
101
12625129
<filename>tests/test_serialization_format.py<gh_stars>100-1000 # Copyright 2019 D-Wave Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import dimod import numpy as np from dimod.serialization.format import Formatter class TestUnknownType(unittest.TestCase): def test_int(self): with self.assertRaises(TypeError): Formatter().format(5) class TestSampleSet(unittest.TestCase): def test_empty(self): empty = dimod.SampleSet.from_samples([], dimod.BINARY, energy=[]) s = Formatter(width=80).format(empty) target = '\n'.join(['Empty SampleSet', "Record Fields: ['sample', 'energy', 'num_occurrences']", "Variables: []", "['BINARY', 0 rows, 0 samples, 0 variables]"]) self.assertEqual(s, target) def test_empty_width_50(self): empty = dimod.SampleSet.from_samples([], dimod.BINARY, energy=[]) s = Formatter(width=50).format(empty) target = '\n'.join(['Empty SampleSet', "Record Fields: ['sample', 'energy', ...]", "Variables: []", "['BINARY', 0 rows, 0 samples, 0 variables]"]) self.assertEqual(s, target) def test_empty_with_variables(self): samples = dimod.SampleSet.from_samples(([], 'abcdefghijklmnopqrstuvwxyz'), dimod.SPIN, energy=[]) s = Formatter(width=49).format(samples) target = '\n'.join(['Empty SampleSet', "Record Fields: ['sample', 'energy', ...]", "Variables: ['a', 'b', 'c', 'd', 'e', 'f', 'g', ...]", "['SPIN', 0 rows, 0 samples, 26 variables]"]) self.assertEqual(s, target) def test_triu_binary(self): arr = np.triu(np.ones((5, 5))) variables = [0, 1, 'a', 'b', 'c'] samples = dimod.SampleSet.from_samples((arr, variables), dimod.BINARY, energy=[4., 3, 2, 1, 0]) s = Formatter(width=79, depth=None).format(samples) target = '\n'.join([" 0 1 a b c energy num_oc.", "4 0 0 0 0 1 0.0 1", "3 0 0 0 1 1 1.0 1", "2 0 0 1 1 1 2.0 1", "1 0 1 1 1 1 3.0 1", "0 1 1 1 1 1 4.0 1", "['BINARY', 5 rows, 5 samples, 5 variables]"]) self.assertEqual(s, target) def test_triu_spin(self): arr = np.triu(np.ones((5, 5))) variables = [0, 1, 'a', 'b', 'c'] samples = dimod.SampleSet.from_samples((2*arr-1, variables), dimod.SPIN, energy=[4., 3, 2, 1, 0]) s = Formatter(width=79, depth=None).format(samples) target = '\n'.join([" 0 1 a b c energy num_oc.", "4 -1 -1 -1 -1 +1 0.0 1", "3 -1 -1 -1 +1 +1 1.0 1", "2 -1 -1 +1 +1 +1 2.0 1", "1 -1 +1 +1 +1 +1 3.0 1", "0 +1 +1 +1 +1 +1 4.0 1", "['SPIN', 5 rows, 5 samples, 5 variables]"]) self.assertEqual(s, target) def test_triu_row_summation(self): arr = np.triu(np.ones((5, 5))) variables = [0, 1, 'a', 'b', 'c'] samples = dimod.SampleSet.from_samples((arr, variables), dimod.BINARY, energy=[4., 3, 2, 1, 0]) s = Formatter(width=79, depth=4).format(samples) target = '\n'.join([" 0 1 a b c energy num_oc.", "4 0 0 0 0 1 0.0 1", "3 0 0 0 1 1 1.0 1", "...", "0 1 1 1 1 1 4.0 1", "['BINARY', 5 rows, 5 samples, 5 variables]"]) self.assertEqual(s, target) def test_triu_col_summation(self): arr = np.triu(np.ones((5, 5))) variables = [0, 1, 'a', 'b', 'c'] samples = dimod.SampleSet.from_samples((arr, variables), dimod.BINARY, energy=[4., 3, 2, 1, 0]) s = Formatter(width=30, depth=None).format(samples) # without summation length would be 31 target = '\n'.join([" 0 1 ... c energy num_oc.", "4 0 0 ... 1 0.0 1", "3 0 0 ... 1 1.0 1", "2 0 0 ... 1 2.0 1", "1 0 1 ... 1 3.0 1", "0 1 1 ... 1 4.0 1", "['BINARY',", " 5 rows,", " 5 samples,", " 5 variables]"]) self.assertEqual(s, target) def test_additional_fields_summation(self): arr = np.ones((2, 5)) variables = list(range(5)) samples = dimod.SampleSet.from_samples((arr, variables), dimod.BINARY, energy=1, other=[5, 6], anotherother=[234029348023948234, 3]) s = Formatter(width=30, depth=None).format(samples) target = '\n'.join([" 0 ... 4 energy num_oc. ...", "0 1 ... 1 1 1 ...", "1 1 ... 1 1 1 ...", "['BINARY',", " 2 rows,", " 2 samples,", " 5 variables]"]) self.assertEqual(target, s) def test_additional_fields(self): arr = np.ones((2, 5)) variables = list(range(5)) samples = dimod.SampleSet.from_samples((arr, variables), dimod.BINARY, energy=1, other=[5, 6], anotherother=[234029348023948234, object()]) s = Formatter(width=79, depth=None).format(samples) target = '\n'.join([" 0 1 2 3 4 energy num_oc. anothe. other", "0 1 1 1 1 1 1 1 2340... 5", "1 1 1 1 1 1 1 1 <obj... 6", "['BINARY', 2 rows, 2 samples, 5 variables]"]) self.assertEqual(target, s) def test_discrete(self): ss = dimod.SampleSet.from_samples(([[0, 17, 236], [3, 321, 1]], 'abc'), 'INTEGER', energy=[1, 2]) s = Formatter(width=79, depth=None).format(ss) target = '\n'.join([" a b c energy num_oc.", "0 0 17 236 1 1", "1 3 321 1 2 1", "['INTEGER', 2 rows, 2 samples, 3 variables]"]) self.assertEqual(target, s) def test_depth(self): ss = dimod.SampleSet.from_samples(([[0, 17, 236], [3, 321, 1], [4444444444, 312, 1], [4, 3, 3]], 'abc'), 'INTEGER', energy=[1, 2, 3, 4]) s = Formatter(width=79, depth=2).format(ss) target = '\n'.join([" a b c energy num_oc.", "0 0 17 236 1 1", "...", "3 4 3 3 4 1", "['INTEGER', 4 rows, 4 samples, 3 variables]"]) self.assertEqual(target, s) def test_misalignment(self): ss = dimod.SampleSet.from_samples([[0, 1], [0, 1], [1, 0]], 'BINARY', energy=[-1, 1.55, 2]) s = Formatter().format(ss) target = (" 0 1 energy num_oc.\n" "0 0 1 -1.0 1\n" "1 0 1 1.55 1\n" "2 1 0 2.0 1\n" "['BINARY', 3 rows, 3 samples, 2 variables]") self.assertEqual(target, s)
deepspeed/runtime/sparse_tensor.py
ganik/DeepSpeed
6,728
12625132
<gh_stars>1000+ """ Copyright 2020 The Microsoft DeepSpeed Team Implementation of a compressed sparse tensor. Similar in functionality to TensorFlow's IndexedSlices implementation. """ import torch class SparseTensor(object): """ Compressed Sparse Tensor """ def __init__(self, dense_tensor=None): self.orig_dense_tensor = dense_tensor self.is_sparse = dense_tensor.is_sparse if dense_tensor is not None: if dense_tensor.is_sparse: dense_tensor = dense_tensor.coalesce() self.indices = dense_tensor.indices().flatten() self.values = dense_tensor.values() else: result = torch.sum(dense_tensor, dim=1) self.indices = result.nonzero().flatten() self.values = dense_tensor[self.indices] self.dense_size = list(dense_tensor.size()) else: self.indices = None self.values = None self.dense_size = None def to_coo_tensor(self): return torch.sparse_coo_tensor(self.indices.unsqueeze(0), self.values, self.dense_size) @staticmethod def type(): return "deepspeed.SparseTensor" def to_dense(self): it = self.indices.unsqueeze(1) full_indices = torch.cat([it for _ in range(self.dense_size[1])], dim=1) return self.values.new_zeros(self.dense_size).scatter_add_( 0, full_indices, self.values) def sparse_size(self): index_size = list(self.indices.size()) index_size = index_size[0] value_size = list(self.values.size()) value_size = value_size[0] * value_size[1] dense_size = self.dense_size[0] * self.dense_size[1] return index_size + value_size, dense_size def add(self, b): assert self.dense_size == b.dense_size self.indices = torch.cat([self.indices, b.indices]) self.values = torch.cat([self.values, b.values]) def __str__(self): sparse_size, dense_size = self.sparse_size() return "DeepSpeed.SparseTensor(indices_size={}, values_size={}, " \ "dense_size={}, device={}, reduction_factor={})".format( self.indices.size(), self.values.size(), self.dense_size, self.indices.get_device(), dense_size / sparse_size ) def __repr__(self): return self.__str__()
src/network/advanceddispatcher.py
BeholdersEye/PyBitmessage
1,583
12625147
""" Improved version of asyncore dispatcher """ import socket import threading import time import network.asyncore_pollchoose as asyncore import state from threads import BusyError, nonBlocking class ProcessingError(Exception): """General class for protocol parser exception, use as a base for others.""" pass class UnknownStateError(ProcessingError): """Parser points to an unknown (unimplemented) state.""" pass class AdvancedDispatcher(asyncore.dispatcher): """Improved version of asyncore dispatcher, with buffers and protocol state.""" # pylint: disable=too-many-instance-attributes _buf_len = 131072 # 128kB def __init__(self, sock=None): if not hasattr(self, '_map'): asyncore.dispatcher.__init__(self, sock) self.connectedAt = 0 self.close_reason = None self.read_buf = bytearray() self.write_buf = bytearray() self.state = "init" self.lastTx = time.time() self.sentBytes = 0 self.receivedBytes = 0 self.expectBytes = 0 self.readLock = threading.RLock() self.writeLock = threading.RLock() self.processingLock = threading.RLock() self.uploadChunk = self.downloadChunk = 0 def append_write_buf(self, data): """Append binary data to the end of stream write buffer.""" if data: if isinstance(data, list): with self.writeLock: for chunk in data: self.write_buf.extend(chunk) else: with self.writeLock: self.write_buf.extend(data) def slice_write_buf(self, length=0): """Cut the beginning of the stream write buffer.""" if length > 0: with self.writeLock: if length >= len(self.write_buf): del self.write_buf[:] else: del self.write_buf[0:length] def slice_read_buf(self, length=0): """Cut the beginning of the stream read buffer.""" if length > 0: with self.readLock: if length >= len(self.read_buf): del self.read_buf[:] else: del self.read_buf[0:length] def process(self): """Process (parse) data that's in the buffer, as long as there is enough data and the connection is open.""" while self.connected and not state.shutdown: try: with nonBlocking(self.processingLock): if not self.connected or state.shutdown: break if len(self.read_buf) < self.expectBytes: return False try: cmd = getattr(self, "state_" + str(self.state)) except AttributeError: self.logger.error( 'Unknown state %s', self.state, exc_info=True) raise UnknownStateError(self.state) if not cmd(): break except BusyError: return False return False def set_state(self, state_str, length=0, expectBytes=0): """Set the next processing state.""" self.expectBytes = expectBytes self.slice_read_buf(length) self.state = state_str def writable(self): """Is data from the write buffer ready to be sent to the network?""" self.uploadChunk = AdvancedDispatcher._buf_len if asyncore.maxUploadRate > 0: self.uploadChunk = int(asyncore.uploadBucket) self.uploadChunk = min(self.uploadChunk, len(self.write_buf)) return asyncore.dispatcher.writable(self) and ( self.connecting or ( self.connected and self.uploadChunk > 0)) def readable(self): """Is the read buffer ready to accept data from the network?""" self.downloadChunk = AdvancedDispatcher._buf_len if asyncore.maxDownloadRate > 0: self.downloadChunk = int(asyncore.downloadBucket) try: if self.expectBytes > 0 and not self.fullyEstablished: self.downloadChunk = min( self.downloadChunk, self.expectBytes - len(self.read_buf)) if self.downloadChunk < 0: self.downloadChunk = 0 except AttributeError: pass return asyncore.dispatcher.readable(self) and ( self.connecting or self.accepting or ( self.connected and self.downloadChunk > 0)) def handle_read(self): """Append incoming data to the read buffer.""" self.lastTx = time.time() newData = self.recv(self.downloadChunk) self.receivedBytes += len(newData) asyncore.update_received(len(newData)) with self.readLock: self.read_buf.extend(newData) def handle_write(self): """Send outgoing data from write buffer.""" self.lastTx = time.time() written = self.send(self.write_buf[0:self.uploadChunk]) asyncore.update_sent(written) self.sentBytes += written self.slice_write_buf(written) def handle_connect_event(self): """Callback for connection established event.""" try: asyncore.dispatcher.handle_connect_event(self) except socket.error as e: # pylint: disable=protected-access if e.args[0] not in asyncore._DISCONNECTED: raise def handle_connect(self): """Method for handling connection established implementations.""" self.lastTx = time.time() def state_close(self): # pylint: disable=no-self-use """Signal to the processing loop to end.""" return False def handle_close(self): """Callback for connection being closed, but can also be called directly when you want connection to close.""" with self.readLock: self.read_buf = bytearray() with self.writeLock: self.write_buf = bytearray() self.set_state("close") self.close()
ttp/__init__.py
showipintbri/ttp
254
12625153
name = "ttp" __all__ = ["ttp"] __author__ = "<NAME> <<EMAIL>>" __version__ = "0.0.2" from sys import version_info # get python version: python_major_version = version_info.major if python_major_version == 3: from ttp.ttp import ttp from ttp.utils.quick_parse import quick_parse elif python_major_version == 2: from ttp import ttp from utils.quick_parse import quick_parse
src/genie/libs/parser/iosxe/tests/ShowInventory/cli/equal/golden_output_5_expected.py
balmasea/genieparser
204
12625166
<gh_stars>100-1000 expected_output = { "main": { "chassis": { "C9407R": { "name": "Chassis", "descr": "Cisco Catalyst 9400 Series 7 Slot Chassis", "pid": "C9407R", "vid": "V01", "sn": "******", } }, "TenGigabitEthernet3/0/1": { "SFP-10G-SR": { "name": "TenGigabitEthernet3/0/1", "descr": "SFP 10GBASE-SR", "pid": "SFP-10G-SR", "vid": "01", "sn": "******", } }, "TenGigabitEthernet3/0/2": { "SFP-10G-SR": { "name": "TenGigabitEthernet3/0/2", "descr": "SFP 10GBASE-SR", "pid": "SFP-10G-SR", "vid": "01", "sn": "******", } }, "TenGigabitEthernet3/0/3": { "SFP-10G-SR": { "name": "TenGigabitEthernet3/0/3", "descr": "SFP 10GBASE-SR", "pid": "SFP-10G-SR", "vid": "01", "sn": "******", } }, "TenGigabitEthernet3/0/4": { "SFP-10G-SR": { "name": "TenGigabitEthernet3/0/4", "descr": "SFP 10GBASE-SR", "pid": "SFP-10G-SR", "vid": "01", "sn": "******", } }, "TenGigabitEthernet3/0/8": { "QFBR-5798L": { "name": "TenGigabitEthernet3/0/8", "descr": "GE SX", "pid": "QFBR-5798L", "vid": "", "sn": "******", } }, }, "slot": { "Slot_1_Linecard": { "lc": { "C9400-LC-48P": { "name": "Slot 1 Linecard", "descr": "Cisco Catalyst 9400 Series 48-Port POE 10/100/1000 (RJ-45)", "pid": "C9400-LC-48P", "vid": "V01", "sn": "******", } } }, "Slot_2_Linecard": { "lc": { "C9400-LC-48P": { "name": "Slot 2 Linecard", "descr": "Cisco Catalyst 9400 Series 48-Port POE 10/100/1000 (RJ-45)", "pid": "C9400-LC-48P", "vid": "V01", "sn": "******", } } }, "Slot_5_Linecard": { "lc": { "C9400-LC-48P": { "name": "Slot 5 Linecard", "descr": "Cisco Catalyst 9400 Series 48-Port POE 10/100/1000 (RJ-45)", "pid": "C9400-LC-48P", "vid": "V01", "sn": "******", } } }, "Slot_6_Linecard": { "lc": { "C9400-LC-48P": { "name": "Slot 6 Linecard", "descr": "Cisco Catalyst 9400 Series 48-Port POE 10/100/1000 (RJ-45)", "pid": "C9400-LC-48P", "vid": "V01", "sn": "******", } } }, "Slot_3_Supervisor": { "other": { "C9400-SUP-1": { "name": "Slot 3 Supervisor", "descr": "Cisco Catalyst 9400 Series Supervisor 1 Module", "pid": "C9400-SUP-1", "vid": "V02", "sn": "******", } } }, "P1": { "other": { "C9400-PWR-3200AC": { "name": "Power Supply Module 1", "descr": "Cisco Catalyst 9400 Series 3200W AC Power Supply", "pid": "C9400-PWR-3200AC", "vid": "V01", "sn": "******", } } }, "P2": { "other": { "C9400-PWR-3200AC": { "name": "Power Supply Module 2", "descr": "Cisco Catalyst 9400 Series 3200W AC Power Supply", "pid": "C9400-PWR-3200AC", "vid": "V01", "sn": "DTM224703G0", } } }, "Fan_Tray": { "other": { "C9407-FAN": { "name": "Fan Tray", "descr": "Cisco Catalyst 9400 Series 7 Slot Chassis Fan Tray", "pid": "C9407-FAN", "vid": "V01", "sn": "******", } } }, }, }
cairocffi/test_pixbuf.py
Afoucaul/cairocffi
116
12625170
""" cairocffi.test_pixbuf ~~~~~~~~~~~~~~~~~~~~~ Test suite for cairocffi.pixbuf. :copyright: Copyright 2013-2019 by <NAME> :license: BSD, see LICENSE for details. """ import base64 import sys import zlib import pytest from . import constants, pixbuf PNG_BYTES = base64.b64decode( b'iVBORw0KGgoAAAANSUhEUgAAAAMAAAACCAYAAACddGYaAAAAE0lEQV' b'QI12NkaPjfwAAFTAxIAAAuNwIDqJbDRgAAAABJRU5ErkJggg==') JPEG_BYTES = zlib.decompress(base64.b64decode( b'eJylzb0JgFAMBOA704hYvIC9oygIou7nPFq4g3+Nm0RT+iy9VPkIF9vsQhjavgVJdM/ATjS' b'+/YqX/O2gzdAUCUSoSJSitAUFiHdS1xArXBlr5qrf2wO58HkiigrlWK+T7TezChqU')) def test_api(): with pytest.raises(pixbuf.ImageLoadingError): pixbuf.decode_to_image_surface(b'') with pytest.raises(pixbuf.ImageLoadingError): pixbuf.decode_to_image_surface(b'Not a valid image.') with pytest.raises(pixbuf.ImageLoadingError): pixbuf.decode_to_image_surface(PNG_BYTES[:10]) surface, format_name = pixbuf.decode_to_image_surface(PNG_BYTES) assert format_name == 'png' assert_decoded(surface) def test_gdk(): if pixbuf.gdk is None: pytest.xfail() pixbuf_obj, format_name = pixbuf.decode_to_pixbuf(PNG_BYTES) assert format_name == 'png' assert_decoded(pixbuf.pixbuf_to_cairo_gdk(pixbuf_obj)) def test_slices(): pixbuf_obj, format_name = pixbuf.decode_to_pixbuf(PNG_BYTES) assert format_name == 'png' assert_decoded(pixbuf.pixbuf_to_cairo_png(pixbuf_obj)) def test_size(): pixbuf_obj, format_name = pixbuf.decode_to_pixbuf(PNG_BYTES, 10, 10) assert format_name == 'png' surface = pixbuf.pixbuf_to_cairo_png(pixbuf_obj) assert surface.get_width() == 10 assert surface.get_height() == 10 assert surface.get_format() == constants.FORMAT_ARGB32 def test_png(): pixbuf_obj, format_name = pixbuf.decode_to_pixbuf(JPEG_BYTES) assert format_name == 'jpeg' assert_decoded(pixbuf.pixbuf_to_cairo_slices(pixbuf_obj), constants.FORMAT_RGB24, b'\xff\x00\x80\xff') def assert_decoded(surface, format_=constants.FORMAT_ARGB32, rgba=b'\x80\x00\x40\x80'): assert surface.get_width() == 3 assert surface.get_height() == 2 assert surface.get_format() == format_ if sys.byteorder == 'little': # pragma: no cover rgba = rgba[::-1] assert surface.get_data()[:] == rgba * 6
glucosetracker/core/forms.py
arhanair/glucose-tracker-monitor
134
12625211
from django import forms from crispy_forms.helper import FormHelper, Layout from crispy_forms.layout import Submit, Fieldset, HTML, Field from crispy_forms.bootstrap import FormActions class ContactForm(forms.Form): email = forms.EmailField(label='Your Email Address') subject = forms.CharField(required=False) message = forms.CharField(widget=forms.Textarea( attrs={'cols': 50, 'rows': 6})) def __init__(self, *args, **kwargs): super(ContactForm, self).__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_method = 'post' self.helper.form_class = 'col-xs-12 col-md-6' self. helper.layout = Layout( HTML(''' {% if messages %} {% for message in messages %} <p {% if message.tags %} class="alert alert-{{ message.tags }}"\ {% endif %}>{{ message }}</p>{% endfor %}{% endif %} </p> '''), Fieldset( 'Contact Us', Field('email'), Field('subject'), Field('message'), ), FormActions(Submit('submit', 'Send', css_class='pull-right')) )
tests/utils/lp_utils_test.py
sash-a/Mava
337
12625221
<filename>tests/utils/lp_utils_test.py<gh_stars>100-1000 # python3 # Copyright 2021 InstaDeep Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List from absl.testing import parameterized from launchpad.nodes.python.local_multi_processing import PythonProcess from mava.utils import lp_utils test_data = [ dict( testcase_name="cpu_only", program_nodes=["replay", "counter", "trainer", "evaluator", "executor"], nodes_on_gpu=[], expected_resourse_list={ "replay": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "counter": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "trainer": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "evaluator": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "executor": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), }, ), dict( testcase_name="trainer_only_on_gpu", program_nodes=["replay", "counter", "trainer", "evaluator", "executor"], nodes_on_gpu=["trainer"], expected_resourse_list={ "replay": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "counter": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "trainer": [], "evaluator": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), "executor": PythonProcess(env={"CUDA_VISIBLE_DEVICES": str(-1)}), }, ), dict( testcase_name="gpu_only", program_nodes=["replay", "counter", "trainer", "evaluator", "executor"], nodes_on_gpu=["replay", "counter", "trainer", "evaluator", "executor"], expected_resourse_list={ "replay": [], "counter": [], "trainer": [], "evaluator": [], "executor": [], }, ), ] class TestLPResourceUtils(parameterized.TestCase): @parameterized.named_parameters(*test_data) def test_resource_specification( self, program_nodes: List, nodes_on_gpu: List, expected_resourse_list: Dict ) -> None: """Test resource allocation works for lp. Args: program_nodes (List): lp program nodes. nodes_on_gpu (List): which nodes to have on gpu. expected_resourse_list (List): expected resource list. """ resource_list = lp_utils.to_device( program_nodes=program_nodes, nodes_on_gpu=nodes_on_gpu ) assert resource_list == expected_resourse_list
tests/components/litterrobot/test_button.py
MrDelik/core
22,481
12625264
