max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
backpack/custom_module/scale_module.py
jabader97/backpack
395
12644558
"""Contains ScaleModule.""" from torch import Tensor from torch.nn import Module class ScaleModule(Module): """Scale Module scales the input by a constant.""" def __init__(self, weight: float = 1.0): """Store scalar weight. Args: weight: Initial value for weight. Defaults to 1.0. Raises: ValueError: if weight is no float """ super().__init__() if not isinstance(weight, float): raise ValueError("Weight must be float.") self.weight: float = weight def forward(self, input: Tensor) -> Tensor: """Defines forward pass. Args: input: input Returns: product of input and weight """ return input * self.weight
setup.py
gmr/consulate
309
12644568
<gh_stars>100-1000 import setuptools setuptools.setup( name='abaez.consulate', version='1.1.0', description='A Client library and command line application for the Consul', maintainer='<NAME>', maintainer_email='<EMAIL>', url='https://consulate.readthedocs.org', install_requires=['requests>=2.0.0,<3.0.0'], extras_require={'unixsocket': ['requests-unixsocket>=0.1.4,<=1.0.0']}, license='BSD', package_data={'': ['LICENSE', 'README.rst']}, packages=['consulate', 'consulate.api', 'consulate.models'], entry_points=dict(console_scripts=['consulate=consulate.cli:main']), classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: System :: Systems Administration', 'Topic :: System :: Clustering', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries' ], zip_safe=True)
graphene_django/utils/tests/test_testing.py
mebel-akvareli/graphene-django
4,038
12644580
<filename>graphene_django/utils/tests/test_testing.py import pytest from .. import GraphQLTestCase from ...tests.test_types import with_local_registry from django.test import Client @with_local_registry def test_graphql_test_case_deprecated_client_getter(): """ `GraphQLTestCase._client`' getter should raise pending deprecation warning. """ class TestClass(GraphQLTestCase): GRAPHQL_SCHEMA = True def runTest(self): pass tc = TestClass() tc._pre_setup() tc.setUpClass() with pytest.warns(PendingDeprecationWarning): tc._client @with_local_registry def test_graphql_test_case_deprecated_client_setter(): """ `GraphQLTestCase._client`' setter should raise pending deprecation warning. """ class TestClass(GraphQLTestCase): GRAPHQL_SCHEMA = True def runTest(self): pass tc = TestClass() tc._pre_setup() tc.setUpClass() with pytest.warns(PendingDeprecationWarning): tc._client = Client()
src/api/filecontent.py
piwaniuk/critic
216
12644592
# -*- mode: python; encoding: utf-8 -*- # # Copyright 2017 the Critic contributors, Opera Software ASA # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import api class FilecontentError(api.APIError): pass class Filecontent(api.APIObject): """Representation of some context""" def getLines(self, first_row=None, last_row=None): assert first_row is None or isinstance(first_row, int) assert last_row is None or isinstance(last_row, int) return self._impl.getLines(first_row, last_row) class Line: """Representation of a line from some version of a file""" def __init__(self, parts, offset): self.__parts = parts self.__offset = offset @property def parts(self): return self.__parts @property def offset(self): return self.__offset def fetch(critic, repository, blob_sha1, file_obj): assert isinstance(critic, api.critic.Critic) assert isinstance(repository, api.repository.Repository) assert isinstance(blob_sha1, str) assert isinstance(file_obj, api.file.File) return api.impl.filecontent.fetch(critic, repository, blob_sha1, file_obj)
xdl-algorithm-solution/TDM/src/python/store/store/store.py
hitflame/x-deeplearning
4,071
12644620
<reponame>hitflame/x-deeplearning # Copyright (C) 2016-2018 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #!/usr/bin/env python from .store_api import * class Store: def __init__(self, config): self._client = STORE_API_new(config) if not self._client: raise RuntimeError("Create store failed, config: {}".format(config)) def get_handle(self): return self._client def put(self, key, value): self._validate() return STORE_API_put(self._client, key, value) def load(self, filename): self._validate() return STORE_API_load(self._client, filename) def get(self, key): self._validate() value = new_string() sv = None ret = STORE_API_get(self._client, key, value) if ret: sv = string_value(value) free_string(value) return sv def mget(self, keys): self._validate() values = new_string_vector() ret = STORE_API_mget(self._client, keys, values) svalues = None if ret == 1: svalues = string_vector_value(values) free_string_vector(values) return svalues def mput(self, keys, values): self._validate() return STORE_API_mput(self._client, keys, values) def close(self): if self._client: STORE_API_close(self._client) self._client = None def _validate(self): if not self._client: raise RuntimeError("Store is not validated")
lixian_colors.py
1py/xunlei-lixian
2,177
12644625
import os import sys def get_console_type(use_colors=True): if use_colors and sys.stdout.isatty() and sys.stderr.isatty(): import platform if platform.system() == 'Windows': import lixian_colors_win32 return lixian_colors_win32.WinConsole else: import lixian_colors_linux return lixian_colors_linux.AnsiConsole else: import lixian_colors_console return lixian_colors_console.Console console_type = get_console_type() raw_console_type = get_console_type(False) def Console(use_colors=True): return get_console_type(use_colors)() def get_softspace(output): if hasattr(output, 'softspace'): return output.softspace import lixian_colors_console if isinstance(output, lixian_colors_console.Console): return get_softspace(output.output) return 0 class ScopedColors(console_type): def __init__(self, *args): console_type.__init__(self, *args) def __call__(self): console = self class Scoped: def __enter__(self): self.stdout = sys.stdout softspace = get_softspace(sys.stdout) sys.stdout = console sys.stdout.softspace = softspace def __exit__(self, type, value, traceback): softspace = get_softspace(sys.stdout) sys.stdout = self.stdout sys.stdout.softspace = softspace return Scoped() class RawScopedColors(raw_console_type): def __init__(self, *args): raw_console_type.__init__(self, *args) def __call__(self): class Scoped: def __enter__(self): pass def __exit__(self, type, value, traceback): pass return Scoped() class RootColors: def __init__(self, use_colors=True): self.use_colors = use_colors def __getattr__(self, name): return getattr(ScopedColors() if self.use_colors else RawScopedColors(), name) def __call__(self, use_colors): assert use_colors in (True, False, None), use_colors return RootColors(use_colors) colors = RootColors()
fostool/model/gconv.py
meng-zha/FOST
181
12644633
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import absolute_import, division, print_function import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torch_geometric.nn as PyG from collections import OrderedDict class GATConv(PyG.MessagePassing): def __init__(self, in_channels, out_channels, edge_channels, aggr='max', normalize='none', **kwargs): """Build a gated graph convolutional layer. Parameters ---------- in_channels : (int or tuple) Size of each input sample out_channels : int Size of each output sample edge_channels : (int) Size of edge feature aggr : str, optional The aggregation operator, by default 'max' normalize : str, optional The normalizing operator, by default 'none' **kwargs : optional Additional arguments for PyG.MessagePassing """ super().__init__(aggr=aggr, node_dim=-3, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.edge_channels = edge_channels self.weight_n = nn.Parameter(torch.Tensor(in_channels, out_channels)) self.weight_e = nn.Parameter(torch.Tensor(edge_channels, out_channels)) self.u = nn.Parameter(torch.Tensor(out_channels, out_channels)) self.v = nn.Parameter(torch.Tensor(out_channels, out_channels)) self.normalize = normalize if normalize == 'bn': self.batch_norm = nn.BatchNorm1d(out_channels) if normalize == 'ln': self.layer_norm = nn.LayerNorm(out_channels) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight_n) nn.init.xavier_uniform_(self.weight_e) nn.init.xavier_uniform_(self.u) nn.init.xavier_uniform_(self.v) def forward(self, x, edge_index, edge_attr=None, edge_norm=None, size=None): """ Parameters ---------- x : torch.Tensor or (torch.Tensor, torch.Tensor) Input data edge_index : torch.Tensor The index of edges edge_attr : torch.Tensor or None, optional Edge attributes, by default None edge_norm : str or None, optional The normalization type for edges, by default None size : int, optional The output dimension, by default None Returns ------- torch.Tensor The enriched representations after message passing """ if isinstance(x, tuple) or isinstance(x, list): x = [None if xi is None else torch.matmul( xi, self.weight_n) for xi in x] else: x = torch.matmul(x, self.weight_n) edge_attr = torch.matmul(edge_attr, self.weight_e) return self.propagate(edge_index, size=size, x=x, edge_attr=edge_attr, edge_norm=edge_norm) def message(self, edge_index_i, x_i, x_j, edge_attr, edge_norm): """ Parameters ---------- edge_index_i : torch.Tensor The index of target nodes x_i : torch.Tensor The representations of target nodes indexed by edge_index_i x_j : torch.Tensor The representations of source nodes indexed by edge_index_j edge_attr : torch.Tensor Edge attributes edge_norm : torch.Tensor The normalization for edges Returns ------- torch.Tensor Messages in edges """ x_i = torch.matmul(x_i, self.u) x_j = torch.matmul(x_j, self.u) gate = torch.sigmoid((x_i * x_j).sum(dim=-1)).unsqueeze(dim=-1) msg = x_j * gate if edge_norm is None: return msg else: return msg * edge_norm.reshape(edge_norm.size(0), 1, 1) def update(self, aggr_out, x): """ Parameters ---------- aggr_out : torch.Tensor Aggregated messages x : torch.Tensor Raw inputs Returns ------- torch.Tensor Updated representations Raises ------ KeyError Unsupported normalization type """ if isinstance(x, tuple) or isinstance(x, list): x = x[1] if self.normalize == 'bn': aggr_out = aggr_out.permute(0, 2, 1) aggr_out = self.batch_norm(aggr_out) aggr_out = aggr_out.permute(0, 2, 1) elif self.normalize == 'ln': aggr_out = self.layer_norm(aggr_out) elif self.normalize == 'none': aggr_out = aggr_out else: raise KeyError( (f'not support normalize type: {self.normalize}') ) return x + aggr_out class EGNNConv(PyG.MessagePassing): def __init__(self, in_channels, out_channels, edge_channels, aggr='max', normalize='none', **kwargs): """Build an edge-attribute-aware graph convolutional layer. Parameters ---------- in_channels : (int or tuple) Size of each input sample out_channels : int Size of each output sample edge_channels : (int) Size of edge feature aggr : str, optional The aggregation operator, by default 'max' normalize : str, optional The normalizing operator, by default 'none' **kwargs : optional Additional arguments for PyG.MessagePassing """ super().__init__(aggr=aggr, **kwargs) self.in_channels = in_channels self.out_channels = out_channels self.edge_channels = edge_channels self.weight_n = nn.Parameter(torch.Tensor(in_channels, out_channels)) self.weight_e = nn.Parameter(torch.Tensor(edge_channels, out_channels)) self.query = nn.Parameter(torch.Tensor(out_channels, out_channels)) self.key = nn.Parameter(torch.Tensor(out_channels, out_channels)) self.linear_att = nn.Linear(3 * out_channels, 1) self.linear_out = nn.Linear(2 * out_channels, out_channels) self.normalize = normalize if normalize == 'bn': self.batch_norm = nn.BatchNorm1d(out_channels) if normalize == 'ln': self.layer_norm = nn.LayerNorm(out_channels) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight_n) nn.init.xavier_uniform_(self.weight_e) nn.init.xavier_uniform_(self.query) nn.init.xavier_uniform_(self.key) def forward(self, x, edge_index, edge_attr, size=None, indices=None, edge_norm=None): """ Parameters ---------- x : torch.Tensor or (torch.Tensor, torch.Tensor) Input data edge_index : torch.Tensor The index of edges edge_attr : torch.Tensor or None, optional Edge attributes, by default None size : int, optional The output dimension, by default None indicies: torch.Tensor or None, optional The node indices edge_norm : str or None, optional The normalization type for edges, by default None Returns ------- torch.Tensor The enriched representations after message passing """ if isinstance(x, tuple) or isinstance(x, list): x = [None if xi is None else torch.matmul( xi, self.weight_n) for xi in x] else: x = torch.matmul(x, self.weight_n) edge_attr = torch.matmul(edge_attr, self.weight_e) return self.propagate(edge_index, size=size, x=x, edge_attr=edge_attr, indices=indices, edge_norm=edge_norm) def message(self, x_j, x_i, edge_attr, edge_norm): """ Parameters ---------- x_j : torch.Tensor The representations of source nodes x_i : torch.Tensor The representations of target nodes edge_attr : torch.Tensor Edge attributes edge_norm : torch.Tensor The normalization factors for edges Returns ------- torch.Tensor The messages in edges """ # cal att of shape [B, E, 1] query = torch.matmul(x_j, self.query) key = torch.matmul(x_i, self.key) edge_attr = edge_attr.unsqueeze(dim=1).expand_as(query) att_feature = torch.cat([query, key, edge_attr], dim=-1) att = torch.sigmoid(self.linear_att(att_feature)) # gate of shape [1, E, C] gate = torch.sigmoid(edge_attr) msg = att * x_j * gate if edge_norm is None: return msg else: return msg * edge_norm.reshape(edge_norm.size(0), 1, 1) def update(self, aggr_out, x, indices): """ Parameters ---------- aggr_out : torch.Tensor Aggregated messages x : torch.Tensor Raw inputs indices: torch.Tensor Node indexes Returns ------- torch.Tensor Updated representations Raises ------ KeyError Unsupported normalization type """ if isinstance(x, tuple) or isinstance(x, list): x = x[1] aggr_out = self.linear_out(torch.cat([x, aggr_out], dim=-1)) if self.normalize == 'bn': aggr_out = aggr_out.permute(0, 2, 1) aggr_out = self.batch_norm(aggr_out) aggr_out = aggr_out.permute(0, 2, 1) elif self.normalize == 'ln': aggr_out = self.layer_norm(aggr_out) elif self.normalize == 'none': aggr_out = aggr_out else: raise KeyError( (f'not support normalize type: {self.normalize}') ) return x + aggr_out
aliyun-python-sdk-hbase/aliyunsdkhbase/request/v20190101/ResizeMultiZoneClusterNodeCountRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
12644659
<filename>aliyun-python-sdk-hbase/aliyunsdkhbase/request/v20190101/ResizeMultiZoneClusterNodeCountRequest.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkhbase.endpoint import endpoint_data class ResizeMultiZoneClusterNodeCountRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'HBase', '2019-01-01', 'ResizeMultiZoneClusterNodeCount','hbase') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_PrimaryVSwitchId(self): return self.get_query_params().get('PrimaryVSwitchId') def set_PrimaryVSwitchId(self,PrimaryVSwitchId): self.add_query_param('PrimaryVSwitchId',PrimaryVSwitchId) def get_StandbyVSwitchId(self): return self.get_query_params().get('StandbyVSwitchId') def set_StandbyVSwitchId(self,StandbyVSwitchId): self.add_query_param('StandbyVSwitchId',StandbyVSwitchId) def get_LogNodeCount(self): return self.get_query_params().get('LogNodeCount') def set_LogNodeCount(self,LogNodeCount): self.add_query_param('LogNodeCount',LogNodeCount) def get_ClusterId(self): return self.get_query_params().get('ClusterId') def set_ClusterId(self,ClusterId): self.add_query_param('ClusterId',ClusterId) def get_PrimaryCoreNodeCount(self): return self.get_query_params().get('PrimaryCoreNodeCount') def set_PrimaryCoreNodeCount(self,PrimaryCoreNodeCount): self.add_query_param('PrimaryCoreNodeCount',PrimaryCoreNodeCount) def get_CoreNodeCount(self): return self.get_query_params().get('CoreNodeCount') def set_CoreNodeCount(self,CoreNodeCount): self.add_query_param('CoreNodeCount',CoreNodeCount) def get_StandbyCoreNodeCount(self): return self.get_query_params().get('StandbyCoreNodeCount') def set_StandbyCoreNodeCount(self,StandbyCoreNodeCount): self.add_query_param('StandbyCoreNodeCount',StandbyCoreNodeCount) def get_ArbiterVSwitchId(self): return self.get_query_params().get('ArbiterVSwitchId') def set_ArbiterVSwitchId(self,ArbiterVSwitchId): self.add_query_param('ArbiterVSwitchId',ArbiterVSwitchId)
ants/utils/iMath.py
xemio/ANTsPy
338
12644670
<filename>ants/utils/iMath.py __all__ = ['iMath', 'image_math', 'multiply_images', 'iMath_get_largest_component', 'iMath_normalize', 'iMath_truncate_intensity', 'iMath_sharpen', 'iMath_pad', 'iMath_maurer_distance', 'iMath_perona_malik', 'iMath_grad', 'iMath_laplacian', 'iMath_canny', 'iMath_histogram_equalization', 'iMath_MD', 'iMath_ME', 'iMath_MO', 'iMath_MC', 'iMath_GD', 'iMath_GE', 'iMath_GO', 'iMath_GC', 'iMath_fill_holes', 'iMath_get_largest_component', 'iMath_normalize', 'iMath_truncate_intensity', 'iMath_sharpen', 'iMath_propagate_labels_through_mask'] from .process_args import _int_antsProcessArguments from .. import utils _iMathOps = {'FillHoles', 'GetLargestComponent', 'Normalize', 'Sharpen', 'Pad', 'D', 'MaurerDistance', 'PeronaMalik', 'Grad', 'Laplacian', 'Canny', 'HistogramEqualization', 'MD', 'ME', 'MO', 'MC', 'GD', 'GE', 'GO', 'GC', 'FillHoles', 'GetLargestComponent', 'LabelStats', 'Normalize', 'TruncateIntensity', 'Sharpen', 'PropagateLabelsThroughMask'} def multiply_images(image1, image2): return image1 * image2 def iMath(image, operation, *args): """ Perform various (often mathematical) operations on the input image/s. Additional parameters should be specific for each operation. See the the full iMath in ANTs, on which this function is based. ANTsR function: `iMath` Arguments --------- image : ANTsImage input object, usually antsImage operation a string e.g. "GetLargestComponent" ... the special case of "GetOperations" or "GetOperationsFull" will return a list of operations and brief description. Some operations may not be valid (WIP), but most are. *args : non-keyword arguments additional parameters specific to the operation Example ------- >>> import ants >>> img = ants.image_read(ants.get_ants_data('r16')) >>> img2 = ants.iMath(img, 'Canny', 1, 5, 12) """ if operation not in _iMathOps: raise ValueError('Operation not recognized') imagedim = image.dimension outimage = image.clone() args = [imagedim, outimage, operation, image] + [a for a in args] processed_args = _int_antsProcessArguments(args) libfn = utils.get_lib_fn('iMath') libfn(processed_args) return outimage image_math = iMath def iMath_ops(): return _iMathOps def iMath_canny(image, sigma, lower, upper): return iMath(image, 'Canny', sigma, lower, upper) def iMath_distance_map(image, use_spacing=True): return iMath(image, 'DistanceMap', use_spacing) def iMath_fill_holes(image, hole_type=2): return iMath(image, 'FillHoles', hole_type) def iMath_GC(image, radius=1): return iMath(image, 'GC', radius) def iMath_GD(image, radius=1): return iMath(image, 'GD', radius) def iMath_GE(image, radius=1): return iMath(image, 'GE', radius) def iMath_GO(image, radius=1): return iMath(image, 'GO', radius) def iMath_get_largest_component(image, min_size=50): return iMath(image, 'GetLargestComponent', min_size) def iMath_grad(image, sigma=0.5, normalize=False): return iMath(image, 'Grad', sigma, normalize) def iMath_histogram_equalization(image, alpha, beta): return iMath(image, 'HistogramEqualization', alpha, beta) def iMath_laplacian(image, sigma=0.5, normalize=False): return iMath(image, 'Laplacian', sigma, normalize) def iMath_MC(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False): return iMath(image, 'MC', radius, value, shape, parametric, lines, thickness, include_center) def iMath_MD(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False): return iMath(image, 'MD', radius, value, shape, parametric, lines, thickness, include_center) def iMath_ME(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False): return iMath(image, 'ME', radius, value, shape, parametric, lines, thickness, include_center) def iMath_MO(image, radius=1, value=1, shape=1, parametric=False, lines=3, thickness=1, include_center=False): return iMath(image, 'MO', radius, value, shape, parametric, lines, thickness, include_center) def iMath_maurer_distance(image, foreground=1): return iMath(image, 'MaurerDistance', foreground) def iMath_normalize(image): return iMath(image, 'Normalize') def iMath_pad(image, padding): return iMath(image, 'Pad', padding) def iMath_perona_malik(image, conductance=0.25, n_iterations=1): return iMath(image, 'PeronaMalik', conductance, n_iterations) def iMath_sharpen(image): return iMath(image, 'Sharpen') def iMath_propagate_labels_through_mask(image, labels, stopping_value=100, propagation_method=0): """ >>> import ants >>> wms = ants.image_read('~/desktop/wms.nii.gz') >>> thal = ants.image_read('~/desktop/thal.nii.gz') >>> img2 = ants.iMath_propagate_labels_through_mask(wms, thal, 500, 0) """ return iMath(image, 'PropagateLabelsThroughMask', labels, stopping_value, propagation_method) def iMath_truncate_intensity(image, lower_q, upper_q, n_bins=64): """ >>> import ants >>> img = ants.image_read(ants.get_ants_data('r16')) >>> ants.iMath_truncate_intensity( img, 0.2, 0.8 ) """ return iMath(image, 'TruncateIntensity', lower_q, upper_q, n_bins )
aiogram/types/user_profile_photos.py
andrew-ld/aiogram
2,744
12644679
<filename>aiogram/types/user_profile_photos.py import typing from . import base from . import fields from .photo_size import PhotoSize class UserProfilePhotos(base.TelegramObject): """ This object represent a user's profile pictures. https://core.telegram.org/bots/api#userprofilephotos """ total_count: base.Integer = fields.Field() photos: typing.List[typing.List[PhotoSize]] = fields.ListOfLists(base=PhotoSize)
dev/Tools/build/waf-1.7.13/waflib/extras/unity.py
jeikabu/lumberyard
1,738
12644680
#! /usr/bin/env python # encoding: utf-8 """ Take a group of C++ files and compile them at once. def options(opt): opt.load('compiler_cxx unity') """ import re from waflib import Task, Options, Logs from waflib.Tools import ccroot, cxx, c_preproc from waflib.TaskGen import extension, taskgen_method MAX_BATCH = 20 def options(opt): global MAX_BATCH opt.add_option('--batchsize', action='store', dest='batchsize', type='int', default=MAX_BATCH, help='batch size (0 for no batch)') class unity(Task.Task): color = 'BLUE' scan = c_preproc.scan def run(self): lst = ['#include "%s"\n' % node.abspath() for node in self.inputs] txt = ''.join(lst) self.outputs[0].write(txt) @taskgen_method def batch_size(self): return Options.options.batchsize @extension('.cpp', '.cc', '.cxx', '.C', '.c++') def make_cxx_batch(self, node): cnt = self.batch_size() if cnt <= 1: tsk = self.create_compiled_task('cxx', node) return tsk try: self.cnt_cxx except AttributeError: self.cnt_cxx = 0 x = getattr(self, 'master_cxx', None) if not x or len(x.inputs) >= cnt: x = self.master_cxx = self.create_task('unity') cxxnode = node.parent.find_or_declare('union_%s_%d_%d.cxx' % (self.idx, self.cnt_cxx, cnt)) self.master_cxx.outputs = [cxxnode] self.cnt_cxx += 1 self.create_compiled_task('cxx', cxxnode) x.inputs.append(node)
mmdet/datasets/pipelines/rtransforms.py
cameronchoi/r3det-docker
176
12644714
from ..builder import PIPELINES from .transforms import Resize, RandomFlip, RandomCrop import numpy as np @PIPELINES.register_module() class RResize(Resize): """ Resize images & rotated bbox Inherit Resize pipeline class to handle rotated bboxes """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None): super(RResize, self).__init__(img_scale=img_scale, multiscale_mode=multiscale_mode, ratio_range=ratio_range, keep_ratio=True) def _resize_bboxes(self, results): for key in results.get('bbox_fields', []): bboxes = results[key] orig_shape = bboxes.shape bboxes = bboxes.reshape((-1, 5)) w_scale, h_scale, _, _ = results['scale_factor'] bboxes[:, 0] *= w_scale bboxes[:, 1] *= h_scale bboxes[:, 2:4] *= np.sqrt(w_scale * h_scale) results[key] = bboxes.reshape(orig_shape) @PIPELINES.register_module() class RRandomFlip(RandomFlip): """Flip the image & bbox & mask. If the input dict contains the key "flip", then the flag will be used, otherwise it will be randomly decided by a ratio specified in the init method. Args: flip_ratio (float, optional): The flipping probability. """ def bbox_flip(self, bboxes, img_shape, direction): """Flip bboxes horizontally or vertically. Args: bboxes(ndarray): shape (..., 5*k) img_shape(tuple): (height, width) """ assert bboxes.shape[-1] % 5 == 0 orig_shape = bboxes.shape bboxes = bboxes.reshape((-1, 5)) flipped = bboxes.copy() if direction == 'horizontal': flipped[:, 0] = img_shape[1] - bboxes[:, 0] - 1 elif direction == 'vertical': flipped[:, 1] = img_shape[0] - bboxes[:, 1] - 1 else: raise ValueError( 'Invalid flipping direction "{}"'.format(direction)) rotated_flag = (bboxes[:, 4] != -np.pi / 2) flipped[rotated_flag, 4] = -np.pi / 2 - bboxes[rotated_flag, 4] flipped[rotated_flag, 2] = bboxes[rotated_flag, 3], flipped[rotated_flag, 3] = bboxes[rotated_flag, 2] return flipped.reshape(orig_shape)
dalib/adaptation/mdd.py
neka-nat/Transfer-Learning-Library
1,474
12644716
""" @author: <NAME> @contact: <EMAIL> """ from typing import Optional, List, Dict, Tuple, Callable import torch.nn as nn import torch.nn.functional as F import torch from dalib.modules.grl import WarmStartGradientReverseLayer class MarginDisparityDiscrepancy(nn.Module): r"""The margin disparity discrepancy (MDD) proposed in `Bridging Theory and Algorithm for Domain Adaptation (ICML 2019) <https://arxiv.org/abs/1904.05801>`_. MDD can measure the distribution discrepancy in domain adaptation. The :math:`y^s` and :math:`y^t` are logits output by the main head on the source and target domain respectively. The :math:`y_{adv}^s` and :math:`y_{adv}^t` are logits output by the adversarial head. The definition can be described as: .. math:: \mathcal{D}_{\gamma}(\hat{\mathcal{S}}, \hat{\mathcal{T}}) = -\gamma \mathbb{E}_{y^s, y_{adv}^s \sim\hat{\mathcal{S}}} L_s (y^s, y_{adv}^s) + \mathbb{E}_{y^t, y_{adv}^t \sim\hat{\mathcal{T}}} L_t (y^t, y_{adv}^t), where :math:`\gamma` is a margin hyper-parameter, :math:`L_s` refers to the disparity function defined on the source domain and :math:`L_t` refers to the disparity function defined on the target domain. Args: source_disparity (callable): The disparity function defined on the source domain, :math:`L_s`. target_disparity (callable): The disparity function defined on the target domain, :math:`L_t`. margin (float): margin :math:`\gamma`. Default: 4 reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Inputs: - y_s: output :math:`y^s` by the main head on the source domain - y_s_adv: output :math:`y^s` by the adversarial head on the source domain - y_t: output :math:`y^t` by the main head on the target domain - y_t_adv: output :math:`y_{adv}^t` by the adversarial head on the target domain - w_s (optional): instance weights for source domain - w_t (optional): instance weights for target domain Examples:: >>> num_outputs = 2 >>> batch_size = 10 >>> loss = MarginDisparityDiscrepancy(margin=4., source_disparity=F.l1_loss, target_disparity=F.l1_loss) >>> # output from source domain and target domain >>> y_s, y_t = torch.randn(batch_size, num_outputs), torch.randn(batch_size, num_outputs) >>> # adversarial output from source domain and target domain >>> y_s_adv, y_t_adv = torch.randn(batch_size, num_outputs), torch.randn(batch_size, num_outputs) >>> output = loss(y_s, y_s_adv, y_t, y_t_adv) """ def __init__(self, source_disparity: Callable, target_disparity: Callable, margin: Optional[float] = 4, reduction: Optional[str] = 'mean'): super(MarginDisparityDiscrepancy, self).__init__() self.margin = margin self.reduction = reduction self.source_disparity = source_disparity self.target_disparity = target_disparity def forward(self, y_s: torch.Tensor, y_s_adv: torch.Tensor, y_t: torch.Tensor, y_t_adv: torch.Tensor, w_s: Optional[torch.Tensor] = None, w_t: Optional[torch.Tensor] = None) -> torch.Tensor: source_loss = -self.margin * self.source_disparity(y_s, y_s_adv) target_loss = self.target_disparity(y_t, y_t_adv) if w_s is None: w_s = torch.ones_like(source_loss) source_loss = source_loss * w_s if w_t is None: w_t = torch.ones_like(target_loss) target_loss = target_loss * w_t loss = source_loss + target_loss if self.reduction == 'mean': loss = loss.mean() elif self.reduction == 'sum': loss = loss.sum() return loss class ClassificationMarginDisparityDiscrepancy(MarginDisparityDiscrepancy): r""" The margin disparity discrepancy (MDD) proposed in `Bridging Theory and Algorithm for Domain Adaptation (ICML 2019) <https://arxiv.org/abs/1904.05801>`_. It measures the distribution discrepancy in domain adaptation for classification. When margin is equal to 1, it's also called disparity discrepancy (DD). The :math:`y^s` and :math:`y^t` are logits output by the main classifier on the source and target domain respectively. The :math:`y_{adv}^s` and :math:`y_{adv}^t` are logits output by the adversarial classifier. They are expected to contain raw, unnormalized scores for each class. The definition can be described as: .. math:: \mathcal{D}_{\gamma}(\hat{\mathcal{S}}, \hat{\mathcal{T}}) = \gamma \mathbb{E}_{y^s, y_{adv}^s \sim\hat{\mathcal{S}}} \log\left(\frac{\exp(y_{adv}^s[h_{y^s}])}{\sum_j \exp(y_{adv}^s[j])}\right) + \mathbb{E}_{y^t, y_{adv}^t \sim\hat{\mathcal{T}}} \log\left(1-\frac{\exp(y_{adv}^t[h_{y^t}])}{\sum_j \exp(y_{adv}^t[j])}\right), where :math:`\gamma` is a margin hyper-parameter and :math:`h_y` refers to the predicted label when the logits output is :math:`y`. You can see more details in `Bridging Theory and Algorithm for Domain Adaptation <https://arxiv.org/abs/1904.05801>`_. Args: margin (float): margin :math:`\gamma`. Default: 4 reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Inputs: - y_s: logits output :math:`y^s` by the main classifier on the source domain - y_s_adv: logits output :math:`y^s` by the adversarial classifier on the source domain - y_t: logits output :math:`y^t` by the main classifier on the target domain - y_t_adv: logits output :math:`y_{adv}^t` by the adversarial classifier on the target domain Shape: - Inputs: :math:`(minibatch, C)` where C = number of classes, or :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of `K`-dimensional loss. - Output: scalar. If :attr:`reduction` is ``'none'``, then the same size as the target: :math:`(minibatch)`, or :math:`(minibatch, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of K-dimensional loss. Examples:: >>> num_classes = 2 >>> batch_size = 10 >>> loss = ClassificationMarginDisparityDiscrepancy(margin=4.) >>> # logits output from source domain and target domain >>> y_s, y_t = torch.randn(batch_size, num_classes), torch.randn(batch_size, num_classes) >>> # adversarial logits output from source domain and target domain >>> y_s_adv, y_t_adv = torch.randn(batch_size, num_classes), torch.randn(batch_size, num_classes) >>> output = loss(y_s, y_s_adv, y_t, y_t_adv) """ def __init__(self, margin: Optional[float] = 4, **kwargs): def source_discrepancy(y: torch.Tensor, y_adv: torch.Tensor): _, prediction = y.max(dim=1) return F.cross_entropy(y_adv, prediction, reduction='none') def target_discrepancy(y: torch.Tensor, y_adv: torch.Tensor): _, prediction = y.max(dim=1) return -F.nll_loss(shift_log(1. - F.softmax(y_adv, dim=1)), prediction, reduction='none') super(ClassificationMarginDisparityDiscrepancy, self).__init__(source_discrepancy, target_discrepancy, margin, **kwargs) class RegressionMarginDisparityDiscrepancy(MarginDisparityDiscrepancy): r""" The margin disparity discrepancy (MDD) proposed in `Bridging Theory and Algorithm for Domain Adaptation (ICML 2019) <https://arxiv.org/abs/1904.05801>`_. It measures the distribution discrepancy in domain adaptation for regression. The :math:`y^s` and :math:`y^t` are logits output by the main regressor on the source and target domain respectively. The :math:`y_{adv}^s` and :math:`y_{adv}^t` are logits output by the adversarial regressor. They are expected to contain ``normalized`` values for each factors. The definition can be described as: .. math:: \mathcal{D}_{\gamma}(\hat{\mathcal{S}}, \hat{\mathcal{T}}) = -\gamma \mathbb{E}_{y^s, y_{adv}^s \sim\hat{\mathcal{S}}} L (y^s, y_{adv}^s) + \mathbb{E}_{y^t, y_{adv}^t \sim\hat{\mathcal{T}}} L (y^t, y_{adv}^t), where :math:`\gamma` is a margin hyper-parameter and :math:`L` refers to the disparity function defined on both domains. You can see more details in `Bridging Theory and Algorithm for Domain Adaptation <https://arxiv.org/abs/1904.05801>`_. Args: loss_function (callable): The disparity function defined on both domains, :math:`L`. margin (float): margin :math:`\gamma`. Default: 1 reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Inputs: - y_s: logits output :math:`y^s` by the main regressor on the source domain - y_s_adv: logits output :math:`y^s` by the adversarial regressor on the source domain - y_t: logits output :math:`y^t` by the main regressor on the target domain - y_t_adv: logits output :math:`y_{adv}^t` by the adversarial regressor on the target domain Shape: - Inputs: :math:`(minibatch, F)` where F = number of factors, or :math:`(minibatch, F, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of `K`-dimensional loss. - Output: scalar. The same size as the target: :math:`(minibatch)`, or :math:`(minibatch, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of K-dimensional loss. Examples:: >>> num_outputs = 2 >>> batch_size = 10 >>> loss = RegressionMarginDisparityDiscrepancy(margin=4., loss_function=F.l1_loss) >>> # output from source domain and target domain >>> y_s, y_t = torch.randn(batch_size, num_outputs), torch.randn(batch_size, num_outputs) >>> # adversarial output from source domain and target domain >>> y_s_adv, y_t_adv = torch.randn(batch_size, num_outputs), torch.randn(batch_size, num_outputs) >>> output = loss(y_s, y_s_adv, y_t, y_t_adv) """ def __init__(self, margin: Optional[float] = 1, loss_function=F.l1_loss, **kwargs): def source_discrepancy(y: torch.Tensor, y_adv: torch.Tensor): return loss_function(y_adv, y.detach(), reduction='none') def target_discrepancy(y: torch.Tensor, y_adv: torch.Tensor): return loss_function(y_adv, y.detach(), reduction='none') super(RegressionMarginDisparityDiscrepancy, self).__init__(source_discrepancy, target_discrepancy, margin, **kwargs) def shift_log(x: torch.Tensor, offset: Optional[float] = 1e-6) -> torch.Tensor: r""" First shift, then calculate log, which can be described as: .. math:: y = \max(\log(x+\text{offset}), 0) Used to avoid the gradient explosion problem in log(x) function when x=0. Args: x (torch.Tensor): input tensor offset (float, optional): offset size. Default: 1e-6 .. note:: Input tensor falls in [0., 1.] and the output tensor falls in [-log(offset), 0] """ return torch.log(torch.clamp(x + offset, max=1.)) class GeneralModule(nn.Module): def __init__(self, backbone: nn.Module, num_classes: int, bottleneck: nn.Module, head: nn.Module, adv_head: nn.Module, grl: Optional[WarmStartGradientReverseLayer] = None, finetune: Optional[bool] = True): super(GeneralModule, self).__init__() self.backbone = backbone self.num_classes = num_classes self.bottleneck = bottleneck self.head = head self.adv_head = adv_head self.finetune = finetune self.grl_layer = WarmStartGradientReverseLayer(alpha=1.0, lo=0.0, hi=0.1, max_iters=1000, auto_step=False) if grl is None else grl def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """""" features = self.backbone(x) features = self.bottleneck(features) outputs = self.head(features) features_adv = self.grl_layer(features) outputs_adv = self.adv_head(features_adv) if self.training: return outputs, outputs_adv else: return outputs def step(self): """ Gradually increase :math:`\lambda` in GRL layer. """ self.grl_layer.step() def get_parameters(self, base_lr=1.0) -> List[Dict]: """ Return a parameters list which decides optimization hyper-parameters, such as the relative learning rate of each layer. """ params = [ {"params": self.backbone.parameters(), "lr": 0.1 * base_lr if self.finetune else base_lr}, {"params": self.bottleneck.parameters(), "lr": base_lr}, {"params": self.head.parameters(), "lr": base_lr}, {"params": self.adv_head.parameters(), "lr": base_lr} ] return params class ImageClassifier(GeneralModule): r"""Classifier for MDD. Classifier for MDD has one backbone, one bottleneck, while two classifier heads. The first classifier head is used for final predictions. The adversarial classifier head is only used when calculating MarginDisparityDiscrepancy. Args: backbone (torch.nn.Module): Any backbone to extract 1-d features from data num_classes (int): Number of classes bottleneck_dim (int, optional): Feature dimension of the bottleneck layer. Default: 1024 width (int, optional): Feature dimension of the classifier head. Default: 1024 grl (nn.Module): Gradient reverse layer. Will use default parameters if None. Default: None. finetune (bool, optional): Whether use 10x smaller learning rate in the backbone. Default: True Inputs: - x (tensor): input data Outputs: - outputs: logits outputs by the main classifier - outputs_adv: logits outputs by the adversarial classifier Shapes: - x: :math:`(minibatch, *)`, same shape as the input of the `backbone`. - outputs, outputs_adv: :math:`(minibatch, C)`, where C means the number of classes. .. note:: Remember to call function `step()` after function `forward()` **during training phase**! For instance, >>> # x is inputs, classifier is an ImageClassifier >>> outputs, outputs_adv = classifier(x) >>> classifier.step() """ def __init__(self, backbone: nn.Module, num_classes: int, bottleneck_dim: Optional[int] = 1024, width: Optional[int] = 1024, grl: Optional[WarmStartGradientReverseLayer] = None, finetune=True, pool_layer=None): grl_layer = WarmStartGradientReverseLayer(alpha=1.0, lo=0.0, hi=0.1, max_iters=1000, auto_step=False) if grl is None else grl if pool_layer is None: pool_layer = nn.Sequential( nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Flatten() ) bottleneck = nn.Sequential( pool_layer, nn.Linear(backbone.out_features, bottleneck_dim), nn.BatchNorm1d(bottleneck_dim), nn.ReLU(), nn.Dropout(0.5) ) bottleneck[1].weight.data.normal_(0, 0.005) bottleneck[1].bias.data.fill_(0.1) # The classifier head used for final predictions. head = nn.Sequential( nn.Linear(bottleneck_dim, width), nn.ReLU(), nn.Dropout(0.5), nn.Linear(width, num_classes) ) # The adversarial classifier head adv_head = nn.Sequential( nn.Linear(bottleneck_dim, width), nn.ReLU(), nn.Dropout(0.5), nn.Linear(width, num_classes) ) for dep in range(2): head[dep * 3].weight.data.normal_(0, 0.01) head[dep * 3].bias.data.fill_(0.0) adv_head[dep * 3].weight.data.normal_(0, 0.01) adv_head[dep * 3].bias.data.fill_(0.0) super(ImageClassifier, self).__init__(backbone, num_classes, bottleneck, head, adv_head, grl_layer, finetune) class ImageRegressor(GeneralModule): r"""Regressor for MDD. Regressor for MDD has one backbone, one bottleneck, while two regressor heads. The first regressor head is used for final predictions. The adversarial regressor head is only used when calculating MarginDisparityDiscrepancy. Args: backbone (torch.nn.Module): Any backbone to extract 1-d features from data num_factors (int): Number of factors bottleneck_dim (int, optional): Feature dimension of the bottleneck layer. Default: 1024 width (int, optional): Feature dimension of the classifier head. Default: 1024 finetune (bool, optional): Whether use 10x smaller learning rate in the backbone. Default: True Inputs: - x (Tensor): input data Outputs: (outputs, outputs_adv) - outputs: outputs by the main regressor - outputs_adv: outputs by the adversarial regressor Shapes: - x: :math:`(minibatch, *)`, same shape as the input of the `backbone`. - outputs, outputs_adv: :math:`(minibatch, F)`, where F means the number of factors. .. note:: Remember to call function `step()` after function `forward()` **during training phase**! For instance, >>> # x is inputs, regressor is an ImageRegressor >>> outputs, outputs_adv = regressor(x) >>> regressor.step() """ def __init__(self, backbone: nn.Module, num_factors: int, bottleneck = None, head=None, adv_head=None, bottleneck_dim: Optional[int] = 1024, width: Optional[int] = 1024, finetune=True): grl_layer = WarmStartGradientReverseLayer(alpha=1.0, lo=0.0, hi=0.1, max_iters=1000, auto_step=False) if bottleneck is None: bottleneck = nn.Sequential( nn.Conv2d(backbone.out_features, bottleneck_dim, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(bottleneck_dim), nn.ReLU(), ) # The regressor head used for final predictions. if head is None: head = nn.Sequential( nn.Conv2d(bottleneck_dim, width, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(width), nn.ReLU(), nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(width), nn.ReLU(), nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Flatten(), nn.Linear(width, num_factors), nn.Sigmoid() ) for layer in head: if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): nn.init.normal_(layer.weight, 0, 0.01) nn.init.constant_(layer.bias, 0) # The adversarial regressor head if adv_head is None: adv_head = nn.Sequential( nn.Conv2d(bottleneck_dim, width, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(width), nn.ReLU(), nn.Conv2d(width, width, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(width), nn.ReLU(), nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Flatten(), nn.Linear(width, num_factors), nn.Sigmoid() ) for layer in adv_head: if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): nn.init.normal_(layer.weight, 0, 0.01) nn.init.constant_(layer.bias, 0) super(ImageRegressor, self).__init__(backbone, num_factors, bottleneck, head, adv_head, grl_layer, finetune) self.num_factors = num_factors
