max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
falkon/models/__init__.py
mohamad-amin/falkon
130
12636019
from .falkon import Falkon from .logistic_falkon import LogisticFalkon from .incore_falkon import InCoreFalkon __all__ = ("Falkon", "LogisticFalkon", "InCoreFalkon", )
envi/archs/msp430/const.py
rnui2k/vivisect
716
12636033
from envi.const import * from envi import IF_NOFALL, IF_PRIV, IF_CALL, IF_BRANCH, IF_RET, IF_COND IF_BYTE = 1<<8 # No operand instructions nocode = [ '.word' # Something is wrong, so return the dirty word ] # Single operand intructions scode = [ ('rrc', 0), # RRC Rotate right through carry ('swpb', 0), # SWPB Swap bytes ('rra', 0), # RRA Rotate right arithmetic ('sxt', 0), # SXT Sign extend byte to word ('push', 0), # PUSH Push value onto stack ('call', IF_CALL), # CALL Subroutine call; push PC and move source to PC ('reti', IF_NOFALL), # RETI Return from interrupt; pop SR then pop PC ] # Jump conditions jcode = [ ('jnz', IF_BRANCH | IF_COND), # JNE/JNZ Jump if not equal/zero ('jz', IF_BRANCH | IF_COND), # JEQ/JZ Jump if equal/zero ('jnc', IF_BRANCH | IF_COND), # JNC/JLO Jump if no carry/lower ('jc', IF_BRANCH | IF_COND), # JC/JHS Jump if carry/higher or same ('jn', IF_BRANCH | IF_COND), # JN Jump if negative ('jge', IF_BRANCH | IF_COND), # JGE Jump if greater or equal ('jl', IF_BRANCH | IF_COND), # JL Jump if less ('jmp', IF_BRANCH | IF_NOFALL), # JMP Jump (unconditionally) ] # Double operand instrucitons dcode = [ 'mov', # MOV Move source to destination 'add', # ADD Add source to destination 'addc', # ADDC Add source and carry to destination 'subc', # SUBC Subtract source from destination (with carry) 'sub', # SUB Subtract source from destination 'cmp', # CMP Compare (pretend to subtract) source from destination 'dadd', # Decimal add source to destination (with carry) 'bit', # BIT Test bits of source AND destination 'bic', # BIC Bit clear (dest &= ~src) 'bis', # BIS Bit set (logical OR) 'xor', # XOR Exclusive or source with destination 'and' # AND Logical AND source with destination (dest &= src) ] # Double special operand instructions dspcode = [ ('nop', 0), # No Operation - MOV ('pop', 0), # POP stackpointer - MOV ('br', IF_BRANCH|IF_NOFALL), # Branch - MOV ('ret', IF_NOFALL), # Return - MOV ('clr', 0), # Clear destination - MOV ('rla', 0), # Shift and rotate left - ADD ('inc', 0), # Increment by one - ADD ('incd', 0), # Increment by two - ADD ('rlc', 0), # Shift and rotate left - ADDC ('adc', 0), # Adding only the carry bit - ADDC ('sbc', 0), # Subtracting only the carry bit - SUBC ('dec', 0), # Decrement by one - SUB ('decd', 0), # Decrement by two - SUB ('tst', 0), # Test - CMP ('dadc', 0), # Decimal adding only the carry bit - DADD ('clrc', 0), # Status register operation - BIC ('setc', 0), # Status register operation - BIS ('clrz', 0), # Status register operation - BIC ('setz', 0), # Status register operation - BIS ('clrn', 0), # Status register operation - BIC ('setn', 0), # Status register operation - BIS ('dint', 0), # Status register operation - BIC ('eint', 0), # Status register operation - BIC ('inv', 0), # Invert value - XOR ] # Operand Type SINGLE_OPCODE_TYPE = 0 JUMP_OPCODE_TYPE = 1 DOUBLE_OPCODE_TYPE = 2 SP_OPCODE_TYPE = 3 # Register Modes REG_DIRECT = 0x0 REG_INDEX = 0x1 REG_INDIRECT = 0x2 REG_IND_AUTOINC = 0x3 JUMP_MODE = 0x4 # Masks TEST_MASKS = 0xF000 # Test operands SINGLE_MASKS = 0xE000 # ID single operands JUMP_MASKS = 0xC000 # ID jumps JUMP_OFFSET = 0x3FF # Jump offset SOURCE_REG = 0xF # Single op reg DSOURCE_REG = 0xF00 # Double source reg DEST_REG = 0xF # Double dest reg BYTE_WORD = 0x40 # Byte or word SOURCE_ADDR_MODE = 0x30 # Addressing mode source DEST_ADDR_MODE = 0x80 # Addressing mode destination RETI_MASK = 0x1300 # Return 'reti' REG_BYTE = 0x00FF # Clear the most significant byte REG_FLAGS = 0x01FF # Clear most significant 7 bits to get Status Register flags # Compare to get the proper Opcode SINGLE_OPCODE = 0xF80 # Single opcode - rotate right 7 DOUBLE_OPCODE = 0xF000 # Double opcode - rotate right 12 JUMP_OPCODE = 0x1c00 # Jump condition - rotate right 10 # Sizes BYTE = 1 # bytes WORD = 2 # bytes
src/OFS/metadirectives.py
rbanffy/Zope
289
12636044
from zope.configuration.fields import Bool from zope.configuration.fields import GlobalObject from zope.interface import Interface from zope.schema import ASCII from zope.security.zcml import Permission class IDeprecatedManageAddDeleteDirective(Interface): """Call manage_afterAdd & co for these contained content classes. """ class_ = GlobalObject( title="Class", required=True) class IRegisterClassDirective(Interface): """registerClass directive schema. Register content with Zope 2. """ class_ = GlobalObject( title='Instance Class', description='Dotted name of the class that is registered.', required=True) meta_type = ASCII( title='Meta Type', description='A human readable unique identifier for the class.', required=True) permission = Permission( title='Add Permission', description='The permission for adding objects of this class.', required=True) addview = ASCII( title='Add View ID', description='The ID of the add view used in the ZMI. Consider this ' 'required unless you know exactly what you do.', default=None, required=False) icon = ASCII( title='Icon ID', description='The ID of the icon used in the ZMI.', default=None, required=False) global_ = Bool( title='Global scope?', description='If "global" is False the class is only available in ' 'containers that explicitly allow one of its interfaces.', default=True, required=False) class IRegisterPackageDirective(Interface): """Registers the given Python package which at a minimum fools zope2 into thinking of it as a zope2 product. """ package = GlobalObject( title='Target package', required=True) initialize = GlobalObject( title='Initialization function to invoke', description='The dotted name of a function that will get invoked ' 'with a ProductContext instance', required=False)
cadence/tests/test_handle_workflow_execution_signaled.py
simkimsia/temporal-python-sdk
141
12636086
<filename>cadence/tests/test_handle_workflow_execution_signaled.py import json from unittest.mock import MagicMock, Mock import pytest from cadence.cadence_types import HistoryEvent, WorkflowExecutionSignaledEventAttributes from cadence.decision_loop import ReplayDecider, WorkflowMethodTask, Status from cadence.worker import Worker from cadence.workflow import signal_method @pytest.fixture def workflow_instance(): return DummyWorkflow() @pytest.fixture def workflow_task(decider, workflow_instance): workflow_task = WorkflowMethodTask(task_id=decider.execution_id, workflow_input=None, worker=decider.worker, workflow_type=Mock(), decider=decider) decider.workflow_task = workflow_task workflow_task.workflow_instance = workflow_instance return workflow_task @pytest.fixture def worker(): worker = Worker() worker.register_workflow_implementation_type(DummyWorkflow) return worker @pytest.fixture def decider(worker): return ReplayDecider("run-id", MagicMock(), worker) class DummyWorkflow: @signal_method def the_signal_method(self, name, age): pass def test_handle_workflow_execution_signaled(decider, workflow_task): assert isinstance(MagicMock, object) event = HistoryEvent() event.workflow_execution_signaled_event_attributes = WorkflowExecutionSignaledEventAttributes() event.workflow_execution_signaled_event_attributes.signal_name = "DummyWorkflow::the_signal_method" event.workflow_execution_signaled_event_attributes.input = json.dumps(["bob", 28]); decider.handle_workflow_execution_signaled(event) assert decider.tasks task = decider.tasks[0] assert task.signal_name == "DummyWorkflow::the_signal_method" assert task.signal_input == ["bob", 28] assert task.decider == decider assert task.task_id == "run-id" assert task.status == Status.CREATED
_build/jupyter_execute/content/c5/s2/classification_tree.py
curioushruti/mlbook
970
12636088
<filename>_build/jupyter_execute/content/c5/s2/classification_tree.py # Classification Trees The construction of a classification tree is very similar to that of a regression tree. For a fuller description of the code below, please see the regression tree code on the previous page. ## Import packages import numpy as np from itertools import combinations import matplotlib.pyplot as plt import seaborn as sns ## Load data penguins = sns.load_dataset('penguins') penguins.dropna(inplace = True) X = np.array(penguins.drop(columns = 'species')) y = np.array(penguins['species']) ## Train-test split np.random.seed(123) test_frac = 0.25 test_size = int(len(y)*test_frac) test_idxs = np.random.choice(np.arange(len(y)), test_size, replace = False) X_train = np.delete(X, test_idxs, 0) y_train = np.delete(y, test_idxs, 0) X_test = X[test_idxs] y_test = y[test_idxs] We will build our classification tree on the {doc}`penguins </content/appendix/data>` dataset from `seaborn`. This dataset has a categorical target variable—penguin breed—with both quantitative and categorical predictors. ## 1. Helper Functions Let's first create our loss functions. The Gini index and cross-entropy calculate the loss for a single node while the `split_loss()` function creates the weighted loss of a split. ## Loss Functions def gini_index(y): size = len(y) classes, counts = np.unique(y, return_counts = True) pmk = counts/size return np.sum(pmk*(1-pmk)) def cross_entropy(y): size = len(y) classes, counts = np.unique(y, return_counts = True) pmk = counts/size return -np.sum(pmk*np.log2(pmk)) def split_loss(child1, child2, loss = cross_entropy): return (len(child1)*loss(child1) + len(child2)*loss(child2))/(len(child1) + len(child2)) Next, let's define a few miscellaneous helper functions. As in the regression tree construction, `all_rows_equal()` checks if all of a bud's rows (observations) are equal across all predictors. If this is the case, this bud will not be split and instead becomes a terminal leaf. The second function, `possible_splits()`, returns all possible ways to divide the classes in a categorical predictor into two. Specifically, it returns all possible sets of values which can be used to funnel observations into the "left" child node. An example is given below for a predictor with four categories, $a$ through $d$. The set $\{a, b\}$, for instance, would imply observations where that predictor equals $a$ or $b$ go to the left child and other observations go to the right child. (Note that this function requires the `itertools` package). ## Helper Functions def all_rows_equal(X): return (X == X[0]).all() def possible_splits(x): L_values = [] for i in range(1, int(np.floor(len(x)/2)) + 1): L_values.extend(list(combinations(x, i))) return L_values possible_splits(['a','b','c','d']) ## 2. Helper Classes Next, we define two classes to help our main decision tree classifier. These classes are essentially identical to those discussed in the regression tree page. The only difference is the loss function used to evaluate a split. class Node: def __init__(self, Xsub, ysub, ID, obs, depth = 0, parent_ID = None, leaf = True): self.Xsub = Xsub self.ysub = ysub self.ID = ID self.obs = obs self.size = len(ysub) self.depth = depth self.parent_ID = parent_ID self.leaf = leaf class Splitter: def __init__(self): self.loss = np.inf self.no_split = True def _replace_split(self, Xsub_d, loss, d, dtype = 'quant', t = None, L_values = None): self.loss = loss self.d = d self.dtype = dtype self.t = t self.L_values = L_values self.no_split = False if dtype == 'quant': self.L_obs = self.obs[Xsub_d <= t] self.R_obs = self.obs[Xsub_d > t] else: self.L_obs = self.obs[np.isin(Xsub_d, L_values)] self.R_obs = self.obs[~np.isin(Xsub_d, L_values)] ## 3. Main Class Finally, we create the main class for our classification tree. This again is essentially identical to the regression tree class. In addition to differing in the loss function used to evaluate splits, this tree differs from the regression tree in how it forms predictions. In regression trees, the fitted value for a test observation was the average target variable of the training observations landing in the same leaf. In the classification tree, since our target variable is categorical, we instead use the most common class among training observations landing in the same leaf. class DecisionTreeClassifier: ############################# ######## 1. TRAINING ######## ############################# ######### FIT ########## def fit(self, X, y, loss_func = cross_entropy, max_depth = 100, min_size = 2, C = None): ## Add data self.X = X self.y = y self.N, self.D = self.X.shape dtypes = [np.array(list(self.X[:,d])).dtype for d in range(self.D)] self.dtypes = ['quant' if (dtype == float or dtype == int) else 'cat' for dtype in dtypes] ## Add model parameters self.loss_func = loss_func self.max_depth = max_depth self.min_size = min_size self.C = C ## Initialize nodes self.nodes_dict = {} self.current_ID = 0 initial_node = Node(Xsub = X, ysub = y, ID = self.current_ID, obs = np.arange(self.N), parent_ID = None) self.nodes_dict[self.current_ID] = initial_node self.current_ID += 1 # Build self._build() ###### BUILD TREE ###### def _build(self): eligible_buds = self.nodes_dict for layer in range(self.max_depth): ## Find eligible nodes for layer iteration eligible_buds = {ID:node for (ID, node) in self.nodes_dict.items() if (node.leaf == True) & (node.size >= self.min_size) & (~all_rows_equal(node.Xsub)) & (len(np.unique(node.ysub)) > 1)} if len(eligible_buds) == 0: break ## split each eligible parent for ID, bud in eligible_buds.items(): ## Find split self._find_split(bud) ## Make split if not self.splitter.no_split: self._make_split() ###### FIND SPLIT ###### def _find_split(self, bud): ## Instantiate splitter splitter = Splitter() splitter.bud_ID = bud.ID splitter.obs = bud.obs ## For each (eligible) predictor... if self.C is None: eligible_predictors = np.arange(self.D) else: eligible_predictors = np.random.choice(np.arange(self.D), self.C, replace = False) for d in sorted(eligible_predictors): Xsub_d = bud.Xsub[:,d] dtype = self.dtypes[d] if len(np.unique(Xsub_d)) == 1: continue ## For each value... if dtype == 'quant': for t in np.unique(Xsub_d)[:-1]: ysub_L = bud.ysub[Xsub_d <= t] ysub_R = bud.ysub[Xsub_d > t] loss = split_loss(ysub_L, ysub_R, loss = self.loss_func) if loss < splitter.loss: splitter._replace_split(Xsub_d, loss, d, 'quant', t = t) else: for L_values in possible_splits(np.unique(Xsub_d)): ysub_L = bud.ysub[np.isin(Xsub_d, L_values)] ysub_R = bud.ysub[~np.isin(Xsub_d, L_values)] loss = split_loss(ysub_L, ysub_R, loss = self.loss_func) if loss < splitter.loss: splitter._replace_split(Xsub_d, loss, d, 'cat', L_values = L_values) ## Save splitter self.splitter = splitter ###### MAKE SPLIT ###### def _make_split(self): ## Update parent node parent_node = self.nodes_dict[self.splitter.bud_ID] parent_node.leaf = False parent_node.child_L = self.current_ID parent_node.child_R = self.current_ID + 1 parent_node.d = self.splitter.d parent_node.dtype = self.splitter.dtype parent_node.t = self.splitter.t parent_node.L_values = self.splitter.L_values parent_node.L_obs, parent_node.R_obs = self.splitter.L_obs, self.splitter.R_obs ## Get X and y data for children if parent_node.dtype == 'quant': L_condition = parent_node.Xsub[:,parent_node.d] <= parent_node.t else: L_condition = np.isin(parent_node.Xsub[:,parent_node.d], parent_node.L_values) Xchild_L = parent_node.Xsub[L_condition] ychild_L = parent_node.ysub[L_condition] Xchild_R = parent_node.Xsub[~L_condition] ychild_R = parent_node.ysub[~L_condition] ## Create child nodes child_node_L = Node(Xchild_L, ychild_L, obs = parent_node.L_obs, depth = parent_node.depth + 1, ID = self.current_ID, parent_ID = parent_node.ID) child_node_R = Node(Xchild_R, ychild_R, obs = parent_node.R_obs, depth = parent_node.depth + 1, ID = self.current_ID+1, parent_ID = parent_node.ID) self.nodes_dict[self.current_ID] = child_node_L self.nodes_dict[self.current_ID + 1] = child_node_R self.current_ID += 2 ############################# ####### 2. PREDICTING ####### ############################# ###### LEAF MODES ###### def _get_leaf_modes(self): self.leaf_modes = {} for node_ID, node in self.nodes_dict.items(): if node.leaf: values, counts = np.unique(node.ysub, return_counts=True) self.leaf_modes[node_ID] = values[np.argmax(counts)] ####### PREDICT ######## def predict(self, X_test): # Calculate leaf modes self._get_leaf_modes() yhat = [] for x in X_test: node = self.nodes_dict[0] while not node.leaf: if node.dtype == 'quant': if x[node.d] <= node.t: node = self.nodes_dict[node.child_L] else: node = self.nodes_dict[node.child_R] else: if x[node.d] in node.L_values: node = self.nodes_dict[node.child_L] else: node = self.nodes_dict[node.child_R] yhat.append(self.leaf_modes[node.ID]) return np.array(yhat) A classificaiton tree is built on the {doc}`penguins </content/appendix/data>` dataset. We evaluate the predictions on a test set and find that roughly 95% of observations are correctly classified. ## Build classifier tree = DecisionTreeClassifier() tree.fit(X_train, y_train, max_depth = 10, min_size = 10) y_test_hat = tree.predict(X_test) ## Evaluate on test data np.mean(y_test_hat == y_test)
examples/s3-resource/process.py
dwolfschlaeger/guildai
694
12636093
<reponame>dwolfschlaeger/guildai<gh_stars>100-1000 import os import click import pandas @click.command() @click.option( "--input-dir", metavar="DIR", default=".", help="Path to scan for raw data." ) @click.option( "--output-dir", metavar="DIR", default=".", help="Path under which to save processed data.", ) def process(input_dir, output_dir): for root, _dirs, names in os.walk(input_dir, followlinks=True): for name in names: if name.endswith(".csv"): input_path = os.path.join(root, name) df = pandas.read_csv(input_path) output_name = name + ".pkl" output_path = os.path.join(output_dir, output_name) if not os.path.exists(output_dir): os.makedirs(output_dir) print("Converting %s to %s" % (input_path, output_path)) df.to_pickle(output_path) if __name__ == "__main__": process()
eval_vr.py
bryant1410/HERO
173
12636096
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. run evaluation of VR """ import argparse import os from os.path import exists from time import time import torch from torch.utils.data import DataLoader import numpy as np from tqdm import tqdm import pprint from apex import amp from horovod import torch as hvd from data import (VrFullEvalDataset, vr_full_eval_collate, VrVideoOnlyFullEvalDataset, PrefetchLoader, MsrvttQueryTokLmdb, video_collate) from load_data import ( get_video_ids, load_video_sub_dataset, load_video_only_dataset) from data.loader import move_to_cuda from model.vr import HeroForVr from utils.logger import LOGGER from utils.const import VFEAT_DIM, VCMR_IOU_THDS from utils.tvr_standalone_eval import eval_retrieval from utils.distributed import all_gather_list from utils.misc import Struct from utils.basic_utils import ( load_json, save_json) from utils.tvr_eval_utils import get_submission_top_n def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format( device, n_gpu, hvd.rank(), opts.fp16)) if hvd.rank() != 0: LOGGER.disabled = True hps_file = f'{opts.output_dir}/log/hps.json' model_opts = Struct(load_json(hps_file)) model_config = f'{opts.output_dir}/log/model_config.json' # load DBs and image dirs video_ids = get_video_ids(opts.query_txt_db) if opts.task != "msrvtt_video_only": video_db = load_video_sub_dataset( opts.vfeat_db, opts.sub_txt_db, model_opts.vfeat_interval, model_opts) else: txt_meta = load_json( os.path.join(opts.query_txt_db, "meta.json")) video_db = load_video_only_dataset( opts.vfeat_db, txt_meta, model_opts.vfeat_interval, model_opts) assert opts.split in opts.query_txt_db q_txt_db = MsrvttQueryTokLmdb(opts.query_txt_db, -1) if opts.task != "msrvtt_video_only": inf_dataset = VrFullEvalDataset else: inf_dataset = VrVideoOnlyFullEvalDataset eval_dataset = inf_dataset( video_ids, video_db, q_txt_db, distributed=model_opts.distributed_eval) # Prepare model if exists(opts.checkpoint): ckpt_file = opts.checkpoint else: ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt' checkpoint = torch.load(ckpt_file) img_pos_embed_weight_key = ( "v_encoder.f_encoder.img_embeddings" + ".position_embeddings.weight") assert img_pos_embed_weight_key in checkpoint max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key]) model = HeroForVr.from_pretrained( model_config, state_dict=checkpoint, vfeat_dim=VFEAT_DIM, max_frm_seq_len=max_frm_seq_len, lw_neg_ctx=model_opts.lw_neg_ctx, lw_neg_q=model_opts.lw_neg_q, ranking_loss_type=model_opts.ranking_loss_type, use_hard_negative=False, hard_pool_size=model_opts.hard_pool_size, margin=model_opts.margin, use_all_neg=model_opts.use_all_neg) model.to(device) if opts.fp16: model = amp.initialize(model, enabled=opts.fp16, opt_level='O2') eval_dataloader = DataLoader(eval_dataset, batch_size=opts.batch_size, num_workers=opts.n_workers, pin_memory=opts.pin_mem, collate_fn=vr_full_eval_collate) eval_dataloader = PrefetchLoader(eval_dataloader) _, results = validate_full_vr( model, eval_dataloader, opts.split, opts, model_opts) result_dir = f'{opts.output_dir}/results_{opts.split}' if not exists(result_dir) and rank == 0: os.makedirs(result_dir) all_results_list = all_gather_list(results) if hvd.rank() == 0: all_results = {"video2idx": all_results_list[0]["video2idx"]} for rank_id in range(hvd.size()): for key, val in all_results_list[rank_id].items(): if key == "video2idx": continue if key not in all_results: all_results[key] = [] all_results[key].extend(all_results_list[rank_id][key]) LOGGER.info('All results joined......') save_json( all_results, f'{result_dir}/results_{opts.checkpoint}_all.json') LOGGER.info('All results written......') @torch.no_grad() def validate_full_vr(model, val_loader, split, opts, model_opts): LOGGER.info("start running full VR evaluation" f"on {opts.task} {split} split...") model.eval() n_ex = 0 st = time() val_log = {} has_gt_target = True # MSRVTT test set has annotations try: video2idx_global = val_loader.dataset.vid2idx[split] except Exception: video2idx_global = val_loader.dataset.vid2idx video_ids = sorted(list(video2idx_global.keys())) video2idx_local = {e: i for i, e in enumerate(video_ids)} query_data = val_loader.dataset.query_data partial_query_data = [] total_frame_embeddings = None video_batch, video_idx = [], [] max_clip_len = 0 for video_i, (vid, vidx) in tqdm(enumerate(video2idx_local.items()), desc="Computing Video Embeddings", total=len(video2idx_local)): video_item = val_loader.dataset.video_db[vid] video_batch.append(video_item) video_idx.append(vidx) if len(video_batch) == opts.vr_eval_video_batch_size or\ video_i == len(video2idx_local) - 1: video_batch = move_to_cuda(video_collate(video_batch)) # Safeguard fp16 for k, item in video_batch.items(): if isinstance(item, torch.Tensor) and\ item.dtype == torch.float32: video_batch[k] = video_batch[k].to( dtype=next(model.parameters()).dtype) curr_frame_embeddings = model.v_encoder(video_batch, 'repr') curr_c_attn_masks = video_batch['c_attn_masks'] curr_clip_len = curr_frame_embeddings.size(-2) assert curr_clip_len <= model_opts.max_clip_len if total_frame_embeddings is None: feat_dim = curr_frame_embeddings.size(-1) total_frame_embeddings = torch.zeros( (len(video2idx_local), model_opts.max_clip_len, feat_dim), dtype=curr_frame_embeddings.dtype, device=curr_frame_embeddings.device) total_c_attn_masks = torch.zeros( (len(video2idx_local), model_opts.max_clip_len), dtype=curr_c_attn_masks.dtype, device=curr_frame_embeddings.device) indices = torch.LongTensor(video_idx) total_frame_embeddings[indices, :curr_clip_len] =\ curr_frame_embeddings total_c_attn_masks[indices, :curr_clip_len] =\ curr_c_attn_masks max_clip_len = max(max_clip_len, curr_clip_len) video_batch, video_idx = [], [] total_frame_embeddings = total_frame_embeddings[:, :max_clip_len, :] total_c_attn_masks = total_c_attn_masks[:, :max_clip_len] sorted_q2c_indices, sorted_q2c_scores = None, None total_qids, total_vids = [], [] for batch in tqdm(val_loader, desc="Computing q2vScores"): qids = batch['qids'] vids = batch['vids'] del batch['targets'] del batch['qids'] del batch['vids'] total_qids.extend(qids) total_vids.extend(vids) for qid in qids: # fix msrvtt query data to have tvr format gt = query_data[qid] gt["desc_id"] = qid gt["vid_name"] = gt["clip_name"] partial_query_data.append(gt) # Safeguard fp16 for k, item in batch.items(): if isinstance(item, torch.Tensor) and item.dtype == torch.float32: batch[k] = batch[k].to( dtype=next(model.parameters()).dtype) # FIXME _q2video_scores = model.get_pred_from_raw_query( total_frame_embeddings, total_c_attn_masks, **batch, cross=True, val_gather_gpus=False) n_ex += len(qids) _q2video_scores = _q2video_scores.float() q2video_scores = _q2video_scores _sorted_q2c_scores, _sorted_q2c_indices = \ torch.topk(q2video_scores, model_opts.max_vr_video, dim=1, largest=True) if sorted_q2c_indices is None: sorted_q2c_indices = _sorted_q2c_indices.cpu().numpy() sorted_q2c_scores = _sorted_q2c_scores.cpu().numpy() else: sorted_q2c_indices = np.concatenate( (sorted_q2c_indices, _sorted_q2c_indices.cpu().numpy()), axis=0) sorted_q2c_scores = np.concatenate( (sorted_q2c_scores, _sorted_q2c_scores.cpu().numpy()), axis=0) vr_res = [] for vr_i, (_sorted_q2c_scores_row, _sorted_q2c_indices_row) in tqdm( enumerate( zip(sorted_q2c_scores[:, :100], sorted_q2c_indices[:, :100])), desc="[VR] Loop over queries to generate predictions", total=len(total_qids)): cur_vr_redictions = [] for v_score, v_meta_idx in zip(_sorted_q2c_scores_row, _sorted_q2c_indices_row): video_idx = video2idx_global[video_ids[v_meta_idx]] cur_vr_redictions.append([video_idx, 0, 0, float(v_score)]) cur_query_pred = dict(desc_id=total_qids[vr_i], desc="", predictions=cur_vr_redictions) vr_res.append(cur_query_pred) eval_res = dict(VR=vr_res) eval_res = {k: v for k, v in eval_res.items() if len(v) != 0} eval_res["video2idx"] = video2idx_global eval_submission = get_submission_top_n( eval_res, top_n=model_opts.max_vr_video) if has_gt_target: metrics = eval_retrieval(eval_submission, partial_query_data, iou_thds=VCMR_IOU_THDS, match_number=True, verbose=False, use_desc_type=False) if model_opts.distributed_eval: n_ex_per_rank = all_gather_list(n_ex) metrics_per_rank = all_gather_list(metrics) else: n_ex_per_rank = [n_ex] metrics_per_rank = [metrics] n_ex = sum(n_ex_per_rank) val_log = {} gathered_metrics = {} for task_type, task_metric in metrics.items(): gathered_metrics[task_type] = {} for k in task_metric.keys(): if k == "desc_type_ratio": continue gathered_v = 0 for idx, n in enumerate(n_ex_per_rank): gathered_v += n*metrics_per_rank[idx][task_type][k] gathered_v = gathered_v / n_ex gathered_metrics[task_type][k] = gathered_v val_log[ f'valid_{split}_{task_type}/{task_type}_{k}'] = gathered_v LOGGER.info("metrics_VR \n{}".format(pprint.pformat( gathered_metrics["VR"], indent=4))) tot_time = time()-st val_log.update( {f'valid/vr_{split}_ex_per_s': n_ex/tot_time}) LOGGER.info(f"validation finished in {int(tot_time)} seconds") model.train() return val_log, eval_submission if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--sub_txt_db", default="/txt/msrvtt_subtitles.db", type=str, help="The input video subtitle corpus. (LMDB)") parser.add_argument("--vfeat_db", default="/video/msrvtt", type=str, help="The input video frame features.") parser.add_argument("--query_txt_db", default="/txt/msrvtt_val.db", type=str, help="The input test query corpus. (LMDB)") parser.add_argument("--split", choices=["val", "test"], default="val", type=str, help="The input query split") parser.add_argument("--task", choices=["msrvtt_video_sub", "msrvtt_video_only"], default="msrvtt_video_sub", type=str, help="The evaluation vr task") parser.add_argument("--checkpoint", default=None, type=str, help="pretrained model checkpoint steps") parser.add_argument("--batch_size", default=80, type=int, help="number of queries in a batch") parser.add_argument("--vr_eval_video_batch_size", default=50, type=int, help="number of videos in a batch") parser.add_argument( "--output_dir", default=None, type=str, help="The output directory where the model checkpoints will be " "written.") # device parameters parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead " "of 32-bit") parser.add_argument('--n_workers', type=int, default=4, help="number of data workers") parser.add_argument('--pin_mem', action='store_true', help="pin memory") args = parser.parse_args() # options safe guard # TODO main(args)
raspi_install/download_assets.py
theendsofinvention/cartoonify
1,991
12636097
<gh_stars>1000+ import six.moves.urllib as urllib from pathlib import Path import jsonlines import click import tarfile import os import sys root = Path(__file__).parent label_map_path = root / '..' / 'cartoonify' / 'app' / 'label_mapping.jsonl' download_path = root / '..' / 'cartoonify' / 'downloads' quickdraw_dataset_url = 'https://storage.googleapis.com/quickdraw_dataset/full/binary/' tensorflow_model_download_url = 'http://download.tensorflow.org/models/object_detection/' tensorflow_model_name = 'ssd_mobilenet_v1_coco_2017_11_17' model_path = download_path / 'detection_models' / tensorflow_model_name / 'frozen_inference_graph.pb' def main(): download_drawing_dataset() download_tensorflow_model() print('finished') def download_drawing_dataset(): try: path = download_path / 'drawing_dataset' with jsonlines.open(str(label_map_path), mode='r') as reader: category_mapping = reader.read() print('checking whether drawing files already exist...') drawing_categories = ['face', 't-shirt', 'pants'] + category_mapping.values() missing_files = [file for file in drawing_categories if not Path(path / Path(file).with_suffix('.bin')).exists()] if missing_files: print('{} drawing files missing, downloading the following files: '.format(len(missing_files))) for f in missing_files: print(f) download_recurse(quickdraw_dataset_url, path, missing_files) except IOError as e: print('label_mapping.jsonl not found') def download_tensorflow_model(): print('checking if tensorflow model exists...') if not model_path.exists(): print('tensorflow model missing, downloading the following file: \n {}'.format(str(model_path))) filename = tensorflow_model_name + '.tar.gz' opener = urllib.request.URLopener() opener.retrieve(tensorflow_model_download_url + filename, filename) print('extracting model from tarfile...') tar_file = tarfile.open(filename) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, path=str(model_path.parents[1])) def download(url, filename, path): """download file @ specified url and save it to path """ try: if not Path(path).exists(): Path(path).mkdir() fpath = Path(path) / filename opener = urllib.request.URLopener() opener.retrieve(url, str(fpath)) return fpath except (urllib.error.HTTPError, urllib.error.URLError): print('could not download file: {}'.format(filename)) def download_recurse(url, path, filenames): """download files from url :param str url: the url to download from, ended with a '/' :param str path: the directory to save the files to :param list files: list of filenames to download """ path = Path(path) with click.progressbar(filenames, label='downloading drawing dataset:') as files: for file in files: site = url + file.replace(' ', '%20') + '.bin' fpath = download(site, file + '.bin', path) def load_categories(path): files = Path(path).glob('*.bin') categories = [f.stem for f in files] return categories if __name__=='__main__': main() sys.exit()
setup.py
edddyeddy/cnsenti
140
12636131
<filename>setup.py from setuptools import setup import setuptools setup( name='cnsenti', # 包名字 version='0.0.4', # 包版本 description='中文情感分析库(Chinese Sentiment))可对文本进行情绪分析、正负情感分析。', # 简单描述 author='大邓', # 作者 author_email='<EMAIL>', # 邮箱 url='https://github.com/thunderhit/eventextraction', # 包的主页 packages=setuptools.find_packages(), package_data = {'':['dictionary/hownet/*.pkl','dictionary/dutir/*.pkl']}, #所有目录下的pkl词典文件 install_requires=['jieba', 'numpy'], python_requires='>=3.5', license="MIT", keywords=['chinese text analysis', 'text analysis', 'sentiment', 'sentiment analysis', 'natural language processing'], long_description=open('README.md').read(), # 读取的Readme文档内容 long_description_content_type="text/markdown") # 指定包文档格式为markdown #py_modules = ['eventextraction.py']
scrapy/core/downloader/handlers/datauri.py
HyunTruth/scrapy
9,953
12636138
from w3lib.url import parse_data_uri from scrapy.http import TextResponse from scrapy.responsetypes import responsetypes from scrapy.utils.decorators import defers class DataURIDownloadHandler(object): lazy = False def __init__(self, settings): super(DataURIDownloadHandler, self).__init__() @defers def download_request(self, request, spider): uri = parse_data_uri(request.url) respcls = responsetypes.from_mimetype(uri.media_type) resp_kwargs = {} if (issubclass(respcls, TextResponse) and uri.media_type.split('/')[0] == 'text'): charset = uri.media_type_parameters.get('charset') resp_kwargs['encoding'] = charset return respcls(url=request.url, body=uri.data, **resp_kwargs)
venv/lib/python3.6/site-packages/dirhunt/tests/test_directory_lists.py
Guillaume-Fernandez/phishfinder
1,288
12636156