<filename>tests/components/litterrobot/test_button.py """Test the Litter-Robot button entity.""" from unittest.mock import MagicMock from freezegun import freeze_time from homeassistant.components.button import DOMAIN as BUTTON_DOMAIN, SERVICE_PRESS from homeassistant.const import ATTR_ENTITY_ID, ATTR_ICON, STATE_UNKNOWN from homeassistant.core import HomeAssistant from homeassistant.helpers import entity_registry as er from homeassistant.helpers.entity import EntityCategory from .conftest import setup_integration BUTTON_ENTITY = "button.test_reset_waste_drawer" @freeze_time("2021-11-15 17:37:00", tz_offset=-7) async def test_button(hass: HomeAssistant, mock_account: MagicMock) -> None: """Test the creation and values of the Litter-Robot button.""" await setup_integration(hass, mock_account, BUTTON_DOMAIN) entity_registry = er.async_get(hass) state = hass.states.get(BUTTON_ENTITY) assert state assert state.attributes.get(ATTR_ICON) == "mdi:delete-variant" assert state.state == STATE_UNKNOWN entry = entity_registry.async_get(BUTTON_ENTITY) assert entry assert entry.entity_category is EntityCategory.CONFIG await hass.services.async_call( BUTTON_DOMAIN, SERVICE_PRESS, {ATTR_ENTITY_ID: BUTTON_ENTITY}, blocking=True, ) await hass.async_block_till_done() assert mock_account.robots[0].reset_waste_drawer.call_count == 1 mock_account.robots[0].reset_waste_drawer.assert_called_with() state = hass.states.get(BUTTON_ENTITY) assert state assert state.state == "2021-11-15T10:37:00+00:00"
skompiler/fromskast/sqlalchemy.py
odinsemvosem/SKompiler
112
12625266
<reponame>odinsemvosem/SKompiler """ SKompiler: Generate SQLAlchemy expressions from SKAST. """ from functools import reduce from collections import namedtuple import numpy as np import sqlalchemy as sa from sqlalchemy.sql.selectable import Join, FromGrouping from ..ast import ArgMax, VecMax, Softmax, IsElemwise, VecSum, Max, IsAtom from ._common import ASTProcessor, StandardOps, StandardArithmetics, is_, tolist,\ not_implemented, prepare_assign_to, id_generator, denumpyfy #pylint: disable=trailing-whitespace def translate(node, dialect=None, assign_to='y', component=None, multistage=True, key_column='id', from_obj='data'): """Translates SKAST to an SQLAlchemy expression (or a list of those, if the output should be a vector). If dialect is not None, further compiles the expression(s) to a given dialect via to_sql. Kwargs: assign_to (None/string/list of str): See to_sql component (int): If the result is a vector and you only need one component of it, specify its index (0-based) here. multistage (bool): When multistage=False, the returned value is a single expression which can be selected directly from the source data table. This, however, may make the resulting query rather long, as some functions (e.g. argmax) require repeated computaion of the same parts over and over. The problem is solved by splitting the computation in a sequence of CTE subqueries - the "multistage" mode. The resulting query may then look like with _tmp1 as (select [probability computations] from data), _tmp2 as (select [argmax computation] from _tmp1), ... select [final values] from _tmpX Default - True from_obj: A string or a SQLAlchemy selectable object - the source table for the data. In non-multistage mode this may be None - in this case the returned value is simply 'SELECT cols'. key_column: A string or a sa.column object, naming the key column in the source table. Compulsory for multistage mode. >>> from skompiler.toskast.string import translate as skast >>> expr = skast('[2*x[0], 1] if x[1] <= 3 else [12.0, 45.5]') >>> print(translate(expr, 'sqlite', multistage=False, from_obj=None)) SELECT CASE WHEN (x2 <= 3) THEN 2 * x1 ELSE 12.0 END AS y1, CASE WHEN (x2 <= 3) THEN 1 ELSE 45.5 END AS y2 >>> expr = skast('x=1; y=2; x+y') >>> print(translate(expr, 'sqlite', multistage=True)) WITH _tmp1 AS (SELECT data.id AS __id__, 1 AS f1 FROM data), _tmp2 AS (SELECT data.id AS __id__, 2 AS f1 FROM data) SELECT _tmp1.f1 + _tmp2.f1 AS y FROM _tmp1 JOIN _tmp2 ON _tmp1.__id__ = _tmp2.__id__ >>> expr = skast('x+y') >>> stbl = sa.select([sa.column('id'), sa.column('x'), sa.column('y')], from_obj=sa.table('test')).cte('_data') >>> print(translate(expr, 'sqlite', multistage=False, from_obj=stbl)) WITH _data AS (SELECT id, x, y FROM test) SELECT x + y AS y FROM _data """ if multistage and from_obj is None: raise ValueError("from_obj must be specified in multistage mode") result = SQLAlchemyWriter(from_obj=from_obj, key_column=key_column, multistage=multistage)(node) if component is not None: result = result._replace(cols=[result.cols[component]]) assign_to = prepare_assign_to(assign_to, len(result.cols)) if assign_to is not None: result = result._replace(cols=[col.label(lbl) for col, lbl in zip(result.cols, assign_to)]) result = sa.select(result.cols, from_obj=result.from_obj) if dialect is not None: result = to_sql(result, dialect) return result def _max(xs): if len(xs) == 1: return xs[0] return reduce(greatest, xs) def _sum(iterable): "The built-in 'sum' does not work for us as we need." return reduce(lambda x, y: x+y, iterable) def _iif(cond, iftrue, iffalse): # Optimize if (...) then X else X for literal X # A lot of these occur when compiling trees if isinstance(iftrue, sa.sql.elements.BindParameter) and \ isinstance(iffalse, sa.sql.elements.BindParameter) and \ iftrue.value == iffalse.value: return iftrue return sa.case([(cond, iftrue)], else_=iffalse) def _matvecproduct(M, x): return [_sum(m_i[j] * x[j] for j in range(len(x))) for m_i in M] def _dotproduct(xs, ys): return [_sum(x * y for x, y in zip(xs, ys))] def _step(x): return _iif(x > 0, 1, 0) def extract_tables(from_obj): if isinstance(from_obj, FromGrouping): return extract_tables(from_obj.element) elif isinstance(from_obj, Join): return extract_tables(from_obj.left) + extract_tables(from_obj.right) else: return [from_obj] def _merge(tbl1, tbl2): if tbl1 is None: return tbl2 elif tbl2 is None: return tbl1 if tbl1 is tbl2: return tbl1 # Either of the arguments may be a join clause and these # may include repeated elements. If so, we have to extract them and recombine. all_tables = list(sorted(set(extract_tables(tbl1) + extract_tables(tbl2)), key=lambda x: x.name)) tbl1 = all_tables[0] joined = tbl1 for tbl_next in all_tables[1:]: joined = joined.join(tbl_next, onclause=tbl1.key_ == tbl_next.key_) joined.key_ = tbl1.key_ return joined Result = namedtuple('Result', 'cols from_obj') class SQLAlchemyWriter(ASTProcessor, StandardOps, StandardArithmetics): """A SK AST processor, producing a SQLAlchemy "multistage" expression. The interpretation of each node is a tuple, containing a list of column expressions and a from_obj, where these columns must be queried from.""" def __init__(self, from_obj='data', key_column='id', positive_infinity=float(np.finfo('float64').max), negative_infinity=float(np.finfo('float64').min), multistage=True): self.positive_infinity = positive_infinity self.negative_infinity = negative_infinity if multistage: if isinstance(from_obj, str): from_obj = sa.table(from_obj, sa.column(key_column)) # This is a bit hackish, but quite convenient. # This way we do not have to carry around an extra "key" field in our results all the time from_obj.key_ = from_obj.columns[key_column] else: if key_column not in from_obj.columns: raise ValueError("The provided selectable does not contain the key column {0}".format(key_column)) from_obj.key_ = from_obj.columns[key_column] elif isinstance(from_obj, str): from_obj = sa.table(from_obj) self.from_obj = from_obj self.temp_ids = id_generator() self.references = [{}] self.multistage = multistage def Identifier(self, id): return Result([sa.column(id.id)], self.from_obj) def _indexed_identifier(self, id, idx): return sa.column("{0}{1}".format(id, idx+1)) def IndexedIdentifier(self, sub): return Result([self._indexed_identifier(sub.id, sub.index)], self.from_obj) def _number_constant(self, value): # Infinities have to be handled separately if np.isinf(value): value = self.positive_infinity if value > 0 else self.negative_infinity else: value = denumpyfy(value) return sa.literal(value) def NumberConstant(self, num): return Result([self._number_constant(num.value)], self.from_obj) def VectorIdentifier(self, id): return Result([self._indexed_identifier(id.id, i) for i in range(id.size)], self.from_obj) def VectorConstant(self, vec): return Result([self._number_constant(v) for v in tolist(vec.value)], self.from_obj) def MatrixConstant(self, mtx): return Result([[self._number_constant(v) for v in tolist(row)] for row in mtx.value], self.from_obj) def UnaryFunc(self, node, **kw): arg = self(node.arg) if isinstance(node.op, ArgMax): return self._argmax(arg) elif isinstance(node.op, VecMax): return self._vecmax(arg) elif isinstance(node.op, VecSum): return self._vecsum(arg) elif isinstance(node.op, Softmax): return self._softmax(arg) else: op = self(node.op) return Result([op(el) for el in arg.cols], arg.from_obj) ArgMax = VecSumNormalize = VecSum = VecMax = Softmax = not_implemented def BinOp(self, node, **kw): left, right, op = self(node.left), self(node.right), self(node.op) if not isinstance(node.op, IsElemwise): # MatVecProduct requires atomizing the argument, otherwise it will be repeated multiple times in the output if not isinstance(node.right, IsAtom): right = self._make_cte(right) return Result(op(left.cols, right.cols), _merge(left.from_obj, right.from_obj)) elif len(left.cols) != len(right.cols): raise ValueError("Mismatching operand dimensions in {0}".format(repr(node.op))) elif isinstance(node.op, Max): # Max is implemented as (if x > y then x else y), hence to avoid double-computation, # we save x and y in separate CTE's if not isinstance(node.left, IsAtom): left = self._make_cte(left) if not isinstance(node.right, IsAtom): right = self._make_cte(right) return Result([op(lc, rc) for lc, rc in zip(left.cols, right.cols)], _merge(left.from_obj, right.from_obj)) else: return Result([op(lc, rc) for lc, rc in zip(left.cols, right.cols)], _merge(left.from_obj, right.from_obj)) def MakeVector(self, vec): result = [] tbls = set() for el in vec.elems: el = self(el) tbls.add(el.from_obj) if len(el.cols) != 1: raise ValueError("MakeVector expects a list of scalars") result.append(el.cols[0]) tbls = list(tbls) target_table = tbls[0] for tbl in tbls[1:]: new_joined = target_table.join(tbl, onclause=target_table.key_ == tbl.key_) new_joined.key_ = target_table.key_ target_table = new_joined return Result(result, target_table) def IfThenElse(self, node): test, iftrue, iffalse = self(node.test), self(node.iftrue), self(node.iffalse) return Result([_iif(test.cols[0], ift, iff) for ift, iff in zip(iftrue.cols, iffalse.cols)], reduce(_merge, [test.from_obj, iftrue.from_obj, iffalse.from_obj])) MatVecProduct = is_(_matvecproduct) DotProduct = is_(_dotproduct) Exp = is_(sa.func.exp) Log = is_(sa.func.log) Sqrt = is_(sa.func.sqrt) Abs = is_(sa.func.abs) Step = is_(_step) Max = is_(lambda x, y: _max([x, y])) # ------ The actual "multi-stage" logic ----- def Let(self, node, **kw): if not self.multistage: return StandardOps.Let(self, node, **kw) self.references.append({}) for defn in node.defs: self.references[-1][defn.name] = self._make_cte(self(defn.body)) result = self(node.body) self.references.pop() return result def Reference(self, node): if not self.multistage: raise ValueError("References are not supported in non-multistage mode") if node.name not in self.references[-1]: raise ValueError("Undefined reference: {0}".format(node.name)) return self.references[-1][node.name] def _make_cte(self, result, col_names=None, key_label='__id__'): if not self.multistage: return result if col_names is None: col_names = ['f{0}'.format(i+1) for i in range(len(result.cols))] labeled_cols = [c.label(n) for c, n in zip(result.cols, col_names)] new_tbl = sa.select([result.from_obj.key_.label(key_label)] + labeled_cols, from_obj=result.from_obj).cte(next(self.temp_ids)) new_tbl.key_ = new_tbl.columns[key_label] new_cols = [new_tbl.columns[n] for n in col_names] return Result(new_cols, new_tbl) def _argmax(self, result): if len(result.cols) == 1: return Result([sa.literal(0)], self.from_obj) features = self._make_cte(result) max_val = Result([_max(features.cols)], features.from_obj) max_val = self._make_cte(max_val, ['_max']) argmax = sa.case([(col == max_val.cols[0], i) for i, col in enumerate(features.cols[:-1])], else_=len(features.cols)-1) return Result([argmax], _merge(features.from_obj, max_val.from_obj)) def _vecmax(self, result): return Result([_max(result.cols)], result.from_obj) def _softmax(self, result): return self._vecsumnormalize(Result([sa.func.exp(col) for col in result.cols], result.from_obj)) def _vecsumnormalize(self, result): features = self._make_cte(result) sum_val = Result([_sum(features.cols)], features.from_obj) sum_val = self._make_cte(sum_val, ['_sum']) return Result([col/sum_val.cols[0] for col in features.cols], _merge(features.from_obj, sum_val.from_obj)) def _vecsum(self, result): return Result([_sum(result.cols)], result.from_obj) # ------- SQLAlchemy "greatest" function # See https://docs.sqlalchemy.org/en/latest/core/compiler.html #pylint: disable=wrong-import-position,wrong-import-order from sqlalchemy.sql import expression from sqlalchemy.ext.compiler import compiles from sqlalchemy.types import Numeric class greatest(expression.FunctionElement): type = Numeric() name = 'greatest' @compiles(greatest) def default_greatest(element, compiler, **kw): res = compiler.visit_function(element, **kw) return res @compiles(greatest, 'sqlite') @compiles(greatest, 'mssql') @compiles(greatest, 'oracle') def case_greatest(element, compiler, **kw): arg1, arg2 = list(element.clauses) return compiler.process(sa.case([(arg1 > arg2, arg1)], else_=arg2), **kw) # Utilities ---------------------------------- import sqlalchemy.dialects #pylint: disable=wildcard-import,unused-wildcard-import from sqlalchemy.dialects import * # Must do it in order to getattr(sqlalchemy.dialects, ...) def to_sql(sa_expr, dialect_name='sqlite'): """ Helper function. Given a SQLAlchemy expression, returns the corresponding SQL string in a given dialect. """ dialect_module = getattr(sqlalchemy.dialects, dialect_name) return str(sa_expr.compile(dialect=dialect_module.dialect(), compile_kwargs={'literal_binds': True}))
Packs/HealthCheck/Scripts/HealthCheckDiskUsageLine/HealthCheckDiskUsageLine.py
diCagri/content
799
12625270
<gh_stars>100-1000 from CommonServerPython import * # noqa: F401 def main(): res = execute_command("demisto-api-get", {"uri": "/system/config"}) config_json = res['response'] partition = config_json.get('sysConf', {}).get('disk.partitions.to.monitor') or '/' res = execute_command( "demisto-api-post", { "uri": "/statistics/widgets/query", "body": { "size": 1440, "dataType": "system", "params": { "timeFrame": "minutes", }, "query": f"disk.usedPercent.{partition}", "dateRange": { "period": { "byFrom": "hours", "fromValue": 24, }, }, "widgetType": "line", }, }) stats = res["response"] output = [] higher = 0 build_number = get_demisto_version()['buildNumber'] # in local development instances, the build number will be "REPLACE_THIS_WITH_CI_BUILD_NUM" build_number = f'{build_number}' if build_number != "REPLACE_THIS_WITH_CI_BUILD_NUM" else "618658" if int(build_number) >= 618657: # Line graph: for counter, entry in enumerate(stats): higher = max(entry["data"][0], higher) if counter % 2 == 0: output.append({"name": counter, "data": [higher]}) higher = 0 data = { "Type": 17, "ContentsFormat": "line", "Contents": { "stats": output, "params": { "timeFrame": "minutes", "format": "HH:mm", "layout": "vertical" } } } else: # Bar graph: now = datetime.utcnow() then = now - timedelta(days=1) for counter, entry in enumerate(stats): higher = max(entry["data"][0], higher) if counter % 60 == 0: then = then + timedelta(hours=1) name = then.strftime("%H:%M") output.append({"name": name, "data": [higher]}) higher = 0 data = { "Type": 17, "ContentsFormat": "bar", "Contents": { "stats": output, "params": { "layout": "horizontal" } } } return data if __name__ in ('__main__', '__builtin__', 'builtins'): # pragma: no cover return_results(main())
inference/Megatron-LM-v2.3/tools/openwebtext/filter_ngrams.py
ganik/DeepSpeedExamples
309
12625285
<gh_stars>100-1000 # coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Deduplicate downstream tasks from training dataset. 13-grams have been used. All split documents with less than 200 characters got filtered. Any document with more than 10 splits got filtered as well. """ from functools import partial import json import multiprocessing import nltk import re import string import sys import time def get_words(text): # get all the lowercase words from text words, positions = [], [] for match in re.finditer(r'\w+', text.lower()): words.append(match.group(0)) positions.append(match.start()) return words, positions def free_ngram(line, ngrams, ngram_size, filter_text_len, splits_count, split_window_each_size): # remove all the ngrams try: myjson = json.loads(line) text_buf = [myjson['text']] except Exception as e: print("Error: {}".format(e), flush=True) text_buf = [] text_buf_ngram_free = [] while len(text_buf) > 0: # get the first one from the buffer text = text_buf.pop(0) words, positions = get_words(text) not_ngram_free = True punctuations = ".!?" # find n-grams for i in range(len(words) - ngram_size + 1): seq = " ".join(words[i:i+ngram_size]) if seq in ngrams: # splits the text # first part of the text pos = positions[i] - split_window_each_size text_first = "" while pos > 0 and not text[pos] in punctuations: pos -= 1 if pos > 0: text_first = text[0:pos+1] pos = positions[i] + split_window_each_size # last part of the text text_second = "" while pos < len(text) and not text[pos] in punctuations: pos += 1 if pos + 1 < len(text): text_second = text[pos+1:len(text)] # first part of ngrams free if len(text_first) > filter_text_len: text_buf_ngram_free.append(text_first) # add second part for further processing if len(text_second) > filter_text_len: text_buf.append(text_second) not_ngram_free = False break # text are ngram free if not_ngram_free: text_buf_ngram_free.append(text) return text_buf_ngram_free if __name__ == '__main__': print('finding possible duplicate content ...') main_file = sys.argv[1] # lambada file dedup_file = sys.argv[2] # Book corpus output_file = sys.argv[3] #Filtered book corpus ngrams = {} id_prefix = "lambada" # we use 13-grams, any text less than 200 characters got removed # any text splitted more than 10 got removed as well ngram_size = 13 filter_text_len = 200 splits_count = 10 split_window_each_size = 200 print('Reading file {} and computing ngrams'.format(main_file)) with open(main_file, 'r') as f: for line in f: try: myjson = json.loads(line) words, positions = get_words(myjson['text']) for i in range(len(words) - ngram_size+1): seq = " ".join(words[i:i+ngram_size]) if seq not in ngrams: ngrams[seq] = positions[i] except Exception as e: print('Error:', e) print("ngrams size {}".format(len(ngrams))) print('Reading file {} and deduping n-grams'.format(dedup_file)) counter = 0 start_time = time.time() out_f = open(output_file, 'wb') splitted, ignored, split_mt_thld = 0, 0, 0 # Setup multi-processing. num_workers = 40 fin = open(dedup_file, 'r', encoding='utf-8') pool = multiprocessing.Pool(num_workers) free_ngram_x=partial(free_ngram, ngrams=ngrams, ngram_size=ngram_size, filter_text_len=filter_text_len, splits_count=splits_count, split_window_each_size=split_window_each_size) free_ngrams = pool.imap(free_ngram_x, fin, 25) for text_buf_ngram_free in free_ngrams: counter += 1 try: if len(text_buf_ngram_free) > 1: splitted += (len(text_buf_ngram_free) - 1) if len(text_buf_ngram_free) == 0: ignored += 1 # more than 10 splits ignored if len(text_buf_ngram_free) > splits_count: text_buf_ngram_free = [] split_mt_thld += 1 for i in range(len(text_buf_ngram_free)): split_id_string = id_prefix + '-{:010d}'.format(int(counter)) \ + '-{:010d}'.format(int(i)) outjson = json.dumps({"text":text_buf_ngram_free[i], id_prefix+"_split_id":split_id_string}, ensure_ascii=False) out_f.write(outjson.encode('utf-8')) out_f.write('\n'.encode('utf-8')) if counter % 1000 == 0: print(' [search]> processed {} documents in {:.2f} seconds ...'. format(counter, time.time() - start_time), flush=True) except Exception as e: print('Error:', e) print("Deduped file written to: {}".format(output_file), flush=True) print("Total docs {} splitted {} ignored {} docs with many splits {}".\ format(counter, splitted, ignored, split_mt_thld), flush=True) print('done :-)')
tests/integrational/native_sync/test_revoke_v3.py
natekspencer/pubnub-python
146
12625288
from pubnub.pubnub import PubNub from pubnub.models.consumer.v3.channel import Channel from tests.integrational.vcr_helper import pn_vcr from tests.helper import pnconf_pam_stub_copy from pubnub.models.consumer.v3.access_manager import PNGrantTokenResult, PNRevokeTokenResult pubnub = PubNub(pnconf_pam_stub_copy()) pubnub.config.uuid = "test_revoke" @pn_vcr.use_cassette( 'tests/integrational/fixtures/native_sync/pam/revoke_token.yaml', filter_query_parameters=['uuid', 'seqn', 'pnsdk', 'timestamp', 'signature'] ) def test_grant_and_revoke_token(): grant_envelope = pubnub.grant_token()\ .channels([Channel.id("test_channel").read().write().manage().update().join().delete()])\ .authorized_uuid("test")\ .ttl(60)\ .sync() assert isinstance(grant_envelope.result, PNGrantTokenResult) token = grant_envelope.result.get_token() assert token revoke_envelope = pubnub.revoke_token(token).sync() assert isinstance(revoke_envelope.result, PNRevokeTokenResult) assert revoke_envelope.result.status == 200
nipy/utils/__init__.py
bpinsard/nipy
236
12625316
