max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
quarkchain/evm/messages.py
QuarkChain/pyquarkchain
237
12627821
# Modified from pyethereum under MIT license from collections import Counter from fractions import Fraction from quarkchain.utils import token_id_encode import rlp # to bypass circular imports import quarkchain.core from quarkchain.evm.utils import ( int256, safe_ord, bytearray_to_bytestr, add_dict, UINT128_MAX, ) from rlp.sedes import big_endian_int, binary, CountableList, BigEndianInt from rlp.sedes.binary import Binary from quarkchain.rlp.utils import decode_hex, encode_hex from quarkchain.evm import utils # FIXME: use eth_utils from quarkchain.evm import bloom # FIXME: use eth_bloom from quarkchain.evm import transactions from quarkchain.evm import opcodes from quarkchain.evm import vm from quarkchain.evm.specials import specials as default_specials from quarkchain.evm.exceptions import ( InvalidNonce, InsufficientStartGas, UnsignedTransaction, BlockGasLimitReached, InsufficientBalance, InvalidNativeToken, InvalidTransaction, ) from quarkchain.evm.slogging import get_logger from quarkchain.utils import token_id_decode, check, TOKEN_ID_MAX from quarkchain.evm.specials import SystemContract log = get_logger("eth.block") log_tx = get_logger("eth.pb.tx") log_msg = get_logger("eth.pb.msg") log_state = get_logger("eth.pb.msg.state") # contract creating transactions send to an empty address CREATE_CONTRACT_ADDRESS = b"" # DEV OPTIONS SKIP_MEDSTATES = False check(TOKEN_ID_MAX <= UINT128_MAX) def rp(tx, what, actual, target): return "%r: %r actual:%r target:%r" % (tx, what, actual, target) class Log(rlp.Serializable): # TODO: original version used zpad (here replaced by int32.serialize); had # comment "why zpad"? fields = [ ("address", Binary.fixed_length(20, allow_empty=True)), ("topics", CountableList(BigEndianInt(32))), ("data", binary), ] def __init__(self, address, topics, data): if len(address) == 40: address = decode_hex(address) assert len(address) == 20 super(Log, self).__init__(address, topics, data) def bloomables(self): return [self.address] + [BigEndianInt(32).serialize(x) for x in self.topics] def to_dict(self): return { "bloom": encode_hex(bloom.b64(bloom.bloom_from_list(self.bloomables()))), "address": encode_hex(self.address), "data": b"0x" + encode_hex(self.data), "topics": [encode_hex(utils.int32.serialize(t)) for t in self.topics], } def __repr__(self): return "<Log(address=%r, topics=%r, data=%r)>" % ( encode_hex(self.address), self.topics, self.data, ) class Receipt(rlp.Serializable): fields = [ ("state_root", binary), ( "gas_used", big_endian_int, ), # TODO: this is actually the cumulative gas used. fix it. ("bloom", int256), ("logs", CountableList(Log)), ("contract_address", Binary.fixed_length(20, allow_empty=True)), ("contract_full_shard_key", BigEndianInt(4)), ] @property def bloom(self): bloomables = [x.bloomables() for x in self.logs] return bloom.bloom_from_list(utils.flatten(bloomables)) def mk_receipt(state, success, logs, contract_address, contract_full_shard_key): bloomables = [x.bloomables() for x in logs] ret_bloom = bloom.bloom_from_list(utils.flatten(bloomables)) o = Receipt( state_root=b"\x01" if success else b"", gas_used=state.gas_used, bloom=ret_bloom, logs=logs, contract_address=contract_address, contract_full_shard_key=contract_full_shard_key, ) return o def convert_to_default_chain_token_gasprice(state, token_id, gas_price): if token_id == state.shard_config.default_chain_token: return gas_price snapshot = state.snapshot() _, genesis_token_gas_price = get_gas_utility_info(state, token_id, gas_price) state.revert(snapshot) return genesis_token_gas_price def validate_transaction(state, tx): # (1) The transaction signature is valid; if not tx.sender: # sender is set and validated on Transaction initialization raise UnsignedTransaction(tx) if tx.version == 2: # When tx.version == 2 (EIP155 tx), check # 0. EIP155_SIGNER enable # 1. tx.v == tx.network_id * 2 + 35 (+ 1) # 2. gas_token_id & transfer_token_id should equal to default_token_id (like qkc) # 3. tx.from_chain_id == tx.to_chain_id and tx.from_shard_key = 0 & tx.to_shard_key = 0 # 4. tx.network_id == chain_config.ETH_CHAIN_ID, where chain_config is derived from tx.from_chain_id chain_config = state.qkc_config.CHAINS[tx.from_chain_id] default_token_id = token_id_encode(chain_config.DEFAULT_CHAIN_TOKEN) if ( state.qkc_config.ENABLE_EIP155_SIGNER_TIMESTAMP is not None and state.timestamp < state.qkc_config.ENABLE_EIP155_SIGNER_TIMESTAMP ): raise InvalidTransaction("EIP155 Signer is not enable yet.") if tx.v != 35 + tx.network_id * 2 and tx.v != 36 + tx.network_id * 2: raise InvalidTransaction( "network_id {} does not match the signature v {}.".format( tx.network_id, tx.v ) ) if tx.from_chain_id != tx.to_chain_id: raise InvalidTransaction( "EIP155 Signer do not support cross shard transaction." ) if tx.from_shard_key != 0 or tx.to_shard_key != 0: raise InvalidTransaction( "EIP155 Signer do not support cross shard transaction." ) if tx.gas_token_id != default_token_id: raise InvalidTransaction( "EIP155 Signer only support {} as gas token.".format( chain_config.DEFAULT_CHAIN_TOKEN ) ) if tx.transfer_token_id != default_token_id: raise InvalidTransaction( "EIP155 Signer only support {} as transfer token.".format( chain_config.DEFAULT_CHAIN_TOKEN ) ) assert (tx.network_id == chain_config.ETH_CHAIN_ID, "Invalid network_id.") assert ( tx.eth_chain_id - state.qkc_config.BASE_ETH_CHAIN_ID - 1 == tx.from_chain_id, "Invalid Eth_Chain_Id.", ) # (1a) startgas, gasprice, gas token id, transfer token id must be <= UINT128_MAX if ( tx.startgas > UINT128_MAX or tx.gasprice > UINT128_MAX or tx.gas_token_id > TOKEN_ID_MAX or tx.transfer_token_id > TOKEN_ID_MAX ): raise InvalidTransaction("startgas, gasprice, and token_id must <= UINT128_MAX") # (2) the transaction nonce is valid (equivalent to the # sender account's current nonce); req_nonce = state.get_nonce(tx.sender) if req_nonce != tx.nonce: raise InvalidNonce(rp(tx, "nonce", tx.nonce, req_nonce)) # (3) the gas limit is no smaller than the intrinsic gas, # g0, used by the transaction; total_gas = tx.intrinsic_gas_used if tx.startgas < total_gas: raise InsufficientStartGas(rp(tx, "startgas", tx.startgas, total_gas)) default_chain_token = state.shard_config.default_chain_token bal = {tx.transfer_token_id: state.get_balance(tx.sender, tx.transfer_token_id)} if tx.transfer_token_id != tx.gas_token_id: bal[tx.gas_token_id] = state.get_balance(tx.sender, tx.gas_token_id) # (4) requires non-zero balance for transfer_token_id and gas_token_id if non-default for token_id in [tx.transfer_token_id, tx.gas_token_id]: if token_id != default_chain_token and bal[token_id] == 0: raise InvalidNativeToken( "{}: non-default token {} has zero balance".format( tx.__repr__(), token_id_decode(token_id) ) ) # (5) the sender account balance contains at least the cost required in up-front payment cost = Counter({tx.transfer_token_id: tx.value}) + Counter( {tx.gas_token_id: tx.gasprice * tx.startgas} ) for token_id, b in bal.items(): if b < cost[token_id]: raise InsufficientBalance( rp( tx, "token %s balance" % token_id_decode(token_id), b, cost[token_id], ) ) # (6) if gas token non-default, need to check system contract for gas conversion if tx.gasprice != 0 and tx.gas_token_id != default_chain_token: snapshot = state.snapshot() _, genesis_token_gas_price = pay_native_token_as_gas( state, tx.gas_token_id, tx.startgas, tx.gasprice ) state.revert(snapshot) if genesis_token_gas_price == 0: raise InvalidNativeToken( "{}: non-default gas token {} not ready for being used to pay gas".format( tx.__repr__(), token_id_decode(tx.gas_token_id) ) ) # should be guaranteed by previous check. check added to make sure bal_gas_reserve = state.get_balance( SystemContract.GENERAL_NATIVE_TOKEN.addr(), state.genesis_token ) if bal_gas_reserve < genesis_token_gas_price * tx.startgas: raise InvalidNativeToken( "{}: non-default gas token {} not enough reserve balance for conversion".format( tx.__repr__(), token_id_decode(tx.gas_token_id) ) ) # (7) check block gas limit if state.gas_used + tx.startgas > state.gas_limit: raise BlockGasLimitReached( rp(tx, "gaslimit", state.gas_used + tx.startgas, state.gas_limit) ) return True def _refund(state, message, total, refund_percent): to_refund = total * refund_percent // 100 to_burn = total - to_refund state.delta_token_balance(message.sender, message.gas_token_id, to_refund) # burn if to_burn: state.delta_token_balance(bytes(20), message.gas_token_id, to_burn) def apply_transaction_message( state, message, ext, should_create_contract, gas_used_start, is_cross_shard=False, contract_address=b"", refund_rate=100, ): # gas token should always be converted to genesis token assert message.gas_token_id == state.genesis_token local_fee_rate = ( 1 - state.qkc_config.reward_tax_rate if state.qkc_config else Fraction(1) ) evm_gas_start = message.gas if not should_create_contract: result, gas_remained, data = apply_msg(ext, message) contract_address = b"" else: # CREATE result, gas_remained, data = create_contract(ext, message, contract_address) contract_address = ( data if (data and result) else b"" ) # data could be [] when vm failed execution assert gas_remained >= 0 log_tx.debug("TX APPLIED", result=result, gas_remained=gas_remained, data=data) gas_used = evm_gas_start - gas_remained + gas_used_start if not result: log_tx.debug( "TX FAILED", reason="out of gas or transfer value is 0 and transfer token is non-default and un-queried", gas_remained=gas_remained, ) output = b"" success = 0 # Transaction success else: log_tx.debug("TX SUCCESS", data=data) state.refunds += len(set(state.suicides)) * opcodes.GSUICIDEREFUND if state.refunds > 0: log_tx.debug("Refunding", gas_refunded=min(state.refunds, gas_used // 2)) gas_remained += min(state.refunds, gas_used // 2) gas_used -= min(state.refunds, gas_used // 2) state.refunds = 0 if not should_create_contract: output = bytearray_to_bytestr(data) else: output = data success = 1 _refund(state, message, ext.tx_gasprice * gas_remained, refund_rate) fee = ( ext.tx_gasprice * gas_used * local_fee_rate.numerator // local_fee_rate.denominator ) state.delta_token_balance(state.block_coinbase, message.gas_token_id, fee) add_dict(state.block_fee_tokens, {message.gas_token_id: fee}) state.gas_used += gas_used # Clear suicides suicides = state.suicides state.suicides = [] for s in suicides: state.del_account(s) # Construct a receipt r = mk_receipt(state, success, state.logs, contract_address, state.full_shard_key) state.logs = [] if is_cross_shard: if ( state.qkc_config.ENABLE_EVM_TIMESTAMP is None or state.timestamp >= state.qkc_config.ENABLE_EVM_TIMESTAMP ): state.add_xshard_deposit_receipt(r) else: state.add_receipt(r) return success, output def apply_xshard_deposit(state, deposit, gas_used_start): state.logs = [] state.suicides = [] state.refunds = 0 state.full_shard_key = deposit.to_address.full_shard_key # gas should be accounted by gas_used_start state.delta_token_balance( deposit.from_address.recipient, deposit.transfer_token_id, deposit.value ) message_data = vm.CallData( [safe_ord(x) for x in deposit.message_data], 0, len(deposit.message_data) ) message = vm.Message( deposit.from_address.recipient, deposit.to_address.recipient, deposit.value, deposit.gas_remained, message_data, code_address=deposit.to_address.recipient, from_full_shard_key=deposit.from_address.full_shard_key, to_full_shard_key=deposit.to_address.full_shard_key, tx_hash=deposit.tx_hash, transfer_token_id=deposit.transfer_token_id, gas_token_id=deposit.gas_token_id, ) # MESSAGE ext = VMExt( state, sender=deposit.from_address.recipient, gas_price=deposit.gas_price ) contract = deposit.to_address.recipient if deposit.create_contract else b"" return apply_transaction_message( state, message, ext, should_create_contract=deposit.create_contract, gas_used_start=gas_used_start, is_cross_shard=True, contract_address=contract, refund_rate=deposit.refund_rate, ) def apply_transaction(state, tx: transactions.Transaction, tx_wrapper_hash): """tx_wrapper_hash is the hash for quarkchain.core.Transaction TODO: remove quarkchain.core.Transaction wrapper and use evm.Transaction directly """ state.logs = [] state.suicides = [] state.refunds = 0 validate_transaction(state, tx) state.full_shard_key = tx.to_full_shard_key intrinsic_gas = tx.intrinsic_gas_used log_tx.debug("TX NEW", txdict=tx.to_dict()) # start transacting ################# state.increment_nonce(tx.sender) # part of fees should go to root chain miners local_fee_rate = ( 1 - state.qkc_config.reward_tax_rate if state.qkc_config else Fraction(1) ) # buy startgas gasprice, refund_rate = tx.gasprice, 100 # convert gas if using non-genesis native token if gasprice != 0 and tx.gas_token_id != state.genesis_token: refund_rate, converted_genesis_token_gas_price = pay_native_token_as_gas( state, tx.gas_token_id, tx.startgas, tx.gasprice ) # guaranteed by validation check(converted_genesis_token_gas_price > 0) gasprice = converted_genesis_token_gas_price contract_addr = SystemContract.GENERAL_NATIVE_TOKEN.addr() # guaranteed by validation check( state.deduct_value( contract_addr, state.genesis_token, tx.startgas * converted_genesis_token_gas_price, ) ) state.delta_token_balance( contract_addr, tx.gas_token_id, tx.startgas * tx.gasprice ) check(state.deduct_value(tx.sender, tx.gas_token_id, tx.startgas * tx.gasprice)) message_data = vm.CallData([safe_ord(x) for x in tx.data], 0, len(tx.data)) message = vm.Message( tx.sender, tx.to, tx.value, tx.startgas - intrinsic_gas, message_data, code_address=tx.to, from_full_shard_key=tx.from_full_shard_key if not tx.is_testing else None, to_full_shard_key=tx.to_full_shard_key if not tx.is_testing else None, tx_hash=tx_wrapper_hash, transfer_token_id=tx.transfer_token_id, # always genesis token for gas token gas_token_id=state.genesis_token, ) # MESSAGE ext = VMExt(state, tx.sender, gasprice) contract_address = b"" if not tx.is_cross_shard: return apply_transaction_message( state, message, ext, tx.to == b"", intrinsic_gas, refund_rate=refund_rate ) # handle xshard local_gas_used = intrinsic_gas remote_gas_reserved = 0 if transfer_failure_by_posw_balance_check(ext, message): success = 0 # Currently, burn all gas local_gas_used = tx.startgas elif tx.to == b"": check(state.deduct_value(tx.sender, tx.transfer_token_id, tx.value)) remote_gas_reserved = tx.startgas - intrinsic_gas ext.add_cross_shard_transaction_deposit( quarkchain.core.CrossShardTransactionDeposit( tx_hash=tx_wrapper_hash, from_address=quarkchain.core.Address(tx.sender, tx.from_full_shard_key), to_address=quarkchain.core.Address( mk_contract_address( tx.sender, state.get_nonce(tx.sender), tx.from_full_shard_key ), tx.to_full_shard_key, ), value=tx.value, # convert to genesis token and use converted gas price gas_token_id=state.genesis_token, gas_price=gasprice, transfer_token_id=tx.transfer_token_id, message_data=tx.data, create_contract=True, gas_remained=remote_gas_reserved, refund_rate=refund_rate, ) ) success = 1 else: check(state.deduct_value(tx.sender, tx.transfer_token_id, tx.value)) if ( state.qkc_config.ENABLE_EVM_TIMESTAMP is None or state.timestamp >= state.qkc_config.ENABLE_EVM_TIMESTAMP ): remote_gas_reserved = tx.startgas - intrinsic_gas ext.add_cross_shard_transaction_deposit( quarkchain.core.CrossShardTransactionDeposit( tx_hash=tx_wrapper_hash, from_address=quarkchain.core.Address(tx.sender, tx.from_full_shard_key), to_address=quarkchain.core.Address(tx.to, tx.to_full_shard_key), value=tx.value, # convert to genesis token and use converted gas price gas_token_id=state.genesis_token, gas_price=gasprice, transfer_token_id=tx.transfer_token_id, message_data=tx.data, create_contract=False, gas_remained=remote_gas_reserved, refund_rate=refund_rate, ) ) success = 1 gas_remained = tx.startgas - local_gas_used - remote_gas_reserved _refund(state, message, ext.tx_gasprice * gas_remained, refund_rate) # if x-shard, reserve part of the gas for the target shard miner for fee fee = ( ext.tx_gasprice * (local_gas_used - (opcodes.GTXXSHARDCOST if success else 0)) * local_fee_rate.numerator // local_fee_rate.denominator ) state.delta_token_balance(state.block_coinbase, state.genesis_token, fee) add_dict(state.block_fee_tokens, {state.genesis_token: fee}) output = [] state.gas_used += local_gas_used if ( state.qkc_config.ENABLE_EVM_TIMESTAMP is None or state.timestamp >= state.qkc_config.ENABLE_EVM_TIMESTAMP ): state.gas_used -= opcodes.GTXXSHARDCOST if success else 0 # Construct a receipt r = mk_receipt(state, success, state.logs, contract_address, state.full_shard_key) state.logs = [] state.add_receipt(r) return success, output # VM interface class VMExt: def __init__(self, state, sender, gas_price): self.specials = {k: v for k, v in default_specials.items()} for k, v in state.config["CUSTOM_SPECIALS"]: self.specials[k] = v self._state = state self.get_code = state.get_code self.set_code = state.set_code self.get_balance = ( state.get_balance ) # gets default_chain_token balance if no token_id is passed in self.set_token_balance = state.set_token_balance self.set_balance = state.set_balance # gets default_chain_token balance self.get_nonce = state.get_nonce self.set_nonce = state.set_nonce self.increment_nonce = state.increment_nonce self.set_storage_data = state.set_storage_data self.get_storage_data = state.get_storage_data self.log_storage = lambda x: state.account_to_dict(x) self.add_suicide = lambda x: state.add_suicide(x) self.add_refund = lambda x: state.set_param("refunds", state.refunds + x) self.block_hash = lambda x: state.get_block_hash(state.block_number - x - 1) self.block_coinbase = state.block_coinbase self.block_timestamp = state.timestamp self.block_number = state.block_number self.block_difficulty = state.block_difficulty self.block_gas_limit = state.gas_limit self.log = lambda addr, topics, data: state.add_log(Log(addr, topics, data)) self.create = lambda msg, salt: create_contract( self, msg, contract_recipient=b"", salt=salt ) self.msg = lambda msg: _apply_msg(self, msg, self.get_code(msg.code_address)) self.account_exists = state.account_exists self.blockhash_store = 0x20 self.snapshot = state.snapshot self.revert = state.revert self.transfer_value = state.transfer_value self.deduct_value = state.deduct_value self.add_cross_shard_transaction_deposit = ( lambda deposit: state.xshard_list.append(deposit) ) self.reset_storage = state.reset_storage self.tx_origin = sender self.tx_gasprice = gas_price self.sender_disallow_map = state.sender_disallow_map self.default_chain_token = state.shard_config.default_chain_token self.chain_id = state.full_shard_key >> 16 def apply_msg(ext, msg): return _apply_msg(ext, msg, ext.get_code(msg.code_address)) def transfer_failure_by_posw_balance_check(ext, msg): return ( msg.sender in ext.sender_disallow_map and msg.value + ext.sender_disallow_map[msg.sender] > ext.get_balance(msg.sender) ) def _apply_msg(ext, msg, code): trace_msg = log_msg.is_active("trace") if trace_msg: log_msg.debug( "MSG APPLY", sender=encode_hex(msg.sender), to=encode_hex(msg.to), gas=msg.gas, value=msg.value, codelen=len(code), data=encode_hex(msg.data.extract_all()) if msg.data.size < 2500 else ("data<%d>" % msg.data.size), pre_storage=ext.log_storage(msg.to), static=msg.static, depth=msg.depth, gas_token_id=msg.gas_token_id, transfer_token_id=msg.transfer_token_id, ) # early exit if msg.sender is disallowed if transfer_failure_by_posw_balance_check(ext, msg): log_msg.warn("SENDER NOT ALLOWED", sender=encode_hex(msg.sender)) return 0, 0, [] # transfer value, quit if not enough snapshot = ext.snapshot() if msg.transfers_value: if not ext.transfer_value(msg.sender, msg.to, msg.transfer_token_id, msg.value): log_msg.debug( "MSG TRANSFER FAILED", have=ext.get_balance(msg.sender, token_id=msg.transfer_token_id), want=msg.value, ) return 0, 0, [] # Main loop special_proc, enable_ts = ext.specials.get(msg.code_address, (None, 0)) if special_proc and ext.block_timestamp > enable_ts: res, gas, dat = special_proc(ext, msg) else: res, gas, dat = vm.vm_execute(ext, msg, code) if trace_msg: log_msg.debug( "MSG APPLIED", gas_remained=gas, sender=encode_hex(msg.sender), to=encode_hex(msg.to), data=dat if len(dat) < 2500 else ("data<%d>" % len(dat)), post_storage=ext.log_storage(msg.to), ) if ( res == 1 and code != b"" and msg.transfer_token_id != ext.default_chain_token and not msg.token_id_queried and msg.value != 0 ): res = 0 if res == 0: log_msg.debug("REVERTING") ext.revert(snapshot) return res, gas, dat def mk_contract_address(sender, nonce, full_shard_key): if full_shard_key is not None: to_encode = [utils.normalize_address(sender), full_shard_key, nonce] else: # only happens for backward-compatible EVM tests to_encode = [utils.normalize_address(sender), nonce] return utils.sha3(rlp.encode(to_encode))[12:] def mk_contract_address2(sender, salt: bytes, init_code_hash: bytes): return utils.sha3( b"\xff" + utils.normalize_address(sender) + salt + init_code_hash )[12:] def create_contract(ext, msg, contract_recipient=b"", salt=None): log_msg.debug("CONTRACT CREATION") if msg.transfer_token_id != ext.default_chain_token: # TODODLL calling smart contract with non QKC transfer_token_id is not supported return 0, msg.gas, b"" code = msg.data.extract_all() if ext.tx_origin != msg.sender: ext.increment_nonce(msg.sender) if contract_recipient != b"": # apply xshard deposit, where contract address has already been specified msg.to = contract_recipient elif salt is not None: # create2 msg.to = mk_contract_address2(msg.sender, salt, utils.sha3(code)) else: nonce = utils.encode_int(ext.get_nonce(msg.sender) - 1) msg.to = mk_contract_address(msg.sender, nonce, msg.to_full_shard_key) if ext.get_nonce(msg.to) or len(ext.get_code(msg.to)): log_msg.debug("CREATING CONTRACT ON TOP OF EXISTING CONTRACT") return 0, 0, b"" if ext.account_exists(msg.to): ext.set_nonce(msg.to, 0) ext.set_code(msg.to, b"") ext.reset_storage(msg.to) msg.is_create = True # assert not ext.get_code(msg.to) msg.data = vm.CallData([], 0, 0) snapshot = ext.snapshot() ext.set_nonce(msg.to, 1) ext.reset_storage(msg.to) res, gas, dat = _apply_msg(ext, msg, code) log_msg.debug( "CONTRACT CREATION FINISHED", res=res, gas=gas, dat=dat if len(dat) < 2500 else ("data<%d>" % len(dat)), ) if res: if not len(dat): # ext.set_code(msg.to, b'') return 1, gas, msg.to gcost = len(dat) * opcodes.GCONTRACTBYTE if gas >= gcost and (len(dat) <= 24576): gas -= gcost else: log_msg.debug( "CONTRACT CREATION FAILED", have=gas, want=gcost, block_number=ext.block_number, ) ext.revert(snapshot) return 0, 0, b"" ext.set_code(msg.to, bytearray_to_bytestr(dat)) log_msg.debug("SETTING CODE", addr=encode_hex(msg.to), lendat=len(dat)) return 1, gas, msg.to else: ext.revert(snapshot) return 0, gas, dat def _call_general_native_token_manager(state, data: bytes) -> (int, int): contract_addr = SystemContract.GENERAL_NATIVE_TOKEN.addr() code = state.get_code(contract_addr) if not code: return 0, 0 # Only contract itself can invoke payment sender = contract_addr # Call the `calculateGasPrice` function message = vm.Message( sender, contract_addr, 0, 1000000, # Mock gas to guarantee msg will be applied data, code_address=contract_addr, ) ext = VMExt(state, sender, gas_price=0) result, _, output = apply_msg(ext, message) if not result: return 0, 0 refund_rate = int.from_bytes(output[:32], byteorder="big") converted_gas_price = int.from_bytes(output[32:64], byteorder="big") return refund_rate, converted_gas_price def get_gas_utility_info( state, token_id: int, gas_price_in_native_token: int ) -> (int, int): # Call the `calculateGasPrice` function data = ( bytes.fromhex("ce9e8c47") + token_id.to_bytes(32, byteorder="big") + gas_price_in_native_token.to_bytes(32, byteorder="big") ) return _call_general_native_token_manager(state, data) def pay_native_token_as_gas( state, token_id: int, gas: int, gas_price_in_native_token: int ) -> (int, int): # Call the `payAsGas` function check(token_id <= TOKEN_ID_MAX) check(gas <= UINT128_MAX) check(gas_price_in_native_token <= UINT128_MAX) data = ( bytes.fromhex("5ae8f7f1") + token_id.to_bytes(32, byteorder="big") + gas.to_bytes(32, byteorder="big") + gas_price_in_native_token.to_bytes(32, byteorder="big") ) return _call_general_native_token_manager(state, data)
Python/samples/viewABC.py
PaulDoessel/ExocortexCrate
105
12627833
<reponame>PaulDoessel/ExocortexCrate import _ExocortexAlembicPython as alembic import sys import argparse # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- # global variables show_time = False show_meta = False show_size = False show_vals = False show_just_obj = False show_ts = False obj_filter = None typ_filter = None noo_filter = None not_filter = None # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- # visit the hierarchy of properties and compounds def visit_prop(prop, depth): if prop.isCompound(): print(depth + "compound: " + prop.getName()) for sub_prop in prop.getPropertyNames(): visit_prop(prop.getProperty(sub_prop), depth+" ") else: print(depth + "property: \"" + prop.getName() + "\", " + prop.getType()) if show_size or show_vals: for i in xrange(0, prop.getNbStoredSamples()): if show_vals: print(depth + "-> values: " + str(prop.getValues(i)) ) elif show_size: print(depth + "-> size: " + str(len(prop.getValues(i))) ) # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- # start the visit of the properties def visit_object(obj): for prop in obj.getPropertyNames(): visit_prop(obj.getProperty(prop), " ") # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- # inspect the base of the archive, use the filter to discard objects if necessary def visit_alembic(abc_archive): global show_just_obj global obj_filter global typ_filter global noo_filter global not_filter global show_ts if show_time: print("Time sampling: " + str(abc_archive.getSampleTimes())) for identifier in abc_archive.getIdentifiers(): if (obj_filter != None and identifier.find(obj_filter) < 0) or (noo_filter != None and identifier.find(noo_filter) >= 0): continue # pass over this object! obj = abc_archive.getObject(identifier) obj_typ = obj.getType() if (typ_filter != None and obj_typ.find(typ_filter) < 0) or (not_filter != None and obj_typ.find(not_filter) >= 0): continue # pass over this object because of its type! print("OBJ: " + identifier + ", " + obj_typ) if show_meta: print("-- meta data: " + str(obj.getMetaData())) if show_ts: print("-- TS index: " + str(obj.getTsIndex())) if not show_just_obj: visit_object(obj) # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- def main(args): global show_time global show_meta global show_size global show_vals global show_just_obj global obj_filter global typ_filter global noo_filter global not_filter global show_ts # parser args parser = argparse.ArgumentParser(description="Explore the structure of an Alembic file.") parser.add_argument("abc_in", type=str, metavar="{Alembic file}", help="input Alembic file to explore") parser.add_argument("-v", "--vals", action='store_true', help='show the values of the properties') parser.add_argument("-s", "--size", action='store_true', help='show only the number of values stored in the properties') parser.add_argument("-m", "--meta", action='store_true', help='show objects\' meta data') parser.add_argument("-t", "--time", action='store_true', help='show time sampling') parser.add_argument("-O", "--object", action='store_true', help='show only objects, not properties') parser.add_argument("-f", "--filter", type=str, metavar="{id filter}", help="only show objects containing substring {id filter} in their identifier") parser.add_argument("-T", "--typefilter", type=str, metavar="{type filter}", help="only show objects containing substring {type filter} in their type") parser.add_argument("-nf", "--NOTfilter", type=str, metavar="{id filter}", help="only copy objects NOT containing substring {id filter} in their identifier") parser.add_argument("-nT", "--NOTtypefilter", type=str, metavar="{type filter}", help="only copy objects NOT containing substring {type filter} in their type") parser.add_argument("-S", "--samp", action='store_true', help="show object's time sampling index") ns = vars(parser.parse_args(args[1:])) show_time = ns["time"] show_meta = ns["meta"] show_size = ns["size"] show_vals = ns["vals"] show_ts = ns["samp"] obj_filter = ns["filter"] typ_filter = ns["typefilter"] noo_filter = ns["NOTfilter"] not_filter = ns["NOTtypefilter"] show_just_obj = ns["object"] abc_archive = alembic.getIArchive(ns["abc_in"]) print("\n\nExploring " + ns["abc_in"]) visit_alembic(abc_archive) # ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- if __name__ == "__main__": main(sys.argv)
testing/MLDB-1198-sum-inconsistency-test.py
kstepanmpmg/mldb
665
12627853
<filename>testing/MLDB-1198-sum-inconsistency-test.py # # MLDB-1198-sum-inconsistency-test.py # Mich, 2015-12-15 # This file is part of MLDB. Copyright 2015 mldb.ai inc. All rights reserved. # from mldb import mldb mldb.put('/v1/datasets/ds', { 'type' : 'sparse.mutable' }) def insert_with_ts(ts): mldb.post('/v1/datasets/ds/rows', { 'rowName' : 'row1', 'columns' : [ ['colA', 1, ts], ] }) insert_with_ts(1) insert_with_ts(10) insert_with_ts(100) insert_with_ts(1000) mldb.post('/v1/datasets/ds/commit') query = 'SELECT sum("colA") as "colA" FROM ds' res = mldb.query(query) count = res[1][1] mldb.log("First query count: {}".format(count)) query = "SELECT sum({*}) AS * FROM ds" data = mldb.query(query) mldb.log(data) cols = data[0] vals = data[1] for col, val in zip(cols, vals): if col == 'colA': mldb.log(val) assert count == val, ('First sum ({}) != second sum ({})' .format(count, val)) query = 'SELECT count("colA") as "colA" FROM ds' res = mldb.query(query) count = res[1][1] mldb.log("First query count: {}".format(count)) query = "SELECT count({*}) AS * FROM ds" data = mldb.query(query) cols = data[0] vals = data[1] for col, val in zip(cols, vals): if col == 'colA': mldb.log(val) assert count == val, ('First sum ({}) != second sum ({})' .format(count, val)) request.set_return("success")
tests/ptvsd/server/test_attach.py
int19h/ptvsd
349
12627860
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE in the project root # for license information. from __future__ import absolute_import, division, print_function, unicode_literals import pytest from tests import debug from tests.debug import runners, targets from tests.patterns import some @pytest.mark.parametrize("stop_method", ["break_into_debugger", "pause"]) @pytest.mark.parametrize("is_attached", ["is_attached", ""]) @pytest.mark.parametrize("wait_for_attach", ["wait_for_attach", ""]) @pytest.mark.parametrize("target", targets.all) def test_attach_api(pyfile, target, wait_for_attach, is_attached, stop_method): @pyfile def code_to_debug(): from debug_me import backchannel, ptvsd, scratchpad import sys import time _, host, port, wait_for_attach, is_attached, stop_method = sys.argv port = int(port) ptvsd.enable_attach((host, port)) if wait_for_attach: backchannel.send("wait_for_attach") ptvsd.wait_for_attach() if is_attached: backchannel.send("is_attached") while not ptvsd.is_attached(): print("looping until is_attached") time.sleep(0.1) if stop_method == "break_into_debugger": backchannel.send("break_into_debugger?") assert backchannel.receive() == "proceed" ptvsd.break_into_debugger() print("break") # @break_into_debugger else: scratchpad["paused"] = False backchannel.send("loop?") assert backchannel.receive() == "proceed" while not scratchpad["paused"]: print("looping until paused") time.sleep(0.1) with debug.Session() as session: host, port = runners.attach_by_socket.host, runners.attach_by_socket.port session.config.update({"host": host, "port": port}) backchannel = session.open_backchannel() session.spawn_debuggee( [code_to_debug, host, port, wait_for_attach, is_attached, stop_method] ) session.wait_for_enable_attach() session.connect_to_adapter((host, port)) with session.request_attach(): pass if wait_for_attach: assert backchannel.receive() == "wait_for_attach" if is_attached: assert backchannel.receive() == "is_attached" if stop_method == "break_into_debugger": assert backchannel.receive() == "break_into_debugger?" backchannel.send("proceed") session.wait_for_stop( expected_frames=[some.dap.frame(code_to_debug, "break_into_debugger")] ) elif stop_method == "pause": assert backchannel.receive() == "loop?" backchannel.send("proceed") session.request("pause", freeze=False) session.wait_for_stop("pause") session.scratchpad["paused"] = True else: pytest.fail(stop_method) session.request_continue() @pytest.mark.parametrize("run", runners.all_attach_by_socket) def test_reattach(pyfile, target, run): @pyfile def code_to_debug(): from debug_me import ptvsd, scratchpad import time ptvsd.break_into_debugger() object() # @first scratchpad["exit"] = False while not scratchpad["exit"]: time.sleep(0.1) ptvsd.break_into_debugger() object() # @second with debug.Session() as session1: session1.captured_output = set() session1.expected_exit_code = None # not expected to exit on disconnect with run(session1, target(code_to_debug)): pass session1.wait_for_stop(expected_frames=[some.dap.frame(code_to_debug, "first")]) session1.disconnect() with debug.Session() as session2: session2.config.update(session1.config) if "host" in session2.config: session2.connect_to_adapter( (session2.config["host"], session2.config["port"]) ) with session2.request_attach(): pass session2.wait_for_stop( expected_frames=[some.dap.frame(code_to_debug, "second")] ) session2.scratchpad["exit"] = True session2.request_continue() @pytest.mark.parametrize("pid_type", ["int", "str"]) def test_attach_by_pid(pyfile, target, pid_type): @pyfile def code_to_debug(): import debug_me # noqa import time def do_something(i): time.sleep(0.1) proceed = True print(i) # @bp return proceed for i in range(100): if not do_something(i): break with debug.Session() as session: def before_request(command, arguments): if command == "attach": assert isinstance(arguments["processId"], int) if pid_type == "str": arguments["processId"] = str(arguments["processId"]) session.before_request = before_request session.config["redirectOutput"] = True with session.attach_by_pid(target(code_to_debug), wait=False): session.set_breakpoints(code_to_debug, all) stop = session.wait_for_stop( expected_frames=[some.dap.frame(code_to_debug, "bp")] ) # Remove breakpoint and continue. session.request( "setExpression", {"frameId": stop.frame_id, "expression": "proceed", "value": "False"}, ) session.set_breakpoints(code_to_debug, []) session.request_continue() session.wait_for_next_event( "output", some.dict.containing({"category": "stdout"}) )
tools/auto_bisect/bisect_perf_regression.py
google-ar/chromium
777
12627903
<reponame>google-ar/chromium<filename>tools/auto_bisect/bisect_perf_regression.py #!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Chromium auto-bisect tool This script bisects a range of commits using binary search. It starts by getting reference values for the specified "good" and "bad" commits. Then, for revisions in between, it will get builds, run tests and classify intermediate revisions as "good" or "bad" until an adjacent "good" and "bad" revision is found; this is the culprit. If the culprit is a roll of a depedency repository (e.g. v8), it will then expand the revision range and continue the bisect until a culprit revision in the dependency repository is found. Example usage using git commit hashes, bisecting a performance test based on the mean value of a particular metric: ./tools/auto_bisect/bisect_perf_regression.py --command "out/Release/performance_ui_tests \ --gtest_filter=ShutdownTest.SimpleUserQuit"\ --metric shutdown/simple-user-quit --good_revision 1f6e67861535121c5c819c16a666f2436c207e7b\ --bad-revision b732f23b4f81c382db0b23b9035f3dadc7d925bb\ Example usage using git commit positions, bisecting a functional test based on whether it passes or fails. ./tools/auto_bisect/bisect_perf_regression.py\ --command "out/Release/content_unittests -single-process-tests \ --gtest_filter=GpuMemoryBufferImplTests"\ --good_revision 408222\ --bad_revision 408232\ --bisect_mode return_code\ --builder_type full In practice, the auto-bisect tool is usually run on tryserver.chromium.perf try bots, and is started by tools/run-bisect-perf-regression.py using config parameters from tools/auto_bisect/bisect.cfg. """ import argparse import copy import errno import hashlib import json import logging import os import re import shlex import shutil import StringIO import sys import time import urllib import urllib2 sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'third_party', 'catapult', 'telemetry')) from bisect_printer import BisectPrinter from bisect_results import BisectResults import bisect_results_json from bisect_state import BisectState import bisect_utils import builder import fetch_build import math_utils import query_crbug import request_build import source_control # The script is in chromium/src/tools/auto_bisect. Throughout this script, # we use paths to other things in the chromium/src repository. # Possible return values from BisectPerformanceMetrics.RunTest. BUILD_RESULT_SUCCEED = 0 BUILD_RESULT_FAIL = 1 BUILD_RESULT_SKIPPED = 2 # How many times to repeat the test on the last known good and first known bad # revisions in order to assess a more accurate confidence score in the # regression culprit. BORDER_REVISIONS_EXTRA_RUNS = 2 # Patch template to add a new file, DEPS.sha under src folder. # This file contains SHA1 value of the DEPS changes made while bisecting # dependency repositories. This patch send along with DEPS patch to try server. # When a build requested is posted with a patch, bisect builders on try server, # once build is produced, it reads SHA value from this file and appends it # to build archive filename. DEPS_SHA_PATCH = """diff --git DEPS.sha DEPS.sha new file mode 100644 --- /dev/null +++ DEPS.sha @@ -0,0 +1 @@ +%(deps_sha)s """ REGRESSION_NOT_REPRODUCED_MESSAGE_TEMPLATE = """ Bisect did not clearly reproduce a regression between the given "good" and "bad" revisions. Results: "Good" revision: {good_rev} \tMean: {good_mean} \tStandard error: {good_std_err} \tSample size: {good_sample_size} "Bad" revision: {bad_rev} \tMean: {bad_mean} \tStandard error: {bad_std_err} \tSample size: {bad_sample_size} You may want to try bisecting on a different platform or metric. """ # Git branch name used to run bisect try jobs. BISECT_TRYJOB_BRANCH = 'bisect-tryjob' # Git master branch name. BISECT_MASTER_BRANCH = 'master' # File to store 'git diff' content. BISECT_PATCH_FILE = 'deps_patch.txt' # SVN repo where the bisect try jobs are submitted. PERF_SVN_REPO_URL = 'svn://svn.chromium.org/chrome-try/try-perf' FULL_SVN_REPO_URL = 'svn://svn.chromium.org/chrome-try/try' ANDROID_CHROME_SVN_REPO_URL = ('svn://svn.chromium.org/chrome-try-internal/' 'try-perf') PERF_DASH_RESULTS_URL = 'https://chromeperf.appspot.com/post_bisect_results' class RunGitError(Exception): def __str__(self): return '%s\nError executing git command.' % self.args[0] def GetSHA1HexDigest(contents): """Returns SHA1 hex digest of the given string.""" return hashlib.sha1(contents).hexdigest() def WriteStringToFile(text, file_name): """Writes text to a file, raising an RuntimeError on failure.""" try: with open(file_name, 'wb') as f: f.write(text) except IOError: raise RuntimeError('Error writing to file [%s]' % file_name) def ReadStringFromFile(file_name): """Writes text to a file, raising an RuntimeError on failure.""" try: with open(file_name) as f: return f.read() except IOError: raise RuntimeError('Error reading file [%s]' % file_name) def ChangeBackslashToSlashInPatch(diff_text): """Formats file paths in the given patch text to Unix-style paths.""" if not diff_text: return None diff_lines = diff_text.split('\n') for i in range(len(diff_lines)): line = diff_lines[i] if line.startswith('--- ') or line.startswith('+++ '): diff_lines[i] = line.replace('\\', '/') return '\n'.join(diff_lines) def _ParseRevisionsFromDEPSFileManually(deps_file_contents): """Parses the vars section of the DEPS file using regular expressions. Args: deps_file_contents: The DEPS file contents as a string. Returns: A dictionary in the format {depot: revision} if successful, otherwise None. """ # We'll parse the "vars" section of the DEPS file. rxp = re.compile('vars = {(?P<vars_body>[^}]+)', re.MULTILINE) re_results = rxp.search(deps_file_contents) if not re_results: return None # We should be left with a series of entries in the vars component of # the DEPS file with the following format: # 'depot_name': 'revision', vars_body = re_results.group('vars_body') rxp = re.compile(r"'(?P<depot_body>[\w_-]+)':[\s]+'(?P<rev_body>[\w@]+)'", re.MULTILINE) re_results = rxp.findall(vars_body) return dict(re_results) def _WaitUntilBuildIsReady(fetch_build_func, builder_name, build_request_id, max_timeout, buildbot_server_url): """Waits until build is produced by bisect builder on try server. Args: fetch_build_func: Function to check and download build from cloud storage. builder_name: Builder bot name on try server. build_request_id: A unique ID of the build request posted to try server. max_timeout: Maximum time to wait for the build. buildbot_server_url: Buildbot url to check build status. Returns: Downloaded archive file path if exists, otherwise None. """ # Build number on the try server. build_num = None # Interval to check build on cloud storage. poll_interval = 60 # Interval to check build status on try server in seconds. status_check_interval = 600 last_status_check = time.time() start_time = time.time() while True: # Checks for build on gs://chrome-perf and download if exists. res = fetch_build_func() if res: return (res, 'Build successfully found') elapsed_status_check = time.time() - last_status_check # To avoid overloading try server with status check requests, we check # build status for every 10 minutes. if elapsed_status_check > status_check_interval: last_status_check = time.time() if not build_num: # Get the build number on try server for the current build. build_num = request_build.GetBuildNumFromBuilder( build_request_id, builder_name, buildbot_server_url) # Check the status of build using the build number. # Note: Build is treated as PENDING if build number is not found # on the the try server. build_status, status_link = request_build.GetBuildStatus( build_num, builder_name, buildbot_server_url) if build_status == request_build.FAILED: return (None, 'Failed to produce build, log: %s' % status_link) elapsed_time = time.time() - start_time if elapsed_time > max_timeout: return (None, 'Timed out: %ss without build' % max_timeout) logging.info('Time elapsed: %ss without build.', elapsed_time) time.sleep(poll_interval) # For some reason, mac bisect bots were not flushing stdout periodically. # As a result buildbot command is timed-out. Flush stdout on all platforms # while waiting for build. sys.stdout.flush() def _UpdateV8Branch(deps_content): """Updates V8 branch in DEPS file to process v8_bleeding_edge. Check for "v8_branch" in DEPS file if exists update its value with v8_bleeding_edge branch. Note: "v8_branch" is added to DEPS variable from DEPS revision 254916, therefore check for "src/v8": <v8 source path> in DEPS in order to support prior DEPS revisions and update it. Args: deps_content: DEPS file contents to be modified. Returns: Modified DEPS file contents as a string. """ new_branch = r'branches/bleeding_edge' v8_branch_pattern = re.compile(r'(?<="v8_branch": ")(.*)(?=")') if re.search(v8_branch_pattern, deps_content): deps_content = re.sub(v8_branch_pattern, new_branch, deps_content) else: # Replaces the branch assigned to "src/v8" key in DEPS file. # Format of "src/v8" in DEPS: # "src/v8": # (Var("googlecode_url") % "v8") + "/trunk@" + Var("v8_revision"), # So, "/trunk@" is replace with "/branches/bleeding_edge@" v8_src_pattern = re.compile( r'(?<="v8"\) \+ "/)(.*)(?=@" \+ Var\("v8_revision"\))', re.MULTILINE) if re.search(v8_src_pattern, deps_content): deps_content = re.sub(v8_src_pattern, new_branch, deps_content) return deps_content def _UpdateDEPSForAngle(revision, depot, deps_file): """Updates DEPS file with new revision for Angle repository. This is a hack for Angle depot case because, in DEPS file "vars" dictionary variable contains "angle_revision" key that holds git hash instead of SVN revision. And sometimes "angle_revision" key is not specified in "vars" variable, in such cases check "deps" dictionary variable that matches angle.git@[a-fA-F0-9]{40}$ and replace git hash. """ deps_var = bisect_utils.DEPOT_DEPS_NAME[depot]['deps_var'] try: deps_contents = ReadStringFromFile(deps_file) # Check whether the depot and revision pattern in DEPS file vars variable # e.g. "angle_revision": "fa63e947cb3eccf463648d21a05d5002c9b8adfa". angle_rev_pattern = re.compile(r'(?<="%s": ")([a-fA-F0-9]{40})(?=")' % deps_var, re.MULTILINE) match = re.search(angle_rev_pattern, deps_contents) if match: # Update the revision information for the given depot new_data = re.sub(angle_rev_pattern, revision, deps_contents) else: # Check whether the depot and revision pattern in DEPS file deps # variable. e.g., # "src/third_party/angle": Var("chromium_git") + # "/angle/angle.git@fa63e947cb3eccf463648d21a05d5002c9b8adfa",. angle_rev_pattern = re.compile( r'(?<=angle\.git@)([a-fA-F0-9]{40})(?=")', re.MULTILINE) match = re.search(angle_rev_pattern, deps_contents) if not match: logging.info('Could not find angle revision information in DEPS file.') return False new_data = re.sub(angle_rev_pattern, revision, deps_contents) # Write changes to DEPS file WriteStringToFile(new_data, deps_file) return True except IOError, e: logging.warn('Something went wrong while updating DEPS file, %s', e) return False def _TryParseHistogramValuesFromOutput(metric, text): """Attempts to parse a metric in the format HISTOGRAM <graph: <trace>. Args: metric: The metric as a list of [<trace>, <value>] strings. text: The text to parse the metric values from. Returns: A list of floating point numbers found, [] if none were found. """ metric_formatted = 'HISTOGRAM %s: %s= ' % (metric[0], metric[1]) text_lines = text.split('\n') values_list = [] for current_line in text_lines: if metric_formatted in current_line: current_line = current_line[len(metric_formatted):] try: histogram_values = eval(current_line) for b in histogram_values['buckets']: average_for_bucket = float(b['high'] + b['low']) * 0.5 # Extends the list with N-elements with the average for that bucket. values_list.extend([average_for_bucket] * b['count']) except Exception: pass return values_list def _TryParseResultValuesFromOutput(metric, text): """Attempts to parse a metric in the format RESULT <graph>: <trace>= ... Args: metric: The metric as a list of [<trace>, <value>] string pairs. text: The text to parse the metric values from. Returns: A list of floating point numbers found. """ # Format is: RESULT <graph>: <trace>= <value> <units> metric_re = re.escape('RESULT %s: %s=' % (metric[0], metric[1])) # The log will be parsed looking for format: # <*>RESULT <graph_name>: <trace_name>= <value> single_result_re = re.compile( metric_re + r'\s*(?P<VALUE>[-]?\d*(\.\d*)?)') # The log will be parsed looking for format: # <*>RESULT <graph_name>: <trace_name>= [<value>,value,value,...] multi_results_re = re.compile( metric_re + r'\s*\[\s*(?P<VALUES>[-]?[\d\., ]+)\s*\]') # The log will be parsed looking for format: # <*>RESULT <graph_name>: <trace_name>= {<mean>, <std deviation>} mean_stddev_re = re.compile( metric_re + r'\s*\{\s*(?P<MEAN>[-]?\d*(\.\d*)?),\s*(?P<STDDEV>\d+(\.\d*)?)\s*\}') text_lines = text.split('\n') values_list = [] for current_line in text_lines: # Parse the output from the performance test for the metric we're # interested in. single_result_match = single_result_re.search(current_line) multi_results_match = multi_results_re.search(current_line) mean_stddev_match = mean_stddev_re.search(current_line) if (not single_result_match is None and single_result_match.group('VALUE')): values_list += [single_result_match.group('VALUE')] elif (not multi_results_match is None and multi_results_match.group('VALUES')): metric_values = multi_results_match.group('VALUES') values_list += metric_values.split(',') elif (not mean_stddev_match is None and mean_stddev_match.group('MEAN')): values_list += [mean_stddev_match.group('MEAN')] values_list = [float(v) for v in values_list if bisect_utils.IsStringFloat(v)] return values_list def _ParseMetricValuesFromOutput(metric, text): """Parses output from performance_ui_tests and retrieves the results for a given metric. Args: metric: The metric as a list of [<trace>, <value>] strings. text: The text to parse the metric values from. Returns: A list of floating point numbers found. """ metric_values = _TryParseResultValuesFromOutput(metric, text) if not metric_values: metric_values = _TryParseHistogramValuesFromOutput(metric, text) return metric_values def _GenerateProfileIfNecessary(command_args): """Checks the command line of the performance test for dependencies on profile generation, and runs tools/perf/generate_profile as necessary. Args: command_args: Command line being passed to performance test, as a list. Returns: False if profile generation was necessary and failed, otherwise True. """ if '--profile-dir' in ' '.join(command_args): # If we were using python 2.7+, we could just use the argparse # module's parse_known_args to grab --profile-dir. Since some of the # bots still run 2.6, have to grab the arguments manually. arg_dict = {} args_to_parse = ['--profile-dir', '--browser'] for arg_to_parse in args_to_parse: for i, current_arg in enumerate(command_args): if arg_to_parse in current_arg: current_arg_split = current_arg.split('=') # Check 2 cases, --arg=<val> and --arg <val> if len(current_arg_split) == 2: arg_dict[arg_to_parse] = current_arg_split[1] elif i + 1 < len(command_args): arg_dict[arg_to_parse] = command_args[i+1] path_to_generate = os.path.join('tools', 'perf', 'generate_profile') if '--profile-dir' in arg_dict and '--browser' in arg_dict: profile_path, profile_type = os.path.split(arg_dict['--profile-dir']) return not bisect_utils.RunProcess( [ 'python', path_to_generate, '--profile-type-to-generate', profile_type, '--browser', arg_dict['--browser'], '--output-dir', profile_path ]) return False return True def _IsRegressionReproduced(known_good_result, known_bad_result, required_initial_confidence): """Checks whether the regression was reproduced based on the initial values. Args: known_good_result: A dict with the keys "values", "mean" and "std_err". known_bad_result: Same as above. required_initial_confidence: Minimum confidence score for the given good and bad revisions to avoid early aborting. Returns: True if there is a clear change between the result values for the given good and bad revisions, False otherwise. """ def PossiblyFlatten(values): """Flattens if needed, by averaging the values in each nested list.""" if isinstance(values, list) and all(isinstance(x, list) for x in values): return map(math_utils.Mean, values) return values initial_confidence = BisectResults.ConfidenceScore( PossiblyFlatten(known_bad_result['values']), PossiblyFlatten(known_good_result['values']), accept_single_bad_or_good=True) return initial_confidence >= required_initial_confidence def _RegressionNotReproducedWarningMessage( good_revision, bad_revision, known_good_value, known_bad_value): return REGRESSION_NOT_REPRODUCED_MESSAGE_TEMPLATE.format( good_rev=good_revision, good_mean=known_good_value['mean'], good_std_err=known_good_value['std_err'], good_sample_size=len(known_good_value['values']), bad_rev=bad_revision, bad_mean=known_bad_value['mean'], bad_std_err=known_bad_value['std_err'], bad_sample_size=len(known_bad_value['values'])) class DepotDirectoryRegistry(object): def __init__(self, src_cwd): self.depot_cwd = {} for depot in bisect_utils.DEPOT_NAMES: # The working directory of each depot is just the path to the depot, but # since we're already in 'src', we can skip that part. path_in_src = bisect_utils.DEPOT_DEPS_NAME[depot]['src'][4:] self.SetDepotDir(depot, os.path.join(src_cwd, path_in_src)) self.SetDepotDir('chromium', src_cwd) def SetDepotDir(self, depot_name, depot_dir): self.depot_cwd[depot_name] = depot_dir def GetDepotDir(self, depot_name): if depot_name in self.depot_cwd: return self.depot_cwd[depot_name] else: assert False, ('Unknown depot [ %s ] encountered. Possibly a new one ' 'was added without proper support?' % depot_name) def ChangeToDepotDir(self, depot_name): """Given a depot, changes to the appropriate working directory. Args: depot_name: The name of the depot (see DEPOT_NAMES). """ os.chdir(self.GetDepotDir(depot_name)) def _PrepareBisectBranch(parent_branch, new_branch): """Creates a new branch to submit bisect try job. Args: parent_branch: Parent branch to be used to create new branch. new_branch: New branch name. """ current_branch, returncode = bisect_utils.RunGit( ['rev-parse', '--abbrev-ref', 'HEAD']) if returncode: raise RunGitError('Must be in a git repository to send changes to trybots.') current_branch = current_branch.strip() # Make sure current branch is master. if current_branch != parent_branch: output, returncode = bisect_utils.RunGit(['checkout', '-f', parent_branch]) if returncode: raise RunGitError('Failed to checkout branch: %s.' % output) # Delete new branch if exists. output, returncode = bisect_utils.RunGit(['branch', '--list']) if new_branch in output: output, returncode = bisect_utils.RunGit(['branch', '-D', new_branch]) if returncode: raise RunGitError('Deleting branch failed, %s', output) # Check if the tree is dirty: make sure the index is up to date and then # run diff-index. bisect_utils.RunGit(['update-index', '--refresh', '-q']) output, returncode = bisect_utils.RunGit(['diff-index', 'HEAD']) if output: raise RunGitError('Cannot send a try job with a dirty tree.') # Create and check out the telemetry-tryjob branch, and edit the configs # for the try job there. output, returncode = bisect_utils.RunGit(['checkout', '-b', new_branch]) if returncode: raise RunGitError('Failed to checkout branch: %s.' % output) output, returncode = bisect_utils.RunGit( ['branch', '--set-upstream-to', parent_branch]) if returncode: raise RunGitError('Error in git branch --set-upstream-to') def _StartBuilderTryJob( builder_type, git_revision, builder_name, job_name, patch=None): """Attempts to run a try job from the current directory. Args: builder_type: One of the builder types in fetch_build, e.g. "perf". git_revision: A git commit hash. builder_name: Name of the bisect bot to be used for try job. bisect_job_name: Try job name, used to identify which bisect job was responsible for requesting a build. patch: A DEPS patch (used while bisecting dependency repositories), or None if we're bisecting the top-level repository. """ # TODO(prasadv, qyearsley): Make this a method of BuildArchive # (which may be renamed to BuilderTryBot or Builder). try: # Temporary branch for running a try job. _PrepareBisectBranch(BISECT_MASTER_BRANCH, BISECT_TRYJOB_BRANCH) patch_content = '/dev/null' # Create a temporary patch file. if patch: WriteStringToFile(patch, BISECT_PATCH_FILE) patch_content = BISECT_PATCH_FILE try_command = [ 'try', '--bot=%s' % builder_name, '--revision=%s' % git_revision, '--name=%s' % job_name, '--svn_repo=%s' % _TryJobSvnRepo(builder_type), '--diff=%s' % patch_content, ] # Execute try job to build revision. print try_command output, return_code = bisect_utils.RunGit(try_command) command_string = ' '.join(['git'] + try_command) if return_code: raise RunGitError('Could not execute try job: %s.\n' 'Error: %s' % (command_string, output)) logging.info('Try job successfully submitted.\n TryJob Details: %s\n%s', command_string, output) finally: # Delete patch file if exists. try: os.remove(BISECT_PATCH_FILE) except OSError as e: if e.errno != errno.ENOENT: raise # Checkout master branch and delete bisect-tryjob branch. bisect_utils.RunGit(['checkout', '-f', BISECT_MASTER_BRANCH]) bisect_utils.RunGit(['branch', '-D', BISECT_TRYJOB_BRANCH]) def _TryJobSvnRepo(builder_type): """Returns an SVN repo to use for try jobs based on the builder type.""" if builder_type == fetch_build.PERF_BUILDER: return PERF_SVN_REPO_URL if builder_type == fetch_build.FULL_BUILDER: return FULL_SVN_REPO_URL if builder_type == fetch_build.ANDROID_CHROME_PERF_BUILDER: return ANDROID_CHROME_SVN_REPO_URL raise NotImplementedError('Unknown builder type "%s".' % builder_type) class BisectPerformanceMetrics(object): """This class contains functionality to perform a bisection of a range of revisions to narrow down where performance regressions may have occurred. The main entry-point is the Run method. """ def __init__(self, opts, src_cwd): """Constructs a BisectPerformancesMetrics object. Args: opts: BisectOptions object containing parsed options. src_cwd: Root src/ directory of the test repository (inside bisect/ dir). """ super(BisectPerformanceMetrics, self).