<gh_stars>1000+ import unittest from bs4 import BeautifulSoup from dirhunt.directory_lists import ApacheDirectoryList, CommonDirectoryList from dirhunt.processors import ProcessIndexOfRequest from dirhunt.tests.base import CrawlerTestBase class DirectoryListsTestBase(CrawlerTestBase): html = '' def get_beautiful_soup(self, html=None): html = html or self.html return BeautifulSoup(html, 'html.parser') def get_processor(self): return ProcessIndexOfRequest(None, self.get_crawler_url()) class TestApacheDirectoryLists(DirectoryListsTestBase, unittest.TestCase): html = """ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <title>Index of /wp-includes</title> </head> <body> <h1>Index of /wp-includes</h1> <pre><img src="/__apache/blank.gif" alt="Icon "> <a href="?C=N;O=D">Name</a> <a href="?C=M;O=A">Last modified</a> <a href="?C=S;O=A">Size</a> <a href="?C=D;O=A">Description</a><hr> <img src="/__ovh_icons/back.gif" alt="[PARENTDIR]"> <a href="/">Parent Directory</a> - <img src="/__apache/folder.gif" alt="[DIR]"> <a href="ID3/">ID3/</a> 2015-09-15 14:58 - <img src="/__apache/folder.gif" alt="[DIR]"> <a href="IXR/">IXR/</a> 2018-02-16 14:29 - <img src="/__apache/unknown.gif" alt="[ ]"> <a href="author-template.php">author-template.php</a> 2018-02-16 14:29 16K <img src="/__apache/unknown.gif" alt="[ ]"> <a href="bookmark-template.php">bookmark-template.php</a> 2018-02-16 14:29 11K </pre> </body></html> """ def test_is_applicable(self): beautiful_soup = self.get_beautiful_soup() self.assertTrue(ApacheDirectoryList.is_applicable(self.html, self.get_crawler_url(), beautiful_soup)) def test_is_not_applicable(self): beautiful_soup = self.get_beautiful_soup(TestCommonDirectoryList.html) self.assertFalse(ApacheDirectoryList.is_applicable(TestCommonDirectoryList.html, self.get_crawler_url(), beautiful_soup)) def test_get_links(self): directory_list = ApacheDirectoryList(self.get_processor()) links = directory_list.get_links(self.html, self.get_beautiful_soup()) test_data = [(link.url, link.extra) for link in links] self.assertEqual(test_data, [ ('http://domain.com/', {}), ('http://domain.com/path/ID3/', {'created_at': '2015-09-15 14:58'}), ('http://domain.com/path/IXR/', {'created_at': '2018-02-16 14:29'}), ('http://domain.com/path/author-template.php', {'created_at': '2018-02-16 14:29', 'filesize': '16K'}), ('http://domain.com/path/bookmark-template.php', {'created_at': '2018-02-16 14:29', 'filesize': '11K'}), ]) class TestCommonDirectoryList(DirectoryListsTestBase, unittest.TestCase): html = """ <html><head><title>Index Of</title></head><body> <a href="..">Top</a> <a href="dir/">dir</a> <a href="foo.php">foo.php</a> <a href="error_log">error_log</a> <a href="/spam/eggs">Eggs</a></body></html> """ urls = [ 'http://domain.com/', 'http://domain.com/path/dir/', 'http://domain.com/path/foo.php', 'http://domain.com/path/error_log', 'http://domain.com/spam/eggs', ] def test_process(self): directory_list = CommonDirectoryList(self.get_processor()) links = directory_list.get_links(self.html, self.get_beautiful_soup()) urls = [link.url for link in links] self.assertEqual(urls, self.urls) def test_is_applicable(self): beautiful_soup = self.get_beautiful_soup() self.assertTrue(CommonDirectoryList.is_applicable(self.html, self.get_crawler_url(), beautiful_soup))
hc/api/migrations/0015_auto_20151022_1008.py
karthikprabhu/healthchecks
4,813
12636172
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [("api", "0014_auto_20151019_2039")] operations = [ migrations.AlterIndexTogether( name="check", index_together=set([("status", "user", "alert_after")]) ) ]
lint/queue.py
arcturus140/SublimeLinter
646
12636177
<reponame>arcturus140/SublimeLinter import threading MYPY = False if MYPY: from typing import Callable, Dict, Hashable Key = Hashable # Map from key to threading.Timer objects timers = {} # type: Dict[Key, threading.Timer] def debounce(callback, delay, key): # type: (Callable[[], None], float, Key) -> threading.Timer try: timers[key].cancel() except KeyError: pass timers[key] = timer = threading.Timer(delay, callback) timer.start() return timer def cleanup(key): # type: (Key) -> None try: timers.pop(key).cancel() except KeyError: pass def unload(): while True: try: _key, timer = timers.popitem() except KeyError: return else: timer.cancel()
mamba/setup.py
jjerphan/mamba
2,262
12636230
<filename>mamba/setup.py # Copyright (c) 2019, QuantStack and Mamba Contributors # # Distributed under the terms of the BSD 3-Clause License. # # The full license is in the file LICENSE, distributed with this software. # -*- coding: utf-8 -*- import os import sys from setuptools import setup here = os.path.dirname(os.path.abspath(__file__)) version_ns = {} with open(os.path.join(here, "mamba", "_version.py")) as f: exec(f.read(), {}, version_ns) __version__ = version_ns["__version__"] data_files = [ ("etc/profile.d", ["mamba/shell_templates/mamba.sh"]), ] if sys.platform == "win32": data_files.append(("condabin", ["mamba/shell_templates/mamba.bat"]),) data_files.append( ("Library/bin", ["mamba/shell_templates/win_redirect/mamba.bat"]), ) setup( name="mamba", version=__version__, author="<NAME>", author_email="<EMAIL>", url="https://github.com/mamba-org/mamba", description="A fast, libsolv based solver and installer for conda packages.", packages=["mamba"], entry_points={"console_scripts": ["mamba = mamba.mamba:main"]}, long_description="A (hopefully faster) reimplementation of the slow bits of conda.", install_requires=["conda", "libmambapy"], extras_require={"test": ["pytest", "pytest-lazy-fixture"]}, data_files=data_files, include_package_data=True, zip_safe=False, )
locations/spiders/freshmarket.py
davidchiles/alltheplaces
297
12636243
# -*- coding: utf-8 -*- import scrapy import json from locations.items import GeojsonPointItem class FreshMarketSpider(scrapy.Spider): name = "freshmarket" item_attributes = { 'brand': "Fresh Market" } allowed_domains = ['thefreshmarket.com'] start_urls = ( 'https://www.thefreshmarket.com/your-market/store-locator/', ) def parse(self, response): json_data = response.xpath('//script[@data-reactid="39"]/text()').extract_first().rstrip(';').split('=')[-1] data = json.loads(json_data) allStores = data['stores']['allStores'] for store in allStores: properties = { 'name': store['storeName'], 'ref': store['storeNumber'], 'addr_full': store['address'], 'city': store['city'], 'state': store['state'], 'postcode': store['postalCode'], 'phone': store['phoneNumber'], 'website': "https://www.thefreshmarket.com/my-market/store/" + store['slug'], 'opening_hours': store['moreStoreHours'], 'lat': float(store['storeLocation']['lat']), 'lon': float(store['storeLocation']['lon']), } yield GeojsonPointItem(**properties)
packages/pyright-internal/src/tests/samples/paramSpec26.py
Jasha10/pyright
3,934
12636263
# This sample tests the case where a generic class parameterized by a # ParamSpec is specialized using a Concatenate[] type argument. from typing import ParamSpec, Concatenate, Generic, Callable, Any P = ParamSpec("P") class A(Generic[P]): def __init__(self, func: Callable[P, Any]) -> None: ... def func1(baz: A[Concatenate[int, P]]) -> A[P]: ... def test(a: int, b: str) -> str: ... val1 = A(test) reveal_type(val1, expected_text="A[(a: int, b: str)]") val2 = func1(val1) reveal_type(val2, expected_text="A[(b: str)]")
syfertext/tokenizers/default_tokenizer.py
Dat-Boi-Arjun/SyferText
204
12636269
class DefaultTokenizer: def __init__(self, prefixes, suffixes, infixes, exceptions): self.prefixes = prefixes self.suffixes = suffixes self.infixes = infixes self.exceptions = exceptions def __call__(self, text: str): return text.split(" ")
src/pipelines/hospitalizations/xx_opencovid.py
alvarosg/covid-19-open-data
430
12636279
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict from pandas import DataFrame from lib.data_source import DataSource from lib.time import datetime_isoformat from lib.utils import table_rename class OpenCovidDataSource(DataSource): def parse_dataframes( self, dataframes: Dict[str, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: data = table_rename( dataframes[0], parse_opts.get( "column_adapter", { "discharged_cumulative": "total_discharged", "hospitalized_current": "current_hospitalized", "number hospitalised": "current_hospitalized", "hospitalized_cumulative": "total_hospitalized", "icu_current": "current_intensive_care", "number in icu": "current_intensive_care", "icu_cumulative": "cumulative_intensive_care", "ventilator_current": "current_ventilator", "ventilator_cumulative": "cumulative_ventilator", "new hospital admissions": "new_hospitalized", "new intensive care admissions": "new_intensive_care", }, ), ) # Add key and parse date in ISO format data["key"] = parse_opts.get("key") data["date"] = data[parse_opts.get("date_column", "date")].astype(str) date_format = parse_opts.get("date_format", "%Y-%m-%d") data.date = data.date.apply(lambda x: datetime_isoformat(x, date_format)) return data
dirscan/dirsearch/thirdparty/oset/tests.py
imfiver/Sec-Tools
144
12636284
#!/usr/bin/env python # -*- mode:python; tab-width: 2; coding: utf-8 -*- """Partially backported python ABC classes""" import doctest import unittest optionflags = ( doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS | doctest.REPORT_ONLY_FIRST_FAILURE ) TESTFILES = ["pyoset.txt"] def test_suite(): """Simple tes suite""" globs = {} try: from pprint import pprint globs["pprint"] = pprint except Exception: pass try: from interlude import interact globs["interact"] = interact except Exception: pass return unittest.TestSuite( [ doctest.DocFileSuite(file, optionflags=optionflags, globs=globs) for file in TESTFILES ] ) if __name__ == "__main__": unittest.main(defaultTest="test_suite")
scripts/glob-search.py
kasymovga/taisei
573
12636291
#!/usr/bin/env python3 from taiseilib.common import ( DirPathType, run_main, ) from pathlib import Path import fnmatch def main(args): import argparse parser = argparse.ArgumentParser(description='Search directory by multiple glob patterns.', prog=args[0]) parser.add_argument('directory', type=DirPathType, help='the directory to search' ) parser.add_argument('patterns', metavar='pattern', nargs='+', help='a glob pattern' ) args = parser.parse_args(args[1:]) for path in (p.relative_to(args.directory) for p in args.directory.rglob('*')): path = str(path) for pattern in args.patterns: if fnmatch.fnmatchcase(path, pattern): print(path) break if __name__ == '__main__': run_main(main)
dist/server/script/core/colorconsole.py
zhoulhb/teleport
640
12636305
<filename>dist/server/script/core/colorconsole.py # -*- coding: utf-8 -*- import os import sys import platform import traceback __all__ = ['o', 'v', 'i', 'w', 'e', 'f'] # ====================================== # 颜色 # ====================================== CR_RESTORE = 0 # 恢复正常 - 浅灰色 # BOLD = "[1m" # 高亮显示 # UNDERSCORE = "[4m" # 下划线 # REVERSE = "[7m" # 反白显示 CR_BLACK = 1 # 黑色 CR_LIGHT_GRAY = 2 # 浅灰色 - 普通文字 CR_GRAY = 3 # 深灰色 - 捕获别的命令的输出 CR_WHITE = 4 # 白色 CR_RED = 5 # 红色 CR_GREEN = 6 # 绿色 CR_YELLOW = 7 # 黄色 - Windows平台称之为棕色(Brown) CR_BLUE = 8 # 蓝色 CR_MAGENTA = 9 # 紫红 CR_CYAN = 10 # 青色 CR_LIGHT_RED = 11 # 亮红色 - 失败 CR_LIGHT_GREEN = 12 # 亮绿色 - 成功 CR_LIGHT_YELLOW = 13 # 亮黄色 - 重要 CR_LIGHT_BLUE = 14 # 亮蓝色 - 其实在黑色背景上还是比较深 CR_LIGHT_MAGENTA = 15 # 亮紫色 - 警告 CR_LIGHT_CYAN = 16 # 亮青色 # CR_VERBOSE = CR_LIGHT_GRAY # CR_NORMAL = CR_WHITE # CR_INFO = CR_GREEN # CR_WARN = CR_LIGHT_YELLOW # CR_ERROR = CR_LIGHT_RED CR_VERBOSE = CR_RESTORE CR_NORMAL = CR_GRAY CR_INFO = CR_GREEN CR_WARN = CR_YELLOW CR_ERROR = CR_LIGHT_RED COLORS = { # 常量定义 Linux色彩 WinConsole色彩 CR_RESTORE: ('[0m', 7), # 7 = 浅灰色 - 普通文字 CR_BLACK: ('[0;30m', 0), # 0 = 黑色 CR_RED: ("[0;31m", 4), # 红色 CR_GREEN: ("[0;32m", 2), # 绿色 CR_YELLOW: ("[0;33m", 6), # 黄色 - Windows平台称之为棕色(Brown) CR_BLUE: ("[0;34m", 1), # 蓝色 CR_MAGENTA: ("[0;35m", 5), # 紫红 CR_CYAN: ("[0;36m", 3), # 青色 CR_LIGHT_GRAY: ('[0;37m', 7), # 浅灰色 - 普通文字 CR_GRAY: ("[1;30m", 8), # 深灰色 - 捕获别的命令的输出 CR_LIGHT_RED: ("[1;31m", 12), # 亮红色 - 失败 CR_LIGHT_GREEN: ("[1;32m", 10), # 亮绿色 - 成功 CR_LIGHT_YELLOW: ("[1;33m", 14), # 亮黄色 - 重要 CR_LIGHT_BLUE: ("[1;34m", 9), # 亮蓝色 - 其实在黑色背景上还是比较深 CR_LIGHT_MAGENTA: ("[1;35m", 13), # 亮紫色 - 警告 CR_LIGHT_CYAN: ("[1;36m", 11), # 亮青色 CR_WHITE: ("[1;37m", 15) # 白色 } class ColorConsole: """ :type _win_color : Win32ColorConsole """ def __init__(self): # self._log_console = self._console_default # 输出到控制台的方式,为None时表示不输出到控制台 # self._console_set_color = self._console_set_color_default self._sep = ' ' self._end = '\n' self._win_color = None self.o = self._func_output self.v = self._func_verbose self.n = self._func_normal self.i = self._func_info self.w = self._func_warn self.e = self._func_error self.f = self._func_fail if sys.stdout is None: self.o = self._func_pass self.v = self._func_pass self.n = self._func_pass self.i = self._func_pass self.w = self._func_pass self.e = self._func_pass self.f = self._func_pass # self._log_console = self._func_pass # self._console_set_color = self._console_set_color_default else: # python2.7 on Ubuntu, sys.platform is 'linux2', so we use platform.system() instead. _platform = platform.system().lower() if _platform == 'linux' or _platform == 'darwin': self._console_set_color = self._console_set_color_linux self._console_restore_color = self._console_restore_color_linux elif _platform == 'windows': if 'TERM' in os.environ and os.environ['TERM'] in ['xterm']: self._console_set_color = self._console_set_color_linux self._console_restore_color = self._console_restore_color_linux else: self._win_color = Win32ColorConsole() if self._win_color.available(): self._console_set_color = self._console_set_color_win self._console_restore_color = self._console_restore_color_win else: self._console_set_color = self._func_pass self._console_restore_color = self._func_pass def set_default(self, *args, **kwargs): if 'sep' in kwargs: self._sep = kwargs['sep'] if 'end' in kwargs: self._end = kwargs['end'] def _func_pass(self, *args, **kwargs): # do nothing. pass def _func_output(self, *args, **kwargs): sep = kwargs['sep'] if 'sep' in kwargs else self._sep end = kwargs['end'] if 'end' in kwargs else self._end first = True for x in args: if not first: sys.stdout.writelines(sep) if isinstance(x, tuple): cl = x[0] z = x[1:] self._console_set_color(cl) self._console_output(*z, sep='', end='') sys.stdout.flush() elif isinstance(x, str): self._console_output(x, sep='', end='') sys.stdout.flush() else: raise RuntimeError('Invalid param.') sys.stdout.writelines(end) self._console_restore_color() sys.stdout.flush() def _func_verbose(self, *args, **kwargs): self._console_set_color(CR_VERBOSE) self._console_output(*args, **kwargs) self._console_restore_color() sys.stdout.flush() # 普通的日志数据 def _func_normal(self, *args, **kwargs): self._console_set_color(CR_NORMAL) self._console_output(*args, **kwargs) self._console_restore_color() sys.stdout.flush() # 重要信息 def _func_info(self, *args, **kwargs): self._console_set_color(CR_INFO) self._console_output(*args, **kwargs) self._console_restore_color() sys.stdout.flush() # 警告 def _func_warn(self, *args, **kwargs): self._console_set_color(CR_WARN) self._console_output(*args, **kwargs) self._console_restore_color() sys.stdout.flush() def _func_error(self, *args, **kwargs): self._console_set_color(CR_ERROR) self._console_output(*args, **kwargs) self._console_restore_color() sys.stdout.flush() def _func_fail(self, *args, **kwargs): self._console_set_color(CR_ERROR) self._console_output('[FAIL] ', end='') self._console_output(*args, **kwargs) _type, _value, _tb = sys.exc_info() if _type is not None: x = traceback.format_exception_only(_type, _value) self._console_output('[EXCEPTION] ', end='') self._console_output(x[0], end='') x = traceback.extract_tb(_tb) c = len(x) self._console_set_color(CR_RED) for i in range(0, c): self._console_output(os.path.abspath(x[i][0]), '(', x[i][1], '): ', x[i][3], sep='') else: s = traceback.extract_stack() c = len(s) self._console_set_color(CR_RED) for i in range(2, c): self._console_output(' ', os.path.abspath(s[c - i - 1][0]), '(', s[c - i - 1][1], '): ', s[c - i - 1][3], sep='') self._console_restore_color() sys.stdout.flush() def _console_set_color_win(self, cr=None): if cr is None: return self._win_color.set_color(COLORS[cr][1]) sys.stdout.flush() def _console_set_color_linux(self, cr=None): if cr is None: return sys.stdout.writelines('\x1B') sys.stdout.writelines(COLORS[cr][0]) sys.stdout.flush() def _console_restore_color_win(self): self._win_color.set_color(COLORS[CR_RESTORE][1]) sys.stdout.flush() def _console_restore_color_linux(self): sys.stdout.writelines('\x1B[0m') sys.stdout.flush() def _console_output(self, *args, **kwargs): sep = kwargs['sep'] if 'sep' in kwargs else self._sep end = kwargs['end'] if 'end' in kwargs else self._end first = True for x in args: if not first: sys.stdout.writelines(sep) first = False if isinstance(x, str): sys.stdout.writelines(x) continue else: sys.stdout.writelines(x.__str__()) sys.stdout.writelines(end) sys.stdout.flush() def test(self): self.o('o()......') self.v('v()......') self.n('n()......') self.i('i()......') self.w('w()......') self.e('e()......') self.f('f()......') self.v('test auto\nsplit lines.\nYou should see\nmulti-lines.\n') class Win32ColorConsole: def __init__(self): from ctypes import WINFUNCTYPE, windll from ctypes.wintypes import BOOL, HANDLE, DWORD, WORD self.__original_stderr = sys.stderr self.__stdout = None self.__SetConsoleTextAttribute = None # Work around <http://bugs.python.org/issue6058>. # codecs.register(lambda name: codecs.lookup('utf-8') if name == 'cp65001' else None) # Make Unicode console output work independently of the current code page. # This also fixes <http://bugs.python.org/issue1602>. # Credit to <NAME> <http://blogs.msdn.com/b/michkap/archive/2010/04/07/9989346.aspx> # and TZOmegaTZIOY # <http://stackoverflow.com/questions/878972/windows-cmd-encoding-change-causes-python-crash/1432462#1432462>. try: # <http://msdn.microsoft.com/en-us/library/ms683231(VS.85).aspx> # HANDLE WINAPI GetStdHandle(DWORD nStdHandle); # returns INVALID_HANDLE_VALUE, NULL, or a valid handle # # <http://msdn.microsoft.com/en-us/library/aa364960(VS.85).aspx> # DWORD WINAPI GetFileType(DWORD hFile); # # <http://msdn.microsoft.com/en-us/library/ms683167(VS.85).aspx> # BOOL WINAPI GetConsoleMode(HANDLE hConsole, LPDWORD lpMode); STD_OUTPUT_HANDLE = DWORD(-11) INVALID_HANDLE_VALUE = DWORD(-1).value GetStdHandle = WINFUNCTYPE(HANDLE, DWORD)(("GetStdHandle", windll.kernel32)) self.__SetConsoleTextAttribute = WINFUNCTYPE(BOOL, HANDLE, WORD)(("SetConsoleTextAttribute", windll.kernel32)) self.__stdout = GetStdHandle(STD_OUTPUT_HANDLE) if self.__stdout == INVALID_HANDLE_VALUE: self.__stdout = None except Exception as e: self.__stdout = None self._complain("exception %r while fixing up sys.stdout and sys.stderr\n" % (str(e),)) # If any exception occurs in this code, we'll probably try to print it on stderr, # which makes for frustrating debugging if stderr is directed to our wrapper. # So be paranoid about catching errors and reporting them to original_stderr, # so that we can at least see them. @staticmethod def _complain(message): # print >> self.__original_stderr, message if isinstance(message, str) else repr(message) sys.stderr.writelines(message) def available(self): if self.__stdout is None or self.__SetConsoleTextAttribute is None: return False else: return True def set_color(self, color): # if not self.available(): # return self.__SetConsoleTextAttribute(self.__stdout, color) _cc = ColorConsole() del ColorConsole # _cc.test() def set_default(*args, **kwargs): _cc.set_default(*args, **kwargs) def o(*args, **kwargs): _cc.o(*args, **kwargs) def v(*args, **kwargs): _cc.v(*args, **kwargs) def n(*args, **kwargs): _cc.n(*args, **kwargs) def i(*args, **kwargs): _cc.i(*args, **kwargs) def w(*args, **kwargs): _cc.w(*args, **kwargs) def e(*args, **kwargs): _cc.e(*args, **kwargs) def f(*args, **kwargs): _cc.f(*args, **kwargs)
examples/ridge_regressor_example.py
tushushu/Imilu
407
12636313
# -*- coding: utf-8 -*- """ @Author: tushushu @Date: 2018-08-21 17:16:29 @Last Modified by: tushushu @Last Modified time: 2018-08-21 17:16:29 """ import os os.chdir(os.path.split(os.path.realpath(__file__))[0]) import sys sys.path.append(os.path.abspath("..")) from imylu.linear_model.ridge import Ridge from imylu.utils.load_data import load_boston_house_prices from imylu.utils.model_selection import get_r2, train_test_split from imylu.utils.preprocessing import min_max_scale from imylu.utils.utils import run_time @run_time def main(): """Tesing the performance of Ridge Regressor(stochastic) """ print("Tesing the performance of Ridge Regressor(stochastic)...") # Load data data, label = load_boston_house_prices() data = min_max_scale(data) # Split data randomly, train set rate 70% data_train, data_test, label_train, label_test = train_test_split(data, label, random_state=10) # Train model reg = Ridge() reg.fit(data=data_train, label=label_train, learning_rate=0.001, epochs=1000, alpha=1e-7, method="stochastic", sample_rate=0.5, random_state=10) # Model evaluation get_r2(reg, data_test, label_test) if __name__ == "__main__": main()
dynamo/prediction/perturbation.py
xing-lab-pitt/dynamo-release
236
12636322
<filename>dynamo/prediction/perturbation.py import numpy as np from scipy.sparse import csr_matrix import anndata from typing import Union, Callable from ..tools.cell_velocities import cell_velocities from .utils import ( expr_to_pca, pca_to_expr, z_score, z_score_inv, ) from ..vectorfield.vector_calculus import ( rank_genes, rank_cells, rank_cell_groups, vecfld_from_adata, jacobian, vector_transformation, ) from ..vectorfield.scVectorField import vector_field_function_knockout from ..vectorfield import SvcVectorField from ..dynamo_logger import LoggerManager def KO( adata: anndata.AnnData, KO_genes: Union[str, list], vecfld: Union[None, Callable] = None, vf_key: str = "VecFld", basis: str = "pca", emb_basis: str = "umap", velocity_ko_wt_difference: bool = False, add_ko_basis_key: Union[str, None] = None, add_embedding_key: Union[str, None] = None, store_vf_ko: bool = False, add_vf_ko_key: Union[str, None] = None, return_vector_field_class: bool = True, ): """In silico knockout genes (and thus the vector field function) and prediction of cell fate after knockout. Parameters ---------- adata: :class:`~anndata.AnnData` an Annodata object with the vector field function for PCA learned. KO_genes: The gene or list of genes that will be used to perform in-silico knockout. vecfld: The vector field function. vf_key: A key to the vector field functions in adata.uns. basis: The basis in which the vector field function is created. emb_basis: The embedding basis where the perturbed (KO) vector field function will be projected to. velocity_ko_wt_difference: Whether to use the difference from perturbed (KO) vector field to wildtype vector field in embedding space instead of raw perturbation (KO) vector field. Using the difference may reveal the perturbation (KO) effects more clearly. add_ko_basis_key: The key name for the velocity corresponds to the `basis` name whose associated vector field is perturbed (KO). add_embedding_key: The key name for the velocity corresponds to the `embedding` name to which the high dimensional perturbed (KO) vector field will be projected to. store_vf_ko: Whether to store the perturbed (KO) vector field function. By default it is False. add_vf_ko_key: The key to store the perturbed (KO) vector field function in adata.uns. return_vector_field_class: Whether to return the perturbed (KO) vector field class. By default it is True. Returns ------- If return_vector_field_class is True, return the perturbed (KO) vector field class and update objected with perturbed (KO) vector field in both the PCA and low dimension space. If return_vector_field_class is False, return nothing but updates the adata object. """ logger = LoggerManager.gen_logger("dynamo-KO") if basis != "pca": logger.error("Currently we can only perturb (KO) PCA space based vector field function.") raise ValueError() if vecfld is None: vf = SvcVectorField() vf.from_adata(adata, basis=basis, vf_key=vf_key) else: vf = vecfld logger.info(f"In silico knockout {KO_genes}") KO_genes = [KO_genes] if type(KO_genes) is str else KO_genes vf_ko = vector_field_function_knockout(adata, vf, KO_genes) if add_ko_basis_key is None: x_basis_key, v_basis_key = "X_" + basis + "_KO", "velocity_" + basis + "_KO" else: if not add_ko_basis_key.startswith("velocity_"): raise ValueError(f"add_ko_basis_key {add_ko_basis_key} must starts with `velocity_`") x_basis_key, v_basis_key = "X_" + add_ko_basis_key.split("velocity_")[1], add_ko_basis_key if add_embedding_key is None: x_emb_key, v_emb_key = "X_" + emb_basis + "_KO", "velocity_" + emb_basis + "_KO" else: if not add_embedding_key.startswith("velocity_"): raise ValueError(f"add_embedding_key {add_embedding_key} must starts with `velocity_`") x_emb_key, v_emb_key = "X_" + add_embedding_key.split("velocity_")[1], add_embedding_key logger.info_insert_adata(x_basis_key, "obsm") adata.obsm[x_basis_key] = adata.obsm["X_" + basis].copy() logger.info_insert_adata(v_basis_key, "obsm") adata.obsm[v_basis_key] = vf_ko.get_V() logger.info_insert_adata(x_emb_key, "obsm") adata.obsm[x_emb_key] = adata.obsm["X_" + emb_basis].copy() logger.info(f"Project the high dimensional vector field after KO to {emb_basis}.") cell_velocities( adata, X=adata.obsm["X_" + basis], V=adata.obsm["velocity_" + basis + "_KO"], basis=emb_basis + "_KO", enforce=True, add_velocity_key=v_emb_key, ) if velocity_ko_wt_difference: adata.obsm[v_emb_key] -= adata.obsm["velocity_" + emb_basis] if store_vf_ko: if add_vf_ko_key is None: add_vf_ko_key = "vf_KO" logger.info_insert_adata(add_vf_ko_key, "uns") adata.uns[add_vf_ko_key] = vf_ko if return_vector_field_class: return vf_ko def perturbation( adata: anndata.AnnData, genes: Union[str, list], expression: Union[float, list] = 10, perturb_mode: str = "raw", cells: Union[list, np.ndarray, None] = None, zero_perturb_genes_vel: bool = False, pca_key: Union[str, np.ndarray, None] = None, PCs_key: Union[str, np.ndarray, None] = None, pca_mean_key: Union[str, np.ndarray, None] = None, basis: str = "pca", emb_basis: str = "umap", jac_key: str = "jacobian_pca", X_pca: Union[np.ndarray, None] = None, delta_Y: Union[np.ndarray, None] = None, projection_method: str = "fp", pertubation_method: str = "j_delta_x", J_jv_delta_t: float = 1, delta_t: float = 1, add_delta_Y_key: str = None, add_transition_key: str = None, add_velocity_key: str = None, add_embedding_key: str = None, ): """In silico perturbation of single-cells and prediction of cell fate after perturbation. To simulate genetic perturbation and its downstream effects, we take advantage of the analytical Jacobian from our vector field function. In particular, we first calculate the perturbation velocity vector: .. math:: \\delta Y = J \\dot \\delta X where the J is the analytical Jacobian, \\delta X is the perturbation vector (that is, if overexpress gene i to expression 10 but downexpress gene j to -10 but keep others not changed, we have delta X = [0, 0, 0, delta x_i = 10, 0, 0, .., x_j = -10, 0, 0, 0]). Because Jacobian encodes the instantaneous changes of velocity of any genes after increasing any other gene, J \\dot \\delta X will produce the perturbation effect vector after propagating the genetic perturbation (\\delta_X) through the gene regulatory network. We then use X_pca and \\delta_Y as a pair (just like M_s and velocity_S) to project the perturbation vector to low dimensional space. The \\delta_Y can be also used to identify the strongest responders of the genetic perturbation. Parameters ---------- adata: :class:`~anndata.AnnData` an Annodata object. genes: The gene or list of genes that will be used to perform in-silico perturbation. expression: The numerical value or list of values that will be used to encode the genetic perturbation. High positive values indicates up-regulation while low negative value repression. perturb_mode: The mode for perturbing the gene expression vector, either `raw` or `z_score`. cells: The list of the cell indices that we will perform the perturbation. zero_perturb_genes_vel: Whether to set the peturbed genes' perturbation velocity vector values to be zero. pca_key: The key that corresponds to pca embedding. Can also be the actual embedding matrix. PCs_key: The key that corresponds to PC loading embedding. Can also be the actual loading matrix. pca_mean_key: The key that corresponds to means values that used for pca projection. Can also be the actual means matrix. basis: The key that corresponds to the basis from which the vector field is reconstructed. jac_key: The key to the jacobian matrix. X_pca: The pca embedding matrix. delta_Y: The actual perturbation matrix. This argument enables more customized perturbation schemes. projection_method: The approach that will be used to project the high dimensional perturbation effect vector to low dimensional space. pertubation_method: The approach that will be used to calculate the perturbation effect vector after in-silico genetic perturbation. Can only be one of `"j_delta_x", "j_x_prime", "j_jv", "f_x_prime", "f_x_prime_minus_f_x_0"` J_jv_delta_t: If pertubation_method is `j_jv`, this will be used to determine the $\\delta x = jv \\delta t_{jv}$ delta_t: This will be used to determine the $\\delta Y = jv \\delta t$ add_delta_Y_key: The key that will be used to store the perturbation effect matrix. Both the pca dimension matrix (stored in obsm) or the matrix of the original gene expression space (stored in .layers) will use this key. By default it is None and is set to be `method + '_perturbation'`. add_transition_key: str or None (default: None) The dictionary key that will be used for storing the transition matrix in .obsp. add_velocity_key: str or None (default: None) The dictionary key that will be used for storing the low dimensional velocity projection matrix in .obsm. add_embedding_key: str or None (default: None) The dictionary key that will be used for storing the low dimensional velocity projection matrix in .obsm. Returns ------- adata: :class:`~anndata.AnnData` Returns an updated :class:`~anndata.AnnData` with perturbation effect matrix, projected perturbation vectors , and a cell transition matrix based on the perturbation vectors. """ if pertubation_method.lower() not in ["j_delta_x", "j_x_prime", "j_jv", "f_x_prime", "f_x_prime_minus_f_x_0"]: raise ValueError( f"your method is set to be {pertubation_method.lower()} but must be one of `j_delta_x`, `j_x_prime`, " "`j_jv`,`f_x_prime`, `f_x_prime_minus_f_x_0`" ) logger = LoggerManager.get_main_logger() logger.info( "In silico perturbation of single-cells and prediction of cell fate after perturbation...", ) if type(genes) == str: genes = [genes] if type(expression) in [int, float]: expression = [expression] pca_genes = adata.var_names[adata.var.use_for_pca] valid_genes = pca_genes.intersection(genes) if len(valid_genes) == 0: raise ValueError("genes to perturb must be pca genes (genes used to perform the pca dimension reduction).") if len(expression) > 1: if len(expression) != len(valid_genes): raise ValueError( "if you want to set different values for different genes, you need to ensure those genes " "are included in the pca gene list and the length of those genes is the same as that of the" "expression." ) if X_pca is None: logger.info("Retrive X_pca, PCs, pca_mean...") pca_key = "X_pca" if pca_key is None else pca_key PCs_key = "PCs" if PCs_key is None else PCs_key pca_mean_key = "pca_mean" if pca_mean_key is None else pca_mean_key X_pca = adata.obsm[pca_key] if delta_Y is None: logger.info("Calculate perturbation effect matrix via \\delta Y = J \\dot \\delta X....") if type(PCs_key) == np.ndarray: PCs = PCs_key else: PCs = adata.uns[PCs_key] if type(pca_mean_key) == np.ndarray: means = pca_mean_key else: means = adata.uns[pca_mean_key] # project pca gene expression back to original gene expression: X = pca_to_expr(X_pca, PCs, means) # get gene position gene_loc = [adata.var_names[adata.var.use_for_pca].get_loc(i) for i in valid_genes] # in-silico perturbation X_perturb = X.copy() if cells is None: cells = np.arange(adata.n_obs) for i, gene in enumerate(gene_loc): if perturb_mode == "z_score": x = X_perturb[:, gene] _, m, s = z_score(x, 0) X_perturb[cells, gene] = z_score_inv(expression[i], m, s) elif perturb_mode == "raw": X_perturb[cells, gene] = expression[i] else: raise NotImplementedError(f"The perturbation mode {perturb_mode} is not supported.") # project gene expression back to pca space X_perturb_pca = expr_to_pca(X_perturb, PCs, means) # calculate Jacobian if jac_key not in adata.uns_keys(): jacobian(adata, regulators=valid_genes, effectors=valid_genes) Js = adata.uns[jac_key]["jacobian"] # pcs x pcs x cells # calculate perturbation velocity vector: \delta Y = J \dot \delta X: delta_Y = np.zeros_like(X_pca) # get the actual delta_X: if pertubation_method.lower() in ["j_delta_x", "j_x_prime", "j_jv"]: if pertubation_method.lower() == "j_delta_x": delta_X = X_perturb_pca - X_pca elif pertubation_method.lower() == "j_x_prime": delta_X = X_perturb_pca elif pertubation_method.lower() == "j_jv": tmp = X_perturb_pca - X_pca delta_X = np.zeros_like(X_pca) for i in np.arange(adata.n_obs): delta_X[i, :] = Js[:, :, i].dot(tmp[i] * J_jv_delta_t) for i in np.arange(adata.n_obs): delta_Y[i, :] = Js[:, :, i].dot(delta_X[i] * delta_t) if add_delta_Y_key is None: add_delta_Y_key = pertubation_method + "_perturbation" logger.info_insert_adata(add_delta_Y_key, "obsm", indent_level=1) if pertubation_method.lower() == "f_x_prime": _, func = vecfld_from_adata(adata, basis) vec_mat = func(X_perturb_pca) delta_Y = vec_mat elif pertubation_method.lower() == "f_x_prime_minus_f_x_0": _, func = vecfld_from_adata(adata, basis) vec_mat = func(X_perturb_pca) - func(X_pca) delta_Y = vec_mat adata.obsm[add_delta_Y_key] = delta_Y perturbation_csc = vector_transformation(delta_Y, PCs) adata.layers[add_delta_Y_key] = csr_matrix(adata.shape, dtype=np.float64) adata.layers[add_delta_Y_key][:, adata.var.use_for_pca] = perturbation_csc if zero_perturb_genes_vel: adata.layers[add_delta_Y_key][:, gene_loc] = 0 logger.info( "project the pca perturbation vector to low dimensional space....", ) if add_transition_key is None: transition_key = "perturbation_transition_matrix" else: transition_key = add_transition_key if add_velocity_key is None: velocity_key, embedding_key = "velocity_" + emb_basis + "_perturbation", "X_" + emb_basis + "_perturbation" else: velocity_key, embedding_key = add_velocity_key, add_embedding_key cell_velocities( adata, X=X_pca, V=delta_Y, basis=emb_basis, enforce=True, method=projection_method, add_transition_key=transition_key, add_velocity_key=velocity_key, ) logger.info_insert_adata("X_" + emb_basis + "_perturbation", "obsm", indent_level=1) logger.info( f"you can use dyn.pl.streamline_plot(adata, basis='{emb_basis}_perturbation') to visualize the " f"perturbation vector" ) adata.obsm[embedding_key] = adata.obsm["X_" + emb_basis].copy() def rank_perturbation_genes(adata, pkey="j_delta_x_perturbation", prefix_store="rank", **kwargs): """Rank genes based on their raw and absolute perturbation effects for each cell group. Parameters ---------- adata: :class:`~anndata.AnnData` AnnData object that contains the gene-wise perturbation effect vectors. pkey: str (default: 'perturbation_vector') The perturbation key. prefix_store: str (default: 'rank') The prefix added to the key for storing the returned ranking information in adata. kwargs: Keyword arguments passed to `vf.rank_genes`. Returns ------- adata: :class:`~anndata.AnnData` AnnData object which has the rank dictionary for perturbation effects in `.uns`. """ rdict = rank_genes(adata, pkey, **kwargs) rdict_abs = rank_genes(adata, pkey, abs=True, **kwargs) adata.uns[prefix_store + "_" + pkey] = rdict adata.uns[prefix_store + "_abs_" + pkey] = rdict_abs return adata def rank_perturbation_cells(adata, pkey="j_delta_x_perturbation", prefix_store="rank", **kwargs): """Rank cells based on their raw and absolute perturbation for each cell group. Parameters ---------- adata: :class:`~anndata.AnnData` AnnData object that contains the gene-wise velocities. pkey: str (default: 'perturbation_vector') The perturbation key. prefix_store: str (default: 'rank') The prefix added to the key for storing the returned in adata. kwargs: Keyword arguments passed to `vf.rank_cells`. Returns ------- adata: :class:`~anndata.AnnData` AnnData object which has the rank dictionary for perturbation effects in `.uns`. """ rdict = rank_cells(adata, pkey, **kwargs) rdict_abs = rank_cells(adata, pkey, abs=True, **kwargs) adata.uns[prefix_store + "_" + pkey + "_cells"] = rdict adata.uns[prefix_store + "_abs_" + pkey + "_cells"] = rdict_abs return adata def rank_perturbation_cell_clusters(adata, pkey="j_delta_x_perturbation", prefix_store="rank", **kwargs): """Rank cells based on their raw and absolute perturbation for each cell group. Parameters ---------- adata: :class:`~anndata.AnnData` AnnData object that contains the gene-wise velocities. pkey: str (default: 'perturbation_vector') The perturbation key. prefix_store: str (default: 'rank') The prefix added to the key for storing the returned in adata. kwargs: Keyword arguments passed to `vf.rank_cells`. Returns ------- adata: :class:`~anndata.AnnData` AnnData object which has the rank dictionary for perturbation effects in `.uns`. """ rdict = rank_cell_groups(adata, pkey, **kwargs) rdict_abs = rank_cell_groups(adata, pkey, abs=True, **kwargs) adata.uns[prefix_store + "_" + pkey + "_cell_groups"] = rdict adata.uns[prefix_store + "_abs_" + pkey + "_cells_groups"] = rdict_abs return adata