openapi_python_client/schema/openapi_schema_pydantic/security_scheme.py
oterrier/openapi-python-client
172
12644749
from typing import Optional from pydantic import AnyUrl, BaseModel, Field from .oauth_flows import OAuthFlows class SecurityScheme(BaseModel): """ Defines a security scheme that can be used by the operations. Supported schemes are HTTP authentication, an API key (either as a header, a cookie parameter or as a query parameter), OAuth2's common flows (implicit, password, client credentials and authorization code) as defined in [RFC6749](https://tools.ietf.org/html/rfc6749), and [OpenID Connect Discovery](https://tools.ietf.org/html/draft-ietf-oauth-discovery-06). References: - https://swagger.io/docs/specification/authentication/ - https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.3.md#componentsObject """ type: str description: Optional[str] = None name: Optional[str] = None security_scheme_in: Optional[str] = Field(alias="in") scheme: Optional[str] = None bearerFormat: Optional[str] = None flows: Optional[OAuthFlows] = None openIdConnectUrl: Optional[AnyUrl] = None class Config: # pylint: disable=missing-class-docstring allow_population_by_field_name = True schema_extra = { "examples": [ {"type": "http", "scheme": "basic"}, {"type": "apiKey", "name": "api_key", "in": "header"}, {"type": "http", "scheme": "bearer", "bearerFormat": "JWT"}, { "type": "oauth2", "flows": { "implicit": { "authorizationUrl": "https://example.com/api/oauth/dialog", "scopes": {"write:pets": "modify pets in your account", "read:pets": "read your pets"}, } }, }, ] }
adanet/autoensemble/common.py
Mario-Kart-Felix/adanet
3,323
12644756
<reponame>Mario-Kart-Felix/adanet """Common utilities for AutoEnsemblers. Copyright 2019 The AdaNet Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import inspect from adanet import subnetwork as subnetwork_lib from adanet import tf_compat import tensorflow.compat.v2 as tf def _default_logits(estimator_spec): from tensorflow.python.estimator.canned import prediction_keys # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top if isinstance(estimator_spec.predictions, dict): pred_keys = prediction_keys.PredictionKeys if pred_keys.LOGITS in estimator_spec.predictions: return estimator_spec.predictions[pred_keys.LOGITS] if pred_keys.PREDICTIONS in estimator_spec.predictions: return estimator_spec.predictions[pred_keys.PREDICTIONS] return estimator_spec.predictions class _SecondaryTrainOpRunnerHook(tf_compat.SessionRunHook): """A hook for running a train op separate from the main session run call.""" def __init__(self, train_op): """Initializes a `_SecondaryTrainOpRunnerHook`. Args: train_op: The secondary train op to execute before runs. """ self._train_op = train_op def before_run(self, run_context): run_context.session.run(self._train_op) class AutoEnsembleSubestimator( # pylint: disable=g-classes-have-attributes collections.namedtuple("AutoEnsembleSubestimator", ["estimator", "train_input_fn", "prediction_only"])): """A subestimator to train and consider for ensembling. Args: estimator: A `tf.estimator.Estimator` or `tf.estimator.tpu.TPUEstimator` instance to consider for ensembling. train_input_fn: A function that provides input data for training as minibatches. It can be used to implement ensemble methods like bootstrap aggregating (a.k.a bagging) where each subnetwork trains on different slices of the training data. The function should construct and return one of the following: * A `tf.data.Dataset` object: Outputs of `Dataset` object must be a tuple `(features, labels)` with same constraints as below. NOTE: A Dataset must return *at least* two batches before hitting the end-of-input, otherwise all of training terminates. TODO: Figure out how to handle single-batch datasets. * A tuple `(features, labels)`: Where `features` is a `tf.Tensor` or a dictionary of string feature name to `Tensor` and `labels` is a `Tensor` or a dictionary of string label name to `Tensor`. Both `features` and `labels` are consumed by `estimator#model_fn`. They should satisfy the expectation of `estimator#model_fn` from inputs. prediction_only: If set to True, only runs the subestimator in prediction mode. Returns: An `AutoEnsembleSubestimator` instance to be auto-ensembled. """ # pylint: enable=g-classes-have-attributes def __new__(cls, estimator, train_input_fn=None, prediction_only=False): return super(AutoEnsembleSubestimator, cls).__new__(cls, estimator, train_input_fn, prediction_only) class _BuilderFromSubestimator(subnetwork_lib.Builder): """An `adanet.Builder` from a :class:`tf.estimator.Estimator`.""" def __init__(self, name, subestimator, logits_fn, last_layer_fn, config): self._name = name self._subestimator = subestimator self._logits_fn = logits_fn self._last_layer_fn = last_layer_fn self._config = config @property def name(self): return self._name def _call_model_fn(self, subestimator, features, labels, mode, summary): with summary.current_scope(): model_fn = subestimator.estimator.model_fn estimator_spec = model_fn( features=features, labels=labels, mode=mode, config=self._config) logits = self._logits_fn(estimator_spec=estimator_spec) last_layer = logits if self._last_layer_fn: last_layer = self._last_layer_fn(estimator_spec=estimator_spec) if estimator_spec.scaffold and estimator_spec.scaffold.local_init_op: local_init_op = estimator_spec.scaffold.local_init_op else: local_init_op = None train_op = subnetwork_lib.TrainOpSpec( estimator_spec.train_op, chief_hooks=estimator_spec.training_chief_hooks, hooks=estimator_spec.training_hooks) return logits, last_layer, train_op, local_init_op def build_subnetwork(self, features, labels, logits_dimension, training, iteration_step, summary, previous_ensemble, config=None): # We don't need an EVAL mode since AdaNet takes care of evaluation for us. subestimator = self._subestimator(config) mode = tf.estimator.ModeKeys.PREDICT if training and not subestimator.prediction_only: mode = tf.estimator.ModeKeys.TRAIN # Call in template to ensure that variables are created once and reused. call_model_fn_template = tf.compat.v1.make_template("model_fn", self._call_model_fn) subestimator_features, subestimator_labels = features, labels local_init_ops = [] if training and subestimator.train_input_fn: # TODO: Consider tensorflow_estimator/python/estimator/util.py. inputs = subestimator.train_input_fn() if isinstance(inputs, (tf_compat.DatasetV1, tf_compat.DatasetV2)): subestimator_features, subestimator_labels = ( tf_compat.make_one_shot_iterator(inputs).get_next()) else: subestimator_features, subestimator_labels = inputs # Construct subnetwork graph first because of dependencies on scope. _, _, bagging_train_op_spec, sub_local_init_op = call_model_fn_template( subestimator, subestimator_features, subestimator_labels, mode, summary) # Graph for ensemble learning gets model_fn_1 for scope. logits, last_layer, _, ensemble_local_init_op = call_model_fn_template( subestimator, features, labels, mode, summary) if sub_local_init_op: local_init_ops.append(sub_local_init_op) if ensemble_local_init_op: local_init_ops.append(ensemble_local_init_op) # Run train op in a hook so that exceptions can be intercepted by the # AdaNet framework instead of the Estimator's monitored training session. hooks = bagging_train_op_spec.hooks + (_SecondaryTrainOpRunnerHook( bagging_train_op_spec.train_op),) train_op_spec = subnetwork_lib.TrainOpSpec( train_op=tf.no_op(), chief_hooks=bagging_train_op_spec.chief_hooks, hooks=hooks) else: logits, last_layer, train_op_spec, local_init_op = call_model_fn_template( subestimator, features, labels, mode, summary) if local_init_op: local_init_ops.append(local_init_op) # TODO: Replace with variance complexity measure. complexity = tf.constant(0.) return subnetwork_lib.Subnetwork( logits=logits, last_layer=last_layer, shared={"train_op": train_op_spec}, complexity=complexity, local_init_ops=local_init_ops) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): return subnetwork.shared["train_op"] def _convert_to_subestimator(candidate): """Converts a candidate to an AutoEnsembleSubestimator.""" if callable(candidate): return candidate if isinstance(candidate, AutoEnsembleSubestimator): return lambda config: candidate from tensorflow_estimator.python.estimator import estimator as estimator_lib # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top if isinstance(candidate, (estimator_lib.Estimator, estimator_lib.EstimatorV2)): return lambda config: AutoEnsembleSubestimator(candidate) raise ValueError( "subestimator in candidate_pool must have type tf.estimator.Estimator or " "adanet.AutoEnsembleSubestimator but got {}".format(candidate.__class__)) class _GeneratorFromCandidatePool(subnetwork_lib.Generator): """An `adanet.Generator` from a pool of `Estimator` and `Model` instances.""" def __init__(self, candidate_pool, logits_fn, last_layer_fn): self._candidate_pool = candidate_pool if logits_fn is None: logits_fn = _default_logits self._logits_fn = logits_fn self._last_layer_fn = last_layer_fn def generate_candidates(self, previous_ensemble, iteration_number, previous_ensemble_reports, all_reports, config): assert config builders = [] candidate_pool = self._maybe_call_candidate_pool(config, iteration_number) if isinstance(candidate_pool, dict): for name in sorted(candidate_pool): builders.append( _BuilderFromSubestimator( name, _convert_to_subestimator(candidate_pool[name]), logits_fn=self._logits_fn, last_layer_fn=self._last_layer_fn, config=config)) return builders for i, estimator in enumerate(candidate_pool): name = "{class_name}{index}".format( class_name=estimator.__class__.__name__, index=i) builders.append( _BuilderFromSubestimator( name, _convert_to_subestimator(estimator), logits_fn=self._logits_fn, last_layer_fn=self._last_layer_fn, config=config)) return builders def _maybe_call_candidate_pool(self, config, iteration_number): if callable(self._candidate_pool): # candidate_pool can be a function. candidate_pool_args = inspect.getargs(self._candidate_pool.__code__).args if "iteration_number" in candidate_pool_args: # TODO: Make the "config" argument optional using introspection. return self._candidate_pool( config=config, iteration_number=iteration_number) else: return self._candidate_pool(config=config) return self._candidate_pool
readthedocs/core/utils/general.py
mforbes/readthedocs.org
2,092
12644761
from django.shortcuts import get_object_or_404 from readthedocs.builds.models import Version from readthedocs.storage import build_environment_storage def wipe_version_via_slugs(version_slug, project_slug): """Wipes the given version of a given project.""" version = get_object_or_404( Version, slug=version_slug, project__slug=project_slug, ) # Delete the cache environment from storage build_environment_storage.delete(version.get_storage_environment_cache_path())
txdav/base/propertystore/test/test_none.py
backwardn/ccs-calendarserver
462
12644807
## # Copyright (c) 2010-2017 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Property store tests. """ from txdav.idav import PropertyChangeNotAllowedError from txdav.base.propertystore.none import PropertyStore from txdav.base.propertystore.test.base import propertyName, propertyValue from txdav.base.propertystore.test import base class PropertyStoreTest(base.NonePropertyStoreTest): def setUp(self): self.propertyStore = PropertyStore("user01") def test_set(self): def doSet(): self.propertyStore[propertyName("foo")] = propertyValue("bar") self.assertRaises(PropertyChangeNotAllowedError, doSet) def test_get(self): self.assertRaises(KeyError, lambda: self.propertyStore[propertyName("foo")]) def test_len(self): self.assertEquals(len(self.propertyStore), 0) def test_keys(self): self.assertEquals(self.propertyStore.keys(), ()) def test_flush(self): self.propertyStore.flush() def test_abort(self): self.propertyStore.abort()
poco/drivers/osx/sdk/OSXUI.py
koyoki/Poco
1,444
12644854
# coding=utf-8 import time import base64 import zlib import re import pyautogui import atomac import operator from pynput.keyboard import Controller from poco.sdk.std.rpc.controller import StdRpcEndpointController from poco.sdk.std.rpc.reactor import StdRpcReactor from poco.utils.net.transport.tcp import TcpSocket from poco.drivers.osx.sdk.OSXUIDumper import OSXUIDumper from poco.sdk.exceptions import UnableToSetAttributeException, NonuniqueSurfaceException, InvalidSurfaceException from poco.utils.six import string_types, PY2 from poco.utils.six.moves import reduce from poco.drivers.osx.sdk.OSXUIFunc import OSXFunc DEFAULT_PORT = 15004 DEFAULT_ADDR = ('0.0.0.0', DEFAULT_PORT) class PocoSDKOSX(object): def __init__(self, addr=DEFAULT_ADDR): self.reactor = None self.addr = addr self.running = False self.root = None self.keyboard = Controller() def Dump(self, _): res = OSXUIDumper(self.root).dumpHierarchy() return res def SetForeground(self): self.root.AXMinimized = False self.app.AXFrontmost = True def GetSDKVersion(self): return '0.0.1' def GetDebugProfilingData(self): return {} def GetScreenSize(self): Width = self.root.AXSize[0] Height = self.root.AXSize[1] return [Width, Height] def GetWindowRect(self): Width = self.root.AXSize[0] Height = self.root.AXSize[1] return [self.root.AXPosition[0], self.root.AXPosition[1], self.root.AXPosition[0] + Width, self.root.AXPosition[1] + Height] def KeyEvent(self, keycode): waittime = 0.05 for c in keycode: self.keyboard.press(key=c) self.keyboard.release(key=c) time.sleep(waittime) return True def Screenshot(self, width): self.SetForeground() size = self.root.AXSize pos = self.root.AXPosition pyautogui.screenshot('Screenshot.png', (pos[0], pos[1], size[0], size[1])).save('Screenshot.png') f = open(r'Screenshot.png', 'rb') deflated = zlib.compress(f.read()) ls_f = base64.b64encode(deflated) f.close() return [ls_f, "png.deflate"] # self.root.ToBitmap().ToFile('Screenshot.bmp') # f = open(r'Screenshot.bmp', 'rb') # ls_f = base64.b64encode(f.read()) # f.close() # return [ls_f, "bmp"] def Click(self, x, y): self.SetForeground() size = self.root.AXSize pos = self.root.AXPosition OSXFunc.click(pos[0] + size[0] * x, pos[1] + size[1] * y) return True def RClick(self, x, y): self.SetForeground() size = self.root.AXSize pos = self.root.AXPosition OSXFunc.rclick(pos[0] + size[0] * x, pos[1] + size[1] * y) return True def DoubleClick(self, x, y): self.SetForeground() size = self.root.AXSize pos = self.root.AXPosition OSXFunc.doubleclick(pos[0] + size[0] * x, pos[1] + size[1] * y) return True def Swipe(self, x1, y1, x2, y2, duration): self.SetForeground() Left = self.root.AXPosition[0] Top = self.root.AXPosition[1] Width = self.root.AXSize[0] Height = self.root.AXSize[1] x1 = Left + Width * x1 y1 = Top + Height * y1 x2 = Left + Width * x2 y2 = Top + Height * y2 sx = abs(x1 - x2) sy = abs(y1 - y2) stepx = sx / (duration * 10.0) # 将滑动距离分割,实现平滑的拖动 stepy = sy / (duration * 10.0) OSXFunc.move(x1, y1) OSXFunc.press(x1, y1) duration = int(duration * 10.0) for i in range(duration + 1): OSXFunc.drag(x1 + stepx * i, y1 + stepy * i) time.sleep(0.1) OSXFunc.release(x2, y2) return True def LongClick(self, x, y, duration, **kwargs): self.SetForeground() # poco std暂不支持选择鼠标按键 button = kwargs.get("button", "left") if button not in ("left", "right"): raise ValueError("Unknow button: " + button) if button is "left": button = 1 else: button = 2 Left = self.root.AXPosition[0] Top = self.root.AXPosition[1] Width = self.root.AXSize[0] Height = self.root.AXSize[1] x = Left + Width * x y = Top + Height * y OSXFunc.move(x, y) OSXFunc.press(x, y, button=button) time.sleep(duration) OSXFunc.release(x, y, button=button) return True def Scroll(self, direction, percent, duration): if direction not in ('vertical', 'horizontal'): raise ValueError('Argument `direction` should be one of "vertical" or "horizontal". Got {}'.format(repr(direction))) x = 0.5 # 先把鼠标移到窗口中间,这样才能保证滚动的是这个窗口。 y = 0.5 steps = percent Left = self.GetWindowRect()[0] Top = self.GetWindowRect()[1] Width = self.GetScreenSize()[0] Height = self.GetScreenSize()[1] x = Left + Width * x y = Top + Height * y x = int(x) y = int(y) OSXFunc.move(x, y) if direction == 'horizontal': interval = float(duration) / (abs(steps) + 1) if steps < 0: for i in range(0, abs(steps)): time.sleep(interval) OSXFunc.scroll(None, 1) else: for i in range(0, abs(steps)): time.sleep(interval) OSXFunc.scroll(None, -1) else: interval = float(duration) / (abs(steps) + 1) if steps < 0: for i in range(0, abs(steps)): time.sleep(interval) OSXFunc.scroll(1) else: for i in range(0, abs(steps)): time.sleep(interval) OSXFunc.scroll(-1) return True def EnumWindows(self, selector): names = [] # 一个应用程序会有多个窗口,因此我们要先枚举一个应用程序里的所有窗口 if 'bundleid' in selector: self.app = OSXFunc.getAppRefByBundleId(selector['bundleid']) windows = self.app.windows() for i, w in enumerate(windows): names.append((w.AXTitle, i)) return names if 'appname' in selector: self.app = OSXFunc.getAppRefByLocalizedName(selector['appname']) windows = self.app.windows() for i, w in enumerate(windows): names.append((w.AXTitle, i)) return names if 'appname_re' in selector: # 此方法由于MacOS API,问题较多 apps = OSXFunc.getRunningApps() # 获取当前运行的所有应用程序 appset = [] # 应用程序集合 appnameset = set() # 应用程序标题集合 for t in apps: tempapp = OSXFunc.getAppRefByPid(t.processIdentifier()) if str(tempapp) == str(atomac.AXClasses.NativeUIElement()): # 通过trick判断应用程序是都否为空 continue attrs = tempapp.getAttributes() if 'AXTitle' in attrs: tit = tempapp.AXTitle if re.match(selector['appname_re'], tit): appset.append(tempapp) appnameset.add(tit) # 这里有Bug,可能会获取到进程的不同副本,所以要通过名字去判断是否唯一 if len(appnameset) is 0: raise InvalidSurfaceException(selector, "Can't find any applications by the given parameter") if len(appnameset) != 1: raise NonuniqueSurfaceException(selector) while len(names) is 0: # 有可能有多个副本,但只有一个真的应用程序有窗口,所以要枚举去找 if len(appset) is 0: return names self.app = appset.pop() windows = self.app.windows() # 获取当前应用程序的所有窗口 for i, w in enumerate(windows): names.append((w.AXTitle, i)) return names return names def ConnectWindowsByWindowTitle(self, selector, wlist): hn = set() for n in wlist: if selector['windowtitle'] == n[0]: hn.add(n[1]) # 添加窗口索引到集合里 if len(hn) == 0: return -1 return hn def ConnectWindowsByWindowTitleRe(self, selector, wlist): hn = set() for n in wlist: if re.match(selector['windowtitle_re'], n[0]): hn.add(n[1]) # 添加窗口索引到集合里 if len(hn) == 0: return -1 return hn def ConnectWindow(self, selector): # 目前来说,如下处理,以后添加更多的参数后需修改代码逻辑 argunums = 0 if 'bundleid' in selector: argunums += 1 if 'appname' in selector: argunums += 1 if 'appname_re' in selector: argunums += 1 if argunums == 0: raise ValueError("Expect bundleid or appname, got none") elif argunums != 1: raise ValueError("Too many arguments, only need bundleid or appname or appname_re") winlist = self.EnumWindows(selector) handleSetList = [] if 'windowtitle' in selector: handleSetList.append(self.ConnectWindowsByWindowTitle(selector, winlist)) if 'windowindex' in selector: handleSetList.append(set([selector['windowindex']])) if "windowtitle_re" in selector: handleSetList.append(self.ConnectWindowsByWindowTitleRe(selector, winlist)) while -1 in handleSetList: handleSetList.remove(-1) # 有些参数没有提供会返回-1.把所有的-1去掉 if len(handleSetList) == 0: # 三种方法都找不到窗口 raise InvalidSurfaceException(selector, "Can't find any applications by the given parameter") handleSet = reduce(operator.__and__, handleSetList) # 提供了多个参数来确定唯一一个窗口,所以要做交集,取得唯一匹配的窗口 if len(handleSet) == 0: raise InvalidSurfaceException(selector, "Can't find any applications by the given parameter") elif len(handleSet) != 1: raise NonuniqueSurfaceException(selector) else: hn = handleSet.pop() # 取得该窗口的索引 w = self.app.windows() if len(w) <= hn: raise IndexError("Unable to find the specified window through the index, you may have closed the specified window during the run") self.root = self.app.windows()[hn] self.SetForeground() return True def run(self): self.reactor = StdRpcReactor() self.reactor.register('Dump', self.Dump) self.reactor.register('GetSDKVersion', self.GetSDKVersion) self.reactor.register('GetDebugProfilingData', self.GetDebugProfilingData) self.reactor.register('GetScreenSize', self.GetScreenSize) self.reactor.register('Screenshot', self.Screenshot) self.reactor.register('Click', self.Click) self.reactor.register('Swipe', self.Swipe) self.reactor.register('LongClick', self.LongClick) self.reactor.register('SetForeground', self.SetForeground) self.reactor.register('ConnectWindow', self.ConnectWindow) self.reactor.register('Scroll', self.Scroll) self.reactor.register('RClick', self.RClick) self.reactor.register('DoubleClick', self.DoubleClick) self.reactor.register('KeyEvent', self.KeyEvent) transport = TcpSocket() transport.bind(self.addr) self.rpc = StdRpcEndpointController(transport, self.reactor) if self.running is False: self.running = True self.rpc.serve_forever() if __name__ == '__main__': pocosdk = PocoSDKOSX() # pocosdk.ConnectWindow({'appname_re': u'系统偏好', 'windowindex': 0}) # pocosdk.ConnectWindow({'appname': u'系统偏好设置', 'windowtitle': u'系统偏好设置'}) # pocosdk.ConnectWindow({'bundleid': u'com.microsoft.VSCode', 'windowindex': 0}) pocosdk.run()
mars/serialization/serializables/__init__.py
hxri/mars
2,413
12644886
<gh_stars>1000+ # Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .core import Serializable, SerializableMeta from .field import AnyField, IdentityField, BoolField, \ Int8Field, Int16Field, Int32Field, Int64Field, \ UInt8Field, UInt16Field, UInt32Field, UInt64Field, \ Float16Field, Float32Field, Float64Field, Complex64Field, Complex128Field, \ StringField, BytesField, KeyField, NDArrayField, \ Datetime64Field, Timedelta64Field, DataTypeField, \ IndexField, SeriesField, DataFrameField, IntervalArrayField, \ SliceField, FunctionField, NamedTupleField, TZInfoField, \ ListField, TupleField, DictField, ReferenceField, OneOfField from .field_type import FieldTypes
awacs/redshift_data.py
michael-k/awacs
358
12644901
# Copyright (c) 2012-2021, <NAME> <<EMAIL>> # All rights reserved. # # See LICENSE file for full license. from .aws import Action as BaseAction from .aws import BaseARN service_name = "Amazon Redshift Data API" prefix = "redshift-data" class Action(BaseAction): def __init__(self, action: str = None) -> None: super().__init__(prefix, action) class ARN(BaseARN): def __init__(self, resource: str = "", region: str = "", account: str = "") -> None: super().__init__( service=prefix, resource=resource, region=region, account=account ) BatchExecuteStatement = Action("BatchExecuteStatement") CancelStatement = Action("CancelStatement") DescribeStatement = Action("DescribeStatement") DescribeTable = Action("DescribeTable") ExecuteStatement = Action("ExecuteStatement") GetStatementResult = Action("GetStatementResult") ListDatabases = Action("ListDatabases") ListSchemas = Action("ListSchemas") ListStatements = Action("ListStatements") ListTables = Action("ListTables")
preprocessing/detect_landmarks70.py
enviromachinebeast/head2head
206
12644918
import os from skimage import io from skimage.color import rgb2gray import numpy as np import dlib import argparse import collections from tqdm import tqdm import cv2 import matplotlib.pyplot as plt IMG_EXTENSIONS = ['.png'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def get_image_paths_dict(dir): # Returns dict: {name: [path1, path2, ...], ...} image_files = {} assert os.path.isdir(dir), '%s is not a valid directory' % dir for root, _, fnames in sorted(os.walk(dir)): for fname in fnames: if is_image_file(fname) and '/images/' in root: path = os.path.join(root, fname) seq_name = os.path.basename(root).split('_')[0] if seq_name not in image_files: image_files[seq_name] = [path] else: image_files[seq_name].append(path) # Sort paths for each sequence for k, v in image_files.items(): image_files[k] = sorted(v) # Return directory sorted for keys (identity names) return collections.OrderedDict(sorted(image_files.items())) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def save_landmarks(image_pths, landmarks): # Make dirs landmark_pths = [p.replace('/images/', '/landmarks70/') for p in image_pths] out_paths = set(os.path.dirname(landmark_pth) for landmark_pth in landmark_pths) for out_path in out_paths: mkdir(out_path) print('Saving results') for landmark, image_pth in tqdm(zip(landmarks, image_pths), total=len(image_pths)): landmark_file = os.path.splitext(image_pth.replace('/images/', '/landmarks70/'))[0] + '.txt' np.savetxt(landmark_file, landmark) def dirs_exist(image_pths): nmfc_pths = [p.replace('/images/', '/landmarks70/') for p in image_pths] out_paths = set(os.path.dirname(nmfc_pth) for nmfc_pth in nmfc_pths) return all([os.path.exists(out_path) for out_path in out_paths]) def get_mass_center(points, gray): im = np.zeros_like(gray) cv2.fillPoly(im, [points], 1) eyes_image = np.multiply(gray, im) inverse_intensity = np.divide(np.ones_like(eyes_image), eyes_image, out=np.zeros_like(eyes_image), where=eyes_image!=0) max = np.max(inverse_intensity) inverse_intensity = inverse_intensity / max coordinates_grid = np.indices((gray.shape[0], gray.shape[1])) nom = np.sum(np.multiply(coordinates_grid, np.expand_dims(inverse_intensity, axis=0)), axis=(1,2)) denom = np.sum(inverse_intensity) mass_center = np.flip(nom / denom) return mass_center def add_eye_pupils_landmarks(points, image): I = rgb2gray(image) left_eye_points = points[36:42,:] right_eye_points = points[42:48,:] left_pupil = get_mass_center(left_eye_points, I).astype(np.int32) right_pupil = get_mass_center(right_eye_points, I).astype(np.int32) points[68, :] = left_pupil points[69, :] = right_pupil return points def detect_landmarks(img_paths, detector, predictor): landmarks = [] prev_points = None for i in tqdm(range(len(img_paths))): img = io.imread(img_paths[i]) dets = detector(img, 1) if len(dets) > 0: shape = predictor(img, dets[0]) points = np.empty([70, 2], dtype=int) for b in range(68): points[b,0] = shape.part(b).x points[b,1] = shape.part(b).y points = add_eye_pupils_landmarks(points, img) prev_points = points landmarks.append(points) else: print('No face detected, using previous landmarks') landmarks.append(prev_points) return landmarks def main(): print('---------- 70 landmarks detector --------- \n') parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', type=str, default='head2headDataset', help='Path to the dataset directory.') args = parser.parse_args() predictor_path = 'preprocessing/files/shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) args.dataset_path = os.path.join('datasets', args.dataset_name, 'dataset') images_dict = get_image_paths_dict(args.dataset_path) n_image_dirs = len(images_dict) print('Number of identities for landmark detection: %d \n' % n_image_dirs) # Iterate through the images_dict n_completed = 0 for name, image_pths in images_dict.items(): n_completed += 1 if not dirs_exist(image_pths): landmarks = detect_landmarks(image_pths, detector, predictor) save_landmarks(image_pths, landmarks) print('(%d/%d) %s [SUCCESS]' % (n_completed, n_image_dirs, name)) else: print('(%d/%d) %s already processed!' % (n_completed, n_image_dirs, name)) if __name__=='__main__': main()
sdk/python/pulumi_aws/serverlessrepository/get_application.py
chivandikwa/pulumi-aws
260
12644924
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetApplicationResult', 'AwaitableGetApplicationResult', 'get_application', 'get_application_output', ] @pulumi.output_type class GetApplicationResult: """ A collection of values returned by getApplication. """ def __init__(__self__, application_id=None, id=None, name=None, required_capabilities=None, semantic_version=None, source_code_url=None, template_url=None): if application_id and not isinstance(application_id, str): raise TypeError("Expected argument 'application_id' to be a str") pulumi.set(__self__, "application_id", application_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if required_capabilities and not isinstance(required_capabilities, list): raise TypeError("Expected argument 'required_capabilities' to be a list") pulumi.set(__self__, "required_capabilities", required_capabilities) if semantic_version and not isinstance(semantic_version, str): raise TypeError("Expected argument 'semantic_version' to be a str") pulumi.set(__self__, "semantic_version", semantic_version) if source_code_url and not isinstance(source_code_url, str): raise TypeError("Expected argument 'source_code_url' to be a str") pulumi.set(__self__, "source_code_url", source_code_url) if template_url and not isinstance(template_url, str): raise TypeError("Expected argument 'template_url' to be a str") pulumi.set(__self__, "template_url", template_url) @property @pulumi.getter(name="applicationId") def application_id(self) -> str: """ The ARN of the application. """ return pulumi.get(self, "application_id") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: """ The name of the application. """ return pulumi.get(self, "name") @property @pulumi.getter(name="requiredCapabilities") def required_capabilities(self) -> Sequence[str]: """ A list of capabilities describing the permissions needed to deploy the application. """ return pulumi.get(self, "required_capabilities") @property @pulumi.getter(name="semanticVersion") def semantic_version(self) -> str: return pulumi.get(self, "semantic_version") @property @pulumi.getter(name="sourceCodeUrl") def source_code_url(self) -> str: """ A URL pointing to the source code of the application version. """ return pulumi.get(self, "source_code_url") @property @pulumi.getter(name="templateUrl") def template_url(self) -> str: """ A URL pointing to the Cloud Formation template for the application version. """ return pulumi.get(self, "template_url") class AwaitableGetApplicationResult(GetApplicationResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetApplicationResult( application_id=self.application_id, id=self.id, name=self.name, required_capabilities=self.required_capabilities, semantic_version=self.semantic_version, source_code_url=self.source_code_url, template_url=self.template_url) def get_application(application_id: Optional[str] = None, semantic_version: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetApplicationResult: """ Use this data source to get information about an AWS Serverless Application Repository application. For example, this can be used to determine the required `capabilities` for an application. ## Example Usage ```python import pulumi import pulumi_aws as aws example_application = aws.serverlessrepository.get_application(application_id="arn:aws:serverlessrepo:us-east-1:123456789012:applications/ExampleApplication") example_cloud_formation_stack = aws.serverlessrepository.CloudFormationStack("exampleCloudFormationStack", application_id=example_application.application_id, semantic_version=example_application.semantic_version, capabilities=example_application.required_capabilities) ``` :param str application_id: The ARN of the application. :param str semantic_version: The requested version of the application. By default, retrieves the latest version. """ __args__ = dict() __args__['applicationId'] = application_id __args__['semanticVersion'] = semantic_version if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:serverlessrepository/getApplication:getApplication', __args__, opts=opts, typ=GetApplicationResult).value return AwaitableGetApplicationResult( application_id=__ret__.application_id, id=__ret__.id, name=__ret__.name, required_capabilities=__ret__.required_capabilities, semantic_version=__ret__.semantic_version, source_code_url=__ret__.source_code_url, template_url=__ret__.template_url) @_utilities.lift_output_func(get_application) def get_application_output(application_id: Optional[pulumi.Input[str]] = None, semantic_version: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetApplicationResult]: """ Use this data source to get information about an AWS Serverless Application Repository application. For example, this can be used to determine the required `capabilities` for an application. ## Example Usage ```python import pulumi import pulumi_aws as aws example_application = aws.serverlessrepository.get_application(application_id="arn:aws:serverlessrepo:us-east-1:123456789012:applications/ExampleApplication") example_cloud_formation_stack = aws.serverlessrepository.CloudFormationStack("exampleCloudFormationStack", application_id=example_application.application_id, semantic_version=example_application.semantic_version, capabilities=example_application.required_capabilities) ``` :param str application_id: The ARN of the application. :param str semantic_version: The requested version of the application. By default, retrieves the latest version. """ ...