__init__() self.opts = opts self.src_cwd = src_cwd self.depot_registry = DepotDirectoryRegistry(self.src_cwd) self.printer = BisectPrinter(self.opts, self.depot_registry) self.cleanup_commands = [] self.warnings = [] self.builder = builder.Builder.FromOpts(opts) def PerformCleanup(self): """Performs cleanup when script is finished.""" os.chdir(self.src_cwd) for c in self.cleanup_commands: if c[0] == 'mv': shutil.move(c[1], c[2]) else: assert False, 'Invalid cleanup command.' def GetRevisionList(self, depot, bad_revision, good_revision): """Retrieves a list of all the commits between the bad revision and last known good revision.""" cwd = self.depot_registry.GetDepotDir(depot) return source_control.GetRevisionList(bad_revision, good_revision, cwd=cwd) def _ParseRevisionsFromDEPSFile(self, depot): """Parses the local DEPS file to determine blink/skia/v8 revisions which may be needed if the bisect recurses into those depots later. Args: depot: Name of depot being bisected. Returns: A dict in the format {depot:revision} if successful, otherwise None. """ try: deps_data = { 'Var': lambda _: deps_data["vars"][_], 'From': lambda *args: None, } deps_file = bisect_utils.FILE_DEPS_GIT if not os.path.exists(deps_file): deps_file = bisect_utils.FILE_DEPS execfile(deps_file, {}, deps_data) deps_data = deps_data['deps'] rxp = re.compile(".git@(?P<revision>[a-fA-F0-9]+)") results = {} for depot_name, depot_data in bisect_utils.DEPOT_DEPS_NAME.iteritems(): if (depot_data.get('platform') and depot_data.get('platform') != os.name): continue if depot_data.get('recurse') and depot in depot_data.get('from'): depot_data_src = depot_data.get('src') or depot_data.get('src_old') src_dir = deps_data.get(depot_data_src) if src_dir: self.depot_registry.SetDepotDir(depot_name, os.path.join( self.src_cwd, depot_data_src[4:])) re_results = rxp.search(src_dir) if re_results: results[depot_name] = re_results.group('revision') else: warning_text = ('Could not parse revision for %s while bisecting ' '%s' % (depot_name, depot)) if not warning_text in self.warnings: self.warnings.append(warning_text) else: results[depot_name] = None return results except ImportError: deps_file_contents = ReadStringFromFile(deps_file) parse_results = _ParseRevisionsFromDEPSFileManually(deps_file_contents) results = {} for depot_name, depot_revision in parse_results.iteritems(): depot_revision = depot_revision.strip('@') logging.warn(depot_name, depot_revision) for cur_name, cur_data in bisect_utils.DEPOT_DEPS_NAME.iteritems(): if cur_data.get('deps_var') == depot_name: src_name = cur_name results[src_name] = depot_revision break return results def _Get3rdPartyRevisions(self, depot): """Parses the DEPS file to determine WebKit/v8/etc... versions. Args: depot: A depot name. Should be in the DEPOT_NAMES list. Returns: A dict in the format {depot: revision} if successful, otherwise None. """ cwd = os.getcwd() self.depot_registry.ChangeToDepotDir(depot) results = {} if depot == 'chromium' or depot == 'android-chrome': results = self._ParseRevisionsFromDEPSFile(depot) os.chdir(cwd) if depot == 'v8': # We can't try to map the trunk revision to bleeding edge yet, because # we don't know which direction to try to search in. Have to wait until # the bisect has narrowed the results down to 2 v8 rolls. results['v8_bleeding_edge'] = None return results def BackupOrRestoreOutputDirectory(self, restore=False, build_type='Release'): """Backs up or restores build output directory based on restore argument. Args: restore: Indicates whether to restore or backup. Default is False(Backup) build_type: Target build type ('Release', 'Debug', 'Release_x64' etc.) Returns: Path to backup or restored location as string. otherwise None if it fails. """ build_dir = os.path.abspath( builder.GetBuildOutputDirectory(self.opts, self.src_cwd)) source_dir = os.path.join(build_dir, build_type) destination_dir = os.path.join(build_dir, '%s.bak' % build_type) if restore: source_dir, destination_dir = destination_dir, source_dir if os.path.exists(source_dir): RemoveDirectoryTree(destination_dir) shutil.move(source_dir, destination_dir) return destination_dir return None def _DownloadAndUnzipBuild(self, revision, depot, build_type='Release', create_patch=False): """Downloads the build archive for the given revision. Args: revision: The git revision to download. depot: The name of a dependency repository. Should be in DEPOT_NAMES. build_type: Target build type, e.g. Release', 'Debug', 'Release_x64' etc. create_patch: Create a patch with any locally modified files. Returns: True if download succeeds, otherwise False. """ patch = None patch_sha = None if depot not in ('chromium', 'android-chrome'): # Create a DEPS patch with new revision for dependency repository. self._CreateDEPSPatch(depot, revision) create_patch = True if create_patch: revision, patch = self._CreatePatch(revision) if patch: # Get the SHA of the DEPS changes patch. patch_sha = GetSHA1HexDigest(patch) # Update the DEPS changes patch with a patch to create a new file named # 'DEPS.sha' and add patch_sha evaluated above to it. patch = '%s\n%s' % (patch, DEPS_SHA_PATCH % {'deps_sha': patch_sha}) build_dir = builder.GetBuildOutputDirectory(self.opts, self.src_cwd) downloaded_file = self._WaitForBuildDownload( revision, build_dir, deps_patch=patch, deps_patch_sha=patch_sha) if not downloaded_file: return False return self._UnzipAndMoveBuildProducts(downloaded_file, build_dir, build_type=build_type) def _WaitForBuildDownload(self, revision, build_dir, deps_patch=None, deps_patch_sha=None): """Tries to download a zip archive for a build. This involves seeing whether the archive is already available, and if not, then requesting a build and waiting before downloading. Args: revision: A git commit hash. build_dir: The directory to download the build into. deps_patch: A patch which changes a dependency repository revision in the DEPS, if applicable. deps_patch_sha: The SHA1 hex digest of the above patch. Returns: File path of the downloaded file if successful, otherwise None. """ bucket_name, remote_path = fetch_build.GetBucketAndRemotePath( revision, builder_type=self.opts.builder_type, target_arch=self.opts.target_arch, target_platform=self.opts.target_platform, deps_patch_sha=deps_patch_sha, extra_src=self.opts.extra_src) output_dir = os.path.abspath(build_dir) fetch_build_func = lambda: fetch_build.FetchFromCloudStorage( bucket_name, remote_path, output_dir) is_available = fetch_build.BuildIsAvailable(bucket_name, remote_path) if is_available: return fetch_build_func() # When build archive doesn't exist, make a request and wait. return self._RequestBuildAndWait( revision, fetch_build_func, deps_patch=deps_patch) def _RequestBuildAndWait(self, git_revision, fetch_build_func, deps_patch=None): """Triggers a try job for a build job. This function prepares and starts a try job for a builder, and waits for the archive to be produced and archived. Once the build is ready it is downloaded. For performance tests, builders on the tryserver.chromium.perf are used. TODO(qyearsley): Make this function take "builder_type" as a parameter and make requests to different bot names based on that parameter. Args: git_revision: A git commit hash. fetch_build_func: Function to check and download build from cloud storage. deps_patch: DEPS patch string, used when bisecting dependency repos. Returns: Downloaded archive file path when requested build exists and download is successful, otherwise None. """ if not fetch_build_func: return None # Create a unique ID for each build request posted to try server builders. # This ID is added to "Reason" property of the build. build_request_id = GetSHA1HexDigest( '%s-%s-%s' % (git_revision, deps_patch, time.time())) # Revert any changes to DEPS file. bisect_utils.CheckRunGit(['reset', '--hard', 'HEAD'], cwd=self.src_cwd) builder_name, build_timeout = fetch_build.GetBuilderNameAndBuildTime( builder_type=self.opts.builder_type, target_arch=self.opts.target_arch, target_platform=self.opts.target_platform, extra_src=self.opts.extra_src) try: _StartBuilderTryJob(self.opts.builder_type, git_revision, builder_name, job_name=build_request_id, patch=deps_patch) except RunGitError as e: logging.warn('Failed to post builder try job for revision: [%s].\n' 'Error: %s', git_revision, e) return None # Get the buildbot master URL to monitor build status. buildbot_server_url = fetch_build.GetBuildBotUrl( builder_type=self.opts.builder_type, target_arch=self.opts.target_arch, target_platform=self.opts.target_platform, extra_src=self.opts.extra_src) archive_filename, error_msg = _WaitUntilBuildIsReady( fetch_build_func, builder_name, build_request_id, build_timeout, buildbot_server_url) if not archive_filename: logging.warn('%s [revision: %s]', error_msg, git_revision) return archive_filename def _UnzipAndMoveBuildProducts(self, downloaded_file, build_dir, build_type='Release'): """Unzips the build archive and moves it to the build output directory. The build output directory is wherever the binaries are expected to be in order to start Chrome and run tests. TODO: Simplify and clarify this method if possible. Args: downloaded_file: File path of the downloaded zip file. build_dir: Directory where the the zip file was downloaded to. build_type: "Release" or "Debug". Returns: True if successful, False otherwise. """ abs_build_dir = os.path.abspath(build_dir) output_dir = os.path.join(abs_build_dir, self.GetZipFileBuildDirName()) logging.info('EXPERIMENTAL RUN, _UnzipAndMoveBuildProducts locals %s', str(locals())) try: RemoveDirectoryTree(output_dir) self.BackupOrRestoreOutputDirectory(restore=False) # Build output directory based on target(e.g. out/Release, out/Debug). target_build_output_dir = os.path.join(abs_build_dir, build_type) logging.info('Extracting "%s" to "%s"', downloaded_file, abs_build_dir) fetch_build.Unzip(downloaded_file, abs_build_dir) if not os.path.exists(output_dir): # Due to recipe changes, the builds extract folder contains # out/Release instead of full-build-<platform>/Release. if os.path.exists(os.path.join(abs_build_dir, 'out', build_type)): output_dir = os.path.join(abs_build_dir, 'out', build_type) else: raise IOError('Missing extracted folder %s ' % output_dir) logging.info('Moving build from %s to %s', output_dir, target_build_output_dir) shutil.move(output_dir, target_build_output_dir) return True except Exception as e: logging.info('Something went wrong while extracting archive file: %s', e) self.BackupOrRestoreOutputDirectory(restore=True) # Cleanup any leftovers from unzipping. if os.path.exists(output_dir): RemoveDirectoryTree(output_dir) finally: # Delete downloaded archive if os.path.exists(downloaded_file): os.remove(downloaded_file) return False @staticmethod def GetZipFileBuildDirName(): """Gets the base file name of the zip file. After extracting the zip file, this is the name of the directory where the build files are expected to be. Possibly. TODO: Make sure that this returns the actual directory name where the Release or Debug directory is inside of the zip files. This probably depends on the builder recipe, and may depend on whether the builder is a perf builder or full builder. Returns: The name of the directory inside a build archive which is expected to contain a Release or Debug directory. """ if bisect_utils.IsWindowsHost(): return 'full-build-win32' if bisect_utils.IsLinuxHost(): return 'full-build-linux' if bisect_utils.IsMacHost(): return 'full-build-mac' raise NotImplementedError('Unknown platform "%s".' % sys.platform) def IsDownloadable(self, depot): """Checks if build can be downloaded based on target platform and depot.""" if (self.opts.target_platform in ['chromium', 'android', 'android-chrome'] and self.opts.builder_type): # In case of android-chrome platform, download archives only for # android-chrome depot; for other depots such as chromium, v8, skia # etc., build the binary locally. if self.opts.target_platform == 'android-chrome': return depot == 'android-chrome' else: return (depot == 'chromium' or 'chromium' in bisect_utils.DEPOT_DEPS_NAME[depot]['from'] or 'v8' in bisect_utils.DEPOT_DEPS_NAME[depot]['from']) return False def UpdateDepsContents(self, deps_contents, depot, git_revision, deps_key): """Returns modified version of DEPS file contents. Args: deps_contents: DEPS file content. depot: Current depot being bisected. git_revision: A git hash to be updated in DEPS. deps_key: Key in vars section of DEPS file to be searched. Returns: Updated DEPS content as string if deps key is found, otherwise None. """ # Check whether the depot and revision pattern in DEPS file vars # e.g. for webkit the format is "webkit_revision": "12345". deps_revision = re.compile(r'(?<="%s": ")([0-9]+)(?=")' % deps_key, re.MULTILINE) new_data = None if re.search(deps_revision, deps_contents): commit_position = source_control.GetCommitPosition( git_revision, self.depot_registry.GetDepotDir(depot)) if not commit_position: logging.warn('Could not determine commit position for %s', git_revision) return None # Update the revision information for the given depot new_data = re.sub(deps_revision, str(commit_position), deps_contents) else: # Check whether the depot and revision pattern in DEPS file vars # e.g. for webkit the format is "webkit_revision": "559a6d4ab7a84c539..". deps_revision = re.compile( r'(?<=["\']%s["\']: ["\'])([a-fA-F0-9]{40})(?=["\'])' % deps_key, re.MULTILINE) if re.search(deps_revision, deps_contents): new_data = re.sub(deps_revision, git_revision, deps_contents) if new_data: # For v8_bleeding_edge revisions change V8 branch in order # to fetch bleeding edge revision. if depot == 'v8_bleeding_edge': new_data = _UpdateV8Branch(new_data) if not new_data: return None return new_data def UpdateDeps(self, revision, depot, deps_file): """Updates DEPS file with new revision of dependency repository. This method search DEPS for a particular pattern in which depot revision is specified (e.g "webkit_revision": "123456"). If a match is found then it resolves the given git hash to SVN revision and replace it in DEPS file. Args: revision: A git hash revision of the dependency repository. depot: Current depot being bisected. deps_file: Path to DEPS file. Returns: True if DEPS file is modified successfully, otherwise False. """ if not os.path.exists(deps_file): return False deps_var = bisect_utils.DEPOT_DEPS_NAME[depot]['deps_var'] # Don't update DEPS file if deps_var is not set in DEPOT_DEPS_NAME. if not deps_var: logging.warn('DEPS update not supported for Depot: %s', depot) return False # Hack for Angle repository. In the DEPS file, "vars" dictionary variable # contains "angle_revision" key that holds git hash instead of SVN revision. # And sometime "angle_revision" key is not specified in "vars" variable. # In such cases check, "deps" dictionary variable that matches # angle.git@[a-fA-F0-9]{40}$ and replace git hash. if depot == 'angle': return _UpdateDEPSForAngle(revision, depot, deps_file) try: deps_contents = ReadStringFromFile(deps_file) updated_deps_content = self.UpdateDepsContents( deps_contents, depot, revision, deps_var) # Write changes to DEPS file if updated_deps_content: WriteStringToFile(updated_deps_content, deps_file) return True except IOError, e: logging.warn('Something went wrong while updating DEPS file. [%s]', e) return False def _CreateDEPSPatch(self, depot, revision): """Checks out the DEPS file at the specified revision and modifies it. Args: depot: Current depot being bisected. revision: A git hash revision of the dependency repository. """ deps_file_path = os.path.join(self.src_cwd, bisect_utils.FILE_DEPS) if not os.path.exists(deps_file_path): raise RuntimeError('DEPS file does not exists.[%s]' % deps_file_path) # Get current chromium revision (git hash). cmd = ['rev-parse', 'HEAD'] chromium_sha = bisect_utils.CheckRunGit(cmd).strip() if not chromium_sha: raise RuntimeError('Failed to determine Chromium revision for %s' % revision) if ('chromium' in bisect_utils.DEPOT_DEPS_NAME[depot]['from'] or 'v8' in bisect_utils.DEPOT_DEPS_NAME[depot]['from']): # Checkout DEPS file for the current chromium revision. if not source_control.CheckoutFileAtRevision( bisect_utils.FILE_DEPS, chromium_sha, cwd=self.src_cwd): raise RuntimeError( 'DEPS checkout Failed for chromium revision : [%s]' % chromium_sha) if not self.UpdateDeps(revision, depot, deps_file_path): raise RuntimeError( 'Failed to update DEPS file for chromium: [%s]' % chromium_sha) def _CreatePatch(self, revision): """Creates a patch from currently modified files. Args: depot: Current depot being bisected. revision: A git hash revision of the dependency repository. Returns: A tuple with git hash of chromium revision and DEPS patch text. """ # Get current chromium revision (git hash). chromium_sha = bisect_utils.CheckRunGit(['rev-parse', 'HEAD']).strip() if not chromium_sha: raise RuntimeError('Failed to determine Chromium revision for %s' % revision) # Checkout DEPS file for the current chromium revision. diff_command = [ 'diff', '--src-prefix=', '--dst-prefix=', '--no-ext-diff', 'HEAD', ] diff_text = bisect_utils.CheckRunGit(diff_command) return (chromium_sha, ChangeBackslashToSlashInPatch(diff_text)) def ObtainBuild( self, depot, revision=None, create_patch=False): """Obtains a build by either downloading or building directly. Args: depot: Dependency repository name. revision: A git commit hash. If None is given, the currently checked-out revision is built. create_patch: Create a patch with any locally modified files. Returns: True for success. """ if self.opts.debug_ignore_build: return True build_success = False cwd = os.getcwd() os.chdir(self.src_cwd) # Fetch build archive for the given revision from the cloud storage when # the storage bucket is passed. if self.IsDownloadable(depot) and revision: build_success = self._DownloadAndUnzipBuild( revision, depot, build_type='Release', create_patch=create_patch) else: # Print the current environment set on the machine. print 'Full Environment:' for key, value in sorted(os.environ.items()): print '%s: %s' % (key, value) # Print the environment before proceeding with compile. sys.stdout.flush() build_success = self.builder.Build(depot, self.opts) os.chdir(cwd) return build_success def RunGClientHooks(self): """Runs gclient with runhooks command. Returns: True if gclient reports no errors. """ if self.opts.debug_ignore_build: return True # Some "runhooks" calls create symlinks that other (older?) versions # do not handle correctly causing the build to fail. We want to avoid # clearing the entire out/ directory so that changes close together will # build faster so we just clear out all symlinks on the expectation that # the next "runhooks" call will recreate everything properly. Ignore # failures (like Windows that doesn't have "find"). try: bisect_utils.RunProcess( ['find', 'out/', '-type', 'l', '-exec', 'rm', '-f', '{}', ';'], cwd=self.src_cwd, shell=False) except OSError: pass return not bisect_utils.RunGClient(['runhooks'], cwd=self.src_cwd) def _IsBisectModeUsingMetric(self): return self.opts.bisect_mode in [bisect_utils.BISECT_MODE_MEAN, bisect_utils.BISECT_MODE_STD_DEV] def _IsBisectModeReturnCode(self): return self.opts.bisect_mode in [bisect_utils.BISECT_MODE_RETURN_CODE] def _IsBisectModeStandardDeviation(self): return self.opts.bisect_mode in [bisect_utils.BISECT_MODE_STD_DEV] def RunPerformanceTestAndParseResults( self, command_to_run, metric, reset_on_first_run=False, upload_on_last_run=False, results_label=None, test_run_multiplier=1, allow_flakes=True): """Runs a performance test on the current revision and parses the results. Args: command_to_run: The command to be run to execute the performance test. metric: The metric to parse out from the results of the performance test. This is the result chart name and trace name, separated by slash. May be None for perf try jobs. reset_on_first_run: If True, pass the flag --reset-results on first run. upload_on_last_run: If True, pass the flag --upload-results on last run. results_label: A value for the option flag --results-label. The arguments reset_on_first_run, upload_on_last_run and results_label are all ignored if the test is not a Telemetry test. test_run_multiplier: Factor by which to multiply the number of test runs and the timeout period specified in self.opts. allow_flakes: Report success even if some tests fail to run. Returns: (values dict, 0) if --debug_ignore_perf_test was passed. (values dict, 0, test output) if the test was run successfully. (error message, -1) if the test couldn't be run. (error message, -1, test output) if the test ran but there was an error. """ success_code, failure_code = 0, -1 if self.opts.debug_ignore_perf_test: fake_results = { 'mean': 0.0, 'std_err': 0.0, 'std_dev': 0.0, 'values': [0.0] } # When debug_fake_test_mean is set, its value is returned as the mean # and the flag is cleared so that further calls behave as if it wasn't # set (returning the fake_results dict as defined above). if self.opts.debug_fake_first_test_mean: fake_results['mean'] = float(self.opts.debug_fake_first_test_mean) self.opts.debug_fake_first_test_mean = 0 return (fake_results, success_code) # For Windows platform set posix=False, to parse windows paths correctly. # On Windows, path separators '\' or '\\' are replace by '' when posix=True, # refer to http://bugs.python.org/issue1724822. By default posix=True. args = shlex.split(command_to_run, posix=not bisect_utils.IsWindowsHost()) if not _GenerateProfileIfNecessary(args): err_text = 'Failed to generate profile for performance test.' return (err_text, failure_code) is_telemetry = bisect_utils.IsTelemetryCommand(command_to_run) start_time = time.time() metric_values = [] output_of_all_runs = '' repeat_count = self.opts.repeat_test_count * test_run_multiplier return_codes = [] for i in xrange(repeat_count): # Can ignore the return code since if the tests fail, it won't return 0. current_args = copy.copy(args) if is_telemetry: if i == 0 and reset_on_first_run: current_args.append('--reset-results') if i == self.opts.repeat_test_count - 1 and upload_on_last_run: current_args.append('--upload-results') if results_label: current_args.append('--results-label=%s' % results_label) try: output, return_code = bisect_utils.RunProcessAndRetrieveOutput( current_args, cwd=self.src_cwd) return_codes.append(return_code) except OSError, e: if e.errno == errno.ENOENT: err_text = ('Something went wrong running the performance test. ' 'Please review the command line:\n\n') if 'src/' in ' '.join(args): err_text += ('Check that you haven\'t accidentally specified a ' 'path with src/ in the command.\n\n') err_text += ' '.join(args) err_text += '\n' return (err_text, failure_code) raise output_of_all_runs += output if self.opts.output_buildbot_annotations: print output if metric and self._IsBisectModeUsingMetric(): parsed_metric = _ParseMetricValuesFromOutput(metric, output) if parsed_metric: metric_values += parsed_metric # If we're bisecting on a metric (ie, changes in the mean or # standard deviation) and no metric values are produced, bail out. if not metric_values: break elif self._IsBisectModeReturnCode(): metric_values.append(return_code) # If there's a failed test, we can bail out early. if return_code: break elapsed_minutes = (time.time() - start_time) / 60.0 time_limit = self.opts.max_time_minutes * test_run_multiplier if elapsed_minutes >= time_limit: break if metric and len(metric_values) == 0: err_text = 'Metric %s was not found in the test output.' % metric # TODO(qyearsley): Consider also getting and displaying a list of metrics # that were found in the output here. return (err_text, failure_code, output_of_all_runs) # If we're bisecting on return codes, we're really just looking for zero vs # non-zero. values = {} if self._IsBisectModeReturnCode(): # If any of the return codes is non-zero, output 1. overall_return_code = 0 if ( all(current_value == 0 for current_value in metric_values)) else 1 values = { 'mean': overall_return_code, 'std_err': 0.0, 'std_dev': 0.0, 'values': metric_values, } print 'Results of performance test: Command returned with %d' % ( overall_return_code) print elif metric: # Need to get the average value if there were multiple values. truncated_mean = math_utils.TruncatedMean( metric_values, self.opts.truncate_percent) standard_err = math_utils.StandardError(metric_values) standard_dev = math_utils.StandardDeviation(metric_values) if self._IsBisectModeStandardDeviation(): metric_values = [standard_dev] values = { 'mean': truncated_mean, 'std_err': standard_err, 'std_dev': standard_dev, 'values': metric_values, } print 'Results of performance test: %12f %12f' % ( truncated_mean, standard_err) print overall_success = success_code if not allow_flakes and not self._IsBisectModeReturnCode(): overall_success = ( success_code if (all(current_value == 0 for current_value in return_codes)) else failure_code) return (values, overall_success, output_of_all_runs) def PerformPreBuildCleanup(self): """Performs cleanup between runs.""" print 'Cleaning up between runs.' print # Leaving these .pyc files around between runs may disrupt some perf tests. for (path, _, files) in os.walk(self.src_cwd): for cur_file in files: if cur_file.endswith('.pyc'): path_to_file = os.path.join(path, cur_file) os.remove(path_to_file) def _RunPostSync(self, _depot): """Performs any work after syncing. Args: depot: Depot name. Returns: True if successful. """ if 'android' in self.opts.target_platform: if not builder.SetupAndroidBuildEnvironment( self.opts, path_to_src=self.src_cwd): return False return self.RunGClientHooks() @staticmethod def ShouldSkipRevision(depot, revision): """Checks whether a particular revision can be safely skipped. Some commits can be safely skipped (such as a DEPS roll for the repos still using .DEPS.git), since the tool is git based those changes would have no effect. Args: depot: The depot being bisected. revision: Current revision we're synced to. Returns: True if we should skip building/testing this revision. """ # Skips revisions with DEPS on android-chrome. if depot == 'android-chrome': cmd = ['diff-tree', '--no-commit-id', '--name-only', '-r', revision] output = bisect_utils.CheckRunGit(cmd) files = output.splitlines() if len(files) == 1 and files[0] == 'DEPS': return True return False def RunTest(self, revision, depot, command, metric, skippable=False, skip_sync=False, create_patch=False, force_build=False, test_run_multiplier=1): """Performs a full sync/build/run of the specified revision. Args: revision: The revision to sync to. depot: The depot that's being used at the moment (src, webkit, etc.) command: The command to execute the performance test. metric: The performance metric being tested. skip_sync: Skip the sync step. create_patch: Create a patch with any locally modified files. force_build: Force a local build. test_run_multiplier: Factor by which to multiply the given number of runs and the set timeout period. Returns: On success, a tuple containing the results of the performance test. Otherwise, a tuple with the error message. """ logging.info('Running RunTest with rev "%s", command "%s"', revision, command) # Decide which sync program to use. sync_client = None if depot == 'chromium' or depot == 'android-chrome': sync_client = 'gclient' # Do the syncing for all depots. if not (self.opts.debug_ignore_sync or skip_sync): if not self._SyncRevision(depot, revision, sync_client): return ('Failed to sync: [%s]' % str(revision), BUILD_RESULT_FAIL) # Try to do any post-sync steps. This may include "gclient runhooks". if not self._RunPostSync(depot): return ('Failed to run [gclient runhooks].', BUILD_RESULT_FAIL) # Skip this revision if it can be skipped. if skippable and self.ShouldSkipRevision(depot, revision): return ('Skipped revision: [%s]' % str(revision), BUILD_RESULT_SKIPPED) # Obtain a build for this revision. This may be done by requesting a build # from another builder, waiting for it and downloading it. start_build_time = time.time() revision_to_build = revision if not force_build else None build_success = self.ObtainBuild( depot, revision=revision_to_build, create_patch=create_patch) if not build_success: return ('Failed to build revision: [%s]' % str(revision), BUILD_RESULT_FAIL) after_build_time = time.time() # Run the command and get the results. results = self.RunPerformanceTestAndParseResults( command, metric, test_run_multiplier=test_run_multiplier) # Restore build output directory once the tests are done, to avoid # any discrepancies. if self.IsDownloadable(depot) and revision: self.BackupOrRestoreOutputDirectory(restore=True) # A value other than 0 indicates that the test couldn't be run, and results # should also include an error message. if results[1] != 0: return results external_revisions = self._Get3rdPartyRevisions(depot) if not external_revisions is None: return (results[0], results[1], external_revisions, time.time() - after_build_time, after_build_time - start_build_time) else: return ('Failed to parse DEPS file for external revisions.', BUILD_RESULT_FAIL) def _SyncRevision(self, depot, revision, sync_client): """Syncs depot to particular revision. Args: depot: The depot that's being used at the moment (src, webkit, etc.) revision: The revision to sync to. sync_client: Program used to sync, e.g. "gclient". Can be None. Returns: True if successful, False otherwise. """ self.depot_registry.ChangeToDepotDir(depot) if sync_client: self.PerformPreBuildCleanup() # When using gclient to sync, you need to specify the depot you # want so that all the dependencies sync properly as well. # i.e. gclient sync src@<SHA1> if sync_client == 'gclient' and revision: revision = '%s@%s' % (bisect_utils.DEPOT_DEPS_NAME[depot]['src'], revision) if depot == 'chromium' and self.opts.target_platform == 'android-chrome': return self._SyncRevisionsForAndroidChrome(revision) return source_control.SyncToRevision(revision, sync_client) def _SyncRevisionsForAndroidChrome(self, revision): """Syncs android-chrome and chromium repos to particular revision. This is a special case for android-chrome as the gclient sync for chromium overwrites the android-chrome revision to TOT. Therefore both the repos are synced to known revisions. Args: revision: Git hash of the Chromium to sync. Returns: True if successful, False otherwise. """ revisions_list = [revision] current_android_rev = source_control.GetCurrentRevision( self.depot_registry.GetDepotDir('android-chrome')) revisions_list.append( '%s@%s' % (bisect_utils.DEPOT_DEPS_NAME['android-chrome']['src'], current_android_rev)) return not bisect_utils.RunGClientAndSync(revisions_list) def _CheckIfRunPassed(self, current_value, known_good_value, known_bad_value): """Given known good and bad values, decide if the current_value passed or failed. Args: current_value: The value of the metric being checked. known_bad_value: The reference value for a "failed" run. known_good_value: The reference value for a "passed" run. Returns: True if the current_value is closer to the known_good_value than the known_bad_value. """ if self.opts.bisect_mode == bisect_utils.BISECT_MODE_STD_DEV: dist_to_good_value = abs(current_value['std_dev'] - known_good_value['std_dev']) dist_to_bad_value = abs(current_value['std_dev'] - known_bad_value['std_dev']) else: dist_to_good_value = abs(current_value['mean'] - known_good_value['mean']) dist_to_bad_value = abs(current_value['mean'] - known_bad_value['mean']) return dist_to_good_value < dist_to_bad_value def _GetV8BleedingEdgeFromV8TrunkIfMappable( self, revision, bleeding_edge_branch): """Gets v8 bleeding edge revision mapped to v8 revision in trunk. Args: revision: A trunk V8 revision mapped to bleeding edge revision. bleeding_edge_branch: Branch used to perform lookup of bleeding edge revision. Return: A mapped bleeding edge revision if found, otherwise None. """ commit_position = source_control.GetCommitPosition(revision) if bisect_utils.IsStringInt(commit_position): # V8 is tricky to bisect, in that there are only a few instances when # we can dive into bleeding_edge and get back a meaningful result. # Try to detect a V8 "business as usual" case, which is when: # 1. trunk revision N has description "Version X.Y.Z" # 2. bleeding_edge revision (N-1) has description "Prepare push to # trunk. Now working on X.Y.(Z+1)." # # As of 01/24/2014, V8 trunk descriptions are formatted: # "Version 3.X.Y (based on bleeding_edge revision rZ)" # So we can just try parsing that out first and fall back to the old way. v8_dir = self.depot_registry.GetDepotDir('v8') v8_bleeding_edge_dir = self.depot_registry.GetDepotDir('v8_bleeding_edge') revision_info = source_control.QueryRevisionInfo(revision, cwd=v8_dir) version_re = re.compile("Version (?P<values>[0-9,.]+)") regex_results = version_re.search(revision_info['subject']) if regex_results: git_revision = None if 'based on bleeding_edge' in revision_info['subject']: try: bleeding_edge_revision = revision_info['subject'].split( 'bleeding_edge revision r')[1] bleeding_edge_revision = int(bleeding_edge_revision.split(')')[0]) bleeding_edge_url = ('https://v8.googlecode.com/svn/branches/' 'bleeding_edge@%s' % bleeding_edge_revision) cmd = ['log', '--format=%H', '--grep', bleeding_edge_url, '-1', bleeding_edge_branch] output = bisect_utils.CheckRunGit(cmd, cwd=v8_dir) if output: git_revision = output.strip() return git_revision except (IndexError, ValueError): pass else: # V8 rolls description changed after V8 git migration, new description # includes "Version 3.X.Y (based on <git hash>)" try: rxp = re.compile('based on (?P<git_revision>[a-fA-F0-9]+)') re_results = rxp.search(revision_info['subject']) if re_results: return re_results.group('git_revision') except (IndexError, ValueError): pass if not git_revision: # Wasn't successful, try the old way of looking for "Prepare push to" git_revision = source_control.ResolveToRevision( int(commit_position) - 1, 'v8_bleeding_edge', bisect_utils.DEPOT_DEPS_NAME, -1, cwd=v8_bleeding_edge_dir) if git_revision: revision_info = source_control.QueryRevisionInfo( git_revision, cwd=v8_bleeding_edge_dir) if 'Prepare push to trunk' in revision_info['subject']: return git_revision return None def _GetNearestV8BleedingEdgeFromTrunk( self, revision, v8_branch, bleeding_edge_branch, search_forward=True): """Gets the nearest V8 roll and maps to bleeding edge revision. V8 is a bit tricky to bisect since it isn't just rolled out like blink. Each revision on trunk might just be whatever was in bleeding edge, rolled directly out. Or it could be some mixture of previous v8 trunk versions, with bits and pieces cherry picked out from bleeding edge. In order to bisect, we need both the before/after versions on trunk v8 to be just pushes from bleeding edge. With the V8 git migration, the branches got switched. a) master (external/v8) == candidates (v8/v8) b) bleeding_edge (external/v8) == master (v8/v8) Args: revision: A V8 revision to get its nearest bleeding edge revision search_forward: Searches forward if True, otherwise search backward. Return: A mapped bleeding edge revision if found, otherwise None. """ cwd = self.depot_registry.GetDepotDir('v8') cmd = ['log', '--format=%ct', '-1', revision] output = bisect_utils.CheckRunGit(cmd, cwd=cwd) commit_time = int(output) commits = [] if search_forward: cmd = ['log', '--format=%H', '--after=%d' % commit_time, v8_branch, '--reverse'] output = bisect_utils.CheckRunGit(cmd, cwd=cwd) output = output.split() commits = output #Get 10 git hashes immediately after the given commit. commits = commits[:10] else: cmd = ['log', '--format=%H', '-10', '--before=%d' % commit_time, v8_branch] output = bisect_utils.CheckRunGit(cmd, cwd=cwd) output = output.split() commits = output bleeding_edge_revision = None for c in commits: bleeding_edge_revision = self._GetV8BleedingEdgeFromV8TrunkIfMappable( c, bleeding_edge_branch) if bleeding_edge_revision: break return bleeding_edge_revision def _FillInV8BleedingEdgeInfo(self, min_revision_state, max_revision_state): cwd = self.depot_registry.GetDepotDir('v8') # when "remote.origin.url" is https://chromium.googlesource.com/v8/v8.git v8_branch = 'origin/candidates' bleeding_edge_branch = 'origin/master' # Support for the chromium revisions with external V8 repo. # ie https://chromium.googlesource.com/external/v8.git cmd = ['config', '--get', 'remote.origin.url'] v8_repo_url = bisect_utils.CheckRunGit(cmd, cwd=cwd) if 'external/v8.git' in v8_repo_url: v8_branch = 'origin/master' bleeding_edge_branch = 'origin/bleeding_edge' r1 = self._GetNearestV8BleedingEdgeFromTrunk( min_revision_state.revision, v8_branch, bleeding_edge_branch, search_forward=True) r2 = self._GetNearestV8BleedingEdgeFromTrunk( max_revision_state.revision, v8_branch, bleeding_edge_branch, search_forward=False) min_revision_state.external['v8_bleeding_edge'] = r1 max_revision_state.external['v8_bleeding_edge'] = r2 if (not self._GetV8BleedingEdgeFromV8TrunkIfMappable( min_revision_state.revision, bleeding_edge_branch) or not self._GetV8BleedingEdgeFromV8TrunkIfMappable( max_revision_state.revision, bleeding_edge_branch)): self.warnings.append( 'Trunk revisions in V8 did not map directly to bleeding_edge. ' 'Attempted to expand the range to find V8 rolls which did map ' 'directly to bleeding_edge revisions, but results might not be ' 'valid.') def _FindNextDepotToBisect( self, current_depot, min_revision_state, max_revision_state): """Decides which depot the script should dive into next (if any). Args: current_depot: Current depot being bisected. min_revision_state: State of the earliest revision in the bisect range. max_revision_state: State of the latest revision in the bisect range. Returns: Name of the depot to bisect next, or None. """ external_depot = None for next_depot in bisect_utils.DEPOT_NAMES: if ('platform' in bisect_utils.DEPOT_DEPS_NAME[next_depot] and bisect_utils.DEPOT_DEPS_NAME[next_depot]['platform'] != os.name): continue if not (bisect_utils.DEPOT_DEPS_NAME[next_depot]['recurse'] and min_revision_state.depot in bisect_utils.DEPOT_DEPS_NAME[next_depot]['from']): continue if current_depot == 'v8': # We grab the bleeding_edge info here rather than earlier because we # finally have the revision range. From that we can search forwards and # backwards to try to match trunk revisions to bleeding_edge. self._FillInV8BleedingEdgeInfo(min_revision_state, max_revision_state) if (min_revision_state.external.get(next_depot) == max_revision_state.external.get(next_depot)): continue if (min_revision_state.external.get(next_depot) and max_revision_state.external.get(next_depot)): external_depot = next_depot break return external_depot def PrepareToBisectOnDepot( self, current_depot, start_revision, end_revision, previous_revision): """Changes to the appropriate directory and gathers a list of revisions to bisect between |start_revision| and |end_revision|. Args: current_depot: The depot we want to bisect. start_revision: Start of the revision range. end_revision: End of the revision range. previous_revision: The last revision we synced to on |previous_depot|. Returns: A list containing the revisions between |start_revision| and |end_revision| inclusive. """ # Change into working directory of external library to run # subsequent commands. self.depot_registry.ChangeToDepotDir(current_depot) # V8 (and possibly others) is merged in periodically. Bisecting # this directory directly won't give much good info. if 'custom_deps' in bisect_utils.DEPOT_DEPS_NAME[current_depot]: config_path = os.path.join(self.src_cwd, '..') if bisect_utils.RunGClientAndCreateConfig( self.opts, bisect_utils.DEPOT_DEPS_NAME[current_depot]['custom_deps'], cwd=config_path): return [] if bisect_utils.RunGClient( ['sync', '--revision', previous_revision], cwd=self.src_cwd): return [] if current_depot == 'v8_bleeding_edge': self.depot_registry.ChangeToDepotDir('chromium') shutil.move('v8', 'v8.bak') shutil.move('v8_bleeding_edge', 'v8') self.cleanup_commands.append(['mv', 'v8', 'v8_bleeding_edge']) self.cleanup_commands.append(['mv', 'v8.bak', 'v8']) self.depot_registry.SetDepotDir( 'v8_bleeding_edge', os.path.join(self.src_cwd, 'v8')) self.depot_registry.SetDepotDir( 'v8', os.path.join(self.src_cwd, 'v8.bak')) self.depot_registry.ChangeToDepotDir(current_depot) depot_revision_list = self.GetRevisionList(current_depot, end_revision, start_revision) self.depot_registry.ChangeToDepotDir('chromium') return depot_revision_list def GatherReferenceValues(self, good_rev, bad_rev, cmd, metric, target_depot): """Gathers reference values by running the performance tests on the known good and bad revisions. Args: good_rev: The last known good revision where the performance regression has not occurred yet. bad_rev: A revision where the performance regression has already occurred. cmd: The command to execute the performance test. metric: The metric being tested for regression. Returns: A tuple with the results of building and running each revision. """ bad_run_results = self.RunTest(bad_rev, target_depot, cmd, metric) good_run_results = None if not bad_run_results[1]: good_run_results = self.RunTest(good_rev, target_depot, cmd, metric) return (bad_run_results, good_run_results) def PrintRevisionsToBisectMessage(self, revision_list, depot): if self.opts.output_buildbot_annotations: step_name = 'Bisection Range: [%s:%s - %s]' % (depot, revision_list[-1], revision_list[0]) bisect_utils.OutputAnnotationStepStart(step_name) print print 'Revisions to bisect on [%s]:' % depot for revision_id in revision_list: print ' -> %s' % (revision_id, ) print if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepClosed() def NudgeRevisionsIfDEPSChange(self, bad_revision, good_revision, good_svn_revision=None): """Checks to see if changes to DEPS file occurred, and that the revision range also includes the change to .DEPS.git. If it doesn't, attempts to expand the revision range to include it. Args: bad_revision: First known bad git revision. good_revision: Last known good git revision. good_svn_revision: Last known good svn revision. Returns: A tuple with the new bad and good revisions. """ # DONOT perform nudge because at revision 291563 .DEPS.git was removed # and source contain only DEPS file for dependency changes. if good_svn_revision >= 291563: return (bad_revision, good_revision) if self.opts.target_platform == 'chromium': changes_to_deps = source_control.QueryFileRevisionHistory( bisect_utils.FILE_DEPS, good_revision, bad_revision) if changes_to_deps: # DEPS file was changed, search from the oldest change to DEPS file to # bad_revision to see if there are matching .DEPS.git changes. oldest_deps_change = changes_to_deps[-1] changes_to_gitdeps = source_control.QueryFileRevisionHistory( bisect_utils.FILE_DEPS_GIT, oldest_deps_change, bad_revision) if len(changes_to_deps) != len(changes_to_gitdeps): # Grab the timestamp of the last DEPS change cmd = ['log', '--format=%ct', '-1', changes_to_deps[0]] output = bisect_utils.CheckRunGit(cmd) commit_time = int(output) # Try looking for a commit that touches the .DEPS.git file in the # next 15 minutes after the DEPS file change. cmd = [ 'log', '--format=%H', '-1', '--before=%d' % (commit_time + 900), '--after=%d' % commit_time, 'origin/master', '--', bisect_utils.FILE_DEPS_GIT ] output = bisect_utils.CheckRunGit(cmd) output = output.strip() if output: self.warnings.append( 'Detected change to DEPS and modified ' 'revision range to include change to .DEPS.git') return (output, good_revision) else: self.warnings.append( 'Detected change to DEPS but couldn\'t find ' 'matching change to .DEPS.git') return (bad_revision, good_revision) def CheckIfRevisionsInProperOrder( self, target_depot, good_revision, bad_revision): """Checks that |good_revision| is an earlier revision than |bad_revision|. Args: good_revision: Number/tag of the known good revision. bad_revision: Number/tag of the known bad revision. Returns: True if the revisions are in the proper order (good earlier than bad). """ cwd = self.depot_registry.GetDepotDir(target_depot) good_position = source_control.GetCommitPosition(good_revision, cwd) bad_position = source_control.GetCommitPosition(bad_revision, cwd) # Compare commit timestamp for repos that don't support commit position. if not (bad_position and good_position): logging.info('Could not get commit positions for revisions %s and %s in ' 'depot %s', good_position, bad_position, target_depot) good_position = source_control.GetCommitTime(good_revision, cwd=cwd) bad_position = source_control.GetCommitTime(bad_revision, cwd=cwd) return good_position <= bad_position def CanPerformBisect(self, good_revision, bad_revision): """Checks whether a given revision is bisectable. Checks for following: 1. Non-bisectable revisions for android bots (refer to crbug.com/385324). 2. Non-bisectable revisions for Windows bots (refer to crbug.com/405274). Args: good_revision: Known good revision. bad_revision: Known bad revision. Returns: A dictionary indicating the result. If revision is not bisectable, this will contain the field "error", otherwise None. """ if self.opts.target_platform == 'android': good_revision = source_control.GetCommitPosition(good_revision) if (bisect_utils.IsStringInt(good_revision) and good_revision < 265549): return {'error': ( 'Bisect cannot continue for the given revision range.\n' 'It is impossible to bisect Android regressions ' 'prior to r265549, which allows the bisect bot to ' 'rely on Telemetry to do apk installation of the most recently ' 'built local ChromePublic (refer to crbug.com/385324).\n' 'Please try bisecting revisions greater than or equal to r265549.')} if bisect_utils.IsWindowsHost(): good_revision = source_control.GetCommitPosition(good_revision) bad_revision = source_control.GetCommitPosition(bad_revision) if (bisect_utils.IsStringInt(good_revision) and bisect_utils.IsStringInt(bad_revision)): if (289987 <= good_revision < 290716 or 289987 <= bad_revision < 290716): return {'error': ('Oops! Revision between r289987 and r290716 are ' 'marked as dead zone for Windows due to ' 'crbug.com/405274. Please try another range.')} return None def _GatherResultsFromRevertedCulpritCL( self, results, target_depot, command_to_run, metric): """Gathers performance results with/without culprit CL. Attempts to revert the culprit CL against ToT and runs the performance tests again with and without the CL, adding the results to the over bisect results. Args: results: BisectResults from the bisect. target_depot: The target depot we're bisecting. command_to_run: Specify the command to execute the performance test. metric: The performance metric to monitor. """ run_results_tot, run_results_reverted = self._RevertCulpritCLAndRetest( results, target_depot, command_to_run, metric) results.AddRetestResults(run_results_tot, run_results_reverted) if len(results.culprit_revisions) != 1: return # Cleanup reverted files if anything is left. _, _, culprit_depot = results.culprit_revisions[0] bisect_utils.CheckRunGit( ['reset', '--hard', 'HEAD'], cwd=self.depot_registry.GetDepotDir(culprit_depot)) def _RevertCL(self, culprit_revision, culprit_depot): """Reverts the specified revision in the specified depot.""" if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepStart( 'Reverting culprit CL: %s' % culprit_revision) _, return_code = bisect_utils.RunGit( ['revert', '--no-commit', culprit_revision], cwd=self.depot_registry.GetDepotDir(culprit_depot)) if return_code: bisect_utils.OutputAnnotationStepWarning() bisect_utils.OutputAnnotationStepText('Failed to revert CL cleanly.') if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepClosed() return not return_code def _RevertCulpritCLAndRetest( self, results, target_depot, command_to_run, metric): """Reverts the culprit CL against ToT and runs the performance test. Attempts to revert the culprit CL against ToT and runs the performance tests again with and without the CL. Args: results: BisectResults from the bisect. target_depot: The target depot we're bisecting. command_to_run: Specify the command to execute the performance test. metric: The performance metric to monitor. Returns: A tuple with the results of running the CL at ToT/reverted. """ # Might want to retest ToT with a revert of the CL to confirm that # performance returns. if results.confidence < bisect_utils.HIGH_CONFIDENCE: return (None, None) # If there were multiple culprit CLs, we won't try to revert. if len(results.culprit_revisions) != 1: return (None, None) culprit_revision, _, culprit_depot = results.culprit_revisions[0] if not self._SyncRevision(target_depot, None, 'gclient'): return (None, None) head_revision = bisect_utils.CheckRunGit(['log', '--format=%H', '-1']) head_revision = head_revision.strip() if not self._RevertCL(culprit_revision, culprit_depot): return (None, None) # If the culprit CL happened to be in a depot that gets pulled in, we # can't revert the change and issue a try job to build, since that would # require modifying both the DEPS file and files in another depot. # Instead, we build locally. force_build = (culprit_depot != target_depot) if force_build: results.warnings.append( 'Culprit CL is in another depot, attempting to revert and build' ' locally to retest. This may not match the performance of official' ' builds.') run_results_reverted = self._RunTestWithAnnotations( 'Re-Testing ToT with reverted culprit', 'Failed to run reverted CL.', head_revision, target_depot, command_to_run, metric, force_build) # Clear the reverted file(s). bisect_utils.RunGit( ['reset', '--hard', 'HEAD'], cwd=self.depot_registry.GetDepotDir(culprit_depot)) # Retesting with the reverted CL failed, so bail out of retesting against # ToT. if run_results_reverted[1]: return (None, None) run_results_tot = self._RunTestWithAnnotations( 'Re-Testing ToT', 'Failed to run ToT.', head_revision, target_depot, command_to_run, metric, force_build) return (run_results_tot, run_results_reverted) def PostBisectResults(self, bisect_results): """Posts bisect results to Perf Dashboard.""" bisect_utils.OutputAnnotationStepStart('Post Results') results = bisect_results_json.Get( bisect_results, self.opts, self.depot_registry) results_json = json.dumps(results) data = urllib.urlencode({'data': results_json}) request = urllib2.Request(PERF_DASH_RESULTS_URL) try: urllib2.urlopen(request, data) except urllib2.URLError as e: print 'Failed to post bisect results. Error: %s.' % e bisect_utils.OutputAnnotationStepWarning() bisect_utils.OutputAnnotationStepClosed() def _RunTestWithAnnotations( self, step_text, error_text, head_revision, target_depot, command_to_run, metric, force_build): """Runs the performance test and outputs start/stop annotations. Args: results: BisectResults from the bisect. target_depot: The target depot we're bisecting. command_to_run: Specify the command to execute the performance test. metric: The performance metric to monitor. force_build: Whether to force a build locally. Returns: Results of the test. """ if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepStart(step_text) # Build and run the test again with the reverted culprit CL against ToT. run_test_results = self.RunTest( head_revision, target_depot, command_to_run, metric, skippable=False, skip_sync=True, create_patch=True, force_build=force_build) if self.opts.output_buildbot_annotations: if run_test_results[1]: bisect_utils.OutputAnnotationStepWarning() bisect_utils.OutputAnnotationStepText(error_text) bisect_utils.OutputAnnotationStepClosed() return run_test_results def Run(self, command_to_run, bad_revision_in, good_revision_in, metric): """Given known good and bad revisions, run a binary search on all intermediate revisions to determine the CL where the performance regression occurred. Args: command_to_run: Specify the command to execute the performance test. good_revision: Number/tag of the known good revision. bad_revision: Number/tag of the known bad revision. metric: The performance metric to monitor. Returns: A BisectResults object. """ # Choose depot to bisect first target_depot = 'chromium' if self.opts.target_platform == 'android-chrome': target_depot = 'android-chrome' cwd = os.getcwd() self.depot_registry.ChangeToDepotDir(target_depot) # If they passed SVN revisions, we can try match them to git SHA1 hashes. bad_revision = source_control.ResolveToRevision( bad_revision_in, target_depot, bisect_utils.DEPOT_DEPS_NAME, 100) good_revision = source_control.ResolveToRevision( good_revision_in, target_depot, bisect_utils.DEPOT_DEPS_NAME, -100) os.chdir(cwd) if bad_revision is None: return BisectResults( error='Couldn\'t resolve [%s] to SHA1.' % bad_revision_in) if good_revision is None: return BisectResults( error='Couldn\'t resolve [%s] to SHA1.' % good_revision_in) # Check that they didn't accidentally swap good and bad revisions. if not self.CheckIfRevisionsInProperOrder( target_depot, good_revision, bad_revision): return BisectResults(error='Bad rev (%s) appears to be earlier than good ' 'rev (%s).' % (good_revision, bad_revision)) bad_revision, good_revision = self.NudgeRevisionsIfDEPSChange( bad_revision, good_revision, good_revision_in) if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepStart('Gathering Revisions') cannot_bisect = self.CanPerformBisect(good_revision, bad_revision) if cannot_bisect: return BisectResults(error=cannot_bisect.get('error')) print 'Gathering revision range for bisection.' # Retrieve a list of revisions to do bisection on. revision_list = self.GetRevisionList(target_depot, bad_revision, good_revision) if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepClosed() if revision_list: self.PrintRevisionsToBisectMessage(revision_list, target_depot) if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepStart('Gathering Reference Values') print 'Gathering reference values for bisection.' # Perform the performance tests on the good and bad revisions, to get # reference values. bad_results, good_results = self.GatherReferenceValues(good_revision, bad_revision, command_to_run, metric, target_depot) if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepClosed() if bad_results[1]: error = ('An error occurred while building and running the \'bad\' ' 'reference value. The bisect cannot continue without ' 'a working \'bad\' revision to start from.\n\nError: %s' % bad_results[0]) return BisectResults(error=error) if good_results[1]: error = ('An error occurred while building and running the \'good\' ' 'reference value. The bisect cannot continue without ' 'a working \'good\' revision to start from.\n\nError: %s' % good_results[0]) return BisectResults(error=error) # We need these reference values to determine if later runs should be # classified as pass or fail. known_bad_value = bad_results[0] known_good_value = good_results[0] # Abort bisect early when the return codes for known good # and known bad revisions are same. if (self._IsBisectModeReturnCode() and known_bad_value['mean'] == known_good_value['mean']): return BisectResults(abort_reason=('known good and known bad revisions ' 'returned same return code (return code=%s). ' 'Continuing bisect might not yield any results.' % known_bad_value['mean'])) # Check the direction of improvement only if the improvement_direction # option is set to a specific direction (1 for higher is better or -1 for # lower is better). improvement_dir = self.opts.improvement_direction if improvement_dir: higher_is_better = improvement_dir > 0 if higher_is_better: message = "Expecting higher values to be better for this metric, " else: message = "Expecting lower values to be better for this metric, " metric_increased = known_bad_value['mean'] > known_good_value['mean'] if metric_increased: message += "and the metric appears to have increased. " else: message += "and the metric appears to have decreased. " if ((higher_is_better and metric_increased) or (not higher_is_better and not metric_increased)): error = (message + 'Then, the test results for the ends of the given ' '\'good\' - \'bad\' range of revisions represent an ' 'improvement (and not a regression).') return BisectResults(error=error) logging.info(message + "Therefore we continue to bisect.") bisect_state = BisectState(target_depot, revision_list) revision_states = bisect_state.GetRevisionStates() min_revision = 0 max_revision = len(revision_states) - 1 # Can just mark the good and bad revisions explicitly here since we # already know the results. bad_revision_state = revision_states[min_revision] bad_revision_state.external = bad_results[2] bad_revision_state.perf_time = bad_results[3] bad_revision_state.build_time = bad_results[4] bad_revision_state.passed = False bad_revision_state.value = known_bad_value good_revision_state = revision_states[max_revision] good_revision_state.external = good_results[2] good_revision_state.perf_time = good_results[3] good_revision_state.build_time = good_results[4] good_revision_state.passed = True good_revision_state.value = known_good_value # Check how likely it is that the good and bad results are different # beyond chance-induced variation. if not (self.opts.debug_ignore_regression_confidence or self._IsBisectModeReturnCode()): if not _IsRegressionReproduced(known_good_value, known_bad_value, self.opts.required_initial_confidence): # If there is no significant difference between "good" and "bad" # revision results, then the "bad revision" is considered "good". # TODO(qyearsley): Remove this if it is not necessary. bad_revision_state.passed = True self.warnings.append(_RegressionNotReproducedWarningMessage( good_revision, bad_revision, known_good_value, known_bad_value)) return BisectResults(bisect_state, self.depot_registry, self.opts, self.warnings) while True: if not revision_states: break if max_revision - min_revision <= 1: min_revision_state = revision_states[min_revision] max_revision_state = revision_states[max_revision] current_depot = min_revision_state.depot # TODO(sergiyb): Under which conditions can first two branches be hit? if min_revision_state.passed == '?': next_revision_index = min_revision elif max_revision_state.passed == '?': next_revision_index = max_revision elif current_depot in ['android-chrome', 'chromium', 'v8']: previous_revision = revision_states[min_revision].revision # If there were changes to any of the external libraries we track, # should bisect the changes there as well. external_depot = self._FindNextDepotToBisect( current_depot, min_revision_state, max_revision_state) # If there was no change in any of the external depots, the search # is over. if not external_depot: if current_depot == 'v8': self.warnings.append( 'Unfortunately, V8 bisection couldn\'t ' 'continue any further. The script can only bisect into ' 'V8\'s bleeding_edge repository if both the current and ' 'previous revisions in trunk map directly to revisions in ' 'bleeding_edge.') break earliest_revision = max_revision_state.external[external_depot] latest_revision = min_revision_state.external[external_depot] new_revision_list = self.PrepareToBisectOnDepot( external_depot, earliest_revision, latest_revision, previous_revision) if not new_revision_list: error = ('An error occurred attempting to retrieve revision ' 'range: [%s..