ptgnn/tests/simplemodel/test_model.py
mir-am/ptgnn
319
12636357
<reponame>mir-am/ptgnn import tempfile import unittest from pathlib import Path from typing import List, Optional, Tuple from ptgnn.baseneuralmodel import ModelTrainer from ptgnn.tests.simplemodel.data import SampleDatapoint, SyntheticData from ptgnn.tests.simplemodel.model import SimpleRegressionModel class TestPytorchModel(unittest.TestCase): """ Model of a Boolean classifier of positive/negative cross-product of input features and weights """ def __get_data( self, num_points: int, num_features: int, random_seed: Optional[int] = None, train_test_split_pct=0.9, ) -> Tuple[List[SampleDatapoint], List[SampleDatapoint]]: """ generates data as SyntheticData = SampleDataPoint[num_points] where SampleDataPoint<x,y> = <float[__num_features],bool>, and y= sum(x*w) >0; weigths ~ N(0,1)*10, and SampleDataPoint.x ~ N(0,1)*5. Returns tuple of train and test data, split at @train_test_split_pct % """ data = SyntheticData(num_features, random_seed=random_seed) all_data = list(data.generate(num_points)) train_test_split = int(num_points * train_test_split_pct) training_data, validation_data = all_data[:train_test_split], all_data[train_test_split:] return training_data, validation_data def test_parallel(self): self.train_and_compare_model(True) def test_parallel_no_multiprocessing(self): self.train_and_compare_model(True, multiprocessing=False) def test_sequential(self): self.train_and_compare_model(False) def train_and_compare_model(self, parallelize: bool, multiprocessing: bool = True): num_points = 10000 num_features = 100 max_num_epochs = 50 random_seed = 1234 # None to seed from clock training_data, validation_data = self.__get_data( num_points, num_features, random_seed=random_seed ) with tempfile.TemporaryDirectory() as dir: model_file = Path(dir) / "testModel.pkl.gz" model = SimpleRegressionModel() trainer = ModelTrainer(model, model_file, max_num_epochs=max_num_epochs) trainer.train( training_data, validation_data, parallelize=parallelize, use_multiprocessing=multiprocessing, ) model_acc_1 = model.compute_accuracy( trainer.neural_module, iter(validation_data), parallelize, use_multiprocessing=multiprocessing, ) model, trained_network = SimpleRegressionModel.restore_model(model_file) trained_model_acc = model.compute_accuracy( trained_network, iter(validation_data), parallelize, use_multiprocessing=multiprocessing, ) self.assertGreater( trained_model_acc, 0.95, f"Model achieves too low accuracy, {trained_model_acc:%}" ) self.assertAlmostEqual( trained_model_acc, model_acc_1, places=3, msg=f"Accuracy before and after loading does not match: {trained_model_acc} vs {model_acc_1}", ) if __name__ == "__main__": unittest.main()
src/e2eflow/core/flownet.py
3bhady/UnFlow
281
12636359
<gh_stars>100-1000 import tensorflow as tf import tensorflow.contrib.slim as slim import tensorflow.contrib.layers as layers from ..ops import correlation from .image_warp import image_warp from .flow_util import flow_to_color FLOW_SCALE = 5.0 def flownet(im1, im2, flownet_spec='S', full_resolution=False, train_all=False, backward_flow=False): num_batch, height, width, _ = tf.unstack(tf.shape(im1)) flownet_num = len(flownet_spec) assert flownet_num > 0 flows_fw = [] flows_bw = [] for i, name in enumerate(flownet_spec): assert name in ('C', 'c', 'S', 's') channel_mult = 1 if name in ('C', 'S') else 3 / 8 full_res = full_resolution and i == flownet_num - 1 def scoped_block(): if name.lower() == 'c': assert i == 0, 'FlowNetS must be used for refinement networks' with tf.variable_scope('flownet_c_features'): _, conv2_a, conv3_a = flownet_c_features(im1, channel_mult=channel_mult) _, conv2_b, conv3_b = flownet_c_features(im2, channel_mult=channel_mult, reuse=True) with tf.variable_scope('flownet_c') as scope: flow_fw = flownet_c(conv3_a, conv3_b, conv2_a, full_res=full_res, channel_mult=channel_mult) flows_fw.append(flow_fw) if backward_flow: scope.reuse_variables() flow_bw = flownet_c(conv3_b, conv3_a, conv2_b, full_res=full_res, channel_mult=channel_mult) flows_bw.append(flow_bw) elif name.lower() == 's': def _flownet_s(im1, im2, flow=None): if flow is not None: flow = tf.image.resize_bilinear(flow, [height, width]) * 4 * FLOW_SCALE warp = image_warp(im2, flow) diff = tf.abs(warp - im1) if not train_all: flow = tf.stop_gradient(flow) warp = tf.stop_gradient(warp) diff = tf.stop_gradient(diff) inputs = tf.concat([im1, im2, flow, warp, diff], axis=3) inputs = tf.reshape(inputs, [num_batch, height, width, 14]) else: inputs = tf.concat([im1, im2], 3) return flownet_s(inputs, full_res=full_res, channel_mult=channel_mult) stacked = len(flows_fw) > 0 with tf.variable_scope('flownet_s') as scope: flow_fw = _flownet_s(im1, im2, flows_fw[-1][0] if stacked else None) flows_fw.append(flow_fw) if backward_flow: scope.reuse_variables() flow_bw = _flownet_s(im2, im1, flows_bw[-1][0] if stacked else None) flows_bw.append(flow_bw) if i > 0: scope_name = "stack_{}_flownet".format(i) with tf.variable_scope(scope_name): scoped_block() else: scoped_block() if backward_flow: return flows_fw, flows_bw return flows_fw def _leaky_relu(x): with tf.variable_scope('leaky_relu'): return tf.maximum(0.1 * x, x) def _flownet_upconv(conv6_1, conv5_1, conv4_1, conv3_1, conv2, conv1=None, inputs=None, channel_mult=1, full_res=False, channels=2): m = channel_mult flow6 = slim.conv2d(conv6_1, channels, 3, scope='flow6', activation_fn=None) deconv5 = slim.conv2d_transpose(conv6_1, int(512 * m), 4, stride=2, scope='deconv5') flow6_up5 = slim.conv2d_transpose(flow6, channels, 4, stride=2, scope='flow6_up5', activation_fn=None) concat5 = tf.concat([conv5_1, deconv5, flow6_up5], 1) flow5 = slim.conv2d(concat5, channels, 3, scope='flow5', activation_fn=None) deconv4 = slim.conv2d_transpose(concat5, int(256 * m), 4, stride=2, scope='deconv4') flow5_up4 = slim.conv2d_transpose(flow5, channels, 4, stride=2, scope='flow5_up4', activation_fn=None) concat4 = tf.concat([conv4_1, deconv4, flow5_up4], 1) flow4 = slim.conv2d(concat4, channels, 3, scope='flow4', activation_fn=None) deconv3 = slim.conv2d_transpose(concat4, int(128 * m), 4, stride=2, scope='deconv3') flow4_up3 = slim.conv2d_transpose(flow4, channels, 4, stride=2, scope='flow4_up3', activation_fn=None) concat3 = tf.concat([conv3_1, deconv3, flow4_up3], 1) flow3 = slim.conv2d(concat3, channels, 3, scope='flow3', activation_fn=None) deconv2 = slim.conv2d_transpose(concat3, int(64 * m), 4, stride=2, scope='deconv2') flow3_up2 = slim.conv2d_transpose(flow3, channels, 4, stride=2, scope='flow3_up2', activation_fn=None) concat2 = tf.concat([conv2, deconv2, flow3_up2], 1) flow2 = slim.conv2d(concat2, channels, 3, scope='flow2', activation_fn=None) flows = [flow2, flow3, flow4, flow5, flow6] if full_res: with tf.variable_scope('full_res'): deconv1 = slim.conv2d_transpose(concat2, int(32 * m), 4, stride=2, scope='deconv1') flow2_up1 = slim.conv2d_transpose(flow2, channels, 4, stride=2, scope='flow2_up1', activation_fn=None) concat1 = tf.concat([conv1, deconv1, flow2_up1], 1) flow1 = slim.conv2d(concat1, channels, 3, scope='flow1', activation_fn=None) deconv0 = slim.conv2d_transpose(concat1, int(16 * m), 4, stride=2, scope='deconv0') flow1_up0 = slim.conv2d_transpose(flow1, channels, 4, stride=2, scope='flow1_up0', activation_fn=None) concat0 = tf.concat([inputs, deconv0, flow1_up0], 1) flow0 = slim.conv2d(concat0, channels, 3, scope='flow0', activation_fn=None) flows = [flow0, flow1] + flows return flows def nhwc_to_nchw(tensors): return [tf.transpose(t, [0, 3, 1, 2]) for t in tensors] def nchw_to_nhwc(tensors): return [tf.transpose(t, [0, 2, 3, 1]) for t in tensors] def flownet_s(inputs, channel_mult=1, full_res=False): """Given stacked inputs, returns flow predictions in decreasing resolution. Uses FlowNetSimple. """ m = channel_mult inputs = nhwc_to_nchw([inputs])[0] with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], data_format='NCHW', weights_regularizer=slim.l2_regularizer(0.0004), weights_initializer=layers.variance_scaling_initializer(), activation_fn=_leaky_relu): conv1 = slim.conv2d(inputs, int(64 * m), 7, stride=2, scope='conv1') conv2 = slim.conv2d(conv1, int(128 * m), 5, stride=2, scope='conv2') conv3 = slim.conv2d(conv2, int(256 * m), 5, stride=2, scope='conv3') conv3_1 = slim.conv2d(conv3, int(256 * m), 3, stride=1, scope='conv3_1') conv4 = slim.conv2d(conv3_1, int(512 * m), 3, stride=2, scope='conv4') conv4_1 = slim.conv2d(conv4, int(512 * m), 3, stride=1, scope='conv4_1') conv5 = slim.conv2d(conv4_1, int(512 * m), 3, stride=2, scope='conv5') conv5_1 = slim.conv2d(conv5, int(512 * m), 3, stride=1, scope='conv5_1') conv6 = slim.conv2d(conv5_1, int(1024 * m), 3, stride=2, scope='conv6') conv6_1 = slim.conv2d(conv6, int(1024 * m), 3, stride=1, scope='conv6_1') res = _flownet_upconv(conv6_1, conv5_1, conv4_1, conv3_1, conv2, conv1, inputs, channel_mult=channel_mult, full_res=full_res) return nchw_to_nhwc(res) def flownet_c_features(im, channel_mult=1, reuse=None): m = channel_mult im = nhwc_to_nchw([im])[0] with slim.arg_scope([slim.conv2d], data_format='NCHW', weights_regularizer=slim.l2_regularizer(0.0004), weights_initializer=layers.variance_scaling_initializer(), activation_fn=_leaky_relu): conv1 = slim.conv2d(im, int(64 * m), 7, stride=2, scope='conv1', reuse=reuse) conv2 = slim.conv2d(conv1, int(128 * m), 5, stride=2, scope='conv2', reuse=reuse) conv3 = slim.conv2d(conv2, int(256 * m), 5, stride=2, scope='conv3', reuse=reuse) return conv1, conv2, conv3 def flownet_c(conv3_a, conv3_b, conv2_a, channel_mult=1, full_res=False): """Given two images, returns flow predictions in decreasing resolution. Uses FlowNetCorr. """ m = channel_mult with slim.arg_scope([slim.conv2d, slim.conv2d_transpose], data_format='NCHW', weights_regularizer=slim.l2_regularizer(0.0004), weights_initializer=layers.variance_scaling_initializer(), activation_fn=_leaky_relu): corr = correlation(conv3_a, conv3_b, pad=20, kernel_size=1, max_displacement=20, stride_1=1, stride_2=2) conv_redir = slim.conv2d(conv3_a, int(32 * m), 1, stride=1, scope='conv_redir') conv3_1 = slim.conv2d(tf.concat([conv_redir, corr], 1), int(256 * m), 3, stride=1, scope='conv3_1') conv4 = slim.conv2d(conv3_1, int(512 * m), 3, stride=2, scope='conv4') conv4_1 = slim.conv2d(conv4, int(512 * m), 3, stride=1, scope='conv4_1') conv5 = slim.conv2d(conv4_1, int(512 * m), 3, stride=2, scope='conv5') conv5_1 = slim.conv2d(conv5, int(512 * m), 3, stride=1, scope='conv5_1') conv6 = slim.conv2d(conv5_1, int(1024 * m), 3, stride=2, scope='conv6') conv6_1 = slim.conv2d(conv6, int(1024 * m), 3, stride=1, scope='conv6_1') res = _flownet_upconv(conv6_1, conv5_1, conv4_1, conv3_1, conv2_a, channel_mult=channel_mult, full_res=full_res) return nchw_to_nhwc(res)
nova/tests/functional/test_flavor_extraspecs.py
zjzh/nova
1,874
12636386
<reponame>zjzh/nova # Copyright 2020, Red Hat, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for os-extra_specs API.""" from nova.tests.functional.api import client as api_client from nova.tests.functional import integrated_helpers class FlavorExtraSpecsTest(integrated_helpers._IntegratedTestBase): api_major_version = 'v2' def setUp(self): super(FlavorExtraSpecsTest, self).setUp() self.flavor_id = self._create_flavor() def test_create(self): """Test creating flavor extra specs with valid specs.""" body = { 'extra_specs': {'hw:numa_nodes': '1', 'hw:cpu_policy': 'shared'}, } self.admin_api.post_extra_spec(self.flavor_id, body) self.assertEqual( body['extra_specs'], self.admin_api.get_extra_specs(self.flavor_id) ) def test_create_invalid_spec(self): """Test creating flavor extra specs with invalid specs. This should pass because validation is not enabled in this API microversion. """ body = {'extra_specs': {'hw:numa_nodes': 'foo', 'foo': 'bar'}} self.admin_api.post_extra_spec(self.flavor_id, body) self.assertEqual( body['extra_specs'], self.admin_api.get_extra_specs(self.flavor_id) ) def test_update(self): """Test updating extra specs with valid specs.""" spec_id = 'hw:numa_nodes' body = {'hw:numa_nodes': '1'} self.admin_api.put_extra_spec(self.flavor_id, spec_id, body) self.assertEqual( body, self.admin_api.get_extra_spec(self.flavor_id, spec_id) ) def test_update_invalid_spec(self): """Test updating extra specs with invalid specs. This should pass because validation is not enabled in this API microversion. """ spec_id = 'hw:foo' body = {'hw:foo': 'bar'} self.admin_api.put_extra_spec(self.flavor_id, spec_id, body) self.assertEqual( body, self.admin_api.get_extra_spec(self.flavor_id, spec_id) ) class FlavorExtraSpecsV286Test(FlavorExtraSpecsTest): api_major_version = 'v2.1' microversion = '2.86' def test_create_invalid_spec(self): """Test creating extra specs with invalid specs.""" body = {'extra_specs': {'hw:numa_nodes': 'foo', 'foo': 'bar'}} # this should fail because 'foo' is not a suitable value for # 'hw:numa_nodes' exc = self.assertRaises( api_client.OpenStackApiException, self.admin_api.post_extra_spec, self.flavor_id, body, ) self.assertEqual(400, exc.response.status_code) # ...and the extra specs should not be saved self.assertEqual({}, self.admin_api.get_extra_specs(self.flavor_id)) def test_create_unknown_spec(self): """Test creating extra specs with unknown specs.""" body = {'extra_specs': {'hw:numa_nodes': '1', 'foo': 'bar'}} # this should pass because we don't recognize the extra spec but it's # not in a namespace we care about self.admin_api.post_extra_spec(self.flavor_id, body) body = {'extra_specs': {'hw:numa_nodes': '1', 'hw:foo': 'bar'}} # ...but this should fail because we do recognize the namespace exc = self.assertRaises( api_client.OpenStackApiException, self.admin_api.post_extra_spec, self.flavor_id, body, ) self.assertEqual(400, exc.response.status_code) def test_update_invalid_spec(self): """Test updating extra specs with invalid specs.""" spec_id = 'hw:foo' body = {'hw:foo': 'bar'} # this should fail because we don't recognize the extra spec exc = self.assertRaises( api_client.OpenStackApiException, self.admin_api.put_extra_spec, self.flavor_id, spec_id, body, ) self.assertEqual(400, exc.response.status_code) spec_id = 'hw:numa_nodes' body = {'hw:numa_nodes': 'foo'} # ...while this should fail because the value is not valid exc = self.assertRaises( api_client.OpenStackApiException, self.admin_api.put_extra_spec, self.flavor_id, spec_id, body, ) self.assertEqual(400, exc.response.status_code) # ...and neither extra spec should be saved self.assertEqual({}, self.admin_api.get_extra_specs(self.flavor_id)) def test_update_unknown_spec(self): """Test updating extra specs with unknown specs.""" spec_id = 'foo:bar' body = {'foo:bar': 'baz'} # this should pass because we don't recognize the extra spec but it's # not in a namespace we care about self.admin_api.put_extra_spec(self.flavor_id, spec_id, body) self.assertEqual(body, self.admin_api.get_extra_specs(self.flavor_id))
registration/urls.py
timgates42/timestrap
1,758
12636389
<reponame>timgates42/timestrap from django.urls import path from django.contrib.auth import views as auth_views from .forms import TimestrapPasswordResetForm urlpatterns = [ path( "password_reset/", auth_views.PasswordResetView.as_view(form_class=TimestrapPasswordResetForm), name="password_reset", ) ]
recipes/Python/576531_Circle/recipe-576531.py
tdiprima/code
2,023
12636402
#On the name of ALLAH and may the blessing and peace of Allah #be upon the Messenger of <NAME>. #Author :<NAME> #Date : 08/10/08 #Version : 2.4 """ Class of an equation of a circle of the form Ax^2 + Ay^2 + Dx + Ey + F = 0 (A !=0) it represents a circle or a point or has no graph , depending of the radius value. And a class of an equation for the circle of radius r and centred at point (x0,y0). """ import math class Circle(object): """ Class that represent an equation of a circle with A,D,E,F constants properties """ def __init__(self, Avalue,Dvalue,Evalue,Fvalue): """ Circle construction takes A,D,E,F Constants """ self.__A = float(Avalue) self.__D = float(Dvalue) self.__E = float(Evalue) self.__F = float(Fvalue) self._b = chr(253) self._a = self._checkSign(self.__A) self._d= self._checkSign(self.__D) self._e = self._checkSign(self.__E) self._f = self._checkSign(self.__F) self._g = ((self.__D/self.__A)/2) self._g1= self.__D/2 self._h =((self.__E/self.__A)/2) self._h1 = self.__E/2 self._i = self._checkSign(self._g) self._j = self._checkSign(self._h) self._k = (-self.__F/self.__A + self._g**2 +self._h**2) self._k1= (-self.__F + self._g1**2 +self._h1**2) self._l = "%2.2f" % math.sqrt(abs(self._k)) self._l1 = "%2.2f" % math.sqrt(abs(self._k1)) self._m = "(x%s%s)%s+(y%s%s)%s = %s" % \ (self._i,self._g,self._b,self._j,self._h,self._b,self._k) self._m1 = "(x%s%s)%s+(y%s%s)%s = %s" % \ (self._i,self._g1,self._b,self._j,self._h1,self._b,self._k1) self._n = "(%s,%s)" % (-self._g,-self._h) self._n1 = "(%s,%s)" % (-self._g1,-self._h1) def __str__(self): """ String representation of the circle equation, standard form , centre and radius """ try: math.sqrt(self._k) #Circle raises zero degenerate case assert math.sqrt(self._k) != 0,"The graph is the single point %s" % \ Circle.centre(self) if self.__A == 0: return "\n<Equation of a circle : x%s + y%s %s %sx %s %sy %s %s = 0 \ \n\n%s %35s %25s \n\n%s %22s %24s\n" %\ (self._b,self._b,self._d,int(self.D),self._e, \ int(self.E),self._f,int(self.F), 'Standard form','Centre(x0,y0)','Radius r' \ self._m1,Circle.centre(self),Circle.radius(self)) else: return "\n<Equation of a circle : %sx%s + %sy%s %s %sx %s %sy %s %s = 0 \ \n\n%s %35s %25s \n\n%s %22s %24s\n" %\ (int(self.A)self._b,int(self.A),self._b,self._d,int(self.D),self._e, \ int(self.E),self._f,int(self.F), 'Standard form', 'Centre(x0,y0)','Radius r' \ self._m,Circle.centre(self),Circle.radius(self)) #Circle raises Negative number degenerate case except ValueError: raise ValueError,\ " r%s < 0 : Degenerate case has no graph" % self._b def getA(self): """ Get method for A attribute """ if self.__A != 0: return self.__A else: raise ValueError,\ " A value should be different than zero " def setA(self,value): """ Set method for A attribute """ self.__A = value def delA(self): """ Delete method for A attribute """ del self.__A #Create A property A = property(getA,setA,delA,"A constant") def getD(self): """ Get method for D attribute """ return self.__D def setD(self,value): """ Set method for D attribute """ self.__D = value def delD(self): """ Delete method for D attribute """ del self.__D #Create D property D = property(getD,setD,delD,"D constant") def getE(self): """ Get method for E attribute """ return self.__E def setE(self,value): """ Set method for E attribute """ self.__E = value def delE(self): """ Delete method for E attribute """ del self.__E #Create E property E = property(getE,setE,delE,"E constant") def getF(self): """ Get method for F attribute """ return self.__F def setF(self,value): """ Set method for F attribute """ self.__F = value def delF(self): """ Delete method for F attribute """ del self.__F #Create F property F = property(getF,setF,delF,"F constant") def _checkSign(self,value): """ Utility method to check the values’ signs and return a sign string """ if value >= 0: return "+" else: return "" def radius(self): """ Compute radius of a circle """ if self.__A == 1: return self._l1 else: return self._l def centre(self): """ Compute centre(x0,y0) of a circle """ if self.__A == 1: return self._n1 else: return self._n class Equation(Circle): """Class that represent a radius and the centre of a circle """ def __init__(self,x,y,radius): """Equation construction takes centre(xValue,yValue and radius""" self.__x = float(x) self.__y = float(y) self.__radius = float(radius) self._o = chr(253) self._p = self.__radius**2 self._q = self._checkSign(-self.__x) self._r = self._checkSign(-self.__y) self._s = "(x%s%s)%s + (y%s%s)%s = %s " % \ (self._q,-self.__x,self._o,self._r,-self.__y,self._o,self._p) self._t = self.__x**2 + self.__y**2 -self._p self._u = self._checkSign(self._t) self._v = "x%s + y%s %s %sx %s %sy %s %s = 0 " % \ (self._o,self._o,self._q,-self.__x*2,self._r,-self.__y*2,self._u,self._t) def __str__(self): """ String representation of the circle equation, standard form ,centre and radius """ #Equation raises radius value < 0 assert self.__radius > 0, "<Radius value should be greater than zero" return ( "\n<Equation for the circle of radius (%s)\ centred at (%s,%s) is : \n\n%s < -- > %s" ) % \ (self.__radius,self.__x,self.__y,self._s,self._v) if __name__ == "__main__": circle1 = Circle(16,40,16,-7) print circle1 #Though students might use only values of radius and circle print radius.circle1() print centre.circle1() circle2 = Circle(2,24,0,-81) print circle2 del circle2.A circle2.A = 1 print circle2 equation = Equation(2,5,3) print equation for doc in (Circle.A,Circle.D,Circle.E,Circle.F): print doc.__doc__,doc.fget.func_name,doc.fset.func_name,doc.fdel.func_name ######################################################################################## #Version : Python 3.2 #import math #class Circle(object): # """ Class that represent an equation of a circle # with A,D,E,F constants properties""" # # def __init__(self,Avalue,Dvalue,Evalue,Fvalue): # """ Circle constructor takes A,D,F,E constants """ # # self.__A = float(Avalue) # self.__D = float(Dvalue) # self.__E = float(Evalue) # self.__F = float(Fvalue) # # self._b = chr(178) # self._a = self._checkSign(self.__A) # self._d = self._checkSign(self.__D) # self._e = self._checkSign(self.__E) # self._f = self._checkSign(self.__F) # self._g = ((self.__D/self.__A)/2) # self._g1 = self.D/2 # self._h = ((self.__E/self.__A)/2) # self._h1 = self.E/2 # self._i = self._checkSign(self._g) # self._j = self._checkSign(self._h) # self._k = (-self.__F/self.__A +self._g**2 + self._h**2) # self._k1= (-self.__F +self._g1**2 + self._h1**2) # self._l = "%2.2f" % math.sqrt(abs(self._k)) # self._l1= "%2.2f" % math.sqrt(abs(self._k1)) # self._m = "(x%s%s)%s+(y%s%s)%s = %s" % \ # (self._i,self._g,self._b,self._j,self._h,self._b,self._k) # self._m1 ="(x%s%s)%s+(y%s%s)%s = %s" % \ # (self._i,self._g1,self._b,self._j,self._h1,self._b,self._k1) # self._n = "(%s,%s)" % (-self._g,-self._h) # self._n1= "(%s,%s)" % (-self._g1,-self._h1) # # # def squared(self): # self._w =(-self.__F/self.__A +((self.__D/self.__A)/2)**2 + ((self.__E/self.__A)/2)**2) # return self._w # def standardForm(self): # return "(x%s%s)%s+(y%s%s)%s = %s" % \ # (self._checkSign(((self.__D/self.__A)/2)),((self.__D/self.__A)/2),chr(178),self._checkSign(((self.__E/self.__A)/2)),((self.__E/self.__A)/2),chr(178),(-self.__F/self.__A +((self.__D/self.__A)/2)**2 + ((self.__E/self.__A)/2)**2)) # # def __str__(self): # """ String representation of the circle equation, # standard form, centre and radius""" # # try: # math.sqrt(Circle.squared(self)) # # #Circle raises zero degenerate case # assert math.sqrt(Circle.squared(self)) != 0,"The graph is the single point %s" % \ # Circle.centre(self) # if self.__A == 1: # # return "\n<Equation of a circle : x%s + y%s %s %sx %s %sy %s %s = 0 \ # \n\n%s %35s %25s \n\n%s %22s %24s\n" %\ # (self._b,self._b,self._d,int(self.D),self._e,\ # int(self.E),self._f,int(self.F), # "Standard form","Center(x0,y0)","Radius r",\ # self._m1,Circle.centre(self),Circle.radius(self)) # else: # return "\n<Equation of a circle : %sx%s + %sy%s %s %sx %s %sy %s %s = 0 \ # \n\n%s %35s %25s \n\n%s %22s %24s\n" %\ # (int(self.A),self._b,int(self.A),self._b,self._d,int(self.D),self._e,\ # int(self.E),self._f,int(self.F), # "Standard form","Center(x0,y0)","Radius r",\ # Circle.standardForm(self),Circle.centre(self),Circle.radius(self)) # # #Circle raises Negative number degenerate case # except ValueError: # raise ValueError("r%s < 0 : Degenerate case has no graph" % self._b) # # def getA(self): # """ Get method for A attribute """ # if self.__A !=0: # return self.__A # else: # raise ValueError("A value should be differtent than zero") # # def setA(self,value): # """ Set method for A attribute """ # # self.__A = value # # def delA(self): # """Delete method for A attrobute""" # # del self.__A # # #Create a property # A = property(getA,setA,delA,"A constant") # # def getD(self): # """ Get method for D attribute """ # # return self.__D # # def setD(self,value): # """ Set method for D attribute """ # # self.__D = value # # def delD(self): # """Delete method for D attrobute""" # del self.__D # # #Create a property # D = property(getD,setD,delD,"D constant") # def getE(self): # """ Get method for E attribute """ # return self.__E # # def setE(self,value): # """ Set method for E attribute """ # # self.__E = value # # def delE(self): # """Delete method for E attrobute""" # # del self.__E # # #Create a property # E = property(getE,setE,delE,"E constant") # # def getF(self): # """ Get method for F attribute """ # # return self.__F # # def setF(self,value): # """ Set method for F attribute """ # # self.__F = value # # def delF(self): # """Delete method for F attrobute""" # # del self.__F # # #Create a property # F = property(getF,setF,delF,"F constant") # # def _checkSign(self,value): # """ Utility method to check the values's sign # and return a sign string""" # # if value >= 0: # return "+" # else : # return "" # # def radius(self): # """ Computes radius of a circle """ # if self.__A ==1: # return self._l1 # else: # return "%2.2f" % math.sqrt(abs(Circle.squared(self))) # # def centre(self): # """ Computes centre(x0,y0) of a circle """ # if self.__A == 1: # return self._n1 # else: # return "(%s,%s)" % (-((self.__D/self.__A)/2),-((self.__E/self.__A)/2)) # # # #class Equation(Circle): # """ class that represent a radius and the centre of a circle """ # # def __init__(self,x,y,radius): # """ Equation construction takes centre(xValue,yValue) # and radius """ # # self.__x = float(x) # self.__y = float(y) # self.__radius = float(radius) # # self._o = chr(178) # self._p = self.__radius**2 # self._q = self._checkSign(-self.__x) # self._r = self._checkSign(-self.__y) # self._s = "(x%s%s)%s+(y%s%s)%s = %s" % \ # (self._q,-self.__x,self._o,self._r,-self.__y,self._o,self._p) # self._t = self.__x**2 + self.__y**2 - self._p # self._u = self._checkSign(self._t) # self._v = "x%s + y%s %s%sx %s%sy %s%s = 0" % \ # (self._o,self._o,self._q,-self.__x*2,self._r,-self.__y*2,self._u,self._t) # # def __str__(self): # """ String representation of the circle equation, standard form, # centre and radius""" # # #Equation raises radius value < 0 # assert self.__radius > 0, "<radius value should be greater than zero" # # return ("\n<Equation for the circle of radius (%s)\ # centred at(%s,%s) is :\n\n%s <--> %s") %\ # (self.__radius,self.__x,self.__y,self._s,self._v ) # # #if __name__ == "__main__": # circle1 = Circle(10,40,16,-7) # print(circle1) # # print(circle1.radius()) # print(circle1.centre()) # circle1.delA # circle1.A=1 # print(circle1) # circle3 = Circle(5,24,0,-81) # print(circle3) # # circle3.E =80 # print(circle3) # # equation = Equation(2,5,3) # print(equation) # # # for doc in (Circle.A,Circle.D,Circle.E,Circle.F): # print(doc.__doc__,"=",doc.fget.__name__,doc.fset.__name__,doc.fdel.__name__) ####################################################################################### #<Equation of a circle : 10x² + 10y² + 40x + 16y -7 = 0 #Standard form Center(x0,y0) Radius r #(x+2.0)²+(y+0.8)² = 5.34 (-2.0,-0.8) 2.31 #2.31 #(-2.0,-0.8) #<Equation of a circle : x² + y² + 40x + 16y -7 = 0 #Standard form Center(x0,y0) Radius r #(x+20.0)²+(y+8.0)² = 471.0 (-20.0,-8.0) 21.70 #<Equation of a circle : 5x² + 5y² + 24x + 0y -81 = 0 #Standard form Center(x0,y0) Radius r #(x+2.4)²+(y+0.0)² = 21.96 (-2.4,-0.0) 4.69 #<Equation of a circle : 5x² + 5y² + 24x + 80y -81 = 0 #Standard form Center(x0,y0) Radius r #(x+2.4)²+(y+8.0)² = 85.96 (-2.4,-8.0) 9.27 #<Equation for the circle of radius (3.0) centred at(2.0,5.0) is : #(x-2.0)²+(y-5.0)² = 9.0 <--> x² + y² -4.0x -10.0y +20.0 = 0 #A constant = getA setA delA #D constant = getD setD delD #E constant = getE setE delE #F constant = getF setF delF
php_opcache/tests/test_php_opcache.py
divyamamgai/integrations-extras
158
12636428
<gh_stars>100-1000 import pytest from datadog_checks.base import ConfigurationError from datadog_checks.dev.utils import get_metadata_metrics from datadog_checks.php_opcache import PhpOpcacheCheck from .common import EXPECTED_METRICS @pytest.mark.unit def test_config(): instance = {} c = PhpOpcacheCheck('php_opcache', {}, [instance]) with pytest.raises(ConfigurationError): c.check(instance) c.check({'url': 'http://foobar'}) @pytest.mark.integration @pytest.mark.usefixtures('dd_environment') def test_service_check(aggregator, instance): c = PhpOpcacheCheck('php_opcache', {}, [instance]) c.check(instance) aggregator.assert_service_check('php_opcache.can_connect', PhpOpcacheCheck.OK) aggregator.reset() instance['url'] = instance['url'].replace('.php', '') c.check(instance) aggregator.assert_service_check('php_opcache.can_connect', PhpOpcacheCheck.CRITICAL) @pytest.mark.integration @pytest.mark.usefixtures('dd_environment') def test_metrics(aggregator, instance): c = PhpOpcacheCheck('php_opcache', {}, [instance]) c.check(instance) for k, v in EXPECTED_METRICS.items(): aggregator.assert_metric(k, at_least=v) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True)
recipes/Python/578139_Metronome_For_Beginner_Musicians/recipe-578139.py
tdiprima/code
2,023
12636441
# Metronome3x.py # # DEMO simple metronome that exploits a minor flaw in the /dev/audio and /dev/dsp devices inside Linux. # It can tick at around 30 to 400 beats per minute. This minimal code can be improved upon to give # greater accuracy, range and appearance on screen if required. # # Original copyright, (C)2007-2012, B.Walker, G0LCU. Now issued as Public Domain and you may do with # it as you please. # # There is a small flaw that uses the Ctrl-C part of the code. I'll let the big guns tell you users # that can't find it what it is. It is not a bug as such, but it is a flaw. # # Tested on an HP Notebook with Debian 6.0.0 and Python 3.1.3 and an Acer Aspire One Netbook with # PCLinuxOS 2009 and Python 3.2.1. # To run just type:- # # >>> exec(open("/absolute/path/to/Metronome3x.py").read())<RETURN/ENTER> # # And away you go... # # $VER: Metronome3x.py_Version_0.00.10_(C)2007-2012_B.Walker_G0LCU. # # Enjoy finding simple solutions to often very difficult problems... # The only import(s) for this DEMO... import time import os def main(): while 1: # the _variable_ listing... # "n" is throw away integer number and purposely reused. # "beatstring" is the inputted string and is also reused. # "beat" is the floating point number from about 0.x to 1.x generated from the inputted data. # # The standard Linux clear screen cmmand. n=os.system("clear") # Set up a basic user screen/window. print("\nPython 3.x.x simple metronome for the Linux platform.\n") print("(C)2007-2012, B.Walker, G0LCU. Issued as Public Domain.\n") beatstring=input("Enter any whole number from 30 to 400 (bpm), (QUIT or EXIT to Quit):- ") # Allow a means of quitting the DEMO. if beatstring=="QUIT" or beatstring=="EXIT": break # Don't allow any errors... if len(beatstring)>=4: beatstring="100" if len(beatstring)<=1: beatstring="100" n=0 while n<=(len(beatstring)-1): if beatstring[n]>=chr(48) and beatstring[n]<=chr(57): n=n+1 else: beatstring="100" n=int(beatstring) if n<=30: n=30 if n>=400: n=400 # Convert this integer "n" back to the "beatstring" string... beatstring=str(n) # Now convert to the floating point value for the time.sleep() function. beat=((60/n)-0.125) print("\nApproximate beats per minute = "+beatstring+"...\n") print("Press Ctrl-C to enter another speed...") while 1: # Write directly to the /dev/dsp device. try: audio=open("/dev/dsp", "wb") audio.write(b"\x00\xFF") audio.close() time.sleep(beat) # There is a flaw here, I'll let you big guns find it... ;o) # Note it is NOT really a bug! except KeyboardInterrupt: break main() # End of the Metronome3x.py code. # Enjoy finding simple solutions to often very difficult problems...