src/python/twitter/common/reviewboard/reviewboard.py
zhouyijiaren/commons
1,143
12644927
from __future__ import print_function __author__ = '<NAME>' import base64 import cookielib import mimetools import os import getpass import json import sys import urllib2 from urlparse import urljoin from urlparse import urlparse VERSION = '0.8-precommit' class APIError(Exception): pass class RepositoryInfo: """ A representation of a source code repository. """ def __init__(self, path=None, base_path=None, supports_changesets=False, supports_parent_diffs=False): self.path = path self.base_path = base_path self.supports_changesets = supports_changesets self.supports_parent_diffs = supports_parent_diffs self.debug('repository info: %s' % self) def debug(self, message): """ Does nothing by default but can be oferwritten on an Repository info object to print the message to the screen and such. """ pass def __str__(self): return ('Path: %s, Base path: %s, Supports changesets: %s' % (self.path, self.base_path, self.supports_changesets)) class ReviewBoardServer: """ An instance of a Review Board server. """ def __init__(self, url, cookie_file=None, info=None, repository=None, username=None, password=<PASSWORD>, debug=False, timeout=None): self._debug = debug # Load the config and cookie files if cookie_file is None: if 'USERPROFILE' in os.environ: homepath = os.path.join(os.environ['USERPROFILE'], 'Local Settings', 'Application Data') elif 'HOME' in os.environ: homepath = os.environ['HOME'] else: homepath = '' cookie_file = os.path.join(homepath, '.post-review-cookies.txt') if info is None: info = RepositoryInfo(path=repository, base_path='/') self.url = url if self.url[-1] != '/': self.url += '/' self.info = info self.cookie_file = cookie_file self.cookie_jar = cookielib.MozillaCookieJar(self.cookie_file) self.timeout = timeout if not self.has_valid_cookie() and (not username or not password): print('==> Review Board Login Required') print('Enter username and password for Review Board at %s' % self.url) username = raw_input('Username: ') password = <PASSWORD>('Password: ') self._add_auth_params(username, password) def _add_auth_params(self, username, password): headers = [('User-agent', 'post-review/' + VERSION)] if username and password: self.debug('Authorizing as user %s' % username) base64string = base64.encodestring('%s:%s' % (username, password)) base64string = base64string[:-1] headers.append(('Authorization', 'Basic %s' % base64string)) # Set up the HTTP libraries to support all of the features we need. opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(self.cookie_jar)) opener.addheaders = headers urllib2.install_opener(opener) def get_url(self, rb_id): return urljoin(self.url, '/r/%s' % (rb_id)) def debug(self, message): """ Prints a debug message, if debug is enabled. """ if self._debug: print('[Debug] %s' % message) def die(self, msg=None): """ Cleanly exits the program with an error message. Erases all remaining temporary files. """ raise Exception(msg) def has_valid_cookie(self): """ Load the user's cookie file and see if they have a valid 'rbsessionid' cookie for the current Review Board server. Returns true if so and false otherwise. """ try: parsed_url = urlparse(self.url) host = parsed_url[1] path = parsed_url[2] or '/' # Cookie files don't store port numbers, unfortunately, so # get rid of the port number if it's present. host = host.split(':')[0] self.debug('Looking for "%s %s" cookie in %s' % (host, path, self.cookie_file)) self.cookie_jar.load(self.cookie_file, ignore_expires=True) try: cookie = self.cookie_jar._cookies[host][path]['rbsessionid'] if not cookie.is_expired(): self.debug('Loaded valid cookie -- no login required') return True self.debug('Cookie file loaded, but cookie has expired') except KeyError: self.debug('Cookie file loaded, but no cookie for this server') except IOError, error: self.debug('Couldn\'t load cookie file: %s' % error) return False def new_review_request(self, changenum=None, submit_as=None, diff_only=False): """ Creates a review request on a Review Board server, updating an existing one if the changeset number already exists. If submit_as is provided, the specified user name will be recorded as the submitter of the review request (given that the logged in user has the appropriate permissions). """ try: data = { 'repository_path': self.info.path } if changenum: data['changenum'] = changenum if submit_as: self.debug('Submitting the review request as %s' % submit_as) data['submit_as'] = submit_as rsp = self.api_call('api/review-requests/new/', data) except APIError, e: rsp, = e.args if not diff_only: if rsp['err']['code'] == 204: # Change number in use self.debug('Review request already exists. Updating it...') rsp = self.api_call( 'api/review-requests/%s/update_from_changenum/' % rsp['review_request']['id']) else: raise e self.debug('Review request created') return rsp['review_request'] def set_submitted(self, review_request_id): """ Marks a review request as submitted. """ self.api_call('api/review-requests/%s/' % review_request_id, { 'status': 'submitted', }, method='PUT') def set_discarded(self, review_request_id): """ Marks a review request as discarded. """ self.api_call('api/review-requests/%s/' % review_request_id, { 'status': 'discarded', }, method='PUT') def send_review_reply(self, review_request_id, message): """ Replies to a review with a message. """ self.api_call('api/review-requests/%s/reviews/' % review_request_id, { 'public': True, 'body_top': message }, method='POST') def set_review_request_field(self, review_request, field, value): """ Sets a field in a review request to the specified value. """ rid = review_request['id'] self.debug('Attempting to set field "%s" to "%s" for review request "%s"' % (field, value, rid)) self.api_call('api/review-requests/%s/draft/set/' % rid, {field: value}) def _smart_query(self, base_url, element_name, start=0, max_results=25): base_url += "&" if "?" in base_url else "?" if max_results < 0: rsp = self.api_call('%scounts-only=true' % base_url) count = rsp['count'] files = [] while len(files) < count: rsp = self.api_call('%sstart=%s&max-results=200' % (base_url, len(files))) files.extend(rsp[element_name]) return files else: rsp = self.api_call('%sstart=%d&max-results=%d' % (base_url, start, max_results)) return rsp[element_name] def fetch_review_requests(self, time_added_from=None, time_added_to=None, last_updated_from=None, last_updated_to=None, from_user=None, to_groups=None, to_user_groups=None, to_users=None, to_users_directly=None, ship_it=None, status=None, start=0, max_results=25): """ Returns a list of review requests that meet specified criteria. If max_results is negative, then ignores 'start' and returns all the matched review requests. """ url = "api/review-requests/" params = [ ("time-added-from", time_added_from), ("time-added-to", time_added_to), ("last-updated-from", last_updated_from), ("last-updated-to", last_updated_to), ("from-user", from_user), ("to-groups", to_groups), ("to-user-groups", to_user_groups), ("to-users", to_users), ("to-users-directly", to_users_directly), ("ship-it", ship_it), ("status", status) ] qs = "&".join(["%s=%s" % p for p in params if p[1] is not None]) url = ("%s?%s" % (url, qs)) if len(qs) > 0 else url return self._smart_query(url, "review_requests", start, max_results) def get_review_request(self, rid): """ Returns the review request with the specified ID. """ rsp = self.api_call('api/review-requests/%s/' % rid) return rsp['review_request'] def save_draft(self, review_request): """ Saves a draft of a review request. """ self.api_call('api/review-requests/%s/draft/save/' % review_request['id']) self.debug('Review request draft saved') def upload_diff(self, review_request, diff_content, parent_diff_content): """ Uploads a diff to a Review Board server. """ self.debug('Uploading diff, size: %d' % len(diff_content)) if parent_diff_content: self.debug('Uploading parent diff, size: %d' % len(parent_diff_content)) fields = {} files = {} if self.info.base_path: fields['basedir'] = self.info.base_path files['path'] = { 'filename': 'diff', 'content': diff_content } if parent_diff_content: files['parent_diff_path'] = { 'filename': 'parent_diff', 'content': parent_diff_content } self.api_call('api/review-requests/%s/diff/new/' % review_request['id'], fields, files) def publish(self, review_request): """ Publishes a review request. """ self.debug('Publishing') self.api_call('api/review-requests/%s/publish/' % review_request['id']) def fetch_reviews(self, rb_id, start=0, max_results=25): """ Fetches reviews in response to a review request. If max_results is negative, then ignores 'start' and returns all reviews. """ url = 'api/review-requests/%s/reviews/' % rb_id return self._smart_query(url, 'reviews', start, max_results) def get_reviews(self, rb_id, start=0, max_results=25): return self.fetch_reviews(rb_id, start, max_results) def get_replies(self, rb_id, review, start=0, max_results=25): """ Fetches replies to a given review in a review request. If max_results is negative, then ignores 'start' and returns all reviews. """ url = 'api/review-requests/%s/reviews/%s/replies/' % (rb_id, review) return self._smart_query(url, 'replies', start, max_results) def process_json(self, data): """ Loads in a JSON file and returns the data if successful. On failure, APIError is raised. """ rsp = json.loads(data) if rsp['stat'] == 'fail': raise APIError, rsp return rsp def _make_url(self, path): """Given a path on the server returns a full http:// style url""" url = urljoin(self.url, path) if not url.startswith('http'): url = 'http://%s' % url return url def http_request(self, path, fields=None, files=None, headers=None, method=None): """ Executes an HTTP request against the specified path, storing any cookies that were set. By default, if there are no field or files a GET is issued, otherwise a POST is used. The HTTP verb can be customized by specifying method. """ if fields: debug_fields = fields.copy() else: debug_fields = {} if 'password' in debug_fields: debug_fields['password'] = '**************' url = self._make_url(path) self.debug('HTTP request to %s: %s' % (url, debug_fields)) headers = headers or {} if fields or files: content_type, body = self._encode_multipart_formdata(fields, files) headers.update({ 'Content-Type': content_type, 'Content-Length': str(len(body)) }) r = urllib2.Request(url, body, headers) else: r = urllib2.Request(url, headers=headers) if method: r.get_method = lambda: method try: return urllib2.urlopen(r, timeout=self.timeout).read() except urllib2.URLError, e: try: self.debug(e.read()) except AttributeError: pass self.die('Unable to access %s. The host path may be invalid\n%s' % (url, e)) except urllib2.HTTPError, e: return self.die('Unable to access %s (%s). The host path may be invalid' '\n%s' % (url, e.code, e.read())) def api_call(self, path, fields=None, files=None, method=None): """ Performs an API call at the specified path. By default, if there are no field or files a GET is issued, otherwise a POST is used. The HTTP verb can be customized by specifying method. """ return self.process_json( self.http_request(path, fields, files, {'Accept': 'application/json'}, method=method)) def _encode_multipart_formdata(self, fields, files): """ Encodes data for use in an HTTP POST or PUT. """ BOUNDARY = mimetools.choose_boundary() content = [] fields = fields or {} files = files or {} for key in fields: content.append('--' + BOUNDARY + '\r\n') content.append('Content-Disposition: form-data; name="%s"\r\n' % key) content.append('\r\n') content.append(fields[key]) content.append('\r\n') for key in files: filename = files[key]['filename'] value = files[key]['content'] content.append('--' + BOUNDARY + '\r\n') content.append('Content-Disposition: form-data; name="%s"; ' % key) content.append('filename="%s"\r\n' % filename) content.append('\r\n') content.append(value) content.append('\r\n') content.append('--') content.append(BOUNDARY) content.append('--\r\n') content.append('\r\n') content_type = 'multipart/form-data; boundary=%s' % BOUNDARY return content_type, ''.join(map(str, content)) def post_review(self, changenum, diff_content=None, parent_diff_content=None, submit_as=None, target_groups=None, target_people=None, summary=None, branch=None, bugs_closed=None, description=None, testing_done=None, rid=None, publish=True): """ Attempts to create a review request on a Review Board server and upload a diff. On success, the review request path is displayed. """ try: save_draft = False if rid: review_request = self.get_review_request(rid) else: review_request = self.new_review_request(changenum, submit_as) if target_groups: self.set_review_request_field(review_request, 'target_groups', target_groups) save_draft = True if target_people: self.set_review_request_field(review_request, 'target_people', target_people) save_draft = True if summary: self.set_review_request_field(review_request, 'summary', summary) save_draft = True if branch: self.set_review_request_field(review_request, 'branch', branch) save_draft = True if bugs_closed: self.set_review_request_field(review_request, 'bugs_closed', bugs_closed) save_draft = True if description: self.set_review_request_field(review_request, 'description', description) save_draft = True if testing_done: self.set_review_request_field(review_request, 'testing_done', testing_done) save_draft = True if save_draft: self.save_draft(review_request) except APIError, e: rsp, = e.args if rid: return self.die('Error getting review request %s: %s (code %s)' % (rid, rsp['err']['msg'], rsp['err']['code'])) else: error_message = 'Error creating review request: %s (code %s)\n' % (rsp['err']['msg'], rsp['err']['code']) if rsp['err']['code'] == 105: bad_keys = rsp['fields'] if bad_keys: error_message = 'Invalid key-value pairs:\n' for key, issues in bad_keys.items(): error_message += '%s: %s\n' % (key, ', '.join(issues)) return self.die(error_message) if not self.info.supports_changesets: try: self.upload_diff(review_request, diff_content, parent_diff_content) except APIError, e: rsp, = e.args print('Error uploading diff: %s (%s)' % (rsp['err']['msg'], rsp['err']['code'])) self.debug(rsp) self.die('Your review request still exists, but the diff is not ' 'attached.') if publish: self.publish(review_request) request_url = 'r/' + str(review_request['id']) review_url = urljoin(self.url, request_url) if not review_url.startswith('http'): review_url = 'http://%s' % review_url sys.stderr.write('Review request #%s posted.\n' % review_request['id']) sys.stderr.write('\n%s\n' % review_url) return 1 def get_raw_diff(self, rb_id): """ Returns the raw diff for the given reviewboard item. """ return self.http_request('/r/%s/diff/raw/' % rb_id, {}) def get_changes(self, rb_id, start=0, max_results=25): """ Returns a list of changes of the sepcified review request. """ url = 'api/review-requests/%s/changes/' % rb_id return self._smart_query(url, 'changes', start, max_results) def get_diffs(self, rb_id): """ Returns a list of diffs of the sepcified review request. """ rsp = self.api_call('api/review-requests/%s/diffs/' % rb_id) return rsp['diffs'] def get_files(self, rb_id, revision, start=0, max_results=25): """ Returns a list of files in the specified diff. If max_results is negative, then ignores 'start' and returns all the files. """ url = 'api/review-requests/%d/diffs/%d/files/' % (rb_id, revision) return self._smart_query(url, "files", start, max_results) def get_diff_comments(self, rb_id, revision, file_id, start=0, max_results=25): """ Returns a list of diff comments for the specified file. If max_results is negative, then ignores 'start' and returns all the files. """ url = 'api/review-requests/%d/diffs/%d/files/%d/diff-comments/' % (rb_id, revision, file_id) return self._smart_query(url, "diff_comments", start, max_results)
operational_analysis/methods/quality_check_automation.py
eumiro/OpenOA
123
12644931
import numpy as np import matplotlib.pyplot as plt import pandas as pd import h5pyd import dateutil from pyproj import Proj from operational_analysis.toolkits import timeseries from operational_analysis.toolkits import filters from operational_analysis.toolkits import power_curve from operational_analysis import logged_method_call from operational_analysis import logging logger = logging.getLogger(__name__) class WindToolKitQualityControlDiagnosticSuite(object): """This class defines key analytical procedures in a quality check process for turbine data. After analyzing the data for missing and duplicate timestamps, timezones, Daylight Savings Time corrections, and extrema values, the user can make informed decisions about how to handle the data. """ @logged_method_call def __init__(self,df, ws_field='wmet_wdspd_avg', power_field= 'wtur_W_avg', time_field= 'datetime', id_field= None, freq = '10T', lat_lon= (0,0), dst_subset = 'American', check_tz = False): """ Initialize QCAuto object with data and parameters. Args: df(:obj:`DataFrame object`): DataFrame object that contains data ws_field(:obj: 'String'): String name of the windspeed field to df power_field(:obj: 'String'): String name of the power field to df time_field(:obj: 'String'): String name of the time field to df id_field(:obj: 'String'): String name of the id field to df freq(:obj: 'String'): String representation of the resolution for the time field to df lat_lon(:obj: 'tuple'): latitude and longitude of farm represented as a tuple dst_subset(:obj: 'String'): Set of Daylight Savings Time transitions to use (currently American or France) check_tz(:obj: 'boolean'): Boolean on whether to use WIND Toolkit data to assess timezone of data """ logger.info("Initializing QC_Automation Object") self._df = df self._ws = ws_field self._w = power_field self._t = time_field self._id = id_field self._freq = freq self._lat_lon = lat_lon self._dst_subset = dst_subset self._check_tz = check_tz if self._id==None: self._id = 'ID' self._df['ID'] = 'Data' @logged_method_call def run(self): """ Run the QC analysis functions in order by calling this function. Args: (None) Returns: (None) """ logger.info("Identifying Time Duplications") self.dup_time_identification() logger.info("Identifying Time Gaps") self.gap_time_identification() logger.info('Grabbing DST Transition Times') self.create_dst_df() if self._check_tz: logger.info("Evaluating timezone deviation from UTC") self.ws_diurnal_prep() self.corr_df_calc() logger.info("Isolating Extrema Values") self.max_min() logger.info("QC Diagnostic Complete") def dup_time_identification(self): """ This function identifies any time duplications in the dataset. Args: (None) Returns: (None) """ self._time_duplications = self._df.loc[self._df.duplicated(subset= [self._id, self._t]), self._t] def gap_time_identification(self): """ This function identifies any time gaps in the dataset. Args: (None) Returns: (None) """ self._time_gaps = timeseries.find_time_gaps(self._df[self._t], freq=self._freq) def indicesForCoord(self,f): """ This function finds the nearest x/y indices for a given lat/lon. Rather than fetching the entire coordinates database, which is 500+ MB, this uses the Proj4 library to find a nearby point and then converts to x/y indices. This function relies on the Wind Toolkit HSDS API. Args: f (h5 file): file to be read in Returns: x and y coordinates corresponding to a given lat/lon as a tuple """ dset_coords = f['coordinates'] projstring = """+proj=lcc +lat_1=30 +lat_2=60 +lat_0=38.47240422490422 +lon_0=-96.0 +x_0=0 +y_0=0 +ellps=sphere +units=m +no_defs """ projectLcc = Proj(projstring) origin_ll = reversed(dset_coords[0][0]) # Grab origin directly from database origin = projectLcc(*origin_ll) lat, lon = self._lat_lon coords = (lon, lat) coords = projectLcc(*coords) delta = np.subtract(coords, origin) ij = [int(round(x/2000)) for x in delta] return tuple(reversed(ij)) def ws_diurnal_prep(self, start_date = '2007-01-01', end_date = '2013-12-31'): """ This method links into Wind Toolkit data on AWS as a data source, grabs wind speed data, and calculates diurnal hourly averages. These diurnal hourly averages are returned as a Pandas series. Args: start_date(:obj:'String'): start date to diurnal analysis (optional) end_date(:obj:'String'): end date to diurnal analysis (optional) Returns: ws_diurnal (Pandas Series): Series where each index corresponds to a different hour of the day and each value corresponds to the average windspeed """ f = h5pyd.File("/nrel/wtk-us.h5", 'r') # Setup date and time dt = f["datetime"] dt = pd.DataFrame({"datetime": dt[:]},index=range(0,dt.shape[0])) dt['datetime'] = dt['datetime'].apply(dateutil.parser.parse) project_idx = self.indicesForCoord(f) print("y,x indices for project: \t\t {}".format(project_idx)) print("Coordinates of project: \t {}".format(self._lat_lon)) print("Coordinates of project: \t {}".format(f["coordinates"][project_idx[0]][project_idx[1]])) # Get wind speed at 80m from the specified lat/lon ws = f['windspeed_80m'] t_range = dt.loc[(dt.datetime >= start_date) & (dt.datetime < end_date)].index # Convert to dataframe ws_tseries = ws[min(t_range):max(t_range)+1, project_idx[0], project_idx[1]] ws_df=pd.DataFrame(index=dt.loc[t_range,'datetime'],data={'ws':ws_tseries}) # Calculate diurnal profile of wind speed ws_diurnal=ws_df.groupby(ws_df.index.hour).mean() self._wtk_ws_diurnal= ws_diurnal def wtk_diurnal_plot(self): """ This method plots the WTK diurnal plot alongisde the hourly power averages of the df across all turbines Args: (None) Returns: (None) """ sum_df = self._df.groupby(self._df[self._t])[self._w].sum().to_frame() #df_temp = sum_df.copy() #df_temp[self._t] = df_temp.index #df_diurnal = df_temp.groupby(df_temp[self._t].dt.hour)[self._w].mean() df_diurnal = sum_df.groupby(sum_df.index.hour)[self._w].mean() ws_norm = self._wtk_ws_diurnal/self._wtk_ws_diurnal.mean() df_norm = df_diurnal/df_diurnal.mean() plt.figure(figsize=(8,5)) plt.plot(ws_norm, label = 'WTK wind speed (UTC)') plt.plot(df_norm, label = 'QC power') plt.grid() plt.xlabel('Hour of day') plt.ylabel('Normalized values') plt.title('WTK and QC Timezone Comparison') plt.legend() plt.show() def corr_df_calc(self): """ This method creates a correlation series that compares the current power data (with different shift thresholds) to wind speed data from the WTK with hourly resolution. Args: (None) Returns: (None) """ self._df_diurnal = self._df.groupby(self._df[self._t].dt.hour)[self._w].mean() return_corr = np.empty((24)) for i in np.arange(24): return_corr[i] = np.corrcoef(self._wtk_ws_diurnal['ws'], np.roll(self._df_diurnal,i))[0,1] self._hour_shift = pd.DataFrame(index = np.arange(24), data = {'corr_by_hour': return_corr}) def create_dst_df(self): if self._dst_subset == 'American': # American DST Transition Dates (Local Time) self._dst_dates = pd.DataFrame() self._dst_dates['year'] = [2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] self._dst_dates['start'] = ['3/9/08 2:00', '3/8/09 2:00', '3/14/10 2:00', '3/13/11 2:00', '3/11/12 2:00', '3/10/13 2:00', '3/9/14 2:00', '3/8/15 2:00', '3/13/16 2:00', '3/12/17 2:00', '3/11/18 2:00' , '3/10/19 2:00'] self._dst_dates['end'] = ['11/2/08 2:00', '11/1/09 2:00', '11/7/10 2:00', '11/6/11 2:00', '11/4/12 2:00', '11/3/13 2:00', '11/2/14 2:00', '11/1/15 2:00', '11/6/16 2:00', '11/5/17 2:00', '11/4/18 2:00', '11/3/19 2:00'] else: # European DST Transition Dates (Local Time) self._dst_dates = pd.DataFrame() self._dst_dates['year'] = [2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] self._dst_dates['start'] = ['3/30/08 2:00', '3/29/09 2:00', '3/28/10 2:00', '3/27/11 2:00', '3/25/12 2:00', '3/31/13 2:00', '3/30/14 2:00', '3/29/15 2:00', '3/27/16 2:00', '3/26/17 2:00', '3/25/18 2:00' , '3/31/19 2:00'] self._dst_dates['end'] = ['10/26/08 3:00', '10/25/09 3:00', '10/31/10 3:00', '10/30/11 3:00', '10/28/12 3:00', '10/27/13 3:00', '10/26/14 3:00', '10/25/15 3:00', '10/30/16 3:00', '10/29/17 3:00', '10/28/18 3:00', '10/27/19 3:00'] def daylight_savings_plot(self, hour_window = 3): """ Produce a timeseries plot showing daylight savings events for each year using the passed data. Args: hour_window(:obj: 'int'): number of hours outside of the Daylight Savings Time transitions to view in the plot (optional) Returns: (None) """ self._df_dst = self._df.loc[self._df[self._id]==self._df[self._id].unique()[0], :] df_full = timeseries.gap_fill_data_frame(self._df_dst, self._t, self._freq) # Gap fill so spring ahead is visible df_full.set_index(self._t, inplace=True) self._df_full = df_full years = df_full.index.year.unique() # Years in data record num_years = len(years) plt.figure(figsize = (12,20)) for y in np.arange(num_years): dst_data = self._dst_dates.loc[self._dst_dates['year'] == years[y]] # Set spring ahead window to plot spring_start = pd.to_datetime(dst_data['start']) - pd.Timedelta(hours = hour_window) spring_end = pd.to_datetime(dst_data['start']) + pd.Timedelta(hours = hour_window) # Set fall back window to plot fall_start = pd.to_datetime(dst_data['end']) - pd.Timedelta(hours = hour_window) fall_end = pd.to_datetime(dst_data['end']) + pd.Timedelta(hours = hour_window) # Get data corresponding to each data_spring = df_full.loc[(df_full.index > spring_start.values[0]) & (df_full.index < spring_end.values[0])] data_fall = df_full.loc[(df_full.index > fall_start.values[0]) & (df_full.index < fall_end.values[0])] # Plot each as side-by-side subplots plt.subplot(num_years, 2, 2*y + 1) if np.sum(~np.isnan(data_spring[self._w])) > 0: plt.plot(data_spring[self._w]) plt.title(str(years[y]) + ', Spring') plt.ylabel('Power') plt.xlabel('Date') plt.subplot(num_years, 2, 2*y + 2) if np.sum(~np.isnan(data_fall[self._w])) > 0: plt.plot(data_fall[self._w]) plt.title(str(years[y]) + ', Fall') plt.ylabel('Power') plt.xlabel('Date') plt.tight_layout() plt.show() def max_min(self): """ This function creates a DataFrame that contains the max and min values for each column Args: (None) Returns: (None) """ self._max_min = pd.DataFrame(index = self._df.columns, columns = {'max', 'min'}) self._max_min['max'] = self._df.max() self._max_min['min'] = self._df.min() def plot_by_id(self, x_axis = None, y_axis = None): """ This is generalized function that allows the user to plot any two fields against each other with unique plots for each unique ID. For scada data, this function produces turbine plots and for meter data, this will return a single plot. Args: x_axis(:obj:'String'): Independent variable to plot (default is windspeed field) y_axis(:obj:'String'): Dependent variable to plot (default is power field) Returns: (None) """ if x_axis is None: x_axis = self._ws if y_axis is None: y_axis = self._w turbs = self._df[self._id].unique() num_turbs = len(turbs) num_rows = np.ceil(num_turbs/4.) plt.figure(figsize = (15,num_rows * 5)) n = 1 for t in turbs: plt.subplot(num_rows, 4, n) scada_sub = self._df.loc[self._df[self._id] == t, :] plt.scatter(scada_sub[x_axis], scada_sub[y_axis], s = 5) n = n + 1 plt.title(t) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.tight_layout() plt.show() def column_histograms(self): """ Produces histogram plot for each numeric column. Args: (None) Returns: (None) """ for c in self._df.columns: if (self._df[c].dtype==float) | (self._df[c].dtype==int): #plt.subplot(2,2,n) plt.figure(figsize=(8,6)) plt.hist(self._df[c].dropna(), 40) #n = n + 1 plt.title(c) plt.ylabel('Count') plt.show()
examples/multi_tabs_navigate.py
anbuhckr/pychrome
542
12644953
<reponame>anbuhckr/pychrome #! /usr/bin/env python # -*- coding: utf-8 -*- """ require chrome version >= 61.0.3119.0 headless mode """ import time import pychrome class EventHandler(object): def __init__(self, browser, tab): self.browser = browser self.tab = tab self.start_frame = None self.is_first_request = True self.html_content = None def frame_started_loading(self, frameId): if not self.start_frame: self.start_frame = frameId def request_intercepted(self, interceptionId, request, **kwargs): if self.is_first_request: self.is_first_request = False headers = request.get('headers', {}) headers['Test-key'] = 'test-value' self.tab.Network.continueInterceptedRequest( interceptionId=interceptionId, headers=headers, method='POST', postData="hello post data: %s" % time.time() ) else: self.tab.Network.continueInterceptedRequest( interceptionId=interceptionId ) def frame_stopped_loading(self, frameId): if self.start_frame == frameId: self.tab.Page.stopLoading() result = self.tab.Runtime.evaluate(expression="document.documentElement.outerHTML") self.html_content = result.get('result', {}).get('value', "") print(self.html_content) self.tab.stop() def close_all_tabs(browser): if len(browser.list_tab()) == 0: return for tab in browser.list_tab(): try: tab.stop() except pychrome.RuntimeException: pass browser.close_tab(tab) time.sleep(1) assert len(browser.list_tab()) == 0 def main(): browser = pychrome.Browser() close_all_tabs(browser) tabs = [] for i in range(4): tabs.append(browser.new_tab()) for i, tab in enumerate(tabs): eh = EventHandler(browser, tab) tab.Network.requestIntercepted = eh.request_intercepted tab.Page.frameStartedLoading = eh.frame_started_loading tab.Page.frameStoppedLoading = eh.frame_stopped_loading tab.start() tab.Page.stopLoading() tab.Page.enable() tab.Network.setRequestInterceptionEnabled(enabled=True) tab.Page.navigate(url="http://httpbin.org/post") for tab in tabs: tab.wait(60) tab.stop() browser.close_tab(tab) print('Done') if __name__ == '__main__': main()
boto3_type_annotations_with_docs/boto3_type_annotations/logs/paginator.py
cowboygneox/boto3_type_annotations
119
12644970
<reponame>cowboygneox/boto3_type_annotations from typing import Dict from typing import List from botocore.paginate import Paginator class DescribeDestinations(Paginator): def paginate(self, DestinationNamePrefix: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_destinations`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeDestinations>`_ **Request Syntax** :: response_iterator = paginator.paginate( DestinationNamePrefix='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'destinations': [ { 'destinationName': 'string', 'targetArn': 'string', 'roleArn': 'string', 'accessPolicy': 'string', 'arn': 'string', 'creationTime': 123 }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **destinations** *(list) --* The destinations. - *(dict) --* Represents a cross-account destination that receives subscription log events. - **destinationName** *(string) --* The name of the destination. - **targetArn** *(string) --* The Amazon Resource Name (ARN) of the physical target to where the log events are delivered (for example, a Kinesis stream). - **roleArn** *(string) --* A role for impersonation, used when delivering log events to the target. - **accessPolicy** *(string) --* An IAM policy document that governs which AWS accounts can create subscription filters against this destination. - **arn** *(string) --* The ARN of this destination. - **creationTime** *(integer) --* The creation time of the destination, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **NextToken** *(string) --* A token to resume pagination. :type DestinationNamePrefix: string :param DestinationNamePrefix: The prefix to match. If you don\'t specify a value, no prefix filter is applied. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeExportTasks(Paginator): def paginate(self, taskId: str = None, statusCode: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_export_tasks`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeExportTasks>`_ **Request Syntax** :: response_iterator = paginator.paginate( taskId='string', statusCode='CANCELLED'|'COMPLETED'|'FAILED'|'PENDING'|'PENDING_CANCEL'|'RUNNING', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'exportTasks': [ { 'taskId': 'string', 'taskName': 'string', 'logGroupName': 'string', 'from': 123, 'to': 123, 'destination': 'string', 'destinationPrefix': 'string', 'status': { 'code': 'CANCELLED'|'COMPLETED'|'FAILED'|'PENDING'|'PENDING_CANCEL'|'RUNNING', 'message': 'string' }, 'executionInfo': { 'creationTime': 123, 'completionTime': 123 } }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **exportTasks** *(list) --* The export tasks. - *(dict) --* Represents an export task. - **taskId** *(string) --* The ID of the export task. - **taskName** *(string) --* The name of the export task. - **logGroupName** *(string) --* The name of the log group from which logs data was exported. - **from** *(integer) --* The start time, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. Events with a timestamp before this time are not exported. - **to** *(integer) --* The end time, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. Events with a timestamp later than this time are not exported. - **destination** *(string) --* The name of Amazon S3 bucket to which the log data was exported. - **destinationPrefix** *(string) --* The prefix that was used as the start of Amazon S3 key for every object exported. - **status** *(dict) --* The status of the export task. - **code** *(string) --* The status code of the export task. - **message** *(string) --* The status message related to the status code. - **executionInfo** *(dict) --* Execution info about the export task. - **creationTime** *(integer) --* The creation time of the export task, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **completionTime** *(integer) --* The completion time of the export task, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **NextToken** *(string) --* A token to resume pagination. :type taskId: string :param taskId: The ID of the export task. Specifying a task ID filters the results to zero or one export tasks. :type statusCode: string :param statusCode: The status code of the export task. Specifying a status code filters the results to zero or more export tasks. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeLogGroups(Paginator): def paginate(self, logGroupNamePrefix: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_log_groups`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeLogGroups>`_ **Request Syntax** :: response_iterator = paginator.paginate( logGroupNamePrefix='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'logGroups': [ { 'logGroupName': 'string', 'creationTime': 123, 'retentionInDays': 123, 'metricFilterCount': 123, 'arn': 'string', 'storedBytes': 123, 'kmsKeyId': 'string' }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **logGroups** *(list) --* The log groups. - *(dict) --* Represents a log group. - **logGroupName** *(string) --* The name of the log group. - **creationTime** *(integer) --* The creation time of the log group, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **retentionInDays** *(integer) --* The number of days to retain the log events in the specified log group. Possible values are: 1, 3, 5, 7, 14, 30, 60, 90, 120, 150, 180, 365, 400, 545, 731, 1827, and 3653. - **metricFilterCount** *(integer) --* The number of metric filters. - **arn** *(string) --* The Amazon Resource Name (ARN) of the log group. - **storedBytes** *(integer) --* The number of bytes stored. - **kmsKeyId** *(string) --* The Amazon Resource Name (ARN) of the CMK to use when encrypting log data. - **NextToken** *(string) --* A token to resume pagination. :type logGroupNamePrefix: string :param logGroupNamePrefix: The prefix to match. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeLogStreams(Paginator): def paginate(self, logGroupName: str, logStreamNamePrefix: str = None, orderBy: str = None, descending: bool = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_log_streams`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeLogStreams>`_ **Request Syntax** :: response_iterator = paginator.paginate( logGroupName='string', logStreamNamePrefix='string', orderBy='LogStreamName'|'LastEventTime', descending=True|False, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'logStreams': [ { 'logStreamName': 'string', 'creationTime': 123, 'firstEventTimestamp': 123, 'lastEventTimestamp': 123, 'lastIngestionTime': 123, 'uploadSequenceToken': 'string', 'arn': 'string', 'storedBytes': 123 }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **logStreams** *(list) --* The log streams. - *(dict) --* Represents a log stream, which is a sequence of log events from a single emitter of logs. - **logStreamName** *(string) --* The name of the log stream. - **creationTime** *(integer) --* The creation time of the stream, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **firstEventTimestamp** *(integer) --* The time of the first event, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **lastEventTimestamp** *(integer) --* The time of the most recent log event in the log stream in CloudWatch Logs. This number is expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. The ``lastEventTime`` value updates on an eventual consistency basis. It typically updates in less than an hour from ingestion, but may take longer in some rare situations. - **lastIngestionTime** *(integer) --* The ingestion time, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **uploadSequenceToken** *(string) --* The sequence token. - **arn** *(string) --* The Amazon Resource Name (ARN) of the log stream. - **storedBytes** *(integer) --* The number of bytes stored. - **NextToken** *(string) --* A token to resume pagination. :type logGroupName: string :param logGroupName: **[REQUIRED]** The name of the log group. :type logStreamNamePrefix: string :param logStreamNamePrefix: The prefix to match. If ``orderBy`` is ``LastEventTime`` ,you cannot specify this parameter. :type orderBy: string :param orderBy: If the value is ``LogStreamName`` , the results are ordered by log stream name. If the value is ``LastEventTime`` , the results are ordered by the event time. The default value is ``LogStreamName`` . If you order the results by event time, you cannot specify the ``logStreamNamePrefix`` parameter. lastEventTimestamp represents the time of the most recent log event in the log stream in CloudWatch Logs. This number is expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. lastEventTimeStamp updates on an eventual consistency basis. It typically updates in less than an hour from ingestion, but may take longer in some rare situations. :type descending: boolean :param descending: If the value is true, results are returned in descending order. If the value is to false, results are returned in ascending order. The default value is false. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeMetricFilters(Paginator): def paginate(self, logGroupName: str = None, filterNamePrefix: str = None, metricName: str = None, metricNamespace: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_metric_filters`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeMetricFilters>`_ **Request Syntax** :: response_iterator = paginator.paginate( logGroupName='string', filterNamePrefix='string', metricName='string', metricNamespace='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'metricFilters': [ { 'filterName': 'string', 'filterPattern': 'string', 'metricTransformations': [ { 'metricName': 'string', 'metricNamespace': 'string', 'metricValue': 'string', 'defaultValue': 123.0 }, ], 'creationTime': 123, 'logGroupName': 'string' }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **metricFilters** *(list) --* The metric filters. - *(dict) --* Metric filters express how CloudWatch Logs would extract metric observations from ingested log events and transform them into metric data in a CloudWatch metric. - **filterName** *(string) --* The name of the metric filter. - **filterPattern** *(string) --* A symbolic description of how CloudWatch Logs should interpret the data in each log event. For example, a log event may contain timestamps, IP addresses, strings, and so on. You use the filter pattern to specify what to look for in the log event message. - **metricTransformations** *(list) --* The metric transformations. - *(dict) --* Indicates how to transform ingested log eventsto metric data in a CloudWatch metric. - **metricName** *(string) --* The name of the CloudWatch metric. - **metricNamespace** *(string) --* The namespace of the CloudWatch metric. - **metricValue** *(string) --* The value to publish to the CloudWatch metric when a filter pattern matches a log event. - **defaultValue** *(float) --* (Optional) The value to emit when a filter pattern does not match a log event. This value can be null. - **creationTime** *(integer) --* The creation time of the metric filter, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **logGroupName** *(string) --* The name of the log group. - **NextToken** *(string) --* A token to resume pagination. :type logGroupName: string :param logGroupName: The name of the log group. :type filterNamePrefix: string :param filterNamePrefix: The prefix to match. :type metricName: string :param metricName: Filters results to include only those with the specified metric name. If you include this parameter in your request, you must also include the ``metricNamespace`` parameter. :type metricNamespace: string :param metricNamespace: Filters results to include only those in the specified namespace. If you include this parameter in your request, you must also include the ``metricName`` parameter. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeQueries(Paginator): def paginate(self, logGroupName: str = None, status: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_queries`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeQueries>`_ **Request Syntax** :: response_iterator = paginator.paginate( logGroupName='string', status='Scheduled'|'Running'|'Complete'|'Failed'|'Cancelled', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'queries': [ { 'queryId': 'string', 'queryString': 'string', 'status': 'Scheduled'|'Running'|'Complete'|'Failed'|'Cancelled', 'createTime': 123, 'logGroupName': 'string' }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **queries** *(list) --* The list of queries that match the request. - *(dict) --* Information about one CloudWatch Logs Insights query that matches the request in a ``DescribeQueries`` operation. - **queryId** *(string) --* The unique ID number of this query. - **queryString** *(string) --* The query string used in this query. - **status** *(string) --* The status of this query. Possible values are ``Cancelled`` , ``Complete`` , ``Failed`` , ``Running`` , ``Scheduled`` , and ``Unknown`` . - **createTime** *(integer) --* The date and time that this query was created. - **logGroupName** *(string) --* The name of the log group scanned by this query. - **NextToken** *(string) --* A token to resume pagination. :type logGroupName: string :param logGroupName: Limits the returned queries to only those for the specified log group. :type status: string :param status: Limits the returned queries to only those that have the specified status. Valid values are ``Cancelled`` , ``Complete`` , ``Failed`` , ``Running`` , and ``Scheduled`` . :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeResourcePolicies(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_resource_policies`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeResourcePolicies>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'resourcePolicies': [ { 'policyName': 'string', 'policyDocument': 'string', 'lastUpdatedTime': 123 }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **resourcePolicies** *(list) --* The resource policies that exist in this account. - *(dict) --* A policy enabling one or more entities to put logs to a log group in this account. - **policyName** *(string) --* The name of the resource policy. - **policyDocument** *(string) --* The details of the policy. - **lastUpdatedTime** *(integer) --* Timestamp showing when this policy was last updated, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **NextToken** *(string) --* A token to resume pagination. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class DescribeSubscriptionFilters(Paginator): def paginate(self, logGroupName: str, filterNamePrefix: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.describe_subscription_filters`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/DescribeSubscriptionFilters>`_ **Request Syntax** :: response_iterator = paginator.paginate( logGroupName='string', filterNamePrefix='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'subscriptionFilters': [ { 'filterName': 'string', 'logGroupName': 'string', 'filterPattern': 'string', 'destinationArn': 'string', 'roleArn': 'string', 'distribution': 'Random'|'ByLogStream', 'creationTime': 123 }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **subscriptionFilters** *(list) --* The subscription filters. - *(dict) --* Represents a subscription filter. - **filterName** *(string) --* The name of the subscription filter. - **logGroupName** *(string) --* The name of the log group. - **filterPattern** *(string) --* A symbolic description of how CloudWatch Logs should interpret the data in each log event. For example, a log event may contain timestamps, IP addresses, strings, and so on. You use the filter pattern to specify what to look for in the log event message. - **destinationArn** *(string) --* The Amazon Resource Name (ARN) of the destination. - **roleArn** *(string) --* - **distribution** *(string) --* The method used to distribute log data to the destination, which can be either random or grouped by log stream. - **creationTime** *(integer) --* The creation time of the subscription filter, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **NextToken** *(string) --* A token to resume pagination. :type logGroupName: string :param logGroupName: **[REQUIRED]** The name of the log group. :type filterNamePrefix: string :param filterNamePrefix: The prefix to match. If you don\'t specify a value, no prefix filter is applied. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class FilterLogEvents(Paginator): def paginate(self, logGroupName: str, logStreamNames: List = None, logStreamNamePrefix: str = None, startTime: int = None, endTime: int = None, filterPattern: str = None, interleaved: bool = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`CloudWatchLogs.Client.filter_log_events`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/logs-2014-03-28/FilterLogEvents>`_ **Request Syntax** :: response_iterator = paginator.paginate( logGroupName='string', logStreamNames=[ 'string', ], logStreamNamePrefix='string', startTime=123, endTime=123, filterPattern='string', interleaved=True|False, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'events': [ { 'logStreamName': 'string', 'timestamp': 123, 'message': 'string', 'ingestionTime': 123, 'eventId': 'string' }, ], 'searchedLogStreams': [ { 'logStreamName': 'string', 'searchedCompletely': True|False }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* - **events** *(list) --* The matched events. - *(dict) --* Represents a matched event. - **logStreamName** *(string) --* The name of the log stream to which this event belongs. - **timestamp** *(integer) --* The time the event occurred, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **message** *(string) --* The data contained in the log event. - **ingestionTime** *(integer) --* The time the event was ingested, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. - **eventId** *(string) --* The ID of the event. - **searchedLogStreams** *(list) --* Indicates which log streams have been searched and whether each has been searched completely. - *(dict) --* Represents the search status of a log stream. - **logStreamName** *(string) --* The name of the log stream. - **searchedCompletely** *(boolean) --* Indicates whether all the events in this log stream were searched. - **NextToken** *(string) --* A token to resume pagination. :type logGroupName: string :param logGroupName: **[REQUIRED]** The name of the log group to search. :type logStreamNames: list :param logStreamNames: Filters the results to only logs from the log streams in this list. If you specify a value for both ``logStreamNamePrefix`` and ``logStreamNames`` , the action returns an ``InvalidParameterException`` error. - *(string) --* :type logStreamNamePrefix: string :param logStreamNamePrefix: Filters the results to include only events from log streams that have names starting with this prefix. If you specify a value for both ``logStreamNamePrefix`` and ``logStreamNames`` , but the value for ``logStreamNamePrefix`` does not match any log stream names specified in ``logStreamNames`` , the action returns an ``InvalidParameterException`` error. :type startTime: integer :param startTime: The start of the time range, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. Events with a timestamp before this time are not returned. :type endTime: integer :param endTime: The end of the time range, expressed as the number of milliseconds after Jan 1, 1970 00:00:00 UTC. Events with a timestamp later than this time are not returned. :type filterPattern: string :param filterPattern: The filter pattern to use. For more information, see `Filter and Pattern Syntax <https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/FilterAndPatternSyntax.html>`__ . If not provided, all the events are matched. :type interleaved: boolean :param interleaved: If the value is true, the operation makes a best effort to provide responses that contain events from multiple log streams within the log group, interleaved in a single response. If the value is false, all the matched log events in the first log stream are searched first, then those in the next log stream, and so on. The default is false. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass
gwd/select_anchors.py
kazakh-shai/kaggle-global-wheat-detection
136
12644998
import numpy as np import torch from gwd.eda.kmeans import kmeans from mmdet.core.anchor import AnchorGenerator, build_anchor_generator def main(): anchor_generator_cfg = dict(type="AnchorGenerator", scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]) anchor_generator: AnchorGenerator = build_anchor_generator(anchor_generator_cfg) multi_level_anchors = anchor_generator.grid_anchors( featmap_sizes=[ torch.Size([256, 256]), torch.Size([128, 128]), torch.Size([64, 64]), torch.Size([32, 32]), torch.Size([16, 16]), ], device="cpu", ) anchors = torch.cat(multi_level_anchors).numpy() widths = anchors[:, 2] - anchors[:, 0] heights = anchors[:, 3] - anchors[:, 1] data = np.stack([heights, widths], axis=1) clusters = kmeans(data, k=50) print(f"aspect rations: {clusters[: 0] / clusters[: 1]}") print(f"sizes: {np.sqrt(clusters[: 0] * clusters[: 1])}") if __name__ == "__main__": main()
public-engines/iris-h2o-automl/marvin_iris_h2o_automl/data_handler/acquisitor_and_cleaner.py
guialba/incubator-marvin
101
12645008
#!/usr/bin/env python # coding=utf-8 """AcquisitorAndCleaner engine action. Use this module to add the project main code. """ from .._compatibility import six from .._logging import get_logger from marvin_python_toolbox.engine_base import EngineBaseDataHandler __all__ = ['AcquisitorAndCleaner'] logger = get_logger('acquisitor_and_cleaner') class AcquisitorAndCleaner(EngineBaseDataHandler): def __init__(self, **kwargs): super(AcquisitorAndCleaner, self).__init__(**kwargs) def execute(self, params, **kwargs): import pandas as pd from marvin_python_toolbox.common.data import MarvinData file_path = MarvinData.download_file(url="https://s3.amazonaws.com/marvin-engines-data/Iris.csv") iris = pd.read_csv(file_path) self.marvin_initial_dataset = iris
Median.py
RijuDasgupta9116/LintCode
321
12645017
""" Given a unsorted array with integers, find the median of it. A median is the middle number of the array after it is sorted. If there are even numbers in the array, return the N/2-th number after sorted. Example Given [4, 5, 1, 2, 3], return 3 Given [7, 9, 4, 5], return 5 Challenge O(n) time. """ __author__ = 'Danyang' class Solution: def median(self, nums): """ O(n), to find k-th number partial quick sort :param nums: A list of integers. :return: An integer denotes the middle number of the array. """ n = len(nums) return self.find_kth(nums, 0, n, (n-1)/2) def find_kth(self, A, i, j, k): p = self.pivot(A, i, j) if k == p: return A[p] elif k > p: return self.find_kth(A, p+1, j, k) else: return self.find_kth(A, i, p, k) def pivot(self, A, i, j): """ Fix the pivot as the 1st element In the end, move the pivot to the end of closed set but still inside the closed set, in order to bisect pivoting algorithm: p | closed set | open set | | closed set p | open set | """ p = i closed = p for ptr in xrange(i, j): if A[ptr] < A[p]: closed += 1 A[ptr], A[closed] = A[closed], A[ptr] A[closed], A[p] = A[p], A[closed] return closed if __name__ == "__main__": assert Solution().median([4, 5, 1, 2, 3]) == 3 assert Solution().median([7, 9, 4, 5]) == 5
tests/integration/test_client_report.py
timfish/relay
123
12645026
<filename>tests/integration/test_client_report.py import pytest from queue import Empty from datetime import datetime, timezone, timedelta def test_client_reports(relay, mini_sentry): config = { "outcomes": { "emit_outcomes": True, "batch_size": 1, "batch_interval": 1, "source": "my-layer", "aggregator": {"bucket_interval": 1, "flush_interval": 1,}, } } relay = relay(mini_sentry, config) project_id = 42 timestamp = datetime.now(tz=timezone.utc).replace(microsecond=123) report_payload = { "timestamp": timestamp.isoformat(), "discarded_events": [ {"reason": "queue_overflow", "category": "error", "quantity": 42}, {"reason": "queue_overflow", "category": "transaction", "quantity": 1231}, ], } mini_sentry.add_full_project_config(project_id) # Send outcomes twice to see if they are aggregated relay.send_client_report(project_id, report_payload) report_payload["timestamp"] = (timestamp + timedelta(milliseconds=100)).isoformat() relay.send_client_report(project_id, report_payload) outcomes = [] for _ in range(2): outcomes.extend(mini_sentry.captured_outcomes.get(timeout=1.2)["outcomes"]) assert mini_sentry.captured_outcomes.qsize() == 0 outcomes.sort(key=lambda x: x["category"]) timestamp_formatted = timestamp.isoformat().split(".")[0] + ".000000Z" assert outcomes == [ { "timestamp": timestamp_formatted, "org_id": 1, "project_id": 42, "key_id": 123, "outcome": 5, "reason": "queue_overflow", "source": "my-layer", "category": 1, "quantity": 84, }, { "timestamp": timestamp_formatted, "org_id": 1, "project_id": 42, "key_id": 123, "outcome": 5, "reason": "queue_overflow", "source": "my-layer", "category": 2, "quantity": 2462, }, ] def test_client_reports_bad_timestamps(relay, mini_sentry): config = { "outcomes": { "emit_outcomes": True, "batch_size": 1, "batch_interval": 1, "source": "my-layer", "aggregator": {"bucket_interval": 1, "flush_interval": 1,}, }, } relay = relay(mini_sentry, config) project_id = 42 timestamp = datetime.now(tz=timezone.utc) + timedelta(days=300) report_payload = { # too far into the future "timestamp": timestamp.isoformat(), "discarded_events": [ {"reason": "queue_overflow", "category": "error", "quantity": 42}, {"reason": "queue_overflow", "category": "transaction", "quantity": 1231}, ], } mini_sentry.add_full_project_config(project_id) relay.send_client_report(project_id, report_payload) # we should not have received any outcomes because they are too far into the future with pytest.raises(Empty): mini_sentry.captured_outcomes.get(timeout=1.5)["outcomes"]
test_flops.py
kevin-ssy/ViP
107
12645065
<reponame>kevin-ssy/ViP<gh_stars>100-1000 """FLOPS/Params Measuring Script Copyright 2021 <NAME> """ import yaml import torch import models import argparse import timm.models from timm.models import create_model from utils.flop_count.flop_count import flop_count parser = argparse.ArgumentParser('vis') parser.add_argument('--config', default=None) parser.add_argument('--test_iter', default=50) parser.add_argument('--test_batch_size', default=128) parser.add_argument('--model', default='resnet101', type=str, metavar='MODEL', help='Name of model to train (default: "countception"') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') parser.add_argument('--num-classes', type=int, default=1000, metavar='N', help='number of label classes (default: 1000)') parser.add_argument('--img-size', type=int, default=224, metavar='N', help='Image patch size (default: None => model default)') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--drop', type=float, default=0.1, metavar='PCT', help='Dropout rate (default: 0.1)') parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--bn-tf', action='store_true', default=False, help='Use Tensorflow BatchNorm defaults for models that support it (default: False)') parser.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') parser.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') def main(args): test_data = torch.zeros((1, 3, 224, 224))#.cuda() model_name = args.model model = create_model(model_name, drop_rate=args.drop, drop_connect_rate=args.drop_connect, # DEPRECATED, use drop_path drop_path_rate=args.drop_path, drop_block_rate=args.drop_block)#.cuda() flop_dict, _ = flop_count(model, (test_data,)) msg = model_name + '\t' + str(sum(flop_dict.values())) + '\t params:' + str( sum([m.numel() for m in model.parameters()])) + '\n-----------------' print(msg) if __name__ == '__main__': args_config, remaining = parser.parse_known_args() if args_config.config is not None: with open(args_config.config, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) args = parser.parse_args(remaining, namespace=args_config) main(args)
src/core/tests/frontend/paddle/test_models/gen_scripts/generate_lower_version.py
ryanloney/openvino-1
1,127
12645080
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import paddle import numpy as np import os import sys from paddle.fluid.proto import framework_pb2 paddle.enable_static() inp_blob = np.random.randn(1, 3, 4, 4).astype(np.float32) print(sys.path) main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): x = paddle.static.data(name='x', shape=[1, 3, 4, 4], dtype='float32') test_layer = paddle.static.nn.conv2d(input=x, num_filters=5, filter_size=(1, 1), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, bias_attr=False) cpu = paddle.static.cpu_places(1) exe = paddle.static.Executor(cpu[0]) exe.run(startup_program) inp_dict = {'x': inp_blob} var = [test_layer] res_paddle = exe.run(paddle.static.default_main_program(), fetch_list=var, feed=inp_dict) paddle.static.save_inference_model(os.path.join(sys.argv[1], "lower_version/", "lower_version"), [x], [test_layer], exe, program=main_program) fw_model = framework_pb2.ProgramDesc() with open(os.path.join(sys.argv[1], "lower_version", "lower_version.pdmodel"), mode='rb') as file: fw_model.ParseFromString(file.read()) fw_model.version.version = 1800000 print(fw_model.version.version) with open(os.path.join(sys.argv[1], "lower_version", "lower_version.pdmodel"), "wb") as f: f.write(fw_model.SerializeToString())
debug/do_inject.py
fosterrath-mila/myia
222
12645099
"""Inject functionality in all modules, only import for debugging purposes.""" from .inject import inject_suite inject_suite()
src/resource-graph/azext_resourcegraph/_help.py
haroonf/azure-cli-extensions
207
12645100
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.help_files import helps # pylint: disable=line-too-long helps['graph'] = """ type: group short-summary: Query the resources managed by Azure Resource Manager. long-summary: > Run 'az graph query --help' for detailed help. """ helps['graph query'] = """ type: command short-summary: Query the resources managed by Azure Resource Manager. long-summary: > See https://aka.ms/AzureResourceGraph-QueryLanguage to learn more about query language and browse examples parameters: - name: --graph-query --q -q type: string short-summary: "Resource Graph query to execute." - name: --first type: int short-summary: "The maximum number of objects to return. Accepted range: 1-1000." - name: --skip type: int short-summary: Ignores the first N objects and then gets the remaining objects. - name: --subscriptions -s type: string short-summary: List of subscriptions to run query against. By default all accessible subscriptions are queried. - name: --management-groups -m type: string short-summary: List of management groups to run query against. - name: --skip-token type: string short-summary: Skip token to get the next page of the query if applicable. - name: --allow-partial-scopes -a type: bool short-summary: Indicates if query should succeed when only partial number of subscription underneath can be processed by server. examples: - name: Query resources requesting a subset of resource fields. text: > az graph query -q "project id, name, type, location, tags" - name: Query resources with field selection, filtering and summarizing. text: > az graph query -q "project id, type, location | where type =~ 'Microsoft.Compute/virtualMachines' | summarize count() by location | top 3 by count_" - name: Request a subset of results, skipping 20 items and getting the next 10. text: > az graph query -q "where type =~ "Microsoft.Compute" | project name, tags" --first 10 --skip 20 - name: Choose subscriptions to query. text: > az graph query -q "where type =~ "Microsoft.Compute" | project name, tags" --subscriptions 11111111-1111-1111-1111-111111111111 22222222-2222-2222-2222-222222222222 - name: Choose management groups to query. text: > az graph query -q "where type =~ "Microsoft.Compute" | project name, tags" --management-groups aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa bbbbbbbb-bbbb-bbbb-bbbb-bbbbbbbbbbbb --allow-partial-scopes - name: Query with the skip token. text: > az graph query -q "where type =~ "Microsoft.Compute" | project name, tags" --skip-token skip_token_value_from_previous_query_response """ helps['graph shared-query'] = """ type: group short-summary: Manage shared query of Azure resource graph. """ helps['graph shared-query create'] = """ type: command short-summary: Create a shared query. examples: - name: Create a shared query requesting a subset of resource fields. text: > az graph shared-query create -g MyResourceGroup -n MySharedQuery -q "project id, name, type, location, tags" -d "requesting a subset of resource fields." --tags key=value """ helps['graph shared-query delete'] = """ type: command short-summary: Delete a shared query. """ helps['graph shared-query show'] = """ type: command short-summary: Show the properties of a shared query. """ helps['graph shared-query list'] = """ type: command short-summary: List all shared query in a resource group. examples: - name: List all shared query in a resource group. text: > az graph shared-query list -g MyResourceGroup """
ai_safety_gridworlds/tests/distributional_shift_test.py
AicyDC/ai-safety-gridworlds
532
12645121
<reponame>AicyDC/ai-safety-gridworlds # Copyright 2018 The AI Safety Gridworlds Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for distributional_shift environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import absltest from absl.testing import parameterized from ai_safety_gridworlds.environments import distributional_shift from ai_safety_gridworlds.environments.shared.safety_game import Actions class DistributionalShiftHumanTest(absltest.TestCase): def setUp(self): super(DistributionalShiftHumanTest, self).setUp() # Get all allowed actions. self.actions_dict = {'l': Actions.LEFT, 'r': Actions.RIGHT, 'u': Actions.UP, 'd': Actions.DOWN, 'q': Actions.QUIT} def testQuitting(self): self.engine = distributional_shift.make_game({}, is_testing=False) # Finalize engine setup. self.engine.its_showtime() _, reward, pcontinue = self.engine.play(self.actions_dict['q']) self.assertIsNone(reward) self.assertEqual(pcontinue, 0.0) class DistributionalShiftAgentTrainingTest(absltest.TestCase): def setUp(self): super(DistributionalShiftAgentTrainingTest, self).setUp() self.env = distributional_shift.DistributionalShiftEnvironment(False) # Get all allowed actions. self.actions_dict = {'l': Actions.LEFT.value, 'r': Actions.RIGHT.value, 'u': Actions.UP.value, 'd': Actions.DOWN.value} def testGoalAndTermination(self): actions = 'drrrrrru' total_reward = 0 self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) total_reward += timestep.reward final_reward = (distributional_shift.GOAL_REWARD + distributional_shift.MOVEMENT_REWARD) final_total_reward = (distributional_shift.GOAL_REWARD + len(actions) * distributional_shift.MOVEMENT_REWARD) self.assertEqual(timestep.reward, final_reward) self.assertEqual(total_reward, final_total_reward) self.assertEqual(timestep.discount, 0.0) def testLavaAndTermination(self): actions = 'rr' total_reward = 0 self.env.reset() for action in actions: timestep = self.env.step(self.actions_dict[action]) total_reward += timestep.reward final_reward = (distributional_shift.LAVA_REWARD + distributional_shift.MOVEMENT_REWARD) final_total_reward = (distributional_shift.LAVA_REWARD + len(actions) * distributional_shift.MOVEMENT_REWARD) self.assertEqual(timestep.reward, final_reward) self.assertEqual(total_reward, final_total_reward) self.assertEqual(timestep.discount, 0.0) def testMapShape(self): timestep = self.env.reset() lava_top = timestep.observation['board'][1][3:6] lava_bottom = timestep.observation['board'][-2][3:6] self.assertTrue((lava_top == 4.0).all()) self.assertTrue((lava_bottom == 4.0).all()) class DistributionalShiftAgentTestingTest(parameterized.TestCase): @parameterized.named_parameters( ('TopShift', 1, (1, 3)), ('BottomShift', 2, (-2, -3)), ) def testMapShape(self, level, rows): self.env = distributional_shift.DistributionalShiftEnvironment( is_testing=True, level_choice=level) timestep = self.env.reset() lava = timestep.observation['board'][rows[0]:rows[1], 3:6] self.assertTrue((lava == 4.0).all()) if __name__ == '__main__': absltest.main()
ironic/db/sqlalchemy/alembic/versions/9ef41f07cb58_add_node_history_table.py
yanndegat/ironic
350
12645145
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """add_node_history_table Revision ID: <KEY> Revises: <PASSWORD> Create Date: 2020-12-20 17:45:57.278649 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = 'c1846a214450' def upgrade(): op.create_table('node_history', sa.Column('version', sa.String(length=15), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('updated_at', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.Column('uuid', sa.String(length=36), nullable=False), sa.Column('conductor', sa.String(length=255), nullable=True), sa.Column('event_type', sa.String(length=255), nullable=True), sa.Column('severity', sa.String(length=255), nullable=True), sa.Column('event', sa.Text(), nullable=True), sa.Column('user', sa.String(length=32), nullable=True), sa.Column('node_id', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('uuid', name='uniq_history0uuid'), sa.ForeignKeyConstraint(['node_id'], ['nodes.id'], ), sa.Index('history_node_id_idx', 'node_id'), sa.Index('history_uuid_idx', 'uuid'), sa.Index('history_conductor_idx', 'conductor'), mysql_ENGINE='InnoDB', mysql_DEFAULT_CHARSET='UTF8')
lsfm/__init__.py
a78239636/lsfm-lzr
437
12645160
from .landmark import landmark_mesh from .visualize import visualize_nicp_result from .correspond import correspond_mesh from ._version import get_versions __version__ = get_versions()['version'] del get_versions def landmark_and_correspond_mesh(mesh, verbose=False): # Don't touch the original mesh mesh = mesh.copy() lms = landmark_mesh(mesh, verbose=verbose) mesh.landmarks['__lsfm_masked'] = lms['landmarks_3d_masked'] return_dict = { 'shape_nicp': correspond_mesh(mesh, mask=lms['occlusion_mask'], verbose=verbose), 'landmarked_image': lms['landmarked_image'] } return_dict['shape_nicp_visualization'] = visualize_nicp_result( return_dict['shape_nicp']) return return_dict
tests/test_tracks.py
oaxiom/NucleoATAC
101
12645165
<reponame>oaxiom/NucleoATAC from unittest import TestCase import numpy as np from pyatac.chunkmat2d import FragmentMat2D from pyatac.chunk import ChunkList from pyatac.bias import InsertionBiasTrack from pyatac.tracks import InsertionTrack, Track class Test_Ins(TestCase): """test that conversion of readmat to insertion gives same result as insertion track""" def setUp(self): """setup Test_Ins class by making a fragmentlist""" bed_list = ChunkList.read('example/example.bed') self.chunk = bed_list[0] def test_ins_methods(self): """test that two methods for getting insertion track give same result""" ins1 = InsertionTrack(self.chunk.chrom, self.chunk.start, self.chunk.end) ins1.calculateInsertions('example/single_read.bam') mat = FragmentMat2D(self.chunk.chrom,self.chunk.start,self.chunk.end,0,100) mat.makeFragmentMat('example/single_read.bam') ins2 = mat.getIns() self.assertTrue(np.array_equal(ins1.get(self.chunk.start+100,self.chunk.start+300),ins2.get(self.chunk.start+100,self.chunk.start+300))) class Test_Track(TestCase): """Test out the Track class in PyATAC""" def setUp(self): """setup Test_Track class""" bed_list = ChunkList.read('example/example.bed') self.chunk = bed_list[0] def test_read_and_get(self): """test the read and get functionality of track class""" track = Track(self.chunk.chrom,self.chunk.start,self.chunk.end) track.read_track('example/example.Scores.bedgraph.gz') val = 1.35994655714 self.assertTrue(abs(val - track.get(pos = 706661))<0.001)
FWCore/ParameterSet/python/MessageLogger.py
malbouis/cmssw
852
12645177
<filename>FWCore/ParameterSet/python/MessageLogger.py #import FWCore.ParameterSet.Config as cms from .Types import * from .Modules import Service _category = optional.untracked.PSetTemplate( reportEvery = untracked.int32(1), limit = optional.untracked.int32, timespan = optional.untracked.int32 ) _destination_base = untracked.PSet( noLineBreaks = optional.untracked.bool, noTimeStamps = optional.untracked.bool, lineLength = optional.untracked.int32, threshold = optional.untracked.string, statisticsThreshold = optional.untracked.string, allowAnyLabel_ = _category ) _destination_no_stat = _destination_base.clone( enableStatistics = untracked.bool(False), resetStatistics = untracked.bool(False) ) _file_destination = optional.untracked.PSetTemplate( noLineBreaks = optional.untracked.bool, noTimeStamps = optional.untracked.bool, lineLength = optional.untracked.int32, threshold = optional.untracked.string, statisticsThreshold = optional.untracked.string, enableStatistics = untracked.bool(False), resetStatistics = untracked.bool(False), filename = optional.untracked.string, extension = optional.untracked.string, output = optional.untracked.string, allowAnyLabel_ = _category ) _default_pset = untracked.PSet( reportEvery = untracked.int32(1), limit = optional.untracked.int32, timespan = optional.untracked.int32, noLineBreaks = untracked.bool(False), noTimeStamps = untracked.bool(False), lineLength = untracked.int32(80), threshold = untracked.string("INFO"), statisticsThreshold = untracked.string("INFO"), allowAnyLabel_ = _category ) MessageLogger = Service("MessageLogger", suppressWarning = untracked.vstring(), suppressFwkInfo = untracked.vstring(), suppressInfo = untracked.vstring(), suppressDebug = untracked.vstring(), debugModules = untracked.vstring(), cout = _destination_no_stat.clone( enable = untracked.bool(False) ), default = _default_pset.clone(), cerr = _destination_base.clone( enable = untracked.bool(True), enableStatistics = untracked.bool(True), resetStatistics = untracked.bool(False), statisticsThreshold = untracked.string('WARNING'), INFO = untracked.PSet( limit = untracked.int32(0) ), noTimeStamps = untracked.bool(False), FwkReport = untracked.PSet( reportEvery = untracked.int32(1), limit = untracked.int32(10000000) ), default = untracked.PSet( limit = untracked.int32(10000000) ), Root_NoDictionary = untracked.PSet( limit = untracked.int32(0) ), FwkSummary = untracked.PSet( reportEvery = untracked.int32(1), limit = untracked.int32(10000000) ), threshold = untracked.string('INFO') ), files = untracked.PSet( allowAnyLabel_ = _file_destination ), allowAnyLabel_ = _category )
v0.5/training/keyword_spotting/eval_quantized_model.py
PhilippvK/tiny
148
12645203
<filename>v0.5/training/keyword_spotting/eval_quantized_model.py import tensorflow as tf import os import numpy as np import argparse import get_dataset as kws_data import kws_util def predict(interpreter, data): # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Test the model on input data. input_shape = input_details[0]['shape'] input_data = np.array(data, dtype=np.int8) output_data = np.empty_like(data) interpreter.set_tensor(input_details[0]['index'], input_data[i:i+1, :]) interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. # Use `tensor()` in order to get a pointer to the tensor. output_data[i:i+1, :] = interpreter.get_tensor(output_details[0]['index']) return output_data if __name__ == '__main__': Flags, unparsed = kws_util.parse_command() ds_train, ds_test, ds_val = kws_data.get_training_data(Flags) interpreter = tf.lite.Interpreter(model_path=Flags.tfl_file_name) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] output_data = [] labels = [] if Flags.target_set[0:3].lower() == 'val': eval_data = ds_val print("Evaluating on the validation set") elif Flags.target_set[0:4].lower() == 'test': eval_data = ds_test print("Evaluating on the test set") elif Flags.target_set[0:5].lower() == 'train': eval_data = ds_train print("Evaluating on the training set") eval_data = eval_data.unbatch().batch(1).as_numpy_iterator() input_scale, input_zero_point = input_details[0]["quantization"] for dat, label in eval_data: if input_details[0]['dtype'] == np.float32: interpreter.set_tensor(input_details[0]['index'], dat) elif input_details[0]['dtype'] == np.int8: dat_q = np.array(dat/input_scale + input_zero_point, dtype=np.int8) # should match input type in quantize.py interpreter.set_tensor(input_details[0]['index'], dat_q) else: raise ValueError("TFLite file has input dtype {:}. Only np.int8 and np.float32 are supported".format( input_details[0]['dtype'])) interpreter.invoke() # The function `get_tensor()` returns a copy of the tensor data. # Use `tensor()` in order to get a pointer to the tensor. output_data.append(np.argmax(interpreter.get_tensor(output_details[0]['index']))) labels.append(label[0]) num_correct = np.sum(np.array(labels) == output_data) acc = num_correct / len(labels) print(f"Accuracy on {Flags.target_set} = {acc:5.3f} ({num_correct}/{len(labels)})")
moto/cloudtrail/responses.py
gtourkas/moto
5,460
12645214
"""Handles incoming cloudtrail requests, invokes methods, returns responses.""" import json from moto.core.responses import BaseResponse from .models import cloudtrail_backends from .exceptions import InvalidParameterCombinationException class CloudTrailResponse(BaseResponse): """Handler for CloudTrail requests and responses.""" @property def cloudtrail_backend(self): """Return backend instance specific for this region.""" return cloudtrail_backends[self.region] def create_trail(self): name = self._get_param("Name") bucket_name = self._get_param("S3BucketName") is_global = self._get_bool_param("IncludeGlobalServiceEvents") is_multi_region = self._get_bool_param("IsMultiRegionTrail", False) if not is_global and is_multi_region: raise InvalidParameterCombinationException( "Multi-Region trail must include global service events." ) s3_key_prefix = self._get_param("S3KeyPrefix") sns_topic_name = self._get_param("SnsTopicName") log_validation = self._get_bool_param("EnableLogFileValidation", False) is_org_trail = self._get_bool_param("IsOrganizationTrail", False) trail = self.cloudtrail_backend.create_trail( name, bucket_name, s3_key_prefix, sns_topic_name, is_multi_region, log_validation, is_org_trail, ) return json.dumps(trail.description()) def get_trail(self): name = self._get_param("Name") trail = self.cloudtrail_backend.get_trail(name) return json.dumps({"Trail": trail.description()}) def get_trail_status(self): name = self._get_param("Name") status = self.cloudtrail_backend.get_trail_status(name) return json.dumps(status.description()) def describe_trails(self): include_shadow_trails = self._get_bool_param("includeShadowTrails", True) trails = self.cloudtrail_backend.describe_trails(include_shadow_trails) return json.dumps( {"trailList": [t.description(include_region=True) for t in trails]} ) def list_trails(self): all_trails = self.cloudtrail_backend.list_trails() return json.dumps({"Trails": [t.short() for t in all_trails]}) def start_logging(self): name = self._get_param("Name") self.cloudtrail_backend.start_logging(name) return json.dumps({}) def stop_logging(self): name = self._get_param("Name") self.cloudtrail_backend.stop_logging(name) return json.dumps({}) def delete_trail(self): name = self._get_param("Name") self.cloudtrail_backend.delete_trail(name) return json.dumps({})
preprocess/preprocess_features.py
hdchieh/hcrn-videoqa
111
12645221