%s]' % (earliest_revision, latest_revision)) return BisectResults(error=error) revision_states = bisect_state.CreateRevisionStatesAfter( external_depot, new_revision_list, current_depot, previous_revision) # Reset the bisection and perform it on the newly inserted states. min_revision = 0 max_revision = len(revision_states) - 1 print ('Regression in metric %s appears to be the result of ' 'changes in [%s].' % (metric, external_depot)) revision_list = [state.revision for state in revision_states] self.PrintRevisionsToBisectMessage(revision_list, external_depot) continue else: break else: next_revision_index = (int((max_revision - min_revision) / 2) + min_revision) next_revision_state = revision_states[next_revision_index] next_revision = next_revision_state.revision next_depot = next_revision_state.depot self.depot_registry.ChangeToDepotDir(next_depot) message = 'Working on [%s:%s]' % (next_depot, next_revision) print message if self.opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepStart(message) run_results = self.RunTest(next_revision, next_depot, command_to_run, metric, skippable=True) # If the build is successful, check whether or not the metric # had regressed. if not run_results[1]: if len(run_results) > 2: next_revision_state.external = run_results[2] next_revision_state.perf_time = run_results[3] next_revision_state.build_time = run_results[4] passed_regression = self._CheckIfRunPassed(run_results[0], known_good_value, known_bad_value) next_revision_state.passed = passed_regression next_revision_state.value = run_results[0] if passed_regression: max_revision = next_revision_index else: min_revision = next_revision_index else: if run_results[1] == BUILD_RESULT_SKIPPED: next_revision_state.passed = 'Skipped' elif run_results[1] == BUILD_RESULT_FAIL: next_revision_state.passed = 'Build Failed' print run_results[0] # If the build is broken, remove it and redo search. revision_states.pop(next_revision_index) max_revision -= 1 if self.opts.output_buildbot_annotations: self.printer.PrintPartialResults(bisect_state) bisect_utils.OutputAnnotationStepClosed() self._ConfidenceExtraTestRuns(min_revision_state, max_revision_state, command_to_run, metric) results = BisectResults(bisect_state, self.depot_registry, self.opts, self.warnings) self._GatherResultsFromRevertedCulpritCL( results, target_depot, command_to_run, metric) return results else: # Weren't able to sync and retrieve the revision range. error = ('An error occurred attempting to retrieve revision range: ' '[%s..%s]' % (good_revision, bad_revision)) return BisectResults(error=error) def _ConfidenceExtraTestRuns(self, good_state, bad_state, command_to_run, metric): if (bool(good_state.passed) != bool(bad_state.passed) and good_state.passed not in ('Skipped', 'Build Failed') and bad_state.passed not in ('Skipped', 'Build Failed')): for state in (good_state, bad_state): run_results = self.RunTest( state.revision, state.depot, command_to_run, metric, test_run_multiplier=BORDER_REVISIONS_EXTRA_RUNS) # Is extend the right thing to do here? if run_results[1] != BUILD_RESULT_FAIL: state.value['values'].extend(run_results[0]['values']) else: warning_text = 'Re-test of revision %s failed with error message: %s' warning_text %= (state.revision, run_results[0]) if warning_text not in self.warnings: self.warnings.append(warning_text) def _IsPlatformSupported(): """Checks that this platform and build system are supported. Args: opts: The options parsed from the command line. Returns: True if the platform and build system are supported. """ # Haven't tested the script out on any other platforms yet. supported = ['posix', 'nt'] return os.name in supported def RemoveBuildFiles(build_type): """Removes build files from previous runs.""" out_dir = os.path.join('out', build_type) build_dir = os.path.join('build', build_type) logging.info('Removing build files in "%s" and "%s".', os.path.abspath(out_dir), os.path.abspath(build_dir)) try: RemakeDirectoryTree(out_dir) RemakeDirectoryTree(build_dir) except Exception as e: raise RuntimeError('Got error in RemoveBuildFiles: %s' % e) def RemakeDirectoryTree(path_to_dir): """Removes a directory tree and replaces it with an empty one. Returns True if successful, False otherwise. """ RemoveDirectoryTree(path_to_dir) MaybeMakeDirectory(path_to_dir) def RemoveDirectoryTree(path_to_dir): """Removes a directory tree. Returns True if successful or False otherwise.""" if os.path.isfile(path_to_dir): logging.info('REMOVING FILE %s' % path_to_dir) os.remove(path_to_dir) try: if os.path.exists(path_to_dir): shutil.rmtree(path_to_dir) except OSError, e: if e.errno != errno.ENOENT: raise # This is copied from build/scripts/common/chromium_utils.py. def MaybeMakeDirectory(*path): """Creates an entire path, if it doesn't already exist.""" file_path = os.path.join(*path) try: os.makedirs(file_path) except OSError as e: if e.errno != errno.EEXIST: raise class BisectOptions(object): """Options to be used when running bisection.""" def __init__(self): super(BisectOptions, self).__init__() self.target_platform = 'chromium' self.build_preference = None self.good_revision = None self.bad_revision = None self.use_goma = None self.goma_dir = None self.goma_threads = 64 self.repeat_test_count = 20 self.truncate_percent = 25 self.max_time_minutes = 20 self.metric = None self.command = None self.output_buildbot_annotations = None self.no_custom_deps = False self.working_directory = None self.extra_src = None self.debug_ignore_build = None self.debug_ignore_sync = None self.debug_ignore_perf_test = None self.debug_ignore_regression_confidence = None self.debug_fake_first_test_mean = 0 self.target_arch = 'ia32' self.target_build_type = 'Release' self.builder_type = 'perf' self.bisect_mode = bisect_utils.BISECT_MODE_MEAN self.improvement_direction = 0 self.bug_id = '' self.required_initial_confidence = 80.0 self.try_job_id = None @staticmethod def _AddBisectOptionsGroup(parser): group = parser.add_argument_group('Bisect options') group.add_argument('-c', '--command', required=True, help='A command to execute your performance test at ' 'each point in the bisection.') group.add_argument('-b', '--bad_revision', required=True, help='A bad revision to start bisection. Must be later ' 'than good revision. May be either a git or svn ' 'revision.') group.add_argument('-g', '--good_revision', required=True, help='A revision to start bisection where performance ' 'test is known to pass. Must be earlier than the ' 'bad revision. May be either a git or a svn ' 'revision.') group.add_argument('-m', '--metric', help='The desired metric to bisect on. For example ' '"vm_rss_final_b/vm_rss_f_b"') group.add_argument('-d', '--improvement_direction', type=int, default=0, help='An integer number representing the direction of ' 'improvement. 1 for higher is better, -1 for lower ' 'is better, 0 for ignore (default).') group.add_argument('-r', '--repeat_test_count', type=int, default=20, choices=range(1, 101), help='The number of times to repeat the performance ' 'test. Values will be clamped to range [1, 100]. ' 'Default value is 20.') group.add_argument('--max_time_minutes', type=int, default=20, choices=range(1, 61), help='The maximum time (in minutes) to take running the ' 'performance tests. The script will run the ' 'performance tests according to ' '--repeat_test_count, so long as it doesn\'t exceed' ' --max_time_minutes. Values will be clamped to ' 'range [1, 60]. Default value is 20.') group.add_argument('-t', '--truncate_percent', type=int, default=25, help='The highest/lowest percent are discarded to form ' 'a truncated mean. Values will be clamped to range ' '[0, 25]. Default value is 25 percent.') group.add_argument('--bisect_mode', default=bisect_utils.BISECT_MODE_MEAN, choices=[bisect_utils.BISECT_MODE_MEAN, bisect_utils.BISECT_MODE_STD_DEV, bisect_utils.BISECT_MODE_RETURN_CODE], help='The bisect mode. Choices are to bisect on the ' 'difference in mean, std_dev, or return_code.') group.add_argument('--bug_id', default='', help='The id for the bug associated with this bisect. ' + 'If this number is given, bisect will attempt to ' + 'verify that the bug is not closed before ' 'starting.') group.add_argument('--try_job_id', default=None, help='The id assigned by Perf Dashboard when sending ' + 'try jobs.') group.add_argument('--required_initial_confidence', type=float, default=80.0, help='The required confidence score for the initial ' 'check to see whether there is a significant ' 'difference between given good and bad revisions.') @staticmethod def _AddBuildOptionsGroup(parser): group = parser.add_argument_group('Build options') group.add_argument('-w', '--working_directory', help='Path to the working directory where the script ' 'will do an initial checkout of the chromium depot. The ' 'files will be placed in a subdirectory "bisect" under ' 'working_directory and that will be used to perform the ' 'bisection. This parameter is optional, if it is not ' 'supplied, the script will work from the current depot.') group.add_argument('--build_preference', choices=['msvs', 'ninja', 'make'], help='The preferred build system to use. On linux/mac ' 'the options are make/ninja. On Windows, the ' 'options are msvs/ninja.') group.add_argument('--target_platform', default='chromium', choices=['chromium', 'android', 'android-chrome'], help='The target platform. Choices are "chromium" ' '(current platform), or "android". If you specify ' 'something other than "chromium", you must be ' 'properly set up to build that platform.') group.add_argument('--no_custom_deps', dest='no_custom_deps', action='store_true', default=False, help='Run the script with custom_deps or not.') group.add_argument('--extra_src', help='Path to a script which can be used to modify the ' 'bisect script\'s behavior.') group.add_argument('--use_goma', action='store_true', help='Add a bunch of extra threads for goma, and enable ' 'goma') group.add_argument('--goma_dir', help='Path to goma tools (or system default if not ' 'specified).') group.add_argument('--goma_threads', type=int, default='64', help='Number of threads for goma, only if using goma.') group.add_argument('--output_buildbot_annotations', action='store_true', help='Add extra annotation output for buildbot.') group.add_argument('--target_arch', default='ia32', dest='target_arch', choices=['ia32', 'x64', 'arm', 'arm64'], help='The target build architecture. Choices are "ia32" ' '(default), "x64", "arm" or "arm64".') group.add_argument('--target_build_type', default='Release', choices=['Release', 'Debug', 'Release_x64'], help='The target build type. Choices are "Release" ' '(default), Release_x64 or "Debug".') group.add_argument('--builder_type', default=fetch_build.PERF_BUILDER, choices=[fetch_build.PERF_BUILDER, fetch_build.FULL_BUILDER, fetch_build.ANDROID_CHROME_PERF_BUILDER, ''], help='Type of builder to get build from. This ' 'determines both the bot that builds and the ' 'place where archived builds are downloaded from. ' 'For local builds, an empty string can be passed.') @staticmethod def _AddDebugOptionsGroup(parser): group = parser.add_argument_group('Debug options') group.add_argument('--debug_ignore_build', action='store_true', help='DEBUG: Don\'t perform builds.') group.add_argument('--debug_ignore_sync', action='store_true', help='DEBUG: Don\'t perform syncs.') group.add_argument('--debug_ignore_perf_test', action='store_true', help='DEBUG: Don\'t perform performance tests.') group.add_argument('--debug_ignore_regression_confidence', action='store_true', help='DEBUG: Don\'t score the confidence of the initial ' 'good and bad revisions\' test results.') group.add_argument('--debug_fake_first_test_mean', type=int, default='0', help='DEBUG: When faking performance tests, return this ' 'value as the mean of the first performance test, ' 'and return a mean of 0.0 for further tests.') return group @classmethod def _CreateCommandLineParser(cls): """Creates a parser with bisect options. Returns: An instance of argparse.ArgumentParser. """ usage = ('%(prog)s [options] [-- chromium-options]\n' 'Perform binary search on revision history to find a minimal ' 'range of revisions where a performance metric regressed.\n') parser = argparse.ArgumentParser(usage=usage) cls._AddBisectOptionsGroup(parser) cls._AddBuildOptionsGroup(parser) cls._AddDebugOptionsGroup(parser) return parser def ParseCommandLine(self): """Parses the command line for bisect options.""" parser = self._CreateCommandLineParser() opts = parser.parse_args() try: if (not opts.metric and opts.bisect_mode != bisect_utils.BISECT_MODE_RETURN_CODE): raise RuntimeError('missing required parameter: --metric') if opts.bisect_mode != bisect_utils.BISECT_MODE_RETURN_CODE: metric_values = opts.metric.split('/') if len(metric_values) != 2: raise RuntimeError('Invalid metric specified: [%s]' % opts.metric) opts.metric = metric_values opts.truncate_percent = min(max(opts.truncate_percent, 0), 25) / 100.0 for k, v in opts.__dict__.iteritems(): assert hasattr(self, k), 'Invalid %s attribute in BisectOptions.' % k setattr(self, k, v) except RuntimeError, e: output_string = StringIO.StringIO() parser.print_help(file=output_string) error_message = '%s\n\n%s' % (e.message, output_string.getvalue()) output_string.close() raise RuntimeError(error_message) @staticmethod def FromDict(values): """Creates an instance of BisectOptions from a dictionary. Args: values: a dict containing options to set. Returns: An instance of BisectOptions. """ opts = BisectOptions() for k, v in values.iteritems(): assert hasattr(opts, k), 'Invalid %s attribute in BisectOptions.' % k setattr(opts, k, v) if opts.metric and opts.bisect_mode != bisect_utils.BISECT_MODE_RETURN_CODE: metric_values = opts.metric.split('/') if len(metric_values) != 2: raise RuntimeError('Invalid metric specified: [%s]' % opts.metric) opts.metric = metric_values if opts.target_arch == 'x64' and opts.target_build_type == 'Release': opts.target_build_type = 'Release_x64' opts.repeat_test_count = min(max(opts.repeat_test_count, 1), 100) opts.max_time_minutes = min(max(opts.max_time_minutes, 1), 60) opts.truncate_percent = min(max(opts.truncate_percent, 0), 25) opts.truncate_percent = opts.truncate_percent / 100.0 return opts def _ConfigureLogging(): """Trivial logging config. Configures logging to output any messages at or above INFO to standard out, without any additional formatting. """ logging_format = '%(message)s' logging.basicConfig( stream=logging.sys.stdout, level=logging.INFO, format=logging_format) def main(): _ConfigureLogging() try: opts = BisectOptions() opts.ParseCommandLine() if opts.bug_id: if opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepStart('Checking Issue Tracker') issue_closed = query_crbug.CheckIssueClosed(opts.bug_id) if issue_closed: print 'Aborting bisect because bug is closed' else: print 'Could not confirm bug is closed, proceeding.' if opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepClosed() if issue_closed: results = BisectResults(abort_reason='the bug is closed.') bisect_printer = BisectPrinter(opts) bisect_printer.FormatAndPrintResults(results) return 0 if opts.extra_src: extra_src = bisect_utils.LoadExtraSrc(opts.extra_src) if not extra_src: raise RuntimeError('Invalid or missing --extra_src.') bisect_utils.AddAdditionalDepotInfo(extra_src.GetAdditionalDepotInfo()) if opts.working_directory: custom_deps = bisect_utils.DEFAULT_GCLIENT_CUSTOM_DEPS if opts.no_custom_deps: custom_deps = None bisect_utils.CreateBisectDirectoryAndSetupDepot(opts, custom_deps) os.chdir(os.path.join(os.getcwd(), 'src')) RemoveBuildFiles(opts.target_build_type) if not _IsPlatformSupported(): raise RuntimeError('Sorry, this platform isn\'t supported yet.') if not source_control.IsInGitRepository(): raise RuntimeError( 'Sorry, only the git workflow is supported at the moment.') # gClient sync seems to fail if you're not in master branch. if (not source_control.IsInProperBranch() and not opts.debug_ignore_sync and not opts.working_directory): raise RuntimeError('You must switch to master branch to run bisection.') bisect_test = BisectPerformanceMetrics(opts, os.getcwd()) try: results = bisect_test.Run(opts.command, opts.bad_revision, opts.good_revision, opts.metric) if results.error: raise RuntimeError(results.error) bisect_test.printer.FormatAndPrintResults(results) bisect_test.PostBisectResults(results) return 0 finally: bisect_test.PerformCleanup() except RuntimeError as e: if opts.output_buildbot_annotations: # The perf dashboard scrapes the "results" step in order to comment on # bugs. If you change this, please update the perf dashboard as well. bisect_utils.OutputAnnotationStepStart('Results') print 'Runtime Error: %s' % e if opts.output_buildbot_annotations: bisect_utils.OutputAnnotationStepClosed() return 1 if __name__ == '__main__': sys.exit(main())
btk20_src/unit_test/log_power_extractor.py
musiclvme/distant_speech_recognition
136
12627904
#!/usr/bin/python """ Compute log power feature from an audio file """ import pickle, numpy from btk20.common import * from btk20.stream import * from btk20.feature import * D = 160 # 10 msec for 16 kHz audio fft_len = 256 pow_num = fft_len//2 + 1 input_filename = "../tools/filterbank/Headset1.wav" output_filename = "log_power.pickle" # Audio file reader samplefe = SampleFeaturePtr(block_len=D, shift_len=D, pad_zeros=False) # Hamming window calculator hammingfe = HammingFeaturePtr(samplefe) # FFT feature extractor fftfe = FFTFeaturePtr(hammingfe, fft_len=fft_len) # Power (complex square) feature extractor powerfe = SpectralPowerFeaturePtr(fftfe, pow_num=pow_num) # Log feature extractor logfe = LogFeaturePtr(powerfe) # Reading the audio file samplefe.read(input_filename) with open(output_filename, 'w') as ofp: frame_no = 0 # compute the log power feature at each frame for log_vector in logfe: # print the first 10-dimension vector print('fr. {}: {}..'.format(frame_no, numpy.array2string(log_vector[0:10], formatter={'float_kind':lambda x: "%.2f" % x}))) pickle.dump(log_vector, ofp, True) frame_no += 1
gherkin/python/gherkin/inout.py
codemrkay/cucumber
3,974
12627922
<gh_stars>1000+ from __future__ import print_function import json from .parser import Parser from .token_scanner import TokenScanner from .pickles.compiler import compile from .errors import ParserException, CompositeParserException class Inout(object): def __init__(self, print_source, print_ast, print_pickles): self.print_source = print_source self.print_ast = print_ast self.print_pickles = print_pickles self.parser = Parser() self.parser.stop_at_first_error = False def process(self, input, output): line = input.readline().rstrip() event = json.loads(line) if (event['type'] == 'source'): uri = event['uri'] source = event['data'] token_scanner = TokenScanner(source) try: gherkin_document = self.parser.parse(token_scanner) if (self.print_source): print(line, file=output) if (self.print_ast): print(json.dumps(gherkin_document), file=output) if (self.print_pickles): pickles = compile(gherkin_document, uri) for pickle in pickles: print(json.dumps(pickle), file=output) except CompositeParserException as e: self.print_errors(output, e.errors, uri) except ParserException as e: self.print_errors(output, [e], uri) def print_errors(self, output, errors, uri): for error in errors: attachment = { 'type': "attachment", 'source': { 'uri': uri, 'start': { 'line': error.location['line'], 'column': error.location['column'] } }, 'data': error.message, 'media': { 'encoding': "utf-8", 'type': "text/x.cucumber.stacktrace+plain" } } print(json.dumps(attachment), file=output)
env/Lib/site-packages/jedi/inference/docstring_utils.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
4,213
12627930
from jedi.inference.value import ModuleValue from jedi.inference.context import ModuleContext class DocstringModule(ModuleValue): def __init__(self, in_module_context, **kwargs): super().__init__(**kwargs) self._in_module_context = in_module_context def _as_context(self): return DocstringModuleContext(self, self._in_module_context) class DocstringModuleContext(ModuleContext): def __init__(self, module_value, in_module_context): super().__init__(module_value) self._in_module_context = in_module_context def get_filters(self, origin_scope=None, until_position=None): yield from super().get_filters(until_position=until_position) yield from self._in_module_context.get_filters()
functions/FuzzyMembership.py
mmfink/raster-functions
173
12627939
import numpy as np import math class FuzzyMembership(): def __init__(self): self.name = "Fuzzy Membership Function" self.description = ("Reclassifies or transforms the input data to a 0 to 1 " "scale based on the possibility of being a member of a " "specified set") self.parA = {'minimum': 1., 'mid': None, 'meanMultipler': 1.} self.parB = {'maximum': 1., 'stdMultipler': 1., 'spreadA': 0.1, 'spreadB': 5.} def getParameterInfo(self): return [ { 'name': 'raster', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': "Input Raster", 'description': ("Fuzzy Membership tool - 0 is assigned to those locations that " "are definitely not a member of the specified set. " "1 is assigned to those values that are definitely a member " "of the specified set, and the entire range of possibilities " "between 0 and 1 are assigned to some level of possible membership.") }, { 'name': 'mode', 'dataType': 'string', 'value': 'Linear', 'required': True, 'domain': ('Linear', 'Gaussian', 'Small', 'Large', 'Near', 'MSSmall', 'MSLarge'), 'displayName': "Fuzzy Membership Type", 'description': "Fuzzy Membership type." }, { 'name': 'par1', 'dataType': 'numeric', 'value': None, 'required': False, 'displayName': "Input Parameter A", 'description': ("Linear : {minimum value}, Gaussian/Near/Small/Large : {mid point}, " "MSSmall/MSLarge : {mean multiplier}.") }, { 'name': 'par2', 'dataType': 'numeric', 'value': False, 'required': True, 'displayName': "Input Parameter B", 'description': ("Linear : {maximum value}, Gaussian/Near/Small/Large : {spread}, " "MSSmall/MSLarge : {std deviation multiplier}. ") }, { 'name': 'hedge', 'dataType': 'string', 'value': 'None', 'required': False, 'domain': ('None', 'Somewhat', 'Very'), 'displayName': "Hedge", 'description': ("A hedge increases or decreases the fuzzy membership values which modify the meaning of a fuzzy set. " "None - No hedge applied. " "Somewhat - The square root of the fuzzy membership function. Increases fuzzy membership functions. " "Very- The square of the fuzzy membership function. Decreases fuzzy membership functions.") }, ] def getConfiguration(self, **scalars): return { 'inheritProperties': 2 | 4 | 8, # inherit everything but the pixel type (1) 'invalidateProperties': 2 | 4 | 8, # invalidate these aspects because we are modifying pixel values and updating key properties. 'inputMask': False # we don't need the input mask in .updatePixels() } def updateRasterInfo(self, **kwargs): # output raster information kwargs['output_info']['bandCount'] = 1 kwargs['output_info']['pixelType'] = 'f4' kwargs['output_info']['statistics'] = ({'minimum': 0.0, 'maximum': 1.0},) self.mode = kwargs['mode'].lower() # input fuzzy membership mode self.hedge = kwargs['hedge'] # to modify fuzzy membership values # statistics of input raster stats = kwargs['raster_info']['statistics'][0] self.mean, self.std = stats['mean'], stats['standardDeviation'] # assignment of fuzzy membership parameters if kwargs['par1'] != 0.0: self.parA = self.parA.fromkeys(self.parA, kwargs['par1']) else: self.parA['minimum'] = stats['minimum'] self.parA['mid'] = (stats['minimum']+stats['maximum'])/2 if kwargs['par2'] != 0.0: self.parB = self.parB.fromkeys(self.parB, kwargs['par2']) else: self.parB['maximum'] = stats['maximum'] # check range of input range # linear fuzzy membership min - max if ((self.parA['minimum'] == self.parB['maximum']) and (self.mode == "linear")): raise Exception("Linear minimum and maximum must be different.") # spread values for fuzzy membership function if ((self.parB['spreadA'] < 0.01 or self.parB['spreadA'] > 1) and (self.mode == 'gauss' or self.mode == 'near')) or \ ((self.parB['spreadB'] < 1 or self.parB['spreadB'] > 10) and (self.mode == 'large' or self.mode == 'small')): raise Exception("Spread value out of range.") return kwargs def updatePixels(self, tlc, shape, props, **pixelBlocks): # get the input raster pixel block r = np.array(pixelBlocks['raster_pixels'], dtype='f8', copy=False) # fuzzy linear membership if self.mode == "linear": r = (r - self.parA['minimum']) / (self.parB['maximum'] - self.parA['minimum']) # fuzzy gaussian membership. elif self.mode == 'gaussian': r = (np.e)**((-self.parB['spreadA']) * ((r - self.parA['mid'])**2)) # fuzzy large membership. elif self.mode == 'large': r = (1 / (1 + ((r / self.parA['mid'])**(-self.parB['spreadB'])))) # fuzzy small membership. elif self.mode == 'small': r = (1 / (1 + ((r / self.parA['mid'])**(self.parB['spreadB'])))) # fuzzy near membership. elif self.mode == 'near': r = (1 / (1 + (self.parB['spreadA'] * (r - self.parA['mid'])**2))) # fuzzy mssmall membership. elif self.mode == 'mssmall': rTemp = (self.parB['stdMultipler'] * self.std) / (r - (self.parA['meanMultipler'] * self.mean) + (self.parB['stdMultipler'] * self.std)) np.putmask(r, r <= (self.mean * self.parA['meanMultipler']), 1.0) np.putmask(r, r > (self.mean * self.parA['meanMultipler']), rTemp) # fuzzy mslarge membership. else: rTemp = 1 - (self.parB['stdMultipler'] * self.std) / (r - (self.parA['meanMultipler'] * self.mean) + (self.parB['stdMultipler'] * self.std)) np.putmask(r, r <= (self.mean * self.parA['meanMultipler']), 0.0) np.putmask(r, r > (self.mean * self.parA['meanMultipler']), rTemp) # clip output values between [0.0, 1.0] r = np.clip(r, 0.0, 1.0) # hedge calculations if (self.hedge == "SOMEWHAT"): r = r ** 0.5 elif (self.hedge == "VERY"): r = r ** 2 if len(r.shape) > 2: pixelBlocks['output_pixels'] = r[0].astype(props['pixelType'], copy=False) # multi band raster else: pixelBlocks['output_pixels'] = r.astype(props['pixelType'], copy=False) # single band raster return pixelBlocks def updateKeyMetadata(self, names, bandIndex, **keyMetadata): if bandIndex == -1: keyMetadata['datatype'] = 'Scientific' keyMetadata['variable'] = 'FuzzyMembership' elif bandIndex == 0: keyMetadata['wavelengthmin'] = None # reset inapplicable band-specific key metadata keyMetadata['wavelengthmax'] = None keyMetadata['bandname'] = 'FuzzyMembership' # ----- ## ----- ## ----- ## ----- ## ----- ## ----- ## ----- ## ----- ## """ References: [1]. Esri (2013): ArcGIS Resources. How Fuzzy Membership Works. http://resources.arcgis.com/en/help/main/10.1/index.html#//009z000000rz000000 [2]. Esri (2013): ArcGIS Resources. An overview of fuzzy classes. http://resources.arcgis.com/en/help/main/10.1/index.html#/An_overview_of_fuzzy_classes/005m00000019000000/ """
GPU-Re-Ranking/utils.py
TxuanYu/Person_reID_baseline_pytorch
3,358
12627950
""" Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Project Page : https://github.com/Xuanmeng-Zhang/gnn-re-ranking Paper: https://arxiv.org/abs/2012.07620v2 ====================================================================== On the Market-1501 dataset, we accelerate the re-ranking processing from 89.2s to 9.4ms with one K40m GPU, facilitating the real-time post-processing. Similarly, we observe that our method achieves comparable or even better retrieval results on the other four image retrieval benchmarks, i.e., VeRi-776, Oxford-5k, Paris-6k and University-1652, with limited time cost. """ import pickle import numpy as np import torch def load_pickle(pickle_path): with open(pickle_path, 'rb') as f: data = pickle.load(f) return data def save_pickle(pickle_path, data): with open(pickle_path, 'wb') as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) def pairwise_squared_distance(x): ''' x : (n_samples, n_points, dims) return : (n_samples, n_points, n_points) ''' x2s = (x * x).sum(-1, keepdim=True) return x2s + x2s.transpose(-1, -2) - 2 * x @ x.transpose(-1, -2) def pairwise_distance(x, y): m, n = x.size(0), y.size(0) x = x.view(m, -1) y = y.view(n, -1) dist = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n) + torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n,m).t() dist.addmm_(1, -2, x, y.t()) return dist def cosine_similarity(x, y): m, n = x.size(0), y.size(0) x = x.view(m, -1) y = y.view(n, -1) y = y.t() score = torch.mm(x, y) return score def evaluate_ranking_list(indices, query_label, query_cam, gallery_label, gallery_cam): CMC = np.zeros((len(gallery_label)), dtype=np.int) ap = 0.0 for i in range(len(query_label)): ap_tmp, CMC_tmp = evaluate(indices[i],query_label[i], query_cam[i], gallery_label, gallery_cam) if CMC_tmp[0]==-1: continue CMC = CMC + CMC_tmp ap += ap_tmp CMC = CMC.astype(np.float32) CMC = CMC/len(query_label) #average CMC print('Rank@1:%f Rank@5:%f Rank@10:%f mAP:%f'%(CMC[0],CMC[4],CMC[9],ap/len(query_label))) def evaluate(index, ql,qc,gl,gc): query_index = np.argwhere(gl==ql) camera_index = np.argwhere(gc==qc) good_index = np.setdiff1d(query_index, camera_index, assume_unique=True) junk_index1 = np.argwhere(gl==-1) junk_index2 = np.intersect1d(query_index, camera_index) junk_index = np.append(junk_index2, junk_index1) #.flatten()) CMC_tmp = compute_mAP(index, good_index, junk_index) return CMC_tmp def compute_mAP(index, good_index, junk_index): ap = 0 cmc = np.zeros((len(index)), dtype=np.int) if good_index.size==0: # if empty cmc[0] = -1 return ap,cmc # remove junk_index mask = np.in1d(index, junk_index, invert=True) index = index[mask] # find good_index index ngood = len(good_index) mask = np.in1d(index, good_index) rows_good = np.argwhere(mask==True) rows_good = rows_good.flatten() cmc[rows_good[0]:] = 1 for i in range(ngood): d_recall = 1.0/ngood precision = (i+1)*1.0/(rows_good[i]+1) if rows_good[i]!=0: old_precision = i*1.0/rows_good[i] else: old_precision=1.0 ap = ap + d_recall*(old_precision + precision)/2 return ap, cmc
session-5/libs/celeb_vaegan.py
itamaro/CADL
1,628
12627964
""" Creative Applications of Deep Learning w/ Tensorflow. Kadenze, Inc. Copyright <NAME>, June 2016. """ import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile from .utils import download from skimage.transform import resize as imresize def celeb_vaegan_download(): """Download a pretrained celeb vae/gan network.""" # Load the model and labels model = download('https://s3.amazonaws.com/cadl/models/celeb.vaegan.tfmodel') labels = download('https://s3.amazonaws.com/cadl/celeb-align/list_attr_celeba.txt') return model, labels def get_celeb_vaegan_model(): """Get a pretrained model. Returns ------- net : dict { 'graph_def': tf.GraphDef The graph definition 'labels': list List of different possible attributes from celeb 'attributes': np.ndarray One hot encoding of the attributes per image [n_els x n_labels] 'preprocess': function Preprocess function } """ # Download the trained net model, labels = celeb_vaegan_download() # Parse the ids and synsets txt = open(labels).readlines() n_els = int(txt[0].strip()) labels = txt[1].strip().split() n_labels = len(labels) attributes = np.zeros((n_els, n_labels), dtype=bool) for i, txt_i in enumerate(txt[2:]): attributes[i] = (np.array(txt_i.strip().split()[1:]).astype(int) > 0) # Load the saved graph with gfile.GFile(model, 'rb') as f: graph_def = tf.GraphDef() try: graph_def.ParseFromString(f.read()) except: print('try adding PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python' + 'to environment. e.g.:\n' + 'PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python ipython\n' + 'See here for info: ' + 'https://github.com/tensorflow/tensorflow/issues/582') net = { 'graph_def': graph_def, 'labels': labels, 'attributes': attributes, 'preprocess': preprocess, } return net def preprocess(img, crop_factor=0.8): """Replicate the preprocessing we did on the VAE/GAN. This model used a crop_factor of 0.8 and crop size of [100, 100, 3]. """ crop = np.min(img.shape[:2]) r = (img.shape[0] - crop) // 2 c = (img.shape[1] - crop) // 2 cropped = img[r: r + crop, c: c + crop] r, c, *d = cropped.shape if crop_factor < 1.0: amt = (1 - crop_factor) / 2 h, w = int(c * amt), int(r * amt) cropped = cropped[h:-h, w:-w] rsz = imresize(cropped, (100, 100), preserve_range=False) return rsz
plot_line.py
cogitate3/stock
3,401
12627968
<reponame>cogitate3/stock # -*-coding=utf-8-*- import datetime import os import random import time from optparse import OptionParser __author__ = 'Rocky' ''' http://30daydo.com Contact: <EMAIL> ''' import pandas as pd import talib import tushare as ts import matplotlib as mpl from mpl_finance import candlestick2_ochl, volume_overlay import matplotlib.pyplot as plt from configure.settings import DBSelector import sys if sys.platform=='linux': # centos的配置, 根据自定义拷贝的字体 mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] else: mpl.rcParams['font.sans-serif'] = ['simhei'] mpl.rcParams['axes.unicode_minus'] = False def get_basic_info(): DB = DBSelector() engine = DB.get_engine('db_stock', 'qq') base_info = pd.read_sql('tb_basic_info', engine, index_col='index') return base_info def check_path(root_path,current,filename): folder_path = os.path.join(root_path, current) if not os.path.exists(folder_path): os.mkdir(folder_path) full_path = os.path.join(folder_path, filename) if os.path.exists(full_path): return None else: return full_path def plot_stock_line(api,code, name, table_type, current, root_path,start='2019-10-01', save=False): title = '{}_{}_{}_{}'.format(current, code, name, table_type).replace('*', '_') filename = title + '.png' full_path = check_path(root_path,current,filename) if full_path is None: return base_info = get_basic_info() if code is None and name is not None: code = base_info[base_info['name'] == name]['code'].values[0] df = None for _ in range(4): try: df = ts.bar(code, conn=api, start_date=start) except Exception as e: ts.close_apis(api) time.sleep(random.random() * 30) api = ts.get_apis() else: break if df is None: return df = df.sort_index() if name is None: name = base_info[base_info['code'] == code]['name'].values[0] df = df.reset_index() df['datetime'] = df['datetime'].dt.strftime('%Y-%m-%d') sma5 = talib.SMA(df['close'].values, 5) sma20 = talib.SMA(df['close'].values, 10) # ax.set_xticks(range(0,len(df),20)) # # ax.set_xticklabels(df['date'][::5]) # ax.set_xticklabels(df['datetime'][::20]) fig = plt.figure(figsize=(10, 8)) # fig,(ax,ax2)=plt.subplots(2,1,sharex=True,figsize=(16,10)) ax = fig.add_axes([0, 0.3, 1, 0.50]) ax2 = fig.add_axes([0, 0.1, 1, 0.20]) candlestick2_ochl(ax, df['open'], df['close'], df['high'], df['low'], width=1, colorup='r', colordown='g', alpha=0.6) ax.grid(True) ax.set_title(title) ax.plot(sma5, label='MA5') ax.legend() ax.plot(sma20, label='MA20') ax.legend(loc=2) ax.grid(True) # df['vol'].plot(kind='bar') volume_overlay(ax2, df['open'], df['close'], df['vol'], width=0.75, alpha=0.8, colordown='g', colorup='r') ax2.set_xticks(range(0, len(df), 20)) # ax.set_xticklabels(df['date'][::5]) ax2.set_xticklabels(df['datetime'][::20]) plt.setp(ax2.get_xticklabels(), rotation=30, horizontalalignment='right') ax2.grid(True) plt.subplots_adjust(hspace=0.3) if save: # path = os.path.join(os.path.dirname(__file__),'data',TODAY) fig.savefig(full_path) else: plt.show() plt.close() if __name__ == '__main__': parser = OptionParser() parser.add_option("-c", "--code", dest="code", help="-c 300141 #using code to find security") parser.add_option("-n", "--name", dest="name", help="-n 和顺电气 #using code to find security") (options, args) = parser.parse_args() if len((sys.argv)) >= 2: code = options.code name = options.name name = name.decode('utf-8') else: code = None name = '泰永长征' plot_stock_line(code=code, name=name, table_name='zdt', current='20180912', start='2018-02-01', save=False)
google_or_tools/post_office_problem2_sat.py
tias/hakank
279
12627972
# Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Post office problem in OR-tools CP-SAT Solver. Problem statement: http://www-128.ibm.com/developerworks/linux/library/l-glpk2/ From Winston 'Operations Research: Applications and Algorithms': ''' A post office requires a different number of full-time employees working on different days of the week [summarized below]. Union rules state that each full-time employee must work for 5 consecutive days and then receive two days off. For example, an employee who works on Monday to Friday must be off on Saturday and Sunday. The post office wants to meet its daily requirements using only full-time employees. Minimize the number of employees that must be hired. To summarize the important information about the problem: * Every full-time worker works for 5 consecutive days and takes 2 days off * Day 1 (Monday): 17 workers needed * Day 2 : 13 workers needed * Day 3 : 15 workers needed * Day 4 : 19 workers needed * Day 5 : 14 workers needed * Day 6 : 16 workers needed * Day 7 (Sunday) : 11 workers needed The post office needs to minimize the number of employees it needs to hire to meet its demand. ''' This is a port of my old CP model post_office_problem2.py This model was created by <NAME> (<EMAIL>) Also see my other OR-tools models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys from cp_sat_utils import scalar_product def main(): model = cp.CpModel() # # data # # days 0..6, monday 0 n = 7 days = list(range(n)) need = [17, 13, 15, 19, 14, 16, 11] # Total cost for the 5 day schedule. # Base cost per day is 100. # Working saturday is 100 extra # Working sunday is 200 extra. cost = [500, 600, 800, 800, 800, 800, 700] # # variables # # No. of workers starting at day i x = [model.NewIntVar(0, 100, 'x[%i]' % i) for i in days] total_cost = model.NewIntVar(0, 20000, 'total_cost') num_workers = model.NewIntVar(0, 100, 'num_workers') # # constraints # scalar_product(model, x, cost, total_cost) model.Add(num_workers == sum(x)) for i in days: model.Add(sum( [x[j] for j in days if j != (i + 5) % n and j != (i + 6) % n]) >= need[i]) # objective model.Minimize(total_cost) # # search and result # solver = cp.CpSolver() status = solver.Solve(model) if status == cp.OPTIMAL: print('num_workers:', solver.Value(num_workers)) print('total_cost:', solver.Value(total_cost)) print('x:', [solver.Value(x[i]) for i in days]) print() print('NumConflicts:', solver.NumConflicts()) print('NumBranches:', solver.NumBranches()) print('WallTime:', solver.WallTime()) if __name__ == '__main__': main()
models/__init__.py
psui3905/CCT
308
12627990
from .model import CCT
tests/test_year_2005.py
l0pht511/jpholiday
179
12628000
# coding: utf-8 import datetime import unittest import jpholiday class TestYear2005(unittest.TestCase): def test_holiday(self): """ 2005年祝日 """ self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 1, 1)), '元日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 1, 10)), '成人の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 2, 11)), '建国記念の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 3, 20)), '春分の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 3, 21)), '春分の日 振替休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 4, 29)), 'みどりの日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 5, 3)), '憲法記念日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 5, 4)), '国民の休日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 5, 5)), 'こどもの日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 7, 18)), '海の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 9, 19)), '敬老の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 9, 23)), '秋分の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 10, 10)), '体育の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 11, 3)), '文化の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 11, 23)), '勤労感謝の日') self.assertEqual(jpholiday.is_holiday_name(datetime.date(2005, 12, 23)), '天皇誕生日') def test_count_month(self): """ 2005年月祝日数 """ self.assertEqual(len(jpholiday.month_holidays(2005, 1)), 2) self.assertEqual(len(jpholiday.month_holidays(2005, 2)), 1) self.assertEqual(len(jpholiday.month_holidays(2005, 3)), 2) self.assertEqual(len(jpholiday.month_holidays(2005, 4)), 1) self.assertEqual(len(jpholiday.month_holidays(2005, 5)), 3) self.assertEqual(len(jpholiday.month_holidays(2005, 6)), 0) self.assertEqual(len(jpholiday.month_holidays(2005, 7)), 1) self.assertEqual(len(jpholiday.month_holidays(2005, 8)), 0) self.assertEqual(len(jpholiday.month_holidays(2005, 9)), 2) self.assertEqual(len(jpholiday.month_holidays(2005, 10)), 1) self.assertEqual(len(jpholiday.month_holidays(2005, 11)), 2) self.assertEqual(len(jpholiday.month_holidays(2005, 12)), 1) def test_count_year(self): """ 2005年祝日数 """ self.assertEqual(len(jpholiday.year_holidays(2005)), 16)
build.py
ReneNyffenegger/mssql-scripter
302
12628026
<reponame>ReneNyffenegger/mssql-scripter #!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from __future__ import print_function from azure.storage.blob import BlockBlobService, ContentSettings import os import sys import utility import mssqlscripter.mssqltoolsservice.external as mssqltoolsservice AZURE_STORAGE_CONNECTION_STRING = os.environ.get('AZURE_STORAGE_CONNECTION_STRING') BLOB_CONTAINER_NAME = 'simple' UPLOADED_PACKAGE_LINKS = [] def print_heading(heading, f=None): print('{0}\n{1}\n{0}'.format('=' * len(heading), heading), file=f) def build(platform_names): """ Builds mssql-scripter package. """ print_heading('Cleanup') # clean utility.clean_up(utility.MSSQLSCRIPTER_DIST_DIRECTORY) print_heading('Running setup') # install general requirements. utility.exec_command('pip install -r dev_requirements.txt', utility.ROOT_DIR) # convert windows line endings to unix for mssql-cli bash script utility.exec_command('python dos2unix.py mssql-scripter mssql-scripter', utility.ROOT_DIR) for platform in platform_names: utility.clean_up(utility.MSSQLSCRIPTER_BUILD_DIRECTORY) utility.cleaun_up_egg_info_sub_directories(utility.ROOT_DIR) mssqltoolsservice.copy_sqltoolsservice(platform) print_heading('Building mssql-scripter {} wheel package package'.format(platform)) utility.exec_command('python --version', utility.ROOT_DIR) utility.exec_command( 'python setup.py check -r -s bdist_wheel --plat-name {}'.format(platform), utility.ROOT_DIR, continue_on_error=False) mssqltoolsservice.clean_up_sqltoolsservice() def _upload_index_file(service, blob_name, title, links): print('Uploading index file {}'.format(blob_name)) service.create_blob_from_text( container_name=BLOB_CONTAINER_NAME, blob_name=blob_name, text="<html><head><title>{0}</title></head><body><h1>{0}</h1>{1}</body></html>" .format(title, '\n'.join( ['<a href="{0}">{0}</a><br/>'.format(link) for link in links])), content_settings=ContentSettings( content_type='text/html', content_disposition=None, content_encoding=None, content_language=None, content_md5=None, cache_control=None ) ) def _gen_pkg_index_html(service, pkg_name): links = [] index_file_name = pkg_name+'/' for blob in list(service.list_blobs(BLOB_CONTAINER_NAME, prefix=index_file_name)): if blob.name == index_file_name: # Exclude the index file from being added to the list continue links.append(blob.name.replace(index_file_name, '')) _upload_index_file(service, index_file_name, 'Links for {}'.format(pkg_name), links) UPLOADED_PACKAGE_LINKS.append(index_file_name) def _upload_package(service, file_path, pkg_name): print('Uploading {}'.format(file_path)) file_name = os.path.basename(file_path) blob_name = '{}/{}'.format(pkg_name, file_name) service.create_blob_from_path( container_name=BLOB_CONTAINER_NAME, blob_name=blob_name, file_path=file_path ) def validate_package(platform_names): """ Install mssql-scripter wheel package locally. """ root_dir = os.path.abspath(os.path.join(os.path.abspath(__file__), '..')) # Local install of mssql-scripter. mssqlscripter_wheel_dir = os.listdir(utility.MSSQLSCRIPTER_DIST_DIRECTORY) current_platform = utility.get_current_platform() mssqlscripter_wheel_name = [pkge for pkge in mssqlscripter_wheel_dir if current_platform in pkge] # To ensure we have a clean install, we disable the cache as to prevent cache overshadowing actual changes made. utility.exec_command( 'pip install --no-cache-dir --no-index ./dist/{}'.format(mssqlscripter_wheel_name), root_dir, continue_on_error=False) def publish_daily(platforms_names): """ Publish mssql-scripter wheel package to daily storage account. """ print('Publishing to simple container within storage account.') assert AZURE_STORAGE_CONNECTION_STRING, 'Set AZURE_STORAGE_CONNECTION_STRING environment variable' blob_service = BlockBlobService(connection_string=AZURE_STORAGE_CONNECTION_STRING) print_heading('Uploading packages to blob storage ') for pkg in os.listdir(utility.MSSQLSCRIPTER_DIST_DIRECTORY): pkg_path = os.path.join(utility.MSSQLSCRIPTER_DIST_DIRECTORY, pkg) print('Uploading package {}'.format(pkg_path)) _upload_package(blob_service, pkg_path, 'mssql-scripter') # Upload index files _gen_pkg_index_html(blob_service, 'mssql-scripter') _upload_index_file(blob_service, 'index.html', 'Simple Index', UPLOADED_PACKAGE_LINKS) def publish_official(platforms_names): """ Publish mssql-scripter wheel package to PyPi. """ mssqlscripter_wheel_dir = os.listdir(utility.MSSQLSCRIPTER_DIST_DIRECTORY) # Run twine action for mssqlscripter. # Only authorized users with credentials will be able to upload this package. # Credentials will be stored in a .pypirc file. for mssqlscripter_wheel_name in mssqlscripter_wheel_dir: utility.exec_command( 'twine upload {}'.format(mssqlscripter_wheel_name), utility.MSSQLSCRIPTER_DIST_DIRECTORY) if __name__ == '__main__': action = 'build' supported_platforms = [ 'win32', 'win_amd64', 'macosx_10_11_intel', 'manylinux1_x86_64'] targets = { 'build': build, 'validate_package': validate_package, 'publish_daily': publish_daily, 'publish_official': publish_official } if len(sys.argv) > 1: action = sys.argv[1] if len(sys.argv) > 2: supported_platforms = [sys.argv[2]] if action in targets: targets[action](supported_platforms) else: print('{} is not a supported action'.format(action)) print('Supported actions are {}'.format(list(targets.keys())))
e2e_testing/torchscript/cast.py
pashu123/torch-mlir
213
12628034
<reponame>pashu123/torch-mlir # Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. import torch from torch_mlir_e2e_test.torchscript.framework import TestUtils from torch_mlir_e2e_test.torchscript.registry import register_test_case from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export # ============================================================================== class TensorToIntZeroRank(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([], torch.int64, True), ]) def forward(self, x): return int(x) @register_test_case(module_factory=lambda: TensorToIntZeroRank()) def TensorToIntZeroRank_basic(module, tu: TestUtils): module.forward(torch.randint(10, ())) # ============================================================================== class TensorToInt(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.int64, True), ]) def forward(self, x): return int(x) @register_test_case(module_factory=lambda: TensorToInt()) def TensorToInt_basic(module, tu: TestUtils): module.forward(torch.randint(10, (1, 1))) # ============================================================================== class TensorToFloatZeroRank(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([], torch.float64, True), ]) def forward(self, x): return float(x) @register_test_case(module_factory=lambda: TensorToFloatZeroRank()) def TensorToFloatZeroRank_basic(module, tu: TestUtils): module.forward(torch.rand((), dtype=torch.float64)) # ============================================================================== class TensorToFloat(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.float64, True), ]) def forward(self, x): return float(x) @register_test_case(module_factory=lambda: TensorToFloat()) def TensorToFloat_basic(module, tu: TestUtils): module.forward(torch.rand((1, 1), dtype=torch.float64)) # ============================================================================== class TensorToBoolZeroRank(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([], torch.bool, True), ]) def forward(self, x): return bool(x) @register_test_case(module_factory=lambda: TensorToBoolZeroRank()) def TensorToBoolZeroRank_basic(module, tu: TestUtils): module.forward(torch.tensor(1, dtype=torch.bool)) # ============================================================================== class TensorToBool(torch.nn.Module): def __init__(self): super().__init__() @export @annotate_args([ None, ([-1, -1], torch.bool, True), ]) def forward(self, x): return bool(x) @register_test_case(module_factory=lambda: TensorToBool()) def TensorToBool_basic(module, tu: TestUtils): module.forward(torch.tensor([[1]], dtype=torch.bool))
proxybroker/errors.py
askvrtsv/ProxyBroker
3,157
12628038
"""Errors.""" class ProxyError(Exception): pass class NoProxyError(Exception): pass class ResolveError(Exception): pass class ProxyConnError(ProxyError): errmsg = 'connection_failed' class ProxyRecvError(ProxyError): errmsg = 'connection_is_reset' class ProxySendError(ProxyError): errmsg = 'connection_is_reset' class ProxyTimeoutError(ProxyError): errmsg = 'connection_timeout' class ProxyEmptyRecvError(ProxyError): errmsg = 'empty_response' class BadStatusError(Exception): # BadStatusLine errmsg = 'bad_status' class BadResponseError(Exception): errmsg = 'bad_response' class BadStatusLine(Exception): errmsg = 'bad_status_line' class ErrorOnStream(Exception): errmsg = 'error_on_stream'
scripts/pipeline_example.py
Carromattsson/netrd
116
12628063
""" pipeline_example.py ------------ Example pipeline for netrd author: <NAME> email: <EMAIL>othylarock at gmail dot com Submitted as part of the 2019 NetSI Collabathon """ # NOTE: !IMPORTANT! If you want to play and make changes, # please make your own copy of this file (with a different name!) # first and edit that!!! Leave this file alone except to fix a bug! import netrd from collections import defaultdict import numpy as np import matplotlib.pyplot as plt ## Load datasets datasets = {'4-clique':netrd.utilities.read_time_series('../data/synth_4clique_N64_simple.csv'), 'BA':netrd.utilities.read_time_series('../data/synth_BAnetwork_N64_simple.csv'), 'ER':netrd.utilities.read_time_series('../data/synth_ERnetwork_N64_simple.csv')} ## Load reconstruction methods reconstructors = { 'correlation_matrix':netrd.reconstruction.CorrelationMatrixReconstructor(), 'convergent_crossmappings':netrd.reconstruction.ConvergentCrossMappingReconstructor(), 'exact_mean_field':netrd.reconstruction.ExactMeanFieldReconstructor(), 'free_energy_minimization':netrd.reconstruction.FreeEnergyMinimizationReconstructor(), 'graphical_lasso':netrd.reconstruction.GraphicalLassoReconstructor(), 'maximum_likelihood':netrd.reconstruction.MaximumLikelihoodEstimationReconstructor(), 'mutual_information':netrd.reconstruction.MutualInformationMatrixReconstructor(), 'ou_inference':netrd.reconstruction.OUInferenceReconstructor(), 'partial_correlation':netrd.reconstruction.PartialCorrelationMatrixReconstructor(), 'regularized_correlation':netrd.reconstruction.RegularizedCorrelationMatrixReconstructor(), 'thouless_anderson_palmer':netrd.reconstruction.ThoulessAndersonPalmerReconstructor(), 'time_granger_causality':netrd.reconstruction.TimeGrangerCausalityReconstructor(), 'marchenko_pastur':netrd.reconstruction.MarchenkoPastur(), #'naive_transfer_entropy':netrd.reconstruction.NaiveTransferEntropyReconstructor() } ## Load distance methods distance_methods = {'jaccard':netrd.distance.JaccardDistance(), 'hamming':netrd.distance.Hamming(), 'hamming_ipsen_mikhailov':netrd.distance.HammingIpsenMikhailov(), #'portrait_divergence':netrd.distance.PortraitDivergence(), #'resistance_perturbation':netrd.distance.ResistancePerturbation(), 'frobenius':netrd.distance.Frobenius(), #'netsimilie':netrd.distance.NetSimile() } ## get the names of the methods reconstruction_methods = [method for method in reconstructors.keys()] distance_methods_list = [method for method in distance_methods.keys()] ## Dictionary of dictionaries containing the reconstructed networks ## <dataset_name, <recon_method_name, reconstructed_graph> networks = defaultdict(dict) print('Computing network reconstructions') ## First get all of the reconstructions for every dataset for data_name, time_series in datasets.items(): print('dataset: ' + str(data_name)) for reconstruction_method, reconstructor in reconstructors.items(): print(reconstruction_method + '...', end='') networks[data_name][reconstruction_method] = reconstructor.fit(time_series) print('done') ## 4-deep dict structure: <dataset_name, <rmethod1, <rmethod2, <dmethod, distance> > > > distances = dict() ## In order to standardize, I am going to collect all of the ## outputs for each distance per_distance_values = dict() print('Computing network distances') ## Then, compute the distance between every reconstruction of every network for data_name, networks_dict in networks.items(): per_distance_values[data_name] = defaultdict(list) print('dataset: ' + str(data_name)) distances[data_name] = dict() for distance_method, distance_function in distance_methods.items(): print(distance_method + '...', end='') for reconstruction_method1, network1 in networks_dict.items(): distances[data_name].setdefault(reconstruction_method1, dict()) for reconstruction_method2, network2 in networks_dict.items(): distances[data_name][reconstruction_method1].setdefault(reconstruction_method2, dict()) distance = distance_function.dist(network1, network2) distances[data_name][reconstruction_method1][reconstruction_method2].setdefault(distance_method, dict) distances[data_name][reconstruction_method1][reconstruction_method2][distance_method] = distance per_distance_values[data_name][distance_method].append(distance) print('done') ## For each dataset and distance, store (max,min) tuple to use in standardization max_min_distance_values = defaultdict(dict) for data_name in networks.keys(): for distance_method in distance_methods_list: max_min_distance_values[data_name][distance_method]=(np.max(per_distance_values[data_name][distance_method]), np.min(per_distance_values[data_name][distance_method])) ## Compute the similarity matrix by taking the average of the ## distance between every reconstruction matrix number_of_reconstructors = len(reconstruction_methods) name_map = {reconstruction_methods[i]:i for i in range(number_of_reconstructors)} similarity_matrix = np.zeros((number_of_reconstructors,number_of_reconstructors)) for dataset, dataset_dict in distances.items(): for method1, method1_dict in dataset_dict.items(): for method2, method2_dict in dataset_dict.items(): for distance_method in method1_dict[method2].keys(): max_dist_val, min_dist_val = max_min_distance_values[data_name][distance_method] similarity_matrix[name_map[method1], name_map[method2]] += (method1_dict[method2][distance_method] - min_dist_val) / (max_dist_val - min_dist_val) avg_similarity = similarity_matrix / (number_of_reconstructors*len(datasets)) print('Generating collabathon_output.png') reconstruction_names = list(name_map.keys()) N_methods = len(reconstruction_names) mat = avg_similarity #### plotting parameters #### netrd_cmap = 'bone_r' method_id = 'test' width = 1.2 heigh = 1.2 mult = 8.0 ###### plot the mat ########### fig, ax0 = plt.subplots(1, 1, figsize=(width*mult,heigh*mult)) ax0.imshow(mat, aspect='auto', cmap=netrd_cmap) ###### be obsessive about it ########### ax0.set_xticks(np.arange(0, N_methods, 1)) ax0.set_yticks(np.arange(0, N_methods, 1)) # ax0.set_xticklabels(np.arange(0, N_methods, 1), fontsize=2.0*mult) # ax0.set_yticklabels(np.arange(0, N_methods, 1), fontsize=2.0*mult) ax0.set_xticklabels(reconstruction_names, fontsize=1.5*mult, rotation=270) ax0.set_yticklabels(reconstruction_names, fontsize=1.5*mult) ax0.set_xticks(np.arange(-.5, N_methods-0.5, 1), minor=True) ax0.set_yticks(np.arange(-.5, N_methods-0.5, 1), minor=True) ax0.grid(which='minor', color='#333333', linestyle='-', linewidth=1.5) ax0.set_title("Collabathon Fun Times Test Plot: \n Averaged Distance Between Reconstructed Networks", fontsize=2.5*mult) plt.savefig('collabathon_output.png', bbox_inches='tight', dpi=200)
external/lemonade/dist/lemonade/exceptions.py
almartin82/bayeslite
964
12628073
class BadGrammarError(Exception): pass class EmptyGrammarError(BadGrammarError): pass
src/python/nimbusml/examples/LightLda.py
michaelgsharp/NimbusML
134
12628114
############################################################################### # LightLda from nimbusml import FileDataStream, Pipeline from nimbusml.datasets import get_dataset from nimbusml.feature_extraction.text import NGramFeaturizer, LightLda from nimbusml.feature_extraction.text.extractor import Ngram # data input as a FileDataStream path = get_dataset('topics').as_filepath() data = FileDataStream.read_csv(path, sep=",") print(data.head()) # review review_reverse label # 0 animals birds cats dogs fish horse radiation galaxy universe duck 1 # 1 horse birds house fish duck cats space galaxy universe radiation 0 # 2 car truck driver bus pickup bus pickup 1 # transform usage pipeline = Pipeline( [ NGramFeaturizer( word_feature_extractor=Ngram(), vector_normalizer='None', columns=['review']), LightLda( num_topic=3, columns=['review'])]) # fit and transform features = pipeline.fit_transform(data) print(features.head()) # label review.0 review.1 review.2 review_reverse # 0 1 0.500000 0.333333 0.166667 radiation galaxy universe duck # 1 0 0.000000 0.166667 0.833333 space galaxy universe radiation # 2 1 0.400000 0.200000 0.400000 bus pickup # 3 0 0.333333 0.333333 0.333333 car truck # 4 1 1.000000 0.000000 0.000000 car truck driver bus pickup horse
openff/toolkit/utils/toolkit_registry.py
andrew-abimansour/openff-toolkit
120
12628141