idaes/core/tests/test_process_base.py
carldlaird/idaes-pse
112
12636463
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Tests for process_base. Author: <NAME> """ import pytest from pyomo.environ import Block, ConcreteModel from idaes.core.process_base import ProcessBaseBlock from idaes.core import (FlowsheetBlockData, declare_process_block_class) from idaes.core.util.exceptions import ConfigurationError @declare_process_block_class("Flowsheet") class _Flowsheet(FlowsheetBlockData): def build(self): super(FlowsheetBlockData, self).build() @pytest.mark.unit def test_flowsheet(): # Test flowsheet method m = ConcreteModel() m.a = Flowsheet() assert m.a.flowsheet() is None m.b = Block() m.b.c = Flowsheet() assert m.b.c.flowsheet() is None m.a.d = Flowsheet() assert m.a.d.flowsheet() is m.a m.a.e = Flowsheet([1, 2]) assert m.a.e[1].flowsheet() is m.a m.a.e[1].f = Flowsheet() assert m.a.e[1].f.flowsheet() is m.a.e[1] m.a.g = Block() m.a.g.h = Flowsheet() assert m.a.g.h.flowsheet() is m.a m.a.i = Block([1, 2]) m.a.i[1].j = Flowsheet() assert m.a.i[1].j.flowsheet() is m.a @pytest.mark.unit def test_get_performance_contents(): m = ConcreteModel() m.b = ProcessBaseBlock() assert m.b._get_performance_contents(time_point=0) is None @pytest.mark.unit def test_get_stream_table_contents(): m = ConcreteModel() m.b = ProcessBaseBlock() assert m.b._get_stream_table_contents(time_point=0) is None @pytest.mark.unit def test_report(): # Test that no exceptions occur m = ConcreteModel() m.b = ProcessBaseBlock() m.b.report(dof=True)
test/nn/dense/test_mincut_pool.py
NucciTheBoss/pytorch_geometric
2,350
12636479
import torch from torch_geometric.nn import dense_mincut_pool def test_dense_mincut_pool(): batch_size, num_nodes, channels, num_clusters = (2, 20, 16, 10) x = torch.randn((batch_size, num_nodes, channels)) adj = torch.ones((batch_size, num_nodes, num_nodes)) s = torch.randn((batch_size, num_nodes, num_clusters)) mask = torch.randint(0, 2, (batch_size, num_nodes), dtype=torch.bool) x, adj, mincut_loss, ortho_loss = dense_mincut_pool(x, adj, s, mask) assert x.size() == (2, 10, 16) assert adj.size() == (2, 10, 10) assert -1 <= mincut_loss <= 0 assert 0 <= ortho_loss <= 2
python/paddle_fl/paddle_fl/core/submitter/client_base.py
barrierye/PaddleFL
379
12636481
<reponame>barrierye/PaddleFL # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os class CloudClient(object): def __init__(self): pass def generate_submit_sh(self, job_dir): with open() as fout: pass def generate_job_sh(self, job_dir): with open() as fout: pass def submit(self, **kwargs): pass class HPCClient(object): def __init__(self): self.conf_dict = {} def print_args(self): print("task_name: {}".format(self.task_name)) print("hdfs_path: {}".format(self.hdfs_path)) print("ugi: {}".format(self.ugi)) print("hdfs_output: {}".format(self.hdfs_output)) print("worker_nodes: {}".format(self.worker_nodes)) print("server_nodes: {}".format(self.server_nodes)) print("hadoop_home: {}".format(self.hadoop_home)) print("hpc_home: {}".format(self.hpc_home)) print("train_cmd: {}".format(self.train_cmd)) print("package_path: {}".format(self.package_path)) print("priority: {}".format(self.priority)) print("queue: {}".format(self.queue)) print("server: {}".format(self.server)) print("mpi_node_mem: {}".format(self.mpi_node_mem)) print("pcpu: {}".format(self.pcpu)) print("python_tar: {}".format(self.python_tar)) print("wheel: {}".format(self.wheel)) def check_args(self): assert self.task_name != "" assert self.hdfs_path != "" assert self.ugi != "" assert self.hdfs_output != "" assert self.worker_nodes != "" assert self.server_nodes != "" assert self.hadoop_home != "" assert self.hpc_home != "" assert self.train_cmd != "" assert self.package_path != "" assert self.priority != "" assert self.queue != "" assert self.server != "" assert self.mpi_node_mem != "" assert self.pcpu != "" assert self.python_tar != "" assert self.wheel != "" def generate_qsub_conf(self, job_dir): with open("{}/qsub.conf".format(job_dir), "w") as fout: fout.write("SERVER={}\n".format(self.server)) fout.write("QUEUE={}\n".format(self.queue)) fout.write("PRIORITY={}\n".format(self.priority)) fout.write("USE_FLAGS_ADVRES=yes\n") def generate_submit_sh(self, job_dir): with open("{}/submit.sh".format(job_dir), "w") as fout: fout.write("#!/bin/bash\n") fout.write("unset http_proxy\n") fout.write("unset https_proxy\n") fout.write("export HADOOP_HOME={}\n".format(self.hadoop_home)) fout.write("$HADOOP_HOME/bin/hadoop fs -Dhadoop.job.ugi={}" " -Dfs.default.name={} -rmr {}\n".format( self.ugi, self.hdfs_path, self.hdfs_output)) fout.write("MPI_NODE_MEM={}\n".format(self.mpi_node_mem)) fout.write("{}/bin/qsub_f -N {} --conf qsub.conf " "--hdfs {} --ugi {} --hout {} --files ./package " "-l nodes={},walltime=1000:00:00,pmem-hard={}," "pcpu-soft={},pnetin-soft=1000," "pnetout-soft=1000 job.sh\n".format( self.hpc_home, self.task_name, self.hdfs_path, self.ugi, self.hdfs_output, int(self.worker_nodes) + int(self.server_nodes), self.mpi_node_mem, self.pcpu)) def generate_job_sh(self, job_dir): with open("{}/job.sh".format(job_dir), "w") as fout: fout.write("#!/bin/bash\n") fout.write("WORKDIR=`pwd`\n") fout.write("mpirun -npernode 1 mv package/* ./\n") fout.write("echo 'current dir: '$WORKDIR\n") fout.write( "mpirun -npernode 1 tar -zxvf python.tar.gz > /dev/null\n") fout.write( "export LIBRARY_PATH=$WORKDIR/python/lib:$LIBRARY_PATH\n") fout.write("mpirun -npernode 1 python/bin/python -m pip install " "{} --index-url=http://pip.baidu.com/pypi/simple " "--trusted-host pip.baidu.com > /dev/null\n".format( self.wheel)) fout.write("export PATH=python/bin:$PATH\n") if self.monitor_cmd != "": fout.write( "mpirun -npernode 1 -timestamp-output -tag-output -machinefile " "${{PBS_NODEFILE}} python/bin/{} > monitor.log 2> monitor.elog &\n". format(self.monitor_cmd)) fout.write( "mpirun -npernode 1 -timestamp-output -tag-output -machinefile ${PBS_NODEFILE} python/bin/python train_program.py\n" ) fout.write("if [[ $? -ne 0 ]]; then\n") fout.write(" echo 'Failed to run mpi!' 1>&2\n") fout.write(" exit 1\n") fout.write("fi\n") def submit(self, **kwargs): # task_name, output_path self.task_name = kwargs.get("task_name", "test_submit_job") self.hdfs_path = kwargs.get("hdfs_path", "") self.ugi = kwargs.get("ugi", "") self.hdfs_output = kwargs.get("hdfs_output", "") self.worker_nodes = str(kwargs.get("worker_nodes", 2)) self.server_nodes = str(kwargs.get("server_nodes", 2)) self.hadoop_home = kwargs.get("hadoop_home", "") self.hpc_home = kwargs.get("hpc_home", "") self.train_cmd = kwargs.get("train_cmd", "") self.monitor_cmd = kwargs.get("monitor_cmd", "") self.package_path = kwargs.get("package_path", "") self.priority = kwargs.get("priority", "") self.queue = kwargs.get("queue", "") self.server = kwargs.get("server", "") self.mpi_node_mem = str(kwargs.get("mpi_node_mem", 11000)) self.pcpu = str(kwargs.get("pcpu", 180)) self.python_tar = kwargs.get("python_tar", "") self.wheel = kwargs.get("wheel", "") self.print_args() self.check_args() jobdir = "{}_jobdir".format(self.task_name) os.system("mkdir -p {}_jobdir".format(self.task_name)) os.system("rm -rf {}/package".format(jobdir)) os.system("cp -r {} {}/package".format(self.package_path, jobdir)) os.system("cp {} {}/package/".format(self.python_tar, jobdir)) os.system("cp {} {}/package/".format(self.wheel, jobdir)) # make submit dir self.generate_submit_sh(jobdir) # generate submit.sh self.generate_job_sh(jobdir) # generate job.sh self.generate_qsub_conf(jobdir) # run submit os.system("cd {};sh submit.sh > submit.log 2> submit.elog &".format( jobdir))
examples/gpt-j/prepare_partial.py
lipovsek/PyTorch-LIT
151
12636491
<reponame>lipovsek/PyTorch-LIT<gh_stars>100-1000 from pytorch_lit import prepare_params, PartialLoader if __name__ == "__main__": weights = PartialLoader("../../../lab/gpt-j-6B-f16/pytorch_model.bin") prepare_params(weights, ".models/gpt-j-6b-lit", dtype="float16")
Projects/OLED_Weather Station/weather_station.py
benmcclelland/GrovePi
482
12636499
<reponame>benmcclelland/GrovePi # Adapted from home_temp_hum_display.py ''' The MIT License (MIT) GrovePi for the Raspberry Pi: an open source platform for connecting Grove Sensors to the Raspberry Pi. Copyright (C) 2017 Dexter Industries Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from grovepi import * from grove_oled import * import threading dht_sensor_port = 7 # Connect the DHt sensor to port 7 #Start and initialize the OLED oled_init() oled_clearDisplay() oled_setNormalDisplay() oled_setVerticalMode() time.sleep(.1) def get_outside_weather(location='Bucharest,ro'): import pyowm # Do a 'sudo pip install pyowm' to get this module owm = pyowm.OWM() #forecast = owm.daily_forecast(location) observation = owm.weather_at_place(location) weather = observation.get_weather() return weather def update_outside_weather(): # This uses OpenWeatherMap via the PyOWM module; # pywom module needs to be installed via pip, # see https://github.com/csparpa/pyowm weather = get_outside_weather() # by default location is Bucharest,ro; change it to your own oled_setTextXY(5, 1) oled_putString("OUTSIDE") oled_setTextXY(7, 0) oled_putString("Temp:") oled_putString(str(weather.get_temperature("celsius")['temp']) + "C") oled_setTextXY(8, 0) oled_putString("Hum :") oled_putString(str(weather.get_humidity()) + "%") oled_setTextXY(9, 0) oled_putString("Rain:") rain = weather.get_rain() if len(rain) > 0: pass else: oled_putString("0%") print(("Weather: ", weather.get_temperature("celsius"))) print(("Humidity: ", weather.get_humidity())) while True: try: # Get the temperature and Humidity from the DHT sensor [temp, hum] = dht(dht_sensor_port, 1) print(("Temp =", temp, "C\tHumidity =", hum, "%")) t = str(temp) h = str(hum) #outside_thread = threading.Thread(target=update_outside_weather) #outside_thread.start() oled_setTextXY(0, 1) # Print "INSIDE" at line 1 oled_putString("INSIDE") oled_setTextXY(2, 0) # Print "TEMP" and the temperature in line 3 oled_putString("Temp:") oled_putString(t + "C") oled_setTextXY(3, 0) # Print "HUM :" and the humidity in line 4 oled_putString("Hum :") oled_putString(h + "%") #outside_thread.join() update_outside_weather() except (IOError, TypeError, Exception) as e: print(("Error:" + str(e))) finally: #outside_thread.join() pass
tests/prune_tests.py
dantaki/svtools
120
12636534
from unittest import TestCase, main import os import sys import tempfile import difflib import svtools.prune class IntegrationTestPrune(TestCase): def run_integration_test(self): test_directory = os.path.dirname(os.path.abspath(__file__)) test_data_dir = os.path.join(test_directory, 'test_data', 'prune') input = os.path.join(test_data_dir, 'input.no_missing.bed') expected_result = os.path.join(test_data_dir, 'expected.no_missing.bed') temp_descriptor, temp_output_path = tempfile.mkstemp(suffix='.bed') with open(input) as input_handle, os.fdopen(temp_descriptor, 'w') as output_handle: pruner = svtools.prune.Pruner(50, None) pruner.cluster_bedpe(input_handle, output_handle, False) expected_lines = open(expected_result).readlines() produced_lines = open(temp_output_path).readlines() diff = difflib.unified_diff(produced_lines, expected_lines, fromfile=temp_output_path, tofile=expected_result) result = ''.join(diff) if result != '': for line in result: sys.stdout.write(line) self.assertFalse(result) os.remove(temp_output_path) def run_sname_integration_test(self): test_directory = os.path.dirname(os.path.abspath(__file__)) test_data_dir = os.path.join(test_directory, 'test_data', 'prune') input = os.path.join(test_data_dir, 'input.sname_merge.bedpe') expected_result = os.path.join(test_data_dir, 'expected.sname_merge.bedpe') temp_descriptor, temp_output_path = tempfile.mkstemp(suffix='.bed') with open(input) as input_handle, os.fdopen(temp_descriptor, 'w') as output_handle: pruner = svtools.prune.Pruner(50, None) pruner.cluster_bedpe(input_handle, output_handle, False) expected_lines = open(expected_result).readlines() produced_lines = open(temp_output_path).readlines() diff = difflib.unified_diff(produced_lines, expected_lines, fromfile=temp_output_path, tofile=expected_result) result = ''.join(diff) if result != '': for line in result: sys.stdout.write(line) self.assertFalse(result) os.remove(temp_output_path) def run_sname_multiprune_integration_test(self): test_directory = os.path.dirname(os.path.abspath(__file__)) test_data_dir = os.path.join(test_directory, 'test_data', 'prune') input = os.path.join(test_data_dir, 'input.multi_prune.bedpe') expected_result = os.path.join(test_data_dir, 'expected.multi_prune.bedpe') temp_descriptor, temp_output_path = tempfile.mkstemp(suffix='.bed') with open(input) as input_handle, os.fdopen(temp_descriptor, 'w') as output_handle: pruner = svtools.prune.Pruner(50, None) pruner.cluster_bedpe(input_handle, output_handle, False) expected_lines = open(expected_result).readlines() produced_lines = open(temp_output_path).readlines() diff = difflib.unified_diff(produced_lines, expected_lines, fromfile=temp_output_path, tofile=expected_result) result = ''.join(diff) if result != '': for line in result: sys.stdout.write(line) self.assertFalse(result) os.remove(temp_output_path) def run_sname_duplicate_output_integration_test(self): test_directory = os.path.dirname(os.path.abspath(__file__)) test_data_dir = os.path.join(test_directory, 'test_data', 'prune') input = os.path.join(test_data_dir, 'input.dup_lines.bed') expected_result = os.path.join(test_data_dir, 'expected.dup_lines.bed') temp_descriptor, temp_output_path = tempfile.mkstemp(suffix='.bed') with open(input) as input_handle, os.fdopen(temp_descriptor, 'w') as output_handle: pruner = svtools.prune.Pruner(75, None) pruner.cluster_bedpe(input_handle, output_handle, False) expected_lines = open(expected_result).readlines() produced_lines = open(temp_output_path).readlines() diff = difflib.unified_diff(produced_lines, expected_lines, fromfile=temp_output_path, tofile=expected_result) result = ''.join(diff) if result != '': for line in result: sys.stdout.write(line) self.assertFalse(result) os.remove(temp_output_path) if __name__ == "__main__": main()
goless/compat.py
timgates42/goless
266
12636554
import sys PY3 = sys.version_info[0] == 3 if PY3: # noinspection PyShadowingBuiltins range = range maxint = sys.maxsize # noinspection PyUnusedLocal def reraise(e, v, origex): raise e(v).with_traceback(origex.__traceback__) else: # noinspection PyShadowingBuiltins range = xrange maxint = sys.maxint exec("""def reraise(e, v, origex): tb = sys.exc_info()[2] raise e, v, tb""")
autox/autoxserver.py
fanghy06/AutoX
499
12636593
<reponame>fanghy06/AutoX<gh_stars>100-1000 from autox.autox_server.ensemble import ensemble from autox.autox_server.feature_engineer import fe_count, fe_onehot, fe_shift, fe_time_diff from autox.autox_server.feature_engineer import fe_kv, fe_stat_for_same_prefix, fe_frequency from autox.autox_server.feature_engineer import fe_time_count, fe_window_count, fe_time_rolling_count from autox.autox_server.feature_engineer import fe_window2, fe_txt from autox.autox_server.join_table import join_table from autox.autox_server.model import lgb_with_fe, lgb_for_feature_selection from autox.autox_server.model import model_util from autox.autox_server.pre_process import process_1, process_2, process_3 from autox.autox_server.read_data import read_data from autox.autox_server.util import log, load_obj from autox.autox_server.util import merge_table, save_obj class AutoXServer(): def __init__(self, is_train, server_name, data_info_path=None, train_set_path=None): if is_train: assert(data_info_path is not None and train_set_path is not None) else: assert (data_info_path is None and train_set_path is None) self.is_train = is_train self.data_info_path = data_info_path self.train_set_path = train_set_path self.server_name = server_name def fit(self): data_name = self.server_name log("data name: {}".format(data_name)) lgb_para_dict_1 = model_util.lgb_para_dict_1 lgb_para_dict_2 = model_util.lgb_para_dict_2 params_1 = model_util.params_1 params_2 = model_util.params_2 self.G_hist = {} self.G_hist['val_auc'] = {} self.G_hist['predict'] = {} self.G_hist['delete_column'] = {} phase = 'train' log("*** phase: {}".format(phase)) is_train = True if phase == 'train' else False self.G_df_dict, self.G_data_info, remain_time = read_data.read_data(data_info_path=self.data_info_path, train_set_path=self.train_set_path, is_train=is_train, debug=False) remain_time = process_1.preprocess(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = join_table.join_simple_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = process_2.preprocess_2(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = join_table.join_indirect_1_to_M_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train=is_train, remain_time=remain_time) remain_time = join_table.preprocess_after_join_indirect_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train=is_train, remain_time=remain_time) remain_time = join_table.join_1_to_M_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train=is_train, remain_time=remain_time) remain_time = process_3.preprocess_3(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = fe_kv.fe_kv(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_stat_for_same_prefix.fe_stat_for_same_prefix(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_frequency.fe_frequency(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_count.fe_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_shift.fe_shift(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_time_diff.fe_time_diff(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_time_count.fe_time_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_window_count.fe_window_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_time_rolling_count.fe_time_rolling_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_window2.fe_window2(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_onehot.fe_onehot(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = fe_txt.fe_txt(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = merge_table(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) exp_name = 'feature_selection' remain_time = lgb_for_feature_selection.lgb_for_feature_selection(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, params_1, lgb_para_dict_1, data_name, exp_name) exp_name_1 = 'fe_lgb' remain_time = lgb_with_fe.lgb_with_fe(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, params_1, lgb_para_dict_1, data_name, exp_name_1) exp_name_2 = 'fe_lgb_2' remain_time = lgb_with_fe.lgb_with_fe(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, params_2, lgb_para_dict_2, data_name, exp_name_2) _ = ensemble.ensemble(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, top_k=2) def predict(self, df=None, test_set_path=None): assert ((df is None and test_set_path is not None) or (df is not None and test_set_path is None)) data_name = self.server_name lgb_para_dict_1 = model_util.lgb_para_dict_1 lgb_para_dict_2 = model_util.lgb_para_dict_2 params_1 = model_util.params_1 params_2 = model_util.params_2 phase = 'test' log("*** phase: {}".format(phase)) remain_time = 1e10 is_train = True if phase == 'train' else False self.G_df_dict, self.G_data_info, remain_time = read_data.read_data(data_info=self.G_data_info, test_set_path=test_set_path, df_dict=self.G_df_dict, is_train=is_train, debug=False, remain_time=remain_time) remain_time = process_1.preprocess(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = join_table.join_simple_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = process_2.preprocess_2(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = join_table.join_indirect_1_to_M_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train=is_train, remain_time=remain_time) remain_time = join_table.preprocess_after_join_indirect_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train=is_train, remain_time=remain_time) remain_time = join_table.join_1_to_M_tables(self.G_df_dict, self.G_data_info, self.G_hist, is_train=is_train, remain_time=remain_time) remain_time = process_3.preprocess_3(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = fe_kv.fe_kv(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_stat_for_same_prefix.fe_stat_for_same_prefix(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_frequency.fe_frequency(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_count.fe_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_shift.fe_shift(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_time_diff.fe_time_diff(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_time_count.fe_time_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_window_count.fe_window_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_time_rolling_count.fe_time_rolling_count(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_window2.fe_window2(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, False) remain_time = fe_onehot.fe_onehot(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = fe_txt.fe_txt(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) remain_time = merge_table(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time) exp_name = 'feature_selection' remain_time = lgb_for_feature_selection.lgb_for_feature_selection(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, params_1, lgb_para_dict_1, data_name, exp_name) exp_name_1 = 'fe_lgb' remain_time = lgb_with_fe.lgb_with_fe(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, params_1, lgb_para_dict_1, data_name, exp_name_1) exp_name_2 = 'fe_lgb_2' remain_time = lgb_with_fe.lgb_with_fe(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, params_2, lgb_para_dict_2, data_name, exp_name_2) _ = ensemble.ensemble(self.G_df_dict, self.G_data_info, self.G_hist, is_train, remain_time, top_k=2) sub = self.G_hist['predict']['ensemble'] sub.index = range(len(sub)) return sub def save_server(self, path): data_name = self.server_name save_obj(self.G_df_dict, path + f'/{data_name}_G_df_dict.pkl') save_obj(self.G_data_info, path + f'/{data_name}_G_data_info.pkl') save_obj(self.G_hist, path + f'/{data_name}_G_hist.pkl') def load_server(self, path): data_name = self.server_name self.G_df_dict = load_obj(path + f'/{data_name}_G_df_dict.pkl') self.G_data_info = load_obj(path + f'/{data_name}_G_data_info.pkl') self.G_hist = load_obj(path + f'/{data_name}_G_hist.pkl')
dreamer/networks/proprio.py
jsikyoon/dreamer-1
546
12636598
<filename>dreamer/networks/proprio.py # Copyright 2019 The Dreamer Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from dreamer import tools def encoder(obs, keys=None, num_layers=3, units=300, activation=tf.nn.relu): if not keys: keys = [key for key in obs.keys() if key != 'image'] inputs = tf.concat([obs[key] for key in keys], -1) hidden = tf.reshape(inputs, [-1] + inputs.shape[2:].as_list()) for _ in range(num_layers): hidden = tf.layers.dense(hidden, units, activation) hidden = tf.reshape(hidden, tools.shape(inputs)[:2] + [ hidden.shape[1].value]) return hidden
fastapi_amis_admin/amis_admin/site.py
amisadmin/fastapi_amis_admin
166
12636631
<gh_stars>100-1000 """This package is for compatibility with v0.1.8 and below,v0.3.0 and above will be removed. """ from fastapi_amis_admin.admin.site import ( AdminSite, DocsAdmin, FileAdmin, HomeAdmin, ReDocsAdmin, )
scripts/internal/print_downloads.py
odormond/psutil
8,285
12636659
#!/usr/bin/env python3 # Copyright (c) 2009 <NAME>'. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Print PYPI statistics in MarkDown format. Useful sites: * https://pepy.tech/project/psutil * https://pypistats.org/packages/psutil * https://hugovk.github.io/top-pypi-packages/ """ from __future__ import print_function import json import os import subprocess import sys import pypinfo # NOQA from psutil._common import memoize AUTH_FILE = os.path.expanduser("~/.pypinfo.json") PKGNAME = 'psutil' DAYS = 30 LIMIT = 100 GITHUB_SCRIPT_URL = "https://github.com/giampaolo/psutil/blob/master/" \ "scripts/internal/pypistats.py" LAST_UPDATE = None bytes_billed = 0 # --- get @memoize def sh(cmd): assert os.path.exists(AUTH_FILE) env = os.environ.copy() env['GOOGLE_APPLICATION_CREDENTIALS'] = AUTH_FILE p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) stdout, stderr = p.communicate() if p.returncode != 0: raise RuntimeError(stderr) assert not stderr, stderr return stdout.strip() @memoize def query(cmd): global bytes_billed ret = json.loads(sh(cmd)) bytes_billed += ret['query']['bytes_billed'] return ret def top_packages(): global LAST_UPDATE ret = query("pypinfo --all --json --days %s --limit %s '' project" % ( DAYS, LIMIT)) LAST_UPDATE = ret['last_update'] return [(x['project'], x['download_count']) for x in ret['rows']] def ranking(): data = top_packages() i = 1 for name, downloads in data: if name == PKGNAME: return i i += 1 raise ValueError("can't find %s" % PKGNAME) def downloads(): data = top_packages() for name, downloads in data: if name == PKGNAME: return downloads raise ValueError("can't find %s" % PKGNAME) def downloads_pyver(): return query("pypinfo --json --days %s %s pyversion" % (DAYS, PKGNAME)) def downloads_by_country(): return query("pypinfo --json --days %s %s country" % (DAYS, PKGNAME)) def downloads_by_system(): return query("pypinfo --json --days %s %s system" % (DAYS, PKGNAME)) def downloads_by_distro(): return query("pypinfo --json --days %s %s distro" % (DAYS, PKGNAME)) # --- print templ = "| %-30s | %15s |" def print_row(left, right): if isinstance(right, int): right = '{0:,}'.format(right) print(templ % (left, right)) def print_header(left, right="Downloads"): print_row(left, right) s = templ % ("-" * 30, "-" * 15) print("|:" + s[2:-2] + ":|") def print_markdown_table(title, left, rows): pleft = left.replace('_', ' ').capitalize() print("### " + title) print() print_header(pleft) for row in rows: lval = row[left] print_row(lval, row['download_count']) print() def main(): downs = downloads() print("# Download stats") print("") s = "psutil download statistics of the last %s days (last update " % DAYS s += "*%s*).\n" % LAST_UPDATE s += "Generated via [pypistats.py](%s) script.\n" % GITHUB_SCRIPT_URL print(s) data = [ {'what': 'Per month', 'download_count': downs}, {'what': 'Per day', 'download_count': int(downs / 30)}, {'what': 'PYPI ranking', 'download_count': ranking()} ] print_markdown_table('Overview', 'what', data) print_markdown_table('Operating systems', 'system_name', downloads_by_system()['rows']) print_markdown_table('Distros', 'distro_name', downloads_by_distro()['rows']) print_markdown_table('Python versions', 'python_version', downloads_pyver()['rows']) print_markdown_table('Countries', 'country', downloads_by_country()['rows']) if __name__ == '__main__': try: main() finally: print("bytes billed: %s" % bytes_billed, file=sys.stderr)
ykdl/extractors/douyin/__init__.py
netlovehf/ykdl
1,153
12636669
#!/usr/bin/env python # -*- coding: utf-8 -*- from ykdl.util.html import get_location, add_header def get_extractor(url): if '/v.' in url: add_header('User-Agent', 'Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) ' 'AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 ' 'Mobile/15E148 Safari/604.1') url = get_location(url) if '/live.' in url or 'amemv.com' in url: from . import live as s else: from . import video as s return s.site, url
examples/tucker/make_annotation.py
kvetab/bio_embeddings
219
12636677
<reponame>kvetab/bio_embeddings<filename>examples/tucker/make_annotation.py<gh_stars>100-1000 """This script was used to generate tucker_annotations.csv. You shouldn't need to use it""" from pathlib import Path import pandas def class_to_label(cath_class: int) -> str: """See http://www.cathdb.info/browse/tree""" mapping = { 1: "Mainly Alpha", 2: "Mainly Beta", 3: "Alpha Beta", 4: "Few secondary structures", 6: "Special", } return mapping[cath_class] def main(): # Download this file from # http://download.cathdb.info/cath/releases/all-releases/v4_3_0/cath-classification-data/cath-domain-list-v4_3_0.txt mapping_df = pandas.read_fwf( "cath-domain-list-v4_3_0.txt", comment="#", colspecs=[(0, 7), (7, 13), (13, 19), (19, 25), (25, 31)], usecols=[0, 1, 2, 3, 4], names=["domain", "C", "A", "T", "H"], ) fasta_file = "tucker_cath.fasta" ids = [i[1:] for i in Path(fasta_file).read_text().splitlines()[::2]] mapping = { domain: class_to_label(cath_class) for domain, cath_class in mapping_df[["domain", "C"]].itertuples(index=False) } records = [(i, mapping[i]) for i in ids] label_df = pandas.DataFrame.from_records(records, columns=["identifier", "label"]) label_df.to_csv("cath_annotations_class.csv", index=False) if __name__ == "__main__": main()
nova/console/securityproxy/base.py
zjzh/nova
1,874
12636692
<gh_stars>1000+ # Copyright (c) 2014-2016 Red Hat, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc class SecurityProxy(metaclass=abc.ABCMeta): """A console security Proxy Helper Console security proxy helpers should subclass this class and implement a generic `connect` for the particular protocol being used. Security drivers can then subclass the protocol-specific helper class. """ @abc.abstractmethod def connect(self, tenant_sock, compute_sock): """Initiate the console connection This method performs the protocol specific negotiation, and returns the socket-like object to use to communicate with the server securely. :param tenant_sock: socket connected to the remote tenant user :param compute_sock: socket connected to the compute node instance :returns: a new compute_sock for the instance """ pass
ceilometer/hardware/inspector/__init__.py
maestro-hybrid-cloud/ceilometer
239
12636706
# # Copyright 2014 Intel Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from stevedore import driver def get_inspector(parsed_url, namespace='ceilometer.hardware.inspectors'): """Get inspector driver and load it. :param parsed_url: urlparse.SplitResult object for the inspector :param namespace: Namespace to use to look for drivers. """ loaded_driver = driver.DriverManager(namespace, parsed_url.scheme) return loaded_driver.driver()
examples/subgraph_matching/train_single_proc.py
ruth-ann/deepsnap
412
12636737
<reponame>ruth-ann/deepsnap """Train the order embedding model""" import argparse from collections import defaultdict from itertools import permutations import pickle from queue import PriorityQueue import os import random import time from deepsnap.batch import Batch import networkx as nx import numpy as np from sklearn.manifold import TSNE from sklearn.metrics import roc_auc_score, confusion_matrix from sklearn.metrics import precision_recall_curve import torch import torch.nn as nn import torch.multiprocessing as mp import torch.nn.functional as F import torch.optim as optim from torch.utils.tensorboard import SummaryWriter from torch_geometric.data import DataLoader from torch_geometric.datasets import TUDataset import torch_geometric.utils as pyg_utils import torch_geometric.nn as pyg_nn import data #import data_random_basis as data import models import utils #import matplotlib.pyplot as plt #import matplotlib.colors as mcolors def arg_parse(): parser = argparse.ArgumentParser(description='GNN arguments.') parser.add_argument('--conv_type', type=str, help='type of model') parser.add_argument('--method_type', type=str, help='type of convolution') parser.add_argument('--batch_size', type=int, help='Training batch size') parser.add_argument('--n_layers', type=int, help='Number of graph conv layers') parser.add_argument('--hidden_dim', type=int, help='Training hidden size') parser.add_argument('--max_graph_size', type=int, help='max training graph size') parser.add_argument('--n_batches', type=int, help='Number of training minibatches') parser.add_argument('--margin', type=float, help='margin for loss') parser.add_argument('--dataset', type=str, help='Dataset') parser.add_argument('--dataset_type', type=str, help='"otf-syn" or "syn" or "real"') parser.add_argument('--eval_interval', type=int, help='how often to eval during training') parser.add_argument('--val_size', type=int, help='validation set size') parser.add_argument('--model_path', type=str, help='path to save/load model') parser.add_argument('--start_weights', type=str, help='file to load weights from') parser.add_argument('--test', action="store_true") parser.add_argument('--n_workers', type=int) parser.set_defaults(conv_type='SAGE', method_type='order', dataset='enzymes', dataset_type='real', n_layers=4, batch_size=64, hidden_dim=64, dropout=0.0, n_batches=1000000, lr=1e-4, margin=0.1, test_set='', eval_interval=100, n_workers=4, model_path="ckpt/model.pt", start_weights='', max_graph_size=20, val_size=1024) return parser.parse_args() def build_model(args): # build model # set the input dimension to be the dimension of node labels of the dataset if args.dataset == "enzymes": dim = 3 elif args.dataset == "cox2": dim = 35 elif args.dataset == "imdb-binary": dim = 1 model = models.BaselineMLP(dim, args.hidden_dim, args) model.to(utils.get_device()) if args.start_weights: model.load_state_dict(torch.load(args.start_weights, map_location=utils.get_device())) return model def train_epoch(args, model, data_source, opt): """Train the order embedding model. args: Commandline arguments """ # data_source = data.DataSource(dataset_name) batch_num = 0 #for batch_num in range(args.n_batches): loaders = data_source.gen_data_loaders(args.batch_size, train=True) for batch_target, batch_neg_target, batch_neg_query in zip(*loaders): # train model.train() model.zero_grad() pos_a, pos_b, neg_a, neg_b = data_source.gen_batch(batch_target, batch_neg_target, batch_neg_query, True) pos_a = pos_a.to(utils.get_device()) pos_b = pos_b.to(utils.get_device()) neg_a = neg_a.to(utils.get_device()) neg_b = neg_b.to(utils.get_device()) emb_pos_a, emb_pos_b = model.emb_model(pos_a), model.emb_model(pos_b) emb_neg_a, emb_neg_b = model.emb_model(neg_a), model.emb_model(neg_b) emb_as = torch.cat((emb_pos_a, emb_neg_a), dim=0) emb_bs = torch.cat((emb_pos_b, emb_neg_b), dim=0) labels = torch.tensor([1]*pos_a.num_graphs + [0]*neg_a.num_graphs).to( utils.get_device()) pred = model(emb_as, emb_bs) loss = model.criterion(pred, labels) loss.backward() if not args.test: opt.step() pred = model.predict(pred) train_acc = torch.mean((pred == labels).type(torch.float)) train_loss = loss.item() print("Batch {}. Loss: {:.4f}. Training acc: {:.4f}".format( batch_num, train_loss, train_acc), end=" \r") batch_num += 1 #logger.add_scalar("Loss/train", train_loss, 0) #logger.add_scalar("Accuracy/train", train_acc, 0) def validation(args, model, data_source, logger, batch_n): # test on new motifs model.eval() all_raw_preds, all_preds, all_labels = [], [], [] loaders = data_source.gen_data_loaders(args.batch_size, train=False) for batch_target, batch_neg_target, batch_neg_query in zip(*loaders): pos_a, pos_b, neg_a, neg_b = data_source.gen_batch(batch_target, batch_neg_target, batch_neg_query, False) pos_a = pos_a.to(utils.get_device()) pos_b = pos_b.to(utils.get_device()) neg_a = neg_a.to(utils.get_device()) neg_b = neg_b.to(utils.get_device()) with torch.no_grad(): if args.dataset_type in ["real", "otf-syn"]: emb_pos_a, emb_pos_b = (model.emb_model(pos_a), model.emb_model(pos_b)) emb_neg_a, emb_neg_b = (model.emb_model(neg_a), model.emb_model(neg_b)) emb_as = torch.cat((emb_pos_a, emb_neg_a), dim=0) emb_bs = torch.cat((emb_pos_b, emb_neg_b), dim=0) labels = torch.tensor([1]*pos_a.num_graphs + [0]*neg_a.num_graphs).to(utils.get_device()) raw_pred = model(emb_as, emb_bs) pred = model.predict(raw_pred) raw_pred = raw_pred[:,1] all_raw_preds.append(raw_pred) all_preds.append(pred) all_labels.append(labels) pred = torch.cat(all_preds, dim=-1) labels = torch.cat(all_labels, dim=-1) raw_pred = torch.cat(all_raw_preds, dim=-1) acc = torch.mean((pred == labels).type(torch.float)) prec = (torch.sum(pred * labels).item() / torch.sum(pred).item() if torch.sum(pred) > 0 else float("NaN")) recall = (torch.sum(pred * labels).item() / torch.sum(labels).item() if torch.sum(labels) > 0 else float("NaN")) labels = labels.detach().cpu().numpy() raw_pred = raw_pred.detach().cpu().numpy() pred = pred.detach().cpu().numpy() auroc = roc_auc_score(labels, raw_pred) tn, fp, fn, tp = confusion_matrix(labels, pred).ravel() print("\nValidation. Acc: {:.4f}. " "P: {:.4f}. R: {:.4f}. AUROC: {:.4f}\n " "TN: {}. FP: {}. FN: {}. TP: {}".format( acc, prec, recall, auroc, tn, fp, fn, tp)) logger.add_scalar("Accuracy/test", acc, batch_n) logger.add_scalar("Precision/test", prec, batch_n) logger.add_scalar("Recall/test", recall, batch_n) logger.add_scalar("AUROC/test", auroc, batch_n) logger.add_scalar("TP/test", tp, batch_n) logger.add_scalar("TN/test", tn, batch_n) logger.add_scalar("FP/test", fp, batch_n) logger.add_scalar("FN/test", fn, batch_n) def main(): args = arg_parse() # see test-tube #args = hyp_search.hyp_arg_parse() if not os.path.exists(os.path.dirname(args.model_path)): os.makedirs(os.path.dirname(args.model_path)) print("Starting {} workers".format(args.n_workers)) print("Using dataset {}".format(args.dataset)) record_keys = ["conv_type", "n_layers", "hidden_dim", "margin", "dataset", "dataset_type", "max_graph_size", "skip"] args_str = ".".join(["{}={}".format(k, v) for k, v in sorted(vars(args).items()) if k in record_keys]) logger = SummaryWriter("log/" + args_str) model = build_model(args) data_source = data.DataSource(args.dataset) opt = optim.Adam(model.parameters(), args.lr) if args.test: validation(args, model, data_source, logger, 0, make_pr_curve=True) else: batch_n = 0 for epoch in range(args.n_batches // args.eval_interval): print("Epoch", epoch) train_epoch(args, model, data_source, opt) validation(args, model, data_source, logger, batch_n) if not args.test: print("Saving {}".format(args.model_path)) torch.save(model.state_dict(), args.model_path) if __name__ == '__main__': main()
tools/dom/new_scripts/compiler.py
omerlevran46/sdk
8,969
12636748
#!/usr/bin/env python3 # Copyright (C) 2014 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Compile an .idl file to Dart bindings (.h and .cpp files). Design doc: ?????? """ from optparse import OptionParser import os import sys dart_script_path = os.path.dirname(os.path.abspath(__file__)) script_path = os.path.join( os.path.dirname(os.path.dirname(dart_script_path)), 'scripts') sys.path.extend([script_path]) from dart_compiler import IdlCompiler from code_generator_dart import CodeGeneratorDart def parse_options(): parser = OptionParser() parser.add_option('--output-directory') parser.add_option('--interfaces-info-file') parser.add_option('--write-file-only-if-changed', type='int', default='1') parser.add_option('--generate-global', type='int') # ensure output comes last, so command line easy to parse via regexes parser.disable_interspersed_args() options, args = parser.parse_args() if options.output_directory is None: parser.error('Must specify output directory using --output-directory.') options.write_file_only_if_changed = bool( options.write_file_only_if_changed) options.generate_global = bool(options.generate_global) if len(args) != 1: # parser.error('Must specify exactly 1 input file as argument, but %d given.' % len(args)) return options, None idl_filename = os.path.realpath(args[0]) return options, idl_filename def idl_filename_to_interface_name(idl_filename): basename = os.path.basename(idl_filename) interface_name, _ = os.path.splitext(basename) return interface_name class IdlCompilerDart(IdlCompiler): def __init__(self, *args, **kwargs): IdlCompiler.__init__(self, *args, **kwargs) interfaces_info = self.interfaces_info self.output_directory = self.output_directory self.code_generator = CodeGeneratorDart(interfaces_info, self.output_directory) def compile_file(self, idl_filename): interface_name = idl_filename_to_interface_name(idl_filename) header_filename = os.path.join(self.output_directory, 'Dart%s.h' % interface_name) cpp_filename = os.path.join(self.output_directory, 'Dart%s.cpp' % interface_name) return self.compile_and_write(idl_filename, (header_filename, cpp_filename)) def generate_global(self): global_header_filename = os.path.join(self.output_directory, 'DartWebkitClassIds.h') global_cpp_filename = os.path.join(self.output_directory, 'DartWebkitClassIds.cpp') self.generate_global_and_write((global_header_filename, global_cpp_filename)) def main(): options, idl_filename = parse_options() if options.generate_global: idl_compiler = IdlCompilerDart( options.output_directory, interfaces_info_filename=options.interfaces_info_file, only_if_changed=options.write_file_only_if_changed) idl_compiler.generate_global() else: idl_compiler = IdlCompilerDart( options.output_directory, interfaces_info_filename=options.interfaces_info_file, only_if_changed=options.write_file_only_if_changed) idl_compiler.compile_file(idl_filename) if __name__ == '__main__': sys.exit(main())
test/unit_tests/braket/circuits/test_result_type.py
orclassiq/amazon-braket-sdk-python
151
12636757
