max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
cupyx/scipy/sparse/linalg/_norm.py
Onkar627/cupy
6,180
12648260
import numpy import cupy import cupyx.scipy.sparse def _sparse_frobenius_norm(x): if cupy.issubdtype(x.dtype, cupy.complexfloating): sqnorm = abs(x).power(2).sum() else: sqnorm = x.power(2).sum() return cupy.sqrt(sqnorm) def norm(x, ord=None, axis=None): """Norm of a cupy.scipy.spmatrix This function is able to return one of seven different sparse matrix norms, depending on the value of the ``ord`` parameter. Args: x (sparse matrix) : Input sparse matrix. ord (non-zero int, inf, -inf, 'fro', optional) : Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : (int, 2-tuple of ints, None, optional): If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. Returns: ndarray : 0-D or 1-D array or norm(s). .. seealso:: :func:`scipy.sparse.linalg.norm` """ if not cupyx.scipy.sparse.issparse(x): raise TypeError(("input is not sparse. use cupy.linalg.norm")) # Check the default case first and handle it immediately. if axis is None and ord in (None, 'fro', 'f'): return _sparse_frobenius_norm(x) # Some norms require functions that are not implemented for all types. x = x.tocsr() if axis is None: axis = (0, 1) elif not isinstance(axis, tuple): msg = "'axis' must be None, an integer or a tuple of integers" try: int_axis = int(axis) except TypeError: raise TypeError(msg) if axis != int_axis: raise TypeError(msg) axis = (int_axis,) nd = 2 if len(axis) == 2: row_axis, col_axis = axis if not (-nd <= row_axis < nd and -nd <= col_axis < nd): raise ValueError('Invalid axis %r for an array with shape %r' % (axis, x.shape)) if row_axis % nd == col_axis % nd: raise ValueError('Duplicate axes given.') if ord == 2: raise NotImplementedError # return _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: raise NotImplementedError # return _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: return abs(x).sum(axis=row_axis).max() elif ord == numpy.Inf: return abs(x).sum(axis=col_axis).max() elif ord == -1: return abs(x).sum(axis=row_axis).min() elif ord == -numpy.Inf: return abs(x).sum(axis=col_axis).min() elif ord in (None, 'f', 'fro'): # The axis order does not matter for this norm. return _sparse_frobenius_norm(x) else: raise ValueError("Invalid norm order for matrices.") elif len(axis) == 1: a, = axis if not (-nd <= a < nd): raise ValueError('Invalid axis %r for an array with shape %r' % (axis, x.shape)) if ord == numpy.Inf: return abs(x).max(axis=a).A.ravel() elif ord == -numpy.Inf: return abs(x).min(axis=a).A.ravel() elif ord == 0: # Zero norm return (x != 0).astype(numpy.float32).sum(axis=a).ravel().astype( numpy.int_) elif ord == 1: # special case for speedup return abs(x).sum(axis=a).ravel() elif ord in (2, None): return cupy.sqrt(abs(x).power(2).sum(axis=a)).ravel() else: try: ord + 1 except TypeError: raise ValueError('Invalid norm order for vectors.') return cupy.power(abs(x).power(ord).sum(axis=a), 1 / ord).ravel() else: raise ValueError("Improper number of dimensions to norm.")
pyjswidgets/pyjamas/Canvas/CanvasGradientImplIE6.py
takipsizad/pyjs
739
12648266
""" * Copyright 2008 Google Inc. * Copyright 2011 <NAME> * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http:#www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. """ import math from pyjamas.Canvas.ColorStop import ColorStop """* * Gradients for IE6 implementation need some extra meta info. """ class CanvasGradientImplIE6: def __init__(self, x0, y0, x1, y1): self.startX = x0 self.startY = y0 self.endX = x1 self.endY = y1 self.startRad = 0 self.endRad = 0 self.dx = x1 - x0 self.dy = y1 - y0 self.length = math.sqrt((self.dx * self.dx) + (self.dy * self.dy)) if self.dy == 0: #self.angle = int(math.atan(self.dx) * 180 / math.pi) + 180 self.angle = 90 else: self.angle = int(math.atan(self.dx/self.dy) * 180 / math.pi) + 180 self.colorStops = [] def addColorStop(self, offset, color): newColorStop = ColorStop(offset, color) for i in range(len(self.colorStops)): cs = self.colorStops[i] if offset < cs.offset: self.colorStops.append(i, newColorStop) return self.colorStops.append(newColorStop) """* * Creates an equivalent copy of this Gradient object. * * @return returns an equivalent copy of this gradient object """ def cloneGradient(self): pass
mmd_tools/properties/material.py
lsr123/PX4-loacl_code
822
12648274
<gh_stars>100-1000 # -*- coding: utf-8 -*- import bpy from bpy.types import PropertyGroup from bpy.props import BoolProperty, EnumProperty, FloatProperty, FloatVectorProperty, IntProperty, StringProperty from mmd_tools.core import material #=========================================== # Property classes #=========================================== class MMDMaterial(PropertyGroup): """ マテリアル """ name_j = StringProperty( name='Name', description='Japanese Name', default='', ) name_e = StringProperty( name='Name(Eng)', description='English Name', default='', ) material_id = IntProperty( name='Material ID', default=-1 ) ambient_color = FloatVectorProperty( name='Ambient', subtype='COLOR', size=3, min=0, max=1, precision=3, step=0.1, default=[0, 0, 0], ) is_double_sided = BoolProperty( name='Double Sided', description='', default=True, ) enabled_drop_shadow = BoolProperty( name='Drop Shadow', description='', default=True, ) enabled_self_shadow_map = BoolProperty( name='Self Shadow Map', description='', default=True, ) enabled_self_shadow = BoolProperty( name='Self Shadow', description='', default=True, ) enabled_toon_edge = BoolProperty( name='Toon Edge', description='', default=True, ) edge_color = FloatVectorProperty( name='Edge Color', subtype='COLOR', size=4, min=0, max=1, precision=3, step=0.1, default=[0, 0, 0, 1], ) edge_weight = FloatProperty( name='Edge Weight', min=0, max=100, step=0.1, default=0.5, ) sphere_texture_type = EnumProperty( name='Sphere Map Type', description='', items = [ (str(material.SPHERE_MODE_OFF), 'Off', '', 1), (str(material.SPHERE_MODE_MULT), 'Multiply', '', 2), (str(material.SPHERE_MODE_ADD), 'Add', '', 3), (str(material.SPHERE_MODE_SUBTEX), 'SubTexture', '', 4), ], ) is_shared_toon_texture = BoolProperty( name='Use Shared Toon Texture', description='', default=False, ) toon_texture = StringProperty( name='Toon Texture', subtype='FILE_PATH', description='', default='', ) shared_toon_texture = IntProperty( name='Shared Toon Texture', description='', default=0, ) comment = StringProperty( name='Comment', )
tests/test_toggle_setting.py
steveklabnik/sublime-rust
480
12648324
<gh_stars>100-1000 """Tests for toggle command.""" from rust_test_common import * class TestToggle(TestBase): def test_toggle(self): window = sublime.active_window() self.assertEqual( util.get_setting('rust_syntax_checking', True), True) window.run_command('toggle_rust_syntax_setting') self.assertEqual( util.get_setting('rust_syntax_checking', True), False) window.run_command('toggle_rust_syntax_setting') self.assertEqual( util.get_setting('rust_syntax_checking', True), True)
Python/tower_of_hanoi.py
MjCode01/DS-Algo-Point
1,148
12648332
def TowerOfHanoi(n , first, last, mid): if n == 1: print ("Move disk 1 from rod",first,"to rod",last) return TowerOfHanoi(n-1, first, mid, last) print ("Move disk",n,"from rod",first,"to rod",last ) TowerOfHanoi(n-1, mid, last, first) n=int(input()) TowerOfHanoi(n, 'F', 'M', 'L') # First Rod-> F, Middle rod -> M, Last Rod -> L """ Complexity of the code -Time Complexity - O(2^n) -Space Complexity - O(2^n) """
recipes/Python/496905_ActiveRecord_like_ORM_object_relatimapper_200/recipe-496905.py
tdiprima/code
2,023
12648334
# this is storm.py import string, new, MySQLdb from types import * from MySQLdb.cursors import DictCursor bag_belongs_to, bag_has_many = [],[] def belongs_to(what): bag_belongs_to.append(what) def has_many(what): bag_has_many.append(what) class Mysqlwrapper: def __init__(self,**kwds): self.conn = MySQLdb.connect(cursorclass=DictCursor,**kwds) self.cursor = self.conn.cursor() self.escape = self.conn.escape_string self.insert_id = self.conn.insert_id self.commit = self.conn.commit self.q = self.cursor.execute def qone(self,query): self.q(query) return self.cursor.fetchone() def qall(self,query): self.q(query) return self.cursor.fetchall() class MetaRecord(type): def __new__(cls, name, bases, dct): global bag_belongs_to, bag_has_many if name in globals(): return globals()[name] else: Record = type.__new__(cls, name, bases, dct) for i in bag_belongs_to: Record.belongs_to(i) for i in bag_has_many: Record.has_many(i) bag_belongs_to = [] hag_has_many = [] return Record class Storm(dict): __metaclass__ = MetaRecord __CONN = None @classmethod def belongs_to(cls, what): def dah(self): belong_cls = globals().get(what,None) if not belong_cls: belong_cls = type(what,(Storm,),{}) return belong_cls.selectone(self[what+'_id']) setattr(cls,what,new.instancemethod(dah,None,cls)) @classmethod def has_many(cls, what): def dah(self): hasmany_cls = globals().get(what,None) if not hasmany_cls: hasmany_cls = type(what,(Storm,),{}) dct={} dct[string.lower(cls.__name__)+'_id']=self['id'] return hasmany_cls.select(**dct) setattr(cls,what,new.instancemethod(dah,None,cls)) @classmethod def conn(cls, **kwds): if not cls.__CONN: cls.__CONN = Mysqlwrapper(**kwds) @classmethod def exe(cls,s): if not cls.__CONN: raise "Database not connected" return cls.__CONN.qall(s) @classmethod def insert(cls,**kwds): vs = [[k,cls.__CONN.escape(str(kwds[k]))] for k in kwds] if vs: s = "insert into %s (%s) values ('%s')" % ( string.lower(cls.__name__), ','.join([v[0] for v in vs]), "','".join([v[1] for v in vs])) cls.__CONN.q(s) cls.__CONN.commit() return cls.__CONN.insert_id() else: raise "nothing to insert" @classmethod def select(cls,*args, **kwds): if len(args)==1 and (type(args[0])==IntType or type(args[0])==LongType): q = "select * from %s where id='%s'"%(string.lower(cls.__name__),args[0]) where = "where id='%s'"%args[0] else: if args: s = ",".join(args) else: s = "*" if kwds: c,limit,orderby = [],'','' for k in kwds: if k == 'limit': limit = "limit "+str(kwds[k]) elif k == 'order': orderby = "order by "+str(kwds[k]) else: c.append(k+"='"+str(kwds[k])+"'") where = " and ".join(c) if where: where = "where %s"%where where = "%s %s %s"%(where,orderby,limit) else: where = "" q = " ".join(['select',s,'from',string.lower(cls.__name__),where]) r = cls.__CONN.qall(q) list = [] for i in r: list.append(cls(i)) list[-1].__dict__['where'] = where return list @classmethod def selectone(cls,*args, **kwds): r = cls.select(*args,**kwds) if r: return r[0] else: return {} @classmethod def update(cls,cond,**kwds): if not cond or not kwds: raise "Update What?!" if type(cond) == IntType: w = "id='%d'" % cond else: w = cond vs = [[k,cls.__CONN.escape(str(kwds[k]))] for k in kwds] if vs: s = "UPDATE %s SET %s WHERE %s" % ( string.lower(cls.__name__), ','.join(["%s='%s'"%(v[0],v[1]) for v in vs]), w) cls.__CONN.q(s) cls.__CONN.commit() @classmethod def delete(cls,id): if type(id) == IntType: cls.__CONN.q("delete from %s where id='%d'"% (string.lower(cls.__name__),id)) cls.__CONN.commit() else: raise "Only accept integer argument" def __init__(self,dct={}): if not self.__class__.__CONN: raise "Database not connected" dict.__init__(self,dct) self.__dict__['cur_table']= string.lower(self.__class__.__name__) self.__dict__['where']= '' self.__dict__['sql_buff']={} def sql(self,sql): self.__class__.__CONN.q(sql) def save(self): s = "" if self.where: f = [] for v in self.sql_buff: f.append("%s='%s'"%(v,self.sql_buff[v])) s = "UPDATE %s SET %s %s" % ( self.cur_table, ','.join(f), self.where) else: f,i=[],[] for v in self.sql_buff: f.append(v) i.append(self.sql_buff[v]) if f and i: s = "INSERT INTO %s (%s) VALUES ('%s')" % ( self.cur_table, ','.join(f), "','".join(i)) if s: self.__class__.__CONN.q(s) self.__class__.__CONN.commit() else: raise "nothing to insert" def __setattr__(self,attr,value): if attr in self.__dict__: self.__dict__[attr]=value else: v = self.__class__.__CONN.escape(str(value)) self.__dict__['sql_buff'][attr] = v self[attr] = v def __getattr__(self,attr): if attr in self.__dict__: return self.__dict__[attr] try: return self[attr] except KeyError: pass raise AttributeError __all__ = ['Storm', 'belongs_to', 'has_many'] #----------------- end of storm.py ---------------- Below is a session screenshot of using this ORM(Storm): ------------------------------------------------------------- wang@dapper-03:~/spark/lib$ mysql -u root Welcome to the MySQL monitor. Commands end with ; or \g. Your MySQL connection id is 46 to server version: 5.0.22-Debian_0ubuntu6.06-log Type 'help;' or '\h' for help. Type '\c' to clear the buffer. mysql> create database teststorm; Query OK, 1 row affected (0.00 sec) mysql> use teststorm; Database changed mysql> create table author(id int auto_increment primary key,name varchar(50)); Query OK, 0 rows affected (0.06 sec) mysql> create table book(id int auto_increment primary key,author_id int,title varchar(100)); Query OK, 0 rows affected (0.01 sec) mysql> describe author; +-------+-------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-------+-------------+------+-----+---------+----------------+ | id | int(11) | NO | PRI | NULL | auto_increment | | name | varchar(50) | YES | | NULL | | +-------+-------------+------+-----+---------+----------------+ 2 rows in set (0.00 sec) mysql> describe book; +-----------+--------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +-----------+--------------+------+-----+---------+----------------+ | id | int(11) | NO | PRI | NULL | auto_increment | | author_id | int(11) | YES | | NULL | | | title | varchar(100) | YES | | NULL | | +-----------+--------------+------+-----+---------+----------------+ 3 rows in set (0.00 sec) mysql> Bye wang@dapper-03:~/spark/lib$ python Python 2.4.3 (#2, Apr 27 2006, 14:43:58) [GCC 4.0.3 (Ubuntu 4.0.3-1ubuntu5)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> from storm import * >>> class Author(Storm): ... has_many('book') ... >>> class Book(Storm): ... belongs_to('author') ... >>> Storm.conn(user='root',db='teststorm') >>> a = Author() >>> a.name = 'Tolstoy' >>> a.save() >>> Author.insert(name='<NAME>') 0L >>> a.name, a['name'] ('Tolstoy', 'Tolstoy') >>> o = Author.selectone(2) >>> o {'id': 2L, 'name': '<NAME>'} >>> o.id, o.name, o['id'], o['name'] (2L, '<NAME>', 2L, '<NAME>') >>> b = Book() >>> b.author_id = 1 >>> b.title = '<NAME>' >>> b.save() >>> b.title = 'War and Peace' >>> b.save() >>> b.author_id = 2 >>> b.title = 'Great Expectations' >>> b.save() >>> Book.insert(author_id=2,title='A Tale of Two Cities') 0L >>> Book.insert(author_id=2,title='<NAME>') 0L >>> all = Book.select() >>> all [{'author_id': 1L, 'id': 1L, 'title': '<NAME>'}, {'author_id': 1L, 'id': 2L, 'title': 'War and Peace'}, {'author_id': 2L, 'id': 3L, 'title': 'Great Expectations'}, {'author_id': 2L, 'id': 4L, 'title': 'A Tale of Two Cities'}, {'author_id': 2L, 'id': 5L, 'title': '<NAME>'}] >>> o = Book.selectone(4) >>> a = o.author() >>> a {'id': 2L, 'name': '<NAME>'} >>> a = Author.selectone(name='Tolstoy') >>> a {'id': 1L, 'name': 'Tolstoy'} >>> b = a.book() >>> b [{'author_id': 1L, 'id': 1L, 'title': '<NAME>'}, {'author_id': 1L, 'id': 2L, 'title': 'War and Peace'}] >>> b[0].title, b[1].title ('<NAME>', 'War and Peace') >>> wang@dapper-03:~/spark/lib$
examples/advanced/compute_render_to_texture.py
minuJeong/moderngl-window
142
12648336
import moderngl as mgl from pathlib import Path import moderngl_window as mglw from moderngl_window import geometry class ComputeRenderToTexture(mglw.WindowConfig): """Simple example rendering to a texture with a compute shader""" title = "Render Texture Using Compute Shader" resource_dir = (Path(__file__) / '../../resources').resolve() gl_version = 4, 3 aspect_ratio = 1.0 def __init__(self, **kwargs): super().__init__(**kwargs) self.compute_shader = self.load_compute_shader('programs/compute/render_to_texture.glsl') self.compute_shader['destTex'] = 0 self.texture_program = self.load_program('programs/texture.glsl') self.quad_fs = geometry.quad_fs() self.texture = self.ctx.texture((256, 256), 4) self.texture.filter = mgl.NEAREST, mgl.NEAREST def render(self, time, frame_time): self.ctx.clear(0.3, 0.3, 0.3) w, h = self.texture.size gw, gh = 16, 16 nx, ny, nz = int(w / gw), int(h / gh), 1 try: self.compute_shader['time'] = time except Exception: pass # Automatically binds as a GL_R32F / r32f (read from the texture) self.texture.bind_to_image(0, read=False, write=True) self.compute_shader.run(nx, ny, nz) # Render texture self.texture.use(location=0) self.quad_fs.render(self.texture_program) if __name__ == '__main__': mglw.run_window_config(ComputeRenderToTexture)
updater_enc.py
takerum/neural-collage
580
12648337
<reponame>takerum/neural-collage<gh_stars>100-1000 import numpy as np import chainer import chainer.functions as F from chainer import Variable import chainercv def reconstruction_loss(dis, recon, gt): with chainer.using_config('train', False): v1 = dis.feature_vector(recon) v2 = dis.feature_vector(gt) denom = F.sqrt(F.batch_l2_norm_squared(v1) * F.batch_l2_norm_squared(v2)) return -F.sum(F.reshape(F.batch_matmul(v1, v2, transa=True), (v1.shape[0],)) / denom) class UpdaterEnc(chainer.training.StandardUpdater): def __init__(self, *args, **kwargs): self.models = kwargs.pop('models') if 'input_size' in kwargs: self.input_size = kwargs.pop('input_size') else: self.input_size = None self.loss_func = reconstruction_loss super(UpdaterEnc, self).__init__(*args, **kwargs) def get_batch(self, xp): batch = self.get_iterator('main').next() batchsize = len(batch) x = [] gt = [] c = [] for j in range(batchsize): x.append(np.asarray(batch[j][0]).astype("f")) gt.append(np.asarray(batch[j][1]).astype("f")) c.append(np.asarray(batch[j][2]).astype(np.int32)) x = Variable(xp.asarray(x)) gt = Variable(xp.asarray(gt)) c = Variable(xp.asarray(c)) return x, gt, c def update_core(self): gen = self.models['gen'] dis = self.models['dis'] enc = self.models['enc'] enc_optimizer = self.get_optimizer('opt_enc') xp = enc.xp # fetch batch x, gt, c = self.get_batch(xp) if self.input_size is not None: _x = [] for img in x.data.get(): _x.append(chainercv.transforms.resize(img, (self.input_size, self.input_size))) x = Variable(xp.asarray(_x)) z = enc(x, y=c) with chainer.using_config('train', False): recon = gen(batchsize=len(z), z=z, y=c) loss = reconstruction_loss(dis, recon, gt) enc.cleargrads() loss.backward() enc_optimizer.update() chainer.reporter.report({'loss': loss}) chainer.reporter.report({'min_slope': xp.min(enc.prelu_out.W.data)}) chainer.reporter.report({'max_slope': xp.max(enc.prelu_out.W.data)}) chainer.reporter.report({'min_z': xp.min(z.data)}) chainer.reporter.report({'max_z': xp.max(z.data)})
utils/track_seq.py
yiling-chen/MBMD
220
12648342
import tensorflow as tf import numpy as np from google.protobuf import text_format from object_detection.protos import pipeline_pb2 from core.model_builder import build_man_model from object_detection.core import box_list from object_detection.core import box_list_ops from PIL import Image import scipy.io as sio import cv2 import os from region_to_bbox import region_to_bbox import time import random os.environ["CUDA_VISIBLE_DEVICES"]="0" def _compile_results(gt, bboxes, dist_threshold): l = np.size(bboxes, 0) gt4 = np.zeros((l, 4)) new_distances = np.zeros(l) new_ious = np.zeros(l) n_thresholds = 50 precisions_ths = np.zeros(n_thresholds) for i in range(l): gt4[i, :] = region_to_bbox(gt[i, :], center=False) new_distances[i] = _compute_distance(bboxes[i, :], gt4[i, :]) new_ious[i] = _compute_iou(bboxes[i, :], gt4[i, :]) # what's the percentage of frame in which center displacement is inferior to given threshold? (OTB metric) precision = sum(new_distances < dist_threshold)/float(np.size(new_distances)) * 100.0 # find above result for many thresholds, then report the AUC thresholds = np.linspace(0, 25, n_thresholds+1) thresholds = thresholds[-n_thresholds:] # reverse it so that higher values of precision goes at the beginning thresholds = thresholds[::-1] for i in range(n_thresholds): precisions_ths[i] = sum(new_distances < thresholds[i])/float(np.size(new_distances)) # integrate over the thresholds precision_auc = np.trapz(precisions_ths) # per frame averaged intersection over union (OTB metric) iou = np.mean(new_ious) * 100 return l, precision, precision_auc, iou def _compute_distance(boxA, boxB): a = np.array((boxA[0]+boxA[2]/2, boxA[1]+boxA[3]/2)) b = np.array((boxB[0]+boxB[2]/2, boxB[1]+boxB[3]/2)) dist = np.linalg.norm(a - b) assert dist >= 0 assert dist != float('Inf') return dist def _compute_iou(boxA, boxB): # determine the (x, y)-coordinates of the intersection rectangle xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[0] + boxA[2], boxB[0] + boxB[2]) yB = min(boxA[1] + boxA[3], boxB[1] + boxB[3]) if xA < xB and yA < yB: # compute the area of intersection rectangle interArea = (xB - xA) * (yB - yA) # compute the area of both the prediction and ground-truth # rectangles boxAArea = boxA[2] * boxA[3] boxBArea = boxB[2] * boxB[3] # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the intersection area iou = interArea / float(boxAArea + boxBArea - interArea) else: iou = 0 assert iou >= 0 assert iou <= 1.01 return iou def get_configs_from_pipeline_file(config_file): """Reads training configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads training config from file specified by pipeline_config_path flag. Returns: model_config: model_pb2.DetectionModel train_config: train_pb2.TrainConfig input_config: input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(config_file, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model.ssd train_config = pipeline_config.train_config input_config = pipeline_config.train_input_reader eval_config = pipeline_config.eval_config return model_config, train_config, input_config, eval_config def show_res(im, box, win_name,score=None,save_path=None,frame_id=None): cv2.namedWindow(win_name) cv2.rectangle(im, (box[1], box[0]), (box[3], box[2]), [0, 255, 0], 2) if win_name == '2': cv2.putText(im,str(score[0]),(20,20),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),1) cv2.putText(im,str(score[1]),(20,40),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),1) save_path = save_path + '%04d.jpg'%frame_id #cv2.imwrite(save_path,im[:,:,-1::-1]) #cv2.waitKey(1) cv2.imshow(win_name, im[:, :, -1::-1]) cv2.waitKey(1) def restore_model(sess, model_scope, checkpoint_path, variables_to_restore): # variables_to_restore = tf.global_variables() name_to_var_dict = dict([(var.op.name.lstrip(model_scope+'/'), var) for var in variables_to_restore if not var.op.name.endswith('Momentum')]) saver = tf.train.Saver(name_to_var_dict) latest_checkpoint = tf.train.latest_checkpoint(checkpoint_path) saver.restore(sess, latest_checkpoint) def crop_search_region(img, gt, win_size, scale=4, mean_rgb=128, offset=None): # gt: [ymin, xmin, ymax, xmax] bnd_ymin, bnd_xmin, bnd_ymax, bnd_xmax = gt bnd_w = bnd_xmax - bnd_xmin bnd_h = bnd_ymax - bnd_ymin # cx, cy = gt[:2] + gt[2:] / 2 cy, cx = (bnd_ymin + bnd_ymax)/2, (bnd_xmin+bnd_xmax)/2 diag = np.sum( bnd_h** 2 + bnd_w**2) ** 0.5 origin_win_size = diag * scale origin_win_size_h, origin_win_size_w = bnd_h * scale, bnd_w * scale # origin_win_size_h = origin_win_size # origin_win_size_w = origin_win_size im_size = img.size[1::-1] min_x = np.round(cx - origin_win_size_w / 2).astype(np.int32) max_x = np.round(cx + origin_win_size_w / 2).astype(np.int32) min_y = np.round(cy - origin_win_size_h / 2).astype(np.int32) max_y = np.round(cy + origin_win_size_h / 2).astype(np.int32) if offset is not None: min_offset_y, max_offset_y = (bnd_ymax - max_y, bnd_ymin - min_y) min_offset_x, max_offset_x = (bnd_xmax - max_x, bnd_xmin - min_x) offset[0] = np.clip(offset[0] * origin_win_size_h, min_offset_y, max_offset_y) offset[1] = np.clip(offset[1] * origin_win_size_w, min_offset_x, max_offset_x) offset = np.int32(offset) min_y += offset[0] max_y += offset[0] min_x += offset[1] max_x += offset[1] win_loc = np.array([min_y, min_x]) gt_x_min, gt_y_min = ((bnd_xmin-min_x)/origin_win_size_w, (bnd_ymin - min_y)/origin_win_size_h) #coordinates on window gt_x_max, gt_y_max = [(bnd_xmax-min_x)/origin_win_size_w, (bnd_ymax - min_y)/origin_win_size_h] #relative coordinates of gt bbox to the search region unscaled_w, unscaled_h = [max_x - min_x + 1, max_y - min_y + 1] min_x_win, min_y_win, max_x_win, max_y_win = (0, 0, unscaled_w, unscaled_h) min_x_im, min_y_im, max_x_im, max_y_im = (min_x, min_y, max_x+1, max_y+1) img = img.crop([min_x_im, min_y_im, max_x_im, max_y_im]) img_array = np.array(img) if min_x < 0: min_x_im = 0 min_x_win = 0 - min_x if min_y < 0: min_y_im = 0 min_y_win = 0 - min_y if max_x+1 > im_size[1]: max_x_im = im_size[1] max_x_win = unscaled_w - (max_x + 1 - im_size[1]) if max_y+1 > im_size[0]: max_y_im = im_size[0] max_y_win = unscaled_h- (max_y +1 - im_size[0]) unscaled_win = np.ones([unscaled_h, unscaled_w, 3], dtype=np.uint8) * np.uint8(mean_rgb) unscaled_win[min_y_win:max_y_win, min_x_win:max_x_win] = img_array[min_y_win:max_y_win, min_x_win:max_x_win] unscaled_win = Image.fromarray(unscaled_win) height_scale, width_scale = np.float32(unscaled_h)/win_size, np.float32(unscaled_w)/win_size win = unscaled_win.resize([win_size, win_size], resample=Image.BILINEAR) # win = sp.misc.imresize(unscaled_win, [win_size, win_size]) return win, np.array([gt_y_min, gt_x_min, gt_y_max, gt_x_max]), win_loc, [height_scale, width_scale] # return win, np.array([gt_x_min, gt_y_min, gt_x_max, gt_y_max]), diag, np.array(win_loc) def generate_init_training_samples(img, box, win_size, src_scales=None, tar_scales=None, batch_size=20, mean_rgb=128): if src_scales is None: src_scales = [1.2, 3] if tar_scales is None: tar_scales = [3.7, 4.5] out_images = np.zeros([batch_size, 1, win_size, win_size, 3], dtype=np.uint8) out_gt_box = np.zeros([batch_size, 1, 4], dtype=np.float32) init_img = img.crop(np.int32([box[1], box[0], box[3], box[2]])) init_img = init_img.resize([128,128], resample=Image.BILINEAR) init_img = np.array(init_img) init_img = np.expand_dims(np.expand_dims(init_img,axis=0),axis=0) init_img = np.tile(init_img,(batch_size,1,1,1,1)) for ind in range(batch_size): src_scale = np.random.rand(1)[0]*(src_scales[1]-src_scales[0]) + src_scales[0] tar_scale = np.random.rand(1)[0]*(tar_scales[1]-tar_scales[0]) + tar_scales[0] src_offset = np.random.laplace(0, 0.2, [2]) tar_offset = np.random.laplace(0, 0.2, [2]) # src_win, src_gt, _, _ = crop_search_region(img, box, win_size, src_scale, offset=src_offset) tar_win, tar_gt, _, _ = crop_search_region(img, box, win_size, tar_scale, offset=tar_offset) #out_images[ind, 0] = init_img out_images[ind, 0] = tar_win out_gt_box[ind, 0] = tar_gt return out_images, init_img,out_gt_box def build_test_graph(model, model_scope, reuse=None,weights_dict=None): input_init_gt_box = tf.constant(np.zeros((1,4)), dtype=tf.float32) # input_init_image = tf.constant(init_img_array, dtype=tf.uint8) input_init_image = tf.placeholder(dtype=tf.uint8, shape=[128,128,3]) input_cur_image = tf.placeholder(dtype=tf.uint8, shape=[300,300,3]) init_gt_box = tf.reshape(input_init_gt_box, shape=[1,1,4]) groundtruth_classes = tf.ones(dtype=tf.float32, shape=[1,1,1]) float_init_image = tf.to_float(input_init_image) float_init_image = tf.expand_dims(tf.expand_dims(float_init_image, axis=0), axis=0) preprocessed_init_image = model.preprocess(float_init_image, [128,128]) images = tf.expand_dims(input_cur_image, axis=0) float_images = tf.to_float(images) preprocessed_images = model.preprocess(float_images) preprocessed_images = tf.expand_dims(preprocessed_images, axis=0) model.provide_groundtruth(init_gt_box, groundtruth_classes, None) with tf.variable_scope(model_scope, reuse=reuse): prediction_dict = model.predict(preprocessed_init_image, preprocessed_images,istraining=False,reuse=reuse) detections = model.postprocess(prediction_dict) original_image_shape = tf.shape(preprocessed_images) absolute_detection_boxlist = box_list_ops.to_absolute_coordinates( box_list.BoxList(tf.squeeze(detections['detection_boxes'], axis=0)), original_image_shape[2], original_image_shape[3]) return absolute_detection_boxlist.get(), detections['detection_scores'], input_cur_image, input_init_image def build_extract_feature_graph(model, model_scope,reuse=None): batch_size = 20 seq_len = 1 image = tf.placeholder(dtype=tf.uint8, shape=[batch_size, seq_len, 300,300,3]) float_image = tf.to_float(image) float_image = tf.reshape(float_image,[-1,300,300,3]) preprocessed_images = model.preprocess(float_image) preprocessed_images = tf.reshape(preprocessed_images,[batch_size,seq_len,300,300,3]) random_noise = tf.random_normal([batch_size, seq_len, 300, 300, 3], mean=0, stddev=0.1) preprocessed_images = preprocessed_images + random_noise with tf.variable_scope(model_scope, reuse=reuse): output_dict = model.extract_feature(preprocessed_images) init_image = tf.placeholder(dtype=tf.uint8, shape=[1,seq_len, 128,128,3]) float_init_image = tf.to_float(init_image) float_init_image = tf.reshape(float_init_image,[-1,128,128,3]) preprocessed_init_images = model.preprocess(float_init_image,[128,128]) preprocessed_init_images = tf.reshape(preprocessed_init_images,[1,seq_len,128,128,3]) with tf.variable_scope(model_scope, reuse=reuse): init_feature_maps = model.extract_init_feature(preprocessed_init_images) return image, init_image, output_dict, init_feature_maps def build_extract_feature_graph1(model, model_scope,reuse=None): batch_size = 5 seq_len = 1 image = tf.placeholder(dtype=tf.uint8, shape=[batch_size, seq_len, 300,300,3]) float_image = tf.to_float(image) float_image = tf.reshape(float_image,[-1,300,300,3]) preprocessed_images = model.preprocess(float_image) preprocessed_images = tf.reshape(preprocessed_images,[batch_size,seq_len,300,300,3]) random_noise = tf.random_normal([batch_size, seq_len, 300, 300, 3], mean=0, stddev=0.1) preprocessed_images = preprocessed_images + random_noise with tf.variable_scope(model_scope, reuse=reuse): output_dict = model.extract_feature(preprocessed_images) init_image = tf.placeholder(dtype=tf.uint8, shape=[1,seq_len, 128,128,3]) float_init_image = tf.to_float(init_image) float_init_image = tf.reshape(float_init_image,[-1,128,128,3]) preprocessed_init_images = model.preprocess(float_init_image,[128,128]) preprocessed_init_images = tf.reshape(preprocessed_init_images,[1,seq_len,128,128,3]) with tf.variable_scope(model_scope, reuse=reuse): init_feature_maps = model.extract_init_feature(preprocessed_init_images) return image, init_image, output_dict, init_feature_maps # def build_train_boxpredictor_graph(model, model_scope,reuse=None): # batch_size = 20 # seq_len = 1 # init_features = tf.placeholder(dtype=tf.float32, shape=[batch_size,seq_len,1,1,]) def build_train_graph(model,model_scope, lr=1e-5, reuse=None): batch_size = 20 seq_len = 1 featureOp0 = tf.placeholder(dtype=tf.float32, shape=[batch_size,19,19,512]) featureOp1 = tf.placeholder(dtype=tf.float32, shape=[batch_size,10,10,512]) # featureOp2 = tf.placeholder(dtype=tf.float32, shape=[batch_size,5,5,256]) # featureOp3 = tf.placeholder(dtype=tf.float32, shape=[batch_size,3,3,256]) # featureOp4 = tf.placeholder(dtype=tf.float32, shape=[batch_size,2,2,256]) # featureOp5 = tf.placeholder(dtype=tf.float32, shape=[batch_size,1,1,256]) initFeatureOp = tf.placeholder(dtype=tf.float32, shape=[batch_size,1,1,512]) feature_maps = [featureOp0,featureOp1] train_gt_box = tf.placeholder(dtype=tf.float32, shape=[batch_size,seq_len,4]) train_gt_class = tf.ones(dtype=tf.uint8, shape=[batch_size,seq_len,1]) model.provide_groundtruth(train_gt_box,train_gt_class,None) with tf.variable_scope(model_scope,reuse=reuse): train_prediction_dict = model.predict_box(initFeatureOp,feature_maps,istraining=True) losses_dict = model.loss(train_prediction_dict) total_loss = 0 # total_loss = losses_dict['classification_loss'] for loss in losses_dict.values(): total_loss += loss update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) optimizer = tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9) # optimizer = tf.train.AdamOptimizer() variables_to_restore = tf.global_variables() all_trainable_variables = tf.trainable_variables() trainable_variables = [var for var in all_trainable_variables if (var.op.name.startswith(model_scope + '/BoxPredictor') )] grad_vars = optimizer.compute_gradients(total_loss, trainable_variables) for grad, var in grad_vars: if grad is not None: if var.name.endswith("Conv3x3_OutPut_40/weights:0") or var.name.endswith("Conv3x3_OutPut_40/biases:0") or var.name.endswith("Conv3x3_OutPut_20/weights:0") \ or var.name.endswith("Conv3x3_OutPut_20/biases:0") or var.name.endswith("Conv1x1_OutPut_20/weights:0") or var.name.endswith("Conv1x1_OutPut_20/biases:0") \ or var.name.endswith("Conv1x1_OutPut_10/weights:0") or var.name.endswith( "Conv1x1_OutPut_10/biases:0"): grad *= 10.0 grad_updates = optimizer.apply_gradients(grad_vars) update_ops.append(grad_updates) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_tensor = tf.identity(total_loss, name='train_op') return train_tensor, variables_to_restore,featureOp0, featureOp1, initFeatureOp, train_gt_box # def build_train_graph(model, model_scope, lr=1e-3, reuse=None): # build training graph # batch_size = 20 # seq_len = 1 # train_gt_box =tf.placeholder(dtype=tf.float32, shape=[batch_size, seq_len, 4]) # train_image = tf.placeholder(dtype=tf.uint8, shape=[batch_size, seq_len, 300,300,3]) # train_init_image = tf.placeholder(dtype=tf.uint8, shape=[batch_size, seq_len, 128,128,3]) # train_gt_class = tf.ones(dtype=tf.uint8, shape=[batch_size, seq_len,1]) # train_float_images = tf.to_float(train_image) # train_float_images = tf.reshape(train_float_images, [-1, 300, 300, 3]) # train_preprocessed_images = model.preprocess(train_float_images) # train_preprocessed_images = tf.reshape(train_preprocessed_images, [batch_size, seq_len, 300,300,3]) # # train_float_init_images = tf.to_float(train_init_image) # train_float_init_images = tf.reshape(train_float_init_images, [-1, 128, 128, 3]) # train_preprocessed_init_images = model.preprocess(train_float_init_images,[128,128]) # train_preprocessed_init_images = tf.reshape(train_preprocessed_init_images, [batch_size, seq_len, 128,128,3]) # # random_noise = tf.random_normal([batch_size, seq_len, 300, 300, 3], mean=0, stddev=0.1) # train_preprocessed_images = train_preprocessed_images + random_noise # model.provide_groundtruth(train_gt_box, # train_gt_class, # None) # with tf.variable_scope(model_scope, reuse=reuse): # train_prediction_dict = model.predict(train_preprocessed_init_images,train_preprocessed_images,istraining=True) # losses_dict = model.loss(train_prediction_dict) # total_loss = 0 # # total_loss = losses_dict['classification_loss'] # for loss in losses_dict.values(): # total_loss += loss # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # optimizer = tf.train.MomentumOptimizer(learning_rate=lr, momentum=0.9) # # optimizer = tf.train.AdamOptimizer() # variables_to_restore = tf.global_variables() # all_trainable_variables = tf.trainable_variables() # trainable_variables = [var for var in all_trainable_variables if var.op.name.startswith(model_scope + '/BoxPredictor')] # grad_vars = optimizer.compute_gradients(total_loss, trainable_variables) # grad_updates = optimizer.apply_gradients(grad_vars) # update_ops.append(grad_updates) # update_op = tf.group(*update_ops) # with tf.control_dependencies([update_op]): # train_tensor = tf.identity(total_loss, name='train_op') # def _build_feed_dict(x, y,z): # return {train_image: x, train_init_image:z,train_gt_box: y} # return train_tensor, _build_feed_dict, variables_to_restore def main(_): init_training = True config_file = 'model/ssd_mobilenet_tracking.config' # checkpoint_dir = '../model/server13_alov' # checkpoint_dir = '../model/ssd_mobilenet_alov2' # checkpoint_dir = '../model/server13_alov2' # checkpoint_dir = '../model/server14_alov2' # checkpoint_dir = '../model/server13_alov_2.2' # checkpoint_dir = '../model/server13_alov2.4.0' # checkpoint_dir = '../model/ssd_mobilenet_alov2.4.1' # checkpoint_dir = '../model/server12_alov2.4.3' checkpoint_dir = 'model/dump' model_config, train_config, input_config, eval_config = get_configs_from_pipeline_file(config_file) model = build_man_model(model_config=model_config, is_training=False) model_scope = 'model' reuse = None if init_training: imageOp, initImageOp, featureDict, initFeature = build_extract_feature_graph(model, model_scope, reuse=reuse) loss_op, variables_to_restore, featureOp0, featureOp1, initFeatureOp, train_gt_boxOp = build_train_graph(model, model_scope, reuse=reuse) reuse = True pre_box_tensor, scores_tensor, input_cur_image, input_init_image = build_test_graph(model, model_scope, reuse=reuse) image_root = '/home/xiaobai/dataset/OTB/' titles = os.listdir(image_root) titles.sort() precisions = np.zeros(len(titles)) precisions_auc = np.zeros(len(titles)) ious = np.zeros(len(titles)) lengths = np.zeros(len(titles)) speed = np.zeros(len(titles)) for title_id in range(len(titles)): sess = tf.Session() sess.run(tf.global_variables_initializer()) if not init_training: variables_to_restore = tf.global_variables() restore_model(sess, model_scope, checkpoint_dir, variables_to_restore) title = titles[title_id] #title = 'BlurCar2' image_path = image_root + title+'/img/' gt_path = image_root +title+ '/groundtruth_rect.txt' try: gt = np.loadtxt(gt_path) except: gt = np.loadtxt(gt_path, delimiter=',') num_frames = gt.shape[0] frame_list = os.listdir(image_path) frame_list = [frame for frame in frame_list if frame.endswith('jpg')] frame_list.sort() # init_img = Image.open(image_path + '0001.jpg') init_img = Image.open(image_path + frame_list[0]) init_gt = gt[0] init_gt = [init_gt[1], init_gt[0], init_gt[1]+init_gt[3], init_gt[0]+init_gt[2]] # ymin xmin ymax xmax # init_gt = [x-20 for x in ini_gt] init_img_array = np.array(init_img) expand_channel = False if init_img_array.ndim < 3: init_img_array = np.expand_dims(init_img_array, axis=2) init_img_array = np.repeat(init_img_array, repeats=3, axis=2) init_img = Image.fromarray(init_img_array) expand_channel = True gt_boxes = np.zeros((1,4)) gt_boxes[0,0] = init_gt[0] / float(init_img.height) gt_boxes[0,1] = init_gt[1] / float(init_img.width) gt_boxes[0,2] = init_gt[2] / float(init_img.height) gt_boxes[0,3] = init_gt[3] / float(init_img.width) img1_xiaobai = np.array(init_img) pad_x = 36.0 / 264.0 * (gt_boxes[0, 3] - gt_boxes[0, 1]) * init_img.width pad_y = 36.0 / 264.0 * (gt_boxes[0, 2] - gt_boxes[0, 0]) * init_img.height cx = (gt_boxes[0, 3] + gt_boxes[0, 1]) / 2.0 * init_img.width cy = (gt_boxes[0, 2] + gt_boxes[0, 0]) / 2.0 * init_img.height startx = gt_boxes[0, 1] * init_img.width - pad_x starty = gt_boxes[0, 0] * init_img.height - pad_y endx = gt_boxes[0, 3] * init_img.width + pad_x endy = gt_boxes[0, 2] * init_img.height + pad_y left_pad = max(0, int(-startx)) top_pad = max(0, int(-starty)) right_pad = max(0, int(endx - init_img.width + 1)) bottom_pad = max(0, int(endy - init_img.height + 1)) startx = int(startx + left_pad) starty = int(starty + top_pad) endx = int(endx + left_pad) endy = int(endy + top_pad) if top_pad or left_pad or bottom_pad or right_pad: r = np.pad(img1_xiaobai[:, :, 0], ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant', constant_values=128) g = np.pad(img1_xiaobai[:, :, 1], ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant', constant_values=128) b = np.pad(img1_xiaobai[:, :, 2], ((top_pad, bottom_pad), (left_pad, right_pad)), mode='constant', constant_values=128) r = np.expand_dims(r, 2) g = np.expand_dims(g, 2) b = np.expand_dims(b, 2) # h, w = r.shape # r1 = np.zeros([h, w, 1], dtype=np.float32) # r1[:, :, 0] = r # g1 = np.zeros([h, w, 1], dtype=np.float32) # g1[:, :, 0] = g # b1 = np.zeros([h, w, 1], dtype=np.float32) # b1[:, :, 0] = b img1_xiaobai = np.concatenate((r, g, b), axis=2) img1_xiaobai = Image.fromarray(img1_xiaobai) # gt_boxes resize init_img_crop = img1_xiaobai.crop(np.int32([startx, starty, endx, endy])) # init_img_crop, _, _, _ = crop_search_region(init_img, init_gt, 300, 1.5) #init_img_crop = init_img.crop(np.int32([init_gt[1], init_gt[0], init_gt[3], init_gt[2]])) init_img_crop = init_img_crop.resize([128,128], resample=Image.BILINEAR) last_gt = init_gt # init_img_crop, init_gt_norm, win_loc, scale= crop_search_region(init_img, init_gt, 300, mean_rgb=128) # last_gt = np.int32([init_gt_norm[0]*init_img_crop.height*scale[0]+win_loc[0], init_gt_norm[1]*init_img_crop.width*scale[1]+win_loc[1], # init_gt_norm[2]*init_img_crop.height*scale[0] + win_loc[0], init_gt_norm[3]*init_img_crop.width*scale[1] + win_loc[1]]) # gt = np.array([74, 22, 82, 105], dtype=np.float32) # gt = [(gt[1])/init_img.height, (gt[0])/init_img.width, (gt[3]+gt[1])/init_img.height, (gt[2]+gt[0])/init_img.width] # init_img = init_img.resize([300,300]) init_img_array = np.array(init_img_crop) init_img_array1 = np.expand_dims(init_img_array, axis=0) init_img_array1 = np.expand_dims(init_img_array1, axis=0) #time1 = time.time() initfeatures1 = sess.run(initFeature, feed_dict={initImageOp: init_img_array1}) #time2 = time.time() #print time2 - time1 #Train: # if init_training: # for i in range(20): # train_images, train_init_images, train_gt = generate_init_training_samples(init_img, init_gt, 300) # featuredict1 = sess.run(featureDict, feed_dict={imageOp: train_images}) # region_map0 = featuredict1['feature_maps0'] # region_map1 = featuredict1['feature_maps1'] # # initfeatures2 = np.tile(initfeatures1, [20, 1, 1, 1]) # loss = sess.run(loss_op, # feed_dict={featureOp0: region_map0, featureOp1: region_map1, initFeatureOp: initfeatures2, # train_gt_boxOp: train_gt}) # if loss < 2: # break # #print("Training Iter %d, Loss: %f"%(i, loss)) #region_map0_record = region_map0.copy() #region_map1_record = region_map1.copy() # region_map2_record = region_map2.copy() # region_map3_record = region_map3.copy() # region_map4_record = region_map4.copy() # region_map5_record = region_map5.copy() #train_gt_record = train_gt.copy() save_path = 'result_img/' +title + '/' if not os.path.isdir(save_path): os.mkdir(save_path) update_count = 0 avg_score = 0 bBoxes = np.zeros((num_frames,4)) bBoxes[0,:] = init_gt t_start = time.time() for i in range(2,num_frames): frame_path = image_path + frame_list[i-1] cur_ori_img = Image.open(frame_path) if expand_channel: cur_ori_img = np.array(cur_ori_img) cur_ori_img = np.expand_dims(cur_ori_img, axis=2) cur_ori_img = np.repeat(cur_ori_img, repeats=3, axis=2) cur_ori_img = Image.fromarray(cur_ori_img) cropped_img, last_gt_norm, win_loc, scale = crop_search_region(cur_ori_img, last_gt, 300, mean_rgb=128) cur_img_array = np.array(cropped_img) detection_box, scores = sess.run([pre_box_tensor, scores_tensor], feed_dict={input_cur_image: cur_img_array, input_init_image: init_img_array}) #detection_box = detection_box[0] detection_box[:,0] = detection_box[:,0] * scale[0]+ win_loc[0] detection_box[:,1] = detection_box[:,1] * scale[1]+ win_loc[1] detection_box[:,2] = detection_box[:,2] * scale[0]+ win_loc[0] detection_box[:,3] = detection_box[:,3] * scale[1] + win_loc[1] # cur_ori_img_array = np.array(cur_ori_img) # for tmp in range(20): # cv2.rectangle(cur_ori_img_array,(detection_box[tmp,1],detection_box[tmp,0]), (detection_box[tmp,3],detection_box[tmp,2]),(0,0,255),thickness=1) # cv2.imshow("heh",cur_ori_img_array) # cv2.waitKey(0) # # # if scores[0,0] > 0.2: # center_box = [(detection_box[:,0] + detection_box[:,2]) / 2.0, (detection_box[:,1] + detection_box[:,3]) / 2.0] # center_box = np.array(center_box) # distances = np.zeros((100,)) # last_cx = (last_gt[1] + last_gt[3])/2.0 # last_cy = (last_gt[0] + last_gt[2]) / 2.0 # for tmp in range(100): # distances[tmp] = ((center_box[0,tmp] -last_cy)**2 + (center_box[1,tmp] - last_cx)**2) ** 0.5 # distances = distances.reshape((1,100)) # distances = 1.0 / distances # scores_ = scores + distances * 0.5 # index = np.argsort(scores_,axis=1) # detection_box = detection_box[index[0][-1]] # else: # index = np.argsort(scores,axis=1) # detection_box = detection_box[0] # detection_box = detection_box[0] rank = np.argsort(scores) k = 50 candidates = rank[0,-k:] flowfile = '/home/xiaobai/dataset/OTB_flow/%s/img/%04d.mat'%(title,i-1) flow = sio.loadmat(flowfile) flowvalue = flow['flow'].copy() flow_x = flowvalue[:, :, 0] flow_y = flowvalue[:, :, 1] flow_x = cv2.resize(flow_x,(cur_ori_img.width, cur_ori_img.height)) flow_y = cv2.resize(flow_y,(cur_ori_img.width, cur_ori_img.height)) py1 = int(last_gt[0]) px1 = int(last_gt[1]) py2 = int(last_gt[2]) px2 = int(last_gt[3]) flow_x_region = flow_x[py1:py2, px1:px2].flatten() flow_y_region = flow_y[py1:py2, px1:px2].flatten() xx, yy = np.meshgrid(np.arange(px1, px2, 1), np.arange(py1, py2, 1)) xx_flat = xx.flatten() yy_flat = yy.flatten() xx_next = xx_flat + flow_x_region yy_next = yy_flat + flow_y_region #k = 20 pixel_count = np.zeros((k,)) for ii in range(k): bb = detection_box[candidates[ii],:].copy() flags = xx_next >= bb[1] flags = np.logical_and(flags, xx_next <= bb[3]) flags = np.logical_and(flags, yy_next >= bb[0]) flags = np.logical_and(flags, yy_next <= bb[2]) pixel_count[ii] = np.sum(flags) threshold = 0.6 while threshold >= 0.2:#0.2: passed = pixel_count > ((py2-py1) * (px2-px1) * threshold) if np.sum(passed) > 0: candidates_left = candidates[passed] max_idx = candidates_left[np.argmax(scores[0, candidates_left])] break else: threshold -= 0.1 if np.sum(passed) == 0: max_idx = 0 detection_box = detection_box[max_idx] show_res(cur_img_array, detection_box, '1') #print('Score: %f'%scores[0,max_idx]) avg_score = avg_score + 1.0/(i-1) * (scores[0,max_idx]-avg_score) if scores[0,max_idx] > 0.5:#scores[0,max_idx] > 0.5: #or (i > 10 and avg_score < 0.3 and scores[0,max_idx] > 0.4): # detection_box = [detection_box[0]*scale[0], detection_box[1]*scale[1], detection_box[2]*scale[0], detection_box[3]*scale[1]] # last_gt = np.int32([detection_box[0] + win_loc[0], detection_box[1] + win_loc[1], # detection_box[2] + win_loc[0], detection_box[3] + win_loc[1]]) y1 = detection_box[0] x1 = detection_box[1] y2 = detection_box[2] x2 = detection_box[3] if x1 < 0: x1 = 0 x2 = x1 + (last_gt[3] - last_gt[1]) if y1 < 0: y1 = 0 y2 = y1 + (last_gt[2] - last_gt[0]) if x2 >= cur_ori_img.width: x2 = cur_ori_img.width - 1 x1 = x2 - (last_gt[3] - last_gt[1]) if y2 >= cur_ori_img.height: y2 = cur_ori_img.height - 1 y1 = y2 - (last_gt[2] - last_gt[0]) last_gt = np.int32([y1, x1, y2, x2]) #last_gt = np.int32(detection_box) cur_ori_img_array = np.array(cur_ori_img) show_res(cur_ori_img_array, np.array(last_gt, dtype=np.int32), '2', score=[scores[0,max_idx],avg_score], save_path=save_path, frame_id=i) # for i in range(1): # # if avg_score < 0.75 or i < 10: # # train_images, train_init_images1, train_gt = generate_init_training_samples(cur_ori_img, last_gt, 300) # # featuredict1 = sess.run(featureDict, feed_dict={imageOp: train_images}) # # else: # train_images, train_init_images1, train_gt = generate_init_training_samples(cur_ori_img, last_gt, 300,batch_size=5) # featuredict1 = sess.run(featureDict1, feed_dict={imageOp1: train_images}) # # region_map0 = featuredict1['feature_maps0'] # region_map1 = featuredict1['feature_maps1'] # # region_map0_record = np.concatenate((region_map0_record,region_map0), axis=0) # region_map1_record = np.concatenate((region_map1_record,region_map1), axis=0) # train_gt_record = np.concatenate((train_gt_record,train_gt),axis=0) else: # cx = (detection_box[1]*scale[1] + detection_box[3]*scale[1]) / 2.0 + win_loc[1] # cy = (detection_box[0]*scale[0] + detection_box[2]*scale[0]) / 2.0 + win_loc[0] cx = (detection_box[1] + detection_box[3]) / 2.0 cy = (detection_box[0] + detection_box[2]) /2.0 x1 = cx - (last_gt[3] - last_gt[1]) / 2.0 x2 = cx + (last_gt[3] - last_gt[1]) / 2.0 y1 = cy - (last_gt[2] - last_gt[0]) / 2.0 y2 = cy + (last_gt[2] - last_gt[0]) / 2.0 if x1 < 0: x1 = 0 x2 = x1 + (last_gt[3] - last_gt[1]) if y1 < 0: y1 = 0 y2 = y1 + (last_gt[2] - last_gt[0]) if x2 >= cur_ori_img.width: x2 = cur_ori_img.width - 1 x1 = x2 - (last_gt[3] - last_gt[1]) if y2 >= cur_ori_img.height: y2 = cur_ori_img.height - 1 y1 = y2 - (last_gt[2] - last_gt[0]) last_gt = np.int32([y1,x1,y2,x2]) cur_ori_img_array = np.array(cur_ori_img) show_res(cur_ori_img_array, np.array(last_gt, dtype=np.int32), '2', score=[scores[0,max_idx],avg_score], save_path=save_path, frame_id=i) #update_count += 1 bBoxes[i-1,:] = last_gt bBoxes[:,2] = bBoxes[:,2] - bBoxes[:,0] bBoxes[:,3] = bBoxes[:,3] - bBoxes[:,1] bBoxes_ = np.zeros((num_frames,4)) bBoxes_[:,0] = bBoxes[:,1] bBoxes_[:,1] = bBoxes[:,0] bBoxes_[:,2] = bBoxes[:,3] bBoxes_[:,3] = bBoxes[:,2] t_elapsed = time.time() - t_start speed_i = num_frames / t_elapsed speed[title_id] = speed_i lengths[title_id], precisions[title_id], precisions_auc[title_id], ious[title_id] = _compile_results(gt, bBoxes_,20) print str(title_id) + ' -- ' + titles[title_id] + \ ' -- Precision: ' + "%.2f" % precisions[title_id] + \ ' -- Precisions AUC: ' + "%.2f" % precisions_auc[title_id] + \ ' -- IOU: ' + "%.2f" % ious[title_id] print sess.close() tot_frames = np.sum(lengths) mean_precision = np.sum(precisions * lengths) / tot_frames mean_precision_auc = np.sum(precisions_auc * lengths) / tot_frames mean_iou = np.sum(ious * lengths) / tot_frames mean_speed = np.sum(speed * lengths) / tot_frames print '-- Overall stats (averaged per frame) on ' + str(len(titles)) + ' videos (' + str(tot_frames) + ' frames) --' print ' -- Precision ' + "(20 px)" + ': ' + "%.2f" % mean_precision + \ ' -- Precisions AUC: ' + "%.2f" % mean_precision_auc + \ ' -- IOU: ' + "%.2f" % mean_iou + \ ' -- Speed: ' + "%.2f" % mean_speed + ' --' print if __name__ == '__main__': tf.app.run()
netbox/ipam/migrations/0050_iprange.py
TheFlyingCorpse/netbox
4,994
12648393
<reponame>TheFlyingCorpse/netbox<gh_stars>1000+ # Generated by Django 3.2.5 on 2021-07-16 14:15 import django.core.serializers.json from django.db import migrations, models import django.db.models.deletion import django.db.models.expressions import ipam.fields import taggit.managers class Migration(migrations.Migration): dependencies = [ ('extras', '0061_extras_change_logging'), ('tenancy', '0001_squashed_0012'), ('ipam', '0049_prefix_mark_utilized'), ] operations = [ migrations.CreateModel( name='IPRange', fields=[ ('created', models.DateField(auto_now_add=True, null=True)), ('last_updated', models.DateTimeField(auto_now=True, null=True)), ('custom_field_data', models.JSONField(blank=True, default=dict, encoder=django.core.serializers.json.DjangoJSONEncoder)), ('id', models.BigAutoField(primary_key=True, serialize=False)), ('start_address', ipam.fields.IPAddressField()), ('end_address', ipam.fields.IPAddressField()), ('size', models.PositiveIntegerField(editable=False)), ('status', models.CharField(default='active', max_length=50)), ('description', models.CharField(blank=True, max_length=200)), ('role', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='ip_ranges', to='ipam.role')), ('tags', taggit.managers.TaggableManager(through='extras.TaggedItem', to='extras.Tag')), ('tenant', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='ip_ranges', to='tenancy.tenant')), ('vrf', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='ip_ranges', to='ipam.vrf')), ], options={ 'verbose_name': 'IP range', 'verbose_name_plural': 'IP ranges', 'ordering': (django.db.models.expressions.OrderBy(django.db.models.expressions.F('vrf'), nulls_first=True), 'start_address', 'pk'), }, ), ]
src/radish/parser/transformer.py
radish-bdd/radish2
182
12648401
""" radish ~~~~~~ the root from red to green. BDD tooling for Python. :copyright: (c) 2019 by <NAME> <<EMAIL>> :license: MIT, see LICENSE for more details. """ import itertools import textwrap from pathlib import Path from lark import Transformer from radish.models import ( Background, ConstantTag, DefaultRule, Feature, PreconditionTag, Rule, Scenario, ScenarioLoop, ScenarioOutline, Step, Tag, ) from radish.parser.errors import ( RadishFirstStepMustUseFirstLevelKeyword, RadishScenarioOutlineExamplesInconsistentCellCount, RadishStepDataTableInconsistentCellCount, ) class RadishGherkinTransformer(Transformer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.featurefile_contents = None self.feature_id = None self.__step_id = None self.__scenario_id = None self.__step_keyword_ctx = None def prepare( self, language_spec, featurefile_path: Path, featurefile_contents: str, feature_id: int, ): """Prepare the Transformer for the next transformation""" self.language_spec = language_spec self.featurefile_path = featurefile_path self.featurefile_contents = featurefile_contents.splitlines(True) self.feature_id = feature_id self.__step_id = 1 self.__scenario_id = 1 def start(self, subtree): """Transform the root element for the radish AST""" if len(subtree) > 0: return subtree[0] return None def step_doc_string(self, subtree): """Transform the ``step_doc_string``-subtree for the radish AST""" startline = subtree[0].line endline = subtree[-1].line - 1 lines = "".join(self.featurefile_contents[startline:endline]) return textwrap.dedent(lines) def _table_cell(self, subtree): """Transform a Table Cell""" raw_cell_value = subtree[0].strip() # remove VBAR escape sequences cell_value = raw_cell_value.replace(r"\|", "|") return cell_value def _table_row(self, subtree): """Transform a Table Row""" return list(subtree) #: Transform the ``step_data_table_cell``-subtree for the radish AST step_data_table_cell = _table_cell #: Transform the ``step_data_table_row``-subtree for the radish AST step_data_table_row = _table_row def step_data_table(self, subtree): """Transform the ``step_data_table``-subtree for the radish AST""" # check if all rows have the same amount of cells table = list(subtree) if len({len(row) for row in table}) > 1: raise RadishStepDataTableInconsistentCellCount() return table def step_arguments(self, subtree): """Transform the ``step_arguments``-subtree for the radish AST""" if len(subtree) == 0: doc_string = None data_table = None elif len(subtree) == 2: doc_string, data_table = subtree elif isinstance(subtree[0], str): doc_string = subtree[0] data_table = None else: doc_string = None data_table = subtree[0] return doc_string, data_table def step(self, subtree): """Transform the ``step``-subtree for the radish AST""" keyword, text, (doc_string, data_table) = subtree keyword_line = keyword.line keyword = keyword.strip() if self.__step_keyword_ctx is None: if keyword not in self.language_spec.first_level_step_keywords: raise RadishFirstStepMustUseFirstLevelKeyword() self.__step_keyword_ctx = keyword else: if keyword in self.language_spec.first_level_step_keywords: if keyword != self.__step_keyword_ctx: self.__step_keyword_ctx = keyword english_keyword = next( key for key, value in self.language_spec.keywords.items() if value == self.__step_keyword_ctx ) step = Step( self.__step_id, english_keyword, keyword, text, doc_string, data_table, self.featurefile_path, keyword_line, ) # increment step id for the next step self.__step_id += 1 return step def scenario(self, subtree): """Transform the ``scenario``-subtree for the radish AST""" tags = list(itertools.takewhile(lambda t: isinstance(t, Tag), subtree)) keyword = subtree[len(tags)] short_description, *steps = subtree[len(tags) + 1 :] scenario = Scenario( self.__scenario_id, keyword, short_description, tags, self.featurefile_path, short_description.line, steps, ) # increment scenario id and reset step id for the next scenario self.__scenario_id += 1 self.__step_id = 1 self.__step_keyword_ctx = None return scenario #: Transform the ``example_cell``-subtree for the radish AST example_cell = _table_cell #: Transform the ``example_row``-subtree for the radish AST example_row = _table_row def examples(self, subtree): """Transform the ``examples``-subtree for the radish AST""" # check if all rows have the same amount of cells if len({len(row) for row in subtree}) > 1: raise RadishScenarioOutlineExamplesInconsistentCellCount() header, *rows = subtree return [dict(zip(header, row)) for row in rows] def scenario_outline(self, subtree): """Transform the ``scenario_outline``-subtree for the radish AST""" # consume Feature Tags tags = list(itertools.takewhile(lambda t: isinstance(t, Tag), subtree)) keyword = subtree[len(tags)] short_description = subtree[len(tags) + 1] steps = list( itertools.takewhile(lambda s: isinstance(s, Step), subtree[len(tags) + 2 :]) ) examples_table = subtree[len(tags) + 2 + len(steps) :][0] scenario_outline = ScenarioOutline( self.__scenario_id, keyword, short_description, tags, self.featurefile_path, short_description.line, steps, examples_table, ) # increment scenario id and reset step id for the next scenario self.__scenario_id += 1 + len(examples_table) self.__step_id = 1 self.__step_keyword_ctx = None return scenario_outline def iterations(self, subtree): """Transform the ``scenario_loop``-subtree for the radish AST""" return int(subtree[0]) def scenario_loop(self, subtree): """Transform the ``scenario_outline``-subtree for the radish AST""" # consume Feature Tags tags = list(itertools.takewhile(lambda t: isinstance(t, Tag), subtree)) keyword = subtree[len(tags)] short_description = subtree[len(tags) + 1] steps = list( itertools.takewhile(lambda s: isinstance(s, Step), subtree[len(tags) + 2 :]) ) iterations = subtree[len(tags) + 2 + len(steps)] scenario_loop = ScenarioLoop( self.__scenario_id, keyword, short_description, tags, self.featurefile_path, short_description.line, steps, iterations, ) # increment scenario id and reset step id for the next scenario self.__scenario_id += 1 + iterations self.__step_id = 1 self.__step_keyword_ctx = None return scenario_loop def background(self, subtree): """Transform the ``background``-subtree for the radish AST""" keyword = subtree.pop(0) if len(subtree) == 0: short_description = None steps = [] elif isinstance(subtree[0], Step): short_description = None steps = subtree else: short_description, *steps = subtree background = Background( keyword, short_description, self.featurefile_path, short_description.line if short_description else 0, steps, ) return background def rule(self, subtree): """Transform the ``rule``-subtree for the radish AST""" keyword = subtree.pop(0) short_description = subtree[0] if len(subtree) > 1: scenarios = subtree[1:] else: scenarios = [] rule = Rule( keyword, short_description, self.featurefile_path, short_description.line, scenarios, ) # let the Scenarios know to which Rule they belong for scenario in scenarios: scenario.set_rule(rule) return rule def description(self, description_lines): """Transform the ``description``-subtree for the radish AST""" return list((str(line) for line in description_lines)) def feature_body(self, subtree): """Transform the ``feature_body``-subtree for the radish AST""" description, *scenarios = subtree background, scenarios = self._expand_background_and_scenarios(scenarios) # create DefaultRule for scenarios without a Rul. scenarios_for_default_rule = list( itertools.takewhile(lambda s: not isinstance(s, Rule), scenarios) ) rules = scenarios[len(scenarios_for_default_rule) :] if scenarios_for_default_rule: default_rule = DefaultRule( scenarios_for_default_rule[0].path, scenarios_for_default_rule[0].line, scenarios_for_default_rule, ) # let the Scenarios in the DefaultRule know to which Rule they belong for scenario in scenarios_for_default_rule: scenario.set_rule(default_rule) rules = [default_rule] + rules return description, background, rules def feature(self, subtree): """Transform the ``feature``-subtree for the radish AST""" # consume Feature Tags tags = list(itertools.takewhile(lambda t: isinstance(t, Tag), subtree)) keyword = subtree[len(tags)] short_description = subtree[len(tags) + 1] if len(subtree) > len(tags) + 2: description, background, rules = subtree[len(tags) + 2 :][0] else: description = None background = None rules = [] feature = Feature( self.feature_id, keyword, short_description, description, tags, self.featurefile_path, short_description.line, background, rules, self.language_spec, ) # let the Background know to which Feature it belongs to if background: background.set_feature(feature) # let the Rules know to which Feature they belong for rule in rules: rule.set_feature(feature) # add Background to all Rules for rule in rules: rule.set_background(background) return feature def tag(self, subtree): """Transform the ``tag``-subtree for the radish AST""" return subtree[0] feature_tag = tag scenario_tag = tag def std_tag(self, subtree): """Transform the ``tag``-subtree for the radish AST""" tag_name = subtree[0] tag = Tag(str(tag_name).strip(), self.featurefile_path, tag_name.line) return tag def precondition_tag(self, subtree): """Transform the ``precondition_tag``-subtree for the radish AST""" feature_filename, scenario_short_description = subtree tag = PreconditionTag( str(feature_filename), str(scenario_short_description), self.featurefile_path, feature_filename.line, ) return tag def constant_tag(self, subtree): """Transform the ``constant_tag``-subtree for the radish AST""" key, value = subtree tag = ConstantTag(str(key), str(value), self.featurefile_path, key.line) return tag def _expand_background_and_scenarios(self, scenarios): """Expand the given list of Scenarios into Background and Scenarios if applicable""" background = None if scenarios: if isinstance(scenarios, Background): background = scenarios scenarios = [] elif isinstance(scenarios, Scenario): pass elif isinstance(scenarios[0], Background): background = scenarios.pop(0) return background, scenarios
downloads-generation/models_class1_pan_variants/exclude_data_from_training.py
ignatovmg/mhcflurry
113
12648406
""" Extract allele/peptide pairs to exclude from training data. """ import sys import os import argparse import pandas from mhcflurry.common import normalize_allele_name def normalize_allele_name_or_return_unknown(s): return normalize_allele_name( s, raise_on_error=False, default_value="UNKNOWN") parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument("data", metavar="CSV", help="Training data") parser.add_argument( "--remove-filename", action="append", default=[], metavar="NAME", help="Data to drop", required=True) parser.add_argument( "--remove-kind", action="append", default=[], metavar="KIND", help="Format of data to drop. For published data, use the PMID.", choices=[ "30377561" # Koşaloğlu-Yalçın, ..., Peters. Oncoimmunology 2018 [PMID 30377561] ], required=True) parser.add_argument("--out", metavar="CSV", help="Result data path") parser.add_argument( "--out-removed", metavar="CSV", help="Write removed data to given path") pandas.set_option('display.max_columns', 500) LOADERS = {} def load_30377561(filename): # Koşaloğlu-Yalçın, ..., Peters. Oncoimmunology 2018 [PMID 30377561] dfs = pandas.read_excel(filename, sheet_name=None) df1 = dfs['Supp Table 5 positive & random'] result_df = [] result_df.append(df1.rename( columns={ "mt.pep": "peptide", "hla": "allele", })[["allele", "peptide"]]) result_df.append(df1.rename( columns={ "wt.pep": "peptide", "hla": "allele", })[["allele", "peptide"]]) df2 = dfs["Supp Table 4 viral epitopes"] result_df.append( df2.rename( columns={ "Epitope": "peptide", "Restriction": "allele", })[["allele", "peptide"]]) result_df = pandas.concat(result_df, ignore_index=True) return result_df LOADERS["30377561"] = load_30377561 def go(args): df = pandas.read_csv(args.data) print("Read training data of length %d: " % len(df)) print(df) df["allele_peptide"] = df.allele + "~" + df.peptide if len(args.remove_kind) != len(args.remove_filename): parser.error( "Number of arguments mismatch: --remove-kind [%d] != " "--remove-filename [%d]" % ( len(args.remove_kind), len(args.remove_filename))) removed = [] for (i, (kind, path)) in enumerate( zip(args.remove_kind, args.remove_filename)): print( "Processing file %d / %d: %s %s" % ( i + 1, len(args.remove_kind), kind, path)) to_remove = LOADERS[kind](path) print("Remove data contains %d entries" % len(to_remove)) to_remove["normalized_allele"] = to_remove.allele.map( normalize_allele_name_or_return_unknown) remove_allele_peptides = set( to_remove.normalized_allele + "~" + to_remove.peptide) remove_mask = df.allele_peptide.isin(remove_allele_peptides) print("Will remove %d entries." % remove_mask.sum()) removed.append(df.loc[remove_mask].copy()) df = df.loc[~remove_mask].copy() print("New training data size: %d" % len(df)) print("Done processing.") removed_df = pandas.concat(removed) print("Removed %d entries in total:" % len(removed_df)) print(removed_df) if args.out_removed: removed_df.to_csv(args.out_removed, index=False) print("Wrote: ", args.out_removed) if args.out: df.to_csv(args.out, index=False) print("Wrote: ", args.out) if __name__ == "__main__": go(parser.parse_args(sys.argv[1:]))
templates/create_formula/languages/python2/src/main.py
antoniofilhozup/ritchie-formulas
107
12648424
<reponame>antoniofilhozup/ritchie-formulas #!/usr/bin/python2 import os from formula import formula input1 = os.environ.get("RIT_INPUT_TEXT") input2 = os.environ.get("RIT_INPUT_BOOLEAN") input3 = os.environ.get("RIT_INPUT_LIST") input4 = os.environ.get("RIT_INPUT_PASSWORD") formula.Run(input1, input2, input3, input4)
boto3_type_annotations/boto3_type_annotations/amplify/client.py
cowboygneox/boto3_type_annotations
119
12648495
<gh_stars>100-1000 from typing import Optional from botocore.client import BaseClient from typing import Dict from typing import Union from botocore.paginate import Paginator from datetime import datetime from botocore.waiter import Waiter from typing import List class Client(BaseClient): def can_paginate(self, operation_name: str = None): pass def create_app(self, name: str, repository: str, platform: str, oauthToken: str, description: str = None, iamServiceRoleArn: str = None, environmentVariables: Dict = None, enableBranchAutoBuild: bool = None, enableBasicAuth: bool = None, basicAuthCredentials: str = None, customRules: List = None, tags: Dict = None, buildSpec: str = None) -> Dict: pass def create_branch(self, appId: str, branchName: str, description: str = None, stage: str = None, framework: str = None, enableNotification: bool = None, enableAutoBuild: bool = None, environmentVariables: Dict = None, basicAuthCredentials: str = None, enableBasicAuth: bool = None, tags: Dict = None, buildSpec: str = None, ttl: str = None) -> Dict: pass def create_domain_association(self, appId: str, domainName: str, subDomainSettings: List, enableAutoSubDomain: bool = None) -> Dict: pass def delete_app(self, appId: str) -> Dict: pass def delete_branch(self, appId: str, branchName: str) -> Dict: pass def delete_domain_association(self, appId: str, domainName: str) -> Dict: pass def delete_job(self, appId: str, branchName: str, jobId: str) -> Dict: pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): pass def get_app(self, appId: str) -> Dict: pass def get_branch(self, appId: str, branchName: str) -> Dict: pass def get_domain_association(self, appId: str, domainName: str) -> Dict: pass def get_job(self, appId: str, branchName: str, jobId: str) -> Dict: pass def get_paginator(self, operation_name: str = None) -> Paginator: pass def get_waiter(self, waiter_name: str = None) -> Waiter: pass def list_apps(self, nextToken: str = None, maxResults: int = None) -> Dict: pass def list_branches(self, appId: str, nextToken: str = None, maxResults: int = None) -> Dict: pass def list_domain_associations(self, appId: str, nextToken: str = None, maxResults: int = None) -> Dict: pass def list_jobs(self, appId: str, branchName: str, nextToken: str = None, maxResults: int = None) -> Dict: pass def start_job(self, appId: str, branchName: str, jobType: str, jobId: str = None, jobReason: str = None, commitId: str = None, commitMessage: str = None, commitTime: datetime = None) -> Dict: pass def stop_job(self, appId: str, branchName: str, jobId: str) -> Dict: pass def update_app(self, appId: str, name: str = None, description: str = None, platform: str = None, iamServiceRoleArn: str = None, environmentVariables: Dict = None, enableBranchAutoBuild: bool = None, enableBasicAuth: bool = None, basicAuthCredentials: str = None, customRules: List = None, buildSpec: str = None) -> Dict: pass def update_branch(self, appId: str, branchName: str, description: str = None, framework: str = None, stage: str = None, enableNotification: bool = None, enableAutoBuild: bool = None, environmentVariables: Dict = None, basicAuthCredentials: str = None, enableBasicAuth: bool = None, buildSpec: str = None, ttl: str = None) -> Dict: pass def update_domain_association(self, appId: str, domainName: str, subDomainSettings: List, enableAutoSubDomain: bool = None) -> Dict: pass
deeppy/expr/nnet/dropout.py
purushothamgowthu/deeppy
1,170
12648560
import cudarray as ca from ...base import PhaseMixin from ..base import UnaryElementWise class Dropout(UnaryElementWise, PhaseMixin): def __init__(self, dropout=0.5): self.dropout = dropout self._tmp_mask = None self.phase = 'train' def __call__(self, x): if self.dropout == 0.0: return x return super(Dropout, self).__call__(x) def setup(self): super(Dropout, self).setup() self.mask_shape = self.shape self._tmp_mask = ca.zeros(self.mask_shape, dtype=ca.int_) def fprop(self): if self.phase == 'train': ca.less(self.dropout, ca.random.uniform(size=self.mask_shape), self._tmp_mask) ca.multiply(self.x.array, self._tmp_mask, self.array) self.array *= 1.0/(1.0-self.dropout) elif self.phase == 'test': self.array = self.x.array else: raise ValueError('Invalid phase: %s' % self.phase) def bprop(self): ca.multiply(self.grad_array, self._tmp_mask, self.x.grad_array) class SpatialDropout(Dropout): def setup(self): super(SpatialDropout, self).setup() self.mask_shape = self.shape[:2] + (1, 1) self._tmp_mask = ca.zeros(self.mask_shape, dtype=ca.int_)
test/test_jit_cuda_fuser_profiling.py
jsun94/nimble
206
12648583
<gh_stars>100-1000 import sys sys.argv.append("--ge_config=profiling") import os os.environ['PYTORCH_CUDA_FUSER_DISABLE_FALLBACK'] = '1' os.environ['PYTORCH_CUDA_FUSER_DISABLE_FMA'] = '1' os.environ['PYTORCH_CUDA_FUSER_JIT_OPT_LEVEL'] = '0' from test_jit_cuda_fuser import * if __name__ == '__main__': run_tests()
tests/flow/test_keyspace_accesses.py
10088/RedisGraph
313
12648616
from common import * sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../..') from demo import QueryInfo graph = None redis_con = None GRAPH_ID = "G" NEW_GRAPH_ID = "G2" class testKeyspaceAccesses(FlowTestsBase): def __init__(self): self.env = Env(decodeResponses=True) global graph global redis_con redis_con = self.env.getConnection() graph = Graph(redis_con, GRAPH_ID) def test00_test_data_valid_after_rename(self): global graph node0 = Node(node_id=0, label="L", properties={'name':'x', 'age':1}) graph.add_node(node0) graph.flush() redis_con.rename(GRAPH_ID, NEW_GRAPH_ID) graph = Graph(redis_con, NEW_GRAPH_ID) node1 = Node(node_id=1, label="L", properties={'name':'x', 'age':1}) graph.add_node(node1) graph.flush() query = "MATCH (n) return n" expected_results = [[node0], [node1]] query_info = QueryInfo(query = query, description="Tests data is valid after renaming", expected_result = expected_results) self._assert_resultset_and_expected_mutually_included(graph.query(query), query_info) # Graph queries should fail gracefully on accessing non-graph keys. def test01_graph_access_on_invalid_key(self): redis_con.set("integer_key", 5) graph = Graph(redis_con, "integer_key") try: query = """MATCH (n) RETURN noneExistingFunc(n.age) AS cast""" graph.query(query) assert(False) except redis.exceptions.ResponseError as e: # Expecting an error. assert("WRONGTYPE" in str(e)) pass # Fail gracefully on attempting a graph deletion of an empty key. def test02_graph_delete_on_empty_key(self): graph = Graph(redis_con, "nonexistent_key") try: graph.delete() assert(False) except redis.exceptions.ResponseError as e: # Expecting an error. assert("empty key" in str(e)) pass
examples/plots/plot_camera_projection.py
alek5k/pytransform3d
304
12648628
<reponame>alek5k/pytransform3d """ ================= Camera Projection ================= We can see the camera coordinate frame and a grid of points in the camera coordinate system which will be projected on the sensor. From the coordinates on the sensor we can compute the corresponding pixels. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from pytransform3d.transformations import plot_transform from pytransform3d.camera import make_world_grid, cam2sensor, sensor2img focal_length = 0.2 sensor_size = (0.2, 0.15) image_size = (640, 480) plt.figure(figsize=(12, 5)) ax = plt.subplot(121, projection="3d") ax.set_title("Grid in 3D camera coordinate system") ax.set_xlim((-1, 1)) ax.set_ylim((-1, 1)) ax.set_zlim((0, 2)) ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") cam_grid = make_world_grid(n_points_per_line=11) - np.array([0, 0, -2, 0]) img_grid = cam_grid * focal_length c = np.arange(len(cam_grid)) ax.scatter(cam_grid[:, 0], cam_grid[:, 1], cam_grid[:, 2], c=c) ax.scatter(img_grid[:, 0], img_grid[:, 1], img_grid[:, 2], c=c) plot_transform(ax) sensor_grid = cam2sensor(cam_grid, focal_length) img_grid = sensor2img(sensor_grid, sensor_size, image_size) ax = plt.subplot(122, aspect="equal") ax.set_title("Grid in 2D image coordinate system") ax.scatter(img_grid[:, 0], img_grid[:, 1], c=c) ax.set_xlim((0, image_size[0])) ax.set_ylim((0, image_size[1])) plt.show()
opendatatools/aqi/aqi_agent.py
solider245/OpenData
1,179
12648648
<filename>opendatatools/aqi/aqi_agent.py # encoding: UTF-8 from opendatatools.common import get_current_day from bs4 import BeautifulSoup import pandas as pd import numpy as np from opendatatools.common import RestAgent from opendatatools.aqi.constant import city_code_map class AQIAgent(RestAgent): def __init__(self): RestAgent.__init__(self) def handle_visit_limit(self): url = "" def get_daily_aqi(self, date): url = "http://datacenter.mep.gov.cn/websjzx/report/list.vm" page_no = 0 aqi_result = list() while True: page_no = page_no + 1 # 1. 分页爬取数据 data = { 'pageNum': page_no, 'V_DATE': date, 'xmlname': 1512478367400, 'roleType': 'CFCD2084', } rsp = self.do_request(url, data, self.proxies) if rsp is None: return None data = list() soup = BeautifulSoup(rsp, "html5lib") divs = soup.find_all('div') for div in divs: if div.has_attr('class') and 'report_main' in div['class']: rows = div.table.findAll('tr') for row in rows: cols = row.findAll('td') if len(cols) == 9: city = cols[3].text aqi = cols[4].text indicator = cols[5].text date = cols[6].text code = cols[7].text level = cols[8].text data.append ({ "date" : date, "city" : city, "aqi" : aqi, "code" : code, "level" : level, "indicator" : indicator, }) if len(data) == 0: break; aqi_result.extend(data) df = pd.DataFrame(aqi_result) return df def get_hour_aqi(self, time): url = "http://datacenter.mep.gov.cn/websjzx/report/list.vm" page_no = 0 aqi_result = list() while True: page_no = page_no + 1 # 1. 分页爬取数据 data = { 'pageNum': page_no, 'xmlname': 1512382906122, 'roleType': 'CFCD2084', 'V_DATE': time, 'E_DATE' : time, } rsp = self.do_request(url, data, self.proxies) if rsp is None: return None data = list() soup = BeautifulSoup(rsp, "html5lib") divs = soup.find_all('div') for div in divs: if div.has_attr('class') and 'report_main' in div['class']: rows = div.table.findAll('tr') for row in rows: cols = row.findAll('td') if len(cols) == 8: city = cols[2].text aqi = cols[3].text indicator = cols[4].text time = cols[5].text code = cols[6].text level = cols[7].text data.append ({ "time" : time, "city" : city, "aqi" : aqi, "code" : code, "level" : level, "indicator" : indicator, }) if len(data) == 0: break; aqi_result.extend(data) df = pd.DataFrame(aqi_result) return df def get_daily_aqi_onecity(self, city): url = 'http://datacenter.mep.gov.cn/websjzx/report/list.vm' if city not in city_code_map: print("this city is not ready !" + city) return None city_code = city_code_map[city] aqi_result = list() page_no = 0 while True: page_no = page_no + 1 # 1. 分页爬取数据 data = { 'pageNum': page_no, 'citycodes': city_code, 'citytime': "2000-01-01", 'xmlname': "1513844769596kqzllb" } rsp = self.do_request(url, data, self.proxies) # 2. 开始解析返回数据,并从html中提取需要的内容 data = list() soup = BeautifulSoup(rsp, "html5lib") divs = soup.find_all('div') for div in divs: if div.has_attr('class') and 'report_main' in div['class']: rows = div.table.findAll('tr') for row in rows: cols = row.findAll('td') if len(cols) == 7: date = cols[1].text aqi = cols[3].text level = cols[5].text indicator = cols[4].text data.append({ "date" : date, "aqi" : aqi, "level" : level, "indicator" : indicator, }) if len(data) == 0: break; aqi_result.extend(data) df = pd.DataFrame(aqi_result) return df def get_recent_daily_aqi_onecity(self, city): url = 'http://datacenter.mep.gov.cn/websjzx/report!list.vm' if city not in city_code_map: print("this city is not ready !" + city) return None city_code = city_code_map[city] data = { 'citycodes': city_code, 'citytime': get_current_day(), 'xmlname': "1513844769596kqzllb" } rsp = self.do_request(url, data, self.proxies) # 2. 开始解析返回数据,并从html中提取需要的内容 data = list() soup = BeautifulSoup(rsp, "html5lib") divs = soup.find_all('div') for div in divs: if div.has_attr('class') and 'report_main' in div['class']: rows = div.table.findAll('tr') for row in rows: cols = row.findAll('td') if len(cols) == 7: date = cols[1].text aqi = cols[3].text level = cols[5].text indicator = cols[4].text data.append({ "date" : date, "aqi" : aqi, "level" : level, "indicator" : indicator, }) df = pd.DataFrame(data) return df def get_hour_aqi_onecity(self, city, date): url = 'http://datacenter.mep.gov.cn/websjzx/report/list.vm' if city not in city_code_map: print("this city is not ready !" + city) return None city_code = city_code_map[city] aqi_result = list() page_no = 0 while True: page_no = page_no + 1 # 1. 分页爬取数据 data = { 'pageNum': page_no, 'ctiycodes': city_code, 'citytime': date, 'xmlname': "1511257916552", "queryflag": "close", "customquery": "false", "isdesignpatterns": "false", } rsp = self.do_request(url, data, self.proxies) # 2. 开始解析返回数据,并从html中提取需要的内容 data = list() soup = BeautifulSoup(rsp, "html5lib") divs = soup.find_all('div') for div in divs: if div.has_attr('class') and 'report_main' in div['class']: rows = div.table.findAll('tr') for row in rows: cols = row.findAll('td') if len(cols) == 7: time = cols[2].text aqi = cols[4].text city = cols[3].text level = cols[5].text indicator = cols[6].text data.append({ "time" : time, "aqi" : aqi, "city" : city, "level" : level, "indicator" : indicator, }) aqi_result.extend(data) if len(data) < 10: break; df = pd.DataFrame(aqi_result) return df if __name__ == '__main__': aqi = AQIAgent() result = aqi.get_hour_aqi_onecity('北京市','2018-05-26') print(result)
python/runtime/local/submitter.py
hebafer/sqlflow
4,742
12648650
<filename>python/runtime/local/submitter.py # Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib import subprocess import sys from runtime import db from runtime.dbapi import table_writer from runtime.feature.derivation import (get_ordered_field_descs, infer_feature_columns) from runtime.model.db import read_metadata_from_db from runtime.model.model import EstimatorType, Model from runtime.step.create_result_table import (create_evaluate_table, create_explain_table, create_predict_table) from runtime.step.tensorflow.evaluate import evaluate_step as tf_evaluate from runtime.step.tensorflow.explain import explain_step as tf_explain from runtime.step.tensorflow.explain import print_image_as_base64_html from runtime.step.tensorflow.predict import predict_step as tf_pred from runtime.step.tensorflow.train import train_step as tf_train from runtime.step.xgboost.evaluate import evaluate as xgboost_evaluate from runtime.step.xgboost.explain import explain as xgboost_explain from runtime.step.xgboost.predict import predict as xgboost_pred from runtime.step.xgboost.train import train as xgboost_train def submit_local_train(datasource, original_sql, select, validation_select, estimator_string, model_image, feature_column_map, label_column, model_params, train_params, validation_params, save, load, user=""): """This function run train task locally. Args: datasource: string Like: odps://access_id:[email protected]/api? curr_project=test_ci&scheme=http select: string The SQL statement for selecting data for train validation_select: string Ths SQL statement for selecting data for validation estimator_string: string TensorFlow estimator name, Keras class name, or XGBoost model_image: string Docker image used to train this model, default: sqlflow/sqlflow:step feature_column_map: string A map of Python feature column IR. label_column: string Feature column instance describing the label. model_params: dict Params for training, crossponding to WITH clause train_params: dict Extra train params, will be passed to runtime.tensorflow.train or runtime.xgboost.train. Optional fields: - disk_cache: Use dmatrix disk cache if True, default: False. - batch_size: Split data to batches and train, default: 1. - epoch: Epochs to train, default: 1. validation_params: dict Params for validation. save: string Model name to be saved. load: string The pre-trained model name to load user: string Not used for local submitter, used in runtime.pai only. """ if estimator_string.lower().startswith("xgboost"): train_func = xgboost_train else: train_func = tf_train with db.connect_with_data_source(datasource) as conn: feature_column_map, label_column = infer_feature_columns( conn, select, feature_column_map, label_column, n=1000) return train_func(original_sql=original_sql, model_image=model_image, estimator_string=estimator_string, datasource=datasource, select=select, validation_select=validation_select, model_params=model_params, train_params=train_params, validation_params=validation_params, feature_column_map=feature_column_map, label_column=label_column, save=save, load=load) def submit_local_pred(datasource, original_sql, select, model, label_name, pred_params, result_table, user=""): model = Model.load_from_db(datasource, model) if model.get_type() == EstimatorType.XGBOOST: pred_func = xgboost_pred else: pred_func = tf_pred if model.get_meta("label") is None: train_label_desc = None else: train_label_desc = model.get_meta("label").get_field_desc()[0] if pred_params is None: extra_result_cols = [] else: extra_result_cols = pred_params.get("predict.extra_outputs", "") extra_result_cols = [ c.strip() for c in extra_result_cols.split(",") if c.strip() ] with db.connect_with_data_source(datasource) as conn: result_column_names, train_label_idx = create_predict_table( conn, select, result_table, train_label_desc, label_name, extra_result_cols) pred_func(datasource=datasource, select=select, result_table=result_table, result_column_names=result_column_names, train_label_idx=train_label_idx, model=model, extra_result_cols=extra_result_cols) def submit_local_evaluate(datasource, original_sql, select, label_name, model, model_params, result_table, user=""): model = Model.load_from_db(datasource, model) if model.get_type() == EstimatorType.XGBOOST: evaluate_func = xgboost_evaluate validation_metrics = model_params.get("validation.metrics", "accuracy_score") else: evaluate_func = tf_evaluate validation_metrics = model_params.get("validation.metrics", "Accuracy") conn = db.connect_with_data_source(datasource) validation_metrics = [m.strip() for m in validation_metrics.split(",")] result_column_names = create_evaluate_table(conn, result_table, validation_metrics) conn.close() evaluate_func(datasource=datasource, select=select, result_table=result_table, model=model, label_name=label_name, model_params=model_params, result_column_names=result_column_names) def submit_local_explain(datasource, original_sql, select, model, model_params, result_table, explainer="TreeExplainer", user=""): model = Model.load_from_db(datasource, model) if model.get_type() == EstimatorType.XGBOOST: explain_func = xgboost_explain else: explain_func = tf_explain if result_table: feature_columns = model.get_meta("features") estimator_string = model.get_meta("class_name") field_descs = get_ordered_field_descs(feature_columns) feature_column_names = [fd.name for fd in field_descs] with db.connect_with_data_source(datasource) as conn: create_explain_table(conn, model.get_type(), explainer, estimator_string, result_table, feature_column_names) explain_func(datasource=datasource, select=select, explainer=explainer, model_params=model_params, result_table=result_table, model=model) if not result_table: print_image_as_base64_html("summary.png") SQLFLOW_TO_RUN_CONTEXT_KEY_SELECT = "SQLFLOW_TO_RUN_SELECT" SQLFLOW_TO_RUN_CONTEXT_KEY_INTO = "SQLFLOW_TO_RUN_INTO" SQLFLOW_TO_RUN_CONTEXT_KEY_IMAGE = "SQLFLOW_TO_RUN_IMAGE" def submit_local_run(datasource, select, image_name, params, into): if not params: raise ValueError("params should not be None or empty.") subprocess_env = os.environ.copy() update_env = { SQLFLOW_TO_RUN_CONTEXT_KEY_SELECT: select, SQLFLOW_TO_RUN_CONTEXT_KEY_INTO: into, SQLFLOW_TO_RUN_CONTEXT_KEY_IMAGE: image_name } subprocess_env.update(update_env) program_file_path = pathlib.Path(params[0]) if not program_file_path.is_file: raise ValueError("{} is not a file".format(params[0])) sub_process = None file_ext = program_file_path.suffix if not file_ext: args = [program_file_path] args.extend(params[1:]) sub_process = subprocess.run(args=args, env=subprocess_env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) elif file_ext.lower() == ".py": args = ["python", "-m", program_file_path.stem] args.extend(params[1:]) sub_process = subprocess.run(args=args, env=subprocess_env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else: raise RuntimeError( "The other executable except Python program is not supported yet") if sub_process: print(sub_process.stdout.decode("utf-8")) if sub_process.returncode != 0: print(sub_process.stderr.decode("utf-8"), file=sys.stderr) raise RuntimeError("Executing {} failed.".format(params[0])) def submit_local_show_train(datasource, model_name): meta = read_metadata_from_db(datasource, model_name) original_sql = meta.get("original_sql") if not original_sql: raise ValueError("cannot find the train SQL statement") result_set = [(model_name, original_sql)] header = ["Model", "Train Statement"] writer = table_writer.ProtobufWriter(result_set, header) for line in writer.dump_strings(): print(line)