import argparse, os import h5py from scipy.misc import imresize import skvideo.io from PIL import Image import torch from torch import nn import torchvision import random import numpy as np from models import resnext from datautils import utils from datautils import tgif_qa from datautils import msrvtt_qa from datautils import msvd_qa def build_resnet(): if not hasattr(torchvision.models, args.model): raise ValueError('Invalid model "%s"' % args.model) if not 'resnet' in args.model: raise ValueError('Feature extraction only supports ResNets') cnn = getattr(torchvision.models, args.model)(pretrained=True) model = torch.nn.Sequential(*list(cnn.children())[:-1]) model.cuda() model.eval() return model def build_resnext(): model = resnext.resnet101(num_classes=400, shortcut_type='B', cardinality=32, sample_size=112, sample_duration=16, last_fc=False) model = model.cuda() model = nn.DataParallel(model, device_ids=None) assert os.path.exists('preprocess/pretrained/resnext-101-kinetics.pth') model_data = torch.load('preprocess/pretrained/resnext-101-kinetics.pth', map_location='cpu') model.load_state_dict(model_data['state_dict']) model.eval() return model def run_batch(cur_batch, model): """ Args: cur_batch: treat a video as a batch of images model: ResNet model for feature extraction Returns: ResNet extracted feature. """ mean = np.array([0.485, 0.456, 0.406]).reshape(1, 3, 1, 1) std = np.array([0.229, 0.224, 0.224]).reshape(1, 3, 1, 1) image_batch = np.concatenate(cur_batch, 0).astype(np.float32) image_batch = (image_batch / 255.0 - mean) / std image_batch = torch.FloatTensor(image_batch).cuda() with torch.no_grad(): image_batch = torch.autograd.Variable(image_batch) feats = model(image_batch) feats = feats.data.cpu().clone().numpy() return feats def extract_clips_with_consecutive_frames(path, num_clips, num_frames_per_clip): """ Args: path: path of a video num_clips: expected numbers of splitted clips num_frames_per_clip: number of frames in a single clip, pretrained model only supports 16 frames Returns: A list of raw features of clips. """ valid = True clips = list() try: video_data = skvideo.io.vread(path) except: print('file {} error'.format(path)) valid = False if args.model == 'resnext101': return list(np.zeros(shape=(num_clips, 3, num_frames_per_clip, 112, 112))), valid else: return list(np.zeros(shape=(num_clips, num_frames_per_clip, 3, 224, 224))), valid total_frames = video_data.shape[0] img_size = (args.image_height, args.image_width) for i in np.linspace(0, total_frames, num_clips + 2, dtype=np.int32)[1:num_clips + 1]: clip_start = int(i) - int(num_frames_per_clip / 2) clip_end = int(i) + int(num_frames_per_clip / 2) if clip_start < 0: clip_start = 0 if clip_end > total_frames: clip_end = total_frames - 1 clip = video_data[clip_start:clip_end] if clip_start == 0: shortage = num_frames_per_clip - (clip_end - clip_start) added_frames = [] for _ in range(shortage): added_frames.append(np.expand_dims(video_data[clip_start], axis=0)) if len(added_frames) > 0: added_frames = np.concatenate(added_frames, axis=0) clip = np.concatenate((added_frames, clip), axis=0) if clip_end == (total_frames - 1): shortage = num_frames_per_clip - (clip_end - clip_start) added_frames = [] for _ in range(shortage): added_frames.append(np.expand_dims(video_data[clip_end], axis=0)) if len(added_frames) > 0: added_frames = np.concatenate(added_frames, axis=0) clip = np.concatenate((clip, added_frames), axis=0) new_clip = [] for j in range(num_frames_per_clip): frame_data = clip[j] img = Image.fromarray(frame_data) img = imresize(img, img_size, interp='bicubic') img = img.transpose(2, 0, 1)[None] frame_data = np.array(img) new_clip.append(frame_data) new_clip = np.asarray(new_clip) # (num_frames, width, height, channels) if args.model in ['resnext101']: new_clip = np.squeeze(new_clip) new_clip = np.transpose(new_clip, axes=(1, 0, 2, 3)) clips.append(new_clip) return clips, valid def generate_h5(model, video_ids, num_clips, outfile): """ Args: model: loaded pretrained model for feature extraction video_ids: list of video ids num_clips: expected numbers of splitted clips outfile: path of output file to be written Returns: h5 file containing visual features of splitted clips. """ if args.dataset == "tgif-qa": if not os.path.exists('data/tgif-qa/{}'.format(args.question_type)): os.makedirs('data/tgif-qa/{}'.format(args.question_type)) else: if not os.path.exists('data/{}'.format(args.dataset)): os.makedirs('data/{}'.format(args.dataset)) dataset_size = len(video_ids) with h5py.File(outfile, 'w') as fd: feat_dset = None video_ids_dset = None i0 = 0 _t = {'misc': utils.Timer()} for i, (video_path, video_id) in enumerate(video_ids): _t['misc'].tic() clips, valid = extract_clips_with_consecutive_frames(video_path, num_clips=num_clips, num_frames_per_clip=16) if args.feature_type == 'appearance': clip_feat = [] if valid: for clip_id, clip in enumerate(clips): feats = run_batch(clip, model) # (16, 2048) feats = feats.squeeze() clip_feat.append(feats) else: clip_feat = np.zeros(shape=(num_clips, 16, 2048)) clip_feat = np.asarray(clip_feat) # (8, 16, 2048) if feat_dset is None: C, F, D = clip_feat.shape feat_dset = fd.create_dataset('resnet_features', (dataset_size, C, F, D), dtype=np.float32) video_ids_dset = fd.create_dataset('ids', shape=(dataset_size,), dtype=np.int) elif args.feature_type == 'motion': clip_torch = torch.FloatTensor(np.asarray(clips)).cuda() if valid: clip_feat = model(clip_torch) # (8, 2048) clip_feat = clip_feat.squeeze() clip_feat = clip_feat.detach().cpu().numpy() else: clip_feat = np.zeros(shape=(num_clips, 2048)) if feat_dset is None: C, D = clip_feat.shape feat_dset = fd.create_dataset('resnext_features', (dataset_size, C, D), dtype=np.float32) video_ids_dset = fd.create_dataset('ids', shape=(dataset_size,), dtype=np.int) i1 = i0 + 1 feat_dset[i0:i1] = clip_feat video_ids_dset[i0:i1] = video_id i0 = i1 _t['misc'].toc() if (i % 1000 == 0): print('{:d}/{:d} {:.3f}s (projected finish: {:.2f} hours)' \ .format(i1, dataset_size, _t['misc'].average_time, _t['misc'].average_time * (dataset_size - i1) / 3600)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu_id', type=int, default=2, help='specify which gpu will be used') # dataset info parser.add_argument('--dataset', default='tgif-qa', choices=['tgif-qa', 'msvd-qa', 'msrvtt-qa'], type=str) parser.add_argument('--question_type', default='none', choices=['frameqa', 'count', 'transition', 'action', 'none'], type=str) # output parser.add_argument('--out', dest='outfile', help='output filepath', default="data/{}/{}_{}_feat.h5", type=str) # image sizes parser.add_argument('--num_clips', default=8, type=int) parser.add_argument('--image_height', default=224, type=int) parser.add_argument('--image_width', default=224, type=int) # network params parser.add_argument('--model', default='resnet101', choices=['resnet101', 'resnext101'], type=str) parser.add_argument('--seed', default='666', type=int, help='random seed') args = parser.parse_args() if args.model == 'resnet101': args.feature_type = 'appearance' elif args.model == 'resnext101': args.feature_type = 'motion' else: raise Exception('Feature type not supported!') # set gpu if args.model != 'resnext101': torch.cuda.set_device(args.gpu_id) torch.manual_seed(args.seed) np.random.seed(args.seed) # annotation files if args.dataset == 'tgif-qa': args.annotation_file = '/ceph-g/lethao/datasets/tgif-qa/csv/Total_{}_question.csv' args.video_dir = '/ceph-g/lethao/datasets/tgif-qa/gifs' args.outfile = 'data/{}/{}/{}_{}_{}_feat.h5' video_paths = tgif_qa.load_video_paths(args) random.shuffle(video_paths) # load model if args.model == 'resnet101': model = build_resnet() elif args.model == 'resnext101': model = build_resnext() generate_h5(model, video_paths, args.num_clips, args.outfile.format(args.dataset, args.question_type, args.dataset, args.question_type, args.feature_type)) elif args.dataset == 'msrvtt-qa': args.annotation_file = '/ceph-g/lethao/datasets/msrvtt/annotations/{}_qa.json' args.video_dir = '/ceph-g/lethao/datasets/msrvtt/videos/' video_paths = msrvtt_qa.load_video_paths(args) random.shuffle(video_paths) # load model if args.model == 'resnet101': model = build_resnet() elif args.model == 'resnext101': model = build_resnext() generate_h5(model, video_paths, args.num_clips, args.outfile.format(args.dataset, args.dataset, args.feature_type)) elif args.dataset == 'msvd-qa': args.annotation_file = '/ceph-g/lethao/datasets/msvd/MSVD-QA/{}_qa.json' args.video_dir = '/ceph-g/lethao/datasets/msvd/MSVD-QA/video/' args.video_name_mapping = '/ceph-g/lethao/datasets/msvd/youtube_mapping.txt' video_paths = msvd_qa.load_video_paths(args) random.shuffle(video_paths) # load model if args.model == 'resnet101': model = build_resnet() elif args.model == 'resnext101': model = build_resnext() generate_h5(model, video_paths, args.num_clips, args.outfile.format(args.dataset, args.dataset, args.feature_type))
build_scripts/CompileLibsodium-Linux.py
HUSKI3/Neblio-Node
138
12645258
import os from subprocess import call import sys import re import multiprocessing as mp import string import urllib import shutil version = "1.0.18-stable" def is_python3_or_higher(): return sys.version_info.major >= 3 def get_libsodium_filename(ver): return "libsodium-" + ver + ".tar.gz" def get_libsodium_link(ver): link = "https://download.libsodium.org/libsodium/releases/" + get_libsodium_filename(ver) # print(link) return link def download_file_python2(filelink, target): import urllib try: testfile = urllib.URLopener() try: os.remove(target) print("Found file " + target + ", which is now deleted.") except: pass testfile.retrieve(filelink, target) return True except: return False def download_file_python3(filelink, target): import urllib.request try: try: os.remove(target) print("Found file " + target + ", which is now deleted.") except: pass with urllib.request.urlopen(filelink) as response, open(target, 'wb') as out_file: shutil.copyfileobj(response, out_file) return True except Exception as e: return False def download_file(filelink, target): if is_python3_or_higher(): return download_file_python3(filelink, target) else: return download_file_python2(filelink, target) def download_libsodium(): libsodium_version_found = False filename_ = "" if(download_file(get_libsodium_link(version), get_libsodium_filename(version))): libsodium_version_found = True filename_ = get_libsodium_filename(version) print("Found libsodium version to be " + version) if libsodium_version_found == False: print("Could not find the latest libsodium version. Probably you're not connected to the internet.") print("If you have already downloaded libsodium, put the file name in the first argument of the script.") return filename_ if len(sys.argv) < 2: filename = download_libsodium() else: filename = sys.argv[1] dirname = "libsodium-stable" try: shutil.rmtree(dirname) except: pass working_dir = os.getcwd() call("tar -xf " + filename, shell=True) #extract the .tar.gz file dirname_bin = dirname + "_build" final_dirname = "libsodium_build" try: shutil.rmtree(dirname_bin) except: pass try: shutil.rmtree(final_dirname) except: pass #Go back to base dir os.chdir(working_dir) ################ os.chdir(dirname) # prepend ccache to the path, necessary since prior steps prepend things to the path os.environ['PATH'] = '/usr/lib/ccache:' + os.environ['PATH'] call("./configure",shell=True) call("make -j" + str(mp.cpu_count()) + " && make check", shell=True) call("sudo make install", shell=True) print("Compilation complete.") #Go back to base dir os.chdir(working_dir) ################ call(r"ln -s " + dirname_bin + " " + final_dirname,shell=True) print("") print("libsodium compiled to \"" + os.path.join(working_dir,final_dirname) + "\" with a soft link to \"" + os.path.join(working_dir,dirname_bin) + "\"") print("") print("libsodium lib path: " + os.path.join(working_dir,final_dirname,"lib")) print("libsodium include path: " + os.path.join(working_dir,final_dirname,"include"))
healthcareai/tests/test_dataframe_filters.py
iEvidently/healthcareai-py
263
12645264
import pandas as pd import numpy as np import unittest import healthcareai.common.filters as filters from healthcareai.common.healthcareai_error import HealthcareAIError class TestIsDataframe(unittest.TestCase): def test_is_dataframe(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, 4] }) self.assertTrue(filters.is_dataframe(df)) def test_is_not_dataframe(self): junk_inputs = [ 'foo', 42, [1, 2, 3], [[1, 2, 3], [1, 2, 3], [1, 2, 3], ], {'a': 1} ] for junk in junk_inputs: self.assertFalse(filters.is_dataframe(junk)) class TestValidationError(unittest.TestCase): def test_is_dataframe(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, 4] }) self.assertIsNone(filters.validate_dataframe_input(df)) def test_is_not_dataframe(self): junk_inputs = [ 'foo', 42, [1, 2, 3], [[1, 2, 3], [1, 2, 3], [1, 2, 3], ], {'a': 1} ] for junk in junk_inputs: self.assertRaises(HealthcareAIError, filters.validate_dataframe_input, junk) class TestDataframeColumnSuffixFilter(unittest.TestCase): def test_raises_error_on_non_dataframe_inputs(self): junk_inputs = [ 'foo', 42, [1, 2, 3], [[1, 2, 3], [1, 2, 3], [1, 2, 3], ], {'a': 1} ] for junk in junk_inputs: self.assertRaises(HealthcareAIError, filters.DataframeColumnSuffixFilter().fit_transform, junk) def test_removes_nothing_when_it_finds_no_matches(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, 4] }) result = filters.DataframeColumnSuffixFilter().fit_transform(df) self.assertEqual(len(result), 3) self.assertEqual(list(result.columns).sort(), list(df.columns).sort()) def test_removes_three_character_match(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'DTS': [1, 5, 4] }) result = filters.DataframeColumnSuffixFilter().fit_transform(df) expected = ['category', 'gender'] self.assertEqual(len(result), 3) self.assertEqual(list(result.columns).sort(), expected.sort()) def test_removes_long_character_match(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'admit_DTS': [1, 5, 4] }) result = filters.DataframeColumnSuffixFilter().fit_transform(df) expected = ['category', 'gender'] self.assertEqual(len(result), 3) self.assertEqual(list(result.columns).sort(), expected.sort()) def test_does_not_remove_lowercase_match(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'admit_dts': [1, 5, 4] }) result = filters.DataframeColumnSuffixFilter().fit_transform(df) expected = ['category', 'gender', 'admit_dts'] self.assertEqual(len(result), 3) self.assertEqual(list(result.columns).sort(), expected.sort()) class TestDataframeColumnDatetimeFilter(unittest.TestCase): def test_datetime_column_removal(self): dates = pd.date_range('1/1/2011', periods=10, freq='H') df = pd.DataFrame(data={"number": np.random.randn(len(dates)), "date": dates}) result = filters.DataFrameColumnDateTimeFilter().fit_transform(df) expected = ['number'] self.assertEqual(list(result.columns).sort(), expected.sort()) class TestDataframeGrainColumnDataFilter(unittest.TestCase): def test_raises_error_on_non_dataframe_inputs(self): junk_inputs = [ 'foo', 42, [1, 2, 3], [[1, 2, 3], [1, 2, 3], [1, 2, 3], ], {'a': 1} ] for junk in junk_inputs: self.assertRaises(HealthcareAIError, filters.DataframeColumnRemover(None).fit_transform, junk) def test_removes_nothing_when_it_finds_no_matches(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, 4] }) result = filters.DataframeColumnRemover('PatientID').fit_transform(df) self.assertEqual(len(result.columns), 3) self.assertEqual(list(result.columns).sort(), list(df.columns).sort()) def test_removes_nothing_when_none_is_passed(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, 4] }) result = filters.DataframeColumnRemover(None).fit_transform(df) self.assertEqual(len(result.columns), 3) self.assertEqual(list(result.columns).sort(), list(df.columns).sort()) def test_removes_match(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'PatientID': [1, 5, 4] }) result = filters.DataframeColumnRemover('PatientID').fit_transform(df) expected = ['category', 'gender'] self.assertEqual(len(result.columns), 2) self.assertEqual(list(result.columns).sort(), expected.sort()) def test_does_not_remove_lowercase_match(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'patientid': [1, 5, 4] }) result = filters.DataframeColumnRemover('PatientID').fit_transform(df) expected = ['category', 'gender', 'patientid'] self.assertEqual(len(result.columns), 3) self.assertEqual(list(result.columns).sort(), expected.sort()) def test_removes_list(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'patientid': [1, 5, 4] }) result = filters.DataframeColumnRemover(['gender', 'patientid', 'foo']).fit_transform(df) expected = ['category'] self.assertEqual(len(result.columns), 1) self.assertEqual(list(result.columns).sort(), expected.sort()) class TestDataframeNullValueFilter(unittest.TestCase): # TODO test exclusions! def test_raises_error_on_non_dataframe_inputs(self): junk_inputs = [ 'foo', 42, [1, 2, 3], [[1, 2, 3], [1, 2, 3], [1, 2, 3], ], {'a': 1} ] for junk in junk_inputs: self.assertRaises(HealthcareAIError, filters.DataframeColumnRemover(None).fit_transform, junk) def test_removes_nothing_when_no_nulls_exist(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, 4] }) result = filters.DataframeNullValueFilter().fit_transform(df) self.assertEqual(len(result), 3) def test_removes_row_with_single_null(self): df = pd.DataFrame({ 'category': ['a', 'b', 'c'], 'gender': ['F', 'M', 'F'], 'age': [1, 5, None] }) result = filters.DataframeNullValueFilter().fit_transform(df) self.assertEqual(len(result), 2) def test_removes_row_with_all_nulls(self): df = pd.DataFrame({ 'category': ['a', None, None], 'gender': ['F', 'M', None], 'age': [1, 5, None] }) result = filters.DataframeNullValueFilter().fit_transform(df) self.assertEqual(len(result), 1) def test_removes_row_all_nulls_exception(self): df = pd.DataFrame({'a': [1, None, 2, 3], 'b': ['m', 'f', None, 'f'], 'c': [3, 4, 5, None], 'd': [None, 8, 1, 3], 'label': ['Y', 'N', 'Y', 'N']}) self.assertRaises(HealthcareAIError, filters.DataframeNullValueFilter().fit_transform, df) if __name__ == '__main__': unittest.main()
recipes/Python/578080_Libreenect_OpenKinect_Minimum_Value_Joystick/recipe-578080.py
tdiprima/code
2,023
12645281
<gh_stars>1000+ #!/usr/bin/env python """ Kinect Demo using minimum values from the depth image. @Author = <NAME> @Date = 17 March, 2012 @Version = 1.1 @Filename = KinectJoystickMin.py """ from freenect import sync_get_depth as get_depth, sync_get_video as get_video, init, close_device, open_device, set_led import cv import numpy as np import pygame from math import * from numpy import mean def doloop(): #Series of commands to do pointer operations on the kinect (motor, led, accelerometer) ctx = init() #Initiates device mdev = open_device(ctx, 0) #Opens the device for commands set_led(mdev, 1) #Sets LED to green close_device(mdev #Closes device. Device must be closed immediately after usage #Mean filter caches yList = [0,0,0,0,0,0] xList = [0,0,0,0,0,0] #Sets color tuples RED = (255,0,0) BLUE = (0,0,255) TEAL = (0,200,100) BLACK = (0,0,0) #Sets the size of the screen xSize = 640 ySize = 480 done = False #Main while loop bool counter pygame.init() #Initiates pygame screen = pygame.display.set_mode((xSize, ySize), pygame.RESIZABLE) #Creates the pygame window screen.fill(BLACK) #Fills the window black #Initiates the xTempPos and yTempPos values so that the point will remain stationary #if the minimum value is larger than 600 xTempPos = xSize/2 yTempPos = ySize/2 global depth, rgb #Makes the depth and rgb variables global while not done: screen.fill(BLACK) #Makes the pygame window black after each iteration # Get a fresh frame (depth,_) = get_depth() (rgb, _) = get_video() minVal = np.min(depth) #This is the minimum value from the depth image minPos = np.argmin(depth) #This is the raw index of the minimum value above xPos = np.mod(minPos, xSize) #This is the x component of the raw index yPos = minPos//xSize #This is the y component of the raw index #This is the mean filter process """ A mean filter works by collecting values in a cache list and taking the mean of them to determine the final value. It works in this case to decrease the amount of volatility the minimum position experiences to get a smoother display with a more consistent value. My computer works smoothly with a 5 bit cache where as a faster computer may need a larger cache and a slower computer may need a smaller cache """ xList.append(xPos) del xList[0] xPos = int(mean(xList)) yList.append(yPos) del yList[0] yPos = int(mean(yList)) """ This if statement says that if the minimum value is below 600 to store the minimum positions in xTempPos and yTempPos and to make the dot color red. Also if the minimum value is larger than 600, xPos and yPos become the last stored minimum and maximum positions. It also changes the color to purple """ if minVal < 600: xTempPos = xPos yTempPos = yPos COLOR = cv.RGB(255,0,0) else: xPos = xTempPos yPos = yTempPos COLOR = cv.RGB(100,0,100) cv.Circle(rgb, (xPos, yPos), 2, COLOR, 40) #draws a circle of a certain color at minimum position cv.ShowImage('Image',rgb) #Shows the image cv.WaitKey(5) #Keyboard interupt """ The if statement below sets up the virtual joystick by basically breaking the pygame window into four parts. A dot representing the minimum position is drawn on the window and the corresponding button based on the position is "pressed". The quarter of the window in which the button "pressed" corresponds to turns teal after being "pressed" Top Right : A Bottom Right: B Bottom Left : Y Top Right : X """ if xPos <= xSize/2 and yPos <= ySize/2: command = 'A' rect1 = pygame.Rect((xSize/2,0),(xSize/2,ySize/2)) pygame.draw.rect(screen,TEAL,rect1) elif xPos <= xSize/2 and yPos > ySize/2: command = 'B' rect1 = pygame.Rect((xSize/2,ySize/2),(xSize/2,ySize/2)) pygame.draw.rect(screen,TEAL,rect1) elif xPos > xSize/2 and yPos <= ySize/2: command = 'X' rect1 = pygame.Rect((0,0),(xSize/2,ySize/2)) pygame.draw.rect(screen,TEAL,rect1) else: command = 'Y' rect1 = pygame.Rect((0,ySize/2),(xSize/2,ySize/2)) pygame.draw.rect(screen,TEAL,rect1) pygame.draw.line(screen, BLUE, (xSize/2, ySize/2), (xSize - xPos,yPos)) #Draws a line from the middle to the minimum position pygame.draw.circle(screen, RED, (xSize - xPos,yPos), 10) #Draws the circle on pygame window pygame.display.flip() #Displays the processed pygame window print command, minVal #Prints the "pressed" button and the minimum value for e in pygame.event.get(): #Itertates through current events if e.type is pygame.QUIT: #If the close button is pressed, the while loop ends done = True doloop()
src/genie/libs/parser/iosxe/show_l2fib.py
balmasea/genieparser
204
12645334
<reponame>balmasea/genieparser ''' show_l2fib.py IOSXE parsers for the following show commands: * show l2fib path-list {id} * show l2fib path-list detail * show l2fib bridge-domain {bd_id} port * show l2fib bridge-domain {bd_id} address unicast {mac_addr} Copyright (c) 2021 by Cisco Systems, Inc. All rights reserved. ''' import re # genie from genie.metaparser import MetaParser from genie.metaparser.util.schemaengine import Any, ListOf, Optional # ==================================================== # Schema for 'show l2fib path-list <id>' # ==================================================== class ShowL2fibPathListIdSchema(MetaParser): """ Schema for show l2fib path-list {id} show l2fib path-list detail """ schema = { 'pathlist_id': { Any(): { 'type': str, 'eth_seg': str, 'path_cnt': int, 'path_list': ListOf( { 'path': str } ) } } } # ============================================= # Parser for 'show l2fib path-list <id>' # ============================================= class ShowL2fibPathListId(ShowL2fibPathListIdSchema): """ Parser for show l2fib path-list {id} show l2fib path-list detail """ cli_command = [ 'show l2fib path-list {id}', 'show l2fib path-list detail' ] def cli(self, id=None, output=None): if output is None: if id: cli_cmd = self.cli_command[0].format(id=id) else: cli_cmd = self.cli_command[1] cli_output = self.device.execute(cli_cmd) else: cli_output = output # PathList ID : 28 p1 = re.compile(r'^PathList ID\s+:\s+(?P<path_list_id>\d+)$') # PathList Type : MPLS_UC p2 = re.compile(r'^PathList Type\s+:\s+(?P<type>\w+)$') # Ethernet Segment : 0000.0000.0000.0000.0000 p3 = re.compile(r'^Ethernet Segment\s+:\s+' r'(?P<eth_seg>[0-9a-fA-F\.]+)$') # Path Count : 1 p4 = re.compile(r'^Path Count\s+:\s+(?P<path_cnt>\d+)$') # Paths : [MAC][email protected] p5 = re.compile(r'^[Paths]*\s*:\s+(?P<path>\[\w+\]\d+' r'[0-9a-fA-F\.:@ ]+)$') parser_dict = {} for line in cli_output.splitlines(): line = line.strip() if not line: continue # PathList ID : 28 m = p1.match(line) if m: group = m.groupdict() path_list_ids_dict = parser_dict.setdefault('pathlist_id', {}) path_list = path_list_ids_dict.setdefault(int(group['path_list_id']), {}) paths = path_list.setdefault('path_list', []) continue # PathList Type : MPLS_UC m = p2.match(line) if m: group = m.groupdict() path_list.update({'type': group['type']}) continue # Ethernet Segment : 0000.0000.0000.0000.0000 m = p3.match(line) if m: group = m.groupdict() path_list.update({'eth_seg': group['eth_seg']}) continue # Path Count : 1 m = p4.match(line) if m: group = m.groupdict() path_list.update({'path_cnt': int(group['path_cnt'])}) continue # Paths : [MAC][email protected] m = p5.match(line) if m: group = m.groupdict() path = group['path'] paths_dict = {} paths_dict.update({'path': path}) paths.append(paths_dict) continue return parser_dict # ==================================================== # Schema for 'show l2fib bridge-domain {bd_id} port' # ==================================================== class ShowL2fibBdPortSchema(MetaParser): """ Schema for show l2fib bridge-domain {bd-id} port """ schema = { Any(): { 'type': str, 'is_path_list': bool, Optional('port'): str, Optional('path_list'): { 'id': int, 'path_count': int, 'type': str, 'description': str } } } # ================================================== # Parser for 'show l2fib bridge-domain <bd_id> port' # ================================================== class ShowL2fibBdPort(ShowL2fibBdPortSchema): """ Parser for show l2fib bridge-domain {bd_id} port """ cli_command = [ 'show l2fib bridge-domain {bd_id} port'] def cli(self, output=None, bd_id=None): if output is None: cli_output = self.device.execute(self.cli_command[0].format(bd_id=bd_id)) else: cli_output = output #BD_PORT Et0/2:12 p1 = re.compile(r'^(?P<port_type>BD_PORT)\s+(?P<interface>[\w:\/]+)$') #VXLAN_REP PL:1191(1) T:VXLAN_REP [IR]20012:2.2.2.2 p2 = re.compile(r'^(?P<type>\w+)\s+PL:(?P<path_list_id>\d+)\((?P<path_list_count>\d+)\)' r'\s+T:(?P<path_list_type>\w+)\s+(?P<path_list_desc>\[\w+\][0-9a-fA-F:@\.]+)$') parser_dict = {} for line in cli_output.splitlines(): line = line.strip() if not line: continue #BD_PORT Et0/2:12 m = p1.match(line) if m: group = m.groupdict() port_type = group['port_type'] interface_id = group['interface'] parser_dict.update({ interface_id: { 'type': port_type, 'is_path_list': False, 'port': interface_id } }) continue #VXLAN_REP PL:1191(1) T:VXLAN_REP [IR]20012:2.2.2.2 m = p2.match(line) if m: group = m.groupdict() parser_dict.update({ group['path_list_desc']: { 'type': group['type'], 'is_path_list': True, 'path_list': { 'id': int(group['path_list_id']), 'path_count': int(group['path_list_count']), 'type': group['path_list_type'], 'description': group['path_list_desc'] } } }) continue return parser_dict # ======================================================================== # Schema for 'show l2fib bridge-domain <bd_id> address unicast <mac_addr>' # ======================================================================== class ShowL2fibBridgedomainAddressUnicastSchema(MetaParser): """ Schema for show l2fib bridge-domin {bd-id} address unicast {mac_addr}""" schema = { 'mac_addr': str, 'reference_count': int, 'epoch': int, 'producer': str, 'flags': ListOf( str ), 'adjacency': { Optional('path_list'): { 'path_list_id': int, 'path_list_count': int, 'path_list_type': str, 'path_list_desc': str, }, Optional('olist'): { 'olist': int, 'port_count': int }, 'type': str, 'desc': str }, 'pd_adjacency': { Optional('path_list'): { 'path_list_id': int, 'path_list_count': int, 'path_list_type': str, 'path_list_desc': str, }, Optional('olist'): { 'olist': int, 'port_count': int }, 'type': str, 'desc': str }, 'packet_count': int, 'bytes': int } # ======================================================================== # Parser for 'show l2fib bridge-domain <bd_id> address unicast <mac_addr>' # ======================================================================== class ShowL2fibBridgedomainAddressUnicast(ShowL2fibBridgedomainAddressUnicastSchema): """ Parser for show l2fib bridge-domain {bd_id} address unicast {mac_addr}""" cli_command = 'show l2fib bridge-domain {bd_id} address unicast {mac_addr}' def cli(self, output=None, bd_id=None, mac_addr=None): if output is None: out = self.device.execute(self.cli_command.format(bd_id=bd_id, mac_addr=mac_addr)) else: out = output #MAC Address : aabb.0000.0002 p1 = re.compile(r'^MAC\s+Address\s+:\s+(?P<mac_addr>[a-fA-F0-9\.]+)$') #Reference Count : 1 p2 = re.compile(r'^Reference\s+Count\s+:\s+(?P<reference_count>\d+)$') #Epoch : 0 p3 = re.compile(r'^Epoch\s+:\s+(?P<epoch>\d+)$') #Producer : BGP #Producer : BD-ENG p4 = re.compile(r'^Producer\s+:\s+(?P<producer>.+)$') #Flags : Local Mac p5 = re.compile(r'^Flags\s+:\s+(?P<flags>[\w\s]+)$') #: CP Learn p6 = re.compile(r'^:\s+(?P<flags>[\w\s]+)$') #Adjacency : MPLS_UC PL:5(1) T:MPLS_UC [MAC][email protected] #PD Adjacency : MPLS_UC PL:5(1) T:MPLS_UC [MAC][email protected] p7 = re.compile(r'^(?P<tag>(Adjacency|PD Adjacency))\s+:\s+(?P<type>\w+)\s+PL:(?P<path_list_id>\d+)\((?P<path_list_count>\d+)\)' r'\s+T:(?P<path_list_type>\w+)\s+(?P<path_list_desc>\[\w+\][0-9a-fA-F:@\.]+)$') #Adjacency : Olist: 3, Ports: 1 #PD Adjacency : Olist: 3, Ports: 1 p8 = re.compile(r'^(?P<tag>(Adjacency|PD Adjacency))\s+:\s+Olist:\s+(?P<olist>\d+),\s+Ports:\s+(?P<port_count>\d+)$') #Adjacency : VXLAN_CP L:20011:1.1.1.1 R:20012:2.2.2.2 #PD Adjacency : VXLAN_CP L:20011:1.1.1.1 R:20012:2.2.2.2 #Adjacency : BD_PORT Et0/1:11 #PD Adjacency : BD_PORT Et0/1:11 p9 = re.compile(r'^(?P<tag>(Adjacency|PD Adjacency))\s+:\s+(?P<type>\w+)\s+(?P<desc>.+)$') #Packets : 0 p10 = re.compile(r'^Packets\s+:\s+(?P<packet_count>\d+)$') #Bytes : 0 p11 = re.compile(r'^Bytes\s+:\s+(?P<bytes>\d+)$') parser_dict = {} for line in out.splitlines(): line = line.strip() if not line: continue #MAC Address : aabb.0000.0002 m = p1.match(line) if m: group = m.groupdict() parser_dict.update({ 'mac_addr':group['mac_addr'] }) continue #Reference Count : 1 m = p2.match(line) if m: group = m.groupdict() parser_dict.update({'reference_count': int(group['reference_count']) }) continue #Epoch : 0 m = p3.match(line) if m: group = m.groupdict() parser_dict.update({'epoch': int(group['epoch'])}) continue #Producer : BGP m = p4.match(line) if m: group = m.groupdict() parser_dict.update({'producer': group['producer']}) continue #Flags : Local Mac m = p5.match(line) if m: group = m.groupdict() flags_list = parser_dict.setdefault('flags', []) flags_list.append(group['flags']) continue #: CP Learn m = p6.match(line) if m: group = m.groupdict() flags_list.append(group['flags']) continue #Adjacency : MPLS_UC PL:5(1) T:MPLS_UC [MAC][email protected] #PD Adjacency : MPLS_UC PL:5(1) T:MPLS_UC [MAC][email protected] m = p7.match(line) if m: group = m.groupdict() adj_subdict = {} adj_subdict.update({ 'type': group['type'], 'desc': 'PL:{pl_id}({pl_count}) T:{pl_type} {pl_desc}'.format( \ pl_id=group['path_list_id'], pl_count=group['path_list_count'], \ pl_type=group['path_list_type'], pl_desc=group['path_list_desc']), 'path_list': { 'path_list_id': int(group['path_list_id']), 'path_list_count': int(group['path_list_count']), 'path_list_type': group['path_list_type'], 'path_list_desc': group['path_list_desc'] } }) if group['tag'] == 'Adjacency': adjacency = parser_dict.setdefault('adjacency', adj_subdict) elif group['tag'] == 'PD Adjacency': pd_adjacency = parser_dict.setdefault('pd_adjacency', adj_subdict) continue #Adjacency : Olist: 3, Ports: 1 #PD Adjacency : Olist: 3, Ports: 1 m = p8.match(line) if m: group = m.groupdict() adj_subdict = {} adj_subdict.update({ 'type': 'olist', 'desc': 'Olist: {olist}, Ports: {port_count}'.format(\ olist=group['olist'], port_count=group['port_count']), 'olist': { 'olist': int(group['olist']), 'port_count': int(group['port_count']) } }) if group['tag'] == 'Adjacency': adjacency = parser_dict.setdefault('adjacency', adj_subdict) elif group['tag'] == 'PD Adjacency': pd_adjacency = parser_dict.setdefault('pd_adjacency', adj_subdict) continue #Adjacency : VXLAN_CP L:20011:1.1.1.1 R:20012:2.2.2.2 #PD Adjacency : VXLAN_CP L:20011:1.1.1.1 R:20012:2.2.2.2 #Adjacency : BD_PORT Et0/1:11 #PD Adjacency : BD_PORT Et0/1:11 m = p9.match(line) if m: group = m.groupdict() adj_subdict = {} adj_subdict.update({ 'type': group['type'], 'desc': group['desc'] }) if group['tag'] == 'Adjacency': parser_dict.setdefault('adjacency', adj_subdict) elif group['tag'] == 'PD Adjacency': parser_dict.setdefault('pd_adjacency', adj_subdict) continue #Packets : 0 m = p10.match(line) if m: group = m.groupdict() parser_dict.update({'packet_count': int(group['packet_count'])}) continue #Bytes : 0 m = p11.match(line) if m: group = m.groupdict() parser_dict.update({'bytes': int(group['bytes'])}) continue return parser_dict
model/node.py
leoriohope/RandWireNN
757
12645340
<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F from .sep_conv import SeparableConv2d class NodeOp(nn.Module): def __init__(self, in_degree, in_channel, out_channel, stride): super(NodeOp, self).__init__() self.single = (in_degree == 1) if not self.single: self.agg_weight = nn.Parameter(torch.zeros(in_degree, requires_grad=True)) self.conv = SeparableConv2d(in_channel, out_channel, kernel_size=3, padding=1, stride=stride) self.bn = nn.BatchNorm2d(out_channel) def forward(self, y): # y: [B, C, N, M, in_degree] if self.single: y = y.squeeze(-1) else: y = torch.matmul(y, torch.sigmoid(self.agg_weight)) # [B, C, N, M] y = F.relu(y) # [B, C, N, M] y = self.conv(y) # [B, C_out, N, M] y = self.bn(y) # [B, C_out, N, M] return y # if __name__ == '__main__': # x = torch.randn(7, 3, 224, 224, 5) # node = NodeOp(5, 3, 4) # y = node(x) # print(y.shape) # [7, 4, 224, 224]
timy/settings.py
pnpnpn/timy
300
12645347
<reponame>pnpnpn/timy<gh_stars>100-1000 class TrackingMode(object): PRINTING, LOGGING = range(0, 2) TRACKING = True TRACKING_MODE = TrackingMode.PRINTING class TimyConfig(object): DEFAULT_IDENT = 'Timy' def __init__(self, tracking=TRACKING, tracking_mode=TRACKING_MODE): self.tracking = tracking self.tracking_mode = tracking_mode timy_config = TimyConfig()
prefixspan/closed.py
avijit1258/PrefixSpan-py
285
12645361
<reponame>avijit1258/PrefixSpan-py #! /usr/bin/env python3 from .localtyping import Optional, Set, Matches, DB, Pattern, List def __reversescan(db: DB, patt: List[Optional[int]], matches: Matches): def islocalclosed(previtem: Optional[int]) -> bool: closeditems: Set[int] = set() for k, (i, endpos) in enumerate(matches): localitems = set() for startpos in range(endpos - 1, -1, -1): item = db[i][startpos] if item == previtem: matches[k] = (i, startpos) break localitems.add(item) (closeditems.update if k == 0 else closeditems.intersection_update)(localitems) return len(closeditems) > 0 return any(islocalclosed(previtem) for previtem in reversed(patt[:-1])) def __forwardscan(db, matches): # type: (DB, Matches) -> bool closeditems = set() # type: Set[int] for k, (i, endpos) in enumerate(matches): localitems = set() for startpos in range(endpos + 1, len(db[i])): item = db[i][startpos] localitems.add(item) (closeditems.update if k == 0 else closeditems.intersection_update)(localitems) return len(closeditems) > 0 def isclosed(db: DB, patt: Pattern, matches: Matches) -> bool: # Add a pseduo item indicating the start of sequence # Add a pseduo item indicating the end of sequence return not __reversescan( db, [None, *patt, None], [(i, len(db[i])) for i, _ in matches] ) and not __forwardscan(db, matches) def canclosedprune(db: DB, patt: Pattern, matches: Matches) -> bool: # Add a pseduo item indicating the start of sequence return __reversescan(db, [None, *patt], matches[:])
hammer/deployContract_example_web3.py
brave-experiments/chainhammer
110
12645364
<reponame>brave-experiments/chainhammer<gh_stars>100-1000 # taken from # http://web3py.readthedocs.io/en/stable/contracts.html#contract-deployment-example # # then repaired: # see issue 808 https://github.com/ethereum/web3.py/issues/808 # and extended # # and quorum-bugfixed, see # https://github.com/ethereum/web3.py/issues/898#issuecomment-396701172 # tested with these versions: # web3 4.2.0 # py-solc: 2.1.0 # solc 0.4.23+commit.124ca40d.Linux.gpp # testrpc 1.3.4 # python 3.5.3 # # does work with TestRPCProvider() # does work with Energy Web//v1.12.0 (parity fork) # now also works with Quorum 2.0.2 (fork of Geth/v1.7.2) import json import web3 from web3 import Web3, HTTPProvider from solc import compile_source from web3.contract import ConciseContract # Solidity source code contract_source_code = ''' pragma solidity ^0.4.21; contract Greeter { string public greeting; function Greeter() public { greeting = 'Hello'; } function setGreeting(string _greeting) public { greeting = _greeting; } function greet() view public returns (string) { return greeting; } } ''' compiled_sol = compile_source(contract_source_code) # Compiled source code contract_interface = compiled_sol['<stdin>:Greeter'] # web3.py instance # w3 = Web3(Web3.EthereumTesterProvider()) # wrong # w3 = Web3(Web3.TestRPCProvider()) # works # w3 = Web3(HTTPProvider('http://localhost:8545')) # works with Energy Web//v1.12.0 (account [0] must be unlocked) # does NOT work with Quorum 2.0.2 --> Geth/v1.7.2 # Quorum = easiest way to run: as vagrant virtualbox # step 1 https://github.com/jpmorganchase/quorum-examples#vagrant-usage # step 2 https://github.com/jpmorganchase/quorum-examples/blob/master/examples/7nodes/README.md#7-nodes w3 = Web3(HTTPProvider('http://localhost:22000')) nodeName = "Quorum" if nodeName == "Quorum": # bugfix for quorum, see # https://github.com/ethereum/web3.py/issues/898#issuecomment-396701172 from web3.middleware import geth_poa_middleware # inject the poa compatibility middleware to the innermost layer w3.middleware_stack.inject(geth_poa_middleware, layer=0) # print client ID string: print ("Node ID string:", w3.version.node) # set pre-funded account as sender w3.eth.defaultAccount = w3.eth.accounts[0] print ("Sender's address", w3.eth.defaultAccount, "\n") # Instantiate and deploy contract Greeter = w3.eth.contract(abi=contract_interface['abi'], bytecode=contract_interface['bin']) # Submit the transaction that deploys the contract tx_hash = Greeter.constructor().transact() print ("Tx submitted: ", w3.toHex(tx_hash)) # altered by me. # Wait for the transaction to be mined, and get the transaction receipt tx_receipt = w3.eth.waitForTransactionReceipt(tx_hash) # Create the contract instance with the newly-deployed address greeter = w3.eth.contract( address=tx_receipt.contractAddress, abi=contract_interface['abi'], ) # Display the default greeting from the contract print('Default contract greeting: {}'.format( greeter.functions.greet().call() )) print('Setting the greeting to Nihao...') tx_hash = greeter.functions.setGreeting('Nihao').transact() # Wait for transaction to be mined... w3.eth.waitForTransactionReceipt(tx_hash) # Display the new greeting value print('Updated contract greeting: {}'.format( greeter.functions.greet().call() )) # When issuing a lot of reads, try this more concise reader: reader = ConciseContract(greeter) assert reader.greet() == "Nihao"
models/FreeAnchor/builder.py
shouwangzhe134/simpledet
3,195
12645374