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import pytest from braket.circuits import Observable, ObservableResultType, ResultType @pytest.fixture def result_type(): return ResultType(ascii_symbols=["foo"]) @pytest.fixture def prob(): return ResultType.Probability([0, 1]) @pytest.fixture def sv(): return ResultType.StateVector() @pytest.mark.xfail(raises=ValueError) def test_none_ascii(): ResultType(ascii_symbols=None) def test_name(result_type): expected = result_type.__class__.__name__ assert result_type.name == expected def test_ascii_symbol(): ascii_symbols = ["foo"] result_type = ResultType(ascii_symbols=ascii_symbols) assert result_type.ascii_symbols == ascii_symbols def test_equality_statevector(): result1 = ResultType.StateVector() result2 = ResultType.StateVector() result3 = ResultType.Probability([1]) result4 = "hi" assert result1 == result2 assert result1 != result3 assert result1 != result4 def test_equality_densitymatrix(): result1 = ResultType.DensityMatrix() result2 = ResultType.DensityMatrix() result3 = ResultType.StateVector() result4 = "foo" assert result1 == result2 assert result1 != result3 assert result1 != result4 @pytest.mark.xfail(raises=AttributeError) def test_ascii_symbol_setter(result_type): result_type.ascii_symbols = ["bar"] @pytest.mark.xfail(raises=AttributeError) def test_name_setter(result_type): result_type.name = "hi" @pytest.mark.xfail(raises=NotImplementedError) def test_to_ir_not_implemented_by_default(result_type): result_type.to_ir(None) def test_register_result(): class _FooResultType(ResultType): def __init__(self): super().__init__(ascii_symbols=["foo"]) ResultType.register_result_type(_FooResultType) assert ResultType._FooResultType().name == _FooResultType().name def test_copy_creates_new_object(prob): copy = prob.copy() assert copy == prob assert copy is not prob def test_copy_with_mapping_target(sv): target_mapping = {0: 10, 1: 11} expected = ResultType.StateVector() assert sv.copy(target_mapping=target_mapping) == expected def test_copy_with_mapping_target_hasattr(prob): target_mapping = {0: 10, 1: 11} expected = ResultType.Probability([10, 11]) assert prob.copy(target_mapping=target_mapping) == expected def test_copy_with_target_hasattr(prob): target = [10, 11] expected = ResultType.Probability(target) assert prob.copy(target=target) == expected def test_copy_with_target(sv): target = [10, 11] expected = ResultType.StateVector() assert sv.copy(target=target) == expected @pytest.mark.xfail(raises=TypeError) def test_copy_with_target_and_mapping(prob): prob.copy(target=[10], target_mapping={0: 10}) # ObservableResultType @pytest.mark.xfail(raises=ValueError) def test_expectation_init_value_error_target(): ObservableResultType( ascii_symbols=["Obs", "Obs"], observable=Observable.X() @ Observable.Y(), target=[] ) @pytest.mark.xfail(raises=ValueError) def test_expectation_init_value_error_ascii_symbols(): ObservableResultType( ascii_symbols=["Obs"], observable=Observable.X() @ Observable.Y(), target=[1, 2] ) @pytest.mark.xfail(raises=ValueError) def test_obs_rt_init_value_error_qubit_count(): ObservableResultType(ascii_symbols=["Obs"], observable=Observable.X(), target=[0, 1]) def test_obs_rt_equality(): a1 = ObservableResultType(ascii_symbols=["Obs"], observable=Observable.X(), target=0) a2 = ObservableResultType(ascii_symbols=["Obs"], observable=Observable.X(), target=0) a3 = ObservableResultType(ascii_symbols=["Obs"], observable=Observable.X(), target=1) a4 = "hi" assert a1 == a2 assert a1 != a3 assert a1 != a4 assert ResultType.Variance(observable=Observable.Y(), target=0) != ResultType.Expectation( observable=Observable.Y(), target=0 ) def test_obs_rt_repr(): a1 = ObservableResultType(ascii_symbols=["Obs"], observable=Observable.X(), target=0) assert ( str(a1) == "ObservableResultType(observable=X('qubit_count': 1), target=QubitSet([Qubit(0)]))" )
hiitpi/__init__.py
jingw222/hiitpi
146
12636814
import sys import logging import datetime import random import cv2 import pandas as pd from flask import Response, request, redirect, session from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from flask_caching import Cache from flask_session import Session import plotly.express as px import dash from dash.dependencies import Input, Output, State logging.basicConfig( stream=sys.stdout, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", datefmt=" %I:%M:%S ", level="INFO", ) logger = logging.getLogger(__name__) COLORS = {"graph_bg": "#1E1E1E", "text": "#696969"} sess = Session() cache = Cache() db = SQLAlchemy() migrate = Migrate() def create_app(config_name): """Create a Dash app.""" from .config import config from .model import WorkoutSession from .pose import PoseEngine from .camera import VideoStream from .redisclient import RedisClient from .workout import WORKOUTS from .annotation import Annotator from .layout import layout_homepage, layout_login, layout app = dash.Dash( __name__, meta_tags=[ {"name": "charset", "content": "UTF-8"}, { "name": "viewport", "content": "width=device-width, initial-scale=1, maximum-scale=1, shrink-to-fit=no", }, {"name": "author", "content": "<NAME>"}, { "name": "description", "content": "A HIIT Workout Trainer Dash App on Your Raspberry Pi", }, ], ) app.title = "HIIT PI" app.config.suppress_callback_exceptions = True app.layout = layout() server = app.server server.config.from_object(config[config_name]) with server.app_context(): db.init_app(server) migrate.init_app(server, db) sess.init_app(server) cache.init_app(server) cache.clear() video = VideoStream() model = PoseEngine(model_path=server.config["MODEL_PATH"]) redis = RedisClient( host=server.config["REDIS_HOST"], port=server.config["REDIS_PORT"], db=server.config["REDIS_DB"], ) def gen(video, workout): """Streams and analyzes video contents while overlaying stats info Args: video: a VideoStream object. workout: str, a workout name or "None". Returns: bytes, the output image data """ if workout != "None": # Initiates the Workout object from the workout name workout = WORKOUTS[workout]() workout.setup(redis=redis) annotator = Annotator() for output in video.update(): # Computes pose stats workout.update(output["pose"]) output["workout"] = workout # Annotates the image and encodes the raw RGB data into JPEG format output["array"] = annotator.annotate(output) img = cv2.cvtColor(output["array"], cv2.COLOR_RGB2BGR) _, buf = cv2.imencode(".jpeg", img) yield ( b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + buf.tobytes() + b"\r\n\r\n" ) else: # Renders a blurring effect while on standby with no workout for output in video.update(): img = cv2.blur(output["array"], (32, 32)) img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ret, buf = cv2.imencode(".jpeg", img) yield ( b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + buf.tobytes() + b"\r\n\r\n" ) @app.callback( [Output("videostream", "src"), Output("workout_name", "children")], [Input("workout-dropdown", "value")], ) def start_workout(workout): if workout is not None: if workout == "random": workout = random.choice(list(WORKOUTS)) workout_name = WORKOUTS[workout].name session["workout"] = workout_name else: workout_name = "Select a workout to get started." session["workout"] = None logger.info(f'Current workout: {session.get("workout")}') return f"/videostream/{workout}", workout_name @app.callback( Output("workout-dropdown", "value"), [Input("workout-stop-btn", "n_clicks")], [State("workout-dropdown", "value")], ) def stop_workout(n_clicks, workout): if workout is not None: ws = WorkoutSession( user_name=session.get("user_name"), workout=session.get("workout"), reps=redis.get("reps"), pace=redis.get("pace"), ) db.session.add(ws) db.session.commit() logger.info(f"{ws} inserted into db") return None @app.callback( Output("leaderboard-graph", "figure"), [Input("update-leaderboard-btn", "n_clicks")], [State("workout-dropdown", "value")], ) def update_leaderboard_graph(n_clicks, workout): if n_clicks > 0: current_time = datetime.datetime.utcnow() a_week_ago = current_time - datetime.timedelta(weeks=1) query = ( db.session.query( WorkoutSession.user_name, WorkoutSession.workout, db.func.sum(WorkoutSession.reps).label("reps"), ) .filter(WorkoutSession.created_date >= a_week_ago) .group_by(WorkoutSession.user_name, WorkoutSession.workout) .order_by(db.func.sum(WorkoutSession.reps).desc()) .all() ) df = pd.DataFrame(query, columns=["user_name", "workout", "reps"]) layout = { "barmode": "stack", "margin": {"l": 0, "r": 0, "b": 0, "t": 40}, "autosize": True, "font": {"family": "Comfortaa", "color": COLORS["text"], "size": 10}, "plot_bgcolor": COLORS["graph_bg"], "paper_bgcolor": COLORS["graph_bg"], "xaxis": { "ticks": "", "showgrid": False, "title": "", "automargin": True, "zeroline": False, }, "yaxis": { "showgrid": False, "title": "", "automargin": True, "categoryorder": "total ascending", "linewidth": 1, "linecolor": "#282828", "zeroline": False, }, "title": { "text": "Last 7 Days", "y": 0.9, "x": 0.5, "xanchor": "center", "yanchor": "top", }, "legend": { "x": 1.0, "y": -0.2, "xanchor": "right", "yanchor": "top", "title": "", "orientation": "h", "itemclick": "toggle", "itemdoubleclick": "toggleothers", }, "showlegend": True, } fig = px.bar( df, x="reps", y="user_name", color="workout", orientation="h", color_discrete_sequence=px.colors.qualitative.Plotly, ) fig.update_layout(layout) fig.update_traces(marker_line_width=0, width=0.5) return fig else: return { "data": [], "layout": { "plot_bgcolor": COLORS["graph_bg"], "paper_bgcolor": COLORS["graph_bg"], "xaxis": { "showgrid": False, "showline": False, "zeroline": False, "showticklabels": False, }, "yaxis": { "showgrid": False, "showline": False, "zeroline": False, "showticklabels": False, }, }, } @server.route("/videostream/<workout>", methods=["GET"]) def videiostream(workout): user_name = session.get("user_name") logger.info(f"Current player: {user_name}") return Response( gen(video, workout), mimetype="multipart/x-mixed-replace; boundary=frame" ) @app.callback( [ Output("live-update-graph", "extendData"), Output("indicator-reps", "children"), Output("indicator-pace", "children"), ], [Input("live-update-interval", "n_intervals")], ) def update_workout_graph(n_intervals): inference_time = redis.lpop("inference_time") pose_score = redis.lpop("pose_score") data = [{"y": [[inference_time], [pose_score]]}, [0, 1], 200] reps = redis.get("reps") pace = redis.get("pace") return data, f"{reps:.0f}", f"{pace*30:.1f}" if pace > 0 else "/" @server.route("/user_login", methods=["POST"]) def user_login(): user_name = request.form.get("user_name_form") session["user_name"] = user_name logger.info(f"Player {user_name} logged in") if video.closed is None or video.closed: video.setup(model=model, redis=redis) video.start() return redirect("/home") @server.route("/user_logout") def user_logout(): user_name = session.pop("user_name") if user_name is not None: session.clear() logger.info(f"Player {user_name} logged out") if not video.closed: video.close() return redirect("/") @app.callback(Output("page-content", "children"), [Input("url", "pathname")]) def display_page(pathname): if pathname == "/home": current_user = session.get("user_name") return layout_homepage(current_user) else: return layout_login() return app
tests/test_proportional.py
AlessioMorale/luma.core
114
12636825
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2014-18 <NAME> and contributors # See LICENSE.rst for details. import pytest from luma.core.legacy.font import proportional, CP437_FONT def test_narrow_char(): font = proportional(CP437_FONT) assert font[ord('!')] == [6, 95, 95, 6, 0] def test_wide_char(): font = proportional(CP437_FONT) assert font[ord('W')] == CP437_FONT[ord('W')] def test_space_char(): font = proportional(CP437_FONT) assert font[ord(' ')] == [0] * 4 def test_doublequote_char(): font = proportional(CP437_FONT) assert font[ord('"')] == [7, 7, 0, 7, 7, 0] def test_trim_not_nonzero(): font = proportional(CP437_FONT) assert font._trim([0, 0, 0, 0]) == [] def test_unicode_not_supported(): font = proportional(CP437_FONT) with pytest.raises(IndexError) as ex: font[ord("😀")] assert str(ex.value) == 'Font does not have ASCII code: 128512'
mods/screenshot.py
devrix123/SillyRAT
442
12636858
class SCREENSHOT: SC_DATA = b"" def __init__(self): self.generate() def generate(self): obj = io.BytesIO() im = pyscreenshot.grab() im.save(obj, format="PNG") self.SC_DATA = obj.getvalue() def get_data(self): return self.SC_DATA
scripts/automation/trex_control_plane/interactive/trex/astf/trex_astf_port.py
timgates42/trex-core
956
12636902
<reponame>timgates42/trex-core from .topo import ASTFTopology from ..common.trex_port import Port class ASTFPort(Port): def __init__(self, *a, **k): Port.__init__(self, *a, **k) self.topo = ASTFTopology() self.service_mode = False self.service_mode_filtered = False self.service_mask = 0 def _check_astf_req(self, enabled, filtered, mask): assert enabled or filtered, "Cannot turn off service mode in ASTF!" assert mask & 0xFE, "Cannot turn off NO_TCP_UDP flag in ASTF!" def set_service_mode(self, enabled, filtered, mask): self.service_mode = enabled self.service_mode_filtered = filtered self.service_mask = mask return self.ok() def is_service_mode_on(self): return self.service_mode def is_service_filtered_mode_on(self): return self.service_mode_filtered def is_server(self): return bool(self.port_id % 2) def is_client(self): return not self.is_server() def _is_service_req(self): return False
tensorflow_io/python/experimental/sql_dataset_ops.py
lgeiger/io
558
12636958
<reponame>lgeiger/io<filename>tensorflow_io/python/experimental/sql_dataset_ops.py # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SQLDataset""" import tensorflow as tf from tensorflow_io.python.ops import core_ops class SQLIODataset(tf.data.Dataset): """SQLIODataset""" def __init__(self, query, endpoint=None, spec=None, internal=True): """SQLIODataset.""" with tf.name_scope("SQLIODataset"): assert internal endpoint = endpoint or "" resource, count, fields, dtypes = core_ops.io_sql_iterable_init( query, endpoint ) if spec is None: fields = tf.unstack(fields) dtypes = tf.unstack(dtypes) spec = { field.numpy().decode(): tf.TensorSpec( [None], tf.as_dtype(dtype.numpy()), field.numpy().decode() ) for (field, dtype) in zip(fields, dtypes) } else: # Make sure shape is [None] and name is part of the spec spec = {k: tf.TensorSpec([None], v.dtype, k) for k, v in spec.items()} flatten = tf.nest.flatten(spec) fields = [e.name for e in flatten] dtypes = [e.dtype for e in flatten] self._resource = resource dataset = tf.data.Dataset.range(0, count) def f(index): return tf.nest.pack_sequence_as( spec, core_ops.io_sql_iterable_read(resource, index, fields, dtypes) ) dataset = dataset.map(f) dataset = dataset.unbatch() self._dataset = dataset super().__init__( self._dataset._variant_tensor ) # pylint: disable=protected-access def _inputs(self): return [] @property def element_spec(self): return self._dataset.element_spec
thirdparty/som/examples/peptides.py
mkashifn/celosia
116
12636984
<filename>thirdparty/som/examples/peptides.py #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np from modlamp.sequences import Helices, Random, AMPngrams from modlamp.descriptors import PeptideDescriptor from modlamp.datasets import load_AMPvsTM from som import SOM # generate some virtual peptide sequences libnum = 1000 # 1000 sequences per sublibrary h = Helices(seqnum=libnum) r = Random(seqnum=libnum) n = AMPngrams(seqnum=libnum, n_min=4) h.generate_sequences() r.generate_sequences(proba='AMP') n.generate_sequences() # calculate molecular descirptors for the peptides d = PeptideDescriptor(seqs=np.hstack((h.sequences, r.sequences, n.sequences)), scalename='pepcats') d.calculate_crosscorr(window=7) # train a som on the descriptors and print / plot the training error som = SOM(x=12, y=12) som.fit(data=d.descriptor, epochs=100000, decay='hill') print("Fit error: %.4f" % som.error) som.plot_error_history(filename="som_error.png") # load known antimicrobial peptides (AMPs) and transmembrane sequences dataset = load_AMPvsTM() d2 = PeptideDescriptor(dataset.sequences, 'pepcats') d2.calculate_crosscorr(7) targets = np.array(libnum*[0] + libnum*[1] + libnum*[2] + 206*[3]) names = ['Helices', 'Random', 'nGrams', 'AMP'] # plot som maps with location of AMPs som.plot_point_map(np.vstack((d.descriptor, d2.descriptor[206:])), targets, names, filename="peptidesom.png") som.plot_density_map(np.vstack((d.descriptor, d2.descriptor)), filename="density.png") som.plot_distance_map(colormap='Reds', filename="distances.png") colormaps = ['Oranges', 'Purples', 'Greens', 'Reds'] for i, c in enumerate(set(targets)): som.plot_class_density(np.vstack((d.descriptor, d2.descriptor)), targets, c, names, colormap=colormaps[i], filename='class%i.png' % c) # get neighboring peptides (AMPs / TMs) for a sequence of interest my_d = PeptideDescriptor(seqs='GLFDIVKKVVGALLAG', scalename='pepcats') my_d.calculate_crosscorr(window=7) som.get_neighbors(datapoint=my_d.descriptor, data=d2.descriptor, labels=dataset.sequences, d=0)
preprocess/load_img.py
cvlab-tohoku/Dense-Co-Attention-Network-for-Visual-Question-Answering
110
12637054
from __future__ import absolute_import from __future__ import print_function from __future__ import division import os import glob import re import sys import cv2 import h5py import torch import numpy as np import argparse import json from threading import Thread, Lock if sys.version_info[0] == 2: import Queue as queue else: import queue folder_map = { "train": ["train2014"], "val": ["val2014"], "trainval": ["train2014", "val2014"], "test": ["test2015"], } def save_images(image_path, image_type, data_path, data_name, num_workers): """ Process all of the image to a numpy array, then store them to a file. -------------------- Arguments: image_path (str): path points to images. image_type (str): "train", "val", "trainval", or "test". data_path (str): path points to the location which stores images. data_name (str): name of stored file. num_workers (int): number of threads used to load images. """ dataset = h5py.File(os.path.join(data_path, "%s_%s.h5" % (data_name, image_type)), "w") q = queue.Queue() images_idx = {} images_path = [] lock = Lock() for data in folder_map[image_type]: folder = os.path.join(image_path, data) images_path.extend(glob.glob(folder+"/*")) pattern = re.compile(r"_([0-9]+).jpg") for i, img_path in enumerate(images_path): assert len(pattern.findall(img_path)) == 1, "More than one index found in an image path!" idx = int(pattern.findall(img_path)[0]) images_idx[idx] = i q.put((i, img_path)) assert len(images_idx) == len(images_path), "Duplicated indices are found!" images = dataset.create_dataset("images", (len(images_path), 448, 448, 3), dtype=np.uint8) def _worker(): while True: i, img_path = q.get() if i is None: break img = cv2.cvtColor((cv2.resize(cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR), (448, 448))), cv2.COLOR_BGR2RGB) with lock: if i % 1000 == 0: print("processing %i/%i" % (i, len(images_path))) images[i] = img q.task_done() for _ in range(num_workers): thread = Thread(target=_worker) thread.daemon = True thread.start() q.join() print("Terminating threads...") for _ in range(2*num_workers): q.put((None, None)) torch.save(images_idx, os.path.join(data_path, "%s_%s.pt" % (data_name, image_type))) dataset.close() print("Finish saving images...") def main(opt): """ Create file that stores images in "train", "val", "trainval", and "test" datasets. """ # transform = transforms.Compose([ # transforms.Scale(opt.size_scale), # transforms.ToTensor(), # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ]) # Process train images print("Create train images dataset...") save_images(opt.img_path, "train", opt.data_path, opt.data_name, opt.num_workers) # Process val images print("Create val images dataset...") save_images(opt.img_path, "val", opt.data_path, opt.data_name, opt.num_workers) # # Process trainval images # print("Create trainval images dataset...") # save_images(opt.img_path, "trainval", opt.data_path, opt.data_name, opt.num_workers) # # Process test images # print("Create test images dataset...") # save_images(opt.img_path, "test", opt.data_path, opt.data_name, opt.num_workers) print("Done!") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--img_path", default="/ceph/kien/data2.0") parser.add_argument("--data_name", default="cocoimages") parser.add_argument("--data_path", default="/ceph/kien/VQA/dataset") parser.add_argument("--num_workers", type=int, default=8) args = parser.parse_args() params = vars(args) print("Parsed input parameters:") print(json.dumps(params, indent=2)) main(args)
src/main/resources/assets/openpython/opos/v1.1/lib/micropython/io.py
fossabot/OpenPython
1,556
12637057
<reponame>fossabot/OpenPython from uio import * SEEK_SET = 0 SEEK_CUR = 1 SEEK_END = 2
tests/unit/utils/test_template.py
shintaii/flower
4,474
12637075
<reponame>shintaii/flower<gh_stars>1000+ import unittest from flower.utils.template import humanize, format_time class TestHumanize(unittest.TestCase): def test_None(self): self.assertEqual('', humanize(None)) def test_bool(self): self.assertEqual(True, humanize(True)) self.assertEqual(False, humanize(False)) def test_numbers(self): self.assertEqual(0, humanize(0)) self.assertEqual(3, humanize(3)) self.assertEqual(0.2, humanize(0.2)) def test_keywords(self): self.assertEqual('SSL', humanize('ssl')) self.assertEqual('SSL', humanize('SSL')) self.assertEqual('URI', humanize('uri')) self.assertEqual('URI', humanize('URI')) self.assertEqual('UUID', humanize('uuid')) self.assertEqual('UUID', humanize('UUID')) self.assertEqual('ETA', humanize('eta')) self.assertEqual('ETA', humanize('ETA')) self.assertEqual('URL', humanize('url')) self.assertEqual('URL', humanize('URL')) self.assertEqual('args', humanize('args')) self.assertEqual('kwargs', humanize('kwargs')) def test_uuid(self): uuid = '5cf83762-9507-4dc5-8e5a-ad730379b099' self.assertEqual(uuid, humanize(uuid)) def test_sequences(self): self.assertEqual('2, 3', humanize([2, 3])) self.assertEqual('2, foo, 1.2', humanize([2, 'foo', 1.2])) self.assertEqual([None, None], humanize([None, None])) self.assertEqual([4, {1: 1}], humanize([4, {1: 1}])) def test_time(self): from pytz import utc self.assertEqual(1343911558.305793, humanize(1343911558.305793)) self.assertEqual(format_time(1343911558.305793, utc), humanize(1343911558.305793, type='time')) def test_strings(self): self.assertEqual('Max tasks per child', humanize('max_tasks_per_child')) self.assertEqual('URI prefix', humanize('uri_prefix')) self.assertEqual('Max concurrency', humanize('max-concurrency')) if __name__ == '__main__': unittest.main()
gcsa/serializers/reminder_serializer.py
gaborantal/google-calendar-simple-api
139
12637080
from gcsa.reminders import Reminder, EmailReminder, PopupReminder from .base_serializer import BaseSerializer class ReminderSerializer(BaseSerializer): type_ = Reminder def __init__(self, reminder): super().__init__(reminder) @staticmethod def _to_json(reminder: Reminder): return { 'method': reminder.method, 'minutes': reminder.minutes_before_start } @staticmethod def _to_object(json_reminder): method = json_reminder['method'] if method == 'email': return EmailReminder(int(json_reminder['minutes'])) elif method == 'popup': return PopupReminder(int(json_reminder['minutes'])) else: raise ValueError('Unexpected method "{}" for a reminder.'.format(method))
python/keepsake/console.py
lambdaofgod/keepsake
810
12637104
import enum from functools import wraps import sys from ._vendor.colors import color # Parallel of go/pkg/console/ class Level(enum.Enum): INFO = "INFO" WARN = "WARN" ERROR = "ERROR" def info(s: str): log(s, Level.INFO) def warn(s: str): log(s, Level.WARN) def error(s: str): log(s, Level.ERROR) def log(s: str, level: Level): # Add word wrapping, see https://github.com/replicate/keepsake/issues/348 prompt = "═══╡ " continuation_prompt = " │ " # We should support NO_COLOR, see https://github.com/replicate/keepsake/issues/349 if sys.stderr.isatty(): kwargs = {"style": "faint"} if level == Level.WARN: kwargs = {"fg": "yellow"} elif level == Level.ERROR: kwargs = {"fg": "red"} prompt = color(prompt, **kwargs) continuation_prompt = color(continuation_prompt, **kwargs) for i, line in enumerate(s.split("\n")): if i == 0: print(prompt + line, file=sys.stderr) else: print(continuation_prompt + line, file=sys.stderr) # Keepsake should never break your training def catch_and_print_exceptions(msg=None, return_value=None): def decorator(f): @wraps(f) def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: # pylint: disable=broad-except if msg is not None: error(f"{msg}: {str(e)}") else: error(str(e)) return return_value return wrapper return decorator
rl_baselines/hyperparam_search.py
anonymous-authors-2018/robotics-repo
524
12637116
import argparse import subprocess import os import shutil import glob import pprint import math import time import pandas as pd import numpy as np import hyperopt from rl_baselines.registry import registered_rl from environments.registry import registered_env from state_representation.registry import registered_srl from srl_zoo.utils import printGreen ITERATION_SCALE = 10000 MIN_ITERATION = 30000 class HyperParameterOptimizer(object): def __init__(self, opt_param, train, seed=0): """ the base class for hyper parameter optimizer :param opt_param: (dict) the parameters to optimize :param train: (function (dict, int, int): float) the function that take: - params: (dict) the hyper parameters to train with - num_iters (int) the number of iterations to train (can be None) - train_id: (int) the current iteration number in the hyperparameter search (can be None) - returns: (float) the score of the training to minimize :param seed: (int) the initial seed for the random number generator """ self.opt_param = opt_param self.train = train self.seed = seed self.history = [] def run(self): """ run the hyper parameter search """ raise NotImplementedError class Hyperband(HyperParameterOptimizer): def __init__(self, opt_param, train, seed=0, max_iter=100, eta=3.0): """ A Hyperband implementation, it is similar to a targeted random search Hyperband: https://arxiv.org/abs/1603.06560 :param opt_param: (dict) the parameters to optimize :param train: (function (dict, int, int): float) the function that take: - params: (dict) the hyper parameters to train with - num_iters (int) the number of iterations to train (can be None) - train_id: (int) the current iteration number in the hyperparameter search (can be None) - returns: (float) the score of the training to minimize :param seed: (int) the initial seed for the random number generator :param max_iter: (int) the maximum budget for hyperband's search :param eta: (float) the reduction factor of the search """ super(Hyperband, self).__init__(opt_param, train, seed=seed) self.max_iter = max_iter self.eta = eta self.max_steps = int(math.floor(math.log(self.max_iter) / math.log(self.eta))) self.budget = (self.max_steps + 1) * self.max_iter self.rng = np.random.RandomState(seed) self.param_sampler = self._generate_sampler() def _generate_sampler(self): # will generate a hyperparameter sampler for Hyperband def _sample(): params = {} for name, (param_type, val) in self.opt_param.items(): if param_type == int: params[name] = self.rng.randint(val[0], val[1]) elif param_type == float: params[name] = self.rng.uniform(val[0], val[1]) elif isinstance(param_type, tuple) and param_type[0] == list: params[name] = val[self.rng.randint(len(val))] else: raise AssertionError("Error: unknown type {}".format(param_type)) return params return _sample def run(self): for step in reversed(range(self.max_steps + 1)): max_n_param_sampled = int(math.ceil(self.budget / self.max_iter * self.eta**step / (step + 1))) max_iters = self.max_iter * self.eta**(-step) all_parameters = np.array([self.param_sampler() for _ in range(max_n_param_sampled)]) for i in range(step + 1): printGreen("\npop_itt:{}/{}, itt:{}/{}, pop_size:{}".format(self.max_steps - step, self.max_steps + 1, i, step+1, len(all_parameters))) n_param_sampled = int(math.floor(max_n_param_sampled * self.eta**(-i))) num_iters = max_iters * self.eta**i losses = [self.train(params, num_iters, train_id) for train_id, params in enumerate(all_parameters)] self.history.extend(zip([(params, num_iters) for params in all_parameters], losses)) all_parameters = all_parameters[np.argsort(losses)[:int(math.floor(n_param_sampled / self.eta))]] return self.history[int(np.argmin([val[1] for val in self.history]))] class Hyperopt(HyperParameterOptimizer): def __init__(self, opt_param, train, seed=0, num_eval=100): """ A Hyperopt implementation, it is similar to a bayesian search Hyperopt: https://www.lri.fr/~kegl/research/PDFs/BeBaBeKe11.pdf :param opt_param: (dict) the parameters to optimize :param train: (function (dict, int, int): float) the function that take: - params: (dict) the hyper parameters to train with - num_iters (int) the number of iterations to train (can be None) - train_id: (int) the current iteration number in the hyperparameter search (can be None) - returns: (float) the score of the training to minimize :param seed: (int) the initial seed for the random number generator :param num_eval: (int) the number of evaluation to do """ super(Hyperopt, self).__init__(opt_param, train, seed=seed) self.num_eval = num_eval self.search_space = {} for name, (param_type, val) in self.opt_param.items(): if param_type == int: self.search_space[name] = hyperopt.hp.choice(name, np.arange(int(val[0]), int(val[1]), dtype=int)) elif param_type == float: self.search_space[name] = hyperopt.hp.uniform(name, val[0], val[1]) elif isinstance(param_type, tuple) and param_type[0] == list: self.search_space[name] = hyperopt.hp.choice(name, val) else: raise AssertionError("Error: unknown type {}".format(param_type)) def run(self): trials = hyperopt.Trials() hyperopt.fmin(fn=lambda kwargs: {'loss': self.train(kwargs), 'status': hyperopt.STATUS_OK}, space=self.search_space, algo=hyperopt.tpe.suggest, max_evals=self.num_eval, trials=trials, verbose=10) # from the trials, get the values for every parameter # set the number of iter to None as they are not changed in Hyperopt # and zip the loss self.history.extend(zip([( {name: val[0] for name, val in params["misc"]["vals"].items()}, None) for params in trials.trials], trials.losses())) return self.history[int(np.argmin([val[1] for val in self.history]))] def makeRlTrainingFunction(args, train_args): """ makes a training function for the hyperparam optimizers :param args: (ArgumentParser) the optimizer arguments :param train_args: (ArgumentParser) the remaining arguments :return: (function (dict, int, int): float) the function that take: - params: (dict) the hyper parameters to train with - num_iters (int) the number of iterations to train (can be None) - train_id: (int) the current iteration number in the hyperparameter search (can be None) - returns: (float) the score of the training to minimize """ if args.verbose: # None here means stdout of terminal for subprocess.call stdout = None else: stdout = open(os.devnull, 'w') def _train(params, num_iters=None, train_id=None): # generate a print string print_str = "\nID_num={}, " format_args = [] if train_id is None: if not hasattr(_train, "current_id"): _train.current_id = 0 train_id = _train.current_id _train.current_id += 1 format_args.append(train_id) if num_iters is not None: print_str += "Num-timesteps={}, " format_args.append(int(max(MIN_ITERATION, num_iters * ITERATION_SCALE))) print_str += "Param:" printGreen(print_str.format(*format_args)) pprint.pprint(params) # cleanup old files if os.path.exists(args.log_dir): shutil.rmtree(args.log_dir) # add the training args that where parsed for the hyperparam optimizers if num_iters is not None: loop_args = ['--num-timesteps', str(int(max(MIN_ITERATION, num_iters * ITERATION_SCALE)))] else: loop_args = ['--num-timesteps', str(int(args.num_timesteps))] # redefine the hyperparam args for rl_baselines.train if len(params) > 0: loop_args.append("--hyperparam") for param_name, param_val in params.items(): loop_args.append("{}:{}".format(param_name, param_val)) # call the training ok = subprocess.call(['python', '-m', 'rl_baselines.train'] + train_args + loop_args, stdout=stdout) if ok != 0: # throw the error down to the terminal raise ChildProcessError("An error occured, error code: {}".format(ok)) # load the logging of the training, and extract the reward folders = glob.glob("{}/{}/{}/{}/*".format(args.log_dir, args.env, args.srl_model, args.algo)) assert len(folders) != 0, "Error: Could not find generated directory, halting {} search.".format(args.optimizer) rewards = [] for monitor_path in glob.glob(folders[0] + "/*.monitor.csv"): rewards.append(np.mean(pd.read_csv(monitor_path, skiprows=1)["r"][-10:])) if np.isnan(rewards).any(): rewards = -np.inf print("reward: ", np.mean(rewards)) # negative reward, as we are minimizing with hyperparameter search return -np.mean(rewards) return _train def main(): parser = argparse.ArgumentParser(description="Hyperparameter search for implemented RL models") parser.add_argument('--optimizer', default='hyperband', choices=['hyperband', 'hyperopt'], type=str, help='The hyperparameter optimizer to choose from') parser.add_argument('--algo', default='ppo2', choices=list(registered_rl.keys()), help='OpenAI baseline to use', type=str) parser.add_argument('--env', type=str, help='environment ID', default='KukaButtonGymEnv-v0', choices=list(registered_env.keys())) parser.add_argument('--seed', type=int, default=0, help='random seed (default: 0)') parser.add_argument('--srl-model', type=str, default='raw_pixels', choices=list(registered_srl.keys()), help='SRL model to use') parser.add_argument('--num-timesteps', type=int, default=1e6, help='number of timesteps the baseline should run') parser.add_argument('-v', '--verbose', action='store_true', default=False, help='Display baseline STDOUT') parser.add_argument('--max-eval', type=int, default=100, help='Number of evalutation to try for hyperopt') args, train_args = parser.parse_known_args() args.log_dir = "logs/_{}_search/".format(args.optimizer) train_args.extend(['--srl-model', args.srl_model, '--seed', str(args.seed), '--algo', args.algo, '--env', args.env, '--log-dir', args.log_dir, '--no-vis']) # verify the algorithm has defined it, and that it returnes an expected value try: opt_param = registered_rl[args.algo][0].getOptParam() assert opt_param is not None except AttributeError or AssertionError: raise AssertionError("Error: {} algo does not support hyperparameter search.".format(args.algo)) if args.optimizer == "hyperband": opt = Hyperband(opt_param, makeRlTrainingFunction(args, train_args), seed=args.seed, max_iter=args.num_timesteps // ITERATION_SCALE) elif args.optimizer == "hyperopt": opt = Hyperopt(opt_param, makeRlTrainingFunction(args, train_args), seed=args.seed, num_eval=args.max_eval) else: raise ValueError("Error: optimizer {} was defined but not implemented, Halting.".format(args.optimizer)) t_start = time.time() opt.run() all_params, loss = zip(*opt.history) idx = np.argmin(loss) opt_params, nb_iter = all_params[idx] reward = loss[idx] print('\ntime to run : {}s'.format(int(time.time() - t_start))) print('Total nb. evaluations : {}'.format(len(all_params))) if nb_iter is not None: print('Best nb. of iterations : {}'.format(int(nb_iter))) print('Best params : ') pprint.pprint(opt_params) print('Best reward : {:.3f}'.format(-reward)) param_dict, timesteps = zip(*all_params) output = pd.DataFrame(list(param_dict)) # make sure we returned a timestep value to log, otherwise ignore if not any([el is None for el in timesteps]): output["timesteps"] = np.array(np.maximum(MIN_ITERATION, np.array(timesteps) * ITERATION_SCALE).astype(int)) output["reward"] = -np.array(loss) output.to_csv("logs/{}_{}_{}_{}_seed{}_numtimestep{}.csv" .format(args.optimizer, args.algo, args.env, args.srl_model, args.seed, args.num_timesteps)) if __name__ == '__main__': main()
tests/test_PD002.py
dat-boris/pandas-vet
136
12637135
<reponame>dat-boris/pandas-vet # stdlib import ast from pandas_vet import VetPlugin from pandas_vet import PD002 def test_PD002_pass(): """ Test that using inplace=False explicitly does not result in an error. """ statement = """df.drop(['a'], axis=1, inplace=False)""" tree = ast.parse(statement) actual = list(VetPlugin(tree).run()) expected = [] assert actual == expected def test_PD002_fail(): """ Test that using inplace=True results in an error. """ statement = """df.drop(['a'], axis=1, inplace=True)""" tree = ast.parse(statement) actual = list(VetPlugin(tree).run()) expected = [PD002(1, 0)] assert actual == expected
usaspending_api/references/migrations/0047_add_tas.py
g4brielvs/usaspending-api
217
12637143
# Generated by Django 2.2.10 on 2020-06-25 19:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('accounts', '0005_delete_appropriationaccountbalancesquarterly'), ('references', '0046_sf_balances_table'), ] operations = [ migrations.AddField( model_name='gtassf133balances', name='tas_rendering_label', field=models.TextField(db_index=True, null=True), ), migrations.AddField( model_name='gtassf133balances', name='treasury_account_identifier', field=models.ForeignKey(db_column='treasury_account_identifier', null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='gtas', to='accounts.TreasuryAppropriationAccount'), ), migrations.AlterUniqueTogether( name='gtassf133balances', unique_together={('fiscal_year', 'fiscal_period', 'disaster_emergency_fund_code', 'tas_rendering_label')}, ), ]
tests/unit/pytorch/distributions/test_normal.py
chiragnagpal/probflow
134
12637182
import numpy as np import pytest import torch from probflow.distributions import Normal tod = torch.distributions def is_close(a, b, tol=1e-3): return np.abs(a - b) < tol def test_Normal(): """Tests Normal distribution""" # Create the distribution dist = Normal() # Check default params assert dist.loc == 0 assert dist.scale == 1 # Call should return backend obj assert isinstance(dist(), tod.normal.Normal) # Test methods npdf = lambda x, m, s: ( 1.0 / np.sqrt(2 * np.pi * s * s) * np.exp(-np.power(x - m, 2) / (2 * s * s)) ) assert is_close(dist.prob(0).numpy(), npdf(0, 0, 1)) assert is_close(dist.prob(1).numpy(), npdf(1, 0, 1)) assert is_close(dist.log_prob(0).numpy(), np.log(npdf(0, 0, 1))) assert is_close(dist.log_prob(1).numpy(), np.log(npdf(1, 0, 1))) assert dist.mean().numpy() == 0.0 # Test sampling samples = dist.sample() assert isinstance(samples, torch.Tensor) assert samples.ndim == 0 samples = dist.sample(10) assert isinstance(samples, torch.Tensor) assert samples.ndim == 1 assert samples.shape[0] == 10 # Should be able to set params dist = Normal(loc=3, scale=2) assert dist.loc == 3 assert dist.scale == 2 # But only with Tensor-like objs with pytest.raises(TypeError): dist = Normal(loc="lalala", scale="lalala") with pytest.raises(TypeError): dist = Normal(loc=0, scale="lalala") with pytest.raises(TypeError): dist = Normal(loc="lalala", scale=1)
python/sparsemap/layers_pt/tests/test_seq_layer.py
mikejqzhang/sparsemap
101
12637239
from .. import seq_layer import torch from torch.autograd import gradcheck, Variable def test_seq_sparse_decode(): torch.manual_seed(2) n_vars = 4 n_states = 3 for _ in range(20): sequence_smap = seq_layer.SequenceSparseMarginals(max_iter=1000) unary = Variable(torch.randn(n_vars, n_states), requires_grad=True) additionals = Variable(torch.randn(2 * n_states + (n_vars - 1) * n_states ** 2), requires_grad=True) res = gradcheck(sequence_smap, (unary, additionals), eps=1e-4, atol=1e-3) print(res) assert res def test_seq_dist_sparse_decode(): torch.manual_seed(42) n_vars = 4 n_states = 3 bandwidth = 3 for _ in range(20): seq_dist_smap = seq_layer.SequenceDistanceSparseMarginals(bandwidth) unary = Variable(torch.randn(n_vars, n_states), requires_grad=True) additionals = Variable(torch.randn(1 + 4 * bandwidth), requires_grad=True) res = gradcheck(seq_dist_smap, (unary, additionals), eps=1e-4, atol=1e-3) print(res) assert res
android/app/src/main/python/electroncash_gui/android/strings.py
christroutner/Electron-Cash
208
12637247
# This file lists translatable strings used in the Android app which don't appear anywhere else # in the Electron Cash repository. Some of them only differ in capitalization or punctuation: # see https://medium.com/@jsaito/making-a-case-for-letter-case-19d09f653c98 # # Please keep the strings in alphabetical order. # This file is never actually imported, but keep syntax checkers happy. from gettext import gettext as _, ngettext ngettext("%d address", "%d addresses", 1) _("(%1$d of %2$d)") _("Are you sure you want to delete your wallet \'%s\'?") _("BIP39 seed") _("Block explorer") _("%s bytes") _("Cannot process a URI while this dialog is open.") _("Cannot specify private keys and addresses in the same wallet.") _("Change password") _("Close wallet") _("Confirm password") _("Console") _("Copyright © 2017-2022 Electron Cash LLC and the Electron Cash developers.") _("Current password") _("Cosigner %d") _("Delete wallet") _("Derivation invalid") _("Disconnect") _("Do you want to close this wallet?") _("Enter password") _("Export wallet") _("Filename is too long") _("Filenames cannot contain the '/' character") _("For support, please visit us on <a href='https://github.com/Electron-Cash/Electron-Cash/issues'>" "GitHub</a> or on <a href='https://t.me/electroncashwallet'>Telegram</a>.") _("ID") _("Import addresses or private keys") _("Invalid address") _("Load transaction") _("Made with <a href='https://chaquo.com/chaquopy'>Chaquopy</a>, the Python SDK for Android.") _("Master public key") _("Master public keys") _("New password") _("New wallet") _("No wallet is open.") _("No wallet") _("Not a valid address or private key: '%s'") _("Passphrase") _("Paste or scan a transaction in hex format:") _("Press the menu button above to open or create one.") _("Rename wallet") _("Request") _("Restore from seed") _("Scan QR") _("Sign transaction") _("Show seed") _("Size") _("Signed transaction") ngettext("Sweep %d input", "Sweep %d inputs", 1) _("Transaction not found") _("%1$d tx (%2$d unverified)") _("Use a master key") _("Wallet information") _("Wallet exported successfully") _("Wallet renamed successfully") _("Wallet seed") _("You don't have any contacts.")