"Registry for ToolkitWrapper objects" __all__ = ("ToolkitRegistry",) import inspect import logging from openff.toolkit.utils.ambertools_wrapper import AmberToolsToolkitWrapper from openff.toolkit.utils.base_wrapper import ToolkitWrapper from openff.toolkit.utils.builtin_wrapper import BuiltInToolkitWrapper from openff.toolkit.utils.exceptions import ( InvalidToolkitError, ToolkitUnavailableException, ) from openff.toolkit.utils.openeye_wrapper import OpenEyeToolkitWrapper from openff.toolkit.utils.rdkit_wrapper import RDKitToolkitWrapper from openff.toolkit.utils.utils import all_subclasses # ============================================================================================= # CONFIGURE LOGGER # ============================================================================================= logger = logging.getLogger(__name__) # ============================================================================================= # Implementation # ============================================================================================= class ToolkitRegistry: """ Registry for ToolkitWrapper objects Examples -------- Register toolkits in a specified order, skipping if unavailable >>> from openff.toolkit.utils.toolkits import ToolkitRegistry >>> toolkit_precedence = [OpenEyeToolkitWrapper, RDKitToolkitWrapper, AmberToolsToolkitWrapper] >>> toolkit_registry = ToolkitRegistry(toolkit_precedence) >>> toolkit_registry ToolkitRegistry containing OpenEye Toolkit, The RDKit, AmberTools Register all available toolkits (in the order OpenEye, RDKit, AmberTools, built-in) >>> toolkits = [OpenEyeToolkitWrapper, RDKitToolkitWrapper, AmberToolsToolkitWrapper, BuiltInToolkitWrapper] >>> toolkit_registry = ToolkitRegistry(toolkit_precedence=toolkits) >>> toolkit_registry ToolkitRegistry containing OpenEye Toolkit, The RDKit, AmberTools, Built-in Toolkit Retrieve the global singleton toolkit registry, which is created when this module is imported from all available toolkits: >>> from openff.toolkit.utils.toolkits import GLOBAL_TOOLKIT_REGISTRY as toolkit_registry >>> toolkit_registry ToolkitRegistry containing OpenEye Toolkit, The RDKit, AmberTools, Built-in Toolkit Note that this will contain different ToolkitWrapper objects based on what toolkits are currently installed. .. warning :: This API is experimental and subject to change. """ def __init__( self, toolkit_precedence=[], exception_if_unavailable=True, _register_imported_toolkit_wrappers=False, ): """ Create an empty toolkit registry. Parameters ---------- toolkit_precedence : list, default=[] List of toolkit wrapper classes, in order of desired precedence when performing molecule operations. If None, no toolkits will be registered. exception_if_unavailable : bool, optional, default=True If True, an exception will be raised if the toolkit is unavailable _register_imported_toolkit_wrappers : bool, optional, default=False If True, will attempt to register all imported ToolkitWrapper subclasses that can be found in the order of toolkit_precedence, if specified. If toolkit_precedence is not specified, the default order is [OpenEyeToolkitWrapper, RDKitToolkitWrapper, AmberToolsToolkitWrapper, BuiltInToolkitWrapper]. """ self._toolkits = list() toolkits_to_register = list() if _register_imported_toolkit_wrappers: if toolkit_precedence is None: toolkit_precedence = [ OpenEyeToolkitWrapper, RDKitToolkitWrapper, AmberToolsToolkitWrapper, BuiltInToolkitWrapper, ] all_importable_toolkit_wrappers = all_subclasses(ToolkitWrapper) for toolkit in toolkit_precedence: if toolkit in all_importable_toolkit_wrappers: toolkits_to_register.append(toolkit) else: if toolkit_precedence: toolkits_to_register = toolkit_precedence if toolkits_to_register: for toolkit in toolkits_to_register: self.register_toolkit( toolkit, exception_if_unavailable=exception_if_unavailable ) @property def registered_toolkits(self): """ List registered toolkits. .. warning :: This API is experimental and subject to change. .. todo :: Should this return a generator? Deep copies? Classes? Toolkit names? Returns ------- toolkits : iterable of toolkit objects """ return list(self._toolkits) @property def registered_toolkit_versions(self): """ Return a dict containing the version of each registered toolkit. .. warning :: This API is experimental and subject to change. Returns ------- toolkit_versions : dict[str, str] A dictionary mapping names and versions of wrapped toolkits """ return dict( (tk.toolkit_name, tk.toolkit_version) for tk in self.registered_toolkits ) def register_toolkit(self, toolkit_wrapper, exception_if_unavailable=True): """ Register the provided toolkit wrapper class, instantiating an object of it. .. warning :: This API is experimental and subject to change. .. todo :: This method should raise an exception if the toolkit is unavailable, unless an optional argument is specified that silently avoids registration of toolkits that are unavailable. Parameters ---------- toolkit_wrapper : instance or subclass of ToolkitWrapper The toolkit wrapper to register or its class. exception_if_unavailable : bool, optional, default=True If True, an exception will be raised if the toolkit is unavailable """ # Instantiate class if class, or just add if already instantiated. if isinstance(toolkit_wrapper, type): try: toolkit_wrapper = toolkit_wrapper() except ToolkitUnavailableException: msg = "Unable to load toolkit '{}'. ".format( toolkit_wrapper._toolkit_name ) if exception_if_unavailable: raise ToolkitUnavailableException(msg) else: if "OpenEye" in msg: msg += ( "The Open Force Field Toolkit does not require the OpenEye Toolkits, and can " "use RDKit/AmberTools instead. However, if you have a valid license for the " "OpenEye Toolkits, consider installing them for faster performance and additional " "file format support: " "https://docs.eyesopen.com/toolkits/python/quickstart-python/linuxosx.html " "OpenEye offers free Toolkit licenses for academics: " "https://www.eyesopen.com/academic-licensing" ) logger.warning(f"Warning: {msg}") return # Add toolkit to the registry. self._toolkits.append(toolkit_wrapper) def deregister_toolkit(self, toolkit_wrapper): """ Remove a ToolkitWrapper from the list of toolkits in this ToolkitRegistry .. warning :: This API is experimental and subject to change. Parameters ---------- toolkit_wrapper : instance or subclass of ToolkitWrapper The toolkit wrapper to remove from the registry Raises ------ InvalidToolkitError If toolkit_wrapper is not a ToolkitWrapper or subclass ToolkitUnavailableException If toolkit_wrapper is not found in the registry """ # If passed a class, instantiate it if inspect.isclass(toolkit_wrapper): toolkit_wrapper = toolkit_wrapper() if not isinstance(toolkit_wrapper, ToolkitWrapper): msg = ( f"Argument {toolkit_wrapper} must an ToolkitWrapper " f"or subclass of it. Found type {type(toolkit_wrapper)}." ) raise InvalidToolkitError(msg) toolkits_to_remove = [] for toolkit in self._toolkits: if type(toolkit) == type(toolkit_wrapper): toolkits_to_remove.append(toolkit) if not toolkits_to_remove: msg = ( f"Did not find {toolkit_wrapper} in registry. " f"Currently registered toolkits are {self._toolkits}" ) raise ToolkitUnavailableException(msg) for toolkit_to_remove in toolkits_to_remove: self._toolkits.remove(toolkit_to_remove) def add_toolkit(self, toolkit_wrapper): """ Append a ToolkitWrapper onto the list of toolkits in this ToolkitRegistry .. warning :: This API is experimental and subject to change. Parameters ---------- toolkit_wrapper : openff.toolkit.utils.ToolkitWrapper The ToolkitWrapper object to add to the list of registered toolkits Raises ------ InvalidToolkitError If toolkit_wrapper is not a ToolkitWrapper or subclass """ if not isinstance(toolkit_wrapper, ToolkitWrapper): msg = "Something other than a ToolkitWrapper object was passed to ToolkitRegistry.add_toolkit()\n" msg += "Given object {} of type {}".format( toolkit_wrapper, type(toolkit_wrapper) ) raise InvalidToolkitError(msg) self._toolkits.append(toolkit_wrapper) # TODO: Can we automatically resolve calls to methods that are not explicitly defined using some Python magic? def resolve(self, method_name): """ Resolve the requested method name by checking all registered toolkits in order of precedence for one that provides the requested method. Parameters ---------- method_name : str The name of the method to resolve Returns ------- method The method of the first registered toolkit that provides the requested method name Raises ------ NotImplementedError if the requested method cannot be found among the registered toolkits Examples -------- Create a molecule, and call the toolkit ``to_smiles()`` method directly >>> from openff.toolkit.topology import Molecule >>> molecule = Molecule.from_smiles('Cc1ccccc1') >>> toolkit_registry = ToolkitRegistry([OpenEyeToolkitWrapper, RDKitToolkitWrapper, AmberToolsToolkitWrapper]) >>> method = toolkit_registry.resolve('to_smiles') >>> smiles = method(molecule) .. todo :: Is there a better way to figure out which toolkits implement given methods by introspection? """ for toolkit in self._toolkits: if hasattr(toolkit, method_name): method = getattr(toolkit, method_name) return method # No toolkit was found to provide the requested capability # TODO: Can we help developers by providing a check for typos in expected method names? msg = 'No registered toolkits can provide the capability "{}".\n'.format( method_name ) msg += "Available toolkits are: {}\n".format(self.registered_toolkits) raise NotImplementedError(msg) # TODO: Can we instead register available methods directly with `ToolkitRegistry`, # so we can just use `ToolkitRegistry.method()`? def call(self, method_name, *args, raise_exception_types=None, **kwargs): """ Execute the requested method by attempting to use all registered toolkits in order of precedence. ``*args`` and ``**kwargs`` are passed to the desired method, and return values of the method are returned This is a convenient shorthand for ``toolkit_registry.resolve_method(method_name)(*args, **kwargs)`` Parameters ---------- method_name : str The name of the method to execute raise_exception_types : list of Exception subclasses, default=None A list of exception-derived types to catch and raise immediately. If None, this will be set to [Exception], which will raise an error immediately if the first ToolkitWrapper in the registry fails. To try each ToolkitWrapper that provides a suitably-named method, set this to the empty list ([]). If all ToolkitWrappers run without raising any exceptions in this list, a single ValueError will be raised containing the each ToolkitWrapper that was tried and the exception it raised. Raises ------ NotImplementedError if the requested method cannot be found among the registered toolkits ValueError if no exceptions in the raise_exception_types list were raised by ToolkitWrappers, and all ToolkitWrappers in the ToolkitRegistry were tried. Other forms of exceptions are possible if raise_exception_types is specified. These are defined by the ToolkitWrapper method being called. Examples -------- Create a molecule, and call the toolkit ``to_smiles()`` method directly >>> from openff.toolkit.topology import Molecule >>> molecule = Molecule.from_smiles('Cc1ccccc1') >>> toolkit_registry = ToolkitRegistry([OpenEyeToolkitWrapper, RDKitToolkitWrapper]) >>> smiles = toolkit_registry.call('to_smiles', molecule) """ if raise_exception_types is None: raise_exception_types = [Exception] errors = list() for toolkit in self._toolkits: if hasattr(toolkit, method_name): method = getattr(toolkit, method_name) try: return method(*args, **kwargs) except Exception as e: for exception_type in raise_exception_types: if isinstance(e, exception_type): raise e errors.append((toolkit, e)) # No toolkit was found to provide the requested capability # TODO: Can we help developers by providing a check for typos in expected method names? msg = ( f'No registered toolkits can provide the capability "{method_name}" ' f'for args "{args}" and kwargs "{kwargs}"\n' ) msg += "Available toolkits are: {}\n".format(self.registered_toolkits) # Append information about toolkits that implemented the method, but could not handle the provided parameters for toolkit, error in errors: msg += " {} {} : {}\n".format(toolkit, type(error), error) raise ValueError(msg) def __repr__(self): return "ToolkitRegistry containing " + ", ".join( [tk.toolkit_name for tk in self._toolkits] )
InvenTree/stock/migrations/0064_auto_20210621_1724.py
carlos-riquelme/InvenTree
656
12628171
# Generated by Django 3.2.4 on 2021-06-21 07:24 from django.db import migrations def extract_purchase_price(apps, schema_editor): """ Find instances of StockItem which do *not* have a purchase price set, but which point to a PurchaseOrder where there *is* a purchase price set. Then, assign *that* purchase price to original StockItem. This is to address an issue where older versions of InvenTree did not correctly copy purchase price information cross to the StockItem objects. Current InvenTree version (as of 2021-06-21) copy this information across correctly, so this one-time data migration should suffice. """ # Required database models StockItem = apps.get_model('stock', 'stockitem') PurchaseOrder = apps.get_model('order', 'purchaseorder') PurchaseOrderLineItem = apps.get_model('order', 'purchaseorderlineitem') Part = apps.get_model('part', 'part') # Find all the StockItem objects without a purchase_price which point to a PurchaseOrder items = StockItem.objects.filter(purchase_price=None).exclude(purchase_order=None) if items.count() > 0: print(f"Found {items.count()} stock items with missing purchase price information") update_count = 0 for item in items: part_id = item.part po = item.purchase_order # Look for a matching PurchaseOrderLineItem (with a price) lines = PurchaseOrderLineItem.objects.filter(part__part=part_id, order=po) if lines.exists(): for line in lines: if line.purchase_price is not None: # Copy pricing information across item.purchase_price = line.purchase_price item.purchases_price_currency = line.purchase_price_currency print(f"- Updating supplier price for {item.part.name} - {item.purchase_price} {item.purchase_price_currency}") update_count += 1 item.save() break if update_count > 0: print(f"Updated pricing for {update_count} stock items") def reverse_operation(apps, schema_editor): """ DO NOTHING! """ pass class Migration(migrations.Migration): dependencies = [ ('stock', '0063_auto_20210511_2343'), ] operations = [ migrations.RunPython(extract_purchase_price, reverse_code=reverse_operation) ]
examples/parallel/davinci/wordfreq.py
chebee7i/ipython
748
12628177
"""Count the frequencies of words in a string""" from __future__ import division from __future__ import print_function import cmath as math def wordfreq(text, is_filename=False): """Return a dictionary of words and word counts in a string.""" if is_filename: with open(text) as f: text = f.read() freqs = {} for word in text.split(): lword = word.lower() freqs[lword] = freqs.get(lword, 0) + 1 return freqs def print_wordfreq(freqs, n=10): """Print the n most common words and counts in the freqs dict.""" words, counts = freqs.keys(), freqs.values() items = zip(counts, words) items.sort(reverse=True) for (count, word) in items[:n]: print(word, count) def wordfreq_to_weightsize(worddict, minsize=25, maxsize=50, minalpha=0.5, maxalpha=1.0): mincount = min(worddict.itervalues()) maxcount = max(worddict.itervalues()) weights = {} for k, v in worddict.iteritems(): w = (v-mincount)/(maxcount-mincount) alpha = minalpha + (maxalpha-minalpha)*w size = minsize + (maxsize-minsize)*w weights[k] = (alpha, size) return weights def tagcloud(worddict, n=10, minsize=25, maxsize=50, minalpha=0.5, maxalpha=1.0): from matplotlib import pyplot as plt import random worddict = wordfreq_to_weightsize(worddict, minsize, maxsize, minalpha, maxalpha) fig = plt.figure() ax = fig.add_subplot(111) ax.set_position([0.0,0.0,1.0,1.0]) plt.xticks([]) plt.yticks([]) words = worddict.keys() alphas = [v[0] for v in worddict.values()] sizes = [v[1] for v in worddict.values()] items = zip(alphas, sizes, words) items.sort(reverse=True) for alpha, size, word in items[:n]: # xpos = random.normalvariate(0.5, 0.3) # ypos = random.normalvariate(0.5, 0.3) xpos = random.uniform(0.0,1.0) ypos = random.uniform(0.0,1.0) ax.text(xpos, ypos, word.lower(), alpha=alpha, fontsize=size) ax.autoscale_view() return ax
scripts/astf/res.py
ajitkhaparde/trex-core
956
12628189
<reponame>ajitkhaparde/trex-core # many templates,clients/server # start -f astf/res.py -m 1 -t size=32,clients=65000,servers=65000,templates=100 from trex.astf.api import * from trex.stl.trex_stl_packet_builder_scapy import ip2int, int2ip import argparse # we can send either Python bytes type as below: http_req = b'GET /3384 HTTP/1.1\r\nHost: 172.16.58.3\r\nConnection: Keep-Alive\r\nUser-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)\r\nAccept: */*\r\nAccept-Language: en-us\r\nAccept-Encoding: gzip, deflate, compress\r\n\r\n' # or we can send Python string containing ascii chars, as below: http_response_template = 'HTTP/1.1 200 OK\r\nServer: Microsoft-IIS/6.0\r\nContent-Type: text/html\r\nContent-Length: 32000\r\n\r\n<html><pre>{0}</pre></html>' class Prof1(): def __init__(self): pass # tunables def ip_gen(self, client_base, server_base, client_ips, server_ips): assert client_ips>0 assert server_ips>0 ip_gen_c = ASTFIPGenDist(ip_range = [client_base, int2ip(ip2int(client_base) + client_ips - 1)]) ip_gen_s = ASTFIPGenDist(ip_range = [server_base, int2ip(ip2int(server_base) + server_ips - 1)]) return ASTFIPGen(dist_client = ip_gen_c, dist_server = ip_gen_s) def create_profile(self,kwargs): res_size = kwargs.get('size',16) clients = kwargs.get('clients',255) servers = kwargs.get('servers',255) templates = kwargs.get('templates',255) ip_gen = self.ip_gen('192.168.127.12', '192.168.127.12', clients, servers) # client commands http_response = http_response_template.format('*'*res_size) http_response_template prog_c = ASTFProgram() prog_c.send(http_req) prog_c.recv(len(http_response)) prog_s = ASTFProgram() prog_s.recv(len(http_req)) prog_s.send(http_response) templates_arr = [] for i in range(templates): temp_c = ASTFTCPClientTemplate(program = prog_c, ip_gen = ip_gen, cps = i + 1) temp_s = ASTFTCPServerTemplate(program = prog_s, assoc = ASTFAssociationRule(port = 80 + i)) template = ASTFTemplate(client_template = temp_c, server_template = temp_s) templates_arr.append(template) return ASTFProfile(default_ip_gen = ip_gen, templates = templates_arr) def get_profile(self, tunables, **kwargs): parser = argparse.ArgumentParser(description='Argparser for {}'.format(os.path.basename(__file__)), formatter_class=argparse.ArgumentDefaultsHelpFormatter) args = parser.parse_args(tunables) return self.create_profile(kwargs) def register(): return Prof1()
ib/ext/Util.py
LewisW/IbPy
1,260
12628249
<gh_stars>1000+ #!/usr/bin/env python """ generated source for module Util """ # # Original file copyright original author(s). # This file copyright <NAME>, <EMAIL>. # # WARNING: all changes to this file will be lost. from ib.lib import Double, Integer # # * Util.java # # package: com.ib.client # Making sure this works in python3 as well def cmp(a, b): return (a > b) - (a < b) class Util(object): """ generated source for class Util """ @classmethod def StringIsEmpty(cls, strval): """ generated source for method StringIsEmpty """ return strval is None or 0 == len(strval) @classmethod def NormalizeString(cls, strval): """ generated source for method NormalizeString """ return strval if strval is not None else "" @classmethod def StringCompare(cls, lhs, rhs): """ generated source for method StringCompare """ return cmp(cls.NormalizeString(str(lhs)), cls.NormalizeString(str(rhs))) @classmethod def StringCompareIgnCase(cls, lhs, rhs): """ generated source for method StringCompareIgnCase """ return cmp(cls.NormalizeString(str(lhs)).lower(), cls.NormalizeString(str(rhs)).lower()) @classmethod def VectorEqualsUnordered(cls, lhs, rhs): """ generated source for method VectorEqualsUnordered """ if lhs == rhs: return True lhsCount = 0 if lhs is None else len(lhs) rhsCount = 0 if rhs is None else len(rhs) if lhsCount != rhsCount: return False if lhsCount == 0: return True matchedRhsElems = [bool() for __idx0 in range(rhsCount)] lhsIdx = 0 while lhsIdx < lhsCount: lhsElem = lhs[lhsIdx] rhsIdx = 0 while rhsIdx < rhsCount: if matchedRhsElems[rhsIdx]: continue if lhsElem == rhs[rhsIdx]: matchedRhsElems[rhsIdx] = True break rhsIdx += 1 if rhsIdx >= rhsCount: # no matching elem found return False lhsIdx += 1 return True @classmethod def IntMaxString(cls, value): """ generated source for method IntMaxString """ return "" if (value == Integer.MAX_VALUE) else str(value) @classmethod def DoubleMaxString(cls, value): """ generated source for method DoubleMaxString """ return "" if (value == Double.MAX_VALUE) else str(value)
examples/MIDI_to_CAN_example/CANToolz_config/BMW_F10_MUSIC.py
eik00d/CANSploit
336
12628252
load_modules = { 'hw_USBtin': {'port':'auto', 'debug':2, 'speed':500}, # IO hardware module 'ecu_controls': {'bus':'BMW_F10', 'commands':[ # Music actions {'High light - blink': '0x1ee:2:20ff', 'cmd':'127'}, {'TURN LEFT and RIGHT': '0x2fc:7:31000000000000', 'cmd':'126'}, {'TURN right ON PERMANENT': '0x1ee:2:01ff', 'cmd':'124'}, {'TURN right x3 or OFF PERMANENT':'0x1ee:2:02ff','cmd':'123'}, {'TURN left ON PERMANENT': '0x1ee:2:04ff', 'cmd':'122'}, {'TURN left x3 or OFF PERMANENT':'0x1ee:2:08ff','cmd':'121'}, {'STOP lights': '0x173:8:3afa00022000f2c4', 'cmd':'120'}, {'CLEANER - once':'0x2a6:2:02a1','cmd':'119'}, {'CLEANER x3 + Wasser':'0x2a6:2:10f1','cmd':'118'}, {'Mirrors+windows FOLD':'0x26e:8:5b5b4002ffffffff','cmd':"117"}, {'Mirrors UNfold':'0x2fc:7:12000000000000','cmd':"116"}, {'Windows open':'0x26e:8:49494001ffffffff','cmd':"115"}, {'Windows rear close + Mirrors FOLD':'0x26e:8:405b4002ffffffff','cmd':"114"}, {'Trunk open':'0x2a0:8:88888001ffffffff','cmd':"113"}, {'Trunk close':'0x23a:8:00f310f0fcf0ffff','cmd':"112"} ], 'statuses':[ ] } } # Now let's describe the logic of this test actions = [ {'ecu_controls' : {}}, {'hw_USBtin': {'action':'write','pipe': 1}} ]
WebMirror/management/rss_parser_funcs/feed_parse_extractCNovelProj.py
fake-name/ReadableWebProxy
193
12628276
def extractCNovelProj(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('Please Be More Serious', 'Please Be More Serious', 'translated'), ('Still Not Wanting to Forget', 'Still Not Wanting to Forget', 'translated'), ('suddenly this summer', 'Suddenly, This Summer', 'translated'), ('mr earnest is my boyfriend', '<NAME> Is My Boyfriend', 'translated'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
InvenTree/company/migrations/0030_auto_20201112_1112.py
ArakniD/InvenTree
656
12628280
# Generated by Django 3.0.7 on 2020-11-12 00:12 import InvenTree.fields import django.core.validators from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('company', '0029_company_currency'), ] operations = [ migrations.AlterField( model_name='supplierpricebreak', name='quantity', field=InvenTree.fields.RoundingDecimalField(decimal_places=5, default=1, help_text='Price break quantity', max_digits=15, validators=[django.core.validators.MinValueValidator(1)], verbose_name='Quantity'), ), ]
disnake_components/__init__.py
LOCUS-TEAM/py-cord-components
351
12628295
<reponame>LOCUS-TEAM/py-cord-components<filename>disnake_components/__init__.py from .client import * from .interaction import * from .component import * from .dpy_overrides import * from .http import *
mead/pytorch/exporters.py
shar999/mead-baseline
241
12628297
import os import logging import torch import torch.nn as nn from typing import Dict, List import baseline as bl from eight_mile.pytorch.layers import ( CRF, ViterbiBatchSize1, TaggerGreedyDecoder, ViterbiLogSoftmaxNormBatchSize1 ) from baseline.utils import ( exporter, Offsets, write_json, load_vectorizers, load_vocabs, find_model_basename, ) from baseline.model import load_model_for from mead.utils import ( get_output_paths, create_metadata, save_to_bundle, ) from mead.exporters import Exporter, register_exporter __all__ = [] export = exporter(__all__) logger = logging.getLogger('mead') REMOTE_MODEL_NAME = 'model' S1D = """ Common starlings may be kept as pets or as laboratory animals . Austrian <unk> <NAME> wrote of them in his book King Solomon 's Ring as " the poor man 's dog " and " something to love " , because nestlings are easily obtained from the wild and after careful hand rearing they are straightforward to look after . They adapt well to captivity , and thrive on a diet of standard bird feed and <unk> . Several birds may be kept in the same cage , and their <unk> makes them easy to train or study . The only disadvantages are their <unk> and indiscriminate defecation habits and the need to take precautions against diseases that may be transmitted to humans . As a laboratory bird , the common starling is second in numbers only to the domestic <unk> . """ S2D = [ "Common starlings may be kept as pets or as laboratory animals .", "Austrian <unk> <NAME>nz wrote of them in his book King Solomon 's Ring as \" the poor man 's dog \" and \" something to love \" , because nestlings are easily obtained from the wild and after careful hand rearing they are straightforward to look after . ", "They adapt well to captivity , and thrive on a diet of standard bird feed and <unk> . ", "The only disadvantages are their <unk> and indiscriminate defecation habits and the need to take precautions against diseases that may be transmitted to humans . ", "As a laboratory bird , the common starling is second in numbers only to the domestic <unk> ." ] def create_data_dict(vocabs, vectorizers, transpose=False): data = {} lengths = None for k, v in vectorizers.items(): data[k], feature_length = vectorizers[k].run(S1D.split(), vocabs[k]) data[k] = torch.LongTensor(data[k]).unsqueeze(0) if not lengths: lengths = [feature_length] lengths = torch.LongTensor(lengths) if transpose: for k in vectorizers.keys(): if len(data[k].shape) > 1: data[k] = data[k].transpose(0, 1) data['lengths'] = lengths return data def create_data_dict_nbest(vocabs, vectorizers): data = {} length_tensor = None for k, v in vectorizers.items(): vec, lengths = v.run(S2D, vocabs[k]) data[k] = torch.LongTensor(vec).unsqueeze(0) if length_tensor is None: length_tensor = torch.LongTensor(lengths).unsqueeze(0) data['lengths'] = length_tensor return data @export class PytorchONNXExporter(Exporter): def __init__(self, task, **kwargs): super().__init__(task, **kwargs) self.transpose = kwargs.get('transpose', False) self.tracing = kwargs.get('tracing', True) self.default_size = int(kwargs.get('default_size', 100)) self.onnx_opset = int(kwargs.get('onnx_opset', 12)) self.nbest_inputs = bool(kwargs.get('nbest_input', False)) def apply_model_patches(self, model): return model def create_example_input(self, vocabs, vectorizers): if self.nbest_inputs: return create_data_dict_nbest(vocabs, vectorizers) return create_data_dict(vocabs, vectorizers, self.transpose) def create_example_output(self, model): if hasattr(model, 'output'): if isinstance(model.output, nn.ModuleList): return [torch.ones((1, len(model.labels[i][1]))) for i in range(len(model.output))] return torch.ones((1, len(model.labels))) def create_model_inputs(self, model): inputs = [k for k in model.embeddings.keys()] + ['lengths'] return inputs def create_model_outputs(self, model): if hasattr(model, 'output'): if isinstance(model.output, nn.ModuleList): logger.info("Multiheaded model") return [f"output_{i}" for i in range(len(model.output))] return ['output'] def create_dynamic_axes(self, model, vectorizers, inputs, outputs): dynamics = {} for name in outputs: dynamics[name] = {1: 'sequence'} for k in model.embeddings.keys(): if k == 'char': dynamics[k] = {1: 'sequence', 2: 'chars'} else: dynamics[k] = {1: 'sequence'} if self.nbest_inputs: for name in inputs: if 'lengths' in name: dynamics[name] = {1: 'sequence'} elif len(vectorizers[name].get_dims()) > 1: dynamics[name] = {1: 'nbest', 2: 'sequence'} else: dynamics[name] = {1: 'sequence'} logger.info(dynamics) return dynamics def _run(self, basename, output_dir, project=None, name=None, model_version=None, use_version=False, zip_results=True, remote=False, use_all_features=False, **kwargs): client_output, server_output = get_output_paths( output_dir, project, name, model_version, remote, use_version=use_version ) logger.info("Saving vectorizers and vocabs to %s", client_output) logger.info("Saving serialized model to %s", server_output) model, vectorizers, vocabs, model_name = self.load_model(basename) # hacky fix for checkpoints trained before update of extra_tokens for vec in vectorizers.values(): if not hasattr(vec, '_extra_tokens'): vec._extra_tokens = ['[CLS]', '[MASK]'] # Triton server wants to see a specific name model = self.apply_model_patches(model) data = self.create_example_input(vocabs, vectorizers) example_output = self.create_example_output(model) if use_all_features: inputs = list(data.keys()) else: inputs = self.create_model_inputs(model) outputs = self.create_model_outputs(model) dynamics = self.create_dynamic_axes(model, vectorizers, inputs, outputs) meta = create_metadata( inputs, outputs, self.sig_name, model_name, model.lengths_key ) if not self.tracing: model = torch.jit.script(model) logger.info("Exporting Model.") logger.info("Model inputs: %s", inputs) logger.info("Model outputs: %s", outputs) onnx_model_name = REMOTE_MODEL_NAME if remote else model_name torch.onnx.export(model, data, verbose=True, dynamic_axes=dynamics, f=f'{server_output}/{onnx_model_name}.onnx', input_names=inputs, output_names=outputs, opset_version=self.onnx_opset, #propagate=True, example_outputs=example_output) logger.info("Saving metadata.") save_to_bundle(client_output, basename, assets=meta, zip_results=zip_results) logger.info('Successfully exported model to %s', output_dir) return client_output, server_output def load_model(self, model_dir): model_name = find_model_basename(model_dir) vectorizers = load_vectorizers(model_dir) vocabs = load_vocabs(model_dir) model = load_model_for(self.task.task_name(), model_name, device='cpu') model = model.cpu() model.eval() model_name = os.path.basename(model_name) return model, vectorizers, vocabs, model_name class Embedder(nn.ModuleList): def __init__(self, target): super().__init__() self.target = target def forward(self, inputs: Dict[str, torch.Tensor]) -> torch.FloatTensor: return self.target.embed(inputs) @property def embeddings(self): return self.target.embeddings @property def lengths_key(self): return self.target.lengths_key @property def embed_output_dim(self): return self.target.embed_output_dim @export @register_exporter(task='classify', name='embed') class EmbedPytorchONNXExporter(PytorchONNXExporter): def __init__(self, task, **kwargs): super().__init__(task, **kwargs) self.sig_name = 'embed_text' def load_model(self, model_dir): model_name = find_model_basename(model_dir) vectorizers = load_vectorizers(model_dir) vocabs = load_vocabs(model_dir) model = load_model_for(self.task.task_name(), model_name, device='cpu') model = Embedder(model) model = model.cpu() model.eval() model_name = os.path.basename(model_name) return model, vectorizers, vocabs, model_name def create_example_output(self, model): return torch.ones((1, model.embed_output_dim), dtype=torch.float32) @export @register_exporter(task='classify', name='default') class ClassifyPytorchONNXExporter(PytorchONNXExporter): def __init__(self, task, **kwargs): super().__init__(task, **kwargs) self.sig_name = 'predict_text' @export @register_exporter(task='tagger', name='default') class TaggerPytorchONNXExporter(PytorchONNXExporter): def __init__(self, task, **kwargs): super().__init__(task, **kwargs) self.sig_name = 'tag_text' def apply_model_patches(self, model): if hasattr(model, 'decoder'): if isinstance(model.decoder, CRF): model.decoder.viterbi = ViterbiBatchSize1(model.decoder.viterbi.start_idx, model.decoder.viterbi.end_idx) elif isinstance(model.decoder, TaggerGreedyDecoder): model.decoder.viterbi = ViterbiLogSoftmaxNormBatchSize1( model.decoder.viterbi.start_idx, model.decoder.viterbi.end_idx ) return model @export @register_exporter(task='deps', name='default') class DependencyParserPytorchONNXExporter(PytorchONNXExporter): def __init__(self, task, **kwargs): super().__init__(task, **kwargs) self.sig_name = 'deps_text' def create_example_output(self, model): return torch.ones(1, self.default_size, self.default_size), torch.ones(1, self.default_size, len(model.labels)) def create_model_outputs(self, model): return ['arcs', 'labels'] def apply_model_patches(self, model): for _, e in model.embeddings.items(): # Turn off dropin flag, unsupported # https://github.com/pytorch/pytorch/issues/49001 if hasattr(e, 'dropin'): e.dropin = 0 return model
lightreid/data/datasets/partial_ilids.py
wangguanan/light-reid
296
12628311
<reponame>wangguanan/light-reid<filename>lightreid/data/datasets/partial_ilids.py<gh_stars>100-1000 """ @author: wangguanan @contact: <EMAIL> """ import os, copy from .reid_samples import ReIDSamples import torchvision class PartialILIDS(ReIDSamples): """Partial Ilids Only include query and gallery dataset Suppose all query images belong to camera0, and gallery images camera1 """ def __init__(self, data_path, combineall=False, download=False, **kwargs): assert combineall is False, \ 'unsupport combineall for {} dataset'.format(self.__class__.__name__) assert download is False, \ 'unsupport download, please automatically download {} dataset'.format(self.__class__.__name__) self.data_path = data_path query = self._get_probe_samples() gallery = self._get_gallery_samples() train = None super(PartialILIDS, self).__init__(train, query, gallery) def _get_probe_samples(self): samples = [] f = open(os.path.join(self.data_path, 'Probe.txt')) for line in f.readlines(): line = line.replace('\n', '') image_path = line pid = int(line.split('/')[1].replace('.jpg', '')) samples.append([os.path.join(self.data_path, image_path), pid, 0]) return samples def _get_gallery_samples(self): samples = [] f = open(os.path.join(self.data_path, 'Gallery.txt')) for line in f.readlines(): line = line.replace('\n', '') image_path = line pid = int(line.split('/')[1].replace('.jpg', '')) samples.append([os.path.join(self.data_path, image_path), pid, 1]) return samples
models/total3d/modules/layout_estimation.py
Jerrypiglet/Total3DUnderstanding
288
12628312
<gh_stars>100-1000 # Definition of PoseNet # author: ynie # date: March, 2020 import torch import torch.nn as nn from models.registers import MODULES from models.modules import resnet from models.modules.resnet import model_urls import torch.utils.model_zoo as model_zoo @MODULES.register_module class PoseNet(nn.Module): def __init__(self, cfg, optim_spec=None): super(PoseNet, self).__init__() '''Optimizer parameters used in training''' self.optim_spec = optim_spec '''Module parameters''' bin = cfg.dataset_config.bins self.PITCH_BIN = len(bin['pitch_bin']) self.ROLL_BIN = len(bin['roll_bin']) self.LO_ORI_BIN = len(bin['layout_ori_bin']) '''Modules''' self.resnet = resnet.resnet34(pretrained=False) self.fc_1 = nn.Linear(2048, 1024) self.fc_2 = nn.Linear(1024, (self.PITCH_BIN + self.ROLL_BIN) * 2) # fc for layout self.fc_layout = nn.Linear(2048, 2048) # for layout orientation self.fc_3 = nn.Linear(2048, 1024) self.fc_4 = nn.Linear(1024, self.LO_ORI_BIN * 2) # for layout centroid and coefficients self.fc_5 = nn.Linear(2048, 1024) self.fc_6 = nn.Linear(1024, 6) self.relu_1 = nn.LeakyReLU(0.2, inplace=True) self.dropout_1 = nn.Dropout(p=0.5) # initiate weights for m in self.modules(): if isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) if hasattr(m.bias, 'data'): m.bias.data.zero_() # load pretrained resnet pretrained_dict = model_zoo.load_url(model_urls['resnet34']) model_dict = self.resnet.state_dict() pretrained_dict = {k:v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) self.resnet.load_state_dict(model_dict) def forward(self, x): x = self.resnet(x) # branch for camera parameters cam = self.fc_1(x) cam = self.relu_1(cam) cam = self.dropout_1(cam) cam = self.fc_2(cam) pitch_reg = cam[:, 0: self.PITCH_BIN] pitch_cls = cam[:, self.PITCH_BIN: self.PITCH_BIN * 2] roll_reg = cam[:, self.PITCH_BIN * 2: self.PITCH_BIN * 2 + self.ROLL_BIN] roll_cls = cam[:, self.PITCH_BIN * 2 + self.ROLL_BIN: self.PITCH_BIN * 2 + self.ROLL_BIN * 2] # branch for layout orientation, centroid and coefficients lo = self.fc_layout(x) lo = self.relu_1(lo) lo = self.dropout_1(lo) # branch for layout orientation lo_ori = self.fc_3(lo) lo_ori = self.relu_1(lo_ori) lo_ori = self.dropout_1(lo_ori) lo_ori = self.fc_4(lo_ori) lo_ori_reg = lo_ori[:, :self.LO_ORI_BIN] lo_ori_cls = lo_ori[:, self.LO_ORI_BIN:] # branch for layout centroid and coefficients lo_ct = self.fc_5(lo) lo_ct = self.relu_1(lo_ct) lo_ct = self.dropout_1(lo_ct) lo_ct = self.fc_6(lo_ct) lo_centroid = lo_ct[:, :3] lo_coeffs = lo_ct[:, 3:] return pitch_reg, roll_reg, pitch_cls, roll_cls, lo_ori_reg, lo_ori_cls, lo_centroid, lo_coeffs
src/micropython/audio.py
julianrendell/vscode-python-devicesimulator
151
12628316
from common import utils from common.telemetry import telemetry_py from common.telemetry_events import TelemetryEvent # The implementation is based off of https://microbit-micropython.readthedocs.io/en/v1.0.1/audio.html. def play(source, wait=True, pin="pin0", return_pin=None): """ This function is not implemented in the simulator. Play the source to completion. ``source`` is an iterable, each element of which must be an ``AudioFrame``. If ``wait`` is ``True``, this function will block until the source is exhausted. ``pin`` specifies which pin the speaker is connected to. ``return_pin`` specifies a differential pin to connect to the speaker instead of ground. """ utils.print_for_unimplemented_functions(play.__name__) telemetry_py.send_telemetry(TelemetryEvent.MICROBIT_API_AUDIO) class AudioFrame: """ This class is not implemented in the simulator. An ``AudioFrame`` object is a list of 32 samples each of which is a signed byte (whole number between -128 and 127). It takes just over 4 ms to play a single frame. """ def __init__(self): utils.print_for_unimplemented_functions(AudioFrame.__init__.__qualname__) telemetry_py.send_telemetry(TelemetryEvent.MICROBIT_API_AUDIO)
vega/networks/pytorch/customs/modnas/arch_space/construct/torch/torch.py
This-50m/vega
724
12628318
<reponame>This-50m/vega<gh_stars>100-1000 # -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Torch constructors.""" import torch from modnas.registry.construct import register from modnas.arch_space.slot import Slot from modnas.arch_space import ops from modnas.core.param_space import ParamSpace from modnas.utils.logging import get_logger from modnas import backend logger = get_logger('construct') def parse_device(device): """Return device ids from config.""" if isinstance(device, int): device = str(device) if not isinstance(device, str): return [] device = device.lower() if device in ['cpu', 'nil', 'none']: return [] if device == 'all': return list(range(torch.cuda.device_count())) else: return [int(s) for s in device.split(',')] def configure_ops(new_config): """Set global operator config.""" config = ops.config config.update(new_config) if isinstance(config.ops_order, str): config.ops_order = config.ops_order.split('_') if config.ops_order[-1] == 'bn': config.conv.bias = False if config.ops_order[0] == 'act': config.act.inplace = False logger.info('ops config: {}'.format(config.to_dict())) @register class TorchInitConstructor(): """Constructor that initializes the architecture space.""" def __init__(self, seed=None, device=None, ops_conf=None): self.seed = seed self.device = device self.ops_conf = ops_conf def __call__(self, model): """Run constructor.""" Slot.reset() ParamSpace().reset() seed = self.seed if seed: backend.init_device(self.device, seed) configure_ops(self.ops_conf or {}) return model @register class TorchToDevice(): """Constructor that moves model to some device.""" def __init__(self, device='all', data_parallel=True): device_ids = parse_device(device) or [None] self.device_ids = device_ids self.data_parallel = data_parallel def __call__(self, model): """Run constructor.""" if model is None: return device_ids = self.device_ids backend.set_device(device_ids[0]) if device_ids[0] is not None: torch.cuda.set_device(device_ids[0]) model.to(device=device_ids[0]) if self.data_parallel and len(device_ids) > 1: model = torch.nn.DataParallel(model, device_ids=device_ids) return model @register class TorchCheckpointLoader(): """Constructor that loads model checkpoints.""" def __init__(self, path): logger.info('Loading torch checkpoint from {}'.format(path)) self.chkpt = torch.load(path) def __call__(self, model): """Run constructor.""" model.load_state_dict(self.chkpt) return model
la/oblas/data/zgemv01.py
wtsia/gosl
1,811
12628348
import numpy as np a = np.array([[0.1 + 3j, 0.2, 0.3 - 0.3j], [1.0 + 2j, 0.2, 0.3 - 0.4j], [2.0 + 1j, 0.2, 0.3 - 0.5j], [3.0 + 0.1j, 0.2, 0.3 - 0.6j]], dtype=complex) alp = 0.5+1j bet = 2.0+1j x = np.array([20, 10, 30]) y = np.array([3, 1, 2, 4]) res = alp*np.dot(a,x) + bet*y print res y = res res = alp*np.dot(a.T,y) + bet*x print res
salt/log/mixins.py
tomdoherty/salt
9,425
12628364
""" :codeauthor: <NAME> (<EMAIL>) salt.log.mixins ~~~~~~~~~~~~~~~ .. versionadded:: 0.17.0 Some mix-in classes to be used in salt's logging """ # pylint: disable=unused-import from salt._logging.mixins import ( ExcInfoOnLogLevelFormatMixin as ExcInfoOnLogLevelFormatMixIn, ) from salt._logging.mixins import LoggingGarbageMixin as LoggingGarbageMixIn from salt._logging.mixins import LoggingMixinMeta as LoggingMixInMeta from salt._logging.mixins import LoggingProfileMixin as LoggingProfileMixIn from salt._logging.mixins import LoggingTraceMixin as LoggingTraceMixIn # pylint: enable=unused-import # from salt.utils.versions import warn_until_date # warn_until_date( # '20220101', # 'Please stop using \'{name}\' and instead use \'salt._logging.mixins\'. ' # '\'{name}\' will go away after {{date}}.'.format( # name=__name__ # ) # )
venv/Lib/site-packages/imageio/plugins/pillow_info.py
amelliaaas/tugastkc4
1,026
12628376
# -*- coding: utf-8 -*- # styletest: ignore E122 E123 E501 """ Module that contain info about the Pillow formats. The first part of this module generates this info and writes it to its own bottom half if run as a script. """ def generate_info(): # pragma: no cover from urllib.request import urlopen import PIL from PIL import Image Image.init() ids = [] formats = [] docs = {} # Collect formats and their summary from plugin modules for mod_name in dir(PIL): if "ImagePlugin" in mod_name: mod = getattr(PIL, mod_name) for ob_name in dir(mod): ob = getattr(mod, ob_name) if isinstance(ob, type) and issubclass(ob, Image.Image): if ob.format in ids: print("Found duplicate for", ob.format) else: ids.append(ob.format) formats.append((ob.format, ob.format_description)) # Add extension info for i in range(len(formats)): id, summary = formats[i] ext = " ".join([e for e in Image.EXTENSION if Image.EXTENSION[e] == id]) formats[i] = id, summary, ext # Get documentation of formats url = "https://raw.githubusercontent.com/python-pillow/Pillow/master/docs/handbook/image-file-formats.rst" # noqa lines = urlopen(url).read().decode().splitlines() lines.append("End") lines.append("---") # for the end # Parse documentation cur_name = "" cur_part = [] for i in range(len(lines)): line = lines[i] if line.startswith(("^^^", "---", "===")): if cur_name and cur_name in ids: text = "\n".join(cur_part[:-1]) text = text.replace("versionadded::", "versionadded:: Pillow ") text = text.replace("Image.open`", "Image.write`") docs[cur_name] = text cur_part = [] cur_name = lines[i - 1].strip().replace(" ", "").upper() else: cur_part.append(" " + line) # Fill in the blancs for id in ids: if id in docs: docs[id] = "*From the Pillow docs:*\n\n" + docs[id] else: docs[id] = "No docs for %s." % id print("no docs for", id) # Sort before writing formats.sort(key=lambda x: x[0]) ids.sort() # Read file ... code = open(__file__, "rb").read().decode() code, divider, _ = code.partition("## BELOW IS " + "AUTOGENERATED") code += divider + "\n\n" # Write formats code += "pillow_formats = [\n" for i in range(len(formats)): print(formats[i]) code += " (%r, %r, %r),\n" % formats[i] code += " ]\n\n\n" # Write docs code += "pillow_docs = {\n" for id in ids: code += '%r:\nu"""%s""",\n' % (id, docs[id]) code += "}\n" # Write back with open(__file__, "wb") as f: f.write(code.encode()) if __name__ == "__main__": generate_info() # BELOW IS AUTOGENERATED pillow_formats = [ ("BMP", "Windows Bitmap", ".bmp"), ("BUFR", "BUFR", ".bufr"), ("CUR", "Windows Cursor", ".cur"), ("DCX", "Intel DCX", ".dcx"), ("DDS", "DirectDraw Surface", ".dds"), ("DIB", "Windows Bitmap", ""), ("EPS", "Encapsulated Postscript", ".ps .eps"), ("FITS", "FITS", ".fit .fits"), ("FLI", "Autodesk FLI/FLC Animation", ".fli .flc"), ("FPX", "FlashPix", ".fpx"), ("FTEX", "Texture File Format (IW2:EOC)", ".ftc .ftu"), ("GBR", "GIMP brush file", ".gbr"), ("GIF", "Compuserve GIF", ".gif"), ("GRIB", "GRIB", ".grib"), ("HDF5", "HDF5", ".h5 .hdf"), ("ICNS", "Mac OS icns resource", ".icns"), ("ICO", "Windows Icon", ".ico"), ("IM", "IFUNC Image Memory", ".im"), ("IMT", "IM Tools", ""), ("IPTC", "IPTC/NAA", ".iim"), ("JPEG", "JPEG (ISO 10918)", ".jfif .jpe .jpg .jpeg"), ("JPEG2000", "JPEG 2000 (ISO 15444)", ".jp2 .j2k .jpc .jpf .jpx .j2c"), ("MCIDAS", "McIdas area file", ""), ("MIC", "Microsoft Image Composer", ".mic"), ("MPEG", "MPEG", ".mpg .mpeg"), ("MPO", "MPO (CIPA DC-007)", ".mpo"), ("MSP", "Windows Paint", ".msp"), ("PCD", "Kodak PhotoCD", ".pcd"), ("PCX", "Paintbrush", ".pcx"), ("PIXAR", "PIXAR raster image", ".pxr"), ("PNG", "Portable network graphics", ".png"), ("PPM", "Pbmplus image", ".pbm .pgm .ppm"), ("PSD", "Adobe Photoshop", ".psd"), ("SGI", "SGI Image File Format", ".bw .rgb .rgba .sgi"), ("SPIDER", "Spider 2D image", ""), ("SUN", "Sun Raster File", ".ras"), ("TGA", "Targa", ".tga"), ("TIFF", "Adobe TIFF", ".tif .tiff"), ("WMF", "Windows Metafile", ".wmf .emf"), ("XBM", "X11 Bitmap", ".xbm"), ("XPM", "X11 Pixel Map", ".xpm"), ("XVThumb", "XV thumbnail image", ""), ] pillow_docs = { "BMP": u"""*From the Pillow docs:* PIL reads and writes Windows and OS/2 BMP files containing ``1``, ``L``, ``P``, or ``RGB`` data. 16-colour images are read as ``P`` images. Run-length encoding is not supported. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties: **compression** Set to ``bmp_rle`` if the file is run-length encoded. """, "BUFR": u"""*From the Pillow docs:* .. versionadded:: Pillow 1.1.3 PIL provides a stub driver for BUFR files. To add read or write support to your application, use :py:func:`PIL.BufrStubImagePlugin.register_handler`. """, "CUR": u"""*From the Pillow docs:* CUR is used to store cursors on Windows. The CUR decoder reads the largest available cursor. Animated cursors are not supported. """, "DCX": u"""*From the Pillow docs:* DCX is a container file format for PCX files, defined by Intel. The DCX format is commonly used in fax applications. The DCX decoder can read files containing ``1``, ``L``, ``P``, or ``RGB`` data. When the file is opened, only the first image is read. You can use :py:meth:`~file.seek` or :py:mod:`~PIL.ImageSequence` to read other images. """, "DDS": u"""*From the Pillow docs:* DDS is a popular container texture format used in video games and natively supported by DirectX. Currently, DXT1, DXT3, and DXT5 pixel formats are supported and only in ``RGBA`` mode. .. versionadded:: Pillow 3.4.0 DXT3 """, "DIB": u"""No docs for DIB.""", "EPS": u"""*From the Pillow docs:* PIL identifies EPS files containing image data, and can read files that contain embedded raster images (ImageData descriptors). If Ghostscript is available, other EPS files can be read as well. The EPS driver can also write EPS images. The EPS driver can read EPS images in ``L``, ``LAB``, ``RGB`` and ``CMYK`` mode, but Ghostscript may convert the images to ``RGB`` mode rather than leaving them in the original color space. The EPS driver can write images in ``L``, ``RGB`` and ``CMYK`` modes. If Ghostscript is available, you can call the :py:meth:`~PIL.Image.Image.load` method with the following parameter to affect how Ghostscript renders the EPS **scale** Affects the scale of the resultant rasterized image. If the EPS suggests that the image be rendered at 100px x 100px, setting this parameter to 2 will make the Ghostscript render a 200px x 200px image instead. The relative position of the bounding box is maintained:: im = Image.open(...) im.size #(100,100) im.load(scale=2) im.size #(200,200) """, "FITS": u"""*From the Pillow docs:* .. versionadded:: Pillow 1.1.5 PIL provides a stub driver for FITS files. To add read or write support to your application, use :py:func:`PIL.FitsStubImagePlugin.register_handler`. """, "FLI": u"""No docs for FLI.""", "FPX": u"""*From the Pillow docs:* PIL reads Kodak FlashPix files. In the current version, only the highest resolution image is read from the file, and the viewing transform is not taken into account. .. note:: To enable full FlashPix support, you need to build and install the IJG JPEG library before building the Python Imaging Library. See the distribution README for details. """, "FTEX": u"""*From the Pillow docs:* .. versionadded:: Pillow 3.2.0 The FTEX decoder reads textures used for 3D objects in Independence War 2: Edge Of Chaos. The plugin reads a single texture per file, in the compressed and uncompressed formats. """, "GBR": u"""*From the Pillow docs:* The GBR decoder reads GIMP brush files, version 1 and 2. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties: **comment** The brush name. **spacing** The spacing between the brushes, in pixels. Version 2 only. GD ^^ PIL reads uncompressed GD files. Note that this file format cannot be automatically identified, so you must use :py:func:`PIL.GdImageFile.open` to read such a file. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties: **transparency** Transparency color index. This key is omitted if the image is not transparent. """, "GIF": u"""*From the Pillow docs:* PIL reads GIF87a and GIF89a versions of the GIF file format. The library writes run-length encoded files in GIF87a by default, unless GIF89a features are used or GIF89a is already in use. Note that GIF files are always read as grayscale (``L``) or palette mode (``P``) images. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties: **background** Default background color (a palette color index). **transparency** Transparency color index. This key is omitted if the image is not transparent. **version** Version (either ``GIF87a`` or ``GIF89a``). **duration** May not be present. The time to display the current frame of the GIF, in milliseconds. **loop** May not be present. The number of times the GIF should loop. Reading sequences ~~~~~~~~~~~~~~~~~ The GIF loader supports the :py:meth:`~file.seek` and :py:meth:`~file.tell` methods. You can seek to the next frame (``im.seek(im.tell() + 1)``), or rewind the file by seeking to the first frame. Random access is not supported. ``im.seek()`` raises an ``EOFError`` if you try to seek after the last frame. Saving ~~~~~~ When calling :py:meth:`~PIL.Image.Image.save`, the following options are available:: im.save(out, save_all=True, append_images=[im1, im2, ...]) **save_all** If present and true, all frames of the image will be saved. If not, then only the first frame of a multiframe image will be saved. **append_images** A list of images to append as additional frames. Each of the images in the list can be single or multiframe images. This is currently only supported for GIF, PDF, TIFF, and WebP. **duration** The display duration of each frame of the multiframe gif, in milliseconds. Pass a single integer for a constant duration, or a list or tuple to set the duration for each frame separately. **loop** Integer number of times the GIF should loop. **optimize** If present and true, attempt to compress the palette by eliminating unused colors. This is only useful if the palette can be compressed to the next smaller power of 2 elements. **palette** Use the specified palette for the saved image. The palette should be a bytes or bytearray object containing the palette entries in RGBRGB... form. It should be no more than 768 bytes. Alternately, the palette can be passed in as an :py:class:`PIL.ImagePalette.ImagePalette` object. **disposal** Indicates the way in which the graphic is to be treated after being displayed. * 0 - No disposal specified. * 1 - Do not dispose. * 2 - Restore to background color. * 3 - Restore to previous content. Pass a single integer for a constant disposal, or a list or tuple to set the disposal for each frame separately. Reading local images ~~~~~~~~~~~~~~~~~~~~ The GIF loader creates an image memory the same size as the GIF file’s *logical screen size*, and pastes the actual pixel data (the *local image*) into this image. If you only want the actual pixel rectangle, you can manipulate the :py:attr:`~PIL.Image.Image.size` and :py:attr:`~PIL.Image.Image.tile` attributes before loading the file:: im = Image.open(...) if im.tile[0][0] == "gif": # only read the first "local image" from this GIF file tag, (x0, y0, x1, y1), offset, extra = im.tile[0] im.size = (x1 - x0, y1 - y0) im.tile = [(tag, (0, 0) + im.size, offset, extra)] """, "GRIB": u"""*From the Pillow docs:* .. versionadded:: Pillow 1.1.5 PIL provides a stub driver for GRIB files. The driver requires the file to start with a GRIB header. If you have files with embedded GRIB data, or files with multiple GRIB fields, your application has to seek to the header before passing the file handle to PIL. To add read or write support to your application, use :py:func:`PIL.GribStubImagePlugin.register_handler`. """, "HDF5": u"""*From the Pillow docs:* .. versionadded:: Pillow 1.1.5 PIL provides a stub driver for HDF5 files. To add read or write support to your application, use :py:func:`PIL.Hdf5StubImagePlugin.register_handler`. """, "ICNS": u"""*From the Pillow docs:* PIL reads and (macOS only) writes macOS ``.icns`` files. By default, the largest available icon is read, though you can override this by setting the :py:attr:`~PIL.Image.Image.size` property before calling :py:meth:`~PIL.Image.Image.load`. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` property: **sizes** A list of supported sizes found in this icon file; these are a 3-tuple, ``(width, height, scale)``, where ``scale`` is 2 for a retina icon and 1 for a standard icon. You *are* permitted to use this 3-tuple format for the :py:attr:`~PIL.Image.Image.size` property if you set it before calling :py:meth:`~PIL.Image.Image.load`; after loading, the size will be reset to a 2-tuple containing pixel dimensions (so, e.g. if you ask for ``(512, 512, 2)``, the final value of :py:attr:`~PIL.Image.Image.size` will be ``(1024, 1024)``). """, "ICO": u"""*From the Pillow docs:* ICO is used to store icons on Windows. The largest available icon is read. The :py:meth:`~PIL.Image.Image.save` method supports the following options: **sizes** A list of sizes including in this ico file; these are a 2-tuple, ``(width, height)``; Default to ``[(16, 16), (24, 24), (32, 32), (48, 48), (64, 64), (128, 128), (256, 256)]``. Any sizes bigger than the original size or 256 will be ignored. IM ^^ IM is a format used by LabEye and other applications based on the IFUNC image processing library. The library reads and writes most uncompressed interchange versions of this format. IM is the only format that can store all internal PIL formats. """, "IM": u"""No docs for IM.""", "IMT": u"""*From the Pillow docs:* PIL reads Image Tools images containing ``L`` data. """, "IPTC": u"""No docs for IPTC.""", "JPEG": u"""*From the Pillow docs:* PIL reads JPEG, JFIF, and Adobe JPEG files containing ``L``, ``RGB``, or ``CMYK`` data. It writes standard and progressive JFIF files. Using the :py:meth:`~PIL.Image.Image.draft` method, you can speed things up by converting ``RGB`` images to ``L``, and resize images to 1/2, 1/4 or 1/8 of their original size while loading them. The :py:meth:`~PIL.Image.Image.write` method may set the following :py:attr:`~PIL.Image.Image.info` properties if available: **jfif** JFIF application marker found. If the file is not a JFIF file, this key is not present. **jfif_version** A tuple representing the jfif version, (major version, minor version). **jfif_density** A tuple representing the pixel density of the image, in units specified by jfif_unit. **jfif_unit** Units for the jfif_density: * 0 - No Units * 1 - Pixels per Inch * 2 - Pixels per Centimeter **dpi** A tuple representing the reported pixel density in pixels per inch, if the file is a jfif file and the units are in inches. **adobe** Adobe application marker found. If the file is not an Adobe JPEG file, this key is not present. **adobe_transform** Vendor Specific Tag. **progression** Indicates that this is a progressive JPEG file. **icc_profile** The ICC color profile for the image. **exif** Raw EXIF data from the image. The :py:meth:`~PIL.Image.Image.save` method supports the following options: **quality** The image quality, on a scale from 1 (worst) to 95 (best). The default is 75. Values above 95 should be avoided; 100 disables portions of the JPEG compression algorithm, and results in large files with hardly any gain in image quality. **optimize** If present and true, indicates that the encoder should make an extra pass over the image in order to select optimal encoder settings. **progressive** If present and true, indicates that this image should be stored as a progressive JPEG file. **dpi** A tuple of integers representing the pixel density, ``(x,y)``. **icc_profile** If present and true, the image is stored with the provided ICC profile. If this parameter is not provided, the image will be saved with no profile attached. To preserve the existing profile:: im.save(filename, 'jpeg', icc_profile=im.info.get('icc_profile')) **exif** If present, the image will be stored with the provided raw EXIF data. **subsampling** If present, sets the subsampling for the encoder. * ``keep``: Only valid for JPEG files, will retain the original image setting. * ``4:4:4``, ``4:2:2``, ``4:2:0``: Specific sampling values * ``-1``: equivalent to ``keep`` * ``0``: equivalent to ``4:4:4`` * ``1``: equivalent to ``4:2:2`` * ``2``: equivalent to ``4:2:0`` **qtables** If present, sets the qtables for the encoder. This is listed as an advanced option for wizards in the JPEG documentation. Use with caution. ``qtables`` can be one of several types of values: * a string, naming a preset, e.g. ``keep``, ``web_low``, or ``web_high`` * a list, tuple, or dictionary (with integer keys = range(len(keys))) of lists of 64 integers. There must be between 2 and 4 tables. .. versionadded:: Pillow 2.5.0 .. note:: To enable JPEG support, you need to build and install the IJG JPEG library before building the Python Imaging Library. See the distribution README for details. """, "JPEG2000": u"""*From the Pillow docs:* .. versionadded:: Pillow 2.4.0 PIL reads and writes JPEG 2000 files containing ``L``, ``LA``, ``RGB`` or ``RGBA`` data. It can also read files containing ``YCbCr`` data, which it converts on read into ``RGB`` or ``RGBA`` depending on whether or not there is an alpha channel. PIL supports JPEG 2000 raw codestreams (``.j2k`` files), as well as boxed JPEG 2000 files (``.j2p`` or ``.jpx`` files). PIL does *not* support files whose components have different sampling frequencies. When loading, if you set the ``mode`` on the image prior to the :py:meth:`~PIL.Image.Image.load` method being invoked, you can ask PIL to convert the image to either ``RGB`` or ``RGBA`` rather than choosing for itself. It is also possible to set ``reduce`` to the number of resolutions to discard (each one reduces the size of the resulting image by a factor of 2), and ``layers`` to specify the number of quality layers to load. The :py:meth:`~PIL.Image.Image.save` method supports the following options: **offset** The image offset, as a tuple of integers, e.g. (16, 16) **tile_offset** The tile offset, again as a 2-tuple of integers. **tile_size** The tile size as a 2-tuple. If not specified, or if set to None, the image will be saved without tiling. **quality_mode** Either `"rates"` or `"dB"` depending on the units you want to use to specify image quality. **quality_layers** A sequence of numbers, each of which represents either an approximate size reduction (if quality mode is `"rates"`) or a signal to noise ratio value in decibels. If not specified, defaults to a single layer of full quality. **num_resolutions** The number of different image resolutions to be stored (which corresponds to the number of Discrete Wavelet Transform decompositions plus one). **codeblock_size** The code-block size as a 2-tuple. Minimum size is 4 x 4, maximum is 1024 x 1024, with the additional restriction that no code-block may have more than 4096 coefficients (i.e. the product of the two numbers must be no greater than 4096). **precinct_size** The precinct size as a 2-tuple. Must be a power of two along both axes, and must be greater than the code-block size. **irreversible** If ``True``, use the lossy Irreversible Color Transformation followed by DWT 9-7. Defaults to ``False``, which means to use the Reversible Color Transformation with DWT 5-3. **progression** Controls the progression order; must be one of ``"LRCP"``, ``"RLCP"``, ``"RPCL"``, ``"PCRL"``, ``"CPRL"``. The letters stand for Component, Position, Resolution and Layer respectively and control the order of encoding, the idea being that e.g. an image encoded using LRCP mode can have its quality layers decoded as they arrive at the decoder, while one encoded using RLCP mode will have increasing resolutions decoded as they arrive, and so on. **cinema_mode** Set the encoder to produce output compliant with the digital cinema specifications. The options here are ``"no"`` (the default), ``"cinema2k-24"`` for 24fps 2K, ``"cinema2k-48"`` for 48fps 2K, and ``"cinema4k-24"`` for 24fps 4K. Note that for compliant 2K files, *at least one* of your image dimensions must match 2048 x 1080, while for compliant 4K files, *at least one* of the dimensions must match 4096 x 2160. .. note:: To enable JPEG 2000 support, you need to build and install the OpenJPEG library, version 2.0.0 or higher, before building the Python Imaging Library. Windows users can install the OpenJPEG binaries available on the OpenJPEG website, but must add them to their PATH in order to use PIL (if you fail to do this, you will get errors about not being able to load the ``_imaging`` DLL). """, "MCIDAS": u"""*From the Pillow docs:* PIL identifies and reads 8-bit McIdas area files. """, "MIC": u"""*From the Pillow docs:* PIL identifies and reads Microsoft Image Composer (MIC) files. When opened, the first sprite in the file is loaded. You can use :py:meth:`~file.seek` and :py:meth:`~file.tell` to read other sprites from the file. Note that there may be an embedded gamma of 2.2 in MIC files. """, "MPEG": u"""*From the Pillow docs:* PIL identifies MPEG files. """, "MPO": u"""*From the Pillow docs:* Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary image when first opened. The :py:meth:`~file.seek` and :py:meth:`~file.tell` methods may be used to read other pictures from the file. The pictures are zero-indexed and random access is supported. """, "MSP": u"""*From the Pillow docs:* PIL identifies and reads MSP files from Windows 1 and 2. The library writes uncompressed (Windows 1) versions of this format. """, "PCD": u"""*From the Pillow docs:* PIL reads PhotoCD files containing ``RGB`` data. This only reads the 768x512 resolution image from the file. Higher resolutions are encoded in a proprietary encoding. """, "PCX": u"""*From the Pillow docs:* PIL reads and writes PCX files containing ``1``, ``L``, ``P``, or ``RGB`` data. """, "PIXAR": u"""*From the Pillow docs:* PIL provides limited support for PIXAR raster files. The library can identify and read “dumped” RGB files. The format code is ``PIXAR``. """, "PNG": u"""*From the Pillow docs:* PIL identifies, reads, and writes PNG files containing ``1``, ``L``, ``P``, ``RGB``, or ``RGBA`` data. Interlaced files are supported as of v1.1.7. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties, when appropriate: **chromaticity** The chromaticity points, as an 8 tuple of floats. (``White Point X``, ``White Point Y``, ``Red X``, ``Red Y``, ``Green X``, ``Green Y``, ``Blue X``, ``Blue Y``) **gamma** Gamma, given as a floating point number. **srgb** The sRGB rendering intent as an integer. * 0 Perceptual * 1 Relative Colorimetric * 2 Saturation * 3 Absolute Colorimetric **transparency** For ``P`` images: Either the palette index for full transparent pixels, or a byte string with alpha values for each palette entry. For ``L`` and ``RGB`` images, the color that represents full transparent pixels in this image. This key is omitted if the image is not a transparent palette image. ``Open`` also sets ``Image.text`` to a list of the values of the ``tEXt``, ``zTXt``, and ``iTXt`` chunks of the PNG image. Individual compressed chunks are limited to a decompressed size of ``PngImagePlugin.MAX_TEXT_CHUNK``, by default 1MB, to prevent decompression bombs. Additionally, the total size of all of the text chunks is limited to ``PngImagePlugin.MAX_TEXT_MEMORY``, defaulting to 64MB. The :py:meth:`~PIL.Image.Image.save` method supports the following options: **optimize** If present and true, instructs the PNG writer to make the output file as small as possible. This includes extra processing in order to find optimal encoder settings. **transparency** For ``P``, ``L``, and ``RGB`` images, this option controls what color image to mark as transparent. For ``P`` images, this can be a either the palette index, or a byte string with alpha values for each palette entry. **dpi** A tuple of two numbers corresponding to the desired dpi in each direction. **pnginfo** A :py:class:`PIL.PngImagePlugin.PngInfo` instance containing text tags. **compress_level** ZLIB compression level, a number between 0 and 9: 1 gives best speed, 9 gives best compression, 0 gives no compression at all. Default is 6. When ``optimize`` option is True ``compress_level`` has no effect (it is set to 9 regardless of a value passed). **icc_profile** The ICC Profile to include in the saved file. **bits (experimental)** For ``P`` images, this option controls how many bits to store. If omitted, the PNG writer uses 8 bits (256 colors). **dictionary (experimental)** Set the ZLIB encoder dictionary. .. note:: To enable PNG support, you need to build and install the ZLIB compression library before building the Python Imaging Library. See the installation documentation for details. """, "PPM": u"""*From the Pillow docs:* PIL reads and writes PBM, PGM and PPM files containing ``1``, ``L`` or ``RGB`` data. """, "PSD": u"""*From the Pillow docs:* PIL identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0. """, "SGI": u"""*From the Pillow docs:* Pillow reads and writes uncompressed ``L``, ``RGB``, and ``RGBA`` files. """, "SPIDER": u"""*From the Pillow docs:* PIL reads and writes SPIDER image files of 32-bit floating point data ("F;32F"). PIL also reads SPIDER stack files containing sequences of SPIDER images. The :py:meth:`~file.seek` and :py:meth:`~file.tell` methods are supported, and random access is allowed. The :py:meth:`~PIL.Image.Image.write` method sets the following attributes: **format** Set to ``SPIDER`` **istack** Set to 1 if the file is an image stack, else 0. **nimages** Set to the number of images in the stack. A convenience method, :py:meth:`~PIL.Image.Image.convert2byte`, is provided for converting floating point data to byte data (mode ``L``):: im = Image.open('image001.spi').convert2byte() Writing files in SPIDER format ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The extension of SPIDER files may be any 3 alphanumeric characters. Therefore the output format must be specified explicitly:: im.save('newimage.spi', format='SPIDER') For more information about the SPIDER image processing package, see the `SPIDER homepage`_ at `Wadsworth Center`_. .. _SPIDER homepage: https://spider.wadsworth.org/spider_doc/spider/docs/spider.html .. _Wadsworth Center: https://www.wadsworth.org/ """, "SUN": u"""No docs for SUN.""", "TGA": u"""*From the Pillow docs:* PIL reads 24- and 32-bit uncompressed and run-length encoded TGA files. """, "TIFF": u"""*From the Pillow docs:* Pillow reads and writes TIFF files. It can read both striped and tiled images, pixel and plane interleaved multi-band images. If you have libtiff and its headers installed, PIL can read and write many kinds of compressed TIFF files. If not, PIL will only read and write uncompressed files. .. note:: Beginning in version 5.0.0, Pillow requires libtiff to read or write compressed files. Prior to that release, Pillow had buggy support for reading Packbits, LZW and JPEG compressed TIFFs without using libtiff. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties: **compression** Compression mode. .. versionadded:: Pillow 2.0.0 **dpi** Image resolution as an ``(xdpi, ydpi)`` tuple, where applicable. You can use the :py:attr:`~PIL.Image.Image.tag` attribute to get more detailed information about the image resolution. .. versionadded:: Pillow 1.1.5 **resolution** Image resolution as an ``(xres, yres)`` tuple, where applicable. This is a measurement in whichever unit is specified by the file. .. versionadded:: Pillow 1.1.5 The :py:attr:`~PIL.Image.Image.tag_v2` attribute contains a dictionary of TIFF metadata. The keys are numerical indexes from :py:attr:`~PIL.TiffTags.TAGS_V2`. Values are strings or numbers for single items, multiple values are returned in a tuple of values. Rational numbers are returned as a :py:class:`~PIL.TiffImagePlugin.IFDRational` object. .. versionadded:: Pillow 3.0.0 For compatibility with legacy code, the :py:attr:`~PIL.Image.Image.tag` attribute contains a dictionary of decoded TIFF fields as returned prior to version 3.0.0. Values are returned as either strings or tuples of numeric values. Rational numbers are returned as a tuple of ``(numerator, denominator)``. .. deprecated:: 3.0.0 Saving Tiff Images ~~~~~~~~~~~~~~~~~~ The :py:meth:`~PIL.Image.Image.save` method can take the following keyword arguments: **save_all** If true, Pillow will save all frames of the image to a multiframe tiff document. .. versionadded:: Pillow 3.4.0 **tiffinfo** A :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v2` object or dict object containing tiff tags and values. The TIFF field type is autodetected for Numeric and string values, any other types require using an :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v2` object and setting the type in :py:attr:`~PIL.TiffImagePlugin.ImageFileDirectory_v2.tagtype` with the appropriate numerical value from ``TiffTags.TYPES``. .. versionadded:: Pillow 2.3.0 Metadata values that are of the rational type should be passed in using a :py:class:`~PIL.TiffImagePlugin.IFDRational` object. .. versionadded:: Pillow 3.1.0 For compatibility with legacy code, a :py:class:`~PIL.TiffImagePlugin.ImageFileDirectory_v1` object may be passed in this field. However, this is deprecated. .. versionadded:: Pillow 3.0.0 .. note:: Only some tags are currently supported when writing using libtiff. The supported list is found in :py:attr:`~PIL:TiffTags.LIBTIFF_CORE`. **compression** A string containing the desired compression method for the file. (valid only with libtiff installed) Valid compression methods are: ``None``, ``"tiff_ccitt"``, ``"group3"``, ``"group4"``, ``"tiff_jpeg"``, ``"tiff_adobe_deflate"``, ``"tiff_thunderscan"``, ``"tiff_deflate"``, ``"tiff_sgilog"``, ``"tiff_sgilog24"``, ``"tiff_raw_16"`` These arguments to set the tiff header fields are an alternative to using the general tags available through tiffinfo. **description** **software** **date_time** **artist** **copyright** Strings **resolution_unit** A string of "inch", "centimeter" or "cm" **resolution** **x_resolution** **y_resolution** **dpi** Either a Float, 2 tuple of (numerator, denominator) or a :py:class:`~PIL.TiffImagePlugin.IFDRational`. Resolution implies an equal x and y resolution, dpi also implies a unit of inches. """, "WMF": u"""*From the Pillow docs:* PIL can identify playable WMF files. In PIL 1.1.4 and earlier, the WMF driver provides some limited rendering support, but not enough to be useful for any real application. In PIL 1.1.5 and later, the WMF driver is a stub driver. To add WMF read or write support to your application, use :py:func:`PIL.WmfImagePlugin.register_handler` to register a WMF handler. :: from PIL import Image from PIL import WmfImagePlugin class WmfHandler: def open(self, im): ... def load(self, im): ... return image def save(self, im, fp, filename): ... wmf_handler = WmfHandler() WmfImagePlugin.register_handler(wmf_handler) im = Image.open("sample.wmf")""", "XBM": u"""*From the Pillow docs:* PIL reads and writes X bitmap files (mode ``1``). """, "XPM": u"""*From the Pillow docs:* PIL reads X pixmap files (mode ``P``) with 256 colors or less. The :py:meth:`~PIL.Image.Image.write` method sets the following :py:attr:`~PIL.Image.Image.info` properties: **transparency** Transparency color index. This key is omitted if the image is not transparent. """, "XVThumb": u"""No docs for XVThumb.""", }
bootstrap_test/conftest.py
lowang-bh/lain-1
524
12628379
#!/usr/bin/env python2 # -*- coding: UTF-8 -*- import pytest import time import subprocess32 as subproc from config import CONFIG import app_ctl @pytest.fixture(scope="session") def up_node1(): subproc.check_call(['vagrant', 'destroy', '-f', 'node1']) subproc.check_call(['vagrant', 'up', 'node1', '--no-provision']) yield "node1 is ready" print("Destroying node1...") subproc.call(['vagrant', 'destroy', '-f', 'node1']) print("Node1 is destroyed.") @pytest.fixture(scope="session") def up_node2(): subproc.check_call(['vagrant', 'destroy', '-f', 'node2']) subproc.check_call(['vagrant', 'up', 'node2']) yield "node2 is ready" print("Destroying node2...") subproc.call(['vagrant', 'destroy', '-f', 'node2']) print("Node2 is destroyed.") @pytest.fixture(scope="session") def up_node3(): subproc.check_call(['vagrant', 'destroy', '-f', 'node3']) subproc.check_call(['vagrant', 'up', 'node3']) yield "node3 is ready" print("Destroying node3...") subproc.call(['vagrant', 'destroy', '-f', 'node3']) print("Node3 is destroyed.") @pytest.fixture(scope="session") def bootstrap(up_node1): subproc.check_call([ 'vagrant', 'ssh', 'node1', '-c', 'sudo /vagrant/bootstrap --pypi-mirror -m https://l2ohopf9.mirror.aliyuncs.com -r docker.io/laincloud --vip={}'. format(CONFIG.vip) ]) @pytest.fixture(scope="session") def prepare_demo_images(bootstrap): subproc.check_call([ 'vagrant', 'ssh', 'node1', '-c', 'sudo sh /vagrant/bootstrap_test/prepare_demo_images.sh' ]) @pytest.fixture(scope="session") def reposit_ipaddr(prepare_demo_images): app_ctl.reposit(CONFIG.ipaddr_resource_appname) app_ctl.reposit(CONFIG.ipaddr_service_appname) app_ctl.reposit(CONFIG.ipaddr_client_appname) time.sleep(1) @pytest.fixture(scope="session") def deploy_ipaddr(reposit_ipaddr): app_ctl.deploy(CONFIG.ipaddr_resource_appname) app_ctl.deploy(CONFIG.ipaddr_service_appname) time.sleep(60) app_ctl.deploy(CONFIG.ipaddr_client_appname) time.sleep(30) @pytest.fixture(scope="session") def add_node(bootstrap, up_node2, up_node3): subproc.check_call([ 'vagrant', 'ssh', 'node1', '-c', 'cd /vagrant/bootstrap_test && sudo ansible-playbook \ -i host_vars/test-nodes distribute_ssh_key.yaml' ]) subproc.check_call([ 'vagrant', 'ssh', 'node1', '-c', 'sudo lainctl node add -p /vagrant/playbooks node2:192.168.77.22 ' + 'node3:192.168.77.23' ]) @pytest.fixture(scope="session") def scale_ipaddr_client(deploy_ipaddr, add_node): app_ctl.scale(CONFIG.ipaddr_client_appname, CONFIG.ipaddr_client_procname, CONFIG.ipaddr_client_num_instances) time.sleep(120)
tests/stg_with_known_weights.py
qiaone/GIF
322
12628391
import sys sys.path.append('../') from model import StyledGenerator, Discriminator import torch import numpy as np generator = StyledGenerator(flame_dim=159, all_stage_discrim=False, embedding_vocab_size=70_000, rendered_flame_ascondition=False, inst_norm=True, normal_maps_as_cond=True, core_tensor_res=4, use_styled_conv_stylegan2=True, n_mlp=8) # set all weights to 1s mdl_state = generator.state_dict() torch.manual_seed(2) # tot_params = 0 # for name in mdl_state: # if name.find('z_to_w') >= 0 or name.find('generator') >= 0 and name.find('embd') < 0 and \ # name.find('to_rgb.8') < 0 and name.find('to_rgb.7') < 0 and name.find('progression.8') < 0 \ # and name.find('progression.7') < 0: # print(name) # mdl_state[name] = mdl_state[name] * 0 + torch.randn(mdl_state[name].shape) # tot_params += np.prod(mdl_state[name].shape) # else: # mdl_state[name] = mdl_state[name] * 0 + 6e-3 # # print(f'Total set params are: {tot_params}') tot_params = 0 for name in mdl_state: if name.find('z_to_w') >= 0: print(name) mdl_state[name] = mdl_state[name] * 0 + torch.randn(mdl_state[name].shape) tot_params += np.prod(mdl_state[name].shape) else: mdl_state[name] = mdl_state[name] * 0 + 6e-3 print(f'Total set params are: {tot_params} \n\n\n\n\n') tot_params = 0 for i in range(7): for name in mdl_state: if name.find(f'progression.{i}.') >= 0: mdl_state[name] = mdl_state[name] * 0 + torch.randn(mdl_state[name].shape) tot_params += np.prod(mdl_state[name].shape) print(f'{name} : {mdl_state[name].shape}; params this layer: {np.prod(mdl_state[name].shape)}') # else: # mdl_state[name] = mdl_state[name] * 0 + 6e-3 print(f'Total set params are: {tot_params} \n\n\n\n\n') tot_params = 0 for i in range(7): for name in mdl_state: if name.find(f'to_rgb.{i}') >= 0: mdl_state[name] = mdl_state[name] * 0 + torch.randn(mdl_state[name].shape) tot_params += np.prod(mdl_state[name].shape) print(f'{name} : {mdl_state[name].shape}; params this layer: {np.prod(mdl_state[name].shape)}') # else: # mdl_state[name] = mdl_state[name] * 0 + 6e-3 print(f'Total set params are: {tot_params} \n\n\n\n\n') generator.load_state_dict(mdl_state) input_indices = torch.zeros((1, ), dtype=torch.long) flm_rndr = torch.zeros((1, 3, 4, 4)) torch.manual_seed(2) forward_pass_gen = generator(flm_rndr, pose=None, step=6, alpha=1, input_indices=input_indices) print(forward_pass_gen) print(forward_pass_gen[0].shape) # for param in generator.parameters(): # print(param)
extra/python/example.py
ikrima/immer
12,278
12628401
<reponame>ikrima/immer #!/usr/bin/env python## # immer: immutable data structures for C++ # Copyright (C) 2016, 2017, 2018 <NAME> # # This software is distributed under the Boost Software License, Version 1.0. # See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt # include:intro/start import immer v0 = immer.Vector().append(13).append(42) assert v0[0] == 13 assert v0[1] == 42 assert len(v0) == 2 v1 = v0.set(0, 12) assert v0.tolist() == [13, 42] assert v1.tolist() == [12, 42] # include:intro/end
exchangelib/services/upload_items.py
RossK1/exchangelib
1,006
12628404
<reponame>RossK1/exchangelib from .common import EWSAccountService, to_item_id from ..properties import ItemId, ParentFolderId from ..util import create_element, set_xml_value, add_xml_child, MNS class UploadItems(EWSAccountService): """MSDN: https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/uploaditems-operation """ SERVICE_NAME = 'UploadItems' element_container_name = '{%s}ItemId' % MNS def call(self, items): # _pool_requests expects 'items', not 'data' return self._elems_to_objs(self._chunked_get_elements(self.get_payload, items=items)) def get_payload(self, items): """Upload given items to given account. 'items' is an iterable of tuples where the first element is a Folder instance representing the ParentFolder that the item will be placed in and the second element is a tuple containing an optional ItemId, an optional Item.is_associated boolean, and a Data string returned from an ExportItems. call. :param items: """ uploaditems = create_element('m:%s' % self.SERVICE_NAME) itemselement = create_element('m:Items') uploaditems.append(itemselement) for parent_folder, (item_id, is_associated, data_str) in items: # TODO: The full spec also allows the "UpdateOrCreate" create action. item = create_element('t:Item', attrs=dict(CreateAction='Update' if item_id else 'CreateNew')) if is_associated is not None: item.set('IsAssociated', 'true' if is_associated else 'false') parentfolderid = ParentFolderId(parent_folder.id, parent_folder.changekey) set_xml_value(item, parentfolderid, version=self.account.version) if item_id: itemid = to_item_id(item_id, ItemId, version=self.account.version) set_xml_value(item, itemid, version=self.account.version) add_xml_child(item, 't:Data', data_str) itemselement.append(item) return uploaditems def _elems_to_objs(self, elems): for elem in elems: if isinstance(elem, Exception): yield elem continue yield elem.get(ItemId.ID_ATTR), elem.get(ItemId.CHANGEKEY_ATTR) @classmethod def _get_elements_in_container(cls, container): return [container]
classification/datasets/mnist.py
LittleWat/MCD_DA
464
12628419
<gh_stars>100-1000 import numpy as np from scipy.io import loadmat def load_mnist(scale=True, usps=False, all_use=False): mnist_data = loadmat('../data/mnist_data.mat') if scale: mnist_train = np.reshape(mnist_data['train_32'], (55000, 32, 32, 1)) mnist_test = np.reshape(mnist_data['test_32'], (10000, 32, 32, 1)) mnist_train = np.concatenate([mnist_train, mnist_train, mnist_train], 3) mnist_test = np.concatenate([mnist_test, mnist_test, mnist_test], 3) mnist_train = mnist_train.transpose(0, 3, 1, 2).astype(np.float32) mnist_test = mnist_test.transpose(0, 3, 1, 2).astype(np.float32) mnist_labels_train = mnist_data['label_train'] mnist_labels_test = mnist_data['label_test'] else: mnist_train = mnist_data['train_28'] mnist_test = mnist_data['test_28'] mnist_labels_train = mnist_data['label_train'] mnist_labels_test = mnist_data['label_test'] mnist_train = mnist_train.astype(np.float32) mnist_test = mnist_test.astype(np.float32) mnist_train = mnist_train.transpose((0, 3, 1, 2)) mnist_test = mnist_test.transpose((0, 3, 1, 2)) train_label = np.argmax(mnist_labels_train, axis=1) inds = np.random.permutation(mnist_train.shape[0]) mnist_train = mnist_train[inds] train_label = train_label[inds] test_label = np.argmax(mnist_labels_test, axis=1) if usps and all_use != 'yes': mnist_train = mnist_train[:2000] train_label = train_label[:2000] return mnist_train, train_label, mnist_test, test_label
src/schnetpack/nn/initializers.py
giadefa/schnetpack
713
12628422
<reponame>giadefa/schnetpack<filename>src/schnetpack/nn/initializers.py<gh_stars>100-1000 from functools import partial from torch.nn.init import constant_ zeros_initializer = partial(constant_, val=0.0)
intro/matplotlib/examples/plot_bar.py
junghun73/Learning
419
12628424
""" Bar plots ========== An example of bar plots with matplotlib. """ import numpy as np import matplotlib.pyplot as plt n = 12 X = np.arange(n) Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n) Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n) plt.axes([0.025, 0.025, 0.95, 0.95]) plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white') plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white') for x, y in zip(X, Y1): plt.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va= 'bottom') for x, y in zip(X, Y2): plt.text(x + 0.4, -y - 0.05, '%.2f' % y, ha='center', va= 'top') plt.xlim(-.5, n) plt.xticks(()) plt.ylim(-1.25, 1.25) plt.yticks(()) plt.show()
tests/regressiontests/mk_complex.py
GCBallesteros/imreg_dft
167
12628426
import numpy as np import scipy as sp import scipy.io import scipy.signal np.random.seed(4) abs_val, phase_val = [sp.rand(13, 20) for _ in range(2)] phase_val *= 2 * np.pi shift = (2, 3) for img in (abs_val, phase_val): for ax in range(2): img[:] = sp.signal.resample(img, int(img.shape[ax] * 1.5), axis=ax) cplx = dest * np.exp(1j * np.pi * 2 * dest2) first = cplx[shift[0]:, shift[1]:] second = cplx[:-shift[0], :-shift[1]] sp.io.savemat("first.mat", dict(rca=first)) sp.io.savemat("first2.mat", dict(rca=second))
airmozilla/manage/views/decorators.py
mozilla/airmozilla
115
12628445
<gh_stars>100-1000 import functools import warnings from django.conf import settings from django.contrib.auth.decorators import user_passes_test from django.contrib.auth.models import Permission from django.shortcuts import redirect from django.core.urlresolvers import reverse staff_required = user_passes_test(lambda u: u.is_staff) superuser_required = user_passes_test(lambda u: u.is_superuser) def permission_required(perm): if settings.DEBUG: # pragma: no cover ct, codename = perm.split('.', 1) if not Permission.objects.filter( content_type__app_label=ct, codename=codename ): warnings.warn( "No known permission called %r" % perm, UserWarning, 2 ) def inner_render(fn): @functools.wraps(fn) def wrapped(request, *args, **kwargs): # if you're not even authenticated, redirect to /login if not request.user.has_perm(perm): request.session['failed_permission'] = perm return redirect(reverse('manage:insufficient_permissions')) return fn(request, *args, **kwargs) return wrapped return inner_render def cancel_redirect(redirect_view): """Redirect wrapper for POST requests which contain a cancel field.""" def inner_render(fn): @functools.wraps(fn) def wrapped(request, *args, **kwargs): if request.method == 'POST' and 'cancel' in request.POST: if callable(redirect_view): url = redirect_view(request, *args, **kwargs) else: url = reverse(redirect_view) return redirect(url) return fn(request, *args, **kwargs) return wrapped return inner_render
vimiv/main_window.py
karlch/vimiv
268
12628456
# vim: ft=python fileencoding=utf-8 sw=4 et sts=4 """Gtk.ScrolledWindow class which is usually the main window of vimiv. The ScrolledWindow can either include a Gtk.Image in IMAGE mode or a Gtk.IconView in THUMBNAIL mode. """ import os from gi.repository import Gtk from vimiv.helpers import listdir_wrapper from vimiv.image import Image from vimiv.thumbnail import Thumbnail class MainWindow(Gtk.ScrolledWindow): """Main window of vimiv containing either an Image or an IconView. Attributes: image: Vimiv Image class which may be displayed. thumbnail: Vimiv Thumbnail class which may be displayed. _app: The main vimiv class to interact with. """ def __init__(self, app): """Initialize image and thumbnail attributes and configure self.""" super(MainWindow, self).__init__() self._app = app self.image = Image(app) self.thumbnail = Thumbnail(app) self.set_hexpand(True) self.set_vexpand(True) # Image is default self.add(self.image) self.connect("key_press_event", self._app["eventhandler"].on_key_press, "IMAGE") # Connect signals self._app.connect("widget-layout-changed", self._on_widgets_changed) self._app.connect("paths-changed", self._on_paths_changed) def switch_to_child(self, new_child): """Switch the widget displayed in the main window. Args: new_child: The child to switch to. """ self.remove(self.get_child()) self.add(new_child) self.show_all() def center_window(self): """Center the widget in the current window.""" h_adj = self.get_hadjustment() size = self.get_allocation() h_middle = (h_adj.get_upper() - h_adj.get_lower() - size.width) / 2 h_adj.set_value(h_middle) v_adj = self.get_vadjustment() v_middle = (v_adj.get_upper() - v_adj.get_lower() - size.height) / 2 v_adj.set_value(v_middle) self.set_hadjustment(h_adj) self.set_vadjustment(v_adj) def scroll(self, direction): """Scroll the correct object. Args: direction: Scroll direction to emit. """ if direction not in "hjklHJKL": self._app["statusbar"].message( "Invalid scroll direction " + direction, "error") elif self.thumbnail.toggled: self.thumbnail.move_direction(direction) else: self._scroll(direction) return True # Deactivates default bindings (here for Arrows) def _scroll(self, direction): """Scroll the widget. Args: direction: Direction to scroll in. """ steps = self._app["eventhandler"].num_receive() scale = self.image.get_scroll_scale() h_adj = self.get_hadjustment() size = self.get_allocation() h_size = h_adj.get_upper() - h_adj.get_lower() - size.width h_step = h_size / scale * steps v_adj = self.get_vadjustment() v_size = v_adj.get_upper() - v_adj.get_lower() - size.height v_step = v_size / scale * steps # To the ends if direction == "H": h_adj.set_value(0) elif direction == "J": v_adj.set_value(v_size) elif direction == "K": v_adj.set_value(0) elif direction == "L": h_adj.set_value(h_size) # By step elif direction == "h": h_adj.set_value(h_adj.get_value() - h_step) elif direction == "j": v_adj.set_value(v_adj.get_value() + v_step) elif direction == "k": v_adj.set_value(v_adj.get_value() - v_step) elif direction == "l": h_adj.set_value(h_adj.get_value() + h_step) self.set_hadjustment(h_adj) self.set_vadjustment(v_adj) def _on_widgets_changed(self, app, widget): """Recalculate thumbnails or rezoom image when the layout changed.""" if self.thumbnail.toggled: self.thumbnail.calculate_columns() elif self._app.get_paths() and self.image.fit_image != "user": self.image.zoom_to(0, self.image.fit_image) def _on_paths_changed(self, app, transform): """Reload paths image and/or thumbnail when paths have changed.""" if self._app.get_paths(): # Get all files in directory again focused_path = self._app.get_pos(True) decremented_index = max(0, self._app.get_pos() - 1) directory = os.path.dirname(focused_path) files = [os.path.join(directory, fil) for fil in listdir_wrapper(directory)] self._app.populate(files) # Reload thumbnail if self.thumbnail.toggled: self.thumbnail.on_paths_changed() # Refocus the path if focused_path in self._app.get_paths(): index = self._app.get_paths().index(focused_path) # Stay as close as possible else: index = min(decremented_index, len(self._app.get_paths()) - 1) if self.thumbnail.toggled: self.thumbnail.move_to_pos(index) else: self._app["eventhandler"].set_num_str(index + 1) self.image.move_pos() self._app["statusbar"].update_info() # We need to check again as populate was called if not self._app.get_paths(): self.hide()
tdc/utils/__init__.py
ypapanik/TDC
577
12628458
from .load import distribution_dataset_load, \ generation_paired_dataset_load, \ three_dim_dataset_load,\ interaction_dataset_load,\ multi_dataset_load,\ property_dataset_load, \ oracle_load,\ receptor_load,\ bm_group_load from .split import create_fold,\ create_fold_setting_cold,\ create_combination_split,\ create_fold_time,\ create_scaffold_split,\ create_group_split from .misc import print_sys, install, fuzzy_search, \ save_dict, load_dict, \ to_submission_format from .label_name_list import dataset2target_lists from .label import NegSample, label_transform, convert_y_unit, \ convert_to_log, convert_back_log, binarize, \ label_dist from .retrieve import get_label_map, get_reaction_type,\ retrieve_label_name_list, retrieve_dataset_names,\ retrieve_all_benchmarks, retrieve_benchmark_names from .query import uniprot2seq, cid2smiles
google_or_tools/set_covering_skiena_sat.py
tias/hakank
279
12628502
<reponame>tias/hakank<gh_stars>100-1000 # Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Set covering in OR-tools CP-SAT Solver. Example from Steven Skiena, The Stony Brook Algorithm Repository http://www.cs.sunysb.edu/~algorith/files/set-cover.shtml ''' Input Description: A set of subsets S_1, ..., S_m of the universal set U = {1,...,n}. Problem: What is the smallest subset of subsets T subset S such that \cup_{t_i in T} t_i = U? ''' Data is from the pictures INPUT/OUTPUT. This is a port of my old CP model set_covering_skiena.py This model was created by <NAME> (<EMAIL>) Also see my other OR-tools models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys # from cp_sat_utils import * def main(): model = cp.CpModel() # # data # num_sets = 7 num_elements = 12 belongs = [ # 1 2 3 4 5 6 7 8 9 0 1 2 elements [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Set 1 [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], # 2 [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], # 3 [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0], # 4 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0], # 5 [1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0], # 6 [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1] # 7 ] # # variables # x = [model.NewIntVar(0, 1, 'x[%i]' % i) for i in range(num_sets)] # number of choosen sets z = model.NewIntVar(0, num_sets * 2, 'z') # total number of elements in the choosen sets tot_elements = model.NewIntVar(0, num_sets * num_elements,"tot_elements") # # constraints # model.Add(z == sum(x)) # all sets must be used for j in range(num_elements): model.Add(sum([belongs[i][j] * x[i] for i in range(num_sets)]) >= 1) # number of used elements model.Add(tot_elements == sum([ x[i] * belongs[i][j] for i in range(num_sets) for j in range(num_elements) ])) # objective model.Minimize(z) # # search and result # solver = cp.CpSolver() status = solver.Solve(model) if status == cp.OPTIMAL: print('z:', solver.Value(z)) print('tot_elements:', solver.Value(tot_elements)) print('x:', [solver.Value(x[i]) for i in range(num_sets)]) print() print('NumConflicts:', solver.NumConflicts()) print('NumBranches:', solver.NumBranches()) print('WallTime:', solver.WallTime()) if __name__ == '__main__': main()
parcels/collection/collectionsoa.py
noemieplanat/Copy-parcels-master
202
12628521
<gh_stars>100-1000 from datetime import timedelta as delta from operator import attrgetter from ctypes import Structure, POINTER from bisect import bisect_left from math import floor import numpy as np from parcels.collection.collections import ParticleCollection from parcels.collection.iterators import BaseParticleAccessor from parcels.collection.iterators import BaseParticleCollectionIterator, BaseParticleCollectionIterable from parcels.particle import ScipyParticle, JITParticle # noqa from parcels.field import Field from parcels.tools.loggers import logger from parcels.tools.statuscodes import OperationCode try: from mpi4py import MPI except: MPI = None if MPI: try: from sklearn.cluster import KMeans except: raise EnvironmentError('sklearn needs to be available if MPI is installed. ' 'See http://oceanparcels.org/#parallel_install for more information') def _to_write_particles(pd, time): """We don't want to write a particle that is not started yet. Particle will be written if particle.time is between time-dt/2 and time+dt (/2) """ return ((np.less_equal(time - np.abs(pd['dt']/2), pd['time'], where=np.isfinite(pd['time'])) & np.greater_equal(time + np.abs(pd['dt'] / 2), pd['time'], where=np.isfinite(pd['time'])) | ((np.isnan(pd['dt'])) & np.equal(time, pd['time'], where=np.isfinite(pd['time'])))) & (np.isfinite(pd['id'])) & (np.isfinite(pd['time']))) def _is_particle_started_yet(pd, time): """We don't want to write a particle that is not started yet. Particle will be written if: * particle.time is equal to time argument of pfile.write() * particle.time is before time (in case particle was deleted between previous export and current one) """ return np.less_equal(pd['dt']*pd['time'], pd['dt']*time) | np.isclose(pd['time'], time) def _convert_to_flat_array(var): """Convert lists and single integers/floats to one-dimensional numpy arrays :param var: list or numeric to convert to a one-dimensional numpy array """ if isinstance(var, np.ndarray): return var.flatten() elif isinstance(var, (int, float, np.float32, np.int32)): return np.array([var]) else: return np.array(var) class ParticleCollectionSOA(ParticleCollection): def __init__(self, pclass, lon, lat, depth, time, lonlatdepth_dtype, pid_orig, partitions=None, ngrid=1, **kwargs): """ :param ngrid: number of grids in the fieldset of the overarching ParticleSet - required for initialising the field references of the ctypes-link of particles that are allocated """ super(ParticleCollection, self).__init__() assert pid_orig is not None, "particle IDs are None - incompatible with the collection. Invalid state." pid = pid_orig + pclass.lastID self._sorted = np.all(np.diff(pid) >= 0) assert depth is not None, "particle's initial depth is None - incompatible with the collection. Invalid state." assert lon.size == lat.size and lon.size == depth.size, ( 'lon, lat, depth don''t all have the same lenghts') assert lon.size == time.size, ( 'time and positions (lon, lat, depth) don''t have the same lengths.') # If partitions is false, the partitions are already initialised if partitions is not None and partitions is not False: self._pu_indicators = _convert_to_flat_array(partitions) for kwvar in kwargs: assert lon.size == kwargs[kwvar].size, ( '%s and positions (lon, lat, depth) don''t have the same lengths.' % kwvar) offset = np.max(pid) if (pid is not None) and len(pid) > 0 else -1 if MPI: mpi_comm = MPI.COMM_WORLD mpi_rank = mpi_comm.Get_rank() mpi_size = mpi_comm.Get_size() if lon.size < mpi_size and mpi_size > 1: raise RuntimeError('Cannot initialise with fewer particles than MPI processors') if mpi_size > 1: if partitions is not False: if self._pu_indicators is None: if mpi_rank == 0: coords = np.vstack((lon, lat)).transpose() kmeans = KMeans(n_clusters=mpi_size, random_state=0).fit(coords) self._pu_indicators = kmeans.labels_ else: self._pu_indicators = None self._pu_indicators = mpi_comm.bcast(self._pu_indicators, root=0) elif np.max(self._pu_indicators) >= mpi_size: raise RuntimeError('Particle partitions must vary between 0 and the number of mpi procs') lon = lon[self._pu_indicators == mpi_rank] lat = lat[self._pu_indicators == mpi_rank] time = time[self._pu_indicators == mpi_rank] depth = depth[self._pu_indicators == mpi_rank] pid = pid[self._pu_indicators == mpi_rank] for kwvar in kwargs: kwargs[kwvar] = kwargs[kwvar][self._pu_indicators == mpi_rank] offset = MPI.COMM_WORLD.allreduce(offset, op=MPI.MAX) pclass.setLastID(offset+1) if lonlatdepth_dtype is None: self._lonlatdepth_dtype = np.float32 else: self._lonlatdepth_dtype = lonlatdepth_dtype assert self._lonlatdepth_dtype in [np.float32, np.float64], \ 'lon lat depth precision should be set to either np.float32 or np.float64' pclass.set_lonlatdepth_dtype(self._lonlatdepth_dtype) self._pclass = pclass self._ptype = pclass.getPType() self._data = {} initialised = set() self._ncount = len(lon) for v in self.ptype.variables: if v.name in ['xi', 'yi', 'zi', 'ti']: self._data[v.name] = np.empty((len(lon), ngrid), dtype=v.dtype) else: self._data[v.name] = np.empty(self._ncount, dtype=v.dtype) if lon is not None and lat is not None: # Initialise from lists of lon/lat coordinates assert self.ncount == len(lon) and self.ncount == len(lat), ( 'Size of ParticleSet does not match length of lon and lat.') # mimic the variables that get initialised in the constructor self._data['lat'][:] = lat self._data['lon'][:] = lon self._data['depth'][:] = depth self._data['time'][:] = time self._data['id'][:] = pid self._data['fileid'][:] = -1 # special case for exceptions which can only be handled from scipy self._data['exception'] = np.empty(self.ncount, dtype=object) initialised |= {'lat', 'lon', 'depth', 'time', 'id'} # any fields that were provided on the command line for kwvar, kwval in kwargs.items(): if not hasattr(pclass, kwvar): raise RuntimeError('Particle class does not have Variable %s' % kwvar) self._data[kwvar][:] = kwval initialised.add(kwvar) # initialise the rest to their default values for v in self.ptype.variables: if v.name in initialised: continue if isinstance(v.initial, Field): for i in range(self.ncount): if (time[i] is None) or (np.isnan(time[i])): raise RuntimeError('Cannot initialise a Variable with a Field if no time provided (time-type: {} values: {}). Add a "time=" to ParticleSet construction'.format(type(time), time)) v.initial.fieldset.computeTimeChunk(time[i], 0) self._data[v.name][i] = v.initial[ time[i], depth[i], lat[i], lon[i] ] logger.warning_once("Particle initialisation from field can be very slow as it is computed in scipy mode.") elif isinstance(v.initial, attrgetter): self._data[v.name][:] = v.initial(self) else: self._data[v.name][:] = v.initial initialised.add(v.name) else: raise ValueError("Latitude and longitude required for generating ParticleSet") self._iterator = None self._riterator = None def __del__(self): """ Collection - Destructor """ super().__del__() def iterator(self): self._iterator = ParticleCollectionIteratorSOA(self) return self._iterator def __iter__(self): """Returns an Iterator that allows for forward iteration over the elements in the ParticleCollection (e.g. `for p in pset:`). """ return self.iterator() def reverse_iterator(self): self._riterator = ParticleCollectionIteratorSOA(self, True) return self._riterator def __reversed__(self): """Returns an Iterator that allows for backwards iteration over the elements in the ParticleCollection (e.g. `for p in reversed(pset):`). """ return self.reverse_iterator() def __getitem__(self, index): """ Access a particle in this collection using the fastest access method for this collection - by its index. :param index: int or np.int32 index of a particle in this collection """ return self.get_single_by_index(index) def __getattr__(self, name): """ Access a single property of all particles. :param name: name of the property """ for v in self.ptype.variables: if v.name == name and name in self._data: return self._data[name] return False def get_single_by_index(self, index): """ This function gets a (particle) object from the collection based on its index within the collection. For collections that are not based on random access (e.g. ordered lists, sets, trees), this function involves a translation of the index into the specific object reference in the collection - or (if unavoidable) the translation of the collection from a none-indexable, none-random-access structure into an indexable structure. In cases where a get-by-index would result in a performance malus, it is highly-advisable to use a different get function, e.g. get-by-ID. """ super().get_single_by_index(index) return ParticleAccessorSOA(self, index) def get_single_by_object(self, particle_obj): """ This function gets a (particle) object from the collection based on its actual object. For collections that are random-access and based on indices (e.g. unordered list, vectors, arrays and dense matrices), this function would involve a parsing of the whole list and translation of the object into an index in the collection - which results in a significant performance malus. In cases where a get-by-object would result in a performance malus, it is highly-advisable to use a different get function, e.g. get-by-index or get-by-ID. In this specific implementation, we cannot look for the object directly, so we will look for one of its properties (the ID) that has the nice property of being stored in an ordered list (if the collection is sorted) """ super().get_single_by_object(particle_obj) return self.get_single_by_ID(particle_obj.id) def get_single_by_ID(self, id): """ This function gets a (particle) object from the collection based on the object's ID. For some collections, this operation may involve a parsing of the whole list and translation of the object's ID into an index or an object reference in the collection - which results in a significant performance malus. In cases where a get-by-ID would result in a performance malus, it is highly-advisable to use a different get function, e.g. get-by-index. This function uses binary search if we know the ID list to be sorted, and linear search otherwise. We assume IDs are unique. """ super().get_single_by_ID(id) # Use binary search if the collection is sorted, linear search otherwise index = -1 if self._sorted: index = bisect_left(self._data['id'], id) if index == len(self._data['id']) or self._data['id'][index] != id: raise ValueError("Trying to access a particle with a non-existing ID: %s." % id) else: index = np.where(self._data['id'] == id)[0][0] return self.get_single_by_index(index) def get_same(self, same_class): """ This function gets particles from this collection that are themselves stored in another object of an equi- structured ParticleCollection. """ super().get_same(same_class) raise NotImplementedError def get_collection(self, pcollection): """ This function gets particles from this collection that are themselves stored in a ParticleCollection, which is differently structured than this one. That means the other-collection has to be re-formatted first in an intermediary format. """ super().get_collection(pcollection) raise NotImplementedError def get_multi_by_PyCollection_Particles(self, pycollectionp): """ This function gets particles from this collection, which are themselves in common Python collections, such as lists, dicts and numpy structures. We can either directly get the referred Particle instances (for internally- ordered collections, e.g. ordered lists, sets, trees) or we may need to parse each instance for its index (for random-access structures), which results in a considerable performance malus. For collections where get-by-object incurs a performance malus, it is advisable to multi-get particles by indices or IDs. """ super().get_multi_by_PyCollection_Particles(pycollectionp) raise NotImplementedError def get_multi_by_indices(self, indices): """ This function gets particles from this collection based on their indices. This works best for random-access collections (e.g. numpy's ndarrays, dense matrices and dense arrays), whereas internally ordered collections shall rather use a get-via-object-reference strategy. """ super().get_multi_by_indices(indices) if type(indices) is dict: indices = list(indices.values()) return ParticleCollectionIteratorSOA(self, subset=indices) def get_multi_by_IDs(self, ids): """ This function gets particles from this collection based on their IDs. For collections where this removal strategy would require a collection transformation or by-ID parsing, it is advisable to rather apply a get- by-objects or get-by-indices scheme. Note that this implementation assumes that IDs of particles are strictly increasing with increasing index. So a particle with a larger index will always have a larger ID as well. The assumption often holds for this datastructure as new particles always get a larger ID than any existing particle (IDs are not recycled) and their data are appended at the end of the list (largest index). This allows for the use of binary search in the look-up. The collection maintains a `sorted` flag to indicate whether this assumption holds. """ super().get_multi_by_IDs(ids) if type(ids) is dict: ids = list(ids.values()) if len(ids) == 0: return None # Use binary search if the collection is sorted, linear search otherwise indices = np.empty(len(ids), dtype=np.int32) if self._sorted: # This is efficient if len(ids) << self.len sorted_ids = np.sort(np.array(ids)) indices = self._recursive_ID_lookup(0, len(self._data['id']), sorted_ids) else: indices = np.where(np.in1d(self._data['id'], ids))[0] return self.get_multi_by_indices(indices) def _recursive_ID_lookup(self, low, high, sublist): """Identify the middle element of the sublist and perform binary search on it. :param low: Lowerbound on the indices to search for IDs. :param high: Upperbound on the indices to search for IDs. :param sublist: (Sub)list of IDs to look for. """ median = floor(len(sublist) / 2) index = bisect_left(self._data['id'][low:high], sublist[median]) if len(sublist) == 1: # edge case if index == len(self._data['id']) or \ self._data['id'][index] != sublist[median]: return np.array([]) return np.array([index]) # The edge-cases have to be handled slightly differently if index == len(self._data['id']): # Continue with the same bounds, but drop the median. return self._recursive_ID_lookup(low, high, np.delete(sublist, median)) elif self._data['id'][index] != sublist[median]: # We can split, because we received the index that the median # ID would have been inserted in, but we do not return the # index and keep it in our search space. left = self._recursive_ID_lookup(low, index, sublist[:median]) right = self._recursive_ID_lookup(index, high, sublist[median + 1:]) return np.concatenate((left, right)) # Otherwise, we located the median, so we include it in our # result, and split the search space on it, without including it. left = self._recursive_ID_lookup(low, index, sublist[:median]) right = self._recursive_ID_lookup(index + 1, high, sublist[median + 1:]) return np.concatenate((left, np.array(index), right)) def add_collection(self, pcollection): """ Adds another, differently structured ParticleCollection to this collection. This is done by, for example, appending/adding the items of the other collection to this collection. """ super().add_collection(pcollection) raise NotImplementedError def add_single(self, particle_obj): """ Adding a single Particle to the collection - either as a 'Particle; object in parcels itself, or via its ParticleAccessor. """ super().add_single(particle_obj) raise NotImplementedError def add_same(self, same_class): """ Adds another, equi-structured ParticleCollection to this collection. This is done by concatenating both collections. The fact that they are of the same ParticleCollection's derivative simplifies parsing and concatenation. """ super().add_same(same_class) if same_class.ncount == 0: return if self._ncount == 0: self._data = same_class._data self._ncount = same_class.ncount return # Determine order of concatenation and update the sorted flag if self._sorted and same_class._sorted \ and self._data['id'][0] > same_class._data['id'][-1]: for d in self._data: self._data[d] = np.concatenate((same_class._data[d], self._data[d])) self._ncount += same_class.ncount else: if not (same_class._sorted and self._data['id'][-1] < same_class._data['id'][0]): self._sorted = False for d in self._data: self._data[d] = np.concatenate((self._data[d], same_class._data[d])) self._ncount += same_class.ncount def __iadd__(self, same_class): """ Performs an incremental addition of the equi-structured ParticleCollections, such to allow a += b, with 'a' and 'b' begin the two equi-structured objects (or: 'b' being and individual object). This operation is equal to an in-place addition of (an) element(s). """ self.add_same(same_class) return self def insert(self, obj, index=None): """ This function allows to 'insert' a Particle (as object or via its accessor) into this collection. This method needs to be specified to each collection individually. Some collections (e.g. unordered list) allow to define the index where the object is to be inserted. Some collections can optionally insert an object at a specific position - at a significant speed- and memory malus cost (e.g. vectors, arrays, dense matrices). Some collections that manage a specified indexing order internally (e.g. ordered lists, sets, trees), and thus have no use for an 'index' parameter. For those collections with an internally-enforced order, the function mapping equates to: insert(obj) -> add_single(obj) """ raise NotImplementedError def push(self, particle_obj): """ This function pushes a Particle (as object or via its accessor) to the end of a collection ('end' definition depends on the specific collection itself). For collections with an inherent indexing order (e.g. ordered lists, sets, trees), the function just includes the object at its pre-defined position (i.e. not necessarily at the end). For the collections, the function mapping equates to: int32 push(particle_obj) -> add_single(particle_obj); return -1; This function further returns the index, at which position the Particle has been inserted. By definition, the index is positive, thus: a return of '-1' indicates push failure, NOT the last position in the collection. Furthermore, collections that do not work on an index-preserving manner also return '-1'. """ raise NotImplementedError def append(self, particle_obj): """ This function appends a Particle (as object or via its accessor) to the end of a collection ('end' definition depends on the specific collection itself). For collections with an inherent indexing order (e.g. ordered lists, sets, trees), the function just includes the object at its pre-defined position (i.e. not necessarily at the end). For the collections, the function mapping equates to: append(particle_obj) -> add_single(particle_obj) The function - in contrast to 'push' - does not return the index of the inserted object. """ raise NotImplementedError def __delitem__(self, key): """ This is the high-performance method to delete a specific object from this collection. As the most-performant way depends on the specific collection in question, the function is abstract. Highlight for the specific implementation: The 'key' parameter should still be evaluated for being a single or a multi-entry delete, and needs to check that it received the correct type of 'indexing' argument (i.e. index, id or iterator). """ self.delete_by_index(key) def delete_by_index(self, index): """ This method deletes a particle from the the collection based on its index. It does not return the deleted item. Semantically, the function appears similar to the 'remove' operation. That said, the function in OceanParcels - instead of directly deleting the particle - just raises the 'deleted' status flag for the indexed particle. In result, the particle still remains in the collection. The functional interpretation of the 'deleted' status is handled by 'recovery' dictionary during simulation execution. """ super().delete_by_index(index) self._data['state'][index] = OperationCode.Delete def delete_by_ID(self, id): """ This method deletes a particle from the the collection based on its ID. It does not return the deleted item. Semantically, the function appears similar to the 'remove' operation. That said, the function in OceanParcels - instead of directly deleting the particle - just raises the 'deleted' status flag for the indexed particle. In result, the particle still remains in the collection. The functional interpretation of the 'deleted' status is handled by 'recovery' dictionary during simulation execution. """ super().delete_by_ID(id) # Use binary search if the collection is sorted, linear search otherwise index = -1 if self._sorted: index = bisect_left(self._data['id'], id) if index == len(self._data['id']) or \ self._data['id'][index] != id: raise ValueError("Trying to delete a particle with a non-existing ID: %s." % id) else: index = np.where(self._data['id'] == id)[0][0] self.delete_by_index(index) def remove_single_by_index(self, index): """ This function removes a (particle) object from the collection based on its index within the collection. For collections that are not based on random access (e.g. ordered lists, sets, trees), this function involves a translation of the index into the specific object reference in the collection - or (if unavoidable) the translation of the collection from a none-indexable, none-random-access structure into an indexable structure, and then perform the removal. In cases where a removal-by-index would result in a performance malus, it is highly-advisable to use a different removal functions, e.g. remove-by-object or remove-by-ID. """ super().remove_single_by_index(index) for d in self._data: self._data[d] = np.delete(self._data[d], index, axis=0) self._ncount -= 1 def remove_single_by_object(self, particle_obj): """ This function removes a (particle) object from the collection based on its actual object. For collections that are random-access and based on indices (e.g. unordered list, vectors, arrays and dense matrices), this function would involves a parsing of the whole list and translation of the object into an index in the collection to perform the removal - which results in a significant performance malus. In cases where a removal-by-object would result in a performance malus, it is highly-advisable to use a different removal functions, e.g. remove-by-index or remove-by-ID. """ super().remove_single_by_object(particle_obj) # We cannot look for the object directly, so we will look for one of # its properties that has the nice property of being stored in an # ordered list self.remove_single_by_ID(particle_obj.id) def remove_single_by_ID(self, id): """ This function removes a (particle) object from the collection based on the object's ID. For some collections, this operation may involve a parsing of the whole list and translation of the object's ID into an index or an object reference in the collection in order to perform the removal - which results in a significant performance malus. In cases where a removal-by-ID would result in a performance malus, it is highly-advisable to use a different removal functions, e.g. remove-by-object or remove-by-index. """ super().remove_single_by_ID(id) # Use binary search if the collection is sorted, linear search otherwise index = -1 if self._sorted: index = bisect_left(self._data['id'], id) if index == len(self._data['id']) or \ self._data['id'][index] != id: raise ValueError("Trying to remove a particle with a non-existing ID: %s." % id) else: index = np.where(self._data['id'] == id)[0][0] self.remove_single_by_index(index) def remove_same(self, same_class): """ This function removes particles from this collection that are themselves stored in another object of an equi- structured ParticleCollection. As the structures of both collections are the same, a more efficient M-in-N removal can be applied without an in-between reformatting. """ super().remove_same(same_class) raise NotImplementedError def remove_collection(self, pcollection): """ This function removes particles from this collection that are themselves stored in a ParticleCollection, which is differently structured than this one. Tht means the removal first requires the removal-collection to be re- formatted in an intermediary format, before executing the removal. That said, this method should still be at least as efficient as a removal via common Python collections (i.e. lists, dicts, numpy's nD arrays & dense arrays). Despite this, due to the reformatting, in some cases it may be more efficient to remove items then rather by IDs oder indices. """ super().remove_collection(pcollection) raise NotImplementedError def remove_multi_by_PyCollection_Particles(self, pycollectionp): """ This function removes particles from this collection, which are themselves in common Python collections, such as lists, dicts and numpy structures. In order to perform the removal, we can either directly remove the referred Particle instances (for internally-ordered collections, e.g. ordered lists, sets, trees) or we may need to parse each instance for its index (for random-access structures), which results in a considerable performance malus. For collections where removal-by-object incurs a performance malus, it is advisable to multi-remove particles by indices or IDs. """ super().remove_multi_by_PyCollection_Particles(pycollectionp) raise NotImplementedError