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ General utilities for code support. These are modules that we (broadly-speaking) wrote; packages that other people wrote, that we ship, go in the nipy.externals tree. """ from __future__ import absolute_import from nibabel.data import make_datasource, DataError, datasource_or_bomber # Module level datasource instances for convenience from ..info import DATA_PKGS templates = datasource_or_bomber(DATA_PKGS['nipy-templates']) example_data = datasource_or_bomber(DATA_PKGS['nipy-data']) try: example_data.get_filename() except DataError: HAVE_EXAMPLE_DATA = False else: HAVE_EXAMPLE_DATA = True try: templates.get_filename() except DataError: HAVE_TEMPLATES = False else: HAVE_TEMPLATES = True from .utilities import is_iterable, is_numlike, seq_prod from nipy.testing import Tester test = Tester().test bench = Tester().bench class VisibleDeprecationWarning(UserWarning): """Visible deprecation warning. Python does not show any DeprecationWarning by default. Sometimes we do want to show a deprecation warning, when the deprecation is urgent, or the usage is probably a bug. """ class _NoValue: """Special keyword value. This class may be used as the default value assigned to a deprecated keyword in order to check if it has been given a user defined value. """
MITx-6.00.2x/Midterm Quiz/Problem_3-song_playlist.py
Sam-Gao-Xin/Courses-
622
12625330
# -*- coding: utf-8 -*- """ @author: salimt """ #Problem 3 #20.0/20.0 points (graded) #You are creating a song playlist for your next party. You have a collection of songs that can be represented as a list of tuples. Each tuple has the following elements: #name: the first element, representing the song name (non-empty string) #song_length: the second, element representing the song duration (float >= 0) #song_size: the third, element representing the size on disk (float >= 0) #You want to try to optimize your playlist to play songs for as long as possible while making sure that the songs you pick do not take up more than a given amount of space on disk (the sizes should be less than or equal to the max_disk_size). #You decide the best way to achieve your goal is to start with the first song in the given song list. If the first song doesn't fit on disk, return an empty list. If there is enough space for this song, add it to the playlist. #For subsequent songs, you choose the next song such that its size on disk is smallest and that the song hasn't already been chosen. You do this until you cannot fit any more songs on the disk. #Write a function implementing this algorithm, that returns a list of the song names in the order in which they were chosen, with the first element in the list being the song chosen first. Assume song names are unique and all the songs have different sizes on disk and different durations. #You may not mutate any of the arguments. #For example, #If songs = [('Roar',4.4, 4.0),('Sail',3.5, 7.7),('Timber', 5.1, 6.9),('Wannabe',2.7, 1.2)] and max_size = 12.2, the function will return ['Roar','Wannabe','Timber'] #If songs = [('Roar',4.4, 4.0),('Sail',3.5, 7.7),('Timber', 5.1, 6.9),('Wannabe',2.7, 1.2)] and max_size = 11, the function will return ['Roar','Wannabe'] # Paste your entire function (including the definition) in the box. Do not import anything. Do not leave any debugging print statements. # Paste your code here def song_playlist(songs, max_size): """ songs: list of tuples, ('song_name', song_len, song_size) max_size: float, maximum size of total songs that you can fit Start with the song first in the 'songs' list, then pick the next song to be the one with the lowest file size not already picked, repeat Returns: a list of a subset of songs fitting in 'max_size' in the order in which they were chosen. """ temp = [] temp.append(songs[0]) max_size -= songs[0][2] songs_sorted = (sorted(songs, reverse=True, key=lambda x: x[2])) if max_size < 0: return [] for i, song in enumerate(songs_sorted): weightB = songs_sorted[-(i+1)][2] if weightB <= max_size and songs_sorted[-(i+1)] not in temp: max_size -= weightB temp.append(songs_sorted[-(i+1)]) names = [] for name in range(len(temp)): names.append(temp[name][0]) return names songs = [('Roar',4.4, 4.0),('Sail',3.5, 7.7),('Timber', 5.1, 6.9),('Wannabe',2.7, 1.2)] max_size = 12.2 print(song_playlist(songs, max_size)) #['Roar','Wannabe','Timber'] print(song_playlist([('a', 4.0, 4.4), ('b', 7.7, 3.5), ('c', 6.9, 5.1), ('d', 1.2, 2.7)], 12.3)) #['a', 'd', 'b'] print(song_playlist([('a', 4.4, 4.0), ('b', 3.5, 7.7), ('c', 5.1, 6.9), ('d', 2.7, 1.2)], 20)) #['a', 'd', 'c', 'b']
setup.py
MojixCoder/python-jalali
235
12625366
import setuptools from distutils.core import setup setup( name='jdatetime', version='3.7.0', packages=['jdatetime', ], license='Python Software Foundation License', keywords='Jalali implementation of Python datetime', platforms='any', author='<NAME>', author_email='<EMAIL>', description=("Jalali datetime binding for python"), url="https://github.com/slashmili/python-jalali", long_description=open('README').read(), classifiers=[ "Intended Audience :: Developers", "Intended Audience :: System Administrators", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Software Development", ], )
src/tools/libraryInfo/BUILD.py
t3kt/raytk
108
12625371
<reponame>t3kt/raytk # noinspection PyUnreachableCode if False: # noinspection PyUnresolvedReferences from _stubs import * from raytkBuild import BuildTaskContext from .libraryInfoExt import LibraryInfoBuilder ext.libraryInfo = LibraryInfoBuilder(COMP()) context = args[0] # type: BuildTaskContext context.log('Updating library info') context.safeDestroyOps(ops('write_*')) ext.libraryInfo.Forcebuild() context.finishTask()
GUI/AboutDialog.py
yasoob/youtube-dl-GUI
203
12625378
from PyQt5 import QtCore, QtWidgets from UI.AboutDialog import Ui_Dialog class AboutDialog(QtWidgets.QDialog): def __init__(self, parent=None): super(AboutDialog, self).__init__(parent, QtCore.Qt.WindowSystemMenuHint | QtCore.Qt.WindowTitleHint) # type: ignore self.ui = Ui_Dialog() self.ui.setupUi(self)
Pytorch/train.py
jiajunhua/qjadud1994-Text_Detector
221
12625387
<filename>Pytorch/train.py from __future__ import print_function import time import os import argparse import numpy as np import cv2 from subprocess import Popen, PIPE import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn from tensorboardX import SummaryWriter from augmentations import Augmentation_traininig from loss import FocalLoss, OHEM_loss from retinanet import RetinaNet from datagen import ListDataset from encoder import DataEncoder from torch.autograd import Variable def str2bool(v): return v.lower() in ("yes", "y", "true", "t", "1") def adjust_learning_rate(cur_lr, optimizer, gamma, step): lr = cur_lr * (gamma ** (step)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr parser = argparse.ArgumentParser(description='PyTorch RetinaNet Training') parser.add_argument('--lr', default=1e-3, type=float, help='learning rate') parser.add_argument('--input_size', default=768, type=int, help='Input size for training') parser.add_argument('--batch_size', default=8, type=int, help='Batch size for training') parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading') parser.add_argument('--resume', default=None, type=str, help='resume from checkpoint') parser.add_argument('--dataset', type=str, help='select training dataset') parser.add_argument('--multi_scale', default=False, type=str2bool, help='Use multi-scale training') parser.add_argument('--focal_loss', default=True, type=str2bool, help='Use Focal loss or OHEM loss') parser.add_argument('--logdir', default='logs/', type=str, help='Tensorboard log dir') parser.add_argument('--max_iter', default=1200000, type=int, help='Number of training iterations') parser.add_argument('--gamma', default=0.5, type=float, help='Gamma update for SGD') parser.add_argument('--save_interval', default=500, type=int, help='Location to save checkpoint models') parser.add_argument('--save_folder', default='eval/', help='Location to save checkpoint models') parser.add_argument('--evaluation', default=False, type=str2bool, help='Evaulation during training') parser.add_argument('--eval_step', default=1000, type=int, help='Evauation step') parser.add_argument('--eval_device', default=6, type=int, help='GPU device for evaluation') args = parser.parse_args() assert torch.cuda.is_available(), 'Error: CUDA not found!' assert args.focal_loss, "OHEM + ce_loss is not working... :(" if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) if not os.path.exists(args.logdir): os.mkdir(args.logdir) # Data print('==> Preparing data..') trainset = ListDataset(root='/root/DB/', dataset=args.dataset, train=True, transform=Augmentation_traininig, input_size=args.input_size, multi_scale=args.multi_scale) trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=trainset.collate_fn) # set model (focal_loss vs OHEM_CE loss) if args.focal_loss: imagenet_pretrain = 'weights/retinanet_se50.pth' criterion = FocalLoss() num_classes = 1 else: imagenet_pretrain = 'weights/retinanet_se50_OHEM.pth' criterion = OHEM_loss() num_classes = 2 # Training Detail option\ stepvalues = (10000, 20000, 30000, 40000, 50000) if args.dataset in ["SynthText"] else (2000, 4000, 6000, 8000, 10000) best_loss = float('inf') # best test loss start_epoch = 0 # start from epoch 0 or last epoch iteration = 0 cur_lr = args.lr mean=(0.485,0.456,0.406) var=(0.229,0.224,0.225) step_index = 0 pEval = None # Model net = RetinaNet(num_classes) net.load_state_dict(torch.load(imagenet_pretrain)) if args.resume: print('==> Resuming from checkpoint..', args.resume) checkpoint = torch.load(args.resume) net.load_state_dict(checkpoint['net']) #start_epoch = checkpoint['epoch'] #iteration = checkpoint['iteration'] #cur_lr = checkpoint['lr'] #step_index = checkpoint['step_index'] #optimizer.load_state_dict(state["optimizer"]) print("multi_scale : ", args.multi_scale) print("input_size : ", args.input_size) print("stepvalues : ", stepvalues) print("start_epoch : ", start_epoch) print("iteration : ", iteration) print("cur_lr : ", cur_lr) print("step_index : ", step_index) print("num_gpus : ", torch.cuda.device_count()) net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count())) net.cuda() # Training net.train() net.module.freeze_bn() # you must freeze batchnorm optimizer = optim.SGD(net.parameters(), lr=cur_lr, momentum=0.9, weight_decay=1e-4) #optimizer = optim.Adam(net.parameters(), lr=cur_lr) encoder = DataEncoder() # tensorboard visualize writer = SummaryWriter(log_dir=args.logdir) t0 = time.time() for epoch in range(start_epoch, 10000): if iteration > args.max_iter: break for inputs, loc_targets, cls_targets in trainloader: inputs = Variable(inputs.cuda()) loc_targets = Variable(loc_targets.cuda()) cls_targets = Variable(cls_targets.cuda()) optimizer.zero_grad() loc_preds, cls_preds = net(inputs) loc_loss, cls_loss = criterion(loc_preds, loc_targets, cls_preds, cls_targets) loss = loc_loss + cls_loss loss.backward() optimizer.step() if iteration % 20 == 0: t1 = time.time() print('iter ' + repr(iteration) + ' (epoch ' + repr(epoch) + ') || loss: %.4f || l loc_loss: %.4f || l cls_loss: %.4f (Time : %.1f)'\ % (loss.sum().item(), loc_loss.sum().item(), cls_loss.sum().item(), (t1 - t0))) t0 = time.time() writer.add_scalar('loc_loss', loc_loss.sum().item(), iteration) writer.add_scalar('cls_loss', cls_loss.sum().item(), iteration) writer.add_scalar('loss', loss.sum().item(), iteration) # show inference image in tensorboard infer_img = np.transpose(inputs[0].cpu().numpy(), (1,2,0)) infer_img *= var infer_img += mean infer_img *= 255. infer_img = np.clip(infer_img, 0, 255) infer_img = infer_img.astype(np.uint8) h, w, _ = infer_img.shape boxes, labels, scores = encoder.decode(loc_preds[0], cls_preds[0], (w,h)) boxes = boxes.reshape(-1, 4, 2).astype(np.int32) if boxes.shape[0] is not 0: infer_img = cv2.polylines(infer_img, boxes, True, (0,255,0), 4) writer.add_image('image', infer_img, iteration) writer.add_scalar('input_size', h, iteration) writer.add_scalar('learning_rate', cur_lr, iteration) t0 = time.time() if iteration % args.save_interval == 0 and iteration > 0: print('Saving state, iter : ', iteration) state = { 'net': net.module.state_dict(), "optimizer": optimizer.state_dict(), 'iteration' : iteration, 'epoch': epoch, 'lr' : cur_lr, 'step_index' : step_index } model_file = args.save_folder + 'ckpt_' + repr(iteration) + '.pth' torch.save(state, model_file) if iteration in stepvalues: step_index += 1 cur_lr = adjust_learning_rate(cur_lr, optimizer, args.gamma, step_index) if iteration > args.max_iter: break if args.evaluation and iteration % args.eval_step == 0: try: if pEval is None: print("Evaluation started at iteration {} on IC15...".format(iteration)) eval_cmd = "CUDA_VISIBLE_DEVICES=" + str(args.eval_device) + \ " python eval.py" + \ " --tune_from=" + args.save_folder + 'ckpt_' + repr(iteration) + '.pth' + \ " --input_size=1024" + \ " --output_zip=result_temp1" pEval = Popen(eval_cmd, shell=True, stdout=PIPE, stderr=PIPE) elif pEval.poll() is not None: (scorestring, stderrdata) = pEval.communicate() hmean = float(str(scorestring).strip().split(":")[3].split(",")[0].split("}")[0].strip()) writer.add_scalar('test_hmean', hmean, iteration) print("test_hmean for {}-th iter : {:.4f}".format(iteration, hmean)) if pEval is not None: pEval.kill() pEval = None except Exception as e: print("exception happened in evaluation ", e) if pEval is not None: pEval.kill() pEval = None iteration += 1
third_party/blink/renderer/build/scripts/make_document_policy_features_tests.py
zealoussnow/chromium
14,668
12625393
<reponame>zealoussnow/chromium # Copyright 2021 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # Note(crbug.com/1167597): Do NOT change the file name to end with # '_test.py' or '_unittest.py' as these files will be recognized by # 'run_blinkpy_tests.py' task, where jinja2 module is not available. import unittest import os from make_document_policy_features import DocumentPolicyFeatureWriter from writer_test_util import path_to_test_file, WriterTest class MakeDocumentPolicyFeaturesTest(WriterTest): def test_default_value_control(self): self._test_writer( DocumentPolicyFeatureWriter, [ path_to_test_file('document_policy_default_value_control', 'input', 'document_policy_features.json5') ], path_to_test_file('document_policy_default_value_control', 'output')) if __name__ == "__main__": unittest.main()
Stephanie/TextProcessor/audio_text_manager.py
JeremyARussell/stephanie-va
866
12625394
import re import speech_recognition as sr from Stephanie.AudioManager.audio_manager import AudioManager from Stephanie.TextManager.text_manager import TextManager from Stephanie.TextProcessor.text_sorter import TextSorter from Stephanie.TextProcessor.text_learner import TextLearner class AudioTextManager(AudioManager, TextManager): def __init__(self, events): self.modules = () self.events = events self.r = self.get_recognizer() self.sr = self.get_speech_recognition() AudioManager.__init__(self, self.r, self.sr.UnknownValueError, self.sr.RequestError) TextManager.__init__(self) self.sorter = TextSorter() self.learner = TextLearner() self.audio = None def listen(self): self.audio = self.process_listen() return self def hear(self, source): audio = self.get_audio(source) return audio def decipher(self): text = self.get_text_from_speech(self.audio) return text def say(self, speech): speech_result_filename = self.get_speech_from_text(speech).save_speech_result() self.speak_result(speech_result_filename) def understand(self, modules, raw_text, explicit=False): module_info = self.set_modules(modules).learn(raw_text, explicit) return self.get_method_name(module_info['module_info']) def set_modules(self, modules): self.modules = modules return self def sort(self, raw_text, explicit): if raw_text: subwords, keywords = self.sorter.sort(raw_text, explicit) return subwords, keywords return False, False def learn(self, raw_text, explicit=False): subwords, keywords = self.sort(raw_text, explicit) if keywords: module_info = self.learner.set_modules(self.modules).learn(keywords) print(module_info) return { 'subwords': subwords, 'keywords': keywords, 'module_info': module_info } else: return False @staticmethod def get_recognizer(): return sr.Recognizer() @staticmethod def get_speech_recognition(): return sr def process_listen(self): with self.sr.Microphone() as source: return self.hear(source) def get_method_name(self, module_info): raw_func_name = module_info[0].split("@")[1] func_name = self.convert_to_snake_case(raw_func_name) return func_name @staticmethod def convert_to_snake_case(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
examples/basic/picture2mesh.py
evanphilip/vedo
836
12625396
# Transform a picture into a mesh from vedo import Picture, dataurl, show import numpy as np pic = Picture(dataurl+"images/dog.jpg").smooth(5) msh = pic.tomesh() # make a quad-mesh out of it # build a scalar array with intensities rgb = msh.pointdata["RGBA"] intensity = np.sum(rgb, axis=1) intensityz = np.zeros_like(rgb) intensityz[:,2] = intensity / 10 # set the new vertex points pts = msh.points() + intensityz msh.points(pts) # more cosmetics msh.triangulate().smooth() msh.lighting("default").lineWidth(0.1) msh.cmap("bone", "RGBA").addScalarBar() msht = pic.clone().threshold(100).lineWidth(0) show([[pic, "A normal jpg image.."], [msh, "..becomes a polygonal Mesh"], [msht, "Thresholding also generates a Mesh"] ], N=3, axes=1, zoom=5, elevation=-20, bg='black').close()
__scraping__/automationpractice.com - selenium/main.py
whitmans-max/python-examples
140
12625414
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import NoSuchElementException, TimeoutException import time try: #driver = webdriver.Chrome() driver = webdriver.Firefox() url = driver.get("http://automationpractice.com/index.php") #driver.maximize_window() search_text_box = driver.find_element_by_id("search_query_top") search_text_box.send_keys("Printed") time.sleep(1) # page display (and update) autocompletion when you make little longer delay # --- select using arrow key --- # move selection on list and accept it #search_text_box.send_keys(Keys.ARROW_DOWN) #search_text_box.send_keys(Keys.ARROW_DOWN) #search_text_box.send_keys(Keys.ARROW_DOWN) #search_text_box.send_keys(Keys.ENTER) # OR # --- select using tag `<li>` and `text()` in autocompletion --- # click on first matching item on list #one_option = WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.XPATH, "//li[contains(text(),'Dress')]"))) one_option = WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.XPATH, "//div[@class='ac_results']//li[contains(text(),'Dress')]"))) print(' tag:', one_option.tag_name) print('text:', one_option.text) print('bold:', one_option.find_element_by_xpath('.//strong').text) one_option.click() # OR # --- get all elements in autocompletion using `<li>` tag --- # get many matching items and use [index] to click on some item on list #one_option = WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.XPATH, "//li[contains(text(),'Dress')]"))) #all_options = driver.find_elements_by_xpath("//li[contains(text(),'Dress')]") #for option in all_options: # print(option.tag_name, ':', option.text) #all_options[1].click() print(' current:', driver.current_url) print('expected:', "http://automationpractice.com/index.php?id_product=3&controller=product") print('the same:', driver.current_url == "http://automationpractice.com/index.php?id_product=3&controller=product") assert "http://automationpractice.com/index.php?id_product=3&controller=product" == driver.current_url, "This Test case is fallied" #assertEqual("http://automationpractice.com/index.php?id_product=3&controller=product", self.driver.current_url, "This Test case is fallied") except NoSuchElementException as e: print('NoSuchElementException:', e) except TimeoutException as e: print('TimeoutException:', e) except AssertionError as e: print('AssertionError:', e)
InnerEye-DataQuality/create_environment.py
faz1993/InnerEye-DeepLearning
402
12625423
<filename>InnerEye-DataQuality/create_environment.py<gh_stars>100-1000 # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import subprocess from pathlib import Path INNEREYE_DQ_ENVIRONMENT_FILE = Path(__file__).parent.absolute() / 'environment.yml' def create_environment(environment_name: str = "InnerEyeDataQuality") -> None: print(f"Creating environment {environment_name} with the settings in " f"{INNEREYE_DQ_ENVIRONMENT_FILE}") subprocess.Popen( f"conda env create --file {INNEREYE_DQ_ENVIRONMENT_FILE} --name {environment_name}", shell=True).communicate() if __name__ == '__main__': create_environment()
scripts/change_incar_parameters.py
faradaymahe/VASPpy
225
12625435