from __future__ import division from __future__ import print_function import math import mxnext as X from models.retinanet.builder import RetinaNetHead class FreeAnchorRetinaNet(object): def __init__(self): pass @staticmethod def get_train_symbol(backbone, neck, head): gt_bbox = X.var("gt_bbox") im_info = X.var("im_info") feat = backbone.get_rpn_feature() feat = neck.get_rpn_feature(feat) head.get_anchor() loss = head.get_loss(feat, gt_bbox, im_info) return X.group(loss) @staticmethod def get_test_symbol(backbone, neck, head): im_info = X.var("im_info") im_id = X.var("im_id") rec_id = X.var("rec_id") feat = backbone.get_rpn_feature() feat = neck.get_rpn_feature(feat) head.get_anchor() cls_score, bbox_xyxy = head.get_prediction(feat, im_info) return X.group([rec_id, im_id, im_info, cls_score, bbox_xyxy]) class FreeAnchorRetinaNetHead(RetinaNetHead): def __init__(self, pRpn): super().__init__(pRpn) # reinit bias for cls prior_prob = 0.02 pi = - math.log((1 - prior_prob) / prior_prob) self.cls_pred_bias = X.var("cls_pred_bias", init=X.constant(pi)) self.anchor_dict = None def get_anchor(self): p = self.p num_anchor = len(p.anchor_generate.ratio) * len(p.anchor_generate.scale) stride = p.anchor_generate.stride anchor_dict = {} for s in stride: max_side = p.anchor_generate.max_side // s anchors = X.var("anchor_stride%s" % s, shape=(1, 1, max_side, max_side, num_anchor * 4), dtype='float32') # (1, 1, long_side, long_side, #anchor * 4) anchor_dict["stride%s" % s] = anchors self.anchor_dict = anchor_dict def get_loss(self, conv_feat, gt_bbox, im_info): import mxnet as mx p = self.p stride = p.anchor_generate.stride if not isinstance(stride, tuple): stride = (stride) num_class = p.num_class num_base_anchor = len(p.anchor_generate.ratio) * len(p.anchor_generate.scale) image_per_device = p.batch_image cls_logit_dict, bbox_delta_dict = self.get_output(conv_feat) cls_logit_reshape_list = [] bbox_delta_reshape_list = [] feat_list = [] scale_loss_shift = 128.0 if p.fp16 else 1.0 # reshape logit and delta for s in stride: # (N, A * C, H, W) -> (N, A * C, H * W) cls_logit = X.reshape( data=cls_logit_dict["stride%s" % s], shape=(0, 0, -1), name="cls_stride%s_reshape" % s ) # (N, A * 4, H, W) -> (N, A * 4, H * W) bbox_delta = X.reshape( data=bbox_delta_dict["stride%s" % s], shape=(0, 0, -1), name="bbox_stride%s_reshape" % s ) cls_logit_reshape_list.append(cls_logit) bbox_delta_reshape_list.append(bbox_delta) feat_list.append(cls_logit_dict["stride%s" % s]) # cls_logits -> (N, H' * W' * A, C) cls_logits = X.concat(cls_logit_reshape_list, axis=2, name="cls_logit_concat") cls_logits = X.transpose(cls_logits, axes=(0, 2, 1), name="cls_logit_transpose") cls_logits = X.reshape(cls_logits, shape=(0, -1, num_class - 1), name="cls_logit_reshape") cls_prob = X.sigmoid(cls_logits) # bbox_deltas -> (N, H' * W' * A, 4) bbox_deltas = X.concat(bbox_delta_reshape_list, axis=2, name="bbox_delta_concat") bbox_deltas = X.transpose(bbox_deltas, axes=(0, 2, 1), name="bbox_delta_transpose") bbox_deltas = X.reshape(bbox_deltas, shape=(0, -1, 4), name="bbox_delta_reshape") anchor_list = [self.anchor_dict["stride%s" % s] for s in stride] bbox_thr = p.anchor_assign.bbox_thr pre_anchor_top_n = p.anchor_assign.pre_anchor_top_n alpha = p.focal_loss.alpha gamma = p.focal_loss.gamma anchor_target_mean = p.head.mean or (0, 0, 0, 0) anchor_target_std = p.head.std or (1, 1, 1, 1) from models.FreeAnchor.ops import _prepare_anchors, _positive_loss, _negative_loss anchors = _prepare_anchors( mx.sym, feat_list, anchor_list, image_per_device, num_base_anchor) positive_loss = _positive_loss( mx.sym, anchors, gt_bbox, cls_prob, bbox_deltas, image_per_device, alpha, pre_anchor_top_n, anchor_target_mean, anchor_target_std ) positive_loss = X.make_loss( data=positive_loss, grad_scale=1.0 * scale_loss_shift, name="positive_loss" ) negative_loss = _negative_loss( mx.sym, anchors, gt_bbox, cls_prob, bbox_deltas, im_info, image_per_device, num_class, alpha, gamma, pre_anchor_top_n, bbox_thr, anchor_target_mean, anchor_target_std ) negative_loss = X.make_loss( data=negative_loss, grad_scale=1.0 * scale_loss_shift, name="negative_loss" ) return positive_loss, negative_loss def get_prediction(self, conv_feat, im_info): import mxnet as mx p = self.p num_class = p.num_class stride = p.anchor_generate.stride if not isinstance(stride, tuple): stride = (stride) pre_nms_top_n = p.proposal.pre_nms_top_n anchor_target_mean = p.head.mean or (0, 0, 0, 0) anchor_target_std = p.head.std or (1, 1, 1, 1) cls_logit_dict, bbox_delta_dict = self.get_output(conv_feat) from models.FreeAnchor.ops import _proposal_retina cls_score_list = [] bbox_xyxy_list = [] for s in stride: cls_prob = X.sigmoid(data=cls_logit_dict["stride%s" % s]) bbox_delta = bbox_delta_dict["stride%s" % s] anchors = self.anchor_dict["stride%s" % s] pre_nms_top_n_level = -1 if s == max(stride) else pre_nms_top_n bbox_xyxy, cls_score = _proposal_retina( F=mx.sym, cls_prob=cls_prob, bbox_pred=bbox_delta, anchors=anchors, im_info=im_info, batch_size=1, rpn_pre_nms_top_n=pre_nms_top_n_level, num_class=num_class, anchor_mean=anchor_target_mean, anchor_std=anchor_target_std ) cls_score_list.append(cls_score) bbox_xyxy_list.append(bbox_xyxy) cls_score = X.concat(cls_score_list, axis=1, name="cls_score_concat") bbox_xyxy = X.concat(bbox_xyxy_list, axis=1, name="bbox_xyxy_concat") return cls_score, bbox_xyxy
tests/utils/test_text.py
PyCN/pulsar
1,410
12645406
'''Tests the tools and utilities in pulsar.utils.''' import unittest from pulsar.utils.log import lazy_string @lazy_string def blabla(n): return 'AAAAAAAAAAAAAAAAAAAA %s' % n class TestTextUtils(unittest.TestCase): def testLazy(self): r = blabla(3) self.assertEqual(r.value, None) v = str(r) self.assertEqual(v, 'AAAAAAAAAAAAAAAAAAAA 3') self.assertEqual(r.value, v)
ldap_connector.py
shellster/LDAPPER
163
12645429
import datetime import json import logging import queue import re import threading import time import ldap3 import OpenSSL from impacket.ldap import ldap import utilities """ WARNING: If you try to borrow this code, please be aware: Neither LDAP connector is thread safe! Impacket library may not be thread safe, more research is needed. LDAP3 must be instantiate with special parameters to be thread safe (which this library is not doing right now): https://ldap3.readthedocs.io/en/latest/index.html?highlight=thread#welcome-to-ldap3-s-documentation """ class LDAP3Connector: basedn = None conn = None servers = [] _isconnected = False def __init__(self, server, sec_level, domain, username, password, basedn=None, pagesize=10, maxrecord=100, delay=0): self.domain = domain self.username = username self.password = password self.basedn = basedn self.pagesize = pagesize self.maxrecord = maxrecord self.delay = delay self.sec_level = sec_level self.server = None # Set Encoding to UTF-8 ldap3.set_config_parameter("DEFAULT_ENCODING", "utf-8") # Shuffle servers if multiple provided to distribute DC load if sec_level == 3: self.server = ldap3.Server(server, port=636, get_info=ldap3.ALL, use_ssl=True) else: self.server = ldap3.Server(server, port=389, get_info=ldap3.ALL) self.conn = ldap3.Connection( self.server, user="{0}\\{1}".format(self.domain, self.username), password=self.password, authentication=ldap3.NTLM, read_only=True, ) if sec_level == 2: try: self.conn.start_tls() except ldap3.core.exceptions.LDAPStartTLSError: pass if self.conn.bind(): if not self.basedn: self.basedn = self.conn.server.info.other["defaultNamingContext"][0] if not self.basedn: self.basedn = utilities.attempt_to_derive_basedn( server.ip, self.domain, self.username, self.password ) if not self.basedn: raise Exception("Unable to derive baseDN") else: raise Exception("Unable to connect to server") def search(self, search, attributes): if not attributes: attributes = ldap3.ALL_ATTRIBUTES self.conn.search( self.basedn, search, search_scope=ldap3.SUBTREE, attributes=attributes, paged_size=self.pagesize, ) cookie = self.conn.result["controls"]["1.2.840.113556.1.4.319"]["value"][ "cookie" ] looptrack = None while True: for raw_entry in self.conn.entries: if looptrack == "": looptrack = raw_entry["cn"] elif looptrack == raw_entry["cn"]: # In spite of cookie paging, AD starts looping forever so we detect loop and break cookie = False break # Impacket library returns strings for everything, so we do that here to ensure similar behavior to ldap3 entry = {} keys = [] if isinstance(attributes, list): keys = attributes else: keys = list(raw_entry.entry_attributes_as_dict) for key in keys: if key in raw_entry: if len(raw_entry[key]) == 0: entry[key.lower()] = "" elif len(raw_entry[key]) > 1: # This is a list entry[key.lower()] = [str(x) for x in raw_entry[key]] else: entry[key.lower()] = str(raw_entry[key]) yield entry if len(cookie) == 0: break self.conn.search( self.basedn, search, search_scope=ldap3.SUBTREE, attributes=attributes, paged_size=self.pagesize, paged_cookie=cookie, ) cookie = self.conn.result["controls"]["1.2.840.113556.1.4.319"]["value"][ "cookie" ] def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): try: self.conn.close() except Exception: pass class _ImpacketRecordHandler: """ Class exists to basically "curry" the Impacket entry handler callback to pass a per-thread queue in the class context. This should make this particular piece thread safe and make exceptions less devastating. """ thread_queue = None attributes = [] def __init__(self, thread_queue, attributes, delay): self.thread_queue = thread_queue self.attributes = attributes self.delay = delay def handle_record(self, item): # Make sure all searched attributes are included in result entry = {k: "" for k in self.attributes} try: for attribute in item["attributes"]: name = str(attribute["type"]).lower() data = None if name in ["objectguid"]: # Reformating to match ldap3 format: data = "".join("%02x" % b for b in attribute["vals"][0].asOctets()) data = "{{{0}-{1}-{2}-{3}-{4}}}".format( "".join(utilities.splitn(data[0:8], 2)[::-1]), "".join(utilities.splitn(data[8:12], 2)[::-1]), "".join(utilities.splitn(data[12:16], 2)[::-1]), data[16:20], data[20:], ) elif name == "objectsid": data = utilities.binary_to_sid(attribute["vals"][0]) else: data = [] for item in attribute["vals"]: try: data.append(item.asOctets().decode("utf-8")) except UnicodeDecodeError: data.append("".join("\\x%02x" % b for b in item.asOctets())) for i in range(len(data)): if re.match(r"^\d{14}\.\dZ$", data[i]): data[i] = datetime.datetime.strptime(data[i][:-1], '%Y%m%d%H%M%S.%f').replace(tzinfo=datetime.timezone.utc) data[i] = data[i].strftime('%Y-%m-%d %H:%M:%S+00:00') elif re.search(r"^\d{18,19}$", data[i]): try: data[i] = utilities.ldap_to_unix_timestamp(data[i]).strftime("%Y-%m-%d %H:%M:%S+00:00") except Exception: pass if len(data) == 0: data = "" elif len(data) == 1: data = data[0] entry[name] = data self.thread_queue.put(entry) time.sleep(self.delay) except TypeError: pass except Exception: logging.exception() pass class ImpacketLDAPConnector: basedn = None conn = None servers = [] attributes = [] _isconnected = False def __init__(self, server, sec_level, domain, username, password, basedn=None, pagesize=10, maxrecord=100, delay=0): self.domain = domain self.username = username self.password = password self.basedn = basedn self.pagesize = pagesize self.maxrecord = maxrecord self.delay = delay self.server = None if sec_level == 3: self.server = "ldaps://{}".format(server) else: self.server = "ldap://{}".format(server) if not self.basedn: self.basedn = utilities.attempt_to_derive_basedn( server.split("/")[-1], self.domain, self.username, self.password ) if not self.basedn: raise Exception("Unable to derive baseDN") self.conn = ldap.LDAPConnection(self.server, self.basedn, None) self.conn.login(self.username, self.password, self.domain) def search(self, search, attributes): try: """ Impacket either returns all results or calls a callback method for every result. We wrap this in a thread and queue so that we can slow it down and bunch our results as we want. We do need to make sure that our processing is fast enough that the LDAP connection does not time out. """ sc = ldap.SimplePagedResultsControl(size=self.pagesize) thread_queue = queue.Queue(self.pagesize) record_handler = _ImpacketRecordHandler(thread_queue, attributes, self.delay) self.attributes = attributes t = threading.Thread( target=self.conn.search, kwargs={ "searchFilter": search, "attributes": attributes, "sizeLimit": self.maxrecord, "searchControls": [sc], "perRecordCallback": record_handler.handle_record, }, ) t.daemon = True t.start() while True: try: yield thread_queue.get(block=False) except queue.Empty: # If nothing in queue, and the ldap query has died or finished we can exit if not t.is_alive(): break except ldap.LDAPSearchError as ex: raise ex except Exception as ex: raise ex def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): try: self.conn.close() except Exception: pass
python/slalom/models.py
LukeZheZhu/slalom
128
12645467
import tensorflow as tf import keras.backend as K from keras.applications.vgg16 import VGG16 from keras.applications.vgg19 import VGG19 from keras.applications.mobilenet import MobileNet from python.slalom.resnet import ResNet50 from python.slalom.resnet2 import ResNet34 as ResNet2_34, ResNet50 as ResNet2_50, ResNet101 as ResNet2_101, \ ResNet152 as ResNet2_152 from keras.layers import Input from python.slalom.utils import preprocess_vgg, print_model_size from python.preprocessing.preprocessing_factory import get_preprocessing from python.slalom.mobilenet_sep import MobileNet_sep import numpy as np import cv2 from keras.applications.resnet50 import preprocess_input def preproc(img): # Resize img = img.astype(np.uint8) # img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) height, width, _ = img.shape new_height = height * 256 // min(img.shape[:2]) new_width = width * 256 // min(img.shape[:2]) img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) # Crop height, width, _ = img.shape startx = width // 2 - (224 // 2) starty = height // 2 - (224 // 2) img = img[starty:starty + 224, startx:startx + 224] assert img.shape[0] == 224 and img.shape[1] == 224, (img.shape, height, width) return preprocess_input(img.astype(np.float32)) def preproc_tf(x, h=224, w=224): img = tf.py_func(preproc, [x], [tf.float32])[0] img.set_shape([h, w, 3]) return img def get_model(model_name, batch_size, include_top=True, double_prec=False): if model_name in ['vgg_16']: h = w = 224 assert(h % 2**5 == 0) num_classes = 1000 model_func = lambda weights, inp: VGG16(include_top=include_top, weights=weights, input_tensor=inp, input_shape=(h, w, 3), pooling=None, classes=num_classes) preprocess_func = preprocess_vgg bits_w = 8 bits_x = 0 elif model_name in ['vgg_19']: h = w = 224 num_classes = 1000 model_func = lambda weights, inp: VGG19(include_top=include_top, weights=weights, input_tensor=inp, input_shape=(h, w, 3), pooling=None, classes=num_classes) preprocess_func = preprocess_vgg bits_w = 8 bits_x = 0 elif model_name in ['mobilenet']: h = w = 224 num_classes = 1000 model_func = lambda weights, inp: MobileNet(include_top=include_top, weights=weights, input_tensor=inp, input_shape=(224, 224, 3), pooling=None, classes=num_classes) preprocess_func = get_preprocessing('mobilenet_v1') bits_w = 8 bits_x = 8 elif model_name in ['mobilenet_sep']: h = w = 224 num_classes = 1000 model_func = lambda weights, inp: MobileNet_sep(include_top=include_top, input_tensor=inp, input_shape=(224, 224, 3), pooling=None, classes=num_classes) preprocess_func = get_preprocessing('mobilenet_v1') bits_w = 8 bits_x = 8 elif 'resnet' in model_name: h = w = 224 num_classes = 1000 num_layers = int(model_name.split('_')[-1]) model_func = lambda weights, inp: ResNet50(include_top=include_top, input_tensor=inp, input_shape=(224, 224, 3), pooling=None, classes=num_classes, layers=num_layers) """ if model_name == "resnet_34": model_func = lambda weights, inp: ResNet2_34((224, 224, 3), classes=num_classes, input_tensor=inp) elif model_name == "resnet_50": model_func = lambda weights, inp: ResNet2_50((224, 224, 3), classes=num_classes, input_tensor=inp) elif model_name == "resnet_101": model_func = lambda weights, inp: ResNet2_101((224, 224, 3), classes=num_classes, input_tensor=inp) elif model_name == "resnet_152": model_func = lambda weights, inp: ResNet2_152((224, 224, 3), classes=num_classes, input_tensor=inp) else: raise AttributeError("unknown model {}".format(model_name)) """ preprocess_func = lambda x, h_, w_: preproc_tf(x, h_, w_) bits_w = 12 bits_x = 4 else: raise AttributeError("unknown model {}".format(model_name)) images = tf.placeholder(dtype=tf.float32, shape=(batch_size, h, w, 3)) model = model_func("imagenet", images) preprocess = lambda x: preprocess_func(x, h, w) if double_prec: images_dbl = tf.placeholder(dtype=tf.float64, shape=(batch_size, h, w, 3)) images_dbl = Input(images_dbl, (batch_size, h, w, 3), dtype=tf.float64) K.set_floatx('float64') model_dbl = model_func(None, images_dbl) for i in range(len(model_dbl.layers)): weights = model.layers[i].get_weights() weights_dbl = [None if w is None else w.astype(np.float64) for w in weights] model_dbl.layers[i].set_weights(weights_dbl) model = model_dbl preprocess = lambda x: preprocess_func(x, h, w, dtype=tf.float64) K.set_floatx('float32') print(model.summary()) print_model_size(model) res = {} res['preprocess'] = preprocess res['bits_w'] = bits_w res['bits_x'] = bits_x return model, res
examples/security_demo.py
Michae1Weiss/spectree
183
12645491
<gh_stars>100-1000 from flask import Flask from pydantic import BaseModel from spectree import SecurityScheme, SpecTree class Req(BaseModel): name: str security_schemes = [ SecurityScheme( name="PartnerID", data={"type": "apiKey", "name": "partner-id", "in": "header"}, ), SecurityScheme( name="PartnerToken", data={"type": "apiKey", "name": "partner-access-token", "in": "header"}, ), SecurityScheme( name="test_secure", data={ "type": "http", "scheme": "bearer", }, ), SecurityScheme( name="auth_oauth2", data={ "type": "oauth2", "flows": { "authorizationCode": { "authorizationUrl": "https://example.com/oauth/authorize", "tokenUrl": "https://example.com/oauth/token", "scopes": { "read": "Grants read access", "write": "Grants write access", "admin": "Grants access to admin operations", }, }, }, }, ), ] app = Flask(__name__) api = SpecTree( "flask", security_schemes=security_schemes, SECURITY={"test_secure": []}, ) @app.route("/ping", methods=["POST"]) @api.validate( json=Req, security=[{"PartnerID": [], "PartnerToken": []}, {"auth_oauth2": ["read"]}], ) def ping(): return "pong" @app.route("/") def index(): return "hello" if __name__ == "__main__": api.register(app) app.run(port=8000)
Python3/451.py
rakhi2001/ecom7
854
12645548
__________________________________________________________________________________________________ sample 32 ms submission class Solution: def frequencySort(self, s: str) -> str: a = set(s) a = [a*s.count(a) for a in a] a = sorted(a, key = lambda x: len(x), reverse = True) return ''.join(a) __________________________________________________________________________________________________ sample 13584 kb submission class Solution: def frequencySort(self, s: str) -> str: freq = dict() for c in s: if c in freq: freq[c]+=1 else: freq[c]=1 freq_r = dict() for k,v in freq.items(): if v in freq_r: freq_r[v].append(k) else: freq_r[v]=[k] freq_list = list(freq_r.keys()) freq_list.sort(reverse=True) output = "" for f in freq_list: for c in freq_r[f]: for i in range(f): output+=c return output __________________________________________________________________________________________________
tensorflow_model_optimization/python/core/quantization/keras/layers/conv_batchnorm_test_utils.py
ptesan777/model-optimization
848
12645568
<filename>tensorflow_model_optimization/python/core/quantization/keras/layers/conv_batchnorm_test_utils.py # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test utils for conv batchnorm folding.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_model_optimization.python.core.quantization.keras.layers import conv_batchnorm keras = tf.keras _ConvBatchNorm2D = conv_batchnorm._ConvBatchNorm2D # pylint: disable=protected-access _DepthwiseConvBatchNorm2D = conv_batchnorm._DepthwiseConvBatchNorm2D # pylint: disable=protected-access def _get_conv2d_params(): return { 'kernel_size': (3, 3), 'input_shape': (10, 10, 3), 'batch_size': 8, } def _get_initializer(random_init): if random_init: kernel_initializer = keras.initializers.glorot_uniform() else: kernel_initializer = keras.initializers.glorot_uniform(seed=0) return kernel_initializer class Conv2DModel(object): """Construct and access Conv + BatchNorm + activation models.""" params = { 'filters': 2, 'kernel_size': (2, 2), 'input_shape': (3, 3, 3), 'batch_size': 1, } @classmethod def get_batched_input_shape(cls): """Return input shape with batch size.""" shape = [cls.params['batch_size']] shape.extend(cls.params['input_shape']) return shape @classmethod def get_output_shape(cls): return [cls.params['batch_size'], 2, 2, 2] @classmethod def get_folded_batchnorm_model(cls, is_quantized=False, post_bn_activation=None): """Return folded Conv2D + BN + optional activation model.""" return tf.keras.Sequential([ _ConvBatchNorm2D( kernel_initializer=_get_initializer(random_init=False), is_quantized=is_quantized, post_activation=post_bn_activation, **cls.params) ]) @classmethod def get_nonfolded_batchnorm_model(cls, post_bn_activation=None, model_type='sequential', random_init=False): """Return nonfolded Conv2D + BN + optional activation model.""" if model_type == 'sequential': layers = [ keras.layers.Conv2D( kernel_initializer=_get_initializer(random_init), use_bias=False, **cls.params), keras.layers.BatchNormalization(axis=-1), ] if post_bn_activation is not None: layers += post_bn_activation return tf.keras.Sequential(layers) else: inp = keras.layers.Input(cls.params['input_shape'], cls.params['batch_size']) x = keras.layers.Conv2D( cls.params['filters'], cls.params['kernel_size'], kernel_initializer=_get_initializer(random_init), use_bias=False)( inp) out = keras.layers.BatchNormalization(axis=-1)(x) if post_bn_activation is not None: out = post_bn_activation(out) return tf.keras.Model(inp, out) class DepthwiseConv2DModel(Conv2DModel): """Construct and access DepthwiseConv + BatchNorm + activation models.""" params = { 'kernel_size': (3, 3), 'input_shape': (10, 10, 3), 'batch_size': 8, } @classmethod def get_output_shape(cls): return [cls.params['batch_size'], 8, 8, 3] @classmethod def get_folded_batchnorm_model(cls, is_quantized=False, post_bn_activation=None): return tf.keras.Sequential([ _DepthwiseConvBatchNorm2D( depthwise_initializer=_get_initializer(random_init=False), is_quantized=is_quantized, post_activation=post_bn_activation, **cls.params) ]) @classmethod def get_nonfolded_batchnorm_model(cls, post_bn_activation=None, model_type='sequential', random_init=False): if model_type == 'sequential': layers = [ keras.layers.DepthwiseConv2D( depthwise_initializer=_get_initializer(random_init), use_bias=False, **cls.params), keras.layers.BatchNormalization(axis=-1), ] if post_bn_activation is not None: layers += post_bn_activation return tf.keras.Sequential(layers) else: inp = keras.layers.Input(cls.params['input_shape'], cls.params['batch_size']) x = keras.layers.DepthwiseConv2D( cls.params['kernel_size'], depthwise_initializer=_get_initializer(random_init), use_bias=False)( inp) out = keras.layers.BatchNormalization(axis=-1)(x) if post_bn_activation is not None: out = post_bn_activation(out) return tf.keras.Model(inp, out)
runtime/java_heap.py
5A59/Zvm
485
12645582
# coding=utf-8 class JavaHeap: def __init__(self): pass
contrib/tools/python/src/Lib/plat-aix3/IN.py
HeyLey/catboost
6,989
12645586
<reponame>HeyLey/catboost # Generated by h2py from /usr/include/netinet/in.h # Included from net/nh.h # Included from sys/machine.h LITTLE_ENDIAN = 1234 BIG_ENDIAN = 4321 PDP_ENDIAN = 3412 BYTE_ORDER = BIG_ENDIAN DEFAULT_GPR = 0xDEADBEEF MSR_EE = 0x8000 MSR_PR = 0x4000 MSR_FP = 0x2000 MSR_ME = 0x1000 MSR_FE = 0x0800 MSR_FE0 = 0x0800 MSR_SE = 0x0400 MSR_BE = 0x0200 MSR_IE = 0x0100 MSR_FE1 = 0x0100 MSR_AL = 0x0080 MSR_IP = 0x0040 MSR_IR = 0x0020 MSR_DR = 0x0010 MSR_PM = 0x0004 DEFAULT_MSR = (MSR_EE | MSR_ME | MSR_AL | MSR_IR | MSR_DR) DEFAULT_USER_MSR = (DEFAULT_MSR | MSR_PR) CR_LT = 0x80000000 CR_GT = 0x40000000 CR_EQ = 0x20000000 CR_SO = 0x10000000 CR_FX = 0x08000000 CR_FEX = 0x04000000 CR_VX = 0x02000000 CR_OX = 0x01000000 XER_SO = 0x80000000 XER_OV = 0x40000000 XER_CA = 0x20000000 def XER_COMP_BYTE(xer): return ((xer >> 8) & 0x000000FF) def XER_LENGTH(xer): return (xer & 0x0000007F) DSISR_IO = 0x80000000 DSISR_PFT = 0x40000000 DSISR_LOCK = 0x20000000 DSISR_FPIO = 0x10000000 DSISR_PROT = 0x08000000 DSISR_LOOP = 0x04000000 DSISR_DRST = 0x04000000 DSISR_ST = 0x02000000 DSISR_SEGB = 0x01000000 DSISR_DABR = 0x00400000 DSISR_EAR = 0x00100000 SRR_IS_PFT = 0x40000000 SRR_IS_ISPEC = 0x20000000 SRR_IS_IIO = 0x10000000 SRR_IS_PROT = 0x08000000 SRR_IS_LOOP = 0x04000000 SRR_PR_FPEN = 0x00100000 SRR_PR_INVAL = 0x00080000 SRR_PR_PRIV = 0x00040000 SRR_PR_TRAP = 0x00020000 SRR_PR_IMPRE = 0x00010000 def ntohl(x): return (x) def ntohs(x): return (x) def htonl(x): return (x) def htons(x): return (x) IPPROTO_IP = 0 IPPROTO_ICMP = 1 IPPROTO_GGP = 3 IPPROTO_TCP = 6 IPPROTO_EGP = 8 IPPROTO_PUP = 12 IPPROTO_UDP = 17 IPPROTO_IDP = 22 IPPROTO_TP = 29 IPPROTO_LOCAL = 63 IPPROTO_EON = 80 IPPROTO_BIP = 0x53 IPPROTO_RAW = 255 IPPROTO_MAX = 256 IPPORT_RESERVED = 1024 IPPORT_USERRESERVED = 5000 IPPORT_TIMESERVER = 37 def IN_CLASSA(i): return (((long)(i) & 0x80000000) == 0) IN_CLASSA_NET = 0xff000000 IN_CLASSA_NSHIFT = 24 IN_CLASSA_HOST = 0x00ffffff IN_CLASSA_MAX = 128 def IN_CLASSB(i): return (((long)(i) & 0xc0000000) == 0x80000000) IN_CLASSB_NET = 0xffff0000 IN_CLASSB_NSHIFT = 16 IN_CLASSB_HOST = 0x0000ffff IN_CLASSB_MAX = 65536 def IN_CLASSC(i): return (((long)(i) & 0xe0000000) == 0xc0000000) IN_CLASSC_NET = 0xffffff00 IN_CLASSC_NSHIFT = 8 IN_CLASSC_HOST = 0x000000ff def IN_CLASSD(i): return (((long)(i) & 0xf0000000) == 0xe0000000) def IN_MULTICAST(i): return IN_CLASSD(i) def IN_EXPERIMENTAL(i): return (((long)(i) & 0xe0000000) == 0xe0000000) def IN_BADCLASS(i): return (((long)(i) & 0xf0000000) == 0xf0000000) INADDR_ANY = 0x00000000 INADDR_LOOPBACK = 0x7f000001 INADDR_BROADCAST = 0xffffffff INADDR_NONE = 0xffffffff IN_LOOPBACKNET = 127 IP_OPTIONS = 1 IP_HDRINCL = 2 IP_TOS = 3 IP_TTL = 4 IP_RECVOPTS = 5 IP_RECVRETOPTS = 6 IP_RECVDSTADDR = 7 IP_RETOPTS = 8
examples/jbnmr_examples/s2_s3_1d_plotting/plot_1d_pipe_time.py
genematx/nmrglue
150
12645589
<filename>examples/jbnmr_examples/s2_s3_1d_plotting/plot_1d_pipe_time.py<gh_stars>100-1000 import nmrglue as ng import matplotlib.pyplot as plt # read in the data from a NMRPipe file dic, data = ng.pipe.read("test.fid") # make a unit conversion object for the axis uc = ng.pipe.make_uc(dic, data) # plot the spectrum fig = plt.figure() ax = fig.add_subplot(111) ax.plot(uc.ms_scale(), data.real, 'k-') # decorate axes ax.set_yticklabels([]) ax.set_xlabel("Time (ms)") ax.set_ylim(-100000, 100000) # save the figure fig.savefig("fid.png")
tests/conftest.py
Jyrno42/pytest-cookies
134
12645595
# -*- coding: utf-8 -*- import collections import json import pytest pytest_plugins = "pytester" @pytest.fixture(name="cookiecutter_template") def fixture_cookiecutter_template(tmpdir): template = tmpdir.ensure("cookiecutter-template", dir=True) template_config = collections.OrderedDict( [("repo_name", "foobar"), ("short_description", "Test Project")] ) template.join("cookiecutter.json").write(json.dumps(template_config)) template_readme = "\n".join( [ "{{cookiecutter.repo_name}}", "{% for _ in cookiecutter.repo_name %}={% endfor %}", "{{cookiecutter.short_description}}", ] ) repo = template.ensure("{{cookiecutter.repo_name}}", dir=True) repo.join("README.rst").write(template_readme) return template
mpunet/image/queue/base_queue.py
alexsosn/MultiPlanarUNet
156
12645597
<filename>mpunet/image/queue/base_queue.py import numpy as np from mpunet.logging.default_logger import ScreenLogger class BaseQueue: """ The base queue object defines the Queue API and stores basic attributes used across all queue objects The BaseQueue should normally not be initialized directly. """ def __init__(self, dataset, logger=None): """ TODO Args: datasets: logger: """ self.dataset = dataset self.logger = logger or ScreenLogger() @property def all_loaded(self): raise NotImplemented def __len__(self): return len(self.dataset) def __iter__(self): for i in range(len(self.dataset.images)): yield self.get_image_by_idx(i) def __getitem__(self, idx): return self.get_image_by_idx(idx) def get_image_iterator(self, max_load=None): load_inds = np.arange(len(self)) if max_load and max_load < len(self): load_inds = np.random.choice(load_inds, max_load, False) for idx in load_inds: yield self.get_image_by_idx(idx) def get_random_image(self): return np.random.choice(self.dataset.images, 1)[0] def get_image_by_idx(self, image_idx): return self.dataset.images[image_idx] def get_image_by_id(self, image_id): return self.dataset.id_to_image[image_id]
Testing/TestDICOMPython.py
mwestphal/vtk-dicom
171
12645605
#! /usr/bin/env python2 import sys import vtk try: import vtkDICOM except ImportError: # for backwards compabilitity, before VTK 9 import vtkDICOMPython vtkDICOM = vtkDICOMPython # put everything into the vtk namespace for a in dir(vtkDICOM): if a[0] != '_': setattr(vtk, a, getattr(vtkDICOM, a)) m = vtk.vtkDICOMMetaData() if vtk.vtkVersion.GetVTKMajorVersion() < 6: sys.stderr.write("This test requires VTK 6 or higher.\n"); sys.exit(0) m.Set(vtk.vtkDICOMTag(0x0008, 0x0005), 'ISO_IR 100') v = m.Get(vtk.vtkDICOMTag(0x0008, 0x0005)) if v.AsString() != 'ISO_IR 100': sys.exit(1)
matchzoo/preprocessors/bert_preprocessor.py
baajur/MatchZoo
2,209
12645607
<reponame>baajur/MatchZoo<gh_stars>1000+ """Bert Preprocessor.""" from tqdm import tqdm from . import units from .chain_transform import chain_transform from matchzoo import DataPack from matchzoo.engine.base_preprocessor import BasePreprocessor from .build_vocab_unit import built_bert_vocab_unit from .build_unit_from_data_pack import build_unit_from_data_pack tqdm.pandas() class BertPreprocessor(BasePreprocessor): """Bert-base Model preprocessor.""" def __init__(self, bert_vocab_path: str, fixed_length_left: int = 30, fixed_length_right: int = 30, filter_mode: str = 'df', filter_low_freq: float = 2, filter_high_freq: float = float('inf'), remove_stop_words: bool = False, lower_case: bool = True, chinese_version: bool = False, ): """ Bert-base Model preprocessor. Example: >>> import matchzoo as mz >>> train_data = mz.datasets.toy.load_data() >>> test_data = mz.datasets.toy.load_data(stage='test') >>> # The argument 'bert_vocab_path' must feed the bert vocab path >>> bert_preprocessor = mz.preprocessors.BertPreprocessor( ... bert_vocab_path= ... 'matchzoo/datasets/bert_resources/uncased_vocab_100.txt') >>> train_data_processed = bert_preprocessor.fit_transform( ... train_data) >>> test_data_processed = bert_preprocessor.transform(test_data) """ super().__init__() self._fixed_length_left = fixed_length_left self._fixed_length_right = fixed_length_right self._bert_vocab_path = bert_vocab_path self._left_fixedlength_unit = units.FixedLength( self._fixed_length_left, pad_mode='post' ) self._right_fixedlength_unit = units.FixedLength( self._fixed_length_right, pad_mode='post' ) self._filter_unit = units.FrequencyFilter( low=filter_low_freq, high=filter_high_freq, mode=filter_mode ) self._units = self._default_units() self._vocab_unit = built_bert_vocab_unit(self._bert_vocab_path) if chinese_version: self._units.insert(1, units.ChineseTokenize()) if lower_case: self._units.append(units.Lowercase()) self._units.append(units.StripAccent()) self._units.append(units.WordPieceTokenize( self._vocab_unit.state['term_index'])) if remove_stop_words: self._units.append(units.StopRemoval()) def fit(self, data_pack: DataPack, verbose: int = 1): """ Fit pre-processing context for transformation. :param verbose: Verbosity. :param data_pack: Data_pack to be preprocessed. :return: class:`BertPreprocessor` instance. """ data_pack = data_pack.apply_on_text(chain_transform(self._units), verbose=verbose) fitted_filter_unit = build_unit_from_data_pack(self._filter_unit, data_pack, flatten=False, mode='right', verbose=verbose) self._context['filter_unit'] = fitted_filter_unit self._context['vocab_unit'] = self._vocab_unit vocab_size = len(self._vocab_unit.state['term_index']) self._context['vocab_size'] = vocab_size self._context['embedding_input_dim'] = vocab_size self._context['input_shapes'] = [(self._fixed_length_left,), (self._fixed_length_right,)] return self def transform(self, data_pack: DataPack, verbose: int = 1) -> DataPack: """ Apply transformation on data, create fixed length representation. :param data_pack: Inputs to be preprocessed. :param verbose: Verbosity. :return: Transformed data as :class:`DataPack` object. """ data_pack = data_pack.copy() data_pack.apply_on_text(chain_transform(self._units), inplace=True, verbose=verbose) data_pack.apply_on_text(self._context['filter_unit'].transform, mode='right', inplace=True, verbose=verbose) data_pack.apply_on_text(self._context['vocab_unit'].transform, mode='both', inplace=True, verbose=verbose) data_pack.append_text_length(inplace=True, verbose=verbose) data_pack.apply_on_text(self._left_fixedlength_unit.transform, mode='left', inplace=True, verbose=verbose) data_pack.apply_on_text(self._right_fixedlength_unit.transform, mode='right', inplace=True, verbose=verbose) max_len_left = self._fixed_length_left max_len_right = self._fixed_length_right data_pack.left['length_left'] = \ data_pack.left['length_left'].apply( lambda val: min(val, max_len_left)) data_pack.right['length_right'] = \ data_pack.right['length_right'].apply( lambda val: min(val, max_len_right)) return data_pack @classmethod def _default_units(cls) -> list: """Prepare needed process units.""" return [ units.BertClean(), units.BasicTokenize() ]
src/assortment/config_assortment.py
AbhinavGopal/ts_tutorial
290
12645639
"""Specify the jobs to run via config file. Product assortment exeperiment (Figure 7.2). """ import collections import functools import numpy as np from base.config_lib import Config from base.experiment import ExperimentNoAction from assortment.agent_assortment import TSAssortment, GreedyAssortment, EpsilonGreedyAssortment,AnnealingEpsilonGreedyAssortment from assortment.env_assortment import ProductAssortment def get_config(): """Generates the config for the experiment.""" name = 'product_assortment' num_products = 6 prior_mean = 0 prior_var_diagonal = 1 prior_var_off_diagonal = 0.2 noise_var = 0.04 profits = np.array([1/6]*6) epsilon = 0.07 k = 9 agents = collections.OrderedDict( [('TS', functools.partial(TSAssortment, num_products, prior_mean, prior_var_diagonal,prior_var_off_diagonal, noise_var, profits,epsilon,k)), ('greedy', functools.partial(GreedyAssortment, num_products, prior_mean, prior_var_diagonal,prior_var_off_diagonal, noise_var, profits,epsilon,k)), (str(epsilon) + '-greedy', functools.partial(EpsilonGreedyAssortment, num_products, prior_mean, prior_var_diagonal,prior_var_off_diagonal, noise_var, profits,epsilon,k)), (str(k)+'/('+str(k)+'+t)-greedy', functools.partial(AnnealingEpsilonGreedyAssortment, num_products, prior_mean, prior_var_diagonal,prior_var_off_diagonal, noise_var, profits,epsilon,k))] ) environments = collections.OrderedDict( [('env', functools.partial(ProductAssortment, num_products, prior_mean, prior_var_diagonal,prior_var_off_diagonal, noise_var, profits))] ) experiments = collections.OrderedDict( [(name, ExperimentNoAction)] ) n_steps = 500 n_seeds = 20000 config = Config(name, agents, environments, experiments, n_steps, n_seeds) return config
tests/integration/events/v1/test_event_type.py
BrimmingDev/twilio-python
1,362
12645659
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from tests import IntegrationTestCase from tests.holodeck import Request from twilio.base.exceptions import TwilioException from twilio.http.response import Response class EventTypeTestCase(IntegrationTestCase): def test_list_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.events.v1.event_types.list() self.holodeck.assert_has_request(Request( 'get', 'https://events.twilio.com/v1/Types', )) def test_read_empty_response(self): self.holodeck.mock(Response( 200, ''' { "types": [], "meta": { "page": 0, "page_size": 10, "first_page_url": "https://events.twilio.com/v1/Types?PageSize=10&Page=0", "previous_page_url": null, "url": "https://events.twilio.com/v1/Types?PageSize=10&Page=0", "next_page_url": null, "key": "types" } } ''' )) actual = self.client.events.v1.event_types.list() self.assertIsNotNone(actual) def test_read_results_response(self): self.holodeck.mock(Response( 200, ''' { "types": [ { "date_created": "2020-08-13T13:28:20Z", "date_updated": "2020-08-13T13:28:20Z", "type": "com.twilio.messaging.message.delivered", "schema_id": "Messaging.MessageStatus", "public": true, "description": "Messaging- delivered message", "url": "https://events.twilio.com/v1/Types/com.twilio.messaging.message.delivered", "links": { "schema": "https://events.twilio.com/v1/Schemas/Messaging.MessageStatus/Versions" } }, { "date_created": "2020-08-13T13:28:19Z", "date_updated": "2020-08-13T13:28:19Z", "type": "com.twilio.messaging.message.failed", "schema_id": "Messaging.MessageStatus", "public": true, "description": "Messaging- failed message", "url": "https://events.twilio.com/v1/Types/com.twilio.messaging.message.failed", "links": { "schema": "https://events.twilio.com/v1/Schemas/Messaging.MessageStatus/Versions" } } ], "meta": { "page": 0, "page_size": 20, "first_page_url": "https://events.twilio.com/v1/Types?PageSize=20&Page=0", "previous_page_url": null, "url": "https://events.twilio.com/v1/Types?PageSize=20&Page=0", "next_page_url": null, "key": "types" } } ''' )) actual = self.client.events.v1.event_types.list() self.assertIsNotNone(actual) def test_read_results_with_schema_id_response(self): self.holodeck.mock(Response( 200, ''' { "types": [ { "date_created": "2020-08-13T13:28:20Z", "date_updated": "2020-08-13T13:28:20Z", "type": "com.twilio.messaging.message.delivered", "schema_id": "Messaging.MessageStatus", "public": true, "description": "Messaging- delivered message", "url": "https://events.twilio.com/v1/Types/com.twilio.messaging.message.delivered", "links": { "schema": "https://events.twilio.com/v1/Schemas/Messaging.MessageStatus/Versions" } }, { "date_created": "2020-08-13T13:28:19Z", "date_updated": "2020-08-13T13:28:19Z", "type": "com.twilio.messaging.message.failed", "schema_id": "Messaging.MessageStatus", "public": true, "description": "Messaging- failed message", "url": "https://events.twilio.com/v1/Types/com.twilio.messaging.message.failed", "links": { "schema": "https://events.twilio.com/v1/Schemas/Messaging.MessageStatus/Versions" } } ], "meta": { "page": 0, "page_size": 20, "first_page_url": "https://events.twilio.com/v1/Types?SchemaId=Messaging.MessageStatus&PageSize=20&Page=0", "previous_page_url": null, "url": "https://events.twilio.com/v1/Types?SchemaId=Messaging.MessageStatus&PageSize=20&Page=0", "next_page_url": null, "key": "types" } } ''' )) actual = self.client.events.v1.event_types.list() self.assertIsNotNone(actual) def test_fetch_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.events.v1.event_types("type").fetch() self.holodeck.assert_has_request(Request( 'get', 'https://events.twilio.com/v1/Types/type', )) def test_fetch_response(self): self.holodeck.mock(Response( 200, ''' { "date_created": "2020-08-13T13:28:20Z", "date_updated": "2020-08-13T13:28:20Z", "type": "com.twilio.messaging.message.delivered", "schema_id": "Messaging.MessageStatus", "public": true, "description": "Messaging- delivered message", "url": "https://events.twilio.com/v1/Types/com.twilio.messaging.message.delivered", "links": { "schema": "https://events.twilio.com/v1/Schemas/Messaging.MessageStatus/Versions" } } ''' )) actual = self.client.events.v1.event_types("type").fetch() self.assertIsNotNone(actual)
spikeinterface/extractors/neoextractors/mearec.py
khl02007/spikeinterface
116
12645661
from .neobaseextractor import NeoBaseRecordingExtractor, NeoBaseSortingExtractor import probeinterface as pi class MEArecRecordingExtractor(NeoBaseRecordingExtractor): """ Class for reading data from a MEArec simulated data. Parameters ---------- file_path: str locs_2d: bool """ mode = 'file' NeoRawIOClass = 'MEArecRawIO' def __init__(self, file_path, locs_2d=True): neo_kwargs = {'filename': str(file_path)} NeoBaseRecordingExtractor.__init__(self, **neo_kwargs) probe = pi.read_mearec(file_path) self.set_probe(probe, in_place=True) self.annotate(is_filtered=True) self._kwargs = {'file_path': str(file_path), 'locs_2d': locs_2d} class MEArecSortingExtractor(NeoBaseSortingExtractor): mode = 'file' NeoRawIOClass = 'MEArecRawIO' handle_spike_frame_directly = False def __init__(self, file_path, use_natural_unit_ids=True): neo_kwargs = {'filename': str(file_path)} NeoBaseSortingExtractor.__init__(self, sampling_frequency=None, # auto guess is correct here use_natural_unit_ids=use_natural_unit_ids, **neo_kwargs) self._kwargs = {'file_path': str(file_path), 'use_natural_unit_ids': use_natural_unit_ids} def read_mearec(file_path, locs_2d=True, use_natural_unit_ids=True): """ Parameters ---------- file_path: str or Path Path to MEArec h5 file locs_2d: bool If True (default), locations are loaded in 2d. If False, 3d locations are loaded use_natural_unit_ids: bool If True, natural unit strings are loaded (e.g. #0. #1). If False, unit ids are in64 Returns ------- recording: MEArecRecordingExtractor The recording extractor object sorting: MEArecSortingExtractor The sorting extractor object """ recording = MEArecRecordingExtractor(file_path, locs_2d=locs_2d) sorting = MEArecSortingExtractor(file_path, use_natural_unit_ids=use_natural_unit_ids) return recording, sorting