def remove_multi_by_indices(self, indices): """ This function removes particles from this collection based on their indices. This works best for random-access collections (e.g. numpy's ndarrays, dense matrices and dense arrays), whereas internally ordered collections shall rather use a removal-via-object-reference strategy. """ super().remove_multi_by_indices(indices) if type(indices) is dict: indices = list(indices.values()) for d in self._data: self._data[d] = np.delete(self._data[d], indices, axis=0) self._ncount -= len(indices) def remove_multi_by_IDs(self, ids): """ This function removes particles from this collection based on their IDs. For collections where this removal strategy would require a collection transformation or by-ID parsing, it is advisable to rather apply a removal- by-objects or removal-by-indices scheme. """ super().remove_multi_by_IDs(ids) if type(ids) is dict: ids = list(ids.values()) if len(ids) == 0: return # Use binary search if the collection is sorted, linear search otherwise indices = np.empty(len(ids), dtype=np.int32) if self._sorted: # This is efficient if len(ids) << self.len sorted_ids = np.sort(np.array(ids)) indices = self._recursive_ID_lookup(0, len(self._data['id']), sorted_ids) else: indices = np.where(np.in1d(self._data['id'], ids))[0] self.remove_multi_by_indices(indices) def __isub__(self, other): """ This method performs an incremental removal of the equi-structured ParticleCollections, such to allow a -= b, with 'a' and 'b' begin the two equi-structured objects (or: 'b' being and individual object). This operation is equal to an in-place removal of (an) element(s). """ if other is None: return if type(other) is type(self): self.remove_same(other) elif (isinstance(other, BaseParticleAccessor) or isinstance(other, ScipyParticle)): self.remove_single_by_object(other) else: raise TypeError("Trying to do an incremental removal of an element of type %s, which is not supported." % type(other)) return self def pop_single_by_index(self, index): """ Searches for Particle at index 'index', removes that Particle from the Collection and returns that Particle (or: ParticleAccessor). If index is None, return last item (-1); If index < 0: return from 'end' of collection. If index is out of bounds, throws and OutOfRangeException. If Particle cannot be retrieved, returns None. """ super().pop_single_by_index(index) raise NotImplementedError def pop_single_by_ID(self, id): """ Searches for Particle with ID 'id', removes that Particle from the Collection and returns that Particle (or: ParticleAccessor). If Particle cannot be retrieved (e.g. because the ID is not available), returns None. """ super().pop_single_by_ID(id) raise NotImplementedError def pop_multi_by_indices(self, indices): """ Searches for Particles with the indices registered in 'indices', removes the Particles from the Collection and returns the Particles (or: their ParticleAccessors). If indices is None -> Particle cannot be retrieved -> Assert-Error and return None If index is None, return last item (-1); If index < 0: return from 'end' of collection. If index in 'indices' is out of bounds, throws and OutOfRangeException. If Particles cannot be retrieved, returns None. """ super().pop_multi_by_indices(indices) raise NotImplementedError def pop_multi_by_IDs(self, ids): """ Searches for Particles with the IDs registered in 'ids', removes the Particles from the Collection and returns the Particles (or: their ParticleAccessors). If Particles cannot be retrieved (e.g. because the IDs are not available), returns None. """ super().pop_multi_by_IDs(ids) raise NotImplementedError def _clear_deleted_(self): """ This (protected) function physically removes particles from the collection whose status is set to 'DELETE'. It is the logical finalisation method of physically deleting particles that have been marked for deletion and that have not otherwise been recovered. This methods in heavily dependent on the actual collection type and should be implemented very specific to the actual data structure, to remove objects 'the fastest way possible'. """ raise NotImplementedError def merge(self, same_class=None): """ This function merge two strictly equally-structured ParticleCollections into one. This can be, for example, quite handy to merge two particle subsets that - due to continuous removal - become too small to be effective. On the other hand, this function can also internally merge individual particles that are tagged by status as being 'merged' (see the particle status for information on that). In order to distinguish both use cases, we can evaluate the 'same_class' parameter. In cases where this is 'None', the merge operation semantically refers to an internal merge of individual particles - otherwise, it performs a 2-collection merge. Comment: the function can be simplified later by pre-evaluating the function parameter and then reference the individual, specific functions for internal- or external merge. The function shall return the merged ParticleCollection. """ raise NotImplementedError def split(self, indices=None): """ This function splits this collection into two disect equi-structured collections. The reason for it can, for example, be that the set exceeds a pre-defined maximum number of elements, which for performance reasons mandates a split. On the other hand, this function can also internally split individual particles that are tagged byt status as to be 'split' (see the particle status for information on that). In order to distinguish both use cases, we can evaluate the 'indices' parameter. In cases where this is 'None', the split operation semantically refers to an internal split of individual particles - otherwise, it performs a collection-split. Comment: the function can be simplified later by pre-evaluating the function parameter and then reference the individual, specific functions for element- or collection split. The function shall return the newly created or extended Particle collection, i.e. either the collection that results from a collection split or this very collection, containing the newly-split particles. """ raise NotImplementedError def __sizeof__(self): """ This function returns the size in actual bytes required in memory to hold the collection. Ideally and simply, the size is computed as follows: sizeof(self) = len(self) * sizeof(pclass) """ raise NotImplementedError def clear(self): """ This function physically removes all elements of the collection, yielding an empty collection as result of the operation. """ raise NotImplementedError def cstruct(self): """ 'cstruct' returns the ctypes mapping of the particle data. This depends on the specific structure in question. """ class CParticles(Structure): _fields_ = [(v.name, POINTER(np.ctypeslib.as_ctypes_type(v.dtype))) for v in self._ptype.variables] def flatten_dense_data_array(vname): data_flat = self._data[vname].view() data_flat.shape = -1 return np.ctypeslib.as_ctypes(data_flat) cdata = [flatten_dense_data_array(v.name) for v in self._ptype.variables] cstruct = CParticles(*cdata) return cstruct def toDictionary(self, pfile, time, deleted_only=False): """ Convert all Particle data from one time step to a python dictionary. :param pfile: ParticleFile object requesting the conversion :param time: Time at which to write ParticleSet :param deleted_only: Flag to write only the deleted Particles returns two dictionaries: one for all variables to be written each outputdt, and one for all variables to be written once This function depends on the specific collection in question and thus needs to be specified in specific derivative classes. """ data_dict = {} data_dict_once = {} time = time.total_seconds() if isinstance(time, delta) else time indices_to_write = [] if pfile.lasttime_written != time and \ (pfile.write_ondelete is False or deleted_only is not False): if self._data['id'].size == 0: logger.warning("ParticleSet is empty on writing as array at time %g" % time) else: if deleted_only is not False: if type(deleted_only) not in [list, np.ndarray] and deleted_only in [True, 1]: indices_to_write = np.where(np.isin(self._data['state'], [OperationCode.Delete]))[0] elif type(deleted_only) in [list, np.ndarray]: indices_to_write = deleted_only else: indices_to_write = _to_write_particles(self._data, time) if np.any(indices_to_write): for var in pfile.var_names: data_dict[var] = self._data[var][indices_to_write] pset_errs = ((self._data['state'][indices_to_write] != OperationCode.Delete) & np.greater(np.abs(time - self._data['time'][indices_to_write]), 1e-3, where=np.isfinite(self._data['time'][indices_to_write]))) if np.count_nonzero(pset_errs) > 0: logger.warning_once('time argument in pfile.write() is {}, but particles have time {}'.format(time, self._data['time'][pset_errs])) if len(pfile.var_names_once) > 0: first_write = (_to_write_particles(self._data, time) & _is_particle_started_yet(self._data, time) & np.isin(self._data['id'], pfile.written_once, invert=True)) if np.any(first_write): data_dict_once['id'] = np.array(self._data['id'][first_write]).astype(dtype=np.int64) for var in pfile.var_names_once: data_dict_once[var] = self._data[var][first_write] pfile.written_once.extend(np.array(self._data['id'][first_write]).astype(dtype=np.int64).tolist()) if deleted_only is False: pfile.lasttime_written = time return data_dict, data_dict_once def toArray(self): """ This function converts (or: transforms; reformats; translates) this collection into an array-like structure (e.g. Python list or numpy nD array) that can be addressed by index. In the common case of 'no ID recovery', the global ID and the index match exactly. While this function may be very convenient for may users, it is STRONGLY DISADVISED to use the function to often, and the performance- and memory overhead malus may be exceed any speed-up one could get from optimised data structures - in fact, for large collections with an implicit-order structure (i.e. ordered lists, sets, trees, etc.), this may be 'the most constly' function in any kind of simulation. It can be - though - useful at the final stage of a simulation to dump the results to disk. """ raise NotImplementedError def set_variable_write_status(self, var, write_status): """ Method to set the write status of a Variable :param var: Name of the variable (string) :param status: Write status of the variable (True, False or 'once') """ var_changed = False for v in self._ptype.variables: if v.name == var: v.to_write = write_status var_changed = True if not var_changed: raise SyntaxError('Could not change the write status of %s, because it is not a Variable name' % var) class ParticleAccessorSOA(BaseParticleAccessor): """Wrapper that provides access to particle data in the collection, as if interacting with the particle itself. :param pcoll: ParticleCollection that the represented particle belongs to. :param index: The index at which the data for the represented particle is stored in the corresponding data arrays of the ParticleCollecion. """ _index = 0 _next_dt = None def __init__(self, pcoll, index): """Initializes the ParticleAccessor to provide access to one specific particle. """ super(ParticleAccessorSOA, self).__init__(pcoll) self._index = index self._next_dt = None def __getattr__(self, name): """Get the value of an attribute of the particle. :param name: Name of the requested particle attribute. :return: The value of the particle attribute in the underlying collection data array. """ if name in BaseParticleAccessor.__dict__.keys(): result = super(ParticleAccessorSOA, self).__getattr__(name) elif name in type(self).__dict__.keys(): result = object.__getattribute__(self, name) else: result = self._pcoll.data[name][self._index] return result def __setattr__(self, name, value): """Set the value of an attribute of the particle. :param name: Name of the particle attribute. :param value: Value that will be assigned to the particle attribute in the underlying collection data array. """ if name in BaseParticleAccessor.__dict__.keys(): super(ParticleAccessorSOA, self).__setattr__(name, value) elif name in type(self).__dict__.keys(): object.__setattr__(self, name, value) else: self._pcoll.data[name][self._index] = value def getPType(self): return self._pcoll.ptype def update_next_dt(self, next_dt=None): if next_dt is None: if self._next_dt is not None: self._pcoll._data['dt'][self._index] = self._next_dt self._next_dt = None else: self._next_dt = next_dt def __repr__(self): time_string = 'not_yet_set' if self.time is None or np.isnan(self.time) else "{:f}".format(self.time) str = "P[%d](lon=%f, lat=%f, depth=%f, " % (self.id, self.lon, self.lat, self.depth) for var in self._pcoll.ptype.variables: if var.to_write is not False and var.name not in ['id', 'lon', 'lat', 'depth', 'time']: str += "%s=%f, " % (var.name, getattr(self, var.name)) return str + "time=%s)" % time_string class ParticleCollectionIterableSOA(BaseParticleCollectionIterable): def __init__(self, pcoll, reverse=False, subset=None): super(ParticleCollectionIterableSOA, self).__init__(pcoll, reverse, subset) def __iter__(self): return ParticleCollectionIteratorSOA(pcoll=self._pcoll_immutable, reverse=self._reverse, subset=self._subset) def __len__(self): """Implementation needed for particle-particle interaction""" return len(self._subset) def __getitem__(self, items): """Implementation needed for particle-particle interaction""" return ParticleAccessorSOA(self._pcoll_immutable, self._subset[items]) class ParticleCollectionIteratorSOA(BaseParticleCollectionIterator): """Iterator for looping over the particles in the ParticleCollection. :param pcoll: ParticleCollection that stores the particles. :param reverse: Flag to indicate reverse iteration (i.e. starting at the largest index, instead of the smallest). :param subset: Subset of indices to iterate over, this allows the creation of an iterator that represents part of the collection. """ def __init__(self, pcoll, reverse=False, subset=None): if subset is not None: if len(subset) > 0 and type(subset[0]) not in [int, np.int32, np.intp]: raise TypeError("Iteration over a subset of particles in the" " particleset requires a list or numpy array" " of indices (of type int or np.int32).") if reverse: self._indices = subset.reverse() else: self._indices = subset self.max_len = len(subset) else: self.max_len = len(pcoll) if reverse: self._indices = range(self.max_len - 1, -1, -1) else: self._indices = range(self.max_len) self._reverse = reverse self._pcoll = pcoll self._index = 0 self._head = None self._tail = None if len(self._indices) > 0: self._head = ParticleAccessorSOA(pcoll, self._indices[0]) self._tail = ParticleAccessorSOA(pcoll, self._indices[self.max_len - 1]) self.p = self._head def __next__(self): """Returns a ParticleAccessor for the next particle in the ParticleSet. """ if self._index < self.max_len: self.p = ParticleAccessorSOA(self._pcoll, self._indices[self._index]) self._index += 1 return self.p raise StopIteration @property def current(self): return self.p def __repr__(self): dir_str = 'Backward' if self._reverse else 'Forward' return "%s iteration at index %s of %s." % (dir_str, self._index, self.max_len)
demo/MixedPoisson.py
jaisw7/shenfun
138
12628542
<filename>demo/MixedPoisson.py r"""Solve Poisson's equation using a mixed formulation The Poisson equation is .. math:: \nabla^2 u &= f \\ u(x, y=\pm 1) &= 0 \\ u(x=2\pi, y) &= u(x=0, y) We solve using the mixed formulation .. math:: g - \nabla(u) &= 0 \\ \nabla \cdot g &= f \\ u(x, y=\pm 1) &= 0 \\ u(x=2\pi, y) &= u(x=0, y) \\ g(x=2\pi, y) &= g(x=0, y) We use a Tensorproductspace with Fourier expansions in the x-direction and a composite Chebyshev basis in the y-direction. The equations are solved coupled and implicit. """ import os import sys import numpy as np from sympy import symbols, sin, cos from shenfun import * x, y = symbols("x,y", real=True) family = sys.argv[-1].lower() assert len(sys.argv) == 4, "Call with three command-line arguments: N[0], N[1] and family (Chebyshev/Legendre)" assert family in ('legendre', 'chebyshev') assert isinstance(int(sys.argv[-2]), int) assert isinstance(int(sys.argv[-3]), int) # Create a manufactured solution for verification #ue = (sin(2*x)*cos(3*y))*(1-x**2) ue = (sin(4*x)*cos(5*y))*(1-y**2) dux = ue.diff(x, 1) duy = ue.diff(y, 1) fe = ue.diff(x, 2) + ue.diff(y, 2) N = (int(sys.argv[-3]), int(sys.argv[-2])) K0 = FunctionSpace(N[0], 'Fourier', dtype='d') SD = FunctionSpace(N[1], family, bc=(0, 0)) ST = FunctionSpace(N[1], family) TD = TensorProductSpace(comm, (K0, SD), axes=(1, 0)) TT = TensorProductSpace(comm, (K0, ST), axes=(1, 0)) VT = VectorSpace(TT) Q = CompositeSpace([VT, TD]) gu = TrialFunction(Q) pq = TestFunction(Q) g, u = gu p, q = pq A00 = inner(p, g) if family == 'legendre': A01 = inner(div(p), u) else: A01 = inner(p, -grad(u)) A10 = inner(q, div(g)) # Get f and g on quad points vfj = Array(Q, buffer=(0, 0, fe)) vj, fj = vfj vf_hat = Function(Q) v_hat, f_hat = vf_hat f_hat = inner(q, fj, output_array=f_hat) M = BlockMatrix(A00+A01+A10) gu_hat = M.solve(vf_hat) gu = gu_hat.backward() g_, u_ = gu uj = Array(TD, buffer=ue) duxj = Array(TT, buffer=dux) duyj = Array(TT, buffer=duy) error = [comm.reduce(np.linalg.norm(uj-u_)), comm.reduce(np.linalg.norm(duxj-g_[0])), comm.reduce(np.linalg.norm(duyj-g_[1]))] if comm.Get_rank() == 0: print('Error u dudx dudy') print(' %2.4e %2.4e %2.4e' %(error[0], error[1], error[2])) assert np.all(abs(np.array(error)) < 1e-8), error if 'pytest' not in os.environ: import matplotlib.pyplot as plt plt.figure() X = TD.local_mesh(True) plt.contourf(X[0], X[1], u_) plt.figure() plt.quiver(X[1], X[0], g_[1], g_[0]) plt.figure() plt.spy(M.diags((0, 0)).toarray()) # The matrix for given Fourier wavenumber plt.show()
docker/test/integration/minifi/processors/GenerateFlowFile.py
dtrodrigues/nifi-minifi-cpp
113
12628601
from ..core.Processor import Processor class GenerateFlowFile(Processor): def __init__(self, schedule={'scheduling period': '2 sec'}): super(GenerateFlowFile, self).__init__( 'GenerateFlowFile', schedule=schedule, auto_terminate=['success'])
supervisor/superlance/timeoutconn.py
jzmq/minos
365
12628614
<filename>supervisor/superlance/timeoutconn.py import httplib import socket class TimeoutHTTPConnection(httplib.HTTPConnection): """A customised HTTPConnection allowing a per-connection timeout, specified at construction.""" timeout = None def connect(self): """Override HTTPConnection.connect to connect to host/port specified in __init__.""" msg = "getaddrinfo returns an empty list" for res in socket.getaddrinfo(self.host, self.port, 0, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: self.sock = socket.socket(af, socktype, proto) if self.timeout: # this is the new bit self.sock.settimeout(self.timeout) self.sock.connect(sa) except socket.error, msg: if self.sock: self.sock.close() self.sock = None continue break if not self.sock: raise socket.error, msg class TimeoutHTTPSConnection(httplib.HTTPSConnection): timeout = None def connect(self): "Connect to a host on a given (SSL) port." sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if self.timeout: self.sock.settimeout(self.timeout) sock.connect((self.host, self.port)) ssl = socket.ssl(sock, self.key_file, self.cert_file) self.sock = httplib.FakeSocket(sock, ssl)
platypush/plugins/clipboard.py
RichardChiang/platypush
228
12628617
from platypush.plugins import Plugin, action class ClipboardPlugin(Plugin): """ Plugin to programmatically copy strings to your system clipboard and get the current clipboard content. Requires: * **pyperclip** (``pip install pyperclip``) """ @action def copy(self, text): """ Copies a text to the OS clipboard :param text: Text to copy :type text: str """ import pyperclip pyperclip.copy(text) @action def paste(self): """ Get the current content of the clipboard """ import pyperclip return pyperclip.paste() # vim:sw=4:ts=4:et:
mindsdb/api/mongo/responders/list_indexes.py
yarenty/mindsdb
261
12628626
from mindsdb.api.mongo.classes import Responder import mindsdb.api.mongo.functions as helpers class Responce(Responder): when = {'listIndexes': helpers.is_true} def result(self, query, request_env, mindsdb_env, session): return { 'cursor': [{ 'v': 2, 'key': { '_id': 1 }, 'name': '_id_', 'ns': f"{query['$db']}.{query['listIndexes']}" }], 'ok': 1, } responder = Responce()
util/update_lints.py
fkohlgrueber/rust-clippy-pattern
1,686
12628629
<filename>util/update_lints.py #!/usr/bin/env python import sys def main(): print('Error: Please use `util/dev` to update lints') return 1 if __name__ == '__main__': sys.exit(main())
evaluate/gan.py
HappyBelief/ContraD
168
12628673
<gh_stars>100-1000 import os import numpy as np import torch from torchvision.utils import make_grid from evaluate import BaseEvaluator from third_party.fid.inception import InceptionV3 from third_party.fid.fid_score import fid_score from third_party.fid.fid_score import precompute_stats device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class ImageGrid(BaseEvaluator): def __init__(self, volatile=False): self._images = [] self._steps = [] self.volatile = volatile def update(self, step, images): img_grid = make_grid(images[:64].cpu().data) img_grid = np.transpose(img_grid.numpy(), (1, 2, 0)) self._images.append(img_grid) self._steps.append(step) if self.volatile: self._images = self._images[-1:] self._steps = self._steps[-1:] return img_grid @property def value(self): if len(self._images) > 0: return self._images[-1] else: raise ValueError() def summary(self): return self._images def reset(self): self._images = [] self._steps = [] class FixedSampleGeneration(BaseEvaluator): def __init__(self, G, volatile=False): self._G = G self._latent = G.sample_latent(16) self._images = [] self._steps = [] self.volatile = volatile def update(self, step): with torch.no_grad(): img_grid = make_grid(self._G(self._latent).cpu().data, nrow=4) img_grid = np.transpose(img_grid.numpy(), (1, 2, 0)) self._images.append(img_grid) self._steps.append(step) if self.volatile: self._images = self._images[-1:] self._steps = self._steps[-1:] return img_grid @property def value(self): if len(self._images) > 0: return self._images[-1] else: raise ValueError() def summary(self): return self._images def reset(self): self._latent = self._G.sample_latent(64) self._images = [] self._steps = [] class FIDScore(BaseEvaluator): def __init__(self, dataset='cifar10', size=10000, n_avg=3): assert n_avg > 0 self.dataset = dataset self.size = size self.n_avg = n_avg self._precomputed_path = f'third_party/fid/{dataset}_stats.npz' self._fid_model = InceptionV3().to(device) self._history = [] self._best = [] self._steps = [] self.is_best = False if not os.path.exists(self._precomputed_path): print("FIDScore: No pre-computed stats found, computing a new one...") precompute_stats(dataset, self._precomputed_path, model=self._fid_model) def update(self, step, G): scores = [] for _ in range(self.n_avg): score = fid_score(self._precomputed_path, G, size=self.size, model=self._fid_model, batch_size=50) scores.append(score) score_avg = np.mean(scores) if len(self._best) == 0: score_best = score_avg self.is_best = True else: self.is_best = (score_avg < self._best[-1]) score_best = min(self._best[-1], score_avg) self._history.append(scores) self._steps.append(step) self._best.append(score_best) return score_avg @property def value(self): if len(self._history) > 0: return np.mean(self._history[-1]) else: raise ValueError() @property def best(self): if len(self._best) > 0: return self._best[-1] else: raise ValueError() def summary(self): return self._history def reset(self): self._history = [] self._steps = [] self._best = [] def save(self, filename): if len(self._history) == 0: return steps = np.array(self._steps) history = np.array(self._history) best = np.array(self._best) history = np.c_[steps, history, history.mean(1), history.std(1), best] header = 'step,' header += ','.join([f'trial_{i}' for i in range(self.n_avg)]) header += ',mean,std,best' np.savetxt(filename, history, fmt='%.3f', delimiter=",", header=header, comments='')
example/documents.py
closeio/flask-mongorest
268
12628687
<reponame>closeio/flask-mongorest from mongoengine import * class DateTime(Document): datetime = DateTimeField() class Language(Document): name = StringField() class Person(Document): name = StringField() languages = ListField(ReferenceField(Language)) class User(Document): email = EmailField(unique=True, required=True) first_name = StringField(max_length=50) last_name = StringField(max_length=50) emails = ListField(EmailField()) datetime = DateTimeField() datetime_local = DateTimeField() balance = IntField() # in cents class Content(EmbeddedDocument): text = StringField() lang = StringField(max_length=3) class Post(Document): title = StringField(max_length=120, required=True) description = StringField(max_length=120, required=False) author = ReferenceField(User) editor = ReferenceField(User) tags = ListField(StringField(max_length=30)) try: user_lists = ListField(SafeReferenceField(User)) except NameError: user_lists = ListField(ReferenceField(User)) sections = ListField(EmbeddedDocumentField(Content)) content = EmbeddedDocumentField(Content) is_published = BooleanField() def primary_user(self): return self.user_lists[0] if self.user_lists else None
public/pypyjs/modules/pandas.py
inkandswitch/livebook
195
12628710
<reponame>inkandswitch/livebook import json from copy import copy from math import pow,sqrt def do_math(func,data): if len(data) > 0 and (type(data[0]) == int or type(data[0]) == float): return func(data) else: return None def mean(nums): return sum(nums)/len(nums) class IlocIndexer(object): def __init__(self,df): self._df = df def __getitem__(self,i): d = self._df if type(i) == slice: return DataFrame(d,idx=d._idx[i]) if type(i) == tuple: return DataFrame(d,idx=d._idx[i[0]]) raise IndexError("Iloc Indexer Unsupported Input") class Record(object): def __init__(self, df, i): self._df = df self._i = i def __getattr__(self,attr): return self._df[attr][self._i] class Series(object): def __deepcopy__(self,memo): return Series(self.data, sort=self.sort, column=self.column, idx=copy(self.idx)) def __init__(self, data, column=None, sort=None, idx=None, name=None): if type(data) == Series: self.data = data.data self.column = column or data.column self.sort = sort or data.sort self.idx = idx or data.idx elif type(data) == DataFrame: if (data._sort == None): raise IndexError("Cannot coerce DataFrame to a Series without an index") self.data = data._data self.column = data._sort self.sort = None self.idx = idx or data._idx elif type(data) == dict: self.data = data self.sort = sort self.column = column self.idx = idx or range(0,len(data[column])) elif idx == None: self.column = column or name or "series" self.data = { self.column: list(data) } self.sort = None self.idx = range(0,len(data)) else: self.data = data self.column = column self.sort = sort self.idx = idx def __str__(self): return "Series:\n" + str(self.data) + "\nCol:" + str(self.column) + "\nSort:" + str(self.sort); def __getitem__(self,i): if type(i) == slice: return Series(self, idx=self.idx[i]) else: return self.data[self.column][self.idx[i]] def __and__(self,other): return Series([ self[i] & other[i] for i in range(0,len(self))]) def __iter__(self): for i in range(0, len(self)): yield self[i] def __len__(self): return len(self.idx) def __eq__(self,arg): return self.apply(lambda x: x == arg) def __ne__(self,arg): return self.apply(lambda x: x <> arg) def __le__(self,arg): return self.apply(lambda x: x <= arg) def __lt__(self,arg): return self.apply(lambda x: x < arg) def __ge__(self,arg): return self.apply(lambda x: x >= arg) def __gt__(self,arg): return self.apply(lambda x: x > arg) def hist(self,bins=10): from matplotlib import pyplot l = sorted(self.tolist()) _min = l[0] _max = l[-1] step = (_max - _min) / float(bins) buckets = [ _min + step * i for i in range(0,bins+1) ] hist = [0] * bins last_b = 0 for val in l: for b in range(last_b,bins): if val <= buckets[b+1]: hist[b] += 1 last_b = b break data = { "hist": hist, "buckets": buckets[0:-1] } pyplot.bar(buckets, hist) def isnumeric(self): return type(self[0]) in [int,float,long] def isnull(self): return self.apply(lambda x: x == None) def dropna(self): new_idx=[ i for i in self.idx if self.data[self.column][i] != None ] return Series(self,idx=new_idx) def unique(self): memo = set() new_idx = [] c = self.data[self.column] for i in self.idx: if c[i] not in memo: new_idx.append(i) memo.add(c[i]) return Series(self, idx=new_idx) def sum(self): return sum(self.tolist()) def apply(self,func): return Series({ self.column: [ func(d) for d in self ] }, self.column, None, range(0,len(self))) def tolist(self): c = self.data[self.column] return [ c[i] for i in self.idx] def to_plot_data(self): return { "x": self.sort, "columns": [ [self.sort] + [ self.data[self.sort][i] for i in self.idx ], [self.column] + [ self.data[self.column][i] for i in self.idx ] ], "original_type": "series", } def to_plot_data_v2(self): return {"x": self.sort, "column": self.column, "data": self.data, "list": self.tolist()} def describe(self): return self.to_frame().describe() def head(self,n=5): return Series(self, idx=self.idx[0:n]) def tail(self,n=5): return Series(self, idx=self.idx[-n:]) def get_index(self): return Series(self,column=self.sort,idx=self.idx) def value_counts(self): values = [self.data[self.column][i] for i in self.idx] uniques = list(set(values)) counts = [ values.count(val) for val in uniques ] new_body = { self.column: uniques, "count": counts } new_idx = sorted(range(0,len(uniques)),key=lambda i: counts[i],reverse=True) return Series(new_body, "count", self.column, new_idx) def to_frame(self): if self.sort == None: return DataFrame(self,columns=[self.column]) else: return DataFrame(self,columns=[self.sort, self.column]) def to_js(self): d1 = [self.data[self.column][i] for i in self.idx] if self.sort == None: return { "head":[self.column], "body":{self.column:d1}, "length":len(self) } else: d2 = [self.data[self.sort][i] for i in self.idx] return { "sort": self.sort, "head":[self.sort, self.column], "body":{self.column:d1,self.sort:d2}, "length":len(self) } def resample(self,rule,**kwargs): keys = [] bins = {} how = "mean" _how = mean if "how" in kwargs: how = kwargs["how"] _how = len ## todo for key,val in self.iteritems(): #print "Resample key=%s,val=%s,rule=%s"%(key,val,rule) if rule == "A": key = key[:4] + "-01-01" if rule == "AS": key = key[:4] + "-12-31" if rule == "M": key = key[:7] + "-01" if key in bins: bins[key].append(val) else: keys.append(key) bins[key] = [val] new_body = { self.column: [], how: [] } new_head = [ self.column, how ] for k in keys: new_body[self.column].append(k) new_body[how].append(_how(bins[k])) return Series(new_body, how, self.column, range(0,len(new_body[how]))) def iteritems(self): return [ ( self.data[self.sort][i], self.data[self.column][i] ) for i in self.idx].__iter__() class DataFrame(object): def __deepcopy__(self,memo): return DataFrame(data=self._data, columns=copy(self._columns), sort=copy(self._sort), idx=copy(self._idx)) def __init__(self, base=None, data=None, columns=None, sort=None, idx=None): self.iloc = IlocIndexer(self) if type(base) == Series: self._data = base.data self._columns = [base.sort, base.column] if base.sort else [base.column] self._sort = base.sort self._idx = base.idx elif type(base) == dict: self._data = base self._columns = columns or base.keys() self._sort = sort or None self._idx = idx or range(0,len(self._data[self._columns[0]])) elif type(base) == DataFrame: self._data = data or base._data self._columns = columns or base._columns self._sort = sort or base._sort self._idx = idx or base._idx else: self._data = data self._columns = columns self._sort = sort self._idx = idx pass self.__postinit__() @staticmethod def from_data(data): return DataFrame(data["body"],columns=data["head"]) @staticmethod def from_dict(data): return DataFrame(data) @staticmethod def from_csv(path,**kargs): return read_csv(path) def __str__(self): return "DataFrame:\n" + str(self._data) def __postinit__(self): self.shape = (len(self),len(self._columns)) self.columns = self._columns if (self._sort): self.index = self[self._sort] else: self.index = Series(range(0,len(self))) def __setitem__(self,key,val): ## FIXME - this mutates the structure if len(val) != len(self): raise TypeError("__setitem__ called with an assignment of the wrong length") try: val2 = list(val) ## TODO - make a reverse index? remapped = len(self)*[None] for i in range(0,len(self)): remapped[self._idx[i]] = val2[i] self._data[key] = remapped self._columns.index(key) except ValueError: self._columns.append(key) def __getitem__(self,i): # if type(i) == str and i == "_data": # raise ValueError("NOPE") if (type(i) is str or type(i) is unicode): return Series(self._data,i,self._sort,self._idx) elif (type(i) is Series): return DataFrame(self, idx=[ self._idx[n] for n in range(0,len(self)) if i[n] ]) elif (i < 0 or i >= len(self)): raise IndexError("DataFrame index out of range") else: return tuple(map(lambda x: self._data[x][self._idx[i]], self._columns)) def __getattr__(self,attr): return self[attr] def __iter__(self): for i in range(0, len(self)): yield self[i] def __len__(self): return len(self._idx) def __blank_body__(self): ## TODO - need a simpler one here body = {} for h in self.columns: body[h] = [] return body def insert(self,loc,column,val): ## FIXME - this is the only function we have that mutates - could effect older objects self._columns.insert(loc,column) self._data[column] = [ val for i in range(0,len(self)) ] self.shape = (len(self),len(self._columns)) def apply(self,func): new_data = {} for c in self._columns: new_data[c] = [ func(d) for d in self._data[c] ] return DataFrame(self, data=new_data) def set_index(self,index): return DataFrame(self, sort=index) def dropna(self,**kwargs): new_idx = [i for i in self._idx if all([self._data[c][i] != None for c in self.columns])] if kwargs is not None: if "inplace" in kwargs and kwargs["inplace"] == True: self._idx = new_idx return self return DataFrame(self, idx=new_idx) def sort_values(self,by,ascending=True): new_idx = sorted(self._idx,key=lambda i: self._data[by][i],reverse=(not ascending)) return DataFrame(self, idx=new_idx) def groupby(self,by): return GroupBy(self,by) def to_js(self): body = {} for c in self._columns: body[c] = [self._data[c][i] for i in self._idx] return { "head":self._columns, "body":body, "length":len(self._idx), "sort": self._sort } def describe(self): funcs = ["count","mean","std","min","25","50","75","max"] data = { "_id": funcs } columns = [ c for c in self.columns if self[c].isnumeric() ] sort = "_id" idx = range(0,len(funcs)) for c in columns: d = sorted(self[c].dropna().tolist()) l = len(d) mean = sum(d)/l std = sqrt(sum([ pow(mean - val, 2) for val in d ])/(l-1)) _min = d[0] _25 = d[l/4] _50 = d[l/2] _75 = d[l*3/4] _max = d[l-1] data[c] = [ l, mean, std, _min, _25, _50, _75, _max ] return DataFrame(data, columns=["_id"] + columns, sort=sort, idx=idx) def head(self, n=5): return DataFrame(self, idx=self._idx[0:n]) def tail(self, n=5): return DataFrame(self, idx=self._idx[-n:]) def record(self, i): return Record(self,i) def iterrows(self): return [ (i, Record(self,i)) for i in range(0,len(self))].__iter__() class GroupBy: def __init__(self, data, by): self.groups = {} for i in range(0, len(data)): v = data.body[by][i] if not v in self.groups: self.groups[v] = data.select(by,v) def __iter__(self): for k in self.groups: yield (k,self.groups[k]) class Cache: csv = {} def read_csv(filename, header=None, names=None): import js # pandas defaults `header` to 0 (row to be treated as a header) # if `names` is specified, however, we use that if header is None and names is None: header = 0 if header is None and names is not None: header = names key = str([filename,header,names]) if key in Cache.csv: return DataFrame.from_data(Cache.csv[key]) Cache.csv[key] = json.loads(str(js.globals.parse_raw_data(filename,header,names))) return DataFrame.from_data(Cache.csv[key])
solutions/problem_006.py
ksvr444/daily-coding-problem
1,921
12628712
<reponame>ksvr444/daily-coding-problem class Node: def __init__(self, data): self.data = data self.both = id(data) def __repr__(self): return str(self.data) a = Node("a") b = Node("b") c = Node("c") d = Node("d") e = Node("e") # id_map simulates object pointer values id_map = dict() id_map[id("a")] = a id_map[id("b")] = b id_map[id("c")] = c id_map[id("d")] = d id_map[id("e")] = e class LinkedList: def __init__(self, node): self.head = node self.tail = node self.head.both = 0 self.tail.both = 0 def add(self, element): self.tail.both ^= id(element.data) element.both = id(self.tail.data) self.tail = element def get(self, index): prev_node_address = 0 result_node = self.head for i in range(index): next_node_address = prev_node_address ^ result_node.both prev_node_address = id(result_node.data) result_node = id_map[next_node_address] return result_node.data llist = LinkedList(c) llist.add(d) llist.add(e) llist.add(a) assert llist.get(0) == "c" assert llist.get(1) == "d" assert llist.get(2) == "e" assert llist.get(3) == "a"
server/backend/app/utils.py
jakuta-tech/TinyCheck
2,054
12628746
<filename>server/backend/app/utils.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- import yaml import sys import os from functools import reduce def read_config(path): """ Read a value from the configuration :return: value (it can be any type) """ dir = "/".join(sys.path[0].split("/")[:-2]) config = yaml.load(open(os.path.join(dir, "config.yaml"), "r"), Loader=yaml.SafeLoader) return reduce(dict.get, path, config) def write_config(cat, key, value): """ Write a new value in the configuration :return: bool, operation status """ try: dir = "/".join(sys.path[0].split("/")[:-2]) config = yaml.load(open(os.path.join(dir, "config.yaml"), "r"), Loader=yaml.SafeLoader) config[cat][key] = value with open(os.path.join(dir, "config.yaml"), "w") as yaml_file: yaml_file.write(yaml.dump(config, default_flow_style=False)) return True except: return False
indra/sources/gnbr/processor.py
johnbachman/belpy
136
12628747
<filename>indra/sources/gnbr/processor.py """This module contains the processor for GNBR. There are several, each corresponding to different kinds of interactions.""" import re import itertools as it from typing import List from copy import deepcopy import pandas as pd from indra.statements import * from indra.databases import mesh_client from indra.ontology.bio import bio_ontology from indra.ontology.standardize import get_standard_agent gene_gene_stmt_mappings = { 'V+': Activation, 'E+': IncreaseAmount, 'Q': IncreaseAmount, 'H': Complex } chem_gene_stmt_mappings = { 'A+': Activation, 'A-': Inhibition, 'N': Inhibition, 'B': Complex, 'E-': DecreaseAmount } gene_disease_stmt_mappings = { 'Te': Inhibition, 'G': Activation } chem_disease_stmt_mappings = { 'T': Inhibition, 'C': Inhibition, 'Pr': Inhibition, 'Pa': Inhibition } cheby_pattern = re.compile(r'^CHEBI:(\d+)$') mesh_pattern = re.compile(r'^MESH:([CD]\d+)$') mesh_no_prefix_pattern = re.compile(r'^[CD]\d+$') entrez_pattern = re.compile(r'^(\d+)$') entrez_with_tax_pattern = re.compile(r'^(\d+)\(Tax:(\d+)\)$') omim_pattern = re.compile(r'^OMIM:(\d+)$') omim_no_prefix_pattern = re.compile(r'^(\d+)$') class GnbrProcessor: """A processor for interactions in the GNBR dataset. Parameters ---------- df1 : Dataframe of dependency paths and themes. df2 : Dataframe of dependency paths and agents. first_type : The type of the first entity in the data frame. second_type : The type of the second entity in the data frame. """ def __init__(self, df1: pd.DataFrame, df2: pd.DataFrame, first_type: str, second_type: str, indicator_only: bool = True) -> None: self.df1 = df1 self.df2 = df2 self.df2.columns = ['id', 'sentence_num', 'nm_1_form', 'nm_1_loc', 'nm_2_form', 'nm_2_loc', 'nm_1_raw', 'nm_2_raw', 'nm_1_dbid', 'nm_2_dbid', '1_type', '2_type', 'path', 'sentence'] self.df2['path'] = df2['path'].str.lower() self.first_type = first_type self.second_type = second_type self.indicator_only = indicator_only self.statements = [] def extract_stmts(self): """Extend the statements list with mappings.""" if self.first_type == 'gene' and self.second_type == 'gene': statement_mappings = gene_gene_stmt_mappings elif self.first_type == 'chemical' and self.second_type == 'gene': statement_mappings = chem_gene_stmt_mappings elif self.first_type == 'gene' and self.second_type == 'disease': statement_mappings = gene_disease_stmt_mappings else: statement_mappings = chem_disease_stmt_mappings for rel_type, stmt_type in statement_mappings.items(): constraint = (self.df1[rel_type] > 0) if self.indicator_only: constraint &= (self.df1['%s.ind' % rel_type] == 1) df_part = self.df1[constraint] self.statements.extend(self._extract_stmts_by_class(df_part, stmt_type)) def _extract_stmts_by_class(self, df, stmt_class): """Make a given class of Statements from a subset of the dataframe. Parameters ---------- df : Filtered dataframe to one particular relationship theme. stmt_class : Statement type matched to the type of the filtered dataframe. Yields ------ stmt : Statements produced from the dataframes. """ df_joint = df.join(self.df2.set_index('path'), on='path') for index, row in df_joint.iterrows(): if self.first_type == 'gene': first_agents = get_std_gene(row['nm_1_raw'], row['nm_1_dbid']) else: first_agents = get_std_chemical(row['nm_1_raw'], row['nm_1_dbid']) if self.second_type == 'gene': second_agents = get_std_gene(row['nm_2_raw'], row['nm_2_dbid']) else: second_agents = get_std_disease(row['nm_2_raw'], row['nm_2_dbid']) evidence = get_evidence(row) for first_agent, second_agent in it.product(first_agents, second_agents): if stmt_class == Complex: stmt = stmt_class([first_agent, second_agent], evidence=deepcopy(evidence)) else: stmt = stmt_class(first_agent, second_agent, evidence=deepcopy(evidence)) yield stmt def get_std_gene(raw_string: str, db_id: str) -> List[Agent]: """Standardize gene names. Parameters ---------- raw_string : Name of the agent in the GNBR dataset. db_id : Entrez identifier of the agent. Returns ------- : A standardized Agent object. """ # If neither a name nor a DB ID is given, we return empty if pd.isna(db_id) and pd.isna(raw_string): return [] # We add TEXT to db_refs if there is a raw_string db_refs = {'TEXT': raw_string} if not pd.isna(raw_string) else {} # In this case we know that there is no db_id but we have raw_string that # we can use as a name and we return with that agent if pd.isna(db_id): return [Agent(raw_string, db_refs=db_refs)] # Otherwise we have a db_id that we can process else: agents = [] for single_db_id in db_id.split(';'): single_db_refs = deepcopy(db_refs) name = raw_string if not pd.isna(raw_string) else single_db_id if entrez_pattern.match(single_db_id): single_db_refs['EGID'] = single_db_id else: match = entrez_with_tax_pattern.match(single_db_id) if not match: raise ValueError('Unexpected gene identifier: %s' % single_db_id) single_db_refs['EGID'] = match.groups()[0] agents.append(get_standard_agent(name, single_db_refs)) return agents def get_std_chemical(raw_string: str, db_id: str) -> List[Agent]: """Standardize chemical names. Parameters ---------- raw_string : Name of the agent in the GNBR dataset. db_id : Entrez identifier of the agent. Returns ------- : A standardized Agent object. """ # If neither a name nor a DB ID is given, we return empty if pd.isna(db_id) and pd.isna(raw_string): return [] # We add TEXT to db_refs if there is a raw_string db_refs = {'TEXT': raw_string} if not pd.isna(raw_string) else {} # In this case we know that there is no db_id but we have raw_string that # we can use as a name and we return with that agent if pd.isna(db_id): return [Agent(raw_string, db_refs=db_refs)] # Otherwise we have a db_id that we can process else: agents = [] for single_db_id in db_id.split('|'): single_db_refs = deepcopy(db_refs) name = raw_string if not pd.isna(raw_string) else single_db_id if cheby_pattern.match(single_db_id): single_db_refs['CHEBI'] = single_db_id elif mesh_pattern.match(single_db_id): mesh_id = single_db_id[5:] # There are often non-existent MESH IDs here for some reason # that can be filtered out with this technique if not mesh_client.get_mesh_name(mesh_id, offline=True): continue single_db_refs['MESH'] = mesh_id elif mesh_no_prefix_pattern.match(single_db_id): mesh_id = single_db_id # There are often non-existent MESH IDs here for some reason # that can be filtered out with this technique if not mesh_client.get_mesh_name(mesh_id, offline=True): continue single_db_refs['MESH'] = single_db_id else: raise ValueError('Unexpected chemical identifier: %s' % single_db_id) agents.append(get_standard_agent(name, single_db_refs)) return agents def get_std_disease(raw_string: str, db_id: str) -> List[Agent]: """Standardize disease names. Parameters ---------- raw_string : Name of the agent in the GNBR dataset. db_id : Entrez identifier of the agent. Returns ------- : A standardized Agent object. """ agents = [] db_refs = {'TEXT': raw_string} if not pd.isna(raw_string) else {} name = raw_string if not pd.isna(raw_string) else db_id if pd.isna(db_id): pass elif omim_no_prefix_pattern.match(db_id): db_refs['OMIM'] = db_id elif omim_pattern.match(db_id): db_refs['OMIM'] = db_id[5:] elif mesh_no_prefix_pattern.match(db_id): db_refs['MESH'] = db_id elif mesh_pattern.match(db_id): db_refs['MESH'] = db_id[5:] else: raise ValueError('Unexpected disease identifier: %s' % db_id) agents.append(get_standard_agent(name, db_refs)) return agents def get_evidence(row: pd.Series) -> Evidence: """Return evidence for a Statement. Parameters ---------- row : Currently investigated row of the dataframe. Returns ------- : Evidence object with the source_api, the PMID and the original sentence. """ pmid = str(row['id']) if row['id'] else None evidence = Evidence(source_api='gnbr', pmid=pmid, text=row['sentence'], text_refs={'PMID': pmid}) return evidence
examples/fall_back_on_default.py
snuderl/apischema
118
12628750
from dataclasses import dataclass, field from pytest import raises from apischema import ValidationError, deserialize from apischema.metadata import fall_back_on_default @dataclass class Foo: bar: str = "bar" baz: str = field(default="baz", metadata=fall_back_on_default) with raises(ValidationError): deserialize(Foo, {"bar": 0}) assert deserialize(Foo, {"bar": 0}, fall_back_on_default=True) == Foo() assert deserialize(Foo, {"baz": 0}) == Foo()
custom_components/unifiprotect/button.py
mjdyson/unifiprotect
546
12628763
<filename>custom_components/unifiprotect/button.py<gh_stars>100-1000 """Support for Ubiquiti's UniFi Protect NVR.""" from __future__ import annotations import logging from typing import Callable, Sequence from homeassistant.components.button import ButtonDeviceClass, ButtonEntity from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant, callback from homeassistant.helpers.entity import Entity from pyunifiprotect.data.base import ProtectAdoptableDeviceModel from .const import DEVICES_THAT_ADOPT, DOMAIN from .data import ProtectData from .entity import ProtectDeviceEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: Callable[[Sequence[Entity]], None], ) -> None: """Discover devices on a UniFi Protect NVR.""" data: ProtectData = hass.data[DOMAIN][entry.entry_id] async_add_entities( [ ProtectButton( data, device, ) for device in data.get_by_types(DEVICES_THAT_ADOPT) ] ) class ProtectButton(ProtectDeviceEntity, ButtonEntity): """A Ubiquiti UniFi Protect Reboot button.""" def __init__( self, data: ProtectData, device: ProtectAdoptableDeviceModel, ): """Initialize an UniFi camera.""" super().__init__(data, device) self._attr_name = f"{self.device.name} Reboot Device" self._attr_entity_registry_enabled_default = False self._attr_device_class = ButtonDeviceClass.RESTART @callback async def async_press(self) -> None: """Press the button.""" _LOGGER.debug("Rebooting %s with id %s", self.device.model, self.device.id) await self.device.reboot()
app/quicktime.py
IDAPluginProject/ida-minsc
211
12628768
<reponame>IDAPluginProject/ida-minsc '''QuickTime stuff''' EXPORT = [ 'nameDispatch', 'nameAllDispatches' ] import idc,idautils import function,database import app def nextMnemonic(ea, mnem, maxaddr=0xc0*0x1000000): res = idc.print_insn_mnem(ea) if res == "": return idc.BADADDR if res == mnem: return ea return nextMnemonic( idc.next_head(ea, maxaddr), mnem, maxaddr ) def prevMnemonic(ea, mnem, minaddr=0): res = idc.print_insn_mnem(ea) #print("%x -> %s"% (ea, res)) if res == "": return idc.BADADDR if res == mnem: return ea return prevMnemonic( idc.prev_head(ea, minaddr), mnem, minaddr ) def getMinorDispatchTableAddress(ea): """find address of last lea in function""" start = idc.get_func_attr(ea, idc.FUNCATTR_START) end = idc.prev_head( idc.get_func_attr(ea, idc.FUNCATTR_END), start) res = prevMnemonic(end, 'lea', start) assert res != idc.BADADDR return idc.get_operand_value(res, 1) def getMajorDispatchTableAddress(): """find quicktime major dispatch table""" res = idc.get_name_ea_simple('theQuickTimeDispatcher') res = nextMnemonic(res, 'lea', idc.get_func_attr(res, idc.FUNCATTR_END)) assert res != idc.BADADDR return idc.get_operand_value(res, 1) def resolveDispatcher(code): major = (code & 0x00ff0000) >> 0x10 minor = code & 0xff00ffff res = getMajorDispatchTableAddress() + major*8 majorFlag = idc.get_wide_dword(res) majorAddress = idc.get_wide_dword(res+4) if majorFlag != 0: return majorAddress + (minor*0x10) #print("%x"% getMinorDispatchTableAddress(majorAddress)) #print("resolved by 0x%x(%x)"% (majorAddress, minor)) return majorAddress def getDispatchCode(ea): # get dispatch code out of an instruction first, second = (idc.print_operand(ea, 0), idc.get_operand_value(ea, 1)) if first == 'eax': return second raise ValueError("Search resulted in address %08x, but instruction '%s' does fulfill requested constraints"% (ea, idc.print_insn_mnem(ea))) def FindLastAssignment(ea, register): start,end = database.guessrange(ea) while ea > start: ea = database.prev(ea) m = idc.print_insn_mnem(ea) r = idc.print_operand(ea, 0) if m == 'mov' and r == register: return ea continue raise ValueError('FindLastAssignment(0x%x, %s) Found no matches'% (ea, register)) def nameDispatch(address): '''Name the dispatch function at the specified address in quicktime.qts''' try: start, end = function.range(address) except ValueError: print('%x making a function'% address) function.make(address) start, end = function.range(address) try: ea = FindLastAssignment(address, 'eax') code = getDispatchCode(ea) except ValueError: print('%08x - Unable to find dispatch code'% address) return ofs = database.getoffset(start) function.setName(start, 'dispatch_%08x_%x'% (code, ofs)) function.tag(start, 'code', hex(code)) function.tag(start, 'group', 'dispatch') try: function.tag(start, 'realname', app.__quicktime.qt_fv_list[code]) except KeyError: pass try: function.tag(start, 'address', hex(resolveDispatcher(code)), repeatable=True) except: pass def nameAllDispatches(ea): '''Using the address of {theQuickTimeDispatcher}, name and tag all discovered dispatch calls in quicktime.qts''' for address in idautils.DataRefsTo(ea): nameDispatch(address) return
autovideo/utils/axolotl_utils.py
datamllab/autovideo
233
12628784
<reponame>datamllab/autovideo import os import uuid import shutil import pathlib import pandas as pd from d3m.metadata.problem import TaskKeyword, PerformanceMetric from d3m.metadata import base as metadata_base from axolotl.utils import pipeline as pipeline_utils from axolotl.utils import data_problem from axolotl.backend.simple import SimpleRunner def generate_classification_dataset_problem(df, target_index, media_dir): if not os.path.isabs(medVia_dir): media_dir = os.path.abspath(media_dir) dataset, problem = data_problem.generate_dataset_problem(df, target_index=target_index, media_dir=media_dir, performance_metrics=[{'metric': PerformanceMetric.ACCURACY}], task_keywords=[TaskKeyword.CLASSIFICATION,]) return dataset, problem def generate_dataset(df, target_index, media_dir): if not os.path.isabs(media_dir): media_dir = os.path.abspath(media_dir) dataset = data_problem.import_input_data(df, y=None, target_index=target_index, media_dir=media_dir) return dataset def generate_classification_problem(dataset): problem = data_problem.generate_problem_description(dataset, performance_metrics=[{'metric': PerformanceMetric.ACCURACY}], task_keywords=[TaskKeyword.CLASSIFICATION,]) return problem def fit(train_dataset, train_media_dir, target_index, pipeline): train_dataset = generate_dataset(train_dataset, target_index, train_media_dir) problem = generate_classification_problem(train_dataset) # Start backend backend = SimpleRunner(random_seed=0) # Fit pipeline_result = backend.fit_pipeline(problem, pipeline, [train_dataset]) if pipeline_result.status == "ERRORED": raise pipeline_result.error # Fetch the runtime and dataaset metadata fitted_pipeline = { 'runtime': backend.fitted_pipelines[pipeline_result.fitted_pipeline_id], 'dataset_metadata': train_dataset.metadata } return pipeline_result.output, fitted_pipeline def produce(test_dataset, test_media_dir, target_index, fitted_pipeline): test_dataset['label'] = -1 test_dataset = generate_dataset(test_dataset, target_index, test_media_dir) test_dataset.metadata = fitted_pipeline['dataset_metadata'] metadata_dict = test_dataset.metadata.query(('learningData', metadata_base.ALL_ELEMENTS, 1)) metadata_dict = {key: metadata_dict[key] for key in metadata_dict} metadata_dict['location_base_uris'] = [pathlib.Path(os.path.abspath(test_media_dir)).as_uri()+'/'] test_dataset.metadata = test_dataset.metadata.update(('learningData', metadata_base.ALL_ELEMENTS, 1), metadata_dict) # Start backend backend = SimpleRunner(random_seed=0) _id = str(uuid.uuid4()) backend.fitted_pipelines[_id] = fitted_pipeline['runtime'] # Produce pipeline_result = backend.produce_pipeline(_id, [test_dataset]) if pipeline_result.status == "ERRORED": raise pipeline_result.error return pipeline_result.output def fit_produce(train_dataset, train_media_dir, test_dataset, test_media_dir, target_index, pipeline): _, fitted_pipeline = fit(train_dataset, train_media_dir, target_index, pipeline) output = produce(test_dataset, test_media_dir, target_index, fitted_pipeline) return output def produce_by_path(fitted_pipeline, video_path): tmp_dir = os.path.join("tmp", str(uuid.uuid4())) os.makedirs(tmp_dir, exist_ok=True) video_name = video_path.split('/')[-1] shutil.copy(video_path, tmp_dir) dataset = { 'd3mIndex': [0], 'video': [video_name] } dataset = pd.DataFrame(data=dataset) # Produce predictions = produce(test_dataset=dataset, test_media_dir=tmp_dir, target_index=2, fitted_pipeline=fitted_pipeline) shutil.rmtree(tmp_dir) return predictions
gff/BCBio/__init__.py
bgruening/bcbb
339
12628787
"""BCBio module """
kitti360scripts/devkits/convertOxtsPose/python/data.py
carloradice/kitti360Scripts
214
12628800
<reponame>carloradice/kitti360Scripts import os import numpy as np def loadOxtsData(oxts_dir, frames=None): ''' reads GPS/IMU data from files to memory. requires base directory (=sequence directory as parameter). if frames is not specified, loads all frames. ''' ts = [] if frames==None: ts = loadTimestamps(oxts_dir) oxts = [] for i in range(len(ts)): if len(ts[i]): try: oxts.append(np.loadtxt(os.path.join(oxts_dir, 'data', '%010d.txt'%i))) except: oxts.append([]) else: oxts.append([]) else: if len(frames)>1: k = 1 oxts = [] for i in range(len(frames)): try: oxts.append(np.loadtxt(os.path.join(oxts_dir, 'data', '%010d.txt'%k))) except: oxts.append([]) k=k+1 # no list for single value else: file_name = os.path.join(oxts_dir, 'data', '%010d.txt'%k) try: oxts = np.loadtxt(file_name) except: oxts = [] return oxts,ts def loadTimestamps(ts_dir): ''' load timestamps ''' with open(os.path.join(ts_dir, 'timestamps.txt')) as f: data=f.read().splitlines() ts = [l.split(' ')[0] for l in data] return ts def loadPoses (pos_file): ''' load system poses ''' data = np.loadtxt(pos_file) ts = data[:, 0].astype(np.int) poses = np.reshape(data[:, 1:], (-1, 3, 4)) poses = np.concatenate((poses, np.tile(np.array([0, 0, 0, 1]).reshape(1,1,4),(poses.shape[0],1,1))), 1) return ts, poses
DeepBind/custom_keras_objects.py
Luma-1994/lama
137
12628805
import tensorflow as tf OBJECTS = {"tf": tf}
Training Utility/somatictrainer/util.py
ZackFreedman/Somatic
328
12628828
