max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
anuga/utilities/parse.py
samcom12/anuga_core
136
12672094
from .data_audit import license_file_is_valid import sys def print_tree(n, indent=0): while n: print(" "*indent, n) print_tree(n.firstChild, indent+4) n = n.nextSibling fid = open(sys.argv[1]) license_file_is_valid(fid, '.') fid.close()
test/integration/expected_out_single_line/CantAffordActiveException.py
Inveracity/flynt
487
12672099
<gh_stars>100-1000 from exceptions import PydolonsError class CantAffordActiveError(PydolonsError): def __init__(self, active, missing): assert missing in ["mana", "stamina", "health"] self.active = active self.missing = missing def __repr__(self): return f"Need more {self.missing} to activate {self.active}"
galileo/framework/tf/python/convolutions/sage_layer.py
YaoPu2021/galileo
115
12672101
# Copyright 2020 JD.com, Inc. Galileo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf from tensorflow.keras.layers import Layer, Dropout from galileo.platform.export import export from galileo.framework.python.base_message_passing import BaseMessagePassing from galileo.framework.tf.python.layers.aggregators import get_aggregator @export('galileo.tf') class SAGELayer(Layer, BaseMessagePassing): r''' \brief graphSAGE convolution tf layer `"Inductive Representation Learning on Large Graphs" <https://arxiv.org/abs/1706.02216>` ''' def __init__(self, output_dim: int, aggregator_name: str = 'mean', use_concat_in_aggregator: bool = True, bias: bool = True, dropout_rate: float = 0.0, activation=None, normalization=None, **kwargs): r''' \param output_dim output dim of layer \param aggregator_name aggregator name, one of "mean, gcn, meanpool, maxpool, lstm" \param use_concat_in_aggregator concat if True else sum when aggregate \param bias bias of layer \param dropout_rate feature dropout rate \param activation callable, apply activation to the updated vertices features \param normalization callable, apply normalization to the updated vertices features ''' # tensorflow replace the base class to base_layer_v1.Layer # when use estimator, so can't call Layer.__init__() self.__class__.__bases__[0].__init__(self, **kwargs) BaseMessagePassing.__init__(self) self.output_dim = output_dim self.aggregator_name = aggregator_name self.use_concat_in_aggregator = use_concat_in_aggregator self.bias = bias self.dropout_rate = dropout_rate self.activation = activation self.normalization = normalization aggregator_class = get_aggregator(aggregator_name) self.aggregator = aggregator_class(output_dim, use_concat_in_aggregator, bias) self.feature_dropout = Dropout(dropout_rate) def call(self, inputs, training=None): r''' \param inputs tensors of inputs shape (batch_size, *, fanouts, feature_dim) ''' return BaseMessagePassing.__call__(self, inputs, training=training) def message(self, inputs, training=None): src = inputs['src_feature'] dst = inputs['dst_feature'] edge_weight = inputs.get('edge_weight') if edge_weight is not None: dst = dst * edge_weight src = self.feature_dropout(src, training=training) dst = self.feature_dropout(dst, training=training) return dict(src_feature=src, dst_feature=dst) def aggregate(self, inputs): src = inputs['src_feature'] dst = inputs['dst_feature'] # dst -> src is direction of aggregation return self.aggregator((src, dst)) def update(self, inputs): if callable(self.activation): inputs = self.activation(inputs) if callable(self.normalization): inputs = self.normalization(inputs) return inputs def get_config(self): config = super().get_config() config.update( dict( output_dim=self.output_dim, aggregator_name=self.aggregator_name, use_concat_in_aggregator=self.use_concat_in_aggregator, bias=self.bias, dropout_rate=self.dropout_rate, activation=self.activation, normalization=self.normalization, )) return config
nflows/version.py
Tennessee-Wallaceh/nflows
522
12672147
__version__ = "0.14" VERSION = __version__
src/embedding/conf.py
mykiscool/DeepCamera
914
12672161
# -*- coding: UTF-8 -*- # run: $gunicorn -c conf.py upload_api:app import sys import os import multiprocessing sys.path.append(os.path.abspath('upload_api.py')) sys.path.append('.') sys.path.append('..') from upload_api import crons_start path_of_current_file = os.path.abspath(__file__) path_of_current_dir = os.path.split(path_of_current_file)[0] _file_name = os.path.basename(__file__) bind = '0.0.0.0:5000' workers = 3 # workers = multiprocessing.cpu_count() * 2 + 1 worker_class = 'sync' timeout = 100 # debug=True loglevel = 'debug' # pidfile = '%s/run/%s.pid' % (path_of_current_dir, _file_name) errorlog = '%s/logs/%s_error.log' % (path_of_current_dir, _file_name) accesslog = '%s/logs/%s_access.log' % (path_of_current_dir, _file_name) def on_starting(server): # gunicorn 主进程启动之前的操作 crons_start()
eeauditor/tests/test_Amazon_EFS_Auditor.py
kbhagi/ElectricEye
442
12672176
#This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import datetime import os import pytest import sys import botocore from botocore.stub import Stubber, ANY from . import context from auditors.aws.Amazon_EFS_Auditor import ( efs_filesys_encryption_check, describe_file_systems, efs_filesys_policy_check, efs ) describe_file_systems = { "FileSystems": [{ "FileSystemId": "MyEFS", "OwnerId": "Owner12345", "CreationToken": 'egCreationToken', "CreationTime": '2015-01-01', "LifeCycleState": 'available', "NumberOfMountTargets": 1, "SizeInBytes": {'Value': 123,'Timestamp': '2015-01-01','ValueInIA': 123,'ValueInStandard': 123}, "PerformanceMode": "generalPurpose", "Encrypted": True, "Tags": [{'Key': 'EgKey', 'Value': 'EgValue'}] }] } describe_file_systems_blank = { "FileSystems": [] } describe_file_systems_enc_false = { "FileSystems": [{ "FileSystemId": "MyEFS", "OwnerId": "Owner12345", "CreationToken": 'egCreationToken', "CreationTime": '2015-01-01', "LifeCycleState": 'available', "NumberOfMountTargets": 1, "SizeInBytes": {'Value': 123,'Timestamp': '2015-01-01','ValueInIA': 123,'ValueInStandard': 123}, "PerformanceMode": "generalPurpose", "Encrypted": False, "Tags": [{'Key': 'EgKey', 'Value': 'EgValue'}] }] } file_system_policy = { "FileSystemId": 'MyEFS', "Policy": '{"Version": "2012-10-17", \ "Id": "ExamplePolicy01", \ "Statement": [ \ { "Sid": "ExampleSatement01", \ "Effect": "Allow", \ "Principal": { \ "AWS": "arn:aws:iam::111122223333:user/CarlosSalazar"}, \ "Action": [ \ "elasticfilesystem:ClientMount", \ "elasticfilesystem:ClientWrite"], \ "Resource": "arn:aws:elasticfilesystem:us-east-2:111122223333:file-system/MyEFS", \ "Condition": {"Bool": {"aws:SecureTransport": "true"}}}]}' } @pytest.fixture(scope="function") def efs_stubber(): efs_stubber = Stubber(efs) efs_stubber.activate() yield efs_stubber efs_stubber.deactivate() def test_efs_encryption_true(efs_stubber): efs_stubber.add_response("describe_file_systems", describe_file_systems) results = efs_filesys_encryption_check( cache={}, awsAccountId="012345678901", awsRegion="us-east-1", awsPartition="aws" ) for result in results: if "MyEFS" in result["Id"]: assert result["RecordState"] == "ARCHIVED" else: assert False efs_stubber.assert_no_pending_responses() def test_efs_encryption_false(efs_stubber): efs_stubber.add_response("describe_file_systems", describe_file_systems_enc_false) results = efs_filesys_encryption_check( cache={}, awsAccountId="012345678901", awsRegion="us-east-1", awsPartition="aws" ) for result in results: if "MyEFS" in result["Id"]: assert result["RecordState"] == "ACTIVE" else: assert False efs_stubber.assert_no_pending_responses() def test_efs_policy(efs_stubber): efs_stubber.add_response("describe_file_systems", describe_file_systems) efs_stubber.add_response("describe_file_system_policy", file_system_policy) results = efs_filesys_policy_check( cache={}, awsAccountId="012345678901", awsRegion="us-east-1", awsPartition="aws" ) for result in results: if "MyEFS" in result["Id"]: assert result["RecordState"] == "ARCHIVED" else: assert False efs_stubber.assert_no_pending_responses() def test_efs_no_policy(efs_stubber): efs_stubber.add_response("describe_file_systems", describe_file_systems) efs_stubber.add_client_error("describe_file_system_policy", 'FileSystemNotFound') results = efs_filesys_policy_check( cache={}, awsAccountId="012345678901", awsRegion="us-east-1", awsPartition="aws" ) for result in results: if "MyEFS" in result["Id"]: assert result["RecordState"] == "ACTIVE" else: assert False efs_stubber.assert_no_pending_responses() def test_efs_no_fs(efs_stubber): efs_stubber.add_response("describe_file_systems", describe_file_systems_blank) results = efs_filesys_policy_check( cache={}, awsAccountId="012345678901", awsRegion="us-east-1", awsPartition="aws" ) assert len(list(results)) == 0 efs_stubber.assert_no_pending_responses()
apps/yolo/pycocoEvalDemo.py
Saums/ml-suite
334
12672194
#!/usr/bin/env python # # // SPDX-License-Identifier: BSD-3-CLAUSE # # (C) Copyright 2018, Xilinx, Inc. # import os,sys ## THIS FILE CANNOT BE USED UNLESS THE USER CLONES the COCOAPI parallel to the MLSUITE ## AND THEY DONWLOAD THE VAL2014 annotations, and images ## Also, the PythonAPI directory needs to be built # Bring in the COCO API for managing the coco dataset sys.path.insert(0,os.path.abspath("../../../cocoapi/PythonAPI")) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval import numpy as np annType = ['segm','bbox','keypoints'] annType = annType[1] #specify type here prefix = 'person_keypoints' if annType=='keypoints' else 'instances' print 'Running demo for *%s* results.'%(annType) #initialize COCO ground truth api dataDir='../../../cocoapi' dataType='val2014' annFile = '%s/annotations/%s_%s.json'%(dataDir,prefix,dataType) cocoGt=COCO(annFile) #initialize COCO detections api #resFile='%s/results/%s_%s_fake%s100_results.json' #resFile = resFile%(dataDir, prefix, dataType, annType) resFile = './results.json' cocoDt=cocoGt.loadRes(resFile) imgIds=sorted(cocoGt.getImgIds()) # running evaluation cocoEval = COCOeval(cocoGt,cocoDt,annType) cocoEval.params.imgIds = imgIds cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()
OrderedDict_tutorial.py
twtrubiks/python-notes
106
12672303
<reponame>twtrubiks/python-notes<gh_stars>100-1000 # Python 3.6 introduced a new implementation of dict. # dict now keeps its items ordered as well. # An OrderedDict is a dictionary subclass that remembers the order in which its contents are added. from collections import OrderedDict if __name__ == "__main__": order_dic = OrderedDict() order_dic['a'] = 'A' order_dic['b'] = 'B' order_dic['c'] = 'C' order_dic['d'] = 'D' order_dic['e'] = 'E' for k, v in order_dic.items(): print(k, v) # https://docs.python.org/3/library/collections.html#collections.OrderedDict.popitem # last=True -> LIFO # last=False -> FIFO print( order_dic.popitem(last=True) # -> ('e', 'E') ) print( order_dic.popitem(last=False) # -> ('a', 'A') ) # https://docs.python.org/3/library/collections.html#collections.OrderedDict.move_to_end # last=True -> The item is moved to the right end # last=False -> The item is moved to the beginning print('origin:', order_dic) # OrderedDict([('b', 'B'), ('c', 'C'), ('d', 'D')]) order_dic.move_to_end('b', last=True) print(order_dic) # OrderedDict([('c', 'C'), ('d', 'D'), ('b', 'B')]) order_dic.move_to_end('b', last=False) print(order_dic) # OrderedDict([('b', 'B'), ('c', 'C'), ('d', 'D')])
mutpy/test_runners/__init__.py
f-str/mutpy
284
12672355
<filename>mutpy/test_runners/__init__.py from .unittest_runner import UnittestTestRunner def pytest_installed(): import importlib pytest_loader = importlib.find_loader('pytest') return pytest_loader is not None class TestRunnerNotInstalledException(Exception): pass def __pytest_not_installed(*args, **kwargs): raise TestRunnerNotInstalledException( 'Pytest is not installed. Please run "pip install pytest" to resolve this issue.' ) if pytest_installed(): from .pytest_runner import PytestTestRunner else: PytestTestRunner = __pytest_not_installed
tests/__init__.py
sjoerdk/sitdown
101
12672371
<reponame>sjoerdk/sitdown from pathlib import Path BASE_PATH = Path(__file__).parent.absolute() RESOURCE_PATH = BASE_PATH / "resources"
peering/migrations/0019_router_netbox_device_id.py
schiederme/peering-manager
173
12672426
# Generated by Django 2.1.3 on 2018-11-08 15:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("peering", "0018_auto_20181014_1612")] operations = [ migrations.AddField( model_name="router", name="netbox_device_id", field=models.PositiveIntegerField(blank=True, default=0), ) ]
reudom/testdata/aes.py
BarryYBL/reudom
393
12672442
import requests aes_url = 'http://tool.chacuo.net/cryptaes' header = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) ' 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36' } ECB = 'ecb' PKC = 'pkcs5' BLOCK = '128' PWD = '<PASSWORD>' IV = '123456' O = '0' S = 'gb2312' T = '0' ARG = 'm='+ECB+'_pad='+PKC+'_block='+BLOCK+'_p='+PWD+'_i='+IV+'_o='+'O'+'_s='+'gb2312'+'_t='+'0' print(ARG) data = { 'data': '土豆', 'type': 'aes', 'arg': ARG } result = requests.post(url=aes_url, headers=header, data=data) print(result.text)
vendor/cloud.google.com/go/httpreplay/cmd/httpr/examples/python/httpr-demo.py
maxnordlund/transfer.sh
3,723
12672460
from __future__ import print_function import sys from google.auth.credentials import AnonymousCredentials from google.cloud import storage if len(sys.argv)-1 != 3: print('args: PROJECT BUCKET record|replay') sys.exit(1) project = sys.argv[1] bucket_name = sys.argv[2] mode = sys.argv[3] if mode == 'record': creds = None # use default creds for demo purposes; not recommended client = storage.Client(project=project) elif mode == 'replay': creds = AnonymousCredentials() else: print('want record or replay') sys.exit(1) client = storage.Client(project=project, credentials=creds) bucket = client.get_bucket(bucket_name) print('bucket %s created %s' %(bucket.id, bucket.time_created))
benchmarks/20_quantity.py
KOLANICH-libs/pint
1,545
12672465
import itertools as it import operator import pint from . import util units = ("meter", "kilometer", "second", "minute", "angstrom") all_values = ("int", "float", "complex") all_values_q = tuple( "%s_%s" % (a, b) for a, b in it.product(all_values, ("meter", "kilometer")) ) op1 = (operator.neg, operator.truth) op2_cmp = (operator.eq,) # operator.lt) op2_math = (operator.add, operator.sub, operator.mul, operator.truediv) ureg = None data = {} def setup(*args): global ureg, data data["int"] = 1 data["float"] = 1.0 data["complex"] = complex(1, 2) ureg = pint.UnitRegistry(util.get_tiny_def()) for key in all_values: data[key + "_meter"] = data[key] * ureg.meter data[key + "_kilometer"] = data[key] * ureg.kilometer def time_build_by_mul(key): data[key] * ureg.meter time_build_by_mul.params = all_values def time_op1(key, op): op(data[key]) time_op1.params = [all_values_q, op1] def time_op2(keys, op): key1, key2 = keys op(data[key1], data[key2]) time_op2.params = [tuple(it.product(all_values_q, all_values_q)), op2_math + op2_cmp]
src/genie/libs/parser/iosxe/tests/ShowIPAlias/cli/equal/golden_output3_expected.py
balmasea/genieparser
204
12672466
expected_output = { "vrf": { "L3VPN-1538": { "index": {1: {"address_type": "Interface", "ip_address": "192.168.10.254"}} } } }
windows_build/generate_ver_info.py
hugmyndakassi/hvmi
677
12672467
<gh_stars>100-1000 # # Copyright (c) 2020 Bitdefender # SPDX-License-Identifier: Apache-2.0 # import argparse import pathlib import subprocess import sys import platform from build_info import write_build_info def get_argparser(): parser = argparse.ArgumentParser() parser.add_argument( "--meta-file", help="Path to the project-meta-info.in file", required=True ) parser.add_argument("--build", help="Built number", required=False, default=None) parser.add_argument("--out", help="Path to the output JSON file", required=True) parser.add_argument( "--overwrite", help="Overwrite curent ver.h file. Default is False", action="store_true", default=False, ) return parser def get_version(metainfo): with open(metainfo, mode="r") as metafile: for line in metafile: if "project_version" in line: raw_ver = line.strip().split()[-1] ver_components = raw_ver.split(".") if len(ver_components) != 3: return None major = ver_components[0] minor = ver_components[1] revision = ver_components[2].replace(")", "") return (major, minor, revision) return None def get_git_branch(): return ( subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"]) .decode("utf-8") .strip() ) def get_git_revision(): return ( subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]) .decode("utf-8") .strip() ) def get_git_commit_count(): return ( subprocess.check_output(["git", "rev-list", "--count", "HEAD"]) .decode("utf-8") .strip() ) def get_machine_name(): return platform.node() def main(argv): args = get_argparser().parse_args(argv) out_file = pathlib.Path(args.out) if out_file.exists(): if not args.overwrite: print(f"Version file at {out_file} already exists! Will not overwrite it") return 0 print(f"Version file at {out_file} already exists! Will overwrite it") ver = get_version(args.meta_file) if not ver: print(f"ERROR: Coult not extract version info from {args.meta_file}") return 1 (major, minor, revision) = ver build = args.build if build is None: # "Sensible" default for local builds build = get_git_commit_count() branch = get_git_branch() changeset = get_git_revision() build_machine = get_machine_name() build_info = {} build_info["major"] = major build_info["minor"] = minor build_info["revision"] = revision build_info["build"] = build build_info["changeset"] = changeset build_info["branch"] = branch build_info["build_machine"] = build_machine write_build_info(out_file, build_info) return 0 if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
lightbus/internal_apis.py
gcollard/lightbus
178
12672600
from lightbus.api import Api, Event class LightbusStateApi(Api): """The API for the state plugin""" worker_started = Event( parameters=[ "service_name", "process_name", "metrics_enabled", "api_names", "listening_for", "timestamp", "ping_interval", ] ) worker_ping = Event( parameters=[ "service_name", "process_name", "metrics_enabled", "api_names", "listening_for", "timestamp", "ping_interval", ] ) worker_stopped = Event(parameters=["process_name", "timestamp"]) class Meta: name = "internal.state" internal = True class LightbusMetricsApi(Api): """The API for the metrics plugin""" rpc_call_sent = Event( parameters=[ "service_name", "process_name", "id", "api_name", "procedure_name", "kwargs", "timestamp", ] ) rpc_call_received = Event( parameters=["service_name", "process_name", "id", "api_name", "procedure_name", "timestamp"] ) rpc_response_sent = Event( parameters=[ "service_name", "process_name", "id", "api_name", "procedure_name", "result", "timestamp", ] ) rpc_response_received = Event( parameters=["service_name", "process_name", "id", "api_name", "procedure_name", "timestamp"] ) event_fired = Event( parameters=[ "service_name", "process_name", "event_id", "api_name", "event_name", "kwargs", "timestamp", ] ) event_received = Event( parameters=[ "service_name", "process_name", "event_id", "api_name", "event_name", "kwargs", "timestamp", ] ) event_processed = Event( parameters=[ "service_name", "process_name", "event_id", "api_name", "event_name", "kwargs", "timestamp", ] ) class Meta: name = "internal.metrics" internal = True
py2deb/cli.py
arrikto/py2deb
309
12672607
# Command line interface for the `py2deb' program. # # Author: <NAME> <<EMAIL>> # Last Change: May 22, 2017 # URL: https://py2deb.readthedocs.io """ Usage: py2deb [OPTIONS] ... Convert Python packages to Debian packages according to the given command line options (see below). The command line arguments are the same as accepted by the `pip install' command because py2deb invokes pip during the conversion process. This means you can name the package(s) to convert on the command line but you can also use `requirement files' if you prefer. If you want to pass command line options to pip (e.g. because you want to use a custom index URL or a requirements file) then you will need to tell py2deb where the options for py2deb stop and the options for pip begin. In such cases you can use the following syntax: $ py2deb -r /tmp -- -r requirements.txt So the `--' marker separates the py2deb options from the pip options. Supported options: -c, --config=FILENAME Load a configuration file. Because the command line arguments are processed in the given order, you have the choice and responsibility to decide if command line options override configuration file options or vice versa. Refer to the documentation for details on the configuration file format. The default configuration files /etc/py2deb.ini and ~/.py2deb.ini are automatically loaded if they exist. This happens before environment variables and command line options are processed. Can also be set using the environment variable $PY2DEB_CONFIG. -r, --repository=DIRECTORY Change the directory where *.deb archives are stored. Defaults to the system wide temporary directory (which is usually /tmp). If this directory doesn't exist py2deb refuses to run. Can also be set using the environment variable $PY2DEB_REPOSITORY. --use-system-package=PYTHON_PACKAGE_NAME,DEBIAN_PACKAGE_NAME Exclude a Python package (the name before the comma) from conversion and replace references to the Python package with a specific Debian package name. This allows you to use system packages for specific Python requirements. --name-prefix=PREFIX Set the name prefix used during the name conversion from Python to Debian packages. Defaults to `python'. The name prefix and package names are always delimited by a dash. Can also be set using the environment variable $PY2DEB_NAME_PREFIX. --no-name-prefix=PYTHON_PACKAGE_NAME Exclude a Python package from having the name prefix applied during the package name conversion. This is useful to avoid awkward repetitions. --rename=PYTHON_PACKAGE_NAME,DEBIAN_PACKAGE_NAME Override the package name conversion algorithm for the given pair of package names. Useful if you don't agree with the algorithm :-) --install-prefix=DIRECTORY Override the default system wide installation prefix. By setting this to anything other than `/usr' or `/usr/local' you change the way py2deb works. It will build packages with a file system layout similar to a Python virtual environment, except there will not be a Python executable: The packages are meant to be loaded by modifying Python's module search path. Refer to the documentation for details. Can also be set using the environment variable $PY2DEB_INSTALL_PREFIX. --install-alternative=LINK,PATH Use Debian's `update-alternatives' system to add an executable that's installed in a custom installation prefix (see above) to the system wide executable search path. Refer to the documentation for details. --python-callback=EXPRESSION Set a Python callback to be called during the conversion process. Refer to the documentation for details about the use of this feature and the syntax of EXPRESSION. Can also be set using the environment variable $PY2DEB_CALLBACK. --report-dependencies=FILENAME Add the Debian relationships needed to depend on the converted package(s) to the given control file. If the control file already contains relationships the additional relationships will be added to the control file; they won't overwrite existing relationships. -y, --yes Instruct pip-accel to automatically install build time dependencies where possible. Refer to the pip-accel documentation for details. Can also be set using the environment variable $PY2DEB_AUTO_INSTALL. -v, --verbose Make more noise :-). -h, --help Show this message and exit. """ # Standard library modules. import getopt import logging import os import sys # External dependencies. import coloredlogs from deb_pkg_tools.control import patch_control_file from humanfriendly.terminal import usage, warning # Modules included in our package. from py2deb.converter import PackageConverter # Initialize a logger. logger = logging.getLogger(__name__) def main(): """Command line interface for the ``py2deb`` program.""" # Configure terminal output. coloredlogs.install() try: # Initialize a package converter. converter = PackageConverter() # Parse and validate the command line options. options, arguments = getopt.getopt(sys.argv[1:], 'c:r:yvh', [ 'config=', 'repository=', 'use-system-package=', 'name-prefix=', 'no-name-prefix=', 'rename=', 'install-prefix=', 'install-alternative=', 'python-callback=', 'report-dependencies=', 'yes', 'verbose', 'help', ]) control_file_to_update = None for option, value in options: if option in ('-c', '--config'): converter.load_configuration_file(value) elif option in ('-r', '--repository'): converter.set_repository(value) elif option == '--use-system-package': python_package_name, _, debian_package_name = value.partition(',') converter.use_system_package(python_package_name, debian_package_name) elif option == '--name-prefix': converter.set_name_prefix(value) elif option == '--no-name-prefix': converter.rename_package(value, value) elif option == '--rename': python_package_name, _, debian_package_name = value.partition(',') converter.rename_package(python_package_name, debian_package_name) elif option == '--install-prefix': converter.set_install_prefix(value) elif option == '--install-alternative': link, _, path = value.partition(',') converter.install_alternative(link, path) elif option == '--python-callback': converter.set_python_callback(value) elif option == '--report-dependencies': control_file_to_update = value if not os.path.isfile(control_file_to_update): msg = "The given control file doesn't exist! (%s)" raise Exception(msg % control_file_to_update) elif option in ('-y', '--yes'): converter.set_auto_install(True) elif option in ('-v', '--verbose'): coloredlogs.increase_verbosity() elif option in ('-h', '--help'): usage(__doc__) return else: assert False, "Unhandled option!" except Exception as e: warning("Failed to parse command line arguments: %s", e) sys.exit(1) # Convert the requested package(s). try: if arguments: archives, relationships = converter.convert(arguments) if relationships and control_file_to_update: patch_control_file(control_file_to_update, dict(depends=relationships)) else: usage(__doc__) except Exception: logger.exception("Caught an unhandled exception!") sys.exit(1)
support/go-NN-master/engine/SelfPlay.py
sjkim04/AlphaGOZero-python-tensorflow
325
12672651
# Self play games as used by DeepMind to train AlphaGo's value network. Play a # policy against itself, but insert single random move somewhere in the game. # Use the position immediately after the random move together with the final # game result as a single training example for the value network. def run_self_play_game_with_random_move(engine, N=19, komi=7.5): board = Board(N) engine.clear_board() engine.set_board_size(N) engine.set_komi(komi) random_policy = RandomPolicy() example_feature_planes = None example_color_to_play = None random_move_num = np.randint(0, 450) print "random_move_num = ", random_move_num move_num = 0 consecutive_passes = 0 result = None while consecutive_passes < 2: if move_num == random_move_num: move = random_policy.pick_move(board) board.play_move(move) engine.move_was_played(move) example_color_to_play = board.color_to_play print "chose random move (%d,%d) for %s on move #%d" % (move.x, move.y, color_names[example_color_to_play], move_num) example_feature_planes = Features.make_feature_planes_stones_3liberties_4history_ko(board, example_color_to_play) else: move = engine.generate_move(board) if move.is_resign(): result = "B+Resign" if board.color_to_play == Color.Black else "W+Resign" break elif move.is_pass(): consecutive_passes += 1 else: consecutive_passes = 0 board.play_move(move) move_num += 1 if result == None: result = engine.final_score() print "self play game finished. result is", result if example_feature_planes != None: winner = Color.Black if "B+" in result else Color.White example_outcome = +1 if winner == example_color_to_play else -1 print "produced example with example_outcome = %d" % example_outcome return (example_feature_planes, example_outcome) else: print "game didn't go long enough: no example produced." return None
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/a/arguments_differ_py3.py
ciskoinch8/vimrc
463
12672669
# pylint: disable=missing-docstring,too-few-public-methods class AbstractFoo: def kwonly_1(self, first, *, second, third): "Normal positional with two positional only params." def kwonly_2(self, *, first, second): "Two positional only parameter." def kwonly_3(self, *, first, second): "Two positional only params." def kwonly_4(self, *, first, second=None): "One positional only and another with a default." def kwonly_5(self, *, first, **kwargs): "Keyword only and keyword variadics." def kwonly_6(self, first, second, *, third): "Two positional and one keyword" class Foo(AbstractFoo): def kwonly_1(self, first, *, second): # [arguments-differ] "One positional and only one positional only param." def kwonly_2(self, first): # [arguments-differ] "Only one positional parameter instead of two positional only parameters." def kwonly_3(self, first, second): # [arguments-differ] "Two positional params." def kwonly_4(self, first, second): # [arguments-differ] "Two positional params." def kwonly_5(self, *, first): # [arguments-differ] "Keyword only, but no variadics." def kwonly_6(self, *args, **kwargs): # valid override "Positional and keyword variadics to pass through parent params" class Foo2(AbstractFoo): def kwonly_6(self, first, *args, **kwargs): # valid override "One positional with the rest variadics to pass through parent params"
coders/nyc_parks.py
susannahsoon/oldperth
302
12672700
<reponame>susannahsoon/oldperth<gh_stars>100-1000 #!/usr/bin/python # # Look for well-known NYC parks. from collections import defaultdict import fileinput import re import sys import json if __name__ == '__main__': sys.path += (sys.path[0] + '/..') import coders.registration import record parks = { 'Bronx Park': (40.856389, -73.876667), 'Claremont Park': (40.840546, -73.907469), 'Crotona Park': (40.8388, -73.8952), # 'Fulton Park': None, 'Morris Park Race Track': (40.85, -73.855556), 'Poe Park': (40.865278, -73.894444), 'Pulaski Park': (40.805239, -73.924409), 'Starlight Park': (40.834176, -73.881968), 'Highland Park': (40.688370, -73.887480), 'Marine Park': (40.59804, -73.92083), 'Prospect Park Plaza': (40.6743, -73.9702), 'Prospect Park': (40.66143, -73.97035), # BIG! 'Battery Park': (40.703717, -74.016094), 'Bryant Park': (40.753792, -73.983607), 'Central Park': (40.782865, -73.965355), # BIG! 'Colonial Park': (40.824293, -73.942172), 'Cooper Park': (40.716014, -73.937268), 'Jefferson Park': (40.793366, -73.935247), 'Morningside Park': (40.805093, -73.959127), 'Riverside Park': (40.801234, -73.972310), 'Astoria Park': (40.775934, -73.925275), 'Baisley Park': (40.677778, -73.784722), 'Chisholm Park': (40.792833, -73.851857), 'Rainey Park': (40.766070, -73.940758), 'Barrett Park': (40.6251, -74.1157), 'Flushing Meadow Park': (40.739714, -73.840785), 'City Hall Park': (40.713160, -74.006389), 'Pelham Bay Park': (40.861500, -73.797200), 'Van Cortlandt Park': (40.894709, -73.890918), 'Inwood Hill Park': (40.871542, -73.925695), 'Carl Schurz Park': (40.775130, -73.943697), 'Jacob Riis Park': (40.566623, -73.876081), 'High Bridge Park': (40.843104, -73.932910), 'Fort Tryon Park': (40.861619, -73.933622), 'Fort Greene Park': (40.690344, -73.973833), 'Morris Park': (40.852201, -73.850728), # Neighborhood 'Fort Washington Park': (40.849475, -73.946673), 'Washington Square Park': (40.730823, -73.997332), 'Mount Morris Park': (40.804508, -73.944046), 'Union Square Park': (40.735708, -73.990442), 'Stuyvesant Square Park': (40.733611, -73.984000), 'Juniper Valley Park': (40.720101, -73.881488), 'Starlight Amusement Park': (40.834176, -73.881968), 'Seton Falls Park': (40.886753, -73.838231), 'Madison Square Park': (40.742216, -73.988036), 'Golden City Park': (40.629194, -73.883929), 'Golden City Amusement Park': (40.629194, -73.883929), 'Corlears Hook Park': (40.711697, -73.979697), 'College Point Park': (40.785778, -73.846501), 'Marine Park at Marine Park': (40.595700, -73.921198), 'Hamilton Fish Park': (40.720029, -73.981559), 'Garden City Amusement Park': (40.629194, -73.883929), # 'Fulton Park': (), 'Fort Green Park': (40.690344, -73.973833), 'Canarsie Beach Park': (40.629194, -73.883929) } central_park = { 'The Pond': (40.766014, -73.974004), 'Pond in winter': (40.766014, -73.974004), 'The Lake': (40.776223, -73.973085), 'Reservoirs - Lower reservoir': (40.781289, -73.966664), 'Reservoirs - Upper reservoir': (40.785719, -73.963902), # 'Pathways': (), 'The Mall': (40.772352, -73.971590), # 'Playgrounds': (), # 'Transverse roads': (), # 'Miscellaneous': (), 'Bridal path': (40.796840, -73.957826), '[View of the Arsenal Building]': (40.767618, -73.971311), # 'The Seal Pool': (), 'The Obelisk': (40.779638, -73.965400), 'Transportation of the Obelisk': (40.779638, -73.965400), 'Terrace Fountain and the Lake': (40.753982, -73.984127), # 'looking west from Fifth Avenue apartment': (), # 'Sailboat pond': (), # 'Rustic Arbor': (), '<NAME>': (40.796464, -73.951596), # 'West Drive': (), # 'The Sailboat Pool': (), # 'Drives': (), # 'Cliffs': (), } islands = { 'Barren Island': (40.592778, -73.893056), 'Barren': (40.592778, -73.893056), 'Bedloe\'s Island': (40.690050, -74.045068), 'City Island': (40.846820, -73.787498), 'City': (40.846820, -73.787498), 'Coney Island beach': (40.572130, -73.979330), 'Coney Island pier': (40.571413, -73.983822), 'Coney Island': (40.574926, -73.985941), 'Coney': (40.574926, -73.985941), 'Ellis Island': (40.699472, -74.039560), 'Ellis': (40.699472, -74.039560), 'Governor\'s Island': (40.689450, -74.016792), 'Governors Island': (40.689450, -74.016792), 'Governors': (40.689450, -74.016792), 'Hart\'s Island': (40.853627, -73.770585), 'High Island': (40.859525, -73.785639), 'Hoffman Island': (40.578873, -74.053688), 'Hoffman': (40.578873, -74.053688), 'Hunter Island': (40.875028, -73.790219), 'Hunter': (40.875028, -73.790219), 'North Brother Island': (40.800720, -73.898137), 'North Brothers Island': (40.800720, -73.898137), 'North Brothers': (40.800720, -73.898137), 'North Brother': (40.800720, -73.898137), 'Plumb Island': (40.584722, -73.915000), 'Randall\'s Island': (40.793227, -73.921286), 'Randalls Island': (40.793227, -73.921286), 'Rikers Island': (40.793128, -73.886010), 'Shooters Island': (40.643333, -74.159722), 'South Brother Island': (40.796402, -73.898137), 'South Brother': (40.796402, -73.898137), 'Ward\'s Island': (40.793227, -73.921286), 'Welfare Island': (40.762161, -73.949964), 'Welfare': (40.762161, -73.949964) } bridges = { 'Brooklyn Bridge': (40.706096, -73.996823), 'Triborough Bridge': (40.788232, -73.927871), 'triborough Bridge': (40.788232, -73.927871), 'Triborough Bridge and': (40.788232, -73.927871), 'Queensboro Bridge': (40.756732, -73.954224), 'Queensborough Bridge': (40.756732, -73.954224), 'Manhattan Bridge': (40.707471, -73.990774), 'George Washington Bridge': (40.850425, -73.945942), 'Washington Bridge': (40.846944, -73.928056), 'Hell Gate Bridge': (40.782596, -73.921913), 'Williamsburg Bridge': (40.713690, -73.972616), 'Harlem River Bridges': (40.815139, -73.933096), 'Bayonne Bridge': (40.639706, -74.142963), 'Kill Van Kull Bridge': (40.639706, -74.142963), 'High Bridge': (40.842308, -73.930277), 'Penny Bridge': (40.72777, -73.9292), 'Washington Bridge over Harlem River': (40.846944, -73.928056), 'Verrazano Narrows Bridge': (40.606589, -74.044648), 'Triborough and Hell Gate Bridge': (40.788232, -73.927871), 'Northern Boulevard Bridge': (40.763428, -73.751743), 'Marine Parkway Bridge': (40.573697, -73.885145), 'Lemon Creek Bridge': (40.521727, -74.202524), 'Kosciusko Bridge': (40.72777, -73.9292), 'Henry Hudson Bridge': (40.877713, -73.922302), 'Gowanus Canal Bridge': (40.674106, -73.996503), 'Ninth Street drawbridge Bridge': (40.674106, -73.996503), 'Vernon Boulevard Bridge': (40.760673, -73.943330), 'Triborough and Hell Gate Bridges': (40.788232, -73.927871), 'Henry Hudson Memorial Bridge': (40.877713, -73.922302), 'Goethals Bridge': (40.635381, -74.195978), # 2 'Flushing Creek Bridge': (), # 2 'City Island Bridge': (), # 2 'Broadway Bridge': (), # 2 'Bridge over Coney Island': () # 1 Throgs Neck Bridge # 1 Strongs Causeway Bridge # 1 Pelham Bridge # 1 Outerbridge Crossing site Bridge # 1 Outerbridge Crossing Bridge # 1 New York and Putnam Railroad Bridge # 1 New York Central Railroad Bridge # 1 Metropolitan Avenue Bridge # 1 Madison Avenue Bridge # 1 Kosciusko Bridge over Newtown Creek in # 1 Kings Bridge # 1 Hells Gate Bridge # 1 Hell Gate and Triborough Bridge # 1 Harlem River Bridge # 1 Flushing River Bridge # 1 Farmers Bridge # 1 East River Bridge # 1 Cross Bay Veterans Memorial Bridge # 1 Cross Bay Boulevard Bridge # 1 Brroklyn Bridge # 1 Brooklyn and Manhattan Bridges over East # 1 Baltimore and Ohio Railroad Bridge } beaches = { } # Bridges # "East River - River scenes - View of Brooklyn Bridge and financial district from Manhattan Bridge" # "East River - River scenes - Brooklyn Bridge -Early shipping." # Beaches # - Midland Beach, Staten Island, NY boros_re = '(?:New York|Manhattan|Brooklyn|Bronx|Queens|Staten Island)' park_re = r'^%s: ([A-Za-z ]+ Park)(?: |$)' % boros_re non_parks_re = r'Park (?:Avenue|West|East|North|South|Court|Place|Row|Terrace|Blvd|Boulevard)' island_re = r'^Islands - ([A-Za-z ]+) ' bridge_re = r'^Bridges - ([A-Za-z ]+) ' missing_parks = defaultdict(int) missing_islands = defaultdict(int) missing_bridges = defaultdict(int) class NycParkCoder: def __init__(self): pass def codeRecord(self, r): if r.source() != 'Milstein Division': return None title = re.sub(r'\.$', '', r.title()) m = re.search(park_re, title) if m: park = m.group(1) if not re.search(non_parks_re, title): if park not in parks: missing_parks[park] += 1 else: latlon = None if park == 'Central Park': for place in central_park: if ('Central Park - %s' % place) in title: latlon = central_park[place] if not latlon: latlon = parks[park] return { 'address': '@%s,%s' % latlon, 'source': m.group(0), 'type': 'point_of_interest' } m = re.search(island_re, title) if m: island = m.group(1) if island not in islands: missing_islands[island] += 1 else: latlon = islands[island] return { 'address': '@%s,%s' % latlon, 'source': m.group(0), 'type': 'point_of_interest' } m = re.search(bridge_re, title) if m: bridge = m.group(1) if not 'Bridge' in bridge or 'bridge' in bridge: bridge += ' Bridge' if bridge not in bridges: missing_bridges[bridge] += 1 else: latlon = bridges[bridge] return { 'address': '@%s,%s' % latlon, 'source': m.group(0), 'type': 'point_of_interest' } return None def _getLatLonFromGeocode(self, geocode, data): for result in geocode['results']: # data['type'] is something like 'address' or 'intersection'. if data['type'] in result['types']: loc = result['geometry']['location'] return (loc['lat'], loc['lng']) def getLatLonFromGeocode(self, geocode, data, r): latlon = self._getLatLonFromGeocode(geocode, data) if not latlon: return None return latlon def finalize(self): for missing in [missing_parks, missing_islands, missing_bridges]: vs = [(v, k) for k, v in missing.iteritems()] for v, k in reversed(sorted(vs)): sys.stderr.write('%4d\t%s\n' % (v, k)) def name(self): return 'nyc-parks' coders.registration.registerCoderClass(NycParkCoder) # For fast iteration if __name__ == '__main__': coder = NycParkCoder() r = record.Record() num_ok, num_bad = 0, 0 for line in fileinput.input(): addr = line.strip() if not addr: continue r.tabular = { 'i': ['PHOTO_ID'], 'a': ['Milstein Division'], 't': [addr] } result = coder.codeRecord(r) if result: num_ok += 1 print '"%s" -> %s' % (addr, result) else: num_bad += 1 coder.finalize() sys.stderr.write('Parsed %d / %d = %.4f records\n' % ( num_ok, num_ok + num_bad, 1. * num_ok / (num_ok + num_bad)))