src/pfun/functions.py
suned/pfun
126
12637251
import functools import inspect from typing import Any, Callable, Generic, Tuple, TypeVar from .immutable import Immutable A = TypeVar('A') B = TypeVar('B') C = TypeVar('C') def identity(v: A) -> A: """ The identity function. Just gives back its argument Example: >>> identity('value') 'value' Args: v: The value to get back Return: `v` """ return v Unary = Callable[[A], B] Predicate = Callable[[A], bool] class Always(Generic[A], Immutable): """ A Callable that always returns the same value regardless of the arguments Example: >>> f = Always(1) >>> f(None) 1 >>> f('') 1 >>> "... and so on..." """ value: A def __call__(self, *args, **kwargs) -> A: return self.value def always(value: A) -> Callable[..., A]: """ Get a function that always returns `value` Example: >>> f = always(1) >>> f(None) 1 >>> f('') 1 >>> "... and so on..." Args: value: The value to return always Return: function that always returns `value` """ return Always(value) class Composition(Immutable): functions: Tuple[Callable, ...] def __repr__(self) -> str: functions_repr = ', '.join(repr(f) for f in self.functions) return f'compose({functions_repr})' def __call__(self, *args, **kwargs): fs = reversed(self.functions) first, *rest = fs last_result = first(*args, **kwargs) for f in rest: last_result = f(last_result) return last_result def compose( f: Callable[[Any], Any], g: Callable[[Any], Any], *functions: Callable[[Any], Any] ) -> Callable[[Any], Any]: """ Compose functions from left to right Example: >>> f = lambda v: v * 2 >>> g = compose(str, f) >>> g(3) "6" Args: f: the outermost function in the composition g: the function to be composed with f functions: functions to be composed with `f` \ and `g` from left to right Return: `f` composed with `g` composed with `functions` from left to right """ fs: Tuple[Callable, ...] = () for h in (f, g) + functions: if isinstance(h, Composition): fs += h.functions else: fs += (h,) return Composition(fs) def pipeline( first: Callable[[Any], Any], second: Callable[[Any], Any], *rest: Callable[[Any], Any] ): """ Compose functions from right to left Example: >>> f = lambda v: v * 2 >>> g = pipeline(f, str) >>> g(3) "6" Args: first: the innermost function in the composition g: the function to compose with f functions: functions to compose with `first` and \ `second` from right to left Return: `rest` composed from right to left, composed with \ `second` composed with `first` """ return compose(*reversed(rest), second, first) class Curry: _f: Callable def __init__(self, f: Callable): functools.wraps(f)(self) self._f = f # type: ignore def __repr__(self): return f'curry({repr(self._f)})' def __call__(self, *args, **kwargs): signature = inspect.signature(self._f) bound = signature.bind_partial(*args, **kwargs) bound.apply_defaults() arg_names = {a for a in bound.arguments.keys()} parameters = {p for p in signature.parameters.keys()} if parameters - arg_names == set(): return self._f(*args, **kwargs) if isinstance(self._f, functools.partial): partial = functools.partial( self._f.func, *(self._f.args + args), **self._f.keywords, **kwargs ) else: partial = functools.partial(self._f, *args, **kwargs) return Curry(partial) def curry(f: Callable) -> Callable: """ Get a version of ``f`` that can be partially applied Example: >>> f = lambda a, b: a + b >>> f_curried = curry(f) >>> f_curried(1) functools.partial(<function <lambda> at 0x1051f0950>, a=1) >>> f_curried(1)(1) 2 Args: f: The function to curry Returns: Curried version of ``f`` """ @functools.wraps(f) def decorator(*args, **kwargs): return Curry(f)(*args, **kwargs) return decorator def flip(f: Callable) -> Callable: """ Reverse the order of positional arguments of `f` Example: >>> f = lambda a, b, c: (a, b, c) >>> flip(f)('a', 'b', 'c') ('c', 'b', 'a') Args: f: Function to flip positional arguments of Returns: Function with positional arguments flipped """ return curry(lambda *args, **kwargs: f(*reversed(args), **kwargs)) __all__ = [ 'curry', 'always', 'compose', 'pipeline', 'identity', 'Unary', 'Predicate' ]
examples/python/gee_score_test_simulation.py
CCHiggins/statsmodels
6,931
12637257
#!/usr/bin/env python # coding: utf-8 # DO NOT EDIT # Autogenerated from the notebook gee_score_test_simulation.ipynb. # Edit the notebook and then sync the output with this file. # # flake8: noqa # DO NOT EDIT # # GEE score tests # # This notebook uses simulation to demonstrate robust GEE score tests. # These tests can be used in a GEE analysis to compare nested hypotheses # about the mean structure. The tests are robust to miss-specification of # the working correlation model, and to certain forms of misspecification of # the variance structure (e.g. as captured by the scale parameter in a # quasi-Poisson analysis). # # The data are simulated as clusters, where there is dependence within but # not between clusters. The cluster-wise dependence is induced using a # copula approach. The data marginally follow a negative binomial # (gamma/Poisson) mixture. # # The level and power of the tests are considered below to assess the # performance of the tests. import pandas as pd import numpy as np from scipy.stats.distributions import norm, poisson import statsmodels.api as sm import matplotlib.pyplot as plt # The function defined in the following cell uses a copula approach to # simulate correlated random values that marginally follow a negative # binomial distribution. The input parameter `u` is an array of values in # (0, 1). The elements of `u` must be marginally uniformly distributed on # (0, 1). Correlation in `u` will induce correlations in the returned # negative binomial values. The array parameter `mu` gives the marginal # means, and the scalar parameter `scale` defines the mean/variance # relationship (the variance is `scale` times the mean). The lengths of `u` # and `mu` must be the same. def negbinom(u, mu, scale): p = (scale - 1) / scale r = mu * (1 - p) / p x = np.random.gamma(r, p / (1 - p), len(u)) return poisson.ppf(u, mu=x) # Below are some parameters that govern the data used in the simulation. # Sample size n = 1000 # Number of covariates (including intercept) in the alternative hypothesis # model p = 5 # Cluster size m = 10 # Intraclass correlation (controls strength of clustering) r = 0.5 # Group indicators grp = np.kron(np.arange(n / m), np.ones(m)) # The simulation uses a fixed design matrix. # Build a design matrix for the alternative (more complex) model x = np.random.normal(size=(n, p)) x[:, 0] = 1 # The null design matrix is nested in the alternative design matrix. It # has rank two less than the alternative design matrix. x0 = x[:, 0:3] # The GEE score test is robust to dependence and overdispersion. Here we # set the overdispersion parameter. The variance of the negative binomial # distribution for each observation is equal to `scale` times its mean # value. # Scale parameter for negative binomial distribution scale = 10 # In the next cell, we set up the mean structures for the null and # alternative models # The coefficients used to define the linear predictors coeff = [[4, 0.4, -0.2], [4, 0.4, -0.2, 0, -0.04]] # The linear predictors lp = [np.dot(x0, coeff[0]), np.dot(x, coeff[1])] # The mean values mu = [np.exp(lp[0]), np.exp(lp[1])] # Below is a function that carries out the simulation. # hyp = 0 is the null hypothesis, hyp = 1 is the alternative hypothesis. # cov_struct is a statsmodels covariance structure def dosim(hyp, cov_struct=None, mcrep=500): # Storage for the simulation results scales = [[], []] # P-values from the score test pv = [] # Monte Carlo loop for k in range(mcrep): # Generate random "probability points" u that are uniformly # distributed, and correlated within clusters z = np.random.normal(size=n) u = np.random.normal(size=n // m) u = np.kron(u, np.ones(m)) z = r * z + np.sqrt(1 - r**2) * u u = norm.cdf(z) # Generate the observed responses y = negbinom(u, mu=mu[hyp], scale=scale) # Fit the null model m0 = sm.GEE(y, x0, groups=grp, cov_struct=cov_struct, family=sm.families.Poisson()) r0 = m0.fit(scale='X2') scales[0].append(r0.scale) # Fit the alternative model m1 = sm.GEE(y, x, groups=grp, cov_struct=cov_struct, family=sm.families.Poisson()) r1 = m1.fit(scale='X2') scales[1].append(r1.scale) # Carry out the score test st = m1.compare_score_test(r0) pv.append(st["p-value"]) pv = np.asarray(pv) rslt = [np.mean(pv), np.mean(pv < 0.1)] return rslt, scales # Run the simulation using the independence working covariance structure. # We expect the mean to be around 0 under the null hypothesis, and much # lower under the alternative hypothesis. Similarly, we expect that under # the null hypothesis, around 10% of the p-values are less than 0.1, and a # much greater fraction of the p-values are less than 0.1 under the # alternative hypothesis. rslt, scales = [], [] for hyp in 0, 1: s, t = dosim(hyp, sm.cov_struct.Independence()) rslt.append(s) scales.append(t) rslt = pd.DataFrame(rslt, index=["H0", "H1"], columns=["Mean", "Prop(p<0.1)"]) print(rslt) # Next we check to make sure that the scale parameter estimates are # reasonable. We are assessing the robustness of the GEE score test to # dependence and overdispersion, so here we are confirming that the # overdispersion is present as expected. _ = plt.boxplot([scales[0][0], scales[0][1], scales[1][0], scales[1][1]]) plt.ylabel("Estimated scale") # Next we conduct the same analysis using an exchangeable working # correlation model. Note that this will be slower than the example above # using independent working correlation, so we use fewer Monte Carlo # repetitions. rslt, scales = [], [] for hyp in 0, 1: s, t = dosim(hyp, sm.cov_struct.Exchangeable(), mcrep=100) rslt.append(s) scales.append(t) rslt = pd.DataFrame(rslt, index=["H0", "H1"], columns=["Mean", "Prop(p<0.1)"]) print(rslt)
owo.py
ThePlasmaRailgun/owoScript
143
12637291
<filename>owo.py<gh_stars>100-1000 from owoi import run_owo_pseudocode from owoc import owos_to_code import argparse if __name__ == '__main__': argparser = argparse.ArgumentParser(description='Run OwO code in OwO form.') argparser.add_argument('file', type=argparse.FileType('r'), help='File with OwO code') argparser.add_argument('--pseudo', '-p', action='store_true', default=False, help='Whether to run OwO bytecode or pseudocode. Use this for testing without having to compile') argparser.add_argument('--debug', '-d', action='store_true', default=False, help='Debug mode.') args = argparser.parse_args() code = args.file.read() if not args.pseudo: decompiled_code = owos_to_code(code) else: decompiled_code = code run_owo_pseudocode(decompiled_code, args.debug)
Trinkey_QT2040_Enviro_Gadget/u2if/enviro_u2if.py
gamblor21/Adafruit_Learning_System_Guides
665
12637293
<filename>Trinkey_QT2040_Enviro_Gadget/u2if/enviro_u2if.py # SPDX-FileCopyrightText: 2021 <NAME> for Adafruit Industries # # SPDX-License-Identifier: MIT import time import board import adafruit_scd4x from adafruit_bme280 import basic as adafruit_bme280 scd = adafruit_scd4x.SCD4X(board.I2C()) scd.start_periodic_measurement() bme = adafruit_bme280.Adafruit_BME280_I2C(board.I2C()) while True: time.sleep(5) print("CO2 =", scd.CO2) print("Pressure = {:.1f} hPa".format(bme.pressure)) print("Temperature = {:.1f} degC".format(bme.temperature)) print("Humidity = {:.1f}%".format(bme.humidity))
GeneratorInterface/MCatNLOInterface/test/testSourceAndHadronizer_cfg.py
ckamtsikis/cmssw
852
12637309
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms process = cms.Process('Test') process.load('Configuration.StandardSequences.Services_cff') process.load('FWCore.MessageService.MessageLogger_cfi') process.source = cms.Source("MCatNLOSource", fileNames = cms.untracked.vstring('file:Z.events'), processCode = cms.int32(-11361), skipEvents=cms.untracked.uint32(0) ) process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(-1)) process.generator = cms.EDFilter("Herwig6HadronizerFilter", comEnergy = cms.double(10000.0), useJimmy = cms.bool(False), doMPInteraction = cms.bool(False), herwigHepMCVerbosity = cms.untracked.bool(False), herwigVerbosity = cms.untracked.int32(1), printCards = cms.untracked.bool(True), maxEventsToPrint = cms.untracked.int32(0), crossSection = cms.untracked.double(-1.0), filterEfficiency = cms.untracked.double(1.0), emulatePythiaStatusCodes = cms.untracked.bool(False), numTrialsMPI = cms.untracked.int32(1), HerwigParameters = cms.PSet( parameterSets = cms.vstring( 'herwigMcatnlo' ), herwigMcatnlo = cms.vstring( 'PTMIN = 0.5 ! minimum pt in hadronic jet' ) ) ) process.RandomNumberGeneratorService.generator = cms.PSet( initialSeed = cms.untracked.uint32(123456789), engineName = cms.untracked.string('HepJamesRandom') ) process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.cerr.threshold = 'INFO' process.ProductionFilterSequence = cms.Sequence(process.generator) process.generation_step = cms.Path(process.ProductionFilterSequence) process.output = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string('mcatnloZee.root'), SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring('generation_step') ) ) process.output_step = cms.EndPath(process.output)
videoanalyst/pipeline/utils/__init__.py
TragedyN/SiamFCpp
737
12637317
<reponame>TragedyN/SiamFCpp # -*- coding: utf-8 -* from videoanalyst.evaluation.vot_benchmark.bbox_helper import cxy_wh_2_rect from .bbox import (clip_bbox, cxywh2xywh, cxywh2xyxy, xywh2cxywh, xywh2xyxy, xyxy2cxywh, xyxy2xywh) from .crop import get_axis_aligned_bbox, get_crop, get_subwindow_tracking from .misc import imarray_to_tensor, tensor_to_numpy __all__ = [ clip_bbox, cxy_wh_2_rect, cxywh2xywh, cxywh2xyxy, xywh2cxywh, xywh2cxywh, xyxy2cxywh, xyxy2xywh, xywh2xyxy, get_axis_aligned_bbox, get_crop, get_subwindow_tracking, imarray_to_tensor, tensor_to_numpy ]
tensorflow_gnn/keras/layers/padding_ops_test.py
tensorflow/gnn
611
12637321
"""Tests for padding_ops Keras layers.""" import enum import os from absl.testing import parameterized import tensorflow as tf from tensorflow_gnn.graph import adjacency as adj from tensorflow_gnn.graph import graph_tensor as gt from tensorflow_gnn.graph import preprocessing_common from tensorflow_gnn.keras import keras_tensors # For registration. pylint: disable=unused-import from tensorflow_gnn.keras.layers import padding_ops class ReloadModel(int, enum.Enum): """Controls how to reload a model for further testing after saving.""" SKIP = 0 SAVED_MODEL = 1 KERAS = 2 class PadToTotalSizesTest(tf.test.TestCase, parameterized.TestCase): def _make_test_graph(self): return gt.GraphTensor.from_pieces( context=gt.Context.from_fields( features={"label": tf.constant([42])}), node_sets={"nodes": gt.NodeSet.from_fields( sizes=tf.constant([1]), features={"feature": tf.constant([[1., 2.]])})}, edge_sets={"edges": gt.EdgeSet.from_fields( sizes=tf.constant([1]), adjacency=adj.Adjacency.from_indices(("nodes", tf.constant([0])), ("nodes", tf.constant([0]))), features={"weight": tf.constant([1.0])})}) @parameterized.named_parameters( ("", ReloadModel.SKIP), ("Restored", ReloadModel.SAVED_MODEL), ("RestoredKeras", ReloadModel.KERAS)) def test(self, reload_model): input_graph = self._make_test_graph() sc = preprocessing_common.SizeConstraints( total_num_components=2, total_num_nodes={"nodes": 3}, total_num_edges={"edges": tf.constant(4)}) # Test conversion to int. pad = padding_ops.PadToTotalSizes(sc) inputs = tf.keras.layers.Input(type_spec=input_graph.spec) outputs = pad(inputs) model = tf.keras.Model(inputs, outputs) if reload_model: export_dir = os.path.join(self.get_temp_dir(), "padding-model") model.save(export_dir, include_optimizer=False) if reload_model == ReloadModel.KERAS: model = tf.keras.models.load_model(export_dir) else: model = tf.saved_model.load(export_dir) graph, mask = model(input_graph) self.assertAllEqual([True, False], mask) self.assertAllEqual(2, graph.num_components) self.assertAllEqual([42, 0], graph.context["label"]) nodes = graph.node_sets["nodes"] self.assertAllEqual([1, 2], nodes.sizes) self.assertAllEqual([[1., 2.], [0., 0.], [0., 0.]], nodes["feature"]) edges = graph.edge_sets["edges"] self.assertAllEqual([1, 3], edges.sizes) self.assertAllEqual([1., 0., 0., 0.], edges["weight"]) if __name__ == "__main__": tf.test.main()
testfiles/cmd/cmd.py
mindriot101/pyq
144
12637363
<gh_stars>100-1000 class Foo(object): pass @decorator class Bar(object): def foo(self): pass def baz(arg1, arg2): pass foo() | bar()
passwords/passfilter.py
m00tiny/scripts
877
12637376
<reponame>m00tiny/scripts<filename>passwords/passfilter.py #!/usr/bin/env python # Copyright (c) 2012, AverageSecurityGuy # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of AverageSecurityGuy nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. import argparse import re import sys #------------------------------------------------------------------------------ # Function Definitions #------------------------------------------------------------------------------ def parse_word(word, s): """Parses the word and counts the number of digits, lowercase letters, uppercase letters, and symbols. Returns a dictionary with the results. If any character in the word is not in the set of digits, lowercase letters, uppercase letters, or symbols it is marked as a bad character. Words with bad characters are not output.""" count = {'d': 0, 'l': 0, 'u': 0, 's': 0, 'x':0} d = '0123456789' l = 'abcdefghijklmnopqrstuvwxyz' u = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for c in word: if c in d: count['d'] += 1 elif c in l: count['l'] += 1 elif c in u: count['u'] += 1 elif c in s: count['s'] += 1 else: count['x'] += 1 return count def parse_requirements(r): """Determine which characters are required and the number of them that are required.""" req = {'d': 0, 'l': 0, 'u': 0, 's': 0} for c in r: if c == 'd': req['d'] += 1 elif c == 'l': req['l'] += 1 elif c == 'u': req['u'] += 1 elif c == 's': req['s'] += 1 else: continue return req def complex_pass(count): """Windows complexity requires a password to contain three of the four groups: digits, lowercase letters, uppercase letters, or symbols.""" if count['d'] and count['l'] and count['u']: return True elif count['d'] and count['l'] and count['s']: return True elif count['d'] and count['u'] and count['s']: return True elif count['l'] and count['u'] and count['s']: return True else: return False def meets_requirements(count, r): """Does the password have enough of each type of character to meet the requirements?""" if (count['d'] >= r['d'] and count['l'] >= r['l'] and count['u'] >= r['u'] and count['s'] >= r['s']): return True else: return False #------------------------------------------------------------------------------ # Main Program #------------------------------------------------------------------------------ desc = """Passfilter.py reads a file or stdin and returns words that meet the defined requirements. For most password policies the set of allowed letters and numbers is the same. The set of allowed symbols varies widely between policies. Passfilter.py defines a default set of symbols which can be overridden using the -s flag. Examples: Return all words 3 to 10 characters long. passfilter.py -f wordlist Return all words 3 to 10 characters long that meet the windows complexity requirements. passfilter.py -w -f wordlist Return all words 5 to 9 characters long that have at least two lowercase letters and at least one digit. passfilter.py -m 5 -x 9 -r lld -f wordlist """ parser = argparse.ArgumentParser(prog="Passfilter.py", formatter_class=argparse.RawDescriptionHelpFormatter, description=desc) group = parser.add_mutually_exclusive_group() group.add_argument('-w', action='store_true', default=False, help='Passwords must meet Windows complexity requirements.') group.add_argument('-r', action='store', default='', metavar='string', help='''String representing the character groups and count required.''') parser.add_argument('-m', action='store', type=int, default='3', metavar='min', help='Minimum password length. (default: 3)') parser.add_argument('-x', action='store', type=int, default='10', metavar='max', help='Maximum password length. (default: 10)') parser.add_argument('-s', action='store', default=''' !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~''', help='''Symbols allowed in the password. (default: !"#$%%&'()*+,-./:;<=>?@[\]^_`{|}~)''', metavar='symbols') parser.add_argument('-f', metavar='wordlist', help='Wordlist to parse (default: stdin).') args = parser.parse_args() # Open the file or stdin if args.f: try: wordlist = open(args.f, 'r') except IOError: print "Could not open file %s" % args.f sys.exit() else: wordlist = sys.stdin for line in wordlist: # Skip blank lines and comments in the word list if re.match('^$', line): continue if re.match('^#.*$', line): continue # Strip the new line character and check the word for length requirements word = line.rstrip('\r\n') if len(word) < args.m: continue if len(word) > args.x: continue # Count the occurrance of each type of character. count = parse_word(word, args.s) # If any character did not match the allowed characters, skip the word if count['x'] > 0: continue # If requirements were provided then check to see if the word meets the # requirements. If it does then keep it, if not, move to the next word. if args.r: if meets_requirements(count, parse_requirements(args.r)): print word continue else: continue # If we require Windows complexity then check to see if the word meets the # windows complexity requirements. If it does then keep it, if not, move to # the next word. if args.w: if complex_pass(count): print word continue else: continue else: print word if wordlist is not sys.stdin: wordlist.close()
applications/tensorflow/sales_forecasting/test_main.py
payoto/graphcore_examples
260
12637414
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. import os from tempfile import TemporaryDirectory import pytest from examples_tests.test_util import SubProcessChecker working_path = os.path.dirname(__file__) class Test(SubProcessChecker): """ Test the sales forecasting model """ @classmethod def setUpClass(self): super(Test, self).setUpClass() @pytest.mark.ipus(1) def test_sales_forecasting_one_ipu(self): """Test that the model runs on one IPU for one epoch.""" with TemporaryDirectory() as temp_dir: self.run_command( ( "python3 main.py --use-synthetic-data --epochs 1" f" --mov-mean-window 0 --log-dir {temp_dir}" ), working_path, [ "Begin training loop", "Training:", r"epoch:\s+1", "Validation:", "Best RMSPE|no valid RMSPE results" ] ) @pytest.mark.ipus(2) def test_sales_forecasting_two_ipus(self): """Test that the model runs when replicated over two IPUs for one epoch.""" with TemporaryDirectory() as temp_dir: self.run_command( ( "python3 main.py --use-synthetic-data --epochs 1" f" --mov-mean-window 0 --log-dir {temp_dir}" " --replication-factor 2" ), working_path, [ "Begin training loop", "Training:", r"epoch:\s+1", "Validation:", "Best RMSPE|no valid RMSPE results" ] ) @pytest.mark.ipus(2) def test_sales_forecasting_multiprocessing(self): """Test that the model runs with multiprocessing enabled.""" with TemporaryDirectory() as temp_dir: self.run_command( ( "python3 main.py --use-synthetic-data --epochs 1" f" --mov-mean-window 0 --log-dir {temp_dir}" " --multiprocessing" ), working_path, [ "Begin training loop", "Training:", r"epoch:\s+1", "Validation:", "Best RMSPE|no valid RMSPE results" ] )
python_toolbox/misc_tools/proxy_property.py
hboshnak/python_toolbox
119
12637422
# Copyright 2009-2017 <NAME>. # This program is distributed under the MIT license. import re class ProxyProperty: ''' Property that serves as a proxy to an attribute of the parent object. When you create a `ProxyProperty`, you pass in the name of the attribute (or nested attribute) that it should proxy. (Prefixed with a dot.) Then, every time the property is `set`ed or `get`ed, the attribute is `set`ed or `get`ed instead. Example: class Chair: def __init__(self, whatever): self.whatever = whatever whatever_proxy = ProxyProperty('.whatever') chair = Chair(3) assert chair.whatever == chair.whatever_proxy == 3 chair.whatever_proxy = 4 assert chair.whatever == chair.whatever_proxy == 4 You may also refer to a nested attribute of the object rather than a direct one; for example, you can do `ProxyProperty('.whatever.x.height')` and it will access the `.height` attribute of the `.x` attribute of `.whatever`. ''' def __init__(self, attribute_name, doc=None): ''' Construct the `ProxyProperty`. `attribute_name` is the name of the attribute that we will proxy, prefixed with a dot, like '.whatever'. You may also refer to a nested attribute of the object rather than a direct one; for example, you can do `ProxyProperty('.whatever.x.height')` and it will access the `.height` attribute of the `.x` attribute of `.whatever`. You may specify a docstring as `doc`. ''' if not attribute_name.startswith('.'): raise Exception( f"The `attribute_name` must start with a dot to make it clear " f"it's an attribute. {repr(attribute_name)} does not start " f"with a dot." ) self.getter = self.setter = None exec(f'def getter(thing): return thing{attribute_name}') exec(f'def setter(thing, value): thing{attribute_name} = value') exec('self.getter, self.setter = getter, setter') self.attribute_name = attribute_name[1:] self.__doc__ = doc def __get__(self, thing, our_type=None): if thing is None: # We're being accessed from the class itself, not from an object return self else: return self.getter(thing) def __set__(self, thing, value): # todo: should I check if `thing` is `None` and set on class? Same for # `__delete__`? return self.setter(thing, value) def __repr__(self): return '<%s: %s%s>' % ( type(self).__name__, repr(f'.{self.attribute_name}'), f', doc={repr(self.__doc__)}' if self.__doc__ else '' )
natlas-server/app/api/rescan_handler.py
purplesecops/natlas
500
12637453
<filename>natlas-server/app/api/rescan_handler.py from flask import current_app from app import db def mark_scan_dispatched(rescan): rescan.dispatchTask() db.session.add(rescan) db.session.commit() current_app.ScopeManager.update_pending_rescans() current_app.ScopeManager.update_dispatched_rescans() return def mark_scan_completed(ip, scan_id): dispatched = current_app.ScopeManager.get_dispatched_rescans() for scan in dispatched: if scan.target == ip: scan.completeTask(scan_id) db.session.add(scan) db.session.commit() current_app.ScopeManager.update_dispatched_rescans() return True return False
data/dataset_jester.py
Hugo-cheng/ACTION-Net
146
12637477
<filename>data/dataset_jester.py import os import sys import pickle import numpy as np import pandas as pd import random import torch import pdb from torch.utils.data import Dataset, DataLoader,RandomSampler import torchvision.transforms as transforms from torchvision.utils import save_image from PIL import Image import matplotlib.pyplot as plt from tqdm import tqdm, trange import random import skimage.util as ski_util from sklearn.utils import shuffle from copy import copy def load_video(annot_path, mode): # mode: train, val, test csv_file = os.path.join(annot_path, '{}.pkl'.format(mode)) annot_df = pd.read_pickle(csv_file) rgb_samples = [] depth_samples = [] labels = [] for frame_i in range(annot_df.shape[0]): rgb_list = annot_df['frame'].iloc[frame_i] # convert string in dataframe to list rgb_samples.append(rgb_list) labels.append(annot_df['label'].iloc[frame_i]) print('{}: {} videos have been loaded'.format(mode, len(rgb_samples))) return rgb_samples, labels class dataset_video(Dataset): def __init__(self, root_path, mode, spatial_transform=None, temporal_transform=None): self.root_path = root_path self.rgb_samples, self.labels = load_video(root_path, mode) self.sample_num = len(self.rgb_samples) self.spatial_transform = spatial_transform self.temporal_transform = temporal_transform def __getitem__(self, idx): rgb_name = self.rgb_samples[idx] label = self.labels[idx] indices = [i for i in range(len(rgb_name))] selected_indice = self.temporal_transform(indices) clip_frames = [] for i, frame_name_i in enumerate(selected_indice): rgb_cache = Image.open(rgb_name[frame_name_i]).convert("RGB") clip_frames.append(rgb_cache) clip_frames = self.spatial_transform(clip_frames) n, h, w = clip_frames.size() return clip_frames.view(-1, 3, h, w), int(label) def __len__(self): return int(self.sample_num) class dataset_video_inference(Dataset): def __init__(self, root_path, mode, clip_num = 2, spatial_transform=None, temporal_transform=None): self.root_path = root_path self.clip_num = clip_num self.video_samples, self.labels = load_video(root_path, mode) self.mode = mode self.sample_num = len(self.video_samples) self.spatial_transform = spatial_transform self.temporal_transform = temporal_transform def __getitem__(self, idx): rgb_name = self.video_samples[idx] label = self.labels[idx] indices = [i for i in range(len(rgb_name))] video_clip = [] for win_i in range(self.clip_num): clip_frames = [] selected_indice = self.temporal_transform(copy(indices)) for frame_name_i in selected_indice: rgb_cache = Image.open(rgb_name[frame_name_i]).convert("RGB") clip_frames.append(rgb_cache) clip_frames = self.spatial_transform(clip_frames) n, h, w = clip_frames.size() video_clip.append(clip_frames.view(-1, 3, h, w)) video_clip = torch.stack(video_clip) return video_clip, int(label) def __len__(self): return int(self.sample_num)
search-samples/recipe-app-website/main.py
Zhogolev/Languagerecognizer
591
12637500
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import jinja2 import json import os import webapp2 JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.join(os.path.dirname(__file__), 'templates')), extensions=['jinja2.ext.autoescape'], autoescape=True) def load_recipe(recipe_id): filename = os.path.dirname(__file__) + '/recipes/' + recipe_id + '.json' recipe = json.loads(open(filename, 'r').read()) recipe['id'] = recipe_id return recipe class MainPage(webapp2.RequestHandler): def get(self): template_values = { 'title': 'RecipeApp' } template = JINJA_ENVIRONMENT.get_template('index.html') self.response.write(template.render(template_values)) class RecipePage(webapp2.RequestHandler): def get(self, recipe_id): query = self.request.get('q') num_results = 0 if query: num_results = 1 recipe = load_recipe(recipe_id) ingredient_sections = [''] ingredients_by_section = {'':[]} for ingredient in recipe['ingredients']: if 'category' in ingredient: category = ingredient['category'] ingredient_section = [] if not category in ingredients_by_section: ingredients_by_section[category] = ingredient_section ingredient_sections.append(category) else: ingredient_section = ingredients_by_section[category] ingredient_section.append(ingredient) else: ingredients_by_section[''].append(ingredient) template_values = { 'title': recipe['title'], 'recipe': recipe, 'ingredients': ingredients_by_section, 'ingredient_sections': ingredient_sections, 'query': query, 'num_results': num_results } template = JINJA_ENVIRONMENT.get_template('recipe.html') self.response.write(template.render(template_values)) class SearchResultsPage(webapp2.RequestHandler): def get(self): query = self.request.get('q') results = [] clean_query = query.lower().strip() if clean_query.endswith('recipes'): clean_query = clean_query[:-7].strip() for recipe_id in ['grilled-potato-salad', 'haloumi-salad', 'pierogi-poutine', 'wedge-salad', 'malaga-paella']: recipe = load_recipe(recipe_id) if recipe['title'].lower().find(clean_query) >= 0: results.append(recipe) if len(results) == 1: self.redirect('/recipe/' + results[0]['id'] + '?q=' + query) else: template_values = { 'title': '"' + query + '" - RecipeApp', 'query': query, 'results': results, 'num_results': len(results) } template = JINJA_ENVIRONMENT.get_template('search.html') self.response.write(template.render(template_values)) application = webapp2.WSGIApplication([ ('/', MainPage), (r'/recipe/(.+)', RecipePage), (r'/search', SearchResultsPage) ], debug=True)
pypi_server/handlers/api/users.py
jayvdb/pypi-server
119
12637510
# encoding: utf-8 import re from tornado.web import HTTPError from pypi_server.db.users import Users from pypi_server.handlers import route from pypi_server.handlers.base import threaded from pypi_server.handlers.api import JSONHandler from pypi_server.handlers.api.login import authorization_required LOGIN_EXP = re.compile("^[\d\w\.\-\@\_]+$") EMAIL_EXP = re.compile("^[^\@]+\@\S+$") @route('/api/v1/users/?') class UsersHandler(JSONHandler): @authorization_required(is_admin=True) @threaded def get(self): self.response( list( map( lambda x: dict( id=x.id, login=x.login, email=x.email, is_admin=x.is_admin, disabled=x.disabled, ), Users.select( Users.id, Users.login, Users.email, Users.is_admin, Users.disabled ) ) ) ) @authorization_required(is_admin=True) @threaded def post(self): try: login = self.json["login"] email = self.json["email"] is_admin = bool(self.json.get("is_admin", 0)) password = self.json["password"] assert password and len(password) > 3 assert LOGIN_EXP.match(login) assert EMAIL_EXP.match(email) except (KeyError, AssertionError, TypeError): raise HTTPError(400) if Users.select().where(Users.login == login).count(): raise HTTPError(409) user = Users( login=login, email=email, is_admin=is_admin, password=password, ) user.save() self.response({ 'id': user.id, 'login': user.login, 'email': user.email, 'is_admin': user.is_admin, })
omnizart/transcribe_all.py
nicolasanjoran/omnizart
1,145
12637517