import logging import time import numpy as np import quaternion logging.basicConfig(level=logging.INFO) def lookRotation(forward, up): """ Quaternion that rotates world to face Forward, while keeping orientation dictated by Up See https://answers.unity.com/questions/467614/what-is-the-source-code-of-quaternionlookrotation.html :type forward: np.array :type up: np.array """ up /= np.linalg.norm(up) vector = forward / np.linalg.norm(forward) vector2 = np.cross(up, vector) vector2 /= np.linalg.norm(vector2) vector3 = np.cross(vector, vector2) m00 = vector2[0] m01 = vector2[1] m02 = vector2[2] m10 = vector3[0] m11 = vector3[1] m12 = vector3[2] m20 = vector[0] m21 = vector[1] m22 = vector[2] num8 = (m00 + m11) + m22 output = quaternion.quaternion() if num8 > 0: num = np.sqrt(num8 + 1) output.w = num / 2 num = 0.5 / num output.x = (m12 - m21) * num output.y = (m20 - m02) * num output.z = (m01 - m10) * num elif m00 >= m11 and m00 >= m22: num7 = np.sqrt((m00 + 1) - m11 - m22) num4 = 0.5 / num7 output.x = num7 / 2 output.y = (m01 + m10) * num4 output.z = (m02 + m20) * num4 output.w = (m12 - m21) * num4 elif m11 > m22: num6 = np.sqrt(m11 + 1 - m00 - m22) num3 = 0.5 / num6 output.x = (m10 + m01) * num3 output.y = num6 / 2 output.z = (m21 + m12) * num3 output.w = (m20 - m02) * num3 else: num5 = np.sqrt(m22 + 1 - m00 - m11) num2 = 0.5 / num5 output.x = (m20 + m02) * num2 output.y = (m21 + m12) * num2 output.z = num5 / 2 output.w = (m01 - m10) * num2 return output def custom_interpolate(value, in_min, in_max, out_min, out_max, clamp=False): interpolated = (value - in_min) * (out_max - out_min) / (in_max - in_min) + out_min if clamp: return np.clip(interpolated, out_min, out_max) else: return interpolated def custom_euler(q): # h = np.arctan2(np.square(q.x) - np.square(q.y) - np.square(q.z) + np.square(q.w), 2 * (q.x * q.y + q.z * q.w)) # h = np.arctan2(2 * (q.x * q.y + q.z * q.w), np.square(q.x) - np.square(q.y) - np.square(q.z) + np.square(q.w)) # p = np.arcsin(np.clip(-2 * (q.x * q.z - q.y * q.w), -1, 1)) # r = np.arctan2(np.square(q.z) + np.square(q.w) - np.square(q.x) - np.square(q.y), 2 * (q.x * q.w + q.y * q.z)) # r = np.arctan2(2 * (q.x * q.w + q.y * q.z), np.square(q.z) + np.square(q.w) - np.square(q.x) - np.square(q.y)) h = np.arctan2(2 * (q.w * q.z + q.x * q.y), 1 - 2 * (np.square(q.y) + np.square(q.z))) p = np.arcsin(2 * (q.w * q.y - q.z * q.x)) r = np.arctan2(2 * (q.w * q.x + q.y * q.z), 1 - 2 * (np.square(q.x) + np.square(q.z))) if h < 0: h += 2 * np.pi return h, p, r def custom_euler_to_quat(yaw, pitch, roll): cy = np.cos(yaw * 0.5) sy = np.sin(yaw * 0.5) cp = np.cos(pitch * 0.5) sp = np.sin(pitch * 0.5) cr = np.cos(roll * 0.5) sr = np.sin(roll * 0.5) q = quaternion.quaternion() q.w = cr * cp * cy + sr * sp * sy q.x = sr * cp * cy - cr * sp * sy q.y = cr * sp * cy + sr * cp * sy q.z = cr * cp * sy - sr * sp * cy return q def process_samples(samples: np.array, desired_length): logger = logging.getLogger('process_samples()') benchmark = time.perf_counter() def clock_that_step(description, benchmark): logger.debug('{} took {:.0f} ms'.format(description.capitalize(), (time.perf_counter() - benchmark) * 1000)) return time.perf_counter() if not len(samples) > 1: raise AttributeError('Sample list is empty') logger.debug('Normalizing:\n{0!r}'.format(samples)) # Strip redundant bearings unique_bearings = [samples[0]] for index, bearing in enumerate(samples): if not index: continue if np.isclose(bearing[0], samples[index - 1, 0]) and np.isclose(bearing[1], samples[index - 1, 1]): logger.debug('Discarding redundant point ({:.3f}, {:.3f})'.format(bearing[0], bearing[1])) else: unique_bearings.append(bearing) samples = np.array(unique_bearings) benchmark = clock_that_step('Stripping dupes', benchmark) # Remap standardized bearings so gestures are the same size yaw_min = min(samples[:, 0]) yaw_max = max(samples[:, 0]) pitch_min = min(samples[:, 1]) pitch_max = max(samples[:, 1]) magnitude = np.linalg.norm([yaw_max - yaw_min, pitch_max - pitch_min]) fudge_factor = 1 / 10 logger.debug('Yaw min: {:.3f} Pitch min: {:.3f} Yaw max: {:.3f} Pitch max: {:.3f} Trim length: {:.3f}'.format( yaw_min, pitch_min, yaw_max, pitch_max, magnitude * fudge_factor)) early_crap_count = 0 for i in range(1, len(samples)): if np.linalg.norm([samples[i, 0] - samples[0, 0], samples[i, 1] - samples[0, 1]]) > magnitude * fudge_factor: logger.debug('Done stripping leading points - ({:.3f}, {:.3f}) is far enough from start point ' '({:.3f}, {:.3f}). Had to be {:.3f} units away, and is {:.3f}.'.format( samples[i, 0], samples[i, 1], samples[0, 0], samples[0, 1], magnitude * fudge_factor, np.linalg.norm([samples[i, 0] - samples[0, 0], samples[i, 1] - samples[0, 1]]))) break else: logger.debug('Stripping leading point ({:.3f}, {:.3f}) - too close to start point ({:.3f}, {:.3f}). ' 'Must be {:.3f} units away, but is {:.3f}.'.format( samples[i, 0], samples[i, 1], samples[0, 0], samples[0, 1], magnitude * fudge_factor, np.linalg.norm([samples[i, 0] - samples[0, 0], samples[i, 1] - samples[0, 1]]))) early_crap_count += 1 start_point = samples[0] trimmed = samples[early_crap_count + 1:].tolist() samples = np.array([start_point] + trimmed) benchmark = clock_that_step('Trimming early slop', benchmark) # logger.debug('Early crap stripped: {}'.format(samples)) late_crap_count = 0 for i in range(2, len(samples)): if np.linalg.norm([samples[-i, 0] - samples[- 1, 0], samples[-i, 1] - samples[- 1, 1]]) > magnitude * fudge_factor: logger.debug('Done stripping trailing points - ({:.3f}, {:.3f}) is far enough from endpoint ' '({:.3f}, {:.3f}). Had to be {:.3f} units away, and is {:.3f}.'.format( samples[-i, 0], samples[-i, 1], samples[-1, 0], samples[-1, 1], magnitude * fudge_factor, np.linalg.norm([samples[-i, 0] - samples[- 1, 0], samples[-i, 1] - samples[- 1, 1]]))) break else: logger.debug('Stripping trailing point ({:.3f}, {:.3f}) - too close to endpoint ({:.3f}, {:.3f}). ' 'Must be {:.3f} units away, but is {:.3f}.'.format( samples[-i, 0], samples[-i, 1], samples[-1, 0], samples[-1, 1], magnitude * fudge_factor, np.linalg.norm([samples[-i, 0] - samples[- 1, 0], samples[-i, 1] - samples[- 1, 1]]))) late_crap_count += 1 if late_crap_count: endpoint = samples[-1] trimmed = samples[:(late_crap_count + 1) * -1].tolist() samples = np.array(trimmed + [endpoint]) logger.debug('Late crap stripped: {}'.format(samples)) benchmark = clock_that_step('Trimming late slop', benchmark) # Standardize bearings 'curve' to evenly-spaced points cumulative_segment_lengths = [0] for index, sample in enumerate(samples): if index == 0: continue segment_length = np.linalg.norm([sample[0] - samples[index - 1][0], sample[1] - samples[index - 1][1]]) cumulative_segment_lengths.append(segment_length + cumulative_segment_lengths[index - 1]) logger.debug('Segment ending in point {} length {:.3f} Cumul: {:.3f}'.format( index, segment_length, cumulative_segment_lengths[index])) curve_length = cumulative_segment_lengths[-1] target_segment_length = curve_length / (desired_length - 1) benchmark = clock_that_step('Calculating segment lengths', benchmark) # logger.debug( # 'Segment lengths: {} - {} segments, {} points'.format(segment_lengths, len(segment_lengths), len(samples))) logger.debug('Total length: {:.2f} Target segment length: {:.4f}'.format(curve_length, target_segment_length)) standardized_bearings = [samples[0]] first_longer_sample = 0 for i in range(1, desired_length): target_length = i * target_segment_length logger.debug('Looking to place a point at {:.3f} units along curve'.format(target_length)) if cumulative_segment_lengths[first_longer_sample] > target_length: logger.debug('Previous point at {:.3f} units along curve still works'.format( cumulative_segment_lengths[first_longer_sample])) else: while cumulative_segment_lengths[first_longer_sample] < target_length \ and not np.isclose(cumulative_segment_lengths[first_longer_sample], target_length): logger.debug( 'Cumulative length of {:.3f} is too short - advancing to segment ending at point {}'.format( cumulative_segment_lengths[first_longer_sample], first_longer_sample)) first_longer_sample += 1 if first_longer_sample >= len(cumulative_segment_lengths): raise AttributeError("Entire line isn't long enough?!") low_point = samples[first_longer_sample - 1] high_point = samples[first_longer_sample] position_along_segment = ((target_length - cumulative_segment_lengths[first_longer_sample - 1]) / (cumulative_segment_lengths[first_longer_sample] - cumulative_segment_lengths[first_longer_sample - 1])) standardized_point_x = low_point[0] + position_along_segment * (high_point[0] - low_point[0]) standardized_point_y = low_point[1] + position_along_segment * (high_point[1] - low_point[1]) standardized_point = [standardized_point_x, standardized_point_y] logger.debug('Placed point {:.3f} units ({:.0f}%) along the {:.3f} line between {} and {} ==> {}' .format(target_length - cumulative_segment_lengths[first_longer_sample - 1], position_along_segment * 100, cumulative_segment_lengths[first_longer_sample] - cumulative_segment_lengths[first_longer_sample - 1], low_point, high_point, standardized_point)) standardized_bearings.append(standardized_point) logger.debug('Done interpolating. Scaling into 0-1 fractional dims') benchmark = clock_that_step('Interpolation', benchmark) # Move lowest and leftest points to the edge standardized_bearings = [[y - yaw_min, p - pitch_min] for y, p in standardized_bearings] # Rescale, preserving proportions total_width = yaw_max - yaw_min total_height = pitch_max - pitch_min standardized_bearings = np.array([[custom_interpolate(y, 0, max(total_width, total_height), 0, 1), custom_interpolate(p, 0, max(total_width, total_height), 0, 1)] for y, p in standardized_bearings]) clock_that_step('Resizing', benchmark) return standardized_bearings def wrapped_delta(old, new): delta = old - new if delta > np.pi: delta -= 2 * np.pi elif delta < -np.pi: delta += 2 * np.pi return delta def bearing_delta(old, new): return np.array([wrapped_delta(old[0], new[0]), wrapped_delta(old[1], new[1])]) # This is taken from https://github.com/pyserial/pyserial/issues/216#issuecomment-369414522 class ReadLine: def __init__(self, s): self.buf = bytearray() self.s = s # Serial object def readline(self): timeout = self.s.timeout self.s.timeout = 0.1 i = self.buf.find(b"\n") if i >= 0: r = self.buf[:i + 1] self.buf = self.buf[i + 1:] self.s.timeout = timeout return r while True: i = max(1, min(2048, self.s.in_waiting)) data = self.s.read(i) i = data.find(b"\n") if i >= 0: r = self.buf + data[:i + 1] self.buf[0:] = data[i + 1:] self.s.timeout = timeout return r else: self.buf.extend(data)
transferLearning_MoleculeNet_PPI/bio/pretrain_graphcl.py
Shen-Lab/GraphCL
275
12628832
<reponame>Shen-Lab/GraphCL<gh_stars>100-1000 import argparse from loader import BioDataset_aug from torch_geometric.data import DataLoader from torch_geometric.nn.inits import uniform from torch_geometric.nn import global_mean_pool import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import numpy as np from model import GNN from sklearn.metrics import roc_auc_score import pandas as pd from copy import deepcopy def cycle_index(num, shift): arr = torch.arange(num) + shift arr[-shift:] = torch.arange(shift) return arr class Discriminator(nn.Module): def __init__(self, hidden_dim): super(Discriminator, self).__init__() self.weight = nn.Parameter(torch.Tensor(hidden_dim, hidden_dim)) self.reset_parameters() def reset_parameters(self): size = self.weight.size(0) uniform(size, self.weight) def forward(self, x, summary): h = torch.matmul(summary, self.weight) return torch.sum(x*h, dim = 1) class graphcl(nn.Module): def __init__(self, gnn): super(graphcl, self).__init__() self.gnn = gnn self.pool = global_mean_pool self.projection_head = nn.Sequential(nn.Linear(300, 300), nn.ReLU(inplace=True), nn.Linear(300, 300)) def forward_cl(self, x, edge_index, edge_attr, batch): x = self.gnn(x, edge_index, edge_attr) x = self.pool(x, batch) x = self.projection_head(x) return x def loss_cl(self, x1, x2): T = 0.1 batch_size, _ = x1.size() x1_abs = x1.norm(dim=1) x2_abs = x2.norm(dim=1) sim_matrix = torch.einsum('ik,jk->ij', x1, x2) / torch.einsum('i,j->ij', x1_abs, x2_abs) sim_matrix = torch.exp(sim_matrix / T) pos_sim = sim_matrix[range(batch_size), range(batch_size)] loss = pos_sim / (sim_matrix.sum(dim=1) - pos_sim) loss = - torch.log(loss).mean() return loss def train(args, model, device, dataset, optimizer): dataset.aug = "none" dataset1 = dataset.shuffle() dataset2 = deepcopy(dataset1) dataset1.aug, dataset1.aug_ratio = args.aug1, args.aug_ratio1 dataset2.aug, dataset2.aug_ratio = args.aug2, args.aug_ratio2 loader1 = DataLoader(dataset1, batch_size=args.batch_size, num_workers = args.num_workers, shuffle=False) loader2 = DataLoader(dataset2, batch_size=args.batch_size, num_workers = args.num_workers, shuffle=False) model.train() train_acc_accum = 0 train_loss_accum = 0 for step, batch in enumerate(tqdm(zip(loader1, loader2), desc="Iteration")): batch1, batch2 = batch batch1 = batch1.to(device) batch2 = batch2.to(device) optimizer.zero_grad() x1 = model.forward_cl(batch1.x, batch1.edge_index, batch1.edge_attr, batch1.batch) x2 = model.forward_cl(batch2.x, batch2.edge_index, batch2.edge_attr, batch2.batch) loss = model.loss_cl(x1, x2) loss.backward() optimizer.step() train_loss_accum += float(loss.detach().cpu().item()) # acc = (torch.sum(positive_score > 0) + torch.sum(negative_score < 0)).to(torch.float32)/float(2*len(positive_score)) acc = torch.tensor(0) train_acc_accum += float(acc.detach().cpu().item()) return train_acc_accum/(step+1), train_loss_accum/(step+1) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks') parser.add_argument('--device', type=int, default=0, help='which gpu to use if any (default: 0)') parser.add_argument('--batch_size', type=int, default=256, help='input batch size for training (default: 256)') parser.add_argument('--epochs', type=int, default=100, help='number of epochs to train (default: 100)') parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 0.001)') parser.add_argument('--decay', type=float, default=0, help='weight decay (default: 0)') parser.add_argument('--num_layer', type=int, default=5, help='number of GNN message passing layers (default: 5).') parser.add_argument('--emb_dim', type=int, default=300, help='embedding dimensions (default: 300)') parser.add_argument('--dropout_ratio', type=float, default=0, help='dropout ratio (default: 0)') parser.add_argument('--JK', type=str, default="last", help='how the node features across layers are combined. last, sum, max or concat') parser.add_argument('--gnn_type', type=str, default="gin") parser.add_argument('--model_file', type = str, default = '', help='filename to output the pre-trained model') parser.add_argument('--seed', type=int, default=0, help = "Seed for splitting dataset.") parser.add_argument('--num_workers', type=int, default = 4, help='number of workers for dataset loading') parser.add_argument('--aug1', type=str, default = 'none') parser.add_argument('--aug_ratio1', type=float, default = 0.2) parser.add_argument('--aug2', type=str, default = 'none') parser.add_argument('--aug_ratio2', type=float, default = 0.2) args = parser.parse_args() torch.manual_seed(0) np.random.seed(0) device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu") if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) #set up dataset root_unsupervised = 'dataset/unsupervised' dataset = BioDataset_aug(root_unsupervised, data_type='unsupervised') print(dataset) #set up model gnn = GNN(args.num_layer, args.emb_dim, JK = args.JK, drop_ratio = args.dropout_ratio, gnn_type = args.gnn_type) model = graphcl(gnn) model.to(device) #set up optimizer optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.decay) print(optimizer) for epoch in range(1, args.epochs): print("====epoch " + str(epoch)) train_acc, train_loss = train(args, model, device, dataset, optimizer) print(train_acc) print(train_loss) if epoch % 20 == 0: torch.save(model.gnn.state_dict(), "./models_graphcl/graphcl_" + str(epoch) + ".pth") if __name__ == "__main__": main()
glasses/utils/Tracker.py
rentainhe/glasses
271
12628864
<gh_stars>100-1000 import torch.nn as nn from torch import Tensor from dataclasses import dataclass, field from typing import List @dataclass class Tracker: """This class tracks all the operations of a given module by performing a forward pass. Example: >>> import torch >>> import torch.nn as nn >>> from glasses.utils import Tracker >>> model = nn.Sequential(nn.Linear(1, 64), nn.ReLU(), nn.Linear(64,10), nn.ReLU()) >>> tr = Tracker(model) >>> tr(x) >>> print(tr.traced) # all operations >>> print('-----') >>> print(tr.parametrized) # all operations with learnable params outputs ``[Linear(in_features=1, out_features=64, bias=True), ReLU(), Linear(in_features=64, out_features=10, bias=True), ReLU()] ----- [Linear(in_features=1, out_features=64, bias=True), Linear(in_features=64, out_features=10, bias=True)]`` """ module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): has_not_submodules = ( len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) ) if has_not_submodules: self.traced.append(m) def __call__(self, x: Tensor) -> Tensor: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(x) list(map(lambda x: x.remove(), self.handles)) return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced))
setup.py
szaydel/pickledb
668
12628882
<gh_stars>100-1000 """ pickleDB -------- pickleDB is lightweight, fast, and simple database based on Python's own json module. And it's BSD licensed! pickleDB is Fun ``````````````` :: >>> import pickledb >>> db = pickledb.load('test.db', False) >>> db.set('key', 'value') >>> db.get('key') 'value' >>> db.dump() True And Easy to Install ``````````````````` :: $ pip install pickledb Links ````` * `website <https://patx.github.io/pickledb>`_ * `documentation <http://patx.github.io/pickledb/commands.html>`_ * `pypi <http://pypi.python.org/pypi/pickleDB>`_ * `github repo <https://github.com/patx/pickledb>`_ Latest Release Notes (version: 0.9) ``````````````````````````````````` * Now load() uses *'rt'* mode instead of 'rb' (0.9.2) * Change lrem(name) to *lremlist(name)* (0.9) * Add *lremvalue(name, value)* (0.9) * Add load() option to use sigterm handler or not (0.9) * All *keys* must now be strings (0.8) * All *names* for lists must now be strings (0.8) * All *names* for dicts must now be strings (0.8) * The get(key) function now returns *False* instead of None if there is no key (0.8) * Switched to Python's built in json module from simplejson (0.8.1) """ from distutils.core import setup setup(name="pickleDB", version="0.9.3", description="A lightweight and simple database using json.", long_description=__doc__, author="<NAME>", author_email="<EMAIL>", license="three-clause BSD", url="http://github.com/patx/pickledb", classifiers = [ "Programming Language :: Python", "License :: OSI Approved :: BSD License", "Intended Audience :: Developers", "Topic :: Database" ], py_modules=['pickledb'],)
python/tests/sql/test_aggregate_functions.py
andreicovaliov/incubator-sedona
747
12628887
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from shapely.geometry import Polygon from tests import csv_point_input_location, union_polygon_input_location from tests.test_base import TestBase class TestConstructors(TestBase): def test_st_envelope_aggr(self): point_csv_df = self.spark.read.format("csv").\ option("delimiter", ",").\ option("header", "false").\ load(csv_point_input_location) point_csv_df.createOrReplaceTempView("pointtable") point_df = self.spark.sql("select ST_Point(cast(pointtable._c0 as Decimal(24,20)), cast(pointtable._c1 as Decimal(24,20))) as arealandmark from pointtable") point_df.createOrReplaceTempView("pointdf") boundary = self.spark.sql("select ST_Envelope_Aggr(pointdf.arealandmark) from pointdf") coordinates = [ (1.1, 101.1), (1.1, 1100.1), (1000.1, 1100.1), (1000.1, 101.1), (1.1, 101.1) ] polygon = Polygon(coordinates) assert boundary.take(1)[0][0] == polygon def test_st_union_aggr(self): polygon_csv_df = self.spark.read.format("csv").\ option("delimiter", ",").\ option("header", "false").\ load(union_polygon_input_location) polygon_csv_df.createOrReplaceTempView("polygontable") polygon_csv_df.show() polygon_df = self.spark.sql("select ST_PolygonFromEnvelope(cast(polygontable._c0 as Decimal(24,20)),cast(polygontable._c1 as Decimal(24,20)), cast(polygontable._c2 as Decimal(24,20)), cast(polygontable._c3 as Decimal(24,20))) as polygonshape from polygontable") polygon_df.createOrReplaceTempView("polygondf") polygon_df.show() union = self.spark.sql("select ST_Union_Aggr(polygondf.polygonshape) from polygondf") assert union.take(1)[0][0].area == 10100
icu_sources.py
plasticity-admin/supersqlite
687
12628900
icu_sources = [ 'utypes.cpp', 'uloc.cpp', 'ustring.cpp', 'ucase.cpp', 'ubrk.cpp', 'brkiter.cpp', 'filteredbrk.cpp', 'ucharstriebuilder.cpp', 'uobject.cpp', 'resbund.cpp', 'servrbf.cpp', 'servlkf.cpp', 'serv.cpp', 'servnotf.cpp', 'servls.cpp', 'servlk.cpp', 'servslkf.cpp', 'stringtriebuilder.cpp', 'uvector.cpp', 'ustrenum.cpp', 'uenum.cpp', 'unistr.cpp', 'appendable.cpp', 'rbbi.cpp', 'rbbi_cache.cpp', 'cstring.cpp', 'umath.cpp', 'charstr.cpp', 'rbbidata.cpp', 'ustrfmt.cpp', 'ucharstrie.cpp', 'uloc_keytype.cpp', 'uhash.cpp', 'locdispnames.cpp', 'brkeng.cpp', 'dictionarydata.cpp', 'udataswp.cpp', 'uinvchar.cpp', 'uresbund.cpp', 'uresdata.cpp', # modified due to duplicate symbol `gEmptyString2` 'resource.cpp', 'locavailable.cpp', 'utrie2.cpp', 'ucol_swp.cpp', 'utrie_swap.cpp', 'schriter.cpp', 'uchriter.cpp', 'locid.cpp', # modified due to duplicate include `bytesinkutil.h` 'locbased.cpp', 'chariter.cpp', 'uvectr32.cpp', 'bytestrie.cpp', 'ustack.cpp', 'umutex.cpp', 'uniset.cpp', # modified due to duplicate symbol `compareUnicodeString2` 'stringpiece.cpp', 'locutil.cpp', 'unifilt.cpp', 'util.cpp', # modified due to duplicate symbol `BACKSLASH2`, `UPPER_U2`, and `LOWER_U2` 'bmpset.cpp', 'unifunct.cpp', 'unisetspan.cpp', 'uniset_props.cpp', # modified due to duplicate include `_dbgct2` 'patternprops.cpp', 'bytesinkutil.cpp', # modified due to duplicate include `bytesinkutil.h` 'dictbe.cpp', 'rbbirb.cpp', 'utext.cpp', # modified due to duplicate symbol `gEmptyString3` 'utf_impl.cpp', 'propsvec.cpp', 'locmap.cpp', 'loclikely.cpp', 'uloc_tag.cpp', 'ustrtrns.cpp', 'udatamem.cpp', 'putil.cpp', 'uhash_us.cpp', 'uprops.cpp', 'uchar.cpp', # modified due to duplicate symbol `_enumPropertyStartsRange2` 'parsepos.cpp', 'ruleiter.cpp', 'rbbitblb.cpp', 'edits.cpp', 'rbbinode.cpp', 'bytestream.cpp', 'rbbiscan.cpp', 'loadednormalizer2impl.cpp', 'characterproperties.cpp', 'locresdata.cpp', 'normalizer2impl.cpp', # modified due to duplicate include `bytesinkutil.h` 'normalizer2.cpp', 'rbbisetb.cpp', 'rbbistbl.cpp', 'unistr_case.cpp', 'unames.cpp', # modified due to duplicate symbol `DATA_TYPE2` 'propname.cpp', 'ustrcase.cpp', 'ustrcase_locale.cpp', 'ubidi.cpp', 'ucptrie.cpp', 'umutablecptrie.cpp', # modified due to duplicate symbol `getRange2` and `OVERFLOW2` 'cmemory.cpp', 'utrie2_builder.cpp', # modified due to duplicate symbol `writeBlock2` 'uscript.cpp', 'uscript_props.cpp', 'utrie.cpp', # modified due to duplicate symbol `equal_uint322` and `enumSameValue2` 'ucmndata.cpp', 'uarrsort.cpp', 'umapfile.cpp', 'ucln_cmn.cpp', # modified due to duplicate include `ucln_imp.h` 'uregex.cpp', # modified due to duplicate symbol `BACKSLASH3` 'ucol.cpp', 'coll.cpp', # modified due to duplicate symbol `gService2`, `getService2`, `initService2`, `hasService2`, `availableLocaleList2` 'collation.cpp', 'ucoleitr.cpp', 'rematch.cpp', # modified due to duplicate symbol `BACKSLASH4` 'regexcmp.cpp', 'repattrn.cpp', 'collationroot.cpp', 'ucol_res.cpp', 'collationbuilder.cpp', 'coleitr.cpp', 'sharedobject.cpp', 'collationdata.cpp', 'uiter.cpp', 'ucln_in.cpp', # modified due to duplicate symbol `copyright2` and duplicate include `ucln_imp.h` 'uniset_closure.cpp', 'unifiedcache.cpp', # modified due to duplicate symbol `gCacheInitOnce2` 'regexst.cpp', 'collationweights.cpp', 'caniter.cpp', 'collationiterator.cpp', 'collationfastlatin.cpp', 'collationtailoring.cpp', 'usetiter.cpp', 'collationdatareader.cpp', 'collationruleparser.cpp', 'collationdatabuilder.cpp', 'regeximp.cpp', 'collationsets.cpp', 'utf16collationiterator.cpp', 'uvectr64.cpp', 'rulebasedcollator.cpp', 'collationrootelements.cpp', 'ucol_sit.cpp', # modified due to duplicate symbol `internalBufferSize2` 'ulist.cpp', 'uset.cpp', 'regextxt.cpp', 'ucharstrieiterator.cpp', 'collationfcd.cpp', 'collationkeys.cpp', 'unistr_case_locale.cpp', 'collationsettings.cpp', 'collationcompare.cpp', 'utf8collationiterator.cpp', 'uitercollationiterator.cpp', 'collationfastlatinbuilder.cpp', 'collationdatawriter.cpp', 'uset_props.cpp', 'utrace.cpp', 'sortkey.cpp', 'unistr_titlecase_brkiter.cpp', 'ubidi_props.cpp', # modified due to duplicate symbol `_enumPropertyStartsRange3` 'bocsu.cpp', 'ubidiln.cpp', 'ubidiwrt.cpp', 'ustr_titlecase_brkiter.cpp', 'wintz.cpp', 'stubdata.cpp', 'udata.cpp', # modified due to to comment out `extern "C" const DataHeader U_DATA_API # U_ICUDATA_ENTRY_POINT;` and cast `(const DataHeader*)` due to # stubdata.cpp being added ] # Other modifications: # Modify: regexcst.h # Replace the header gaurd with: # #ifndef REGEXCST_H # #define REGEXCST_H # Modify: regexcmp.h # Replace the header gaurd with: # #ifndef REGEXCMP_H # #define REGEXCMP_H # Modify: regexcst.h # Append '2' to every enum in Regex_PatternParseAction # Replace all of the references to those enums in regexcst.h and regexcmp.cpp # Modify: regexcst.h # Replace: `gRuleParseStateTable` symbol with `gRuleParseStateTable2` # Replace with `gRuleParseStateTable` in regexcmp.cpp
mopidy_soundcloud/actor.py
Laurentww/mopidy-soundcloud
161
12628913
<gh_stars>100-1000 import logging import pykka from mopidy import backend from mopidy_soundcloud.library import SoundCloudLibraryProvider from mopidy_soundcloud.soundcloud import SoundCloudClient logger = logging.getLogger(__name__) class SoundCloudBackend(pykka.ThreadingActor, backend.Backend): def __init__(self, config, audio): super().__init__() self.config = config self.remote = SoundCloudClient(config) self.library = SoundCloudLibraryProvider(backend=self) self.playback = SoundCloudPlaybackProvider(audio=audio, backend=self) self.uri_schemes = ["soundcloud", "sc"] def on_start(self): username = self.remote.user.get("username") if username is not None: logger.info(f"Logged in to SoundCloud as {username!r}") class SoundCloudPlaybackProvider(backend.PlaybackProvider): def translate_uri(self, uri): track_id = self.backend.remote.parse_track_uri(uri) track = self.backend.remote.get_track(track_id, True) if track is None: return None return track.uri
migrations/versions/bb816156989f_moss_results.py
chrononyan/ok
148
12628918
"""moss_results Revision ID: bb816156989f Revises: c71e52b908e6 Create Date: 2017-09-08 14:01:37.766562 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = 'c71e52b908e6' from alembic import op import sqlalchemy as sa import server def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('moss_result', sa.Column('created', sa.DateTime(timezone=True), server_default=sa.text('now()'), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('run_time', sa.DateTime(timezone=True), nullable=False), sa.Column('primary_id', sa.Integer(), nullable=False), sa.Column('primary_matches', server.models.JsonBlob(), nullable=False), sa.Column('secondary_id', sa.Integer(), nullable=False), sa.Column('secondary_matches', server.models.JsonBlob(), nullable=False), sa.Column('similarity', sa.Integer(), nullable=False), sa.Column('tags', server.models.StringList(), nullable=False), sa.ForeignKeyConstraint(['primary_id'], ['backup.id'], name=op.f('fk_moss_result_primary_id_backup')), sa.ForeignKeyConstraint(['secondary_id'], ['backup.id'], name=op.f('fk_moss_result_secondary_id_backup')), sa.PrimaryKeyConstraint('id', name=op.f('pk_moss_result')) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('moss_result') # ### end Alembic commands ###
vendor/xlsxwriter/chart_stock.py
Lwz1966/QQ-Groups-Spider
882
12628924
<filename>vendor/xlsxwriter/chart_stock.py ############################################################################### # # ChartStock - A class for writing the Excel XLSX Stock charts. # # Copyright 2013-2017, <NAME>, <EMAIL> # from . import chart class ChartStock(chart.Chart): """ A class for writing the Excel XLSX Stock charts. """ ########################################################################### # # Public API. # ########################################################################### def __init__(self, options=None): """ Constructor. """ super(ChartStock, self).__init__() if options is None: options = {} self.show_crosses = 0 self.hi_low_lines = {} self.date_category = True # Override and reset the default axis values. self.x_axis['defaults']['num_format'] = 'dd/mm/yyyy' self.x2_axis['defaults']['num_format'] = 'dd/mm/yyyy' # Set the available data label positions for this chart type. self.label_position_default = 'right' self.label_positions = { 'center': 'ctr', 'right': 'r', 'left': 'l', 'above': 't', 'below': 'b', # For backward compatibility. 'top': 't', 'bottom': 'b'} self.set_x_axis({}) self.set_x2_axis({}) ########################################################################### # # Private API. # ########################################################################### def _write_chart_type(self, args): # Override the virtual superclass method with a chart specific method. # Write the c:stockChart element. self._write_stock_chart(args) ########################################################################### # # XML methods. # ########################################################################### def _write_stock_chart(self, args): # Write the <c:stockChart> element. # Overridden to add hi_low_lines(). if args['primary_axes']: series = self._get_primary_axes_series() else: series = self._get_secondary_axes_series() if not len(series): return # Add default formatting to the series data. self._modify_series_formatting() self._xml_start_tag('c:stockChart') # Write the series elements. for data in series: self._write_ser(data) # Write the c:dropLines element. self._write_drop_lines() # Write the c:hiLowLines element. if args.get('primary_axes'): self._write_hi_low_lines() # Write the c:upDownBars element. self._write_up_down_bars() # Write the c:axId elements self._write_axis_ids(args) self._xml_end_tag('c:stockChart') def _modify_series_formatting(self): # Add default formatting to the series data. index = 0 for series in self.series: if index % 4 != 3: if not series['line']['defined']: series['line'] = {'width': 2.25, 'none': 1, 'defined': 1} if series['marker'] is None: if index % 4 == 2: series['marker'] = {'type': 'dot', 'size': 3} else: series['marker'] = {'type': 'none'} index += 1
egg/zoo/mnist_vae/train.py
vengalraoguttha/EGG
254
12628934
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pathlib import torch import torch.utils.data from torch import nn from torch.nn import functional as F from torchvision import datasets, transforms, utils import egg.core as core class Sender(nn.Module): def __init__(self, message_dim): super(Sender, self).__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, message_dim) self.fc22 = nn.Linear(400, message_dim) def forward(self, x): x = F.relu(self.fc1(x)) mu, logvar = self.fc21(x), self.fc22(x) return mu, logvar class Receiver(nn.Module): def __init__(self, message_dim): super(Receiver, self).__init__() self.fc3 = nn.Linear(message_dim, 400) self.fc4 = nn.Linear(400, 784) def forward(self, x): x = F.relu(self.fc3(x)) return torch.sigmoid(self.fc4(x)) class VAE_Game(nn.Module): def __init__(self, sender, receiver): super().__init__() self.sender = sender self.receiver = receiver @staticmethod def reparameterize(mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def forward(self, *batch): sender_input = batch[0] sender_input = sender_input.view(-1, 784) mu, logvar = self.sender(sender_input) if self.train: message = self.reparameterize(mu, logvar) else: message = mu receiver_output = self.receiver(message) BCE = F.binary_cross_entropy(receiver_output, sender_input, reduction="sum") KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) loss = BCE + KLD log = core.Interaction( sender_input=sender_input, receiver_input=None, labels=None, aux_input=None, receiver_output=receiver_output.detach(), message=message.detach(), message_length=torch.ones(message.size(0)), aux={}, ) return loss.mean(), log class ImageDumpCallback(core.Callback): def __init__(self, eval_dataset, device): super().__init__() self.eval_dataset = eval_dataset self.device = device def on_epoch_end(self, loss, logs, epoch): dump_dir = pathlib.Path.cwd() / "dump" / str(epoch) dump_dir.mkdir(exist_ok=True, parents=True) self.trainer.game.eval() for i in range(5): example = self.eval_dataset[i] example = core.move_to(example, self.device) _, interaction = self.trainer.game(*example) image = example[0][0] output = interaction.receiver_output.view(28, 28) image = image.view(28, 28) utils.save_image( torch.cat([image, output], dim=1), dump_dir / (str(i) + ".png") ) self.trainer.game.train() def main(params): opts = core.init(params=params) kwargs = {"num_workers": 1, "pin_memory": True} if opts.cuda else {} transform = transforms.ToTensor() train_loader = torch.utils.data.DataLoader( datasets.MNIST("./data", train=True, download=True, transform=transform), batch_size=opts.batch_size, shuffle=True, **kwargs ) test_loader = torch.utils.data.DataLoader( datasets.MNIST("./data", train=False, transform=transform), batch_size=opts.batch_size, shuffle=True, **kwargs ) sender = Sender(opts.vocab_size) receiver = Receiver(opts.vocab_size) game = VAE_Game(sender, receiver) optimizer = core.build_optimizer(game.parameters()) # initialize and launch the trainer trainer = core.Trainer( game=game, optimizer=optimizer, train_data=train_loader, validation_data=test_loader, callbacks=[ core.ConsoleLogger(as_json=True, print_train_loss=True), ImageDumpCallback(test_loader.dataset, opts.device), ], ) trainer.train(n_epochs=opts.n_epochs) core.close() if __name__ == "__main__": import sys main(sys.argv[1:])
DataServer/const.py
ajransaputra/geoip-attack-map
299
12628938
<reponame>ajransaputra/geoip-attack-map META = [{ 'lookup': 'city', 'tag': 'city', 'path': ['names','en'], },{ 'lookup': 'continent', 'tag': 'continent', 'path': ['names','en'], },{ 'lookup': 'continent_code', 'tag': 'continent', 'path': ['code'], },{ 'lookup': 'country', 'tag': 'country', 'path': ['names','en'], },{ 'lookup': 'iso_code', 'tag': 'country', 'path': ['iso_code'], },{ 'lookup': 'latitude', 'tag': 'location', 'path': ['latitude'], },{ 'lookup': 'longitude', 'tag': 'location', 'path': ['longitude'], },{ 'lookup': 'metro_code', 'tag': 'location', 'path': ['metro_code'], },{ 'lookup': 'postal_code', 'tag': 'postal', 'path': ['code'], }] PORTMAP = { 0:"DoS", # Denial of Service 1:"ICMP", # ICMP 20:"FTP", # FTP Data 21:"FTP", # FTP Control 22:"SSH", # SSH 23:"TELNET", # Telnet 25:"EMAIL", # SMTP 43:"WHOIS", # Whois 53:"DNS", # DNS 80:"HTTP", # HTTP 88:"AUTH", # Kerberos 109:"EMAIL", # POP v2 110:"EMAIL", # POP v3 115:"FTP", # SFTP 118:"SQL", # SQL 143:"EMAIL", # IMAP 156:"SQL", # SQL 161:"SNMP", # SNMP 220:"EMAIL", # IMAP v3 389:"AUTH", # LDAP 443:"HTTPS", # HTTPS 445:"SMB", # SMB 636:"AUTH", # LDAP of SSL/TLS 1433:"SQL", # MySQL Server 1434:"SQL", # MySQL Monitor 3306:"SQL", # MySQL 3389:"RDP", # RDP 5900:"RDP", # VNC:0 5901:"RDP", # VNC:1 5902:"RDP", # VNC:2 5903:"RDP", # VNC:3 8080:"HTTP", # HTTP Alternative }
src/oci/operator_access_control/models/operator_action.py
Manny27nyc/oci-python-sdk
249
12628950
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class OperatorAction(object): """ Details of the operator action. Operator actions are a pre-defined set of commands available to the operator on different layers of the infrastructure. Although the groupings may differ depending on the infrastructure layers, the groups are designed to enable the operator access to commands to resolve a specific set of issues. The infrastructure layers controlled by the Operator Control include Dom0, CellServer, and Control Plane Server (CPS). There are five groups available to the operator. x-obmcs-top-level-enum: '#/definitions/OperatorActionCategories' enum: *OPERATORACTIONCATEGORIES The following infrastructure layers are controlled by the operator actions x-obmcs-top-level-enum: '#/definitions/InfrastructureLayers' enum: *INFRASTRUCTURELAYERS """ def __init__(self, **kwargs): """ Initializes a new OperatorAction object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param id: The value to assign to the id property of this OperatorAction. :type id: str :param name: The value to assign to the name property of this OperatorAction. :type name: str :param component: The value to assign to the component property of this OperatorAction. :type component: str :param description: The value to assign to the description property of this OperatorAction. :type description: str :param properties: The value to assign to the properties property of this OperatorAction. :type properties: list[oci.operator_access_control.models.OperatorActionProperties] """ self.swagger_types = { 'id': 'str', 'name': 'str', 'component': 'str', 'description': 'str', 'properties': 'list[OperatorActionProperties]' } self.attribute_map = { 'id': 'id', 'name': 'name', 'component': 'component', 'description': 'description', 'properties': 'properties' } self._id = None self._name = None self._component = None self._description = None self._properties = None @property def id(self): """ **[Required]** Gets the id of this OperatorAction. Unique Oracle assigned identifier for the operator action. :return: The id of this OperatorAction. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this OperatorAction. Unique Oracle assigned identifier for the operator action. :param id: The id of this OperatorAction. :type: str """ self._id = id @property def name(self): """ **[Required]** Gets the name of this OperatorAction. Name of the operator action. :return: The name of this OperatorAction. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this OperatorAction. Name of the operator action. :param name: The name of this OperatorAction. :type: str """ self._name = name @property def component(self): """ Gets the component of this OperatorAction. Name of the infrastructure layer associated with the operator action. :return: The component of this OperatorAction. :rtype: str """ return self._component @component.setter def component(self, component): """ Sets the component of this OperatorAction. Name of the infrastructure layer associated with the operator action. :param component: The component of this OperatorAction. :type: str """ self._component = component @property def description(self): """ Gets the description of this OperatorAction. Description of the operator action in terms of associated risk profile, and characteristics of the operating system commands made available to the operator under this operator action. :return: The description of this OperatorAction. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this OperatorAction. Description of the operator action in terms of associated risk profile, and characteristics of the operating system commands made available to the operator under this operator action. :param description: The description of this OperatorAction. :type: str """ self._description = description @property def properties(self): """ Gets the properties of this OperatorAction. Fine grained properties associated with the operator control. :return: The properties of this OperatorAction. :rtype: list[oci.operator_access_control.models.OperatorActionProperties] """ return self._properties @properties.setter def properties(self, properties): """ Sets the properties of this OperatorAction. Fine grained properties associated with the operator control. :param properties: The properties of this OperatorAction. :type: list[oci.operator_access_control.models.OperatorActionProperties] """ self._properties = properties def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
finrl_meta/env_execution_optimizing/order_execution_qlib/trade/vecenv.py
eitin-infant/FinRL-Meta
214
12628954
import gym import time import ctypes import numpy as np from collections import OrderedDict from multiprocessing.context import Process from multiprocessing import Array, Pipe, connection, Queue from typing import Any, List, Tuple, Union, Callable, Optional from tianshou.env.worker import EnvWorker from tianshou.env.utils import CloudpickleWrapper _NP_TO_CT = { np.bool: ctypes.c_bool, np.bool_: ctypes.c_bool, np.uint8: ctypes.c_uint8, np.uint16: ctypes.c_uint16, np.uint32: ctypes.c_uint32, np.uint64: ctypes.c_uint64, np.int8: ctypes.c_int8, np.int16: ctypes.c_int16, np.int32: ctypes.c_int32, np.int64: ctypes.c_int64, np.float32: ctypes.c_float, np.float64: ctypes.c_double, } class ShArray: """Wrapper of multiprocessing Array.""" def __init__(self, dtype: np.generic, shape: Tuple[int]) -> None: self.arr = Array( _NP_TO_CT[dtype.type], # type: ignore int(np.prod(shape)), ) self.dtype = dtype self.shape = shape def save(self, ndarray: np.ndarray) -> None: """ :param ndarray: np.ndarray: :param ndarray: np.ndarray: :param ndarray: np.ndarray: """ assert isinstance(ndarray, np.ndarray) dst = self.arr.get_obj() dst_np = np.frombuffer(dst, dtype=self.dtype).reshape(self.shape) np.copyto(dst_np, ndarray) def get(self) -> np.ndarray: """ """ obj = self.arr.get_obj() return np.frombuffer(obj, dtype=self.dtype).reshape(self.shape) def _setup_buf(space: gym.Space) -> Union[dict, tuple, ShArray]: """ :param space: gym.Space: :param space: gym.Space: :param space: gym.Space: """ if isinstance(space, gym.spaces.Dict): assert isinstance(space.spaces, OrderedDict) return {k: _setup_buf(v) for k, v in space.spaces.items()} elif isinstance(space, gym.spaces.Tuple): assert isinstance(space.spaces, tuple) return tuple([_setup_buf(t) for t in space.spaces]) else: return ShArray(space.dtype, space.shape) def _worker( parent: connection.Connection, p: connection.Connection, env_fn_wrapper: CloudpickleWrapper, obs_bufs: Optional[Union[dict, tuple, ShArray]] = None, ) -> None: """ :param parent: connection.Connection: :param p: connection.Connection: :param env_fn_wrapper: CloudpickleWrapper: :param obs_bufs: Optional[Union[dict: :param tuple: param ShArray]]: (Default value = None) :param parent: connection.Connection: :param p: connection.Connection: :param env_fn_wrapper: CloudpickleWrapper: :param obs_bufs: Optional[Union[dict: :param ShArray]]: (Default value = None) :param parent: connection.Connection: :param p: connection.Connection: :param env_fn_wrapper: CloudpickleWrapper: :param obs_bufs: Optional[Union[dict: """ def _encode_obs(obs: Union[dict, tuple, np.ndarray], buffer: Union[dict, tuple, ShArray],) -> None: """ :param obs: Union[dict: :param tuple: param np.ndarray]: :param buffer: Union[dict: :param ShArray: :param obs: Union[dict: :param np.ndarray]: :param buffer: Union[dict: :param ShArray]: :param obs: Union[dict: :param buffer: Union[dict: """ if isinstance(obs, np.ndarray) and isinstance(buffer, ShArray): buffer.save(obs) elif isinstance(obs, tuple) and isinstance(buffer, tuple): for o, b in zip(obs, buffer): _encode_obs(o, b) elif isinstance(obs, dict) and isinstance(buffer, dict): for k in obs.keys(): _encode_obs(obs[k], buffer[k]) return None parent.close() env = env_fn_wrapper.data() try: while True: try: cmd, data = p.recv() except EOFError: # the pipe has been closed p.close() break if cmd == "step": obs, reward, done, info = env.step(data) if obs_bufs is not None: _encode_obs(obs, obs_bufs) obs = None p.send((obs, reward, done, info)) elif cmd == "reset": obs = env.reset(data) if obs_bufs is not None: _encode_obs(obs, obs_bufs) obs = None p.send(obs) elif cmd == "close": p.send(env.close()) p.close() break elif cmd == "render": p.send(env.render(**data) if hasattr(env, "render") else None) elif cmd == "seed": p.send(env.seed(data) if hasattr(env, "seed") else None) elif cmd == "getattr": p.send(getattr(env, data) if hasattr(env, data) else None) elif cmd == "toggle_log": env.toggle_log(data) else: p.close() raise NotImplementedError except KeyboardInterrupt: p.close() class SubprocEnvWorker(EnvWorker): """Subprocess worker used in SubprocVectorEnv and ShmemVectorEnv.""" def __init__(self, env_fn: Callable[[], gym.Env], share_memory: bool = False) -> None: super().__init__(env_fn) self.parent_remote, self.child_remote = Pipe() self.share_memory = share_memory self.buffer: Optional[Union[dict, tuple, ShArray]] = None if self.share_memory: dummy = env_fn() obs_space = dummy.observation_space dummy.close() del dummy self.buffer = _setup_buf(obs_space) args = ( self.parent_remote, self.child_remote, CloudpickleWrapper(env_fn), self.buffer, ) self.process = Process(target=_worker, args=args, daemon=True) self.process.start() self.child_remote.close() def __getattr__(self, key: str) -> Any: self.parent_remote.send(["getattr", key]) return self.parent_remote.recv() def _decode_obs(self) -> Union[dict, tuple, np.ndarray]: """ """ def decode_obs(buffer: Optional[Union[dict, tuple, ShArray]]) -> Union[dict, tuple, np.ndarray]: """ :param buffer: Optional[Union[dict: :param tuple: param ShArray]]: :param buffer: Optional[Union[dict: :param ShArray]]: :param buffer: Optional[Union[dict: """ if isinstance(buffer, ShArray): return buffer.get() elif isinstance(buffer, tuple): return tuple([decode_obs(b) for b in buffer]) elif isinstance(buffer, dict): return {k: decode_obs(v) for k, v in buffer.items()} else: raise NotImplementedError return decode_obs(self.buffer) def reset(self, sample) -> Any: """ :param sample: """ self.parent_remote.send(["reset", sample]) # obs = self.parent_remote.recv() # if self.share_memory: # obs = self._decode_obs() # return obs def get_reset_result(self): """ """ obs = self.parent_remote.recv() if self.share_memory: obs = self._decode_obs() return obs @staticmethod def wait( # type: ignore workers: List["SubprocEnvWorker"], wait_num: int, timeout: Optional[float] = None, ) -> List["SubprocEnvWorker"]: """ :param # type: ignoreworkers: List["SubprocEnvWorker"]: :param wait_num: int: :param timeout: Optional[float]: (Default value = None) :param # type: ignoreworkers: List["SubprocEnvWorker"]: :param wait_num: int: :param timeout: Optional[float]: (Default value = None) """ remain_conns = conns = [x.parent_remote for x in workers] ready_conns: List[connection.Connection] = [] remain_time, t1 = timeout, time.time() while len(remain_conns) > 0 and len(ready_conns) < wait_num: if timeout: remain_time = timeout - (time.time() - t1) if remain_time <= 0: break # connection.wait hangs if the list is empty new_ready_conns = connection.wait(remain_conns, timeout=remain_time) ready_conns.extend(new_ready_conns) # type: ignore remain_conns = [conn for conn in remain_conns if conn not in ready_conns] return [workers[conns.index(con)] for con in ready_conns] def send_action(self, action: np.ndarray) -> None: """ :param action: np.ndarray: :param action: np.ndarray: :param action: np.ndarray: """ self.parent_remote.send(["step", action]) def toggle_log(self, log): self.parent_remote.send(["toggle_log", log]) def get_result(self,) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ """ obs, rew, done, info = self.parent_remote.recv() if self.share_memory: obs = self._decode_obs() return obs, rew, done, info def seed(self, seed: Optional[int] = None) -> Optional[List[int]]: """ :param seed: Optional[int]: (Default value = None) :param seed: Optional[int]: (Default value = None) :param seed: Optional[int]: (Default value = None) """ self.parent_remote.send(["seed", seed]) return self.parent_remote.recv() def render(self, **kwargs: Any) -> Any: """ :param **kwargs: Any: :param **kwargs: Any: """ self.parent_remote.send(["render", kwargs]) return self.parent_remote.recv() def close_env(self) -> None: """ """ try: self.parent_remote.send(["close", None]) # mp may be deleted so it may raise AttributeError self.parent_remote.recv() self.process.join() except (BrokenPipeError, EOFError, AttributeError): pass # ensure the subproc is terminated self.process.terminate() class BaseVectorEnv(gym.Env): """Base class for vectorized environments wrapper. Usage: :: env_num = 8 envs = DummyVectorEnv([lambda: gym.make(task) for _ in range(env_num)]) assert len(envs) == env_num It accepts a list of environment generators. In other words, an environment generator ``efn`` of a specific task means that ``efn()`` returns the environment of the given task, for example, ``gym.make(task)``. All of the VectorEnv must inherit :class:`~tianshou.env.BaseVectorEnv`. Here are some other usages: :: envs.seed(2) # which is equal to the next line envs.seed([2, 3, 4, 5, 6, 7, 8, 9]) # set specific seed for each env obs = envs.reset() # reset all environments obs = envs.reset([0, 5, 7]) # reset 3 specific environments obs, rew, done, info = envs.step([1] * 8) # step synchronously envs.render() # render all environments envs.close() # close all environments .. warning:: If you use your own environment, please make sure the ``seed`` method is set up properly, e.g., :: def seed(self, seed): np.random.seed(seed) Otherwise, the outputs of these envs may be the same with each other. :param env_fns: a list of callable envs :param env: :param worker_fn: a callable worker :param worker: which contains the i :param int: wait_num :param env: step :param environments: to finish a step is time :param return: when :param simulation: in these environments :param is: disabled :param float: timeout :param vectorized: step it only deal with those environments spending time :param within: timeout """ def __init__( self, env_fns: List[Callable[[], gym.Env]], worker_fn: Callable[[Callable[[], gym.Env]], EnvWorker], sampler=None, testing: Optional[bool] = False, wait_num: Optional[int] = None, timeout: Optional[float] = None, ) -> None: self._env_fns = env_fns # A VectorEnv contains a pool of EnvWorkers, which corresponds to # interact with the given envs (one worker <-> one env). self.workers = [worker_fn(fn) for fn in env_fns] self.worker_class = type(self.workers[0]) assert issubclass(self.worker_class, EnvWorker) assert all([isinstance(w, self.worker_class) for w in self.workers]) self.env_num = len(env_fns) self.wait_num = wait_num or len(env_fns) assert 1 <= self.wait_num <= len(env_fns), f"wait_num should be in [1, {len(env_fns)}], but got {wait_num}" self.timeout = timeout assert self.timeout is None or self.timeout > 0, f"timeout is {timeout}, it should be positive if provided!" self.is_async = self.wait_num != len(env_fns) or timeout is not None or testing self.waiting_conn: List[EnvWorker] = [] # environments in self.ready_id is actually ready # but environments in self.waiting_id are just waiting when checked, # and they may be ready now, but this is not known until we check it # in the step() function self.waiting_id: List[int] = [] # all environments are ready in the beginning self.ready_id = list(range(self.env_num)) self.is_closed = False self.sampler = sampler self.sample_obs = None def _assert_is_not_closed(self) -> None: """ """ assert not self.is_closed, f"Methods of {self.__class__.__name__} cannot be called after " "close." def __len__(self) -> int: """Return len(self), which is the number of environments.""" return self.env_num def __getattribute__(self, key: str) -> Any: """Switch the attribute getter depending on the key. Any class who inherits ``gym.Env`` will inherit some attributes, like ``action_space``. However, we would like the attribute lookup to go straight into the worker (in fact, this vector env's action_space is always None). """ if key in [ "metadata", "reward_range", "spec", "action_space", "observation_space", ]: # reserved keys in gym.Env return self.__getattr__(key) else: return super().__getattribute__(key) def __getattr__(self, key: str) -> List[Any]: """Fetch a list of env attributes. This function tries to retrieve an attribute from each individual wrapped environment, if it does not belong to the wrapping vector environment class. """ return [getattr(worker, key) for worker in self.workers] def _wrap_id(self, id: Optional[Union[int, List[int], np.ndarray]] = None) -> Union[List[int], np.ndarray]: """ :param id: Optional[Union[int: :param List: int]: :param np: ndarray]]: (Default value = None) :param id: Optional[Union[int: :param List[int]: :param np.ndarray]]: (Default value = None) :param id: Optional[Union[int: """ if id is None: id = list(range(self.env_num)) elif np.isscalar(id): id = [id] return id def _assert_id(self, id: List[int]) -> None: """ :param id: List[int]: :param id: List[int]: :param id: List[int]: """ for i in id: assert i not in self.waiting_id, f"Cannot interact with environment {i} which is stepping now." assert i in self.ready_id, f"Can only interact with ready environments {self.ready_id}." def reset(self, id: Optional[Union[int, List[int], np.ndarray]] = None) -> np.ndarray: """Reset the state of some envs and return initial observations. If id is None, reset the state of all the environments and return initial observations, otherwise reset the specific environments with the given id, either an int or a list. :param id: Optional[Union[int: :param List: int]: :param np: ndarray]]: (Default value = None) :param id: Optional[Union[int: :param List[int]: :param np.ndarray]]: (Default value = None) :param id: Optional[Union[int: """ start_time = time.time() self._assert_is_not_closed() id = self._wrap_id(id) if self.is_async: self._assert_id(id) obs = [] stop_id = [] for i in id: sample = self.sampler.sample() if sample is None: stop_id.append(i) else: self.workers[i].reset(sample) for i in id: if i in stop_id: obs.append(self.sample_obs) else: this_obs = self.workers[i].get_reset_result() if self.sample_obs is None: self.sample_obs = this_obs for j in range(len(obs)): if obs[j] is None: obs[j] = self.sample_obs obs.append(this_obs) if len(obs) > 0: obs = np.stack(obs) # if len(stop_id)> 0: # obs_zero = # print(time.time() - start_timed) return obs, stop_id def toggle_log(self, log): for worker in self.workers: worker.toggle_log(log) def reset_sampler(self): """ """ self.sampler.reset() def step(self, action: np.ndarray, id: Optional[Union[int, List[int], np.ndarray]] = None) -> List[np.ndarray]: """Run one timestep of some environments' dynamics. If id is None, run one timestep of all the environments’ dynamics; otherwise run one timestep for some environments with given id, either an int or a list. When the end of episode is reached, you are responsible for calling reset(id) to reset this environment’s state. Accept a batch of action and return a tuple (batch_obs, batch_rew, batch_done, batch_info) in numpy format. :param numpy: ndarray action: a batch of action provided by the agent. :param action: np.ndarray: :param id: Optional[Union[int: :param List: int]: :param np: ndarray]]: (Default value = None) :param action: np.ndarray: :param id: Optional[Union[int: :param List[int]: :param np.ndarray]]: (Default value = None) :param action: np.ndarray: :param id: Optional[Union[int: :rtype: A tuple including four items """ self._assert_is_not_closed() id = self._wrap_id(id) if not self.is_async: assert len(action) == len(id) for i, j in enumerate(id): self.workers[j].send_action(action[i]) result = [] for j in id: obs, rew, done, info = self.workers[j].get_result() info["env_id"] = j result.append((obs, rew, done, info)) else: if action is not None: self._assert_id(id) assert len(action) == len(id) for i, (act, env_id) in enumerate(zip(action, id)): self.workers[env_id].send_action(act) self.waiting_conn.append(self.workers[env_id]) self.waiting_id.append(env_id) self.ready_id = [x for x in self.ready_id if x not in id] ready_conns: List[EnvWorker] = [] while not ready_conns: ready_conns = self.worker_class.wait(self.waiting_conn, self.wait_num, self.timeout) result = [] for conn in ready_conns: waiting_index = self.waiting_conn.index(conn) self.waiting_conn.pop(waiting_index) env_id = self.waiting_id.pop(waiting_index) obs, rew, done, info = conn.get_result() info["env_id"] = env_id result.append((obs, rew, done, info)) self.ready_id.append(env_id) return list(map(np.stack, zip(*result))) def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[Optional[List[int]]]: """Set the seed for all environments. Accept ``None``, an int (which will extend ``i`` to ``[i, i + 1, i + 2, ...]``) or a list. :param seed: Optional[Union[int: :param List: int]]]: (Default value = None) :param seed: Optional[Union[int: :param List[int]]]: (Default value = None) :param seed: Optional[Union[int: :returns: The list of seeds used in this env's random number generators. The first value in the list should be the "main" seed, or the value which a reproducer pass to "seed". """ self._assert_is_not_closed() seed_list: Union[List[None], List[int]] if seed is None: seed_list = [seed] * self.env_num elif isinstance(seed, int): seed_list = [seed + i for i in range(self.env_num)] else: seed_list = seed return [w.seed(s) for w, s in zip(self.workers, seed_list)] def render(self, **kwargs: Any) -> List[Any]: """Render all of the environments. :param **kwargs: Any: :param **kwargs: Any: """ self._assert_is_not_closed() if self.is_async and len(self.waiting_id) > 0: raise RuntimeError(f"Environments {self.waiting_id} are still stepping, cannot " "render them now.") return [w.render(**kwargs) for w in self.workers] def close(self) -> None: """Close all of the environments. This function will be called only once (if not, it will be called during garbage collected). This way, ``close`` of all workers can be assured. """ self._assert_is_not_closed() for w in self.workers: w.close() self.is_closed = True def __del__(self) -> None: """Redirect to self.close().""" if not self.is_closed: self.close() class SubprocVectorEnv(BaseVectorEnv): """Vectorized environment wrapper based on subprocess. .. seealso:: Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed explanation. """ def __init__( self, env_fns: List[Callable[[], gym.Env]], sampler=None, testing=False, wait_num: Optional[int] = None, timeout: Optional[float] = None, ) -> None: def worker_fn(fn: Callable[[], gym.Env]) -> SubprocEnvWorker: """ :param fn: Callable[[]: :param gym: Env]: :param fn: Callable[[]: :param gym.Env]: :param fn: Callable[[]: """ return SubprocEnvWorker(fn, share_memory=False) super().__init__(env_fns, worker_fn, sampler, testing, wait_num=wait_num, timeout=timeout) class ShmemVectorEnv(BaseVectorEnv): """Optimized SubprocVectorEnv with shared buffers to exchange observations. ShmemVectorEnv has exactly the same API as SubprocVectorEnv. .. seealso:: Please refer to :class:`~tianshou.env.SubprocVectorEnv` for more detailed explanation. """ def __init__( self, env_fns: List[Callable[[], gym.Env]], sampler=None, testing=False, wait_num: Optional[int] = None, timeout: Optional[float] = None, ) -> None: def worker_fn(fn: Callable[[], gym.Env]) -> SubprocEnvWorker: """ :param fn: Callable[[]: :param gym: Env]: :param fn: Callable[[]: :param gym.Env]: :param fn: Callable[[]: """ return SubprocEnvWorker(fn, share_memory=True) super().__init__(env_fns, worker_fn, sampler, testing, wait_num=wait_num, timeout=timeout)
office365/sharepoint/fields/field_thumbnail.py
rikeshtailor/Office365-REST-Python-Client
544
12628970
from office365.sharepoint.fields.field import Field class FieldThumbnail(Field): pass
Graphs/ShortesrReachInAGraph.py
WinterSoldier13/interview-preparation-kit
175
12628982
import queue import collections class Graph: def __init__(self, n): self.n = n self.edges = collections.defaultdict(lambda: []) def connect(self,x,y): self.edges[x].append(y) self.edges[y].append(x) def find_all_distances(self, root): distances = [-1 for i in range(self.n)] unvisited = set([i for i in range(self.n)]) q = queue.Queue() distances[root] = 0 unvisited.remove(root) q.put(root) while not q.empty(): node = q.get() children = self.edges[node] height = distances[node] for child in children: if child in unvisited: distances[child] = height + 6 unvisited.remove(child) q.put(child) distances.pop(root) print(" ".join(map(str,distances))) t = int(input()) for i in range(t): n,m = [int(value) for value in input().split()] graph = Graph(n) for i in range(m): x,y = [int(x) for x in input().split()] graph.connect(x-1,y-1) s = int(input()) graph.find_all_distances(s-1)
homeassistant/components/volkszaehler/__init__.py
domwillcode/home-assistant
30,023
12629011
"""The volkszaehler component."""