task11_kaggle/create_submission.py
Rojanson/stepik-dl-nlp
120
12672704
import argparse import pandas as pd import numpy as np import string import pickle from nltk.util import ngrams def generate_csv(input_file='predicted_titles.csv', output_file='submission.csv', voc_file='vocs.pkl'): ''' Generates file in format required for submitting result to Kaggle Parameters: input_file (str) : path to csv file with your predicted titles. Should have two fields: abstract and title output_file (str) : path to output submission file voc_file (str) : path to voc.pkl file ''' data = pd.read_csv(input_file) with open(voc_file, 'rb') as voc_file: vocs = pickle.load(voc_file) with open(output_file, 'w') as res_file: res_file.write('Id,Predict\n') output_idx = 0 for row_idx, row in data.iterrows(): trg = row['title'] trg = trg.translate(str.maketrans('', '', string.punctuation)).lower().split() trg.extend(['_'.join(ngram) for ngram in list(ngrams(trg, 2)) + list(ngrams(trg, 3))]) VOCAB_stoi = vocs[row_idx] trg_intersection = set(VOCAB_stoi.keys()).intersection(set(trg)) trg_vec = np.zeros(len(VOCAB_stoi)) for word in trg_intersection: trg_vec[VOCAB_stoi[word]] = 1 with open(output_file, 'a') as res_file: for is_word in trg_vec: res_file.write('{0},{1}\n'.format(output_idx, int(is_word))) output_idx += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--input_file', help='Path to input .csv file (abstract, title)', type=str, ) parser.add_argument( '--output_file', help='Path to kaggle submission file', type=str, ) parser.add_argument( '--voc_file', help='Path to voc.pkl file', type=str, ) args = parser.parse_args() generate_csv(args.input_file, args.output_file, args.voc_file)
sdk/formrecognizer/azure-ai-formrecognizer/samples/v3.2-beta/sample_authentication.py
rsdoherty/azure-sdk-for-python
2,728
12672714
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_authentication.py DESCRIPTION: This sample demonstrates how to authenticate to the Form Recognizer service. There are two supported methods of authentication: 1) Use a Form Recognizer API key with AzureKeyCredential from azure.core.credentials 2) Use a token credential from azure-identity to authenticate with Azure Active Directory See more details about authentication here: https://docs.microsoft.com/azure/cognitive-services/authentication USAGE: python sample_authentication.py Set the environment variables with your own values before running the sample: 1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Form Recognizer resource. 2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key 3) AZURE_CLIENT_ID - the client ID of your active directory application. 4) AZURE_TENANT_ID - the tenant ID of your active directory application. 5) AZURE_CLIENT_SECRET - the secret of your active directory application. """ import os url = "https://raw.githubusercontent.com/Azure/azure-sdk-for-python/main/sdk/formrecognizer/azure-ai-formrecognizer/tests/sample_forms/forms/Form_1.jpg" def authentication_with_api_key_credential_document_analysis_client(): # [START create_da_client_with_key] from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentAnalysisClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_analysis_client = DocumentAnalysisClient(endpoint, AzureKeyCredential(key)) # [END create_da_client_with_key] poller = document_analysis_client.begin_analyze_document_from_url( "prebuilt-layout", url ) result = poller.result() def authentication_with_azure_active_directory_document_analysis_client(): # [START create_da_client_with_aad] """DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import DocumentAnalysisClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() document_analysis_client = DocumentAnalysisClient(endpoint, credential) # [END create_da_client_with_aad] poller = document_analysis_client.begin_analyze_document_from_url( "prebuilt-layout", url ) result = poller.result() def authentication_with_api_key_credential_document_model_admin_client(): # [START create_dt_client_with_key] from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient(endpoint, AzureKeyCredential(key)) # [END create_dt_client_with_key] info = document_model_admin_client.get_account_info() def authentication_with_azure_active_directory_document_model_admin_client(): # [START create_dt_client_with_aad] """DefaultAzureCredential will use the values from these environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET """ from azure.ai.formrecognizer import DocumentModelAdministrationClient from azure.identity import DefaultAzureCredential endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] credential = DefaultAzureCredential() document_model_admin_client = DocumentModelAdministrationClient(endpoint, credential) # [END create_dt_client_with_aad] info = document_model_admin_client.get_account_info() if __name__ == "__main__": authentication_with_api_key_credential_document_analysis_client() authentication_with_azure_active_directory_document_analysis_client() authentication_with_api_key_credential_document_model_admin_client() authentication_with_azure_active_directory_document_model_admin_client()
nntts/models/__init__.py
entn-at/efficient_tts
111
12672730
<filename>nntts/models/__init__.py from .efficient_tts import EfficientTTSCNN from .duration_model import DurationModel
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/b/blacklisted_name.py
ciskoinch8/vimrc
463
12672746
<gh_stars>100-1000 # pylint: disable=missing-docstring def baz(): # [disallowed-name] pass
dirigible/sheet/tests/test_dirigible_datetime.py
EnoX1/dirigible-spreadsheet
168
12672775
<filename>dirigible/sheet/tests/test_dirigible_datetime.py # Copyright (c) 2010 Resolver Systems Ltd, PythonAnywhere LLP # See LICENSE.md # try: import unittest2 as unittest except ImportError: import unittest import datetime from sheet.dirigible_datetime import DateTime from dirigible.test_utils import ResolverTestCase class DateTimeTest(ResolverTestCase): def test_DateTime_subclasses_datetime_dot_datetime(self): self.assertTrue(isinstance( DateTime(1979, 10, 8), datetime.datetime))
tests/integrations/subprocess/conftest.py
chuckyQ/briefcase
917
12672794
from unittest.mock import MagicMock import pytest from briefcase.integrations.subprocess import Subprocess @pytest.fixture def mock_sub(): command = MagicMock() command.verbosity = 0 sub = Subprocess(command) sub._subprocess = MagicMock() return sub
venv/Lib/site-packages/nipype/interfaces/cat12/tests/test_auto_ExtractROIBasedSurfaceMeasures.py
richung99/digitizePlots
585
12672834
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from ..surface import ExtractROIBasedSurfaceMeasures def test_ExtractROIBasedSurfaceMeasures_inputs(): input_map = dict( lh_roi_atlas=dict( copyfile=False, field="rdata", mandatory=True, ), lh_surface_measure=dict( copyfile=False, field="cdata", mandatory=True, ), matlab_cmd=dict(), mfile=dict( usedefault=True, ), paths=dict(), rh_roi_atlas=dict( copyfile=False, mandatory=False, ), rh_surface_measure=dict( copyfile=False, mandatory=False, ), surface_files=dict( copyfile=False, mandatory=False, ), use_mcr=dict(), use_v8struct=dict( min_ver="8", usedefault=True, ), ) inputs = ExtractROIBasedSurfaceMeasures.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_ExtractROIBasedSurfaceMeasures_outputs(): output_map = dict( label_files=dict(), ) outputs = ExtractROIBasedSurfaceMeasures.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
adbui/adb_ext.py
hao1032/adbui
136
12672903
# coding=utf-8 import os import re import time import base64 import logging import tempfile class AdbExt(object): def __init__(self, util): self.util = util self.is_helper_ready = False self.width, self.height = None, None self.dir_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在的目录绝对路径 self.temp_device_dir_path = '/data/local/tmp' def init_device_size(self): if self.width and self.height: return out = self.util.shell('wm size') # out like 'Physical size: 1080x1920' out = re.findall(r'\d+', out) self.width = int(out[0]) self.height = int(out[1]) def dump(self): for i in range(5): xml_str = self.__dump_xml() if xml_str: return xml_str time.sleep(1) raise NameError('dump xml fail!') def __dump_xml(self): # 使用 helper 获取 xml xml_str = self.run_helper_cmd('layout') # 使用压缩模式 if not xml_str: xml_str = self.util.adb('exec-out uiautomator dump --compressed /dev/tty', encoding='') # 使用非压缩模式 if not xml_str: xml_str = self.util.adb('exec-out uiautomator dump /dev/tty', encoding='') if isinstance(xml_str, bytes): xml_str = xml_str.decode('utf-8') if 'hierarchy' in xml_str: start = xml_str.find('<hierarchy') end = xml_str.rfind('>') + 1 xml_str = xml_str[start: end].strip() return xml_str def run_helper_cmd(self, cmd): """ 执行 helper 的命令,当前 helper 支持 dump xml 和 screenshot :param cmd: :return: """ if not self.is_helper_ready: file_names = self.util.shell('ls {}'.format(self.temp_device_dir_path)) if 'adbui' not in file_names: helper_path = os.path.join(self.dir_path, 'static', 'adbui') self.push(helper_path, self.temp_device_dir_path) self.is_helper_ready = True arg = 'app_process -Djava.class.path=/data/local/tmp/adbui /data/local/tmp com.ysbing.yadb.Main -{}'.format(cmd) return self.util.shell(arg) def delete_from_device(self, path): self.util.shell('rm -rf {}'.format(path)) def screenshot(self, pc_path=None): out = self.run_helper_cmd('screenshot') if out and len(out) > 50: out = base64.b64decode(out) else: # helper 截图失败,使用 screencap 截图 logging.warning('helper 截图失败') arg = 'exec-out screencap -p'.format(self.util.sn) out = self.util.adb(arg, encoding=None) # 这里是 png bytes string # 保存截图 if pc_path: if self.util.is_py2: pc_path = pc_path.decode('utf-8') if os.path.exists(pc_path): # 删除电脑文件 os.remove(pc_path) with open(pc_path, 'wb') as f: f.write(out) return pc_path return out def pull(self, device_path=None, pc_path=None): return self.util.adb('pull "{}" "{}"'.format(device_path, pc_path)) def push(self, pc_path=None, device_path=None): return self.util.adb('push "{}" "{}"'.format(pc_path, device_path)) def click(self, x, y): self.util.shell('input tap {} {}'.format(x, y)) def long_click(self, x, y, duration=''): """ 长按 :param x: x 坐标 :param y: y 坐标 :param duration: 长按的时间(ms) :return: """ self.util.shell('input touchscreen swipe {} {} {} {} {}'.format(x, y, x, y, duration)) def start(self, pkg): """ 使用monkey,只需给出包名即可启动一个应用 :param pkg: :return: """ self.util.shell('monkey -p {} 1'.format(pkg)) def stop(self, pkg): self.util.shell('am force-stop {}'.format(pkg)) def input(self, text): self.util.shell('input text "{}"'.format(text.replace('&', '\&'))) def back(self, times=1): while times: self.util.shell('input keyevent 4') times -= 1 def home(self): self.util.shell('input keyevent 3') def enter(self, times=1): while times: self.util.shell('input keyevent 66') times -= 1 def swipe(self, e1=None, e2=None, start_x=None, start_y=None, end_x=None, end_y=None, duration=" "): """ 滑动事件,Android 4.4以上可选duration(ms) usage: swipe(e1, e2) swipe(e1, end_x=200, end_y=500) swipe(start_x=0.5, start_y=0.5, e2) """ self.init_device_size() if e1 is not None: start_x = e1[0] start_y = e1[1] if e2 is not None: end_x = e2[0] end_y = e2[1] if 0 < start_x < 1: start_x = start_x * self.width if 0 < start_y < 1: start_y = start_y * self.height if 0 < end_x < 1: end_x = end_x * self.width if 0 < end_y < 1: end_y = end_y * self.height self.util.shell('input swipe %s %s %s %s %s' % (str(start_x), str(start_y), str(end_x), str(end_y), str(duration))) def clear(self, pkg): """ 重置应用 :param pkg: :return: """ self.util.shell('pm clear {}'.format(pkg)) def wake_up(self): """ 点亮屏幕 :return: """ self.util.shell('input keyevent KEYCODE_WAKEUP') def unlock(self): """ 解锁屏幕 :return: """ self.util.shell('input keyevent 82') def grant(self, pkg, permission): """ 给app赋权限,类似 adb shell pm grant [PACKAGE_NAME] android.permission.PACKAGE_USAGE_STATS :return: """ self.util.shell('pm grant {} {}'.format(pkg, permission)) def install(self, apk_path, with_g=True, with_r=False, user=None): """ 安装包 :param apk_path: :param with_g: -g 在一些设备上可以自动授权,默认 true :param with_r: -r 覆盖安装,默认 false :param user: :return: """ arg = 'install' if user: arg = arg + ' -user {}'.format(user) if with_g: arg = arg + ' -g' if with_r: arg = arg + ' -r' self.util.adb('{} "{}"'.format(arg, apk_path), timeout=60 * 5) # 安装较大的包可能比较耗时 def uninstall(self, pkg): """ 卸载包 :param pkg: :return: """ self.util.adb('uninstall {}'.format(pkg)) def get_name(self, remove_blank=False): name = self.util.shell('getprop ro.config.marketing_name').strip() if not name: name = self.util.shell('getprop ro.product.nickname').strip() if remove_blank: name = name.replace(' ', '') return name def switch_user(self, user_id, wait_time=5): self.util.shell('am switch-user {}'.format(user_id)) time.sleep(wait_time) def list_packages(self, system=False): """ 返回手机中安装的包 :param system: 是否包含系统包 :return: """ with_system = '' if system else '-3' return self.util.shell('pm list packages {}'.format(with_system))
tests/typing/test_fixp_inst.py
bogdanvuk/pygears
120
12672908
<reponame>bogdanvuk/pygears<filename>tests/typing/test_fixp_inst.py from math import ceil, floor from pygears.typing import Fixp, Ufixp, Uint, Int def test_abs(): uq2_3 = Ufixp[2, 3] q2_3 = Fixp[2, 3] q3_4 = Fixp[3, 4] assert abs(uq2_3.max) == uq2_3.max assert abs(q2_3.min) == q3_4(abs(float(q2_3.min))) def test_add(): uq2_3 = Ufixp[2, 3] uq2_4 = Ufixp[2, 4] uq3_4 = Ufixp[3, 4] uq3_5 = Ufixp[3, 5] uq4_5 = Ufixp[4, 5] uq4_6 = Ufixp[4, 6] q2_3 = Fixp[2, 3] q2_4 = Fixp[2, 4] q3_4 = Fixp[3, 4] q3_5 = Fixp[3, 5] q4_5 = Fixp[4, 5] q4_6 = Fixp[4, 6] q5_6 = Fixp[5, 6] q5_7 = Fixp[5, 7] assert uq2_3.quant + uq3_4.quant == uq4_5(float(uq2_3.quant) + float(uq3_4.quant)) assert uq2_3.max + uq3_4.max == uq4_5(11.0) assert uq3_4.max + uq3_4.max == uq4_5(15.0) assert uq2_4.quant + uq3_4.quant == uq4_6(float(uq2_4.quant) + float(uq3_4.quant)) assert uq2_4.max + uq3_4.max == uq4_6(11.25) assert uq3_4.max + uq3_5.max == uq4_6(15.25) assert q2_3.quant + q3_4.quant == q4_5(float(q2_3.quant) + float(q3_4.quant)) assert q2_3.max + q3_4.max == q4_5(5.0) assert q3_4.max + q3_4.max == q4_5(7.0) assert q2_4.quant + q3_4.quant == q4_6(float(q2_4.quant) + float(q3_4.quant)) assert q2_4.max + q3_4.max == q4_6(5.25) assert q3_4.max + q3_5.max == q4_6(7.25) assert uq2_3.quant + q3_4.quant == q4_5(float(uq2_3.quant) + float(q3_4.quant)) assert uq2_3.max + q3_4.max == q4_5(7.0) assert q2_3.max + uq3_4.max == q5_6(9.0) assert uq3_4.max + q3_4.max == q5_6(11.0) assert uq2_4.quant + q3_4.quant == q4_6(float(uq2_4.quant) + float(q3_4.quant)) assert uq2_4.max + q3_4.max == q4_6(7.25) assert uq3_4.max + q3_5.max == q5_7(11.25) assert q2_4.max + uq3_4.max == q5_7(9.25) assert q2_3.min + q3_4.max == q4_5(1.5) assert q3_4.min + q3_4.max == q4_5(-0.5) assert q2_4.min + q3_4.max == q4_6(1.5) assert q3_4.min + q3_5.max == q4_6(-0.25) assert uq2_3.max + q3_4.min == q4_5(-0.5) assert q2_3.min + uq3_4.max == q5_6(5.5) assert uq3_4.max + q3_4.min == q5_6(3.5) assert uq2_4.max + q3_4.min == q4_6(-0.25) assert uq3_4.max + q3_5.min == q5_7(3.5) assert q2_4.min + uq3_4.max == q5_7(5.5) def test_ceil(): uq2_4 = Ufixp[2, 4] q2_3 = Fixp[2, 3] uq4_4 = Ufixp[4, 4] q6_3 = Fixp[6, 3] assert ceil(uq2_4.max) == Ufixp[3, 5](4.0) assert ceil(uq2_4(3.25)) == Ufixp[3, 5](4.0) assert ceil(q2_3.min) == Fixp[3, 4](-2.0) assert ceil(q2_3(-1.5)) == Fixp[3, 4](-1.0) assert ceil(uq4_4.max) == uq4_4.max assert ceil(q6_3.min) == q6_3.min def test_floor(): uq2_4 = Ufixp[2, 4] q2_3 = Fixp[2, 3] uq4_4 = Ufixp[4, 4] q6_3 = Fixp[6, 3] assert floor(uq2_4.max) == uq2_4(3.0) assert floor(uq2_4(3.25)) == uq2_4(3.0) assert floor(q2_3.min) == q2_3(-2.0) assert floor(q2_3(-1.5)) == q2_3(-2.0) assert floor(uq4_4.max) == uq4_4.max assert floor(q6_3.min) == q6_3.min def test_ge(): uq2_3 = Ufixp[2, 3] q2_3 = Fixp[2, 3] assert uq2_3(1.5) >= q2_3(1.5) assert q2_3(1.5) >= uq2_3(1.5) assert uq2_3.max >= q2_3.min assert q2_3.max >= uq2_3.min def test_gt(): uq2_3 = Ufixp[2, 3] q2_3 = Fixp[2, 3] assert uq2_3(2.0) > q2_3(1.5) assert q2_3(1.5) > uq2_3(1.0) assert uq2_3.max > q2_3.min assert q2_3.max > uq2_3.min def test_le(): uq2_3 = Ufixp[2, 3] q2_3 = Fixp[2, 3] assert uq2_3(1.5) <= q2_3(1.5) assert q2_3(1.5) <= uq2_3(1.5) assert uq2_3.min <= q2_3.max assert q2_3.min <= uq2_3.max def test_lt(): uq2_3 = Ufixp[2, 3] q2_3 = Fixp[2, 3] assert uq2_3(1.0) < q2_3(1.5) assert q2_3(1.0) < uq2_3(1.5) assert uq2_3.min < q2_3.max assert q2_3.min < uq2_3.max def test_lshift(): uq2_3 = Ufixp[2, 3] uq4_3 = Ufixp[4, 3] q2_3 = Fixp[2, 3] q4_3 = Fixp[4, 3] assert uq2_3.max << 2 == uq4_3(14.0) assert q2_3.min << 2 == q4_3.min assert uq2_3.max << 0 == uq2_3.max assert q2_3.min << 0 == q2_3.min def test_neg(): uq2_3 = Ufixp[2, 3] q2_3 = Fixp[2, 3] q3_4 = Fixp[3, 4] assert -uq2_3.max == q3_4(-float(uq2_3.max)) assert -q2_3.min == q3_4(-float(q2_3.min)) def test_rshift(): uq2_3 = Ufixp[2, 3] uq4_3 = Ufixp[4, 3] q2_3 = Fixp[2, 3] q4_3 = Fixp[4, 3] assert uq4_3(14.0) >> 2 == uq2_3.max assert q4_3.min >> 2 == q2_3.min assert uq2_3.max >> 0 == uq2_3.max assert q2_3.min >> 0 == q2_3.min def test_round(): uq2_4 = Ufixp[2, 4] q2_3 = Fixp[2, 3] uq4_4 = Ufixp[4, 4] q6_3 = Fixp[6, 3] assert round(uq2_4.max) == Ufixp[3, 5](4.0) assert round(uq2_4(3.25)) == Ufixp[3, 5](3.0) assert round(q2_3.min) == Fixp[3, 4](-2.0) assert round(q2_3(-1.5)) == Fixp[3, 4](-1.0) assert round(uq4_4.max) == uq4_4.max assert round(q6_3.min) == q6_3.min def test_sub_val(): uq2_3 = Ufixp[2, 3] uq2_4 = Ufixp[2, 4] uq3_4 = Ufixp[3, 4] uq3_5 = Ufixp[3, 5] q2_3 = Fixp[2, 3] q2_4 = Fixp[2, 4] q3_4 = Fixp[3, 4] q3_5 = Fixp[3, 5] q4_5 = Fixp[4, 5] q4_6 = Fixp[4, 6] q5_6 = Fixp[5, 6] q5_7 = Fixp[5, 7] assert uq2_3.quant - uq3_4.quant == q4_5(0.0) assert uq2_3.min - uq3_4.max == q4_5(-7.5) assert uq2_4.quant - uq3_4.quant == q4_6(float(uq2_4.quant) - float(uq3_4.quant)) assert uq2_4.min - uq3_4.max == q4_6(-7.5) assert uq3_4.min - uq3_5.max == q4_6(-7.75) assert q2_3.quant - q3_4.quant == q4_5(0.0) assert q2_3.min - q3_4.max == q4_5(-5.5) assert q3_4.min - q3_4.max == q4_5(-7.5) assert q3_4.max - q3_4.min == q4_5(7.5) assert q2_4.quant - q3_4.quant == q4_6(float(q2_4.quant) - float(q3_4.quant)) assert q2_4.min - q3_4.max == q4_6(-5.5) assert q2_4.max - q3_4.min == q4_6(5.75) assert q3_4.min - q3_5.max == q4_6(-7.75) assert q3_4.max - q3_5.min == q4_6(7.5) assert uq2_3.quant - q3_4.quant == q4_5(0.0) assert uq2_3.max - q3_4.min == q4_5(7.5) assert q2_3.min - uq3_4.max == q5_6(-9.5) assert uq3_4.max - q3_4.min == q5_6(11.5) assert q3_4.min - uq3_4.max == q5_6(-11.5) assert uq2_4.quant - q3_4.quant == q4_6(float(uq2_4.quant) - float(q3_4.quant)) assert uq2_4.max - q3_4.min == q4_6(7.75) assert uq3_4.max - q3_5.min == q5_7(11.5) assert q2_4.min - uq3_4.max == q5_7(-9.5)
utils/visualize_mel.py
BaoLocPham/hum2song
108
12672941
import numpy as np import yaml import argparse import os import random import matplotlib.pyplot as plt def save_img(path, spec_song=None, spec_hum=None): if spec_song is None or spec_hum is None: if spec_song is not None: plt.imshow(spec_song, origin="lower") plt.title("song", fontsize="medium") plt.ylim(0, spec_song.shape[0]) if spec_hum is not None: plt.imshow(spec_hum, origin="lower") plt.title("hum", fontsize="medium") plt.ylim(0, spec_hum.shape[0]) else: fig, axes = plt.subplots(2, 1, squeeze=False) axes[0, 0].imshow(spec_song, origin="lower") axes[0, 0].set_title("song", fontsize="medium") axes[0, 0].set_ylim(0, spec_song.shape[0]) axes[1, 0].imshow(spec_hum, origin="lower") axes[1, 0].set_title("hum", fontsize="medium") axes[1, 0].set_ylim(0, spec_hum.shape[0]) plt.savefig(path) plt.close() def visualize(dataset, in_dir, out_dir, num): random.seed(1234) files = os.listdir(os.path.join(in_dir, dataset, "hum")) random.shuffle(files) files = random.sample(files, k=min(num, len(files))) os.makedirs(os.path.join(out_dir, dataset), exist_ok=True) if dataset == "train" or dataset == "val": for file in files: spec_hum = np.load(os.path.join(in_dir, dataset, "hum", file)) spec_song = np.load(os.path.join(in_dir, dataset, "song", file)) save_img(os.path.join(out_dir, dataset, file[:-4] + ".jpg"), spec_song.T, spec_hum.T) elif dataset == "public_test": os.makedirs(os.path.join(out_dir, dataset, "hum"), exist_ok=True) for file in files: spec_hum = np.load(os.path.join(in_dir, dataset, "hum", file)) save_img(os.path.join(out_dir, dataset, "hum", file[:-4] + ".jpg"), spec_hum=spec_hum.T) files = os.listdir(os.path.join(in_dir, dataset, "full_song")) random.shuffle(files) files = random.sample(files, k=min(num, len(files))) os.makedirs(os.path.join(out_dir, dataset, "full_song"), exist_ok=True) for file in files: spec_song = np.load(os.path.join(in_dir, dataset, "full_song", file)) save_img(os.path.join(out_dir, dataset, "full_song", file[:-4] + ".jpg"), spec_song=spec_song.T) def main(config, num): in_dir = config["path"]["preprocessed_path"] out_dir = config["path"]["visualization_path"] dataset = ["train", "val", "public_test"] os.makedirs(out_dir, exist_ok=True) for data in dataset: visualize(data, in_dir, out_dir, num) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=False, default="config/preprocess.yaml", help="path to preprocess.yaml") parser.add_argument("--indir", type=str, required=False, help="path to input") parser.add_argument("--outdir", type=str, required=False, help="path to output") parser.add_argument("--num", type=int, required=False, default=5, help="num of samples") args = parser.parse_args() config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader) if args.indir is not None: config["path"]["preprocessed_path"] = args.indir if args.outdir is not None: config["path"]["visualization_path"] = args.outdir main(config, num=args.num)
examples/cloudml-churn-prediction/trainer/trainer/metadata.py
ruchirjain86/professional-services
2,116
12672947
<gh_stars>1000+ # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define metadata constants.""" LABEL_COLUMN = 'labelArray' KEY_COLUMN = 'fullVisitorId' # columns to omit from model features NON_FEATURE_COLUMNS = [LABEL_COLUMN, KEY_COLUMN] NUM_INTERVALS = 4 # number of bounded churn duration intervals SEED = 123
src/tests/error_tests.py
sanders41/pydocstyle
776
12672961
"""Tests for the violations.Error class.""" import pytest import collections import textwrap from pydocstyle.violations import Error MockDefinition = collections.namedtuple('MockDefinition', ['source', 'start']) def test_message_without_context(): """Test a simple error message without parameters.""" error = Error('CODE', 'an error', None) assert error.message == 'CODE: an error' def test_message_with_context(): """Test an error message with parameters.""" error = Error('CODE', 'an error', 'got {}', 0) assert error.message == 'CODE: an error (got 0)' def test_message_with_insufficient_parameters(): """Test an error message with invalid parameter invocation.""" error = Error('CODE', 'an error', 'got {}') with pytest.raises(IndexError): assert error.message def test_lines(): """Test proper printing of source lines, including blank line trimming.""" error = Error('CODE', 'an error', None) definition = MockDefinition(source=['def foo():\n', ' """A docstring."""\n', '\n', ' pass\n', '\n', '\n'], start=424) error.set_context(definition, None) print(error.lines) assert error.lines == textwrap.dedent('''\ 424: def foo(): 425: """A docstring.""" 426: 427: pass ''')
Validation/RecoParticleFlow/python/pfTauBenchmarkElecRejection_cfi.py
ckamtsikis/cmssw
852
12672976
import FWCore.ParameterSet.Config as cms pfTauBenchmarkElecRejection = cms.EDAnalyzer("PFTauElecRejectionBenchmarkAnalyzer", OutputFile = cms.untracked.string('tauBenchmarkElecRejection.root'), InputTruthLabel = cms.InputTag('generatorSmeared'), BenchmarkLabel = cms.string('PFTauElecRejection'), minRecoPt = cms.double(15.0), maxRecoAbsEta = cms.double(2.5), minMCPt = cms.double(10.0), maxMCAbsEta = cms.double(2.5), maxDeltaR = cms.double(0.3), PFTauProducer = cms.InputTag('shrinkingConePFTauProducer'), PFTauDiscriminatorByIsolationProducer = cms.InputTag('shrinkingConePFTauDiscriminationByIsolation'), PFTauDiscriminatorAgainstElectronProducer = cms.InputTag('shrinkingConePFTauDiscriminationAgainstElectron'), ApplyEcalCrackCut = cms.bool(True), GenMatchObjectLabel = cms.string('tau') # match with hadronic 'tau' or electron "e" )
Chapter_16/ch16_ex9.py
pauldevos/Mastering-Object-Oriented-Python-Second-Edition
108
12673029
<filename>Chapter_16/ch16_ex9.py<gh_stars>100-1000 #!/usr/bin/env python3.7 """ Mastering Object-Oriented Python 2e Code Examples for Mastering Object-Oriented Python 2nd Edition Chapter 16. Example 9. """ import logging import logging.config import logging.handlers import yaml import time # Producer/Consumer # ========================== # The Consumer consumer_config = """ version: 1 disable_existing_loggers: False handlers: console: class: logging.StreamHandler stream: ext://sys.stderr formatter: basic formatters: basic: style: "{" format: "{levelname:s}:{name:s}:{message:s}" loggers: combined: handlers: [console] formatter: detail level: INFO propagate: False root: handlers: [console] level: INFO """ import collections import logging import multiprocessing class Log_Consumer_1(multiprocessing.Process): """In effect, an instance of QueueListener.""" def __init__(self, queue): self.source = queue super().__init__() logging.config.dictConfig(yaml.load(consumer_config)) self.combined = logging.getLogger(f"combined.{self.__class__.__qualname__}") self.log = logging.getLogger(self.__class__.__qualname__) self.counts = collections.Counter() def run(self): self.log.info("Consumer Started") while True: log_record = self.source.get() if log_record == None: break self.combined.handle(log_record) self.counts[log_record.getMessage()] += 1 self.log.info("Consumer Finished") self.log.info(self.counts) # The Producers class Log_Producer(multiprocessing.Process): handler_class = logging.handlers.QueueHandler def __init__(self, proc_id, queue): self.proc_id = proc_id self.destination = queue super().__init__() self.log = logging.getLogger( f"{self.__class__.__qualname__}.{self.proc_id}") self.log.handlers = [self.handler_class(self.destination)] self.log.setLevel(logging.INFO) def run(self): self.log.info(f"Started") for i in range(100): self.log.info(f"Message {i:d}") time.sleep(0.001) self.log.info(f"Finished") def demo(): # The Queue import multiprocessing # size = 10 # Too small. size = 30 # Better queue1: multiprocessing.Queue = multiprocessing.Queue(size) # The consumer process consumer = Log_Consumer_1(queue1) consumer.start() # The producers producers = [] for i in range(10): proc = Log_Producer(i, queue1) proc.start() producers.append(proc) # Normal termination for p in producers: p.join() queue1.put(None) consumer.join() logging.shutdown() __test__ = {name: value for name, value in locals().items() if name.startswith("test_")} if __name__ == "__main__": import doctest doctest.testmod(verbose=False) demo()
configs/mmcls/classification_onnxruntime_dynamic.py
aegis-rider/mmdeploy
746
12673048
_base_ = ['./classification_dynamic.py', '../_base_/backends/onnxruntime.py']
pyjobs/profiler/management/commands/linkedin_user_stats.py
Mdslino/PyJobs
132
12673050
import os from django.conf import settings from django.core.management.base import BaseCommand from django.contrib.auth.models import User from pyjobs.profiler.models import ProfilerData from django.db import IntegrityError from linkedin_scraper import Person, actions from pprint import pprint from selenium import webdriver from selenium.webdriver.chrome.options import Options from tqdm import tqdm from time import sleep def driver_factory(): chrome_options = Options() chrome_options.add_argument("--headless") driver = webdriver.Chrome(options=chrome_options) actions.login(driver, settings.LINKEDIN_EMAIL, settings.LINKEDIN_PASSWORD) return driver class Command(BaseCommand): def handle(self, *args, **options): driver = driver_factory() for user in tqdm( User.objects.filter(profile__linkedin__isnull=False).exclude( profile__linkedin__in=["", " ", "\n"] ) ): user_data = { "name": "", "about": "", "experiences": [], "education": [], "interests": [], } try: person = Person( user.profile.linkedin, contacts=[], driver=driver, close_on_complete=False, ) user_data["name"] = person.name user_data["about"] = person.about for experience in person.experiences: user_data["experiences"].append( { "description": experience.description, "position_title": experience.position_title.replace( "Nome da empresa\n", "" ), "duration": experience.duration, } ) for education in person.educations: user_data["educations"].append( { "from_date": education.from_date, "to_date": education.to_date, "degree": education.degree, "company": education.company, } ) user_data["interests"] = [ interest.title for interest in person.interests ] ProfilerData.objects.get_or_create(user=user, linkedin_data=user_data) except Exception as e: pass driver.close()
examples/python.tornado/nats_client.py
ariasheets-wk/frugal
144
12673062
<reponame>ariasheets-wk/frugal import logging import sys import uuid from nats.io.client import Client as NATS from tornado import ioloop, gen from thrift.protocol import TBinaryProtocol from thrift.transport.TTransport import TTransportException from frugal.context import FContext from frugal.protocol import FProtocolFactory from frugal.provider import FServiceProvider from frugal.tornado.transport import FNatsTransport sys.path.append('gen-py.tornado') from v1.music.f_Store import Client as FStoreClient # noqa from v1.music.ttypes import Album # noqa root = logging.getLogger() root.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter( '%(asctime)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) root.addHandler(ch) @gen.coroutine def main(): # Declare the protocol stack used for serialization. # Protocol stacks must match between clients and servers. prot_factory = FProtocolFactory(TBinaryProtocol.TBinaryProtocolFactory()) # Open a NATS connection to send requests nats_client = NATS() options = { "verbose": True, "servers": ["nats://127.0.0.1:4222"] } yield nats_client.connect(**options) # Create a nats transport using the connected client # The transport sends data on the music-service NATS topic nats_transport = FNatsTransport(nats_client, "music-service") try: yield nats_transport.open() except TTransportException as ex: root.error(ex) raise gen.Return() # Using the configured transport and protocol, create a client # to talk to the music store service. store_client = FStoreClient(FServiceProvider(nats_transport, prot_factory), middleware=logging_middleware) album = yield store_client.buyAlbum(FContext(), str(uuid.uuid4()), "ACT-12345") root.info("Bought an album %s\n", album) yield store_client.enterAlbumGiveaway(FContext(), "<EMAIL>", "Kevin") yield nats_transport.close() yield nats_client.close() def logging_middleware(next): def handler(method, args): service = '%s.%s' % (method.im_self.__module__, method.im_class.__name__) print '==== CALLING %s.%s ====' % (service, method.im_func.func_name) ret = next(method, args) print '==== CALLED %s.%s ====' % (service, method.im_func.func_name) return ret return handler if __name__ == '__main__': # Since we can exit after the client calls use `run_sync` ioloop.IOLoop.instance().run_sync(main)
magma/ref.py
leonardt/magma
167
12673083
<filename>magma/ref.py<gh_stars>100-1000 import abc import typing import weakref from magma.compatibility import IntegerTypes class Ref: @abc.abstractmethod def __str__(self): raise NotImplementedError() def __repr__(self): return self.qualifiedname() @abc.abstractmethod def qualifiedname(self, sep="."): raise NotImplementedError() @abc.abstractmethod def anon(self): raise NotImplementedError() def parent(self): return self def root(self) -> typing.Optional['Ref']: parent = self.parent() if parent is self: return self return parent.root() class AnonRef(Ref): def __init__(self): self.name = None def __str__(self): return f"AnonymousValue_{id(self)}" def qualifiedname(self, sep='.'): return f"AnonymousValue_{id(self)}" def anon(self): return True class NamedRef(Ref): def __init__(self, name, value=None): if not isinstance(name, (str, int)): raise TypeError("Expected string or int") self.name = name self._value = value if value is None else weakref.ref(value) def __str__(self): return self.name def qualifiedname(self, sep="."): return self.name def anon(self): return False def value(self): return self._value if self._value is None else self._value() class TempNamedRef(NamedRef): pass class InstRef(NamedRef): def __init__(self, inst, name): super().__init__(name) if not inst: raise ValueError(f"Bad inst: {inst}") self.inst = inst def qualifiedname(self, sep="."): name = self.name if isinstance(self.name, IntegerTypes): # Hack, Hack, Hack! # NOTE: This is used for verilog instances that don't use named # port (wired by index instead), so the ports are referred to by # index instead of name and we use the array indexing syntax to # represent them # See mantle's generic verilog target for example use case if sep == ".": return f"{self.inst.name}[{self.name}]" return self.inst.name + sep + str(name) class LazyInstRef(InstRef): def __init__(self, name): self.name = name self._inst = None @property def inst(self): if self._inst is not None: return self._inst return LazyCircuit def qualifiedname(self, sep="."): return super().qualifiedname(sep) def set_inst(self, inst): if self._inst is not None: raise Exception("Can only set definition of LazyInstRef once") self._inst = inst class DefnRef(NamedRef): def __init__(self, defn, name): super().__init__(name) if not defn: raise ValueError(f"Bad defn: {defn}") self.defn = defn def qualifiedname(self, sep="."): if sep == ".": return self.defn.__name__ + sep + self.name return self.name class LazyCircuit: name = "" class LazyDefnRef(DefnRef): def __init__(self, name): self.name = name self._defn = None @property def defn(self): if self._defn is not None: return self._defn return LazyCircuit def qualifiedname(self, sep="."): return super().qualifiedname(sep) def set_defn(self, defn): if self._defn is not None: raise Exception("Can only set definition of LazyDefnRef once") self._defn = defn class ArrayRef(Ref): def __init__(self, array, index): self.array = array self.index = index def __str__(self): return self.qualifiedname() def qualifiedname(self, sep="."): return f"{self.array.name.qualifiedname(sep=sep)}[{self.index}]" def anon(self): return self.array.name.anon() def parent(self): return self.array.name class TupleRef(Ref): def __init__(self, tuple, index): self.tuple = tuple self.index = index def __str__(self): return self.qualifiedname() def qualifiedname(self, sep="."): try: int(self.index) return (self.tuple.name.qualifiedname(sep=sep) + "[" + str(self.index) + "]") except ValueError: return (self.tuple.name.qualifiedname(sep=sep) + sep + str(self.index)) def anon(self): return self.tuple.name.anon() def parent(self): return self.tuple.name class PortViewRef(Ref): """ Used for values that are connection references to a hierarchical value (using the view logic) """ def __init__(self, view): self.view = view def qualifiedname(self, sep="."): return self.view.port.name.qualifiedname(sep) def anon(self): return self.view.port.anon() def __str__(self): return str(self.view.port.name) def root(self): return self.view.root() def get_ref_inst(ref): """ If value is part of a port on an instance, return that instance, otherwise None. """ root = ref.root() if not isinstance(root, InstRef): return None return root.inst def get_ref_defn(ref): """ If value is part of a port on an definition, return that definition, otherwise None. """ root = ref.root() if not isinstance(root, DefnRef): return None return root.defn def is_temp_ref(ref): root = ref.root() return isinstance(root, (TempNamedRef, AnonRef))
rlbench/tasks/put_books_on_bookshelf.py
vonHartz/RLBench
619
12673098
from typing import List, Tuple from pyrep.objects import Dummy from pyrep.objects.shape import Shape from pyrep.objects.proximity_sensor import ProximitySensor from rlbench.backend.task import Task from rlbench.backend.conditions import DetectedCondition, NothingGrasped class PutBooksOnBookshelf(Task): def init_task(self) -> None: self._success_sensor = ProximitySensor('success') self._books = [Shape('book2'), Shape('book1'), Shape('book0')] self._waypoints_idxs = [5, 11, -1] self.register_graspable_objects(self._books) def init_episode(self, index: int) -> List[str]: self.register_success_conditions([ DetectedCondition( b, self._success_sensor) for b in self._books[:index+1] ]) self.register_stop_at_waypoint(self._waypoints_idxs[index]) return ['put %d books on bookshelf' % (index + 1), 'pick up %d books and place them on the top shelf' % (index + 1), 'stack %d books up on the top shelf' % (index + 1)] def variation_count(self) -> int: return 3 def base_rotation_bounds(self) -> Tuple[List[float], List[float]]: return [0.0, 0.0, -3.14/2], [0.0, 0.0, 3.14/2]
vilya/models/ngit/patch.py
mubashshirjamal/code
1,582
12673153