''' Modify recursively parameters in all INCAR file. ''' import argparse import commands import logging from vaspy import PY2 from vaspy.incar import InCar SHELL_COMMAND = "find ./ -name 'INCAR'" _logger = logging.getLogger("vaspy.script") if "__main__" == __name__: # Check command validity. status, output = commands.getstatusoutput(SHELL_COMMAND) if status: raise SystemExit("Invalid shell commands - '{}'".format(SHELL_COMMAND)) # Get InCar objects. incar_paths = (incar_path.strip() for incar_path in output.split('\n')) incars = [InCar(incar_path) for incar_path in incar_paths] # Get all possible arguments. set_list = [set(incar.pnames) for incar in incars] possible_args = set.intersection(*set_list) # Set arguments for this script. parser = argparse.ArgumentParser() for arg in possible_args: arg_str = "--{}".format(arg) parser.add_argument(arg_str, help="set {} INCAR parameter".format(arg)) args_space = parser.parse_args() # Change parameters for all incars. if PY2: pname_value_pairs = args_space.__dict__.iteritems() else: pname_value_pairs = args_space.__dict__.items() for pname, value in pname_value_pairs : if value is None: continue for incar in incars: _logger.info("{} --> {} in {}.".format(pname, value, incar.filename)) incar.set(pname, value) incar.tofile() _logger.info("{} INCAR files ... ok.".format(len(incars)))
cement/core/mail.py
tomekr/cement
826
12625447
"""Cement core mail module.""" from abc import abstractmethod from ..core.interface import Interface from ..core.handler import Handler from ..utils.misc import minimal_logger LOG = minimal_logger(__name__) class MailInterface(Interface): """ This class defines the Mail Interface. Handlers that implement this interface must provide the methods and attributes defined below. In general, most implementations should sub-class from the provided :class:`MailHandler` base class as a starting point. """ class Meta: """Handler meta-data.""" interface = 'mail' """The label identifier of the interface.""" @abstractmethod def send(self, body, **kwargs): """ Send a mail message. Keyword arguments override configuration defaults (cc, bcc, etc). Args: body (str): The message body to send Keyword Args: to (list): List of recipients (generally email addresses) from_addr (str): Address (generally email) of the sender cc (list): List of CC Recipients bcc (list): List of BCC Recipients subject (str): Message subject line Returns: bool: ``True`` if message was sent successfully, ``False`` otherwise Example: .. code-block:: python # Using all configuration defaults app.mail.send('This is my message body') # Overriding configuration defaults app.mail.send('My message body' to=['<EMAIL>'], from_addr='<EMAIL>', cc=['<EMAIL>', '<EMAIL>'], subject='This is my subject', ) """ pass # pragma: nocover class MailHandler(MailInterface, Handler): """ Mail handler implementation. **Configuration** This handler supports the following configuration settings: * **to** - Default ``to`` addresses (list, or comma separated depending on the ConfigHandler in use) * **from_addr** - Default ``from_addr`` address * **cc** - Default ``cc`` addresses (list, or comma separated depending on the ConfigHandler in use) * **bcc** - Default ``bcc`` addresses (list, or comma separated depending on the ConfigHandler in use) * **subject** - Default ``subject`` * **subject_prefix** - Additional string to prepend to the ``subject`` """ class Meta: """ Handler meta-data (can be passed as keyword arguments to the parent class). """ #: Configuration default values config_defaults = { 'to': [], 'from_addr': '<EMAIL>', 'cc': [], 'bcc': [], 'subject': 'Default Subject Line', 'subject_prefix': '', } def _setup(self, app_obj): super()._setup(app_obj) self._validate_config() def _validate_config(self): # convert comma separated strings to lists (ConfigParser) for item in ['to', 'cc', 'bcc']: if item in self.app.config.keys(self._meta.config_section): value = self.app.config.get(self._meta.config_section, item) # convert a comma-separated string to a list if type(value) is str: value_list = value.split(',') # clean up extra space if they had it inbetween commas value_list = [x.strip() for x in value_list] # set the new extensions value in the config self.app.config.set(self._meta.config_section, item, value_list)
romp/lib/models/resnet_50.py
iory/ROMP
385
12625451
from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torchvision.models.resnet as resnet import torchvision.transforms.functional as F import sys, os root_dir = os.path.join(os.path.dirname(__file__),'..') if root_dir not in sys.path: sys.path.insert(0, root_dir) from utils import BHWC_to_BCHW, copy_state_dict from models.CoordConv import get_coord_maps import config from config import args from models.basic_modules import BasicBlock,Bottleneck,HighResolutionModule BN_MOMENTUM = 0.1 class ResNet_50(nn.Module): def __init__(self, **kwargs): self.inplanes = 64 super(ResNet_50, self).__init__() self.make_resnet() self.backbone_channels = 64 #self.init_weights() #self.load_pretrain_params() def load_pretrain_params(self): if os.path.exists(args().resnet_pretrain): success_layer = copy_state_dict(self.state_dict(), torch.load(args().resnet_pretrain), prefix = '', fix_loaded=True) def image_preprocess(self, x): if args().pretrain == 'imagenet' or args().pretrain == 'spin': x = BHWC_to_BCHW(x)/255. #x = F.normalize(x, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225],inplace=True).contiguous() # for pytorch version>1.8.0 x = torch.stack(list(map(lambda x:F.normalize(x, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225],inplace=False),x))) else: x = ((BHWC_to_BCHW(x)/ 255.) * 2.0 - 1.0).contiguous() return x def make_resnet(self): block, layers = Bottleneck, [3, 4, 6, 3] self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_resnet_layer(block, 64, layers[0]) self.layer2 = self._make_resnet_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_resnet_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_resnet_layer(block, 512, layers[3], stride=2) self.deconv_layers = self._make_deconv_layer(3,(256,128,64),(4,4,4)) def forward(self,x): x = self.image_preprocess(x) x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.deconv_layers(x) return x def _make_resnet_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),)#,affine=False),) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _get_deconv_cfg(self, deconv_kernel, index): if deconv_kernel == 4: padding = 1 output_padding = 0 elif deconv_kernel == 3: padding = 1 output_padding = 1 elif deconv_kernel == 2: padding = 0 output_padding = 0 return deconv_kernel, padding, output_padding def _make_deconv_layer(self, num_layers, num_filters, num_kernels): assert num_layers == len(num_filters), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' assert num_layers == len(num_kernels), \ 'ERROR: num_deconv_layers is different len(num_deconv_filters)' layers = [] for i in range(num_layers): if i==0: self.inplanes=2048 kernel, padding, output_padding = \ self._get_deconv_cfg(num_kernels[i], i) planes = num_filters[i] layers.append( nn.ConvTranspose2d( in_channels=self.inplanes, out_channels=planes, kernel_size=kernel, stride=2, padding=padding, output_padding=output_padding, bias=False)) layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))#,affine=False)) layers.append(nn.ReLU(inplace=True)) self.inplanes = planes return nn.Sequential(*layers) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, std=0.001) for name, _ in m.named_parameters(): if name in ['bias']: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.ConvTranspose2d): nn.init.normal_(m.weight, std=0.001) for name, _ in m.named_parameters(): if name in ['bias']: nn.init.constant_(m.bias, 0) if __name__ == '__main__': args().pretrain = 'spin' model = ResNet_50().cuda() a=model(torch.rand(2,512,512,3).cuda()) for i in a: print(i.shape)
synapse/logging/_terse_json.py
mlakkadshaw/synapse
9,945
12625488
<filename>synapse/logging/_terse_json.py<gh_stars>1000+ # Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Log formatters that output terse JSON. """ import json import logging _encoder = json.JSONEncoder(ensure_ascii=False, separators=(",", ":")) # The properties of a standard LogRecord that should be ignored when generating # JSON logs. _IGNORED_LOG_RECORD_ATTRIBUTES = { "args", "asctime", "created", "exc_info", # exc_text isn't a public attribute, but is used to cache the result of formatException. "exc_text", "filename", "funcName", "levelname", "levelno", "lineno", "message", "module", "msecs", "msg", "name", "pathname", "process", "processName", "relativeCreated", "stack_info", "thread", "threadName", } class JsonFormatter(logging.Formatter): def format(self, record: logging.LogRecord) -> str: event = { "log": record.getMessage(), "namespace": record.name, "level": record.levelname, } return self._format(record, event) def _format(self, record: logging.LogRecord, event: dict) -> str: # Add attributes specified via the extra keyword to the logged event. for key, value in record.__dict__.items(): if key not in _IGNORED_LOG_RECORD_ATTRIBUTES: event[key] = value if record.exc_info: exc_type, exc_value, _ = record.exc_info if exc_type: event["exc_type"] = f"{exc_type.__name__}" event["exc_value"] = f"{exc_value}" return _encoder.encode(event) class TerseJsonFormatter(JsonFormatter): def format(self, record: logging.LogRecord) -> str: event = { "log": record.getMessage(), "namespace": record.name, "level": record.levelname, "time": round(record.created, 2), } return self._format(record, event)
alipay/aop/api/response/AlipayPcreditLoanBeikeaccountInterestfreeModifyResponse.py
antopen/alipay-sdk-python-all
213
12625490
<reponame>antopen/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.BeikeAccountResponse import BeikeAccountResponse class AlipayPcreditLoanBeikeaccountInterestfreeModifyResponse(AlipayResponse): def __init__(self): super(AlipayPcreditLoanBeikeaccountInterestfreeModifyResponse, self).__init__() self._beike_account_response = None @property def beike_account_response(self): return self._beike_account_response @beike_account_response.setter def beike_account_response(self, value): if isinstance(value, BeikeAccountResponse): self._beike_account_response = value else: self._beike_account_response = BeikeAccountResponse.from_alipay_dict(value) def parse_response_content(self, response_content): response = super(AlipayPcreditLoanBeikeaccountInterestfreeModifyResponse, self).parse_response_content(response_content) if 'beike_account_response' in response: self.beike_account_response = response['beike_account_response']
websauna/tests/sitemapsamples.py
stevepiercy/websauna
286
12625502
<filename>websauna/tests/sitemapsamples.py """Permission test views.""" # Standard Library import typing as t # Pyramid from pyramid.interfaces import ILocation from pyramid.response import Response from pyramid.view import view_config from zope.interface import implementer # Websauna from websauna.system.core.interfaces import IContainer from websauna.system.core.root import Root from websauna.system.core.route import simple_route from websauna.system.core.sitemap import include_in_sitemap from websauna.system.core.traversal import Resource from websauna.system.http import Request class SampleResource(Resource): """Leaf resource in tree.""" def __init__(self, request: Request, name: str): super(SampleResource, self).__init__(request) self.name = name @implementer(IContainer) class SampleContainer(SampleResource): """Node resource in tree.""" def __init__(self, request, name): super(SampleContainer, self).__init__(request, name) def items(self) -> t.Iterable[t.Tuple[str, ILocation]]: # Every container instan request = self.request def construct_child(child_id, resource: Resource): # Set __parent__ pointer resource = Resource.make_lineage(self, resource, child_id) return child_id, resource # Assume this gets populated dynamically from the database # when items() is first time called. yield construct_child("foo", SampleResource(request, "Foo")) yield construct_child("bar", SampleResource(request, "Bar")) # First level container has second level nested container if self.name == "Container folder": yield construct_child("nested", SampleContainer(request, "Nested")) @view_config(context=SampleResource, name="", route_name="sitemap_test") def default_sample_view(sample_resource: SampleResource, request: Request): return Response() @view_config(context=SampleResource, name="additional", route_name="sitemap_test") def additional_sample_view(sample_resource: SampleResource, request: Request): return Response() def traverse_condition(context, request): return True @view_config(context=SampleResource, name="conditional", route_name="sitemap_test") @include_in_sitemap(condition=traverse_condition) def conditional_sample_view(sample_resource: SampleResource, request: Request): return Response() def skipped_condition(context, request): return False @view_config(context=SampleResource, name="skipped_conditional", route_name="sitemap_test") @include_in_sitemap(condition=skipped_condition) def skipped_conditional(sample_resource: SampleResource, request: Request): return Response() @view_config(context=SampleContainer, name="", route_name="sitemap_test") def default_container_view(sample_resource: SampleResource, request: Request): return Response() @view_config(context=SampleContainer, name="additional", route_name="sitemap_test") def additional_container_view(sample_resource: SampleResource, request: Request): return Response() @view_config(context=SampleContainer, name="permissioned", route_name="sitemap_test", permission="edit") def permissioned_container_view(sample_resource: SampleResource, request: Request): return Response() @simple_route("/parameter_free_route", route_name="parameter_free_route") def parameter_free_route(request: Request): return Response() @simple_route("/parameterized_route/{param}", route_name="parameterized_route") def parameterized_route(request: Request): return Response() @simple_route("/permissioned_route", route_name="permissioned_route", permission="edit") def permissioned_route(request: Request): return Response() @simple_route("/post_only_route", route_name="post_only_route", request_method="POST") def post_only_route(request: Request): return Response() @simple_route("/included_route", route_name="included_route") @include_in_sitemap(True) def included_route(request: Request): return Response() @simple_route("/skipped_route", route_name="skipped_route") @include_in_sitemap(False) def skipped_route(request: Request): return Response() def condition(context, request): return True @simple_route("/conditional_route", route_name="conditional_route") @include_in_sitemap(condition=condition) def another_skipped_route(request: Request): return Response() def container_factory(request): """Set up __parent__ and __name__ pointers required for traversal for container root.""" container = SampleContainer(request, "Container folder") root = Root.root_factory(request) return Resource.make_lineage(root, container, "container")
salt/tests/unit/formulas/fixtures/templates.py
SaintLoong/metalk8s
255
12625521
"""Expose a `template_path` parameterized fixture to list all "testable" templates. This will list all files with one of the extensions in `TEMPLATE_EXTS`, filtering out directories listed in `EXCLUDE_DIRS`. """ from pathlib import Path from typing import List, Optional import pytest from tests.unit.formulas import paths TEMPLATE_EXTS = ["sls", "sls.in", "j2", "j2.in", "jinja"] EXCLUDE_DIRS = [ # relative to paths.SALT_DIR "tests", "_auth", "_beacons", "_modules", "_pillar", "_renderers", "_roster", "_runners", "_states", "_utils", ] def _filter_path(path: Path) -> Optional[Path]: if not path.is_file(): return None path = path.relative_to(paths.SALT_DIR) for exclude in EXCLUDE_DIRS: try: path.relative_to(exclude) except ValueError: continue else: return None return path def list_templates() -> List[Path]: """List all template files to validate in rendering tests.""" templates: List[Path] = [] for ext in TEMPLATE_EXTS: templates.extend( path for path in map(_filter_path, paths.SALT_DIR.glob(f"**/*.{ext}")) if path is not None ) return templates @pytest.fixture(name="template_path", params=list_templates(), ids=str) def fixture_template_path(request: pytest.FixtureRequest) -> Path: """Yields template paths from the return of `list_templates`.""" param: Optional[Path] = getattr(request, "param", None) assert ( param is not None ), "The `template_path` fixture must be indirectly parametrized" return param
tools/gr_to_mtx_symmetric.py
jdwapman/gunrock
790
12625531
<filename>tools/gr_to_mtx_symmetric.py #!/usr/local/bin/python """ Simple python script to convert .gr format graph to .mtx format """ import os import sys import string ### check command line args if (len(sys.argv)) != 2: print ' Usage: python gr_to_mtx_symmetric.py graph.gr' sys.exit() ### gr graph input file_gr = sys.argv[1] ### matrix-market format output file file_mm = sys.argv[1].split('.')[0] + ".symmetric.mtx" line_num = 0; with open(file_gr, 'r') as gr, open(file_mm, 'w') as mm: mm.write('%%MatrixMarket matrix coordinate Integer symmetric\n') for line in gr: ### skip blank lines and comments if line.strip() == '' or 'c' in line: pass else: item = line.split(' ') if item[0] == 'p': ### write first line -> nodes nodes edges n = item[2] e = item[3].split() e = e[0] write = str(n) + ' ' + str(n)+ ' ' + str(e) + '\n' mm.write(write) if item[0] == 'a': ### write rest of mtx contents -> dst src wight v = item[1] u = item[2] w = item[3].split() w = w[0] write = str(u) + ' ' + str(v) + ' ' + str(w) + '\n' mm.write(write) gr.close() mm.close()
cli/tests/pcluster/models/test_s3_bucket.py
maclema/aws-parallelcluster
415
12625537
<filename>cli/tests/pcluster/models/test_s3_bucket.py # Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "LICENSE.txt" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions and # limitations under the License. import os import pytest from pcluster.aws.common import AWSClientError from tests.pcluster.aws.dummy_aws_api import mock_aws_api from tests.pcluster.models.dummy_s3_bucket import dummy_cluster_bucket, mock_bucket @pytest.mark.parametrize( "region,create_error", [ ("eu-west-1", None), ("us-east-1", None), ("eu-west-1", AWSClientError("create_bucket", "An error occurred")), ], ) def test_create_s3_bucket(region, create_error, mocker): bucket_name = "test" expected_params = {"Bucket": bucket_name} os.environ["AWS_DEFAULT_REGION"] = region if region != "us-east-1": # LocationConstraint specifies the region where the bucket will be created. # When the region is us-east-1 we are not specifying this parameter because it's the default region. expected_params["CreateBucketConfiguration"] = {"LocationConstraint": region} mock_aws_api(mocker) mocker.patch("pcluster.aws.s3.S3Client.create_bucket", side_effect=create_error) mock_bucket(mocker) bucket = dummy_cluster_bucket(bucket_name=bucket_name) if create_error: with pytest.raises(AWSClientError, match="An error occurred"): bucket.create_bucket() @pytest.mark.parametrize( "put_bucket_versioning_error, put_bucket_encryption_error, put_bucket_policy_error", [ (None, None, None), (AWSClientError("put_bucket_versioning", "An error occurred"), None, None), (None, AWSClientError("put_bucket_encryption", "An error occurred"), None), (None, None, AWSClientError("put_bucket_policy", "An error occurred")), ], ) def test_configure_s3_bucket(mocker, put_bucket_versioning_error, put_bucket_encryption_error, put_bucket_policy_error): mock_aws_api(mocker) mock_bucket(mocker) bucket = dummy_cluster_bucket() mocker.patch("pcluster.aws.s3.S3Client.put_bucket_versioning", side_effect=put_bucket_versioning_error) mocker.patch("pcluster.aws.s3.S3Client.put_bucket_encryption", side_effect=put_bucket_encryption_error) mocker.patch("pcluster.aws.s3.S3Client.put_bucket_policy", side_effect=put_bucket_policy_error) if put_bucket_versioning_error or put_bucket_encryption_error or put_bucket_policy_error: with pytest.raises(AWSClientError, match="An error occurred"): bucket.configure_s3_bucket()
horovod/common/exceptions.py
Null233/horovod
5,089
12625628
# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # Modifications copyright Microsoft # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== class HorovodInternalError(RuntimeError): """Internal error raised when a Horovod collective operation (e.g., allreduce) fails. This is handled in elastic mode as a recoverable error, and will result in a reset event. """ pass class HostsUpdatedInterrupt(RuntimeError): """Internal interrupt event indicating that the set of hosts in the job has changed. In elastic mode, this will result in a reset event without a restore to committed state. """ def __init__(self, skip_sync): self.skip_sync = skip_sync def get_version_mismatch_message(name, version, installed_version): return f'Framework {name} installed with version {installed_version} but found version {version}.\n\ This can result in unexpected behavior including runtime errors.\n\ Reinstall Horovod using `pip install --no-cache-dir` to build with the new version.' class HorovodVersionMismatchError(ImportError): """Internal error raised when the runtime version of a framework mismatches its version at Horovod installation time. """ def __init__(self, name, version, installed_version): super().__init__(get_version_mismatch_message(name, version, installed_version)) self.name = name self.version = version self.installed_version = installed_version
examples/attach.py
DrKeineLust/pwntools
8,966
12625699