picoCTF-web/api/common.py
minhnq1618/picoCTF
280
12629022
"""Classes and functions used by multiple modules in the system.""" import uuid from hashlib import md5 import bcrypt from voluptuous import Invalid, MultipleInvalid def token(): """ Generate a random but insecure token. Returns: The randomly generated token """ return str(uuid.uuid4().hex) def hash(string): """ Hash a string. Args: string: string to be hashed. Returns: The hex digest of the string. """ return md5(string.encode("utf-8")).hexdigest() class PicoException(Exception): """ General class for exceptions in the picoCTF API. Allows specification of a message and response code to display to the client, as well as an optional field for arbitrary data. The 'data' field will not be displayed to clients but will be stored in the database, making it ideal for storing stack traces, etc. """ def __init__(self, message, status_code=500, data=None): """Initialize a new PicoException.""" Exception.__init__(self) self.message = message self.status_code = status_code self.data = data def to_dict(self): """Convert a PicoException to a dict for serialization.""" rv = dict() rv["message"] = self.message return rv def check(*callback_tuples): """ Voluptuous wrapper function to raise our PicoException. Args: callback_tuples: a callback_tuple should contain (status, msg, callbacks) Returns: Returns a function callback for the Schema """ def v(value): """ Try to validate the value with the given callbacks. Args: value: the item to validate Raises: PicoException with 400 status code and error msg. Returns: The value if the validation callbacks are satisfied. """ for msg, callbacks in callback_tuples: for callback in callbacks: try: result = callback(value) if not result and type(result) == bool: raise Invalid() except Exception: raise PicoException(msg, 400) return value return v def validate(schema, data): """ Wrap the call to voluptuous schema to raise the proper exception. Args: schema: The voluptuous Schema object data: The validation data for the schema object Raises: PicoException with 400 status code and the voluptuous error message """ try: schema(data) except MultipleInvalid as error: raise PicoException(error.msg, 400) def hash_password(password): """ Hash plaintext password. Args: password: <PASSWORD> Returns: Secure hash of password. """ return bcrypt.hashpw(password.encode("utf-8"), bcrypt.gensalt(8))
fedml_experiments/distributed/classical_vertical_fl/main_vfl.py
xuwanwei/FedML
1,120
12629058
import argparse import logging import os import random import socket import sys from sklearn.utils import shuffle import numpy as np import psutil import setproctitle import torch sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), "../../../"))) from fedml_api.model.finance.vfl_classifier import VFLClassifier from fedml_api.model.finance.vfl_feature_extractor import VFLFeatureExtractor from fedml_api.data_preprocessing.lending_club_loan.lending_club_dataset import loan_load_three_party_data from fedml_api.data_preprocessing.NUS_WIDE.nus_wide_dataset import NUS_WIDE_load_three_party_data from fedml_api.distributed.classical_vertical_fl.vfl_api import FedML_VFL_distributed from fedml_api.distributed.fedavg.FedAvgAPI import FedML_init def add_args(parser): """ parser : argparse.ArgumentParser return a parser added with args required by fit """ parser.add_argument('--dataset', type=str, default='lending_club_loan', metavar='N', help='dataset used for training') parser.add_argument('--client_number', type=int, default=2, metavar='NN', help='number of workers in a distributed cluster') parser.add_argument('--comm_round', type=int, default=100, help='how many round of communications we shoud use') parser.add_argument('--batch_size', type=int, default=256, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--frequency_of_the_test', type=int, default=30, help='the frequency of the algorithms') args = parser.parse_args() return args def init_training_device(process_ID, fl_worker_num, gpu_num_per_machine): # initialize the mapping from process ID to GPU ID: <process ID, GPU ID> if process_ID == 0: device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") return device process_gpu_dict = dict() for client_index in range(fl_worker_num): gpu_index = client_index % gpu_num_per_machine process_gpu_dict[client_index] = gpu_index logging.info(process_gpu_dict) device = torch.device("cuda:" + str(process_gpu_dict[process_ID - 1]) if torch.cuda.is_available() else "cpu") logging.info(device) return device if __name__ == "__main__": # initialize distributed computing (MPI) comm, process_id, worker_number = FedML_init() # parse python script input parameters parser = argparse.ArgumentParser() args = add_args(parser) # customize the process name str_process_name = "Federated Learning:" + str(process_id) setproctitle.setproctitle(str_process_name) # customize the log format logging.basicConfig(level=logging.INFO, format=str( process_id) + ' - %(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S') hostname = socket.gethostname() logging.info("#############process ID = " + str(process_id) + ", host name = " + hostname + "########" + ", process ID = " + str(os.getpid()) + ", process Name = " + str(psutil.Process(os.getpid()))) # Set the random seed. The np.random seed determines the dataset partition. # The torch_manual_seed determines the initial weight. # We fix these two, so that we can reproduce the result. seed = 0 np.random.seed(seed) torch.manual_seed(worker_number) random.seed(0) # GPU management logging.info("process_id = %d, size = %d" % (process_id, worker_number)) device = init_training_device(process_id, worker_number-1, 4) # load data print("################################ Prepare Data ############################") if args.dataset == "lending_club_loan": data_dir = "../../../data/lending_club_loan/" train, test = loan_load_three_party_data(data_dir) elif args.dataset == "NUS_WIDE": data_dir = "../../../data/NUS_WIDE" class_lbls = ['person', 'animal'] train, test = NUS_WIDE_load_three_party_data(data_dir, class_lbls, neg_label=0) else: data_dir = "../../../data/lending_club_loan/" train, test = loan_load_three_party_data(data_dir) Xa_train, Xb_train, Xc_train, y_train = train Xa_test, Xb_test, Xc_test, y_test = test Xa_train, Xb_train, Xc_train, y_train = shuffle(Xa_train, Xb_train, Xc_train, y_train) Xa_test, Xb_test, Xc_test, y_test = shuffle(Xa_test, Xb_test, Xc_test, y_test) train = [Xa_train, Xb_train, Xc_train, y_train] test = [Xa_test, Xb_test, Xc_test, y_test] guest_data = [Xa_train, y_train, Xa_test, y_test] host_data = None if process_id == 1: host_data = [Xb_train, Xb_test] elif process_id == 2: host_data = [Xc_train, Xc_test] # create models for each worker if process_id == 0: guest_feature_extractor = VFLFeatureExtractor(input_dim=Xa_train.shape[1], output_dim=10).to(device) guest_classifier = VFLClassifier(guest_feature_extractor.get_output_dim(), 1).to(device) guest_model = [guest_feature_extractor, guest_classifier] host_model = [None, None] elif process_id == 1: host_feature_extractor = VFLFeatureExtractor(input_dim=Xb_train.shape[1], output_dim=10).to(device) host_classifier = VFLClassifier(host_feature_extractor.get_output_dim(), 1).to(device) host_model = [host_feature_extractor, host_classifier] guest_model = [None, None] elif process_id == 2: host_feature_extractor = VFLFeatureExtractor(input_dim=Xc_train.shape[1], output_dim=10).to(device) host_classifier = VFLClassifier(host_feature_extractor.get_output_dim(), 1).to(device) host_model = [host_feature_extractor, host_classifier] guest_model = [None, None] else: guest_model = [None, None] host_model = [None, None] FedML_VFL_distributed(process_id, worker_number, comm, args, device, guest_data, guest_model, host_data, host_model)
glance/tests/unit/common/test_swift_store_utils.py
daespinel/glance
309
12629072
<reponame>daespinel/glance<filename>glance/tests/unit/common/test_swift_store_utils.py # Copyright 2014 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import fixtures from glance.common import exception from glance.common import swift_store_utils from glance.tests.unit import base class TestSwiftParams(base.IsolatedUnitTest): def setUp(self): super(TestSwiftParams, self).setUp() conf_file = "glance-swift.conf" test_dir = self.useFixture(fixtures.TempDir()).path self.swift_config_file = self._copy_data_file(conf_file, test_dir) self.config(swift_store_config_file=self.swift_config_file) def test_multiple_swift_account_enabled(self): self.config(swift_store_config_file="glance-swift.conf") self.assertTrue( swift_store_utils.is_multiple_swift_store_accounts_enabled()) def test_multiple_swift_account_disabled(self): self.config(swift_store_config_file=None) self.assertFalse( swift_store_utils.is_multiple_swift_store_accounts_enabled()) def test_swift_config_file_doesnt_exist(self): self.config(swift_store_config_file='fake-file.conf') self.assertRaises(exception.InvalidSwiftStoreConfiguration, swift_store_utils.SwiftParams) def test_swift_config_uses_default_values_multiple_account_disabled(self): default_user = 'user_default' default_key = 'key_default' default_auth_address = 'auth@default.<EMAIL>' default_account_reference = 'ref_default' confs = {'swift_store_config_file': None, 'swift_store_user': default_user, 'swift_store_key': default_key, 'swift_store_auth_address': default_auth_address, 'default_swift_reference': default_account_reference} self.config(**confs) swift_params = swift_store_utils.SwiftParams().params self.assertEqual(1, len(swift_params.keys())) self.assertEqual(default_user, swift_params[default_account_reference]['user'] ) self.assertEqual(default_key, swift_params[default_account_reference]['key'] ) self.assertEqual(default_auth_address, swift_params[default_account_reference] ['auth_address'] ) def test_swift_store_config_validates_for_creds_auth_address(self): swift_params = swift_store_utils.SwiftParams().params self.assertEqual('tenant:user1', swift_params['ref1']['user'] ) self.assertEqual('key1', swift_params['ref1']['key'] ) self.assertEqual('example.com', swift_params['ref1']['auth_address']) self.assertEqual('user2', swift_params['ref2']['user']) self.assertEqual('key2', swift_params['ref2']['key']) self.assertEqual('http://example.com', swift_params['ref2']['auth_address'] )
plenum/test/simulation/sim_random.py
jandayanan/indy-plenum
148
12629085
import string from abc import ABC, abstractmethod from random import Random from typing import Any, Iterable, List, Optional class SimRandom(ABC): @abstractmethod def integer(self, min_value: int, max_value: int) -> int: pass @abstractmethod def float(self, min_value: float, max_value: float) -> float: pass @abstractmethod def string(self, min_len: int, max_len: Optional[int] = None, alphabet: Optional[str] = string.ascii_letters + string.digits) -> str: pass @abstractmethod def choice(self, *args) -> Any: pass @abstractmethod def sample(self, population: List, num: int) -> List: pass @abstractmethod def shuffle(self, items: List) -> List: pass class DefaultSimRandom(SimRandom): def __init__(self, seed=0): self._random = Random(seed) def integer(self, min_value: int, max_value: int) -> int: return self._random.randint(min_value, max_value) def float(self, min_value: float, max_value: float) -> float: return self._random.uniform(min_value, max_value) def string(self, min_len: int, max_len: Optional[int] = None, alphabet: Optional[str] = string.ascii_letters + string.digits) -> str: if max_len is None: max_len = min_len _len = self.integer(min_len, max_len) return ''.join(self.choice(*alphabet) for _ in range(_len)) def choice(self, *args) -> Any: return self._random.choice(args) def sample(self, population: Iterable, num: int) -> List: return self._random.sample(population, num) def shuffle(self, items: List) -> List: result = items.copy() self._random.shuffle(result) return result
Chapter13/lib/ksy/rfp_server.py
feiwang20/DRLHandsOn-Playground
2,497
12629090
# This is a generated file! Please edit source .ksy file and use kaitai-struct-compiler to rebuild import array import struct import zlib from enum import Enum from pkg_resources import parse_version from kaitaistruct import __version__ as ks_version, KaitaiStruct, KaitaiStream, BytesIO if parse_version(ks_version) < parse_version('0.7'): raise Exception("Incompatible Kaitai Struct Python API: 0.7 or later is required, but you have %s" % (ks_version)) class RfpServer(KaitaiStruct): class MessageType(Enum): fb_update = 0 set_colormap = 1 bell = 2 cut_text = 3 class Encoding(Enum): raw = 0 copy_rect = 1 rre = 2 zrle = 16 cursor = 4294967057 def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.header = self._root.Header(self._io, self, self._root) self.messages = [] while not self._io.is_eof(): self.messages.append(self._root.Message(self._io, self, self._root)) class RectZrleEncoding(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.length = self._io.read_u4be() self.data = self._io.read_bytes(self.length) class RectCursorPseudoEncoding(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.data = self._io.read_bytes((((self._parent.header.width * self._parent.header.height) * self._root.header.server_init.pixel_format.bpp // 8) + (self._parent.header.height * ((self._parent.header.width + 7) >> 3)))) class RectCopyRectEncoding(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.data = self._io.read_bytes(4) class RectRawEncoding(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.data = self._io.read_bytes(((self._parent.header.width * self._parent.header.height) * self._root.header.server_init.pixel_format.bpp // 8)) class PixelFormat(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.bpp = self._io.read_u1() self.depth = self._io.read_u1() self.big_endian = self._io.read_u1() self.true_color = self._io.read_u1() self.red_max = self._io.read_u2be() self.green_max = self._io.read_u2be() self.blue_max = self._io.read_u2be() self.red_shift = self._io.read_u1() self.green_shift = self._io.read_u1() self.blue_shift = self._io.read_u1() self.padding = self._io.read_bytes(3) class RectHeader(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.pos_x = self._io.read_u2be() self.pos_y = self._io.read_u2be() self.width = self._io.read_u2be() self.height = self._io.read_u2be() self.encoding = self._root.Encoding(self._io.read_u4be()) class RectRreEncoding(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.subrects_count = self._io.read_u4be() self.background = self._io.read_bytes(self._root.header.server_init.pixel_format.bpp // 8) self.data = self._io.read_bytes((self.subrects_count * (self._root.header.server_init.pixel_format.bpp // 8 + 8))) class MsgSetColormap(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.padding = self._io.read_bytes(1) self.first_color = self._io.read_u2be() self.number_colors = self._io.read_u2be() self.data = self._io.read_bytes((self.number_colors * 6)) class MsgBell(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.empty = self._io.read_bytes(0) class MsgCutText(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.padding = self._io.read_bytes(3) self.length = self._io.read_u4be() self.text = (self._io.read_bytes(self.length)).decode(u"ascii") class Header(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.magic = (self._io.read_bytes_term(10, False, True, True)).decode(u"ascii") self.some_data = self._io.read_bytes(4) self.challenge = self._io.read_bytes(16) self.security_status = self._io.read_u4be() self.server_init = self._root.ServerInit(self._io, self, self._root) class Message(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.message_type = self._root.MessageType(self._io.read_u1()) _on = self.message_type if _on == self._root.MessageType.fb_update: self.message_body = self._root.MsgFbUpdate(self._io, self, self._root) elif _on == self._root.MessageType.set_colormap: self.message_body = self._root.MsgSetColormap(self._io, self, self._root) elif _on == self._root.MessageType.bell: self.message_body = self._root.MsgBell(self._io, self, self._root) elif _on == self._root.MessageType.cut_text: self.message_body = self._root.MsgCutText(self._io, self, self._root) class MsgFbUpdate(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.padding = self._io.read_u1() self.rects_count = self._io.read_u2be() self.rects = [None] * (self.rects_count) for i in range(self.rects_count): self.rects[i] = self._root.Rectangle(self._io, self, self._root) class Rectangle(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.header = self._root.RectHeader(self._io, self, self._root) _on = self.header.encoding if _on == self._root.Encoding.rre: self.body = self._root.RectRreEncoding(self._io, self, self._root) elif _on == self._root.Encoding.raw: self.body = self._root.RectRawEncoding(self._io, self, self._root) elif _on == self._root.Encoding.cursor: self.body = self._root.RectCursorPseudoEncoding(self._io, self, self._root) elif _on == self._root.Encoding.copy_rect: self.body = self._root.RectCopyRectEncoding(self._io, self, self._root) elif _on == self._root.Encoding.zrle: self.body = self._root.RectZrleEncoding(self._io, self, self._root) class ServerInit(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self.width = self._io.read_u2be() self.height = self._io.read_u2be() self.pixel_format = self._root.PixelFormat(self._io, self, self._root) self.name_len = self._io.read_u4be() self.name = (self._io.read_bytes(self.name_len)).decode(u"ascii")
etl/parsers/etw/Microsoft_Windows_NlaSvc.py
IMULMUL/etl-parser
104
12629106
# -*- coding: utf-8 -*- """ Microsoft-Windows-NlaSvc GUID : 63b530f8-29c9-4880-a5b4-b8179096e7b8 """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4001, version=0) class Microsoft_Windows_NlaSvc_4001_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "CurrentOrNextState" / Int8ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4002, version=0) class Microsoft_Windows_NlaSvc_4002_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "CurrentOrNextState" / Int8ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4101, version=0) class Microsoft_Windows_NlaSvc_4101_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4102, version=0) class Microsoft_Windows_NlaSvc_4102_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4103, version=0) class Microsoft_Windows_NlaSvc_4103_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "MibNotificationType" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4104, version=0) class Microsoft_Windows_NlaSvc_4104_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "MibNotificationType" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4203, version=0) class Microsoft_Windows_NlaSvc_4203_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "GatewayIpAddress" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4204, version=0) class Microsoft_Windows_NlaSvc_4204_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "GatewayIpAddress" / WString, "ErrorCode" / Int32ul, "NlnsState" / Int32ul, "MacAddrLen" / Int16ul, "MacAddr" / Bytes(lambda this: this.MacAddrLen) ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4205, version=0) class Microsoft_Windows_NlaSvc_4205_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "GatewayIpAddress" / WString, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4251, version=0) class Microsoft_Windows_NlaSvc_4251_0(Etw): pattern = Struct( "PluginName" / WString, "EntityName" / WString, "IndicatedRowCount" / Int16ul, "RowsWithInterfacesIndicatedCount" / Int16ul, "RowInterfaceGuid" / Guid ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4261, version=0) class Microsoft_Windows_NlaSvc_4261_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "NlaState" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4311, version=0) class Microsoft_Windows_NlaSvc_4311_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4312, version=0) class Microsoft_Windows_NlaSvc_4312_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4313, version=0) class Microsoft_Windows_NlaSvc_4313_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4321, version=0) class Microsoft_Windows_NlaSvc_4321_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4322, version=0) class Microsoft_Windows_NlaSvc_4322_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4323, version=0) class Microsoft_Windows_NlaSvc_4323_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4331, version=0) class Microsoft_Windows_NlaSvc_4331_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4332, version=0) class Microsoft_Windows_NlaSvc_4332_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4333, version=0) class Microsoft_Windows_NlaSvc_4333_0(Etw): pattern = Struct( "DnsSuffix" / WString, "Flags" / Int32ul, "ErrorCode" / Int32ul, "RetrievedDomain" / WString, "RetrievedForest" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4341, version=0) class Microsoft_Windows_NlaSvc_4341_0(Etw): pattern = Struct( "InterfaceName" / WString, "Addresses" / WString, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4342, version=0) class Microsoft_Windows_NlaSvc_4342_0(Etw): pattern = Struct( "InterfaceName" / WString, "Addresses" / WString, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4343, version=0) class Microsoft_Windows_NlaSvc_4343_0(Etw): pattern = Struct( "InterfaceName" / WString, "Addresses" / WString, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4351, version=0) class Microsoft_Windows_NlaSvc_4351_0(Etw): pattern = Struct( "Addresses" / WString, "DcName" / WString, "TryNumber" / Int32ul, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4352, version=0) class Microsoft_Windows_NlaSvc_4352_0(Etw): pattern = Struct( "Addresses" / WString, "DcName" / WString, "TryNumber" / Int32ul, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4353, version=0) class Microsoft_Windows_NlaSvc_4353_0(Etw): pattern = Struct( "Addresses" / WString, "DcName" / WString, "TryNumber" / Int32ul, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4354, version=0) class Microsoft_Windows_NlaSvc_4354_0(Etw): pattern = Struct( "Addresses" / WString, "DcName" / WString, "TryNumber" / Int32ul, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4355, version=0) class Microsoft_Windows_NlaSvc_4355_0(Etw): pattern = Struct( "Addresses" / WString, "DcName" / WString, "TryNumber" / Int32ul, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4356, version=0) class Microsoft_Windows_NlaSvc_4356_0(Etw): pattern = Struct( "Addresses" / WString, "DcName" / WString, "TryNumber" / Int32ul, "TryCount" / Int32ul, "ErrorCode" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4401, version=0) class Microsoft_Windows_NlaSvc_4401_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4402, version=0) class Microsoft_Windows_NlaSvc_4402_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4403, version=0) class Microsoft_Windows_NlaSvc_4403_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4404, version=0) class Microsoft_Windows_NlaSvc_4404_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4405, version=0) class Microsoft_Windows_NlaSvc_4405_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4407, version=0) class Microsoft_Windows_NlaSvc_4407_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4408, version=0) class Microsoft_Windows_NlaSvc_4408_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4409, version=0) class Microsoft_Windows_NlaSvc_4409_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4410, version=0) class Microsoft_Windows_NlaSvc_4410_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4411, version=0) class Microsoft_Windows_NlaSvc_4411_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureLength" / Int16ul, "Signature" / Bytes(lambda this: this.SignatureLength), "SignatureSource" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=4451, version=0) class Microsoft_Windows_NlaSvc_4451_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AuthCapUnlikelyReason" / Int32ul, "SpeculativeTimeout" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=5001, version=0) class Microsoft_Windows_NlaSvc_5001_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "NlaState" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=5002, version=0) class Microsoft_Windows_NlaSvc_5002_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "SignatureSource" / Int32ul, "SignatureCharacteristics" / Int32ul ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=6101, version=0) class Microsoft_Windows_NlaSvc_6101_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=6102, version=0) class Microsoft_Windows_NlaSvc_6102_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=6103, version=0) class Microsoft_Windows_NlaSvc_6103_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString ) @declare(guid=guid("63b530f8-29c9-4880-a5b4-b8179096e7b8"), event_id=6104, version=0) class Microsoft_Windows_NlaSvc_6104_0(Etw): pattern = Struct( "InterfaceGuid" / Guid, "AdapterName" / WString )
tests/ignite/handlers/test_stores.py
Juddd/ignite
4,119
12629126
import pytest from ignite.engine.engine import Engine, Events from ignite.handlers import EpochOutputStore @pytest.fixture def dummy_evaluator(): def dummy_process_function(engine, batch): return 1, 0 dummy_evaluator = Engine(dummy_process_function) return dummy_evaluator @pytest.fixture def eos(): return EpochOutputStore() def test_no_transform(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(1)) assert eos.data == [(1, 0)] def test_transform(dummy_evaluator): eos = EpochOutputStore(output_transform=lambda x: x[0]) eos.attach(dummy_evaluator) dummy_evaluator.run(range(1)) assert eos.data == [1] def test_reset(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(2)) eos.reset() assert eos.data == [] def test_update_one_iteration(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(1)) assert len(eos.data) == 1 def test_update_five_iterations(dummy_evaluator, eos): eos.attach(dummy_evaluator) dummy_evaluator.run(range(5)) assert len(eos.data) == 5 def test_attatch(dummy_evaluator, eos): eos.attach(dummy_evaluator) assert dummy_evaluator.has_event_handler(eos.reset, Events.EPOCH_STARTED) assert dummy_evaluator.has_event_handler(eos.update, Events.ITERATION_COMPLETED) def test_store_data(dummy_evaluator, eos): eos.attach(dummy_evaluator, name="eval_data") dummy_evaluator.run(range(1)) assert dummy_evaluator.state.eval_data == eos.data
tests/_apis/team_fight_tactics/test_SummonerApi.py
TheBoringBakery/Riot-Watcher
489
12629149
<reponame>TheBoringBakery/Riot-Watcher from unittest.mock import MagicMock import pytest from riotwatcher._apis.team_fight_tactics import SummonerApi @pytest.mark.tft @pytest.mark.unit class TestSummonerApi: def test_by_account(self): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return summoner = SummonerApi(mock_base_api) region = "afas" encrypted_account_id = "15asf2-54321" ret = summoner.by_account(region, encrypted_account_id) mock_base_api.raw_request.assert_called_once_with( SummonerApi.__name__, summoner.by_account.__name__, region, f"https://{region}.api.riotgames.com/tft/summoner/v1/summoners/by-account/{encrypted_account_id}", {}, ) assert ret is expected_return def test_by_name(self): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return summoner = SummonerApi(mock_base_api) region = "afas" summoner_name = "pseudonym117" ret = summoner.by_name(region, summoner_name) mock_base_api.raw_request.assert_called_once_with( SummonerApi.__name__, summoner.by_name.__name__, region, f"https://{region}.api.riotgames.com/tft/summoner/v1/summoners/by-name/{summoner_name}", {}, ) assert ret is expected_return def test_by_puuid(self): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return summoner = SummonerApi(mock_base_api) region = "afas" puuid = "15462gsfg321" ret = summoner.by_puuid(region, puuid) mock_base_api.raw_request.assert_called_once_with( SummonerApi.__name__, summoner.by_puuid.__name__, region, f"https://{region}.api.riotgames.com/tft/summoner/v1/summoners/by-puuid/{puuid}", {}, ) assert ret is expected_return def test_by_id(self): mock_base_api = MagicMock() expected_return = object() mock_base_api.raw_request.return_value = expected_return summoner = SummonerApi(mock_base_api) region = "afas" encrypted_summoner_id = "sdfgasg222" ret = summoner.by_id(region, encrypted_summoner_id) mock_base_api.raw_request.assert_called_once_with( SummonerApi.__name__, summoner.by_id.__name__, region, f"https://{region}.api.riotgames.com/tft/summoner/v1/summoners/{encrypted_summoner_id}", {}, ) assert ret is expected_return
lhotse/recipes/commonvoice.py
stachu86/lhotse
353
12629166
<filename>lhotse/recipes/commonvoice.py """ Official description from the "about" page of the Mozilla CommonVoice project (source link: https://commonvoice.mozilla.org/en/about) Why Common Voice? Mozilla Common Voice is an initiative to help teach machines how real people speak. This project is an effort to bridge the digital speech divide. Voice recognition technologies bring a human dimension to our devices, but developers need an enormous amount of voice data to build them. Currently, most of that data is expensive and proprietary. We want to make voice data freely and publicly available, and make sure the data represents the diversity of real people. Together we can make voice recognition better for everyone. How does it work? We’re crowdsourcing an open-source dataset of voices. Donate your voice, validate the accuracy of other people’s clips, make the dataset better for everyone. """ import logging import shutil import tarfile import warnings from collections import defaultdict from pathlib import Path from typing import Any, Dict, Iterable, Optional, Sequence, Tuple, Union from tqdm.auto import tqdm from lhotse import load_manifest, validate_recordings_and_supervisions from lhotse.audio import Recording, RecordingSet from lhotse.supervision import SupervisionSegment, SupervisionSet from lhotse.utils import Pathlike, is_module_available, urlretrieve_progress DEFAULT_COMMONVOICE_URL = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com" DEFAULT_COMMONVOICE_RELEASE = "cv-corpus-5.1-2020-06-22" COMMONVOICE_LANGS = "en de fr cy tt kab ca zh-TW it fa eu es ru tr nl eo zh-CN rw pt zh-HK cs pl uk".split() COMMONVOICE_SPLITS = ("train", "dev", "test", "validated", "invalidated", "other") COMMONVOICE_DEFAULT_SPLITS = ("train", "dev", "test") # TODO: a list of mapping from language codes (e.g., "en") to actual language names (e.g., "US English") COMMONVOICE_CODE2LANG = {} def download_commonvoice( target_dir: Pathlike = ".", languages: Union[str, Iterable[str]] = "all", force_download: bool = False, base_url: str = DEFAULT_COMMONVOICE_URL, release: str = DEFAULT_COMMONVOICE_RELEASE, ) -> None: """ Download and untar the CommonVoice dataset. :param target_dir: Pathlike, the path of the dir to storage the dataset. :param languages: one of: 'all' (downloads all known languages); a single language code (e.g., 'en'), or a list of language codes. :param force_download: Bool, if True, download the tars no matter if the tars exist. :param base_url: str, the base URL for CommonVoice. :param release: str, the name of the CommonVoice release (e.g., "cv-corpus-5.1-2020-06-22"). It is used as part of the download URL. """ # note(pzelasko): This code should work in general if we supply the right URL, # but the URL stopped working during the development of this script -- # I'm not going to fight this, maybe somebody else would be interested to pick it up. raise NotImplementedError( "CommonVoice requires you to enter e-mail to download the data" "-- please download it manually for now. " "We are open to contributions to support downloading CV via lhotse." ) target_dir = Path(target_dir) target_dir.mkdir(parents=True, exist_ok=True) url = f"{base_url}/{release}" if languages == "all": languages = COMMONVOICE_LANGS elif isinstance(languages, str): languages = [languages] else: languages = list(languages) logging.info( f"About to download {len(languages)} CommonVoice languages: {languages}" ) for lang in tqdm(languages, desc="Downloading CommonVoice languages"): logging.info(f"Language: {lang}") # Split directory exists and seem valid? Skip this split. part_dir = target_dir / release / lang completed_detector = part_dir / ".completed" if completed_detector.is_file(): logging.info(f"Skipping {lang} because {completed_detector} exists.") continue # Maybe-download the archive. tar_name = f"{lang}.tar.gz" tar_path = target_dir / tar_name if force_download or not tar_path.is_file(): urlretrieve_progress(url, filename=tar_path, desc=f"Downloading {tar_name}") logging.info(f"Downloading finished: {lang}") # Remove partial unpacked files, if any, and unpack everything. logging.info(f"Unpacking archive: {lang}") shutil.rmtree(part_dir, ignore_errors=True) with tarfile.open(tar_path) as tar: tar.extractall(path=target_dir) completed_detector.touch() def prepare_commonvoice( corpus_dir: Pathlike, output_dir: Pathlike, languages: Union[str, Sequence[str]] = "auto", splits: Union[str, Sequence[str]] = COMMONVOICE_DEFAULT_SPLITS, num_jobs: int = 1, ) -> Dict[str, Dict[str, Dict[str, Union[RecordingSet, SupervisionSet]]]]: """ Returns the manifests which consist of the Recordings and Supervisions. When all the manifests are available in the ``output_dir``, it will simply read and return them. This function expects the input directory structure of:: >>> metadata_path = corpus_dir / language_code / "{train,dev,test}.tsv" >>> # e.g. pl_train_metadata_path = "/path/to/cv-corpus-7.0-2021-07-21/pl/train.tsv" >>> audio_path = corpus_dir / language_code / "clips" >>> # e.g. pl_audio_path = "/path/to/cv-corpus-7.0-2021-07-21/pl/clips" Returns a dict with 3-level structure (lang -> split -> manifest-type):: >>> {'en/fr/pl/...': {'train/dev/test': {'recordings/supervisions': manifest}}} :param corpus_dir: Pathlike, the path to the downloaded corpus. :param output_dir: Pathlike, the path where to write the manifests. :param languages: 'auto' (prepare all discovered data) or a list of language codes. :param splits: by default ``['train', 'dev', 'test']``, can also include ``'validated'``, ``'invalidated'``, and ``'other'``. :param num_jobs: How many concurrent workers to use for scanning of the audio files. :return: a dict with manifests for all specified languagues and their train/dev/test splits. """ if not is_module_available("pandas"): raise ValueError( "To prepare CommonVoice data, please 'pip install pandas' first." ) if num_jobs > 1: warnings.warn( "num_jobs>1 currently not supported for CommonVoice data prep;" "setting to 1." ) corpus_dir = Path(corpus_dir) assert corpus_dir.is_dir(), f"No such directory: {corpus_dir}" assert output_dir is not None, ( "CommonVoice recipe requires to specify the output " "manifest directory (output_dir cannot be None)." ) output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) if languages == "auto": languages = set(COMMONVOICE_LANGS).intersection( path.name for path in corpus_dir.glob("*") ) if not languages: raise ValueError( f"Could not find any of CommonVoice languages in: {corpus_dir}" ) elif isinstance(languages, str): languages = [languages] manifests = {} for lang in tqdm(languages, desc="Processing CommonVoice languages"): logging.info(f"Language: {lang}") lang_path = corpus_dir / lang # Maybe the manifests already exist: we can read them and save a bit of preparation time. # Pattern: "cv_recordings_en_train.jsonl.gz" / "cv_supervisions_en_train.jsonl.gz" lang_manifests = read_cv_manifests_if_cached( output_dir=output_dir, language=lang ) for part in splits: logging.info(f"Split: {part}") if part in lang_manifests: logging.info( f"CommonVoice language: {lang} already prepared - skipping." ) continue recording_set, supervision_set = prepare_single_commonvoice_tsv( lang=lang, part=part, output_dir=output_dir, lang_path=lang_path, ) lang_manifests[part] = { "supervisions": supervision_set, "recordings": recording_set, } manifests[lang] = lang_manifests return manifests def prepare_single_commonvoice_tsv( lang: str, part: str, output_dir: Pathlike, lang_path: Pathlike, ) -> Tuple[RecordingSet, SupervisionSet]: """ Prepares part of CommonVoice data from a single TSV file. :param lang: string language code (e.g., "en"). :param part: which split to prepare (e.g., "train", "validated", etc.). :param output_dir: path to directory where we will store the manifests. :param lang_path: path to a CommonVoice directory for a specific language (e.g., "/path/to/cv-corpus-7.0-2021-07-21/pl"). :return: a tuple of (RecordingSet, SupervisionSet) objects opened in lazy mode, as CommonVoice manifests may be fairly large in memory. """ if not is_module_available("pandas"): raise ValueError( "To prepare CommonVoice data, please 'pip install pandas' first." ) import pandas as pd lang_path = Path(lang_path) output_dir = Path(output_dir) tsv_path = lang_path / f"{part}.tsv" # Read the metadata df = pd.read_csv(tsv_path, sep="\t") # Scan all the audio files with RecordingSet.open_writer( output_dir / f"cv_recordings_{lang}_{part}.jsonl.gz", overwrite=False, ) as recs_writer, SupervisionSet.open_writer( output_dir / f"cv_supervisions_{lang}_{part}.jsonl.gz", overwrite=False, ) as sups_writer: for idx, row in tqdm( df.iterrows(), desc="Processing audio files", total=len(df), ): try: result = parse_utterance(row, lang_path, lang) if result is None: continue recording, segment = result validate_recordings_and_supervisions(recording, segment) recs_writer.write(recording) sups_writer.write(segment) except Exception as e: logging.error( f"Error when processing TSV file: line no. {idx}: '{row}'.\n" f"Original error type: '{type(e)}' and message: {e}" ) continue recordings = RecordingSet.from_jsonl_lazy(recs_writer.path) supervisions = SupervisionSet.from_jsonl_lazy(sups_writer.path) return recordings, supervisions def parse_utterance( row: Any, lang_path: Path, language: str ) -> Tuple[Recording, SupervisionSegment]: # Create the Recording first audio_path = lang_path / "clips" / row.path if not audio_path.is_file(): raise ValueError(f"No such file: {audio_path}") recording_id = Path(row.path).stem recording = Recording.from_file(audio_path, recording_id=recording_id) # Then, create the corresponding supervisions segment = SupervisionSegment( id=recording_id, recording_id=recording_id, start=0.0, duration=recording.duration, channel=0, # Look up language code => language name mapping (it is empty at the time of writing this comment) # if the language code is unknown, fall back to using the language code. language=COMMONVOICE_CODE2LANG.get(language, language), speaker=row.client_id, text=row.sentence.strip(), gender=row.gender if row.gender != "nan" else None, custom={ "age": row.age if row.age != "nan" else None, "accent": row.accent if row.accent != "nan" else None, }, ) return recording, segment def read_cv_manifests_if_cached( output_dir: Optional[Pathlike], language: str, ) -> Dict[str, Dict[str, Union[RecordingSet, SupervisionSet]]]: """ Returns: {'train': {'recordings': ..., 'supervisions': ...}, 'dev': ..., 'test': ...} """ if output_dir is None: return {} manifests = defaultdict(dict) for part in ["train", "dev", "test"]: for manifest in ["recordings", "supervisions"]: path = output_dir / f"cv_{manifest}_{language}_{part}.jsonl.gz" if not path.is_file(): continue manifests[part][manifest] = load_manifest(path) return manifests
examples/render/render_euler_spiral.py
jkjt/ezdxf
515
12629169
<reponame>jkjt/ezdxf # Copyright (c) 2010-2021, <NAME> # License: MIT License from pathlib import Path from math import radians import ezdxf from ezdxf.render import EulerSpiral from ezdxf.math import Matrix44 NAME = "euler_spiral.dxf" DIR = Path("~/Desktop/Outbox").expanduser() def four_c(curvature, length, rotation): spiral = EulerSpiral(curvature=curvature) render( spiral, length, tmatrix(2, 2, angle=rotation), dxfattribs={"color": 1} ) # scaling sx=-1 is mirror about y-axis render( spiral, length, tmatrix(2, 2, sx=-1, sy=1, angle=rotation), dxfattribs={"color": 2}, ) # scaling sy=-1 is mirror about x-axis render( spiral, length, tmatrix(2, 2, sx=1, sy=-1, angle=rotation), dxfattribs={"color": 3}, ) render( spiral, length, tmatrix(2, 2, sx=-1, sy=-1, angle=rotation), dxfattribs={"color": 4}, ) def render(spiral, length, matrix, dxfattribs): spiral.render_polyline( msp, length, segments=100, matrix=matrix, dxfattribs=dxfattribs ) spiral.render_spline( msp, length, fit_points=10, matrix=matrix, dxfattribs={"color": 6, "linetype": "DASHED"}, ) def tmatrix(dx, dy, sx=1, sy=1, angle=0): return Matrix44.chain( Matrix44.scale(sx=sx, sy=sy, sz=1), Matrix44.z_rotate(radians(angle)), Matrix44.translate(dx, dy, 0), ) doc = ezdxf.new("R2000", setup=True) msp = doc.modelspace() msp.add_line((-20, 0), (20, 0), dxfattribs={"linetype": "PHANTOM"}) msp.add_line((0, -20), (0, 20), dxfattribs={"linetype": "PHANTOM"}) for rotation in [0, 30, 45, 60, 75, 90]: four_c(10.0, 25, rotation) fname = DIR / NAME doc.saveas(fname) print(f"created: {fname}\n")
spytest/tests/routing/BGP/test_bgp_4node.py
shubav/sonic-mgmt
132
12629195
# BGP 4 node topology test cases import pytest from spytest import st, utils import apis.routing.ip as ipapi import apis.routing.bgp as bgpapi import BGP.bgp4nodelib as bgp4nodelib from spytest.utils import exec_all from utilities.common import poll_wait @pytest.fixture(scope="module", autouse=True) def bgp_module_hooks(request): bgp_pre_config() yield bgp_pre_config_cleanup() # bgp module level pre config function def bgp_pre_config(): global topo st.banner("BGP MODULE CONFIG - START") st.log("Ensure minimum linear 4-node topology") st.ensure_min_topology('D1D2:1', 'D2D3:1', 'D3D4:1') bgp4nodelib.l3_ipv4v6_address_config_unconfig(config='yes', config_type='all') # Ping Verification if not bgp4nodelib.l3tc_vrfipv4v6_address_ping_test(config_type='all', ping_count=3): st.error("Ping failed between DUTs") st.report_fail('test_case_failed') topo = bgp4nodelib.get_confed_topology_info() st.log(topo) st.banner("BGP MODULE CONFIG - END") # bgp module level pre config cleanup function def bgp_pre_config_cleanup(): st.banner("BGP MODULE CONFIG CLEANUP - START") bgp4nodelib.l3_ipv4v6_address_config_unconfig(config='no') st.banner("BGP MODULE CONFIG CLEANUP - END") @pytest.fixture(scope="function") def bgp_func_hooks(request): yield @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ft_bgp_ebgp_multihop_4byteASN(): """ Verify the functioning of ebgp multihop command with 4 byte ASN """ # On DUT1 and DUT3, create BGP with 4byte ASN dut1_as = 6500001 dut1 = topo['dut_list'][0] dut3_as = 6500002 dut3 = topo['dut_list'][2] result = 0 wait_timer = 150 st.banner("Verify the ebgp multihop functionality with 4 byte AS Number") # Configure bgp on DUT1 and configure DUT3 as neighbor with ebgp-multihop ttl set to 5 st.log("Configure eBGP on DUT1 with Neighbor as DUT3 with multihop set to maximum hops of 5") bgpapi.config_bgp(dut1, local_as=dut1_as, neighbor=topo['D3D2P1_ipv4'], remote_as=dut3_as, config_type_list=["neighbor","ebgp_mhop"], ebgp_mhop='5') # Add static route towards neighbor DUT3 st.log("Add static route towards DUT3") ipapi.create_static_route(dut1, topo['D1D2P1_neigh_ipv4'], "{}/24".format(topo['D3D2P1_ipv4'])) # Configure bgp on DUT3 and configure DUT1 as neighbor with ebgp-multihop ttl set to 5 st.log("Configure eBGP on DUT3 with DUT1 as Neighbor with multihop set to maximum hops of 5") bgpapi.config_bgp(dut3, local_as=dut3_as, neighbor=topo['D1D2P1_ipv4'], remote_as=dut1_as, config_type_list=["neighbor","ebgp_mhop"], ebgp_mhop='5') # Add static route towards neighbor DUT1 st.log("Add static route towards DUT1") ipapi.create_static_route(dut3, topo['D3D2P1_neigh_ipv4'], "{}/24".format(topo['D1D2P1_ipv4'])) st.log("Verify BGP neighborship on DUT1") #result = bgpapi.verify_bgp_summary(dut1, family='ipv4', neighbor=topo['D3D2P1_ipv4'], state='Established') if not utils.poll_wait(bgpapi.verify_bgp_summary, wait_timer, dut1, family='ipv4', neighbor=topo['D3D2P1_ipv4'], state='Established'): st.log("Failed to form BGP eBGP multihop peering with 4byte ASN") result += 1 if result == 0: st.log("Pass: BGP neighborship established between DUT1 and DUT3") else: st.error("Fail: BGP neighborship not established between DUT1 and DUT3") st.banner("Collecting techsupport") exec_all(True, [[st.generate_tech_support, topo['dut_list'][0], "test_ft_bgp_ebgp_multihop_4byteASN"], [st.generate_tech_support, topo['dut_list'][1], "test_ft_bgp_ebgp_multihop_4byteASN"], [st.generate_tech_support, topo['dut_list'][2], "test_ft_bgp_ebgp_multihop_4byteASN"]]) #Clear applied configs st.banner("Cleanup for TestFunction") bgpapi.cleanup_router_bgp(dut1) bgpapi.cleanup_router_bgp(dut3) ipapi.delete_static_route(dut1, topo['D1D2P1_neigh_ipv4'], "{}/24".format(topo['D3D2P1_ipv4'])) ipapi.delete_static_route(dut3, topo['D3D2P1_neigh_ipv4'], "{}/24".format(topo['D1D2P1_ipv4'])) if result == 0: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") ################################################################################ # BGP Confederation test cases - START def bgp_confed_pre_config(): st.banner("BGP CONFED CLASS CONFIG - START") bgp4nodelib.l3tc_vrfipv4v6_confed_bgp_config(config='yes') # BGP Neighbour Verification if not poll_wait(bgp4nodelib.l3tc_vrfipv4v6_address_confed_bgp_check, 10, config_type='all'): st.error("Neighborship failed to Establish between DUTs") st.report_fail('test_case_failed') st.log("Getting all topology info related to connectivity / TG and other parameters between duts") st.banner("BGP CONFED CLASS CONFIG - END") def bgp_confed_pre_config_cleanup(): st.banner("BGP CONFED CLASS CONFIG CLEANUP - START") bgp4nodelib.l3tc_vrfipv4v6_confed_bgp_config(config='no') st.banner("BGP RIF CLASS CONFIG CLEANUP - END") @pytest.fixture(scope='class') def bgp_confed_class_hook(request): bgp_confed_pre_config() yield bgp_confed_pre_config_cleanup() # TestBGPConfed class @pytest.mark.usefixtures('bgp_confed_class_hook') class TestBGPConfed(): @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ipv6_confed_route_distribution(self): st.banner("Verify the config of BGP v6 confederation and router advertisement") st.log("Advertise a network from DUT1 and check if it is learnt on confederation peer DUT3") dut1_name = topo['dut_list'][0] dut3_name = topo['dut_list'][2] network_ipv4 = '192.168.127.12/24' network_ipv6 = 'fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b/64' # Advertise a network to peer bgpapi.config_bgp_network_advertise(dut1_name, topo['D1_as'], network_ipv4, network_import_check=True) bgpapi.config_bgp_network_advertise(dut1_name, topo['D1_as'], network_ipv6, addr_family='ipv6', config='yes', network_import_check=True) entries = bgpapi.get_ip_bgp_route(dut3_name, family="ipv4", network=network_ipv4) entries1 = bgpapi.get_ip_bgp_route(dut3_name, family="ipv6", network="2000:1::/64") if entries and entries1: st.log("Pass: Routes advertised by DUT1 found on DUT3") else: st.error("Fail: Route advertised by DUT1 not found on DUT3") st.banner("Collecting techsupport") exec_all(True, [[st.generate_tech_support, topo['dut_list'][0], "test_ipv6_confed_route_distribution"], [st.generate_tech_support, topo['dut_list'][1], "test_ipv6_confed_route_distribution"], [st.generate_tech_support, topo['dut_list'][2], "test_ipv6_confed_route_distribution"]]) # Clear applied configs st.banner("Cleanup for TestFunction") bgpapi.config_bgp_network_advertise(dut1_name, topo['D1_as'], network_ipv4, config='no' ) bgpapi.config_bgp_network_advertise(dut1_name, topo['D1_as'], network_ipv6, addr_family='ipv6', config='no') if entries and entries1: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_pass def test_ipv6_confed_with_rr(self): st.banner("Verify Route Reflector behavior within a confederation of BGP v6 peers") st.banner("Consider the right confederation iBGP AS and check Route Reflector functionality between the 3 iBGP Routers") network_ipv4 = '172.16.58.3/24' network_ipv6 = 'fc00:e968:6179::de52:7100/64' # iBGP AS is one of D2/D3/D4 ASN iBGP_as=topo['D2_as'] st.log("Advertise an IPv4 and an IPv6 network from DUT2 through BGP") bgpapi.config_bgp_network_advertise(topo['dut_list'][1], iBGP_as, network_ipv4, network_import_check=True) bgpapi.config_bgp_network_advertise(topo['dut_list'][1], iBGP_as, network_ipv6, addr_family='ipv6', config='yes', network_import_check=True) st.log("Check the network on the 3rd iBGP peer DUT4 is not learnt because Route Reflector is not configured on peer DUT3") entries = bgpapi.get_ip_bgp_route(topo['dut_list'][3], family="ipv4", network=network_ipv4) entries1 = bgpapi.get_ip_bgp_route(topo['dut_list'][3], family="ipv6", network="3000:1::/64") if not entries and not entries1: st.log("Pass: DUT4 did not learn routes without configuring Route Reflector on peer DUT3") else: st.error("Fail: DUT4 learned route without configuring Route Reflector on peer DUT3") st.banner("Collecting techsupport") exec_all(True, [[st.generate_tech_support, topo['dut_list'][1], "test_ipv6_confed_with_rr"], [st.generate_tech_support, topo['dut_list'][2], "test_ipv6_confed_with_rr"], [st.generate_tech_support, topo['dut_list'][3], "test_ipv6_confed_with_rr"]]) # Clear applied configurations st.banner("Cleanup for TestFunction") bgpapi.config_bgp_network_advertise(topo['dut_list'][1], iBGP_as, network_ipv4, config='no' ) bgpapi.config_bgp_network_advertise(topo['dut_list'][1], iBGP_as, network_ipv6, addr_family='ipv6', config='no') st.report_fail("test_case_failed") st.log("Now configure Route Reflector on DUT3") bgpapi.create_bgp_route_reflector_client(topo.dut_list[2], iBGP_as, 'ipv4', topo['D3D4P1_neigh_ipv4'], 'yes') bgpapi.create_bgp_route_reflector_client(topo.dut_list[2], iBGP_as, 'ipv6', topo['D3D4P1_neigh_ipv6'], 'yes') st.wait(10) st.log("Now the routes should be learnt on the 3rd IBGP peer DUT4") entries2 = bgpapi.get_ip_bgp_route(topo['dut_list'][3], family="ipv4", network=network_ipv4) entries3 = bgpapi.get_ip_bgp_route(topo['dut_list'][3], family="ipv6", network="3000:1::/64") if entries2 and entries3: st.log("Pass: DUT4 learned the routes advertised by peer DUT2") else: st.error("Fail: DUT4 did not learn the routes advertised by peer DUT2") st.banner("Collecting techsupport") exec_all(True, [[st.generate_tech_support, topo['dut_list'][1], "test_ipv6_confed_with_rr"], [st.generate_tech_support, topo['dut_list'][2], "test_ipv6_confed_with_rr"], [st.generate_tech_support, topo['dut_list'][3], "test_ipv6_confed_with_rr"]]) # Clear applied configurations st.banner("Cleanup for TestFunction") bgpapi.config_bgp_network_advertise(topo['dut_list'][1], iBGP_as, network_ipv4, config='no' ) bgpapi.config_bgp_network_advertise(topo['dut_list'][1], iBGP_as, network_ipv6, addr_family='ipv6', config='no') bgpapi.create_bgp_route_reflector_client(topo.dut_list[2], iBGP_as, 'ipv4', topo['D3D4P1_neigh_ipv4'], 'no') bgpapi.create_bgp_route_reflector_client(topo.dut_list[2], iBGP_as, 'ipv6', topo['D3D4P1_neigh_ipv6'], 'no') if entries2 and entries3: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") @pytest.mark.rmap @pytest.mark.bgp_ft @pytest.mark.community @pytest.mark.community_fail def test_confed_route_distribution_with_rmap(self): st.banner("Verify the behavior of Route-Maps over confederation peers") result = False network1 = '172.16.58.3/24' network2 = '172.16.17.32/24' network3 = '192.168.127.12' as_path = '200' access_list1 = 'test-access-list1' access_list2 = 'test-access-list2' access_list3 = 'test-access-list3' st.log("Create access-lists and a route-map in DUT1, add to it permit, deny and AS-path prepending policies") # Create access-list test-access-list1 ipapi.config_access_list(topo['dut_list'][0], access_list1, network3+'/24', 'permit', seq_num="1") # Create route-map and permit network3 ipapi.config_route_map_match_ip_address(topo['dut_list'][0], 'test-rmap', 'permit', '10', access_list1) # Add set option to prepend as-path 200 ipapi.config_route_map_set_aspath(topo['dut_list'][0], 'test-rmap', 'permit', '10', as_path) # Create access-list test-access-list2 ipapi.config_access_list(topo['dut_list'][0], access_list2, network1, 'deny', seq_num="2") # In route-map, deny network1 ipapi.config_route_map_match_ip_address(topo['dut_list'][0], 'test-rmap', 'deny', '20', access_list2) # Create access-list test-access-list3 ipapi.config_access_list(topo['dut_list'][0], access_list3, network2, 'permit', seq_num="3") # In route-map, permit network2 ipapi.config_route_map_match_ip_address(topo['dut_list'][0], 'test-rmap', 'permit', '30', access_list3) # Advertise three networks from leaf st.log("Advertise the networks from DUT1 through BGP and associate with the route-map") bgpapi.advertise_bgp_network(topo['dut_list'][0], topo['D1_as'], network1, 'test-rmap', network_import_check=True) bgpapi.advertise_bgp_network(topo['dut_list'][0], topo['D1_as'], network2, 'test-rmap', network_import_check=True) bgpapi.advertise_bgp_network(topo['dut_list'][0], topo['D1_as'], network3+'/24', 'test-rmap', network_import_check=True) st.log("Verify in peer DUT2 the network configured in {} has the AS-path prepended".format(access_list1)) # Verify that the neighbor has the as-path prepended output = bgpapi.show_bgp_ipvx_prefix(topo['dut_list'][1], prefix=network3, masklen=topo['D1_as']) for x in output: # type: basestring peer_asn = x['peerasn'] peer_asn = peer_asn.split() for each in peer_asn: if each == as_path: result = True if result: st.log("Pass: AS-Path {} found to be prepended with network {}/24".format(as_path, network3)) else: st.error("Fail: AS-Path {} not found to be prepended".format(as_path)) # Verify that network1 is not present in ip route table st.log("Verify that peer DUT2 not learnt the network configured as 'deny' in {}".format(access_list2)) n1 = ipapi.verify_ip_route(topo['dut_list'][1], ip_address=network1) if n1 is False: result = result & True st.log("Pass: DUT2 did not learn network {}".format(network1)) else: result = result & False st.error("Fail: DUT2 learned the network {}".format(network1)) # Verify that network2 is present in ip route table st.log("Verify that peer DUT2 learnt the network configured as 'permit' in {}".format(access_list3)) n2 = ipapi.verify_ip_route(topo['dut_list'][1], ip_address=network2) if n2: result = result & True st.log("Pass: DUT2 learned the network {}".format(network2)) else: result = result & False st.error("Fail: DUT2 did not learn network {}".format(network2)) if not result: st.banner("Collecting techsupport") exec_all(True, [[st.generate_tech_support, topo['dut_list'][0], "test_confed_route_distribution_with_rmap"], [st.generate_tech_support, topo['dut_list'][1], "test_confed_route_distribution_with_rmap"]]) ipapi.config_route_map_mode(topo['dut_list'][0], 'test-rmap', 'permit', '10', config='no') # Clear applied configurations st.banner("Cleanup for TestFunction") ipapi.config_access_list(topo['dut_list'][0], 'test-access-list3', network2, 'permit', config='no', seq_num="3") ipapi.config_access_list(topo['dut_list'][0], 'test-access-list2', network1, 'deny', config='no', seq_num="2") ipapi.config_access_list(topo['dut_list'][0], 'test-access-list1', network3+'/24', 'permit', config='no', seq_num="1") bgpapi.advertise_bgp_network(topo['dut_list'][0], topo['D1_as'], network1, 'test-rmap', config='no') bgpapi.advertise_bgp_network(topo['dut_list'][0], topo['D1_as'], network2, 'test-rmap', config='no') bgpapi.advertise_bgp_network(topo['dut_list'][0], topo['D1_as'], network3+'/24', 'test-rmap', config='no') if result: st.report_pass("test_case_passed") else: st.report_fail("test_case_failed") # BGP Confederation test cases - END ################################################################################
converter/ch_ppocr_v2_rec_converter.py
JimEverest/PaddleOCR2Pytorch
364
12629201
# https://zhuanlan.zhihu.com/p/335753926 import os, sys sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from collections import OrderedDict import numpy as np import cv2 import torch from pytorchocr.base_ocr_v20 import BaseOCRV20 class PPOCRv2RecConverter(BaseOCRV20): def __init__(self, config, paddle_pretrained_model_path, **kwargs): para_state_dict, opti_state_dict = self.read_paddle_weights(paddle_pretrained_model_path) out_channels = list(para_state_dict.values())[-1].shape[0] print('out_channels: ', out_channels) print(type(kwargs), kwargs) kwargs['out_channels'] = out_channels super(PPOCRv2RecConverter, self).__init__(config, **kwargs) # self.load_paddle_weights(paddle_pretrained_model_path) self.load_paddle_weights([para_state_dict, opti_state_dict]) print('model is loaded: {}'.format(paddle_pretrained_model_path)) self.net.eval() def load_paddle_weights(self, paddle_weights): para_state_dict, opti_state_dict = paddle_weights [print('paddle: {} ---- {}'.format(k, v.shape)) for k, v in para_state_dict.items()] [print('pytorch: {} ---- {}'.format(k, v.shape)) for k, v in self.net.state_dict().items()] for k,v in self.net.state_dict().items(): if k.endswith('num_batches_tracked'): continue ppname = k ppname = ppname.replace('.running_mean', '._mean') ppname = ppname.replace('.running_var', '._variance') if k.startswith('backbone.'): ppname = ppname.replace('backbone.', 'Student.backbone.') elif k.startswith('neck.'): ppname = ppname.replace('neck.', 'Student.neck.') elif k.startswith('head.'): ppname = ppname.replace('head.', 'Student.head.') else: print('Redundance:') print(k) raise ValueError try: if ppname.endswith('fc1.weight') or ppname.endswith('fc2.weight'): self.net.state_dict()[k].copy_(torch.Tensor(para_state_dict[ppname].T)) else: self.net.state_dict()[k].copy_(torch.Tensor(para_state_dict[ppname])) except Exception as e: print('pytorch: {}, {}'.format(k, v.size())) print('paddle: {}, {}'.format(ppname, para_state_dict[ppname].shape)) raise e print('model is loaded.') if __name__ == '__main__': import argparse, json, textwrap, sys, os parser = argparse.ArgumentParser() parser.add_argument("--src_model_path", type=str, help='Assign the paddleOCR trained model(best_accuracy)') args = parser.parse_args() cfg = {'model_type':'rec', 'algorithm':'CRNN', 'Transform':None, 'Backbone':{'name':'MobileNetV1Enhance', 'scale':0.5}, 'Neck':{'name':'SequenceEncoder', 'hidden_size':64, 'encoder_type':'rnn'}, 'Head':{'name':'CTCHead', 'mid_channels': 96, 'fc_decay': 2e-05}} paddle_pretrained_model_path = os.path.join(os.path.abspath(args.src_model_path), 'best_accuracy') converter = PPOCRv2RecConverter(cfg, paddle_pretrained_model_path) np.random.seed(666) inputs = np.random.randn(1,3,32,320).astype(np.float32) inp = torch.from_numpy(inputs) out = converter.net(inp) out = out.data.numpy() print('out:', np.sum(out), np.mean(out), np.max(out), np.min(out)) # save converter.save_pytorch_weights('ch_ptocr_v2_rec_infer.pth') print('done.')
paver/hg.py
timgates42/paver
270
12629220
<filename>paver/hg.py """Convenience functions for working with mercurial This module does not include any tasks, only functions. At this point, these functions do not use any kind of library. They require the hg binary on the PATH.""" from paver.easy import sh def clone(url, dest_folder, rev=None): """Clone a mercurial repository. Parameters: url (string): The path to clone the repository from. Could be local or remote. dest_folder (string): The local folder where the repository will be cloned. rev=None (string or None): If specified, the revision to clone to. If omitted or `None`, all changes will be cloned. Returns: None""" rev_string = '' if rev: rev_string = ' -r %s' % rev sh('hg clone{rev} {url} {dest}'.format( rev=rev_string, url=url, dest=dest_folder)) def pull(repo_path, rev=None, url=None): """Pull changes into a mercurial repository. Parameters: repo_path (string): The local path to a mercurial repository. rev=None (string or None): If specified, the revision to pull to. If omitted or `None`, all changes will be pulled. url=None (string or None): If specified, the repository to pull from. If omitted or `None`, the default location of the repository will be used. Returns: None""" rev_string = '' if rev: rev_string = ' -r %s' % rev url_string = '' if url: url_string = ' ' + url sh('hg pull{rev} -R {repo}{url}'.format(rev=rev_string, repo=repo_path, url=url_string)) def latest_tag(repo_path, relative_to='tip'): """Get the latest tag from a mercurial repository. Parameters: repo_path (string): The local path to a mercurial repository. relative_to='tip' (string): If provided, the revision to use as a reference. Defaults to 'tip'. Returns: The string name of the latest tag.""" stdout = sh('hg log --template "{{latesttag}}" -r {rev} -R {repo}'.format( rev=relative_to, repo=repo_path), capture=True) return stdout.strip() def update(repo_path, rev='tip', clean=False): """Update a mercurial repository to a revision. Parameters: repo_path (string): The local path to a mercurial repository. rev='tip' (string): If provided, the revision to update to. If omitted, 'tip' will be used. clean=False (bool): If `True`, the update will discard uncommitted changes. Returns: None""" clean_string = '' if clean: clean_string = ' --clean' sh('hg update -r {rev} -R {repo}{clean}'.format( rev=rev, repo=repo_path, clean=clean_string)) def branches(repo_path, closed=False): """List branches for the target repository. Parameters: repo_path (string): The local path to a mercurial repository. closed=False (bool): Whether to include closed branches in the branch list. Returns: A python tuple. The first item of the tuple is the current branch. The second item of the tuple is a list of the branches""" current_branch = sh('hg branch -R {repo}'.format(repo=repo_path), capture=True).strip() closed_string = '' if closed: closed_string = ' --closed' stdout_string = sh('hg branches -R {repo}{closed}'.format( repo=repo_path, closed=closed_string), capture=True) # Branch list comes out in the format: # <branchname> <revnum>:<sha1> branches = [line.split()[0] for line in stdout_string.split('\n') if len(line) > 0] return current_branch, branches
tests/trainers/lightning/test_validation.py
facebookresearch/pythia
3,252
12629227
<filename>tests/trainers/lightning/test_validation.py # Copyright (c) Facebook, Inc. and its affiliates. import gc import unittest from typing import Any, Dict, Optional from unittest.mock import MagicMock, patch from mmf.common.meter import Meter from mmf.trainers.callbacks.logistics import LogisticsCallback from mmf.trainers.lightning_core.loop_callback import LightningLoopCallback from mmf.trainers.lightning_core.loop_callback_with_torchmetrics import ( LightningTorchMetricsCallback, ) from mmf.trainers.lightning_core.torchmetric import LightningTorchMetrics from mmf.utils.logger import TensorboardLogger from mmf.utils.timer import Timer from tests.trainers.test_utils import ( get_config_with_defaults, get_lightning_trainer, get_mmf_trainer, run_lightning_trainer, ) class TestLightningTrainerValidation(unittest.TestCase): def setUp(self): self.ground_truths = [ { "current_iteration": 3, "num_updates": 3, "max_updates": 8, "avg_loss": 9705.2953125, }, { "current_iteration": 6, "num_updates": 6, "max_updates": 8, "avg_loss": 9703.29765625, }, { "current_iteration": 8, "num_updates": 8, "max_updates": 8, "avg_loss": 9701.88046875, }, ] def teardown(self): del self.ground_truths gc.collect() @patch("mmf.common.test_reporter.PathManager.mkdirs") @patch("mmf.trainers.lightning_trainer.get_mmf_env", return_value="") def test_validation(self, log_dir, mkdirs): config = self._get_config( max_steps=8, batch_size=2, val_check_interval=3, log_every_n_steps=9, # turn it off limit_val_batches=1.0, ) trainer = get_lightning_trainer(config=config, prepare_trainer=False) callback = LightningLoopCallback(trainer) trainer.callbacks.append(callback) lightning_values = [] def log_values( current_iteration: int, num_updates: int, max_updates: int, meter: Meter, extra: Dict[str, Any], tb_writer: TensorboardLogger, ): lightning_values.append( { "current_iteration": current_iteration, "num_updates": num_updates, "max_updates": max_updates, "avg_loss": meter.loss.avg, } ) with patch( "mmf.trainers.lightning_core.loop_callback.summarize_report", side_effect=log_values, ): run_lightning_trainer(trainer) self.assertEqual(len(self.ground_truths), len(lightning_values)) for gt, lv in zip(self.ground_truths, lightning_values): keys = list(gt.keys()) self.assertListEqual(keys, list(lv.keys())) for key in keys: if key == "num_updates" and gt[key] == self.ground_truths[-1][key]: # After training, in the last evaluation run, mmf's num updates is 8 # while lightning's num updates is 9, this is due to a hack to # assign the lightning num_updates to be the trainer.global_step+1. # # This is necessary because of a lightning bug: trainer.global_step # is 1 off less than the actual step count. When on_train_batch_end # is called for the first time, the trainer.global_step should be 1, # rather than 0, since 1 update/step has already been done. # # When lightning fixes its bug, we will update this test to remove # the hack. # issue: 6997 in pytorch lightning self.assertAlmostEqual(gt[key], lv[key] - 1, 1) else: self.assertAlmostEqual(gt[key], lv[key], 1) # TODO: update test function with avg_loss @patch("mmf.common.test_reporter.PathManager.mkdirs") @patch("mmf.trainers.lightning_trainer.get_mmf_env", return_value="") def test_validation_torchmetrics(self, log_dir, mkdirs): config = self._get_config( max_steps=8, batch_size=2, val_check_interval=3, log_every_n_steps=9, # turn it off limit_val_batches=1.0, ) trainer = get_lightning_trainer(config=config, prepare_trainer=False) trainer.torchmetrics = LightningTorchMetrics([]) callback = LightningTorchMetricsCallback(trainer) trainer.callbacks.append(callback) lightning_values = [] def log_values( extra: Optional[Dict], num_updates: int, max_updates: int, log_type: str = "train", ): lightning_values.append( {"num_updates": num_updates, "max_updates": max_updates} ) with patch( "mmf.trainers.lightning_core.loop_callback_with_torchmetrics" + ".LightningTorchMetricsCallback._log_metrics_and_extra", side_effect=log_values, ): run_lightning_trainer(trainer) self.assertEqual(len(self.ground_truths), len(lightning_values)) for gt, lv in zip(self.ground_truths, lightning_values): for key in ["num_updates", "max_updates"]: if key == "num_updates" and gt[key] == self.ground_truths[-1][key]: # to understand the reason of using lv[key] - 1 (intead of lv[key]) # see comments in test_validation self.assertAlmostEqual(gt[key], lv[key] - 1, 1) else: self.assertAlmostEqual(gt[key], lv[key], 1) @patch("mmf.common.test_reporter.PathManager.mkdirs") @patch("torch.utils.tensorboard.SummaryWriter") @patch("mmf.common.test_reporter.get_mmf_env", return_value="") @patch("mmf.trainers.callbacks.logistics.summarize_report") def test_validation_parity(self, summarize_report_fn, test_reporter, sw, mkdirs): config = self._get_mmf_config( max_updates=8, max_epochs=None, batch_size=2, evaluation_interval=3 ) mmf_trainer = get_mmf_trainer(config=config) mmf_trainer.load_metrics() logistics_callback = LogisticsCallback(mmf_trainer.config, mmf_trainer) logistics_callback.snapshot_timer = Timer() logistics_callback.train_timer = Timer() mmf_trainer.logistics_callback = logistics_callback mmf_trainer.callbacks.append(logistics_callback) mmf_trainer.early_stop_callback = MagicMock(return_value=None) mmf_trainer.on_validation_end = logistics_callback.on_validation_end mmf_trainer.training_loop() calls = summarize_report_fn.call_args_list self.assertEqual(3, len(calls)) self.assertEqual(len(self.ground_truths), len(calls)) self._check_values(calls) def _check_values(self, calls): for (_, kwargs), gt in zip(calls, self.ground_truths): for key, value in gt.items(): if key == "avg_loss": self.assertAlmostEqual(kwargs["meter"].loss.avg, value, 1) else: self.assertAlmostEqual(kwargs[key], value, 1) def _get_config( self, max_steps, batch_size, val_check_interval, log_every_n_steps, limit_val_batches, ): config = { "trainer": { "params": { "max_steps": max_steps, "log_every_n_steps": log_every_n_steps, "val_check_interval": val_check_interval, "limit_val_batches": limit_val_batches, } }, "training": {"batch_size": batch_size}, } return get_config_with_defaults(config) def _get_mmf_config(self, max_updates, max_epochs, batch_size, evaluation_interval): config = { "training": { "max_updates": max_updates, "max_epochs": max_epochs, "batch_size": batch_size, "evaluation_interval": evaluation_interval, } } return get_config_with_defaults(config)