# -*- coding: utf-8 -*- from __future__ import absolute_import from itertools import groupby from vilya.libs.generated import Generated from vilya.libs.text import is_image from vilya.models.consts import LINECOMMENT_INDEX_EMPTY from vilya.models.ngit.hunk import Hunk MAX_PATCH_MOD_LINES = 2000 INVALID_OID = b'0' * 40 class Patch(object): # libgit2 status definition # GIT_DELTA_ADDED: code = 'A' # GIT_DELTA_DELETED: code = 'D' # GIT_DELTA_MODIFIED: code = 'M' # GIT_DELTA_RENAMED: code = 'R' # GIT_DELTA_COPIED: code = 'C' # GIT_DELTA_IGNORED: code = 'I' # GIT_DELTA_UNTRACKED: code = '?' # default: code = ' ' def __init__(self, repo, diff, patch, linecomments=[], is_limit_lines=True): self.repo = repo self.diff = diff self._patch = patch self._old_file_length = None self._new_file_length = None # patch sha == diff sha # FIXME: commit diff old_sha 貌似为 None self.old_sha = patch['old_sha'] self.new_sha = patch['new_sha'] # oids # an oid encoded in hex (40 bytes) # invalid oid = '0000...' self.old_file_sha = patch['old_oid'] self.new_file_sha = patch['new_oid'] self.status = patch['status'] self.old_file_path = patch['old_file_path'] self.new_file_path = patch['new_file_path'] # TODO: remove self.filepath self.filepath = self.old_file_path self.additions = patch['additions'] self.deletions = patch['deletions'] self.similarity = patch['similarity'] self.binary = patch['binary'] self._generated = None # TODO: move to def init_comment_groups def func_filter(l): if l.has_oids: return l.from_oid == self.old_file_sha \ and l.to_oid == self.new_file_sha else: return l.from_sha == self.new_sha self.linecomments = filter(func_filter, linecomments) self.linecomments_has_linenum = [] self.linecomments_has_pos = [] for l in self.linecomments: (self.linecomments_has_pos, self.linecomments_has_linenum)[l.has_linenum].append(l) if is_limit_lines and self.additions + self.deletions > \ MAX_PATCH_MOD_LINES: self.is_toobig = True self.hunks = [] else: self.is_toobig = False self.init_comment_groups() self.init_hunks(patch) def init_comment_groups(self): # TODO: 用 oids 做 linecomments 的过滤 keyfunc_pos = lambda x: x.position keyfunc_line = lambda x: x.linenum self.comments_by_pos = {} self.comments_by_line = {} if self.linecomments_has_pos: self.linecomments_has_pos.sort(key=keyfunc_pos) self.comments_by_pos = dict((k, list(v)) for k, v in groupby( self.linecomments_has_pos, key=keyfunc_pos)) if self.linecomments_has_linenum: self.linecomments_has_linenum.sort(key=keyfunc_line) self.comments_by_line = dict((k, list(v)) for k, v in groupby( self.linecomments_has_linenum, key=keyfunc_line)) # TODO: refactor this! T^T def init_hunks(self, raw_patch): ''' init Hunks, add extra_contexts when there're linecomments not involved ''' EXTRE_CONTEXT_LINES = 3 def expand_hunk(hunk, last_hunk_old_end, type, MAX_LINE_NUM=99999, MIN_LINE_NUM=0): if type == 'up': min_old_not_involved = MAX_LINE_NUM for linecomment in self.linecomments_has_linenum: not_involved = False old, new = linecomment.linenum if old != LINECOMMENT_INDEX_EMPTY \ and new != LINECOMMENT_INDEX_EMPTY: not_involved = last_hunk_old_end < old \ and old < hunk.old_start if not_involved: min_old_not_involved = min(min_old_not_involved, old) if min_old_not_involved != MAX_LINE_NUM: contexts = self.get_contexts( min_old_not_involved - EXTRE_CONTEXT_LINES, hunk.old_start) if contexts: hunk.expand_top_contexts(contexts) elif type == 'bottom': max_old_not_involved = MIN_LINE_NUM for linecomment in self.linecomments_has_linenum: not_involved = False old, new = linecomment.linenum if old != LINECOMMENT_INDEX_EMPTY \ and new != LINECOMMENT_INDEX_EMPTY: not_involved = last_hunk_old_end < old if not_involved: max_old_not_involved = max(max_old_not_involved, old) if max_old_not_involved != MIN_LINE_NUM: contexts = self.get_contexts( hunk.old_end + 1, max_old_not_involved + 1 + EXTRE_CONTEXT_LINES) if contexts: hunk.expand_bottom_contexts(contexts) self.hunks = [Hunk(self, h) for h in raw_patch['hunks']] if not self.hunks: return # TODO: 再 细分 pull/new pull/discussion compare 等? if self.linecomments_has_linenum and self.repo.provide('project'): last_hunk_old_end = 0 for hunk in self.hunks: expand_hunk(hunk, last_hunk_old_end, type='up') last_hunk_old_end = hunk.old_end expand_hunk(hunk, last_hunk_old_end, type='bottom') if self.repo.provide('project'): first_hunk = self.hunks[0] last_hunk = self.hunks[-1] # add top_hunk if first_hunk.old_start > EXTRE_CONTEXT_LINES + 1: contexts = self.get_contexts(1, EXTRE_CONTEXT_LINES + 1) if contexts: top_hunk = Hunk(self, old_start=1, new_start=1, old_lines=EXTRE_CONTEXT_LINES, new_lines=EXTRE_CONTEXT_LINES, contexts=contexts) self.hunks.insert(0, top_hunk) elif first_hunk.old_start > 1: contexts = self.get_contexts(1, first_hunk.old_start) if contexts: first_hunk.expand_top_contexts(contexts) # add bottom_hunk if last_hunk.old_end + EXTRE_CONTEXT_LINES < self.old_file_length: bottom_hunk_old_start = self.old_file_length - EXTRE_CONTEXT_LINES + 1 # noqa bottom_hunk_new_start = self.new_file_length - EXTRE_CONTEXT_LINES + 1 # noqa contexts = self.get_contexts(bottom_hunk_old_start, self.old_file_length + 1) if contexts: bottom_hunk = Hunk(self, old_start=bottom_hunk_old_start, new_start=bottom_hunk_new_start, old_lines=EXTRE_CONTEXT_LINES, new_lines=EXTRE_CONTEXT_LINES, contexts=contexts) self.hunks.append(bottom_hunk) elif last_hunk.old_end < self.old_file_length: contexts = self.get_contexts(last_hunk.old_end + 1, self.old_file_length + 1) if contexts: last_hunk.expand_bottom_contexts(contexts) # update hunks pos = 1 for i, hunk in enumerate(self.hunks): hunk.start_pos = pos pos += hunk.n_lines + 1 # +1 means hunk_heading if i > 0: last = self.hunks[i - 1] hunk.skipped_old_start = last.old_end + 1 hunk.skipped_new_start = last.new_end + 1 hunk.skipped_old_end = hunk.old_start - 1 hunk.skipped_new_end = hunk.new_start - 1 def get_contexts(self, start, end): ''' get patch's context lines in [start, end) ''' if self.old_file_sha == INVALID_OID: ref = self.new_sha elif self.new_file_sha == INVALID_OID: ref = self.old_sha else: ref = self.old_sha or self.new_sha contexts = self.repo.get_contexts(ref, self.old_file_path, start, end) return contexts @property def old_file_length(self): if self._old_file_length is not None: return self._old_file_length if self.old_file_sha == INVALID_OID: self._old_file_length = 0 return self._old_file_length ref = self.old_sha or self.new_sha self._old_file_length = self.repo.get_file_n_lines( ref, self.old_file_path) return self._old_file_length @property def new_file_length(self): if self._new_file_length is not None: return self._new_file_length if self.new_file_sha == INVALID_OID: self._new_file_length = 0 return self._new_file_length ref = self.new_sha self._new_file_length = self.repo.get_file_n_lines( ref, self.new_file_path) return self._new_file_length @property def image(self): return is_image(self.old_file_path) @property def generated(self): # FIXME: generated 性能问题 if self._generated is not None: return self._generated def get_data(): data = '' try: if self.status == 'D': blob = self.repo.get_file(self.old_sha, self.old_file_path) else: blob = self.repo.get_file(self.new_sha, self.new_file_path) if blob: data = blob.data except: # very first commit ?? data = '' return data generated = Generated.is_generated(self.new_file_path, get_data) self._generated = generated return generated #@property # def n_lines(self): # return sum([hunk.n_lines for hunk in self.hunks]) # TODO: remove this @property def content(self): content = [] for h in self.hunks: content.append(h.heading) for l in h.lines: content.append(l) return content # TODO: rewrite # FIXME: more explanation def smart_slice(self, num): content = self.content[:num + 1] if len(content) > 15: tip_pos = 0 for idx, line in enumerate(content): if line.old is None and line.new is None: tip_pos = idx content = content[tip_pos:] if len(content) > 25: return content[-25:] else: return content return content
libs/omninet/cnp/SubLayers.py
kyteinsky/OmniNet
525
12673156
<reponame>kyteinsky/OmniNet # # Copyright 2019 <NAME>, <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ====================================================================== """ Authors: <NAME> OmniNet transformer sub layers """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) self.softmax = nn.Softmax(dim=2) def forward(self, q, k, v, mask=None,k_gate=None): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature if k_gate is not None: attn=torch.mul(attn,k_gate) if mask is not None: attn = attn.masked_fill(mask, -np.inf) attn = self.softmax(attn) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k) self.w_ks = nn.Linear(d_model, n_head * d_k) self.w_vs = nn.Linear(d_model, n_head * d_v) nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v))) self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) self.layer_norm = nn.LayerNorm(d_model) self.fc = nn.Linear(n_head * d_v, d_model) nn.init.xavier_normal_(self.fc.weight) self.dropout = nn.Dropout(dropout) def forward(self, q, k, v, mask=None,k_gate=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() if k_gate is not None: k_gate = k_gate.transpose(0, 1) k_gate=k_gate.reshape(n_head*sz_b,len_q,len_v) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) #A Weighting score for the keys is provided q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv if mask is not None: mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. output, attn = self.attention(q, k, v, mask=mask,k_gate=k_gate) output = output.view(n_head, sz_b, len_q, d_v) output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv) output = self.dropout(self.fc(output)) output = self.layer_norm(output + residual) attn=attn.view(n_head,sz_b,len_q,len_v).transpose(0,1) return output, attn class PositionwiseFeedForward(nn.Module): ''' A two-feed-forward-layer module ''' def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) # position-wise self.w_2 = nn.Linear(d_hid, d_in) # position-wise self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x output = x output = self.w_2(F.relu(self.w_1(output))) output = self.dropout(output) output = self.layer_norm(output + residual) return output
client/fcImgThread.py
shpoellet/telecine
138
12673157
<gh_stars>100-1000 import cv2 #needed for histogram plotting and preview window display #need to build and install opencv version 3 to support frame blending import threading import struct import logging import config import numpy as np import io from time import sleep from fractions import Fraction from PyQt5 import QtCore as qtcore from PyQt5 import QtGui mask_pct = .8 #this determines what (center) portion of the image is used for histogram calculations. (Avoid using black borders) blender=cv2.createMergeMertens() #COMMENT OUT IF NOT USING opencv version 3+ and bracketing def thefilename(i,suffix=""): fname=str(config.folder) + "/img%.5d%s.jpg" % (i,suffix) logging.debug(fname) return fname def subDims(amt, fraction): #sub dimensions: Pass it a width or height and get the origin and width/height of the center portion return(int(amt*(1-fraction)/2),int(amt*(1+fraction)/2)) def getMask(img, fraction): mask = np.zeros(img.shape[:2], np.uint8) (x,x2,y,y2)=subDims(img.shape[0],fraction)+subDims(img.shape[1],fraction) mask[x:x2, y:y2]=255 return mask def saveable_img(img): return np.array(img,dtype=float)*float(255) def adjustable_img(img): return cv2.convertScaleAbs(img, alpha=255) #return np.array(img*float(250),dtype=np.uint8) def saveable_255_img(img): return np.array(img,dtype=float) def quickBrightness(img): #make a thumbnail, convert to grayscale, get avg value brt=cv2.mean(cv2.cvtColor(cv2.resize(img, (120,90)),cv2.COLOR_BGR2GRAY)) brt=int(brt[0]*100) logging.debug("Brt="+str(brt)) return brt def correctLens(img, w, h): distCoeff = np.zeros((4,1),np.float64) # TODO: add your coefficients here! k1 = config.lensCorrValue # negative to remove barrel distortion k2 = 0.0; p1 = 0.0; p2 = 0.0; distCoeff[0,0] = k1; distCoeff[1,0] = k2; distCoeff[2,0] = p1; distCoeff[3,0] = p2; # assume unit matrix for camera cam = np.eye(3,dtype=np.float32) cam[0,2] = w/2.0 # define center x cam[1,2] = h/2.0 # define center y cam[0,0] = 100. # define focal length x cam[1,1] = 100. # define focal length y # here the undistortion will be computed dst = cv2.undistort(img,cam,distCoeff) return dst def adjustLevels(img): h,w=img.shape[:2] #perform lens correction if selected logging.debug("AdjustingLevels") logging.debug(np.shape(img)) logging.debug(np.shape(config.flatFieldImg)) if config.antiVignetting and (len(config.flatFieldImg) > 0) and (np.shape(img)[0]==np.shape(config.flatFieldImg)[0]): img=flatFieldCorrection(img) if config.lensCorr: img=correctLens(img, w, h) #perform rotation if selected if config.rotation: M = cv2.getRotationMatrix2D((w/2,h/2),config.rotationValue,1) img = cv2.warpAffine(img,M,(w,h)) #perform cropping if selected if config.cropping: img=img[config.cropT:h-config.cropB, config.cropL:w-config.cropR] return img# cv2.LUT(img, config.lut) #def fadj(img, ff): # img/ff*exp((max(0,img-128)+128)/256) def flatFieldCorrection(img): logging.debug("Performing Flat Field Correction") logging.debug(np.shape(img)) logging.debug(img[1000][1000]) img=img/config.flatFieldImg img=np.clip(img,0,255) img=img.astype(np.uint8) return img def genFlatFieldImg(): logging.debug("Generating Flat Field Image") avgimg=np.mean(config.calibrationImages, axis=0) config.flatFieldImg=np.clip(np.true_divide(avgimg,np.mean(avgimg)), .5, 2.0) #config.flatFieldImg=np.clip(np.true_divide(config.calibrationImages[0],np.mean(config.calibrationImages[0])), .8, 1.2) class imgThread (qtcore.QThread):#(threading.Thread): updateFrameNumSig = qtcore.pyqtSignal(int) updateSSSig = qtcore.pyqtSignal(int, int, int) updateGainsSig = qtcore.pyqtSignal (int, int) updateStatusSig = qtcore.pyqtSignal (str) plotHistogramSig = qtcore.pyqtSignal (list, np.ndarray, float) displayWashoutsSig = qtcore.pyqtSignal (list, float, float) displayImgSig = qtcore.pyqtSignal (np.ndarray, str) def __init__(self, connection, app): qtcore.QThread.__init__(self, parent=app) self.threadID = 1 self.name = "ImgThread" self.conn = connection def updateFrameNum(self,i): self.updateFrameNumSig.emit(i) #self.emit(qtcore.SIGNAL("updateFrameNum(int)"), i) def updateSS(self, ss, again, dgain): self.updateSSSig.emit(ss,again,dgain) #self.emit(qtcore.SIGNAL("updateSS(int, int, int)"), ss, again, dgain) def updateGains(self, r, b): self.updateGainsSig.emit(r,b) #self.emit(qtcore.SIGNAL("updateGains(int, int)"), r, b) def updateStatus(self,status): self.updateStatusSig.emit(status) #self.emit(qtcore.SIGNAL("updateStatus(QString)"), status) def blendImgList(self,imList,show, fnum): logging.debug("Starting blend Thread") cvimg=blender.process(imList) logging.debug("Done Blending") cvimg=adjustLevels(adjustable_img(cvimg)) #cvimg=adjustable_img(cvimg) title=thefilename(fnum) if config.wait_for_test: title="TEST" else: cv2.imwrite(thefilename(fnum),cvimg, [int(cv2.IMWRITE_JPEG_QUALITY), 97]) if config.wait_for_test or show: self.showImage(cvimg,title) self.plothist(cvimg)#,True) def plothist(self, img, fScale=False): #perhaps this should be called in a separate thread? bins=256 rangetop=1.0 if fScale else 256 imgsize=img.shape mask = getMask(img, mask_pct) bwimg=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) bhist = cv2.calcHist([bwimg],[0],mask,[256],[0,rangetop]) bhist[0]=0 over = [0,0,0,0] over[3]=sum(bhist[:10]) px = imgsize[0]*imgsize[1]*mask_pct*mask_pct ylim=px/128 #arbitrary value to keep y limit consistent and reasonable hists=[] for i in range(0,3): hist = cv2.calcHist([img],[i],mask,[256],[0,rangetop]) over[i]=sum(hist[252:]) hists.append(hist) avg=int(cv2.mean(bwimg)[0]*100.0/rangetop) #logging.debug("Sending Signal") self.plotHistogramSig.emit(hists,bhist,px) self.displayWashoutsSig.emit(over, px, avg) #self.emit(qtcore.SIGNAL("plotHistogram(PyQt_PyObject, PyQt_PyObject, float)"), hists, bhist, px) #self.emit(qtcore.SIGNAL("displayWashouts(PyQt_PyObject, float, float)"), over, px, avg) def showImage(self, im, title="Image"): im2=cv2.cvtColor(im, cv2.COLOR_RGB2BGR) self.displayImgSig.emit(im2, title) #self.emit(qtcore.SIGNAL("displayImg(PyQt_PyObject, QString)"), im2, title) def run(self): logging.debug("Imgthread running fn") image_stream = io.BytesIO() imglist = [] pframe=0 #counter for preview frames, so we only generate histogram 1 in 10 times try: while not config.exitFlag: logging.debug("looping") while config.prevOn or config.captureOn: logging.debug("waiting on img") imgflag = self.conn.read(1) imgflag = imgflag.decode("utf-8") logging.debug(imgflag) if imgflag == "q": break if imgflag == "f": ss = struct.unpack('<L', self.conn.read(struct.calcsize('<L')))[0] again = struct.unpack('<L', self.conn.read(struct.calcsize('<L')))[0] dgain = struct.unpack('<L', self.conn.read(struct.calcsize('<L')))[0] logging.debug("SS:"+str(ss)) self.updateSS(ss,again,dgain) elif imgflag == "g": r = struct.unpack('<L', self.conn.read(struct.calcsize('<L')))[0] b = struct.unpack('<L', self.conn.read(struct.calcsize('<L')))[0] logging.debug("Gains "+str(r)+" "+str(b)) self.updateGains(r,b) elif imgflag == "t": config.prevOn = False self.showImage(cvimg2, "TEST") break else: if imgflag == "s" or imgflag == "b": self.updateFrameNum(config.frame_number) image_len = struct.unpack('<L', self.conn.read(struct.calcsize('<L')))[0] logging.debug("Image:"+str(image_len)) if not image_len: logging.debug("Quit Signal (0 Length image) received from client") break logging.debug(imgflag+str(image_len)) image_stream.write(self.conn.read(image_len)) image_stream.seek(0) if imgflag == "s": #single image cvimg=cv2.imdecode(np.fromstring(image_stream.read(image_len), dtype=np.uint8),1) if config.flatFieldCalibration == True: config.calibrationImages.append(cvimg) logging.debug("Collecting CalibrationData") if len(config.calibrationImages)>4: genFlatFieldImg() config.flatFieldCalibration=False continue cvimg2=adjustLevels(cvimg) #tmp=image_stream.read(image_len) if config.wait_for_test: self.showImage(cvimg2,"TEST") #else: # process_for_brightness(cvimg) self.plothist(cvimg2) #logging.debug("Single Shown") if not config.wait_for_test: filename = thefilename(config.frame_number) with open(filename, 'w') as imfile: self.showImage(cvimg2, filename) cv2.imwrite(filename, cvimg2, [int(cv2.IMWRITE_JPEG_QUALITY), 97]) self.updateFrameNum(config.frame_number) config.frame_number+=1 #logging.debug("Single Written to "+filename) if imgflag == "p": #preview image cvimg=cv2.imdecode(np.fromstring(image_stream.read(image_len), dtype=np.uint8),1) logging.debug(cvimg.dtype) cvimg2=adjustLevels(cvimg) self.showImage(cvimg2,"Live Preview") pframe+=1 if pframe>10: pframe=0 self.plothist(cvimg2) if imgflag == "a": #one of several blended images #save image data in variable, dont increment or update display logging.debug('start a') imglist.append(cv2.imdecode(np.fromstring(image_stream.read(image_len), dtype=np.uint8),1)) if imgflag == "b": #the last of several blended images #logging.debug('start read final') imglist.append(cv2.imdecode(np.fromstring(image_stream.read(image_len), dtype=np.uint8),1)) self.updateStatus(str(config.frame_number)+' '+' '.join(map(str,list(map(quickBrightness,imglist))))) thd=threading.Thread(target=self.blendImgList, args=(imglist[:],True,config.frame_number)) #colon in brackets makes new copy of list thd.start() #tried this using multiprocessing, but it hung when processing merge_mertens imglist=[] if not config.wait_for_test: config.frame_number+=1 image_stream.seek(0) image_stream.truncate() #logging.debug("Waiting for prevOn...") sleep(1) finally: logging.debug("Thread closing %.1d"%config.exitFlag) cv2.destroyAllWindows() self.conn.close()
tests/core/test_indexed_array.py
DataLab-CQU/stellargraph
2,428
12673203
# -*- coding: utf-8 -*- # # Copyright 2020 Data61, CSIRO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest from stellargraph import IndexedArray def test_indexed_array_empty(): frame = IndexedArray() assert frame.index == range(0) np.testing.assert_array_equal(frame.values, np.empty((0, 0))) def test_indexed_array_non_empty(): list_ids = ["a", "b", "c"] array_ids = np.array([10, -1, 2]) range_ids = range(106, 100, -2) values = np.random.rand(3, 4, 5) # this test uses 'is' checks to validate that there's no copying of data frame = IndexedArray(values) assert frame.index == range(3) assert frame.values is values frame = IndexedArray(values, index=list_ids) assert frame.index is list_ids assert frame.values is values frame = IndexedArray(values, index=array_ids) assert frame.index is array_ids assert frame.values is values frame = IndexedArray(values, index=range_ids) assert frame.index is range_ids assert frame.values is values def test_indexed_array_invalid(): values = np.random.rand(3, 4, 5) with pytest.raises(TypeError, match="values: expected a NumPy array .* found int"): IndexedArray(123) with pytest.raises( ValueError, match=r"values: expected an array with shape .* found shape \(\) of length 0", ): IndexedArray(np.zeros(())) with pytest.raises( ValueError, match=r"values: expected an array with shape .* found shape \(123,\) of length 1", ): IndexedArray(np.zeros(123)) # check that the index `len`-failure works with or without index inference with pytest.raises(TypeError, match="index: expected a sequence .* found int"): IndexedArray(index=0) with pytest.raises(TypeError, match="index: expected a sequence .* found int"): IndexedArray(values, index=123) with pytest.raises( ValueError, match="values: expected the index length 2 .* found 3 rows" ): IndexedArray(values, index=range(0, 3, 2))
2017/async-socket-server/server-test.py
mikiec84/code-for-blog
1,199
12673316
# Tests a concurrent server, by connecting multiple clients sending pre-set # messages, and comparing the echoes with expected values. # # Run with -h for full usage. # # <NAME> [http://eli.thegreenplace.net] # This code is in the public domain. import argparse import itertools import logging import queue import socket import subprocess import sys import threading import time def server_runner(path, args, stop_event): """Runs the server as a subprocess until stop is requested. Run this function in a separate thread! path is the path to the server to run, with the given args. If 'path' ends with .py, a python interpreter is prepended. The args have to be a (possibly empty) iterable. stop_event is a threading.Event object; when it's set, the subprocess is killed and this function returns. """ runcmd = ['python3.6', '-u', path] if path.endswith('.py') else [path] runcmd.extend(args) logging.info('server_runner: executing subprocess "{0}"'.format(runcmd)) proc = subprocess.Popen(runcmd) logging.info('server_runner waiting for stop event') stop_event.wait() logging.info('server_runner sending kill to subprocess') proc.terminate() try: proc.wait(timeout=0.2) except subprocess.TimeoutExpired: logging.info('server_runner: subprocess did not die within timeout') def socket_reader(sockobj, outq, exit_event): """Reads from sockobj, 1 byte at a time; places results in outq. This function runs in a loop until the sockobj connection is closed or until exit_event is set. """ while not exit_event.is_set(): try: buf = sockobj.recv(1) if len(buf) < 1: break outq.put(buf) except socket.timeout: continue except OSError: break def assert_queue_contains(q, val, timeout=0.1): try: v = q.get(timeout=timeout) assert v == val except queue.Empty: assert False, f'queue was empty with timeout={timeout}' def assert_queue_empty(q, wait=0.1): time.sleep(wait) assert q.empty(), 'queue had {0} with wait={1}'.format(q.get(), wait) def client_thread_runner(client_body_func, port, initial_timeout=0.1): """Abstracts the function running within a client thread. Connects to the port with a socket, launches a reading thread and makes sure to shut down properly. client_body_func is the actual interaction with a socket, once connected. """ sockobj = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sockobj.settimeout(initial_timeout) sockobj.connect(('localhost', port)) logging.info('{0} connected to server'.format(client_body_func.__name__)) readq = queue.Queue() exit_event = threading.Event() tread = threading.Thread( target=socket_reader, args=(sockobj, readq, exit_event)) tread.start() try: client_body_func(sockobj, readq, initial_timeout) finally: # Closing the socket before killing the server helps the bound socket be # fully released on the server side; otherwise it may be kept alive by # the kernel for a while after the server process exits. sockobj.shutdown(socket.SHUT_RDWR) sockobj.close() exit_event.set() tread.join() def client0(sock, readq, initial_timeout): assert_queue_contains(readq, b'*', timeout=initial_timeout) assert_queue_empty(readq) def client1(sock, readq, initial_timeout): assert_queue_contains(readq, b'*', timeout=initial_timeout) sock.send(b'abcdef') assert_queue_empty(readq) sock.send(b'^') assert_queue_empty(readq) sock.send(b'f') assert_queue_contains(readq, b'g') sock.send(b'1234') assert_queue_contains(readq, b'2') assert_queue_contains(readq, b'3') assert_queue_contains(readq, b'4') assert_queue_contains(readq, b'5') sock.send(b'$') assert_queue_empty(readq) sock.send(b'1234') assert_queue_empty(readq) sock.send(b'^') sock.send(b'xy') assert_queue_contains(readq, b'y') assert_queue_contains(readq, b'z') def client2(sock, readq, initial_timeout): assert_queue_contains(readq, b'*', timeout=initial_timeout) sock.send(b'^ab$^kl$^80$50') for b in [b'b', b'c', b'l', b'm', b'9', b'1']: assert_queue_contains(readq, b) assert_queue_empty(readq) def client3(sock, readq, initial_timeout): assert_queue_contains(readq, b'*', timeout=initial_timeout) sock.send(b'^$^$^$^$^$^$$^$$$$foobarjoemoedoe^$$') assert_queue_empty(readq) def test_main(): argparser = argparse.ArgumentParser('Server test') argparser.add_argument('server_path', help='path to the server executable') argparser.add_argument('-p', '--server-port', default=9090, type=int, help='the server listens on this port') argparser.add_argument('--timeout-bump', default=0.0, type=float, help='amount of time (in sec) by which to bump the ' 'timeout between consecutive clients') argparser.add_argument('-n', '--num-clients', default=2, type=int, help='number of clients to launch simultaneously; ') argparser.add_argument('--loop', default=1, type=int, help='launch test in a loop') args = argparser.parse_args() assert args.num_clients >= 1 logging.basicConfig( level=logging.DEBUG, format='%(levelname)s:%(asctime)s:%(message)s') # Launch the server in a thread, listening on the port. stop_event = threading.Event() server_thread = threading.Thread( target=server_runner, args=(args.server_path, [str(args.server_port)], stop_event)) server_thread.start() time.sleep(0.3) TIMEOUT = 0.5 + (args.num_clients - 1) * args.timeout_bump for i in range(args.loop): logging.info('** Test iteration {}'.format(i)) client_iter = itertools.cycle([client0, client1, client2, client3]) threads = [] for i in range(args.num_clients): tester_thread = threading.Thread( target=client_thread_runner, args=(next(client_iter), args.server_port, TIMEOUT)) tester_thread.start() threads.append(tester_thread) time.sleep(TIMEOUT) for thread in threads: thread.join() stop_event.set() if __name__ == '__main__': test_main()
tests/plugins/test_buffer.py
augusto-herrmann/frictionless-py
247
12673321
<gh_stars>100-1000 from frictionless import Resource # Loader def test_buffer_loader(): source = b"header1,header2\nvalue1,value2\nvalue3,value4" with Resource(source, format="csv") as resource: assert resource.header == ["header1", "header2"] assert resource.read_rows() == [ {"header1": "value1", "header2": "value2"}, {"header1": "value3", "header2": "value4"}, ] def test_buffer_loader_recursion_error_issue_647(): with open("data/issue-647.csv.txt", "rb") as file: with Resource(file.read(), format="csv", encoding="iso-8859-1") as resource: assert len(resource.read_lists()) == 883 def test_buffer_loader_write(): source = Resource("data/table.csv") target = source.write(Resource(scheme="buffer", format="csv")) assert target.data == "id,name\r\n1,english\r\n2,中国人\r\n".encode("utf-8")
emails/testsuite/smtp_servers.py
MrTango/python-emails
348
12673327
# encoding: utf-8 import os import platform import datetime import random import time from emails.compat import to_unicode DEFAULT_FROM = os.environ.get('SMTP_TEST_FROM_EMAIL') or '<EMAIL>' SUBJECT_SUFFIX = os.environ.get('SMTP_TEST_SUBJECT_SUFFIX') def as_bool(value, default=False): if value is None: return default return value.lower() in ('1', 'yes', 'true', 'on') """ Take environment variables if exists and send test letter SMTP_TEST_SETS=GMAIL,OUTLOOK,YAMAIL SMTP_TEST_GMAIL_TO=<EMAIL> SMTP_TEST_GMAIL_USER=myuser SMTP_TEST_GMAIL_PASSWORD=<PASSWORD> SMTP_TEST_GMAIL_WITH_TLS=true SMTP_TEST_GMAIL_WITHOUT_TLS=false SMTP_TEST_GMAIL_HOST=alt1.gmail-smtp-in.l.google.com SMTP_TEST_GMAIL_PORT=25 ... """ def smtp_server_from_env(name='GMAIL'): def _var(param, default=None): v = os.environ.get('SMTP_TEST_{}_{}'.format(name, param), default) return v def _valid_smtp(data): return data['host'] smtp_info = dict( from_email=_var("FROM", default=DEFAULT_FROM), to_email=_var("TO"), host=_var('HOST'), port=_var('PORT', default=25), user=_var('USER'), password=_var('PASSWORD') ) if _valid_smtp(smtp_info): if as_bool(_var('WITH_TLS')): smtp_info['tls'] = True sys_name = '{}_WITH_TLS'.format(name) yield sys_name, smtp_info if as_bool(_var('WITHOUT_TLS')): smtp_info['tls'] = False sys_name = '{}_WITHOUT_TLS'.format(name) yield sys_name, smtp_info class SMTPTestParams(object): subject_prefix = '[python-emails]' def __init__(self, from_email=None, to_email=None, defaults=None, **kw): params = {'fail_silently': False, 'debug': 1, 'timeout': 25} params.update(defaults or {}) params.update(kw) self.params = params self.from_email = from_email self.to_email = to_email def patch_message(self, message): """ Some SMTP requires from and to emails """ if self.from_email: message.mail_from = (message.mail_from[0], self.from_email) if self.to_email: message.mail_to = self.to_email # TODO: this code breaks template in subject; fix it if not to_unicode(message.subject).startswith(self.subject_prefix) : message.subject = " ".join([self.subject_prefix, message.subject, '// %s' % SUBJECT_SUFFIX]) message._headers['X-Test-Date'] = datetime.datetime.utcnow().isoformat() message._headers['X-Python-Version'] = "%s/%s" % (platform.python_version(), platform.platform()) message._headers['X-Build-Data'] = SUBJECT_SUFFIX return message def __str__(self): return u'SMTPTestParams({user}@{host}:{port})'.format(host=self.params.get('host'), port=self.params.get('port'), user=self.params.get('user', '')) def sleep(self): if 'mailtrap' in self.params.get('host', ''): t = 2 + random.randint(0, 2) else: t = 0.5 time.sleep(t) def get_servers(): names = os.environ.get('SMTP_TEST_SETS', None) if names: for name in names.split(','): for sys_name, params in smtp_server_from_env(name): yield sys_name, SMTPTestParams(**params)
t/unit/test_values.py
faheel/billiard
5,079
12673328
from __future__ import absolute_import import pytest from billiard import Value, RawValue, Lock, Process class test_values: codes_values = [ ('i', 4343, 24234), ('d', 3.625, -4.25), ('h', -232, 234), ('c', 'x'.encode('latin'), 'y'.encode('latin')) ] def test_issue_229(self): """Test fix for issue #229""" a = Value('i', 0) b = Value('i', 0) a.value = 5 assert a.value == 5 assert b.value == 0 @classmethod def _test(cls, values): for sv, cv in zip(values, cls.codes_values): sv.value = cv[2] def test_value(self, raw=False): if raw: values = [RawValue(code, value) for code, value, _ in self.codes_values] else: values = [Value(code, value) for code, value, _ in self.codes_values] for sv, cv in zip(values, self.codes_values): assert sv.value == cv[1] proc = Process(target=self._test, args=(values,)) proc.daemon = True proc.start() proc.join() for sv, cv in zip(values, self.codes_values): assert sv.value == cv[2] def test_rawvalue(self): self.test_value(raw=True) def test_getobj_getlock(self): val1 = Value('i', 5) lock1 = val1.get_lock() obj1 = val1.get_obj() val2 = Value('i', 5, lock=None) lock2 = val2.get_lock() obj2 = val2.get_obj() lock = Lock() val3 = Value('i', 5, lock=lock) lock3 = val3.get_lock() obj3 = val3.get_obj() assert lock == lock3 arr4 = Value('i', 5, lock=False) assert not hasattr(arr4, 'get_lock') assert not hasattr(arr4, 'get_obj') with pytest.raises(AttributeError): Value('i', 5, lock='navalue') arr5 = RawValue('i', 5) assert not hasattr(arr5, 'get_lock') assert not hasattr(arr5, 'get_obj')
appengine/gallery_api/__init__.py
bharati-software/blockly-games-Kannada
1,184
12673330
<gh_stars>1000+ from common import *
ckanapi/version.py
muccg/ckanapi
128
12673369
<reponame>muccg/ckanapi import pkg_resources __version__ = pkg_resources.require("ckanapi")[0].version
nuitka/nodes/ImportHardNodes.py
byehack/Nuitka
1,228
12673377
<reponame>byehack/Nuitka<gh_stars>1000+ # Copyright 2021, <NAME>, mailto:<EMAIL> # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Nodes representing more trusted imports. """ from nuitka.importing.Importing import locateModule from nuitka.utils.ModuleNames import ModuleName from .ExpressionBases import ExpressionBase class ExpressionImportHardBase(ExpressionBase): # Base classes can be abstract, pylint: disable=abstract-method # __slots__ = ("module_name", "finding", "module_filename") def __init__(self, module_name, source_ref): ExpressionBase.__init__(self, source_ref=source_ref) self.module_name = ModuleName(module_name) self.finding = None self.module_filename = None _module_name, self.module_filename, self.finding = locateModule( module_name=self.module_name, parent_package=None, level=0, ) # Expect to find them and to match the name of course. assert self.finding != "not-found", self.module_name assert _module_name == self.module_name def getUsedModule(self): return self.module_name, self.module_filename, self.finding class ExpressionImportModuleNameHardBase(ExpressionImportHardBase): """Hard import names base class.""" # Base classes can be abstract, pylint: disable=I0021,abstract-method __slots__ = ("import_name", "finding", "module_filename") def __init__(self, module_name, import_name, source_ref): ExpressionImportHardBase.__init__( self, module_name=module_name, source_ref=source_ref ) self.import_name = import_name # Derived ones have the same interface. @staticmethod def isExpressionImportModuleNameHard(): return True def finalize(self): del self.parent def getDetails(self): return {"module_name": self.module_name, "import_name": self.import_name} def getModuleName(self): return self.module_name def getImportName(self): return self.import_name class ExpressionImportModuleNameHardMaybeExists(ExpressionImportModuleNameHardBase): """Hard coded import names, e.g. of "site.something" These are created for attributes of hard imported modules that are not know if they exist or not. """ kind = "EXPRESSION_IMPORT_MODULE_NAME_HARD_MAYBE_EXISTS" def computeExpressionRaw(self, trace_collection): trace_collection.onExceptionRaiseExit(AttributeError) return self, None, None @staticmethod def mayHaveSideEffects(): return True @staticmethod def mayRaiseException(exception_type): return True class ExpressionImportModuleNameHardExists(ExpressionImportModuleNameHardBase): """Hard coded import names, e.g. of "sys.stdout" These are directly created for some Python mechanics. """ kind = "EXPRESSION_IMPORT_MODULE_NAME_HARD_EXISTS" def computeExpressionRaw(self, trace_collection): # As good as it gets. return self, None, None @staticmethod def mayHaveSideEffects(): return False @staticmethod def mayRaiseException(exception_type): return False
run.py
svenvs/awesome-video-chat-backgrounds
113
12673382
from os import listdir from os.path import isfile, join, abspath image_path = abspath('./images') onlyfiles = [f for f in listdir(image_path) if isfile(join(image_path, f))] readme = '''# awesome-video-chat-backgrounds Just in case you're at home on a video call and you haven't had time to tidy up your REAL background, here are some awesome backgrounds to help you get through your next video chat. ## Contributing * Please submit pull requests to add additional photos/images to this collection! * Images should be minimum of 1080 (width) x 550 (height) pixels ## Image List ''' for file in onlyfiles: title = file.split('.')[0].replace('_',' ').title() readme += '<a href="./images/{}" title="{}"> <img align="center" src="./images/{}" width="540px"/></a>\n'.format(file, title, file) with open('README.md','w+') as f: f.write(readme)
discrete_systems_time_domain/animation.py
spatialaudio/signals-and-systems-lecture
243
12673387
<reponame>spatialaudio/signals-and-systems-lecture """Animations of common operations in signal processing.""" import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation def animate_discrete_convolution(x, h, y, k, kappa, interval=100): def update_stem(stem, x, y): stem.markerline.set_data(x, y) for idx, stem_line in enumerate(stem.stemlines): stem_line.set_data([x[idx], x[idx]], [0, y[idx]]) def animate(kappa_i): update_stem(stem_x, k, x(k)) update_stem(stem_h, k, h(kappa_i - k)) dot.set_data(kappa_i, y[-k[0] + kappa_i]) # setup plot and define objects default_figsize = plt.rcParams.get('figure.figsize') fig, ax = plt.subplots(2, 1, figsize=(default_figsize[0], 1.5*default_figsize[1])) fig.subplots_adjust(hspace=0.2) plt.close() # suppresses empty plot in notebook stem_x = ax[0].stem(k, x(k), linefmt='C0-', markerfmt='C0o', basefmt=' ', label=r'$x[\kappa]$') stem_h = ax[0].stem(k, h(kappa[0]-k), linefmt='C1-', markerfmt='C1o', basefmt=' ', label=r'$h(k - \kappa)$') ax[0].set_xlabel(r'$\kappa$') ax[0].legend(loc='upper right') ax[0].grid() y = y(k) ax[1].stem(k, y, linefmt='C2-', markerfmt='C2o', basefmt=' ', label=r'$y[k]$') dot, = ax[1].plot([], 'ro') ax[1].set_xlabel(r'$k$') ax[1].legend(loc='upper right') ax[1].grid() return FuncAnimation(fig, animate, kappa, interval=interval)
octodns/processor/filter.py
CyberFlameGO/octodns
1,865
12673395
# # # from __future__ import absolute_import, division, print_function, \ unicode_literals from .base import BaseProcessor class TypeAllowlistFilter(BaseProcessor): def __init__(self, name, allowlist): super(TypeAllowlistFilter, self).__init__(name) self.allowlist = set(allowlist) def _process(self, zone, *args, **kwargs): for record in zone.records: if record._type not in self.allowlist: zone.remove_record(record) return zone process_source_zone = _process process_target_zone = _process class TypeRejectlistFilter(BaseProcessor): def __init__(self, name, rejectlist): super(TypeRejectlistFilter, self).__init__(name) self.rejectlist = set(rejectlist) def _process(self, zone, *args, **kwargs): for record in zone.records: if record._type in self.rejectlist: zone.remove_record(record) return zone process_source_zone = _process process_target_zone = _process
control/keyboard/vtol_keyboard_multi_control.py
CNRoboComp2020/XTDrone
457
12673397