# import pretty_midi # from omnizart.music import app as music_app # from omnizart.drum import app as drum_app # from omnizart.chord import app as chord_app def process(input_audio, model_path=None, output="./"): pass
1.Cnn_Captcha/create_image/cteate_image.py
duyuankai1992/tensorflow-1
927
12637535
<gh_stars>100-1000 #coding:utf-8 from captcha.image import ImageCaptcha # pip install captcha import numpy as np import matplotlib.pyplot as plt from PIL import Image import random,time # 验证码中的字符, 就不用汉字了 number = ['0','1','2','3','4','5','6','7','8','9'] alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] # 验证码一般都无视大小写;验证码长度4个字符 def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4): captcha_text = [] for i in range(captcha_size): c = random.choice(char_set) captcha_text.append(c) return captcha_text # 生成字符对应的验证码 def gen_captcha_text_and_image(): image = ImageCaptcha() captcha_text = random_captcha_text() captcha_text = ''.join(captcha_text) captcha = image.generate(captcha_text) image.write(captcha_text, captcha_text + '.jpg') # 写到文件 captcha_image = Image.open(captcha) captcha_image = np.array(captcha_image) return captcha_text, captcha_image if __name__ == '__main__': # 测试 while(1): text, image = gen_captcha_text_and_image() print 'begin ',time.ctime(),type(image) f = plt.figure() ax = f.add_subplot(111) ax.text(0.1, 0.9,text, ha='center', va='center', transform=ax.transAxes) plt.imshow(image) #plt.show() print 'end ',time.ctime()
mindinsight/debugger/__init__.py
mindspore-ai/mindinsight
216
12637605
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Debugger Introduction. This module provides Python APIs to retrieve the debugger info. The APIs can help users to understand the training process and find the bugs in training script. """ from mindinsight.debugger.api.conditions import \ Watchpoint, WatchpointHit, TensorTooLargeCondition, TensorUnchangedCondition, TensorAllZeroCondition, \ TensorOverflowCondition, OperatorOverflowCondition, TensorRangeCondition, TensorTooSmallCondition, \ TensorChangeBelowThresholdCondition, TensorChangeAboveThresholdCondition, ConditionBase from mindinsight.debugger.api.debugger_tensor import DebuggerTensor from mindinsight.debugger.api.dump_analyzer import DumpAnalyzer from mindinsight.debugger.api.node import Node __all__ = ["DumpAnalyzer", "Node", "DebuggerTensor", "Watchpoint", "WatchpointHit", "TensorTooLargeCondition", "TensorTooSmallCondition", "TensorRangeCondition", "TensorOverflowCondition", "OperatorOverflowCondition", "TensorAllZeroCondition", "TensorUnchangedCondition", "TensorChangeBelowThresholdCondition", "TensorChangeAboveThresholdCondition", "ConditionBase" ]
integration/common/core.py
meldafrawi/longhorn-engine
160
12637610
import fcntl import struct import os import grpc import tempfile import time import random import subprocess import string import threading import pytest from rpc.controller.controller_client import ControllerClient import common.cmd as cmd from common.util import read_file, checksum_data from common.frontend import blockdev, get_block_device_path from common.constants import ( LONGHORN_BINARY, LONGHORN_UPGRADE_BINARY, LONGHORN_DEV_DIR, VOLUME_NAME, VOLUME_BACKING_NAME, SIZE, PAGE_SIZE, SIZE_STR, BACKUP_DIR, BACKING_FILE_RAW, FRONTEND_TGT_BLOCKDEV, RETRY_COUNTS, RETRY_INTERVAL, RETRY_COUNTS2, RETRY_COUNTS_SHORT, RETRY_INTERVAL_SHORT, PROC_STATE_STARTING, PROC_STATE_RUNNING, PROC_STATE_ERROR, ENGINE_NAME, EXPANDED_SIZE_STR, VOLUME_NO_FRONTEND_NAME, FIXED_REPLICA_PATH1, FIXED_REPLICA_PATH2, ) thread_failed = False def _file(f): return os.path.join(_base(), '../../{}'.format(f)) def _base(): return os.path.dirname(__file__) def cleanup_process(pm_client): for name in pm_client.process_list(): try: pm_client.process_delete(name) except grpc.RpcError as e: if 'cannot find process' not in e.details(): raise e for i in range(RETRY_COUNTS): ps = pm_client.process_list() if len(ps) == 0: break time.sleep(RETRY_INTERVAL) ps = pm_client.process_list() assert len(ps) == 0 return pm_client def wait_for_process_running(client, name): healthy = False for i in range(RETRY_COUNTS): state = client.process_get(name).status.state if state == PROC_STATE_RUNNING: healthy = True break elif state != PROC_STATE_STARTING: # invalid state assert False time.sleep(RETRY_INTERVAL) assert healthy def wait_for_process_error(client, name): verified = False for i in range(RETRY_COUNTS): state = client.process_get(name).status.state if state == PROC_STATE_ERROR: verified = True break time.sleep(RETRY_INTERVAL) assert verified def create_replica_process(client, name, replica_dir="", args=[], binary=LONGHORN_BINARY, size=SIZE, port_count=15, port_args=["--listen,localhost:"], disable_revision_counter=False): if not replica_dir: replica_dir = tempfile.mkdtemp() if not args: args = ["replica", replica_dir, "--size", str(size)] if disable_revision_counter == True: args += ["--disableRevCounter"] client.process_create( name=name, binary=binary, args=args, port_count=port_count, port_args=port_args) wait_for_process_running(client, name) return client.process_get(name) def create_engine_process(client, name=ENGINE_NAME, volume_name=VOLUME_NAME, binary=LONGHORN_BINARY, listen="", listen_ip="localhost", size=SIZE, frontend=FRONTEND_TGT_BLOCKDEV, replicas=[], backends=["file"], disable_revision_counter=False): args = ["controller", volume_name] if frontend != "": args += ["--frontend", frontend] if disable_revision_counter == True: args += ["--disableRevCounter"] for r in replicas: args += ["--replica", r] for b in backends: args += ["--enable-backend", b] client.process_create( name=name, binary=binary, args=args, port_count=1, port_args=["--listen,localhost:"]) wait_for_process_running(client, name) return client.process_get(name) def get_process_address(p): return "localhost:" + str(p.status.port_start) def cleanup_controller(grpc_client): try: v = grpc_client.volume_get() except grpc.RpcError as grpc_err: if "Socket closed" not in grpc_err.details() and \ "failed to connect to all addresses" not in grpc_err.details(): raise grpc_err return grpc_client if v.replicaCount != 0: grpc_client.volume_shutdown() for r in grpc_client.replica_list(): grpc_client.replica_delete(r.address) return grpc_client # TODO: https://github.com/longhorn/longhorn/issues/1857 # For some cases, we can not use get_replica to add the retry, # Because the grpc_client.replica_get() will error out. def get_replica_client_with_delay(grpc_client): time.sleep(3) return grpc_client # TODO: https://github.com/longhorn/longhorn/issues/1857 def get_replica(grpc_client): retry_cnt = 3 while retry_cnt != 0: try: r = grpc_client.replica_get() except grpc.RpcError as grpc_err: if "Socket closed" not in grpc_err.details(): raise(grpc_err) print("wait for sometime, and try again") time.sleep(1) retry_cnt -= 1 else: break if retry_cnt == 0: print("Failed to run grpc_client with e", grpc_err) raise(grpc_err) return r def cleanup_replica(grpc_client): r = get_replica(grpc_client) if r.state == 'initial': return grpc_client if r.state == 'closed': grpc_client.replica_open() grpc_client.replica_delete() r = grpc_client.replica_reload() assert r.state == 'initial' return grpc_client # TODO: https://github.com/longhorn/longhorn/issues/1857 def get_controller_version_detail(grpc_controller_client): retry_cnt = 3 while retry_cnt != 0: try: c = grpc_controller_client.version_detail_get() except grpc.RpcError as grpc_err: if "Socket closed" not in grpc_err.details(): raise(grpc_err) print("wait for sometime, and try again") time.sleep(1) retry_cnt -= 1 else: break if retry_cnt == 0: print("Failed to run grpc_client with e", grpc_err) raise(grpc_err) def random_str(): return 'random-{0}-{1}'.format(random_num(), int(time.time())) def random_num(): return random.randint(0, 1000000) def create_backend_file(): name = random_str() fo = open(name, "w+") fo.truncate(SIZE) fo.close() return os.path.abspath(name) def cleanup_backend_file(paths): for path in paths: if os.path.exists(path): os.remove(path) def get_dev_path(name): return os.path.join(LONGHORN_DEV_DIR, name) def get_expansion_snapshot_name(): return 'expand-{0}'.format(EXPANDED_SIZE_STR) def get_replica_paths_from_snapshot_name(snap_name): replica_paths = [] cmd = ["find", "/tmp", "-name", '*volume-snap-{0}.img'.format(snap_name)] snap_paths = subprocess.check_output(cmd).split() assert snap_paths for p in snap_paths: replica_paths.append(os.path.dirname(p.decode('utf-8'))) return replica_paths def get_snapshot_file_paths(replica_path, snap_name): return os.path.join(replica_path, 'volume-snap-{0}.img'.format(snap_name)) def get_replica_head_file_path(replica_dir): cmd = ["find", replica_dir, "-name", '*volume-head-*.img'] return subprocess.check_output(cmd).strip() def wait_for_rebuild_complete(url): completed = 0 rebuild_status = {} for x in range(RETRY_COUNTS): completed = 0 rebuild_status = cmd.replica_rebuild_status(url) for rebuild in rebuild_status.values(): if rebuild['state'] == "complete": assert rebuild['progress'] == 100 assert not rebuild['isRebuilding'] completed += 1 elif rebuild['state'] == "": assert not rebuild['isRebuilding'] completed += 1 # Right now add-replica/rebuild is a blocking call. # Hence the state won't become `in_progress` when # we check the rebuild status. elif rebuild['state'] == "in_progress": assert rebuild['state'] == "in_progress" assert rebuild['isRebuilding'] else: assert rebuild['state'] == "error" assert rebuild['error'] != "" assert not rebuild['isRebuilding'] if completed == len(rebuild_status): break time.sleep(RETRY_INTERVAL) return completed == len(rebuild_status) def wait_for_purge_completion(url): completed = 0 purge_status = {} for x in range(RETRY_COUNTS): completed = 0 purge_status = cmd.snapshot_purge_status(url) for status in purge_status.values(): assert status['progress'] <= 100 assert 'isPurging' in status.keys() if not status['isPurging']: assert status['progress'] == 100 completed += 1 assert 'error' in status.keys() assert status['error'] == '' if completed == len(purge_status): break time.sleep(RETRY_INTERVAL) assert completed == len(purge_status) def wait_for_restore_completion(url, backup_url): completed = 0 rs = {} for x in range(RETRY_COUNTS): completed = 0 rs = cmd.restore_status(url) for status in rs.values(): assert 'state' in status.keys() if status['backupURL'] != backup_url: break if status['state'] == "complete": assert 'progress' in status.keys() assert status['progress'] == 100 completed += 1 elif status['state'] == "error": assert 'error' in status.keys() assert status['error'] == "" else: assert status['state'] == "in_progress" if completed == len(rs): break time.sleep(RETRY_INTERVAL) assert completed == len(rs) def restore_with_frontend(url, engine_name, backup): client = ControllerClient(url) client.volume_frontend_shutdown() cmd.backup_restore(url, backup) wait_for_restore_completion(url, backup) client.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) v = client.volume_get() assert v.frontendState == "up" return def verify_no_frontend_data(data_offset, data, grpc_c): grpc_c.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) v = grpc_c.volume_get() assert v.frontendState == "up" dev = get_blockdev(volume=VOLUME_NO_FRONTEND_NAME) verify_read(dev, data_offset, data) grpc_c.volume_frontend_shutdown() v = grpc_c.volume_get() assert v.frontendState == "down" def start_no_frontend_volume(grpc_c, *grpc_r_list): assert len(grpc_r_list) > 0 grpc_c.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) for grpc_r in grpc_r_list: open_replica(grpc_r) v = grpc_c.volume_start( replicas=[grpc_r.url for grpc_r in grpc_r_list]) assert v.replicaCount == len(grpc_r_list) dr_replicas = grpc_c.replica_list() assert len(dr_replicas) == len(grpc_r_list) grpc_c.volume_frontend_shutdown() v = grpc_c.volume_get() assert v.frontendState == "down" def cleanup_no_frontend_volume(grpc_c, *grpc_r_list): grpc_c.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) v = grpc_c.volume_get() assert v.frontendState == "up" cmd.sync_agent_server_reset(grpc_c.address) grpc_c.volume_frontend_shutdown() v = grpc_c.volume_get() assert v.frontendState == "down" cleanup_controller(grpc_c) for grpc_r in grpc_r_list: cleanup_replica(grpc_r) cleanup_replica_dir(FIXED_REPLICA_PATH1) cleanup_replica_dir(FIXED_REPLICA_PATH2) def reset_volume(grpc_c, *grpc_r_list): complete = True for i in range(RETRY_COUNTS_SHORT): complete = True cmd.sync_agent_server_reset(grpc_c.address) cleanup_controller(grpc_c) for grpc_r in grpc_r_list: cleanup_replica(grpc_r) open_replica(grpc_r) # TODO: A simple workaround of race condition. # See https://github.com/longhorn/longhorn/issues/1628 for details. time.sleep(1) v = grpc_c.volume_start( replicas=[grpc_r.url for grpc_r in grpc_r_list]) rs = grpc_c.replica_list() if len(rs) != len(grpc_r_list): complete = False else: for r_info in rs: if r_info.mode != 'RW': complete = False break if complete: break time.sleep(RETRY_INTERVAL) assert complete return v def create_backup(url, snap, backup_target, volume_size=SIZE_STR, backing_image_name="", backing_image_checksum="", backup_name=""): backup = cmd.backup_create(url, snap, backup_target, [], backing_image_name, backing_image_checksum, backup_name) backup_info = cmd.backup_inspect(url, backup) assert backup_info["URL"] == backup assert backup_info["VolumeSize"] == volume_size if backing_image_name != "": assert backup_info["VolumeBackingImageName"] == backing_image_name assert snap in backup_info["SnapshotName"] return backup_info def rm_backups(url, engine_name, backups): for b in backups: cmd.backup_rm(url, b) with pytest.raises(subprocess.CalledProcessError): restore_with_frontend(url, engine_name, b) with pytest.raises(subprocess.CalledProcessError): cmd.backup_inspect(url, b) # Engine frontend is down, Start it up client = ControllerClient(url) client.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) def rm_snaps(url, snaps): for s in snaps: cmd.snapshot_rm(url, s) cmd.snapshot_purge(url) wait_for_purge_completion(url) snap_info_list = cmd.snapshot_info(url) for s in snaps: assert s not in snap_info_list def snapshot_revert_with_frontend(url, engine_name, name): client = ControllerClient(url) client.volume_frontend_shutdown() cmd.snapshot_revert(url, name) client.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) def cleanup_replica_dir(dir=""): if dir and os.path.exists(dir): try: cmd = ['rm', '-r', dir + "*"] subprocess.check_call(cmd) except Exception: pass def open_replica(grpc_client, backing_file=None): r = grpc_client.replica_get() assert r.state == 'initial' assert r.size == '0' assert r.sector_size == 0 assert r.parent == '' assert r.head == '' r = grpc_client.replica_create(size=str(1024 * 4096)) assert r.state == 'closed' assert r.size == str(1024 * 4096) assert r.sector_size == 512 assert r.parent == '' assert r.head == 'volume-head-000.img' return r def get_blockdev(volume): dev = blockdev(volume) for i in range(10): if not dev.ready(): time.sleep(1) assert dev.ready() return dev def write_dev(dev, offset, data): return dev.writeat(offset, data) def read_dev(dev, offset, length): return dev.readat(offset, length) def random_string(length): return \ ''.join(random.choice(string.ascii_lowercase) for x in range(length)) def verify_data(dev, offset, data): write_dev(dev, offset, data) readed = read_dev(dev, offset, len(data)) assert data == readed def prepare_backup_dir(backup_dir): if os.path.exists(backup_dir): subprocess.check_call(["rm", "-rf", backup_dir]) os.makedirs(backup_dir) assert os.path.exists(backup_dir) def get_backup_volume_url(backup_target, volume_name): return backup_target + "?volume=" + volume_name def read_from_backing_file(offset, length): p = _file(BACKING_FILE_RAW) return read_file(p, offset, length) def checksum_dev(dev): return checksum_data(dev.readat(0, SIZE).encode('utf-8')) def data_verifier(dev, times, offset, length): try: verify_loop(dev, times, offset, length) except Exception as ex: global thread_failed thread_failed = True raise ex def verify_loop(dev, times, offset, length): for i in range(times): data = random_string(length) verify_data(dev, offset, data) def verify_replica_state(grpc_c, addr, state): if not addr.startswith("tcp://"): addr = "tcp://" + addr verified = False for i in range(RETRY_COUNTS_SHORT): replicas = grpc_c.replica_list() assert len(replicas) == 2 for r in replicas: if r.address == addr and r.mode == state: verified = True break if verified: break time.sleep(RETRY_INTERVAL_SHORT) assert verified def verify_replica_mode(grpc_c, addr, mode): if not addr.startswith("tcp://"): addr = "tcp://" + addr verified = False for i in range(RETRY_COUNTS_SHORT): replicas = grpc_c.replica_list() snapList = cmd.snapshot_ls(grpc_c.address) for r in replicas: if r.address == addr and r.mode == mode: verified = True break if verified: break time.sleep(RETRY_INTERVAL_SHORT) assert verified def verify_read(dev, offset, data): for i in range(10): readed = read_dev(dev, offset, len(data)) assert data == readed def verify_async(dev, times, length, count): assert length * count < SIZE threads = [] for i in range(count): t = threading.Thread(target=data_verifier, args=(dev, times, i * PAGE_SIZE, length)) t.start() threads.append(t) for i in range(count): threads[i].join() global thread_failed if thread_failed: thread_failed = False raise Exception("data_verifier thread failed") def get_dev(grpc_replica1, grpc_replica2, grpc_controller, clean_backup_dir=True): if clean_backup_dir: prepare_backup_dir(BACKUP_DIR) v = reset_volume(grpc_controller, grpc_replica1, grpc_replica2) return get_blockdev(v.name) def random_offset(size, existings={}): assert size < PAGE_SIZE for i in range(RETRY_COUNTS): offset = 0 if int(SIZE) != size: offset = random.randrange(0, int(SIZE) - size, PAGE_SIZE) collided = False # it's [start, end) vs [pos, pos + size) for start, end in existings.items(): if offset + size <= start or offset >= end: continue collided = True break if not collided: break assert not collided existings[offset] = offset + size return offset def random_length(length_limit): return random.randint(1, length_limit - 1) class Data: def __init__(self, offset, length, content): self.offset = offset self.length = length self.content = content def write_and_verify_data(self, dev): verify_data(dev, self.offset, self.content) def read_and_verify_data(self, dev): assert read_dev(dev, self.offset, self.length) == self.content def read_and_refute_data(self, dev): assert read_dev(dev, self.offset, self.length) != self.content class Snapshot: def __init__(self, dev, data, controller_addr): self.dev = dev self.data = data self.controller_addr = controller_addr self.data.write_and_verify_data(self.dev) self.checksum = checksum_dev(self.dev) self.name = cmd.snapshot_create(controller_addr) # verify the whole disk is at the state when snapshot was taken def verify_checksum(self): assert checksum_dev(self.dev) == self.checksum def verify_data(self): self.data.read_and_verify_data(self.dev) def refute_data(self): self.data.read_and_refute_data(self.dev) def generate_random_data(dev, existings={}, length_limit=PAGE_SIZE): length = random_length(length_limit) return Data(random_offset(length, existings), length, random_string(length)) def expand_volume_with_frontend(grpc_controller_client, size): # NOQA grpc_controller_client.volume_frontend_shutdown() grpc_controller_client.volume_expand(size) wait_for_volume_expansion(grpc_controller_client, size) grpc_controller_client.volume_frontend_start(FRONTEND_TGT_BLOCKDEV) def wait_for_volume_expansion(grpc_controller_client, size): # NOQA for i in range(RETRY_COUNTS): volume = grpc_controller_client.volume_get() if not volume.isExpanding and volume.size == size: break time.sleep(RETRY_INTERVAL) assert not volume.isExpanding assert volume.size == size return volume def check_block_device_size(volume_name, size): device_path = get_block_device_path(volume_name) # BLKGETSIZE64, result is bytes as unsigned 64-bit integer (uint64) req = 0x80081272 buf = ' ' * 8 with open(device_path) as dev: buf = fcntl.ioctl(dev.fileno(), req, buf) device_size = struct.unpack('L', buf)[0] assert device_size == size def wait_and_check_volume_expansion(grpc_controller_client, size): v = wait_for_volume_expansion(grpc_controller_client, size) check_block_device_size(v.name, size) def delete_process(client, name): try: client.process_delete(name) except grpc.RpcError as e: if 'cannot find process' not in e.details(): raise e def wait_for_process_deletion(client, name): deleted = False for i in range(RETRY_COUNTS): rs = client.process_list() if name not in rs: deleted = True break time.sleep(RETRY_INTERVAL) assert deleted def check_dev_existence(volume_name): found = False for i in range(RETRY_COUNTS): if os.path.exists(get_dev_path(volume_name)): found = True break time.sleep(RETRY_INTERVAL) assert found def wait_for_dev_deletion(volume_name): found = True for i in range(RETRY_COUNTS): if not os.path.exists(get_dev_path(volume_name)): found = False break time.sleep(RETRY_INTERVAL) assert not found def upgrade_engine(client, binary, engine_name, volume_name, replicas): args = ["controller", volume_name, "--frontend", FRONTEND_TGT_BLOCKDEV, "--upgrade"] for r in replicas: args += ["--replica", r] return client.process_replace( engine_name, binary, args, )
desktop/core/ext-py/py4j-0.9/src/py4j/finalizer.py
kokosing/hue
5,079
12637615
# -*- coding: UTF-8 -*- """ Module that defines a Finalizer class responsible for registering and cleaning finalizer Created on Mar 7, 2010 :author: <NAME> """ from __future__ import unicode_literals, absolute_import from threading import RLock from py4j.compat import items class ThreadSafeFinalizer(object): """A `ThreadSafeFinalizer` is a global class used to register weak reference finalizers (i.e., a weak reference with a callback). This class is useful when one wants to register a finalizer of an object with circular references. The finalizer of an object with circular references might never be called if the object's finalizer is kept by the same object. For example, if object A refers to B and B refers to A, A should not keep a weak reference to itself. `ThreadSafeFinalizer` is thread-safe and uses reentrant lock on each operation.""" finalizers = {} lock = RLock() @classmethod def add_finalizer(cls, id, weak_ref): """Registers a finalizer with an id. :param id: The id of the object referenced by the weak reference. :param weak_ref: The weak reference to register. """ with cls.lock: cls.finalizers[id] = weak_ref @classmethod def remove_finalizer(cls, id): """Removes a finalizer associated with this id. :param id: The id of the object for which the finalizer will be deleted. """ with cls.lock: cls.finalizers.pop(id, None) @classmethod def clear_finalizers(cls, clear_all=False): """Removes all registered finalizers. :param clear_all: If `True`, all finalizers are deleted. Otherwise, only the finalizers from an empty weak reference are deleted (i.e., weak references pointing to inexistent objects). """ with cls.lock: if clear_all: cls.finalizers.clear() else: for id, ref in items(cls.finalizers): if ref() is None: cls.finalizers.pop(id, None) class Finalizer(object): """A `Finalizer` is a global class used to register weak reference finalizers (i.e., a weak reference with a callback). This class is useful when one wants to register a finalizer of an object with circular references. The finalizer of an object with circular references might never be called if the object's finalizer is kept by the same object. For example, if object A refers to B and B refers to A, A should not keep a weak reference to itself. `Finalizer` is not thread-safe and should only be used by single-threaded programs.""" finalizers = {} @classmethod def add_finalizer(cls, id, weak_ref): """Registers a finalizer with an id. :param id: The id of the object referenced by the weak reference. :param weak_ref: The weak reference to register. """ cls.finalizers[id] = weak_ref @classmethod def remove_finalizer(cls, id): """Removes a finalizer associated with this id. :param id: The id of the object for which the finalizer will be deleted. """ cls.finalizers.pop(id, None) @classmethod def clear_finalizers(cls, clear_all=False): """Removes all registered finalizers. :param clear_all: If `True`, all finalizers are deleted. Otherwise, only the finalizers from an empty weak reference are deleted (i.e., weak references pointing to inexistent objects). """ if clear_all: cls.finalizers.clear() else: for id, ref in items(cls.finalizers): if ref() is None: cls.finalizers.pop(id, None) def clear_finalizers(clear_all=False): """Removes all registered finalizers in :class:`ThreadSafeFinalizer` and :class:`Finalizer`. :param clear_all: If `True`, all finalizers are deleted. Otherwise, only the finalizers from an empty weak reference are deleted (i.e., weak references pointing to inexistent objects). """ ThreadSafeFinalizer.clear_finalizers(clear_all) Finalizer.clear_finalizers(clear_all)
test/regexp/python11.py
kylebarron/MagicPython
1,482
12637637
<filename>test/regexp/python11.py<gh_stars>1000+ a = r""" (?x) # multi-XXXline XXX regexp foo (?# comm TODOent TODO) foo # type: int foo (?# type: int) """ a : source.python : source.python = : keyword.operator.assignment.python, source.python : source.python r : source.python, storage.type.string.python, string.regexp.quoted.multi.python """ : punctuation.definition.string.begin.python, source.python, string.regexp.quoted.multi.python : source.python, string.regexp.quoted.multi.python (?x) : source.python, storage.modifier.flag.regexp, string.regexp.quoted.multi.python : source.python, string.regexp.quoted.multi.python # : comment.line.number-sign.python, punctuation.definition.comment.python, source.python, string.regexp.quoted.multi.python multi-XXXline : comment.line.number-sign.python, source.python, string.regexp.quoted.multi.python XXX : comment.line.number-sign.python, keyword.codetag.notation.python, source.python, string.regexp.quoted.multi.python regexp : comment.line.number-sign.python, source.python, string.regexp.quoted.multi.python foo : source.python, string.regexp.quoted.multi.python (?# : comment.regexp, punctuation.comment.begin.regexp, source.python, string.regexp.quoted.multi.python comm TODOent : comment.regexp, source.python, string.regexp.quoted.multi.python TODO : comment.regexp, keyword.codetag.notation.python, source.python, string.regexp.quoted.multi.python ) : comment.regexp, punctuation.comment.end.regexp, source.python, string.regexp.quoted.multi.python foo : source.python, string.regexp.quoted.multi.python # : comment.line.number-sign.python, punctuation.definition.comment.python, source.python, string.regexp.quoted.multi.python type: int : comment.line.number-sign.python, source.python, string.regexp.quoted.multi.python foo : source.python, string.regexp.quoted.multi.python (?# : comment.regexp, punctuation.comment.begin.regexp, source.python, string.regexp.quoted.multi.python type: int : comment.regexp, source.python, string.regexp.quoted.multi.python ) : comment.regexp, punctuation.comment.end.regexp, source.python, string.regexp.quoted.multi.python """ : punctuation.definition.string.end.python, source.python, string.regexp.quoted.multi.python
research/object_detection/utils/test_case.py
gujralsanyam22/models
82,518
12637642
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A convenience wrapper around tf.test.TestCase to test with TPU, TF1, TF2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import zip import tensorflow.compat.v1 as tf from tensorflow.python import tf2 # pylint: disable=import-outside-toplevel from object_detection.utils import tf_version if not tf2.enabled(): from tensorflow.contrib import tpu as contrib_tpu # pylint: disable=g-import-not-at-top, line-too-long flags = tf.app.flags flags.DEFINE_bool('tpu_test', False, 'Deprecated Flag.') FLAGS = flags.FLAGS class TestCase(tf.test.TestCase): """Base Test class to handle execution under {TF1.X, TF2.X} x {TPU, CPU}. This class determines the TF version and availability of TPUs to set up tests appropriately. """ def maybe_extract_single_output(self, outputs): if isinstance(outputs, list) or isinstance(outputs, tuple): if isinstance(outputs[0], tf.Tensor): outputs_np = [output.numpy() for output in outputs] else: outputs_np = outputs if len(outputs_np) == 1: return outputs_np[0] else: return outputs_np else: if isinstance(outputs, tf.Tensor): return outputs.numpy() else: return outputs def has_tpu(self): """Returns whether there are any logical TPU devices.""" return bool(tf.config.experimental.list_logical_devices(device_type='TPU')) def is_tf2(self): """Returns whether TF2 is enabled.""" return tf_version.is_tf2() def execute_tpu_tf1(self, compute_fn, inputs, graph=None): """Executes compute_fn on TPU with Tensorflow 1.X. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. graph: (optional) If not None, provided `graph` is used for computation instead of a brand new tf.Graph(). Returns: A list of numpy arrays or a single numpy array. """ with self.session(graph=(graph or tf.Graph())) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] def wrap_graph_fn(*args, **kwargs): results = compute_fn(*args, **kwargs) if (not (isinstance(results, dict) or isinstance(results, tf.Tensor)) and hasattr(results, '__iter__')): results = list(results) return results tpu_computation = contrib_tpu.rewrite(wrap_graph_fn, placeholders) sess.run(contrib_tpu.initialize_system()) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(tpu_computation, feed_dict=dict(zip(placeholders, inputs))) sess.run(contrib_tpu.shutdown_system()) return self.maybe_extract_single_output(materialized_results) def execute_tpu_tf2(self, compute_fn, inputs): """Executes compute_fn on TPU with Tensorflow 2.X. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. Returns: A list of numpy arrays or a single numpy array. """ resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) topology = tf.tpu.experimental.initialize_tpu_system(resolver) device_assignment = tf.tpu.experimental.DeviceAssignment.build( topology, num_replicas=1) strategy = tf.distribute.experimental.TPUStrategy( resolver, device_assignment=device_assignment) @tf.function def run(): tf_inputs = [tf.constant(input_t) for input_t in inputs] return strategy.run(compute_fn, args=tf_inputs) outputs = run() tf.tpu.experimental.shutdown_tpu_system() return self.maybe_extract_single_output(outputs) def execute_cpu_tf1(self, compute_fn, inputs, graph=None): """Executes compute_fn on CPU with Tensorflow 1.X. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. graph: (optional) If not None, provided `graph` is used for computation instead of a brand new tf.Graph(). Returns: A list of numpy arrays or a single numpy array. """ if self.is_tf2(): raise ValueError('Required version Tenforflow 1.X is not available.') with self.session(graph=(graph or tf.Graph())) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] results = compute_fn(*placeholders) if (not (isinstance(results, dict) or isinstance(results, tf.Tensor)) and hasattr(results, '__iter__')): results = list(results) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(results, feed_dict=dict(zip(placeholders, inputs))) return self.maybe_extract_single_output(materialized_results) def execute_cpu_tf2(self, compute_fn, inputs): """Executes compute_fn on CPU with Tensorflow 2.X. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. Returns: A list of numpy arrays or a single numpy array. """ if not self.is_tf2(): raise ValueError('Required version TensorFlow 2.0 is not available.') @tf.function def run(): tf_inputs = [tf.constant(input_t) for input_t in inputs] return compute_fn(*tf_inputs) return self.maybe_extract_single_output(run()) def execute_cpu(self, compute_fn, inputs, graph=None): """Executes compute_fn on CPU. Depending on the underlying TensorFlow installation (build deps) runs in either TF 1.X or TF 2.X style. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. graph: (optional) If not None, provided `graph` is used for computation instead of a brand new tf.Graph(). Returns: A list of numpy arrays or a single tensor. """ if self.is_tf2(): return self.execute_cpu_tf2(compute_fn, inputs) else: return self.execute_cpu_tf1(compute_fn, inputs, graph) def execute_tpu(self, compute_fn, inputs, graph=None): """Executes compute_fn on TPU. Depending on the underlying TensorFlow installation (build deps) runs in either TF 1.X or TF 2.X style. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. graph: (optional) If not None, provided `graph` is used for computation instead of a brand new tf.Graph(). Returns: A list of numpy arrays or a single tensor. """ if not self.has_tpu(): raise ValueError('No TPU Device found.') if self.is_tf2(): return self.execute_tpu_tf2(compute_fn, inputs) else: return self.execute_tpu_tf1(compute_fn, inputs, graph) def execute_tf2(self, compute_fn, inputs): """Runs compute_fn with TensorFlow 2.0. Executes on TPU if available, otherwise executes on CPU. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. Returns: A list of numpy arrays or a single tensor. """ if not self.is_tf2(): raise ValueError('Required version TensorFlow 2.0 is not available.') if self.has_tpu(): return self.execute_tpu_tf2(compute_fn, inputs) else: return self.execute_cpu_tf2(compute_fn, inputs) def execute_tf1(self, compute_fn, inputs, graph=None): """Runs compute_fn with TensorFlow 1.X. Executes on TPU if available, otherwise executes on CPU. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. graph: (optional) If not None, provided `graph` is used for computation instead of a brand new tf.Graph(). Returns: A list of numpy arrays or a single tensor. """ if self.is_tf2(): raise ValueError('Required version Tenforflow 1.X is not available.') if self.has_tpu(): return self.execute_tpu_tf1(compute_fn, inputs, graph) else: return self.execute_cpu_tf1(compute_fn, inputs, graph) def execute(self, compute_fn, inputs, graph=None): """Runs compute_fn with inputs and returns results. * Executes in either TF1.X or TF2.X style based on the TensorFlow version. * Executes on TPU if available, otherwise executes on CPU. Args: compute_fn: a function containing Tensorflow computation that takes a list of input numpy tensors, performs computation and returns output numpy tensors. inputs: a list of numpy arrays to feed input to the `compute_fn`. graph: (optional) If not None, provided `graph` is used for computation instead of a brand new tf.Graph(). Returns: A list of numpy arrays or a single tensor. """ if self.has_tpu() and tf2.enabled(): return self.execute_tpu_tf2(compute_fn, inputs) elif not self.has_tpu() and tf2.enabled(): return self.execute_cpu_tf2(compute_fn, inputs) elif self.has_tpu() and not tf2.enabled(): return self.execute_tpu_tf1(compute_fn, inputs, graph) else: return self.execute_cpu_tf1(compute_fn, inputs, graph)