<filename>examples/attach.py """ Example showing `pwnlib.gdb.attach()` """ from pwn import * bash = process('/bin/bash') gdb.attach(bash, gdbscript = ''' p "hello from pwnlib" c ''') bash.interactive()
depthai_helpers/supervisor.py
Davidsastresas/depthai
476
12625772
<filename>depthai_helpers/supervisor.py<gh_stars>100-1000 import importlib.util import os import subprocess import sys import time from pathlib import Path def createNewArgs(args): def removeArg(name, withValue=True): if name in sys.argv: idx = sys.argv.index(name) if withValue: del sys.argv[idx + 1] del sys.argv[idx] removeArg("-gt") removeArg("--guiType") removeArg("--noSupervisor") return sys.argv[1:] + ["--noSupervisor", "--guiType", args.guiType] class Supervisor: def runDemo(self, args): repo_root = Path(__file__).parent.parent args.noSupervisor = True new_args = createNewArgs(args) env = os.environ.copy() if args.guiType == "qt": new_env = env.copy() new_env["QT_QUICK_BACKEND"] = "software" new_env["LD_LIBRARY_PATH"] = str(Path(importlib.util.find_spec("PyQt5").origin).parent / "Qt5/lib") new_env["DEPTHAI_INSTALL_SIGNAL_HANDLER"] = "0" try: subprocess.check_call(' '.join([f'"{sys.executable}"', "depthai_demo.py"] + new_args), env=new_env, shell=True, cwd=repo_root) except subprocess.CalledProcessError as ex: print("Error while running demo script... {}".format(ex)) print("Waiting 5s for the device to be discoverable again...") time.sleep(5) args.guiType = "cv" if args.guiType == "cv": new_env = env.copy() new_env["DEPTHAI_INSTALL_SIGNAL_HANDLER"] = "0" new_args = createNewArgs(args) subprocess.check_call(' '.join([f'"{sys.executable}"', "depthai_demo.py"] + new_args), env=new_env, shell=True, cwd=repo_root) def checkQtAvailability(self): return importlib.util.find_spec("PyQt5") is not None
env/Lib/site-packages/OpenGL/GL/NV/conservative_raster_dilate.py
5gconnectedbike/Navio2
210
12625785
<reponame>5gconnectedbike/Navio2 '''OpenGL extension NV.conservative_raster_dilate This module customises the behaviour of the OpenGL.raw.GL.NV.conservative_raster_dilate to provide a more Python-friendly API Overview (from the spec) This extension extends the conservative rasterization functionality provided by NV_conservative_raster. It provides a new control to generate an "over-conservative" rasterization by dilating primitives prior to rasterization. When using conservative raster to bin geometry, this extension provides a programmable overlap region between adjacent primitives. Regular rasterization bins triangles with a shared edge uniquely into pixels. Conservative raster has a one-pixel overlap along the shared edge. Using a half-pixel raster dilation, this overlap region increases to two pixels. The official definition of this extension is available here: http://www.opengl.org/registry/specs/NV/conservative_raster_dilate.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.NV.conservative_raster_dilate import * from OpenGL.raw.GL.NV.conservative_raster_dilate import _EXTENSION_NAME def glInitConservativeRasterDilateNV(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
fedml_api/data_preprocessing/Landmarks/data_loader.py
xuwanwei/FedML
1,120
12625798
import os import sys import time import logging import collections import csv import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from .datasets import Landmarks def _read_csv(path: str): """Reads a csv file, and returns the content inside a list of dictionaries. Args: path: The path to the csv file. Returns: A list of dictionaries. Each row in the csv file will be a list entry. The dictionary is keyed by the column names. """ with open(path, 'r') as f: return list(csv.DictReader(f)) # class Cutout(object): # def __init__(self, length): # self.length = length # def __call__(self, img): # h, w = img.size(1), img.size(2) # mask = np.ones((h, w), np.float32) # y = np.random.randint(h) # x = np.random.randint(w) # y1 = np.clip(y - self.length // 2, 0, h) # y2 = np.clip(y + self.length // 2, 0, h) # x1 = np.clip(x - self.length // 2, 0, w) # x2 = np.clip(x + self.length // 2, 0, w) # mask[y1: y2, x1: x2] = 0. # mask = torch.from_numpy(mask) # mask = mask.expand_as(img) # img *= mask # return img # def _data_transforms_landmarks(): # landmarks_MEAN = [0.5071, 0.4865, 0.4409] # landmarks_STD = [0.2673, 0.2564, 0.2762] # train_transform = transforms.Compose([ # transforms.ToPILImage(), # transforms.RandomCrop(32, padding=4), # transforms.RandomHorizontalFlip(), # transforms.ToTensor(), # transforms.Normalize(landmarks_MEAN, landmarks_STD), # ]) # train_transform.transforms.append(Cutout(16)) # valid_transform = transforms.Compose([ # transforms.ToTensor(), # transforms.Normalize(landmarks_MEAN, landmarks_STD), # ]) # return train_transform, valid_transform class Cutout(object): def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def _data_transforms_landmarks(): # IMAGENET_MEAN = [0.5071, 0.4865, 0.4409] # IMAGENET_STD = [0.2673, 0.2564, 0.2762] IMAGENET_MEAN = [0.5, 0.5, 0.5] IMAGENET_STD = [0.5, 0.5, 0.5] image_size = 224 train_transform = transforms.Compose([ # transforms.ToPILImage(), transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), ]) train_transform.transforms.append(Cutout(16)) valid_transform = transforms.Compose([ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD), ]) return train_transform, valid_transform def get_mapping_per_user(fn): """ mapping_per_user is {'user_id': [{'user_id': xxx, 'image_id': xxx, 'class': xxx} ... {}], 'user_id': [{'user_id': xxx, 'image_id': xxx, 'class': xxx} ... {}], } or [{'user_id': xxx, 'image_id': xxx, 'class': xxx} ... {'user_id': xxx, 'image_id': xxx, 'class': xxx} ... ] } """ mapping_table = _read_csv(fn) expected_cols = ['user_id', 'image_id', 'class'] if not all(col in mapping_table[0].keys() for col in expected_cols): logging.error('%s has wrong format.', mapping_file) raise ValueError( 'The mapping file must contain user_id, image_id and class columns. ' 'The existing columns are %s' % ','.join(mapping_table[0].keys())) data_local_num_dict = dict() mapping_per_user = collections.defaultdict(list) data_files = [] net_dataidx_map = {} sum_temp = 0 for row in mapping_table: user_id = row['user_id'] mapping_per_user[user_id].append(row) for user_id, data in mapping_per_user.items(): num_local = len(mapping_per_user[user_id]) # net_dataidx_map[user_id]= (sum_temp, sum_temp+num_local) # data_local_num_dict[user_id] = num_local net_dataidx_map[int(user_id)]= (sum_temp, sum_temp+num_local) data_local_num_dict[int(user_id)] = num_local sum_temp += num_local data_files += mapping_per_user[user_id] assert sum_temp == len(data_files) return data_files, data_local_num_dict, net_dataidx_map # for centralized training def get_dataloader(dataset, datadir, train_files, test_files, train_bs, test_bs, dataidxs=None): return get_dataloader_Landmarks(datadir, train_files, test_files, train_bs, test_bs, dataidxs) # for local devices def get_dataloader_test(dataset, datadir, train_files, test_files, train_bs, test_bs, dataidxs_train, dataidxs_test): return get_dataloader_test_Landmarks(datadir, train_files, test_files, train_bs, test_bs, dataidxs_train, dataidxs_test) def get_dataloader_Landmarks(datadir, train_files, test_files, train_bs, test_bs, dataidxs=None): dl_obj = Landmarks transform_train, transform_test = _data_transforms_landmarks() train_ds = dl_obj(datadir, train_files, dataidxs=dataidxs, train=True, transform=transform_train, download=True) test_ds = dl_obj(datadir, test_files, dataidxs=None, train=False, transform=transform_test, download=True) train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=False) test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=False) return train_dl, test_dl def get_dataloader_test_Landmarks(datadir, train_files, test_files, train_bs, test_bs, dataidxs_train=None, dataidxs_test=None): dl_obj = Landmarks transform_train, transform_test = _data_transforms_landmarks() train_ds = dl_obj(datadir, train_files, dataidxs=dataidxs_train, train=True, transform=transform_train, download=True) test_ds = dl_obj(datadir, test_files, dataidxs=dataidxs_test, train=False, transform=transform_test, download=True) train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=False) test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=False) return train_dl, test_dl def load_partition_data_landmarks(dataset, data_dir, fed_train_map_file, fed_test_map_file, partition_method=None, partition_alpha=None, client_number=233, batch_size=10): train_files, data_local_num_dict, net_dataidx_map = get_mapping_per_user(fed_train_map_file) test_files = _read_csv(fed_test_map_file) class_num = len(np.unique([item['class'] for item in train_files])) # logging.info("traindata_cls_counts = " + str(traindata_cls_counts)) train_data_num = len(train_files) train_data_global, test_data_global = get_dataloader(dataset, data_dir, train_files, test_files, batch_size, batch_size) # logging.info("train_dl_global number = " + str(len(train_data_global))) # logging.info("test_dl_global number = " + str(len(test_data_global))) test_data_num = len(test_files) # get local dataset data_local_num_dict = data_local_num_dict train_data_local_dict = dict() test_data_local_dict = dict() for client_idx in range(client_number): dataidxs = net_dataidx_map[client_idx] # local_data_num = len(dataidxs) local_data_num = dataidxs[1] - dataidxs[0] # data_local_num_dict[client_idx] = local_data_num # logging.info("client_idx = %d, local_sample_number = %d" % (client_idx, local_data_num)) # training batch size = 64; algorithms batch size = 32 train_data_local, test_data_local = get_dataloader(dataset, data_dir, train_files, test_files, batch_size, batch_size, dataidxs) # logging.info("client_idx = %d, batch_num_train_local = %d, batch_num_test_local = %d" % ( # client_idx, len(train_data_local), len(test_data_local))) train_data_local_dict[client_idx] = train_data_local test_data_local_dict[client_idx] = test_data_local # logging("data_local_num_dict: %s" % data_local_num_dict) return train_data_num, test_data_num, train_data_global, test_data_global, \ data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num if __name__ == '__main__': data_dir = './cache/images' fed_g23k_train_map_file = '../../../data/gld/data_user_dict/gld23k_user_dict_train.csv' fed_g23k_test_map_file = '../../../data/gld/data_user_dict/gld23k_user_dict_test.csv' fed_g160k_train_map_file = '../../../data/gld/data_user_dict/gld160k_user_dict_train.csv' fed_g160k_map_file = '../../../data/gld/data_user_dict/gld160k_user_dict_test.csv' dataset_name = 'g160k' if dataset_name == 'g23k': client_number = 233 fed_train_map_file = fed_g23k_train_map_file fed_test_map_file = fed_g23k_test_map_file elif dataset_name == 'g160k': client_number = 1262 fed_train_map_file = fed_g160k_train_map_file fed_test_map_file = fed_g160k_map_file train_data_num, test_data_num, train_data_global, test_data_global, \ data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num = \ load_partition_data_landmarks(None, data_dir, fed_train_map_file, fed_test_map_file, partition_method=None, partition_alpha=None, client_number=client_number, batch_size=10) print(train_data_num, test_data_num, class_num) print(data_local_num_dict) i = 0 for data, label in train_data_global: print(data) print(label) i += 1 if i > 5: break print("=============================\n") for client_idx in range(client_number): i = 0 for data, label in train_data_local_dict[client_idx]: print(data) print(label) i += 1 if i > 5: break
flask_superadmin/tests/test_sqlamodel.py
romeojulietthotel/Flask-NotSuperAdmin
414
12625801
<filename>flask_superadmin/tests/test_sqlamodel.py from nose.tools import eq_, ok_, raises import wtforms from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy from sqlalchemy.exc import InvalidRequestError from flask_superadmin import Admin from flask_superadmin.model.backends.sqlalchemy.view import ModelAdmin class CustomModelView(ModelAdmin): def __init__(self, model, session, name=None, category=None, endpoint=None, url=None, **kwargs): for k, v in kwargs.iteritems(): setattr(self, k, v) super(CustomModelView, self).__init__(model, session, name, category, endpoint, url) def create_models(db): class Model1(db.Model): id = db.Column(db.Integer, primary_key=True) test1 = db.Column(db.String(20)) test2 = db.Column(db.Unicode(20)) test3 = db.Column(db.Text) test4 = db.Column(db.UnicodeText) def __init__(self, test1=None, test2=None, test3=None, test4=None): self.test1 = test1 self.test2 = test2 self.test3 = test3 self.test4 = test4 def __unicode__(self): return self.test1 class Model2(db.Model): id = db.Column(db.Integer, primary_key=True) int_field = db.Column(db.Integer) bool_field = db.Column(db.Boolean) db.create_all() return Model1, Model2 def setup(): app = Flask(__name__) app.config['SECRET_KEY'] = '1' app.config['WTF_CSRF_ENABLED'] = False app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' db = SQLAlchemy(app) admin = Admin(app) return app, db, admin def test_model(): app, db, admin = setup() Model1, Model2 = create_models(db) db.create_all() view = CustomModelView(Model1, db.session) admin.add_view(view) eq_(view.model, Model1) eq_(view.name, 'Model1') eq_(view.endpoint, 'model1') eq_(view._primary_key, 'id') # Verify form with app.test_request_context(): Form = view.get_form() ok_(isinstance(Form()._fields['test1'], wtforms.TextField)) ok_(isinstance(Form()._fields['test2'], wtforms.TextField)) ok_(isinstance(Form()._fields['test3'], wtforms.TextAreaField)) ok_(isinstance(Form()._fields['test4'], wtforms.TextAreaField)) # Make some test clients client = app.test_client() resp = client.get('/admin/model1/') eq_(resp.status_code, 200) resp = client.get('/admin/model1/add/') eq_(resp.status_code, 200) resp = client.post('/admin/model1/add/', data=dict(test1='test1large', test2='test2')) eq_(resp.status_code, 302) model = db.session.query(Model1).first() eq_(model.test1, 'test1large') eq_(model.test2, 'test2') eq_(model.test3, '') eq_(model.test4, '') resp = client.get('/admin/model1/') eq_(resp.status_code, 200) ok_('test1large' in resp.data) resp = client.get('/admin/model1/%s/' % model.id) eq_(resp.status_code, 200) resp = client.post('/admin/model1/%s/' % model.id, data=dict(test1='test1small', test2='test2large')) eq_(resp.status_code, 302) model = db.session.query(Model1).first() eq_(model.test1, 'test1small') eq_(model.test2, 'test2large') eq_(model.test3, '') eq_(model.test4, '') resp = client.post('/admin/model1/%s/delete/' % model.id) eq_(resp.status_code, 200) eq_(db.session.query(Model1).count(), 1) resp = client.post('/admin/model1/%s/delete/' % model.id, data={'confirm_delete': True}) eq_(resp.status_code, 302) eq_(db.session.query(Model1).count(), 0) @raises(InvalidRequestError) def test_no_pk(): app, db, admin = setup() class Model(db.Model): test = db.Column(db.Integer) view = CustomModelView(Model, db.session) admin.add_view(view) def test_list_display(): return app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView(Model1, db.session, list_columns=['test1', 'test3'], rename_columns=dict(test1='Column1')) admin.add_view(view) eq_(len(view._list_columns), 2) eq_(view._list_columns, [('test1', 'Column1'), ('test3', 'Test3')]) client = app.test_client() resp = client.get('/admin/model1view/') ok_('Column1' in resp.data) ok_('Test2' not in resp.data) def test_exclude(): return app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView(Model1, db.session, excluded_list_columns=['test2', 'test4']) admin.add_view(view) eq_(view._list_columns, [('test1', 'Test1'), ('test3', 'Test3')]) client = app.test_client() resp = client.get('/admin/model1view/') ok_('Test1' in resp.data) ok_('Test2' not in resp.data) def test_search_fields(): return app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView(Model1, db.session, searchable_columns=['test1', 'test2']) admin.add_view(view) eq_(view._search_supported, True) eq_(len(view._search_fields), 2) ok_(isinstance(view._search_fields[0], db.Column)) ok_(isinstance(view._search_fields[1], db.Column)) eq_(view._search_fields[0].name, 'test1') eq_(view._search_fields[1].name, 'test2') db.session.add(Model1('model1')) db.session.add(Model1('model2')) db.session.commit() client = app.test_client() resp = client.get('/admin/model1view/?search=model1') ok_('model1' in resp.data) ok_('model2' not in resp.data) def test_url_args(): return app, db, admin = setup() Model1, Model2 = create_models(db) view = CustomModelView(Model1, db.session, page_size=2, searchable_columns=['test1'], column_filters=['test1']) admin.add_view(view) db.session.add(Model1('data1')) db.session.add(Model1('data2')) db.session.add(Model1('data3')) db.session.add(Model1('data4')) db.session.commit() client = app.test_client() resp = client.get('/admin/model1view/') ok_('data1' in resp.data) ok_('data3' not in resp.data) # page resp = client.get('/admin/model1view/?page=1') ok_('data1' not in resp.data) ok_('data3' in resp.data) # sort resp = client.get('/admin/model1view/?sort=0&desc=1') ok_('data1' not in resp.data) ok_('data3' in resp.data) ok_('data4' in resp.data) # search resp = client.get('/admin/model1view/?search=data1') ok_('data1' in resp.data) ok_('data2' not in resp.data) resp = client.get('/admin/model1view/?search=^data1') ok_('data2' not in resp.data) # like resp = client.get('/admin/model1view/?flt0=0&flt0v=data1') ok_('data1' in resp.data) # not like resp = client.get('/admin/model1view/?flt0=1&flt0v=data1') ok_('data2' in resp.data) def test_non_int_pk(): return app, db, admin = setup() class Model(db.Model): id = db.Column(db.String, primary_key=True) test = db.Column(db.String) db.create_all() view = CustomModelView(Model, db.session, form_columns=['id', 'test']) admin.add_view(view) client = app.test_client() resp = client.get('/admin/modelview/') eq_(resp.status_code, 200) resp = client.post('/admin/modelview/new/', data=dict(id='test1', test='test2')) eq_(resp.status_code, 302) resp = client.get('/admin/modelview/') eq_(resp.status_code, 200) ok_('test1' in resp.data) resp = client.get('/admin/modelview/edit/?id=test1') eq_(resp.status_code, 200) ok_('test2' in resp.data) def test_reference_linking(): app, db, admin = setup() class Person(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(20)) pet = db.relationship("Dog", uselist=False, backref="person") def __init__(self, name=None): self.name = name class Dog(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(20)) person_id = db.Column(db.Integer, db.ForeignKey('person.id')) def __init__(self, name=None, person_id=None): self.name = name self.person_id = person_id def __unicode__(self): return self.name db.create_all() class DogAdmin(ModelAdmin): session = db.session class PersonAdmin(ModelAdmin): list_display = ('name', 'pet') fields = ('name', 'pet') readonly_fields = ('pet',) session = db.session db.session.add(Person(name='Stan')) db.session.commit() person = db.session.query(Person).first() db.session.add(Dog(name='Sparky', person_id=person.id)) db.session.commit() person = db.session.query(Person).first() dog = db.session.query(Dog).first() admin.register(Dog, DogAdmin, name='Dogs') admin.register(Person, PersonAdmin, name='People') client = app.test_client() # test linking on a list page resp = client.get('/admin/person/') dog_link = '<a href="/admin/dog/%s/">Sparky</a>' % dog.id ok_(dog_link in resp.data) # test linking on an edit page resp = client.get('/admin/person/%s/' % person.id) ok_('<input class="" id="name" name="name" type="text" value="Stan">' in resp.data) ok_(dog_link in resp.data)
limits/storage/base.py
mymedia2/limits
140
12625804
import threading from abc import ABCMeta, abstractmethod import six from limits.storage.registry import StorageRegistry @six.add_metaclass(StorageRegistry) @six.add_metaclass(ABCMeta) class Storage(object): """ Base class to extend when implementing a storage backend. """ def __init__(self, uri=None, **options): self.lock = threading.RLock() @abstractmethod def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in :param bool elastic_expiry: whether to keep extending the rate limit window every hit. """ raise NotImplementedError @abstractmethod def get(self, key): """ :param str key: the key to get the counter value for """ raise NotImplementedError @abstractmethod def get_expiry(self, key): """ :param str key: the key to get the expiry for """ raise NotImplementedError @abstractmethod def check(self): """ check if storage is healthy """ raise NotImplementedError @abstractmethod def reset(self): """ reset storage to clear limits """ raise NotImplementedError @abstractmethod def clear(self, key): """ resets the rate limit key :param str key: the key to clear rate limits for """ raise NotImplementedError
src/condor_tests/test_late_materialization.py
datadvance/htcondor
217
12625823