<reponame>CNRoboComp2020/XTDrone import rospy from geometry_msgs.msg import Pose, Twist import sys, select, os import tty, termios from std_msgs.msg import String MAX_LINEAR = 1000 MAX_ANG_VEL = 0.5 LINEAR_STEP_SIZE = 0.1 ANG_VEL_STEP_SIZE = 0.01 ctrl_leader = False send_flag = False transition_state = 'multirotor' msg2all = """ Control Your XTDrone! To all drones (press g to control the leader) --------------------------- 1 2 3 4 5 6 7 8 9 0 w r t y i a s d g j k l x v b n , w/x : increase/decrease north setpoint a/d : increase/decrease east setpoint i/, : increase/decrease upward setpoint j/l : increase/decrease orientation r : return home t/y : arm/disarm v/n : takeoff/land b : offboard s : hover(multirotor mode), loiter(plane mode) k : hover(multirotor mode), idle(plane mode) 0~9 : extendable mission(eg.different formation configuration) this will mask the keyboard control g : control the leader o : transition CTRL-C to quit """ msg2leader = """ Control Your XTDrone! To the leader (press g to control all drones) --------------------------- 1 2 3 4 5 6 7 8 9 0 w r t y i a s d g j k l x v b n , w/x : increase/decrease north setpoint a/d : increase/decrease east setpoint i/, : increase/decrease upward setpoint j/l : increase/decrease orientation r : return home t/y : arm/disarm v/n : takeoff/land b : offboard s : hover(multirotor mode), loiter(plane mode) k : hover(multirotor mode), idle(plane mode) 0~9 : extendable mission(eg.different formation configuration) g : control all drones o : transition CTRL-C to quit """ def getKey(): tty.setraw(sys.stdin.fileno()) rlist, _, _ = select.select([sys.stdin], [], [], 0.1) if rlist: key = sys.stdin.read(1) else: key = '' termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings) return key def print_msg(): if ctrl_leader: print(msg2leader) else: print(msg2all) if __name__=="__main__": settings = termios.tcgetattr(sys.stdin) vehicle_type = sys.argv[1] vehicle_num = int(sys.argv[2]) control_type = sys.argv[3] rospy.init_node('vtol_keyboard_multi_control') multi_cmd_pose_enu_pub = [None]*vehicle_num multi_cmd_vel_flu_pub = [None]*vehicle_num multi_cmd_pub = [None]*vehicle_num for i in range(vehicle_num): multi_cmd_pose_enu_pub[i] = rospy.Publisher('/xtdrone/'+vehicle_type+'_'+str(i)+'/cmd_pose_enu', Pose, queue_size=10) if control_type == 'vel': multi_cmd_vel_flu_pub[i] = rospy.Publisher('/xtdrone/'+vehicle_type+'_'+str(i)+'/cmd_vel_flu', Twist, queue_size=10) else: multi_cmd_accel_flu_pub[i] = rospy.Publisher('/xtdrone/'+multirotor_type+'_'+str(i)+'/cmd_accel_flu', Twist, queue_size=10) multi_cmd_pub[i] = rospy.Publisher('/xtdrone/'+vehicle_type+'_'+str(i)+'/cmd',String,queue_size=10) leader_cmd_pose_enu_pub = rospy.Publisher("/xtdrone/leader/cmd_pose_enu", Pose, queue_size=10) if control_type == 'vel': leader_cmd_vel_flu_pub = rospy.Publisher("/xtdrone/leader/cmd_vel_flu", Twist, queue_size=10) else: leader_cmd_accel_flu_pub = rospy.Publisher("/xtdrone/leader/cmd_accel_flu", Twist, queue_size=10) leader_cmd_pub = rospy.Publisher("/xtdrone/leader_cmd", String, queue_size=10) cmd= String() pose = Pose() twist = Twist() forward = 0.0 leftward = 0.0 upward = 0.0 angular = 0.0 print_msg() while(1): key = getKey() if key == 'w' : forward = forward + LINEAR_STEP_SIZE print_msg() if control_type == 'vel': print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) else: print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'x' : forward = forward - LINEAR_STEP_SIZE print_msg() if control_type == 'vel': print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) else: print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'a' : leftward = leftward + LINEAR_STEP_SIZE print_msg() if control_type == 'vel': print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) else: print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'd' : leftward = leftward - LINEAR_STEP_SIZE print_msg() if control_type == 'vel': print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) else: print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'i' : upward = upward + LINEAR_STEP_SIZE print_msg() if control_type == 'vel': print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) else: print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == ',' : upward = upward - LINEAR_STEP_SIZE print_msg() if control_type == 'vel': print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) else: print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'j': angular = angular + ANG_VEL_STEP_SIZE print_msg() print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'l': angular = angular - ANG_VEL_STEP_SIZE print_msg() print("currently:\t forward vel %.2f\t leftward vel %.2f\t upward vel %.2f\t angular %.2f " % (forward, leftward, upward, angular)) elif key == 'r': cmd = 'AUTO.RTL' print_msg() print('Returning home') elif key == 't': cmd = 'ARM' print_msg() print('Arming') elif key == 'y': cmd = 'DISARM' print_msg() print('Disarming') elif key == 'v': cmd = 'AUTO.TAKEOFF' print_msg() print('AUTO.TAKEOFF') elif key == 'b': cmd = 'OFFBOARD' print_msg() print('Offboard') elif key == 'n': cmd = 'AUTO.LAND' print_msg() print('AUTO.LAND') elif key == 'g': ctrl_leader = not ctrl_leader print_msg() elif key == 's': if transition_state == 'multirotor': forward = 0.0 leftward = 0.0 upward = 0.0 angular = 0.0 cmd = 'HOVER' else: cmd = 'loiter' print_msg() print(cmd) elif key == 'k' : if transition_state == 'multirotor': forward = 0.0 leftward = 0.0 upward = 0.0 angular = 0.0 cmd = 'HOVER' else: cmd = 'idle' print_msg() print(cmd) elif key == 'o': if transition_state == 'multirotor': transition_state = 'plane' cmd = transition_state else: transition_state = 'multirotor' cmd = transition_state print_msg() print(cmd) else: for i in range(10): if key == str(i): cmd = 'mission'+key print_msg() print(cmd) if (key == '\x03'): break if forward > MAX_LINEAR: forward = MAX_LINEAR elif forward < -MAX_LINEAR: forward = -MAX_LINEAR if leftward > MAX_LINEAR: leftward = MAX_LINEAR elif leftward < -MAX_LINEAR: leftward = -MAX_LINEAR if upward > MAX_LINEAR: upward = MAX_LINEAR elif upward < -MAX_LINEAR: upward = -MAX_LINEAR if angular > MAX_ANG_VEL: angular = MAX_ANG_VEL elif angular < -MAX_ANG_VEL: angular = - MAX_ANG_VEL if transition_state == 'plane': pose.position.x = forward; pose.position.y = leftward; pose.position.z = upward pose.orientation.x = 0.0; pose.orientation.y = 0.0; pose.orientation.z = angular else: twist.linear.x = forward; twist.linear.y = leftward; twist.linear.z = upward twist.angular.x = 0.0; twist.angular.y = 0.0; twist.angular.z = angular for i in range(vehicle_num): if ctrl_leader: if transition_state == 'plane': leader_cmd_pose_enu_pub.publish(pose) else: if control_type == 'vel': leader_cmd_vel_flu_pub.publish(twist) else: leader_cmd_aceel_flu_pub.publish(twist) leader_cmd_pub.publish(cmd) else: if transition_state == 'plane': multi_cmd_pose_enu_pub[i].publish(pose) else: if control_type == 'vel': multi_cmd_vel_flu_pub[i].publish(twist) else: multi_cmd_accel_flu_pub[i].publish(twist) multi_cmd_pub[i].publish(cmd) cmd = '' termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
tests/bots/stocks/technical_analysis/test_aroon.py
tehcoderer/GamestonkTerminal
255
12673399
import pytest try: from bots.stocks.technical_analysis.aroon import aroon_command except ImportError: pytest.skip(allow_module_level=True) @pytest.fixture(scope="module") def vcr_config(): return { "filter_headers": [("User-Agent", None)], "filter_query_parameters": [ ("period1", "MOCK_PERIOD_1"), ("period2", "MOCK_PERIOD_2"), ("date", "MOCK_DATE"), ], } @pytest.mark.vcr @pytest.mark.bots @pytest.mark.parametrize( "start, end, extended, heikin, news", [ ("", "", False, False, False), ("2022-01-01", "2022-04-01", True, True, True), ], ) def test_aroon_command(recorder, start, end, extended, heikin, news): value = aroon_command( "TSLA", start=start, end=end, extended_hours=extended, heikin_candles=heikin, news=news, ) value["imagefile"] = value["imagefile"][-4:] recorder.capture(value) @pytest.mark.vcr @pytest.mark.bots @pytest.mark.parametrize("ticker", ["", "ZZZZ"]) def test_aroon_invalid(ticker): with pytest.raises(Exception): aroon_command(ticker)
hail/python/test/hail/matrixtable/test_matrix_table.py
tdeboer-ilmn/hail
789
12673412
<filename>hail/python/test/hail/matrixtable/test_matrix_table.py import math import operator import random import pytest import hail as hl import hail.expr.aggregators as agg from hail.utils.java import Env from hail.utils.misc import new_temp_file from ..helpers import * setUpModule = startTestHailContext tearDownModule = stopTestHailContext class Tests(unittest.TestCase): def get_mt(self, min_partitions=None) -> hl.MatrixTable: return hl.import_vcf(resource("sample.vcf"), min_partitions=min_partitions) def test_range_count(self): self.assertEqual(hl.utils.range_matrix_table(7, 13).count(), (7, 13)) def test_row_key_field_show_runs(self): ds = self.get_mt() ds.locus.show() def test_update(self): mt = self.get_mt() mt = mt.select_entries(dp=mt.DP, gq=mt.GQ) self.assertTrue(schema_eq(mt.entry.dtype, hl.tstruct(dp=hl.tint32, gq=hl.tint32))) def test_annotate(self): mt = self.get_mt() mt = mt.annotate_globals(foo=5) self.assertEqual(mt.globals.dtype, hl.tstruct(foo=hl.tint32)) mt = mt.annotate_rows(x1=agg.count(), x2=agg.fraction(False), x3=agg.count_where(True), x4=mt.info.AC + mt.foo) mt = mt.annotate_cols(apple=6) mt = mt.annotate_cols(y1=agg.count(), y2=agg.fraction(False), y3=agg.count_where(True), y4=mt.foo + mt.apple) expected_schema = hl.tstruct(s=hl.tstr, apple=hl.tint32, y1=hl.tint64, y2=hl.tfloat64, y3=hl.tint64, y4=hl.tint32) self.assertTrue(schema_eq(mt.col.dtype, expected_schema), "expected: " + str(mt.col.dtype) + "\nactual: " + str(expected_schema)) mt = mt.select_entries(z1=mt.x1 + mt.foo, z2=mt.x1 + mt.y1 + mt.foo) self.assertTrue(schema_eq(mt.entry.dtype, hl.tstruct(z1=hl.tint64, z2=hl.tint64))) def test_annotate_globals(self): mt = hl.utils.range_matrix_table(1, 1) ht = hl.utils.range_table(1, 1) data = [ (5, hl.tint, operator.eq), (float('nan'), hl.tfloat32, lambda x, y: str(x) == str(y)), (float('inf'), hl.tfloat64, lambda x, y: str(x) == str(y)), (float('-inf'), hl.tfloat64, lambda x, y: str(x) == str(y)), (1.111, hl.tfloat64, operator.eq), ([hl.Struct(**{'a': None, 'b': 5}), hl.Struct(**{'a': 'hello', 'b': 10})], hl.tarray(hl.tstruct(a=hl.tstr, b=hl.tint)), operator.eq) ] for x, t, f in data: self.assertTrue(f(hl.eval(mt.annotate_globals(foo=hl.literal(x, t)).foo), x), f"{x}, {t}") self.assertTrue(f(hl.eval(ht.annotate_globals(foo=hl.literal(x, t)).foo), x), f"{x}, {t}") def test_head(self): # no empty partitions mt1 = hl.utils.range_matrix_table(10, 10) # empty partitions at front mt2 = hl.utils.range_matrix_table(20, 10, 20) mt2 = mt2.filter_rows(mt2.row_idx > 9) mts = [mt1, mt2] for mt in mts: tmp_file = new_temp_file(extension='mt') mt.write(tmp_file) mt_readback = hl.read_matrix_table(tmp_file) for mt_ in [mt, mt_readback]: assert mt_.head(1).count_rows() == 1 assert mt_.head(1)._force_count_rows() == 1 assert mt_.head(100).count_rows() == 10 assert mt_.head(100)._force_count_rows() == 10 def test_head_cols(self): mt1 = hl.utils.range_matrix_table(10, 10) assert mt1.head(1, 2).count() == (1, 2) assert mt1.head(1, None).count() == (1, 10) assert mt1.head(None, 1).count() == (10, 1) def test_tail(self): # no empty partitions mt1 = hl.utils.range_matrix_table(10, 10) # empty partitions at front mt2 = hl.utils.range_matrix_table(20, 10, 20) mt2 = mt2.filter_rows(mt2.row_idx > 9) mts = [mt1, mt2] for mt in mts: tmp_file = new_temp_file(extension='mt') mt.write(tmp_file) mt_readback = hl.read_matrix_table(tmp_file) for mt_ in [mt, mt_readback]: assert mt_.tail(1).count_rows() == 1 assert mt_.tail(1)._force_count_rows() == 1 assert mt_.tail(100).count_rows() == 10 assert mt_.tail(100)._force_count_rows() == 10 def test_tail_cols(self): mt1 = hl.utils.range_matrix_table(10, 10) assert mt1.tail(1, 2).count() == (1, 2) assert mt1.tail(1, None).count() == (1, 10) assert mt1.tail(None, 1).count() == (10, 1) @fails_service_backend() def test_tail_entries(self): mt = hl.utils.range_matrix_table(100, 30) mt = mt.filter_cols(mt.col_idx != 29) def tail(*args): ht = mt.tail(*args).entries() return ht.aggregate(hl.agg.collect_as_set(hl.tuple([ht.row_idx, ht.col_idx]))) def expected(n, m): return set((i, j) for i in range(100 - n, 100) for j in range(29 - m, 29)) assert tail(None, 10) == expected(100, 10) assert tail(30, None) == expected(30, 29) assert tail(30, 10) == expected(30, 10) @fails_service_backend() def test_tail_scan(self): mt = hl.utils.range_matrix_table(30, 40) mt = mt.annotate_rows(i = hl.scan.count()) mt = mt.annotate_cols(j = hl.scan.count()) mt = mt.tail(10, 11) ht = mt.entries() assert ht.aggregate(agg.collect_as_set(hl.tuple([ht.i, ht.j]))) == set( (i, j) for i in range(20, 30) for j in range(29, 40) ) def test_filter(self): mt = self.get_mt() mt = mt.annotate_globals(foo=5) mt = mt.annotate_rows(x1=agg.count()) mt = mt.annotate_cols(y1=agg.count()) mt = mt.annotate_entries(z1=mt.DP) mt = mt.filter_rows((mt.x1 == 5) & (agg.count() == 3) & (mt.foo == 2)) mt = mt.filter_cols((mt.y1 == 5) & (agg.count() == 3) & (mt.foo == 2)) mt = mt.filter_entries((mt.z1 < 5) & (mt.y1 == 3) & (mt.x1 == 5) & (mt.foo == 2)) mt.count_rows() @fails_service_backend() def test_aggregate(self): mt = self.get_mt() mt = mt.annotate_globals(foo=5) mt = mt.annotate_rows(x1=agg.count()) mt = mt.annotate_cols(y1=agg.count()) mt = mt.annotate_entries(z1=mt.DP) qv = mt.aggregate_rows(agg.count()) qs = mt.aggregate_cols(agg.count()) qg = mt.aggregate_entries(agg.count()) self.assertIsNotNone(mt.aggregate_entries(hl.agg.take(mt.s, 1)[0])) self.assertEqual(qv, 346) self.assertEqual(qs, 100) self.assertEqual(qg, qv * qs) qvs = mt.aggregate_rows(hl.Struct(x=agg.collect(mt.locus.contig), y=agg.collect(mt.x1))) qss = mt.aggregate_cols(hl.Struct(x=agg.collect(mt.s), y=agg.collect(mt.y1))) qgs = mt.aggregate_entries(hl.Struct(x=agg.filter(False, agg.collect(mt.y1)), y=agg.filter(hl.rand_bool(0.1), agg.collect(mt.GT)))) def test_aggregate_rows_array_agg(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.annotate_rows(maf_flag = hl.empty_array('bool')) mt.aggregate_rows(hl.agg.array_agg(lambda x: hl.agg.counter(x), mt.maf_flag)) def test_aggregate_rows_bn_counter(self): r = hl.balding_nichols_model(3, 10, 10).rows() r.aggregate(hl.agg.counter(r.locus.in_x_nonpar())) def test_col_agg_no_rows(self): mt = hl.utils.range_matrix_table(3, 3).filter_rows(False) mt = mt.annotate_cols(x = hl.agg.count()) assert mt.x.collect() == [0, 0, 0] def test_col_collect(self): mt = hl.utils.range_matrix_table(3, 3) mt.cols().collect() def test_aggregate_ir(self): ds = (hl.utils.range_matrix_table(5, 5) .annotate_globals(g1=5) .annotate_entries(e1=3)) x = [("col_idx", lambda e: ds.aggregate_cols(e)), ("row_idx", lambda e: ds.aggregate_rows(e))] for name, f in x: r = f(hl.struct(x=agg.sum(ds[name]) + ds.g1, y=agg.filter(ds[name] % 2 != 0, agg.sum(ds[name] + 2)) + ds.g1, z=agg.sum(ds.g1 + ds[name]) + ds.g1, mean=agg.mean(ds[name]))) self.assertEqual(convert_struct_to_dict(r), {u'x': 15, u'y': 13, u'z': 40, u'mean': 2.0}) r = f(5) self.assertEqual(r, 5) r = f(hl.missing(hl.tint32)) self.assertEqual(r, None) r = f(agg.filter(ds[name] % 2 != 0, agg.sum(ds[name] + 2)) + ds.g1) self.assertEqual(r, 13) r = ds.aggregate_entries(agg.filter((ds.row_idx % 2 != 0) & (ds.col_idx % 2 != 0), agg.sum(ds.e1 + ds.g1 + ds.row_idx + ds.col_idx)) + ds.g1) self.assertTrue(r, 48) def test_select_entries(self): mt = hl.utils.range_matrix_table(10, 10, n_partitions=4) mt = mt.annotate_entries(a=hl.struct(b=mt.row_idx, c=mt.col_idx), foo=mt.row_idx * 10 + mt.col_idx) mt = mt.select_entries(mt.a.b, mt.a.c, mt.foo) mt = mt.annotate_entries(bc=mt.b * 10 + mt.c) mt_entries = mt.entries() assert (mt_entries.all(mt_entries.bc == mt_entries.foo)) def test_select_cols(self): mt = hl.utils.range_matrix_table(3, 5, n_partitions=4) mt = mt.annotate_entries(e=mt.col_idx * mt.row_idx) mt = mt.annotate_globals(g=1) mt = mt.annotate_cols(sum=agg.sum(mt.e + mt.col_idx + mt.row_idx + mt.g) + mt.col_idx + mt.g, count=agg.count_where(mt.e % 2 == 0), foo=agg.count()) result = convert_struct_to_dict(mt.cols().collect()[-2]) self.assertEqual(result, {'col_idx': 3, 'sum': 28, 'count': 2, 'foo': 3}) def test_drop(self): mt = self.get_mt() mt = mt.annotate_globals(foo=5) mt = mt.annotate_cols(bar=5) mt1 = mt.drop('GT', 'info', 'foo', 'bar') self.assertTrue('foo' not in mt1.globals) self.assertTrue('info' not in mt1.row) self.assertTrue('bar' not in mt1.col) self.assertTrue('GT' not in mt1.entry) mt1._force_count_rows() mt2 = mt.drop(mt.GT, mt.info, mt.foo, mt.bar) self.assertTrue('foo' not in mt2.globals) self.assertTrue('info' not in mt2.row) self.assertTrue('bar' not in mt2.col) self.assertTrue('GT' not in mt2.entry) mt2._force_count_rows() def test_explode_rows(self): mt = hl.utils.range_matrix_table(4, 4) mt = mt.annotate_entries(e=mt.row_idx * 10 + mt.col_idx) self.assertTrue(mt.annotate_rows(x=[1]).explode_rows('x').drop('x')._same(mt)) self.assertEqual(mt.annotate_rows(x=hl.empty_array('int')).explode_rows('x').count_rows(), 0) self.assertEqual(mt.annotate_rows(x=hl.missing('array<int>')).explode_rows('x').count_rows(), 0) self.assertEqual(mt.annotate_rows(x=hl.range(0, mt.row_idx)).explode_rows('x').count_rows(), 6) mt = mt.annotate_rows(x=hl.struct(y=hl.range(0, mt.row_idx))) self.assertEqual(mt.explode_rows(mt.x.y).count_rows(), 6) def test_explode_cols(self): mt = hl.utils.range_matrix_table(4, 4) mt = mt.annotate_entries(e=mt.row_idx * 10 + mt.col_idx) self.assertTrue(mt.annotate_cols(x=[1]).explode_cols('x').drop('x')._same(mt)) self.assertEqual(mt.annotate_cols(x=hl.empty_array('int')).explode_cols('x').count_cols(), 0) self.assertEqual(mt.annotate_cols(x=hl.missing('array<int>')).explode_cols('x').count_cols(), 0) self.assertEqual(mt.annotate_cols(x=hl.range(0, mt.col_idx)).explode_cols('x').count_cols(), 6) def test_explode_key_errors(self): mt = hl.utils.range_matrix_table(1, 1).key_cols_by(a=[1]).key_rows_by(b=[1]) with self.assertRaises(ValueError): mt.explode_cols('a') with self.assertRaises(ValueError): mt.explode_rows('b') def test_group_by_field_lifetimes(self): mt = hl.utils.range_matrix_table(3, 3) mt2 = (mt.group_rows_by(row_idx='100') .aggregate(x=hl.agg.collect_as_set(mt.row_idx + 5))) assert mt2.aggregate_entries(hl.agg.all(mt2.x == hl.set({5, 6, 7}))) mt3 = (mt.group_cols_by(col_idx='100') .aggregate(x=hl.agg.collect_as_set(mt.col_idx + 5))) assert mt3.aggregate_entries(hl.agg.all(mt3.x == hl.set({5, 6, 7}))) def test_aggregate_cols_by(self): mt = hl.utils.range_matrix_table(2, 4) mt = (mt.annotate_cols(group=mt.col_idx < 2) .annotate_globals(glob=5)) grouped = mt.group_cols_by(mt.group) result = grouped.aggregate(sum=hl.agg.sum(mt.row_idx * 2 + mt.col_idx + mt.glob) + 3) expected = (hl.Table.parallelize([ {'row_idx': 0, 'group': True, 'sum': 14}, {'row_idx': 0, 'group': False, 'sum': 18}, {'row_idx': 1, 'group': True, 'sum': 18}, {'row_idx': 1, 'group': False, 'sum': 22} ], hl.tstruct(row_idx=hl.tint, group=hl.tbool, sum=hl.tint64)) .annotate_globals(glob=5) .key_by('row_idx', 'group')) self.assertTrue(result.entries()._same(expected)) def test_aggregate_cols_by_init_op(self): mt = hl.import_vcf(resource('sample.vcf')) cs = mt.group_cols_by(mt.s).aggregate(cs = hl.agg.call_stats(mt.GT, mt.alleles)) cs._force_count_rows() # should run without error def test_aggregate_cols_scope_violation(self): mt = get_dataset() with pytest.raises(hl.expr.ExpressionException) as exc: mt.aggregate_cols(hl.agg.filter(False, hl.agg.sum(mt.GT.is_non_ref()))) assert "scope violation" in str(exc.value) def test_aggregate_rows_by(self): mt = hl.utils.range_matrix_table(4, 2) mt = (mt.annotate_rows(group=mt.row_idx < 2) .annotate_globals(glob=5)) grouped = mt.group_rows_by(mt.group) result = grouped.aggregate(sum=hl.agg.sum(mt.col_idx * 2 + mt.row_idx + mt.glob) + 3) expected = (hl.Table.parallelize([ {'col_idx': 0, 'group': True, 'sum': 14}, {'col_idx': 1, 'group': True, 'sum': 18}, {'col_idx': 0, 'group': False, 'sum': 18}, {'col_idx': 1, 'group': False, 'sum': 22} ], hl.tstruct(group=hl.tbool, col_idx=hl.tint, sum=hl.tint64)) .annotate_globals(glob=5) .key_by('group', 'col_idx')) self.assertTrue(result.entries()._same(expected)) def test_collect_cols_by_key(self): mt = hl.utils.range_matrix_table(3, 3) col_dict = hl.literal({0: [1], 1: [2, 3], 2: [4, 5, 6]}) mt = mt.annotate_cols(foo=col_dict.get(mt.col_idx)) \ .explode_cols('foo') mt = mt.annotate_entries(bar=mt.row_idx * mt.foo) grouped = mt.collect_cols_by_key() self.assertListEqual(grouped.cols().order_by('col_idx').collect(), [hl.Struct(col_idx=0, foo=[1]), hl.Struct(col_idx=1, foo=[2, 3]), hl.Struct(col_idx=2, foo=[4, 5, 6])]) self.assertListEqual( grouped.entries().select('bar') .order_by('row_idx', 'col_idx').collect(), [hl.Struct(row_idx=0, col_idx=0, bar=[0]), hl.Struct(row_idx=0, col_idx=1, bar=[0, 0]), hl.Struct(row_idx=0, col_idx=2, bar=[0, 0, 0]), hl.Struct(row_idx=1, col_idx=0, bar=[1]), hl.Struct(row_idx=1, col_idx=1, bar=[2, 3]), hl.Struct(row_idx=1, col_idx=2, bar=[4, 5, 6]), hl.Struct(row_idx=2, col_idx=0, bar=[2]), hl.Struct(row_idx=2, col_idx=1, bar=[4, 6]), hl.Struct(row_idx=2, col_idx=2, bar=[8, 10, 12])]) def test_weird_names(self): ds = self.get_mt() exprs = {'a': 5, ' a ': 5, r'\%!^!@#&#&$%#$%': [5], '$': 5, 'ß': 5} ds.annotate_globals(**exprs) ds.select_globals(**exprs) ds.annotate_cols(**exprs) ds1 = ds.select_cols(**exprs) ds.annotate_rows(**exprs) ds2 = ds.select_rows(**exprs) ds.annotate_entries(**exprs) ds.select_entries(**exprs) ds1.explode_cols(r'\%!^!@#&#&$%#$%') ds1.explode_cols(ds1[r'\%!^!@#&#&$%#$%']) ds1.group_cols_by(ds1.a).aggregate(**{'*``81': agg.count()}) ds1.drop(r'\%!^!@#&#&$%#$%') ds1.drop(ds1[r'\%!^!@#&#&$%#$%']) ds2.explode_rows(r'\%!^!@#&#&$%#$%') ds2.explode_rows(ds2[r'\%!^!@#&#&$%#$%']) ds2.group_rows_by(ds2.a).aggregate(**{'*``81': agg.count()}) def test_semi_anti_join_rows(self): mt = hl.utils.range_matrix_table(10, 3) ht = hl.utils.range_table(3) assert mt.semi_join_rows(ht).count() == (3, 3) assert mt.anti_join_rows(ht).count() == (7, 3) def test_semi_anti_join_cols(self): mt = hl.utils.range_matrix_table(3, 10) ht = hl.utils.range_table(3) assert mt.semi_join_cols(ht).count() == (3, 3) assert mt.anti_join_cols(ht).count() == (3, 7) @fails_service_backend() def test_joins(self): mt = self.get_mt().select_rows(x1=1, y1=1) mt2 = mt.select_rows(x2=1, y2=2) mt2 = mt2.select_cols(c1=1, c2=2) mt = mt.annotate_rows(y2=mt2.index_rows(mt.row_key).y2) mt = mt.annotate_cols(c2=mt2.index_cols(mt.s).c2) mt = mt.annotate_cols(c2=mt2.index_cols(hl.str(mt.s)).c2) rt = mt.rows() ct = mt.cols() mt.annotate_rows(**rt[mt.locus, mt.alleles]) self.assertTrue(rt.all(rt.y2 == 2)) self.assertTrue(ct.all(ct.c2 == 2)) @fails_service_backend() def test_joins_with_key_structs(self): mt = self.get_mt() rows = mt.rows() cols = mt.cols() self.assertEqual(rows[mt.locus, mt.alleles].take(1), rows[mt.row_key].take(1)) self.assertEqual(cols[mt.s].take(1), cols[mt.col_key].take(1)) self.assertEqual(mt.index_rows(mt.row_key).take(1), mt.index_rows(mt.locus, mt.alleles).take(1)) self.assertEqual(mt.index_cols(mt.col_key).take(1), mt.index_cols(mt.s).take(1)) self.assertEqual(mt[mt.row_key, mt.col_key].take(1), mt[(mt.locus, mt.alleles), mt.s].take(1)) def test_index_keyless(self): mt = hl.utils.range_matrix_table(3, 3) with self.assertRaisesRegex(hl.expr.ExpressionException, "MatrixTable row key: *<<<empty key>>>"): mt.key_rows_by().index_rows(mt.row_idx) with self.assertRaisesRegex(hl.expr.ExpressionException, "MatrixTable col key: *<<<empty key>>>"): mt.key_cols_by().index_cols(mt.col_idx) def test_table_join(self): ds = self.get_mt() # test different row schemas self.assertTrue(ds.union_cols(ds.drop(ds.info)) .count_rows(), 346) @skip_when_service_backend('''The Service and Shuffler have no way of knowing the order in which rows appear in the original dataset, as such it is impossible to guarantee the ordering in `matches`. https://hail.zulipchat.com/#narrow/stream/123011-Hail-Dev/topic/test_drop/near/235425714''') def test_table_product_join(self): left = hl.utils.range_matrix_table(5, 1) right = hl.utils.range_table(5) right = right.annotate(i=hl.range(right.idx + 1, 5)).explode('i').key_by('i') left = left.annotate_rows(matches=right.index(left.row_key, all_matches=True)) rows = left.rows() self.assertTrue(rows.all(rows.matches.map(lambda x: x.idx) == hl.range(0, rows.row_idx))) @fails_service_backend() @fails_local_backend() def test_naive_coalesce(self): mt = self.get_mt(min_partitions=8) self.assertEqual(mt.n_partitions(), 8) repart = mt.naive_coalesce(2) self.assertTrue(mt._same(repart)) def test_coalesce_with_no_rows(self): mt = self.get_mt().filter_rows(False) self.assertEqual(mt.repartition(1).count_rows(), 0) def test_literals_rebuild(self): mt = hl.utils.range_matrix_table(1, 1) mt = mt.annotate_rows(x=hl.if_else(hl.literal([1,2,3])[mt.row_idx] < hl.rand_unif(10, 11), mt.globals, hl.struct())) mt._force_count_rows() @fails_service_backend() def test_globals_lowering(self): mt = hl.utils.range_matrix_table(1, 1).annotate_globals(x=1) lit = hl.literal(hl.utils.Struct(x = 0)) mt.annotate_rows(foo=hl.agg.collect(mt.globals == lit))._force_count_rows() mt.annotate_cols(foo=hl.agg.collect(mt.globals == lit))._force_count_rows() mt.filter_rows(mt.globals == lit)._force_count_rows() mt.filter_cols(mt.globals == lit)._force_count_rows() mt.filter_entries(mt.globals == lit)._force_count_rows() (mt.group_rows_by(mt.row_idx) .aggregate_rows(foo=hl.agg.collect(mt.globals == lit)) .aggregate(bar=hl.agg.collect(mt.globals == lit)) ._force_count_rows()) (mt.group_cols_by(mt.col_idx) .aggregate_cols(foo=hl.agg.collect(mt.globals == lit)) .aggregate(bar=hl.agg.collect(mt.globals == lit)) ._force_count_rows()) @skip_when_service_backend('ShuffleRead non-deterministically causes segfaults') def test_unions(self): dataset = hl.import_vcf(resource('sample2.vcf')) # test union_rows ds1 = dataset.filter_rows(dataset.locus.position % 2 == 1) ds2 = dataset.filter_rows(dataset.locus.position % 2 == 0) datasets = [ds1, ds2] r1 = ds1.union_rows(ds2) r2 = hl.MatrixTable.union_rows(*datasets) self.assertTrue(r1._same(r2)) with self.assertRaises(ValueError): ds1.filter_cols(ds1.s.endswith('5')).union_rows(ds2) # test union_cols ds = dataset.union_cols(dataset).union_cols(dataset) for s, count in ds.aggregate_cols(agg.counter(ds.s)).items(): self.assertEqual(count, 3) @skip_when_service_backend('Shuffler encoding/decoding is broken.') def test_union_cols_example(self): joined = hl.import_vcf(resource('joined.vcf')) left = hl.import_vcf(resource('joinleft.vcf')) right = hl.import_vcf(resource('joinright.vcf')) self.assertTrue(left.union_cols(right)._same(joined)) def test_union_cols_distinct(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.key_rows_by(x = mt.row_idx // 2) assert mt.union_cols(mt).count_rows() == 5 @skip_when_service_backend('flaky https://hail.zulipchat.com/#narrow/stream/127527-team/topic/CI.20Deploy.20Failure/near/237593731') def test_union_cols_outer(self): r, c = 10, 10 mt = hl.utils.range_matrix_table(2*r, c) mt = mt.annotate_entries(entry=hl.tuple([mt.row_idx, mt.col_idx])) mt2 = hl.utils.range_matrix_table(2*r, c) mt2 = mt2.key_rows_by(row_idx=mt2.row_idx + r) mt2 = mt2.key_cols_by(col_idx=mt2.col_idx + c) mt2 = mt2.annotate_entries(entry=hl.tuple([mt2.row_idx, mt2.col_idx])) expected = hl.utils.range_matrix_table(3*r, 2*c) missing = hl.missing(hl.ttuple(hl.tint, hl.tint)) expected = expected.annotate_entries(entry=hl.if_else( expected.col_idx < c, hl.if_else(expected.row_idx < 2*r, hl.tuple([expected.row_idx, expected.col_idx]), missing), hl.if_else(expected.row_idx >= r, hl.tuple([expected.row_idx, expected.col_idx]), missing))) assert mt.union_cols(mt2, row_join_type='outer')._same(expected) def test_union_rows_different_col_schema(self): mt = hl.utils.range_matrix_table(10, 10) mt2 = hl.utils.range_matrix_table(10, 10) mt2 = mt2.annotate_cols(x=mt2.col_idx + 1) mt2 = mt2.annotate_globals(g="foo") self.assertEqual(mt.union_rows(mt2).count_rows(), 20) def test_index(self): ds = self.get_mt(min_partitions=8) self.assertEqual(ds.n_partitions(), 8) ds = ds.add_row_index('rowidx').add_col_index('colidx') for i, struct in enumerate(ds.cols().select('colidx').collect()): self.assertEqual(i, struct.colidx) for i, struct in enumerate(ds.rows().select('rowidx').collect()): self.assertEqual(i, struct.rowidx) def test_choose_cols(self): ds = self.get_mt() indices = list(range(ds.count_cols())) random.shuffle(indices) old_order = ds.key_cols_by()['s'].collect() self.assertEqual(ds.choose_cols(indices).key_cols_by()['s'].collect(), [old_order[i] for i in indices]) self.assertEqual(ds.choose_cols(list(range(10))).s.collect(), old_order[:10]) @skip_when_service_backend('Shuffler encoding/decoding is broken.') def test_choose_cols_vs_explode(self): ds = self.get_mt() ds2 = ds.annotate_cols(foo=[0, 0]).explode_cols('foo').drop('foo') self.assertTrue(ds.choose_cols(sorted(list(range(ds.count_cols())) * 2))._same(ds2)) def test_distinct_by_row(self): orig_mt = hl.utils.range_matrix_table(10, 10) mt = orig_mt.key_rows_by(row_idx=orig_mt.row_idx // 2) self.assertTrue(mt.distinct_by_row().count_rows() == 5) self.assertTrue(orig_mt.union_rows(orig_mt).distinct_by_row()._same(orig_mt)) def test_distinct_by_col(self): orig_mt = hl.utils.range_matrix_table(10, 10) mt = orig_mt.key_cols_by(col_idx=orig_mt.col_idx // 2) self.assertTrue(mt.distinct_by_col().count_cols() == 5) self.assertTrue(orig_mt.union_cols(orig_mt).distinct_by_col()._same(orig_mt)) def test_aggregation_with_no_aggregators(self): mt = hl.utils.range_matrix_table(3, 3) self.assertEqual(mt.group_rows_by(mt.row_idx).aggregate().count_rows(), 3) self.assertEqual(mt.group_cols_by(mt.col_idx).aggregate().count_cols(), 3) @fails_service_backend() def test_computed_key_join_1(self): ds = self.get_mt() kt = hl.Table.parallelize( [{'key': 0, 'value': True}, {'key': 1, 'value': False}], hl.tstruct(key=hl.tint32, value=hl.tbool), key=['key']) ds = ds.annotate_rows(key=ds.locus.position % 2) ds = ds.annotate_rows(value=kt[ds['key']]['value']) rt = ds.rows() self.assertTrue( rt.all(((rt.locus.position % 2) == 0) == rt['value'])) @fails_service_backend() def test_computed_key_join_2(self): # multiple keys ds = self.get_mt() kt = hl.Table.parallelize( [{'key1': 0, 'key2': 0, 'value': 0}, {'key1': 1, 'key2': 0, 'value': 1}, {'key1': 0, 'key2': 1, 'value': -2}, {'key1': 1, 'key2': 1, 'value': -1}], hl.tstruct(key1=hl.tint32, key2=hl.tint32, value=hl.tint32), key=['key1', 'key2']) ds = ds.annotate_rows(key1=ds.locus.position % 2, key2=ds.info.DP % 2) ds = ds.annotate_rows(value=kt[ds.key1, ds.key2]['value']) rt = ds.rows() self.assertTrue( rt.all((rt.locus.position % 2) - 2 * (rt.info.DP % 2) == rt['value'])) @fails_service_backend() def test_computed_key_join_3(self): # duplicate row keys ds = self.get_mt() kt = hl.Table.parallelize( [{'culprit': 'InbreedingCoeff', 'foo': 'bar', 'value': 'IB'}], hl.tstruct(culprit=hl.tstr, foo=hl.tstr, value=hl.tstr), key=['culprit', 'foo']) ds = ds.annotate_rows( dsfoo='bar', info=ds.info.annotate(culprit=[ds.info.culprit, "foo"])) ds = ds.explode_rows(ds.info.culprit) ds = ds.annotate_rows(value=kt[ds.info.culprit, ds.dsfoo]['value']) rt = ds.rows() self.assertTrue( rt.all(hl.if_else( rt.info.culprit == "InbreedingCoeff", rt['value'] == "IB", hl.is_missing(rt['value'])))) @fails_service_backend() @fails_local_backend() def test_interval_join(self): left = hl.utils.range_matrix_table(50, 1, n_partitions=10) intervals = hl.utils.range_table(4) intervals = intervals.key_by(interval=hl.interval(intervals.idx * 10, intervals.idx * 10 + 5)) left = left.annotate_rows(interval_matches=intervals.index(left.row_key)) rows = left.rows() self.assertTrue(rows.all(hl.case() .when(rows.row_idx % 10 < 5, rows.interval_matches.idx == rows.row_idx // 10) .default(hl.is_missing(rows.interval_matches)))) @fails_service_backend() @fails_local_backend() def test_interval_product_join(self): left = hl.utils.range_matrix_table(50, 1, n_partitions=8) intervals = hl.utils.range_table(25) intervals = intervals.key_by(interval=hl.interval( 1 + (intervals.idx // 5) * 10 + (intervals.idx % 5), (1 + intervals.idx // 5) * 10 - (intervals.idx % 5))) intervals = intervals.annotate(i=intervals.idx % 5) left = left.annotate_rows(interval_matches=intervals.index(left.row_key, all_matches=True)) rows = left.rows() self.assertTrue(rows.all(hl.sorted(rows.interval_matches.map(lambda x: x.i)) == hl.range(0, hl.min(rows.row_idx % 10, 10 - rows.row_idx % 10)))) def test_entry_join_self(self): mt1 = hl.utils.range_matrix_table(10, 10, n_partitions=4).choose_cols([9, 8, 7, 6, 5, 4, 3, 2, 1, 0]) mt1 = mt1.annotate_entries(x=10 * mt1.row_idx + mt1.col_idx) self.assertEqual(mt1[mt1.row_idx, mt1.col_idx].dtype, mt1.entry.dtype) mt_join = mt1.annotate_entries(x2=mt1[mt1.row_idx, mt1.col_idx].x) mt_join_entries = mt_join.entries() self.assertTrue(mt_join_entries.all(mt_join_entries.x == mt_join_entries.x2)) @fails_service_backend() def test_entry_join_const(self): mt1 = hl.utils.range_matrix_table(10, 10, n_partitions=4) mt1 = mt1.annotate_entries(x=mt1.row_idx + mt1.col_idx) mt2 = hl.utils.range_matrix_table(1, 1, n_partitions=1) mt2 = mt2.annotate_entries(foo=10101) mt_join = mt1.annotate_entries(**mt2[mt1.row_idx // 100, mt1.col_idx // 100]) mt_join_entries = mt_join.entries() self.assertTrue(mt_join_entries.all(mt_join_entries['foo'] == 10101)) def test_entry_join_missingness(self): mt1 = hl.utils.range_matrix_table(10, 10, n_partitions=4) mt1 = mt1.annotate_entries(x=mt1.row_idx + mt1.col_idx) mt2 = mt1.filter_cols(mt1.col_idx % 2 == 0) mt2 = mt2.filter_rows(mt2.row_idx % 2 == 0) mt_join = mt1.annotate_entries(x2=mt2[mt1.row_idx, mt1.col_idx].x * 10) mt_join_entries = mt_join.entries() kept = mt_join_entries.filter((mt_join_entries.row_idx % 2 == 0) & (mt_join_entries.col_idx % 2 == 0)) removed = mt_join_entries.filter(~((mt_join_entries.row_idx % 2 == 0) & (mt_join_entries.col_idx % 2 == 0))) self.assertTrue(kept.all(hl.is_defined(kept.x2) & (kept.x2 == kept.x * 10))) self.assertTrue(removed.all(hl.is_missing(removed.x2))) def test_entries_table_length_and_fields(self): mt = hl.utils.range_matrix_table(10, 10, n_partitions=4) mt = mt.annotate_entries(x=mt.col_idx + mt.row_idx) et = mt.entries() self.assertEqual(et.count(), 100) self.assertTrue(et.all(et.x == et.col_idx + et.row_idx)) def test_entries_table_no_keys(self): mt = hl.utils.range_matrix_table(2, 2) mt = mt.annotate_entries(x = (mt.row_idx, mt.col_idx)) original_order = [ hl.utils.Struct(row_idx=0, col_idx=0, x=(0, 0)), hl.utils.Struct(row_idx=0, col_idx=1, x=(0, 1)), hl.utils.Struct(row_idx=1, col_idx=0, x=(1, 0)), hl.utils.Struct(row_idx=1, col_idx=1, x=(1, 1)), ] assert mt.entries().collect() == original_order assert mt.key_cols_by().entries().collect() == original_order assert mt.key_rows_by().key_cols_by().entries().collect() == original_order assert mt.key_rows_by().entries().collect() == sorted(original_order, key=lambda x: x.col_idx) @fails_service_backend() def test_entries_table_with_out_of_order_row_key_fields(self): mt = hl.utils.range_matrix_table(10, 10, 1) mt = mt.select_rows(key2=0, key1=mt.row_idx) mt = mt.key_rows_by(mt.key1, mt.key2) mt.entries()._force_count() def test_filter_cols_required_entries(self): mt1 = hl.utils.range_matrix_table(10, 10, n_partitions=4) mt1 = mt1.filter_cols(mt1.col_idx < 3) self.assertEqual(len(mt1.entries().collect()), 30) def test_filter_cols_with_global_references(self): mt = hl.utils.range_matrix_table(10, 10) s = hl.literal({1, 3, 5, 7}) self.assertEqual(mt.filter_cols(s.contains(mt.col_idx)).count_cols(), 4) def test_filter_cols_agg(self): mt = hl.utils.range_matrix_table(10, 10) assert mt.filter_cols(hl.agg.count() > 5).count_cols() == 10 def test_vcf_regression(self): ds = hl.import_vcf(resource('33alleles.vcf')) self.assertEqual( ds.filter_rows(ds.alleles.length() == 2).count_rows(), 0) def test_field_groups(self): ds = self.get_mt() df = ds.annotate_rows(row_struct=ds.row).rows() self.assertTrue(df.all((df.info == df.row_struct.info) & (df.qual == df.row_struct.qual))) ds2 = ds.add_col_index() df = ds2.annotate_cols(col_struct=ds2.col).cols() self.assertTrue(df.all((df.col_idx == df.col_struct.col_idx))) df = ds.annotate_entries(entry_struct=ds.entry).entries() self.assertTrue(df.all( ((hl.is_missing(df.GT) | (df.GT == df.entry_struct.GT)) & (df.AD == df.entry_struct.AD)))) @fails_service_backend() @fails_local_backend() def test_filter_partitions(self): ds = self.get_mt(min_partitions=8) self.assertEqual(ds.n_partitions(), 8) self.assertEqual(ds._filter_partitions([0, 1, 4]).n_partitions(), 3) self.assertEqual(ds._filter_partitions(range(3)).n_partitions(), 3) self.assertEqual(ds._filter_partitions([4, 5, 7], keep=False).n_partitions(), 5) self.assertTrue( ds._same(hl.MatrixTable.union_rows( ds._filter_partitions([0, 3, 7]), ds._filter_partitions([0, 3, 7], keep=False)))) @skip_when_service_backend('Shuffler encoding/decoding is broken.') def test_from_rows_table(self): mt = hl.import_vcf(resource('sample.vcf')) mt = mt.annotate_globals(foo='bar') rt = mt.rows() rm = hl.MatrixTable.from_rows_table(rt) self.assertTrue(rm._same(mt.filter_cols(False).select_entries().key_cols_by().select_cols())) def test_sample_rows(self): ds = self.get_mt() ds_small = ds.sample_rows(0.01) self.assertTrue(ds_small.count_rows() < ds.count_rows()) @fails_service_backend() def test_read_stored_cols(self): ds = self.get_mt() ds = ds.annotate_globals(x='foo') f = new_temp_file(extension='mt') ds.write(f) t = hl.read_table(f + '/cols') self.assertTrue(ds.cols().key_by()._same(t)) @skip_when_service_backend('Shuffler encoding/decoding is broken.') def test_read_stored_rows(self): ds = self.get_mt() ds = ds.annotate_globals(x='foo') f = new_temp_file(extension='mt') ds.write(f) t = hl.read_table(f + '/rows') self.assertTrue(ds.rows()._same(t)) def test_read_stored_globals(self): ds = self.get_mt() ds = ds.annotate_globals(x=5, baz='foo') f = new_temp_file(extension='mt') ds.write(f) t = hl.read_table(f + '/globals') self.assertTrue(ds.globals_table()._same(t)) @fails_service_backend() def test_indexed_read(self): mt = hl.utils.range_matrix_table(2000, 100, 10) f = new_temp_file(extension='mt') mt.write(f) mt2 = hl.read_matrix_table(f, _intervals=[ hl.Interval(start=150, end=250, includes_start=True, includes_end=False), hl.Interval(start=250, end=500, includes_start=True, includes_end=False), ]) self.assertEqual(mt2.n_partitions(), 2) self.assertTrue(mt.filter_rows((mt.row_idx >= 150) & (mt.row_idx < 500))._same(mt2)) mt2 = hl.read_matrix_table(f, _intervals=[ hl.Interval(start=150, end=250, includes_start=True, includes_end=False), hl.Interval(start=250, end=500, includes_start=True, includes_end=False), ], _filter_intervals=True) self.assertEqual(mt2.n_partitions(), 3) self.assertTrue(mt.filter_rows((mt.row_idx >= 150) & (mt.row_idx < 500))._same(mt2)) @fails_service_backend() def test_indexed_read_vcf(self): vcf = self.get_mt(10) f = new_temp_file(extension='mt') vcf.write(f) l1, l2, l3, l4 = hl.Locus('20', 10000000), hl.Locus('20', 11000000), hl.Locus('20', 13000000), hl.Locus('20', 14000000) mt = hl.read_matrix_table(f, _intervals=[ hl.Interval(start=l1, end=l2), hl.Interval(start=l3, end=l4), ]) self.assertEqual(mt.n_partitions(), 2) p = (vcf.locus >= l1) & (vcf.locus < l2) q = (vcf.locus >= l3) & (vcf.locus < l4) self.assertTrue(vcf.filter_rows(p | q)._same(mt)) @fails_service_backend() def test_codecs_matrix(self): from hail.utils.java import scala_object supported_codecs = scala_object(Env.hail().io, 'BufferSpec').specs() ds = self.get_mt() temp = new_temp_file(extension='mt') for codec in supported_codecs: ds.write(temp, overwrite=True, _codec_spec=codec.toString()) ds2 = hl.read_matrix_table(temp) self.assertTrue(ds._same(ds2)) @fails_service_backend() def test_codecs_table(self): from hail.utils.java import scala_object supported_codecs = scala_object(Env.hail().io, 'BufferSpec').specs() rt = self.get_mt().rows() temp = new_temp_file(extension='ht') for codec in supported_codecs: rt.write(temp, overwrite=True, _codec_spec=codec.toString()) rt2 = hl.read_table(temp) self.assertTrue(rt._same(rt2)) @fails_service_backend() def test_fix3307_read_mt_wrong(self): mt = hl.import_vcf(resource('sample2.vcf')) mt = hl.split_multi_hts(mt) mt.write('/tmp/foo.mt', overwrite=True) mt2 = hl.read_matrix_table('/tmp/foo.mt') t = hl.read_table('/tmp/foo.mt/rows') self.assertTrue(mt.rows()._same(t)) self.assertTrue(mt2.rows()._same(t)) self.assertTrue(mt._same(mt2)) def test_rename(self): dataset = self.get_mt() renamed1 = dataset.rename({'locus': 'locus2', 'info': 'info2', 's': 'info'}) self.assertEqual(renamed1['locus2']._type, dataset['locus']._type) self.assertEqual(renamed1['info2']._type, dataset['info']._type) self.assertEqual(renamed1['info']._type, dataset['s']._type) self.assertEqual(renamed1['info']._indices, renamed1._col_indices) self.assertFalse('locus' in renamed1._fields) self.assertFalse('s' in renamed1._fields) with self.assertRaises(ValueError): dataset.rename({'locus': 'info'}) with self.assertRaises(ValueError): dataset.rename({'locus': 'a', 's': 'a'}) with self.assertRaises(LookupError): dataset.rename({'foo': 'a'}) def test_range(self): ds = hl.utils.range_matrix_table(100, 10) self.assertEqual(ds.count_rows(), 100) self.assertEqual(ds.count_cols(), 10) et = ds.annotate_entries(entry_idx=10 * ds.row_idx + ds.col_idx).entries().add_index() self.assertTrue(et.all(et.idx == et.entry_idx)) def test_filter_entries(self): ds = hl.utils.range_matrix_table(100, 10) ds = ds.annotate_rows(foo=5) # triggered a RV bug ds = ds.annotate_cols(bar=5) ds = ds.filter_entries((ds.col_idx * ds.row_idx) % 4 == 0) entries = ds.entries() self.assertTrue(entries.all((entries.col_idx * entries.row_idx) % 4 == 0)) def test_filter_na(self): mt = hl.utils.range_matrix_table(1, 1) self.assertEqual(mt.filter_rows(hl.missing(hl.tbool)).count_rows(), 0) self.assertEqual(mt.filter_cols(hl.missing(hl.tbool)).count_cols(), 0) self.assertEqual(mt.filter_entries(hl.missing(hl.tbool)).entries().count(), 0) @fails_service_backend() def test_to_table_on_various_fields(self): mt = hl.utils.range_matrix_table(3, 4) globe = 'the globe!' sample_ids = ['Bob', 'Alice', 'David', 'Carol'] entries = [1, 0, 3, 2] rows = ['1:3:A:G', '1:2:A:G', '1:0:A:G'] sorted_rows = sorted(rows) mt = mt.annotate_globals(globe=globe) mt = mt.annotate_cols(s=hl.array(sample_ids)[mt.col_idx]).key_cols_by('s') mt = mt.annotate_entries(e=hl.array(entries)[mt.col_idx]) mt = mt.annotate_rows(r=hl.array(rows)[mt.row_idx]).key_rows_by('r') self.assertEqual(mt.globe.collect(), [globe]) self.assertEqual(mt.s.collect(), sample_ids) self.assertEqual((mt.s + '1').collect(), [s + '1' for s in sample_ids]) self.assertEqual(('1' + mt.s).collect(), ['1' + s for s in sample_ids]) self.assertEqual(mt.s.take(1), [sample_ids[0]]) self.assertEqual(mt.e.collect(), entries * 3) self.assertEqual(mt.e.take(1), [entries[0]]) self.assertEqual(mt.row_idx.collect(), [2, 1, 0]) self.assertEqual(mt.r.collect(), sorted_rows) self.assertEqual(mt.r.take(1), [sorted_rows[0]]) self.assertEqual(mt.col_key.collect(), [hl.Struct(s=s) for s in sample_ids]) self.assertEqual(mt.col.collect(), [hl.Struct(s=s, col_idx=i) for i, s in enumerate(sample_ids)]) self.assertEqual(mt.row_key.collect(), [hl.Struct(r=r) for r in sorted_rows]) self.assertEqual(mt.row.collect(), sorted([hl.Struct(r=r, row_idx=i) for i, r in enumerate(rows)], key=lambda x: x.r)) self.assertEqual(mt.entry.collect(), [hl.Struct(e=e) for _ in sorted_rows for e in entries]) self.assertEqual(mt.cols().s.collect(), sorted(sample_ids)) self.assertEqual(mt.cols().s.take(1), [sorted(sample_ids)[0]]) self.assertEqual(mt.entries().e.collect(), sorted(entries) * 3) self.assertEqual(mt.entries().e.take(1), [sorted(entries)[0]]) self.assertEqual(mt.rows().row_idx.collect(), [2, 1, 0]) self.assertEqual(mt.rows().r.collect(), sorted_rows) self.assertEqual(mt.rows().r.take(1), [sorted_rows[0]]) @fails_service_backend() def test_order_by(self): ht = hl.utils.range_table(10) self.assertEqual(ht.order_by('idx').idx.collect(), list(range(10))) self.assertEqual(ht.order_by(hl.asc('idx')).idx.collect(), list(range(10))) self.assertEqual(ht.order_by(hl.desc('idx')).idx.collect(), list(range(10))[::-1]) def test_order_by_complex_exprs(self): ht = hl.utils.range_table(10) assert ht.order_by(-ht.idx).idx.collect() == list(range(10))[::-1] @fails_service_backend() def test_order_by_intervals(self): intervals = {0: hl.Interval(0, 3, includes_start=True, includes_end=False), 1: hl.Interval(0, 4, includes_start=True, includes_end=True), 2: hl.Interval(1, 4, includes_start=True, includes_end=False), 3: hl.Interval(0, 4, includes_start=False, includes_end=False), 4: hl.Interval(0, 4, includes_start=True, includes_end=False)} ht = hl.utils.range_table(5) ht = ht.annotate_globals(ilist=intervals) ht = ht.annotate(interval=ht['ilist'][ht['idx']]) ht = ht.order_by(ht['interval']) ordered = ht['interval'].collect() expected = [intervals[i] for i in [0, 4, 1, 3, 2]] self.assertEqual(ordered, expected) def test_range_matrix_table(self): mt = hl.utils.range_matrix_table(13, 7, n_partitions=5) self.assertEqual(mt.globals.dtype, hl.tstruct()) self.assertEqual(mt.row.dtype, hl.tstruct(row_idx=hl.tint32)) self.assertEqual(mt.col.dtype, hl.tstruct(col_idx=hl.tint32)) self.assertEqual(mt.entry.dtype, hl.tstruct()) self.assertEqual(list(mt.row_key), ['row_idx']) self.assertEqual(list(mt.col_key), ['col_idx']) self.assertEqual([r.row_idx for r in mt.rows().collect()], list(range(13))) self.assertEqual([r.col_idx for r in mt.cols().collect()], list(range(7))) def test_range_matrix_table_0_rows_0_cols(self): mt = hl.utils.range_matrix_table(0, 0) self.assertEqual(mt.col_idx.collect(), []) self.assertEqual(mt.row_idx.collect(), []) mt = mt.annotate_entries(x=mt.row_idx * mt.col_idx) self.assertEqual(mt.x.collect(), []) def test_make_table(self): mt = hl.utils.range_matrix_table(3, 2) mt = mt.select_entries(x=mt.row_idx * mt.col_idx) mt = mt.key_cols_by(col_idx=hl.str(mt.col_idx)) t = hl.Table.parallelize( [{'row_idx': 0, '0.x': 0, '1.x': 0}, {'row_idx': 1, '0.x': 0, '1.x': 1}, {'row_idx': 2, '0.x': 0, '1.x': 2}], hl.tstruct(**{'row_idx': hl.tint32, '0.x': hl.tint32, '1.x': hl.tint32}), key='row_idx') self.assertTrue(mt.make_table()._same(t)) def test_make_table_empty_entry_field(self): mt = hl.utils.range_matrix_table(3, 2) mt = mt.select_entries(**{'': mt.row_idx * mt.col_idx}) mt = mt.key_cols_by(col_idx=hl.str(mt.col_idx)) t = mt.make_table() self.assertEqual( t.row.dtype, hl.tstruct(**{'row_idx': hl.tint32, '0': hl.tint32, '1': hl.tint32})) def test_make_table_sep(self): mt = hl.utils.range_matrix_table(3, 2) mt = mt.select_entries(x=mt.row_idx * mt.col_idx) mt = mt.key_cols_by(col_idx=hl.str(mt.col_idx)) t = mt.make_table() assert list(t.row) == ['row_idx', '0.x', '1.x'] t = mt.make_table(separator='__') assert list(t.row) == ['row_idx', '0__x', '1__x'] def test_make_table_row_equivalence(self): mt = hl.utils.range_matrix_table(3, 3) mt = mt.annotate_rows(r1 = hl.rand_norm(), r2 = hl.rand_norm()) mt = mt.annotate_entries(e1 = hl.rand_norm(), e2 = hl.rand_norm()) mt = mt.key_cols_by(col_idx=hl.str(mt.col_idx)) assert mt.make_table().select(*mt.row_value)._same(mt.rows()) def test_make_table_na_error(self): mt = hl.utils.range_matrix_table(3, 3).key_cols_by(s = hl.missing('str')) mt = mt.annotate_entries(e1 = 1) with pytest.raises(ValueError): mt.make_table() def test_transmute(self): mt = ( hl.utils.range_matrix_table(1, 1) .annotate_globals(g1=0, g2=0) .annotate_cols(c1=0, c2=0) .annotate_rows(r1=0, r2=0) .annotate_entries(e1=0, e2=0)) self.assertEqual(mt.transmute_globals(g3=mt.g2 + 1).globals.dtype, hl.tstruct(g1=hl.tint, g3=hl.tint)) self.assertEqual(mt.transmute_rows(r3=mt.r2 + 1).row_value.dtype, hl.tstruct(r1=hl.tint, r3=hl.tint)) self.assertEqual(mt.transmute_cols(c3=mt.c2 + 1).col_value.dtype, hl.tstruct(c1=hl.tint, c3=hl.tint)) self.assertEqual(mt.transmute_entries(e3=mt.e2 + 1).entry.dtype, hl.tstruct(e1=hl.tint, e3=hl.tint)) def test_transmute_agg(self): mt = hl.utils.range_matrix_table(1, 1).annotate_entries(x=5) mt = mt.transmute_rows(y = hl.agg.mean(mt.x)) def test_agg_explode(self): t = hl.Table.parallelize([ hl.struct(a=[1, 2]), hl.struct(a=hl.empty_array(hl.tint32)), hl.struct(a=hl.missing(hl.tarray(hl.tint32))), hl.struct(a=[3]), hl.struct(a=[hl.missing(hl.tint32)]) ]) self.assertCountEqual(t.aggregate(hl.agg.explode(lambda elt: hl.agg.collect(elt), t.a)), [1, 2, None, 3]) def test_agg_call_stats(self): t = hl.Table.parallelize([ hl.struct(c=hl.call(0, 0)), hl.struct(c=hl.call(0, 1)), hl.struct(c=hl.call(0, 2, phased=True)), hl.struct(c=hl.call(1)), hl.struct(c=hl.call(0)), hl.struct(c=hl.call()) ]) actual = t.aggregate(hl.agg.call_stats(t.c, ['A', 'T', 'G'])) expected = hl.struct(AC=[5, 2, 1], AF=[5.0 / 8.0, 2.0 / 8.0, 1.0 / 8.0], AN=8, homozygote_count=[1, 0, 0]) self.assertTrue(hl.Table.parallelize([actual]), hl.Table.parallelize([expected])) @fails_service_backend() @fails_local_backend() def test_hardy_weinberg_test(self): mt = hl.import_vcf(resource('HWE_test.vcf')) mt_two_sided = mt.select_rows(**hl.agg.hardy_weinberg_test(mt.GT, one_sided=False)) rt_two_sided = mt_two_sided.rows() expected_two_sided = hl.Table.parallelize([ hl.struct( locus=hl.locus('20', pos), alleles=alleles, het_freq_hwe=r, p_value=p ) for (pos, alleles, r, p) in [ (1, ['A', 'G'], 0.0, 0.5), (2, ['A', 'G'], 0.25, 0.5), (3, ['T', 'C'], 0.5357142857142857, 0.21428571428571427), (4, ['T', 'A'], 0.5714285714285714, 0.6571428571428573), (5, ['G', 'A'], 0.3333333333333333, 0.5)]], key=['locus', 'alleles']) self.assertTrue(rt_two_sided.filter(rt_two_sided.locus.position != 6)._same(expected_two_sided)) rt6_two_sided = rt_two_sided.filter(rt_two_sided.locus.position == 6).collect()[0] self.assertEqual(rt6_two_sided['p_value'], 0.5) self.assertTrue(math.isnan(rt6_two_sided['het_freq_hwe'])) mt_one_sided = mt.select_rows(**hl.agg.hardy_weinberg_test(mt.GT, one_sided=True)) rt_one_sided = mt_one_sided.rows() expected_one_sided = hl.Table.parallelize([ hl.struct( locus=hl.locus('20', pos), alleles=alleles, het_freq_hwe=r, p_value=p ) for (pos, alleles, r, p) in [ (1, ['A', 'G'], 0.0, 0.5), (2, ['A', 'G'], 0.25, 0.5), (3, ['T', 'C'], 0.5357142857142857, 0.7857142857142857), (4, ['T', 'A'], 0.5714285714285714, 0.5714285714285715), (5, ['G', 'A'], 0.3333333333333333, 0.5)]], key=['locus', 'alleles']) self.assertTrue(rt_one_sided.filter(rt_one_sided.locus.position != 6)._same(expected_one_sided)) rt6_one_sided = rt_one_sided.filter(rt_one_sided.locus.position == 6).collect()[0] self.assertEqual(rt6_one_sided['p_value'], 0.5) self.assertTrue(math.isnan(rt6_one_sided['het_freq_hwe'])) def test_hw_func_and_agg_agree(self): mt = hl.import_vcf(resource('sample.vcf')) mt_two_sided = mt.annotate_rows( stats=hl.agg.call_stats(mt.GT, mt.alleles), hw=hl.agg.hardy_weinberg_test(mt.GT, one_sided=False) ) mt_two_sided = mt_two_sided.annotate_rows( hw2=hl.hardy_weinberg_test( mt_two_sided.stats.homozygote_count[0], mt_two_sided.stats.AC[1] - 2 * mt_two_sided.stats.homozygote_count[1], mt_two_sided.stats.homozygote_count[1], one_sided=False ) ) rt_two_sided = mt_two_sided.rows() self.assertTrue(rt_two_sided.all(rt_two_sided.hw == rt_two_sided.hw2)) mt_one_sided = mt.annotate_rows( stats=hl.agg.call_stats(mt.GT, mt.alleles), hw=hl.agg.hardy_weinberg_test(mt.GT, one_sided=True) ) mt_one_sided = mt_one_sided.annotate_rows( hw2=hl.hardy_weinberg_test( mt_one_sided.stats.homozygote_count[0], mt_one_sided.stats.AC[1] - 2 * mt_one_sided.stats.homozygote_count[1], mt_one_sided.stats.homozygote_count[1], one_sided=True ) ) rt_one_sided = mt_one_sided.rows() self.assertTrue(rt_one_sided.all(rt_one_sided.hw == rt_one_sided.hw2)) @fails_service_backend() @fails_local_backend() def test_write_stage_locally(self): mt = self.get_mt() f = new_temp_file(extension='mt') mt.write(f, stage_locally=True) mt2 = hl.read_matrix_table(f) self.assertTrue(mt._same(mt2)) @skip_when_service_backend('ShuffleRead non-deterministically causes segfaults') def test_write_checkpoint_file(self): mt = self.get_mt() f = new_temp_file(extension='mt') cp = new_temp_file() mt.write(f, _checkpoint_file=cp) mt2 = hl.read_matrix_table(f) self.assertTrue(mt._same(mt2)) @fails_service_backend() def test_write_no_parts(self): mt = hl.utils.range_matrix_table(10, 10, 2).filter_rows(False) path = new_temp_file(extension='mt') path2 = new_temp_file(extension='mt') assert mt.checkpoint(path)._same(mt) hl.read_matrix_table(path, _drop_rows=True).write(path2) def test_nulls_in_distinct_joins(self): # MatrixAnnotateRowsTable uses left distinct join mr = hl.utils.range_matrix_table(7, 3, 4) matrix1 = mr.key_rows_by(new_key=hl.if_else((mr.row_idx == 3) | (mr.row_idx == 5), hl.missing(hl.tint32), mr.row_idx)) matrix2 = mr.key_rows_by(new_key=hl.if_else((mr.row_idx == 4) | (mr.row_idx == 6), hl.missing(hl.tint32), mr.row_idx)) joined = matrix1.select_rows(idx1=matrix1.row_idx, idx2=matrix2.rows()[matrix1.new_key].row_idx) def row(new_key, idx1, idx2): return hl.Struct(new_key=new_key, idx1=idx1, idx2=idx2) expected = [row(0, 0, 0), row(1, 1, 1), row(2, 2, 2), row(4, 4, None), row(6, 6, None), row(None, 3, None), row(None, 5, None)] self.assertEqual(joined.rows().collect(), expected) # union_cols uses inner distinct join matrix1 = matrix1.annotate_entries(ridx=matrix1.row_idx, cidx=matrix1.col_idx) matrix2 = matrix2.annotate_entries(ridx=matrix2.row_idx, cidx=matrix2.col_idx) matrix2 = matrix2.key_cols_by(col_idx=matrix2.col_idx + 3) expected = hl.utils.range_matrix_table(3, 6, 1) expected = expected.key_rows_by(new_key=expected.row_idx) expected = expected.annotate_entries(ridx=expected.row_idx, cidx=expected.col_idx % 3) self.assertTrue(matrix1.union_cols(matrix2)._same(expected)) @fails_service_backend() @fails_local_backend() def test_row_joins_into_table(self): rt = hl.utils.range_matrix_table(9, 13, 3) mt1 = rt.key_rows_by(idx=rt.row_idx) mt1 = mt1.select_rows(v=mt1.idx + 2) mt2 = rt.key_rows_by(idx=rt.row_idx, idx2=rt.row_idx + 1) mt2 = mt2.select_rows(v=mt2.idx + 2) t1 = hl.utils.range_table(10, 3) t2 = t1.key_by(t1.idx, idx2=t1.idx + 1) t1 = t1.select(v=t1.idx + 2) t2 = t2.select(v=t2.idx + 2) tinterval1 = t1.key_by(k=hl.interval(t1.idx, t1.idx, True, True)) tinterval1 = tinterval1.select(v=tinterval1.idx + 2) tinterval2 = t2.key_by(k=hl.interval(t2.key, t2.key, True, True)) tinterval2 = tinterval2.select(v=tinterval2.idx + 2) values = [hl.Struct(v=i + 2) for i in range(9)] # join on mt row key self.assertEqual(t1.index(mt1.row_key).collect(), values) self.assertEqual(t2.index(mt2.row_key).collect(), values) self.assertEqual(t1.index(mt1.idx).collect(), values) self.assertEqual(t2.index(mt2.idx, mt2.idx2).collect(), values) self.assertEqual(t1.index(mt2.idx).collect(), values) with self.assertRaises(hl.expr.ExpressionException): t2.index(mt2.idx).collect() with self.assertRaises(hl.expr.ExpressionException): t2.index(mt1.row_key).collect() # join on not mt row key self.assertEqual(t1.index(mt1.v).collect(), [hl.Struct(v=i + 2) for i in range(2, 10)] + [None]) self.assertEqual(t2.index(mt2.idx2, mt2.v).collect(), [hl.Struct(v=i + 2) for i in range(1, 10)]) with self.assertRaises(hl.expr.ExpressionException): t2.index(mt2.v).collect() # join on interval of first field of mt row key self.assertEqual(tinterval1.index(mt1.idx).collect(), values) self.assertEqual(tinterval1.index(mt1.row_key).collect(), values) self.assertEqual(tinterval1.index(mt2.idx).collect(), values) with self.assertRaises(hl.expr.ExpressionException): tinterval1.index(mt2.row_key).collect() with self.assertRaises(hl.expr.ExpressionException): tinterval2.index(mt2.idx).collect() with self.assertRaises(hl.expr.ExpressionException): tinterval2.index(mt2.row_key).collect() with self.assertRaises(hl.expr.ExpressionException): tinterval2.index(mt2.idx, mt2.idx2).collect() def test_refs_with_process_joins(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.annotate_entries( a_literal=hl.literal(['a']), a_col_join=hl.is_defined(mt.cols()[mt.col_key]), a_row_join=hl.is_defined(mt.rows()[mt.row_key]), an_entry_join=hl.is_defined(mt[mt.row_key, mt.col_key]), the_global_failure=hl.if_else(True, mt.globals, hl.missing(mt.globals.dtype)), the_row_failure=hl.if_else(True, mt.row, hl.missing(mt.row.dtype)), the_col_failure=hl.if_else(True, mt.col, hl.missing(mt.col.dtype)), the_entry_failure=hl.if_else(True, mt.entry, hl.missing(mt.entry.dtype)), ) mt.count() def test_aggregate_localize_false(self): dim1, dim2 = 10, 10 mt = hl.utils.range_matrix_table(dim1, dim2) mt = mt.annotate_entries(x = mt.aggregate_rows(hl.agg.max(mt.row_idx), _localize=False) + mt.aggregate_cols(hl.agg.max(mt.col_idx), _localize=False) + mt.aggregate_entries(hl.agg.max(mt.row_idx * mt.col_idx), _localize=False) ) assert mt.x.take(1)[0] == (dim1 - 1) + (dim2 - 1) + (dim1 -1) * (dim2 - 1) def test_agg_cols_filter(self): t = hl.utils.range_matrix_table(1, 10) tests = [(agg.filter(t.col_idx > 7, agg.collect(t.col_idx + 1).append(0)), [9, 10, 0]), (agg.filter(t.col_idx > 7, agg.explode(lambda elt: agg.collect(elt + 1).append(0), [t.col_idx, t.col_idx + 1])), [9, 10, 10, 11, 0]), (agg.filter(t.col_idx > 7, agg.group_by(t.col_idx % 3, hl.array(agg.collect_as_set(t.col_idx + 1)).append(0))), {0: [10, 0], 2: [9, 0]}) ] for aggregation, expected in tests: self.assertEqual(t.select_rows(result = aggregation).result.collect()[0], expected) def test_agg_cols_explode(self): t = hl.utils.range_matrix_table(1, 10) tests = [(agg.explode(lambda elt: agg.collect(elt + 1).append(0), hl.if_else(t.col_idx > 7, [t.col_idx, t.col_idx + 1], hl.empty_array(hl.tint32))), [9, 10, 10, 11, 0]), (agg.explode(lambda elt: agg.explode(lambda elt2: agg.collect(elt2 + 1).append(0), [elt, elt + 1]), hl.if_else(t.col_idx > 7, [t.col_idx, t.col_idx + 1], hl.empty_array(hl.tint32))), [9, 10, 10, 11, 10, 11, 11, 12, 0]), (agg.explode(lambda elt: agg.filter(elt > 8, agg.collect(elt + 1).append(0)), hl.if_else(t.col_idx > 7, [t.col_idx, t.col_idx + 1], hl.empty_array(hl.tint32))), [10, 10, 11, 0]), (agg.explode(lambda elt: agg.group_by(elt % 3, agg.collect(elt + 1).append(0)), hl.if_else(t.col_idx > 7, [t.col_idx, t.col_idx + 1], hl.empty_array(hl.tint32))), {0: [10, 10, 0], 1: [11, 0], 2:[9, 0]}) ] for aggregation, expected in tests: self.assertEqual(t.select_rows(result = aggregation).result.collect()[0], expected) def test_agg_cols_group_by(self): t = hl.utils.range_matrix_table(1, 10) tests = [(agg.group_by(t.col_idx % 2, hl.array(agg.collect_as_set(t.col_idx + 1)).append(0)), {0: [1, 3, 5, 7, 9, 0], 1: [2, 4, 6, 8, 10, 0]}), (agg.group_by(t.col_idx % 3, agg.filter(t.col_idx > 7, hl.array(agg.collect_as_set(t.col_idx + 1)).append(0))), {0: [10, 0], 1: [0], 2: [9, 0]}), (agg.group_by(t.col_idx % 3, agg.explode(lambda elt: agg.collect(elt + 1).append(0), hl.if_else(t.col_idx > 7, [t.col_idx, t.col_idx + 1], hl.empty_array(hl.tint32)))), {0: [10, 11, 0], 1: [0], 2:[9, 10, 0]}), ] for aggregation, expected in tests: self.assertEqual(t.select_rows(result = aggregation).result.collect()[0], expected) def localize_entries_with_both_none_is_rows_table(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.select_entries(x = mt.row_idx * mt.col_idx) localized = mt.localize_entries(entries_array_field_name=None, columns_array_field_name=None) rows_table = mt.rows() assert rows_table.collect() == localized.collect() assert rows_table.globals_table().collect() == localized.globals_table().collect() def localize_entries_with_none_cols_adds_no_globals(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.select_entries(x = mt.row_idx * mt.col_idx) localized = mt.localize_entries(entries_array_field_name=Env.get_uid(), columns_array_field_name=None) assert mt.globals_table().collect() == localized.globals_table().collect() def localize_entries_with_none_entries_changes_no_rows(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.select_entries(x = mt.row_idx * mt.col_idx) localized = mt.localize_entries(entries_array_field_name=None, columns_array_field_name=Env.get_uid()) rows_table = mt.rows() assert rows_table.collect() == localized.collect() def localize_entries_creates_arrays_of_entries_and_array_of_cols(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.select_entries(x = mt.row_idx * mt.col_idx) localized = mt.localize_entries(entries_array_field_name='entries', columns_array_field_name='cols') assert [[x * y for x in range(0, 10)] for y in range(0, 10)] == localized.entries.collect() assert range(0, 10) == localized.cols.collect() @fails_service_backend() @fails_local_backend() def test_multi_write(self): mt = self.get_mt() f = new_temp_file() hl.experimental.write_matrix_tables([mt, mt], f) path1 = f + '0.mt' path2 = f + '1.mt' mt1 = hl.read_matrix_table(path1) mt2 = hl.read_matrix_table(path2) self.assertTrue(mt._same(mt1)) self.assertTrue(mt._same(mt2)) self.assertTrue(mt1._same(mt2)) def test_matrix_type_equality(self): mt = hl.utils.range_matrix_table(1, 1) mt2 = mt.annotate_entries(foo=1) assert mt._type == mt._type assert mt._type != mt2._type def test_entry_filtering(self): mt = hl.utils.range_matrix_table(10, 10) mt = mt.filter_entries((mt.col_idx + mt.row_idx) % 2 == 0) assert mt.aggregate_entries(hl.agg.count()) == 50 assert all(x == 5 for x in mt.annotate_cols(x = hl.agg.count()).x.collect()) assert all(x == 5 for x in mt.annotate_rows(x = hl.agg.count()).x.collect()) mt = mt.unfilter_entries() assert mt.aggregate_entries(hl.agg.count()) == 100 assert all(x == 10 for x in mt.annotate_cols(x = hl.agg.count()).x.collect()) assert all(x == 10 for x in mt.annotate_rows(x = hl.agg.count()).x.collect()) def test_entry_filter_stats(self): mt = hl.utils.range_matrix_table(40, 20) mt = mt.filter_entries((mt.row_idx % 4 == 0) & (mt.col_idx % 4 == 0), keep=False) mt = mt.compute_entry_filter_stats() row_expected = hl.dict({True: hl.struct(n_filtered=5, n_remaining=15, fraction_filtered=hl.float32(0.25)), False: hl.struct(n_filtered=0, n_remaining=20, fraction_filtered=hl.float32(0.0))}) assert mt.aggregate_rows(hl.agg.all(mt.entry_stats_row == row_expected[mt.row_idx % 4 == 0])) col_expected = hl.dict({True: hl.struct(n_filtered=10, n_remaining=30, fraction_filtered=hl.float32(0.25)), False: hl.struct(n_filtered=0, n_remaining=40, fraction_filtered=hl.float32(0.0))}) assert mt.aggregate_cols(hl.agg.all(mt.entry_stats_col == col_expected[mt.col_idx % 4 == 0])) def test_annotate_col_agg_lowering(self): mt = hl.utils.range_matrix_table(10, 10, 2) mt = mt.annotate_cols(c1=[mt.col_idx, mt.col_idx * 2]) mt = mt.annotate_entries(e1=mt.col_idx + mt.row_idx, e2=[mt.col_idx * mt.row_idx, mt.col_idx * mt.row_idx ** 2]) common_ref = mt.c1[1] mt = mt.annotate_cols(exploded=hl.agg.explode(lambda e: common_ref + hl.agg.sum(e), mt.e2), array=hl.agg.array_agg(lambda e: common_ref + hl.agg.sum(e), mt.e2), filt=hl.agg.filter(mt.e1 < 5, hl.agg.sum(mt.e1) + common_ref), grouped=hl.agg.group_by(mt.e1 % 5, hl.agg.sum(mt.e1) + common_ref)) mt.cols()._force_count() def test_annotate_rows_scan_lowering(self): mt = hl.utils.range_matrix_table(10, 10, 2) mt = mt.annotate_rows(r1=[mt.row_idx, mt.row_idx * 2]) common_ref = mt.r1[1] mt = mt.annotate_rows(exploded=hl.scan.explode(lambda e: common_ref + hl.scan.sum(e), mt.r1), array=hl.scan.array_agg(lambda e: common_ref + hl.scan.sum(e), mt.r1), filt=hl.scan.filter(mt.row_idx < 5, hl.scan.sum(mt.row_idx) + common_ref), grouped=hl.scan.group_by(mt.row_idx % 5, hl.scan.sum(mt.row_idx) + common_ref), an_agg = hl.agg.sum(mt.row_idx * mt.col_idx)) mt.cols()._force_count() def test_show_runs(self): mt = self.get_mt() mt.show() def test_show_header(self): mt = hl.utils.range_matrix_table(1, 1) mt = mt.annotate_entries(x=1) mt = mt.key_cols_by(col_idx=mt.col_idx + 10) expected = ('+---------+-------+\n' '| row_idx | 10.x |\n' '+---------+-------+\n' '| int32 | int32 |\n' '+---------+-------+\n' '| 0 | 1 |\n' '+---------+-------+\n') actual = mt.show(handler=str) assert actual == expected def test_partitioned_write(self): mt = hl.utils.range_matrix_table(40, 3, 5) def test_parts(parts, expected=mt): parts = [ hl.Interval(start=hl.Struct(row_idx=s), end=hl.Struct(row_idx=e), includes_start=_is, includes_end=ie) for (s, e, _is, ie) in parts ] tmp = new_temp_file(extension='mt') mt.write(tmp, _partitions=parts) mt2 = hl.read_matrix_table(tmp) self.assertEqual(mt2.n_partitions(), len(parts)) self.assertTrue(mt2._same(expected)) test_parts([ (0, 40, True, False) ]) test_parts([ (-34, -31, True, True), (-30, 9, True, True), (10, 107, True, True), (108, 1000, True, True) ]) test_parts([ (0, 5, True, False), (35, 40, True, True) ], mt.filter_rows((mt.row_idx < 5) | (mt.row_idx >= 35))) test_parts([ (5, 35, True, False) ], mt.filter_rows((mt.row_idx >= 5) & (mt.row_idx < 35))) @skip_when_service_backend('Shuffler encoding/decoding is broken.') def test_partitioned_write_coerce(self): mt = hl.import_vcf(resource('sample.vcf')) parts = [ hl.Interval(hl.Locus('20', 10277621), hl.Locus('20', 11898992)) ] tmp = new_temp_file(extension='mt') mt.write(tmp, _partitions=parts) mt2 = hl.read_matrix_table(tmp) assert mt2.n_partitions() == len(parts) assert hl.filter_intervals(mt, parts)._same(mt2) def test_overwrite(self): mt = hl.utils.range_matrix_table(1, 1) f = new_temp_file(extension='mt') mt.write(f) with pytest.raises(hl.utils.FatalError, match= "file already exists"): mt.write(f) mt.write(f, overwrite=True) def test_invalid_metadata(self): with pytest.raises(hl.utils.FatalError, match='metadata does not contain file version'): hl.read_matrix_table(resource('0.1-1fd5cc7.vds')) def test_legacy_files_with_required_globals(self): hl.read_table(resource('required_globals.ht'))._force_count() hl.read_matrix_table(resource('required_globals.mt'))._force_count_rows() def test_matrix_native_write_range(self): mt = hl.utils.range_matrix_table(11, 3, n_partitions=3) f = new_temp_file() mt.write(f) assert hl.read_matrix_table(f)._same(mt) @fails_service_backend() @fails_local_backend() def test_matrix_multi_write_range(self): mts = [ hl.utils.range_matrix_table(11, 27, n_partitions=10), hl.utils.range_matrix_table(11, 3, n_partitions=10) ] f = new_temp_file() hl.experimental.write_matrix_tables(mts, f) assert hl.read_matrix_table(f + '0.mt')._same(mts[0]) assert hl.read_matrix_table(f + '1.mt')._same(mts[1]) def test_key_cols_by_extract_issue(self): mt = hl.utils.range_matrix_table(1000, 100) mt = mt.key_cols_by(col_id = hl.str(mt.col_idx)) mt = mt.add_col_index() mt.show() def test_filtered_entries_group_rows_by(self): mt = hl.utils.range_matrix_table(1, 1) mt = mt.filter_entries(False) mt = mt.group_rows_by(x=mt.row_idx // 10).aggregate(c=hl.agg.count()) assert mt.entries().collect() == [hl.Struct(x=0, col_idx=0, c=0)] def test_filtered_entries_group_cols_by(self): mt = hl.utils.range_matrix_table(1, 1) mt = mt.filter_entries(False) mt = mt.group_cols_by(x=mt.col_idx // 10).aggregate(c=hl.agg.count()) assert mt.entries().collect() == [hl.Struct(row_idx=0, x=0, c=0)] def test_invalid_field_ref_error(self): mt = hl.balding_nichols_model(2, 5, 5) mt2 = hl.balding_nichols_model(2, 5, 5) with pytest.raises(hl.expr.ExpressionException, match='Found fields from 2 objects:'): mt.annotate_entries(x = mt.GT.n_alt_alleles() * mt2.af) def test_invalid_field_ref_annotate(self): mt = hl.balding_nichols_model(2, 5, 5) mt2 = hl.balding_nichols_model(2, 5, 5) with pytest.raises(hl.expr.ExpressionException, match='source mismatch'): mt.annotate_entries(x = mt2.af) def test_read_write_all_types(): mt = create_all_values_matrix_table() tmp_file = new_temp_file() mt.write(tmp_file) assert hl.read_matrix_table(tmp_file)._same(mt) @fails_service_backend() @fails_local_backend() def test_read_write_balding_nichols_model(): mt = hl.balding_nichols_model(3, 10, 10) tmp_file = new_temp_file() mt.write(tmp_file) assert hl.read_matrix_table(tmp_file)._same(mt) @fails_service_backend() @fails_local_backend() def test_read_partitions(): ht = hl.utils.range_matrix_table(n_rows=100, n_cols=10, n_partitions=3) path = new_temp_file() ht.write(path) assert hl.read_matrix_table(path, _n_partitions=10).n_partitions() == 10
Validation/SiTrackerPhase2V/python/Phase2TrackerValidateDigi_cfi.py
ckamtsikis/cmssw
852
12673413
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer digiValid = DQMEDAnalyzer('Phase2TrackerValidateDigi', Verbosity = cms.bool(False), TopFolderName = cms.string("Ph2TkPixelDigi"), PixelPlotFillingFlag = cms.bool(False), OuterTrackerDigiSource = cms.InputTag("mix", "Tracker"), OuterTrackerDigiSimLinkSource = cms.InputTag("simSiPixelDigis", "Tracker"), InnerPixelDigiSource = cms.InputTag("simSiPixelDigis","Pixel"), InnerPixelDigiSimLinkSource = cms.InputTag("simSiPixelDigis", "Pixel"), PSimHitSource = cms.VInputTag('g4SimHits:TrackerHitsPixelBarrelLowTof', 'g4SimHits:TrackerHitsPixelBarrelHighTof', 'g4SimHits:TrackerHitsPixelEndcapLowTof', 'g4SimHits:TrackerHitsPixelEndcapHighTof', 'g4SimHits:TrackerHitsTIBLowTof', 'g4SimHits:TrackerHitsTIBHighTof', 'g4SimHits:TrackerHitsTIDLowTof', 'g4SimHits:TrackerHitsTIDHighTof', 'g4SimHits:TrackerHitsTOBLowTof', 'g4SimHits:TrackerHitsTOBHighTof', 'g4SimHits:TrackerHitsTECLowTof', 'g4SimHits:TrackerHitsTECHighTof'), SimTrackSource = cms.InputTag("g4SimHits"), SimVertexSource = cms.InputTag("g4SimHits"), GeometryType = cms.string('idealForDigi'), PtCutOff = cms.double(2.0), #9.5 EtaCutOff = cms.double(3.5), TOFLowerCutOff = cms.double(-12.5), TOFUpperCutOff = cms.double(12.5), TrackPtH = cms.PSet( Nbins = cms.int32(50), xmin = cms.double(0.0), xmax = cms.double(100.0), switch = cms.bool(True) ), TrackEtaH = cms.PSet( Nbins = cms.int32(45), xmin = cms.double(-4.5), xmax = cms.double(4.5), switch = cms.bool(True) ), TrackPhiH = cms.PSet( Nbins = cms.int32(64), xmin = cms.double(-3.2), xmax = cms.double(3.2), switch = cms.bool(True) ), SimHitElossH = cms.PSet( Nbins = cms.int32(100), xmin = cms.double(0.0), xmax = cms.double(100000.0), switch = cms.bool(True) ), SimHitDxH = cms.PSet( Nbins = cms.int32(1000), xmin = cms.double(0.0), xmax = cms.double(0.1), switch = cms.bool(True) ), SimHitDyH = cms.PSet( Nbins = cms.int32(1000), xmin = cms.double(0.0), xmax = cms.double(0.1), switch = cms.bool(True) ), SimHitDzH = cms.PSet( Nbins = cms.int32(150), xmin = cms.double(0.0), xmax = cms.double(0.03), switch = cms.bool(True) ), XYPositionMapH = cms.PSet( Nxbins = cms.int32(1250), xmin = cms.double(-1250.), xmax = cms.double(1250.), Nybins = cms.int32(1250), ymin = cms.double(-1250.), ymax = cms.double(1250.), switch = cms.bool(False) ), RZPositionMapH = cms.PSet( Nxbins = cms.int32(3000), xmin = cms.double(-3000.), xmax = cms.double(3000.), Nybins = cms.int32(1250), ymin = cms.double(0.), ymax = cms.double(1250.), switch = cms.bool(False) ), TOFEtaMapH = cms.PSet( Nxbins = cms.int32(45), xmin = cms.double(-4.5), xmax = cms.double(4.5), Nybins = cms.int32(100), ymin = cms.double(0.), ymax = cms.double(50.), switch = cms.bool(False) ), TOFPhiMapH = cms.PSet( Nxbins = cms.int32(64), xmin = cms.double(-3.2), xmax = cms.double(3.2), Nybins = cms.int32(100), ymin = cms.double(0.), ymax = cms.double(50.), switch = cms.bool(False) ), TOFZMapH = cms.PSet( Nxbins = cms.int32(3000), xmin = cms.double(-300.), xmax = cms.double(300.), Nybins = cms.int32(100), ymin = cms.double(0.), ymax = cms.double(50.), switch = cms.bool(False) ), TOFRMapH = cms.PSet( Nxbins = cms.int32(1200), xmin = cms.double(0.), xmax = cms.double(120.), Nybins = cms.int32(100), ymin = cms.double(0.), ymax = cms.double(50.), switch = cms.bool(False) ) ) from Configuration.ProcessModifiers.premix_stage2_cff import premix_stage2 premix_stage2.toModify(digiValid, InnerPixelDigiSource = "mixData:Pixel", OuterTrackerDigiSource = "mixData:Tracker", OuterTrackerDigiSimLinkSource = "mixData:Phase2OTDigiSimLink", InnerPixelDigiSimLinkSource = "mixData:PixelDigiSimLink", )
references/classification/utils.py
yoshitomo-matsubara/vision
12,063
12673450
import copy import datetime import errno import hashlib import os import time from collections import defaultdict, deque, OrderedDict import torch import torch.distributed as dist class SmoothedValue: """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ t = reduce_across_processes([self.count, self.total]) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value ) class MetricLogger: def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'") def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append(f"{name}: {str(meter)}") return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time) ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print(f"{header} Total time: {total_time_str}") class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel): """Maintains moving averages of model parameters using an exponential decay. ``ema_avg = decay * avg_model_param + (1 - decay) * model_param`` `torch.optim.swa_utils.AveragedModel <https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies>`_ is used to compute the EMA. """ def __init__(self, model, decay, device="cpu"): def ema_avg(avg_model_param, model_param, num_averaged): return decay * avg_model_param + (1 - decay) * model_param super().__init__(model, device, ema_avg) def update_parameters(self, model): for p_swa, p_model in zip(self.module.state_dict().values(), model.state_dict().values()): device = p_swa.device p_model_ = p_model.detach().to(device) if self.n_averaged == 0: p_swa.detach().copy_(p_model_) else: p_swa.detach().copy_(self.avg_fn(p_swa.detach(), p_model_, self.n_averaged.to(device))) self.n_averaged += 1 def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.inference_mode(): maxk = max(topk) batch_size = target.size(0) if target.ndim == 2: target = target.max(dim=1)[1] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target[None]) res = [] for k in topk: correct_k = correct[:k].flatten().sum(dtype=torch.float32) res.append(correct_k * (100.0 / batch_size)) return res def mkdir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() elif hasattr(args, "rank"): pass else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank ) setup_for_distributed(args.rank == 0) def average_checkpoints(inputs): """Loads checkpoints from inputs and returns a model with averaged weights. Original implementation taken from: https://github.com/pytorch/fairseq/blob/a48f235636557b8d3bc4922a6fa90f3a0fa57955/scripts/average_checkpoints.py#L16 Args: inputs (List[str]): An iterable of string paths of checkpoints to load from. Returns: A dict of string keys mapping to various values. The 'model' key from the returned dict should correspond to an OrderedDict mapping string parameter names to torch Tensors. """ params_dict = OrderedDict() params_keys = None new_state = None num_models = len(inputs) for fpath in inputs: with open(fpath, "rb") as f: state = torch.load( f, map_location=(lambda s, _: torch.serialization.default_restore_location(s, "cpu")), ) # Copies over the settings from the first checkpoint if new_state is None: new_state = state model_params = state["model"] model_params_keys = list(model_params.keys()) if params_keys is None: params_keys = model_params_keys elif params_keys != model_params_keys: raise KeyError( f"For checkpoint {f}, expected list of params: {params_keys}, but found: {model_params_keys}" ) for k in params_keys: p = model_params[k] if isinstance(p, torch.HalfTensor): p = p.float() if k not in params_dict: params_dict[k] = p.clone() # NOTE: clone() is needed in case of p is a shared parameter else: params_dict[k] += p averaged_params = OrderedDict() for k, v in params_dict.items(): averaged_params[k] = v if averaged_params[k].is_floating_point(): averaged_params[k].div_(num_models) else: averaged_params[k] //= num_models new_state["model"] = averaged_params return new_state def store_model_weights(model, checkpoint_path, checkpoint_key="model", strict=True): """ This method can be used to prepare weights files for new models. It receives as input a model architecture and a checkpoint from the training script and produces a file with the weights ready for release. Examples: from torchvision import models as M # Classification model = M.mobilenet_v3_large(pretrained=False) print(store_model_weights(model, './class.pth')) # Quantized Classification model = M.quantization.mobilenet_v3_large(pretrained=False, quantize=False) model.fuse_model() model.qconfig = torch.ao.quantization.get_default_qat_qconfig('qnnpack') _ = torch.ao.quantization.prepare_qat(model, inplace=True) print(store_model_weights(model, './qat.pth')) # Object Detection model = M.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, pretrained_backbone=False) print(store_model_weights(model, './obj.pth')) # Segmentation model = M.segmentation.deeplabv3_mobilenet_v3_large(pretrained=False, pretrained_backbone=False, aux_loss=True) print(store_model_weights(model, './segm.pth', strict=False)) Args: model (pytorch.nn.Module): The model on which the weights will be loaded for validation purposes. checkpoint_path (str): The path of the checkpoint we will load. checkpoint_key (str, optional): The key of the checkpoint where the model weights are stored. Default: "model". strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``True`` Returns: output_path (str): The location where the weights are saved. """ # Store the new model next to the checkpoint_path checkpoint_path = os.path.abspath(checkpoint_path) output_dir = os.path.dirname(checkpoint_path) # Deep copy to avoid side-effects on the model object. model = copy.deepcopy(model) checkpoint = torch.load(checkpoint_path, map_location="cpu") # Load the weights to the model to validate that everything works # and remove unnecessary weights (such as auxiliaries, etc) if checkpoint_key == "model_ema": del checkpoint[checkpoint_key]["n_averaged"] torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(checkpoint[checkpoint_key], "module.") model.load_state_dict(checkpoint[checkpoint_key], strict=strict) tmp_path = os.path.join(output_dir, str(model.__hash__())) torch.save(model.state_dict(), tmp_path) sha256_hash = hashlib.sha256() with open(tmp_path, "rb") as f: # Read and update hash string value in blocks of 4K for byte_block in iter(lambda: f.read(4096), b""): sha256_hash.update(byte_block) hh = sha256_hash.hexdigest() output_path = os.path.join(output_dir, "weights-" + str(hh[:8]) + ".pth") os.replace(tmp_path, output_path) return output_path def reduce_across_processes(val): if not is_dist_avail_and_initialized(): # nothing to sync, but we still convert to tensor for consistency with the distributed case. return torch.tensor(val) t = torch.tensor(val, device="cuda") dist.barrier() dist.all_reduce(t) return t
hatsploit/core/utils/ui/tip.py
EntySec/HatSploit
139
12673451
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020-2022 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import os import random from hatsploit.core.cli.badges import Badges from hatsploit.core.cli.colors import Colors from hatsploit.core.cli.parser import Parser from hatsploit.core.utils.ui.colors_script import ColorsScript from hatsploit.lib.config import Config class Tip: parser = Parser() config = Config() badges = Badges() colors = Colors() colors_script = ColorsScript() def print_random_tip(self): if os.path.exists(self.config.path_config['tips_path']): tips = [] all_tips = os.listdir(self.config.path_config['tips_path']) for tip in all_tips: tips.append(tip) if tips: tip = "" while not tip: random_tip = random.randint(0, len(tips) - 1) tip = self.colors_script.parse_colors_script( self.config.path_config['tips_path'] + tips[random_tip]) self.badges.print_empty(f"%newline%endHatSploit Tip: {tip}%end%newline") else: self.badges.print_warning("No tips detected.") else: self.badges.print_warning("No tips detected.")