indy_node/test/state_proof/test_state_proof_for_missing_data.py
Rob-S/indy-node
627
12648697
import pytest from indy_common.constants import GET_ATTR, GET_NYM, GET_SCHEMA, GET_CLAIM_DEF, CLAIM_DEF_FROM, CLAIM_DEF_SCHEMA_REF, \ CLAIM_DEF_SIGNATURE_TYPE, SCHEMA_NAME, SCHEMA_VERSION, SCHEMA_ATTR_NAMES, JSON_LD_CONTEXT, RICH_SCHEMA, \ RICH_SCHEMA_ENCODING, RICH_SCHEMA_MAPPING, RICH_SCHEMA_CRED_DEF, RS_CRED_DEF_TYPE_VALUE, \ RS_ENCODING_TYPE_VALUE, RS_MAPPING_TYPE_VALUE, RS_SCHEMA_TYPE_VALUE, RS_CONTEXT_TYPE_VALUE, RS_ID, \ GET_RICH_SCHEMA_OBJECT_BY_ID, GET_RICH_SCHEMA_OBJECT_BY_METADATA, RS_NAME, RS_VERSION, RS_TYPE, \ RICH_SCHEMA_PRES_DEF, RS_PRES_DEF_TYPE_VALUE from indy_node.test.rich_schema.templates import W3C_BASE_CONTEXT, RICH_SCHEMA_EX1 from indy_node.test.state_proof.helper import check_valid_proof, \ sdk_submit_operation_and_get_result from plenum.common.constants import TARGET_NYM, TXN_TYPE, RAW, DATA # fixtures, do not remove from indy_node.test.attrib_txn.test_nym_attrib import \ sdk_added_raw_attribute, attributeName, attributeValue, attributeData from plenum.common.util import randomString def check_no_data_and_valid_proof(result): assert result.get(DATA) is None check_valid_proof(result) def test_state_proof_returned_for_missing_attr(looper, nodeSetWithOneNodeResponding, attributeName, sdk_pool_handle, sdk_wallet_endorser): """ Tests that state proof is returned in the reply for GET_ATTR transactions """ _, dest = sdk_wallet_endorser get_attr_operation = { TARGET_NYM: dest, TXN_TYPE: GET_ATTR, RAW: attributeName } result = sdk_submit_operation_and_get_result(looper, sdk_pool_handle, sdk_wallet_endorser, get_attr_operation) check_no_data_and_valid_proof(result) def test_state_proof_returned_for_missing_nym(looper, nodeSetWithOneNodeResponding, sdk_pool_handle, sdk_wallet_endorser, sdk_user_wallet_a): """ Tests that state proof is returned in the reply for GET_NYM transactions """ # Make not existing id _, dest = sdk_user_wallet_a dest = dest[:-3] dest += "fff" get_nym_operation = { TARGET_NYM: dest, TXN_TYPE: GET_NYM } result = sdk_submit_operation_and_get_result(looper, sdk_pool_handle, sdk_wallet_endorser, get_nym_operation) check_no_data_and_valid_proof(result) def test_state_proof_returned_for_missing_schema(looper, nodeSetWithOneNodeResponding, sdk_pool_handle, sdk_wallet_endorser): """ Tests that state proof is returned in the reply for GET_SCHEMA transactions """ _, dest = sdk_wallet_endorser schema_name = "test_schema" schema_version = "1.0" get_schema_operation = { TARGET_NYM: dest, TXN_TYPE: GET_SCHEMA, DATA: { SCHEMA_NAME: schema_name, SCHEMA_VERSION: schema_version, } } result = sdk_submit_operation_and_get_result(looper, sdk_pool_handle, sdk_wallet_endorser, get_schema_operation) assert SCHEMA_ATTR_NAMES not in result[DATA] check_valid_proof(result) def test_state_proof_returned_for_missing_claim_def(looper, nodeSetWithOneNodeResponding, sdk_pool_handle, sdk_wallet_endorser): """ Tests that state proof is returned in the reply for GET_CLAIM_DEF transactions """ _, dest = sdk_wallet_endorser get_claim_def_operation = { CLAIM_DEF_FROM: dest, TXN_TYPE: GET_CLAIM_DEF, CLAIM_DEF_SCHEMA_REF: 12, CLAIM_DEF_SIGNATURE_TYPE: 'CL' } result = sdk_submit_operation_and_get_result(looper, sdk_pool_handle, sdk_wallet_endorser, get_claim_def_operation) check_no_data_and_valid_proof(result) @pytest.mark.skip # TODO fix this test so it does not rely on Indy-SDK, # or, fix this test once Rich Schema objects are part of Indy-SDK def test_state_proof_returned_for_missing_get_rich_schema_obj_by_id(looper, nodeSetWithOneNodeResponding, sdk_wallet_endorser, sdk_pool_handle, sdk_wallet_client): """ Tests that state proof is returned in the reply for GET_RICH_SCHEMA_OBJECT_BY_ID. Use different submitter and reader! """ rs_id = randomString() get_rich_schema_by_id_operation = { TXN_TYPE: GET_RICH_SCHEMA_OBJECT_BY_ID, RS_ID: rs_id, } result = sdk_submit_operation_and_get_result(looper, sdk_pool_handle, sdk_wallet_client, get_rich_schema_by_id_operation) check_no_data_and_valid_proof(result) @pytest.mark.skip # TODO fix this test so it does not rely on Indy-SDK, # or, fix this test once Rich Schewma objects are part of Indy-SDK @pytest.mark.parametrize('rs_type', [RS_CONTEXT_TYPE_VALUE, RS_SCHEMA_TYPE_VALUE, RS_ENCODING_TYPE_VALUE, RS_MAPPING_TYPE_VALUE, RS_CRED_DEF_TYPE_VALUE, RS_PRES_DEF_TYPE_VALUE]) def test_state_proof_returned_for_missing_get_rich_schema_obj_by_metadata(looper, nodeSetWithOneNodeResponding, sdk_wallet_endorser, sdk_pool_handle, sdk_wallet_client, rs_type): """ Tests that state proof is returned in the reply for GET_RICH_SCHEMA_OBJECT_BY_ID. Use different submitter and reader! """ rs_name = randomString() rs_version = '1.0' get_rich_schema_by_metadata_operation = { TXN_TYPE: GET_RICH_SCHEMA_OBJECT_BY_METADATA, RS_NAME: rs_name, RS_VERSION: rs_version, RS_TYPE: rs_type } result = sdk_submit_operation_and_get_result(looper, sdk_pool_handle, sdk_wallet_client, get_rich_schema_by_metadata_operation) check_no_data_and_valid_proof(result)
Scripts/sims4communitylib/utils/objects/common_object_ownership_utils.py
ColonolNutty/Sims4CommunityLibrary
118
12648711
<filename>Scripts/sims4communitylib/utils/objects/common_object_ownership_utils.py """ The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from typing import Union from objects.components.ownable_component import OwnableComponent from objects.game_object import GameObject from server_commands.argument_helpers import OptionalTargetParam from sims.sim_info import SimInfo from sims4.commands import Command, CommandType, CheatOutput from sims4communitylib.exceptions.common_exceptions_handler import CommonExceptionHandler from sims4communitylib.modinfo import ModInfo from sims4communitylib.utils.sims.common_sim_name_utils import CommonSimNameUtils from sims4communitylib.utils.sims.common_sim_utils import CommonSimUtils class CommonObjectOwnershipUtils: """Utilities for manipulating the ownership of Objects. """ @staticmethod def set_owning_household_id(game_object: GameObject, household_id: int) -> bool: """set_owning_household_id(game_object, household_id) Set the Household that owns the Object. :param game_object: An instance of an Object. :type game_object: GameObject :param household_id: The decimal identifier of a Household. :type household_id: int :return: True, if the Household was successfully set as the owner. False, if not. :rtype: bool """ if game_object is None or household_id == -1: return False game_object.set_household_owner_id(household_id) return True @staticmethod def get_owning_household_id(game_object: GameObject) -> int: """get_owning_household_id(game_object) Retrieve the decimal identifier of the Household that owns the Object. :param game_object: An instance of an Object. :type game_object: GameObject :return: The decimal identifier of the Household that owns the object. :rtype: int """ if game_object is None: return -1 return game_object.get_household_owner_id() @staticmethod def set_owning_sim(game_object: GameObject, sim_info: SimInfo, make_sim_sole_owner: bool=True) -> bool: """set_owning_sim(game_object, sim_info, make_sim_sole_owner=True) Change the ownership of an Object to become owned by the household of a Sim and optional by the Sim themselves. :param game_object: An instance of an Object. :type game_object: GameObject :param sim_info: An instance of a Sim. :type sim_info: SimInfo :param make_sim_sole_owner: If True, the Sim will become the sole owner in their household of the Object (In addition to the household owning it). If False, only the household will own the Object. Default is True. :type make_sim_sole_owner: bool, optional :return: True, if ownership was transferred successfully. False, if not. :rtype: bool """ if game_object is None or sim_info is None: return False sim = CommonSimUtils.get_sim_instance(sim_info) if sim is None: return False game_object.update_ownership(sim, make_sim_owner=make_sim_sole_owner) return True @staticmethod def get_owning_sim(game_object: GameObject) -> Union[SimInfo, None]: """get_owning_sim(game_object) Retrieve the Sim that owns an Object, if a Sim owns the Object. :param game_object: An instance of an Object. :type game_object: GameObject :return: The SimInfo of the Sim that owns the specified Object or None if no Sim owns the Object. :rtype: Union[SimInfo, None] """ if game_object is None: return None ownable_component: OwnableComponent = CommonObjectOwnershipUtils.get_ownable_component(game_object) if ownable_component is None: return None return CommonSimUtils.get_sim_info(ownable_component.get_sim_owner_id()) @staticmethod def get_ownable_component(game_object: GameObject) -> Union[OwnableComponent, None]: """get_ownable_component(game_object) Retrieve the Ownable Component of an Object if it has one. :param game_object: An instance of an Object. :type game_object: GameObject :return: The OwnableComponent of the Object or None if no OwnableComponent was found. :rtype: Union[OwnableComponent, None] """ if game_object is None: return None if not hasattr(game_object, 'ownable_component'): return None return game_object.ownable_component @Command('s4clib.change_ownership', command_type=CommandType.Live) def _common_change_ownership(object_id: str='20359', opt_sim: OptionalTargetParam=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) sim_info = CommonSimUtils.get_sim_info(get_optional_target(opt_sim, _connection)) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return # noinspection PyBroadException try: object_id = int(object_id) except Exception: output('ERROR: object_id must be a number.') return if object_id < 0: output('ERROR: object_id must be a positive number.') return output('Attempting to change the ownership of object with id \'{}\'.'.format(object_id)) from sims4communitylib.utils.objects.common_object_utils import CommonObjectUtils game_object = CommonObjectUtils.get_game_object(object_id) if game_object is None: output('ERROR: No object was found with id \'{}\''.format(object_id)) return output('Object found, attempting to change the ownership of it to {}. {}'.format(CommonSimNameUtils.get_full_name(sim_info), game_object)) try: if CommonObjectOwnershipUtils.set_owning_sim(game_object, sim_info, make_sim_sole_owner=True): output('Successfully changed the ownership of the object.') else: output('ERROR: Failed to change the ownership of the object.') except Exception as ex: output('ERROR: A problem occurred while attempting to change the ownership of the object. {}'.format(object_id)) CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Error occurred attempting to change the ownership of object. {}'.format(object_id), exception=ex) output('Done changing the ownership of the object.')
zippy/benchmarks/src/micro/list-indexing.py
lucapele/pele-c
319
12648828
<gh_stars>100-1000 # zwei 12/03/13 # subscribe list by index import time def index_list(ll, num): ll_len = len(ll) item = 0 for t in range(num): for i in range(ll_len): item = (item + ll[i]) % 7 return item def measure(): print("Start timing...") start = time.time() ll = [x*2 for x in range(1000)] last_item = index_list(ll, 1000000) #1000000 print("Last item ", last_item) duration = "%.3f\n" % (time.time() - start) print("list-indexing: " + duration) #warm up for run in range(1200): index_list([1,2,3,4,5,6,7,8,9,10], 10000) measure()
ISMLnextGen/postTest.py
Ravenclaw-OIer/ISML_auto_voter
128
12648841
from requests import post headers={'ipNum':'5'} payload={'0':'1.1.1.1:8080', '1':'2.2.2.2:8080', '2':'2.2.2.2:8080', '3':'2.2.2.2:8080', '4':'2.2.2.2:8080',} response=post(url='http://127.0.0.1:8999/main',headers=headers,json=payload) pass
sleekxmpp/plugins/xep_0059/__init__.py
E-Tahta/sleekxmpp
499
12648848
<gh_stars>100-1000 """ SleekXMPP: The Sleek XMPP Library Copyright (C) 2010 <NAME>, <NAME> This file is part of SleekXMPP. See the file LICENSE for copying permission. """ from sleekxmpp.plugins.base import register_plugin from sleekxmpp.plugins.xep_0059.stanza import Set from sleekxmpp.plugins.xep_0059.rsm import ResultIterator, XEP_0059 register_plugin(XEP_0059) # Retain some backwards compatibility xep_0059 = XEP_0059
tests/test_expression.py
talhaHavadar/dissect.cstruct
227
12648896
<reponame>talhaHavadar/dissect.cstruct import pytest from dissect.cstruct.expression import Expression testdata = [ ('1 * 0', 0), ('1 * 1', 1), ('7 * 8', 56), ('7*8', 56), ('7 *8', 56), (' 7 * 8 ', 56), ('0 / 1', 0), ('1 / 1', 1), ('2 / 2', 1), ('3 / 2', 1), ('4 / 2', 2), ('1 % 1', 0), ('1 % 2', 1), ('5 % 3', 2), ('0 + 0', 0), ('1 + 0', 1), ('1 + 3', 4), ('0 - 0', 0), ('1 - 0', 1), ('0 - 1', -1), ('1 - 3', -2), ('3 - 1', 2), ('0x0 >> 0', 0x0), ('0x1 >> 0', 0x1), ('0x1 >> 1', 0x0), ('0xf0 >> 4', 0xf), ('0x0 << 4', 0), ('0x1 << 0', 1), ('0xf << 4', 0xf0), ('0 & 0', 0), ('1 & 0', 0), ('1 & 1', 1), ('1 & 2', 0), ('1 ^ 1', 0), ('1 ^ 0', 1), ('1 ^ 3', 2), ('0 | 0', 0), ('0 | 1', 1), ('1 | 1', 1), ('1 | 2', 3), # This type of expression is not supported by the parser and will fail. # ('4 * 1 + 1', 5), ('-42', -42), ('42 + (-42)', 0), ('A + 5', 13), ('21 - B', 8), ('A + B', 21), ] class Consts(object): consts = { 'A': 8, 'B': 13, } def id_fn(val): if isinstance(val, (str,)): return val @pytest.mark.parametrize('expression, answer', testdata, ids=id_fn) def test_expression(expression, answer): parser = Expression(Consts(), expression) assert parser.evaluate() == answer
algorithms/utils/spaces/discretized.py
magicly/sample-factory
320
12648991
<filename>algorithms/utils/spaces/discretized.py from gym.spaces import Discrete class Discretized(Discrete): def __init__(self, n, min_action, max_action): super().__init__(n) self.min_action = min_action self.max_action = max_action def to_continuous(self, discrete_action): step = (self.max_action - self.min_action) / (self.n - 1) # min=-1, max=1, n=11, step=0.2 action = self.min_action + discrete_action * step return action
src/settings_csv.py
hodgerpodger/staketaxcsv
140
12649019
import os # Environment variables (required for each respective report) ALGO_HIST_INDEXER_NODE = os.environ.get("ALGO_HIST_INDEXER_NODE", "https://indexer.algoexplorerapi.io") ALGO_INDEXER_NODE = os.environ.get("ALGO_INDEXER_NODE", "https://algoindexer.algoexplorerapi.io") ALGO_NFDOMAINS = os.environ.get("ALGO_NFDOMAINS", "https://api.nf.domains") ATOM_NODE = os.environ.get("ATOM_NODE", "") COVALENT_NODE = os.environ.get("COVALENT_NODE", "https://api.covalenthq.com") DVPN_LCD_NODE = os.environ.get("DVPN_LCD_NODE", "https://lcd.sentinel.co") DVPN_RPC_NODE = os.environ.get("DVPN_RPC_NODE", "https://rpc.sentinel.co") FET_NODE = os.environ.get("FET_NODE", "https://rest-fetchhub.fetch.ai") HUAHUA_NODE = os.environ.get("HUAHUA_NODE", "") JUNO_NODE = os.environ.get("JUNO_NODE", "") BTSG_NODE = os.environ.get("BTSG_NODE", "https://lcd.explorebitsong.com") STARS_NODE = os.environ.get("STARS_NODE", "") SOL_NODE = os.environ.get("SOL_NODE", "") TERRA_LCD_NODE = os.environ.get("TERRA_LCD_NODE", "") LUNA2_LCD_NODE = os.environ.get("LUNA2_LCD_NODE", "https://phoenix-lcd.terra.dev") # Optional environment variables COVALENT_API_KEY = os.environ.get("COVALENT_API_KEY", "") # ############################################################################# TICKER_ALGO = "ALGO" TICKER_ATOM = "ATOM" TICKER_DVPN = "DVPN" TICKER_FET = "FET" TICKER_HUAHUA = "HUAHUA" TICKER_IOTEX = "IOTX" TICKER_JUNO = "JUNO" TICKER_BTSG = "BTSG" TICKER_STARS = "STARS" TICKER_LUNA1 = "LUNA1" TICKER_LUNA2 = "LUNA2" TICKER_OSMO = "OSMO" TICKER_SOL = "SOL" DONATION_WALLETS = set([ os.environ.get("DONATION_WALLET_ALGO", ""), os.environ.get("DONATION_WALLET_ATOM", ""), os.environ.get("DONATION_WALLET_FET", ""), os.environ.get("DONATION_WALLET_HUAHUA", ""), os.environ.get("DONATION_WALLET_IOTX", ""), os.environ.get("DONATION_WALLET_JUNO", ""), os.environ.get("DONATION_WALLET_BTSG", ""), os.environ.get("DONATION_WALLET_STARS", ""), os.environ.get("DONATION_WALLET_LUNA", ""), os.environ.get("DONATION_WALLET_OSMO", ""), os.environ.get("DONATION_WALLET_SOL", ""), ]) MESSAGE_ADDRESS_NOT_FOUND = "Wallet address not found" MESSAGE_STAKING_ADDRESS_FOUND = "Staking address found. Please input the main wallet address instead." REPORTS_DIR = os.path.dirname(os.path.realpath(__file__)) + "/_reports"
KG/DuEE_baseline/bin/finetune/sequence_label.py
pkulzb/Research
1,319
12649043
<reponame>pkulzb/Research # coding: utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """sequence labeling model """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import os import time import json import argparse import numpy as np import multiprocessing import paddle import logging import paddle.fluid as fluid from six.moves import xrange from model.ernie import ErnieModel log = logging.getLogger(__name__) def create_model(args, pyreader_name, ernie_config, is_prediction=False): """func""" pyreader = fluid.layers.py_reader( capacity=50, shapes=[[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1], [-1]], dtypes=[ 'int64', 'int64', 'int64', 'int64', 'float32', 'int64', 'int64' ], lod_levels=[0, 0, 0, 0, 0, 0, 0], name=pyreader_name, use_double_buffer=True) (src_ids, sent_ids, pos_ids, task_ids, input_mask, labels, seq_lens) = fluid.layers.read_file(pyreader) ernie = ErnieModel( src_ids=src_ids, position_ids=pos_ids, sentence_ids=sent_ids, task_ids=task_ids, input_mask=input_mask, config=ernie_config, use_fp16=args.use_fp16) enc_out = ernie.get_sequence_output() emission = fluid.layers.fc( input=enc_out, size=args.num_labels, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Uniform( low=-0.1, high=0.1), regularizer=fluid.regularizer.L2DecayRegularizer( regularization_coeff=1e-4)), num_flatten_dims=2) crf_cost = fluid.layers.linear_chain_crf( input=emission, label=labels, param_attr=fluid.ParamAttr( name='crfw', learning_rate=args.crf_learning_rate), length=seq_lens) loss = fluid.layers.mean(x=crf_cost) crf_decode = fluid.layers.crf_decoding( input=emission, param_attr=fluid.ParamAttr(name='crfw'), length=seq_lens) lod_labels = fluid.layers.squeeze(labels, axes=[-1]) num_chunk_types = ( (args.num_labels - 1) // (len(args.chunk_scheme) - 1)) # IOB配置 (_, _, _, num_infer, num_label, num_correct) = fluid.layers.chunk_eval( input=crf_decode, label=lod_labels, chunk_scheme=args.chunk_scheme, num_chunk_types=num_chunk_types, seq_length=seq_lens) """ enc_out = fluid.layers.dropout(x=enc_out, dropout_prob=0.1, dropout_implementation="upscale_in_train") logits = fluid.layers.fc( input=enc_out, size=args.num_labels, num_flatten_dims=2, param_attr=fluid.ParamAttr( name="cls_seq_label_out_w", initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr(name="cls_seq_label_out_b", initializer=fluid.initializer.Constant(0.))) infers = fluid.layers.argmax(logits, axis=2) ret_infers = fluid.layers.reshape(x=infers, shape=[-1, 1]) lod_labels = fluid.layers.sequence_unpad(labels, seq_lens) lod_infers = fluid.layers.sequence_unpad(infers, seq_lens) num_chunk_types = ( (args.num_labels - 1) // (len(args.chunk_scheme) - 1)) # IOB配置 (_, _, _, num_infer, num_label, num_correct) = fluid.layers.chunk_eval(input=lod_infers, label=lod_labels, chunk_scheme=args.chunk_scheme, num_chunk_types=num_chunk_types) labels = fluid.layers.flatten(labels, axis=2) ce_loss, probs = fluid.layers.softmax_with_cross_entropy( logits=fluid.layers.flatten(logits, axis=2), label=labels, return_softmax=True) input_mask = fluid.layers.flatten(input_mask, axis=2) ce_loss = ce_loss * input_mask loss = fluid.layers.mean(x=ce_loss) """ graph_vars = { "inputs": src_ids, "loss": loss, "seqlen": seq_lens, "crf_decode": crf_decode, "num_infer": num_infer, "num_label": num_label, "num_correct": num_correct, } for k, v in graph_vars.items(): v.persistable = True return pyreader, graph_vars def calculate_f1(num_label, num_infer, num_correct): """calculate_f1""" if num_infer == 0: precision = 0.0 else: precision = num_correct * 1.0 / num_infer if num_label == 0: recall = 0.0 else: recall = num_correct * 1.0 / num_label if num_correct == 0: f1 = 0.0 else: f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1 def evaluate(exe, program, pyreader, graph_vars, tag_num, dev_count=1): """func""" fetch_list = [ graph_vars["num_infer"].name, graph_vars["num_label"].name, graph_vars["num_correct"].name ] total_label, total_infer, total_correct = 0.0, 0.0, 0.0 time_begin = time.time() pyreader.start() while True: try: np_num_infer, np_num_label, np_num_correct = exe.run( program=program, fetch_list=fetch_list) total_infer += np.sum(np_num_infer) total_label += np.sum(np_num_label) total_correct += np.sum(np_num_correct) except fluid.core.EOFException: pyreader.reset() break precision, recall, f1 = calculate_f1(total_label, total_infer, total_correct) return precision, recall, f1 def parse_crf_ret(np_inputs, crf_decodes, np_lens): """parse_crf_ret""" np_inputs = np.squeeze(np_inputs) out = [] for index in range(len(np_lens)): src_ids = [_id for _id in np_inputs[index][1:np_lens[index] - 1]] tag_ids = [_id for _id in crf_decodes[index][1:np_lens[index] - 1]] out.append((list(src_ids), list(tag_ids))) return out def predict(exe, test_program, test_pyreader, graph_vars, dev_count=1): """func""" fetch_list = [ graph_vars["inputs"].name, graph_vars["crf_decode"].name, graph_vars["seqlen"].name, ] test_pyreader.start() res = [] while True: try: inputs, crf_decodes, np_lens = exe.run(program=test_program, fetch_list=fetch_list) #r = chunk_predict(inputs, probs, np_lens, dev_count) res += parse_crf_ret(inputs, crf_decodes, np_lens) except fluid.core.EOFException: test_pyreader.reset() break return res
iot_hunter/dynamic_analysis/DynamicAnalyzer.py
byamao1/HaboMalHunter
727
12649049
<filename>iot_hunter/dynamic_analysis/DynamicAnalyzer.py # Tencent is pleased to support the open source community by making IoTHunter available. # Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. # Licensed under the MIT License (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://opensource.org/licenses/MIT # # Unless required by applicable law or agreed to in writing, software distributed under the # License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions # and limitations under the License. import subprocess import time import logging import os import re import json import shutil import hashlib import VMControl import ConfigManager class DynamicBehaviors(object): """Dynamic Behaviors Class""" def __init__(self): self.filename = '' self.md5_hash = '' self.file_log = { 'read': [], 'write': [], 'open': [], 'unlink':[] } self.socket_log = { 'connect': [], 'recvfrom': [], 'sendto': [], 'bind': [] } self.tcp_log = [] self.http_log = [] self.udp_log = [] self.irc_log = [] self.dns_log = [] self.file_read_data = {} self.recvfrom_data = {} self.plugins_result = {} self.proc_log = { 'execve': [], 'clone': [] } self.packets = [] def to_report(self): report = { 'md5_hash': self.md5_hash, 'filename': self.filename, 'file_log': self.file_log, 'socket_log': self.socket_log, 'file_read_data': self.file_read_data, 'recvfrom_data': self.recvfrom_data, 'tcp_info': self.tcp_log, 'udp_info': self.udp_log, 'http_info': self.http_log, 'irc_info': self.irc_log, 'dns_info': self.dns_log, 'plugin_info': self.plugins_result, 'proc_info': self.proc_log, 'packets_info':self.packets } return json.dumps(report, indent=4) class DynamicAnalyzer: """Dynamic Analyzer for Iot Malware """ def __init__(self): self.strace_log = [] self.analyze_timeout = 10 def init_vm(self): """init vm controller configuration. """ self.vm_control = VMControl.VMController() self.vm_control.init_config() vmc = ConfigManager.ConfigManager() self.strace_log_max_lines = vmc.get('analyzer', 'max_strace_lines') self.strace_log_path = vmc.get('analyzer', 'strace_log_path') self.tshark_path = vmc.get('analyzer', 'tshark_path') self.tcpdump_log_path = vmc.get('analyzer', 'host_log_tcpdump') def set_log_path(self, logpath): """set log path""" self.log_path = logpath def parse_strace_log(self, log_path): """parse strace log.""" line_count = 0 self.strace_log_path = log_path with open(self.strace_log_path, 'r') as log_file: for line in log_file.readlines(): self.strace_log.append(line) line_count = line_count + 1 if line_count >= 20000: break def parse_proc_log(self, behavior_obj): for line in self.strace_log: if 'execve(' in line: behavior_obj.proc_log['execve'].append( line[line.find('execve'):-1]) if 'clone(' in line: behavior_obj.proc_log['clone'].append( line[line.find('clone'):-1]) def parse_file_log(self, behavior_obj): """Parse file related log from strace.""" for line in self.strace_log: # if 'read(' in line: # behavior_obj.file_log['read'].append( # line[line.find('read'):-1]) if 'openat(' in line: behavior_obj.file_log['open'].append( line[line.find('openat'):-1]) if 'unlink(' in line: behavior_obj.file_log['unlink'].append( line[line.find('unlink'):-1]) # if 'write(' in line: # behavior_obj.file_log['write'].append( # line[line.find('write'):-1]) def format_recvfrom_str(self, line, recefrom_data): """format recvfrom function string.""" read_data_pattern = re.compile(r'recvfrom\(.+,.+,.+,.+,.+\)') read_func_find = read_data_pattern.search(line) if read_func_find: read_func_str = read_func_find.group(0) fd = read_func_str.split(',')[0][9:] read_byte = read_func_str.split(',')[1][2:-1] if fd != '' and read_byte != ' ': if recefrom_data.has_key(fd): recefrom_data[fd] = recefrom_data[fd] + read_byte else: recefrom_data[fd] = read_byte def format_read_str(self, line, file_read_data): """format read function args.""" read_data_pattern = re.compile(r'read\(.+,.+,.+\)') read_func_find = read_data_pattern.search(line) if read_func_find: read_func_str = read_func_find.group(0) fd = read_func_str.split(',')[0][5:] read_byte = read_func_str.split(',')[1][2:-1] if fd != '' and read_byte != ' ': if file_read_data.has_key(fd): file_read_data[fd] = file_read_data[fd] + read_byte else: file_read_data[fd] = read_byte def parse_file_read_data(self, behavior_obj): """parse file data from strace.""" for line in self.strace_log: if 'read(' in line: self.format_read_str(line, behavior_obj.file_read_data) def parse_recvfrom_data(self, behavior_obj): """parse recvfrom data .""" for line in self.strace_log: if 'recvfrom(' in line: self.format_recvfrom_str(line, behavior_obj.recvfrom_data) def parse_socket_log(self, behavior_obj): """parse socket related log from starce.""" for line in self.strace_log: if 'connect(' in line: behavior_obj.socket_log['connect'].append( self.parse_ip_port(line)) if 'bind(' in line: behavior_obj.socket_log['bind'].append( self.parse_ip_port(line)) if 'sendto(' in line: behavior_obj.socket_log['sendto'].append( {'port':self.parse_ip_port(line)['port'],'addr':self.parse_ip_port(line)['addr'],'info':line[line.find('sendto'):-1]}) if 'recvfrom(' in line: behavior_obj.socket_log['recvfrom'].append( {'port':self.parse_ip_port(line)['port'],'addr':self.parse_ip_port(line)['addr'],'info':line[line.find('recvfrom'):-1]}) def parse_ip_port(self, log_str): """parse ip port from socket log.""" connect_info = { 'port': '', 'addr': '' } port_pattern = re.compile(r'sin_port=htons\(\d+\)') addr_pattern = re.compile(r'inet_addr\(".+"\)') port_result = port_pattern.search(log_str) if port_result: connect_info['port'] = port_result.group(0)[15:-1] addr_result = addr_pattern.search(log_str) if addr_result: connect_info['addr'] = addr_result.group(0)[11:-2] return connect_info def fetch_strace_log(self, guest_vm): """fetch strace log from guset os.""" if os.path.isfile(self.strace_log_path): os.remove(self.strace_log_path) self.vm_control.vm_copyfrom( guest_vm.name, guest_vm.vm_log_path, guest_vm.host_log_path, guest_vm.user, guest_vm.password ) def fetch_tcpdump_log(self, guest_vm): """fetch tcpdump log from guest os.""" if os.path.isfile(self.tcpdump_log_path): os.remove(self.tcpdump_log_path) self.vm_control.vm_copyfrom( guest_vm.name, guest_vm.vm_log_tcpdump, guest_vm.host_log_tcpdump, guest_vm.user, guest_vm.password ) def get_analyze_file_md5(self, filepath): try: m = hashlib.md5(open(filepath, 'rb').read()) return m.hexdigest() except Exception as e: return '' logger.error("get file md5 error.", exc_info=True) def analyze_file(self, filepath): """main analyze function. """ self.strace_log = [] guest_vm = VMControl.GuestVM() guest_vm.init_config() self.init_vm() # calculate md5 self.md5_hash = self.get_analyze_file_md5(filepath) # get guest analyzer path file_root = os.path.dirname(__file__) guest_analyzer_path = os.path.join(file_root, 'GuestAnalyzer.py') file_name = os.path.split(filepath)[1] self.file_name = file_name if self.vm_control.start_vm(guest_vm.name) == False: logging.error('Start Guest VM Failed') self.vm_control.vm_copyto( guest_vm.name, filepath, guest_vm.runpath, guest_vm.user, guest_vm.password) self.vm_control.vm_copyto(guest_vm.name, guest_analyzer_path, guest_vm.runpath, guest_vm.user, guest_vm.password) self.vm_control.vm_guest_run(guest_vm.name, '/bin/chmod', ' +x %s/%s' % ( guest_vm.runpath, file_name), guest_vm.user, guest_vm.password) self.vm_control.vm_guest_run( guest_vm.name, '/usr/bin/python', '%s/GuestAnalyzer.py %s/%s' % (guest_vm.guest_analyzer_path, guest_vm.guest_analyzer_path, file_name), guest_vm.user, guest_vm.password) time.sleep(10) self.fetch_strace_log(guest_vm) self.fetch_tcpdump_log(guest_vm) self.vm_control.control_vm(guest_vm.name, 'poweroff') time.sleep(5) self.vm_control.vm_snap_control(guest_vm.name, 'restore', 'analysis') def do_log_parse(self, behaviors): """main log parse function.""" behaviors.md5_hash = self.md5_hash behaviors.file_name = self.file_name # parse strace log if os.path.isfile(self.strace_log_path): self.parse_strace_log(self.strace_log_path) os.remove(self.strace_log_path) self.parse_socket_log(behaviors) self.parse_file_log(behaviors) self.parse_proc_log(behaviors) self.parse_recvfrom_data(behaviors) self.parse_file_read_data(behaviors) # parse tcpdump info if os.path.isfile(self.tcpdump_log_path): self.parse_tcpdump_log(behaviors) os.remove(self.tcpdump_log_path) def parse_tcpdump_log(self, behaviors): """parse tcpdump pcap file. """ if os.path.isfile(self.tcpdump_log_path): behaviors.tcp_log = self.tcp_info(self.tcpdump_log_path) behaviors.http_log = self.http_info(self.tcpdump_log_path) behaviors.udp_log = self.udp_info(self.tcpdump_log_path) behaviors.dns_log = self.dns_info(self.tcpdump_log_path) behaviors.irc_log = self.irc_info(self.tcpdump_log_path) behaviors.packets = self.packets_info(self.tcpdump_log_path) def packets_info(self, tcpdumpfile): cmd = [self.tshark_path, '-n', '-ta', '-r', tcpdumpfile] cmd_output = self.check_output_safe(cmd) packet_list = [] for line in cmd_output.splitlines(): packet_list.append(line.strip().replace('\xe2\x86\x92 ',' ')) return packet_list def check_output_safe(self, cmd): output = "" try: output = subprocess.check_output(cmd) except subprocess.CalledProcessError as e: logging.error("CalledProcessError: %s", str(e)) output = e.output return output def filter_packets_by_protocal(self, tcpdumpfile, protocal): """use tshark to analyze tcpdump pcap file""" if os.path.isfile(tcpdumpfile): cmd = [self.tshark_path, '-Tjson', '-n', '-ta', '-r', tcpdumpfile, protocal] cmd_output = self.check_output_safe(cmd) json_data = json.loads(cmd_output) packet_list = [] for line in json_data: packet_data = {} if 'ip' in line['_source']['layers'].keys(): packet_data['ip.src'] = line['_source']['layers']['ip']['ip.src'] packet_data['ip.dst'] = line['_source']['layers']['ip']['ip.dst'] if protocal == 'irc': irc_info = line['_source']['layers']['irc'] if 'irc.response' in irc_info.keys(): packet_data['irc.response'] = irc_info['irc.response'] if protocal == 'http': http_info = line['_source']['layers']['http'] if 'http.host' in http_info.keys(): packet_data['http.host'] = http_info['http.host'] if 'http.request' in http_info.keys(): packet_data['http.request'] = http_info['http.request.full_uri'] if protocal == 'dns': packet_data.clear() if 'dns' in line['_source']['layers'].keys(): dns_info = line['_source']['layers']['dns'] if 'Queries' in dns_info.keys(): for dns_query in dns_info['Queries'].values(): packet_data['dns_query'] = dns_query['dns.qry.name'] packet_list.append(packet_data) return packet_list def tcp_info(self, tcpdumpfile): """get tcp info""" return self.filter_packets_by_protocal(tcpdumpfile, 'tcp') def udp_info(self, tcpdumpfile): """get udp info""" return self.filter_packets_by_protocal(tcpdumpfile, 'udp') def irc_info(self, tcpdumpfile): return self.filter_packets_by_protocal(tcpdumpfile, 'irc') def http_info(self, tcpdumpfile): return self.filter_packets_by_protocal(tcpdumpfile, 'http') def dns_info(self, tcpdumpfile): dns_packet = self.filter_packets_by_protocal(tcpdumpfile, 'dns') dns_query_list = [] for line in dns_packet: if line['dns_query'] in dns_query_list: continue dns_query_list.append(line['dns_query']) return dns_query_list if __name__ == '__main__': # test code here pass
plugin/ERCC_Analysis/code/ercc_seq_utils.py
konradotto/TS
125
12649053
<filename>plugin/ERCC_Analysis/code/ercc_seq_utils.py # Copyright (C) 2012 Ion Torrent Systems, Inc. All Rights Reserved # Sequence and read streaming utilities import sys import time import pysam # decorators section def _use_and_del(d, k, v): """ Use a values from a dict and remove it. """ if k in d: v = d[k] del d[k] return v def open_read_stream(fn): """ Take a string or file argument and pass it to the function as an open file. """ def wrapped(f, *args, **kargs): if type(f) is file: return fn(f, *args, **kargs) elif type(f) is str: return fn(open(f, 'r', 16384), *args, **kargs) else: raise Exception(str(f) + ' is not a string or file') return wrapped def value_stream(fn): """ Take an iterator that iterates over lines (e.g., from a file) and return the lines stripped and split into values using delimter. Skip blank lines and lines that start with characters in the skip_lines string. """ def wrapped(f, *args, **kargs): skip_header = _use_and_del(kargs, 'skip_header', True) skip_blank = _use_and_del(kargs, 'skip_blank', True) skip_lines = _use_and_del(kargs, 'skip_lines', '#') delimiter = _use_and_del(kargs, 'delimiter', None) lines = fn(f, *args, **kargs) if skip_header: header = lines.next() for line in lines: values = line.strip().split(delimiter) if skip_blank and len(values) == 0: continue if values[0][0] in skip_lines: continue yield values return wrapped def metered_stream(fn): """ Display a progress meter to standard out for a stream. """ def wrapped(*args, **kargs): meter = _use_and_del(kargs, 'meter', True) freq = _use_and_del(kargs, 'meter_freq', 10000) stream = fn(*args, **kargs) # Hijack the stream and keep count of the items if meter: count = 0 start = time.time() for record in stream: yield record if meter: count += 1 if count % freq == 0: tick = time.time() sys.stderr.write('\rProcessed %d lines %.2f lines/sec' % ( count, count / (tick - start))) sys.stderr.flush() if meter: tick = time.time() sys.stderr.write('\rProcessed %d lines %.2f lines/sec\n' % ( count, count / (tick - start))) sys.stderr.flush() return wrapped # end of decorators section @open_read_stream @value_stream def file_values(f, *args, **kargs): return f @metered_stream def sam_stream(sam, meter=True, skip_unmapped=False, skip_reverse=False): """ Use pysam instead... """ stream = pysam.Samfile(sam) for read in stream: if skip_unmapped and read.is_unmapped: continue # skip umapped reads if skip_reverse and read.is_reverse: continue # skip reverse reads if read.rname != -1: rname = stream.getrname(read.tid) # make rname visible to the caller else: rname = '' yield read, rname return
dl_lib/modeling/meta_arch/__init__.py
AndysonYs/DynamicRouting
122
12649093
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # import all the meta_arch, so they will be registered from .semantic_seg import SemanticSegmentor from .dynamic4seg import DynamicNet4Seg
nativedroid/nativedroid/analyses/annotation_based_analysis.py
CherishAZ/Argus-SAF
152
12649141