finite_ntk/finite_ntk/lazy/fvp_second_order.py
forgi86/xfer
244
12637648
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== import torch from gpytorch.lazy import LazyTensor from .utils import flatten, unflatten_like class FVP_AG(LazyTensor): def __init__(self, model, data, **kwargs): r""" FVP_AG is a class representing a Fisher matrix of a model on a set of data, given that the probability model for the data is p(y | model(data)) = Categorical(model(data)). Rather than forming the entire Fisher information matrix, we compute it with matrix vector products using second order autograd (hence the AG name). model: model class data: data that the Fisher information is to be calulated on epsilon: hyper-parameter """ super(FVP_AG, self).__init__(data) self.model = model self.data = data # compute number of paraemters self.num_params = 0 for p in self.model.parameters(): self.num_params += p.numel() def _size(self, val=None): if val == 0 or val == 1: return self.num_params else: return (self.num_params, self.num_params) def _transpose_nonbatch(self): return self # A loss whose 2nd derivative is the Fisher information matrix # Thanks for <NAME> for deriving this loss fn. def detached_entropy(self, logits, y=None): # -1*\frac{1}{m}\sum_{i,k} [f_k(x_i)] \log f_k(x_i), where [] is detach log_probs = torch.nn.LogSoftmax(dim=1)(logits) probs = torch.nn.Softmax(dim=1)(logits) return -1 * (probs.detach() * log_probs).sum(1).mean(0) def _matmul(self, rhs): orig_dtype = rhs.dtype rhs = rhs.float() vec = rhs.t() # transpose # check if all norms are zeros and return a zero matrix otherwise if torch.norm(vec, dim=0).eq(0.0).all(): return torch.zeros( self.num_params, rhs.size(1), device=rhs.device, dtype=rhs.dtype ) # form list of all vectors with torch.autograd.no_grad(): vec_list = [] for v in vec: vec_list.append(unflatten_like(v, self.model.parameters())) with torch.autograd.enable_grad(): # compute batch loss with detached entropy batch_loss = self.detached_entropy(self.model(self.data)) # first gradient wrt parameters grad_bl_list = torch.autograd.grad( batch_loss, self.model.parameters(), create_graph=True, only_inputs=True ) res = [] for vec_sublist in vec_list: deriv = 0 for vec_part, grad_part in zip(vec_sublist, grad_bl_list): deriv += torch.sum(vec_part.detach().double() * grad_part.double()) # fast implicit hvp product hvp_list = torch.autograd.grad( deriv.float(), self.model.parameters(), only_inputs=True, retain_graph=True, ) res.append(flatten(hvp_list)) res_matrix = torch.stack(res).detach() return res_matrix.t().type(orig_dtype)
recipes/Python/578594_Send_Messages__millions_facebook_Users_/recipe-578594.py
tdiprima/code
2,023
12637658
<reponame>tdiprima/code #usr/bin/env/python """ This script can get the user data from facebook.com. This is written for better understanding of python Modules required:BeautifulSoup Author:<NAME> aka Cybercam Blog:http://pythonnotesbyajay.blogspot.in/ """ import smtplib import email from email.MIMEMultipart import MIMEMultipart from email.parser import Parser from email.MIMEText import MIMEText import urllib2 from BeautifulSoup import BeautifulSoup import random user_name_array=[] def get_fb_username(id): try: url=urllib2.urlopen('https://graph.facebook.com/'+str(id)).read() soup = BeautifulSoup(url) all_attr=soup.prettify() print all_attr gend=all_attr.find("gender") if(all_attr[gend+9] == 'm'): gender='male' elif (all_attr[gend+9] == 'f'): gender = 'female' else: gender="The user didn't specify any gender" if all_attr.find('username') != -1: start_quote=all_attr.find('username')+10 end_quote=all_attr.find('"',start_quote+1) user_name=all_attr[start_quote:end_quote+1].strip('"')+'@facebook.com' user_name_array.append(user_name) print "username ==>"+'\t'+user_name +'\t'+ "gender ==>"+"\t"+gender print "\n" except urllib2.HTTPError: pass for i in range(4,10,1): #for i in range(startvalue,stopvalue,stepvalue): get_fb_username(i+1) print user_name_array def send_mail(): random_text=["hi","hello","Nice to meet you","How are you","wassup","hi!!!",'just wanted to say hi'] server = smtplib.SMTP() server.connect('smtp.gmail.com', 587) # for eg. host = 'smtp.gmail.com', port = 587 server.ehlo() server.starttls() server.login('<EMAIL>', 'password') #replace this with u r gmail id #password ==> <PASSWORD> fromaddr ='<EMAIL>' for i in range(len(user_name_array)-1): msg = email.MIMEMultipart.MIMEMultipart() msg['From'] = fromaddr msg['To'] = user_name_array[i] msg['Subject'] = 'hi' msg.attach(MIMEText(random_text[random.randint(0,len(random_text)-1)])) #msg.attach(MIMEText('put some custom message.', 'plain')) server.sendmail(fromaddr,user_name_array[i],msg.as_string()) server.quit() send_mail()
testing/slides/examples/fixtures/test_fixtures.py
ramosmaria/school2021
252
12637662
import pytest @pytest.fixture(scope='session') def some_data(): return [1, 2, 3] def test_using_fixture(some_data): assert len(some_data) == 3 def test_also_using_fixture(some_data): assert some_data[0] == 1
mode/examples/Topics/Fractals and L-Systems/PenroseTile/l_system.py
timgates42/processing.py
1,224
12637687
<filename>mode/examples/Topics/Fractals and L-Systems/PenroseTile/l_system.py class LSystem(object): def __init__(self): self.steps = 0 self.axiom = "F" self.rule = "F+F-F" self.startLength = 190.0 self.theta = radians(120.0) self.reset() def reset(self): self.production = self.axiom self.drawLength = self.startLength self.generations = 0 def getAge(self): return self.generations def render(self): translate(width / 2, height / 2) self.steps += 5 if self.steps > len(self.production)(): self.steps = len(self.production)() for i in range(self.steps): step = self.production.charAt(i) if step == 'F': rect(0, 0, -self.drawLength, -self.drawLength) noFill() translate(0, -self.drawLength) elif step == '+': rotate(self.theta) elif step == '-': rotate(-self.theta) elif step == '[': pushMatrix() elif step == ']': popMatrix() def simulate(self, gen): while self.getAge() < gen: self.production = self.iterate(self.production, self.rule) def iterate(self, prod_, rule_): self.drawLength = self.drawLength * 0.6 self.generations += 1 newProduction = prod_ newProduction = newProduction.replaceAll("F", rule_) return newProduction
nucleus/examples/print_tfrecord.py
gaybro8777/nucleus
721
12637697
<gh_stars>100-1000 # Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Prints a TFRecord file created by Nucleus. Usage: print_tfrecord <filename> <proto_name> """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from absl import app from google.protobuf import text_format from nucleus.io import genomics_reader from nucleus.protos import bed_pb2 from nucleus.protos import bedgraph_pb2 from nucleus.protos import fasta_pb2 from nucleus.protos import fastq_pb2 from nucleus.protos import gff_pb2 from nucleus.protos import reads_pb2 from nucleus.protos import variants_pb2 # pylint: disable=g-direct-tensorflow-import from nucleus.protos import example_pb2 PROTO_DB = { 'BedGraphRecord': bedgraph_pb2.BedGraphRecord, 'BedRecord': bed_pb2.BedRecord, 'FastaRecord': fasta_pb2.FastaRecord, 'FastqRecord': fastq_pb2.FastqRecord, 'GffRecord': gff_pb2.GffRecord, 'Read': reads_pb2.Read, 'Variant': variants_pb2.Variant, 'Example': example_pb2.Example } def main(argv): if len(argv) != 3: print('Usage: {} <filename> <proto_name>\n'.format(argv[0])) sys.exit(-1) filename = argv[1] proto_name = argv[2] if proto_name not in PROTO_DB: print('Unknown protocol buffer name {}\n'.format(proto_name)) print('Known names are: {}\n'.format(' '.join(PROTO_DB.keys()))) sys.exit(-1) proto = PROTO_DB[proto_name] with genomics_reader.TFRecordReader(filename, proto=proto) as reader: for record in reader: print(text_format.MessageToString(record)) if __name__ == '__main__': app.run(main)
cupy_alias/sparse/dia.py
fixstars/clpy
142
12637698
<gh_stars>100-1000 from clpy.sparse.dia import * # NOQA
cpmpy/among.py
hakank/hakank
279
12637714
<gh_stars>100-1000 """ Global constraint among in cpmpy. ''' Requires exactly m variables in x to take one of the values in v. ''' Model created by <NAME>, <EMAIL> See also my cpmpy page: http://www.hakank.org/cpmpy/ """ import sys import numpy as np from cpmpy import * from cpmpy.solvers import * from cpmpy_hakank import * def among_test(): n = 5 # length of x m = 3 # number of values v = [1,5,8] # variables x = intvar(1,8,shape=n,name="x") # constraints model = Model(among(m, x,v)) ortools_wrapper2(model,[x]) among_test()
tests/test_cookbook.py
craiga/pyexcel
1,045
12637720
import os import pyexcel as pe from base import clean_up_files from nose.tools import eq_, raises class TestSpliting: def setUp(self): self.testfile4 = "multiple_sheets.xls" self.content4 = { "Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], "Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]], "Sheet3": [[u"X", u"Y", u"Z"], [1, 4, 7], [2, 5, 8], [3, 6, 9]], } pe.save_book_as(dest_file_name=self.testfile4, bookdict=self.content4) def test_split_a_book(self): pe.cookbook.split_a_book(self.testfile4, "extracted.csv") assert os.path.exists("Sheet1_extracted.csv") assert os.path.exists("Sheet2_extracted.csv") assert os.path.exists("Sheet3_extracted.csv") def test_split_a_book_2(self): """use default output file name""" pe.cookbook.split_a_book(self.testfile4) assert os.path.exists("Sheet1_%s" % self.testfile4) assert os.path.exists("Sheet2_%s" % self.testfile4) assert os.path.exists("Sheet3_%s" % self.testfile4) def test_extract_a_book(self): pe.cookbook.extract_a_sheet_from_a_book( self.testfile4, "Sheet1", "extracted.csv" ) assert os.path.exists("Sheet1_extracted.csv") def test_extract_a_book_2(self): """Use default output file name""" pe.cookbook.extract_a_sheet_from_a_book(self.testfile4, "Sheet1") assert os.path.exists("Sheet1_%s" % self.testfile4) def tearDown(self): file_list = [ self.testfile4, "Sheet1_extracted.csv", "Sheet2_extracted.csv", "Sheet3_extracted.csv", "Sheet1_multiple_sheets.xls", "Sheet2_multiple_sheets.xls", "Sheet3_multiple_sheets.xls", ] clean_up_files(file_list) class TestCookbook: def setUp(self): """ Make a test csv file as: 1,1,1,1 2,2,2,2 3,3,3,3 """ self.testfile = "test1.xls" self.content = { "X": [1, 2, 3, 4, 5], "Y": [6, 7, 8, 9, 10], "Z": [11, 12, 13, 14, 15], } pe.save_as(dest_file_name=self.testfile, adict=self.content) self.testfile2 = "test.csv" self.content2 = { "O": [1, 2, 3, 4, 5], "P": [6, 7, 8, 9, 10], "Q": [11, 12, 13, 14, 15], } pe.save_as(dest_file_name=self.testfile2, adict=self.content2) self.testfile3 = "test.xls" self.content3 = { "R": [1, 2, 3, 4, 5], "S": [6, 7, 8, 9, 10], "T": [11, 12, 13, 14, 15], } pe.save_as(dest_file_name=self.testfile3, adict=self.content3) self.testfile4 = "multiple_sheets.xls" self.content4 = { "Sheet1": [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], "Sheet2": [[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6]], "Sheet3": [[u"X", u"Y", u"Z"], [1, 4, 7], [2, 5, 8], [3, 6, 9]], } pe.save_book_as(dest_file_name=self.testfile4, bookdict=self.content4) @raises(ValueError) def test_update_columns(self): bad_column = {"A": [31, 1, 1, 1, 1]} # try non-existent column first pe.cookbook.update_columns(self.testfile, bad_column) @raises(NotImplementedError) def test_update_columns2(self): custom_column = {"Z": [33, 44, 55, 66, 77]} pe.cookbook.update_columns(self.testfile, custom_column) r = pe.SeriesReader("pyexcel_%s" % self.testfile) data = r.dict assert data["Z"] == custom_column["Z"] pe.cookbook.update_columns(self.testfile, custom_column, "test4.xls") r = pe.SeriesReader("test4.xls") data = r.dict assert data["Z"] == custom_column["Z"] # test if it try not overwrite a file pe.cookbook.update_columns(self.testfile, custom_column) # bang def test_update_rows(self): bad_column = {100: [31, 1, 1, 1, 1]} custom_column = {"1": [3, 4]} try: # try non-existent column first pe.cookbook.update_rows(self.testfile, bad_column) assert 1 == 2 except ValueError: assert 1 == 1 pe.cookbook.update_rows(self.testfile, custom_column) r = pe.Reader("pyexcel_%s" % self.testfile) assert custom_column["1"] == r.row_at(1)[1:] try: # try not to overwrite a file pe.cookbook.update_rows(self.testfile, custom_column) r = pe.SeriesReader("pyexcel_%s" % self.testfile) assert 1 == 2 except NotImplementedError: assert 1 == 1 pe.cookbook.update_rows(self.testfile, custom_column, "test4.xls") r = pe.Reader("test4.xls") assert custom_column["1"] == r.row_at(1)[1:] @raises(NotImplementedError) def test_merge_two_files(self): pe.cookbook.merge_two_files(self.testfile, self.testfile2) r = pe.SeriesReader("pyexcel_merged.csv") r.format(int) content = {} content.update(self.content) content.update(self.content2) eq_(r.dict, content) pe.cookbook.merge_two_files(self.testfile, self.testfile2) # bang @raises(NotImplementedError) def test_merge_files(self): file_array = [self.testfile, self.testfile2, self.testfile3] pe.cookbook.merge_files(file_array) r = pe.SeriesReader("pyexcel_merged.csv") r.format(int) content = {} content.update(self.content) content.update(self.content2) content.update(self.content3) eq_(r.dict, content) pe.cookbook.merge_files(file_array) # bang, do not overwrite @raises(NotImplementedError) def test_merge_two_readers(self): r1 = pe.SeriesReader(self.testfile) r2 = pe.SeriesReader(self.testfile2) pe.cookbook.merge_two_readers(r1, r2) r = pe.SeriesReader("pyexcel_merged.csv") r.format(int) content = {} content.update(self.content) content.update(self.content2) eq_(r.dict, content) pe.cookbook.merge_two_readers(r1, r2) # bang, do not overwrite @raises(NotImplementedError) def test_merge_readers(self): r1 = pe.SeriesReader(self.testfile) r2 = pe.SeriesReader(self.testfile2) r3 = pe.SeriesReader(self.testfile3) file_array = [r1, r2, r3] pe.cookbook.merge_readers(file_array) r = pe.SeriesReader("pyexcel_merged.csv") r.format(int) content = {} content.update(self.content) content.update(self.content2) content.update(self.content3) eq_(r.dict, content) pe.cookbook.merge_readers(file_array) # bang, do not overwrite def test_merge_two_row_filter_hat_readers(self): r1 = pe.SeriesReader(self.testfile) r2 = pe.SeriesReader(self.testfile2) pe.cookbook.merge_two_readers(r1, r2) r = pe.SeriesReader("pyexcel_merged.csv") r.format(int) content = {} content.update(self.content) content.update(self.content2) eq_(r.dict, content) def test_merge_any_files_to_a_book(self): file_array = [ self.testfile, self.testfile2, self.testfile3, self.testfile4, ] pe.cookbook.merge_all_to_a_book(file_array, "merged.xlsx") r = pe.BookReader("merged.xlsx") r[self.testfile].name_columns_by_row(0) content = r[self.testfile].to_dict() assert content == self.content r[self.testfile2].format(int) r[self.testfile2].name_columns_by_row(0) content2 = r[self.testfile2].to_dict() assert content2 == self.content2 r[self.testfile3].name_columns_by_row(0) content3 = r[self.testfile3].to_dict() assert content3 == self.content3 content4 = r["Sheet1"].to_array() assert content4 == self.content4["Sheet1"] content5 = r["Sheet2"].to_array() assert content5 == self.content4["Sheet2"] content6 = r["Sheet3"].to_array() assert content6 == self.content4["Sheet3"] def test_merge_csv_files_to_a_book(self): file_array = [self.testfile, self.testfile2, self.testfile3] pe.cookbook.merge_csv_to_a_book(file_array, "merged.xlsx") r = pe.BookReader("merged.xlsx") r[self.testfile].name_columns_by_row(0) content = r[self.testfile].to_dict() assert content == self.content r[self.testfile2].format(int) r[self.testfile2].name_columns_by_row(0) content2 = r[self.testfile2].to_dict() assert content2 == self.content2 r[self.testfile3].name_columns_by_row(0) content3 = r[self.testfile3].to_dict() assert content3 == self.content3 def tearDown(self): file_list = [ self.testfile, self.testfile2, self.testfile3, self.testfile4, "pyexcel_%s" % self.testfile, "pyexcel_merged.csv", "merged.xlsx", "merged.xls", "test4.xls", ] clean_up_files(file_list)
jax-stubs/setup.py
deepmind/tensor_annotations
117
12637721
#!/usr/bin/env python # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Install script for JAX stubs.""" import os import pathlib import shutil import tempfile import setuptools # Note: Copybara takes care of moving files to 'jax-stubs/'. setuptools.setup( name='tensor-annotations-jax-stubs', version='1.0.0', description='Shape-aware type stubs for JAX.', long_description='Shape-aware types stubs for JAX. See the `tensor-annotations` package.', long_description_content_type='text/markdown', url='https://github.com/deepmind/tensor_annotations', packages=['jax-stubs'], package_data={'jax-stubs': ['*.pyi', '*/*.pyi']}, install_requires=['tensor-annotations'], )
applications/DEMApplication/python_scripts/processes/apply_forces_and_moments_process.py
lkusch/Kratos
778
12637723
import KratosMultiphysics # Import applications import KratosMultiphysics.DEMApplication as DEM # Other imports def Factory(settings, Model): if(type(settings) != KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") process_settings = settings["Parameters"] folder_settings = KratosMultiphysics.Parameters("""{ "help" : "This process applies loads over the particles in a certain submodelpart, for a certain time interval", "mesh_id" : 0, "model_part_name" : "please_specify_model_part_name", "force_settings" : { "value" : [10.0, "3*t", "x+y"], "table" : [0, 0, 0] }, "moment_settings" : { "value" : [10.0, "3*t", "x+y"], "table" : [0, 0, 0] }, "interval" : [0.0, 1e30] }""" ) process_settings.AddMissingParameters(folder_settings) if process_settings.Has("model_part_name"): computing_model_part = Model[process_settings["model_part_name"].GetString()] else: # using default name computing_model_part = Model["DEM"] process_settings.RemoveValue("help") return DEM.ApplyForcesAndMomentsProcess(computing_model_part, process_settings)
Python-3/basic_examples/strings/string_encode_decode.py
ghiloufibelgacem/jornaldev
1,139
12637728
str_original = 'Hello' bytes_encoded = str_original.encode(encoding='utf-8') print(type(bytes_encoded)) str_decoded = bytes_encoded.decode() print(type(str_decoded)) print('Encoded bytes =', bytes_encoded) print('Decoded String =', str_decoded) print('str_original equals str_decoded =', str_original == str_decoded) str_original = input('Please enter string data:\n') bytes_encoded = str_original.encode() str_decoded = bytes_encoded.decode() print('Encoded bytes =', bytes_encoded) print('Decoded String =', str_decoded) print('str_original equals str_decoded =', str_original == str_decoded)
decode.py
nyu-dl/dl4mt-nonauto
117
12637737
import copy import ipdb import math import os import torch import numpy as np import time from torch.nn import functional as F from torch.autograd import Variable from tqdm import tqdm, trange from model import Transformer, FastTransformer, INF, TINY, softmax from data import NormalField, NormalTranslationDataset, TripleTranslationDataset, ParallelDataset, data_path from utils import Metrics, Best, computeBLEU, computeBLEUMSCOCO, Batch, masked_sort, computeGroupBLEU, organise_trg_len_dic, make_decoder_masks, \ double_source_masks, remove_repeats, remove_repeats_tensor, print_bleu, oracle_converged, equality_converged, jaccard_converged from time import gmtime, strftime import copy from multiset import Multiset tokenizer = lambda x: x.replace('@@ ', '').split() def run_fast_transformer(decoder_inputs, decoder_masks,\ sources, source_masks,\ targets,\ encoding,\ model, args, use_argmax=True): trg_unidx = model.output_decoding( ('trg', targets) ) batch_size, src_len, hsize = encoding[0].size() all_decodings = [] all_probs = [] iter_ = 0 bleu_hist = [ [] for xx in range(batch_size) ] output_hist = [ [] for xx in range(batch_size) ] multiset_hist = [ [] for xx in range(batch_size) ] num_iters = [ 0 for xx in range(batch_size) ] done_ = [False for xx in range(batch_size)] final_decoding = [ None for xx in range(batch_size) ] while True: curr_iter = min(iter_, args.num_decs-1) next_iter = min(iter_+1, args.num_decs-1) decoding, out, probs = model(encoding, source_masks, decoder_inputs, decoder_masks, decoding=True, return_probs=True, iter_=curr_iter) dec_output = decoding.data.cpu().numpy().tolist() """ if args.trg_len_option != "reference": decoder_masks = 0. * decoder_masks for bidx in range(batch_size): try: decoder_masks[bidx,:(dec_output[bidx].index(3))+1] = 1. except: decoder_masks[bidx,:] = 1. """ if args.adaptive_decoding == "oracle": out_unidx = model.output_decoding( ('trg', decoding ) ) sentence_bleus = computeBLEU(out_unidx, trg_unidx, corpus=False, tokenizer=tokenizer) for bidx in range(batch_size): output_hist[bidx].append( dec_output[bidx] ) bleu_hist[bidx].append(sentence_bleus[bidx]) converged = oracle_converged( bleu_hist, num_items=args.adaptive_window ) for bidx in range(batch_size): if not done_[bidx] and converged[bidx] and num_iters[bidx] == 0: num_iters[bidx] = iter_ + 1 - (args.adaptive_window -1) done_[bidx] = True final_decoding[bidx] = output_hist[bidx][-args.adaptive_window] elif args.adaptive_decoding == "equality": for bidx in range(batch_size): #if 3 in dec_output[bidx]: # dec_output[bidx] = dec_output[bidx][:dec_output[bidx].index(3)] output_hist[bidx].append( dec_output[bidx] ) converged = equality_converged( output_hist, num_items=args.adaptive_window ) for bidx in range(batch_size): if not done_[bidx] and converged[bidx] and num_iters[bidx] == 0: num_iters[bidx] = iter_ + 1 done_[bidx] = True final_decoding[bidx] = output_hist[bidx][-1] elif args.adaptive_decoding == "jaccard": for bidx in range(batch_size): #if 3 in dec_output[bidx]: # dec_output[bidx] = dec_output[bidx][:dec_output[bidx].index(3)] output_hist[bidx].append( dec_output[bidx] ) multiset_hist[bidx].append( Multiset(dec_output[bidx]) ) converged = jaccard_converged( multiset_hist, num_items=args.adaptive_window ) for bidx in range(batch_size): if not done_[bidx] and converged[bidx] and num_iters[bidx] == 0: num_iters[bidx] = iter_ + 1 done_[bidx] = True final_decoding[bidx] = output_hist[bidx][-1] all_decodings.append( decoding ) all_probs.append(probs) decoder_inputs = 0 if args.next_dec_input in ["both", "emb"]: if use_argmax: _, argmax = torch.max(probs, dim=-1) else: probs_sz = probs.size() probs_ = Variable(probs.data, requires_grad=False) argmax = torch.multinomial(probs_.contiguous().view(-1, probs_sz[-1]), 1).view(*probs_sz[:-1]) emb = F.embedding(argmax, model.decoder[next_iter].out.weight * math.sqrt(args.d_model)) decoder_inputs += emb if args.next_dec_input in ["both", "out"]: decoder_inputs += out iter_ += 1 if iter_ == args.valid_repeat_dec or (False not in done_): break if args.adaptive_decoding != None: for bidx in range(batch_size): if num_iters[bidx] == 0: num_iters[bidx] = 20 if final_decoding[bidx] == None: if args.adaptive_decoding == "oracle": final_decoding[bidx] = output_hist[bidx][np.argmax(bleu_hist[bidx])] else: final_decoding[bidx] = output_hist[bidx][-1] decoding = Variable(torch.LongTensor(np.array(final_decoding))) if decoder_masks.is_cuda: decoding = decoding.cuda() return decoding, all_decodings, num_iters, all_probs def decode_model(args, model, dev, evaluate=True, trg_len_dic=None, decoding_path=None, names=None, maxsteps=None): args.logger.info("decoding, f_size={}, beam_size={}, alpha={}".format(args.f_size, args.beam_size, args.alpha)) dev.train = False # make iterator volatile=True if not args.no_tqdm: progressbar = tqdm(total=200, desc='start decoding') model.eval() if not args.debug: decoding_path.mkdir(parents=True, exist_ok=True) handles = [(decoding_path / name ).open('w') for name in names] corpus_size = 0 src_outputs, trg_outputs, dec_outputs, timings = [], [], [], [] all_decs = [ [] for idx in range(args.valid_repeat_dec)] decoded_words, target_words, decoded_info = 0, 0, 0 attentions = None decoder = model.decoder[0] if args.model is FastTransformer else model.decoder pad_id = decoder.field.vocab.stoi['<pad>'] eos_id = decoder.field.vocab.stoi['<eos>'] curr_time = 0 cum_sentences = 0 cum_tokens = 0 cum_images = 0 # used for mscoco num_iters_total = [] for iters, dev_batch in enumerate(dev): start_t = time.time() if args.dataset != "mscoco": decoder_inputs, decoder_masks,\ targets, target_masks,\ sources, source_masks,\ encoding, batch_size, rest = model.quick_prepare(dev_batch, fast=(type(model) is FastTransformer), trg_len_option=args.trg_len_option, trg_len_ratio=args.trg_len_ratio, trg_len_dic=trg_len_dic, bp=args.bp) else: # only use first caption for calculating log likelihood all_captions = dev_batch[1] dev_batch[1] = dev_batch[1][0] decoder_inputs, decoder_masks,\ targets, target_masks,\ _, source_masks,\ encoding, batch_size, rest = model.quick_prepare_mscoco(dev_batch, all_captions=all_captions, fast=(type(model) is FastTransformer), inputs_dec=args.inputs_dec, trg_len_option=args.trg_len_option, max_len=args.max_len, trg_len_dic=trg_len_dic, bp=args.bp, gpu=args.gpu>-1) sources = None cum_sentences += batch_size batch_size, src_len, hsize = encoding[0].size() # for now if type(model) is Transformer: all_decodings = [] decoding = model(encoding, source_masks, decoder_inputs, decoder_masks, beam=args.beam_size, alpha=args.alpha, \ decoding=True, feedback=attentions) all_decodings.append( decoding ) num_iters = [0] elif type(model) is FastTransformer: decoding, all_decodings, num_iters, argmax_all_probs = run_fast_transformer(decoder_inputs, decoder_masks, \ sources, source_masks, targets, encoding, model, args, use_argmax=True) num_iters_total.extend( num_iters ) if not args.use_argmax: for _ in range(args.num_samples): _, _, _, sampled_all_probs = run_fast_transformer(decoder_inputs, decoder_masks, \ sources, source_masks, encoding, model, args, use_argmax=False) for iter_ in range(args.valid_repeat_dec): argmax_all_probs[iter_] = argmax_all_probs[iter_] + sampled_all_probs[iter_] all_decodings = [] for iter_ in range(args.valid_repeat_dec): argmax_all_probs[iter_] = argmax_all_probs[iter_] / args.num_samples all_decodings.append(torch.max(argmax_all_probs[iter_], dim=-1)[-1]) decoding = all_decodings[-1] used_t = time.time() - start_t curr_time += used_t if args.dataset != "mscoco": if args.remove_repeats: outputs_unidx = [model.output_decoding(d) for d in [('src', sources), ('trg', targets), ('trg', remove_repeats_tensor(decoding))]] else: outputs_unidx = [model.output_decoding(d) for d in [('src', sources), ('trg', targets), ('trg', decoding)]] else: # make sure that 5 captions per each example num_captions = len(all_captions[0]) for c in range(1, len(all_captions)): assert (num_captions == len(all_captions[c])) # untokenize reference captions for n_ref in range(len(all_captions)): n_caps = len(all_captions[0]) for c in range(n_caps): all_captions[n_ref][c] = all_captions[n_ref][c].replace("@@ ","") outputs_unidx = [ list(map(list, zip(*all_captions))) ] if args.remove_repeats: all_dec_outputs = [model.output_decoding(d) for d in [('trg', remove_repeats_tensor(all_decodings[ii])) for ii in range(len(all_decodings))]] else: all_dec_outputs = [model.output_decoding(d) for d in [('trg', all_decodings[ii]) for ii in range(len(all_decodings))]] corpus_size += batch_size if args.dataset != "mscoco": cum_tokens += sum([len(xx.split(" ")) for xx in outputs_unidx[0]]) # NOTE source tokens, not target if args.dataset != "mscoco": src_outputs += outputs_unidx[0] trg_outputs += outputs_unidx[1] if args.remove_repeats: dec_outputs += remove_repeats(outputs_unidx[-1]) else: dec_outputs += outputs_unidx[-1] else: trg_outputs += outputs_unidx[0] for idx, each_output in enumerate(all_dec_outputs): if args.remove_repeats: all_decs[idx] += remove_repeats(each_output) else: all_decs[idx] += each_output #if True: if False and decoding_path is not None: for sent_i in range(len(outputs_unidx[0])): if args.dataset != "mscoco": print ('SRC') print (outputs_unidx[0][sent_i]) for ii in range(len(all_decodings)): print ('DEC iter {}'.format(ii)) print (all_dec_outputs[ii][sent_i]) print ('TRG') print (outputs_unidx[1][sent_i]) else: print ('TRG') trg = outputs_unidx[0] for subsent_i in range(len(trg[sent_i])): print ('TRG {}'.format(subsent_i)) print (trg[sent_i][subsent_i]) for ii in range(len(all_decodings)): print ('DEC iter {}'.format(ii)) print (all_dec_outputs[ii][sent_i]) print ('---------------------------') timings += [used_t] if not args.debug: for s, t, d in zip(outputs_unidx[0], outputs_unidx[1], outputs_unidx[2]): s, t, d = s.replace('@@ ', ''), t.replace('@@ ', ''), d.replace('@@ ', '') print(s, file=handles[0], flush=True) print(t, file=handles[1], flush=True) print(d, file=handles[2], flush=True) if not args.no_tqdm: progressbar.update(iters) progressbar.set_description('finishing sentences={}/batches={}, \ length={}/average iter={}, speed={} sec/batch'.format(\ corpus_size, iters, src_len, np.mean(np.array(num_iters)), curr_time / (1 + iters))) if evaluate: for idx, each_dec in enumerate(all_decs): if len(all_decs[idx]) != len(trg_outputs): break if args.dataset != "mscoco": bleu_output = computeBLEU(each_dec, trg_outputs, corpus=True, tokenizer=tokenizer) else: bleu_output = computeBLEUMSCOCO(each_dec, trg_outputs, corpus=True, tokenizer=tokenizer) args.logger.info("iter {} | {}".format(idx+1, print_bleu(bleu_output))) if args.adaptive_decoding != None: args.logger.info("----------------------------------------------") args.logger.info("Average # iters {}".format(np.mean(num_iters_total))) bleu_output = computeBLEU(dec_outputs, trg_outputs, corpus=True, tokenizer=tokenizer) args.logger.info("Adaptive BLEU | {}".format(print_bleu(bleu_output))) args.logger.info("----------------------------------------------") args.logger.info("Decoding speed analysis :") args.logger.info("{} sentences".format(cum_sentences)) if args.dataset != "mscoco": args.logger.info("{} tokens".format(cum_tokens)) args.logger.info("{:.3f} seconds".format(curr_time)) args.logger.info("{:.3f} ms / sentence".format((curr_time / float(cum_sentences) * 1000))) if args.dataset != "mscoco": args.logger.info("{:.3f} ms / token".format((curr_time / float(cum_tokens) * 1000))) args.logger.info("{:.3f} sentences / s".format(float(cum_sentences) / curr_time)) if args.dataset != "mscoco": args.logger.info("{:.3f} tokens / s".format(float(cum_tokens) / curr_time)) args.logger.info("----------------------------------------------") if args.decode_which > 0: args.logger.info("Writing to special file") parent = decoding_path / "speed" / "b_{}{}".format(args.beam_size if args.model is Transformer else args.valid_repeat_dec, "" if args.model is Transformer else "_{}".format(args.adaptive_decoding != None)) args.logger.info(str(parent)) parent.mkdir(parents=True, exist_ok=True) speed_handle = (parent / "results.{}".format(args.decode_which) ).open('w') print("----------------------------------------------", file=speed_handle, flush=True) print("Decoding speed analysis :", file=speed_handle, flush=True) print("{} sentences".format(cum_sentences), file=speed_handle, flush=True) if args.dataset != "mscoco": print("{} tokens".format(cum_tokens), file=speed_handle, flush=True) print("{:.3f} seconds".format(curr_time), file=speed_handle, flush=True) print("{:.3f} ms / sentence".format((curr_time / float(cum_sentences) * 1000)), file=speed_handle, flush=True) if args.dataset != "mscoco": print("{:.3f} ms / token".format((curr_time / float(cum_tokens) * 1000)), file=speed_handle, flush=True) print("{:.3f} sentences / s".format(float(cum_sentences) / curr_time), file=speed_handle, flush=True) if args.dataset != "mscoco": print("{:.3f} tokens / s".format(float(cum_tokens) / curr_time), file=speed_handle, flush=True) print("----------------------------------------------", file=speed_handle, flush=True)
mlcomp/db/report_info/f1.py
sUeharaE4/mlcomp
166
12637749
import numpy as np from sklearn.metrics import classification_report from mlcomp.db.report_info.item import ReportLayoutItem from mlcomp.utils.plot import figure_to_binary, plot_classification_report class ReportLayoutF1(ReportLayoutItem): def plot(self, y: np.array, pred: np.array): report = classification_report(y, pred) fig = plot_classification_report(report) return figure_to_binary(fig, dpi=70) __all__ = ['ReportLayoutF1']