venv/Lib/site-packages/ipykernel/gui/gtkembed.py
ajayiagbebaku/NFL-Model
652
12673458
<filename>venv/Lib/site-packages/ipykernel/gui/gtkembed.py """GUI support for the IPython ZeroMQ kernel - GTK toolkit support. """ #----------------------------------------------------------------------------- # Copyright (C) 2010-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING.txt, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # stdlib import sys # Third-party import gobject import gtk #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class GTKEmbed(object): """A class to embed a kernel into the GTK main event loop. """ def __init__(self, kernel): self.kernel = kernel # These two will later store the real gtk functions when we hijack them self.gtk_main = None self.gtk_main_quit = None def start(self): """Starts the GTK main event loop and sets our kernel startup routine. """ # Register our function to initiate the kernel and start gtk gobject.idle_add(self._wire_kernel) gtk.main() def _wire_kernel(self): """Initializes the kernel inside GTK. This is meant to run only once at startup, so it does its job and returns False to ensure it doesn't get run again by GTK. """ self.gtk_main, self.gtk_main_quit = self._hijack_gtk() gobject.timeout_add(int(1000*self.kernel._poll_interval), self.iterate_kernel) return False def iterate_kernel(self): """Run one iteration of the kernel and return True. GTK timer functions must return True to be called again, so we make the call to :meth:`do_one_iteration` and then return True for GTK. """ self.kernel.do_one_iteration() return True def stop(self): # FIXME: this one isn't getting called because we have no reliable # kernel shutdown. We need to fix that: once the kernel has a # shutdown mechanism, it can call this. self.gtk_main_quit() sys.exit() def _hijack_gtk(self): """Hijack a few key functions in GTK for IPython integration. Modifies pyGTK's main and main_quit with a dummy so user code does not block IPython. This allows us to use %run to run arbitrary pygtk scripts from a long-lived IPython session, and when they attempt to start or stop Returns ------- The original functions that have been hijacked: - gtk.main - gtk.main_quit """ def dummy(*args, **kw): pass # save and trap main and main_quit from gtk orig_main, gtk.main = gtk.main, dummy orig_main_quit, gtk.main_quit = gtk.main_quit, dummy return orig_main, orig_main_quit
app/ivr/__init__.py
itworxs/suite
890
12673477
from flask import Blueprint ivr = Blueprint('ivr', __name__) from . import views
dataviz/flagssubdivisions.py
Udzu/pudzu
119
12673536
<reponame>Udzu/pudzu from pudzu.charts import * df = pd.read_csv("datasets/flagssubdivisions.csv") FONT = sans fg, bg="black", "#EEEEEE" default_img = "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/No_flag.svg/1024px-No_flag.svg.png" def process(d): if not d: return None description = get_non(d, 'description') description = "{}".format(description) if description else " " size = get_non(d, 'size') size = "{} km²".format(size) if size else " " flag = Image.from_url_with_cache(get_non(d, 'image', default_img)).to_rgba() flag = flag.resize_fixed_aspect(width=318) if flag.width / flag.height > 1.8 else flag.resize((318,198)) flag = flag.pad(1 if "Ohio" not in d["name"] else 0, "grey") return Image.from_column([ Image.from_text(d['name'].replace(r'\n','\n'), FONT(28, bold=True), align="center", beard_line=True, fg=fg), Image.from_text(description, FONT(24, italics=True), fg=fg, beard_line=True), Image.from_text(size, FONT(24, italics=True), fg=fg, beard_line=True), flag ], padding=2, bg=bg, equal_widths=True) title = Image.from_text("Flags of the largest country subdivisions".upper(), FONT(68, bold=True), fg=fg, bg=bg, align="center").pad(30, bg).pad((0,0,0,10), bg) footer = Image.from_text("*Antarctic territorial claims are not recognised widely internationally, though the UK, France, Australia, New Zealand and Norway\nall recognize each other's claims. " "Some claims (specficially those of the UK, Argentina and Chile) overlap.", FONT(28), fg=fg, bg=bg).pad(10, bg) groups = list(remove_duplicates(df.group)) groups1 = [g for g in groups if g not in ["_E"]] array = [[dict(r) for _,r in df.iterrows() if r.group == g] for g in groups1] data = pd.DataFrame(array, index=groups1) grid1 = grid_chart(data, process, padding=(10,20), fg=fg, bg=bg, yalign=0, row_label=lambda r: Image.from_text("{}".format(data.index[r]).upper(), FONT(32, bold=True), align="center", line_spacing=3) if not data.index[r].startswith("_") else None).pad((10,0),bg) title2 = Image.from_text("Bonus: some proposed and secessionist flags".upper(), FONT(40, italics=True), fg=fg, bg=bg, align="center").pad(30, bg).pad(10, bg) groups2 = [g for g in groups if g in ["_E"]] array = [[dict(r) for _,r in df.iterrows() if r.group == g] for g in groups2] data = pd.DataFrame(array, index=groups2) grid2 = grid_chart(data, process, padding=(10,20), fg=fg, bg=bg, yalign=0, row_label=lambda r: Image.from_text("{}".format(data.index[r]).upper(), FONT(32, bold=True), align="center", line_spacing=3) if not data.index[r].startswith("_") else None).pad((10,0),bg) img = Image.from_column([title, grid1, footer, title2, grid2, Rectangle((0,20))], bg=bg) img.place(Image.from_text("/u/Udzu", FONT(24), fg=fg, bg=bg, padding=5).pad((1,1,0,0), fg), align=1, padding=5, copy=False) img.save("output/flagssubdivisions.png")
wetectron/engine/bbox_aug.py
akobiisr/wetectron
332
12673537
<gh_stars>100-1000 import torch import torchvision.transforms as TT from wetectron.config import cfg from wetectron.data import transforms as T from wetectron.structures.image_list import to_image_list from wetectron.structures.bounding_box import BoxList from wetectron.modeling.roi_heads.box_head.inference import make_roi_box_post_processor def im_detect_bbox_aug(model, images, device, rois=None): # Collect detections computed under different transformations boxlists_ts = [] for _ in range(len(images)): boxlists_ts.append([]) def add_preds_t(boxlists_t): for i, boxlist_t in enumerate(boxlists_t): if len(boxlists_ts[i]) == 0: # The first one is identity transform, no need to resize the boxlist boxlists_ts[i].append(boxlist_t) else: # Resize the boxlist as the first one boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size)) # Compute detections for the original image (identity transform) boxlists_i = im_detect_bbox( model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, device, rois=rois ) add_preds_t(boxlists_i) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: boxlists_hf = im_detect_bbox_hflip( model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, device, rois=rois ) add_preds_t(boxlists_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE boxlists_scl = im_detect_bbox_scale( model, images, scale, max_size, device, rois=rois ) add_preds_t(boxlists_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: boxlists_scl_hf = im_detect_bbox_scale( model, images, scale, max_size, device, hflip=True, rois=rois ) add_preds_t(boxlists_scl_hf) # Merge boxlists detected by different bbox aug params boxlists = [] for i, boxlist_ts in enumerate(boxlists_ts): if cfg.TEST.BBOX_AUG.HEUR == 'UNION': bbox = torch.cat([boxlist_t.bbox for boxlist_t in boxlist_ts]) scores = torch.cat([boxlist_t.get_field('scores') for boxlist_t in boxlist_ts]) elif cfg.TEST.BBOX_AUG.HEUR == 'AVG': bbox = torch.mean(torch.stack([boxlist_t.bbox for boxlist_t in boxlist_ts]) , dim=0) scores = torch.mean(torch.stack([boxlist_t.get_field('scores') for boxlist_t in boxlist_ts]), dim=0) else: raise ValueError('please use proper BBOX_AUG.HEUR ') boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode) boxlist.add_field('scores', scores) boxlists.append(boxlist) # Apply NMS and limit the final detections results = [] post_processor = make_roi_box_post_processor(cfg) for boxlist in boxlists: results.append(post_processor.filter_results(boxlist, cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES)) return results def im_detect_bbox(model, images, target_scale, target_max_size, device, rois=None): """ Performs bbox detection on the original image. """ transform = T.Compose([ T.Resize(target_scale, target_max_size), T.ToTensor(), T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, to_bgr255=cfg.INPUT.TO_BGR255 ) ]) t_images = [] t_rois = [] for image, roi in zip(images, rois): t_img, _, t_roi = transform(image, rois=roi) t_images.append(t_img) t_rois.append(t_roi) t_images = to_image_list(t_images, cfg.DATALOADER.SIZE_DIVISIBILITY) t_rois = [r.to(device) if r is not None else None for r in t_rois] return model(t_images.to(device), rois=t_rois) def im_detect_bbox_hflip(model, images, target_scale, target_max_size, device, rois=None): """ Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ transform = T.Compose([ T.Resize(target_scale, target_max_size), T.RandomHorizontalFlip(1.0), T.ToTensor(), T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, to_bgr255=cfg.INPUT.TO_BGR255 ) ]) t_images = [] t_rois = [] for image, roi in zip(images, rois): t_img, _, t_roi = transform(image, rois=roi) t_images.append(t_img) t_rois.append(t_roi) t_images = to_image_list(t_images, cfg.DATALOADER.SIZE_DIVISIBILITY) t_rois = [r.to(device) if r is not None else None for r in t_rois] boxlists = model(t_images.to(device), rois=t_rois) # Invert the detections computed on the flipped image boxlists_inv = [boxlist.transpose(0) for boxlist in boxlists] return boxlists_inv def im_detect_bbox_scale(model, images, target_scale, target_max_size, device, hflip=False, rois=None): """ Computes bbox detections at the given scale. Returns predictions in the scaled image space. """ if hflip: boxlists_scl = im_detect_bbox_hflip(model, images, target_scale, target_max_size, device, rois=rois) else: boxlists_scl = im_detect_bbox(model, images, target_scale, target_max_size, device, rois=rois) return boxlists_scl
AET/imagenet/algorithms/__init__.py
pjwu1997/teil_project
114
12673574
<reponame>pjwu1997/teil_project from .Algorithm import * from .UnsupervisedModel import UnsupervisedModel from .FeatureClassificationModel import FeatureClassificationModel
train.py
zaidhassanch/gector
582
12673592
import argparse import os from random import seed import torch from allennlp.data.iterators import BucketIterator from allennlp.data.vocabulary import DEFAULT_OOV_TOKEN, DEFAULT_PADDING_TOKEN from allennlp.data.vocabulary import Vocabulary from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from gector.bert_token_embedder import PretrainedBertEmbedder from gector.datareader import Seq2LabelsDatasetReader from gector.seq2labels_model import Seq2Labels from gector.trainer import Trainer from gector.wordpiece_indexer import PretrainedBertIndexer from utils.helpers import get_weights_name def fix_seed(): torch.manual_seed(1) torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True seed(43) def get_token_indexers(model_name, max_pieces_per_token=5, lowercase_tokens=True, special_tokens_fix=0, is_test=False): bert_token_indexer = PretrainedBertIndexer( pretrained_model=model_name, max_pieces_per_token=max_pieces_per_token, do_lowercase=lowercase_tokens, use_starting_offsets=True, special_tokens_fix=special_tokens_fix, is_test=is_test ) return {'bert': bert_token_indexer} def get_token_embedders(model_name, tune_bert=False, special_tokens_fix=0): take_grads = True if tune_bert > 0 else False bert_token_emb = PretrainedBertEmbedder( pretrained_model=model_name, top_layer_only=True, requires_grad=take_grads, special_tokens_fix=special_tokens_fix) token_embedders = {'bert': bert_token_emb} embedder_to_indexer_map = {"bert": ["bert", "bert-offsets"]} text_filed_emd = BasicTextFieldEmbedder(token_embedders=token_embedders, embedder_to_indexer_map=embedder_to_indexer_map, allow_unmatched_keys=True) return text_filed_emd def get_data_reader(model_name, max_len, skip_correct=False, skip_complex=0, test_mode=False, tag_strategy="keep_one", broken_dot_strategy="keep", lowercase_tokens=True, max_pieces_per_token=3, tn_prob=0, tp_prob=1, special_tokens_fix=0,): token_indexers = get_token_indexers(model_name, max_pieces_per_token=max_pieces_per_token, lowercase_tokens=lowercase_tokens, special_tokens_fix=special_tokens_fix, is_test=test_mode) reader = Seq2LabelsDatasetReader(token_indexers=token_indexers, max_len=max_len, skip_correct=skip_correct, skip_complex=skip_complex, test_mode=test_mode, tag_strategy=tag_strategy, broken_dot_strategy=broken_dot_strategy, lazy=True, tn_prob=tn_prob, tp_prob=tp_prob) return reader def get_model(model_name, vocab, tune_bert=False, predictor_dropout=0, label_smoothing=0.0, confidence=0, special_tokens_fix=0): token_embs = get_token_embedders(model_name, tune_bert=tune_bert, special_tokens_fix=special_tokens_fix) model = Seq2Labels(vocab=vocab, text_field_embedder=token_embs, predictor_dropout=predictor_dropout, label_smoothing=label_smoothing, confidence=confidence) return model def main(args): fix_seed() if not os.path.exists(args.model_dir): os.mkdir(args.model_dir) weights_name = get_weights_name(args.transformer_model, args.lowercase_tokens) # read datasets reader = get_data_reader(weights_name, args.max_len, skip_correct=bool(args.skip_correct), skip_complex=args.skip_complex, test_mode=False, tag_strategy=args.tag_strategy, lowercase_tokens=args.lowercase_tokens, max_pieces_per_token=args.pieces_per_token, tn_prob=args.tn_prob, tp_prob=args.tp_prob, special_tokens_fix=args.special_tokens_fix) train_data = reader.read(args.train_set) dev_data = reader.read(args.dev_set) default_tokens = [DEFAULT_OOV_TOKEN, DEFAULT_PADDING_TOKEN] namespaces = ['labels', 'd_tags'] tokens_to_add = {x: default_tokens for x in namespaces} # build vocab if args.vocab_path: vocab = Vocabulary.from_files(args.vocab_path) else: vocab = Vocabulary.from_instances(train_data, max_vocab_size={'tokens': 30000, 'labels': args.target_vocab_size, 'd_tags': 2}, tokens_to_add=tokens_to_add) vocab.save_to_files(os.path.join(args.model_dir, 'vocabulary')) print("Data is loaded") model = get_model(weights_name, vocab, tune_bert=args.tune_bert, predictor_dropout=args.predictor_dropout, label_smoothing=args.label_smoothing, special_tokens_fix=args.special_tokens_fix) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): if torch.cuda.device_count() > 1: cuda_device = list(range(torch.cuda.device_count())) else: cuda_device = 0 else: cuda_device = -1 if args.pretrain: model.load_state_dict(torch.load(os.path.join(args.pretrain_folder, args.pretrain + '.th'))) model = model.to(device) print("Model is set") optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, factor=0.1, patience=10) instances_per_epoch = None if not args.updates_per_epoch else \ int(args.updates_per_epoch * args.batch_size * args.accumulation_size) iterator = BucketIterator(batch_size=args.batch_size, sorting_keys=[("tokens", "num_tokens")], biggest_batch_first=True, max_instances_in_memory=args.batch_size * 20000, instances_per_epoch=instances_per_epoch, ) iterator.index_with(vocab) trainer = Trainer(model=model, optimizer=optimizer, scheduler=scheduler, iterator=iterator, train_dataset=train_data, validation_dataset=dev_data, serialization_dir=args.model_dir, patience=args.patience, num_epochs=args.n_epoch, cuda_device=cuda_device, shuffle=False, accumulated_batch_count=args.accumulation_size, cold_step_count=args.cold_steps_count, cold_lr=args.cold_lr, cuda_verbose_step=int(args.cuda_verbose_steps) if args.cuda_verbose_steps else None ) print("Start training") trainer.train() # Here's how to save the model. out_model = os.path.join(args.model_dir, 'model.th') with open(out_model, 'wb') as f: torch.save(model.state_dict(), f) print("Model is dumped") if __name__ == '__main__': # read parameters parser = argparse.ArgumentParser() parser.add_argument('--train_set', help='Path to the train data', required=True) parser.add_argument('--dev_set', help='Path to the dev data', required=True) parser.add_argument('--model_dir', help='Path to the model dir', required=True) parser.add_argument('--vocab_path', help='Path to the model vocabulary directory.' 'If not set then build vocab from data', default='') parser.add_argument('--batch_size', type=int, help='The size of the batch.', default=32) parser.add_argument('--max_len', type=int, help='The max sentence length' '(all longer will be truncated)', default=50) parser.add_argument('--target_vocab_size', type=int, help='The size of target vocabularies.', default=1000) parser.add_argument('--n_epoch', type=int, help='The number of epoch for training model.', default=20) parser.add_argument('--patience', type=int, help='The number of epoch with any improvements' ' on validation set.', default=3) parser.add_argument('--skip_correct', type=int, help='If set than correct sentences will be skipped ' 'by data reader.', default=1) parser.add_argument('--skip_complex', type=int, help='If set than complex corrections will be skipped ' 'by data reader.', choices=[0, 1, 2, 3, 4, 5], default=0) parser.add_argument('--tune_bert', type=int, help='If more then 0 then fine tune bert.', default=1) parser.add_argument('--tag_strategy', choices=['keep_one', 'merge_all'], help='The type of the data reader behaviour.', default='keep_one') parser.add_argument('--accumulation_size', type=int, help='How many batches do you want accumulate.', default=4) parser.add_argument('--lr', type=float, help='Set initial learning rate.', default=1e-5) parser.add_argument('--cold_steps_count', type=int, help='Whether to train only classifier layers first.', default=4) parser.add_argument('--cold_lr', type=float, help='Learning rate during cold_steps.', default=1e-3) parser.add_argument('--predictor_dropout', type=float, help='The value of dropout for predictor.', default=0.0) parser.add_argument('--lowercase_tokens', type=int, help='Whether to lowercase tokens.', default=0) parser.add_argument('--pieces_per_token', type=int, help='The max number for pieces per token.', default=5) parser.add_argument('--cuda_verbose_steps', help='Number of steps after which CUDA memory information is printed. ' 'Makes sense for local testing. Usually about 1000.', default=None) parser.add_argument('--label_smoothing', type=float, help='The value of parameter alpha for label smoothing.', default=0.0) parser.add_argument('--tn_prob', type=float, help='The probability to take TN from data.', default=0) parser.add_argument('--tp_prob', type=float, help='The probability to take TP from data.', default=1) parser.add_argument('--updates_per_epoch', type=int, help='If set then each epoch will contain the exact amount of updates.', default=0) parser.add_argument('--pretrain_folder', help='The name of the pretrain folder.') parser.add_argument('--pretrain', help='The name of the pretrain weights in pretrain_folder param.', default='') parser.add_argument('--transformer_model', choices=['bert', 'distilbert', 'gpt2', 'roberta', 'transformerxl', 'xlnet', 'albert'], help='Name of the transformer model.', default='roberta') parser.add_argument('--special_tokens_fix', type=int, help='Whether to fix problem with [CLS], [SEP] tokens tokenization.', default=1) args = parser.parse_args() main(args)
pygogo/main.py
reubano/pygogo
301
12673599
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: sw=4:ts=4:expandtab """ A Python logging library with super powers """ import sys import itertools as it from os import getcwd, path as p from argparse import RawTextHelpFormatter, ArgumentParser import pygogo as gogo HDLRS_FULL = tuple(h for h in dir(gogo.handlers) if h.endswith("hdlr")) HDLRS = tuple(h[:-5] for h in HDLRS_FULL) LEVELS = ("critical", "error", "warning", "info", "debug") FRMTRS_FULL = tuple(f for f in dir(gogo.formatters) if f.endswith("formatter")) FORMATS = tuple(f[:-10] for f in FRMTRS_FULL) CURDIR = p.basename(getcwd()) LOGFILE = "%s.log" % CURDIR parser = ArgumentParser( description="description: Logs a given message", prog="gogo", usage="%(prog)s [options] <message>", formatter_class=RawTextHelpFormatter, ) parser.add_argument( dest="message", nargs="?", default=sys.stdin, help="The message to log (default: reads from stdin).", ) parser.add_argument( "-l", "--level", metavar="LEVEL", choices=LEVELS, default="info", help=( "The level to log the message (default: info).\n" "Must be one of: %s,\n%s.\n\n" % (", ".join(LEVELS[:4]), ", ".join(LEVELS[4:])) ), ) parser.add_argument( "-n", "--name", default=CURDIR, help="The logger name (default: %s).\n\n" % CURDIR ) parser.add_argument( "-D", "--high-hdlr", metavar="HANDLER", choices=HDLRS, default="stderr", help=( "The high pass log handler (default: stderr).\n" "Must be one of: %s,\n%s.\n\n" % (", ".join(HDLRS[:4]), ", ".join(HDLRS[4:])) ), ) parser.add_argument( "-d", "--low-hdlr", metavar="HANDLER", choices=HDLRS, default="stdout", help=( "The low pass log handler (default: stdout).\n" "Must be one of: %s,\n%s.\n\n" % (", ".join(HDLRS[:4]), ", ".join(HDLRS[4:])) ), ) parser.add_argument( "-L", "--high-level", metavar="LEVEL", choices=LEVELS, default="warning", help=( "Min level to log to the high pass handler\n" "(default: warning). Must be one of: %s,\n%s.\n\n" % (", ".join(LEVELS[:1]), ", ".join(LEVELS[1:])) ), ) parser.add_argument( "-e", "--low-level", metavar="LEVEL", choices=LEVELS, default="debug", help=( "Min level to log to the low pass handler\n" "(default: debug). Must be one of: %s,\n%s.\n\n" % (", ".join(LEVELS[:1]), ", ".join(LEVELS[1:])) ), ) parser.add_argument( "-F", "--high-format", metavar="FORMAT", choices=FORMATS, default="basic", help=( "High pass handler log format (default: basic)." "\nMust be one of: %s,\n%s.\n\n" % (", ".join(FORMATS[:4]), ", ".join(FORMATS[4:])) ), ) parser.add_argument( "-o", "--low-format", metavar="FORMAT", choices=FORMATS, default="basic", help=( "Low pass handler log format (default: basic)." "\nMust be one of: %s,\n%s.\n\n" % (", ".join(FORMATS[:4]), ", ".join(FORMATS[4:])) ), ) parser.add_argument( "-m", "--monolog", action="store_true", default=False, help="Log high level events only to high pass handler.\n\n", ) parser.add_argument( "-f", "--filename", action="append", default=[LOGFILE], help=( "The filename to log to (default: %s).\nUsed in the following " "handlers: file.\n\n" ) % LOGFILE, ) parser.add_argument( "-s", "--subject", default=["You've got mail"], action="append", help=( "The log subject (default: You've got mail)." "\nUsed in the following handlers: email.\n\n" ), ) parser.add_argument( "-u", "--url", action="append", default=[""], help="The log url. Required for the following handlers:\nwebhook.\n\n", ) parser.add_argument( "-H", "--host", default=["localhost"], action="append", help=( "The host (default: localhost).\nUsed in the following handlers: " "socket and syslog.\n\n" ), ) parser.add_argument( "-p", "--port", metavar="NUM", type=int, action="append", default=[""], help=( "The port number (default: Python logging default).\nUsed in the " "following handlers: socket and syslog.\n\n" ), ) parser.add_argument( "-t", "--tcp", action="count", default=0, help=( "Use TCP instead of UDP.\nUsed in the following handlers: socket and " "syslog.\n\n" ), ) parser.add_argument( "-g", "--get", action="count", default=0, help=( "Use a GET request instead of POST.\nUsed in the following handlers: " "webhook.\n\n" ), ) parser.add_argument( "-v", "--version", help="Show version and exit.", action="store_true", default=False ) parser.add_argument( "-V", "--verbose", help="Increase output verbosity.", action="store_true", default=False, ) def run(): """CLI runner """ args = parser.parse_args() gogo_logger = gogo.Gogo(__name__, verbose=args.verbose).get_logger("run") if args.version: gogo_logger.info("gogo v%s" % gogo.__version__) exit(0) counted = {"get", "tcp"} appended = {"filename", "subject", "url", "host", "port"} items = args._get_kwargs() counted_args = [i for i in items if i[0] in counted] appended_args = [i for i in items if i[0] in appended] high_appended_args = [(k, v[0]) for k, v in appended_args] high_counted_args = [(k, v > 0) for k, v in counted_args] high_kwargs = dict(it.chain(high_appended_args, high_counted_args)) low_appended_args = [(k, v[-1]) for k, v in appended_args] low_counted_args = [(k, v > 1) for k, v in counted_args] low_kwargs = dict(it.chain(low_appended_args, low_counted_args)) high_hdlr = getattr(gogo.handlers, "%s_hdlr" % args.high_hdlr) low_hdlr = getattr(gogo.handlers, "%s_hdlr" % args.low_hdlr) high_format = getattr(gogo.formatters, "%s_formatter" % args.high_format) low_format = getattr(gogo.formatters, "%s_formatter" % args.low_format) nkwargs = { "verbose": args.verbose, "high_level": args.high_level.upper(), "low_level": args.low_level.upper(), "high_formatter": high_format, "low_formatter": low_format, "monolog": args.monolog, "high_hdlr": high_hdlr(**high_kwargs), "low_hdlr": low_hdlr(**low_kwargs), } logger = gogo.Gogo(args.name, **nkwargs).get_logger("runner") try: message = args.message.read() except AttributeError: message = args.message getattr(logger, args.level)(message) exit(0) if __name__ == "__main__": run()
test/nn/test_upsampling.py
steven-lang/e2cnn
356
12673621
import unittest from unittest import TestCase from e2cnn.nn import * from e2cnn.gspaces import * import numpy as np class TestUpsampling(TestCase): def test_cyclic_even_bilinear(self): g = Rot2dOnR2(8) self.check_upsampling(g, "bilinear") def test_cyclic_odd_bilinear(self): g = Rot2dOnR2(9) self.check_upsampling(g, "bilinear") def test_dihedral_even_bilinear(self): g = FlipRot2dOnR2(8) self.check_upsampling(g, "bilinear") def test_dihedral_odd_bilinear(self): g = Rot2dOnR2(9) self.check_upsampling(g, "bilinear") def test_so2_bilinear(self): g = Rot2dOnR2(8) self.check_upsampling(g, "bilinear") def test_o2_bilinear(self): g = Rot2dOnR2(8) self.check_upsampling(g, "bilinear") # "NEAREST" method is not equivariant!! As a result, all the following tests fail def test_cyclic_even_nearest(self): g = Rot2dOnR2(8) self.check_upsampling(g, "nearest") def test_cyclic_odd_nearest(self): g = Rot2dOnR2(9) self.check_upsampling(g, "nearest") def test_dihedral_even_nearest(self): g = FlipRot2dOnR2(8) self.check_upsampling(g, "nearest") def test_dihedral_odd_nearest(self): g = Rot2dOnR2(9) self.check_upsampling(g, "nearest") def test_so2_nearest(self): g = Rot2dOnR2(8) self.check_upsampling(g, "nearest") def test_o2_nearest(self): g = Rot2dOnR2(8) self.check_upsampling(g, "nearest") def check_upsampling(self, g, mode): for s in [2, 3, 5]: print(f"\nScale: {s}\n") for r in g.representations.values(): r1 = FieldType(g, [r]) ul = R2Upsampling(r1, mode=mode, scale_factor=s) ul.check_equivariance() if __name__ == '__main__': unittest.main()
third_party/blink/renderer/build/scripts/keyword_utils.py
zealoussnow/chromium
14,668
12673629
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json5_generator def sort_keyword_properties_by_canonical_order( css_properties, css_value_keywords_file, json5_file_parameters): """Sort all keyword CSS properties by the order of the keyword in css_value_keywords.json5 Args: css_properties: css_properties excluding extra fields. css_value_keywords_file: file containing all css keywords. json5_file_parameters: current context json5 parameters. Returns: New css_properties object with sorted keywords. """ css_values_dictionary = json5_generator.Json5File.load_from_files( [css_value_keywords_file], default_parameters=json5_file_parameters).name_dictionaries css_values_dictionary = [x['name'].original for x in css_values_dictionary] name_to_position_dictionary = dict( zip(css_values_dictionary, range(len(css_values_dictionary)))) for css_property in css_properties: if css_property['field_template'] == 'keyword' and len( css_property['include_paths']) == 0: css_property['keywords'] = sorted( css_property['keywords'], key=lambda x: name_to_position_dictionary[x]) return css_properties
laspy/vlrs/__init__.py
CCInc/laspy
240
12673642
from . import geotiff from .known import BaseKnownVLR from .vlr import VLR
tests/notebooks/mirror/ipynb_to_script_vscode_folding_markers/jupyter_with_raw_cell_in_body.py
st--/jupytext
5,378
12673644
<reponame>st--/jupytext # --- # jupyter: # jupytext: # cell_markers: region,endregion # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- 1+2+3 # region active="" # This is a raw cell # endregion # This is a markdown cell
lale/lib/autogen/kernel_pca.py
mfeffer/lale
265
12673647
<reponame>mfeffer/lale<filename>lale/lib/autogen/kernel_pca.py from numpy import inf, nan from sklearn.decomposition import KernelPCA as Op from lale.docstrings import set_docstrings from lale.operators import make_operator class _KernelPCAImpl: def __init__(self, **hyperparams): self._hyperparams = hyperparams self._wrapped_model = Op(**self._hyperparams) def fit(self, X, y=None): if y is not None: self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def transform(self, X): return self._wrapped_model.transform(X) _hyperparams_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "inherited docstring for KernelPCA Kernel Principal component analysis (KPCA)", "allOf": [ { "type": "object", "required": [ "n_components", "kernel", "gamma", "degree", "coef0", "kernel_params", "alpha", "fit_inverse_transform", "eigen_solver", "tol", "max_iter", "remove_zero_eig", "random_state", "copy_X", "n_jobs", ], "relevantToOptimizer": [ "n_components", "kernel", "degree", "coef0", "alpha", "eigen_solver", "tol", "max_iter", "remove_zero_eig", "copy_X", ], "additionalProperties": False, "properties": { "n_components": { "anyOf": [ { "type": "integer", "minimumForOptimizer": 2, "maximumForOptimizer": 256, "distribution": "uniform", }, {"enum": [None]}, ], "default": None, "description": "Number of components", }, "kernel": { "enum": [ "linear", "poly", "rbf", "sigmoid", "cosine", "precomputed", ], "default": "linear", "description": "Kernel", }, "gamma": { "XXX TODO XXX": "float, default=1/n_features", "description": "Kernel coefficient for rbf, poly and sigmoid kernels", "enum": [None], "default": None, }, "degree": { "type": "integer", "minimumForOptimizer": 2, "maximumForOptimizer": 3, "distribution": "uniform", "default": 3, "description": "Degree for poly kernels", }, "coef0": { "type": "number", "minimumForOptimizer": 0.0, "maximumForOptimizer": 1.0, "distribution": "uniform", "default": 1, "description": "Independent term in poly and sigmoid kernels", }, "kernel_params": { "XXX TODO XXX": "mapping of string to any, default=None", "description": "Parameters (keyword arguments) and values for kernel passed as callable object", "enum": [None], "default": None, }, "alpha": { "anyOf": [ {"type": "integer", "forOptimizer": False}, { "type": "number", "minimumForOptimizer": 1e-10, "maximumForOptimizer": 1.0, "distribution": "loguniform", }, ], "default": 1.0, "description": "Hyperparameter of the ridge regression that learns the inverse transform (when fit_inverse_transform=True).", }, "fit_inverse_transform": { "type": "boolean", "default": False, "description": "Learn the inverse transform for non-precomputed kernels", }, "eigen_solver": { "enum": ["auto", "dense", "arpack"], "default": "auto", "description": "Select eigensolver to use", }, "tol": { "type": "number", "minimumForOptimizer": 1e-08, "maximumForOptimizer": 0.01, "distribution": "loguniform", "default": 0, "description": "Convergence tolerance for arpack", }, "max_iter": { "anyOf": [ { "type": "integer", "minimumForOptimizer": 10, "maximumForOptimizer": 1000, "distribution": "uniform", }, {"enum": [None]}, ], "default": None, "description": "Maximum number of iterations for arpack", }, "remove_zero_eig": { "type": "boolean", "default": False, "description": "If True, then all components with zero eigenvalues are removed, so that the number of components in the output may be < n_components (and sometimes even zero due to numerical instability)", }, "random_state": { "anyOf": [ {"type": "integer"}, {"laleType": "numpy.random.RandomState"}, {"enum": [None]}, ], "default": None, "description": "If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`", }, "copy_X": { "type": "boolean", "default": True, "description": "If True, input X is copied and stored by the model in the `X_fit_` attribute", }, "n_jobs": { "anyOf": [{"type": "integer"}, {"enum": [None]}], "default": 1, "description": "The number of parallel jobs to run", }, }, } ], } _input_fit_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Fit the model from data in X.", "type": "object", "required": ["X"], "properties": { "X": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, "description": "Training vector, where n_samples in the number of samples and n_features is the number of features.", } }, } _input_transform_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Transform X.", "type": "object", "required": ["X"], "properties": { "X": {"type": "array", "items": {"type": "array", "items": {"type": "number"}}} }, } _output_transform_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Transform X.", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, } _combined_schemas = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Combined schema for expected data and hyperparameters.", "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.KernelPCA#sklearn-decomposition-kernelpca", "import_from": "sklearn.decomposition", "type": "object", "tags": {"pre": [], "op": ["transformer"], "post": []}, "properties": { "hyperparams": _hyperparams_schema, "input_fit": _input_fit_schema, "input_transform": _input_transform_schema, "output_transform": _output_transform_schema, }, } KernelPCA = make_operator(_KernelPCAImpl, _combined_schemas) set_docstrings(KernelPCA)
seahub/api2/endpoints/public_repos_search.py
samuelduann/seahub
420
12673659
# -*- coding: utf-8 -*- import logging from rest_framework.views import APIView from rest_framework.authentication import SessionAuthentication from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework.response import Response from rest_framework import status from seaserv import seafile_api from seahub.api2.authentication import TokenAuthentication from seahub.api2.throttling import UserRateThrottle from seahub.api2.utils import api_error from seahub.utils.repo import is_valid_repo_id_format from seahub.utils import HAS_FILE_SEARCH from seahub.wiki.models import Wiki if HAS_FILE_SEARCH: from seahub.search.utils import search_files logger = logging.getLogger('seafes') class PublishedRepoSearchView(APIView): """ Search public repos """ authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticatedOrReadOnly,) throttle_classes = (UserRateThrottle, ) def get(self, request): # is search supported if not HAS_FILE_SEARCH: error_msg = 'Search not supported.' return api_error(status.HTTP_404_NOT_FOUND, error_msg) # argument check keyword = request.GET.get('q', None) if not keyword: error_msg = 'q invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) repo_id = request.GET.get('repo_id', None) if not is_valid_repo_id_format(repo_id): error_msg = 'repo_id invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # recourse check repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check wiki = Wiki.objects.filter(repo_id=repo_id)[0] if not wiki.has_read_perm(request): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) try: current_page = int(request.GET.get('page', '1')) per_page = int(request.GET.get('per_page', '10')) if per_page > 100: per_page = 100 except ValueError: current_page = 1 per_page = 10 start = (current_page - 1) * per_page size = per_page if start < 0 or size < 0: error_msg = 'page or per_page invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) repo_id_map = {} map_id = repo.origin_repo_id if repo.origin_repo_id else repo_id repo_id_map[map_id] = repo # search file try: results, total = search_files( repo_id_map, None, keyword, None, start, size, org_id=None ) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) for result in results: result.pop('repo', None) result.pop('exists', None) result.pop('last_modified_by', None) result.pop('name_highlight', None) result.pop('score', None) result['repo_type'] = 'public' has_more = True if total > current_page * per_page else False return Response({ "total": total, "results": results, "has_more": has_more })
example/app_namespace.py
prabhpreet332/Flask-SocketIO
4,639
12673683
<filename>example/app_namespace.py<gh_stars>1000+ from threading import Lock from flask import Flask, render_template, session, request from flask_socketio import SocketIO, Namespace, emit, join_room, leave_room, \ close_room, rooms, disconnect # Set this variable to "threading", "eventlet" or "gevent" to test the # different async modes, or leave it set to None for the application to choose # the best option based on installed packages. async_mode = None app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app, async_mode=async_mode) thread = None thread_lock = Lock() def background_thread(): """Example of how to send server generated events to clients.""" count = 0 while True: socketio.sleep(10) count += 1 socketio.emit('my_response', {'data': 'Server generated event', 'count': count}) @app.route('/') def index(): return render_template('index.html', async_mode=socketio.async_mode) class MyNamespace(Namespace): def on_my_event(self, message): session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': message['data'], 'count': session['receive_count']}) def on_my_broadcast_event(self, message): session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': message['data'], 'count': session['receive_count']}, broadcast=True) def on_join(self, message): join_room(message['room']) session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': 'In rooms: ' + ', '.join(rooms()), 'count': session['receive_count']}) def on_leave(self, message): leave_room(message['room']) session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': 'In rooms: ' + ', '.join(rooms()), 'count': session['receive_count']}) def on_close_room(self, message): session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': 'Room ' + message['room'] + ' is closing.', 'count': session['receive_count']}, room=message['room']) close_room(message['room']) def on_my_room_event(self, message): session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': message['data'], 'count': session['receive_count']}, room=message['room']) def on_disconnect_request(self): session['receive_count'] = session.get('receive_count', 0) + 1 emit('my_response', {'data': 'Disconnected!', 'count': session['receive_count']}) disconnect() def on_my_ping(self): emit('my_pong') def on_connect(self): global thread with thread_lock: if thread is None: thread = socketio.start_background_task(background_thread) emit('my_response', {'data': 'Connected', 'count': 0}) def on_disconnect(self): print('Client disconnected', request.sid) socketio.on_namespace(MyNamespace('/')) if __name__ == '__main__': socketio.run(app)
Python_Discord_Bot_JE/venv/Lib/site-packages/pip/_vendor/chardet/universaldetector.py
JE-Chen/je_old_repo
548
12673716
<filename>Python_Discord_Bot_JE/venv/Lib/site-packages/pip/_vendor/chardet/universaldetector.py ######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Universal charset detector code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 2001 # the Initial Developer. All Rights Reserved. # # Contributor(s): # <NAME> - port to Python # <NAME> - original C code # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### """ Module containing the UniversalDetector detector class, which is the primary class a user of ``chardet`` should use. :author: <NAME> (initial port to Python) :author: <NAME> (original C code) :author: <NAME> (major refactoring for 3.0) :author: <NAME> """ import codecs import logging import re from .charsetgroupprober import CharSetGroupProber from .enums import InputState, LanguageFilter, ProbingState from .escprober import EscCharSetProber from .latin1prober import Latin1Prober from .mbcsgroupprober import MBCSGroupProber from .sbcsgroupprober import SBCSGroupProber class UniversalDetector(object): """ The ``UniversalDetector`` class underlies the ``chardet.detect`` function and coordinates all of the different charset probers. To get a ``dict`` containing an encoding and its confidence, you can simply run: .. code:: u = UniversalDetector() u.feed(some_bytes) u.close() detected = u.result """ MINIMUM_THRESHOLD = 0.20 HIGH_BYTE_DETECTOR = re.compile(b'[\x80-\xFF]') ESC_DETECTOR = re.compile(b'(\033|~{)') WIN_BYTE_DETECTOR = re.compile(b'[\x80-\x9F]') ISO_WIN_MAP = {'iso-8859-1': 'Windows-1252', 'iso-8859-2': 'Windows-1250', 'iso-8859-5': 'Windows-1251', 'iso-8859-6': 'Windows-1256', 'iso-8859-7': 'Windows-1253', 'iso-8859-8': 'Windows-1255', 'iso-8859-9': 'Windows-1254', 'iso-8859-13': 'Windows-1257'} def __init__(self, lang_filter=LanguageFilter.ALL): self._esc_charset_prober = None self._charset_probers = [] self.result = None self.done = None self._got_data = None self._input_state = None self._last_char = None self.lang_filter = lang_filter self.logger = logging.getLogger(__name__) self._has_win_bytes = None self.reset() def reset(self): """ Reset the UniversalDetector and all of its probers back to their initial states. This is called by ``__init__``, so you only need to call this directly in between analyses of different documents. """ self.result = {'encoding': None, 'confidence': 0.0, 'language': None} self.done = False self._got_data = False self._has_win_bytes = False self._input_state = InputState.PURE_ASCII self._last_char = b'' if self._esc_charset_prober: self._esc_charset_prober.reset() for prober in self._charset_probers: prober.reset() def feed(self, byte_str): """ Takes a chunk of a document and feeds it through all of the relevant charset probers. After calling ``feed``, you can check the value of the ``done`` attribute to see if you need to continue feeding the ``UniversalDetector`` more data, or if it has made a prediction (in the ``result`` attribute). .. note:: You should always call ``close`` when you're done feeding in your document if ``done`` is not already ``True``. """ if self.done: return if not len(byte_str): return if not isinstance(byte_str, bytearray): byte_str = bytearray(byte_str) # First check for known BOMs, since these are guaranteed to be correct if not self._got_data: # If the data starts with BOM, we know it is UTF if byte_str.startswith(codecs.BOM_UTF8): # EF BB BF UTF-8 with BOM self.result = {'encoding': "UTF-8-SIG", 'confidence': 1.0, 'language': ''} elif byte_str.startswith((codecs.BOM_UTF32_LE, codecs.BOM_UTF32_BE)): # FF FE 00 00 UTF-32, little-endian BOM # 00 00 FE FF UTF-32, big-endian BOM self.result = {'encoding': "UTF-32", 'confidence': 1.0, 'language': ''} elif byte_str.startswith(b'\xFE\xFF\x00\x00'): # FE FF 00 00 UCS-4, unusual octet order BOM (3412) self.result = {'encoding': "X-ISO-10646-UCS-4-3412", 'confidence': 1.0, 'language': ''} elif byte_str.startswith(b'\x00\x00\xFF\xFE'): # 00 00 FF FE UCS-4, unusual octet order BOM (2143) self.result = {'encoding': "X-ISO-10646-UCS-4-2143", 'confidence': 1.0, 'language': ''} elif byte_str.startswith((codecs.BOM_LE, codecs.BOM_BE)): # FF FE UTF-16, little endian BOM # FE FF UTF-16, big endian BOM self.result = {'encoding': "UTF-16", 'confidence': 1.0, 'language': ''} self._got_data = True if self.result['encoding'] is not None: self.done = True return # If none of those matched and we've only see ASCII so far, check # for high bytes and escape sequences if self._input_state == InputState.PURE_ASCII: if self.HIGH_BYTE_DETECTOR.search(byte_str): self._input_state = InputState.HIGH_BYTE elif self._input_state == InputState.PURE_ASCII and \ self.ESC_DETECTOR.search(self._last_char + byte_str): self._input_state = InputState.ESC_ASCII self._last_char = byte_str[-1:] # If we've seen escape sequences, use the EscCharSetProber, which # uses a simple state machine to check for known escape sequences in # HZ and ISO-2022 encodings, since those are the only encodings that # use such sequences. if self._input_state == InputState.ESC_ASCII: if not self._esc_charset_prober: self._esc_charset_prober = EscCharSetProber(self.lang_filter) if self._esc_charset_prober.feed(byte_str) == ProbingState.FOUND_IT: self.result = {'encoding': self._esc_charset_prober.charset_name, 'confidence': self._esc_charset_prober.get_confidence(), 'language': self._esc_charset_prober.language} self.done = True # If we've seen high bytes (i.e., those with values greater than 127), # we need to do more complicated checks using all our multi-byte and # single-byte probers that are left. The single-byte probers # use character bigram distributions to determine the encoding, whereas # the multi-byte probers use a combination of character unigram and # bigram distributions. elif self._input_state == InputState.HIGH_BYTE: if not self._charset_probers: self._charset_probers = [MBCSGroupProber(self.lang_filter)] # If we're checking non-CJK encodings, use single-byte prober if self.lang_filter & LanguageFilter.NON_CJK: self._charset_probers.append(SBCSGroupProber()) self._charset_probers.append(Latin1Prober()) for prober in self._charset_probers: if prober.feed(byte_str) == ProbingState.FOUND_IT: self.result = {'encoding': prober.charset_name, 'confidence': prober.get_confidence(), 'language': prober.language} self.done = True break if self.WIN_BYTE_DETECTOR.search(byte_str): self._has_win_bytes = True def close(self): """ Stop analyzing the current document and come up with a final prediction. :returns: The ``result`` attribute, a ``dict`` with the keys `encoding`, `confidence`, and `language`. """ # Don't bother with checks if we're already done if self.done: return self.result self.done = True if not self._got_data: self.logger.debug('no data received!') # Default to ASCII if it is all we've seen so far elif self._input_state == InputState.PURE_ASCII: self.result = {'encoding': 'ascii', 'confidence': 1.0, 'language': ''} # If we have seen non-ASCII, return the best that met MINIMUM_THRESHOLD elif self._input_state == InputState.HIGH_BYTE: prober_confidence = None max_prober_confidence = 0.0 max_prober = None for prober in self._charset_probers: if not prober: continue prober_confidence = prober.get_confidence() if prober_confidence > max_prober_confidence: max_prober_confidence = prober_confidence max_prober = prober if max_prober and (max_prober_confidence > self.MINIMUM_THRESHOLD): charset_name = max_prober.charset_name lower_charset_name = max_prober.charset_name.lower() confidence = max_prober.get_confidence() # Use Windows encoding name instead of ISO-8859 if we saw any # extra Windows-specific bytes if lower_charset_name.startswith('iso-8859'): if self._has_win_bytes: charset_name = self.ISO_WIN_MAP.get(lower_charset_name, charset_name) self.result = {'encoding': charset_name, 'confidence': confidence, 'language': max_prober.language} # Log all prober confidences if none met MINIMUM_THRESHOLD if self.logger.getEffectiveLevel() == logging.DEBUG: if self.result['encoding'] is None: self.logger.debug('no probers hit minimum threshold') for group_prober in self._charset_probers: if not group_prober: continue if isinstance(group_prober, CharSetGroupProber): for prober in group_prober.probers: self.logger.debug('%s %s confidence = %s', prober.charset_name, prober.language, prober.get_confidence()) else: self.logger.debug('%s %s confidence = %s', prober.charset_name, prober.language, prober.get_confidence()) return self.result