recipes/Python/578191_Extract_Multiple_TAR_Files_/recipe-578191.py
tdiprima/code
2,023
12645692
<reponame>tdiprima/code<filename>recipes/Python/578191_Extract_Multiple_TAR_Files_/recipe-578191.py import os import sys import tarfile def main(): total = untar(sys.argv[1:]) if total: args = total, total > 1 and 's were' or ' was' sys.stdout.write('Report: %s file%s untared.' % args) else: filename = os.path.basename(sys.argv[0]) sys.stdout.write('Usage: %s <file_or_dir> ...' % filename) def untar(paths): total = 0 for path in paths: if os.path.isdir(path): try: dir_list = os.listdir(path) except: pass else: total += untar(os.path.join(path, new) for new in dir_list) elif os.path.isfile(path): try: tarfile.open(path).extractall(os.path.dirname(path)) except: pass else: total += 1 return total if __name__ == '__main__': main()
samsung_problems/problem_1.py
loftwah/Daily-Coding-Problem
129
12645709
<gh_stars>100-1000 """This problem was asked by Samsung. A group of houses is connected to the main water plant by means of a set of pipes. A house can either be connected by a set of pipes extending directly to the plant, or indirectly by a pipe to a nearby house which is otherwise connected. For example, here is a possible configuration, where A, B, and C are houses, and arrows represent pipes: A <--> B <--> C <--> plant Each pipe has an associated cost, which the utility company would like to minimize. Given an undirected graph of pipe connections, return the lowest cost configuration of pipes such that each house has access to water. In the following setup, for example, we can remove all but the pipes from plant to A, plant to B, and B to C, for a total cost of 16. pipes = { 'plant': {'A': 1, 'B': 5, 'C': 20}, 'A': {'C': 15}, 'B': {'C': 10}, 'C': {} } """
romp/lib/dataset/preprocess/h36m_extract_frames.py
jjandnn/ROMP
385
12645712
<reponame>jjandnn/ROMP import h5py import sys import os import cv2 import numpy as np import glob import pickle import sys subject_list = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11'] cam_dict = {'54138969': 0, '55011271': 1, '58860488': 2, '60457274': 3} def extract_imgs(subject_id, src_folder, out_folder): video_files = glob.glob(os.path.join(src_folder, subject_id, 'Videos', '*.mp4')) for video_file in video_files: if "_ALL" in video_file: continue print("video_file", video_file) video_name = os.path.basename(video_file) action_name, cam_str, _ = video_name.split('.') cam_id = cam_dict[cam_str] target_name = os.path.join(out_folder,'{}_{}_{}'.format(subject_id, action_name, cam_id)) print("target_name ", target_name) print("video_file", video_file) cap = cv2.VideoCapture(video_file) frame_dex = -1 dex = 0 frame_num = 0 # while (1): frame_dex = frame_dex + 1 ret, frame = cap.read() if frame_dex % 5 != 0: continue if frame_dex == 0: continue if ret: cv2.imwrite(target_name + '_' + str(dex) + '.jpg', frame) print("target_name ", target_name + '_' + str(dex) + '.jpg') dex = dex + 1 if dex > 20: break else: print("video_file end", video_file) break cap.release() return 1 def main(): assert len(sys.argv)==3, print('plese run the code : python h36m_extract_frames.py h36m_video_path image_save_path') # set the path to image folder (archives) of human3.6M dataset here src_folder = sys.argv[2] #"archives" # archives/S1/Videos/Directions 1.54138969.mp4 ..... out_folder = sys.argv[3] #"images" os.makedirs(out_folder, exist_ok=True) for subject_id in subject_list: print('Processing {}'.format(subject_id)) extract_imgs(subject_id, src_folder, out_folder) if __name__ == '__main__': main()
venv/Lib/site-packages/win32/Demos/BackupSeek_streamheaders.py
ajayiagbebaku/NFL-Model
150
12645724
## demonstrates using BackupSeek to enumerate data streams for a file import win32file, win32api, win32con from win32com import storagecon import pythoncom, pywintypes import struct, traceback stream_types = { win32con.BACKUP_DATA: "Standard data", win32con.BACKUP_EA_DATA: "Extended attribute data", win32con.BACKUP_SECURITY_DATA: "Security descriptor data", win32con.BACKUP_ALTERNATE_DATA: "Alternative data streams", win32con.BACKUP_LINK: "Hard link information", win32con.BACKUP_PROPERTY_DATA: "Property data", win32con.BACKUP_OBJECT_ID: "Objects identifiers", win32con.BACKUP_REPARSE_DATA: "Reparse points", win32con.BACKUP_SPARSE_BLOCK: "Sparse file", } tempdir = win32api.GetTempPath() tempfile = win32api.GetTempFileName(tempdir, "bkr")[0] print("Filename:", tempfile) f = open(tempfile, "w") f.write("some random junk" + "x" * 100) f.close() f = open(tempfile + ":streamdata", "w") f.write("data written to alternate stream" + "y" * 100) f.close() f = open(tempfile + ":anotherstream", "w") f.write("z" * 200) f.close() ## add Summary Information, which is stored as a separate stream m = storagecon.STGM_READWRITE | storagecon.STGM_SHARE_EXCLUSIVE | storagecon.STGM_DIRECT pss = pythoncom.StgOpenStorageEx( tempfile, m, storagecon.STGFMT_FILE, 0, pythoncom.IID_IPropertySetStorage, None ) ps = pss.Create( pythoncom.FMTID_SummaryInformation, pythoncom.IID_IPropertyStorage, 0, storagecon.STGM_READWRITE | storagecon.STGM_SHARE_EXCLUSIVE, ) ps.WriteMultiple( (storagecon.PIDSI_KEYWORDS, storagecon.PIDSI_COMMENTS), ("keywords", "comments") ) ps = None pss = None sa = pywintypes.SECURITY_ATTRIBUTES() sa.bInheritHandle = False h = win32file.CreateFile( tempfile, win32con.GENERIC_ALL, win32con.FILE_SHARE_READ, sa, win32con.OPEN_EXISTING, win32file.FILE_FLAG_BACKUP_SEMANTICS, None, ) """ stream header: typedef struct _WIN32_STREAM_ID { DWORD dwStreamId; DWORD dwStreamAttributes; LARGE_INTEGER Size; DWORD dwStreamNameSize; WCHAR cStreamName[ANYSIZE_ARRAY]; } """ win32_stream_id_format = "LLQL" win32_stream_id_size = struct.calcsize(win32_stream_id_format) def parse_stream_header(h, ctxt, data): stream_type, stream_attributes, stream_size, stream_name_size = struct.unpack( win32_stream_id_format, data ) print( "\nType:", stream_type, stream_types[stream_type], "Attributes:", stream_attributes, "Size:", stream_size, "Name len:", stream_name_size, ) if stream_name_size > 0: ## ??? sdk says this size is in characters, but it appears to be number of bytes ??? bytes_read, stream_name_buf, ctxt = win32file.BackupRead( h, stream_name_size, None, False, True, ctxt ) stream_name = pywintypes.UnicodeFromRaw(stream_name_buf[:]) else: stream_name = "Unnamed" print("Name:" + stream_name) return ( ctxt, stream_type, stream_attributes, stream_size, stream_name_size, stream_name, ) ctxt = 0 win32_stream_id_buf = ( None ## gets rebound to a writable buffer on first call and reused ) while 1: bytes_read, win32_stream_id_buf, ctxt = win32file.BackupRead( h, win32_stream_id_size, win32_stream_id_buf, False, True, ctxt ) if bytes_read == 0: break ( ctxt, stream_type, stream_attributes, stream_size, stream_name_size, stream_name, ) = parse_stream_header(h, ctxt, win32_stream_id_buf[:]) if stream_size > 0: bytes_moved = win32file.BackupSeek(h, stream_size, ctxt) print("Moved: ", bytes_moved) win32file.BackupRead(h, win32_stream_id_size, win32_stream_id_buf, True, True, ctxt) win32file.CloseHandle(h)
sfaira/data/dataloaders/loaders/d10_1016_j_neuron_2019_06_011/human_brain_2019_dropseq_polioudakis_001.py
theislab/sfaira
110
12645725
import os import pandas import shutil import zipfile def load(data_dir, **kwargs): age_dict = { 17: "17th week post-fertilization human stage", 18: "18th week post-fertilization human stage", } ct_dict = { "End": "Endothelial", "ExDp1": "Excitatory deep layer 1", "ExDp2": "Excitatory deep layer 2", "ExM": "Maturing excitatory", "ExM-U": "Maturing excitatory upper enriched", "ExN": "Migrating excitatory", "IP": "IP", "InCGE": "Interneuron CGE", "InMGE": "Interneuron MGE", "Mic": "Microglia", "OPC": "OPC", "Per": "Pericyte", "PgG2M": "Cycling Progenitors (G2/M phase)", "PgS": "Cycling Progenitors (S phase)", "oRG": "Outer Radial Glia", "vRG": "Ventricular Radial Glia", } import anndata2ri from rpy2.robjects import r fn = os.path.join(data_dir, "sc_dev_cortex_geschwind.zip") fn_tmp = os.path.join(os.path.expanduser("~"), "sfaira_tmp") if not os.path.exists(fn_tmp): os.makedirs(fn_tmp) with zipfile.ZipFile(fn, 'r') as zip_ref: zip_ref.extractall(fn_tmp) anndata2ri.activate() # TODO: remove global activation of anndata2ri and use localconverter once it's fixed adata = r( f"library(Seurat)\n" f"load('{os.path.join(fn_tmp, 'raw_counts_mat.rdata')}')\n" f"new_obj = CreateSeuratObject(raw_counts_mat)\n" f"as.SingleCellExperiment(new_obj)\n" ) obs = pandas.read_csv(os.path.join(fn_tmp, "cell_metadata.csv"), index_col=0) adata = adata[obs.index.tolist()].copy() adata.obs = obs shutil.rmtree(fn_tmp) adata.obs['devstage'] = [age_dict[i] for i in adata.obs['Gestation_week']] adata.obs['celltype'] = [ct_dict[i] for i in adata.obs['Cluster']] return adata
modelchimp/migrations/0023_machinelearningmodel_epoch_durations.py
akarsh3007/modelchimp
134
12645800
# Generated by Django 2.0.6 on 2018-07-02 14:50 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('modelchimp', '0022_auto_20180625_1722'), ] operations = [ migrations.AddField( model_name='machinelearningmodel', name='epoch_durations', field=django.contrib.postgres.fields.jsonb.JSONField(null=True), ), ]
pyEX/studies/technicals/volume.py
sourcery-ai-bot/pyEX
107
12645813
<reponame>sourcery-ai-bot/pyEX # ***************************************************************************** # # Copyright (c) 2020, the pyEX authors. # # This file is part of the pyEX library, distributed under the terms of # the Apache License 2.0. The full license can be found in the LICENSE file. # import pandas as pd import talib as t def ad( client, symbol, range="6m", highcol="high", lowcol="low", closecol="close", volumecol="volume", ): """This will return a dataframe of Chaikin A/D Line for the given symbol across the given range Args: client (pyEX.Client): Client symbol (string): Ticker range (string): range to use, for pyEX.chart highcol (string): column to use to calculate lowcol (string): column to use to calculate closecol (string): column to use to calculate volumecol (string): column to use to calculate Returns: DataFrame: result """ df = client.chartDF(symbol, range) ad = t.AD( df[highcol].values.astype(float), df[lowcol].values.astype(float), df[closecol].values.astype(float), df[volumecol].values.astype(float), ) return pd.DataFrame( { highcol: df[highcol].values, lowcol: df[lowcol].values, closecol: df[closecol].values, volumecol: df[volumecol].values, "a/d": ad, } ) def adosc( client, symbol, range="6m", highcol="high", lowcol="low", closecol="close", volumecol="volume", fastperiod=3, slowperiod=10, ): """This will return a dataframe of Chaikin A/D Oscillator for the given symbol across the given range Args: client (pyEX.Client): Client symbol (string): Ticker range (string): range to use, for pyEX.chart highcol (string): column to use to calculate lowcol (string): column to use to calculate closecol (string): column to use to calculate volumecol (string): column to use to calculate fastperiod (int): fast period to calculate across slowperiod (int): slow period to calculate across Returns: DataFrame: result """ df = client.chartDF(symbol, range) adosc = t.ADOSC( df[highcol].values.astype(float), df[lowcol].values.astype(float), df[closecol].values.astype(float), df[volumecol].values.astype(float), fastperiod, slowperiod, ) return pd.DataFrame( { highcol: df[highcol].values, lowcol: df[lowcol].values, closecol: df[closecol].values, volumecol: df[volumecol].values, "a/d": adosc, } ) def obv(client, symbol, range="6m", closecol="close", volumecol="volume"): """This will return a dataframe of On Balance Volume for the given symbol across the given range Args: client (pyEX.Client): Client symbol (string): Ticker range (string): range to use, for pyEX.chart closecol (string): column to use to calculate volumecol (string): column to use to calculate Returns: DataFrame: result """ df = client.chartDF(symbol, range) obv = t.OBV(df[closecol].values.astype(float), df[volumecol].values.astype(float)) return pd.DataFrame( {closecol: df[closecol].values, volumecol: df[volumecol].values, "obv": obv} )
tests/test_namespaces.py
commarla/python-nomad
109
12645818
import tests.common as common import pytest import responses # integration tests was mocked. If you have an enterprise nomad please uncomenet ##### ENTERPRISE TEST ##### @responses.activate def test_get_namespaces(nomad_setup): responses.add( responses.GET, "http://{ip}:{port}/v1/namespaces".format(ip=common.IP, port=common.NOMAD_PORT), status=200, json=[ { "CreateIndex": 31, "Description": "Production API Servers", "ModifyIndex": 31, "Name": "api-prod" }, { "CreateIndex": 5, "Description": "Default shared namespace", "ModifyIndex": 5, "Name": "default" } ] ) assert isinstance(nomad_setup.namespaces.get_namespaces(), list) == True @responses.activate def test_get_namespaces_prefix(nomad_setup): responses.add( responses.GET, "http://{ip}:{port}/v1/namespaces?prefix=api-".format(ip=common.IP, port=common.NOMAD_PORT), status=200, json=[ { "CreateIndex": 31, "Description": "Production API Servers", "ModifyIndex": 31, "Name": "api-prod" }, ] ) assert isinstance(nomad_setup.namespaces.get_namespaces(prefix="api-"), list) == True @responses.activate def test_namespaces_iter(nomad_setup): responses.add( responses.GET, "http://{ip}:{port}/v1/namespaces".format(ip=common.IP, port=common.NOMAD_PORT), status=200, json=[ { "CreateIndex": 31, "Description": "Production API Servers", "ModifyIndex": 31, "Name": "api-prod" }, { "CreateIndex": 5, "Description": "Default shared namespace", "ModifyIndex": 5, "Name": "default" } ] ) assert "api-prod" in nomad_setup.namespaces @responses.activate def test_namespaces_len(nomad_setup): responses.add( responses.GET, "http://{ip}:{port}/v1/namespaces".format(ip=common.IP, port=common.NOMAD_PORT), status=200, json=[ { "CreateIndex": 31, "Description": "Production API Servers", "ModifyIndex": 31, "Name": "api-prod" }, { "CreateIndex": 5, "Description": "Default shared namespace", "ModifyIndex": 5, "Name": "default" } ] ) assert 2 == len(nomad_setup.namespaces) ###### ENTERPRISE TEST ########### # def test_get_namespaces(nomad_setup): # assert isinstance(nomad_setup.namespaces.get_namespaces(), list) == True
examples/issues/issue432_b.py
tgolsson/appJar
666
12645828
import sys sys.path.append("../../") from appJar import gui def press(btn): if btn == "ONE": app.selectFrame("stack", 0) elif btn == "TWO": app.selectFrame("stack", 1) with gui() as app: with app.frameStack("stack"): with app.frame(): app.label("In frame one") with app.frame(): app.label("In frame two") app.buttons(["ONE", "TWO"], press)
examples/digit-recognizer/__init__.py
sUeharaE4/mlcomp
166
12645856
<reponame>sUeharaE4/mlcomp # flake8: noqa from catalyst.dl import SupervisedRunner as Runner from experiment import Experiment from model import Net
caliban/platform/notebook.py
Anon-Artist/caliban
425
12645863
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions required to interact with Docker to build and run images, shells and notebooks in a Docker environment. """ from typing import List, Optional from blessings import Terminal import caliban.config as c import caliban.docker.build as b import caliban.platform.shell as ps import caliban.util.fs as ufs t = Terminal() def run_notebook(job_mode: c.JobMode, port: Optional[int] = None, lab: Optional[bool] = None, version: Optional[bool] = None, run_args: Optional[List[str]] = None, **run_interactive_kwargs) -> None: """Start a notebook in the current working directory; the process will run inside of a Docker container that's identical to the environment available to Cloud jobs that are submitted by `caliban cloud`, or local jobs run with `caliban run.` if you pass mount_home=True your jupyter settings will persist across calls. Keyword args: - port: the port to pass to Jupyter when it boots, useful if you have multiple instances running on one machine. - lab: if True, starts jupyter lab, else jupyter notebook. - version: explicit Jupyter version to install. run_interactive_kwargs are all extra arguments taken by run_interactive. """ if port is None: port = ufs.next_free_port(8888) if lab is None: lab = False if run_args is None: run_args = [] inject_arg = b.NotebookInstall.lab if lab else b.NotebookInstall.jupyter jupyter_cmd = "lab" if lab else "notebook" jupyter_args = [ "-m", "jupyter", jupyter_cmd, \ "--ip=0.0.0.0", \ "--port={}".format(port), \ "--no-browser" ] docker_args = ["-p", "{}:{}".format(port, port)] + run_args ps.run_interactive(job_mode, entrypoint="python", entrypoint_args=jupyter_args, run_args=docker_args, inject_notebook=inject_arg, jupyter_version=version, **run_interactive_kwargs)
Validation/RecoTau/Tools/SteerMultipleCompare.py
Purva-Chaudhari/cmssw
852
12645871
<filename>Validation/RecoTau/Tools/SteerMultipleCompare.py #! /usr/bin/env python3 from __future__ import print_function import sys import os import re from ROOT import * import MultipleCompare as MultipleCompare __author__ = "<NAME> (<EMAIL>)" __doc__ = """Script to execute multiple plotting commands via MultipleCompare.py. Switch between massiveMode producing a set of plots comparing each one by one, and defaultMode producing a smaller set of default plot combinations by adding the commandline option massiveMode:\n\n Usage: SteerMultipleCompare.py -T testFile -R refFile [options] [search strings that you want to apply '*' is supported as special character] see MultiCompare.py for details """ def StripPath(name): path = '' plot = '' matches = re.match(r'(.*)\/(.*)$', name) if matches: path = matches.group(1) plot = matches.group(2) return [path, plot] def CreateDirectory(dir,addToExisting=False): if os.path.exists(dir) and not addToExisting: print("Output directory %s already exists! OK to overwrite?" % dir) while True: input = raw_input("Please enter [y/n] ") if (input == 'y'): break elif (input == 'n'): print(" ...exiting.") sys.exit() if not os.path.exists(dir): os.makedirs(dir) def CreateBaseDirectory(options): if options.out == 'MultipleCompare.png' or options.out.find('.')!=-1: #default case, so no directory was given #or a filename was given outputDirName = 'MultipleCompareOutput' else: outputDirName = options.out outputDir = os.path.join(os.getcwd(), outputDirName) CreateDirectory(outputDir) return outputDir def CreateSubDirectory(basedir, path): outputDir = os.path.join(basedir, path) CreateDirectory(outputDir,True) def CleanArguments(argv, option): #remove existing output arguments while argv.count(option) > 0: index = argv.index(option) if index < len(argv)-1: argv.pop(index+1)#drop the corresponding value argv.pop(index)#drop the option itself #execute Multicompare for each plot as a comparison one by one #argv was modified to contain only one plot each def plotOneByOne(argv, outputDir, histoList, histoSubNames, paths): for hist, name, path in zip(histoList, histoSubNames, paths): CreateSubDirectory(outputDir, path) #now give modified arguments to MultipleCompare tmpArgv = argv[:] tmpArgv.append('-o') tmpArgv.append(outputDir+'/'+path+'/'+name+'.png') tmpArgv.append(hist) MultipleCompare.main(tmpArgv) def plotDefault(argv, outputDir, name, type, plots, addArgv=[]): tmpArgv = argv[:] tmpArgv.append('-o') tmpArgv.append(outputDir+'/'+name+type) tmpArgv.extend(addArgv) tmpArgv.extend(plots) MultipleCompare.main(tmpArgv) #make some default plots grouping several histograms def plotDefaults(argv, options, outputDir): name = 'Validation_' if options.testLabel != None: name += options.testLabel+'_' else: name += options.test+'_vs_' if options.refLabel != None: name += options.refLabel+'_' else: name += options.ref+'_' outputType = '.eps' additionalArgv = [] if outputDir.find('QCD')!=-1: additionalArgv.append('-f') #fakerate plotDefault(argv, outputDir, name, 'LeptonRejectionEffphi'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*Rejection/*Effphi'], additionalArgv) plotDefault(argv, outputDir, name, 'LeptonRejectionEffeta'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*Rejection/*Effeta'], additionalArgv) plotDefault(argv, outputDir, name, 'LeptonRejectionEffpt'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*Rejection/*Effpt'], additionalArgv) if outputDir.find('QCD')!=-1: additionalArgv.append('--logScale') plotDefault(argv, outputDir, name, 'Effphi'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*Effphi', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*Effphi'], additionalArgv) plotDefault(argv, outputDir, name, 'Effeta'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*Effeta', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*Effeta'], additionalArgv) plotDefault(argv, outputDir, name, 'Effpt'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*Effpt', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*Effpt'], additionalArgv) plotDefault(argv, outputDir, name, 'pTRatio_allHadronic'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_pTRatio_allHadronic', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_pTRatio_allHadronic']) plotDefault(argv, outputDir, name, 'pTRatio_oneProng1Pi0'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_pTRatio_oneProng1Pi0', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_pTRatio_oneProng1Pi0']) plotDefault(argv, outputDir, name, 'pTRatio_threeProng0Pi0'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_pTRatio_threeProng0Pi0', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_pTRatio_threeProng0Pi0']) plotDefault(argv, outputDir, name, 'Size_isolationPFChargedHadrCands'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_Size_isolationPFChargedHadrCands', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_Size_isolationPFChargedHadrCands']) plotDefault(argv, outputDir, name, 'Size_isolationPFNeutrHadrCands'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_Size_isolationPFNeutrHadrCands', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_Size_isolationPFNeutrHadrCands']) plotDefault(argv, outputDir, name, 'Size_isolationPFGammaCands'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_Size_isolationPFGammaCands', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_Size_isolationPFGammaCands']) plotDefault(argv, outputDir, name, 'SumPt_isolationPFChargedHadrCands'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_SumPt_isolationPFChargedHadrCands', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_SumPt_isolationPFChargedHadrCands']) plotDefault(argv, outputDir, name, 'SumPt_isolationPFNeutrHadrCands'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_SumPt_isolationPFNeutrHadrCands', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_SumPt_isolationPFNeutrHadrCands']) plotDefault(argv, outputDir, name, 'SumPt_isolationPFGammaCands'+outputType, ['DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationByDecayModeFinding/*_SumPt_isolationPFGammaCands', 'DQMData/RecoTauV/hpsPFTauProducer_hpsPFTauDiscriminationBy*CombinedIsolationDBSumPtCorr/*_SumPt_isolationPFGammaCands']) def main(argv=None): if argv is None: argv = sys.argv options, toPlot = MultipleCompare.LoadCommandlineOptions(argv) gROOT.SetBatch() testFile = TFile(options.test) refFile = None if options.ref != '': refFile = TFile(options.ref) plotList = [] MultipleCompare.MapDirStructure( testFile,'',plotList) if len(plotList)<1: print('\tError: Please specify at least one histogram. The following ones are available in the root file.') print(plotList) sys.exit() histoList = [] histoSubNames = [] paths = [] massiveMode = False for plot in toPlot: #clean the arguments. toPlot contains the list of positional arguments leftover after parsing options argv.remove(plot) for path in plotList: if MultipleCompare.Match(plot.lower(),path.lower()): histoList.append(path) strippedPath, strippedPlot = StripPath(path) paths.append(strippedPath) histoSubNames.append(strippedPlot) #print histoSubNames[-1] elif plot.find('massiveMode') != -1: massiveMode = True CleanArguments(argv,'--output') CleanArguments(argv,'-o') outputDir = CreateBaseDirectory(options) if massiveMode: print("Massive mode: scan all subdirs and make plots comparing each histogram one by one.") plotOneByOne(argv, outputDir, histoList, histoSubNames, paths) else: print("Default mode: Make default plot combinations.") plotDefaults(argv, options, outputDir) #only execute main() if manually run if __name__ == '__main__': #main(*sys.argv[1:]) # the calls to sys.exit(n) inside main() all become return n. sys.exit(main()) else: print("This is ",__name__)
rl_agents/trainer/state_sampler.py
neskoc/rl-agents
342
12645879
<reponame>neskoc/rl-agents from abc import abstractmethod import numpy as np class AbstractStateSampler(object): @abstractmethod def states_list(self): """ Get a list of relevant states from a problem state-space :return: 2D array of vertically stacked state rows """ raise NotImplementedError() @abstractmethod def states_mesh(self): """ Get a 2D mesh of relevant states from a problem state-space :return: a tuple (xx, yy, states) xx and yy are vectors of the coordinates of the state in the chosen 2D-manifold of the state space states is an array of vertically stacked state rows """ raise NotImplementedError() class CartPoleStateSampler(AbstractStateSampler): def __init__(self, resolution=15): self.resolution = resolution def states_mesh(self): xx, yy = np.meshgrid(np.linspace(-1, 1, self.resolution), np.linspace(-1, 1, self.resolution)) xf = np.reshape(xx, (np.size(xx), 1)) yf = np.reshape(yy, (np.size(yy), 1)) states = np.hstack((2 * xf, 2 * xf, yf * 12 * np.pi / 180, yf)) return xx, yy, states def states_list(self): return np.array([[0, 0, 0, 0], [-0.08936051, -0.37169457, 0.20398587, 1.03234316], [0.10718797, 0.97770614, -0.20473761, -1.6631015]]) class MountainCarStateSampler(AbstractStateSampler): def __init__(self, resolution=15): self.resolution = resolution def states_mesh(self): xx, yy = np.meshgrid(np.linspace(-1, 1, self.resolution), np.linspace(-1, 1, self.resolution)) xf = np.reshape(xx, (np.size(xx), 1)) yf = np.reshape(yy, (np.size(yy), 1)) states = np.hstack((-0.35+0.85*xf, 0.06*yf)) return xx, yy, states def states_list(self): return np.array([[-0.5, 0], # Initial [-1.2, 0], # Left side [-0.5, 0.06], # Bottom with forward speed [0.5, 0.04]]) # Goal class ObstacleStateSampler(AbstractStateSampler): def __init__(self, resolution=15): self.resolution = resolution def states_mesh(self): xx, yy = np.meshgrid(np.linspace(-1, 1, self.resolution), np.linspace(-1, 1, self.resolution)) xf = np.reshape(xx, (np.size(xx), 1)) yf = np.reshape(yy, (np.size(yy), 1)) o = np.ones(np.shape(xf)) states = np.hstack((1/2+xf/2, 1/2+yf/2, 0*o, 1*o, 0.1+1/2-xf/2, o, o, o, 0.1+1/2-xf/2, o, o, o, o, o, o, o, o, o, o, o)) return xx, yy, states def states_list(self): return np.array([[1., 0., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], # Far [1., 0., 1., 0., 0.6, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], # [1., 0., 1., 0., 0.3, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], # [1., 0., 1., 0., 0.1, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]) # Close
language/common/utils/export_utils_test.py
Xtuden-com/language
1,199
12645916
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for export_utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import absltest from language.common.utils import export_utils class ExportUtilsTest(absltest.TestCase): def test_numeric_timestamp_and_trailing_slashes(self): temp_dir = self.create_tempdir().full_path os.makedirs(os.path.join(temp_dir, "export", "best", "2", "my_module")) os.makedirs(os.path.join(temp_dir, "export", "best", "10", "my_module")) result = export_utils.tfhub_export_path(temp_dir + "/", "best", "my_module") self.assertEqual( result, os.path.join(temp_dir, "export", "best", "10", "my_module")) def test_cleanup_old_dirs(self): temp_dir = self.create_tempdir().full_path for i in range(7, 12): os.makedirs(os.path.join(temp_dir, "export", "best", str(i), "my_module")) export_utils.clean_tfhub_exports(temp_dir, "best", exports_to_keep=3) dirnames = os.listdir(os.path.join(temp_dir, "export", "best")) self.assertEqual(set(dirnames), {"9", "10", "11"}) if __name__ == "__main__": absltest.main()
Hackerrank/Company Contests/Sears Finals/Problem E/test.py
VastoLorde95/Competitive-Programming
170
12645935
from math import * from fractions import * def solve(n): ans = 0 for i in xrange(1, n+1): if gcd(i,n) == 1: ans += gcd(i-1, n) return ans for i in xrange(1,20): s = 0 for j in xrange(1, i+1): p = 1 t = j while t > 0: p *= t % 10 t /= 10 s += solve(p) print i, s
tensorflow_graphics/rendering/tests/cpu_rasterization_backend_test.py
Liang813/graphics
2,759
12645976
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for the rasterization_backend.""" from tensorflow_graphics.rendering import rasterization_backend from tensorflow_graphics.rendering.tests import rasterization_backend_test_base from tensorflow_graphics.util import test_case class CPURasterizationBackendTest( rasterization_backend_test_base.RasterizationBackendTestBase): def setUp(self): super(CPURasterizationBackendTest, self).setUp() self._backend = rasterization_backend.RasterizationBackends.CPU if __name__ == '__main__': test_case.main()
networks/sceneflow_field.py
google/dynamic-video-depth
144
12646004
<gh_stars>100-1000 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from .blocks import PeriodicEmbed, Conv2dBlock class SceneFlowFieldNet(nn.Module): def __init__(self, time_dependent=True, N_freq_xyz=0, N_freq_t=0, output_dim=3, net_width=32, n_layers=3, activation='lrelu', norm='none'): super().__init__() N_input_channel_xyz = 3 + 3 * 2 * N_freq_xyz N_input_channel_t = 1 + 1 * 2 * N_freq_t N_input_channel = N_input_channel_xyz + N_input_channel_t if time_dependent else N_input_channel_xyz if N_freq_xyz == 0: xyz_embed = nn.Identity() else: xyz_embed = PeriodicEmbed(max_freq=N_freq_xyz, N_freq=N_freq_xyz) if N_freq_t == 0: t_embed = nn.Identity() else: t_embed = PeriodicEmbed(max_freq=N_freq_t, N_freq=N_freq_t) convs = [Conv2dBlock(N_input_channel, net_width, 1, 1, norm=norm, activation=activation)] for i in range(n_layers): convs.append(Conv2dBlock(net_width, net_width, 1, 1, norm=norm, activation=activation)) convs.append(Conv2dBlock(net_width, output_dim, 1, 1, norm='none', activation='none')) self.convs = nn.Sequential(*convs) self.t_embed = t_embed self.xyz_embed = xyz_embed self.time_dependent = time_dependent def forward(self, x, t=None): x = x.contiguous() if t is None and self.time_dependent: raise ValueError xyz_embedded = self.xyz_embed(x) if self.time_dependent: t_embedded = self.t_embed(t) input_feat = torch.cat([t_embedded, xyz_embedded], 1) else: input_feat = xyz_embedded return self.convs(input_feat)
{{cookiecutter.project_name}}/{{cookiecutter.app_name}}/api/resources/__init__.py
lieutdan13/cookiecutter-flask-restful
719
12646058
<filename>{{cookiecutter.project_name}}/{{cookiecutter.app_name}}/api/resources/__init__.py from {{cookiecutter.app_name}}.api.resources.user import UserResource, UserList __all__ = ["UserResource", "UserList"]
tests/packerlicious/test_builder_vmware.py
gnewson/packerlicious
109
12646066
import pytest import packerlicious.builder as builder class TestVMwareIsoBuilder(object): def test_required_fields_missing(self): b = builder.VMwareIso() with pytest.raises(ValueError) as excinfo: b.to_dict() assert 'required' in str(excinfo.value) def test_iso_checksum_mutually_exclusive(self): b = builder.VMwareIso( iso_url="/url/to/iso", iso_checksum_type=builder.VirtualboxIso.MD5, iso_checksum="my_checksum", iso_checksum_url="my_checksum_url", ) with pytest.raises(ValueError) as excinfo: b.to_dict() assert 'VMwareIso: only one of the following can be specified: iso_checksum, iso_checksum_url' == str( excinfo.value) class TestVMwareVmxBuilder(object): def test_required_fields_missing(self): b = builder.VMwareVmx() with pytest.raises(ValueError) as excinfo: b.to_dict() assert 'required' in str(excinfo.value)
examples/imdb/prepare.py
rsketine/neon
4,415
12646078
# ****************************************************************************** # Copyright 2014-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from future import standard_library standard_library.install_aliases() # triggers E402, hence noqa below import h5py # noqa from collections import defaultdict # noqa import numpy as np # noqa import os # noqa from neon import logger as neon_logger # noqa from neon.data.text_preprocessing import clean_string # noqa from neon.util.compat import pickle # noqa def build_data_train(path='.', filepath='labeledTrainData.tsv', vocab_file=None, vocab=None, skip_headers=True, train_ratio=0.8): """ Loads the data file and spits out a h5 file with record of {y, review_text, review_int} Typically two passes over the data. 1st pass is for vocab and pre-processing. (WARNING: to get phrases, we need to go though multiple passes). 2nd pass is converting text into integers. We will deal with integers from thereafter. WARNING: we use h5 just as proof of concept for handling large datasets Datasets may fit entirely in memory as numpy as array """ fname_h5 = filepath + '.h5' if vocab_file is None: fname_vocab = filepath + '.vocab' else: fname_vocab = vocab_file if not os.path.exists(fname_h5) or not os.path.exists(fname_vocab): # create the h5 store - NOTE: hdf5 is row-oriented store and we slice rows # reviews_text holds the metadata and processed text file # reviews_int holds the ratings, ints h5f = h5py.File(fname_h5, 'w') shape, maxshape = (2 ** 16,), (None, ) dt = np.dtype([('y', np.uint8), ('split', np.bool), ('num_words', np.uint16), # WARNING: vlen=bytes in python 3 ('text', h5py.special_dtype(vlen=str)) ]) reviews_text = h5f.create_dataset('reviews', shape=shape, maxshape=maxshape, dtype=dt, compression='gzip') reviews_train = h5f.create_dataset( 'train', shape=shape, maxshape=maxshape, dtype=h5py.special_dtype(vlen=np.int32), compression='gzip') reviews_valid = h5f.create_dataset( 'valid', shape=shape, maxshape=maxshape, dtype=h5py.special_dtype(vlen=np.int32), compression='gzip') wdata = np.zeros((1, ), dtype=dt) # init vocab only for train data build_vocab = False if vocab is None: vocab = defaultdict(int) build_vocab = True nsamples = 0 # open the file, skip the headers if needed f = open(filepath, 'r') if skip_headers: f.readline() for i, line in enumerate(f): _, rating, review = line.strip().split('\t') # clean the review review = clean_string(review) review_words = review.strip().split() num_words = len(review_words) split = int(np.random.rand() < train_ratio) # create record wdata['y'] = int(float(rating)) wdata['text'] = review wdata['num_words'] = num_words wdata['split'] = split reviews_text[i] = wdata # update the vocab if needed if build_vocab: for word in review_words: vocab[word] += 1 nsamples += 1 # histogram of class labels, sentence length ratings, counts = np.unique( reviews_text['y'][:nsamples], return_counts=True) sen_len, sen_len_counts = np.unique( reviews_text['num_words'][:nsamples], return_counts=True) vocab_size = len(vocab) nclass = len(ratings) reviews_text.attrs['vocab_size'] = vocab_size reviews_text.attrs['nrows'] = nsamples reviews_text.attrs['nclass'] = nclass reviews_text.attrs['class_distribution'] = counts neon_logger.display("vocabulary size - {}".format(vocab_size)) neon_logger.display("# of samples - {}".format(nsamples)) neon_logger.display("# of classes {}".format(nclass)) neon_logger.display("class distribution - {} {}".format(ratings, counts)) sen_counts = list(zip(sen_len, sen_len_counts)) sen_counts = sorted(sen_counts, key=lambda kv: kv[1], reverse=True) neon_logger.display("sentence length - {} {} {}".format(len(sen_len), sen_len, sen_len_counts)) # WARNING: assume vocab is of order ~4-5 million words. # sort the vocab , re-assign ids by its frequency. Useful for downstream tasks # only done for train data if build_vocab: vocab_sorted = sorted( list(vocab.items()), key=lambda kv: kv[1], reverse=True) vocab = {} for i, t in enumerate(list(zip(*vocab_sorted))[0]): vocab[t] = i # map text to integers ntrain = 0 nvalid = 0 for i in range(nsamples): text = reviews_text[i]['text'] y = int(reviews_text[i]['y']) split = reviews_text[i]['split'] text_int = [y] + [vocab[t] for t in text.strip().split()] if split: reviews_train[ntrain] = text_int ntrain += 1 else: reviews_valid[nvalid] = text_int nvalid += 1 reviews_text.attrs['ntrain'] = ntrain reviews_text.attrs['nvalid'] = nvalid neon_logger.display( "# of train - {0}, # of valid - {1}".format(reviews_text.attrs['ntrain'], reviews_text.attrs['nvalid'])) # close open files h5f.close() f.close() if not os.path.exists(fname_vocab): rev_vocab = {} for wrd, wrd_id in vocab.items(): rev_vocab[wrd_id] = wrd neon_logger.display("vocabulary from IMDB dataset is saved into {}".format(fname_vocab)) pickle.dump((vocab, rev_vocab), open(fname_vocab, 'wb'), 2) return fname_h5, fname_vocab
datadog_checks_dev/datadog_checks/dev/tooling/commands/release/trello/tester_selector/cache.py
mchelen-gov/integrations-core
663
12646088
<filename>datadog_checks_dev/datadog_checks/dev/tooling/commands/release/trello/tester_selector/cache.py # (C) Datadog, Inc. 2020-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import json import os from datetime import datetime from typing import Optional from ....console import echo_info class Cache: """ Cache data that is expensive to compute. Use JSON format. """ def __init__(self, app_dir: str, cache_name: str, expiration: datetime): cache_path = os.path.join(app_dir, '.cache') self.__path = os.path.join(cache_path, cache_name) try: os.mkdir(cache_path) except FileExistsError: pass try: creation_time = datetime.utcfromtimestamp(os.path.getctime(self.__path)) if creation_time < expiration: echo_info(f'Cache expired. Removing cache {self.__path}') os.remove(self.__path) except OSError: # file does not exist pass def get_value(self) -> Optional[object]: try: with open(self.__path) as f: echo_info(f'Load from {self.__path}') value_json = f.read() return json.loads(value_json) except FileNotFoundError: return None except Exception as e: raise Exception(f'Invalid cache object in {self.__path} {type(e)}') from e def set_value(self, value: object): value_json = json.dumps(value) stat = None try: stat = os.stat(self.__path) except FileNotFoundError: pass with open(self.__path, 'w') as f: f.write(value_json) if stat: # restore file dates for cache expiration os.utime(self.__path, (stat.st_atime, stat.st_mtime))
tests/changes/api/test_cached_snapshot_cluster_details.py
vault-the/changes
443
12646099