import copy from cStringIO import StringIO from nativedroid.analyses.resolver.annotation import * from nativedroid.analyses.resolver.armel_resolver import ArmelResolver from nativedroid.analyses.resolver.jni.jni_helper import * from nativedroid.analyses.resolver.model.__android_log_print import * from nativedroid.protobuf.jnsaf_grpc_pb2 import * __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2018, The Argus-SAF Project" __license__ = "Apache v2.0" nativedroid_logger = logging.getLogger('AnnotationBasedAnalysis') nativedroid_logger.setLevel(logging.INFO) annotation_location = { 'from_reflection_call': '~', 'from_native': '~', 'from_class': '~' } class AnnotationBasedAnalysis(angr.Analysis): """ This class performs taint analysis based upon angr's annotation technique. """ def __init__(self, analysis_center, jni_method_addr, jni_method_arguments, is_native_pure, native_pure_info=None): """ init :param AnalysisCenter analysis_center: :param str jni_method_addr: address of jni method :param str jni_method_arguments: :param list is_native_pure: whether it is pure native and android_main type or direct type. :param Object native_pure_info: initial SimState and native pure argument """ if self.project.arch.name is 'ARMEL': self._resolver = ArmelResolver(self.project, analysis_center) else: raise ValueError('Unsupported architecture: %d' % self.project.arch.name) self._hook_system_calls() self._analysis_center = analysis_center self._jni_method_signature = analysis_center.get_signature() self._jni_method_addr = jni_method_addr if is_native_pure: self._state = self._resolver.prepare_native_pure_state(native_pure_info) self._arguments_summary = None else: self._state, self._arguments_summary = self._resolver.prepare_initial_state(jni_method_arguments) if is_native_pure: self.cfg = self.project.analyses.CFGAccurate(fail_fast=True, starts=[self._jni_method_addr], initial_state=self._state, context_sensitivity_level=1, keep_state=True, normalize=True, call_depth=5) else: self.cfg = self.project.analyses.CFGAccurate(fail_fast=True, starts=[self._jni_method_addr], initial_state=self._state, context_sensitivity_level=1, keep_state=True, normalize=True, call_depth=5) def _hook_system_calls(self): if '__android_log_print' in self.project.loader.main_object.imports: self.project.hook_symbol('__android_log_print', AndroidLogPrint(), replace=True) def count_cfg_instructions(self): """ Count instructions size from CFG. :return: Instructions size :rtype: int """ total_instructions = 0 for func_addr, func in self.cfg.kb.functions.iteritems(): func_instructions = 0 # print func.name for block in func.blocks: block_instructions = len(block.instruction_addrs) # print block, block_instructions func_instructions += block_instructions total_instructions += func_instructions # print('Total INS: %d' % total_instructions) return total_instructions def _collect_taint_sources(self): """ Collect source nodes from CFG. :param: jni_method_signature: method signature :return: A dictionary contains source nodes with its source tags (positions, taint_tags). :rtype: list """ sources_annotation = set() if self._arguments_summary: for _, arg_summary in self._arguments_summary.iteritems(): for annotation in arg_summary.annotations: if isinstance(annotation, JobjectAnnotation): worklist = list(annotation.fields_info) while worklist: field_info = worklist[0] worklist = worklist[1:] if isinstance(field_info, JobjectAnnotation): if field_info.taint_info['is_taint'] and \ field_info.taint_info['taint_type'][0] == '_SOURCE_' and \ '_ARGUMENT_' not in field_info.taint_info['taint_type'][1]: sources_annotation.add(annotation) else: worklist.extend(field_info.fields_info) if not self._jni_method_signature.endswith(")V"): for node in self.cfg.nodes(): if not node.is_simprocedure and \ node.block.vex.jumpkind == 'Ijk_Ret' and \ node.function_address == self._jni_method_addr: for final_state in node.final_states: return_value = final_state.regs.r0 for annotation in return_value.annotations: if isinstance(annotation, JobjectAnnotation): if annotation.taint_info['is_taint'] and \ annotation.taint_info['taint_type'][0] == '_SOURCE_' and \ '_ARGUMENT_' not in annotation.taint_info['taint_type'][1]: sources_annotation.add(annotation) return sources_annotation def _collect_taint_sinks(self): """ Collect sink nodes from CFG. :return: A dictionary contains sink nodes with its sink tags (positions, taint_tags). :rtype: dict """ sink_nodes = {} sink_annotations = set() for node in self.cfg.nodes(): if node.is_simprocedure and node.name.startswith('Call'): for final_state in node.final_states: regs = [final_state.regs.r0, final_state.regs.r1, final_state.regs.r2, final_state.regs.r3, final_state.regs.r4, final_state.regs.r5, final_state.regs.r6, final_state.regs.r7, final_state.regs.r8, final_state.regs.r9, final_state.regs.r10] for reg in regs: # node_return_value = final_state.regs.r0 for annotation in reg.annotations: if isinstance(annotation, JobjectAnnotation): if annotation.taint_info['is_taint'] and \ annotation.taint_info['taint_type'][0] == '_SINK_': sink_annotations.add(annotation) fn = self.cfg.project.kb.functions.get(node.addr) if fn: ssm = self._analysis_center.get_source_sink_manager() if ssm.is_sink(fn.name): sink_tag = ssm.get_sink_tags(fn.name) sink_nodes[node] = sink_tag for sink, (positions, tags) in sink_nodes.iteritems(): input_state = sink.input_state final_states = sink.final_states args = self._resolver.get_taint_args(input_state, final_states, positions, tags) if args: nativedroid_logger.debug('tainted: %s, belong_obj: %s' % (args, sink.final_states[0].regs.r0)) for arg in args: for annotation in arg.annotations: sink_annotation = copy.deepcopy(annotation) sink_annotation.taint_info['taint_type'][0] = '_SINK_' if annotation.taint_info['is_taint'] and \ annotation.taint_info['taint_type'] == ['_SOURCE_', '_API_']: sink_annotation.taint_info['taint_type'][1] = '_SOURCE_' sink_annotations.add(sink_annotation) annotations = set() for annotation in sink_annotations: if annotation.taint_info['is_taint'] and annotation.taint_info['taint_type'][1] == '_SOURCE_': nativedroid_logger.info('Found taint in function %s.', self._jni_method_signature) jnsaf_client = self._analysis_center.get_jnsaf_client() if jnsaf_client: request = RegisterTaintRequest( apk_digest=jnsaf_client.apk_digest, signature=self._analysis_center.get_signature(), source_kind=annotation.taint_info['source_kind'], sink_kind=annotation.taint_info['sink_kind']) response = jnsaf_client.RegisterTaint(request) if response.status: nativedroid_logger.info('Registered %s as taint.', self._jni_method_signature) else: annotations.add(annotation) return annotations def gen_taint_analysis_report(self, sources, sinks): """ Generate the taint analysis report :param sources: Sources annotation :param sinks: Sinks annotation :return: taint analysis report """ report_file = StringIO() if sinks: report_file.write(self._jni_method_signature) report_file.write(' -> _SINK_ ') args = set([]) for sink_annotation in sinks: if sink_annotation.array_info['is_element']: if sink_annotation.array_info['base_annotation'].source.startswith('arg'): arg_index = \ re.split('arg|_', sink_annotation.array_info['base_annotation'].source)[1] sink_location = arg_index args.add(str(sink_location)) else: taint_field_name = '' anno = sink_annotation while anno: if anno.field_info['is_field']: taint_field_name = '.' + anno.field_info['field_name'] + taint_field_name if anno.taint_info['is_taint'] and anno.source and anno.source.startswith('arg'): args.add(anno.source.split('arg')[-1] + taint_field_name) break anno = anno.field_info['base_annotation'] report_file.write('|'.join(args)) report_file.write('\n') if sources: report_file.write(self._jni_method_signature) report_file.write(' -> _SOURCE_ ') for source_annotation in sources: if isinstance(source_annotation, JobjectAnnotation) and source_annotation.source.startswith('arg'): source_location = source_annotation.source taint_field_name = '' worklist = list(source_annotation.fields_info) while worklist: field_info = worklist[0] worklist = worklist[1:] if field_info.taint_info['is_taint'] and \ '_ARGUMENT_' not in field_info.taint_info['taint_type'][1]: taint_field_name += '.' + field_info.field_info['field_name'] break elif isinstance(field_info, JobjectAnnotation): taint_field_name += '.' + field_info.field_info['field_name'] worklist.extend(field_info.fields_info) if taint_field_name: report_file.write(source_location.split('arg')[-1] + taint_field_name) return report_file.getvalue().strip() def gen_saf_summary_report(self): """ Generate SAF summary report :return: summary report """ args_safsu = dict() rets_safsu = list() if self._arguments_summary: for arg_index, arg_summary in self._arguments_summary.iteritems(): arg_safsu = dict() for annotation in arg_summary.annotations: if isinstance(annotation, JobjectAnnotation) and annotation.fields_info: for field_info in annotation.fields_info: field_name = field_info.field_info['field_name'] field_type = field_info.obj_type.replace('/', '.') field_locations = list() if field_info.source in annotation_location: field_location = annotation_location[field_info.source] field_locations.append(field_location) elif field_info.source.startswith('arg'): field_location = field_info.heap field_locations.append(field_location) arg_safsu[field_name] = (field_type, field_locations) args_safsu[arg_index] = arg_safsu return_nodes = list() for node in self.cfg.nodes(): if not node.is_simprocedure: if node.block.vex.jumpkind == 'Ijk_Ret' and node.function_address == self._jni_method_addr: return_nodes.append(node) if not self._jni_method_signature.endswith(")V"): for return_node in return_nodes: for final_state in return_node.final_states: return_value = final_state.regs.r0 for annotation in return_value.annotations: if isinstance(annotation, JstringAnnotation): # ret_type = annotation.primitive_type.split('L')[-1].replace('/', '.') ret_type = 'java.lang.String' ret_location = annotation_location[annotation.source] ret_value = annotation.value if ret_value is not None: ret_safsu = ' ret = "' + ret_value + '"@' + ret_location else: ret_safsu = ' ret = ' + ret_type + '@' + ret_location rets_safsu.append(ret_safsu) elif isinstance(annotation, JobjectAnnotation): if annotation.heap: ret_value = annotation.heap ret_safsu = ' ret = ' + ret_value rets_safsu.append(ret_safsu) else: ret_type = annotation.obj_type.replace('/', '.') ret_location = annotation_location[annotation.source] ret_safsu = ' ret = ' + ret_type + '@' + ret_location rets_safsu.append(ret_safsu) report_file = StringIO() report_file.write('`' + self._jni_method_signature + '`:' + '\n') if args_safsu: for arg_index, fields_safsu in args_safsu.iteritems(): arg_index = 'arg:' + str(re.split('arg|_', arg_index)[1]) for field_name, field_su in fields_safsu.iteritems(): field_type = field_su[0] field_locations = field_su[1] if field_locations[0] == '~': field_safsu = arg_index + '.' + field_name + ' = ' + field_type + '@' + field_locations[0] else: field_safsu = arg_index + '.' + field_name + ' = ' + field_locations[0] report_file.write(' ' + field_safsu.strip() + '\n') if rets_safsu: for ret_safsu in rets_safsu: report_file.write(ret_safsu + '\n') report_file.write(';\n') return report_file.getvalue().strip() def run(self): """ run the analysis. :return: """ sources = self._collect_taint_sources() sinks = self._collect_taint_sinks() return sources, sinks
whatsapp-bot-venv/Lib/site-packages/twilio/rest/preview/deployed_devices/__init__.py
RedaMastouri/ConversationalPythonicChatBot
1,362
12649152
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base.version import Version from twilio.rest.preview.deployed_devices.fleet import FleetList class DeployedDevices(Version): def __init__(self, domain): """ Initialize the DeployedDevices version of Preview :returns: DeployedDevices version of Preview :rtype: twilio.rest.preview.deployed_devices.DeployedDevices.DeployedDevices """ super(DeployedDevices, self).__init__(domain) self.version = 'DeployedDevices' self._fleets = None @property def fleets(self): """ :rtype: twilio.rest.preview.deployed_devices.fleet.FleetList """ if self._fleets is None: self._fleets = FleetList(self) return self._fleets def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Preview.DeployedDevices>'
scale.app/scripts/lizard_metrics.py
f4rsh/SCALe
239
12649153
#!/usr/bin/env python # Copyright (c) 2007-2018 Carnegie Mellon University. # All Rights Reserved. See COPYRIGHT file for details. import lizard import scale import argparse import os import sys # Get path arg from cmd line def getArgs(): parser = argparse.ArgumentParser(description="Gathers metrics via Lizard") parser.add_argument( "-p", "--pathName", help="Path in which to begin gathering metrics") args = parser.parse_args() if args.pathName is None: print "Must specify path in which directory" \ + " to parse is located using -p" sys.exit(1) if not os.path.exists(args.pathName): print "Target directory " + args.pathName + " does not exist!" sys.exit(1) return args.pathName def convertPath(pathName): pathList = pathName.split('/') if pathList[len(pathList) - 1]: return pathList[len(pathList) - 1] else: return pathList[len(pathList) - 2] def getNewFileName(newPath, oldFile): fileList = oldFile.split('/') pathBegin = None for cur in range(len(fileList)): if fileList[cur] == newPath: pathBegin = cur newList = fileList[pathBegin:] finalPath = '/' + '/'.join(newList) return finalPath def printMetrics(srcFiles, pathName): totSlocFolder = 0 numFiles = 0 newPath = convertPath(pathName) lizard.analyze_file.processors.insert(0, lizard.CPreExtension) # Insert file metrics as well as metrics for file's functions for currFile in srcFiles: totSloc = 0 totParams = 0 totTokens = 0 totComplexity = 0 fileMetrics = lizard.analyze_file(currFile) numFuncs = len(fileMetrics.function_list) fileName = getNewFileName(newPath, fileMetrics.filename) for func in fileMetrics.function_list: fields = [func.name, func.length, func.nloc, fileName, "", func.cyclomatic_complexity, "", func.parameter_count, "", "", "", func.token_count, "", func.start_line, func.end_line] scale.Write_Fields(map(lambda x: str(x), fields)) totSloc += func.nloc totParams += func.parameter_count totTokens += func.token_count totComplexity += func.cyclomatic_complexity if numFuncs != 0: avgSloc = round((float(totSloc) / numFuncs), 2) avgParams = round((float(totParams) / numFuncs), 2) avgTokens = round((float(totTokens) / numFuncs), 2) avgComplexity = round((float(totComplexity) / numFuncs), 2) fields = [fileName, "", fileMetrics.nloc, "", numFuncs, "", avgComplexity, "", avgSloc, avgParams, "", "", avgTokens, "", ""] else: fields = [fileName, "", fileMetrics.nloc, "", 0, "", 0, "", 0, 0, "", "", 0, "", ""] scale.Write_Fields(map(lambda x: str(x), fields)) totSlocFolder += fileMetrics.nloc numFiles += 1 if numFiles != 0: fields = [newPath, "", totSlocFolder, "", "", "", "", "", "", "", "", float(totSlocFolder) / numFiles, "", "", "", ""] scale.Write_Fields(map(lambda x: str(x), fields)) def main(): pathName = getArgs() srcFiles = lizard.get_all_source_files([pathName], [], []) printMetrics(srcFiles, pathName) if __name__ == "__main__": main()
libcity/pipeline/__init__.py
moghadas76/test_bigcity
221
12649217
from libcity.pipeline.pipeline import run_model, hyper_parameter, objective_function __all__ = [ "run_model", "hyper_parameter", "objective_function" ]
third_party/infra_libs/time_functions/zulu.py
webrtc-lizp/infra-luci-client-py
2,151
12649221
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Provides functions for parsing and outputting Zulu time.""" import datetime import pytz from infra_libs.time_functions import timestamp def parse_zulu_time(string): """Parses a Zulu time string, returning None if unparseable.""" # Ugh https://bugs.python.org/issue19475. zulu_format = "%Y-%m-%dT%H:%M:%S" if '.' in string: zulu_format += ".%f" zulu_format += "Z" try: return datetime.datetime.strptime(string, zulu_format) except ValueError: return None def parse_zulu_ts(string): """Parses Zulu time and converts into a timestamp or None.""" zuluparse = parse_zulu_time(string) if zuluparse is None: return None return timestamp.utctimestamp(zuluparse) def to_zulu_string(dt): """Returns a Zulu time string from a datetime. Assumes naive datetime objects are in UTC. Ensures the output always has a floating-point number of seconds. """ # Assume non-tz-aware datetimes are in UTC. if dt.tzinfo is None or dt.tzinfo.utcoffset(dt) is None: dt = dt.replace(tzinfo=pytz.UTC) # Convert datetime into UTC. isodate = dt.astimezone(pytz.UTC).isoformat().split('+')[0] # Add fractional seconds if not present. if '.' not in isodate: isodate += '.0' return isodate + 'Z'
hydra-configs-torchvision/hydra_configs/torchvision/__init__.py
LaudateCorpus1/hydra-torch
149
12649232
<filename>hydra-configs-torchvision/hydra_configs/torchvision/__init__.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # Generated by configen, do not edit. # See https://github.com/facebookresearch/hydra/tree/main/tools/configen # fmt: off # isort:skip_file # flake8: noqa from packaging import version from pkg_resources import get_distribution import warnings import torchvision CONFIGS_VERSION = get_distribution('hydra-configs-torchvision').version # checks if major.minor versions are matched. patch version is always different if version.parse(torchvision.__version__).release[:2] != version.parse(CONFIGS_VERSION).release[:2]: warnings.warn(f'Your config and library versions are mismatched. \n HYDRA-CONFIGS-TORCHVISION VERSION: {CONFIGS_VERSION}, \n TORCHVISION VERSION: {torchvision.__version__}. \n Please install the matching configs for reliable functionality.')
var/spack/repos/builtin/packages/librmm/package.py
kkauder/spack
2,360
12649236
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Librmm(CMakePackage): """RMM: RAPIDS Memory Manager. Achieving optimal performance in GPU-centric workflows frequently requires customizing how host and device memory are allocated.""" homepage = "https://github.com/rapidsai/rmm" url = "https://github.com/rapidsai/rmm/archive/v0.15.0.tar.gz" version('0.15.0', sha256='599f97b95d169a90d11296814763f7e151a8a1e060ba10bc6c8f4684a5cd7972') depends_on('[email protected]:')
selim_sef/dataset/dense_transform.py
ktncktnc/SpaceNet_Off_Nadir_Solutions
164
12649239
<filename>selim_sef/dataset/dense_transform.py import math import random import cv2 cv2.setNumThreads(0) import numpy as np import torch from numpy.core.multiarray import ndarray _DEFAULT_ALPHASTD = 0.1 _DEFAULT_EIGVAL = torch.Tensor([0.2175, 0.0188, 0.0045]) _DEFAULT_EIGVEC = torch.Tensor([[-0.5675, 0.7192, 0.4009], [-0.5808, -0.0045, -0.8140], [-0.5836, -0.6948, 0.4203]]) _DEFAULT_BCS = [0.2, 0.2, 0.2] class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, sample): sample["img"] = self.normalize(sample["img"], self.mean, self.std) if "imgs" in sample: sample["imgs"] = [self.normalize(img, self.mean, self.std) for img in sample["imgs"]] return sample def normalize(self, tensor, mean, std): if not (torch.is_tensor(tensor) and tensor.ndimension() == 3): raise TypeError('tensor is not a torch image.') for t, m, s in zip(tensor, mean, std): t.sub_(m).div_(s) return tensor class HFlip(object): def __call__(self, sample): if random.random() < 0.5: try: sample["img"] = cv2.flip(sample["img"], 1) except Exception as e: print(sample["img_name"]) raise e if sample["mask"] is not None: sample["mask"] = cv2.flip(sample["mask"], 1) return sample class VFlip(object): def __call__(self, sample): if random.random() < 0.5: sample["img"] = cv2.flip(sample["img"], 0) if sample["mask"] is not None: sample["mask"] = cv2.flip(sample["mask"], 0) return sample def rot90(img, factor): img = np.rot90(img, factor) return np.ascontiguousarray(img) class Rotate90(object): def __call__(self, sample): if random.random() < 0.5: factor = random.randint(0, 4) sample["img"] = rot90(sample["img"], factor) if sample["mask"] is not None: sample["mask"] = rot90(sample["mask"], factor) return sample class Pad(object): def __init__(self, block=32, mode='reflect'): super().__init__() self.block = block self.mode = mode def __call__(self, sample): sample["img"] = pad(sample["img"], self.block, type='reflect') if sample["mask"] is not None and sample["mask"] != []: sample["mask"] = pad(sample["mask"], self.block, type='reflect') return sample def pad(image, block, type='reflect', **kwargs): params = {} if type == 'zero': params = {'constant_values': 0} type = 'constant' x0, x1, y0, y1 = 0, 0, 0, 0 if (image.shape[1] % block) != 0: x0 = int((block - image.shape[1] % block) / 2) x1 = (block - image.shape[1] % block) - x0 if (image.shape[0] % block) != 0: y0 = int((block - image.shape[0] % block) / 2) y1 = (block - image.shape[0] % block) - y0 if len(image.shape) > 1: return np.pad(image, ((y0, y1), (x0, x1), (0, 0)), type, **params, **kwargs) else: return np.pad(image, ((y0, y1), (x0, x1)), type, **params, **kwargs) class ToTensor(object): def __call__(self, sample): sample["img"] = torch.from_numpy(sample["img"].transpose((2, 0, 1))).float() sample["angle"] = torch.from_numpy(sample["angle"].transpose((2, 0, 1))).float() if isinstance(sample["mask"], ndarray): sample["mask"] = torch.from_numpy(sample["mask"].transpose((2, 0, 1))).float() return sample class ColorJitterImage(object): def __init__(self): self.transform = ColorJitter() def __call__(self, sample): if random.random() < 0.5: sample["img"] = self.transform(sample['img']) return sample class LightingImage(object): def __init__(self): self.transform = Lighting() def __call__(self, sample): if random.random() < 0.5: sample["img"] = self.transform(sample['img']) return sample class RandomCropAndScale(object): def __init__(self, height, width, scale_range=(0.5, 2.0), rescale_prob=0.5, prob=1.): self.prob = prob self.height = height self.width = width self.scale_range = scale_range self.rescale_prob = rescale_prob def __call__(self, sample): if random.random() > self.prob: return sample scale = random.uniform(self.scale_range[0], self.scale_range[1]) if random.random() > self.rescale_prob: scale = 1. random_state = np.random.randint(0, 10000) sample["img"] = random_crop(sample['img'], self.height, self.width, scale, np.random.RandomState(random_state)) if sample["mask"] is not None and sample["mask"] != []: sample["mask"] = random_crop(sample['mask'], self.height, self.width, scale, np.random.RandomState(random_state), mode=cv2.INTER_NEAREST) return sample def random_crop(img, height, width, scale, random_state, mode=None): if random_state is None: random_state = np.random.RandomState(1234) crop_height = height crop_width = width img_height, img_width = img.shape[:2] max_height = int(min(crop_height * scale, img_height)) max_width = int(min(crop_width * scale, img_width)) adjusted_scale = scale * min(max_width / (crop_width * scale), max_height / (crop_height * scale)) crop_width = int(adjusted_scale * width) crop_height = int(adjusted_scale * height) start_y = random_state.randint(0, max(img_height - crop_height, 1)) start_x = random_state.randint(0, max(img_width - crop_width, 1)) crop = img[start_y:start_y + crop_height, start_x:start_x + crop_width] if mode is None: if 1 / adjusted_scale < 1.: mode = cv2.INTER_AREA else: mode = cv2.INTER_CUBIC if scale != 1.: img = cv2.resize(crop, (width, height), interpolation=mode) else: img = crop return img def shift_scale_rotate(img, angle, scale, dx, dy, borderMode=cv2.BORDER_CONSTANT): height, width = img.shape[:2] cc = math.cos(angle / 180 * math.pi) * scale ss = math.sin(angle / 180 * math.pi) * scale rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width / 2, height / 2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx * width, height / 2 + dy * height]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) img = cv2.warpPerspective(img, mat, (width, height), flags=cv2.INTER_NEAREST, borderMode=borderMode) return img class RandomRotate(object): def __init__(self, angle=15, prob=0.3): self.prob = prob self.angle = angle def __call__(self, sample): if random.random() > self.prob: return sample angle = random.uniform(-self.angle, self.angle) if angle == 0: return sample sample["img"] = shift_scale_rotate(sample['img'], angle=angle, scale=1, dx=0, dy=0) if sample["mask"] is not None and sample["mask"] != []: sample["mask"] = shift_scale_rotate(sample['mask'], angle=angle, scale=1, dx=0, dy=0) return sample def _grayscale(img): alpha = torch.Tensor([0.299, 0.587, 0.114]) return (alpha.view(3, 1, 1) * img).sum(0, keepdim=True) def _blend(img1, img2, alpha): return img1 * alpha + (1 - alpha) * img2 class Lighting(object): def __init__(self, alphastd=_DEFAULT_ALPHASTD, eigval=_DEFAULT_EIGVAL, eigvec=_DEFAULT_EIGVEC): self._alphastd = alphastd self._eigval = eigval self._eigvec = eigvec def __call__(self, img): if self._alphastd == 0.: return img alpha = torch.normal(torch.zeros(3), self._alphastd) rgb = (self._eigvec * alpha * self._eigval).sum(dim=1) return img + rgb.view(3, 1, 1) class Saturation(object): def __init__(self, var): self._var = var def __call__(self, img): gs = _grayscale(img) alpha = torch.FloatTensor(1).uniform_(-self._var, self._var) + 1.0 return _blend(img, gs, alpha) class Brightness(object): def __init__(self, var): self._var = var def __call__(self, img): gs = torch.zeros(img.size()) alpha = torch.FloatTensor(1).uniform_(-self._var, self._var) + 1.0 return _blend(img, gs, alpha) class Contrast(object): def __init__(self, var): self._var = var def __call__(self, img): gs = _grayscale(img) gs = torch.FloatTensor(1, 1, 1).fill_(gs.mean()) alpha = torch.FloatTensor(1).uniform_(-self._var, self._var) + 1.0 return _blend(img, gs, alpha) class ColorJitter(object): def __init__(self, saturation=_DEFAULT_BCS[0], brightness=_DEFAULT_BCS[1], contrast=_DEFAULT_BCS[2]): self._transforms = [] if saturation is not None: self._transforms.append(Saturation(saturation)) if brightness is not None: self._transforms.append(Brightness(brightness)) if contrast is not None: self._transforms.append(Contrast(contrast)) def __call__(self, img): if len(self._transforms) == 0: return img for t in random.sample(self._transforms, len(self._transforms)): img[:3, ...] = t(img[:3,...]) return img
cadence/tests/test_query_workflow.py
simkimsia/temporal-python-sdk
141
12649247
import time import pytest from cadence.exceptions import QueryFailureException from cadence.workerfactory import WorkerFactory from cadence.workflow import workflow_method, signal_method, Workflow, WorkflowClient, query_method TASK_LIST = "TestQueryWorkflow" DOMAIN = "sample" class GreetingException(Exception): pass class TestQueryWorkflow: @query_method() async def get_message(self) -> str: raise NotImplementedError @query_method() async def get_message_fail(self) -> str: raise NotImplementedError @signal_method() async def put_message(self, message): raise NotImplementedError @workflow_method(task_list=TASK_LIST) async def get_greetings(self) -> list: raise NotImplementedError class TestQueryWorkflowImpl(TestQueryWorkflow): def __init__(self): self.message = "" async def get_message(self) -> str: return self.message async def get_message_fail(self) -> str: raise GreetingException("error from query") async def put_message(self, message): self.message = message async def get_greetings(self) -> list: self.message = "initial-message" await Workflow.await_till(lambda: self.message == "done") def test_query_workflow(): factory = WorkerFactory("localhost", 7933, DOMAIN) worker = factory.new_worker(TASK_LIST) worker.register_workflow_implementation_type(TestQueryWorkflowImpl) factory.start() client = WorkflowClient.new_client(domain=DOMAIN) workflow: TestQueryWorkflow = client.new_workflow_stub(TestQueryWorkflow) workflow_ec = WorkflowClient.start(workflow.get_greetings) assert workflow.get_message() == "initial-message" workflow.put_message("second-message") assert workflow.get_message() == "second-message" with pytest.raises(QueryFailureException) as exc_info: workflow.get_message_fail() ex = exc_info.value assert isinstance(ex.__cause__, GreetingException) workflow.put_message("done") client.wait_for_close(workflow_ec) assert workflow.get_message() == "done" print("Stopping workers") worker.stop()
tests/test_robots.py
PLPeeters/reppy
137
12649252
<filename>tests/test_robots.py #! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function '''These are unit tests that are derived from the rfc at http://www.robotstxt.org/norobots-rfc.txt''' import codecs import unittest import mock from requests.exceptions import SSLError from reppy import robots from .util import requests_fixtures class RobotsTest(unittest.TestCase): '''Tests about our Robots class.''' def test_expired(self): '''Returns true if expired.''' with mock.patch.object(robots.time, 'time', return_value=10): robot = robots.Robots.parse('http://example.com/robots.txt', '', expires=5) self.assertTrue(robot.expired) def test_not_expired(self): '''Returns false if not expired.''' with mock.patch.object(robots.time, 'time', return_value=10): robot = robots.Robots.parse('http://example.com/robots.txt', '', expires=15) self.assertFalse(robot.expired) def test_ttl(self): '''Returns the time remaining until expiration.''' with mock.patch.object(robots.time, 'time', return_value=10): robot = robots.Robots.parse('http://example.com/robots.txt', '', expires=15) self.assertEqual(robot.ttl, 5) def test_no_leading_user_agent(self): '''Treats missing User-Agent as default user agent''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' Disallow: /path Allow: /path/exception Crawl-delay: 7 ''') self.assertNotEqual(robot.agent('agent'), None) self.assertTrue(robot.allowed('/path/exception', 'agent')) self.assertFalse(robot.allowed('/path', 'agent')) self.assertTrue(robot.allowed('/', 'agent')) self.assertEquals(robot.agent('agent').delay, 7) def test_malformed_crawl_delay(self): '''Handles a malformed delay.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: * Crawl-delay: word ''') self.assertEqual(robot.agent('agent').delay, None) def test_honors_default_agents(self): '''Honors the default user agent when that's all that's available.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: * Disallow: /tmp User-agent: other-agent Allow: /tmp ''') self.assertFalse(robot.allowed('/tmp', 'agent')) self.assertTrue(robot.allowed('/path', 'agent')) def test_honors_specific_agent(self): '''Honors the specific user agent if a match is found.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: * Disallow: /tmp User-agent: agent Allow: /tmp ''') self.assertTrue(robot.allowed('/tmp', 'agent')) self.assertTrue(robot.allowed('/path', 'agent')) def test_grouping(self): '''Multiple consecutive User-Agent lines are allowed.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: one User-agent: two Disallow: /tmp ''') self.assertFalse(robot.allowed('/tmp', 'one')) self.assertFalse(robot.allowed('/tmp', 'two')) def test_grouping_unknown_keys(self): ''' When we encounter unknown keys, we should disregard any grouping that may have happened between user agent rules. This is an example from the wild. Despite `Noindex` not being a valid directive, we'll not consider the '*' and 'ia_archiver' rules together. ''' rules = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: * Disallow: /content/2/ User-agent: * Noindex: /gb.html Noindex: /content/2/ User-agent: ia_archiver Disallow: / ''') self.assertTrue(rules.allowed('/foo', 'agent')) self.assertTrue(not rules.allowed('/bar', 'ia_archiver')) def test_separates_agents(self): '''Hands back an appropriate agent.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: one Crawl-delay: 1 User-agent: two Crawl-delay: 2 ''') self.assertNotEqual( robot.agent('one').delay, robot.agent('two').delay) def test_exposes_sitemaps(self): '''Finds and exposes sitemaps.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' Sitemap: http://a.com/sitemap.xml Sitemap: http://b.com/sitemap.xml ''') self.assertEqual(robot.sitemaps, [ 'http://a.com/sitemap.xml', 'http://b.com/sitemap.xml' ]) def test_case_insensitivity(self): '''Make sure user agent matches are case insensitive''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-agent: Agent Disallow: /path ''') self.assertFalse(robot.allowed('/path', 'agent')) self.assertFalse(robot.allowed('/path', 'aGeNt')) def test_empty(self): '''Makes sure we can parse an empty robots.txt''' robot = robots.Robots.parse('http://example.com/robots.txt', '') self.assertEqual(robot.sitemaps, []) self.assertTrue(robot.allowed('/', 'agent')) def test_comments(self): '''Robust against comments.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-Agent: * # comment saying it's the default agent Allow: / ''') self.assertNotEqual(robot.agent('agent'), None) def test_accepts_full_url(self): '''Can accept a url string.''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-Agent: agent Disallow: / ''') self.assertFalse(robot.allowed('http://example.com/path', 'agent')) def test_skip_malformed_line(self): '''If there is no colon in a line, then we must skip it''' robot = robots.Robots.parse('http://example.com/robots.txt', ''' User-Agent: agent Disallow /no/colon/in/this/line ''') self.assertTrue(robot.allowed('/no/colon/in/this/line', 'agent')) def test_fetch_status_200(self): '''A 200 parses things normally.''' with requests_fixtures('test_fetch_status_200'): robot = robots.Robots.fetch('http://localhost:8080/robots.txt') self.assertFalse(robot.allowed('/path', 'agent')) def test_fetch_status_401(self): '''A 401 gives us an AllowNone Robots.''' with requests_fixtures('test_fetch_status_401'): robot = robots.Robots.fetch('http://localhost:8080/robots.txt') self.assertIsInstance(robot, robots.AllowNone) def test_fetch_status_403(self): '''A 403 gives us an AllowNone Robots.''' with requests_fixtures('test_fetch_status_403'): robot = robots.Robots.fetch('http://localhost:8080/robots.txt') self.assertIsInstance(robot, robots.AllowNone) def test_fetch_status_4XX(self): '''A 4XX gives us an AllowAll Robots.''' with requests_fixtures('test_fetch_status_4XX'): robot = robots.Robots.fetch('http://localhost:8080/robots.txt') self.assertIsInstance(robot, robots.AllowAll) def test_fetch_status_5XX(self): '''A server error raises an exception.''' with requests_fixtures('test_fetch_status_5XX'): with self.assertRaises(robots.exceptions.BadStatusCode): robots.Robots.fetch('http://localhost:8080/robots.txt') def test_content_too_big(self): '''Raises an exception if the content is too big.''' with requests_fixtures('test_content_too_big'): with self.assertRaises(robots.exceptions.ReppyException): robots.Robots.fetch('http://localhost:8080/robots.txt', max_size=5) def test_ssl_exception(self): '''Raises a ReppyException on SSL errors.''' with mock.patch.object(robots.requests, 'get', side_effect=SSLError('Kaboom')): with self.assertRaises(robots.exceptions.SSLException): robots.Robots.fetch('https://localhost:8080/robots.txt') def test_connection_exception(self): '''Raises a ReppyException on connection errors.''' with self.assertRaises(robots.exceptions.ConnectionException): robots.Robots.fetch('http://localhost:8080/robots.txt') def test_malformed_url(self): '''Raises a ReppyException on malformed URLs.''' with self.assertRaises(robots.exceptions.MalformedUrl): robots.Robots.fetch('gobbledygook') def test_excessive_redirects(self): '''Raises a ReppyException on too many redirects.''' with requests_fixtures('test_excessive_redirects'): with self.assertRaises(robots.exceptions.ExcessiveRedirects): robots.Robots.fetch('http://localhost:8080/robots.txt') def test_robots_url_http(self): '''Works with a http URL.''' url = 'http://[email protected]:80/path;params?query#fragment' expected = 'http://example.com/robots.txt' self.assertEqual(robots.Robots.robots_url(url), expected) def test_robots_url_https(self): '''Works with a https URL.''' url = 'https://[email protected]:443/path;params?query#fragment' expected = 'https://example.com/robots.txt' self.assertEqual(robots.Robots.robots_url(url), expected) def test_robots_url_non_default_port(self): '''Works with a URL with a non-default port.''' url = 'http://[email protected]:8080/path;params?query#fragment' expected = 'http://example.com:8080/robots.txt' self.assertEqual(robots.Robots.robots_url(url), expected) def test_robots_url_invalid_port(self): '''Raises exception when given an invalid port.''' url = 'http://:::cnn.com/' with self.assertRaises(ValueError): robots.Robots.robots_url(url) def test_utf8_bom(self): '''If there's a utf-8 BOM, we should parse it as such''' robot = robots.Robots.parse('http://example.com/robots.txt', codecs.BOM_UTF8 + b''' User-Agent: agent Allow: /path User-Agent: other Disallow: /path ''') self.assertTrue(robot.allowed('http://example.com/path', 'agent')) self.assertFalse(robot.allowed('http://example.com/path', 'other')) def test_str_function(self): ''' If there is valid UTF-8, str() should return a representation of the directives. This came out of a UnicodeDecodeError happening in Python 2, when we were unduly decoding the bytes (via UTF-8) to unicode, then implictly converting back to bytes via UTF-8. ''' robot = robots.Robots.parse('http://example.com/robots.txt', codecs.BOM_UTF8 + b''' User-Agent: \xc3\xa4gent Allow: /swedish-chef ''') s = str(robot) self.assertTrue('ägent' in s) def test_utf16_bom(self): '''If there's a utf-16 BOM, we should parse it as such''' robot = robots.Robots.parse('http://example.com/robots.txt', codecs.BOM_UTF16 + b''' User-Agent: agent Allow: /path User-Agent: other Disallow: /path ''') self.assertTrue(robot.allowed('http://example.com/path', 'agent')) self.assertFalse(robot.allowed('http://example.com/path', 'other')) def test_rfc_example(self): '''Tests the example provided by the RFC.''' robot = robots.Robots.parse('http://www.fict.org', ''' # /robots.txt for http://www.fict.org/ # comments to <EMAIL> User-agent: unhipbot Disallow: / User-agent: webcrawler User-agent: excite Disallow: User-agent: * Disallow: /org/plans.html Allow: /org/ Allow: /serv Allow: /~mak Disallow: / ''') # The unhip bot self.assertFalse(robot.allowed('/', 'unhipbot')) self.assertFalse(robot.allowed('/index.html', 'unhipbot')) self.assertTrue(robot.allowed('/robots.txt', 'unhipbot')) self.assertFalse(robot.allowed('/server.html', 'unhipbot')) self.assertFalse(robot.allowed('/services/fast.html', 'unhipbot')) self.assertFalse(robot.allowed('/services/slow.html', 'unhipbot')) self.assertFalse(robot.allowed('/orgo.gif', 'unhipbot')) self.assertFalse(robot.allowed('/org/about.html', 'unhipbot')) self.assertFalse(robot.allowed('/org/plans.html', 'unhipbot')) self.assertFalse(robot.allowed('/%7Ejim/jim.html', 'unhipbot')) self.assertFalse(robot.allowed('/%7Emak/mak.html', 'unhipbot')) # The webcrawler agent self.assertTrue(robot.allowed('/', 'webcrawler')) self.assertTrue(robot.allowed('/index.html', 'webcrawler')) self.assertTrue(robot.allowed('/robots.txt', 'webcrawler')) self.assertTrue(robot.allowed('/server.html', 'webcrawler')) self.assertTrue(robot.allowed('/services/fast.html', 'webcrawler')) self.assertTrue(robot.allowed('/services/slow.html', 'webcrawler')) self.assertTrue(robot.allowed('/orgo.gif', 'webcrawler')) self.assertTrue(robot.allowed('/org/about.html', 'webcrawler')) self.assertTrue(robot.allowed('/org/plans.html', 'webcrawler')) self.assertTrue(robot.allowed('/%7Ejim/jim.html', 'webcrawler')) self.assertTrue(robot.allowed('/%7Emak/mak.html', 'webcrawler')) # The excite agent self.assertTrue(robot.allowed('/', 'excite')) self.assertTrue(robot.allowed('/index.html', 'excite')) self.assertTrue(robot.allowed('/robots.txt', 'excite')) self.assertTrue(robot.allowed('/server.html', 'excite')) self.assertTrue(robot.allowed('/services/fast.html', 'excite')) self.assertTrue(robot.allowed('/services/slow.html', 'excite')) self.assertTrue(robot.allowed('/orgo.gif', 'excite')) self.assertTrue(robot.allowed('/org/about.html', 'excite')) self.assertTrue(robot.allowed('/org/plans.html', 'excite')) self.assertTrue(robot.allowed('/%7Ejim/jim.html', 'excite')) self.assertTrue(robot.allowed('/%7Emak/mak.html', 'excite')) # All others self.assertFalse(robot.allowed('/', 'anything')) self.assertFalse(robot.allowed('/index.html', 'anything')) self.assertTrue(robot.allowed('/robots.txt', 'anything')) self.assertTrue(robot.allowed('/server.html', 'anything')) self.assertTrue(robot.allowed('/services/fast.html', 'anything')) self.assertTrue(robot.allowed('/services/slow.html', 'anything')) self.assertFalse(robot.allowed('/orgo.gif', 'anything')) self.assertTrue(robot.allowed('/org/about.html', 'anything')) self.assertFalse(robot.allowed('/org/plans.html', 'anything')) self.assertFalse(robot.allowed('/%7Ejim/jim.html', 'anything')) self.assertTrue(robot.allowed('/%7Emak/mak.html', 'anything')) def test_after_response_hook(self): '''Calls after_response_hook when response is received''' state = {"called": False} def hook(response): state["called"] = True self.assertEquals(response.status_code, 200) with requests_fixtures('test_after_response_hook'): robots.Robots.fetch( 'http://example.com/robots.txt', after_response_hook=hook) self.assertTrue(state["called"]) def test_after_response_hook_on_error(self): '''Calls after_response_hook when error occurs during fetch''' state = {"called": False} expected_url = 'http://localhost:8080/robots.txt' def hook(response): state["called"] = True self.assertIsInstance( response, robots.exceptions.ConnectionException) self.assertEquals(response.url, expected_url) with self.assertRaises(robots.exceptions.ConnectionException): robots.Robots.fetch(expected_url, after_response_hook=hook) self.assertTrue(state["called"]) def test_after_parse_hook(self): '''Calls after_parse_hook after parsing robots.txt''' state = {"called": False} def hook(robots): state["called"] = True self.assertFalse(robots.allowed('/disallowed', 'me')) with requests_fixtures('test_after_parse_hook'): robots.Robots.fetch( 'http://example.com/robots.txt', after_parse_hook=hook) self.assertTrue(state["called"]) class AllowNoneTest(unittest.TestCase): '''Tests about the AllowNone Robots class.''' def test_allow(self): '''Allows nothing.''' robot = robots.AllowNone('http://example.com/robots.txt') self.assertFalse(robot.allowed('/', 'agent')) def test_allow_robots_txt(self): '''Allows robots.txt.''' robot = robots.AllowNone('http://example.com/robots.txt') self.assertTrue(robot.allowed('/robots.txt', 'agent')) class AllowAllTest(unittest.TestCase): '''Tests about the AllowAll Robots class.''' def test_allow(self): '''Allows nothing.''' robot = robots.AllowAll('http://example.com/robots.txt') self.assertTrue(robot.allowed('/', 'agent'))
osbrain/tests/conftest.py
RezaBehzadpour/osbrain
176
12649253
<gh_stars>100-1000 import pytest from osbrain import run_agent from osbrain import run_logger from osbrain import run_nameserver from osbrain.helper import sync_agent_logger @pytest.fixture(scope='function') def nsproxy(request): ns = run_nameserver() yield ns ns.shutdown() @pytest.fixture(scope='function') def agent_logger(request): ns = run_nameserver() agent = run_agent('a0') logger = run_logger('logger') agent.set_logger(logger) sync_agent_logger(agent=agent, logger=logger) yield agent, logger ns.shutdown()
python/helpers/pydev/pydev_tests_python/resources/_debugger_case_frame_eval.py
tgodzik/intellij-community
695
12649261
''' Things this test checks: - frame.f_trace is None when there are only regular breakpoints. - The no-op tracing function is set by default (otherwise when set tracing functions have no effect). - When stepping in, frame.f_trace must be set by the frame eval. - When stepping over/return, the frame.f_trace must not be set on intermediate callers. TODO: - When frame.f_trace is set to the default tracing function, it'll become None again in frame eval mode if not stepping (if breakpoints weren't changed). - The tracing function in the frames that deal with unhandled exceptions must be set when dealing with unhandled exceptions. - The tracing function in the frames that deal with unhandled exceptions must NOT be set when NOT dealing with unhandled exceptions. - If handled exceptions should be dealt with, the proper tracing should be set in frame.f_trace. ''' import sys from _pydevd_frame_eval import pydevd_frame_tracing def check_with_no_trace(): if False: print('break on check_with_trace') frame = sys._getframe() if frame.f_trace is not None: raise AssertionError('Expected %s to be None' % (frame.f_trace,)) if sys.gettrace() is not pydevd_frame_tracing.dummy_tracing_holder.dummy_trace_func: raise AssertionError('Expected %s to be dummy_trace_func' % (sys.gettrace(),)) def check_step_in_then_step_return(): frame = sys._getframe() f_trace = frame.f_trace if f_trace.__class__.__name__ != 'SafeCallWrapper': raise AssertionError('Expected %s to be SafeCallWrapper' % (f_trace.__class__.__name__,)) check_with_no_trace() def check_revert_to_dummy(): check_with_no_trace() if __name__ == '__main__': # Check how frame eval works. if sys.version_info[0:2] < (3, 6): raise AssertionError('Only available for Python 3.6 onwards. Found: %s' % (sys.version_info[0:1],)) check_with_no_trace() # break on global (step over) check_step_in_then_step_return() import pydevd_tracing import pydevd # This is what a remote attach would do (should revert to the frame eval mode). pydevd_tracing.SetTrace(pydevd.get_global_debugger().trace_dispatch) check_revert_to_dummy() print('TEST SUCEEDED!')