mindinsight/datavisual/data_transform/graph/node_tree.py
mindspore-ai/mindinsight
216
12673730
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ This file is used to define the node of graph and associated base types. """ from mindinsight.utils.exceptions import ParamValueError from mindinsight.datavisual.common.log import logger as log class NodeTree: """A class for building a node tree.""" def __init__(self, node_name='', node_type=None): self.node_name = node_name self._node_type = node_type self._children = {} @property def node_type(self): """The property of node type.""" return self._node_type @node_type.setter def node_type(self, value): """Set the node type.""" self._node_type = value def add(self, name, node_type=None): """Add sub node.""" sub_name = '/'.join([self.node_name, name]) if self.node_name else name sub_node = NodeTree(sub_name, node_type) self._children[name] = sub_node return sub_node def get(self, sub_name): """Get sub node.""" return self._children.get(sub_name) def get_children(self): """Get all childrens.""" for name_scope, sub_node in self._children.items(): yield name_scope, sub_node def remove(self, sub_name): """Remove sub node.""" try: self._children.pop(sub_name) except KeyError as err: log.error("Failed to find node %s. %s", sub_name, err) raise ParamValueError("Failed to find node {}".format(sub_name))
Patterns/VritikaMalhotra_Pattern.py
sanchit781/HACKTOBERFEST2021_PATTERN
229
12673737
#!/usr/bin/env python # coding: utf-8 # In[1]: def contnum(n): # initializing starting number num = 1 # outer loop to handle number of rows for i in range(0, n): # inner loop to handle number of columns # values changing acc. to outer loop for j in range(0, i+1): # printing number print(num, end=" ") # incrementing number at each column num = num + 1 # ending line after each row print("\r") n = 5 # sending 5 as argument # calling Function contnum(n) # In[ ]:
migrations/versions/15bd4b7e6622_add_filecoverage_unique_constraint.py
vault-the/changes
443
12673740
<filename>migrations/versions/15bd4b7e6622_add_filecoverage_unique_constraint.py """Add FileCoverage unique constraint Revision ID: 15bd4b7e6622 Revises: <PASSWORD> Create Date: 2014-05-09 11:06:50.845168 """ # revision identifiers, used by Alembic. revision = '15bd4b7e6622' down_revision = '3d8177ef<PASSWORD>' from alembic import op def upgrade(): op.create_unique_constraint('unq_job_filname', 'filecoverage', ['job_id', 'filename']) def downgrade(): op.drop_constraint('unq_job_filname', 'filecoverage')
xcit.py
artsousa/xcit
578
12673741
<gh_stars>100-1000 # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. """ Implementation of Cross-Covariance Image Transformer (XCiT) Based on timm and DeiT code bases https://github.com/rwightman/pytorch-image-models/tree/master/timm https://github.com/facebookresearch/deit/ """ import math import torch import torch.nn as nn from functools import partial from timm.models.vision_transformer import _cfg, Mlp from timm.models.registry import register_model from timm.models.layers import DropPath, trunc_normal_, to_2tuple class PositionalEncodingFourier(nn.Module): """ Positional encoding relying on a fourier kernel matching the one used in the "Attention is all of Need" paper. The implementation builds on DeTR code https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py """ def __init__(self, hidden_dim=32, dim=768, temperature=10000): super().__init__() self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) self.scale = 2 * math.pi self.temperature = temperature self.hidden_dim = hidden_dim self.dim = dim def forward(self, B, H, W): mask = torch.zeros(B, H, W).bool().to(self.token_projection.weight.device) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.hidden_dim, dtype=torch.float32, device=mask.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.hidden_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) pos = self.token_projection(pos) return pos def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return torch.nn.Sequential( nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ), nn.SyncBatchNorm(out_planes) ) class ConvPatchEmbed(nn.Module): """ Image to Patch Embedding using multiple convolutional layers """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches if patch_size[0] == 16: self.proj = torch.nn.Sequential( conv3x3(3, embed_dim // 8, 2), nn.GELU(), conv3x3(embed_dim // 8, embed_dim // 4, 2), nn.GELU(), conv3x3(embed_dim // 4, embed_dim // 2, 2), nn.GELU(), conv3x3(embed_dim // 2, embed_dim, 2), ) elif patch_size[0] == 8: self.proj = torch.nn.Sequential( conv3x3(3, embed_dim // 4, 2), nn.GELU(), conv3x3(embed_dim // 4, embed_dim // 2, 2), nn.GELU(), conv3x3(embed_dim // 2, embed_dim, 2), ) else: raise("For convolutional projection, patch size has to be in [8, 16]") def forward(self, x, padding_size=None): B, C, H, W = x.shape x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class LPI(nn.Module): """ Local Patch Interaction module that allows explicit communication between tokens in 3x3 windows to augment the implicit communcation performed by the block diagonal scatter attention. Implemented using 2 layers of separable 3x3 convolutions with GeLU and BatchNorm2d """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., kernel_size=3): super().__init__() out_features = out_features or in_features padding = kernel_size // 2 self.conv1 = torch.nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) self.act = act_layer() self.bn = nn.SyncBatchNorm(in_features) self.conv2 = torch.nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=padding, groups=out_features) def forward(self, x, H, W): B, N, C = x.shape x = x.permute(0, 2, 1).reshape(B, C, H, W) x = self.conv1(x) x = self.act(x) x = self.bn(x) x = self.conv2(x) x = x.reshape(B, C, N).permute(0, 2, 1) return x class ClassAttention(nn.Module): """Class Attention Layer as in CaiT https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) qc = q[:, :, 0:1] # CLS token attn_cls = (qc * k).sum(dim=-1) * self.scale attn_cls = attn_cls.softmax(dim=-1) attn_cls = self.attn_drop(attn_cls) cls_tkn = (attn_cls.unsqueeze(2) @ v).transpose(1, 2).reshape(B, 1, C) cls_tkn = self.proj(cls_tkn) x = torch.cat([self.proj_drop(cls_tkn), x[:, 1:]], dim=1) return x class ClassAttentionBlock(nn.Module): """Class Attention Layer as in CaiT https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, eta=None, tokens_norm=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = ClassAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if eta is not None: # LayerScale Initialization (no layerscale when None) self.gamma1 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.gamma2 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) else: self.gamma1, self.gamma2 = 1.0, 1.0 # FIXME: A hack for models pre-trained with layernorm over all the tokens not just the CLS self.tokens_norm = tokens_norm def forward(self, x, H, W, mask=None): x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x))) if self.tokens_norm: x = self.norm2(x) else: x[:, 0:1] = self.norm2(x[:, 0:1]) x_res = x cls_token = x[:, 0:1] cls_token = self.gamma2 * self.mlp(cls_token) x = torch.cat([cls_token, x[:, 1:]], dim=1) x = x_res + self.drop_path(x) return x class XCA(nn.Module): """ Cross-Covariance Attention (XCA) operation where the channels are updated using a weighted sum. The weights are obtained from the (softmax normalized) Cross-covariance matrix (Q^T K \\in d_h \\times d_h) """ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q.transpose(-2, -1) k = k.transpose(-2, -1) v = v.transpose(-2, -1) q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) attn = (q @ k.transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x @torch.jit.ignore def no_weight_decay(self): return {'temperature'} class XCABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_tokens=196, eta=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = XCA( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.norm3 = norm_layer(dim) self.local_mp = LPI(in_features=dim, act_layer=act_layer) self.gamma1 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.gamma2 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) self.gamma3 = nn.Parameter(eta * torch.ones(dim), requires_grad=True) def forward(self, x, H, W): x = x + self.drop_path(self.gamma1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma3 * self.local_mp(self.norm3(x), H, W)) x = x + self.drop_path(self.gamma2 * self.mlp(self.norm2(x))) return x class XCiT(nn.Module): """ Based on timm and DeiT code bases https://github.com/rwightman/pytorch-image-models/tree/master/timm https://github.com/facebookresearch/deit/ """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, cls_attn_layers=2, use_pos=True, patch_proj='linear', eta=None, tokens_norm=False): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer cls_attn_layers: (int) Depth of Class attention layers use_pos: (bool) whether to use positional encoding eta: (float) layerscale initialization value tokens_norm: (bool) Whether to normalize all tokens or just the cls_token in the CA """ super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed = ConvPatchEmbed(img_size=img_size, embed_dim=embed_dim, patch_size=patch_size) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [drop_path_rate for i in range(depth)] self.blocks = nn.ModuleList([ XCABlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, num_tokens=num_patches, eta=eta) for i in range(depth)]) self.cls_attn_blocks = nn.ModuleList([ ClassAttentionBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, eta=eta, tokens_norm=tokens_norm) for i in range(cls_attn_layers)]) self.norm = norm_layer(embed_dim) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.pos_embeder = PositionalEncodingFourier(dim=embed_dim) self.use_pos = use_pos # Classifier head trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'dist_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x) if self.use_pos: pos_encoding = self.pos_embeder(B, Hp, Wp).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = self.pos_drop(x) for blk in self.blocks: x = blk(x, Hp, Wp) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) for blk in self.cls_attn_blocks: x = blk(x, Hp, Wp) x = self.norm(x)[:, 0] return x def forward(self, x): x = self.forward_features(x) x = self.head(x) if self.training: return x, x else: return x # Patch size 16x16 models @register_model def xcit_nano_12_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=128, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1.0, tokens_norm=False, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_tiny_12_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=192, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1.0, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_small_12_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1.0, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_tiny_24_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=192, depth=24, num_heads=4, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_small_24_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=384, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_medium_24_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=512, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_large_24_p16(pretrained=False, **kwargs): model = XCiT( patch_size=16, embed_dim=768, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model # Patch size 8x8 models @register_model def xcit_nano_12_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=128, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1.0, tokens_norm=False, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_tiny_12_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=192, depth=12, num_heads=4, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1.0, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_small_12_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1.0, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_tiny_24_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=192, depth=24, num_heads=4, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_small_24_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=384, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_medium_24_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=512, depth=24, num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model @register_model def xcit_large_24_p8(pretrained=False, **kwargs): model = XCiT( patch_size=8, embed_dim=768, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), eta=1e-5, tokens_norm=True, **kwargs) model.default_cfg = _cfg() return model
python2/pracmln/mln/database.py
seba90/pracmln
123
12673744
# # Markov Logic Networks -- Databases # # (C) 2006-2015 by <NAME>, (<EMAIL>) # <NAME> (<EMAIL>) # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' from dnutils import logs, ifnone, out from dnutils.console import barstr from util import stripComments, mergedom from pracmln.logic.common import Logic from errors import NoSuchPredicateError from pracmln.logic.fol import FirstOrderLogic import os from StringIO import StringIO import sys from pracmln.mln.util import colorize from pracmln.mln.errors import MLNParsingError import traceback from collections import defaultdict import re from pracmln.utils.project import mlnpath logger = logs.getlogger(__name__) class Database(object): ''' Represents an MLN Database, which consists of a set of ground atoms, each assigned a truth value. :member mln: the respective :class:`mln.base.MLN` object that this Database is associated with :member domains: dict mapping the variable domains specific to this data base (i.e. without values from the MLN domains which are not present in the DB) to the set possible values. :member evidence: dictionary mapping ground atom strings to truth values. :param mln: the :class:`mln.base.MLN` instance that the database shall be associated with. :param evidence: a dictionary mapping ground atoms to their truth values. :param dbfile: if specified, a database is loaded from the given file path. :param ignore_unknown_preds: see :func:`mln.database.parse_db` ''' def __init__(self, mln, evidence=None, dbfile=None, ignore_unknown_preds=False): self.mln = mln self._domains = defaultdict(list) self._evidence = {} if dbfile is not None: Database.load(mln, dbfile, db=self, ignore_unknown_preds=ignore_unknown_preds) if evidence is not None: for atom, truth in evidence.iteritems(): self.add(atom, truth) @property def domains(self): return self._domains @domains.setter def domains(self, doms): self._domains = doms @property def evidence(self): return dict(self._evidence) def _atomstr(self, gndatom): ''' Converts gndatom into a valid ground atom string representation. ''' if type(gndatom) is str: _, predname, args = self.mln.logic.parse_literal(gndatom) atomstr = str(self.mln.logic.gnd_atom(predname, args, self.mln)) elif isinstance(gndatom, Logic.GroundAtom): atomstr = str(gndatom) elif isinstance(gndatom, Logic.GroundLit): atomstr = str(gndatom.gndatom) predname = gndatom.gndatom.predname args = gndatom.gndatom.params elif isinstance(gndatom, Logic.Lit): atomstr = str(self.mln.logic.gnd_atom(gndatom.predname, gndatom.args, self.mln)) return atomstr def truth(self, gndatom): ''' Returns the evidence truth value of the given ground atom. :param gndatom: a ground atom string :returns: the truth value of the ground atom, or None if it is not specified. ''' atomstr = self._atomstr(gndatom) return self._evidence.get(atomstr) def domain(self, domain): ''' Returns the list of domain values of the given domain, or None if no domain with the given name exists. If domain is dict, the domain values will be updated and the domain will be created, if necessary. :param domain: the name of the domain to be returned. ''' if type(domain) is dict: for domname, values in domain.iteritems(): if type(values) is not list: values = [values] dom = self.domain(domname) if dom is None: dom = [] self._domains[domname] = dom for value in values: if value not in dom: dom.append(value) elif domain is not None: return self._domains.get(domain) else: return self._domains def copy(self, mln=None): ''' Returns a copy this Database. If mln is specified, asserts this database for the given MLN. :param mln: if `mln` is specified, the new MLN will be associated with `mln`, if not, it will be associated with `self.mln`. ''' if mln is None: mln = self.mln db = Database(mln) for atom, truth in self.gndatoms(): try: db.add(atom, truth) except NoSuchPredicateError: pass return db def union(self, dbs, mln=None): ''' Returns a new database consisting of the union of all databases given in the arguments. If mln is specified, the new database will be attached to that one, otherwise the mln of this database will be used. ''' db_ = Database(mln if mln is not None else self.mln) if type(dbs) is list: dbs = [list(d) for d in dbs] + list(self) if type(dbs) is Database: dbs = list(dbs) + list(self) for atom, truth in dbs: try: db_ << (atom, truth) except NoSuchPredicateError: pass return db_ def gndatoms(self, prednames=None): ''' Iterates over all ground atoms in this database that match any of the given predicate names. If no predicate name is specified, it yields all ground atoms in the database. :param prednames: a list of predicate names that this iteration should be filtered by. :returns: a generator of (atom, truth) tuples. ''' for atom, truth in self: if prednames is not None: _, predname, _ = self.mln.logic.parse_literal(atom) if not predname in prednames: continue yield atom, truth def add(self, gndlit, truth=1): ''' Adds the fact represented by the ground atom, which might be a GroundLit object or a string. :param gndlit: the ground literal to be added to the database. Can be either a string or a :class:`logic.common.Logic.GroundLit` instance. :param truth: the truth value of this ground literal. 0 stands for false, 1 for true. In case of soft or fuzzy evidence, any truth value in [0,1] is allowed. ''' if isinstance(gndlit, unicode): gndlit = gndlit.encode('utf-8') if isinstance(gndlit, str): true, predname, args = self.mln.logic.parse_literal(gndlit) atom_str = str(self.mln.logic.gnd_atom(predname, args, self.mln)) elif isinstance(gndlit, Logic.GroundLit): atom_str = str(gndlit.gndatom) true = not gndlit.negated predname = gndlit.gndatom.predname args = gndlit.gndatom.args else: raise Exception('gndlit has an illegal type: %s' % type(gndlit)) if truth in (True, False): truth = {True: 1, False: 0}[truth] truth = truth if true else 1 - truth truth = eval('%.6f' % truth) pred = self.mln.predicate(predname) if pred is None: raise NoSuchPredicateError('No such predicate: %s' % predname) if len(pred.argdoms) != len(args): raise Exception('Invalid number of arguments: %s' % str(gndlit)) if not all(map(lambda a: not self.mln.logic.isvar(a), args)): raise Exception('No variables are allowed in databases. Only ground atoms: %s' % atom_str) # update the domains for domname, arg in zip(pred.argdoms, args): self.domain({domname: arg}) self._evidence[atom_str] = truth return self def ishard(self): ''' Determines whether or not this database contains exclusively hard evidences. ''' return any(map(lambda x: x != 1 and x != 0, self._evidence)) def tofile(self, filename): ''' Writes this database into the file with the given filename. ''' f = open(filename, 'w+') self.write(f) f.close() def write(self, stream=sys.stdout, color=None, bars=True): ''' Writes this database into the stream in the MLN Database format. The stream must provide a `write()` method as file objects do. ''' if color is None: if stream != sys.stdout: color = False else: color = True for atom in sorted(self._evidence): truth = self._evidence[atom] pred, params = self.mln.logic.parse_atom(atom) pred = str(pred) params = map(str, params) if bars: bar = barstr(30, truth, color='magenta' if color else None) else: bar = '' if color: strout = '%s %s\n' % (bar if bars else colorize('%.6f' % truth, (None, 'magenta', False), True), FirstOrderLogic.Lit(False, pred, params, self.mln).cstr(color)) else: strout = '%s %s\n' % (bar if bars else '%.6f' % truth, FirstOrderLogic.Lit(False, pred, params, self.mln).cstr(color)) stream.write(strout) def retract(self, gndatom): ''' Removes the evidence of the given ground atom in this database. Also cleans up the domains if an atom is removed that makes use of a domain value that is not used by any other evidence atom. :param gndatom: a string representation of the ground atom to be removed from the database or a :class:`logic.common.Logic.GroundAtom` instance. ''' if type(gndatom) is str: _, predname, args = self.mln.logic.parse_literal(gndatom) atom_str = str(self.mln.logic.gnd_atom(predname, args, self.mln)) elif isinstance(gndatom, Logic.GroundAtom): atom_str = str(gndatom.gndatom) args = gndatom.args else: raise Exception('gndatom has an illegal type: %s' % str(type(gndatom))) if atom_str not in self: return del self._evidence[atom_str] doms = self.mln.predicate(predname).argdoms dontremove = set() for atom, _ in self: _, predname_, args_ = self.mln.logic.parse_literal(atom) doms_ = self.mln.predicate(predname_).argdoms for arg, arg_, dom, dom_ in zip(args, args_, doms, doms_): if arg == arg_ and dom == dom_: dontremove.add((dom, arg)) for (dom, arg) in zip(doms, args): if (dom, arg) not in dontremove: if arg in self._domains[dom]: self._domains[dom].remove(arg) if not self.domain(dom): del self._domains[dom] def retractall(self, predname): ''' Retracts all evidence atoms of the given predicate name in this database. ''' for a, _ in dict(self._evidence).iteritems(): _, pred, _ = self.mln.logic.parse_literal(a) if pred == predname: del self[a] def rmval(self, domain, value): for atom in list(self.evidence): _, predname, args = self.mln.logic.parse_literal(atom) for dom, val in zip(self.mln.predicate(predname).argdoms, args): if dom == domain and val == value: del self._evidence[atom] self.domains[domain].remove(value) def __iter__(self): for atom, truth in self._evidence.iteritems(): yield atom, truth def __add__(self, other): return self.union(other, mln=self.mln) def __iadd__(self, other): return self.union(other, mln=self.mln) def __setitem__(self, atom, truth): self.add(atom, truth) def __getitem__(self, atom): return self.evidence.get(atom) def __lshift__(self, arg): if type(arg) is tuple: if len(arg) != 2: raise Exception('Illegal argument arg: %s' % str(arg)) self.add(arg[0], float(arg[1])) elif isinstance(arg, basestring): self.add(arg) else: raise ValueError('illegal argument: must be string or <string, truth> pair. Got: %s' % repr(arg)) def __rshift__(self, atom): self.retract(atom) def __contains__(self, el): atomstr = self._atomstr(el) return atomstr in self._evidence def __delitem__(self, item): self.retract(item) def __len__(self): return len(self.evidence) def isempty(self): ''' Returns True iff there is an assertion for any ground atom in this database and False if the truth values all ground atoms are None AND all domains are empty. ''' return not any(map(lambda x: x >= 0 and x <= 1, self._evidence.values())) and \ len(self.domains) == 0 def query(self, formula, thr=1): ''' Makes to the database a 'prolog-like' query given by the specified formula. Returns a generator of dictionaries with variable-value assignments for which the formula has a truth value of at least `truth_thr`. :param formula: the formula the database shall be queried with. :param truth_thr: the threshold for truth values. .. warning:: This is *very* inefficient, since all groundings will be instantiated; so keep the queries short. :Example: >>> for r in db.query('foo(?x, ?y)'): >>> print r >>> {'?x': 'X1', '?y': 'Y1'} {'?x': 'X2', '?y': 'Y2'} ''' mrf = Database.PseudoMRF(self) formula = self.mln.logic.parse_formula(formula) for assignment in mrf.iter_true_var_assignments(formula, truth_thr=thr): yield assignment @staticmethod def write_dbs(dbs, stream=sys.stdout, color=None, bars=False): if color is None: if stream != sys.stdout: color = False else: color = True strdbs = [] for db in dbs: s = StringIO() db.write(s, color=color, bars=bars) strdbs.append(s.getvalue()) s.close() stream.write('---\n'.join(strdbs)) @staticmethod def load(mln, dbfiles, ignore_unknown_preds=False, db=None): ''' Reads one or multiple database files containing literals and/or domains. Returns one or multiple databases where domains is dictionary mapping domain names to lists of constants defined in the database and evidence is a dictionary mapping ground atom strings to truth values :param dbfile: a single one or a list of paths to database file. :param mln: the MLN object which should be used to load the database. :returns: either one single or a list of database objects. :Example: >>> mln = MLN() >>> db = Database.load(mln, './example.db') ''' if type(dbfiles) is not list: dbfiles = [dbfiles] dbs = [] for dbpath in dbfiles: if isinstance(dbpath, basestring): dbpath = mlnpath(dbpath) if isinstance(dbpath, mlnpath): projectpath = None if dbpath.project is not None: projectpath = dbpath.projectloc dirs = [os.path.dirname(fp) for fp in dbfiles] dbs_ = parse_db(mln, content=dbpath.content, ignore_unknown_preds=ignore_unknown_preds, db=db, dirs=dirs, projectpath=projectpath) dbs.extend(dbs_) else: raise Exception('Illegal db file specifier: %s' % dbpath) if len(dbs) > 1 and db is not None: raise Exception('Cannot attach multiple databases to a single database object. Use Database.load(..., db=None).') else: return dbs class PseudoMRF(object): ''' can be used in order to use only a Database object to ground formulas (without instantiating an MRF) and determine the truth of these ground formulas by partly replicating the interface of an MRF object ''' def __init__(self, db): self.mln = db.mln self.domains = mergedom(self.mln.domains, db.domains) self.gndatoms = Database.PseudoMRF.GroundAtomGen() # duplicate the database to avoid side effects self.evidence = Database.PseudoMRF.WorldValues(db.copy()) class GroundAtomGen(object): def __getitem__(self, gndAtomName): return Database.PseudoMRF.TextGroundAtom(gndAtomName) def get(self, key, default=None): return self[key] class TextGroundAtom(object): def __init__(self, name): self.name = self.idx = name def truth(self, world): return world[self.name] def __str__(self): return self.name def simplify(self, mrf): return self class WorldValues(object): def __init__(self, db): self.db = db def __getitem__(self, atomstr): return self.db._evidence.get(atomstr, 0) def iter_groundings(self, formula): for t in formula.iter_groundings(self): yield t def truth(self, gndformula): return gndformula.truth(self.evidence) def count_true_groundings(self, formula): numTotal = 0 numTrue = 0 for gf, _ in self.iter_groundings(formula): numTotal += 1 numTrue += gf.truth(self.evidence) return (numTrue, numTotal) def gndatom(self, atom): return self.gndatoms.get(atom) def iter_true_var_assignments(self, formula, truth_thr=1.0): ''' Iterates over all groundings of formula that evaluate to true given this Pseudo-MRF. ''' for assignment in formula.iter_true_var_assignments(self, self.evidence, truth_thr=truth_thr): yield assignment def parse_db(mln, content, ignore_unknown_preds=False, db=None, dirs=['.'], projectpath=None): ''' Reads one or more databases in a string representation and returns the respective Database objects. :param mln: the MLN object which should be used to load the database. :param content: the string representation of one or multiple ('---'-separated) databases :param ignore_unknown_preds: by default this function raises an Exception when it encounters a predicate in the DB that has not been declared in the associated MLN. ignore_unknown_preds=True simply ignores such predicates. :param db: the Database object that shall receive the facts stored in the new DB. If None, a new `Database` object will be created. ''' log = logs.getlogger('db') content = stripComments(content) allow_multiple = True if db is None: allow_multiple = True db = Database(mln, ignore_unknown_preds=ignore_unknown_preds) dbs = [] # expand domains with dbtext constants and save evidence for line, l in enumerate(content.split("\n")): l = l.strip() if l == '': continue # separator between independent databases elif l == '---' and not db.isempty(): dbs.append(db) db = Database(mln) continue # domain declaration elif "{" in l: domname, constants = db.mln.logic.parse_domain(l) domnames = [domname for _ in constants] # include elif l.startswith('#include'): filename = l[len("#include "):].strip() m = re.match(r'"(?P<filename>.+)"', filename) if m is not None: filename = m.group('filename') # if the path is relative, look for the respective file # relatively to all paths specified. Take the first file matching. if not mlnpath(filename).exists: includefilename = None for d in dirs: mlnp = '/'.join([d, filename]) if mlnpath(mlnp).exists: includefilename = mlnp break if includefilename is None: raise Exception('File not found: %s' % filename) else: includefilename = filename else: m = re.match(r'<(?P<filename>.+)>', filename) if m is not None: filename = m.group('filename') else: raise MLNParsingError('Malformed #include statement: %s' % line) if projectpath is None: raise MLNParsingError('No project specified: Cannot locate import from project: %s' % filename) includefilename = ':'.join([projectpath, filename]) logger.debug('Including file: "%s"' % includefilename) p = mlnpath(includefilename) dbs.extend(parse_db(content=mlnpath(includefilename).content, ignore_unknown_preds=ignore_unknown_preds, dirs=[p.resolve_path()]+dirs, projectpath=ifnone(p.project, projectpath, lambda x: '/'.join(p.path+[x])), mln=mln)) continue # valued evidence elif l[0] in "0123456789": s = l.find(" ") gndatom = l[s + 1:].replace(" ", "") value = float(l[:s]) if value < 0 or value > 1: raise Exception('Valued evidence must be in [0,1]') if gndatom in db.evidence: raise Exception("Duplicate soft evidence for '%s'" % gndatom) try: _, predname, constants = mln.logic.parse_literal(gndatom) # TODO Should we allow soft evidence on non-atoms here? (This assumes atoms) except NoSuchPredicateError, e: if ignore_unknown_preds: continue else: raise e domnames = mln.predicate(predname).argdoms db << (gndatom, value) # literal else: if l[0] == "?": raise Exception("Unknown literals not supported (%s)" % l) # this is an Alchemy feature try: true, predname, constants = mln.logic.parse_literal(l) except NoSuchPredicateError, e: if ignore_unknown_preds: continue else: raise e except Exception, e: traceback.print_exc() raise MLNParsingError('Error parsing line %d: %s (%s)' % (line+1, l, e.message)) if mln.predicate(predname) is None and ignore_unknown_preds: log.debug('Predicate "%s" is undefined.' % predname) continue elif mln.predicate(predname) is None: raise NoSuchPredicateError(predname) domnames = mln.predicate(predname).argdoms # save evidence true = 1 if true else 0 db << ("%s(%s)" % (predname, ",".join(constants)), true) # expand domains if len(domnames) != len(constants): raise Exception("Ground atom %s in database %d has wrong number of parameters" % (l, len(dbs))) for i, c in enumerate(constants): db.domain({domnames[i]: c}) if not db.isempty(): dbs.append(db) if len(dbs) > 1 and not allow_multiple: raise Exception('Only one single database is permitted when loading via the constructor. Use Database.load() for loading multiple DBs,') return dbs def readall_dbs(mln, path): ''' Loads and yields all databases (*.db files) that are located in the given directory and returns the corresponding Database objects. :param path: the directory path to look for .db files ''' for dirname, dirnames, filenames in os.walk(path): #@UnusedVariable for f in filenames: if not f.endswith('.db'): continue p = os.path.join(dirname, f) print " reading database %s" % p dbs = Database.load(mln, p) if type(dbs) == list: for db in dbs: yield db else: yield dbs
tests/test_galleries.py
kevinlai219/Mezzanine-Django
3,053
12673761
<reponame>kevinlai219/Mezzanine-Django import os from shutil import rmtree from uuid import uuid4 from mezzanine.conf import settings from mezzanine.core.templatetags.mezzanine_tags import thumbnail from mezzanine.galleries.models import GALLERIES_UPLOAD_DIR, Gallery from mezzanine.utils.tests import TestCase, copy_test_to_media class GalleriesTests(TestCase): def test_gallery_import(self): """ Test that a gallery creates images when given a zip file to import, and that descriptions are created. """ zip_name = "gallery.zip" copy_test_to_media("mezzanine.core", zip_name) title = str(uuid4()) gallery = Gallery.objects.create(title=title, zip_import=zip_name) images = list(gallery.images.all()) self.assertTrue(images) self.assertTrue(all([image.description for image in images])) # Clean up. rmtree(os.path.join(settings.MEDIA_ROOT, GALLERIES_UPLOAD_DIR, title)) def test_thumbnail_generation(self): """ Test that a thumbnail is created and resized. """ try: from PIL import Image except ImportError: return image_name = "image.jpg" size = (24, 24) copy_test_to_media("mezzanine.core", image_name) thumb_name = os.path.join( settings.THUMBNAILS_DIR_NAME, image_name, image_name.replace(".", "-%sx%s." % size), ) thumb_path = os.path.join(settings.MEDIA_ROOT, thumb_name) thumb_image = thumbnail(image_name, *size) self.assertEqual(os.path.normpath(thumb_image.lstrip("/")), thumb_name) self.assertNotEqual(os.path.getsize(thumb_path), 0) thumb = Image.open(thumb_path) self.assertEqual(thumb.size, size) # Clean up. del thumb os.remove(os.path.join(settings.MEDIA_ROOT, image_name)) os.remove(os.path.join(thumb_path)) rmtree(os.path.join(os.path.dirname(thumb_path)))
pcdet/models/roi_heads/target_assigner/proposal_target_layer.py
s-ryosky/ST3D
184
12673766
import numpy as np import torch import torch.nn as nn from ....ops.iou3d_nms import iou3d_nms_utils class ProposalTargetLayer(nn.Module): def __init__(self, roi_sampler_cfg): super().__init__() self.roi_sampler_cfg = roi_sampler_cfg def forward(self, batch_dict): """ Args: batch_dict: batch_size: rois: (B, num_rois, 7 + C) roi_scores: (B, num_rois) gt_boxes: (B, N, 7 + C + 1) roi_labels: (B, num_rois) Returns: batch_dict: rois: (B, M, 7 + C) gt_of_rois: (B, M, 7 + C) gt_iou_of_rois: (B, M) roi_scores: (B, M) roi_labels: (B, M) reg_valid_mask: (B, M) rcnn_cls_labels: (B, M) """ batch_rois, batch_gt_of_rois, batch_roi_ious, batch_roi_scores, batch_roi_labels = self.sample_rois_for_rcnn( batch_dict=batch_dict ) # regression valid mask reg_valid_mask = (batch_roi_ious > self.roi_sampler_cfg.REG_FG_THRESH).long() # classification label if self.roi_sampler_cfg.CLS_SCORE_TYPE == 'cls': batch_cls_labels = (batch_roi_ious > self.roi_sampler_cfg.CLS_FG_THRESH).long() ignore_mask = (batch_roi_ious > self.roi_sampler_cfg.CLS_BG_THRESH) & \ (batch_roi_ious < self.roi_sampler_cfg.CLS_FG_THRESH) batch_cls_labels[ignore_mask > 0] = -1 elif self.roi_sampler_cfg.CLS_SCORE_TYPE == 'roi_iou': iou_bg_thresh = self.roi_sampler_cfg.CLS_BG_THRESH iou_fg_thresh = self.roi_sampler_cfg.CLS_FG_THRESH fg_mask = batch_roi_ious > iou_fg_thresh bg_mask = batch_roi_ious < iou_bg_thresh interval_mask = (fg_mask == 0) & (bg_mask == 0) batch_cls_labels = (fg_mask > 0).float() batch_cls_labels[interval_mask] = \ (batch_roi_ious[interval_mask] - iou_bg_thresh) / (iou_fg_thresh - iou_bg_thresh) elif self.roi_sampler_cfg.CLS_SCORE_TYPE == 'raw_roi_iou': batch_cls_labels = batch_roi_ious else: raise NotImplementedError targets_dict = {'rois': batch_rois, 'gt_of_rois': batch_gt_of_rois, 'gt_iou_of_rois': batch_roi_ious, 'roi_scores': batch_roi_scores, 'roi_labels': batch_roi_labels, 'reg_valid_mask': reg_valid_mask, 'rcnn_cls_labels': batch_cls_labels} return targets_dict def sample_rois_for_rcnn(self, batch_dict): """ Args: batch_dict: batch_size: rois: (B, num_rois, 7 + C) roi_scores: (B, num_rois) gt_boxes: (B, N, 7 + C + 1) roi_labels: (B, num_rois) Returns: """ batch_size = batch_dict['batch_size'] rois = batch_dict['rois'] roi_scores = batch_dict['roi_scores'] roi_labels = batch_dict['roi_labels'] gt_boxes = batch_dict['gt_boxes'] code_size = rois.shape[-1] batch_rois = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE, code_size) batch_gt_of_rois = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE, code_size + 1) batch_roi_ious = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE) batch_roi_scores = rois.new_zeros(batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE) batch_roi_labels = rois.new_zeros((batch_size, self.roi_sampler_cfg.ROI_PER_IMAGE), dtype=torch.long) for index in range(batch_size): cur_roi, cur_gt, cur_roi_labels, cur_roi_scores = \ rois[index], gt_boxes[index], roi_labels[index], roi_scores[index] k = cur_gt.__len__() - 1 while k > 0 and cur_gt[k].sum() == 0: k -= 1 cur_gt = cur_gt[:k + 1] cur_gt = cur_gt.new_zeros((1, cur_gt.shape[1])) if len(cur_gt) == 0 else cur_gt if self.roi_sampler_cfg.get('SAMPLE_ROI_BY_EACH_CLASS', False): max_overlaps, gt_assignment = self.get_max_iou_with_same_class( rois=cur_roi, roi_labels=cur_roi_labels, gt_boxes=cur_gt[:, 0:7], gt_labels=cur_gt[:, -1].long() ) else: iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_roi, cur_gt[:, 0:7]) # (M, N) max_overlaps, gt_assignment = torch.max(iou3d, dim=1) sampled_inds = self.subsample_rois(max_overlaps=max_overlaps) batch_rois[index] = cur_roi[sampled_inds] batch_roi_labels[index] = cur_roi_labels[sampled_inds] batch_roi_ious[index] = max_overlaps[sampled_inds] batch_roi_scores[index] = cur_roi_scores[sampled_inds] batch_gt_of_rois[index] = cur_gt[gt_assignment[sampled_inds]] return batch_rois, batch_gt_of_rois, batch_roi_ious, batch_roi_scores, batch_roi_labels def subsample_rois(self, max_overlaps): # sample fg, easy_bg, hard_bg fg_rois_per_image = int(np.round(self.roi_sampler_cfg.FG_RATIO * self.roi_sampler_cfg.ROI_PER_IMAGE)) fg_thresh = min(self.roi_sampler_cfg.REG_FG_THRESH, self.roi_sampler_cfg.CLS_FG_THRESH) fg_inds = torch.nonzero((max_overlaps >= fg_thresh)).view(-1) easy_bg_inds = torch.nonzero((max_overlaps < self.roi_sampler_cfg.CLS_BG_THRESH_LO)).view(-1) hard_bg_inds = torch.nonzero((max_overlaps < self.roi_sampler_cfg.REG_FG_THRESH) & (max_overlaps >= self.roi_sampler_cfg.CLS_BG_THRESH_LO)).view(-1) fg_num_rois = fg_inds.numel() bg_num_rois = hard_bg_inds.numel() + easy_bg_inds.numel() if fg_num_rois > 0 and bg_num_rois > 0: # sampling fg fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois) rand_num = torch.from_numpy(np.random.permutation(fg_num_rois)).type_as(max_overlaps).long() fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]] # sampling bg bg_rois_per_this_image = self.roi_sampler_cfg.ROI_PER_IMAGE - fg_rois_per_this_image bg_inds = self.sample_bg_inds( hard_bg_inds, easy_bg_inds, bg_rois_per_this_image, self.roi_sampler_cfg.HARD_BG_RATIO ) elif fg_num_rois > 0 and bg_num_rois == 0: # sampling fg rand_num = np.floor(np.random.rand(self.roi_sampler_cfg.ROI_PER_IMAGE) * fg_num_rois) rand_num = torch.from_numpy(rand_num).type_as(max_overlaps).long() fg_inds = fg_inds[rand_num] bg_inds = [] elif bg_num_rois > 0 and fg_num_rois == 0: # sampling bg bg_rois_per_this_image = self.roi_sampler_cfg.ROI_PER_IMAGE bg_inds = self.sample_bg_inds( hard_bg_inds, easy_bg_inds, bg_rois_per_this_image, self.roi_sampler_cfg.HARD_BG_RATIO ) else: print('maxoverlaps:(min=%f, max=%f)' % (max_overlaps.min().item(), max_overlaps.max().item())) print('ERROR: FG=%d, BG=%d' % (fg_num_rois, bg_num_rois)) raise NotImplementedError sampled_inds = torch.cat((fg_inds, bg_inds), dim=0) return sampled_inds @staticmethod def sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image, hard_bg_ratio): if hard_bg_inds.numel() > 0 and easy_bg_inds.numel() > 0: hard_bg_rois_num = min(int(bg_rois_per_this_image * hard_bg_ratio), len(hard_bg_inds)) easy_bg_rois_num = bg_rois_per_this_image - hard_bg_rois_num # sampling hard bg rand_idx = torch.randint(low=0, high=hard_bg_inds.numel(), size=(hard_bg_rois_num,)).long() hard_bg_inds = hard_bg_inds[rand_idx] # sampling easy bg rand_idx = torch.randint(low=0, high=easy_bg_inds.numel(), size=(easy_bg_rois_num,)).long() easy_bg_inds = easy_bg_inds[rand_idx] bg_inds = torch.cat([hard_bg_inds, easy_bg_inds], dim=0) elif hard_bg_inds.numel() > 0 and easy_bg_inds.numel() == 0: hard_bg_rois_num = bg_rois_per_this_image # sampling hard bg rand_idx = torch.randint(low=0, high=hard_bg_inds.numel(), size=(hard_bg_rois_num,)).long() bg_inds = hard_bg_inds[rand_idx] elif hard_bg_inds.numel() == 0 and easy_bg_inds.numel() > 0: easy_bg_rois_num = bg_rois_per_this_image # sampling easy bg rand_idx = torch.randint(low=0, high=easy_bg_inds.numel(), size=(easy_bg_rois_num,)).long() bg_inds = easy_bg_inds[rand_idx] else: raise NotImplementedError return bg_inds @staticmethod def get_max_iou_with_same_class(rois, roi_labels, gt_boxes, gt_labels): """ Args: rois: (N, 7) roi_labels: (N) gt_boxes: (N, ) gt_labels: Returns: """ """ :param rois: (N, 7) :param roi_labels: (N) :param gt_boxes: (N, 8) :return: """ max_overlaps = rois.new_zeros(rois.shape[0]) gt_assignment = roi_labels.new_zeros(roi_labels.shape[0]) for k in range(gt_labels.min().item(), gt_labels.max().item() + 1): roi_mask = (roi_labels == k) gt_mask = (gt_labels == k) if roi_mask.sum() > 0 and gt_mask.sum() > 0: cur_roi = rois[roi_mask] cur_gt = gt_boxes[gt_mask] original_gt_assignment = gt_mask.nonzero().view(-1) iou3d = iou3d_nms_utils.boxes_iou3d_gpu(cur_roi, cur_gt) # (M, N) cur_max_overlaps, cur_gt_assignment = torch.max(iou3d, dim=1) max_overlaps[roi_mask] = cur_max_overlaps gt_assignment[roi_mask] = original_gt_assignment[cur_gt_assignment] return max_overlaps, gt_assignment
tkgui/player_info.py
hawson/rpg-text
162
12673767
<gh_stars>100-1000 class PlayerInfo: def __init__(self, manager): self.window = manager.window self.game = manager.game self.manager = manager self._bottom_index = 0 self._top_index = 0 self.bottom_num_pages = 3 self.top_num_pages = 2 def __call__(self): self.setup_ui() self.refresh_page() @property def bottom_index(self): return self._bottom_index @bottom_index.setter def bottom_index(self, value): if value < 0: self._bottom_index = self.bottom_num_pages - 1 elif value > self.bottom_num_pages - 1: self._bottom_index = 0 else: self._bottom_index = value @property def top_index(self): return self._top_index @top_index.setter def top_index(self, value): if value < 0: self._top_index = self.top_num_pages - 1 elif value > self.top_num_pages - 1: self._top_index = 0 else: self._top_index = value def setup_ui(self): self.window.print(self.game.player.name, (50, 1)) self.window.print(self.game.player.job.name.capitalize(), (49, 2)) self.window.print(f"Level - {self.game.player.level}", (67, 2)) self.window.print(f'XP {self.game.player.experience}/{self.game.player.xp_to_next_level}', (49, 3)) self.window.print(f'Health {self.game.player.health}/{self.game.player.max_health}', (49, 4)) self.window.print(f'Mana {self.game.player.mana}/{self.game.player.max_mana}', (49, 5)) def setup_equipmnt(self): self.window.print(' EQUIPMNT ', (57, 7)) i = 0 for slot_name, slot_item in self.game.player.inventory.equipped.as_dict.items(): if not isinstance(slot_item, list): self.window.print(f'{slot_name.upper()} : {slot_item.capitalize()}', (49, 8 + i)) else: self.window.print(f'{slot_name.upper()} : ' f'{", ".join([s.capitalize() for s in slot_item])}', (49, 8 + i)) i += 1 def setup_commands(self): self.window.print(' COMMANDS ', (57, 7)) pass def clear_page(self): self.window.print(' ' * 10, (57, 14)) self.window.print(' ' * 10, (57, 7)) for i in range(8): self.window.print(' ' * 29, (48, 15 + i)) for i in range(6): self.window.print(' ' * 29, (48, 8 + i)) def setup_stats(self): self.window.print('STATS', (59, 14)) i = 0 for key, value in self.game.player.stats.as_dict.items(): self.window.print(f'{key.upper()} - {value}', (49, 15 + i)) i += 1 def setup_saving_throws(self): self.window.print('SAV.THROWS', (57, 14)) i = 0 for key, value in self.game.player.job.saving_throws.as_dict.items(): self.window.print(f'{key.upper()} - {value}', (49, 15 + i)) i += 1 def setup_money(self): self.window.print(' MONEY ', (57, 14)) i = 0 for key, value in self.game.player.inventory.money.coins.items(): self.window.print(f'{key.upper()} : {value}', (49, 15 + i)) i += 1 self.window.print(f'GEMS : {self.game.player.inventory.money.gems_value} GC', (49, 15 + i)) self.window.print(f'JEWELS : {self.game.player.inventory.money.jewels_value} GC', (49, 16 + i)) self.window.print(f'TOTAL : {self.game.player.inventory.money.value:02} GC', (49, 17 + i)) def on_bottom_page_left(self, event): self.bottom_index -= 1 self.refresh_page() def on_bottom_page_right(self, event): self.bottom_index += 1 self.refresh_page() def on_top_page_left(self, event): self.top_index -= 1 self.refresh_page() def on_top_page_right(self, event): self.top_index += 1 self.refresh_page() def refresh_page(self): self.clear_page() [self.setup_stats, self.setup_saving_throws, self.setup_money][self.bottom_index]() [self.setup_equipmnt, self.setup_commands][self.top_index]() self.window.button('<', (56, 14), self.on_bottom_page_left) self.window.button('<', (56, 7), self.on_top_page_left) self.window.button('>', (67, 14), self.on_bottom_page_right) self.window.button('>', (67, 7), self.on_top_page_right)
src/sparseml/sparsification/info.py
clementpoiret/sparseml
922
12673800