<filename>src/condor_tests/test_late_materialization.py #!/usr/bin/env pytest # this test replicates the first part of job_late_materialize_py import logging import htcondor from ornithology import ( config, standup, action, Condor, write_file, parse_submit_result, JobID, SetAttribute, SetJobStatus, JobStatus, in_order, SCRIPTS, ) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) @standup def condor(test_dir): with Condor( local_dir=test_dir / "condor", config={ "NUM_CPUS": "10", "NUM_SLOTS": "10", # must be larger than the max number of jobs we hope to materialize "SCHEDD_MATERIALIZE_LOG": "$(LOG)/MaterializeLog", "SCHEDD_DEBUG": "D_MATERIALIZE:2 D_CAT $(SCHEDD_DEBUG)", }, ) as condor: yield condor MAX_IDLE = {"idle=2": 2, "idle=3": 3, "idle=5": 5} MAX_MATERIALIZE = {"materialize=2": 2, "materialize=3": 3, "materialize=5": 5} @action(params=MAX_IDLE) def max_idle(request): return request.param @action(params=MAX_MATERIALIZE) def max_materialize(request): return request.param @action def jobids_for_sleep_jobs(test_dir, path_to_sleep, condor, max_idle, max_materialize): sub_description = """ executable = {exe} arguments = 1 request_memory = 1MB request_disk = 1MB max_materialize = {max_materialize} max_idle = {max_idle} queue {q} """.format( exe=path_to_sleep, max_materialize=max_materialize, max_idle=max_idle, q=max_materialize + max_idle + 1, ) submit_file = write_file(test_dir / "queue.sub", sub_description) submit_cmd = condor.run_command(["condor_submit", submit_file]) clusterid, num_procs = parse_submit_result(submit_cmd) jobids = [JobID(clusterid, n) for n in range(num_procs)] condor.job_queue.wait_for_events( {jobid: [SetJobStatus(JobStatus.COMPLETED)] for jobid in jobids} ) return jobids @action def num_materialized_jobs_history(condor, jobids_for_sleep_jobs): num_materialized = 0 history = [] for jobid, event in condor.job_queue.filter( lambda j, e: j in jobids_for_sleep_jobs ): if event == SetJobStatus(JobStatus.IDLE): num_materialized += 1 if event == SetJobStatus(JobStatus.COMPLETED): num_materialized -= 1 history.append(num_materialized) return history @action def num_idle_jobs_history(condor, jobids_for_sleep_jobs): num_idle = 0 history = [] for jobid, event in condor.job_queue.filter( lambda j, e: j in jobids_for_sleep_jobs ): if event == SetJobStatus(JobStatus.IDLE): num_idle += 1 if event == SetJobStatus(JobStatus.RUNNING): num_idle -= 1 history.append(num_idle) return history class TestLateMaterializationLimits: def test_all_jobs_ran(self, condor, jobids_for_sleep_jobs): for jobid in jobids_for_sleep_jobs: assert in_order( condor.job_queue.by_jobid[jobid], [ SetJobStatus(JobStatus.IDLE), SetJobStatus(JobStatus.RUNNING), SetJobStatus(JobStatus.COMPLETED), ], ) def test_never_more_materialized_than_max( self, num_materialized_jobs_history, max_materialize ): assert max(num_materialized_jobs_history) <= max_materialize def test_hit_max_materialize_limit( self, num_materialized_jobs_history, max_materialize ): assert max_materialize in num_materialized_jobs_history def test_never_more_idle_than_max( self, num_idle_jobs_history, max_idle, max_materialize ): assert max(num_idle_jobs_history) <= min(max_idle, max_materialize) def test_hit_max_idle_limit(self, num_idle_jobs_history, max_idle, max_materialize): assert min(max_idle, max_materialize) in num_idle_jobs_history @action def clusterid_for_itemdata(test_dir, path_to_sleep, condor): # enable late materialization, but with a high enough limit that they all # show up immediately (on hold, because we don't need to actually run # the jobs to do the tests) sub_description = """ executable = {exe} arguments = 0 request_memory = 1MB request_disk = 1MB max_materialize = 5 hold = true My.Foo = "$(Item)" queue in (A, B, C, D, E) """.format( exe=path_to_sleep, ) submit_file = write_file(test_dir / "queue_in.sub", sub_description) submit_cmd = condor.run_command(["condor_submit", submit_file]) clusterid, num_procs = parse_submit_result(submit_cmd) jobids = [JobID(clusterid, n) for n in range(num_procs)] condor.job_queue.wait_for_events( {jobid: [SetAttribute("Foo", None)] for jobid in jobids} ) yield clusterid condor.run_command(["condor_rm", clusterid]) class TestLateMaterializationItemdata: def test_itemdata_turns_into_job_attributes(self, condor, clusterid_for_itemdata): actual = {} for jobid, event in condor.job_queue.filter( lambda j, e: j.cluster == clusterid_for_itemdata ): # the My. doesn't end up being part of the key in the jobad if event.matches(SetAttribute("Foo", None)): actual[jobid] = event.value expected = { # first item gets put on the clusterad! JobID(clusterid_for_itemdata, -1): '"A"', JobID(clusterid_for_itemdata, 1): '"B"', JobID(clusterid_for_itemdata, 2): '"C"', JobID(clusterid_for_itemdata, 3): '"D"', JobID(clusterid_for_itemdata, 4): '"E"', } assert actual == expected def test_query_produces_expected_results(self, condor, clusterid_for_itemdata): with condor.use_config(): schedd = htcondor.Schedd() ads = schedd.query( constraint="clusterid == {}".format(clusterid_for_itemdata), # the My. doesn't end up being part of the key in the jobad projection=["clusterid", "procid", "foo"], ) actual = [ad["foo"] for ad in sorted(ads, key=lambda ad: int(ad["procid"]))] expected = list("ABCDE") assert actual == expected
desktop/core/ext-py/nose-1.3.7/examples/plugin/setup.py
kokosing/hue
5,079
12625839
<reponame>kokosing/hue """ An example of how to create a simple nose plugin. """ try: import ez_setup ez_setup.use_setuptools() except ImportError: pass from setuptools import setup setup( name='Example plugin', version='0.1', author='<NAME>', author_email = '<EMAIL>', description = 'Example nose plugin', license = 'GNU LGPL', py_modules = ['plug'], entry_points = { 'nose.plugins.0.10': [ 'example = plug:ExamplePlugin' ] } )
mmtbx/command_line/nqh_minimize.py
dperl-sol/cctbx_project
155
12625852
from __future__ import absolute_import, division, print_function import sys from mmtbx.validation.molprobity import nqh_minimize if __name__ == "__main__": nqh_minimize.run(sys.argv[1:])
hubspot/hubspot.py
fakepop/hubspot-api-python
117
12625855
<reponame>fakepop/hubspot-api-python<gh_stars>100-1000 from .client import Client class HubSpot(Client): pass
cuesubmit/cuesubmit/ui/Frame.py
mb0rt/OpenCue
334
12625864
<reponame>mb0rt/OpenCue # Copyright Contributors to the OpenCue Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Widget for entering a frame spec.""" from __future__ import print_function from __future__ import division from __future__ import absolute_import from cuesubmit.ui import Widgets class FrameSpecWidget(Widgets.CueHelpWidget): """Widget for entering a frame spec.""" helpText = 'Enter a FrameSpec value.\n' \ 'A frame spec consists of a start time, an optional end time, a step, ' \ 'and an interleave.\n' \ 'Multiple ranges can be added together by separating with commas.\n' \ ' Ex:\n' \ ' 1-10x3\n' \ ' 1-10y3 // inverted step\n' \ ' 10-1x-1\n' \ ' 1 // same as "1-1x1"\n' \ ' 1-10:5 // interleave of 5\n' \ ' 1-5x2, 6-10 // 1 through 5 with a step of 2 and 6 through 10\n' def __init__(self, parent=None): super(FrameSpecWidget, self).__init__(parent) self.frameSpecInput = Widgets.CueLabelLineEdit('Frame Spec:') self.contentLayout.addWidget(self.frameSpecInput)
scripts/pendulum_irl.py
SaminYeasar/inverse_rl
220
12625906
import tensorflow as tf from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy from sandbox.rocky.tf.envs.base import TfEnv from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from rllab.envs.gym_env import GymEnv from inverse_rl.algos.irl_trpo import IRLTRPO from inverse_rl.models.imitation_learning import AIRLStateAction from inverse_rl.utils.log_utils import rllab_logdir, load_latest_experts def main(): env = TfEnv(GymEnv('Pendulum-v0', record_video=False, record_log=False)) experts = load_latest_experts('data/pendulum', n=5) irl_model = AIRLStateAction(env_spec=env.spec, expert_trajs=experts) policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32)) algo = IRLTRPO( env=env, policy=policy, irl_model=irl_model, n_itr=200, batch_size=1000, max_path_length=100, discount=0.99, store_paths=True, discrim_train_itrs=50, irl_model_wt=1.0, entropy_weight=0.1, # this should be 1.0 but 0.1 seems to work better zero_environment_reward=True, baseline=LinearFeatureBaseline(env_spec=env.spec) ) with rllab_logdir(algo=algo, dirname='data/pendulum_gcl'): with tf.Session(): algo.train() if __name__ == "__main__": main()
sdk/communication/azure-communication-identity/azure/communication/identity/_generated/models/__init__.py
vincenttran-msft/azure-sdk-for-python
2,728
12625911
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import CommunicationError from ._models_py3 import CommunicationErrorResponse from ._models_py3 import CommunicationIdentity from ._models_py3 import CommunicationIdentityAccessToken from ._models_py3 import CommunicationIdentityAccessTokenRequest from ._models_py3 import CommunicationIdentityAccessTokenResult from ._models_py3 import CommunicationIdentityCreateRequest from ._models_py3 import TeamsUserAccessTokenRequest except (SyntaxError, ImportError): from ._models import CommunicationError # type: ignore from ._models import CommunicationErrorResponse # type: ignore from ._models import CommunicationIdentity # type: ignore from ._models import CommunicationIdentityAccessToken # type: ignore from ._models import CommunicationIdentityAccessTokenRequest # type: ignore from ._models import CommunicationIdentityAccessTokenResult # type: ignore from ._models import CommunicationIdentityCreateRequest # type: ignore from ._models import TeamsUserAccessTokenRequest # type: ignore from ._communication_identity_client_enums import ( CommunicationTokenScope, ) __all__ = [ 'CommunicationError', 'CommunicationErrorResponse', 'CommunicationIdentity', 'CommunicationIdentityAccessToken', 'CommunicationIdentityAccessTokenRequest', 'CommunicationIdentityAccessTokenResult', 'CommunicationIdentityCreateRequest', 'TeamsUserAccessTokenRequest', 'CommunicationTokenScope', ]
sknetwork/utils/tests/test_projection_simplex.py
altana-tech/scikit-network
457
12625948
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """tests for simplex.py""" import unittest import numpy as np from scipy import sparse from sknetwork.utils.check import is_proba_array from sknetwork.utils.simplex import projection_simplex class TestProjSimplex(unittest.TestCase): def test_array(self): x = np.random.rand(5) proj = projection_simplex(x) self.assertTrue(is_proba_array(proj)) x = np.random.rand(4, 3) proj = projection_simplex(x) self.assertTrue(is_proba_array(proj)) def test_csr(self): x = sparse.csr_matrix(np.ones((3, 3))) proj1 = projection_simplex(x) proj2 = projection_simplex(x.astype(bool)) self.assertEqual(0, (proj1-proj2).nnz) def test_other(self): with self.assertRaises(TypeError): projection_simplex('toto')
api/chalicelib/core/mobile.py
nogamenofun98/openreplay
3,614
12625978
<reponame>nogamenofun98/openreplay from chalicelib.core import projects from chalicelib.utils import s3 from chalicelib.utils.helper import environ def sign_keys(project_id, session_id, keys): result = [] project_key = projects.get_project_key(project_id) for k in keys: result.append(s3.get_presigned_url_for_sharing(bucket=environ["iosBucket"], key=f"{project_key}/{session_id}/{k}", expires_in=60 * 60)) return result
Lib/test/test_importlib/builtin/test_loader.py
deadsnakes/python3.3
652
12625983
<reponame>deadsnakes/python3.3 import importlib from importlib import machinery from .. import abc from .. import util from . import util as builtin_util import sys import types import unittest class LoaderTests(abc.LoaderTests): """Test load_module() for built-in modules.""" verification = {'__name__': 'errno', '__package__': '', '__loader__': machinery.BuiltinImporter} def verify(self, module): """Verify that the module matches against what it should have.""" self.assertIsInstance(module, types.ModuleType) for attr, value in self.verification.items(): self.assertEqual(getattr(module, attr), value) self.assertIn(module.__name__, sys.modules) load_module = staticmethod(lambda name: machinery.BuiltinImporter.load_module(name)) def test_module(self): # Common case. with util.uncache(builtin_util.NAME): module = self.load_module(builtin_util.NAME) self.verify(module) # Built-in modules cannot be a package. test_package = test_lacking_parent = None # No way to force an import failure. test_state_after_failure = None def test_module_reuse(self): # Test that the same module is used in a reload. with util.uncache(builtin_util.NAME): module1 = self.load_module(builtin_util.NAME) module2 = self.load_module(builtin_util.NAME) self.assertIs(module1, module2) def test_unloadable(self): name = 'dssdsdfff' assert name not in sys.builtin_module_names with self.assertRaises(ImportError) as cm: self.load_module(name) self.assertEqual(cm.exception.name, name) def test_already_imported(self): # Using the name of a module already imported but not a built-in should # still fail. assert hasattr(importlib, '__file__') # Not a built-in. with self.assertRaises(ImportError) as cm: self.load_module('importlib') self.assertEqual(cm.exception.name, 'importlib') class InspectLoaderTests(unittest.TestCase): """Tests for InspectLoader methods for BuiltinImporter.""" def test_get_code(self): # There is no code object. result = machinery.BuiltinImporter.get_code(builtin_util.NAME) self.assertIsNone(result) def test_get_source(self): # There is no source. result = machinery.BuiltinImporter.get_source(builtin_util.NAME) self.assertIsNone(result) def test_is_package(self): # Cannot be a package. result = machinery.BuiltinImporter.is_package(builtin_util.NAME) self.assertTrue(not result) def test_not_builtin(self): # Modules not built-in should raise ImportError. for meth_name in ('get_code', 'get_source', 'is_package'): method = getattr(machinery.BuiltinImporter, meth_name) with self.assertRaises(ImportError) as cm: method(builtin_util.BAD_NAME) self.assertRaises(builtin_util.BAD_NAME) def test_main(): from test.support import run_unittest run_unittest(LoaderTests, InspectLoaderTests) if __name__ == '__main__': test_main()
raiden/transfer/identifiers.py
tirkarthi/raiden
2,101
12626008
from dataclasses import dataclass from raiden.constants import EMPTY_ADDRESS, UINT256_MAX from raiden.utils.formatting import to_checksum_address from raiden.utils.typing import ( Address, ChainID, ChannelID, T_Address, T_ChainID, T_ChannelID, TokenNetworkAddress, typecheck, ) @dataclass(frozen=True, order=True) class CanonicalIdentifier: chain_identifier: ChainID token_network_address: TokenNetworkAddress channel_identifier: ChannelID def validate(self) -> None: typecheck(self.chain_identifier, T_ChainID) typecheck(self.token_network_address, T_Address) typecheck(self.channel_identifier, T_ChannelID) if self.channel_identifier < 0 or self.channel_identifier > UINT256_MAX: raise ValueError("channel id is invalid") def __str__(self) -> str: return ( "CanonicalIdentifier(" f"chain_identifier={self.chain_identifier}, " f"token_network_address={to_checksum_address(self.token_network_address)}, " f"channel_identifier={self.channel_identifier}" ")" ) @dataclass(frozen=True) class QueueIdentifier: recipient: Address canonical_identifier: CanonicalIdentifier def __str__(self) -> str: return ( "QueueIdentifier(" f"recipient={to_checksum_address(self.recipient)}, " f"canonical_identifier={self.canonical_identifier}" ")" ) CANONICAL_IDENTIFIER_UNORDERED_QUEUE = CanonicalIdentifier( ChainID(0), TokenNetworkAddress(EMPTY_ADDRESS), ChannelID(0) )
environ.py
XuhanLiu/DrugEx
109
12626033
#!/usr/bin/env python import numpy as np import pandas as pd import torch from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.preprocessing import MinMaxScaler as Scaler from sklearn.cross_decomposition import PLSRegression from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC, SVR from sklearn.model_selection import StratifiedKFold, KFold from torch.utils.data import DataLoader, TensorDataset import models import os import utils import joblib from copy import deepcopy from rdkit import Chem def SVM(X, y, X_ind, y_ind, reg=False): """ Cross validation and Independent test for SVM classifion/regression model. Arguments: X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples and n is the number of features. y (np.ndarray): m-d label array for cross validation, where m is the number of samples and equals to row of X. X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples and n is the number of features. y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and equals to row of X_ind, and l is the number of types. reg (bool): it True, the training is for regression, otherwise for classification. Returns: cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. """ if reg: folds = KFold(5).split(X) alg = SVR() else: folds = StratifiedKFold(5).split(X, y) alg = SVC(probability=True) cvs = np.zeros(y.shape) inds = np.zeros(y_ind.shape) gs = GridSearchCV(deepcopy(alg), {'C': 2.0 ** np.array([-15, 15]), 'gamma': 2.0 ** np.array([-15, 15])}, n_jobs=10) gs.fit(X, y) params = gs.best_params_ print(params) for i, (trained, valided) in enumerate(folds): model = deepcopy(alg) model.C = params['C'] model.gamma = params['gamma'] if not reg: model.probability=True model.fit(X[trained], y[trained], sample_weight=[1 if v >= 4 else 0.1 for v in y[trained]]) if reg: cvs[valided] = model.predict(X[valided]) inds += model.predict(X_ind) else: cvs[valided] = model.predict_proba(X[valided])[:, 1] inds += model.predict_proba(X_ind)[:, 1] return cvs, inds / 5 def RF(X, y, X_ind, y_ind, reg=False): """ Cross validation and Independent test for RF classifion/regression model. Arguments: X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples and n is the number of features. y (np.ndarray): m-d label array for cross validation, where m is the number of samples and equals to row of X. X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples and n is the number of features. y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and equals to row of X_ind, and l is the number of types. reg (bool): it True, the training is for regression, otherwise for classification. Returns: cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. """ if reg: folds = KFold(5).split(X) alg = RandomForestRegressor else: folds = StratifiedKFold(5).split(X, y) alg = RandomForestClassifier cvs = np.zeros(y.shape) inds = np.zeros(y_ind.shape) for i, (trained, valided) in enumerate(folds): model = alg(n_estimators=1000, n_jobs=10) model.fit(X[trained], y[trained], sample_weight=[1 if v >= 4 else 0.1 for v in y[trained]]) if reg: cvs[valided] = model.predict(X[valided]) inds += model.predict(X_ind) else: cvs[valided] = model.predict_proba(X[valided])[:, 1] inds += model.predict_proba(X_ind)[:, 1] return cvs, inds / 5 def KNN(X, y, X_ind, y_ind, reg=False): """ Cross validation and Independent test for KNN classifion/regression model. Arguments: X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples and n is the number of features. y (np.ndarray): m-d label array for cross validation, where m is the number of samples and equals to row of X. X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples and n is the number of features. y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and equals to row of X_ind, and l is the number of types. reg (bool): it True, the training is for regression, otherwise for classification. Returns: cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. """ if reg: folds = KFold(5).split(X) alg = KNeighborsRegressor else: folds = StratifiedKFold(5).split(X, y) alg = KNeighborsClassifier cvs = np.zeros(y.shape) inds = np.zeros(y_ind.shape) for i, (trained, valided) in enumerate(folds): model = alg(n_jobs=10) model.fit(X[trained], y[trained]) if reg: cvs[valided] = model.predict(X[valided]) inds += model.predict(X_ind) else: cvs[valided] = model.predict_proba(X[valided])[:, 1] inds += model.predict_proba(X_ind)[:, 1] return cvs, inds / 5 def NB(X, y, X_ind, y_ind): """ Cross validation and Independent test for Naive Bayes classifion model. Arguments: X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples and n is the number of features. y (np.ndarray): m-d label array for cross validation, where m is the number of samples and equals to row of X. X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples and n is the number of features. y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and equals to row of X_ind, and l is the number of types. Returns: cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. """ folds = KFold(5).split(X) cvs = np.zeros(y.shape) inds = np.zeros(y_ind.shape) for i, (trained, valided) in enumerate(folds): model = GaussianNB() model.fit(X[trained], y[trained], sample_weight=[1 if v >= 4 else 0.1 for v in y[trained]]) cvs[valided] = model.predict_proba(X[valided])[:, 1] inds += model.predict_proba(X_ind)[:, 1] return cvs, inds / 5 def PLS(X, y, X_ind, y_ind): """ Cross validation and Independent test for PLS regression model. Arguments: X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples and n is the number of features. y (np.ndarray): m-d label array for cross validation, where m is the number of samples and equals to row of X. X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples and n is the number of features. y_ind (np.ndarray): m-d label array for independent set, where m is the number of samples and equals to row of X_ind, and l is the number of types. reg (bool): it