ecp5/trellis_import.py
antmicro/nextpnr
865
12649273
#!/usr/bin/env python3 import argparse import json import sys from os import path location_types = dict() type_at_location = dict() tiletype_names = dict() gfx_wire_ids = dict() gfx_wire_names = list() parser = argparse.ArgumentParser(description="import ECP5 routing and bels from Project Trellis") parser.add_argument("device", type=str, help="target device") parser.add_argument("-p", "--constids", type=str, help="path to constids.inc") parser.add_argument("-g", "--gfxh", type=str, help="path to gfx.h") parser.add_argument("-L", "--libdir", type=str, action="append", help="extra Python library path") args = parser.parse_args() sys.path += args.libdir import pytrellis import database import pip_classes import timing_dbs with open(args.gfxh) as f: state = 0 for line in f: if state == 0 and line.startswith("enum GfxTileWireId"): state = 1 elif state == 1 and line.startswith("};"): state = 0 elif state == 1 and (line.startswith("{") or line.strip() == ""): pass elif state == 1: idx = len(gfx_wire_ids) name = line.strip().rstrip(",") gfx_wire_ids[name] = idx gfx_wire_names.append(name) def gfx_wire_alias(old, new): assert old in gfx_wire_ids assert new not in gfx_wire_ids gfx_wire_ids[new] = gfx_wire_ids[old] def wire_type(name): longname = name name = name.split('/') if name[0].startswith("X") and name[1].startswith("Y"): name = name[2:] if name[0].endswith("_SLICE"): return "WIRE_TYPE_SLICE" if name[0].endswith("_DQS"): return "WIRE_TYPE_DQS" if name[0].endswith("_IOLOGIC"): return "WIRE_TYPE_IOLOGIC" if name[0].endswith("_SIOLOGIC"): return "WIRE_TYPE_SIOLOGIC" if name[0].endswith("_PIO"): return "WIRE_TYPE_PIO" if name[0].endswith("_DDRDLL"): return "WIRE_TYPE_DDRDLL" if name[0].endswith("_CCLK"): return "WIRE_TYPE_CCLK" if name[0].endswith("_EXTREF"): return "WIRE_TYPE_EXTREF" if name[0].endswith("_DCU"): return "WIRE_TYPE_DCU" if name[0].endswith("_EBR"): return "WIRE_TYPE_EBR" if name[0].endswith("_MULT18"): return "WIRE_TYPE_MULT18" if name[0].endswith("_ALU54"): return "WIRE_TYPE_ALU54" if name[0].endswith("_PLL"): return "WIRE_TYPE_PLL" if name[0].endswith("_SED"): return "WIRE_TYPE_SED" if name[0].endswith("_OSC"): return "WIRE_TYPE_OSC" if name[0].endswith("_JTAG"): return "WIRE_TYPE_JTAG" if name[0].endswith("_GSR"): return "WIRE_TYPE_GSR" if name[0].endswith("_DTR"): return "WIRE_TYPE_DTR" if name[0].endswith("_PCSCLKDIV0"): return "WIRE_TYPE_PCSCLKDIV" if name[0].endswith("_PCSCLKDIV1"): return "WIRE_TYPE_PCSCLKDIV" if name[0].startswith("H00"): return "WIRE_TYPE_H00" if name[0].startswith("H01"): return "WIRE_TYPE_H01" if name[0].startswith("HFI"): return "WIRE_TYPE_H01" if name[0].startswith("HL7"): return "WIRE_TYPE_H01" if name[0].startswith("H02"): return "WIRE_TYPE_H02" if name[0].startswith("H06"): return "WIRE_TYPE_H06" if name[0].startswith("V00"): return "WIRE_TYPE_V00" if name[0].startswith("V01"): return "WIRE_TYPE_V01" if name[0].startswith("V02"): return "WIRE_TYPE_V02" if name[0].startswith("V06"): return "WIRE_TYPE_V06" if name[0].startswith("G_HPBX"): return "WIRE_TYPE_G_HPBX" if name[0].startswith("G_VPTX"): return "WIRE_TYPE_G_VPTX" if name[0].startswith("L_HPBX"): return "WIRE_TYPE_L_HPBX" if name[0].startswith("R_HPBX"): return "WIRE_TYPE_R_HPBX" return "WIRE_TYPE_NONE" def is_global(loc): return loc.x == -2 and loc.y == -2 # Get the index for a tiletype def get_tiletype_index(name): if name in tiletype_names: return tiletype_names[name] idx = len(tiletype_names) tiletype_names[name] = idx return idx constids = dict() class BinaryBlobAssembler: def l(self, name, ltype = None, export = False): if ltype is None: print("label %s" % (name,)) else: print("label %s %s" % (name, ltype)) def r(self, name, comment): if comment is None: print("ref %s" % (name,)) else: print("ref %s %s" % (name, comment)) def r_slice(self, name, length, comment): if comment is None: print("ref %s" % (name,)) else: print("ref %s %s" % (name, comment)) print ("u32 %d" % (length, )) def s(self, s, comment): assert "|" not in s print("str |%s| %s" % (s, comment)) def u8(self, v, comment): if comment is None: print("u8 %d" % (v,)) else: print("u8 %d %s" % (v, comment)) def u16(self, v, comment): if comment is None: print("u16 %d" % (v,)) else: print("u16 %d %s" % (v, comment)) def u32(self, v, comment): if comment is None: print("u32 %d" % (v,)) else: print("u32 %d %s" % (v, comment)) def pre(self, s): print("pre %s" % s) def post(self, s): print("post %s" % s) def push(self, name): print("push %s" % name) def pop(self): print("pop") def get_bel_index(ddrg, loc, name): loctype = ddrg.locationTypes[ddrg.typeAtLocation[loc]] idx = 0 for bel in loctype.bels: if ddrg.to_str(bel.name) == name: return idx idx += 1 assert loc.y == max_row # Only missing IO should be special pins at bottom of device return None packages = {} pindata = [] def process_pio_db(ddrg, device): piofile = path.join(database.get_db_root(), "ECP5", dev_names[device], "iodb.json") with open(piofile, 'r') as f: piodb = json.load(f) for pkgname, pkgdata in sorted(piodb["packages"].items()): pins = [] for name, pinloc in sorted(pkgdata.items()): x = pinloc["col"] y = pinloc["row"] loc = pytrellis.Location(x, y) pio = "PIO" + pinloc["pio"] bel_idx = get_bel_index(ddrg, loc, pio) if bel_idx is not None: pins.append((name, loc, bel_idx)) packages[pkgname] = pins for metaitem in piodb["pio_metadata"]: x = metaitem["col"] y = metaitem["row"] loc = pytrellis.Location(x, y) pio = "PIO" + metaitem["pio"] bank = metaitem["bank"] if "function" in metaitem: pinfunc = metaitem["function"] else: pinfunc = None dqs = -1 if "dqs" in metaitem: tdqs = metaitem["dqs"] if tdqs[0] == "L": dqs = 0 elif tdqs[0] == "R": dqs = 2048 suffix_size = 0 while tdqs[-(suffix_size+1)].isdigit(): suffix_size += 1 dqs |= int(tdqs[-suffix_size:]) bel_idx = get_bel_index(ddrg, loc, pio) if bel_idx is not None: pindata.append((loc, bel_idx, bank, pinfunc, dqs)) global_data = {} quadrants = ["UL", "UR", "LL", "LR"] def process_loc_globals(chip): for y in range(0, max_row+1): for x in range(0, max_col+1): quad = chip.global_data.get_quadrant(y, x) tapdrv = chip.global_data.get_tap_driver(y, x) if tapdrv.col == x: spinedrv = chip.global_data.get_spine_driver(quad, x) spine = (spinedrv.second, spinedrv.first) else: spine = (-1, -1) global_data[x, y] = (quadrants.index(quad), int(tapdrv.dir), tapdrv.col, spine) speed_grade_names = ["6", "7", "8", "8_5G"] speed_grade_cells = {} speed_grade_pips = {} pip_class_to_idx = {"default": 0, "zero": 1} timing_port_xform = { "RAD0": "D0", "RAD1": "B0", "RAD2": "C0", "RAD3": "A0", } def process_timing_data(): for grade in speed_grade_names: with open(timing_dbs.cells_db_path("ECP5", grade)) as f: cell_data = json.load(f) cells = [] for cell, cdata in sorted(cell_data.items()): celltype = constids[cell.replace(":", "_").replace("=", "_").replace(",", "_")] delays = [] setupholds = [] for entry in cdata: if entry["type"] == "Width": continue elif entry["type"] == "IOPath": from_pin = entry["from_pin"][1] if type(entry["from_pin"]) is list else entry["from_pin"] if from_pin in timing_port_xform: from_pin = timing_port_xform[from_pin] to_pin = entry["to_pin"] if to_pin in timing_port_xform: to_pin = timing_port_xform[to_pin] min_delay = min(entry["rising"][0], entry["falling"][0]) max_delay = min(entry["rising"][2], entry["falling"][2]) delays.append((constids[from_pin], constids[to_pin], min_delay, max_delay)) elif entry["type"] == "SetupHold": if type(entry["pin"]) is list: continue pin = constids[entry["pin"]] clock = constids[entry["clock"][1]] min_setup = entry["setup"][0] max_setup = entry["setup"][2] min_hold = entry["hold"][0] max_hold = entry["hold"][2] setupholds.append((pin, clock, min_setup, max_setup, min_hold, max_hold)) else: assert False, entry["type"] cells.append((celltype, delays, setupholds)) pip_class_delays = [] for i in range(len(pip_class_to_idx)): pip_class_delays.append((50, 50, 0, 0)) pip_class_delays[pip_class_to_idx["zero"]] = (0, 0, 0, 0) with open(timing_dbs.interconnect_db_path("ECP5", grade)) as f: interconn_data = json.load(f) for pipclass, pipdata in sorted(interconn_data.items()): min_delay = pipdata["delay"][0] * 1.1 max_delay = pipdata["delay"][2] * 1.1 min_fanout = pipdata["fanout"][0] max_fanout = pipdata["fanout"][2] if grade == "6": pip_class_to_idx[pipclass] = len(pip_class_delays) pip_class_delays.append((min_delay, max_delay, min_fanout, max_fanout)) else: if pipclass in pip_class_to_idx: pip_class_delays[pip_class_to_idx[pipclass]] = (min_delay, max_delay, min_fanout, max_fanout) speed_grade_cells[grade] = cells speed_grade_pips[grade] = pip_class_delays def get_pip_class(wire_from, wire_to): if "FCO" in wire_from or "FCI" in wire_to: return pip_class_to_idx["zero"] if "F5" in wire_from or "FX" in wire_from or "FXA" in wire_to or "FXB" in wire_to: return pip_class_to_idx["zero"] class_name = pip_classes.get_pip_class(wire_from, wire_to) if class_name is None or class_name not in pip_class_to_idx: class_name = "default" return pip_class_to_idx[class_name] def write_database(dev_name, chip, ddrg, endianness): def write_loc(loc, sym_name): bba.u16(loc.x, "%s.x" % sym_name) bba.u16(loc.y, "%s.y" % sym_name) loctypes = list([_.key() for _ in ddrg.locationTypes]) loc_with_type = {} for y in range(0, max_row+1): for x in range(0, max_col+1): loc_with_type[loctypes.index(ddrg.typeAtLocation[pytrellis.Location(x, y)])] = (x, y) def get_wire_name(arc_loctype, rel, idx): loc = loc_with_type[arc_loctype] lt = ddrg.typeAtLocation[pytrellis.Location(loc[0] + rel.x, loc[1] + rel.y)] wire = ddrg.locationTypes[lt].wires[idx] return "R{}C{}_{}".format(loc[1] + rel.y, loc[0] + rel.x, ddrg.to_str(wire.name)) bba = BinaryBlobAssembler() bba.pre('#include "nextpnr.h"') bba.pre('#include "embed.h"') bba.pre('NEXTPNR_NAMESPACE_BEGIN') bba.post('EmbeddedFile chipdb_file_%s("ecp5/chipdb-%s.bin", chipdb_blob_%s);' % (dev_name, dev_name, dev_name)) bba.post('NEXTPNR_NAMESPACE_END') bba.push("chipdb_blob_%s" % dev_name) bba.r("chip_info", "chip_info") for idx in range(len(loctypes)): loctype = ddrg.locationTypes[loctypes[idx]] if len(loctype.arcs) > 0: bba.l("loc%d_pips" % idx, "PipInfoPOD") for arc in loctype.arcs: write_loc(arc.srcWire.rel, "src") write_loc(arc.sinkWire.rel, "dst") bba.u32(arc.srcWire.id, "src_idx") bba.u32(arc.sinkWire.id, "dst_idx") src_name = get_wire_name(idx, arc.srcWire.rel, arc.srcWire.id) snk_name = get_wire_name(idx, arc.sinkWire.rel, arc.sinkWire.id) bba.u32(get_pip_class(src_name, snk_name), "timing_class") bba.u16(get_tiletype_index(ddrg.to_str(arc.tiletype)), "tile_type") cls = arc.cls if cls == 1 and "PCS" in snk_name or "DCU" in snk_name or "DCU" in src_name: cls = 2 bba.u8(cls, "pip_type") bba.u8(0, "padding") if len(loctype.wires) > 0: for wire_idx in range(len(loctype.wires)): wire = loctype.wires[wire_idx] if len(wire.arcsDownhill) > 0: bba.l("loc%d_wire%d_downpips" % (idx, wire_idx), "PipLocatorPOD") for dp in wire.arcsDownhill: write_loc(dp.rel, "rel_loc") bba.u32(dp.id, "index") if len(wire.arcsUphill) > 0: bba.l("loc%d_wire%d_uppips" % (idx, wire_idx), "PipLocatorPOD") for up in wire.arcsUphill: write_loc(up.rel, "rel_loc") bba.u32(up.id, "index") if len(wire.belPins) > 0: bba.l("loc%d_wire%d_belpins" % (idx, wire_idx), "BelPortPOD") for bp in wire.belPins: write_loc(bp.bel.rel, "rel_bel_loc") bba.u32(bp.bel.id, "bel_index") bba.u32(constids[ddrg.to_str(bp.pin)], "port") bba.l("loc%d_wires" % idx, "WireInfoPOD") for wire_idx in range(len(loctype.wires)): wire = loctype.wires[wire_idx] bba.s(ddrg.to_str(wire.name), "name") bba.u32(constids[wire_type(ddrg.to_str(wire.name))], "type") if ("TILE_WIRE_" + ddrg.to_str(wire.name)) in gfx_wire_ids: bba.u32(gfx_wire_ids["TILE_WIRE_" + ddrg.to_str(wire.name)], "tile_wire") else: bba.u32(0, "tile_wire") bba.r_slice("loc%d_wire%d_uppips" % (idx, wire_idx) if len(wire.arcsUphill) > 0 else None, len(wire.arcsUphill), "pips_uphill") bba.r_slice("loc%d_wire%d_downpips" % (idx, wire_idx) if len(wire.arcsDownhill) > 0 else None, len(wire.arcsDownhill), "pips_downhill") bba.r_slice("loc%d_wire%d_belpins" % (idx, wire_idx) if len(wire.belPins) > 0 else None, len(wire.belPins), "bel_pins") if len(loctype.bels) > 0: for bel_idx in range(len(loctype.bels)): bel = loctype.bels[bel_idx] bba.l("loc%d_bel%d_wires" % (idx, bel_idx), "BelWirePOD") for pin in bel.wires: write_loc(pin.wire.rel, "rel_wire_loc") bba.u32(pin.wire.id, "wire_index") bba.u32(constids[ddrg.to_str(pin.pin)], "port") bba.u32(int(pin.dir), "dir") bba.l("loc%d_bels" % idx, "BelInfoPOD") for bel_idx in range(len(loctype.bels)): bel = loctype.bels[bel_idx] bba.s(ddrg.to_str(bel.name), "name") bba.u32(constids[ddrg.to_str(bel.type)], "type") bba.u32(bel.z, "z") bba.r_slice("loc%d_bel%d_wires" % (idx, bel_idx), len(bel.wires), "bel_wires") bba.l("locations", "LocationTypePOD") for idx in range(len(loctypes)): loctype = ddrg.locationTypes[loctypes[idx]] bba.r_slice("loc%d_bels" % idx if len(loctype.bels) > 0 else None, len(loctype.bels), "bel_data") bba.r_slice("loc%d_wires" % idx if len(loctype.wires) > 0 else None, len(loctype.wires), "wire_data") bba.r_slice("loc%d_pips" % idx if len(loctype.arcs) > 0 else None, len(loctype.arcs), "pips_data") for y in range(0, max_row+1): for x in range(0, max_col+1): bba.l("tile_info_%d_%d" % (x, y), "TileNamePOD") for tile in chip.get_tiles_by_position(y, x): bba.s(tile.info.name, "name") bba.u16(get_tiletype_index(tile.info.type), "type_idx") bba.u16(0, "padding") bba.l("tiles_info", "TileInfoPOD") for y in range(0, max_row+1): for x in range(0, max_col+1): bba.r_slice("tile_info_%d_%d" % (x, y), len(chip.get_tiles_by_position(y, x)), "tile_names") bba.l("location_types", "int32_t") for y in range(0, max_row+1): for x in range(0, max_col+1): bba.u32(loctypes.index(ddrg.typeAtLocation[pytrellis.Location(x, y)]), "loctype") bba.l("location_glbinfo", "GlobalInfoPOD") for y in range(0, max_row+1): for x in range(0, max_col+1): bba.u16(global_data[x, y][2], "tap_col") bba.u8(global_data[x, y][1], "tap_dir") bba.u8(global_data[x, y][0], "quad") bba.u16(global_data[x, y][3][1], "spine_row") bba.u16(global_data[x, y][3][0], "spine_col") for package, pkgdata in sorted(packages.items()): bba.l("package_data_%s" % package, "PackagePinPOD") for pin in pkgdata: name, loc, bel_idx = pin bba.s(name, "name") write_loc(loc, "abs_loc") bba.u32(bel_idx, "bel_index") bba.l("package_data", "PackageInfoPOD") for package, pkgdata in sorted(packages.items()): bba.s(package, "name") bba.r_slice("package_data_%s" % package, len(pkgdata), "pin_data") bba.l("pio_info", "PIOInfoPOD") for pin in pindata: loc, bel_idx, bank, func, dqs = pin write_loc(loc, "abs_loc") bba.u32(bel_idx, "bel_index") if func is not None and func != "WRITEN": bba.s(func, "function_name") else: bba.r(None, "function_name") bba.u16(bank, "bank") bba.u16(dqs, "dqsgroup") bba.l("tiletype_names", "RelPtr<char>") for tt, idx in sorted(tiletype_names.items(), key=lambda x: x[1]): bba.s(tt, "name") for grade in speed_grade_names: for cell in speed_grade_cells[grade]: celltype, delays, setupholds = cell if len(delays) > 0: bba.l("cell_%d_delays_%s" % (celltype, grade)) for delay in delays: from_pin, to_pin, min_delay, max_delay = delay bba.u32(from_pin, "from_pin") bba.u32(to_pin, "to_pin") bba.u32(min_delay, "min_delay") bba.u32(max_delay, "max_delay") if len(setupholds) > 0: bba.l("cell_%d_setupholds_%s" % (celltype, grade)) for sh in setupholds: pin, clock, min_setup, max_setup, min_hold, max_hold = sh bba.u32(pin, "sig_port") bba.u32(clock, "clock_port") bba.u32(min_setup, "min_setup") bba.u32(max_setup, "max_setup") bba.u32(min_hold, "min_hold") bba.u32(max_hold, "max_hold") bba.l("cell_timing_data_%s" % grade) for cell in speed_grade_cells[grade]: celltype, delays, setupholds = cell bba.u32(celltype, "cell_type") bba.r_slice("cell_%d_delays_%s" % (celltype, grade) if len(delays) > 0 else None, len(delays), "delays") bba.r_slice("cell_%d_setupholds_%s" % (celltype, grade) if len(delays) > 0 else None, len(setupholds), "setupholds") bba.l("pip_timing_data_%s" % grade) for pipclass in speed_grade_pips[grade]: min_delay, max_delay, min_fanout, max_fanout = pipclass bba.u32(min_delay, "min_delay") bba.u32(max_delay, "max_delay") bba.u32(min_fanout, "min_fanout") bba.u32(max_fanout, "max_fanout") bba.l("speed_grade_data") for grade in speed_grade_names: bba.r_slice("cell_timing_data_%s" % grade, len(speed_grade_cells[grade]), "cell_timings") bba.r_slice("pip_timing_data_%s" % grade, len(speed_grade_pips[grade]), "pip_classes") bba.l("chip_info") bba.u32(max_col + 1, "width") bba.u32(max_row + 1, "height") bba.u32((max_col + 1) * (max_row + 1), "num_tiles") bba.u32(const_id_count, "const_id_count") bba.r_slice("locations", len(loctypes), "locations") bba.r_slice("location_types", (max_col + 1) * (max_row + 1), "location_type") bba.r_slice("location_glbinfo", (max_col + 1) * (max_row + 1), "location_glbinfo") bba.r_slice("tiletype_names", len(tiletype_names), "tiletype_names") bba.r_slice("package_data", len(packages), "package_info") bba.r_slice("pio_info", len(pindata), "pio_info") bba.r_slice("tiles_info", (max_col + 1) * (max_row + 1), "tile_info") bba.r_slice("speed_grade_data", len(speed_grade_names), "speed_grades") bba.pop() return bba dev_names = {"25k": "LFE5UM5G-25F", "45k": "LFE5UM5G-45F", "85k": "LFE5UM5G-85F"} def main(): global max_row, max_col, const_id_count pytrellis.load_database(database.get_db_root()) args = parser.parse_args() # Read port pin file const_id_count = 1 # count ID_NONE with open(args.constids) as f: for line in f: line = line.replace("(", " ") line = line.replace(")", " ") line = line.split() if len(line) == 0: continue assert len(line) == 2 assert line[0] == "X" idx = len(constids) + 1 constids[line[1]] = idx const_id_count += 1 constids["SLICE"] = constids["TRELLIS_SLICE"] constids["PIO"] = constids["TRELLIS_IO"] # print("Initialising chip...") chip = pytrellis.Chip(dev_names[args.device]) # print("Building routing graph...") ddrg = pytrellis.make_dedup_chipdb(chip) max_row = chip.get_max_row() max_col = chip.get_max_col() process_timing_data() process_pio_db(ddrg, args.device) process_loc_globals(chip) # print("{} unique location types".format(len(ddrg.locationTypes))) bba = write_database(args.device, chip, ddrg, "le") if __name__ == "__main__": main()
datasets/movielens_pinterest_NCF/get_train_data.py
ziyoujiyi/PaddleRec
2,739
12649280
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import scipy.sparse as sp import numpy as np from time import time import argparse def parse_args(): parser = argparse.ArgumentParser(description="Run GMF.") parser.add_argument( '--path', nargs='?', default='Data/', help='Input data path.') parser.add_argument( '--dataset', nargs='?', default='ml-1m', help='Choose a dataset.') parser.add_argument( '--num_neg', type=int, default=4, help='Number of negative instances to pair with a positive instance.') parser.add_argument( '--train_data_path', type=str, default="Data/train_data.csv", help='train_data_path') return parser.parse_args() def get_train_data(filename, write_file, num_negatives): ''' Read .rating file and Return dok matrix. The first line of .rating file is: num_users\t num_items ''' # Get number of users and items num_users, num_items = 0, 0 with open(filename, "r") as f: line = f.readline() while line != None and line != "": arr = line.split("\t") u, i = int(arr[0]), int(arr[1]) num_users = max(num_users, u) num_items = max(num_items, i) line = f.readline() print("users_num:", num_users, "items_num:", num_items) # Construct matrix mat = sp.dok_matrix((num_users + 1, num_items + 1), dtype=np.float32) with open(filename, "r") as f: line = f.readline() while line != None and line != "": arr = line.split("\t") user, item, rating = int(arr[0]), int(arr[1]), float(arr[2]) if (rating > 0): mat[user, item] = 1.0 line = f.readline() file = open(write_file, 'w') print("writing " + write_file) for (u, i) in mat.keys(): # positive instance user_input = str(u) item_input = str(i) label = str(1) sample = "{0},{1},{2}".format(user_input, item_input, label) + "\n" file.write(sample) # negative instances for t in range(num_negatives): j = np.random.randint(num_items) while (u, j) in mat.keys(): j = np.random.randint(num_items) user_input = str(u) item_input = str(j) label = str(0) sample = "{0},{1},{2}".format(user_input, item_input, label) + "\n" file.write(sample) if __name__ == "__main__": args = parse_args() get_train_data(args.path + args.dataset + ".train.rating", args.train_data_path, args.num_neg)
trailscraper/record_sources/__init__.py
ocefpaf/trailscraper
497
12649284
"""Package containing classes that represent a source of CloudTrail records, e.g. from an API or disk storage"""
awswrangler/quicksight/_delete.py
isichei/aws-data-wrangler
2,695
12649333
<filename>awswrangler/quicksight/_delete.py """Amazon QuickSight Delete Module.""" import logging from typing import Any, Callable, Dict, Optional import boto3 from awswrangler import _utils, exceptions, sts from awswrangler.quicksight._get_list import ( get_dashboard_id, get_data_source_id, get_dataset_id, get_template_id, list_dashboards, list_data_sources, list_datasets, list_templates, ) _logger: logging.Logger = logging.getLogger(__name__) def _delete( func_name: str, account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, **kwargs: Any ) -> None: session: boto3.Session = _utils.ensure_session(session=boto3_session) if account_id is None: account_id = sts.get_account_id(boto3_session=session) client: boto3.client = _utils.client(service_name="quicksight", session=session) func: Callable[..., None] = getattr(client, func_name) func(AwsAccountId=account_id, **kwargs) def delete_dashboard( name: Optional[str] = None, dashboard_id: Optional[str] = None, version_number: Optional[int] = None, account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> None: """Delete a dashboard. Note ---- You must pass a not None ``name`` or ``dashboard_id`` argument. Parameters ---------- name : str, optional Dashboard name. dashboard_id : str, optional The ID for the dashboard. version_number : int, optional The version number of the dashboard. If the version number property is provided, only the specified version of the dashboard is deleted. account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_dashboard(name="...") """ if (name is None) and (dashboard_id is None): raise exceptions.InvalidArgument("You must pass a not None name or dashboard_id argument.") session: boto3.Session = _utils.ensure_session(session=boto3_session) if (dashboard_id is None) and (name is not None): dashboard_id = get_dashboard_id(name=name, account_id=account_id, boto3_session=session) args: Dict[str, Any] = { "func_name": "delete_dashboard", "account_id": account_id, "boto3_session": session, "DashboardId": dashboard_id, } if version_number is not None: args["VersionNumber"] = version_number _delete(**args) def delete_dataset( name: Optional[str] = None, dataset_id: Optional[str] = None, account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> None: """Delete a dataset. Note ---- You must pass a not None ``name`` or ``dataset_id`` argument. Parameters ---------- name : str, optional Dashboard name. dataset_id : str, optional The ID for the dataset. account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_dataset(name="...") """ if (name is None) and (dataset_id is None): raise exceptions.InvalidArgument("You must pass a not None name or dataset_id argument.") session: boto3.Session = _utils.ensure_session(session=boto3_session) if (dataset_id is None) and (name is not None): dataset_id = get_dataset_id(name=name, account_id=account_id, boto3_session=session) args: Dict[str, Any] = { "func_name": "delete_data_set", "account_id": account_id, "boto3_session": session, "DataSetId": dataset_id, } _delete(**args) def delete_data_source( name: Optional[str] = None, data_source_id: Optional[str] = None, account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> None: """Delete a data source. Note ---- You must pass a not None ``name`` or ``data_source_id`` argument. Parameters ---------- name : str, optional Dashboard name. data_source_id : str, optional The ID for the data source. account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_data_source(name="...") """ if (name is None) and (data_source_id is None): raise exceptions.InvalidArgument("You must pass a not None name or data_source_id argument.") session: boto3.Session = _utils.ensure_session(session=boto3_session) if (data_source_id is None) and (name is not None): data_source_id = get_data_source_id(name=name, account_id=account_id, boto3_session=session) args: Dict[str, Any] = { "func_name": "delete_data_source", "account_id": account_id, "boto3_session": session, "DataSourceId": data_source_id, } _delete(**args) def delete_template( name: Optional[str] = None, template_id: Optional[str] = None, version_number: Optional[int] = None, account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None, ) -> None: """Delete a tamplate. Note ---- You must pass a not None ``name`` or ``template_id`` argument. Parameters ---------- name : str, optional Dashboard name. template_id : str, optional The ID for the dashboard. version_number : int, optional Specifies the version of the template that you want to delete. If you don't provide a version number, it deletes all versions of the template. account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_template(name="...") """ if (name is None) and (template_id is None): raise exceptions.InvalidArgument("You must pass a not None name or template_id argument.") session: boto3.Session = _utils.ensure_session(session=boto3_session) if (template_id is None) and (name is not None): template_id = get_template_id(name=name, account_id=account_id, boto3_session=session) args: Dict[str, Any] = { "func_name": "delete_template", "account_id": account_id, "boto3_session": session, "TemplateId": template_id, } if version_number is not None: args["VersionNumber"] = version_number _delete(**args) def delete_all_dashboards(account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None) -> None: """Delete all dashboards. Parameters ---------- account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_all_dashboards() """ session: boto3.Session = _utils.ensure_session(session=boto3_session) if account_id is None: account_id = sts.get_account_id(boto3_session=session) for dashboard in list_dashboards(account_id=account_id, boto3_session=session): delete_dashboard(dashboard_id=dashboard["DashboardId"], account_id=account_id, boto3_session=session) def delete_all_datasets(account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None) -> None: """Delete all datasets. Parameters ---------- account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_all_datasets() """ session: boto3.Session = _utils.ensure_session(session=boto3_session) if account_id is None: account_id = sts.get_account_id(boto3_session=session) for dataset in list_datasets(account_id=account_id, boto3_session=session): delete_dataset(dataset_id=dataset["DataSetId"], account_id=account_id, boto3_session=session) def delete_all_data_sources(account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None) -> None: """Delete all data sources. Parameters ---------- account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_all_data_sources() """ session: boto3.Session = _utils.ensure_session(session=boto3_session) if account_id is None: account_id = sts.get_account_id(boto3_session=session) for data_source in list_data_sources(account_id=account_id, boto3_session=session): delete_data_source(data_source_id=data_source["DataSourceId"], account_id=account_id, boto3_session=session) def delete_all_templates(account_id: Optional[str] = None, boto3_session: Optional[boto3.Session] = None) -> None: """Delete all templates. Parameters ---------- account_id : str, optional If None, the account ID will be inferred from your boto3 session. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. Returns ------- None None. Examples -------- >>> import awswrangler as wr >>> wr.quicksight.delete_all_templates() """ session: boto3.Session = _utils.ensure_session(session=boto3_session) if account_id is None: account_id = sts.get_account_id(boto3_session=session) for template in list_templates(account_id=account_id, boto3_session=session): delete_template(template_id=template["TemplateId"], account_id=account_id, boto3_session=session)
leaf/api/settings.py
guiqiqi/leaf
119
12649360
<filename>leaf/api/settings.py<gh_stars>100-1000 """API 接口的设置文件""" from typing import Optional from flask import abort from ..core import error class Authorization: """权限验证中的设置""" ExecuteAPMissing = True # 在未找到接入点信息时是否允许 @staticmethod def UnAuthorized(_reason: error.Error): """ 验证失败时的返回值: _reason: 原因-错误类型 """ return abort(403) @staticmethod def NotPermitted(_diff: int, _strict: Optional[bool] = False): """ 权限不足时的返回值: _diff: 所需权限与拥有权限的差值 _strict: 是否指定需要某一级别权限值 """ return abort(403) class HTTPResponseHeader: """HTTP响应头部分的设置""" AddCORSSupport = True # 是否启用 CORS 请求支持 CORSDomain = '*' # 启用支持 CORS 的域设置 SupportMethods = [ 'GET', 'HEAD', 'POST', 'PUT', 'DELETE', 'CONNECT', 'OPTIONS', 'TRACE', 'PATCH' ] # 支持的请求类型 - 如非必要请勿修改 class Response: """响应中的设置""" Code = "code" # 错误代码键 Description = "description" # 错误解释键 Message = "message" # 错误消息键 class Codes: """响应代码设置""" Success = 0 # 未发生错误的成功代码 Unknown = -1 # 未知错误代码 class Messages: """响应消息设置""" Success = "success" # 未发生错误时的成功消息 Unknown = "undefined" # 未知错误消息 class Descriptions: """响应解释设置""" Success = "成功" # 成功时的解释 Unknown = "发生未知错误" # 未知错误解释
dataflows/base/datastream.py
cschloer/dataflows
160
12649362
from datapackage import Package class DataStream: def __init__(self, dp=None, res_iter=None, stats=None): self.dp = dp if dp is not None else Package() self.res_iter = res_iter if res_iter is not None else [] self.stats = stats if stats is not None else [] def merge_stats(self): ret = {} for s in self.stats: ret.update(s) return ret def _process(self): return self
common/concertina_lib.py
RAbraham/logica
1,434
12649381
<filename>common/concertina_lib.py """Concertina: small Python Workflow execution handler.""" import datetime import graphviz from IPython.display import display from IPython.display import update_display class ConcertinaQueryEngine(object): def __init__(self, final_predicates, sql_runner): self.final_predicates = final_predicates self.final_result = {} self.sql_runner = sql_runner def Run(self, action): assert action['launcher'] in ('query', 'none') if action['launcher'] == 'query': predicate = action['predicate'] print('Running predicate:', predicate, end='') start = datetime.datetime.now() result = self.sql_runner(action['sql'], action['engine'], is_final=(predicate in self.final_predicates)) end = datetime.datetime.now() print(' (%d seconds)' % (end - start).seconds) if predicate in self.final_predicates: self.final_result[predicate] = result class ConcertinaDryRunEngine(object): def Run(self, action): print(action) class Concertina(object): DISPLAY_COUNT = 0 @classmethod def GetDisplayId(cls): cls.DISPLAY_COUNT = cls.DISPLAY_COUNT + 1 return 'Concertina_%d' % cls.DISPLAY_COUNT def SortActions(self): actions_to_assign = {a['name'] for a in self.config} complete = set() result = [] while actions_to_assign: remains = len(actions_to_assign) for a in list(actions_to_assign): if complete >= set(self.action[a]["requires"]): result.append(a) complete |= {a} actions_to_assign -= {a} if len(actions_to_assign) == remains: assert False, "Could not schedule: %s" % self.config return result def __init__(self, config, engine): self.config = config self.action = {a["name"]: a for a in self.config} self.actions_to_run = self.SortActions() self.engine = engine assert len(self.action) == len(self.config) self.all_actions = {a["name"] for a in self.config} self.complete_actions = set() self.running_actions = set() self.display_id = self.GetDisplayId() self.Display() def RunOneAction(self): self.UpdateDisplay() one_action = self.actions_to_run[0] del self.actions_to_run[0] self.running_actions |= {one_action} self.UpdateDisplay() self.engine.Run(self.action[one_action].get('action', {})) self.running_actions -= {one_action} self.complete_actions |= {one_action} self.UpdateDisplay() def Run(self): while self.actions_to_run: self.RunOneAction() def ActionColor(self, a): if self.action[a].get('type') == 'data': return 'lightskyblue1' if a in self.complete_actions: return 'darkolivegreen1' if a in self.running_actions: return 'gold' return 'gray' def ActionShape(self, a): if 'type' in self.action[a]: action_type = self.action[a]['type'] if action_type == 'data': return 'cylinder' if action_type == 'final': return 'diamond' return 'box' def AsGraphViz(self): g = graphviz.Digraph('Concertina') for a in self.all_actions: color = self.ActionColor(a) shape = self.ActionShape(a) styles = ['filled'] g.node(a, shape=shape, fillcolor=color, style='filled,rounded', color='gray34') for prerequisite in self.action[a]['requires']: g.edge(prerequisite, a) return g def Display(self): display(self.AsGraphViz(), display_id=self.display_id) def UpdateDisplay(self): update_display(self.AsGraphViz(), display_id=self.display_id) def RenamePredicate(table_to_export_map, dependency_edges, data_dependency_edges, from_name, to_name): new_table_to_export_map = {} new_dependency_edges = set() new_data_dependency_edges = set() for k, v in table_to_export_map.items(): if k == from_name: new_table_to_export_map[to_name] = v else: new_table_to_export_map[k] = v for a, b in dependency_edges: if a == from_name: a = to_name if b == from_name: b = to_name new_dependency_edges.add((a, b)) for a, b in data_dependency_edges: if a == from_name: a = to_name if b == from_name: b = to_name new_data_dependency_edges.add((a, b)) return new_table_to_export_map, new_dependency_edges, new_data_dependency_edges def ExecuteLogicaProgram(logica_executions, sql_runner, sql_engine): def ConcertinaConfig(table_to_export_map, dependency_edges, data_dependency_edges, final_predicates): depends_on = {} for source, target in dependency_edges | data_dependency_edges: depends_on[target] = depends_on.get(target, set()) | {source} data = {d for d, _ in data_dependency_edges} data |= {d for d, _ in dependency_edges if d not in table_to_export_map} result = [] for d in data: result.append({ 'name': d, 'type': 'data', 'requires': [], 'action': { 'predicate': d, 'launcher': 'none' } }) for t, sql in table_to_export_map.items(): result.append({ 'name': t, 'type': ('final' if t in final_predicates else 'intermediate'), 'requires': list(depends_on.get(t, set())), 'action': { 'predicate': t, 'launcher': 'query', 'engine': sql_engine, 'sql': sql } }) return result table_to_export_map = {} dependency_edges = set() data_dependency_edges = set() final_predicates = {e.main_predicate for e in logica_executions} for e in logica_executions: p_table_to_export_map, p_dependency_edges, p_data_dependency_edges = ( e.table_to_export_map, e.dependency_edges, e.data_dependency_edges ) for p in final_predicates: if e.main_predicate != p and p in e.table_to_export_map: p_table_to_export_map, p_dependency_edges, p_data_dependency_edges = ( RenamePredicate( p_table_to_export_map, p_dependency_edges, p_data_dependency_edges, p, '⤓' + p)) for k, v in p_table_to_export_map.items(): table_to_export_map[k] = e.PredicateSpecificPreamble(e.main_predicate) + v for a, b in p_dependency_edges: dependency_edges.add((a, b)) for a, b in p_data_dependency_edges: data_dependency_edges.add((a, b)) config = ConcertinaConfig(table_to_export_map, dependency_edges, data_dependency_edges, final_predicates) engine = ConcertinaQueryEngine( final_predicates=final_predicates, sql_runner=sql_runner) preambles = set(e.preamble for e in logica_executions) assert len(preambles) == 1, 'Inconsistent preambles: %s' % preambles [preamble] = list(preambles) if preamble: sql_runner(preamble, sql_engine, is_final=False) concertina = Concertina(config, engine) concertina.Run() return engine.final_result
Spyder/DecryptLogin_note/DecryptLogin_modules/core/sohu.py
Lightblues/10-playground
2,268
12649393
''' Function: 搜狐模拟登录 Author: Charles 微信公众号: Charles的皮卡丘 更新日期: 2020-10-29 ''' import time import requests from hashlib import md5 '''PC端登录搜狐''' class sohuPC(): is_callable = False def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) self.info = 'login in sohu in pc mode' self.session = requests.Session() self.__initialize() '''登录函数''' def login(self, username, password, crack_captcha_func=None, **kwargs): # 设置代理 self.session.proxies.update(kwargs.get('proxies', {})) # 请求home_url self.session.get(self.home_url) # 请求login_url data = { 'userid': username, 'password': <PASSWORD>(password.encode(encoding='utf-8')).<PASSWORD>(), 'persistentCookie': '1', 'appid': '116005', } response = self.session.post(self.login_url, data=data) response_json = response.json() # 登录成功 if response_json.get('status') == 200 and response_json.get('message') == 'Success': print('[INFO]: Account -> %s, login successfully' % username) infos_return = {'username': username} return infos_return, self.session # 账号或密码有误 elif response_json.get('status') in [404, 459]: raise RuntimeError('Account -> %s, fail to login, username or password error' % username) # 其他原因 else: raise RuntimeError(response_json.get('message')) '''初始化''' def __initialize(self): self.headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36', 'origin': 'https://www.sohu.com', 'upgrade-insecure-requests': '1', 'referer': 'https://www.sohu.com/', 'origin': 'https://www.sohu.com' } self.home_url = 'http://www.sohu.com/' self.login_url = 'https://v4.passport.sohu.com/i/login/116005' self.session.headers.update(self.headers) '''移动端登录搜狐''' class sohuMobile(): is_callable = True def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) self.info = 'login in sohu in mobile mode' self.session = requests.Session() self.__initialize() '''登录函数''' def login(self, username, password, crack_captcha_func=None, **kwargs): # 设置代理 self.session.proxies.update(kwargs.get('proxies', {})) # 访问app_login_url params = { 'appid': 116001, 'r': 'https://m.sohu.com/ucenter?_from=passport' } self.session.get(self.app_login_url, params=params) # 请求security_login_url data = { 'userid': username, 'password': <PASSWORD>(<PASSWORD>(encoding='utf-8')).<PASSWORD>(), 'appid': 116001 } self.session.headers.update({ 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded', 'Origin': 'https://m.passport.sohu.com', 'Referer': 'https://m.passport.sohu.com/app/login?appid=116001&r=https%3A%2F%2Fm.sohu.com%2Fucenter%3F_from%3Dpassport' }) response = self.session.post(self.security_login_url.format(int(time.time()*1000)), data=data) response_json = response.json() # 登录成功 if response_json.get('status') == 200 and response_json.get('message') == 'Success': print('[INFO]: Account -> %s, login successfully' % username) infos_return = {'username': username} return infos_return, self.session # 账号或密码有误 elif response_json.get('status') in [404, 459]: raise RuntimeError('Account -> %s, fail to login, username or password error' % username) # 其他原因 else: raise RuntimeError(response_json.get('message')) '''初始化''' def __initialize(self): self.headers = { 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mobile/15A372 Safari/604.1' } self.app_login_url = 'https://m.passport.sohu.com/app/login' self.security_login_url = 'https://m.passport.sohu.com/security/login?t={}' self.session.headers.update(self.headers) '''扫码登录搜狐''' class sohuScanqr(): is_callable = False def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) self.info = 'login in sohu in scanqr mode' ''' Function: 搜狐模拟登录 Detail: -login: Input: --username: 用户名 --password: 密码 --mode: mobile/pc/scanqr --crack_captcha_func: 若提供验证码接口, 则利用该接口来实现验证码的自动识别 --proxies: 为requests.Session()设置代理 Return: --infos_return: 用户名等信息 --session: 登录后的requests.Session() ''' class sohu(): def __init__(self, **kwargs): self.info = 'login in sohu' self.supported_modes = { 'pc': sohuPC(**kwargs), 'mobile': sohuMobile(**kwargs), 'scanqr': sohuScanqr(**kwargs), } '''登录函数''' def login(self, username, password, mode='mobile', crack_captcha_func=None, **kwargs): assert mode in self.supported_modes, 'unsupport mode %s in sohu.login' % mode selected_api = self.supported_modes[mode] if not selected_api.is_callable: raise NotImplementedError('not be implemented for mode %s in sohu.login' % mode) args = { 'username': username, 'password': password, 'crack_captcha_func': crack_captcha_func, } args.update(kwargs) return selected_api.login(**args)