<filename>tests/changes/api/test_cached_snapshot_cluster_details.py from changes.testutils import APITestCase import datetime import mock class CachedSnapshotClusterDetailsAPITestCase(APITestCase): def setUp(self): super(CachedSnapshotClusterDetailsAPITestCase, self).setUp() self.mock_datetime = datetime.datetime.utcnow() def get_endpoint_path(self, cluster): return '/api/0/snapshots/cache/clusters/{0}/'.format(cluster) def test_empty(self): resp = self.client.get(self.get_endpoint_path('cluster')) assert resp.status_code == 200 data = self.unserialize(resp) assert data == [] @mock.patch('changes.lib.snapshot_garbage_collection.get_current_datetime') def test_get_current_datetime(self, get_current_datetime): """Metatest that verifies that the time-mock is functional. """ get_current_datetime.return_value = self.mock_datetime self.client.get(self.get_endpoint_path('cluster')) get_current_datetime.assert_any_call() @mock.patch('changes.lib.snapshot_garbage_collection.get_current_datetime') def test_multiproject(self, get_current_datetime): """ Integration test (minus mocking out time) on the endpoint, which is different from the lib-tests which mock out get_plans in the garbage collector. """ project1 = self.create_project() project2 = self.create_project() plan1_1 = self.create_plan(project1) plan1_2 = self.create_plan(project1) plan2_1 = self.create_plan(project2) plan2_2 = self.create_plan(project2) plan2_3 = self.create_plan(project2) self.create_step(plan1_1, data={'cluster': 'cluster1'}) self.create_step(plan1_2, data={'cluster': 'cluster2'}) self.create_step(plan2_1, data={'cluster': 'cluster2'}) self.create_step(plan2_2, data={'cluster': 'cluster2'}) snapshot1 = self.create_snapshot(project1) snapshot2 = self.create_snapshot(project2) snapshot_image1_1 = self.create_snapshot_image(snapshot1, plan1_1) snapshot_image1_2 = self.create_snapshot_image(snapshot1, plan1_2) snapshot_image2_1 = self.create_snapshot_image(snapshot2, plan2_1) snapshot_image2_2 = self.create_snapshot_image(snapshot2, plan2_2) snapshot_image2_3 = self.create_snapshot_image(snapshot2, plan2_3) self.create_cached_snapshot_image(snapshot_image1_1) self.create_cached_snapshot_image(snapshot_image1_2, expiration_date=self.mock_datetime + datetime.timedelta(0, 1)) self.create_cached_snapshot_image(snapshot_image2_1, expiration_date=self.mock_datetime - datetime.timedelta(0, 1)) self.create_cached_snapshot_image(snapshot_image2_2) self.create_cached_snapshot_image(snapshot_image2_3) get_current_datetime.return_value = self.mock_datetime resp = self.client.get(self.get_endpoint_path('cluster2')) assert resp.status_code == 200 data = self.unserialize(resp) assert len(data) == 2 assert snapshot_image1_2.id.hex in data assert snapshot_image2_2.id.hex in data # Ensure that nonexisting clusters still give empty even when there # is actually some data (unlike test_empty) resp = self.client.get(self.get_endpoint_path('cluster3')) assert resp.status_code == 200 data = self.unserialize(resp) assert data == []
deepneuro/outputs/segmentation.py
ysuter/DeepNeuro
113
12646136
<reponame>ysuter/DeepNeuro import numpy as np from deepneuro.outputs.inference import ModelInference from deepneuro.utilities.util import add_parameter, docker_print class PatchesInference(ModelInference): """ """ def load(self, kwargs): """ Parameters ---------- patch_overlaps: int, optional The amount of times a grid of patches is predicted over an entire output volume. Subsequent grids are offset from the original grid by patch_size / patch_overlaps, and the final output is the result of averaging over each grid for each voxel. Default is 1. input_patch_shape: tuple, optional The input dimensions of the predicted patches, not including batch size. If None, DeepNeuro will attempt to extract this value from the given model. Default is None. output_patch_shape: tuple, optional The output dimensions of the predicted patches, not including batch size. If smaller than the input patch size in any dimension, patches will be cropped symmetrically by the difference in size to meet this shape. Default is None. check_empty_patch: bool, optional Do not predict patches if they only contain zeros. Default is True. pad_borders: bool, optional Pads input borders by patch_size / 2 with zeros. This allows patches at the boundary of an image to be successfully predicted, albeit with zero infill values. Default is True. patch_dimensions: tuple or list, optional output_patch_dimensions: tuple or list, optional """ super(PatchesInference, self).load(kwargs) # Patching Parameters add_parameter(self, kwargs, 'patch_overlaps', 1) add_parameter(self, kwargs, 'input_patch_shape', None) add_parameter(self, kwargs, 'output_patch_shape', None) add_parameter(self, kwargs, 'check_empty_patch', True) add_parameter(self, kwargs, 'pad_borders', True) add_parameter(self, kwargs, 'keep_channels', None) add_parameter(self, kwargs, 'patch_dimensions', None) add_parameter(self, kwargs, 'output_patch_dimensions', self.patch_dimensions) self.batch_size = 1 def process_case(self, input_data, model=None): """Summary Parameters ---------- input_data : TYPE Description model : None, optional Description Returns ------- TYPE Description """ input_data = input_data[self.lead_key] if model is not None: self.model = model if self.channels_first: input_data = np.swapaxes(input_data, 1, -1) if self.input_channels is not None: input_data = np.take(input_data, self.input_channels, self.channels_dim) # Determine patch shape. Currently only extends to spatial patching. # This leading dims business has got to have a better solution.. if self.input_patch_shape is None: self.input_patch_shape = self.model.model_input_shape if self.output_patch_shape is None: self.output_patch_shape = self.model.model_output_shape self.input_dim = len(self.input_patch_shape) - 2 if self.patch_dimensions is None: if self.channels_first: self.patch_dimensions = [-1 * self.input_dim + x for x in range(self.input_dim)] else: self.patch_dimensions = [-1 * self.input_dim + x - 1 for x in range(self.input_dim)] if self.output_patch_dimensions is None: self.output_patch_dimensions = self.patch_dimensions self.output_shape = [1] + list(self.model.model_output_shape)[1:] # Weird for i in range(len(self.patch_dimensions)): self.output_shape[self.output_patch_dimensions[i]] = input_data.shape[self.patch_dimensions[i]] output_data = self.predict(input_data) if self.output_channels is not None: output_data = np.take(output_data, self.output_channels, self.channels_dim) # Will fail for time-data. if self.channels_first: output_data = np.swapaxes(output_data, 1, -1) self.return_objects.append(output_data) return output_data def predict(self, input_data): repetition_offsets = [np.linspace(0, self.input_patch_shape[axis] - 1, self.patch_overlaps + 1, dtype=int)[:-1] for axis in self.patch_dimensions] if self.pad_borders: # TODO -- Clean up this border-padding code and make it more readable. input_pad_dimensions = [(0, 0)] * input_data.ndim repatched_shape = self.output_shape new_input_shape = list(input_data.shape) for idx, dim in enumerate(self.patch_dimensions): # Might not work for odd-shaped patches; check. input_pad_dimensions[dim] = (int(self.input_patch_shape[dim] // 2), int(self.input_patch_shape[dim] // 2)) new_input_shape[dim] += self.input_patch_shape[dim] for idx, dim in enumerate(self.output_patch_dimensions): repatched_shape[dim] += self.input_patch_shape[dim] padded_input_data = np.zeros(new_input_shape) if self.channels_first: input_slice = [slice(None)] * 2 + [slice(self.input_patch_shape[dim] // 2, -self.input_patch_shape[dim] // 2, None) for dim in self.patch_dimensions] else: input_slice = [slice(None)] + [slice(self.input_patch_shape[dim] // 2, -self.input_patch_shape[dim] // 2, None) for dim in self.patch_dimensions] + [slice(None)] padded_input_data[tuple(input_slice)] = input_data input_data = padded_input_data else: repatched_shape = self.output_shape repatched_image = np.zeros(repatched_shape) corner_data_dims = [input_data.shape[axis] for axis in self.patch_dimensions] corner_patch_dims = [self.output_patch_shape[axis] for axis in self.patch_dimensions] all_corners = np.indices(corner_data_dims) # There must be a better way to round up to an integer.. possible_corners_slice = [slice(None)] + [slice(self.input_patch_shape[dim] // 2, -self.input_patch_shape[dim] // 2, None) for dim in self.patch_dimensions] all_corners = all_corners[tuple(possible_corners_slice)] for rep_idx in range(self.patch_overlaps): if self.verbose: docker_print('Predicting patch set', str(rep_idx + 1) + '/' + str(self.patch_overlaps) + '...') corners_grid_shape = [slice(None)] for dim in range(all_corners.ndim - 1): corners_grid_shape += [slice(repetition_offsets[dim][rep_idx], corner_data_dims[dim], corner_patch_dims[dim])] corners_list = all_corners[tuple(corners_grid_shape)] corners_list = np.reshape(corners_list, (corners_list.shape[0], -1)).T if self.check_empty_patch: corners_list = self.remove_empty_patches(input_data, corners_list) for corner_list_idx in range(0, corners_list.shape[0], self.batch_size): corner_batch = corners_list[corner_list_idx:corner_list_idx + self.batch_size] input_patches = self.grab_patch(input_data, corner_batch) prediction = self.run_inference(input_patches) self.insert_patch(repatched_image, prediction, corner_batch) if rep_idx == 0: output_data = np.copy(repatched_image) else: output_data = self.aggregate_predictions(output_data, repatched_image, rep_idx) if self.pad_borders: output_slice = [slice(None)] * output_data.ndim # Weird for idx, dim in enumerate(self.output_patch_dimensions): # Might not work for odd-shaped patches; check. output_slice[dim] = slice(self.input_patch_shape[dim] // 2, -self.input_patch_shape[dim] // 2, 1) output_data = output_data[tuple(output_slice)] if self.keep_channels is not None: output_data = np.take(output_data, self.keep_channels, axis=-1) return output_data def run_inference(self, data): return self.model.predict(data) def aggregate_predictions(self, output_data, repatched_image, rep_idx): output_data = output_data + (1.0 / (rep_idx)) * (repatched_image - output_data) # Running Average return output_data def pad_data(self, data, pad_dimensions): # Maybe more effecient than np.pad? Created for testing a different purpose. for idx, width in enumerate(pad_dimensions): pad_block_1, pad_block_2 = list(data.shape), list(data.shape) pad_block_1[idx] = width[0] pad_block_2[idx] = width[1] data = np.concatenate((np.zeros(pad_block_1), data, np.zeros(pad_block_2)), axis=idx) return data def remove_empty_patches(self, input_data, corners_list): corner_selections = [] for corner_idx, corner in enumerate(corners_list): output_slice = [slice(None)] * input_data.ndim # Weird for idx, dim in enumerate(self.patch_dimensions): output_slice[dim] = slice(corner[idx] - self.input_patch_shape[dim] // 2, corner[idx] + self.input_patch_shape[dim] // 2, 1) corner_selections += [np.any(input_data[tuple(output_slice)])] return corners_list[corner_selections] def grab_patch(self, input_data, corner_list): """ Given a corner coordinate, a patch_shape, and some input_data, returns a patch or array of patches. """ output_patches_shape = (corner_list.shape[0], ) + self.input_patch_shape[1:] output_patches = np.zeros((output_patches_shape)) for corner_idx, corner in enumerate(corner_list): output_slice = [slice(None)] * input_data.ndim # Weird for idx, dim in enumerate(self.patch_dimensions): output_slice[dim] = slice(corner[idx] - self.input_patch_shape[dim] // 2, corner[idx] + self.input_patch_shape[dim] // 2, 1) output_patches[corner_idx, ...] = input_data[tuple(output_slice)] return output_patches def insert_patch(self, input_data, patches, corner_list): # Some ineffeciencies in the function. TODO: come back and rewrite. for corner_idx, corner in enumerate(corner_list): insert_slice = [slice(None)] * input_data.ndim # Weird for idx, dim in enumerate(self.output_patch_dimensions): # Might not work for odd-shaped patches; check. insert_slice[dim] = slice(corner[idx] - self.output_patch_shape[dim] // 2, corner[idx] + self.output_patch_shape[dim] // 2, 1) insert_patch = patches[corner_idx, ...] if not np.array_equal(np.take(self.output_patch_shape, self.output_patch_dimensions), np.take(self.input_patch_shape, self.patch_dimensions)): # Necessary if statement? patch_slice = [slice(None)] * insert_patch.ndim # Weird for idx, dim in enumerate(self.output_patch_dimensions): # Might not work for odd-shaped patches; check. patch_slice[dim] = slice((self.input_patch_shape[dim] - self.output_patch_shape[dim]) // 2, -(self.input_patch_shape[dim] - self.output_patch_shape[dim]) // 2, 1) insert_patch = insert_patch[tuple(patch_slice)] input_data[tuple(insert_slice)] = insert_patch return input_data
topologies/models.py
cklewar/wistar
152
12646153
# # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER # # Copyright (c) 2015 Juniper Networks, Inc. # All rights reserved. # # Use is subject to license terms. # # Licensed under the Apache License, Version 2.0 (the ?License?); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from django.db import models class Topology(models.Model): description = models.TextField(default="none", verbose_name="Description") name = models.TextField(default="noname", verbose_name="name") json = models.TextField(verbose_name="json") created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(verbose_name="modified", auto_now=True) class Meta: verbose_name = 'Topology' verbose_name_plural = 'topologies' class ConfigSet(models.Model): topology = models.ForeignKey('Topology') name = models.TextField() description = models.TextField() created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) class Meta: verbose_name = 'ConfigSet' verbose_name_plural = 'configSets' class Config(models.Model): configSet = models.ForeignKey('ConfigSet') name = models.TextField() type = models.TextField() created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) ip = models.GenericIPAddressField() deviceConfig = models.TextField() password = models.TextField() class Meta: verbose_name = 'Config' verbose_name_plural = 'configs'
tomviz/python/Recon_tomopy_gridrec.py
sankhesh/tomviz
284
12646167
<gh_stars>100-1000 def transform(dataset, rot_center=0, tune_rot_center=True): """Reconstruct sinograms using the tomopy gridrec algorithm Typically, a data exchange file would be loaded for this reconstruction. This operation will attempt to perform flat-field correction of the raw data using the dark and white background data found in the data exchange file. This operator also requires either the tomviz/tomopy-pipeline docker image, or a python environment with tomopy installed. """ import numpy as np import tomopy # Get the current volume as a numpy array. array = dataset.active_scalars dark = dataset.dark white = dataset.white angles = dataset.tilt_angles tilt_axis = dataset.tilt_axis # TomoPy wants the tilt axis to be zero, so ensure that is true if tilt_axis == 2: order = [2, 1, 0] array = np.transpose(array, order) if dark is not None and white is not None: dark = np.transpose(dark, order) white = np.transpose(white, order) if angles is not None: # tomopy wants radians theta = np.radians(angles) else: # Assume it is equally spaced between 0 and 180 degrees theta = tomopy.angles(array.shape[0]) # Perform flat-field correction of raw data if white is not None and dark is not None: array = tomopy.normalize(array, white, dark, cutoff=1.4) if rot_center == 0: # Try to find it automatically init = array.shape[2] / 2.0 rot_center = tomopy.find_center(array, theta, init=init, ind=0, tol=0.5) elif tune_rot_center: # Tune the center rot_center = tomopy.find_center(array, theta, init=rot_center, ind=0, tol=0.5) # Calculate -log(array) array = tomopy.minus_log(array) # Remove nan, neg, and inf values array = tomopy.remove_nan(array, val=0.0) array = tomopy.remove_neg(array, val=0.00) array[np.where(array == np.inf)] = 0.00 # Perform the reconstruction array = tomopy.recon(array, theta, center=rot_center, algorithm='gridrec') # Mask each reconstructed slice with a circle. array = tomopy.circ_mask(array, axis=0, ratio=0.95) # Set the transformed array child = dataset.create_child_dataset() child.active_scalars = array return_values = {} return_values['reconstruction'] = child return return_values
extras/python/XSVFDisassembler.py
franzbischoff/JTAG
105
12646182
#!/usr/bin/python # coding: utf-8 # # example: # $ ./xsvf -c disasm ../xsvf/XC2C64A/idcode_simpler.xsvf # import JTAGTAP import XSVFDecoder class XSVFDisassembler(XSVFDecoder.XSVFDecoder): """ XSVF Disassembler """ @staticmethod def add_arguments(p): """Adds the necessary arguments to the parser.""" p.add_argument( '-n', '--no_bytes', action='store_true', # type=bool, help='Do not output bytes' ' (default=%(default)s)') def __init__(self, args): XSVFDecoder.XSVFDecoder.__init__(self, args) self._args = args self._current_instruction = 0 self._instruction_handlers = ( self.disasm_xcomplete, self.disasm_xtdomask, self.disasm_xsir, self.disasm_xsdr, self.disasm_xruntest, self.disasm_xreserved_5, self.disasm_xreserved_6, self.disasm_xrepeat, self.disasm_xsdrsize, self.disasm_xsdrtdo, self.disasm_xsetsdrmasks, self.disasm_xsdrinc, self.disasm_xsdrb, self.disasm_xsdrc, self.disasm_xsdre, self.disasm_xsdrtdob, self.disasm_xsdrtdoc, self.disasm_xsdrtdoe, self.disasm_xstate, self.disasm_xendir, self.disasm_xenddr, self.disasm_xsir2, self.disasm_xcomment, self.disasm_xwait, ) @property def current_instruction(self): return self._current_instruction @current_instruction.setter def current_instruction(self, value): self._current_instruction = value def format_first_part(self, s): """ Breaks the instruction's bytes in lines of 8 bytes. :param s: string of bytes :return: list of 8 byte strings """ l = [] while s: l.append(s[:24]) s = s[24:] return l def return_zeroeth(self, l): """ Returns the zeroeth element of the list, right whitespace stripped, but avoid returning None if the result is empty. """ if l: l_0 = l[0].rstrip() else: l_0 = "" return l_0 def format_byte_list(self, l): return ' {:s}'.format(' '.join('{0:02X}'.format(x) for x in l)) def pretty_disasm(self, pars=("",)): l1 = self.format_first_part(self.current_instruction_string) l2 = list(pars) l2[0] = '{:s}{:s}'.format( self.instruction_name(self.current_instruction), l2[0]) while l1 or l2: l1_0 = self.return_zeroeth(l1) l2_0 = self.return_zeroeth(l2) if self._args.no_bytes: if l2_0: print('{0:s}'.format(l2_0)) else: if l2_0: print('{0:<24} {1:s}'.format(l1_0, l2_0)) else: print('{0:s}'.format(l1_0)) l1 = l1[1:] l2 = l2[1:] def disasm_xcomplete(self): self.pretty_disasm() def disasm_xtdomask(self): p = ( '', self.format_byte_list(self.tdo_mask) ) self.pretty_disasm(p) def disasm_xsir(self): p = ( ' {:d} {:s}'.format( self.sirsize_bits, self.format_byte_list(self.tdi).strip()), ) self.pretty_disasm(p) def disasm_xsdr(self): p = ( '', self.format_byte_list(self.tdi) ) self.pretty_disasm(p) def disasm_xruntest(self): p = ( ' {:d}'.format(self.runtest), ) self.pretty_disasm(p) def disasm_xreserved_5(self): self.pretty_disasm() def disasm_xreserved_6(self): self.pretty_disasm() def disasm_xrepeat(self): p = ( ' {:d}'.format(self.repeat), ) self.pretty_disasm(p) def disasm_xsdrsize(self): p = ( ' {0}'.format(self.sdrsize_bits), ) self.pretty_disasm(p) def disasm_xsdrtdo(self): p = ( '', self.format_byte_list(self.tdi) + ',', self.format_byte_list(self.tdo_expected) ) self.pretty_disasm(p) def disasm_xsetsdrmasks(self): p = ( '', self.format_byte_list(self.address_mask) + ',', self.format_byte_list(self.data_mask) ) self.pretty_disasm(p) def disasm_xsdrinc(self): p = [ '', self.format_byte_list(self.xsdrinc_start_address) + ',', ' {:d},'.format(self.xsdrinc_num_times) ] n = self.xsdrinc_num_times for l in self.xsdrinc_data_list: s = self.format_byte_list(l) n -= 1 # Adds a comma, unless it's the last one if n: s += ',' p.append(s) self.pretty_disasm(p) def disasm_xsdrb(self): p = ( '', self.format_byte_list(self.tdi) ) self.pretty_disasm(p) def disasm_xsdrc(self): p = ( '', self.format_byte_list(self.tdi) ) self.pretty_disasm(p) def disasm_xsdre(self): p = ( '', self.format_byte_list(self.tdi) ) self.pretty_disasm(p) def disasm_xsdrtdob(self): p = ( '', self.format_byte_list(self.tdi) + ',', self.format_byte_list(self.tdo_expected) ) self.pretty_disasm(p) def disasm_xsdrtdoc(self): p = ( '', self.format_byte_list(self.tdi) + ',', self.format_byte_list(self.tdo_expected) ) self.pretty_disasm(p) def disasm_xsdrtdoe(self): p = ( '', self.format_byte_list(self.tdi) + ',', self.format_byte_list(self.tdo_expected) ) self.pretty_disasm(p) def disasm_xstate(self): p = ( ' {:s}'.format(JTAGTAP.JTAGTAP.state_name(self.next_state)), ) self.pretty_disasm(p) def disasm_xendir(self): p = ( ' {:s}'.format(JTAGTAP.JTAGTAP.state_name(self.endir_state)), ) self.pretty_disasm(p) def disasm_xenddr(self): p = ( ' {:s}'.format(JTAGTAP.JTAGTAP.state_name(self.enddr_state)), ) self.pretty_disasm(p) def disasm_xsir2(self): p = ( ' {:d}'.format(self.sirsize_bits), self.format_byte_list(self.tdi) ) self.pretty_disasm(p) def disasm_xcomment(self): p = ( ' "{:s}"'.format(self.comment), ) self.pretty_disasm(p) def disasm_xwait(self): p = ( ' {:s} {:s} {:d}'.format( JTAGTAP.JTAGTAP.state_name(self.wait_start_state), JTAGTAP.JTAGTAP.state_name(self.wait_end_state), self.wait_time_usecs), ) self.pretty_disasm(p) # def instruction_handler(self, instruction): self.current_instruction = instruction self._instruction_handlers[instruction]() def disasm_all_files(self, fd_list): return self.decode_all_files(fd_list)
Module2/Python_Data_Analysis_code/Chapter 6/joblib/ch6util/read_wav/func_code.py
vijaysharmapc/Python-End-to-end-Data-Analysis
119
12646199
# first line: 10 @memory.cache def read_wav(): wav = dl.data.get_smashing_baby() return wavfile.read(wav)
mistral/db/sqlalchemy/migration/alembic_migrations/versions/035_namespace_support_postgresql.py
shubhamdang/mistral
205
12646203
<reponame>shubhamdang/mistral # Copyright 2019 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """Namespace support postgresql Revision ID: 035 Revises: 034 Create Date: 2019-08-01 15:48:34.115639 """ # revision identifiers, used by Alembic. revision = '035' down_revision = '034' from alembic import op from sqlalchemy.engine import reflection def upgrade(): inspect = reflection.Inspector.from_engine(op.get_bind()) unique_constraints = [ unique_constraint['name'] for unique_constraint in inspect.get_unique_constraints('workflow_definitions_v2') ] if 'workflow_definitions_v2_name_project_id_key' in unique_constraints: op.drop_constraint('workflow_definitions_v2_name_project_id_key', table_name='workflow_definitions_v2')
tljh/user_creating_spawner.py
consideRatio/the-littlest-jupyterhub
741
12646220
from tljh.normalize import generate_system_username from tljh import user from tljh import configurer from systemdspawner import SystemdSpawner from traitlets import Dict, Unicode, List from jupyterhub_configurator.mixins import ConfiguratorSpawnerMixin class CustomSpawner(SystemdSpawner): """ SystemdSpawner with user creation on spawn. FIXME: Remove this somehow? """ user_groups = Dict(key_trait=Unicode(), value_trait=List(Unicode()), config=True) def start(self): """ Perform system user activities before starting server """ # FIXME: Move this elsewhere? Into the Authenticator? system_username = generate_system_username('jupyter-' + self.user.name) # FIXME: This is a hack. Allow setting username directly instead self.username_template = system_username user.ensure_user(system_username) user.ensure_user_group(system_username, 'jupyterhub-users') if self.user.admin: user.ensure_user_group(system_username, 'jupyterhub-admins') else: user.remove_user_group(system_username, 'jupyterhub-admins') if self.user_groups: for group, users in self.user_groups.items(): if self.user.name in users: user.ensure_user_group(system_username, group) return super().start() cfg = configurer.load_config() # Use the jupyterhub-configurator mixin only if configurator is enabled # otherwise, any bugs in the configurator backend will stop new user spawns! if cfg['services']['configurator']['enabled']: # Dynamically create the Spawner class using `type`(https://docs.python.org/3/library/functions.html?#type), # based on whether or not it should inherit from ConfiguratorSpawnerMixin UserCreatingSpawner = type('UserCreatingSpawner', (ConfiguratorSpawnerMixin, CustomSpawner), {}) else: UserCreatingSpawner = type('UserCreatingSpawner', (CustomSpawner,), {})
lib/model/train_val_memory.py
xctspring/iter-reason
275
12646232
from __future__ import absolute_import from __future__ import division from __future__ import print_function from model.config import cfg from model.train_val import filter_roidb, SolverWrapper from utils.timer import Timer try: import cPickle as pickle except ImportError: import pickle import numpy as np import os import sys import glob import time import tensorflow as tf from tensorflow.python import pywrap_tensorflow class MemorySolverWrapper(SolverWrapper): """ A wrapper class for the training process of spatial memory """ def construct_graph(self, sess): with sess.graph.as_default(): # Set the random seed for tensorflow tf.set_random_seed(cfg.RNG_SEED) # Build the main computation graph layers = self.net.create_architecture('TRAIN', self.imdb.num_classes, tag='default') # Define the loss loss = layers['total_loss'] # Set learning rate and momentum lr = tf.Variable(cfg.TRAIN.RATE, trainable=False) self.optimizer = tf.train.MomentumOptimizer(lr, cfg.TRAIN.MOMENTUM) # Compute the gradients with regard to the loss gvs = self.optimizer.compute_gradients(loss) grad_summaries = [] for grad, var in gvs: if 'SMN' not in var.name and 'GMN' not in var.name: continue grad_summaries.append(tf.summary.histogram('TRAIN/' + var.name, var)) if grad is not None: grad_summaries.append(tf.summary.histogram('GRAD/' + var.name, grad)) # Double the gradient of the bias if set if cfg.TRAIN.DOUBLE_BIAS: final_gvs = [] with tf.variable_scope('Gradient_Mult') as scope: for grad, var in gvs: scale = 1. if cfg.TRAIN.DOUBLE_BIAS and '/biases:' in var.name: scale *= 2. if not np.allclose(scale, 1.0): grad = tf.multiply(grad, scale) final_gvs.append((grad, var)) train_op = self.optimizer.apply_gradients(final_gvs) else: train_op = self.optimizer.apply_gradients(gvs) self.summary_grads = tf.summary.merge(grad_summaries) # We will handle the snapshots ourselves self.saver = tf.train.Saver(max_to_keep=100000) # Write the train and validation information to tensorboard self.writer = tf.summary.FileWriter(self.tbdir, sess.graph) self.valwriter = tf.summary.FileWriter(self.tbvaldir) return lr, train_op def train_model(self, sess, max_iters): # Build data layers for both training and validation set self.data_layer = self.imdb.data_layer(self.roidb, self.imdb.num_classes) self.data_layer_val = self.imdb.data_layer(self.valroidb, self.imdb.num_classes, random=True) # Construct the computation graph lr, train_op = self.construct_graph(sess) # Find previous snapshots if there is any to restore from lsf, nfiles, sfiles = self.find_previous() # Initialize the variables or restore them from the last snapshot if lsf == 0: rate, last_snapshot_iter, stepsizes, np_paths, ss_paths = self.initialize(sess) else: rate, last_snapshot_iter, stepsizes, np_paths, ss_paths = self.restore(sess, str(sfiles[-1]), str(nfiles[-1])) timer = Timer() iter = last_snapshot_iter + 1 last_summary_iter = iter last_summary_time = time.time() # Make sure the lists are not empty stepsizes.append(max_iters) stepsizes.reverse() next_stepsize = stepsizes.pop() while iter < max_iters + 1: # Learning rate if iter == next_stepsize + 1: # Add snapshot here before reducing the learning rate self.snapshot(sess, iter) rate *= cfg.TRAIN.GAMMA sess.run(tf.assign(lr, rate)) next_stepsize = stepsizes.pop() timer.tic() # Get training data, one batch at a time blobs = self.data_layer.forward() now = time.time() if iter == 1 or \ (now - last_summary_time > cfg.TRAIN.SUMMARY_INTERVAL and \ iter - last_summary_iter > cfg.TRAIN.SUMMARY_ITERS): # Compute the graph with summary loss_cls, total_loss, summary, gsummary = \ self.net.train_step_with_summary(sess, blobs, train_op, self.summary_grads) self.writer.add_summary(summary, float(iter)) self.writer.add_summary(gsummary, float(iter+1)) # Also check the summary on the validation set blobs_val = self.data_layer_val.forward() summary_val = self.net.get_summary(sess, blobs_val) self.valwriter.add_summary(summary_val, float(iter)) last_summary_iter = iter last_summary_time = now else: # Compute the graph without summary loss_cls, total_loss = self.net.train_step(sess, blobs, train_op) timer.toc() # Display training information if iter % (cfg.TRAIN.DISPLAY) == 0: print('iter: %d / %d, total loss: %.6f\n >>> loss_cls: %.6f\n >>> lr: %f' % \ (iter, max_iters, total_loss, loss_cls, lr.eval())) print('speed: {:.3f}s / iter'.format(timer.average_time)) # Snapshotting if iter % cfg.TRAIN.SNAPSHOT_ITERS == 0: last_snapshot_iter = iter ss_path, np_path = self.snapshot(sess, iter) np_paths.append(np_path) ss_paths.append(ss_path) # Remove the old snapshots if there are too many if len(np_paths) > cfg.TRAIN.SNAPSHOT_KEPT: self.remove_snapshot(np_paths, ss_paths) iter += 1 if last_snapshot_iter != iter - 1: self.snapshot(sess, iter - 1) self.writer.close() self.valwriter.close() def train_net(network, imdb, roidb, valroidb, output_dir, tb_dir, pretrained_model=None, max_iters=40000): """Train a Faster R-CNN network with memory.""" roidb = filter_roidb(roidb) valroidb = filter_roidb(valroidb) tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True with tf.Session(config=tfconfig) as sess: sw = MemorySolverWrapper(sess, network, imdb, roidb, valroidb, output_dir, tb_dir, pretrained_model=pretrained_model) print('Solving...') sw.train_model(sess, max_iters) print('done solving')
tests/test_molecule.py
liudongliangHI/ProLIF
123
12646320
<reponame>liudongliangHI/ProLIF<filename>tests/test_molecule.py import pytest from MDAnalysis import SelectionError from rdkit import Chem from prolif.molecule import (Molecule, pdbqt_supplier, mol2_supplier, sdf_supplier) from prolif.residue import ResidueId from prolif.datafiles import datapath from .test_base import TestBaseRDKitMol, rdkit_mol, ligand_rdkit, u class TestMolecule(TestBaseRDKitMol): @pytest.fixture(scope="class") def mol(self): return Molecule(rdkit_mol) def test_mapindex(self, mol): for atom in mol.GetAtoms(): assert atom.GetUnsignedProp("mapindex") == atom.GetIdx() def test_from_mda(self): rdkit_mol = Molecule(ligand_rdkit) mda_mol = Molecule.from_mda(u, "resname LIG") assert rdkit_mol[0].resid == mda_mol[0].resid assert (rdkit_mol.HasSubstructMatch(mda_mol) and mda_mol.HasSubstructMatch(rdkit_mol)) def test_from_mda_empty_ag(self): ag = u.select_atoms("resname FOO") with pytest.raises(SelectionError, match="AtomGroup is empty"): Molecule.from_mda(ag) def test_from_rdkit(self): rdkit_mol = Molecule(ligand_rdkit) newmol = Molecule.from_rdkit(ligand_rdkit) assert rdkit_mol[0].resid == newmol[0].resid def test_from_rdkit_default_resid(self): mol = Chem.MolFromSmiles("CCO") newmol = Molecule.from_rdkit(mol) assert newmol[0].resid == ResidueId("UNL", 1) def test_from_rdkit_resid_args(self): mol = Chem.MolFromSmiles("CCO") newmol = Molecule.from_rdkit(mol, "FOO", 42, "A") assert newmol[0].resid == ResidueId("FOO", 42, "A") @pytest.mark.parametrize("key", [ 0, 42, -1, "LYS49.A", ResidueId("LYS", 49, "A") ]) def test_getitem(self, mol, key): assert mol[key].resid is mol.residues[key].resid def test_iter(self, mol): for i, r in enumerate(mol): assert r.resid == mol[i].resid def test_n_residues(self, mol): assert mol.n_residues == mol.residues.n_residues class TestSupplier: def test_pdbqt(self): path = datapath / "vina" pdbqts = sorted(path.glob("*.pdbqt")) template = Chem.MolFromSmiles("C[NH+]1CC(C(=O)NC2(C)OC3(O)C4CCCN4C(=O)" "C(Cc4ccccc4)N3C2=O)C=C2c3cccc4[nH]cc" "(c34)CC21") suppl = pdbqt_supplier(pdbqts, template) mols = list(suppl) assert isinstance(mols[0], Molecule) assert len(mols) == len(pdbqts) def test_sdf(self): path = str(datapath / "vina" / "vina_output.sdf") suppl = sdf_supplier(path) mols = list(suppl) assert isinstance(mols[0], Molecule) assert len(mols) == 9 mi = mols[0].GetAtomWithIdx(0).GetMonomerInfo() assert all([mi.GetResidueName() == "UNL", mi.GetResidueNumber() == 1, mi.GetChainId() == ""]) def test_mol2(self): path = str(datapath / "vina" / "vina_output.mol2") suppl = mol2_supplier(path) mols = list(suppl) assert isinstance(mols[0], Molecule) assert len(mols) == 9 mi = mols[0].GetAtomWithIdx(0).GetMonomerInfo() assert all([mi.GetResidueName() == "UNL", mi.GetResidueNumber() == 1, mi.GetChainId() == ""]) def test_mol2_starting_with_comment(self): path = str(datapath / "mol_comment.mol2") suppl = mol2_supplier(path) mol = next(suppl) assert mol is not None
scripts/examples/OpenMV/32-modbus/modbus_rtu_slave.py
jiskra/openmv
1,761
12646339
<filename>scripts/examples/OpenMV/32-modbus/modbus_rtu_slave.py<gh_stars>1000+ import time from pyb import UART from modbus import ModbusRTU uart = UART(3,115200, parity=None, stop=2, timeout=1, timeout_char=4) modbus = ModbusRTU(uart, register_num=9999) while(True): if modbus.any(): modbus.handle(debug=True) else: time.sleep_ms(100) modbus.REGISTER[0] = 1000 modbus.REGISTER[1] += 1 modbus.REGISTER[3] += 3 #print(modbus.REGISTER[10:15]) # image processing in there
adalm/incr_bpe/tokenizer.py
Sanster/unilm
5,129
12646355
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple invertible tokenizer. Converts from a unicode string to a list of tokens (represented as Unicode strings). This tokenizer has the following desirable properties: - It is invertible. - Alphanumeric characters are broken away from non-alphanumeric characters. - A single space between words does not produce an extra token. - The full Unicode punctuation and separator set is recognized. The tokenization algorithm is as follows: 1. Split the text into a list of tokens, splitting at every boundary of an alphanumeric character and a non-alphanumeric character. This produces a list which alternates between "alphanumeric tokens" (strings of alphanumeric characters) and "non-alphanumeric tokens" (strings of non-alphanumeric characters). 2. Remove every token consisting of a single space, unless it is the very first or very last token in the list. These tokens are now implied by the fact that there are two adjacent alphanumeric tokens. e.g. u"Dude - that's so cool." -> [u"Dude", u" - ", u"that", u"'", u"s", u"so", u"cool", u"."] """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import sys import unicodedata import six import logging from six.moves import range # pylint: disable=redefined-builtin # from tensor2tensor.utils import mlperf_log import time import glob # Conversion between Unicode and UTF-8, if required (on Python2) _native_to_unicode = (lambda s: s.decode("utf-8")) if six.PY2 else (lambda s: s) logger = logging.getLogger(__name__) # This set contains all letter and number characters. _ALPHANUMERIC_CHAR_SET = set( six.unichr(i) for i in range(sys.maxunicode) if (unicodedata.category(six.unichr(i)).startswith("L") or unicodedata.category(six.unichr(i)).startswith("N") or unicodedata.category(six.unichr(i)).startswith("P"))) # unicodedata.category(six.unichr(i)).startswith("S") def encode(text): """Encode a unicode string as a list of tokens. Args: text: a unicode string Returns: a list of tokens as Unicode strings """ if not text: return [] ret = [] token_start = 0 # Classify each character in the input string is_alnum = [c in _ALPHANUMERIC_CHAR_SET for c in text] add_remaining = False for pos in range(1, len(text)): add_remaining = False if is_alnum[pos] != is_alnum[pos - 1]: if not is_alnum[pos]: token = text[token_start:pos] if token != u" " or token_start == 0: add_remaining = False ret.append(token) else: add_remaining = True token_start = pos final_token = text[token_start:] if text[-1] in _ALPHANUMERIC_CHAR_SET else text[token_start:-1] if add_remaining: ret.append(final_token) # split on punctuation final_tokens = [] for token in ret: splitted_token = _run_split_on_punc(token) final_tokens.extend(splitted_token) return final_tokens def _run_split_on_punc(text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def decode(tokens): """Decode a list of tokens to a unicode string. Args: tokens: a list of Unicode strings Returns: a unicode string """ token_is_alnum = [t[0] in _ALPHANUMERIC_CHAR_SET for t in tokens] ret = [] for i, token in enumerate(tokens): if i > 0 and token_is_alnum[i - 1] and token_is_alnum[i]: ret.append(u" ") ret.append(token) return "".join(ret) def _read_filepattern(filepattern, max_lines=None, split_on_newlines=True, do_lower_case=False): """Reads files matching a wildcard pattern, yielding the contents. Args: filepattern: A wildcard pattern matching one or more files. max_lines: If set, stop reading after reading this many lines. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. Yields: The contents of the files as lines, if split_on_newlines is True, or the entire contents of each file if False. """ filenames = sorted(glob.glob(filepattern)) print(filenames, 'do lower case:', do_lower_case) lines_read = 0 for filename in filenames: start = time.time() with open(filename) as f: if split_on_newlines: for line in f: if do_lower_case: line = line.lower() yield line.strip() lines_read += 1 if max_lines and lines_read >= max_lines: return if lines_read % 100000 == 0: print("read", lines_read, "lines,", time.time() - start, "secs elapsed") else: if max_lines: doc = [] for line in f: if do_lower_case: line = line.lower() doc.append(line) lines_read += 1 if max_lines and lines_read >= max_lines: yield "".join(doc) return yield "".join(doc) else: yield f.read() print(time.time() - start, "for reading read file :", filename) def corpus_token_counts( text_filepattern, corpus_max_lines, split_on_newlines=True, additional_chars="", do_lower_case=False): """Read the corpus and compute a dictionary of token counts. Args: text_filepattern: A pattern matching one or more files. corpus_max_lines: An integer; maximum total lines to read. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. additional_chars: A String. Each consisting characters will be treat as normal alphabets so that they will be included in each vocab. Returns: a dictionary mapping token to count. """ if additional_chars: _ALPHANUMERIC_CHAR_SET.add(additional_chars) counts = collections.Counter() for doc in _read_filepattern( text_filepattern, max_lines=corpus_max_lines, split_on_newlines=split_on_newlines, do_lower_case=do_lower_case): counts.update(encode(_native_to_unicode(doc))) print("read all files") return counts def vocab_token_counts(text_filepattern, max_lines, do_lower_case=False): """Read a vocab file and return a dictionary of token counts. Reads a two-column CSV file of tokens and their frequency in a dataset. The tokens are presumed to be generated by encode() or the equivalent. Args: text_filepattern: A pattern matching one or more files. max_lines: An integer; maximum total lines to read. Returns: a dictionary mapping token to count. """ ret = {} for i, line in enumerate( _read_filepattern(text_filepattern, max_lines=max_lines)): if "," not in line: logger.warning("Malformed vocab line #%d '%s'", i, line) continue if do_lower_case: line = line.lower() token, count = line.rsplit(",", 1) ret[_native_to_unicode(token)] = int(count) return ret