True, the training is for regression, otherwise for classification. Returns: cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. """ folds = KFold(5).split(X) cvs = np.zeros(y.shape) inds = np.zeros(y_ind.shape) for i, (trained, valided) in enumerate(folds): model = PLSRegression() model.fit(X[trained], y[trained]) cvs[valided] = model.predict(X[valided])[:, 0] inds += model.predict(X_ind)[:, 0] return cvs, inds / 5 def DNN(X, y, X_ind, y_ind, out, reg=False): """ Cross validation and Independent test for DNN classifion/regression model. Arguments: X (np.ndarray): m x n feature matrix for cross validation, where m is the number of samples and n is the number of features. y (np.ndarray): m x l label matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types. X_ind (np.ndarray): m x n Feature matrix for independent set, where m is the number of samples and n is the number of features. y_ind (np.ndarray): m-d label arrays for independent set, where m is the number of samples and equals to row of X_ind, and l is the number of types. reg (bool): it True, the training is for regression, otherwise for classification. Returns: cvs (np.ndarray): m x l result matrix for cross validation, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. inds (np.ndarray): m x l result matrix for independent test, where m is the number of samples and equals to row of X, and l is the number of types and equals to row of X. """ if y.shape[1] > 1 or reg: folds = KFold(5).split(X) else: folds = StratifiedKFold(5).split(X, y[:, 0]) NET = models.STFullyConnected if y.shape[1] == 1 else models.MTFullyConnected indep_set = TensorDataset(torch.Tensor(X_ind), torch.Tensor(y_ind)) indep_loader = DataLoader(indep_set, batch_size=BATCH_SIZE) cvs = np.zeros(y.shape) inds = np.zeros(y_ind.shape) for i, (trained, valided) in enumerate(folds): train_set = TensorDataset(torch.Tensor(X[trained]), torch.Tensor(y[trained])) train_loader = DataLoader(train_set, batch_size=BATCH_SIZE) valid_set = TensorDataset(torch.Tensor(X[valided]), torch.Tensor(y[valided])) valid_loader = DataLoader(valid_set, batch_size=BATCH_SIZE) net = NET(X.shape[1], y.shape[1], is_reg=reg) net.fit(train_loader, valid_loader, out='%s_%d' % (out, i), epochs=N_EPOCH, lr=LR) cvs[valided] = net.predict(valid_loader) inds += net.predict(indep_loader) return cvs, inds / 5 def Train_RF(X, y, out, reg=False): if reg: model = RandomForestRegressor(n_estimators=1000, n_jobs=10) else: model = RandomForestClassifier(n_estimators=1000, n_jobs=10) model.fit(X, y, sample_weight=[1 if v >= 4 else 0.1 for v in y]) joblib.dump(model, out, compress=3) def mt_task(fname, out, reg=False, is_extra=True, time_split=False): df = pd.read_table(fname)[pair].dropna(subset=pair[1:2]) df = df[df.Target_ChEMBL_ID.isin(trgs)] year = df.groupby(pair[1])[pair[-1:]].min().dropna() year = year[year.Document_Year > 2015].index df = df[pair].set_index(pair[0:2]) numery = df[pair[2]].groupby(pair[0:2]).mean().dropna() comments = df[(df.Comment.str.contains('Not Active') == True)] inhibits = df[(df.Standard_Type == 'Inhibition') & df.Standard_Relation.isin(['<', '<='])] relations = df[df.Standard_Type.isin(['EC50', 'IC50', 'Kd', 'Ki']) & df.Standard_Relation.isin(['>', '>='])] binary = pd.concat([comments, inhibits, relations], axis=0) binary = binary[~binary.index.isin(numery.index)] binary[pair[2]] = 3.99 binary = binary[pair[2]].groupby(pair[0:2]).first() df = numery.append(binary) if is_extra else numery if not reg: df[pair[2]] = (df[pair[2]] > th).astype(float) df = df.unstack(pair[0]) test_ix = set(df.index).intersection(year) df_test = df.loc[test_ix] if time_split else df.sample(len(test_ix)) df_data = df.drop(df_test.index) df_data = df_data.sample(len(df_data)) for alg in ['RF', 'MT_DNN', 'SVM', 'PLS', 'KNN', 'DNN']: if alg == 'MT_DNN': test_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in df_test.index]) data_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in df_data.index]) scaler = Scaler(); scaler.fit(data_x) test_x = scaler.transform(test_x) data_x = scaler.transform(data_x) data = df_data.stack().to_frame(name='Label') test = df_test.stack().to_frame(name='Label') data_p, test_p = DNN(data_x, df_data.values, test_x, df_test.values, out=out, reg=reg) data['Score'] = pd.DataFrame(data_p, index=df_data.index, columns=df_data.columns).stack() test['Score'] = pd.DataFrame(test_p, index=df_test.index, columns=df_test.columns).stack() data.to_csv(out + alg + '_LIGAND.cv.tsv', sep='\t') test.to_csv(out + alg + '_LIGAND.ind.tsv', sep='\t') else: for trg in trgs: test_y = df_test[trg].dropna() data_y = df_data[trg].dropna() test_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in test_y.index]) data_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in data_y.index]) if alg != 'RF': scaler = Scaler(); scaler.fit(data_x) test_x = scaler.transform(test_x) data_x = scaler.transform(data_x) else: X = np.concatenate([data_x, test_x], axis=0) y = np.concatenate([data_y.values, test_y.values], axis=0) Train_RF(X, y, out=out + '%s_%s.pkg' % (alg, trg), reg=reg) data, test = data_y.to_frame(name='Label'), test_y.to_frame(name='Label') a, b = cross_validation(data_x, data.values, test_x, test.values, alg, out + '%s_%s' % (alg, trg), reg=reg) data['Score'], test['Score'] = a, b data.to_csv(out + '%s_%s.cv.tsv' % (alg, trg), sep='\t') test.to_csv(out + '%s_%s.ind.tsv' % (alg, trg), sep='\t') def single_task(feat, alg='RF', reg=False, is_extra=True): df = pd.read_table('data/LIGAND_RAW.tsv').dropna(subset=pair[1:2]) df = df[df[pair[0]] == feat] df = df[pair].set_index(pair[1]) year = df[pair[-1:]].groupby(pair[1]).min().dropna() test = year[year[pair[-1]] > 2015].index numery = df[pair[2]].groupby(pair[1]).mean().dropna() comments = df[(df.Comment.str.contains('Not Active') == True)] inhibits = df[(df.Standard_Type == 'Inhibition') & df.Standard_Relation.isin(['<', '<='])] relations = df[df.Standard_Type.isin(['EC50', 'IC50', 'Kd', 'Ki']) & df.Standard_Relation.isin(['>', '>='])] binary = pd.concat([comments, inhibits, relations], axis=0) binary = binary[~binary.index.isin(numery.index)] binary[pair[2]] = 3.99 binary = binary[pair[2]].groupby(binary.index).first() df = numery.append(binary) if is_extra else numery if not reg: df = (df > th).astype(float) df = df.sample(len(df)) print(feat, len(numery[numery >= th]), len(numery[numery < th]), len(binary)) test_ix = set(df.index).intersection(test) test = df.loc[test_ix].dropna() data = df.drop(test.index) test_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in test.index]) data_x = utils.Predictor.calc_fp([Chem.MolFromSmiles(mol) for mol in data.index]) out = 'output/single/%s_%s_%s' % (alg, 'REG' if reg else 'CLS', feat) if alg != 'RF': scaler = Scaler(); scaler.fit(data_x) test_x = scaler.transform(test_x) data_x = scaler.transform(data_x) else: X = np.concatenate([data_x, test_x], axis=0) y = np.concatenate([data.values, test.values], axis=0) Train_RF(X, y[:, 0], out=out + '.pkg', reg=reg) data, test = data.to_frame(name='Label'), test.to_frame(name='Label') data['Score'], test['Score'] = cross_validation(data_x, data.values, test_x, test.values, alg, out, reg=reg) data.to_csv(out + '.cv.tsv', sep='\t') test.to_csv(out + '.ind.tsv', sep='\t') def cross_validation(X, y, X_ind, y_ind, alg='DNN', out=None, reg=False): if alg == 'RF': cv, ind = RF(X, y[:, 0], X_ind, y_ind[:, 0], reg=reg) elif alg == 'SVM': cv, ind = SVM(X, y[:, 0], X_ind, y_ind[:, 0], reg=reg) elif alg == 'KNN': cv, ind = KNN(X, y[:, 0], X_ind, y_ind[:, 0], reg=reg) elif alg == 'NB': cv, ind = NB(X, y[:, 0], X_ind, y_ind[:, 0]) elif alg == 'PLS': cv, ind = PLS(X, y[:, 0], X_ind, y_ind[:, 0]) elif alg == 'DNN': cv, ind = DNN(X, y, X_ind, y_ind, out=out, reg=reg) return cv, ind if __name__ == '__main__': pair = ['Target_ChEMBL_ID', 'Smiles', 'pChEMBL_Value', 'Comment', 'Standard_Type', 'Standard_Relation', 'Document_Year'] BATCH_SIZE = int(2 ** 11) N_EPOCH = 1000 os.environ["CUDA_VISIBLE_DEVICES"] = "0" th= 6.5 trgs = ['CHEMBL226', 'CHEMBL251', 'CHEMBL240'] for reg in [False, True]: LR = 1e-4 if reg else 1e-5 for chembl in trgs: single_task(chembl, 'DNN', reg=reg) single_task(chembl, 'RF', reg=reg) single_task(chembl, 'SVM', reg=reg) if reg: single_task(chembl, 'PLS', reg=reg) else: single_task(chembl, 'NB', reg=reg) single_task(chembl, 'KNN', reg=reg) mt_task('data/LIGAND_RAW.tsv', 'output/random_split/', reg=reg, time_split=False) mt_task('data/LIGAND_RAW.tsv', 'output/time_split/', reg=reg, time_split=True)
kolibri/core/__init__.py
MBKayro/kolibri
545
12626036
<reponame>MBKayro/kolibri """TODO: Write something about this module (everything in the docstring enters the docs) """ from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals default_app_config = "kolibri.core.apps.KolibriCoreConfig"
koalixcrm/crm/factories/factory_payment_reminder.py
Cataldir/koalixcrm
290
12626041
# -*- coding: utf-8 -*- from koalixcrm.crm.models import PaymentReminder from koalixcrm.crm.factories.factory_sales_document import StandardSalesDocumentFactory class StandardPaymentReminderFactory(StandardSalesDocumentFactory): class Meta: model = PaymentReminder payable_until = "2018-05-20" payment_bank_reference = "This is a bank account reference" iteration_number = "1" status = "C"
src/exabgp/bgp/message/nop.py
pierky/exabgp
1,560
12626047
<gh_stars>1000+ # encoding: utf-8 """ nop.py Created by <NAME> on 2009-11-06. Copyright (c) 2009-2017 Exa Networks. All rights reserved. License: 3-clause BSD. (See the COPYRIGHT file) """ from exabgp.bgp.message.message import Message # ========================================================================= NOP # class NOP(Message): ID = Message.CODE.NOP TYPE = bytes([Message.CODE.NOP]) def message(self, negotiated=None): raise RuntimeError('NOP messages can not be sent on the wire') def __str__(self): return "NOP" @classmethod def unpack_message(cls, data, direction, negotiated): # pylint: disable=W0613 return NOP() _NOP = NOP()
pywsd/__init__.py
mihal277/pywsd
581
12626061
<reponame>mihal277/pywsd<gh_stars>100-1000 #!/usr/bin/env python -*- coding: utf-8 -*- # # Python Word Sense Disambiguation (pyWSD) # # Copyright (C) 2014-2020 alvations # URL: # For license information, see LICENSE.md from __future__ import absolute_import, print_function import sys import time from wn import WordNet from wn.constants import wordnet_30_dir __builtins__['wn'] = WordNet(wordnet_30_dir) __version__ = '1.2.4' # Warm up the library. print('Warming up PyWSD (takes ~10 secs)...', end=' ', file=sys.stderr, flush=True) start = time.time() from pywsd.lesk import * from pywsd.baseline import * from pywsd.similarity import * #import semcor #import semeval from pywsd.allwords_wsd import disambiguate simple_lesk('This is a foo bar sentence', 'bar') print('took {} secs.'.format(time.time()-start), file=sys.stderr)
fairseq/tokenizer.py
fairseq-FT/fairseq
16,259
12626104
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re SPACE_NORMALIZER = re.compile(r"\s+") def tokenize_line(line): line = SPACE_NORMALIZER.sub(" ", line) line = line.strip() return line.split()
scripts/stl/udp_inc_len_9k.py
ajitkhaparde/trex-core
956
12626132
<filename>scripts/stl/udp_inc_len_9k.py from trex_stl_lib.api import * import argparse class STLS1(object): def __init__ (self): self.max_pkt_size_l3 =9*1024; def create_stream (self): # pkt p_l2 = Ether(); p_l3 = IP(src="192.168.127.12",dst="172.16.58.3") p_l4 = UDP(dport=12,sport=1025) pyld_size = max(0, self.max_pkt_size_l3 - len(p_l3/p_l4)); base_pkt = p_l2/p_l3/p_l4/('\x55'*(pyld_size)) l3_len_fix =-(len(p_l2)); l4_len_fix =-(len(p_l2/p_l3)); # vm vm = STLScVmRaw( [ STLVmFlowVar(name="fv_rand", min_value=64, max_value=len(base_pkt), size=2, op="inc"), STLVmTrimPktSize("fv_rand"), # total packet size STLVmWrFlowVar(fv_name="fv_rand", pkt_offset= "IP.len", add_val=l3_len_fix), # fix ip len STLVmFixIpv4(offset = "IP"), # fix checksum STLVmWrFlowVar(fv_name="fv_rand", pkt_offset= "UDP.len", add_val=l4_len_fix) # fix udp len ] ) pkt = STLPktBuilder(pkt = base_pkt, vm = vm) return STLStream(packet = pkt, mode = STLTXCont()) def get_streams (self, tunables, **kwargs): parser = argparse.ArgumentParser(description='Argparser for {}'.format(os.path.basename(__file__)), formatter_class=argparse.ArgumentDefaultsHelpFormatter) args = parser.parse_args(tunables) # create 1 stream return [ self.create_stream() ] # dynamic load - used for trex console or simulator def register(): return STLS1()
tests/elf/test_equality.py
junghee/LIEF
2,999
12626150
<reponame>junghee/LIEF #!/usr/bin/env python import itertools import logging import os import random import stat import subprocess import sys import tempfile import unittest from unittest import TestCase import lief from utils import get_sample lief.logging.set_level(lief.logging.LOGGING_LEVEL.INFO) class TestEquality64(TestCase): def setUp(self): self.logger = logging.getLogger(__name__) self.input = lief.parse(get_sample("ELF/ELF64_x86-64_binary_all.bin")) _, output = tempfile.mkstemp(prefix="all_bis") self.input.write(output) self.output = lief.parse(output) def test_header(self): self.assertEqual(self.input.header, self.output.header) def test_sections(self): for l, r in zip(self.input.sections, self.output.sections): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_segments(self): for l, r in zip(self.input.segments, self.output.segments): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_relocations(self): for l, r in zip(self.input.relocations, self.output.relocations): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_symbols(self): for l, r in zip(self.input.symbols, self.output.symbols): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_dynamic_entries(self): for l, r in zip(self.input.dynamic_entries, self.output.dynamic_entries): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) class TestEquality32(TestCase): def setUp(self): self.logger = logging.getLogger(__name__) self.input = lief.parse(get_sample("ELF/ELF32_x86_binary_all.bin")) _, output = tempfile.mkstemp(prefix="all_bis") self.input.write(output) self.output = lief.parse(output) def test_header(self): self.assertEqual(self.input.header, self.output.header) def test_sections(self): for l, r in zip(self.input.sections, self.output.sections): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_segments(self): for l, r in zip(self.input.segments, self.output.segments): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_relocations(self): for l, r in zip(self.input.relocations, self.output.relocations): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_symbols(self): for l, r in zip(self.input.symbols, self.output.symbols): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) def test_dynamic_entries(self): for l, r in zip(self.input.dynamic_entries, self.output.dynamic_entries): self.assertEqual(l, r, "\n{!s}\n{!s}".format(l, r)) if __name__ == '__main__': root_logger = logging.getLogger() root_logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) root_logger.addHandler(ch) unittest.main(verbosity=2)
src/simian/mac/munki/handlers/pkgsinfo.py
tristansgray/simian
326
12626152
#!/usr/bin/env python # # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """PackagesInfo handlers.""" import hashlib import httplib import logging import urllib from simian.mac.common import datastore_locks from simian.auth import gaeserver from simian.mac import models from simian.mac.common import auth from simian.mac.munki import handlers from simian.mac.munki import plist from simian.mac.munki.handlers import pkgs class PackageDoesNotExistError(plist.PlistError): """The package referenced in the pkginfo plist does not exist.""" class MunkiPackageInfoPlistStrict(plist.MunkiPackageInfoPlist): """Class for Munki plist with added strict validation.""" def __init__(self, *args, **kwargs): super(MunkiPackageInfoPlistStrict, self).__init__(*args, **kwargs) self.AddValidationHook(self.ValidatePackageExists) def ValidatePackageExists(self): """Verifies if a particular package exists or not.""" if not pkgs.PackageExists(self._plist['installer_item_location']): raise PackageDoesNotExistError( 'Package %s does not exist' % self._plist['installer_item_location']) class PackagesInfo(handlers.AuthenticationHandler): """Handler for /pkgsinfo/""" def get(self, filename=None): """GET Args: filename: string like Firefox-1.0.dmg """ auth_return = auth.DoAnyAuth() if hasattr(auth_return, 'email'): email = auth_return.email() if not any((auth.IsAdminUser(email), auth.IsSupportUser(email), )): raise auth.IsAdminMismatch if filename: filename = urllib.unquote(filename) hash_str = self.request.get('hash') if hash_str: lock = models.GetLockForPackage(filename) try: lock.Acquire(timeout=30, max_acquire_attempts=5) except datastore_locks.AcquireLockError: self.response.set_status(httplib.FORBIDDEN) self.response.out.write('Could not lock pkgsinfo') return pkginfo = models.PackageInfo.get_by_key_name(filename) if pkginfo: self.response.headers['Content-Type'] = 'text/xml; charset=utf-8' if hash_str: self.response.headers['X-Pkgsinfo-Hash'] = self._Hash(pkginfo.plist) self.response.out.write(pkginfo.plist) else: if hash_str: lock.Release() self.response.set_status(httplib.NOT_FOUND) return if hash_str: lock.Release() else: query = models.PackageInfo.all() filename = self.request.get('filename') if filename: query.filter('filename', filename) install_types = self.request.get_all('install_types') for install_type in install_types: query.filter('install_types =', install_type) catalogs = self.request.get_all('catalogs') for catalog in catalogs: query.filter('catalogs =', catalog) pkgs = [] for p in query: pkg = {} for k in p.properties(): if k != '_plist': pkg[k] = getattr(p, k) pkgs.append(pkg) self.response.out.write('<?xml version="1.0" encoding="UTF-8"?>\n') self.response.out.write(plist.GetXmlStr(pkgs)) self.response.headers['Content-Type'] = 'text/xml; charset=utf-8' def _Hash(self, s): """Return a sha256 hash for a string. Args: s: str Returns: str, sha256 digest """ h = hashlib.sha256(str(s)) return h.hexdigest() def put(self, filename): """PUT Args: filename: string like Firefox-1.0.dmg """ session = gaeserver.DoMunkiAuth(require_level=gaeserver.LEVEL_UPLOADPKG) filename = urllib.unquote(filename) hash_str = self.request.get('hash') catalogs = self.request.get('catalogs', None) manifests = self.request.get('manifests', None) install_types = self.request.get('install_types') if catalogs == '': catalogs = [] elif catalogs: catalogs = catalogs.split(',') if manifests == '': manifests = [] elif manifests: manifests = manifests.split(',') if install_types: install_types = install_types.split(',') mpl = MunkiPackageInfoPlistStrict(self.request.body) try: mpl.Parse() except plist.PlistError, e: logging.exception('Invalid pkginfo plist PUT: \n%s\n', self.request.body) self.response.set_status(httplib.BAD_REQUEST) self.response.out.write(str(e)) return lock_name = 'pkgsinfo_%s' % filename lock = datastore_locks.DatastoreLock(lock_name) try: lock.Acquire(timeout=30, max_acquire_attempts=5) except datastore_locks.AcquireLockError: self.response.set_status(httplib.FORBIDDEN) self.response.out.write('Could not lock pkgsinfo') return # To avoid pkginfo uploads without corresponding packages, only allow # updates to existing PackageInfo entities, not creations of new ones. pkginfo = models.PackageInfo.get_by_key_name(filename) if pkginfo is None: logging.warning( 'pkginfo "%s" does not exist; PUT only allows updates.', filename) self.response.set_status(httplib.FORBIDDEN) self.response.out.write('Only updates supported') lock.Release() return # If the pkginfo is not modifiable, ensure only manifests have changed. if not pkginfo.IsSafeToModify(): if not mpl.EqualIgnoringManifestsAndCatalogs(pkginfo.plist): logging.warning( 'pkginfo "%s" is in stable or testing; change prohibited.', filename) self.response.set_status(httplib.FORBIDDEN) self.response.out.write('Changes to pkginfo not allowed') lock.Release() return # If the update parameter asked for a careful update, by supplying # a hash of the last known pkgsinfo, then compare the hash to help # the client make a non destructive update. if hash_str: if self._Hash(pkginfo.plist) != hash_str: self.response.set_status(httplib.CONFLICT) self.response.out.write('Update hash does not match') lock.Release() return # All verification has passed, so let's create the PackageInfo entity. pkginfo.plist = mpl pkginfo.name = mpl.GetPackageName() if catalogs is not None: pkginfo.catalogs = catalogs if manifests is not None: pkginfo.manifests = manifests if install_types: pkginfo.install_types = install_types pkginfo.put() lock.Release() for track in pkginfo.catalogs: models.Catalog.Generate(track, delay=1) # Log admin pkginfo put to Datastore. user = session.uuid admin_log = models.AdminPackageLog( user=user, action='pkginfo', filename=filename, catalogs=pkginfo.catalogs, manifests=pkginfo.manifests, install_types=pkginfo.install_types, plist=pkginfo.plist.GetXml()) admin_log.put()
utils/swift_build_support/tests/test_xcrun.py
lwhsu/swift
427
12626153