Trakttv.bundle/Contents/Libraries/Shared/plugin/core/libraries/tests/core/base.py
disrupted/Trakttv.bundle
1,346
12649405
from plugin.core.helpers.variable import merge from subprocess import Popen import json import logging import os import subprocess import sys CURRENT_PATH = os.path.abspath(__file__) HOST_PATH = os.path.join(os.path.dirname(CURRENT_PATH), 'host.py') log = logging.getLogger(__name__) class BaseTest(object): name = None optional = False @classmethod def run(cls, search_paths): metadata = {} message = None success = None # Retrieve names of test functions names = [ name for name in dir(cls) if name.startswith('test_') ] if not names: return cls.build_failure('No tests defined') # Run tests for name in names: # Ensure function exists if not hasattr(cls, name): return cls.build_failure('Unable to find function: %r' % name) # Run test try: result = cls.spawn(name, search_paths) # Merge test result into `metadata` merge(metadata, result, recursive=True) # Test successful message = None success = True except Exception as ex: if success: continue message = ex.message success = False if not success: # Trigger event cls.on_failure(message) # Build result return cls.build_failure(message) # Trigger event cls.on_success(metadata) # Build result return cls.build_success(metadata) @classmethod def spawn(cls, name, search_paths): # Find path to python executable python_exe = cls.find_python_executable() if not python_exe: raise Exception('Unable to find python executable') # Ensure test host exists if not os.path.exists(HOST_PATH): raise Exception('Unable to find "host.py" script') # Build test process arguments args = [ python_exe, HOST_PATH, '--module', cls.__module__, '--name', name, '--search-paths="%s"' % ( ';'.join(search_paths) ), ] # Spawn test (in sub-process) log.debug('Starting test: %s:%s', cls.__module__, name) process = Popen( args, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) # Wait for test to complete stdout, stderr = process.communicate() if stderr: log.debug('Test returned messages:\n%s', stderr.replace("\r\n", "\n")) # Parse output result = None if stdout: try: result = json.loads(stdout) except Exception as ex: log.warn('Invalid output returned %r - %s', stdout, ex, exc_info=True) # Build result if process.returncode != 0: # Test failed if result and result.get('message'): if result.get('traceback'): log.info('%s - %s', result['message'], result['traceback']) raise Exception(result['message']) raise Exception('Unknown error (code: %s)' % process.returncode) # Test successful return result @classmethod def find_python_executable(cls): candidates = [sys.executable] # Add candidates based on the script path in `sys.argv` if sys.argv and len(sys.argv) > 0 and os.path.exists(sys.argv[0]): bootstrap_path = sys.argv[0] resources_pos = bootstrap_path.lower().find('resources') if resources_pos > 0: pms_path = bootstrap_path[:resources_pos] cls._add_python_home_candidates(candidates, pms_path) # Add candidates relative to `PLEX_MEDIA_SERVER_HOME` pms_home = os.environ.get('PLEX_MEDIA_SERVER_HOME') if pms_home and os.path.exists(pms_home): cls._add_python_home_candidates(candidates, pms_home) # Add candidates relative to `PYTHONHOME` python_home = os.environ.get('PYTHONHOME') if python_home and os.path.exists(python_home): candidates.append(os.path.join(python_home, 'bin', 'python')) # Use first candidate that exists for path in candidates: if os.path.exists(path): return path log.warn('Unable to find python executable', extra={'candidates': candidates}) return None @staticmethod def _add_python_home_candidates(candidates, path): # Windows candidates.append(os.path.join(path, 'PlexScriptHost.exe')) # *nix candidates.append(os.path.join(path, 'Plex Script Host')) candidates.append(os.path.join(path, 'Resources', 'Plex Script Host')) candidates.append(os.path.join(path, 'Resources', 'Python', 'bin', 'python')) # # Events # @classmethod def on_failure(cls, message): pass @classmethod def on_success(cls, metadata): pass # # Helpers # @classmethod def build_exception(cls, message, exc_info=None): if exc_info is None: exc_info = sys.exc_info() return cls.build_failure( message, exc_info=exc_info ) @classmethod def build_failure(cls, message, **kwargs): result = { 'success': False, 'message': message } # Merge extra attributes merge(result, kwargs) return result @staticmethod def build_success(metadata): return { 'success': True, 'metadata': metadata }
pygmt/tests/test_logo.py
daroari/pygmt
326
12649417
""" Tests for fig.logo. """ import pytest from pygmt import Figure @pytest.mark.mpl_image_compare def test_logo(): """ Plot the GMT logo as a stand-alone plot. """ fig = Figure() fig.logo() return fig @pytest.mark.mpl_image_compare def test_logo_on_a_map(): """ Plot the GMT logo at the upper right corner of a map. """ fig = Figure() fig.basemap(region=[-90, -70, 0, 20], projection="M15c", frame=True) fig.logo(position="jTR+o0.25c/0.25c+w7.5c", box=True) return fig
mlmodel/docs/preprocess.py
LaudateCorpus1/coremltools
11,356
12649441
import os import re from itertools import izip import inflection def preprocess(): "splits _sources/reference.rst into separate files" text = open("./_sources/reference.rst", "r").read() os.remove("./_sources/reference.rst") if not os.path.exists("./_sources/reference"): os.makedirs("./_sources/reference") def pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." iteration = iter(iterable) return izip(iteration, iteration) sections = map(str.strip, re.split(r"<!--\s*(.+)\s*-->", text)) for section, content in pairwise(sections[1:]): if section.endswith(".proto"): section_name = section[: -len(".proto")] file_name = "./_sources/reference/{0}.rst".format(section_name) with open(file_name, "w") as f: f.truncate() f.write(content) f.close() if __name__ == "__main__": preprocess()
mamba/cli.py
kfischer-okarin/mamba
462
12649445
# -*- coding: utf-8 -*- import sys import argparse from mamba import application_factory, __version__ def main(): arguments = _parse_arguments() if arguments.version: print(__version__) return factory = application_factory.ApplicationFactory(arguments) runner = factory.runner() runner.run() if runner.has_failed_examples: sys.exit(1) def _parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--version', '-v', default=False, action='store_true', help='display the version') parser.add_argument('--slow', '-s', default=0.075, type=float, help='slow test threshold in seconds (default: %(default)s)') parser.add_argument('--enable-coverage', default=False, action='store_true', help='enable code coverage measurement (default: %(default)s)') parser.add_argument('--coverage-file', default='.coverage', action='store', help='name of coverage data file (default: %(default)s)') parser.add_argument('--format', '-f', default='progress', action='store', help='output format (default: %(default)s)') parser.add_argument('specs', default=['./spec', './specs'], nargs='*', help='paths to specs to run or directories with specs to run (default: %(default)s)') parser.add_argument('--no-color', default=False, action='store_true', help='turn off all output coloring (default: %(default)s)') parser.add_argument('--tags', '-t', default=None, type=lambda x: [tag.strip() for tag in x.split(',')], action='store', help='run examples with specified tags (example: -t unit,integration)') return parser.parse_args() if __name__ == '__main__': main()
utils/llvm-build/llvmbuild/util.py
clayne/DirectXShaderCompiler
4,812
12649447
import os import sys def _write_message(kind, message): program = os.path.basename(sys.argv[0]) sys.stderr.write('%s: %s: %s\n' % (program, kind, message)) note = lambda message: _write_message('note', message) warning = lambda message: _write_message('warning', message) error = lambda message: _write_message('error', message) fatal = lambda message: (_write_message('fatal error', message), sys.exit(1)) __all__ = ['note', 'warning', 'error', 'fatal']
iota/commands/core/check_consistency.py
EasonC13/iota.py
347
12649460
<gh_stars>100-1000 import filters as f from iota import TransactionHash from iota.commands import FilterCommand, RequestFilter from iota.filters import Trytes __all__ = [ 'CheckConsistencyCommand', ] class CheckConsistencyCommand(FilterCommand): """ Executes ``checkConsistency`` extended API command. See :py:meth:`iota.api.Iota.check_consistency` for more info. """ command = 'checkConsistency' def get_request_filter(self): return CheckConsistencyRequestFilter() def get_response_filter(self): pass class CheckConsistencyRequestFilter(RequestFilter): def __init__(self) -> None: super(CheckConsistencyRequestFilter, self).__init__({ 'tails': f.Required | f.Array | f.FilterRepeater(f.Required | Trytes(TransactionHash)), })
examples/graphsage/train.py
zbmain/PGL
1,389
12649468
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import time from functools import partial import numpy as np import tqdm import pgl import paddle from pgl.utils.logger import log from pgl.utils.data import Dataloader from model import GraphSage from dataset import ShardedDataset, batch_fn def train(dataloader, model, feature, criterion, optim, log_per_step=100): model.train() batch = 0 total_loss = 0. total_acc = 0. total_sample = 0 for g, sample_index, index, label in dataloader: batch += 1 num_samples = len(index) g.tensor() sample_index = paddle.to_tensor(sample_index) index = paddle.to_tensor(index) label = paddle.to_tensor(label) feat = paddle.gather(feature, sample_index) pred = model(g, feat) pred = paddle.gather(pred, index) loss = criterion(pred, label) loss.backward() acc = paddle.metric.accuracy(input=pred, label=label, k=1) optim.step() optim.clear_grad() total_loss += loss.numpy() * num_samples total_acc += acc.numpy() * num_samples total_sample += num_samples if batch % log_per_step == 0: log.info("Batch %s %s-Loss %s %s-Acc %s" % (batch, "train", loss.numpy(), "train", acc.numpy())) return total_loss / total_sample, total_acc / total_sample @paddle.no_grad() def eval(dataloader, model, feature, criterion): model.eval() loss_all, acc_all = [], [] for g, sample_index, index, label in dataloader: g.tensor() sample_index = paddle.to_tensor(sample_index) index = paddle.to_tensor(index) label = paddle.to_tensor(label) feat = paddle.gather(feature, sample_index) pred = model(g, feat) pred = paddle.gather(pred, index) loss = criterion(pred, label) acc = paddle.metric.accuracy(input=pred, label=label, k=1) loss_all.append(loss.numpy()) acc_all.append(acc.numpy()) return np.mean(loss_all), np.mean(acc_all) def main(args): if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() data = pgl.dataset.RedditDataset(args.normalize, args.symmetry) log.info("Preprocess finish") log.info("Train Examples: %s" % len(data.train_index)) log.info("Val Examples: %s" % len(data.val_index)) log.info("Test Examples: %s" % len(data.test_index)) log.info("Num nodes %s" % data.graph.num_nodes) log.info("Num edges %s" % data.graph.num_edges) log.info("Average Degree %s" % np.mean(data.graph.indegree())) graph = data.graph train_index = data.train_index val_index = data.val_index test_index = data.test_index train_label = data.train_label val_label = data.val_label test_label = data.test_label model = GraphSage( input_size=data.feature.shape[-1], num_class=data.num_classes, hidden_size=args.hidden_size, num_layers=len(args.samples)) model = paddle.DataParallel(model) criterion = paddle.nn.loss.CrossEntropyLoss() optim = paddle.optimizer.Adam( learning_rate=args.lr, parameters=model.parameters(), weight_decay=0.001) feature = paddle.to_tensor(data.feature) train_ds = ShardedDataset(train_index, train_label) val_ds = ShardedDataset(val_index, val_label) test_ds = ShardedDataset(test_index, test_label) collate_fn = partial(batch_fn, graph=graph, samples=args.samples) train_loader = Dataloader( train_ds, batch_size=args.batch_size, shuffle=True, num_workers=args.sample_workers, collate_fn=collate_fn) val_loader = Dataloader( test_ds, batch_size=args.batch_size, shuffle=False, num_workers=args.sample_workers, collate_fn=collate_fn) test_loader = Dataloader( test_ds, batch_size=args.batch_size, shuffle=False, num_workers=args.sample_workers, collate_fn=collate_fn) cal_val_acc = [] cal_test_acc = [] cal_val_loss = [] for epoch in tqdm.tqdm(range(args.epoch)): train_loss, train_acc = train(train_loader, model, feature, criterion, optim) log.info("Runing epoch:%s\t train_loss:%s\t train_acc:%s", epoch, train_loss, train_acc) val_loss, val_acc = eval(val_loader, model, feature, criterion) cal_val_acc.append(val_acc) cal_val_loss.append(val_loss) log.info("Runing epoch:%s\t val_loss:%s\t val_acc:%s", epoch, val_loss, val_acc) test_loss, test_acc = eval(test_loader, model, feature, criterion) cal_test_acc.append(test_acc) log.info("Runing epoch:%s\t test_loss:%s\t test_acc:%s", epoch, test_loss, test_acc) log.info("Runs %s: Model: %s Best Test Accuracy: %f" % (0, "graphsage", cal_test_acc[np.argmax(cal_val_acc)])) if __name__ == "__main__": parser = argparse.ArgumentParser(description='graphsage') parser.add_argument( "--normalize", action='store_true', help="normalize features") parser.add_argument( "--symmetry", action='store_true', help="undirect graph") parser.add_argument("--sample_workers", type=int, default=5) parser.add_argument("--epoch", type=int, default=10) parser.add_argument("--hidden_size", type=int, default=128) parser.add_argument("--batch_size", type=int, default=128) parser.add_argument("--lr", type=float, default=0.01) parser.add_argument('--samples', nargs='+', type=int, default=[25, 10]) args = parser.parse_args() log.info(args) main(args)
gateway/sensorsdb.py
QuPengfei/Smart-City-Sample
126
12649472
<filename>gateway/sensorsdb.py<gh_stars>100-1000 #!/usr/bin/python3 from urllib.parse import unquote from tornado import web,gen from tornado.concurrent import run_on_executor from concurrent.futures import ThreadPoolExecutor from db_query import DBQuery from db_ingest import DBIngest from language import encode from configuration import env import json dbhost=env["DBHOST"] office=list(map(float,env["OFFICE"].split(","))) if "OFFICE" in env else "" class SensorsDBHandler(web.RequestHandler): def __init__(self, app, request, **kwargs): super(SensorsDBHandler, self).__init__(app, request, **kwargs) self.executor= ThreadPoolExecutor(4) self._dbi=DBIngest(index="sensors",office=office,host=dbhost) def check_origin(self, origin): return True @run_on_executor def _update(self, sensor, source): try: print("Ingesting", sensor, flush=True) r=self._dbi.ingest(source, refresh="wait_for") return r except Exception as e: print(str(e),flush=True) return str(e) @gen.coroutine def put(self): options=json.loads(self.request.body.decode('utf-8')) r=yield self._update(sensor=options["sensor"], source=options["source"]) if isinstance(r,str): self.set_status(400, encode(r)) return self.write(r) self.set_status(200,'OK') self.finish()
ray-rllib/multi-armed-bandits/market_bandit.py
aksakalli/academy
342
12649498
<gh_stars>100-1000 import gym from gym.spaces import Discrete, Box from gym.utils import seeding import numpy as np import random class MarketBandit (gym.Env): def __init__ (self, config={}): self.max_inflation = config.get('max-inflation', DEFAULT_MAX_INFLATION) self.tickers = config.get('tickers', DEFAULT_TICKERS) self.data_file = config.get('data-file', DEFAULT_DATA_FILE) print(f"MarketBandit: max_inflation: {self.max_inflation}, tickers: {self.tickers}, data file: {self.data_file} (config: {config})") self.action_space = Discrete(4) self.observation_space = Box( low = -self.max_inflation, high = self.max_inflation, shape=(1, ) ) self.df = load_market_data(self.data_file) self.cur_context = None def reset (self): self.year = self.df["year"].min() self.cur_context = self.df.loc[self.df["year"] == self.year]["inflation"][0] self.done = False self.info = {} return [self.cur_context] def step (self, action): if self.done: reward = 0. regret = 0. else: row = self.df.loc[self.df["year"] == self.year] # calculate reward ticker = self.tickers[action] reward = float(row[ticker]) # calculate regret max_reward = max(map(lambda t: float(row[t]), self.tickers)) regret = round(max_reward - reward) # update the context self.cur_context = float(row["inflation"]) # increment the year self.year += 1 if self.year >= self.df["year"].max(): self.done = True context = [self.cur_context] #context = self.observation_space.sample() self.info = { "regret": regret, "year": self.year } return [context, reward, self.done, self.info] def seed (self, seed=None): """Sets the seed for this env's random number generator(s). Note: Some environments use multiple pseudorandom number generators. We want to capture all such seeds used in order to ensure that there aren't accidental correlations between multiple generators. Returns: list<bigint>: Returns the list of seeds used in this env's random number generators. The first value in the list should be the "main" seed, or the value which a reproducer should pass to 'seed'. Often, the main seed equals the provided 'seed', but this won't be true if seed=None, for example. """ self.np_random, seed = seeding.np_random(seed) return [seed]
pyblur/RandomizedBlur.py
lospooky/pyblur
102
12649532
import numpy as np from BoxBlur import BoxBlur_random from DefocusBlur import DefocusBlur_random from GaussianBlur import GaussianBlur_random from LinearMotionBlur import LinearMotionBlur_random from PsfBlur import PsfBlur_random blurFunctions = {"0": BoxBlur_random, "1": DefocusBlur_random, "2": GaussianBlur_random, "3": LinearMotionBlur_random, "4": PsfBlur_random} def RandomizedBlur(img): blurToApply = blurFunctions[str(np.random.randint(0, len(blurFunctions)))] return blurToApply(img)
program/request-tvm-nnvm-inference/mali_imagenet_bench.py
ctuning/ck-request-asplos18-mobilenets-tvm
174
12649550
""" Benchmark inference speed on ImageNet Example (run on Firefly RK3399): python mali_imagenet_bench.py --target-host 'llvm -target=aarch64-linux-gnu' --host 192.168.0.100 --port 9090 --model mobilenet """ import time import argparse import numpy as np import tvm import nnvm.compiler import nnvm.testing from tvm.contrib import util, rpc from tvm.contrib import graph_runtime as runtime def run_case(model, dtype): # load model if model == 'vgg16': net, params = nnvm.testing.vgg.get_workload(num_layers=16, batch_size=1, image_shape=image_shape, dtype=dtype) elif model == 'resnet18': net, params = nnvm.testing.resnet.get_workload(num_layers=18, batch_size=1, image_shape=image_shape, dtype=dtype) elif model == 'mobilenet': net, params = nnvm.testing.mobilenet.get_workload( batch_size=1, image_shape=image_shape, dtype=dtype) else: raise ValueError('no benchmark prepared for {}.'.format(model)) # compile opt_level = 2 if dtype == 'float32' else 1 with nnvm.compiler.build_config(opt_level=opt_level): graph, lib, params = nnvm.compiler.build( net, tvm.target.mali(), shape={"data": data_shape}, params=params, dtype=dtype, target_host=args.target_host) # upload model to remote device tmp = util.tempdir() lib_fname = tmp.relpath('net.tar') lib.export_library(lib_fname) if args.host is not None: remote = rpc.connect(args.host, args.port) remote.upload(lib_fname) ctx = remote.cl(0) rlib = remote.load_module('net.tar') rparams = {k: tvm.nd.array(v, ctx) for k, v in params.items()} else: ctx = tvm.cl(0) rlib = lib rparams = params # create graph runtime module = runtime.create(graph, rlib, ctx) module.set_input('data', tvm.nd.array(np.random.uniform(size=(data_shape)).astype(dtype))) module.set_input(**rparams) # benchmark # print("============================================================") # print("model: %s, dtype: %s" % (model, dtype)) # the num of runs for warm up and test num_warmup = 10 num_test = 60 if model == 'mobilenet': # mobilenet is fast, need more runs for stable measureament num_warmup *= 5 num_test *= 5 # perform some warm up runs # print("warm up..") warm_up_timer = module.module.time_evaluator("run", ctx, num_warmup) warm_up_timer() # test # print("test..") ftimer = module.module.time_evaluator("run", ctx, num_test) prof_res = ftimer() # print("cost per image: %.4fs" % prof_res.mean) print("backend: TVM-mali\tmodel: %s\tdtype: %s\tcost:%.4f" % (model, dtype, prof_res.mean)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, required=True, choices=['vgg16', 'resnet18', 'mobilenet', 'all'], help="The model type.") parser.add_argument('--dtype', type=str, default='float32', choices=['float16', 'float32']) parser.add_argument('--host', type=str, help="The host address of your arm device.", default=None) parser.add_argument('--port', type=int, help="The port number of your arm device", default=None) parser.add_argument('--target-host', type=str, help="The compilation target of host device.", default=None) args = parser.parse_args() # set parameter batch_size = 1 num_classes = 1000 image_shape = (3, 224, 224) # load model data_shape = (batch_size,) + image_shape out_shape = (batch_size, num_classes) if args.model == 'all': # test all for model in ['vgg16', 'resnet18', 'mobilenet']: for dtype in ['float32', 'float16']: run_case(model, dtype) time.sleep(10) else: # test single run_case(args.model, args.dtype)
onnx2pytorch/constants.py
Robust-Robots/onnx2pytorch
147
12649552
<filename>onnx2pytorch/constants.py from torch import nn from torch.nn.modules.conv import _ConvNd from torch.nn.modules.pooling import _MaxPoolNd from onnx2pytorch.operations import ( BatchNormWrapper, InstanceNormWrapper, Loop, LSTMWrapper, Split, TopK, ) COMPOSITE_LAYERS = (nn.Sequential,) MULTIOUTPUT_LAYERS = (_MaxPoolNd, Loop, LSTMWrapper, Split, TopK) STANDARD_LAYERS = ( _ConvNd, BatchNormWrapper, InstanceNormWrapper, LSTMWrapper, nn.Linear, )
cmd_ir/instructions/events.py
Commodoreprime/Command-Block-Assembly
223
12649553
"""Events""" from ._core import PreambleInsn, ConstructorInsn, SingleCommandInsn from ..core_types import (VirtualString, AdvEventRef, TagEventRef, EventRef, Selector, SelectorType, ) from ..core import IRFunction, VisibleFunction import commands as c class CreateAdvEvent(ConstructorInsn): """Creates an advancement-based event object.""" args = [VirtualString] argnames = 'event_name' argdocs = ["The event name"] rettype = AdvEventRef insn_name = 'adv_event' def construct(self): return AdvEventRef(str(self.event_name)) class CreateTagEvent(ConstructorInsn): """Creates a tag-based event object.""" args = [VirtualString] argnames = 'tag_name' argdocs = ["The function tag name"] rettype = TagEventRef insn_name = 'tag_event' def construct(self): return TagEventRef(str(self.tag_name)) class AddEventCondition(PreambleInsn): """Add a condition to an event that must be true for the event handler to be invoked.""" args = [AdvEventRef, VirtualString, VirtualString] argnames = 'event path value' argdocs = ["Event to add the condition to", "JSON path in the advancement", "Value that must match"] insn_name = 'add_event_condition' def preapply(self, preamble): self.event.add_condition(tuple(str(self.path).split('.')), str(self.value)) class EventHandler(PreambleInsn): """Add an event handler to the given event specification.""" args = [IRFunction, EventRef] argnames = 'handler event' argdocs = ["Event handler", "Event"] top_preamble_only = True insn_name = 'event_handler' def preapply(self, preamble): if not self.event.is_tag: self.handler.add_advancement_revoke(self.event) def declare(self): self.handler.usage() def postapply(self, out, top): assert not self.handler.is_inline out.write_event_handler(self.handler, self.event) class FireEventInsn(SingleCommandInsn): """Fires a tag-based event to all listeners.""" args = [TagEventRef] argnames = 'event' argdocs = ["Tag event to fire"] insn_name = 'fire_event' def get_cmd(self, func): return c.FunctionTag(c.NSName(self.event.name)) class RevokeEventAdvancement(SingleCommandInsn): """(Internal) Revokes an advancement to allow an event to re-fire.""" args = [IRFunction] argnames = 'func' argdocs = ["Handler"] insn_name = 'revoke_event_adv' def get_cmd(self, func): # Advancement name = handler func name return c.Advancement('revoke', Selector.new(SelectorType.SENDER) \ .as_resolve(), 'only', c.AdvancementRef(self.func.global_name)) class SetupInsn(PreambleInsn): """Tags a function as being part of the setup phase. It is called whenever the datapack is reloaded.""" args = [VisibleFunction] argnames = 'func' argdocs = ["The setup function"] top_preamble_only = True insn_name = 'setupfn' def declare(self): self.func.usage() def preapply(self, preamble): pass def postapply(self, out, top): assert not self.func.is_inline out.write_setup_function(self.func)
DSA 450 GFG/PrintAnagrams.py
siddhi-244/CompetitiveProgrammingQuestionBank
931
12649575
# Problem : https://practice.geeksforgeeks.org/problems/print-anagrams-together/1 # Input: # N = 5 # words[] = {act,god,cat,dog,tac} # Output: # god dog # act cat tac # Explanation: # There are 2 groups of # anagrams "god", "dog" make group 1. # "act", "cat", "tac" make group 2. from collections import defaultdict def Anagrams(words,n): ''' words: list of word n: no of words return : list of group of anagram {list will be sorted in driver code (not word in grp)} ''' #code here anagrams = defaultdict(list) for word in words: anagrams["".join(sorted(word))].append(word) return anagrams.values() # Driver Code if __name__ =='__main__': t= int(input()) for tcs in range(t): n= int(input()) words=input().split() ans=Anagrams(words,n) for grp in sorted(ans): for word in grp: print(word,end=' ') print() # Used default dict from collections module . It does not raise key value error
emukit/examples/fabolas/fabolas_model.py
ndalchau/emukit
152
12649583
from copy import deepcopy from typing import Tuple import GPy import numpy as np from emukit.model_wrappers.gpy_model_wrappers import GPyModelWrapper class FabolasKernel(GPy.kern.Kern): def __init__(self, input_dim, basis_func, a=1., b=1., active_dims=None): super(FabolasKernel, self).__init__(input_dim, active_dims, "fabolas_kernel") assert input_dim == 1 self.basis_func = basis_func self.a = GPy.core.parameterization.Param("a", a) self.b = GPy.core.parameterization.Param("b", b) self.link_parameters(self.a, self.b) def K(self, X, X2): if X2 is None: X2 = X X_ = self.basis_func(X) X2_ = self.basis_func(X2) k = np.dot(X_ * self.b, X2_.T) + self.a return k def update_gradients_full(self, dL_dK, X, X2): if X2 is None: X2 = X X_ = self.basis_func(X) X2_ = self.basis_func(X2) self.a.gradient = np.sum(dL_dK) self.b.gradient = np.sum(np.dot(np.dot(X_, X2_.T), dL_dK)) def Kdiag(self, X): return np.diag(self.K(X, X)) def linear(s): return s def quad(s): return (1 - s) ** 2 def transform(s, s_min, s_max): s_transform = (np.log2(s) - np.log2(s_min)) / (np.log2(s_max) - np.log2(s_min)) return s_transform def retransform(s_transform, s_min, s_max): s = np.rint(2 ** (s_transform * (np.log2(s_max) - np.log2(s_min)) + np.log2(s_min))) return s class FabolasModel(GPyModelWrapper): def __init__(self, X_init: np.ndarray, Y_init: np.ndarray, s_min: float, s_max: float, basis_func=linear, noise: float = 1e-6): """ Fabolas Gaussian processes model which models the validation error / cost of hyperparameter configurations across training dataset subsets. :param X_init: training data points :param Y_init: training targets :param basis_func: basis function which describes the change in performance across dataset subsets :param noise: observation noise added to the diagonal of the kernel matrix """ self.noise = noise self.s_min = s_min self.s_max = s_max self._X = deepcopy(X_init) self._X[:, -1] = transform(self._X[:, -1], self.s_min, self.s_max) self._Y = Y_init self.basis_func = basis_func kernel = GPy.kern.Matern52(input_dim=self._X.shape[1] - 1, active_dims=[i for i in range(self._X.shape[1] - 1)], variance=np.var(self._Y), ARD=True) kernel *= FabolasKernel(input_dim=1, active_dims=[self._X.shape[1] - 1], basis_func=basis_func) kernel += GPy.kern.White(input_dim=1, active_dims=[self._X.shape[1] - 1], variance=1e-6) gp = GPy.models.GPRegression(self._X, self._Y, kernel=kernel, noise_var=noise) gp.kern.set_prior(GPy.priors.Uniform(0, 5)) gp.likelihood.constrain_positive() super(FabolasModel, self).__init__(gpy_model=gp, n_restarts=3) def predict(self, X): """ :param X: (n_points x n_dimensions) array containing locations at which to get predictions :return: (mean, variance) Arrays of size n_points x 1 of the predictive distribution at each input location """ X_ = deepcopy(X) X_[:, -1] = transform(X_[:, -1], self.s_min, self.s_max) return super(FabolasModel, self).predict(X_) def set_data(self, X, Y): """ Sets training data in model :param X: New training features :param Y: New training outputs """ self._X = deepcopy(X) self._X[:, -1] = transform(self._X[:, -1], self.s_min, self.s_max) self._Y = Y try: self.model.set_XY(self._X, self.Y) except: kernel = GPy.kern.Matern52(input_dim=self._X.shape[1] - 1, active_dims=[i for i in range(self._X.shape[1] - 1)], variance=np.var(self.Y), ARD=True) kernel *= FabolasKernel(input_dim=1, active_dims=[self._X.shape[1] - 1], basis_func=self.basis_func) kernel *= GPy.kern.OU(input_dim=1, active_dims=[self._X.shape[1] - 1]) self.model = GPy.models.GPRegression(self._X, self.Y, kernel=kernel, noise_var=self.noise) self.model.likelihood.constrain_positive() def get_f_minimum(self): """ Predicts for all observed data points the validation error on the full dataset and returns the smallest mean prediciton :return: Array of size 1 x 1 """ proj_X = deepcopy(self._X) proj_X[:, -1] = np.ones(proj_X.shape[0]) * self.s_max mean_highest_dataset = self.model.predict(proj_X) return np.min(mean_highest_dataset, axis=0) @property def X(self): X = deepcopy(self._X) X[:, -1] = retransform(X[:, -1], self.s_min, self.s_max) return X @property def Y(self): return self._Y def get_prediction_gradients(self, X: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ :param X: (n_points x n_dimensions) array containing locations at which to get gradient of the predictions :return: (mean gradient, variance gradient) n_points x n_dimensions arrays of the gradients of the predictive distribution at each input location """ X_ = deepcopy(X) X_[:, -1] = transform(X_[:, -1], self.s_min, self.s_max) return super(FabolasModel, self).get_prediction_gradients(X_) def predict_covariance(self, X: np.ndarray, with_noise: bool = True) -> np.ndarray: """ Calculates posterior covariance between points in X :param X: Array of size n_points x n_dimensions containing input locations to compute posterior covariance at :param with_noise: Whether to include likelihood noise in the covariance matrix :return: Posterior covariance matrix of size n_points x n_points """ X_ = deepcopy(X) X_[:, -1] = transform(X_[:, -1], self.s_min, self.s_max) return super(FabolasModel, self).predict_covariance(X_, with_noise) def get_covariance_between_points(self, X1: np.ndarray, X2: np.ndarray) -> np.ndarray: """ Calculate posterior covariance between two points :param X1: An array of shape 1 x n_dimensions that contains a data single point. It is the first argument of the posterior covariance function :param X2: An array of shape n_points x n_dimensions that may contain multiple data points. This is the second argument to the posterior covariance function. :return: An array of shape n_points x 1 of posterior covariances between X1 and X2 """ X_1 = deepcopy(X1) X_1[:, -1] = transform(X_1[:, -1], self.s_min, self.s_max) X_2 = deepcopy(X2) X_2[:, -1] = transform(X_2[:, -1], self.s_min, self.s_max) return super(FabolasModel, self).get_covariance_between_points(X1, X2)
navec/tar.py
FreedomSlow/navec
115
12649603
import tarfile from io import BytesIO from .record import Record class Tar(Record): __attributes__ = ['path'] mode = 'r' def __init__(self, path): self.path = path def __enter__(self): self.tar = tarfile.open(self.path, self.mode) return self def __exit__(self, *args): self.tar.close() def load(self, filename): member = self.tar.getmember(filename) return self.tar.extractfile(member) class DumpTar(Tar): mode = 'w' def dump(self, bytes, filename): file = BytesIO(bytes) info = tarfile.TarInfo(filename) info.size = len(bytes) self.tar.addfile(tarinfo=info, fileobj=file)
test/hummingbot/strategy/perpetual_market_making/test_perpetual_market_making_start.py
BGTCapital/hummingbot
3,027
12649604
from decimal import Decimal import unittest.mock import hummingbot.strategy.perpetual_market_making.start as strategy_start from hummingbot.connector.exchange_base import ExchangeBase from hummingbot.strategy.perpetual_market_making.perpetual_market_making_config_map import ( perpetual_market_making_config_map as c_map ) from test.hummingbot.strategy import assign_config_default class PerpetualMarketMakingStartTest(unittest.TestCase): def setUp(self) -> None: super().setUp() self.strategy = None self.markets = {"binance": ExchangeBase()} self.notifications = [] self.log_errors = [] assign_config_default(c_map) c_map.get("derivative").value = "binance" c_map.get("market").value = "ETH-USDT" c_map.get("leverage").value = Decimal("5") c_map.get("order_amount").value = Decimal("1") c_map.get("order_refresh_time").value = 60. c_map.get("bid_spread").value = Decimal("1") c_map.get("ask_spread").value = Decimal("2") def _initialize_market_assets(self, market, trading_pairs): return [("ETH", "USDT")] def _initialize_markets(self, market_names): pass def _notify(self, message): self.notifications.append(message) def logger(self): return self def error(self, message, exc_info): self.log_errors.append(message) def test_strategy_creation(self): strategy_start.start(self) self.assertEqual(self.strategy.order_amount, Decimal("1")) self.assertEqual(self.strategy.order_refresh_time, 60.) self.assertEqual(self.strategy.bid_spread, Decimal("0.01")) self.assertEqual(self.strategy.ask_spread, Decimal("0.02"))
tests/batchnorm.py
kihyuks/objax
715
12649618
<gh_stars>100-1000 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unittests for Batch Normalization Layer.""" import os import unittest import objax import numpy as np # Split CPU cores into 8 devices for tests of sync batch norm os.environ['XLA_FLAGS'] = ' '.join(os.environ.get('XLA_FLAGS', '').split(' ') + ['--xla_force_host_platform_device_count=8']) class TestBatchnorm(unittest.TestCase): def test_batchnorm_0d(self): x = objax.random.normal((64, 8)) bn = objax.nn.BatchNorm0D(8) # run batch norm in training mode yt = bn(x, training=True) self.assertEqual(yt.shape, x.shape) # run batch norm in eval mode ye = bn(x, training=False) self.assertEqual(ye.shape, x.shape) def test_batchnorm_1d(self): x = objax.random.normal((64, 4, 16)) bn = objax.nn.BatchNorm1D(4) # run batch norm in training mode yt = bn(x, training=True) self.assertEqual(yt.shape, x.shape) # run batch norm in eval mode ye = bn(x, training=False) self.assertEqual(ye.shape, x.shape) def test_batchnorm_2d(self): x = objax.random.normal((64, 3, 16, 16)) bn = objax.nn.BatchNorm2D(3) # run batch norm in training mode yt = bn(x, training=True) self.assertEqual(yt.shape, x.shape) # run batch norm in eval mode ye = bn(x, training=False) self.assertEqual(ye.shape, x.shape) class TestSyncBatchnorm(unittest.TestCase): def assertTensorsAlmostEqual(self, a, b): a = np.array(a) b = np.array(b) np.testing.assert_almost_equal(a, b, decimal=5) def assertTensorsNotEqual(self, a, b): a = np.array(a) b = np.array(b) self.assertGreater(((a - b) ** 2).sum(), 1e-5) def helper_test_syncbn(self, x, bn_fn, syncbn_fn): # run regular batch norm in train and eval mode bn = bn_fn() yt = bn(x, training=True) ye = bn(x, training=False) # run replicated sync batch norm in train and eval mode sync_bn = syncbn_fn() sync_bn_train = objax.Parallel(lambda x: sync_bn(x, training=True), vc=sync_bn.vars()) sync_bn_eval = objax.Parallel(lambda x: sync_bn(x, training=False), vc=sync_bn.vars()) with sync_bn.vars().replicate(): yt_syncbn = sync_bn_train(x) ye_syncbn = sync_bn_eval(x) # replicated sync bn should have the same behavior as non-replicated regular bn self.assertTensorsAlmostEqual(yt, yt_syncbn) self.assertTensorsAlmostEqual(ye, ye_syncbn) self.assertTensorsAlmostEqual(yt, yt_syncbn) self.assertTensorsAlmostEqual(bn.running_mean.value, sync_bn.running_mean.value) self.assertTensorsAlmostEqual(bn.running_var.value, sync_bn.running_var.value) # run replicated non-sync batch norm - it should yield different result non_sync_bn = bn_fn() non_sync_bn_train = objax.Parallel(lambda x: non_sync_bn(x, training=True), vc=non_sync_bn.vars()) non_sync_bn_eval = objax.Parallel(lambda x: non_sync_bn(x, training=False), vc=non_sync_bn.vars()) with non_sync_bn.vars().replicate(): yt_non_syncbn = non_sync_bn_train(x) ye_non_syncbn = non_sync_bn_eval(x) self.assertTensorsNotEqual(yt, yt_non_syncbn) self.assertTensorsNotEqual(ye, ye_non_syncbn) def test_syncbn_0d(self): x = objax.random.normal((64, 8)) self.helper_test_syncbn(x, lambda: objax.nn.BatchNorm0D(8), lambda: objax.nn.SyncedBatchNorm0D(8)) def test_syncbn_1d(self): x = objax.random.normal((64, 4, 16)) self.helper_test_syncbn(x, lambda: objax.nn.BatchNorm1D(4), lambda: objax.nn.SyncedBatchNorm1D(4)) def test_syncbn_2d(self): x = objax.random.normal((64, 3, 16, 16)) self.helper_test_syncbn(x, lambda: objax.nn.BatchNorm2D(3), lambda: objax.nn.SyncedBatchNorm2D(3)) if __name__ == '__main__': unittest.main()
tests/python3_f_strings/f_strings.py
hixio-mh/plugin-python
362
12649651
width = 10 precision = 4 value = decimal.Decimal("12.34567") f"result: {value:{width}.{precision}}" rf"result: {value:{width}.{precision}}" foo(f'this SHOULD be a multi-line string because it is ' f'very long and does not fit on one line. And {value} is the value.') foo('this SHOULD be a multi-line string, but not reflowed because it is ' f'very long and and also unusual. And {value} is the value.') foo(fR"this should NOT be \t " rF'a multi-line string \n')
extensions/python/src/main/resources/jet_to_python_grpc_server.py
software-is-art/hazelcast
4,283
12649653
<reponame>software-is-art/hazelcast import grpc import sys import os import socket import logging import importlib from concurrent import futures import jet_to_python_pb2 import jet_to_python_pb2_grpc logger = logging.getLogger('Python PID %d' % os.getpid()) class JetToPythonServicer(jet_to_python_pb2_grpc.JetToPythonServicer): def __init__(self, handler_function): self._handler_function = handler_function def streamingCall(self, request_iterator, context): for request in request_iterator: output_list = self._handler_function(request.inputValue) output_item = jet_to_python_pb2.OutputMessage(outputValue = output_list) yield output_item logger.info('gRPC call completed') def load_handler_function(handler_module_name, handler_function_name): try: handler_module = importlib.import_module(handler_module_name) except ImportError as e: raise RuntimeError("Cannot import module %s" % (handler_module_name), e) if not hasattr(handler_module, handler_function_name): raise RuntimeError("Handler function %s.%s doesn't exist" % (handler_module_name, handler_function_name)) return getattr(handler_module, handler_function_name) def serve(phoneback_port, handler_module_name, handler_function_name): # Fail as soon as possible for any simple problem with passed-in arguments phoneback_port_int = int(phoneback_port) handler_function = load_handler_function(handler_module_name, handler_function_name) server = grpc.server(futures.ThreadPoolExecutor(max_workers=1), options=[ ('grpc.max_send_message_length', 100 * 1024 * 1024), ('grpc.max_receive_message_length', 100 * 1024 * 1024), ('grpc.so_reuseport', 0) ]) jet_to_python_pb2_grpc.add_JetToPythonServicer_to_server( JetToPythonServicer(handler_function), server ) listen_port = server.add_insecure_port('localhost:0') if listen_port == 0: logger.error("Couldn't find a port to bind to") return phoneback_message = ('%d\n' % listen_port).encode('utf-8') server.start() logger.info('started listening on port %d', listen_port) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect(('localhost', phoneback_port_int)) s.sendall(phoneback_message) # Wait for a stop signal in stdin stdin_message = input() if stdin_message == 'stop': logger.info('Received a "stop" message from stdin. Stopping the server.') else: logger.info('Received an unexpected message from stdin: "%s"' % stdin_message) server.stop(0).wait() if __name__ == '__main__': logging.basicConfig(stream=sys.stdout, format='%(asctime)s %(levelname)s [%(name)s] %(threadName)s - %(message)s', level=logging.INFO) # Expecting these command-line parameters: # - $1 is the port where Jet is listening for the Python process to # 'phone back' and tell Jet on which port it started its gRPC endpoint. # - $2.$3 is the module.function of the handler function that will handle # the input from Jet. serve(phoneback_port=sys.argv[1], handler_module_name=sys.argv[2], handler_function_name=sys.argv[3])
nodes/1.x/python/Group.Ungroup.py
jdehotin/Clockworkfordynamo
147
12649684
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * from System.Collections.Generic import * clr.AddReference("RevitServices") import RevitServices from RevitServices.Persistence import DocumentManager from RevitServices.Transactions import TransactionManager doc = DocumentManager.Instance.CurrentDBDocument groups = UnwrapElement(IN[0]) elementlist = list() TransactionManager.Instance.EnsureInTransaction(doc) for group in groups: try: ids = group.UngroupMembers() ungrouped = list() for id in ids: ungrouped.append(group.Document.GetElement(id)) elementlist.append(ungrouped) except: elementlist.append(list()) TransactionManager.Instance.TransactionTaskDone() OUT = elementlist
src/genie/libs/parser/iosxe/tests/ShowStandbyAll/cli/equal/golden_output4_expected.py
balmasea/genieparser
204
12649701
<gh_stars>100-1000 expected_output = { "BDI3147": { "interface": "BDI3147", "redirects_disable": False, "address_family": { "ipv4": { "version": { 1: { "groups": { 31: { "group_number": 31, "hsrp_router_state": "active", "statistics": { "num_state_changes": 17 }, "last_state_change": "12w6d", "primary_ipv4_address": { "address": "10.190.99.49" }, "virtual_mac_address": "0000.0c07.ac1f", "virtual_mac_address_mac_in_use": True, "local_virtual_mac_address": "0000.0c07.ac1f", "local_virtual_mac_address_conf": "v1 default", "timers": { "hello_msec_flag": False, "hello_sec": 3, "hold_msec_flag": False, "hold_sec": 10, "next_hello_sent": 1.856 }, "active_router": "local", "standby_priority": 90, "standby_expires_in": 11.504, "standby_router": "10.190.99.51", "standby_ip_address": "10.190.99.51", "priority": 110, "configured_priority": 110, "session_name": "hsrp-BD3147-31" }, 32: { "group_number": 32, "hsrp_router_state": "active", "statistics": { "num_state_changes": 17 }, "last_state_change": "12w6d", "primary_ipv4_address": { "address": "10.188.109.1" }, "virtual_mac_address": "0000.0c07.ac20", "virtual_mac_address_mac_in_use": True, "local_virtual_mac_address": "0000.0c07.ac20", "local_virtual_mac_address_conf": "v1 default", "timers": { "hello_msec_flag": False, "hello_sec": 3, "hold_msec_flag": False, "hold_sec": 10, "next_hello_sent": 2.496 }, "active_router": "local", "standby_priority": 90, "standby_expires_in": 10.576, "standby_router": "10.188.109.3", "standby_ip_address": "10.188.109.3", "priority": 110, "configured_priority": 110, "session_name": "hsrp-BD3147-32" } } } } } }, "use_bia": False } }
flask_admin/tests/test_tools.py
caffeinatedMike/flask-admin
4,440
12649723
<reponame>caffeinatedMike/flask-admin from flask_admin import tools def test_encode_decode(): assert tools.iterdecode(tools.iterencode([1, 2, 3])) == (u'1', u'2', u'3') assert tools.iterdecode(tools.iterencode([',', ',', ','])) == (u',', u',', u',') assert tools.iterdecode(tools.iterencode(['.hello.,', ',', ','])) == (u'.hello.,', u',', u',') assert tools.iterdecode(tools.iterencode(['.....,,,.,,..,.,,.,'])) == (u'.....,,,.,,..,.,,.,',) assert tools.iterdecode(tools.iterencode([])) == tuple() # Malformed inputs should not crash assert tools.iterdecode('.') assert tools.iterdecode(',') == (u'', u'')
Multitasking_with_CircuitPython/code_buttons_without_sleep/code.py
gamblor21/Adafruit_Learning_System_Guides
665
12649750
<gh_stars>100-1000 """ This example script shows how to read button state with debouncing that does not rely on time.sleep(). """ import board from digitalio import DigitalInOut, Direction, Pull btn = DigitalInOut(board.SWITCH) btn.direction = Direction.INPUT btn.pull = Pull.UP prev_state = btn.value while True: cur_state = btn.value if cur_state != prev_state: if not cur_state: print("BTN is down") else: print("BTN is up") prev_state = cur_state
src/map_renderer/glow.py
XiaoJake/range-mcl
141
12649821
<reponame>XiaoJake/range-mcl<filename>src/map_renderer/glow.py #!/usr/bin/env python3 # This file is covered by the LICENSE file in the root of this project. # Brief: OpenGL Object Wrapper (GLOW) in python. # Some convenience classes to simplify resource management. import re from typing import Any, Union from OpenGL.raw.GL.VERSION.GL_3_0 import GL_R32F, GL_RG import numpy as np import OpenGL.GL as gl gl.ERROR_CHECKING = True gl.ERROR_ON_COPY = True gl.WARN_ON_FORMAT_UNAVAILABLE = True WARN_INVALID_UNIFORMS = False def vec2(x: float, y: float) -> np.array: """ returns an vec2-compatible numpy array """ return np.array([x, y], dtype=np.float32) def vec3(x: float, y: float, z: float) -> np.array: """ returns an vec3-compatible numpy array """ return np.array([x, y, z], dtype=np.float32) def vec4(x: float, y: float, z: float, w: float) -> np.array: """ returns an vec4-compatible numpy array """ return np.array([x, y, z, w], dtype=np.float32) def ivec2(x: int, y: int) -> np.array: """ returns an ivec2-compatible numpy array """ return np.array([x, y], dtype=np.int32) def ivec3(x: int, y: int, z: int) -> np.array: """ returns an ivec3-compatible numpy array """ return np.array([x, y, z], dtype=np.int32) def ivec4(x: int, y: int, z: int, w: int) -> np.array: """ returns an ivec4-compatible numpy array """ return np.array([x, y, z, w], dtype=np.int32) def uivec2(x: int, y: int) -> np.array: """ returns an uivec2-compatible numpy array """ return np.array([x, y], dtype=np.uint32) def uivec3(x: int, y: int, z: int) -> np.array: """ returns an uivec3-compatible numpy array """ return np.array([x, y, z], dtype=np.uint32) def uivec4(x: int, y: int, z: int, w: int) -> np.array: """ returns an uivec4-compatible numpy array """ return np.array([x, y, z, w], dtype=np.uint32) class GlBuffer: """ Buffer object representing a vertex array buffer. """ def __init__(self, target: gl.Constant = gl.GL_ARRAY_BUFFER, usage: gl.Constant = gl.GL_STATIC_DRAW): self.id_ = gl.glGenBuffers(1) self.target_ = target self.usage_ = usage self._size = 0 def __del__(self): gl.glDeleteBuffers(1, [self.id_]) def assign(self, array: np.array): """ set buffer content to given numpy array. """ gl.glBindBuffer(self.target_, self.id_) gl.glBufferData(self.target_, array, self.usage_) gl.glBindBuffer(self.target_, 0) self._size = array.shape[0] def bind(self): """ bind buffer """ gl.glBindBuffer(self.target_, self.id_) def release(self): """ release buffer """ gl.glBindBuffer(self.target_, 0) @property def id(self) -> int: """ get buffer id """ return self.id_ @property def usage(self) -> gl.Constant: """ get buffer usage """ return self.usage_ @property def target(self) -> gl.Constant: """ get buffer target """ return self.target_ @property def size(self) -> int: return self._size class GlTextureBuffer: """ Texture based on a GlBuffer object. A texture object, where the texture's data is stored in a buffer object. """ def __init__(self, buffer: GlBuffer, tex_format): self._buffer = buffer # keep here a reference to avoid garbage collection. self.id_ = gl.glGenTextures(1) self._tex_format = tex_format gl.glBindTexture(gl.GL_TEXTURE_BUFFER, self.id_) self._buffer.bind() gl.glTexBuffer(gl.GL_TEXTURE_BUFFER, self._tex_format, self._buffer.id) self._buffer.release() def __del__(self): gl.glDeleteBuffers(1, np.array([self.id_])) def bind(self): gl.glBindTexture(gl.GL_TEXTURE_BUFFER, self.id_) def release(self): gl.glBindTexture(gl.GL_TEXTURE_BUFFER, 0) class GlTextureRectangle: """ TextureRectangle TODO: make GlTextureRectangle and GlTexture2D subclasses of GlTextureBase """ def __init__(self, width, height, internalFormat=gl.GL_RGBA, format=gl.GL_RGBA): self.id_ = gl.glGenTextures(1) self.internalFormat_ = internalFormat # gl.GL_RGB_FLOAT, gl.GL_RGB_UNSIGNED, ... self.format = format # GL_RG. GL_RG_INTEGER, ... self.width_ = width self.height_ = height gl.glBindTexture(gl.GL_TEXTURE_RECTANGLE, self.id_) gl.glTexParameteri(gl.GL_TEXTURE_RECTANGLE, gl.GL_TEXTURE_MIN_FILTER, gl.GL_NEAREST) gl.glTexParameteri(gl.GL_TEXTURE_RECTANGLE, gl.GL_TEXTURE_MAG_FILTER, gl.GL_NEAREST) gl.glTexParameteri(gl.GL_TEXTURE_RECTANGLE, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_BORDER) gl.glTexParameteri(gl.GL_TEXTURE_RECTANGLE, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_BORDER) gl.glBindTexture(gl.GL_TEXTURE_RECTANGLE, 0) def __del__(self): gl.glDeleteTextures(1, [self.id_]) def bind(self, texture_unit_id: int): """ bind texture to given texture unit. Args: texture_unit_id (int): id of texture unit to which the texture should be bound. """ gl.glActiveTexture(gl.GL_TEXTURE0 + int(texture_unit_id)) gl.glBindTexture(gl.GL_TEXTURE_RECTANGLE, self.id_) def release(self, texture_unit_id: int): """ release texture from given texture unit. Args: texture_unit_id (int): id of texture unit from which the texture should be released. """ gl.glActiveTexture(gl.GL_TEXTURE0 + int(texture_unit_id)) gl.glBindTexture(gl.GL_TEXTURE_RECTANGLE, 0) def assign(self, array: np.array): """ assign data from given numpy array to the texture. Depending on the dtype of np.array different texture uploads are triggered. Args: array (np.array): data represented as numpy array. Raises: NotImplementedError: raised when unsupported dtype of the given array is encountered. """ gl.glBindTexture(gl.GL_TEXTURE_RECTANGLE, self.id_) if array.dtype == np.uint8: gl.glTexImage2D(gl.GL_TEXTURE_RECTANGLE, 0, self.internalFormat_, self.width_, self.height_, 0, self.format, gl.GL_UNSIGNED_BYTE, array) elif array.dtype == np.float32: gl.glTexImage2D(gl.GL_TEXTURE_RECTANGLE, 0, self.internalFormat_, self.width_, self.height_, 0, self.format, gl.GL_FLOAT, array) else: raise NotImplementedError("pixel type not implemented.") gl.glBindTexture(gl.GL_TEXTURE_RECTANGLE, 0) @property def id(self): """ get the texture's OpenGL id. """ return self.id_ class GlTexture2D: """ Texture2D """ def __init__(self, width, height, internal_format=gl.GL_RGBA): self.id_ = gl.glGenTextures(1) self.internal_format_ = internal_format # gl.GL_RGB_FLOAT, gl.GL_RGB_UNSIGNED, ... self.width_ = width self.height_ = height gl.glBindTexture(gl.GL_TEXTURE_2D, self.id_) self._allocateMemory() gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR) # gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_BORDER) # gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_BORDER) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) def __del__(self): gl.glDeleteTextures([self.id_]) def bind(self, texture_unit_id: int): """ bind texture to given texture unit. Args: texture_unit_id (int): id of texture unit to which the texture should be bound. """ gl.glActiveTexture(gl.GL_TEXTURE0 + int(texture_unit_id)) gl.glBindTexture(gl.GL_TEXTURE_2D, self.id_) def release(self, texture_unit_id: int): # pylint: disable=no-self-use """ release texture from given texture unit. Args: texture_unit_id (int): id of texture unit from which the texture should be released. """ gl.glActiveTexture(gl.GL_TEXTURE0 + int(texture_unit_id)) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) def assign(self, array: np.array, format: gl.GLenum): """assign data from given numpy array to the texture. Depending on the dtype of np.array different texture uploads are triggered. Args: array (np.array): data represented as numpy array. Raises: NotImplementedError: raised when unsupported dtype of the given array is encountered. """ gl.glBindTexture(gl.GL_TEXTURE_2D, self.id_) if array.dtype == np.uint8: gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, self.internal_format_, self.width_, self.height_, 0, format, gl.GL_UNSIGNED_BYTE, array) elif array.dtype == np.uint32: gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, self.internal_format_, self.width_, self.height_, 0, format, gl.GL_UNSIGNED_INT, array) elif array.dtype == np.float32: gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, self.internal_format_, self.width_, self.height_, 0, format, gl.GL_FLOAT, array) else: raise NotImplementedError("pixel type not implemented.") gl.glBindTexture(gl.GL_TEXTURE_2D, 0) def set_filter(self, min_filter: gl.Constant, mag_filter: gl.Constant): """ set the filter operations performance when up-/down-sampling of texture is required. Args: min_filter (gl.Constant): filtering used for down-sampling mag_filter (gl.Constant): filtering used for up-sampling """ gl.glBindTexture(gl.GL_TEXTURE_2D, self.id_) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, min_filter) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, mag_filter) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) def resize(self, width: int, height: int): """ resize texture to given width and height. """ self.width_ = width self.height_ = height # need to copy? def download(self) -> np.array: gl.glBindTexture(gl.GL_TEXTURE_2D, self.id_) array = gl.glGetTexImage(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA, gl.GL_FLOAT) gl.glBindTexture(gl.GL_TEXTURE_2D, 0) return array @property def id(self) -> gl.GLuint: """ get the texture's id """ return self.id_ @property def width(self) -> int: """ get the texture's width """ return self.width_ @property def height(self) -> int: """ get the texture's height """ return self.height_ def _allocateMemory(self): pixel_format = gl.GL_RGBA pixel_type = gl.GL_UNSIGNED_BYTE if self.internal_format_ in [gl.GL_R, gl.GL_RG, gl.GL_RGB, gl.GL_RGBA]: pixel_type = gl.GL_UNSIGNED_BYTE elif self.internal_format_ in [gl.GL_R32I, gl.GL_RG32I, gl.GL_RGB32I, gl.GL_RGBA32I]: pixel_type = gl.GL_INT elif self.internal_format_ in [gl.GL_R32F, gl.GL_RG32F, gl.GL_RGB32F, gl.GL_RGBA32F]: pixel_type = gl.GL_FLOAT if self.internal_format_ in [gl.GL_R, GL_R32F]: pixel_format = gl.GL_RED elif self.internal_format_ in [gl.GL_RG, gl.GL_RG32F]: pixel_format = gl.GL_RG elif self.internal_format_ in [gl.GL_RGB, gl.GL_RGB32F]: pixel_format = gl.GL_RGB elif self.internal_format_ in [gl.GL_RGBA, gl.GL_RGBA32F]: pixel_format = gl.GL_RGBA elif self.internal_format_ in [gl.GL_R32I, gl.GL_R32UI]: pixel_format = gl.GL_RED_INTEGER elif self.internal_format_ in [gl.GL_RG32I, gl.GL_RG32UI]: pixel_format = gl.GL_RG_INTEGER elif self.internal_format_ in [gl.GL_RGB32I, gl.GL_RGB32UI]: pixel_format = gl.GL_RGB_INTEGER elif self.internal_format_ in [gl.GL_RGBA32I, gl.GL_RGBA32UI]: pixel_format = gl.GL_RGBA_INTEGER gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, self.internal_format_, self.width_, self.height_, 0, pixel_format, pixel_type, None) class GlTexture1D: """ Texture1D 1-dimensional texture. """ def __init__(self, width, internalFormat=gl.GL_RGBA): self.id_ = gl.glGenTextures(1) self.internalFormat_ = internalFormat # gl.GL_RGB_FLOAT, gl.GL_RGB_UNSIGNED, ... self.width_ = width gl.glBindTexture(gl.GL_TEXTURE_1D, self.id_) gl.glTexParameteri(gl.GL_TEXTURE_1D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_NEAREST) gl.glTexParameteri(gl.GL_TEXTURE_1D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_NEAREST) gl.glTexParameteri(gl.GL_TEXTURE_1D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_BORDER) gl.glTexParameteri(gl.GL_TEXTURE_1D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_BORDER) # gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, self.internalFormat_, # width_, height_, 0, gl.format, gl.GL_UNSIGNED_BYTE, None) gl.glBindTexture(gl.GL_TEXTURE_1D, 0) def __del__(self): gl.glDeleteTextures(1, [self.id_]) def bind(self, textureUnitId: int): gl.glActiveTexture(gl.GL_TEXTURE0 + int(textureUnitId)) gl.glBindTexture(gl.GL_TEXTURE_1D, self.id_) def release(self, textureUnitId: int): gl.glActiveTexture(gl.GL_TEXTURE0 + int(textureUnitId)) gl.glBindTexture(gl.GL_TEXTURE_1D, 0) def assign(self, array: np.array, format: gl.GLenum): gl.glBindTexture(gl.GL_TEXTURE_1D, self.id_) if array.dtype == np.uint8: gl.glTexImage1D(gl.GL_TEXTURE_1D, 0, self.internalFormat_, self.width_, 0, format, gl.GL_UNSIGNED_BYTE, array) elif array.dtype == np.uint32: gl.glTexImage1D(gl.GL_TEXTURE_1D, 0, self.internalFormat_, self.width_, 0, format, gl.GL_UNSIGNED_INT, array) elif array.dtype == np.float32: gl.glTexImage1D(gl.GL_TEXTURE_1D, 0, self.internalFormat_, self.width_, 0, format, gl.GL_FLOAT, array) else: raise NotImplementedError("pixel type not implemented.") gl.glBindTexture(gl.GL_TEXTURE_2D, 0) def resize(self, width: int): """ resize texture. """ self.width_ = width @property def id(self) -> gl.GLuint: """ get the id of the program. """ return self.id_ @property def width(self) -> int: """ get width of the texture. """ return self.width_ class GlShader: """ OpenGL shader """ def __init__(self, shader_type, source): self._code = source self._shader_type = shader_type self.id_ = gl.glCreateShader(self._shader_type) gl.glShaderSource(self.id_, source) gl.glCompileShader(self.id_) success = gl.glGetShaderiv(self.id_, gl.GL_COMPILE_STATUS) if success == gl.GL_FALSE: error_string = gl.glGetShaderInfoLog(self.id_).decode("utf-8") readable_error = [] source_lines = source.split("\n") for line in error_string.split("\n"): match = re.search(r"\(([0-9]+)\) : ([\s\w]+): ([\s\w\S\W]+)", line) if match: lineno = match.group(1) errorno = match.group(2) message = match.group(3) readable_message = "{}: {} at line {}:\n {}: {}".format(errorno, message, lineno, lineno, source_lines[int(lineno)].strip()) readable_error.append(readable_message) else: readable_error.append(line) raise RuntimeError("\n".join(readable_error)) def __del__(self): gl.glDeleteShader(self.id_) @property def type(self) -> gl.Constant: """ return shader type """ return self._shader_type @property def id(self) -> gl.GLuint: """ get id of shader """ return self.id_ @property def code(self): """ get shader source code. """ return self._code @staticmethod def from_file(shader_type: gl.Constant, filename: str): """ load and initialize shader from given filename """ f = open(filename) source = "".join(f.readlines()) # todo: preprocess. f.close() return GlShader(shader_type, source) class GlProgram: """ An OpenGL program handle. """ def __init__(self): self.id_ = gl.glCreateProgram() self._shaders = {} self._uniform_types = {} self.is_linked = False # todo: figure this out. def __del__(self): gl.glDeleteProgram(self.id_) def bind(self): if not self.is_linked: raise RuntimeError("Program must be linked before usage.") gl.glUseProgram(self.id_) def release(self): gl.glUseProgram(0) def attach(self, shader): self._shaders[shader.type] = shader @property def id(self): return self.id_ def __setitem__(self, name: str, value: Any): # quitely ignore if name not in self._uniform_types: if WARN_INVALID_UNIFORMS: print("No uniform with name '{}' available.".format(name)) return current = gl.glGetIntegerv(gl.GL_CURRENT_PROGRAM) if current != self.id_: self.bind() loc = gl.glGetUniformLocation(self.id_, name) T = self._uniform_types[name] if T == "int": gl.glUniform1i(loc, np.int32(value)) elif T == "uint": gl.glUniform1ui(loc, np.uint32(value)) elif T == "float": gl.glUniform1f(loc, np.float32(value)) elif T == "bool": gl.glUniform1f(loc, value) elif T == "vec2": gl.glUniform2fv(loc, 1, value) elif T == "vec3": gl.glUniform3fv(loc, 1, value) elif T == "vec4": gl.glUniform4fv(loc, 1, value) elif T == "ivec2": gl.glUniform2iv(loc, 1, value) elif T == "ivec3": gl.glUniform3iv(loc, 1, value) elif T == "ivec4": gl.glUniform4iv(loc, 1, value) elif T == "uivec2": gl.glUniform2uiv(loc, 1, value) elif T == "uivec3": gl.glUniform3uiv(loc, 1, value) elif T == "uivec4": gl.glUniform4uiv(loc, 1, value) elif T == "mat4": # print("set matrix: ", value) gl.glUniformMatrix4fv(loc, 1, False, value.T.astype(np.float32)) elif T.endswith("sampler1D"): gl.glUniform1i(loc, np.int32(value)) elif T.endswith("sampler2D"): gl.glUniform1i(loc, np.int32(value)) elif T.endswith("sampler2DRect"): gl.glUniform1i(loc, np.int32(value)) else: raise NotImplementedError("uniform type {} not implemented. :(".format(T)) if current != self.id_: gl.glUseProgram(current) def link(self): if gl.GL_VERTEX_SHADER not in self._shaders or gl.GL_FRAGMENT_SHADER not in self._shaders: raise RuntimeError("program needs at least vertex and fragment shader") for shader in self._shaders.values(): gl.glAttachShader(self.id_, shader.id) for line in shader.code.split("\n"): match = re.search(r"uniform\s+(\S+)\s+(\S+)\s*;", line) if match: self._uniform_types[match.group(2)] = match.group(1) gl.glLinkProgram(self.id_) is_linked = bool(gl.glGetProgramiv(self.id_, gl.GL_LINK_STATUS)) if not is_linked: msg = gl.glGetProgramInfoLog(self.id_) raise RuntimeError(str(msg.decode("utf-8"))) # after linking we don't need the source code anymore. # for shader in self.shaders_: # del shader self._shaders = {} self.is_linked = True class GlRenderbuffer: """ Wrapper for an OpenGL's renderbuffer """ def __init__(self, width: int, height: int, renderbuffer_format=gl.GL_RGBA): self._format = renderbuffer_format self._width = width self._height = height self._id = gl.glGenRenderbuffers(1) # allocate storage. gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self._id) gl.glRenderbufferStorage(gl.GL_RENDERBUFFER, self._format, self._width, self._height) gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, 0) def __del__(self): gl.glDeleteRenderbuffers(1, [self._id]) def bind(self): gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self._id) def release(self): gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, 0) @property def width(self): return self._width @property def height(self): return self._height @property def id(self): return self._id class GlFramebuffer: """ Wrapper for an OpenGL's framebuffer. """ def __init__(self, width: int, height: int): self._id = gl.glGenFramebuffers(1) self._target = gl.GL_FRAMEBUFFER self._attachments = {} self._valid = False self._width = width self._height = height def __del__(self): gl.glDeleteFramebuffers(1, [self._id]) def bind(self): if not self._valid: raise RuntimeError("Incomplete framebuffer.") gl.glBindFramebuffer(self._target, self._id) def release(self): gl.glBindFramebuffer(self._target, 0) def attach(self, target: int, attachment: Union[GlTexture2D, GlTextureRectangle, GlRenderbuffer]): """ attach Texture or Renderbuffer to given attachment target. Args: target: attachment target, e.g., GL_COLOR_ATTACHMENT0, GL_DEPTH_STENCIL_ATTACHMENT, ... attachment: texture or renderbuffer to attach. """ if isinstance(attachment, (GlTexture2D, GlTextureRectangle)): texture_target = None if isinstance(attachment, GlTexture2D): texture_target = gl.GL_TEXTURE_2D if isinstance(attachment, GlTextureRectangle): texture_target = gl.GL_TEXTURE_RECTANGLE gl.glBindFramebuffer(self._target, self._id) gl.glFramebufferTexture2D(self._target, target, texture_target, attachment.id, 0) gl.glBindFramebuffer(self._target, 0) elif isinstance(attachment, GlRenderbuffer): gl.glBindFramebuffer(self._target, self._id) gl.glFramebufferRenderbuffer(self._target, target, gl.GL_RENDERBUFFER, attachment.id) gl.glBindFramebuffer(self._target, 0) else: raise ValueError("texture should be GlTexture2D, GlTextureRectangle or GlRenderbuffer.") self._attachments[target] = attachment gl.glBindFramebuffer(self._target, self._id) self._valid = gl.glCheckFramebufferStatus(self._target) == gl.GL_FRAMEBUFFER_COMPLETE gl.glBindFramebuffer(self._target, 0) @property def valid(self): """ is framebuffer valid? """ return self._valid @property def height(self): """ framebuffer's height """ return self._height @property def width(self): """ framebuffer's width """ return self._width
regtests/c++/array_sized.py
ahakingdom/Rusthon
622
12649830
<reponame>ahakingdom/Rusthon ''' array with default size ''' class A: pass def somefunc(): a = [5]int(1,2,3,4,5) print('len a:', len(a)) a.pop() print('len a:', len(a)) print(a[0]) print(a[1]) b = [10]int() print('len b:', len(b)) print b[0] print b[1] c = [10]f64( 1.1, 2.2, 3.3 ) print c[0] print c[1] print c[2] x = A() y = A() d = [4]A( x,y ) print d[0] print d[1] def main(): somefunc() print('OK')
nndet/inference/detection/__init__.py
joeranbosma/nnDetection
242
12649834
from nndet.inference.detection.wbc import batched_wbc, wbc from nndet.inference.detection.model import batched_nms_model from nndet.inference.detection.ensemble import batched_wbc_ensemble, batched_nms_ensemble, \ wbc_nms_no_label_ensemble
tests/sectools/test_domain_utils.py
kubajir/msticpy
820
12649837
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """domain_utilstes extract test class.""" import pytest_check as check from msticpy.sectools import domain_utils def test_validate_domain(): test_dom_val = domain_utils.DomainValidator() valid_tld = test_dom_val.validate_tld("www.microsoft.com") resolvable = test_dom_val.is_resolvable("www.microsoft.com") blacklisted = test_dom_val.in_abuse_list("www.microsoft.com") assert valid_tld assert resolvable assert not blacklisted[0] def test_validate_domain_fail(): test_dom_val = domain_utils.DomainValidator() valid_tld = test_dom_val.validate_tld("www.contoso.garbage") resolvable = test_dom_val.is_resolvable("www.contoso.garbage") blacklisted = test_dom_val.in_abuse_list("www.contoso.garbage") assert not valid_tld assert not resolvable assert not blacklisted[0] assert blacklisted[1] is None def test_resolver_funcs(): """Test domain utils functions.""" result = domain_utils.dns_resolve("www.microsoft.com") check.is_not_none(result["qname"]) check.is_true(result["rrset"]) ip = result["rrset"][0] result = domain_utils.dns_resolve("www.contoso.garbage") check.is_not_none(result) check.is_false(result.get("rrset")) result = domain_utils.ip_rev_resolve(ip) check.is_not_none(result) result = domain_utils.dns_components("www.microsoft.com") check.equal(result["subdomain"], "www") check.equal(result["domain"], "microsoft") check.equal(result["suffix"], "com") result = domain_utils.url_components("http://www.microsoft.com") check.equal(result["scheme"], "http") check.equal(result["host"], "www.microsoft.com")
ggplot/geoms/__init__.py
themiwi/ggplot
1,133
12649844
from .geom_abline import geom_abline from .geom_area import geom_area from .geom_bar import geom_bar from .geom_bin2d import geom_bin2d from .geom_blank import geom_blank from .geom_boxplot import geom_boxplot from .geom_density import geom_density from .geom_errorbar import geom_errorbar from .geom_histogram import geom_histogram from .geom_hline import geom_hline from .geom_jitter import geom_jitter from .geom_line import geom_line from .geom_now_its_art import geom_now_its_art from .geom_path import geom_path from .geom_point import geom_point from .geom_polygon import geom_polygon from .geom_rect import geom_rect from .geom_ribbon import geom_ribbon from .geom_step import geom_step from .geom_text import geom_text from .geom_tile import geom_tile from .geom_violin import geom_violin from .geom_vline import geom_vline
mzutils/json_misc.py
Mohan-Zhang-u/mzutils
132
12649846
<gh_stars>100-1000 import codecs import json def dump_json(dictionary, file_path): """ :param dict: :param file_path: :return: """ with codecs.open(file_path, 'w+', encoding='utf-8') as fp: json.dump(dictionary, fp) def load_json(file_path): """ :param file_path: :return: dict object """ with codecs.open(file_path, 'r', encoding='utf-8') as fp: return json.load(fp)
modules/unicode.py
nikolas/jenni
133
12649870
#!/usr/bin/env python """ unicode.py - jenni Unicode Module Copyright 2010-2013, yano (yanovich.net) Licensed under the Eiffel Forum License 2. More info: * jenni: https://github.com/myano/jenni/ * Phenny: http://inamidst.com/phenny/ """ import re import unicodedata import urlparse control_chars = ''.join(map(unichr, range(0,32) + range(127,160))) control_char_re = re.compile(u'[%s]' % re.escape(control_chars)) def supercombiner(jenni, input): """.sc -- displays the infamous supercombiner""" s = 'u' for i in xrange(1, 3000): if unicodedata.category(unichr(i)) == "Mn": s += unichr(i) if len(s) > 100: break jenni.say(s) supercombiner.commands = ['sc'] supercombiner.rate = 30 def decode(bit): try: if isinstance(bit, str) or isinstance(bit, unicode): text = bit.decode('utf-8') else: text = str() except UnicodeDecodeError: try: text = bit.decode('iso-8859-1') except UnicodeDecodeError: text = bit.decode('cp1252') return text def encode(bit): try: if isinstance(bit, str) or isinstance(bit, unicode): text = bit.encode('utf-8') else: text = str() except UnicodeEncodeError: try: text = bit.encode('iso-8859-1') except UnicodeEncodeError: text = bit.encode('cp1252') return text def urlEncodeNonAscii(b): return re.sub('[\x80-\xFF]', lambda c: '%%%02x' % ord(c.group(0)), b) def iriToUri(iri): parts = urlparse.urlparse(iri) return urlparse.urlunparse( part.encode('idna') if parti == 1 else urlEncodeNonAscii( part.encode('utf-8')) for parti, part in enumerate(parts) ) def remove_control_chars(s): return control_char_re.sub('', s) if __name__ == '__main__': print __doc__.strip()
yyets/BagAndDrag/zimuxia/convert_db.py
kuyacai/YYeTsBot
9,250
12649874
#!/usr/local/bin/python3 # coding: utf-8 # YYeTsBot - convert_db.py # 2/5/21 13:46 # __author__ = "Benny <<EMAIL>>" # convert to mongodb and con_sqlite import pymongo import pymysql import tqdm import json from typing import List con_mysql = pymysql.Connect(host="127.0.0.1", user="root", password="<PASSWORD>", charset="utf8mb4", database="zimuxia", cursorclass=pymysql.cursors.DictCursor ) mongo_client = pymongo.MongoClient() SIZE = 2000 def clear_mongodb(): mongo_client.drop_database("zimuxia") def clear_mysql(): con_mysql.cursor().execute("truncate table resource;") con_mysql.commit() def mysql_insert(data: List[dict]): sql = "INSERT INTO resource VALUES(NULL,%(url)s,%(name)s,NULL,NULL,%(data)s)" cur = con_mysql.cursor() for i in data: cur.execute(sql, i) con_mysql.commit() def mongodb_insert(data: List[dict]): db = mongo_client["zimuxia"] col = db["resource"] col.insert_many(data) def main(): clear_mongodb() clear_mysql() with open("result.json") as f: data = json.load(f) # [{"url": "https://www.zimuxia.cn/portfolio/%e6%888b%e5%8f%8b", "name": "我家的女儿交不到男朋友", "data":""}] mysql_insert(data) mongodb_insert(data) if __name__ == '__main__': main() con_mysql.close() mongo_client.close()
tests/test_buildoptionsparser.py
druttka/iotedgedev
111
12649924
import pytest from iotedgedev.buildoptionsparser import BuildOptionsParser pytestmark = pytest.mark.unit def test_filter_build_options(): build_options = [ "--rm", "-f test", "--file test", "-t image", "--tag image" ] build_options_parser = BuildOptionsParser(build_options) assert not build_options_parser.parse_build_options() def test_parse_to_dict(): build_options = [ "--add-host=github.com:192.168.127.12", "--add-host=ports.ubuntu.com:172.16.58.3", "--build-arg a=b", "--build-arg c=d", "--label e=f", "--label g" ] sdk_options = { 'extra_hosts': { 'github.com': '192.168.127.12', 'ports.ubuntu.com': '172.16.58.3' }, 'buildargs': { 'a': 'b', 'c': 'd' }, 'labels': { 'e': 'f', 'g': '' } } build_options_parser = BuildOptionsParser(build_options) assert sdk_options == build_options_parser.parse_build_options() def test_parse_to_list(): build_options = [ "--cache-from a", "--cache-from b" ] sdk_options = { 'cache_from': ['a', 'b'] } build_options_parser = BuildOptionsParser(build_options) assert sdk_options == build_options_parser.parse_build_options() def test_parse_val(): build_options = [ "--network bridge", "--platform Linux", "--shm-size 1000000", "--target target" ] sdk_options = { 'network_mode': 'bridge', 'platform': 'Linux', 'shmsize': '1000000', 'target': 'target' } build_options_parser = BuildOptionsParser(build_options) assert sdk_options == build_options_parser.parse_build_options() def test_parse_container_limits(): build_options = [ "--cpu-shares 50", "--cpuset-cpus 0-1", "--memory 10000000", "--memory-swap 2000000" ] sdk_options = { 'container_limits': { 'cpushares': '50', 'cpusetcpus': '0-1', 'memory': '10000000', 'memswap': '2000000' } } build_options_parser = BuildOptionsParser(build_options) assert sdk_options == build_options_parser.parse_build_options() def test_parse_flag(): build_options = [ "--pull=true", "-q=false", "--no-cache" ] sdk_options = { 'pull': True, 'quiet': False, 'nocache': True } build_options_parser = BuildOptionsParser(build_options) assert sdk_options == build_options_parser.parse_build_options() def test_invalid_build_options(): with pytest.raises(KeyError): build_options = [ "--cgroup-parent", "--compress", "--cpu-period", "--cpuset-mems 10", ] build_options_parser = BuildOptionsParser(build_options) build_options_parser.parse_build_options() def test_filtered_valid_build_options(): build_options = [ "--rm", "--file test", "--tag image", "--add-host=github.com:192.168.127.12", "--add-host=ports.ubuntu.com:172.16.58.3", "--cache-from a", "--cache-from b", "--network bridge", "--platform Linux", "--cpu-shares 50", "--memory 10000000", "--pull=true", "-q=false", "--no-cache" ] sdk_options = { 'extra_hosts': { 'github.com': '192.168.127.12', 'ports.ubuntu.com': '172.16.58.3' }, 'cache_from': ['a', 'b'], 'network_mode': 'bridge', 'platform': 'Linux', 'container_limits': { 'cpushares': '50', 'memory': '10000000', }, 'pull': True, 'quiet': False, 'nocache': True } build_options_parser = BuildOptionsParser(build_options) assert sdk_options == build_options_parser.parse_build_options()
examples/slow_task.py
avivazran/UnrealEnginePython
2,350
12649931
from unreal_engine import FSlowTask import time # Create an FSlowTask object, defining the amount of work that # will be done, and the initial message. t = FSlowTask(10, "Doing Something") t.initialize() # Make the dialog, and include a Cancel button (default is not to # allow a cancel button). t.make_dialog(True) time.sleep(1) for i in range(10) : # Update the progress bar. Note that the first argument is the # amount of work to be done this frame, not the overall work # done so far. t.enter_progress_frame(1, "Progress Position : {}".format(i)) time.sleep(0.2) # If there was a cancel button included, we can check if it was # pressed. if t.received_user_cancel(): print("Cancelled") break t.destroy()
tools/harness/tests/multihoptests.py
lambdaxymox/barrelfish
111
12649972