<gh_stars>100-1000 # test_xcrun.py - Unit tests for swift_build_support.xcrun -*- python -*- # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors import platform import unittest from swift_build_support import xcrun @unittest.skipUnless(platform.system() == 'Darwin', 'xcrun is available in Darwin platform only') class XCRunTestCase(unittest.TestCase): def test_find(self): # Unknown tool self.assertIsNone(xcrun.find('a-tool-that-isnt-on-osx', sdk='macosx', toolchain='default')) # Available tool self.assertTrue(xcrun.find('clang', sdk='macosx', toolchain='default').endswith('/clang')) def test_sdk_path(self): # Unknown SDK self.assertIsNone(xcrun.sdk_path('not-a-sdk')) # Available SDK self.assertIsNotNone(xcrun.sdk_path('macosx')) if __name__ == '__main__': unittest.main()
usaspending_api/awards/tests/unit/test_location_filter_geocode.py
g4brielvs/usaspending-api
217
12626175
<filename>usaspending_api/awards/tests/unit/test_location_filter_geocode.py<gh_stars>100-1000 import pytest from model_mommy import mommy from usaspending_api.search.models import ContractAwardSearchMatview from usaspending_api.awards.v2.filters.location_filter_geocode import ( create_nested_object, geocode_filter_locations, get_fields_list, location_error_handling, validate_location_keys, ) from usaspending_api.common.exceptions import InvalidParameterException @pytest.fixture def award_data_fixture(db): mommy.make("awards.TransactionNormalized", id=1, action_date="2010-10-01", award_id=1, is_fpds=True, type="A") mommy.make( "awards.TransactionFPDS", transaction_id=1, legal_entity_city_name="BURBANK", legal_entity_country_code="USA", legal_entity_state_code="CA", piid="piiiiid", place_of_perform_city_name="AUSTIN", place_of_performance_state="TX", place_of_perform_country_c="USA", ) mommy.make("awards.Award", id=1, is_fpds=True, latest_transaction_id=1, piid="piiiiid", type="A") mommy.make("awards.TransactionNormalized", id=2, action_date="2010-10-01", award_id=2, is_fpds=True, type="A") mommy.make( "awards.TransactionFPDS", transaction_id=2, legal_entity_city_name="BRISTOL", legal_entity_country_code="GBR", piid="piiiiid", place_of_perform_city_name="MCCOOL JUNCTION", place_of_performance_state="TX", place_of_perform_country_c="USA", ) mommy.make("awards.Award", id=2, is_fpds=True, latest_transaction_id=2, piid="0001", type="A") mommy.make("awards.TransactionNormalized", id=3, action_date="2010-10-01", award_id=3, is_fpds=True, type="A") mommy.make( "awards.TransactionFPDS", transaction_id=3, legal_entity_city_name="BRISBANE", piid="0002", place_of_perform_city_name="BRISBANE", place_of_performance_state="NE", place_of_perform_country_c="USA", ) mommy.make("awards.Award", id=3, is_fpds=True, latest_transaction_id=3, piid="0002", type="A") mommy.make("awards.TransactionNormalized", id=4, action_date="2010-10-01", award_id=4, is_fpds=True, type="A") mommy.make( "awards.TransactionFPDS", transaction_id=4, legal_entity_city_name="NEW YORK", legal_entity_country_code="USA", piid="0003", place_of_perform_city_name="NEW YORK", place_of_performance_state="NE", place_of_perform_country_c="USA", ) mommy.make("awards.Award", id=4, is_fpds=True, latest_transaction_id=4, piid="0003", type="A") mommy.make("awards.TransactionNormalized", id=5, action_date="2010-10-01", award_id=5, is_fpds=True, type="A") mommy.make( "awards.TransactionFPDS", transaction_id=5, legal_entity_city_name="NEW AMSTERDAM", legal_entity_country_code="USA", piid="0004", place_of_perform_city_name="NEW AMSTERDAM", place_of_performance_state="NE", place_of_perform_country_c="USA", ) mommy.make("awards.Award", id=5, is_fpds=True, latest_transaction_id=5, piid="0004", type="A") mommy.make("references.RefCountryCode", country_code="USA", country_name="UNITED STATES") def test_geocode_filter_locations(award_data_fixture): to = ContractAwardSearchMatview.objects values = [ {"city": "McCool Junction", "state": "TX", "country": "USA"}, {"city": "Burbank", "state": "CA", "country": "USA"}, ] assert to.filter(geocode_filter_locations("nothing", [])).count() == 5 assert to.filter(geocode_filter_locations("pop", values)).count() == 1 assert to.filter(geocode_filter_locations("recipient_location", values)).count() == 1 values = [ {"city": "Houston", "state": "TX", "country": "USA"}, {"city": "McCool Junction", "state": "TX", "country": "USA"}, ] assert to.filter(geocode_filter_locations("pop", values)).count() == 1 assert to.filter(geocode_filter_locations("recipient_location", values)).count() == 0 def test_validate_location_keys(): assert validate_location_keys([]) is None with pytest.raises(InvalidParameterException): assert validate_location_keys([{}]) is None with pytest.raises(InvalidParameterException): assert validate_location_keys([{"district": ""}]) is None with pytest.raises(InvalidParameterException): assert validate_location_keys([{"county": ""}]) is None assert validate_location_keys([{"country": "", "state": ""}]) is None assert validate_location_keys([{"country": "", "state": "", "feet": ""}]) is None assert ( validate_location_keys( [ { "country": "USA", "zip": "12345", "city": "Chicago", "state": "IL", "county": "Yes", "district": "Also Yes", }, {"country": "USA", "zip": "12345", "city": "Chicago"}, ] ) is None ) def test_create_nested_object(): with pytest.raises(InvalidParameterException): location_error_handling([]) with pytest.raises(InvalidParameterException): location_error_handling([{"country": "", "state": ""}]) with pytest.raises(InvalidParameterException): location_error_handling([{"country": "", "state": "", "feet": ""}]) assert create_nested_object( [ { "country": "USA", "zip": "12345", "city": "Chicago", "state": "IL", "county": "Yes", "district": "Also Yes", }, {"country": "USA", "zip": "12345", "city": "Chicago"}, ] ) == { "USA": { "city": ["CHICAGO"], "zip": ["12345", "12345"], "IL": {"county": ["YES"], "district": ["ALSO YES"], "city": ["CHICAGO"]}, } } def test_location_error_handling(): with pytest.raises(InvalidParameterException): location_error_handling({}) with pytest.raises(InvalidParameterException): location_error_handling({"country": "", "county": ""}) with pytest.raises(InvalidParameterException): location_error_handling({"country": "", "district": ""}) assert location_error_handling({"country": "", "state": "", "county": ""}) is None assert location_error_handling({"country": "", "state": "", "district": ""}) is None assert location_error_handling({"country": "", "state": "", "county": "", "district": ""}) is None assert location_error_handling({"country": "", "state": "", "county": "", "district": "", "feet": ""}) is None def test_get_fields_list(): assert get_fields_list("congressional_code", "01") == ["1", "01", "1.0"] assert get_fields_list("county_code", "01") == ["1", "01", "1.0"] assert get_fields_list("feet", "01") == ["01"] assert get_fields_list("congressional_code", "abc") == ["abc"]
gerapy_auto_extractor/__init__.py
zanachka/GerapyAutoExtractor
214
12626181
from gerapy_auto_extractor.settings import APP_DEBUG from gerapy_auto_extractor.extractors import extract_detail, extract_list, extract_datetime, extract_content, \ extract_title from gerapy_auto_extractor.classifiers.list import is_list, probability_of_list from gerapy_auto_extractor.classifiers.detail import is_detail, probability_of_detail from loguru import logger try: logger.level('inspect', no=100000 if APP_DEBUG else 0, color='<yellow>') except (ValueError, TypeError): pass
api/views.py
zhy0216/random-read
239
12626215
<reponame>zhy0216/random-read<gh_stars>100-1000 import random from django.shortcuts import redirect from django.http import Http404 from django.core.urlresolvers import reverse from django.http import HttpResponse from django.views.decorators.http import require_http_methods from article.models import (Article, UserPostArticle, UserRemoveArticle, UserStarArticle, UserReadArticle, UserArchiveArticle) from utils import q, to_json, redis_conn, required_login from exceptions import APIException, ParseError @to_json @required_login @require_http_methods(["POST"]) def add_article(request): url = request.POST.get("url") or None if(url is None): raise ParseError("require url parameter") article, _ = Article.objects.get_or_create(original_url=url) upa, created = UserPostArticle.objects.get_or_create(article=article, user=request.user) # post process in rq worker if created: q.enqueue(upa.defer_process) return {} def random_article(request): ''' put all primary article id to the redis redis[all] = set(1,2,3) put all user read in redis redis[user] = set(1,2, 3) consider use sdiff: r.sdiff(keys=('local', 'mythtv')) ''' # use request.user # if we need to collect anonymous user data if request.user.is_authenticated(): article_id_sets = redis_conn.sdiff((Article.ALL_PRIMARY_IDS_KEY, request.user.id)) or 0 if article_id_sets == 0: raise Http404 article_id = random.sample(article_id_sets, 1)[0] redis_conn.sadd(request.user.id, article_id) UserReadArticle.objects.get_or_create(user=request.user, article_id=article_id) else: article_id = redis_conn.srandmember(Article.ALL_PRIMARY_IDS_KEY) or 0 return redirect("/api/article/%s/"%article_id) @to_json def get_article_by_id(request, articleid): article = Article.objects.filter(id=articleid).first() if article is None: raise Http404 return article.to_dict() def _get_article_list_by_rs(request, rs, page): user = request.user relationships = rs.get_rs_by_user(user=user, filters={"article__finished": True}) relationships = relationships[page*15-15:] articles = relationships.values("article__id", "article__title", "article__original_url") article_list = [] for article_dic in articles: _dict = {} _dict["id"] = article_dic["article__id"] _dict["title"] = article_dic["article__title"] _dict["original_url"] = article_dic["article__original_url"] _dict["is_star"] = UserStarArticle.has_rs_between_user_article(user, article_dic["article__id"]) article_list.append(_dict) return article_list @to_json @required_login def get_inbox_article(request): page = request.GET.get("page") or 1 article_list = _get_article_list_by_rs(request, UserPostArticle, page) return { "articles": article_list } @to_json @required_login def get_archive_article(request): page = request.GET.get("page") or 1 article_list = _get_article_list_by_rs(request, UserArchiveArticle, page) return { "articles": article_list } @to_json @required_login def get_star_article(request): page = request.GET.get("page") or 1 article_list = _get_article_list_by_rs(request, UserStarArticle, page) return { "articles": article_list }
dataviva/api/secex/models.py
joelvisroman/dataviva-site
126
12626254
from dataviva import db from dataviva.api.secex.abstract_models import BaseSecex, Eci, Rca, Rca_wld, Rcd, Distance, OppGain from dataviva.api.secex.abstract_models import BraId, WldId, HsId from dataviva.api.secex.abstract_models import BraDiversity, HsDiversity, WldDiversity class Ymb(BaseSecex, BraId, HsDiversity, WldDiversity, Eci): __tablename__ = "secex_ymb" class Ymp(BaseSecex, HsId, BraDiversity, WldDiversity, Rca_wld): __tablename__ = "secex_ymp" pci = db.Column(db.Float()) class Ymw(BaseSecex, WldId, Eci, BraDiversity, HsDiversity): __tablename__ = "secex_ymw" class Ymbp(BaseSecex, BraId, HsId, Rca, Rca_wld, Rcd, Distance, OppGain): __tablename__ = "secex_ymbp" class Ymbpw(BaseSecex, BraId, HsId, WldId): __tablename__ = "secex_ymbpw" class Ymbw(BaseSecex, BraId, WldId): __tablename__ = "secex_ymbw" class Ympw(BaseSecex, HsId, WldId): __tablename__ = "secex_ympw"
mutant/contrib/numeric/models.py
pombredanne/django-mutant
152
12626255
<filename>mutant/contrib/numeric/models.py from __future__ import unicode_literals from django.db.models import fields from django.utils.translation import ugettext_lazy as _ from ...models.field import FieldDefinition, FieldDefinitionManager class _NumericMeta: defined_field_category = _('Numeric') class SmallIntegerFieldDefinition(FieldDefinition): class Meta(_NumericMeta): app_label = 'numeric' proxy = True defined_field_class = fields.SmallIntegerField class PositiveSmallIntegerFieldDefinition(FieldDefinition): class Meta(_NumericMeta): app_label = 'numeric' proxy = True defined_field_class = fields.PositiveSmallIntegerField class IntegerFieldDefinition(FieldDefinition): class Meta(_NumericMeta): app_label = 'numeric' proxy = True defined_field_class = fields.IntegerField class PositiveIntegerFieldDefinition(FieldDefinition): class Meta(_NumericMeta): app_label = 'numeric' proxy = True defined_field_class = fields.PositiveIntegerField class BigIntegerFieldDefinition(FieldDefinition): class Meta(_NumericMeta): app_label = 'numeric' proxy = True defined_field_class = fields.BigIntegerField class FloatFieldDefinition(FieldDefinition): class Meta(_NumericMeta): app_label = 'numeric' proxy = True defined_field_class = fields.FloatField max_digits_help_text = _('The maximum number of digits allowed in the number. ' 'Note that this number must be greater than or equal ' 'to ``decimal_places``, if it exists.') decimal_places_help_text = _('The number of decimal places to store ' 'with the number.') class DecimalFieldDefinition(FieldDefinition): max_digits = fields.PositiveSmallIntegerField(_('max digits'), help_text=max_digits_help_text) decimal_places = fields.PositiveSmallIntegerField(_('decimal_places'), help_text=decimal_places_help_text) objects = FieldDefinitionManager() class Meta(_NumericMeta): app_label = 'numeric' defined_field_class = fields.DecimalField defined_field_options = ('max_digits', 'decimal_places',)
djs_playground/apps.py
akarca/django-summernote
869
12626280
from django.apps import AppConfig class DjsConfig(AppConfig): name = 'djs_playground'
ML/gan/discriminator_module.py
saneravi/ML_Stuff
209
12626281
<reponame>saneravi/ML_Stuff #!/usr/bin/env python from keras.layers import Input from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import Convolution2D from keras.layers.core import Dense, Dropout, Flatten from keras.models import Model def create_model(shp=(28, 28, 1), dropout_rate=0.25): d_input = Input(shape=shp) H = Convolution2D(256, (5, 5), strides=(2, 2), padding='same', activation='relu')(d_input) H = LeakyReLU(0.2)(H) H = Dropout(dropout_rate)(H) H = Convolution2D(512, (5, 5), strides=(2, 2), padding='same', activation='relu')(H) H = LeakyReLU(0.2)(H) H = Dropout(dropout_rate)(H) H = Flatten()(H) H = Dense(256)(H) H = LeakyReLU(0.2)(H) H = Dropout(dropout_rate)(H) d_V = Dense(2, activation='softmax')(H) discriminator = Model(d_input, d_V) return discriminator if __name__ == '__main__': discriminator = create_model() discriminator.summary()
qmsolve/time_dependent_solver/split_step.py
quantum-visualizations/qmsolve
356
12626296
<filename>qmsolve/time_dependent_solver/split_step.py import numpy as np from .method import Method import time from ..util.constants import hbar, Å, femtoseconds from ..particle_system import SingleParticle, TwoParticles import progressbar """ Split-operator method for the Schrödinger equation. Prototype and original implementation: https://github.com/marl0ny/split-operator-simulations References: https://www.algorithm-archive.org/contents/ split-operator_method/split-operator_method.html https://en.wikipedia.org/wiki/Split-step_method """ class SplitStep(Method): def __init__(self, simulation): self.simulation = simulation self.H = simulation.H self.simulation.Vmin = np.amin(self.H.Vgrid) self.simulation.Vmax = np.amax(self.H.Vgrid) self.H.particle_system.compute_momentum_space(self.H) self.p2 = self.H.particle_system.p2 def run(self, initial_wavefunction, total_time, dt, store_steps = 1): self.simulation.store_steps = store_steps dt_store = total_time/store_steps self.simulation.total_time = total_time Nt = int(np.round(total_time / dt)) Nt_per_store_step = int(np.round(dt_store / dt)) self.simulation.Nt_per_store_step = Nt_per_store_step #time/dt and dt_store/dt must be integers. Otherwise dt is rounded to match that the Nt_per_store_stepdivisions are integers self.simulation.dt = dt_store/Nt_per_store_step if isinstance(self.simulation.H.particle_system ,SingleParticle): Ψ = np.zeros((store_steps + 1, *([self.H.N] *self.H.ndim )), dtype = np.complex128) elif isinstance(self.simulation.H.particle_system,TwoParticles): Ψ = np.zeros((store_steps + 1, *([self.H.N] * 2)), dtype = np.complex128) Ψ[0] = np.array(initial_wavefunction(self.H.particle_system)) m = self.H.particle_system.m Ur = np.exp(-0.5j*(self.simulation.dt/hbar)*np.array(self.H.Vgrid)) Uk = np.exp(-0.5j*(self.simulation.dt/(m*hbar))*self.p2) t0 = time.time() bar = progressbar.ProgressBar() for i in bar(range(store_steps)): tmp = np.copy(Ψ[i]) for j in range(Nt_per_store_step): c = np.fft.fftshift(np.fft.fftn(Ur*tmp)) tmp = Ur*np.fft.ifftn( np.fft.ifftshift(Uk*c)) Ψ[i+1] = tmp print("Took", time.time() - t0) self.simulation.Ψ = Ψ self.simulation.Ψmax = np.amax(np.abs(Ψ)) class SplitStepCupy(Method): def __init__(self, simulation): self.simulation = simulation self.H = simulation.H self.simulation.Vmin = np.amin(self.H.Vgrid) self.simulation.Vmax = np.amax(self.H.Vgrid) self.H.particle_system.compute_momentum_space(self.H) self.p2 = self.H.particle_system.p2 def run(self, initial_wavefunction, total_time, dt, store_steps = 1): import cupy as cp self.p2 = cp.array(self.p2) self.simulation.store_steps = store_steps dt_store = total_time/store_steps self.simulation.total_time = total_time Nt = int(np.round(total_time / dt)) Nt_per_store_step = int(np.round(dt_store / dt)) self.simulation.Nt_per_store_step = Nt_per_store_step #time/dt and dt_store/dt must be integers. Otherwise dt is rounded to match that the Nt_per_store_stepdivisions are integers self.simulation.dt = dt_store/Nt_per_store_step Ψ = cp.zeros((store_steps + 1, *([self.H.N] *self.H.ndim )), dtype = cp.complex128) Ψ[0] = cp.array(initial_wavefunction(self.H.particle_system)) m = self.H.particle_system.m Ur = cp.exp(-0.5j*(self.simulation.dt/hbar)*cp.array(self.H.Vgrid)) Uk = cp.exp(-0.5j*(self.simulation.dt/(m*hbar))*self.p2) t0 = time.time() bar = progressbar.ProgressBar() for i in bar(range(store_steps)): tmp = cp.copy(Ψ[i]) for j in range(Nt_per_store_step): c = cp.fft.fftshift(cp.fft.fftn(Ur*tmp)) tmp = Ur*cp.fft.ifftn( cp.fft.ifftshift(Uk*c)) Ψ[i+1] = tmp print("Took", time.time() - t0) self.simulation.Ψ = Ψ.get() self.simulation.Ψmax = np.amax(np.abs(self.simulation.Ψ ))
tests/test_pyquery.py
roehling/jello
265
12626325
<reponame>roehling/jello #!/usr/bin/env python3 import unittest import jello.cli from jello.cli import opts class MyTests(unittest.TestCase): def setUp(self): # initialize options opts.initialize = None opts.version_info = None opts.helpme = None opts.compact = None opts.nulls = None opts.raw = None opts.lines = None opts.mono = None opts.schema = None opts.types = None opts.keyname_color = None opts.keyword_color = None opts.number_color = None opts.string_color = None # create samples self.dict_sample = { 'string': 'string\nwith newline\ncharacters in it', 'true': True, 'false': False, 'null': None, 'int': 42, 'float': 3.14, 'array': [ 'string\nwith newline\ncharacters in it', True, False, None, 42, 3.14 ] } self.list_sample = [ 'string\nwith newline\ncharacters in it', True, False, None, 42, 3.14 ] self.list_of_dicts_sample = [ { 'string': 'string\nwith newline\ncharacters in it', 'true': True, 'false': False, 'null': None, 'int': 42, 'float': 3.14, 'array': [ 'string\nwith newline\ncharacters in it', True, False, None, 42, 3.14 ] }, { 'string': 'another string\nwith newline\ncharacters in it', 'true': True, 'false': False, 'null': None, 'int': 10001, 'float': -400.45, 'array': [ 'string\nwith newline\ncharacters in it', True, False, None, -6000034, 999999.854321 ] } ] self.list_of_lists_sample = [ [ 'string\nwith newline\ncharacters in it', True, False, None, 42, 3.14 ], [ 'another string\nwith newline\ncharacters in it', True, False, None, 42001, -3.14 ] ] # ------------ Tests ------------ def test_KeyError(self): """ Test _.foo.nonexistent_key (KeyError) """ self.data_in = {"foo": "bar"} self.query = '_.nonexistent_key' self.assertRaises(KeyError, jello.cli.pyquery, self.data_in, self.query) def test_IndexError(self): """ Test _.foo[99] (IndexError) """ self.data_in = [1, 2, 3] self.query = '_[9]' self.assertRaises(IndexError, jello.cli.pyquery, self.data_in, self.query) def test_SyntaxError(self): """ Test % (SyntaxError) """ self.data_in = [1, 2, 3] self.query = '%' self.assertRaises(SyntaxError, jello.cli.pyquery, self.data_in, self.query) def test_TypeError(self): """ Test _[5] on None (TypeError) """ self.data_in = None self.query = '_[5]' self.assertRaises(TypeError, jello.cli.pyquery, self.data_in, self.query) def test_AttributeError(self): """ Test _.items() on list (AttributeError) """ self.data_in = [1, 2, 3] self.query = '_.items()' self.assertRaises(AttributeError, jello.cli.pyquery, self.data_in, self.query) def test_NameError(self): """ Test variable (NameError) """ self.data_in = {"foo": "bar"} self.query = 'variable' self.assertRaises(NameError, jello.cli.pyquery, self.data_in, self.query) def test_ValueError(self): """ Test _.get (ValueError) """ self.data_in = {"foo": "bar"} self.query = '_.get' self.assertRaises(ValueError, jello.cli.pyquery, self.data_in, self.query) if __name__ == '__main__': unittest.main()