<gh_stars>100-1000 ########################################################################## # Copyright (c) 2009, 2010, ETH Zurich. # All rights reserved. # # This file is distributed under the terms in the attached LICENSE file. # If you do not find this file, copies can be found by writing to: # ETH Zurich D-INFK, Universitaetstrasse 6, CH-8092 Zurich. Attn: Systems Group. ########################################################################## import re import debug, tests from common import TestCommon, TimeoutError from results import RawResults, PassFailResult class MultihopTestCommon(TestCommon): def get_module_name(self): raise NotImplementedError def get_modules(self, build, machine): modules = super(MultihopTestCommon, self).get_modules(build, machine) modules.add_module(self.get_module_name()) return modules @tests.add_test class MultihopTest(MultihopTestCommon): ''' Test whether multi-hop messaging is working ''' name = "multihop_test" def get_module_name(self): return "multihoptest" def get_finish_string(self): return "server all done" def get_modules(self, build, machine): modules = super(MultihopTestCommon, self).get_modules(build, machine) modules.add_module(self.get_module_name(),["core=0", "server"]) modules.add_module(self.get_module_name(),["core=1", "client"]) return modules def process_data(self, testdir, rawiter): # the test passed iff we see the finish string passed = False for line in rawiter: if self.get_finish_string() in line: passed = True return PassFailResult(True) return PassFailResult(False) @tests.add_test class MultihopLatencyTest(MultihopTestCommon): ''' Multihop Transport Throughput microbenchmark ''' name = "multihop_throughput_latency" def get_module_name(self): return "multihop_latency_bench" def process_data(self, testdir, rawiter): results = RawResults('message type') times = [] iteration = None for line in rawiter: m = re.match("Running latency test for message (.*)....", line) if m: if times: results.add_group(iteration, times) iteration = m.group(1) times = [] continue m = re.match("page \d+ took (\d+)", line) if m: assert(iteration is not None) times.append(int(m.group(1))) if len(times) != 0: results.add_group(iteration, times) return results
rqalpha/model/__init__.py
LawrentChen/rqalpha
5,263
12650035
# -*- coding: utf-8 -*- # 版权所有 2019 深圳米筐科技有限公司(下称“米筐科技”) # # 除非遵守当前许可,否则不得使用本软件。 # # * 非商业用途(非商业用途指个人出于非商业目的使用本软件,或者高校、研究所等非营利机构出于教育、科研等目的使用本软件): # 遵守 Apache License 2.0(下称“Apache 2.0 许可”),您可以在以下位置获得 Apache 2.0 许可的副本:http://www.apache.org/licenses/LICENSE-2.0。 # 除非法律有要求或以书面形式达成协议,否则本软件分发时需保持当前许可“原样”不变,且不得附加任何条件。 # # * 商业用途(商业用途指个人出于任何商业目的使用本软件,或者法人或其他组织出于任何目的使用本软件): # 未经米筐科技授权,任何个人不得出于任何商业目的使用本软件(包括但不限于向第三方提供、销售、出租、出借、转让本软件、本软件的衍生产品、引用或借鉴了本软件功能或源代码的产品或服务),任何法人或其他组织不得出于任何目的使用本软件,否则米筐科技有权追究相应的知识产权侵权责任。 # 在此前提下,对本软件的使用同样需要遵守 Apache 2.0 许可,Apache 2.0 许可与本许可冲突之处,以本许可为准。 # 详细的授权流程,请联系 <EMAIL> 获取。 from .order import Order from .trade import Trade from .instrument import Instrument from .bar import BarMap, BarObject, PartialBarObject from .tick import TickObject
docs/build.py
TimoRoth/ghp-import
313
12650046
<gh_stars>100-1000 #!/usr/bin/env python import io import os from markdown import markdown def main(): base = os.path.abspath(os.path.dirname(__file__)) readme_path = os.path.join(os.path.dirname(base), "README.md") with io.open(readme_path, encoding="utf-8") as fobj: readme = fobj.read() template_path = os.path.join(base, "index.html.tmpl") with io.open(template_path, encoding="utf-8") as fobj: template = fobj.read() index_path = os.path.join(base, "index.html") with io.open(index_path, mode="w", encoding="utf-8") as fobj: html = markdown(readme, extensions=["fenced_code"]) fobj.write(template.format(body=html)) if __name__ == "__main__": main()
tests/management/commands/test_drop_test_database.py
dankgen-tobias/django-extensions
4,057
12650047
<filename>tests/management/commands/test_drop_test_database.py # -*- coding: utf-8 -*- from io import StringIO from unittest.mock import MagicMock, Mock, PropertyMock, call, patch from django.core.management import CommandError, call_command from django.test import TestCase from django.test.utils import override_settings # Database testing configurations UNKOWN_ENGINE = { 'default': { 'ENGINE': 'django.db.backends.unknown', 'NAME': 'unknown', } } NO_TEST_NAME = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test', 'TEST': { 'NAME': '', } } } SQLITE = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite3', } } MYSQL_HOST_PORT = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test', 'USER': 'test', 'PASSWORD': '<PASSWORD>', 'HOST': 'localhost', 'PORT': '3306', }, } MYSQL_SOCKET = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test', 'USER': 'test', 'PASSWORD': '<PASSWORD>', 'HOST': '/var/run/mysqld/mysql.sock', }, } POSTGRES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'test', 'USER': 'test', 'PASSWORD': '<PASSWORD>', 'PORT': '5432', 'HOST': 'localhost', }, } class DropTestDatabaseExceptionsTests(TestCase): """Test for drop_test_database command.""" def test_should_raise_CommandError_if_database_is_unknown(self): with self.assertRaisesRegex(CommandError, "Unknown database unknown"): call_command('drop_test_database', '--database=unknown') @override_settings(DATABASES=UNKOWN_ENGINE) @patch('django_extensions.management.commands.drop_test_database.input') def test_should_raise_CommandError_if_unknown_database_engine(self, m_input): m_input.return_value = 'yes' with self.assertRaisesRegex(CommandError, "Unknown database engine django.db.backends.unknown"): call_command('drop_test_database') @override_settings(DATABASES=NO_TEST_NAME) def test_should_raise_CommandError_if_test_database_name_is_empty(self): with self.assertRaisesRegex(CommandError, "You need to specify DATABASE_NAME in your Django settings file."): call_command('drop_test_database') class DropTestDatabaseTests(TestCase): """Test for drop_test_database command.""" @patch('sys.stdout', new_callable=StringIO) @patch('django_extensions.management.commands.drop_test_database.input') def test_should_raise_CommandError_if_database_is_unknown(self, m_input, m_stdout): m_input.return_value = 'no' call_command('drop_test_database') self.assertEqual("Reset cancelled.\n", m_stdout.getvalue()) @override_settings(DATABASES=SQLITE) @patch('sys.stdout', new_callable=StringIO) @patch('os.path.isfile') @patch('os.unlink') def test_sqlite3_should_unlink_primary_test_database(self, m_unlink, m_isfile, m_stdout): # Indicate that no clone databases exist m_isfile.side_effect = (True, False) call_command('drop_test_database', '--noinput', verbosity=2) with self.subTest('Should check for test database names until failure'): self.assertListEqual( m_isfile.call_args_list, # See production code comments regarding double dots [call('test_db.sqlite3'), call('test_db_1..sqlite3')], ) with self.subTest('Should unlink only primary test database'): self.assertListEqual( m_unlink.call_args_list, [call('test_db.sqlite3')], ) with self.subTest('Should report successful message'): self.assertIn("Reset successful.", m_stdout.getvalue()) @override_settings(DATABASES=SQLITE) @patch('os.path.isfile') @patch('os.unlink') def test_sqlite3_should_unlink_all_existing_clone_databases(self, m_unlink, m_isfile): """Test cloned test databases created via 'manage.py test --parallel'.""" # Indicate that clone databases exist up to test_db_2.sqlite3 m_isfile.side_effect = (True, True, True, False) call_command('drop_test_database', '--noinput') with self.subTest('Should check for test database names until failure'): self.assertListEqual( m_isfile.call_args_list, [ call('test_db.sqlite3'), # See production code comments regarding double dots call('test_db_1..sqlite3'), call('test_db_2..sqlite3'), call('test_db_3..sqlite3'), ], ) with self.subTest('Should unlink all existing test databases'): self.assertListEqual( m_unlink.call_args_list, [ call('test_db.sqlite3'), # See production code comments regarding double dots call('test_db_1..sqlite3'), call('test_db_2..sqlite3'), ], ) @override_settings(DATABASES=SQLITE) @patch('sys.stdout', new_callable=StringIO) @patch('os.path.isfile') @patch('os.unlink') def test_sqlite3_should_not_print_Reset_successful_when_OSError_exception(self, m_unlink, m_isfile, m_stdout): m_isfile.return_value = True m_unlink.side_effect = OSError call_command('drop_test_database', '--noinput', verbosity=2) self.assertNotIn("Reset successful.", m_stdout.getvalue()) @override_settings(DATABASES=MYSQL_HOST_PORT) @patch('sys.stdout', new_callable=StringIO) def test_mysql_should_drop_database_with_host_and_port(self, m_stdout): m_database = MagicMock() # Indicate that no clone databases exist # DROP queries return None while SELECT queries return a row count m_database.connect.return_value.cursor.return_value.execute.side_effect = (1, None, 0) with patch.dict("sys.modules", MySQLdb=m_database): call_command('drop_test_database', '--noinput', verbosity=2) with self.subTest('Should check for and remove test database names until failure'): exists_query = "SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME=" self.assertListEqual( m_database.connect.return_value.cursor.return_value.execute.call_args_list, [ call(exists_query + "'test_test';"), call('DROP DATABASE IF EXISTS `test_test`'), call(exists_query + "'test_test_1';"), ], ) with self.subTest('Should report successful message'): self.assertIn("Reset successful.", m_stdout.getvalue()) @override_settings(DATABASES=MYSQL_SOCKET) @patch('sys.stdout', new_callable=StringIO) def test_mysql_should_drop_database_with_unix_socket(self, m_stdout): m_database = MagicMock() # Indicate that no clone databases exist # DROP queries return None while SELECT queries return a row count m_database.connect.return_value.cursor.return_value.execute.side_effect = (1, None, 0) with patch.dict("sys.modules", MySQLdb=m_database): call_command('drop_test_database', '--noinput', verbosity=2) with self.subTest('Should check for and remove test database names until failure'): exists_query = "SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME=" self.assertListEqual( m_database.connect.return_value.cursor.return_value.execute.call_args_list, [ call(exists_query + "'test_test';"), call('DROP DATABASE IF EXISTS `test_test`'), call(exists_query + "'test_test_1';"), ], ) with self.subTest('Should report successful message'): self.assertIn("Reset successful.", m_stdout.getvalue()) @override_settings(DATABASES=MYSQL_HOST_PORT) def test_mysql_should_drop_all_existing_clone_databases(self): """Test cloned test databases created via 'manage.py test --parallel'.""" m_database = MagicMock() # Indicate that clone databases exist up to test_test_2 # DROP queries return None while SELECT queries return a row count m_database.connect.return_value.cursor.return_value.execute.side_effect = \ (1, None, 1, None, 1, None, 0) with patch.dict("sys.modules", MySQLdb=m_database): call_command('drop_test_database', '--noinput') exists_query = "SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME=" self.assertListEqual( m_database.connect.return_value.cursor.return_value.execute.call_args_list, [ call(exists_query + "'test_test';"), call('DROP DATABASE IF EXISTS `test_test`'), call(exists_query + "'test_test_1';"), call('DROP DATABASE IF EXISTS `test_test_1`'), call(exists_query + "'test_test_2';"), call('DROP DATABASE IF EXISTS `test_test_2`'), call(exists_query + "'test_test_3';"), ], ) @override_settings(DATABASES=POSTGRES) @patch('sys.stdout', new_callable=StringIO) def test_postgresql_should_drop_database(self, m_stdout): m_database = MagicMock() m_cursor = Mock() m_database.connect.return_value.cursor.return_value = m_cursor # Indicate that no clone databases exist type(m_cursor).rowcount = PropertyMock(side_effect=(1, 0)) with patch.dict("sys.modules", psycopg2=m_database): call_command('drop_test_database', '--noinput', verbosity=2) with self.subTest('Should check for and remove test database names until failure'): exists_query = "SELECT datname FROM pg_catalog.pg_database WHERE datname=" self.assertListEqual( m_cursor.execute.call_args_list, [ call(exists_query + "'test_test';"), call('DROP DATABASE IF EXISTS "test_test";'), call(exists_query + "'test_test_1';"), ], ) with self.subTest('Should report successful message'): self.assertIn("Reset successful.", m_stdout.getvalue()) @override_settings(DATABASES=POSTGRES) def test_postgresql_should_drop_all_existing_cloned_databases(self): """Test cloned test databases created via 'manage.py test --parallel'.""" m_database = MagicMock() m_cursor = Mock() m_database.connect.return_value.cursor.return_value = m_cursor # Indicate that clone databases exist up to test_test_2 type(m_cursor).rowcount = PropertyMock(side_effect=(1, 1, 1, 0)) with patch.dict("sys.modules", psycopg2=m_database): call_command('drop_test_database', '--noinput') exists_query = "SELECT datname FROM pg_catalog.pg_database WHERE datname=" self.assertListEqual( m_cursor.execute.call_args_list, [ call(exists_query + "'test_test';"), call('DROP DATABASE IF EXISTS "test_test";'), call(exists_query + "'test_test_1';"), call('DROP DATABASE IF EXISTS "test_test_1";'), call(exists_query + "'test_test_2';"), call('DROP DATABASE IF EXISTS "test_test_2";'), call(exists_query + "'test_test_3';"), ], ) @override_settings(DATABASES=POSTGRES) @patch('sys.stdout', new_callable=StringIO) def test_postgresql_should_not_print_Reset_successful_when_exception_occured(self, m_stdout): m_database = MagicMock() m_database.ProgrammingError = Exception m_cursor = Mock() m_cursor.execute.side_effect = m_database.ProgrammingError m_database.connect.return_value.cursor.return_value = m_cursor with patch.dict("sys.modules", psycopg2=m_database): call_command('drop_test_database', '--noinput', verbosity=2) self.assertNotIn("Reset successful.", m_stdout.getvalue())
backend/auth_api/migrations/0004_extra_github_details.py
NeilsC/prestige
314
12650057
# Generated by Django 3.2.5 on 2021-09-04 14:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('auth_api', '0003_githubidentity'), ] operations = [ migrations.AlterModelOptions( name='githubidentity', options={'verbose_name': 'GitHub Identity', 'verbose_name_plural': 'GitHub Identities'}, ), migrations.AddField( model_name='githubidentity', name='avatar_url', field=models.CharField(max_length=200, null=True), ), migrations.AddField( model_name='githubidentity', name='db_id', field=models.IntegerField(default=-1, help_text='The numeric database ID of the user on GitHub'), preserve_default=False, ), migrations.AddField( model_name='githubidentity', name='user_handle', field=models.CharField(default='', max_length=100), preserve_default=False, ), migrations.AlterField( model_name='githubidentity', name='uid', field=models.CharField(help_text='The newer string ID of the user on GitHub', max_length=100), ), migrations.AlterField( model_name='githubidentity', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='github_ids', to=settings.AUTH_USER_MODEL), ), ]
examples/slack/botapp/mypythonbot/code.py
patgoley/gordon
2,204
12650085
import json from urlparse import parse_qs def handler(event, context): with open('.context', 'r') as f: gordon_context = json.loads(f.read()) expected_token = gordon_context['token'] req_body = event['body'] params = parse_qs(req_body) # Check if the token is the correct one token = params['token'][0] if token != expected_token: raise Exception("Invalid request token") user = params['user_name'][0] command = params['command'][0] channel = params['channel_name'][0] command_text = params['text'][0] response = { 'response_type': 'in_channel', 'text': "Hello {}! you invoked {} while you were in {} with the following text: {}".format(user, command, channel, command_text), "attachments": [ { "text": "This is some extra information!" } ] } return response
at_learner_core/at_learner_core/models/model.py
hieuvecto/CASIA-SURF_CeFA
133
12650110
<reponame>hieuvecto/CASIA-SURF_CeFA ''' TODO: def get_wrapper def get_optimizer '''
kratos/python_scripts/timer_process.py
lkusch/Kratos
778
12650122
# Importing the Kratos Library import KratosMultiphysics def Factory(settings, Model): if not isinstance(settings, KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return TimerProcess(Model, settings["Parameters"]) # All the processes python processes should be derived from "Process" class TimerProcess(KratosMultiphysics.Process): """This process helps to measure the time consumed on the simulations Only the member variables listed below should be accessed directly. Public member variables: Model -- the container of the different model parts. settings -- Kratos parameters containing solver settings. """ def __init__(self, Model, settings ): """ The default constructor of the class Keyword arguments: self -- It signifies an instance of a class. Model -- the container of the different model parts. settings -- Kratos parameters containing solver settings. """ KratosMultiphysics.Process.__init__(self) #The value can be a double or a string (function) default_settings = KratosMultiphysics.Parameters(""" { "help" : "This process helps to measure the time consumed on the simulations", "output_filename" : "", "print_interval_information" : false, "interval_name" : "Analysis" } """ ) # Assign this here since it will change the "interval" prior to validation settings.ValidateAndAssignDefaults(default_settings) self.interval_name = settings["interval_name"].GetString() self.output_filename = settings["output_filename"].GetString() # Defining timer self.timer = KratosMultiphysics.Timer() # Interval information self.timer.SetPrintIntervalInformation(settings["print_interval_information"].GetBool()) # Output file if self.output_filename != "": self.timer.SetOuputFile(self.output_filename) else: self.timer.SetPrintOnScreen(True) # Starting timer self.timer.Start(self.interval_name) def ExecuteFinalize(self): """ This function is designed for being called at the end of the computations Keyword arguments: self -- It signifies an instance of a class. """ self.timer.Stop(self.interval_name) if self.output_filename != "": self.timer.PrintTimingInformation(self.timer) self.timer.CloseOuputFile()
keras_squeezenet/__init__.py
zr71516/squeezeNet
430
12650128
from keras_squeezenet.squeezenet import SqueezeNet from keras_squeezenet.version import __version__
openstackclient/tests/unit/api/test_compute_v2.py
cloudification-io/python-openstackclient
262
12650133
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Compute v2 API Library Tests""" from keystoneauth1 import session from osc_lib import exceptions as osc_lib_exceptions from requests_mock.contrib import fixture from openstackclient.api import compute_v2 as compute from openstackclient.tests.unit import utils FAKE_PROJECT = 'xyzpdq' FAKE_URL = 'http://gopher.com/v2' class TestComputeAPIv2(utils.TestCase): def setUp(self): super(TestComputeAPIv2, self).setUp() sess = session.Session() self.api = compute.APIv2(session=sess, endpoint=FAKE_URL) self.requests_mock = self.useFixture(fixture.Fixture()) class TestFloatingIP(TestComputeAPIv2): FAKE_FLOATING_IP_RESP = { 'id': 1, 'ip': '203.0.113.11', # TEST-NET-3 'fixed_ip': '198.51.100.11', # TEST-NET-2 'pool': 'nova', 'instance_id': None, } FAKE_FLOATING_IP_RESP_2 = { 'id': 2, 'ip': '203.0.113.12', # TEST-NET-3 'fixed_ip': '198.51.100.12', # TEST-NET-2 'pool': 'nova', 'instance_id': None, } LIST_FLOATING_IP_RESP = [ FAKE_FLOATING_IP_RESP, FAKE_FLOATING_IP_RESP_2, ] FAKE_SERVER_RESP_1 = { 'id': 1, 'name': 'server1', } def test_floating_ip_add_id(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', json={'server': {}}, status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_add('1', '192.168.3.11') self.assertEqual(200, ret.status_code) def test_floating_ip_add_name(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', json={'server': {}}, status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/server1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_add('server1', '192.168.3.11') self.assertEqual(200, ret.status_code) def test_floating_ip_create(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-floating-ips', json={'floating_ip': self.FAKE_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_create('nova') self.assertEqual(self.FAKE_FLOATING_IP_RESP, ret) def test_floating_ip_create_not_found(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-floating-ips', status_code=404, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.floating_ip_create, 'not-nova', ) def test_floating_ip_delete(self): self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-floating-ips/1', status_code=202, ) ret = self.api.floating_ip_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_floating_ip_delete_none(self): ret = self.api.floating_ip_delete() self.assertIsNone(ret) def test_floating_ip_find_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips/1', json={'floating_ip': self.FAKE_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_find('1') self.assertEqual(self.FAKE_FLOATING_IP_RESP, ret) def test_floating_ip_find_ip(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips/' + self.FAKE_FLOATING_IP_RESP['ip'], status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips', json={'floating_ips': self.LIST_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_find(self.FAKE_FLOATING_IP_RESP['ip']) self.assertEqual(self.FAKE_FLOATING_IP_RESP, ret) def test_floating_ip_find_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips/1.2.3.4', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips', json={'floating_ips': self.LIST_FLOATING_IP_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.floating_ip_find, '192.168.3.11', ) def test_floating_ip_list(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ips', json={'floating_ips': self.LIST_FLOATING_IP_RESP}, status_code=200, ) ret = self.api.floating_ip_list() self.assertEqual(self.LIST_FLOATING_IP_RESP, ret) def test_floating_ip_remove_id(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_remove('1', '192.168.3.11') self.assertEqual(200, ret.status_code) def test_floating_ip_remove_name(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/servers/1/action', status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/servers/server1', json={'server': self.FAKE_SERVER_RESP_1}, status_code=200, ) ret = self.api.floating_ip_remove('server1', '192.168.3.11') self.assertEqual(200, ret.status_code) class TestFloatingIPPool(TestComputeAPIv2): LIST_FLOATING_IP_POOL_RESP = [ {"name": "tide"}, {"name": "press"}, ] def test_floating_ip_pool_list(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-floating-ip-pools', json={'floating_ip_pools': self.LIST_FLOATING_IP_POOL_RESP}, status_code=200, ) ret = self.api.floating_ip_pool_list() self.assertEqual(self.LIST_FLOATING_IP_POOL_RESP, ret) class TestHost(TestComputeAPIv2): FAKE_HOST_RESP_1 = { "zone": "internal", "host_name": "myhost", "service": "conductor", } FAKE_HOST_RESP_2 = { "zone": "internal", "host_name": "myhost", "service": "scheduler", } FAKE_HOST_RESP_3 = { "zone": "nova", "host_name": "myhost", "service": "compute", } LIST_HOST_RESP = [ FAKE_HOST_RESP_1, FAKE_HOST_RESP_2, FAKE_HOST_RESP_3, ] def test_host_list_no_options(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts', json={'hosts': self.LIST_HOST_RESP}, status_code=200, ) ret = self.api.host_list() self.assertEqual(self.LIST_HOST_RESP, ret) def test_host_list_zone(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts?zone=nova', json={'hosts': [self.FAKE_HOST_RESP_3]}, status_code=200, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts', json={'hosts': [self.FAKE_HOST_RESP_3]}, status_code=200, ) ret = self.api.host_list(zone='nova') self.assertEqual([self.FAKE_HOST_RESP_3], ret) def test_host_set_none(self): ret = self.api.host_set(host='myhost') self.assertIsNone(ret) def test_host_set(self): self.requests_mock.register_uri( 'PUT', FAKE_URL + '/os-hosts/myhost', json={}, status_code=200, ) ret = self.api.host_set(host='myhost', status='enabled') self.assertEqual({}, ret) def test_host_show(self): FAKE_RESOURCE_1 = { "cpu": 2, "disk_gb": 1028, "host": "c1a7de0ac9d94e4baceae031d05caae3", "memory_mb": 8192, "project": "(total)", } FAKE_RESOURCE_2 = { "cpu": 0, "disk_gb": 0, "host": "c1a7de0ac9d94e4baceae031d05caae3", "memory_mb": 512, "project": "(used_now)", } FAKE_RESOURCE_3 = { "cpu": 0, "disk_gb": 0, "host": "c1a7de0ac9d94e4baceae031d05caae3", "memory_mb": 0, "project": "(used_max)", } FAKE_HOST_RESP = [ {'resource': FAKE_RESOURCE_1}, {'resource': FAKE_RESOURCE_2}, {'resource': FAKE_RESOURCE_3}, ] FAKE_HOST_LIST = [ FAKE_RESOURCE_1, FAKE_RESOURCE_2, FAKE_RESOURCE_3, ] self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-hosts/myhost', json={'host': FAKE_HOST_RESP}, status_code=200, ) ret = self.api.host_show(host='myhost') self.assertEqual(FAKE_HOST_LIST, ret) class TestNetwork(TestComputeAPIv2): FAKE_NETWORK_RESP = { 'id': '1', 'label': 'label1', 'cidr': '1.2.3.0/24', } FAKE_NETWORK_RESP_2 = { 'id': '2', 'label': 'label2', 'cidr': '4.5.6.0/24', } LIST_NETWORK_RESP = [ FAKE_NETWORK_RESP, FAKE_NETWORK_RESP_2, ] def test_network_create_default(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-networks', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) ret = self.api.network_create('label1') self.assertEqual(self.FAKE_NETWORK_RESP, ret) def test_network_create_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-networks', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) ret = self.api.network_create( name='label1', subnet='1.2.3.0/24', ) self.assertEqual(self.FAKE_NETWORK_RESP, ret) def test_network_delete_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/1', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-networks/1', status_code=202, ) ret = self.api.network_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_network_delete_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label1', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-networks/1', status_code=202, ) ret = self.api.network_delete('label1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_network_delete_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.network_delete, 'label3', ) def test_network_find_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/1', json={'network': self.FAKE_NETWORK_RESP}, status_code=200, ) ret = self.api.network_find('1') self.assertEqual(self.FAKE_NETWORK_RESP, ret) def test_network_find_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label2', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) ret = self.api.network_find('label2') self.assertEqual(self.FAKE_NETWORK_RESP_2, ret) def test_network_find_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks/label3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.network_find, 'label3', ) def test_network_list_no_options(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-networks', json={'networks': self.LIST_NETWORK_RESP}, status_code=200, ) ret = self.api.network_list() self.assertEqual(self.LIST_NETWORK_RESP, ret) class TestSecurityGroup(TestComputeAPIv2): FAKE_SECURITY_GROUP_RESP = { 'id': '1', 'name': 'sg1', 'description': 'test security group', 'tenant_id': '0123456789', 'rules': [] } FAKE_SECURITY_GROUP_RESP_2 = { 'id': '2', 'name': 'sg2', 'description': 'another test security group', 'tenant_id': '0123456789', 'rules': [] } LIST_SECURITY_GROUP_RESP = [ FAKE_SECURITY_GROUP_RESP_2, FAKE_SECURITY_GROUP_RESP, ] def test_security_group_create_default(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-groups', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_create('sg1') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_create_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-groups', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_create( name='sg1', description='desc', ) self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_delete_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-security-groups/1', status_code=202, ) ret = self.api.security_group_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_security_group_delete_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg1', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-security-groups/1', status_code=202, ) ret = self.api.security_group_delete('sg1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text) def test_security_group_delete_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.security_group_delete, 'sg3', ) def test_security_group_find_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_find('1') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_find_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg2', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_find('sg2') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP_2, ret) def test_security_group_find_not_found(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg3', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.assertRaises( osc_lib_exceptions.NotFound, self.api.security_group_find, 'sg3', ) def test_security_group_list_no_options(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_list() self.assertEqual(self.LIST_SECURITY_GROUP_RESP, ret) def test_security_group_set_options_id(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'PUT', FAKE_URL + '/os-security-groups/1', json={'security_group': self.FAKE_SECURITY_GROUP_RESP}, status_code=200, ) ret = self.api.security_group_set( security_group='1', description='desc2') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP, ret) def test_security_group_set_options_name(self): self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups/sg2', status_code=404, ) self.requests_mock.register_uri( 'GET', FAKE_URL + '/os-security-groups', json={'security_groups': self.LIST_SECURITY_GROUP_RESP}, status_code=200, ) self.requests_mock.register_uri( 'PUT', FAKE_URL + '/os-security-groups/2', json={'security_group': self.FAKE_SECURITY_GROUP_RESP_2}, status_code=200, ) ret = self.api.security_group_set( security_group='sg2', description='desc2') self.assertEqual(self.FAKE_SECURITY_GROUP_RESP_2, ret) class TestSecurityGroupRule(TestComputeAPIv2): FAKE_SECURITY_GROUP_RULE_RESP = { 'id': '1', 'name': 'sgr1', 'tenant_id': 'proj-1', 'ip_protocol': 'TCP', 'from_port': 1, 'to_port': 22, 'group': {}, # 'ip_range': , # 'cidr': , # 'parent_group_id': , } def test_security_group_create_no_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-group-rules', json={'security_group_rule': self.FAKE_SECURITY_GROUP_RULE_RESP}, status_code=200, ) ret = self.api.security_group_rule_create( security_group_id='1', ip_protocol='tcp', ) self.assertEqual(self.FAKE_SECURITY_GROUP_RULE_RESP, ret) def test_security_group_create_options(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-group-rules', json={'security_group_rule': self.FAKE_SECURITY_GROUP_RULE_RESP}, status_code=200, ) ret = self.api.security_group_rule_create( security_group_id='1', ip_protocol='tcp', from_port=22, to_port=22, remote_ip='1.2.3.4/24', ) self.assertEqual(self.FAKE_SECURITY_GROUP_RULE_RESP, ret) def test_security_group_create_port_errors(self): self.requests_mock.register_uri( 'POST', FAKE_URL + '/os-security-group-rules', json={'security_group_rule': self.FAKE_SECURITY_GROUP_RULE_RESP}, status_code=200, ) self.assertRaises( compute.InvalidValue, self.api.security_group_rule_create, security_group_id='1', ip_protocol='tcp', from_port='', to_port=22, remote_ip='1.2.3.4/24', ) self.assertRaises( compute.InvalidValue, self.api.security_group_rule_create, security_group_id='1', ip_protocol='tcp', from_port=0, to_port=[], remote_ip='1.2.3.4/24', ) def test_security_group_rule_delete(self): self.requests_mock.register_uri( 'DELETE', FAKE_URL + '/os-security-group-rules/1', status_code=202, ) ret = self.api.security_group_rule_delete('1') self.assertEqual(202, ret.status_code) self.assertEqual("", ret.text)
migrations/versions/ad23a56abf25_.py
boladmin/security_monkey
4,258
12650149
<reponame>boladmin/security_monkey<gh_stars>1000+ """Ability to link issues to other tech type items Revision ID: <KEY> Revises: 67ea2aac5ea0 Create Date: 2016-02-23 18:52:45.024716 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<KEY>' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('issue_item_association', sa.Column('super_issue_id', sa.Integer(), nullable=True), sa.Column('sub_item_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['sub_item_id'], ['item.id'], ), sa.ForeignKeyConstraint(['super_issue_id'], ['itemaudit.id'], ) ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('issue_item_association') ### end Alembic commands ###
recipes/Python/415983_Simple_XML_serlializerdeserializer_using/recipe-415983.py
tdiprima/code
2,023
12650197
"""Simple XML marshaling (serializing) and unmarshaling(de-serializing) module using Python dictionaries and the marshal module. """ from xml.sax.handler import ContentHandler from xml.sax.saxutils import XMLGenerator from xml.sax.xmlreader import XMLReader from xml.sax import make_parser import marshal import os,sys,zlib class XMLDictionaryHandler(ContentHandler): """SAX Handler class which converts an XML file to a corresponding Python dictionary """ def __init__(self): self.curr='' self.parent='' self.count=0 self.d = {} self.currd = {} self.parentd = {} self.stack = [] self.stack2 = [] def startElement(self, name, attrs): """ Start element handler """ if self.count==0: self.parent=name self.d[name] = [dict(attrs), '', []] self.currd = self.d else: chld={name: [dict(attrs), '', [] ]} self.parent = self.stack[-1] self.parentd = self.stack2[-1] chldlist = (self.parentd[self.parent])[2] chldlist.append(chld) self.currd = chld self.stack.append(name) self.stack2.append(self.currd) self.curr=name self.count += 1 def endElement(self, name): """ End element handler """ self.stack.remove(name) for item in self.stack2: if item.has_key(name): self.stack2.remove(item) def characters(self, content): """ Character handler """ content = (content.encode('utf-8')).strip() if content: myd=((self.parentd[self.parent])[2])[-1] currcontent = (myd[self.curr])[1] (myd[self.curr])[1] = "".join((currcontent, content)) def endDocument(self): """ End document handler """ # Compress all text items self.packtext(self.d) def packtext(self, map): for key, value in map.items(): text = value[1] value[1] = zlib.compress(text) children = value[2] for submap in children: self.packtext(submap) class BinXMLSAXParser(XMLReader): """A parser for Python binary marshal files representing XML information using SAX interfaces """ def __init__(self): XMLReader.__init__(self) self.depth = 0 def parse(self, stream): """ Parse Method """ # Check if it is a file object if type(stream) is file: try: self.d = marshal.load(stream) except Exception, e: sys.exit(e) # Check if it is a file path elif os.path.exists(stream): try: self.d = marshal.load(open(stream,'rb')) except Exception, e: sys.exit(e) else: raise 'BinXMLSAXParserException: Invalid Input Source' self._cont_handler.startDocument() self.__parse(self.d) self._cont_handler.endDocument() def __parse(self, map): """ Recursive parse method for XML dictionary """ for key, value in map.items(): # For pretty printing self._cont_handler.ignorableWhitespace(" "*self.depth) attrs = value[0] text = value[1] children = value[2] # Fire startElement handler event for key self._cont_handler.startElement(key, attrs) # Fire character handler event for value self._cont_handler.characters(zlib.decompress(text)) # Nested element, recursively call # this function... self.depth += 1 # For pretty printing self._cont_handler.ignorableWhitespace('\n') for child in children: self.__parse(child) self.depth -= 1 # For pretty printing self._cont_handler.ignorableWhitespace(" "*self.depth) # Fire end element handler event self._cont_handler.endElement(key) # For pretty printing self._cont_handler.ignorableWhitespace('\n') class XMLMarshal(object): """ The XML marshalling class """ def dump(stream, xmlfile): """ Serialize XML data to a file """ try: p=make_parser() h = XMLDictionaryHandler() p.setContentHandler(h) p.parse(open(xmlfile)) # print h.d marshal.dump(h.d, stream) except Exception, e: sys.exit(e) def dumps(stream, xmlfile): """ Serialize XML data to a string """ try: p=make_parser() p.setContentHandler() h = XMLDictionaryHandler() p.parse(open(xmlfile)) return marshal.dumps(h.d, stream) except Exception, e: sys.exit(e) return None def load(stream, out=sys.stdout): """ Load an XML binary stream and send XML text to the output stream 'out' """ try: p=BinXMLSAXParser() p.setContentHandler(XMLGenerator(out)) p.parse(stream) except Exception, e: sys.exit(e) def loads(stream): """ Load an XML binary stream and return XML text as string """ import cStringIO c=cStringIO.StringIO() try: p=BinXMLSAXParser() p.setContentHandler(XMLGenerator(c)) p.parse(stream) except Exception, e: sys.exit(e) return c.getvalue() dump=staticmethod(dump) dumps=staticmethod(dumps) load=staticmethod(load) loads=staticmethod(loads) if __name__ == '__main__': fname = 'sample.xml' binname = os.path.splitext(fname)[0] + '.bin' # Dump XML text to binary XMLMarshal.dump(open(binname,'wb'), fname) # Dump XML binary to text XMLMarshal.load(open(binname,'rb'), open('sample.xml','w'))
nuplan/planning/simulation/controller/tracker/abstract_tracker.py
motional/nuplan-devkit
128
12650207
<reponame>motional/nuplan-devkit import abc from nuplan.common.actor_state.dynamic_car_state import DynamicCarState from nuplan.common.actor_state.ego_state import EgoState from nuplan.planning.simulation.simulation_time_controller.simulation_iteration import SimulationIteration from nuplan.planning.simulation.trajectory.abstract_trajectory import AbstractTrajectory class AbstractTracker(abc.ABC): """ Interface for a generic tracker. """ @abc.abstractmethod def initialize(self) -> None: """ Initializes the tracker. """ pass @abc.abstractmethod def track_trajectory( self, current_iteration: SimulationIteration, next_iteration: SimulationIteration, initial_state: EgoState, trajectory: AbstractTrajectory, ) -> DynamicCarState: """ Return an ego state with updated dynamics according to the controller commands. :param current_iteration: The current simulation iteration. :param next_iteration: The desired next simulation iteration. :param initial_state: The current simulation iteration. :param trajectory: The reference trajectory to track. :return: The ego state to be propagated """ pass
applications/fixImageXml.py
vincentschut/isce2
1,133
12650231
<filename>applications/fixImageXml.py<gh_stars>1000+ #!/usr/bin/env python3 import os import argparse import isce import isceobj from isceobj.Util.ImageUtil import ImageLib as IML def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser(description='Fixes pathnames in ISCE image XML files. Can be used to do more things in the future.') parser.add_argument('-i', '--input', type=str, required=True, dest='infile', help = 'Input image for which the XML file needs to be fixed.') fname = parser.add_mutually_exclusive_group(required=True) fname.add_argument('-f', '--full', action='store_true', help = 'Replace filename with full path including dir in which file is located') fname.add_argument('-b', '--base', action='store_true', help = 'Replace filename with basename to use in current directory') inps = parser.parse_args() return inps if __name__ == '__main__': ''' Main driver. ''' inps = cmdLineParse() if inps.infile.endswith('.xml'): inps.infile = os.path.splitext(inps.infile)[0] dirname = os.path.dirname(inps.infile) img = IML.loadImage(inps.infile)[0] if inps.full: fname = os.path.abspath( os.path.join(dirname, os.path.basename(inps.infile))) else: fname = os.path.basename( os.path.basename(inps.infile)) img.filename = fname img.setAccessMode('READ') img.renderHdr()