<gh_stars>100-1000 # Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Functionality related to describing availability and information of sparsification algorithms to models within in the ML frameworks. The file is executable and will get the sparsification info for a given framework: ########## Command help: usage: info.py [-h] [--path PATH] framework Compile the available setup and information for the sparsification of a model in a given framework. positional arguments: framework the ML framework or path to a framework file to load the sparsification info for optional arguments: -h, --help show this help message and exit --path PATH A full file path to save the sparsification info to. If not supplied, will print out the sparsification info to the console. ######### EXAMPLES ######### ########## Example command for getting the sparsification info for pytorch. python src/sparseml/sparsification/info.py pytorch """ import argparse import logging import os from enum import Enum from typing import Any, List, Optional from pydantic import BaseModel, Field from sparseml.base import execute_in_sparseml_framework from sparseml.utils import clean_path, create_parent_dirs __all__ = [ "ModifierType", "ModifierPropInfo", "ModifierInfo", "SparsificationInfo", "sparsification_info", "save_sparsification_info", "load_sparsification_info", ] _LOGGER = logging.getLogger(__name__) class ModifierType(Enum): """ Types of modifiers for grouping what functionality a Modifier falls under. """ general = "general" training = "training" pruning = "pruning" quantization = "quantization" act_sparsity = "act_sparsity" misc = "misc" class ModifierPropInfo(BaseModel): """ Class for storing information and associated metadata for a property on a given Modifier. Extends pydantics BaseModel class for serialization to and from json in addition to proper type checking on construction. """ name: str = Field( title="name", description=( "Name of the property for a Modifier. " "It can be accessed by this name on the modifier instance." ), ) description: str = Field( title="description", description="Description and information for the property for a Modifier.", ) type_: str = Field( title="type_", description=( "The format type for the property for a Modifier such as " "int, float, str, etc." ), ) restrictions: Optional[List[Any]] = Field( default=None, title="restrictions", description=( "Value restrictions for the property for a Modifier. " "If set, restrict the set value to one of the contained restrictions." ), ) class ModifierInfo(BaseModel): """ Class for storing information and associated metadata for a given Modifier. Extends pydantics BaseModel class for serialization to and from json in addition to proper type checking on construction. """ name: str = Field( title="name", description=( "Name/class of the Modifier to be used for construction and identification." ), ) description: str = Field( title="description", description="Description and info for the Modifier and what its used for.", ) type_: ModifierType = Field( default=ModifierType.misc, title="type_", description=( "The type the given Modifier is for grouping by similar functionality." ), ) props: List[ModifierPropInfo] = Field( default=[], title="props", description="The properties for the Modifier that can be set and controlled.", ) warnings: Optional[List[str]] = Field( default=None, title="warnings", description=( "Any warnings that apply for the Modifier and using it within a system" ), ) class SparsificationInfo(BaseModel): """ Class for storing the information for sparsifying in a given framework. Extends pydantics BaseModel class for serialization to and from json in addition to proper type checking on construction. """ modifiers: List[ModifierInfo] = Field( default=[], title="modifiers", description="A list of the information for the available modifiers", ) def type_modifiers(self, type_: ModifierType) -> List[ModifierInfo]: """ Get the contained Modifiers for a specific ModifierType. :param type_: The ModifierType to filter the returned list of Modifiers by. :type type_: ModifierType :return: The filtered list of Modifiers that match the given type_. :rtype: List[ModifierInfo] """ modifiers = [] for mod in self.modifiers: if mod.type_ == type_: modifiers.append(mod) return modifiers def sparsification_info(framework: Any) -> SparsificationInfo: """ Get the available setup for sparsifying model in the given framework. :param framework: The item to detect the ML framework for. See :func:`detect_framework` for more information. :type framework: Any :return: The sparsification info for the given framework :rtype: SparsificationInfo """ _LOGGER.debug("getting sparsification info for framework %s", framework) info: SparsificationInfo = execute_in_sparseml_framework( framework, "sparsification_info" ) _LOGGER.info("retrieved sparsification info for framework %s: %s", framework, info) return info def save_sparsification_info(framework: Any, path: Optional[str] = None): """ Save the sparsification info for a given framework. If path is provided, will save to a json file at that path. If path is not provided, will print out the info. :param framework: The item to detect the ML framework for. See :func:`detect_framework` for more information. :type framework: Any :param path: The path, if any, to save the info to in json format. If not provided will print out the info. :type path: Optional[str] """ _LOGGER.debug( "saving sparsification info for framework %s to %s", framework, path if path else "sys.out", ) info = ( sparsification_info(framework) if not isinstance(framework, SparsificationInfo) else framework ) if path: path = clean_path(path) create_parent_dirs(path) with open(path, "w") as file: file.write(info.json()) _LOGGER.info( "saved sparsification info for framework %s in file at %s", framework, path ), else: print(info.json(indent=4)) _LOGGER.info("printed out sparsification info for framework %s", framework) def load_sparsification_info(load: str) -> SparsificationInfo: """ Load the sparsification info from a file or raw json. If load exists as a path, will read from the file and use that. Otherwise will try to parse the input as a raw json str. :param load: Either a file path to a json file or a raw json string. :type load: str :return: The loaded sparsification info. :rtype: SparsificationInfo """ load_path = clean_path(load) if os.path.exists(load_path): with open(load_path, "r") as file: load = file.read() info = SparsificationInfo.parse_raw(load) return info def _parse_args(): parser = argparse.ArgumentParser( description=( "Compile the available setup and information for the sparsification " "of a model in a given framework." ) ) parser.add_argument( "framework", type=str, help=( "the ML framework or path to a framework file to load the " "sparsification info for" ), ) parser.add_argument( "--path", type=str, default=None, help=( "A full file path to save the sparsification info to. " "If not supplied, will print out the sparsification info to the console." ), ) return parser.parse_args() def _main(): args = _parse_args() save_sparsification_info(args.framework, args.path) if __name__ == "__main__": _main()
Chapter04/wavnet/wavenet_utils.py
sbi97/R-Deep-learning
1,119
12673806
<reponame>sbi97/R-Deep-learning import keras.backend as K from keras.layers import AtrousConvolution1D from keras.utils.np_utils import conv_output_length def categorical_mean_squared_error(y_true, y_pred): """MSE for categorical variables.""" return K.mean(K.square(K.argmax(y_true, axis=-1) - K.argmax(y_pred, axis=-1))) class CausalAtrousConvolution1D(AtrousConvolution1D): def __init__(self, nb_filter, filter_length, init='glorot_uniform', activation=None, weights=None, border_mode='valid', subsample_length=1, atrous_rate=1, W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, bias=True, causal=False, **kwargs): super(CausalAtrousConvolution1D, self).__init__(nb_filter, filter_length, init, activation, weights, border_mode, subsample_length, atrous_rate, W_regularizer, b_regularizer, activity_regularizer, W_constraint, b_constraint, bias, **kwargs) self.causal = causal if self.causal and border_mode != 'valid': raise ValueError("Causal mode dictates border_mode=valid.") def get_output_shape_for(self, input_shape): input_length = input_shape[1] if self.causal: input_length += self.atrous_rate * (self.filter_length - 1) length = conv_output_length(input_length, self.filter_length, self.border_mode, self.subsample[0], dilation=self.atrous_rate) return (input_shape[0], length, self.nb_filter) def call(self, x, mask=None): if self.causal: x = K.asymmetric_temporal_padding(x, self.atrous_rate * (self.filter_length - 1), 0) return super(CausalAtrousConvolution1D, self).call(x, mask)
recipes/Python/578107_Tracking_Manipulating_PythImport/recipe-578107.py
tdiprima/code
2,023
12673809
<gh_stars>1000+ """import_state.py A rough implementation of PEP 405. This module centers on manipulating the normal Python import machinery through its defined state. Any other approach, such as replacing builtins.__import__ is certainly legal, but not supported here. """ __all__ = ['ImportState', 'default_import_state', 'globalstate'] import sys import builtins import site import importlib import _imp from collections import namedtuple class GlobalImportLock: # no need for a generic ImportLock type, since all import states # use the same lock @property def acquire(self): _imp.acquire_lock() @property def release(self): _imp.release_lock() @property def lock_held(self): _imp.lock_held() _ImportState = namedtuple('_ImportState', ( 'modules', 'meta_path', 'path', 'path_hooks', 'path_importer_cache', )) class ImportState(_ImportState): """A container for the import state (a la PEP 406). The dictionary in sys.modules is a special case, since it is part of the CPython interpreter state. Binding a different dict there is problematic, since the import machinery may use the internal reference to the original dict, rather than looking up sys.modules. The consequence is that the _contents_ of sys.modules must be swapped in and out, rather than simply binding something else there. ImportState objects may be used as context managers, to activate the state temporarily. During a with statement the dict in self.modules may not reflect the actual state. However, it _will_ be correct before and after the with statement. """ # all import states use the same lock lock = GlobalImportLock() def __init__(self, *args, **kwargs): self._saved = None def __enter__(self): self.lock.acquire() self.activate() def __exit__(self, *args, **kwargs): self.deactivate() self.lock.release() def copy(self): """Return a shallow copy of the import state.""" return type(self)(self.modules.copy(), self.meta_path[:], self.path[:], self.path_hooks[:], self.path_importer_cache.copy()) def activate(self, force=False): """Have the interpreter use this import state, saving the old.""" if self._saved is not None and not force: raise TypeError("Already activated; try using a copy") self._saved = _ImportState( sys.modules.copy(), # saving away the contents sys.meta_path, sys.path, sys.path_hooks, sys.path_importer_cache, ) #sys.modules = self.modules sys.meta_path = self.meta_path sys.path = self.path sys.path_hooks = self.meta_path sys.path_importer_cache = self.path_importer_cache # accommodate sys.module's quirkiness sys.modules.clear() sys.modules.update(self.modules) def deactivate(self): """Restore the import state saved when this one activated.""" if not self._saved: raise TypeError("Not activated yet") # sys.modules = self.modules sys.meta_path = self._saved.meta_path sys.path = self._saved.path sys.path_hooks = self._saved.path_hooks sys.path_importer_cache = self._saved.path_importer_cache # accommodate sys.module's quirkiness self.modules.clear() self.modules.update(sys.modules) sys.modules.clear() sys.modules.update(self._saved.modules) self._saved = None def default_import_state(**overrides): """Return an ImportState with defaults to the initial import state.""" state = { 'modules': {}, 'meta_path': [], 'path': site.getsitepackages(), 'path_hooks': [], 'path_importer_cache': {}, } state.update(overrides) return ImportState(**state) class GlobalImportState(ImportState): """An ImportState that wraps the current state""" # The underlying ImportState values will be ignored. def __new__(cls): return super(GlobalImportState, cls).__new__(cls, *([None]*5)) @property def modules(self): """The cache of modules that have already been imported.""" return sys.modules @property def meta_path(self): """The PEP 302 finders queried before 'path' is traversed.""" return sys.meta_path @property def path(self): """The directories in which top-level packages are located.""" return sys.path @property def path_hooks(self): """The PEP 302 path importers that are queried for a path.""" return sys.path_hooks @property def path_importer_cache(self): """The cache of finders previously found through path_hooks.""" return sys.path_importer_cache globalstate = GlobalImportState()
tests/test_at.py
CrackerCat/regexploit
592
12673829
<filename>tests/test_at.py import pytest from regexploit.ast.at import EndOfString from regexploit.ast.sre import SreOpParser def from_regex(pattern: str): return SreOpParser().parse_sre(pattern) @pytest.mark.parametrize( "r", [ r".*b*", r".*\w*b*", r".+b*", ], ) def test_cannot_backtrack(r): dollar = EndOfString() dollar.set_character(from_regex(r).elements) assert dollar.character.is_any @pytest.mark.parametrize( "r", [ r"x[ab]*b*", r"x+[ab]*", r"x+a*[ab]*a*b*", ], ) def test_dollar_simple(r): dollar = EndOfString() dollar.set_character(from_regex(r).elements) assert dollar.character == from_regex("[ab]") @pytest.mark.parametrize( "r", [ r"\w*b*", r"x\w*\w*b*", r"\w+b*", ], ) def test_dollar_optionals_contained_by_mandatory(r): dollar = EndOfString() dollar.set_character(from_regex(r).elements) assert dollar.character == from_regex(r"[\w]").expand_categories() def test_whole_string(): dollar = EndOfString() dollar.set_character(from_regex(r"a*a*").elements) assert dollar.character == from_regex(r"[a]") def test_real(): dollar = EndOfString() dollar.set_character(from_regex(r"-\d+(\s*\s*\s*)").elements) assert dollar.character == from_regex(r"[\s]")
doc/generate-doc.py
ponty/pyscreenshot
416
12673830
import glob import logging import os from easyprocess import EasyProcess from entrypoint2 import entrypoint # (cmd,grab,background) commands = [ "python3 -m pyscreenshot.check.versions", "python3 -m pyscreenshot.examples.virtdisp", "python3 -m pyscreenshot.check.speedtest", "python3 -m pyscreenshot.check.speedtest --childprocess 0", ] def empty_dir(dir): files = glob.glob(os.path.join(dir, "*")) for f in files: os.remove(f) @entrypoint def main(): gendir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "gen") logging.info("gendir: %s", gendir) os.makedirs(gendir, exist_ok=True) empty_dir(gendir) pls = [] try: os.chdir("gen") for cmd in commands: logging.info("cmd: %s", cmd) fname_base = cmd.replace(" ", "_") fname = fname_base + ".txt" logging.info("cmd: %s", cmd) print("file name: %s" % fname) with open(fname, "w") as f: f.write("$ " + cmd + "\n") p = EasyProcess(cmd).call() f.write(p.stdout) f.write(p.stderr) pls += [p] finally: os.chdir("..") for p in pls: p.stop() embedme = EasyProcess(["npx", "embedme", "../README.md"]) embedme.call() print(embedme.stdout) assert embedme.return_code == 0 assert not "but file does not exist" in embedme.stdout
gazelle/bzl/testdata/defaultvisibility/nested/dir/bar.bzl
jkjk822/bazel-skylib
223
12673834
<gh_stars>100-1000 """ Doc string """ def asdf(): pass
carla/recourse_methods/catalog/focus/distances.py
jayanthyetukuri/CARLA
140
12673841
import tensorflow as tf from tensorflow.losses import Reduction def distance_func(name, x1, x2, eps: float = 0.0): if name == "l1": ax = 1 return l1_dist(x1, x2, ax, eps) if name == "l2": ax = 1 return l2_dist(x1, x2, ax, eps) if name == "cosine": ax = -1 return cosine_dist(x1, x2, ax, eps) def l1_dist(x1, x2, ax: int, eps: float = 0.0): # sum over |x| + eps, i.e. L1 norm x = x1 - x2 return tf.reduce_sum(tf.abs(x), axis=ax) + eps def l2_dist(x1, x2, ax: int, eps: float = 0.0): # sqrt((sum over x^2) + eps)), i.e. L2 norm x = x1 - x2 return (tf.reduce_sum(x ** 2, axis=ax) + eps) ** 0.5 def cosine_dist(x1, x2, ax: int, eps: float = 0.0): # normalize by sqrt(max(sum(x**2), 1e-12)) normalize_x1 = tf.nn.l2_normalize(x1, dim=1) normalize_x2 = tf.nn.l2_normalize(x2, dim=1) dist = ( tf.losses.cosine_distance( normalize_x1, normalize_x2, axis=ax, reduction=Reduction.NONE ) + eps ) dist = tf.squeeze(dist) dist = tf.cast(dist, tf.float64) return dist
pytimeparse/__init__.py
Dushistov/pytimeparse
216
12673848
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' __init__.py (c) <NAME> <<EMAIL>> 1 February, 2014 `timeparse` module. ''' from __future__ import absolute_import from codecs import open from os import path # Version. For each new release, the version number should be updated # in the file VERSION. try: # If a VERSION file exists, use it! with open(path.join(path.dirname(__file__), 'VERSION'), encoding='utf-8') as infile: __version__ = infile.read().strip() except NameError: __version__ = 'unknown (running code interactively?)' except IOError as ex: __version__ = "unknown (%s)" % ex # import top-level functionality from .timeparse import timeparse as parse
vlcp/protocol/openflow/defs/openflow10.py
hubo1016/vlcp
252
12673878
''' /* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* OpenFlow: protocol between controller and datapath. */ Created on 2015/7/13 :author: hubo ''' from .common import * from . import common from namedstruct.namedstruct import StructDefWarning import warnings as _warnings with _warnings.catch_warnings(): _warnings.filterwarnings('ignore', '^padding', StructDefWarning) ''' /* Port number(s) meaning * --------------- -------------------------------------- * 0x0000 not assigned a meaning by OpenFlow 1.0 * 0x0001...0xfeff "physical" ports * 0xff00...0xfff7 "reserved" but not assigned a meaning by OpenFlow 1.0 * 0xfff8...0xffff "reserved" OFPP_* ports with assigned meanings */ /* Ranges. */ ''' ofp_port = enum('ofp_port', globals(), uint16, OFPP_MAX = 0xff00, # /* Max # of switch ports. */ # /* Reserved output "ports". */ OFPP_IN_PORT = 0xfff8, # /* Where the packet came in. */ OFPP_TABLE = 0xfff9, # /* Perform actions in flow table. */ OFPP_NORMAL = 0xfffa, # /* Process with normal L2/L3. */ OFPP_FLOOD = 0xfffb, # /* All ports except input port and # * ports disabled by STP. */ OFPP_ALL = 0xfffc, # /* All ports except input port. */ OFPP_CONTROLLER = 0xfffd, # /* Send to controller. */ OFPP_LOCAL = 0xfffe, # /* Local openflow "port". */ OFPP_NONE = 0xffff # /* Not associated with any port. */ ) ofp_port_no = ofp_port OFPP_FIRST_RESV = 0xfff8, # /* First assigned reserved port. */ OFPP_LAST_RESV = 0xffff, # /* Last assigned reserved port. */ ofp_type = ofp_type.extend(globals(), OFPT_VENDOR = 4, OFPT_FEATURES_REQUEST = 5, #/* Controller/switch message */ OFPT_FEATURES_REPLY = 6, #/* Controller/switch message */ OFPT_GET_CONFIG_REQUEST = 7, #/* Controller/switch message */ OFPT_GET_CONFIG_REPLY = 8, #/* Controller/switch message */ OFPT_SET_CONFIG = 9, #/* Controller/switch message */ OFPT_PACKET_IN = 10, #/* Async message */ OFPT_FLOW_REMOVED = 11, #/* Async message */ OFPT_PORT_STATUS = 12, #/* Async message */ OFPT_PACKET_OUT = 13, #/* Controller/switch message */ OFPT_FLOW_MOD = 14, #/* Controller/switch message */ OFPT_PORT_MOD = 15, #/* Controller/switch message */ OFPT_STATS_REQUEST = 16, #/* Controller/switch message */ OFPT_STATS_REPLY = 17, #/* Controller/switch message */ OFPT_BARRIER_REQUEST = 18, #/* Controller/switch message */ OFPT_BARRIER_REPLY = 19, #/* Controller/switch message */ OFPT_QUEUE_GET_CONFIG_REQUEST = 20, #/* Controller/switch message */ OFPT_QUEUE_GET_CONFIG_REPLY = 21 #/* Controller/switch message */ ) ofp_type_reply_set = set([OFPT_ECHO_REPLY, OFPT_FEATURES_REPLY, OFPT_GET_CONFIG_REPLY, OFPT_STATS_REPLY, OFPT_BARRIER_REPLY, OFPT_QUEUE_GET_CONFIG_REPLY]) ofp_type_asyncmessage_set = set([OFPT_PACKET_IN, OFPT_FLOW_REMOVED, OFPT_PORT_STATUS]) OFP_VERSION = OFP10_VERSION ofp_msg = nstruct(name = 'ofp_msg', base = common.ofp_msg_mutable, criteria = lambda x: x.header.version == OFP_VERSION, init = packvalue(OFP_VERSION, 'header', 'version'), classifyby = (OFP_VERSION,), classifier = lambda x: x.header.type, extend = {('header','type') : ofp_type}) ofp_vendor = nstruct((experimenter_ids, 'vendor'), name = 'ofp_vendor', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_VENDOR, classifyby = (OFPT_VENDOR,), init = packvalue(OFPT_VENDOR, 'header', 'type') ) ofp_error_type = ofp_error_type.extend(globals(), OFPET_FLOW_MOD_FAILED = 3, OFPET_PORT_MOD_FAILED = 4, OFPET_QUEUE_OP_FAILED = 5) ''' /* ofp_error_msg 'code' values for OFPET_FLOW_MOD_FAILED. 'data' contains * at least the first 64 bytes of the failed request. */ ''' ofp_flow_mod_failed_code = enum('ofp_flow_mod_failed_code', globals(), OFPFMFC_ALL_TABLES_FULL = 0, # /* Flow not added because of full tables. */ OFPFMFC_OVERLAP = 1, # /* Attempted to add overlapping flow with # * CHECK_OVERLAP flag set. */ OFPFMFC_EPERM = 2, # /* Permissions error. */ OFPFMFC_BAD_EMERG_TIMEOUT = 3, # /* Flow not added because of non-zero idle/hard # * timeout. */ OFPFMFC_BAD_COMMAND = 4, # /* Unknown command. */ OFPFMFC_UNSUPPORTED = 5, # /* Unsupported action list - cannot process in # * the order specified. */ ) ''' /* ofp_error_msg 'code' values for OFPET_PORT_MOD_FAILED. 'data' contains * at least the first 64 bytes of the failed request. */ ''' ofp_port_mod_failed_code = enum('ofp_port_mod_failed_code', globals(), OFPPMFC_BAD_PORT = 0, #/* Specified port does not exist. */ OFPPMFC_BAD_HW_ADDR = 1, #/* Specified hardware address is wrong. */ ) ''' /* ofp_error msg 'code' values for OFPET_QUEUE_OP_FAILED. 'data' contains * at least the first 64 bytes of the failed request */ ''' ofp_queue_op_failed_code = enum('ofp_queue_op_failed_code', globals(), OFPQOFC_BAD_PORT = 0, # /* Invalid port (or port does not exist). */ OFPQOFC_BAD_QUEUE = 1, # /* Queue does not exist. */ OFPQOFC_EPERM = 2 # /* Permissions error. */ ) ofp_error_types = dict(ofp_error_types) ofp_error_types.update({OFPET_FLOW_MOD_FAILED : ofp_error_typedef(OFPET_FLOW_MOD_FAILED, ofp_flow_mod_failed_code, OFP_VERSION, ofp_error_type), OFPET_PORT_MOD_FAILED : ofp_error_typedef(OFPET_PORT_MOD_FAILED, ofp_port_mod_failed_code, OFP_VERSION, ofp_error_type), OFPET_QUEUE_OP_FAILED : ofp_error_typedef(OFPET_QUEUE_OP_FAILED, ofp_queue_op_failed_code, OFP_VERSION, ofp_error_type)}) ofp_switch_config = nstruct((ofp_config_flags, 'flags'), (uint16, 'miss_send_len'), name = 'ofp_switch_config', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_GET_CONFIG_REPLY or x.header.type == OFPT_SET_CONFIG, classifyby = (OFPT_GET_CONFIG_REPLY, OFPT_SET_CONFIG), init = packvalue(OFPT_SET_CONFIG, 'header','type')) ''' /* OpenFlow 1.0 specific capabilities supported by the datapath (struct * ofp_switch_features, member capabilities). */ ''' ofp_capabilities = ofp_capabilities.extend( globals(), OFPC_STP = 1 << 3, #/* 802.1d spanning tree. */ OFPC_RESERVED = 1 << 4) #/* Reserved, must not be set. */ ''' /* OpenFlow 1.0 specific current state of the physical port. These are not * configurable from the controller. */ /* The OFPPS10_STP_* bits have no effect on switch operation. The * controller must adjust OFPPC_NO_RECV, OFPPC_NO_FWD, and * OFPPC_NO_PACKET_IN appropriately to fully implement an 802.1D spanning * tree. */ ''' ofp_port_state = ofp_port_state.extend(globals(), OFPPS_STP_LISTEN = 0 << 8, # /* Not learning or relaying frames. */ OFPPS_STP_LEARN = 1 << 8, # /* Learning but not relaying frames. */ OFPPS_STP_FORWARD = 2 << 8, # /* Learning and relaying frames. */ OFPPS_STP_BLOCK = 3 << 8 # /* Not part of spanning tree. */ ) # /* Bit mask for OFPPS10_STP_* values. */ OFPPS_STP_MASK = 3 << 8 OFPPS_ALL = OFPPS_LINK_DOWN | OFPPS_STP_MASK ofp_action_type = enum('ofp_action_type', globals(), uint16, OFPAT_OUTPUT = 0, #/* Output to switch port. */ OFPAT_SET_VLAN_VID = 1, #/* Set the 802.1q VLAN id. */ OFPAT_SET_VLAN_PCP = 2, #/* Set the 802.1q priority. */ OFPAT_STRIP_VLAN = 3, #/* Strip the 802.1q header. */ OFPAT_SET_DL_SRC = 4, #/* Ethernet source address. */ OFPAT_SET_DL_DST = 5, #/* Ethernet destination address. */ OFPAT_SET_NW_SRC = 6, #/* IP source address. */ OFPAT_SET_NW_DST = 7, #/* IP destination address. */ OFPAT_SET_NW_TOS = 8, #/* IP ToS (DSCP field, 6 bits). */ OFPAT_SET_TP_SRC = 9, #/* TCP/UDP source port. */ OFPAT_SET_TP_DST = 10, #/* TCP/UDP destination port. */ OFPAT_ENQUEUE = 11, #/* Output to queue. */ OFPAT_VENDOR = 0xffff) ofp_action = nstruct((ofp_action_type, 'type'), (uint16, 'len'), name = 'ofp_action', size = lambda x: x.len, prepack = packsize('len'), classifier = lambda x: x.type ) ofp_action_vendor = nstruct((experimenter_ids, 'vendor'), name = 'ofp_action_vendor', base = ofp_action, criteria = lambda x: x.type == OFPAT_VENDOR, classifyby = (OFPAT_VENDOR,), init = packvalue(OFPAT_VENDOR, 'type') ) ''' /* Action structure for OFPAT10_OUTPUT, which sends packets out 'port'. * When the 'port' is the OFPP_CONTROLLER, 'max_len' indicates the max * number of bytes to send. A 'max_len' of zero means no bytes of the * packet should be sent. */ ''' ofp_action_output = nstruct((ofp_port, 'port'), (uint16, 'max_len'), name = 'ofp_action_output', base = ofp_action, criteria = lambda x: x.type == OFPAT_OUTPUT, classifyby = (OFPAT_OUTPUT,), init = packvalue(OFPAT_OUTPUT, 'type')) ''' /* Action structure for OFPAT10_SET_VLAN_VID and OFPAT11_SET_VLAN_VID. */ ''' ofp_action_vlan_vid = nstruct( (uint16, 'vlan_vid'), # /* VLAN id. */ (uint8[2],), name = 'ofp_action_vlan_vid', base = ofp_action, criteria = lambda x: x.type == OFPAT_SET_VLAN_VID, classifyby = (OFPAT_SET_VLAN_VID,), init = packvalue(OFPAT_SET_VLAN_VID, 'type')) ''' /* Action structure for OFPAT10_SET_VLAN_PCP and OFPAT11_SET_VLAN_PCP. */ ''' ofp_action_vlan_pcp = nstruct( (uint8, 'vlan_pcp'), # /* VLAN priority. */ (uint8[3],), name = 'ofp_action_vlan_pcp', base = ofp_action, criteria = lambda x: x.type == OFPAT_SET_VLAN_PCP, classifyby = (OFPAT_SET_VLAN_PCP,), init = packvalue(OFPAT_SET_VLAN_PCP, 'type')) ''' /* Action structure for OFPAT10_SET_DL_SRC/DST and OFPAT11_SET_DL_SRC/DST. */ ''' ofp_action_dl_addr = nstruct( (mac_addr, 'dl_addr'), # /* Ethernet address. */ (uint8[6],), name = 'ofp_action_dl_addr', base = ofp_action, criteria = lambda x: x.type == OFPAT_SET_DL_SRC or x.type == OFPAT_SET_DL_DST, classifyby = (OFPAT_SET_DL_SRC, OFPAT_SET_DL_DST), init = packvalue(OFPAT_SET_DL_SRC, 'type')) ''' /* Action structure for OFPAT10_SET_NW_SRC/DST and OFPAT11_SET_NW_SRC/DST. */ ''' ofp_action_nw_addr = nstruct( (ip4_addr, 'nw_addr'), # /* IP address. */ name = 'ofp_action_nw_addr', base = ofp_action, criteria = lambda x: x.type == OFPAT_SET_NW_SRC or x.type == OFPAT_SET_NW_DST, classifyby = (OFPAT_SET_NW_SRC, OFPAT_SET_NW_DST), init = packvalue(OFPAT_SET_NW_SRC, 'type')) ''' /* Action structure for OFPAT10_SET_NW_TOS and OFPAT11_SET_NW_TOS. */ ''' ofp_action_nw_tos = nstruct( (uint8, 'nw_tos'), # /* DSCP in high 6 bits, rest ignored. */ (uint8[3],), name = 'ofp_action_nw_tos', base = ofp_action, criteria = lambda x: x.type == OFPAT_SET_NW_TOS, classifyby = (OFPAT_SET_NW_TOS,), init = packvalue(OFPAT_SET_NW_TOS, 'type')) ''' /* Action structure for OFPAT10_SET_TP_SRC/DST and OFPAT11_SET_TP_SRC/DST. */ ''' ofp_action_tp_port = nstruct( (uint16, 'tp_port'), # /* TCP/UDP port. */ (uint8[2],), name = 'ofp_action_tp_port', base = ofp_action, criteria = lambda x: x.type == OFPAT_SET_TP_SRC or x.type == OFPAT_SET_TP_DST, classifyby = (OFPAT_SET_TP_SRC, OFPAT_SET_TP_DST), init = packvalue(OFPAT_SET_TP_SRC, 'type')) ''' /* OpenFlow 1.0 specific features of physical ports available in a datapath. */ ''' ofp_port_features = ofp_port_features.extend(globals(), OFPPF_COPPER = 1 << 7, #/* Copper medium. */ OFPPF_FIBER = 1 << 8, #/* Fiber medium. */ OFPPF_AUTONEG = 1 << 9, #/* Auto-negotiation. */ OFPPF_PAUSE = 1 << 10, #/* Pause. */ OFPPF_PAUSE_ASYM = 1 << 11 #/* Asymmetric pause. */ ) ''' /* Description of a physical port */ ''' ofp_phy_port = nstruct( (ofp_port, 'port_no'), (mac_addr, 'hw_addr'), (char[OFP_MAX_PORT_NAME_LEN], 'name'), #/* Null-terminated */ (ofp_port_config, 'config'), # /* Bitmap of OFPPC_* and OFPPC10_* flags. */ (ofp_port_state, 'state'), # /* Bitmap of OFPPS_* and OFPPS10_* flags. */ #/* Bitmaps of OFPPF_* and OFPPF10_* that describe features. All bits # * zeroed if unsupported or unavailable. */ (ofp_port_features, 'curr'), # /* Current features. */ (ofp_port_features, 'advertised'), # /* Features being advertised by the port. */ (ofp_port_features, 'supported'), # /* Features supported by the port. */ (ofp_port_features, 'peer'), # /* Features advertised by peer. */ name = 'ofp_phy_port' ) ofp_action_type_bitwise = enum('ofp_action_type_bitwise', None, uint32, True, **dict((k, 1<<v) for (k,v) in ofp_action_type.getDict().items() if v < 32)) ofp_switch_features = nstruct((uint64, 'datapath_id'), (uint32, 'n_buffers'), (uint8, 'n_tables'), (uint8[3],), (ofp_capabilities, 'capabilities'), (ofp_action_type_bitwise, 'actions'), (ofp_phy_port[0], 'ports'), name = 'ofp_switch_features', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_FEATURES_REPLY, classifyby = (OFPT_FEATURES_REPLY,), init = packvalue(OFPT_FEATURES_REPLY, 'header', 'type')) ''' /* Modify behavior of the physical port */ ''' ofp_port_mod = nstruct( (ofp_port, 'port_no'), (mac_addr, 'hw_addr'), (ofp_port_config, 'config'), # /* Bitmap of OFPPC_* flags. */ (ofp_port_config, 'mask'), # /* Bitmap of OFPPC_* flags to be changed. */ (ofp_port_features, 'advertise'), # /* Bitmap of "ofp_port_features"s. Zero all bits to prevent any action taking place. */ (uint8[4],), # /* Pad to 64-bits. */ name = 'ofp_port_mod', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_PORT_MOD, classifyby = (OFPT_PORT_MOD,), init = packvalue(OFPT_PORT_MOD, 'header', 'type') ) ofp_queue_prop_header = nstruct((ofp_queue_properties, 'property'), (uint16, 'len'), (uint8[4],), name = 'ofp_queue_prop_header') ofp_queue_prop = nstruct((ofp_queue_prop_header, 'prop_header'), name = 'ofp_queue_prop', size = lambda x: x.prop_header.len, prepack = packrealsize('prop_header', 'len'), classifier = lambda x: x.prop_header.property ) ofp_queue_prop_min_rate = nstruct((uint16, 'rate'), (uint8[6],), base = ofp_queue_prop, criteria = lambda x: x.prop_header.property == OFPQT_MIN_RATE, classifyby = (OFPQT_MIN_RATE,), init = packvalue(OFPQT_MIN_RATE, 'prop_header', 'property'), name = 'ofp_queue_prop_min_rate') ofp_packet_queue = nstruct( (uint32, 'queue_id'), # /* id for the specific queue. */ (uint16, 'len'), # /* Length in bytes of this queue desc. */ (uint8[2],), # /* 64-bit alignment. */ (ofp_queue_prop[0], 'properties'), name = 'ofp_packet_queue', size = lambda x: x.len, prepack = packsize('len') ) ''' /* Query for port queue configuration. */ ''' ofp_queue_get_config_request = nstruct( (uint16, 'port'), # /* Port to be queried. Should refer to a valid physical port (i.e. < OFPP_MAX) */ (uint8[2],), name = 'ofp_queue_get_config_request', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_QUEUE_GET_CONFIG_REQUEST, classifyby = (OFPT_QUEUE_GET_CONFIG_REQUEST,), init = packvalue(OFPT_QUEUE_GET_CONFIG_REQUEST, 'header', 'type') ) ''' /* Queue configuration for a given port. */ ''' ofp_queue_get_config_reply = nstruct( (uint16, 'port'), (uint8[6],), (ofp_packet_queue[0], 'queues'), # /* List of configured queues. */ base = ofp_msg, name = 'ofp_queue_get_config_reply', criteria = lambda x: x.header.type == OFPT_QUEUE_GET_CONFIG_REPLY, classifyby = (OFPT_QUEUE_GET_CONFIG_REPLY,), init = packvalue(OFPT_QUEUE_GET_CONFIG_REPLY, 'header', 'type') ) ''' /* Packet received on port (datapath -> controller). */ ''' ofp_packet_in = nstruct( (uint32, 'buffer_id'), # /* ID assigned by datapath. */ (uint16, 'total_len'), # /* Full length of frame. */ (ofp_port, 'in_port'), # /* Port on which frame was received. */ (ofp_packet_in_reason, 'reason'), # /* Reason packet is being sent (one of OFPR_*) */ (uint8,), (raw, 'data'), base = ofp_msg, name = 'ofp_packet_in', criteria = lambda x: x.header.type == OFPT_PACKET_IN, classifyby = (OFPT_PACKET_IN,), init = packvalue(OFPT_PACKET_IN, 'header', 'type') ) ''' /* OFPAT10_ENQUEUE action struct: send packets to given queue on port. */ ''' ofp_action_enqueue = nstruct( (uint16, 'port'), # /* Port that queue belongs. Should (uint8[6],), # /* Pad for 64-bit alignment. */ (uint32, 'queue_id'), # /* Where to enqueue the packets. */ name ='ofp_action_enqueue', base = ofp_action, criteria = lambda x: x.type == OFPAT_ENQUEUE, classifyby = (OFPAT_ENQUEUE,), init = packvalue(OFPAT_ENQUEUE, 'type') ) ''' /* Send packet (controller -> datapath). */ ''' def _ofp_packet_out_actions_packsize(x): x.actions_len = x._realsize() - 2 ofp_packet_out_actions = nstruct( (uint16, 'actions_len'), (ofp_action[0], 'actions'), name = 'ofp_packet_out_actions', size = lambda x: x.actions_len + 2, prepack = _ofp_packet_out_actions_packsize, padding = 1) ofp_packet_out = nstruct( (uint32, 'buffer_id'), # /* ID assigned by datapath or UINT32_MAX. */ (ofp_port, 'in_port'), # /* Packet's input port (OFPP_NONE if none). */ (ofp_packet_out_actions,), (raw, 'data'), name = 'ofp_packet_out', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_PACKET_OUT, classifyby = (OFPT_PACKET_OUT,), init = packvalue(OFPT_PACKET_OUT, 'header', 'type') ) ''' /* Flow wildcards. */ ''' OFPFW_NW_SRC_SHIFT = 8 OFPFW_NW_SRC_BITS = 6 OFPFW_NW_DST_SHIFT = 14 OFPFW_NW_DST_BITS = 6 ofp_flow_wildcards = enum('ofp_flow_wildcards', globals(),uint32,True, OFPFW_IN_PORT = 1 << 0, #/* Switch input port. */ OFPFW_DL_VLAN = 1 << 1, #/* VLAN vid. */ OFPFW_DL_SRC = 1 << 2, #/* Ethernet source address. */ OFPFW_DL_DST = 1 << 3, #/* Ethernet destination address. */ OFPFW_DL_TYPE = 1 << 4, #/* Ethernet frame type. */ OFPFW_NW_PROTO = 1 << 5, #/* IP protocol. */ OFPFW_TP_SRC = 1 << 6, #/* TCP/UDP source port. */ OFPFW_TP_DST = 1 << 7, #/* TCP/UDP destination port. */ #/* IP source address wildcard bit count. 0 is exact match, 1 ignores the #* LSB, 2 ignores the 2 least-significant bits, ..., 32 and higher wildcard #* the entire field. This is the *opposite* of the usual convention where #* e.g. /24 indicates that 8 bits (not 24 bits) are wildcarded. */ OFPFW_NW_SRC_MASK = (((1 << OFPFW_NW_SRC_BITS) - 1) << OFPFW_NW_SRC_SHIFT), OFPFW_NW_SRC_ALL = 32 << OFPFW_NW_SRC_SHIFT, # /* IP destination address wildcard bit count. Same format as source. */ OFPFW_NW_DST_MASK = (((1 << OFPFW_NW_DST_BITS) - 1) << OFPFW_NW_DST_SHIFT), OFPFW_NW_DST_ALL = 32 << OFPFW_NW_DST_SHIFT, OFPFW_DL_VLAN_PCP = 1 << 20, # /* VLAN priority. */ OFPFW_NW_TOS = 1 << 21, # /* IP ToS (DSCP field, 6 bits). */ # /* Wildcard all fields. */ OFPFW_ALL = ((1 << 22) - 1) ) #/* The wildcards for ICMP type and code fields use the transport source # * and destination port fields, respectively. */ OFPFW_ICMP_TYPE = OFPFW_TP_SRC OFPFW_ICMP_CODE = OFPFW_TP_DST #/* The VLAN id is 12-bits, so we can use the entire 16 bits to indicate # * special conditions. All ones indicates that 802.1Q header is not present. # */ OFP_VLAN_NONE = 0xffff ''' /* Fields to match against flows */ ''' ofp_match = nstruct( (ofp_flow_wildcards, 'wildcards'), # /* Wildcard fields. */ (ofp_port, 'in_port'), # /* Input switch port. */ (mac_addr, 'dl_src'), # /* Ethernet source address. */ (mac_addr, 'dl_dst'), # /* Ethernet destination address. */ (uint16, 'dl_vlan'), # /* Input VLAN. */ (uint8, 'dl_vlan_pcp'), # /* Input VLAN priority. */ (uint8[1],), # /* Align to 64-bits. */ (ethertype, 'dl_type'), # /* Ethernet frame type. */ (uint8, 'nw_tos'), # /* IP ToS (DSCP field, 6 bits). */ (uint8, 'nw_proto'), # /* IP protocol or lower 8 bits of ARP opcode. */ (uint8[2],), # /* Align to 64-bits. */ (ip4_addr, 'nw_src'), # /* IP source address. */ (ip4_addr, 'nw_dst'), # /* IP destination address. */ (uint16, 'tp_src'), # /* TCP/UDP source port. */ (uint16, 'tp_dst'), # /* TCP/UDP destination port. */ name = 'ofp_match' ) ofp_flow_mod_flags = ofp_flow_mod_flags.extend(globals(), OFPFF_EMERG = 1 << 2 #/* Part of "emergency flow cache". */ ) ''' /* Flow setup and teardown (controller -> datapath). */ ''' ofp_flow_mod = nstruct( (ofp_match, 'match'), # /* Fields to match */ (uint64, 'cookie'), # /* Opaque controller-issued identifier. */ # /* Flow actions. */ (ofp_flow_mod_command, 'command'), # /* One of OFPFC_*. */ (uint16, 'idle_timeout'), # /* Idle time before discarding (seconds). */ (uint16, 'hard_timeout'), # /* Max time before discarding (seconds). */ (uint16, 'priority'), # /* Priority level of flow entry. */ (uint32, 'buffer_id'), # /* Buffered packet to apply to (or -1). Not meaningful for OFPFC_DELETE*. */ #/* For OFPFC_DELETE* commands, require matching entries to include this as an # output port. A value of OFPP_NONE indicates no restriction. */ (ofp_port, 'out_port'), (ofp_flow_mod_flags, 'flags'), # /* One of OFPFF_*. */ (ofp_action[0], 'actions'), # /* The action length is inferred from the length field in the header. */ base = ofp_msg, criteria = lambda x: x.header.type == OFPT_FLOW_MOD, classifyby = (OFPT_FLOW_MOD,), init = packvalue(OFPT_FLOW_MOD, 'header', 'type'), name = 'ofp_flow_mod' ) ''' /* Flow removed (datapath -> controller). */ ''' ofp_flow_removed = nstruct( (ofp_match, 'match'), # /* Description of fields. */ (uint64, 'cookie'), # /* Opaque controller-issued identifier. */ (uint16, 'priority'), # /* Priority level of flow entry. */ (ofp_flow_removed_reason, 'reason'), # /* One of OFPRR_*. */ (uint8[1],), # /* Align to 32-bits. */ (uint32, 'duration_sec'), # /* Time flow was alive in seconds. */ (uint32, 'duration_nsec'),# /* Time flow was alive in nanoseconds beyond duration_sec. */ (uint16, 'idle_timeout'), # /* Idle timeout from original flow mod. */ (uint8[2],), # /* Align to 64-bits. */ (uint64, 'packet_count'), (uint64, 'byte_count'), name = 'ofp_flow_removed', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_FLOW_REMOVED, classifyby = (OFPT_FLOW_REMOVED,), init = packvalue(OFPT_FLOW_REMOVED, 'header', 'type') ) ofp_port_status = nstruct( (ofp_port_reason, 'reason'), (uint8[7],), (ofp_phy_port, 'desc'), name= 'ofp_port_status', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_PORT_STATUS, classifyby = (OFPT_PORT_STATUS,), init = packvalue(OFPT_PORT_STATUS, 'header', 'type') ) ''' /* Statistics request or reply message. */ ''' ofp_stats_types = enum('ofp_stats_types', globals(),uint16, #/* Description of this OpenFlow switch. #* The request body is empty. #* The reply body is struct ofp_desc_stats. */ OFPST_DESC = 0, #/* Individual flow statistics. #* The request body is struct ofp_flow_stats_request. #* The reply body is an array of struct ofp_flow_stats. */ OFPST_FLOW = 1, #/* Aggregate flow statistics. #* The request body is struct ofp_aggregate_stats_request. #* The reply body is struct ofp_aggregate_stats_reply. */ OFPST_AGGREGATE = 2, #/* Flow table statistics. #* The request body is empty. #* The reply body is an array of struct ofp_table_stats. */ OFPST_TABLE = 3, #/* Physical port statistics. #* The request body is struct ofp_port_stats_request. #* The reply body is an array of struct ofp_port_stats. */ OFPST_PORT = 4, #/* Queue statistics for a port #* The request body defines the port #* The reply body is an array of struct ofp_queue_stats */ OFPST_QUEUE = 5, #/* Vendor extension. #* The request and reply bodies begin with a 32-bit vendor ID, which takes #* the same form as in "struct ofp_vendor_header". The request and reply #* bodies are otherwise vendor-defined. */ OFPST_VENDOR = 0xffff ) ofp_stats_msg = nstruct( (ofp_stats_types, 'type'), # /* One of the OFPST_* constants. */ (ofp_stats_reply_flags, 'flags'), # /* Requests: always 0. # * Replies: 0 or OFPSF_REPLY_MORE. */ name = 'ofp_stats_msg', base = ofp_msg, criteria = lambda x: x.header.type == OFPT_STATS_REQUEST or x.header.type == OFPT_STATS_REPLY, classifyby = (OFPT_STATS_REQUEST, OFPT_STATS_REPLY), init = packvalue(OFPT_STATS_REQUEST, 'header', 'type') ) ofp_stats_request = nstruct( name = 'ofp_stats_request', base = ofp_stats_msg, criteria = lambda x: x.header.type == OFPT_STATS_REQUEST, classifier = lambda x: x.type, init = packvalue(OFPT_STATS_REQUEST, 'header', 'type') ) ofp_stats_reply = nstruct( name = 'ofp_stats_request', base = ofp_stats_msg, criteria = lambda x: x.header.type == OFPT_STATS_REPLY, classifier = lambda x: x.type, init = packvalue(OFPT_STATS_REPLY, 'header', 'type') ) DESC_STR_LEN = 256 SERIAL_NUM_LEN = 32 ofp_desc_stats = nstruct((char[DESC_STR_LEN], 'mfr_desc'), (char[DESC_STR_LEN], 'hw_desc'), (char[DESC_STR_LEN], 'sw_desc'), (char[SERIAL_NUM_LEN], 'serial_num'), (char[DESC_STR_LEN], 'dp_desc'), name = 'ofp_desc_stats') ofp_desc_stats_reply = nstruct( (ofp_desc_stats,), name = 'ofp_desc_stats_reply', base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_DESC, classifyby = (OFPST_DESC,), init = packvalue(OFPST_DESC, 'type') ) ''' /* Stats request of type OFPST_AGGREGATE or OFPST_FLOW. */ ''' ofp_flow_stats_request = nstruct( (ofp_match, 'match'), # /* Fields to match. */ (ofp_table, 'table_id'), # /* ID of table to read (from ofp_table_stats) or 0xff for all tables. */ (uint8,), # /* Align to 32 bits. */ (ofp_port, 'out_port'), # /* Require matching entries to include this as an output port. A value of OFPP_NONE indicates no restriction. */ name = 'ofp_flow_stats_request', base = ofp_stats_request, criteria = lambda x: x.type == OFPST_FLOW or x.type == OFPST_AGGREGATE, classifyby = (OFPST_FLOW, OFPST_AGGREGATE), init = packvalue(OFPST_FLOW, 'type') ) ''' /* Body of reply to OFPST_FLOW request. */ ''' ofp_flow_stats = nstruct( (uint16, 'length'), #/* Length of this entry. */ (uint8, 'table_id'), #/* ID of table flow came from. */ (uint8,), (ofp_match, 'match'), #/* Description of fields. */ (uint32, 'duration_sec'), #/* Time flow has been alive in seconds. */ (uint32, 'duration_nsec'), #/* Time flow has been alive in nanoseconds beyond duration_sec. */ (uint16, 'priority'), #/* Priority of the entry. Only meaningful when this is not an exact-match entry. */ (uint16, 'idle_timeout'), #/* Number of seconds idle before expiration. */ (uint16, 'hard_timeout'), #/* Number of seconds before expiration. */ (uint8[6],), #/* Align to 64 bits. */ (uint64, 'cookie'), #/* Opaque controller-issued identifier. */ (uint64, 'packet_count'), #/* Number of packets in flow. */ (uint64, 'byte_count'), #/* Number of bytes in flow. */ (ofp_action[0], 'actions'),#/* Actions. */ name = 'ofp_flow_stats', size = lambda x: x.length, prepack = packsize('length') ) ofp_flow_stats_reply = nstruct( (ofp_flow_stats[0], 'stats'), name = 'ofp_flow_stats_reply', base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_FLOW, classifyby = (OFPST_FLOW,), init = packvalue(OFPST_FLOW, 'type') ) ofp_table = enum('ofp_table', globals(), uint8, OFPTT_ALL = 0xff) ''' /* Body for ofp_stats_request of type OFPST_AGGREGATE. */ ''' ofp_aggregate_stats_request = nstruct( (ofp_match, 'match'), # /* Fields to match. */ (ofp_table, 'table_id'), # /* ID of table to read (from ofp_table_stats) # 0xff for all tables or 0xfe for emergency. */ (uint8,), # /* Align to 32 bits. */ (ofp_port, 'out_port'), # /* Require matching entries to include this # as an output port. A value of OFPP_NONE # indicates no restriction. */ base = ofp_stats_request, criteria = lambda x: x.type == OFPST_AGGREGATE, classifyby = (OFPST_AGGREGATE,), init = packvalue(OFPST_AGGREGATE, 'type'), name = 'ofp_aggregate_stats_request' ) ''' /* Body of reply to OFPST_AGGREGATE request. */ ''' ofp_aggregate_stats_reply = nstruct( (uint64, 'packet_count'), # /* Number of packets in flows. */ (uint64, 'byte_count'), # /* Number of bytes in flows. */ (uint32, 'flow_count'), # /* Number of flows. */ (uint8[4],), base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_AGGREGATE, classifyby = (OFPST_AGGREGATE,), init = packvalue(OFPST_AGGREGATE, 'type'), name = 'ofp_aggregate_stats_reply' ) ''' /* Body of reply to OFPST_TABLE request. */ ''' ofp_table_stats = nstruct( (uint8, 'table_id'), # /* Identifier of table. Lower numbered tables are consulted first. */ (uint8[3],), # /* Align to 32-bits. */ (char[OFP_MAX_TABLE_NAME_LEN], 'name'), (ofp_flow_wildcards, 'wildcards'), # /* Bitmap of OFPFW_* wildcards that are supported by the table. */ (uint32, 'max_entries'), # /* Max number of entries supported. */ (uint32, 'active_count'), # /* Number of active entries. */ (uint64, 'lookup_count'), # /* # of packets looked up in table. */ (uint64, 'matched_count'), # /* Number of packets that hit table. */ name = 'ofp_table_stats' ) ofp_table_stats_reply = nstruct( (ofp_table_stats[0], 'stats'), name = 'ofp_table_stats_reply', base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_TABLE, classifyby = (OFPST_TABLE,), init = packvalue(OFPST_TABLE, 'type') ) ''' /* Stats request of type OFPST_PORT. */ ''' ofp_port_stats_request = nstruct( (ofp_port, 'port_no'), #/* OFPST_PORT message may request statistics for a single port (specified with port_no) # or for all ports (port_no == OFPP_NONE). */ (uint8[6],), name = 'ofp_port_stats_request', base = ofp_stats_request, criteria = lambda x: x.type == OFPST_PORT, classifyby = (OFPST_PORT,), init = packvalue(OFPST_PORT, 'type') ) ''' /* Body of reply to OFPST_PORT request. If a counter is unsupported, set * the field to all ones. */ ''' ofp_port_stats = nstruct( (uint16, 'port_no'), (uint8[6],), (uint64, 'rx_packets'), # /* Number of received packets. */ (uint64, 'tx_packets'), # /* Number of transmitted packets. */ (uint64, 'rx_bytes'), # /* Number of received bytes. */ (uint64, 'tx_bytes'), # /* Number of transmitted bytes. */ (uint64, 'rx_dropped'), # /* Number of packets dropped by RX. */ (uint64, 'tx_dropped'), # /* Number of packets dropped by TX. */ (uint64, 'rx_errors'), # /* Number of receive errors. This is a #super-set of receive errors and should be #great than or equal to the sum of all #rx_*_err values. */ (uint64, 'tx_errors'), # /* Number of transmit errors. This is a super-set of transmit errors. */ (uint64, 'rx_frame_err'), # /* Number of frame alignment errors. */ (uint64, 'rx_over_err'), # /* Number of packets with RX overrun. */ (uint64, 'rx_crc_err'), # /* Number of CRC errors. */ (uint64, 'collisions'), # /* Number of collisions. */ name = 'ofp_port_stats' ) ofp_port_stats_reply = nstruct( (ofp_port_stats[0], 'stats'), name = 'ofp_port_stats_reply', base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_PORT, classifyby = (OFPST_PORT,), init = packvalue(OFPST_PORT, 'type') ) ''' /* All ones is used to indicate all queues in a port (for stats retrieval). */ ''' ofp_queue = enum('ofp_queue', globals(), uint32, OFPQ_ALL = 0xffffffff) ''' /* Body for stats request of type OFPST_QUEUE. */ ''' ofp_queue_stats_request = nstruct( (ofp_port, 'port_no'), # /* All ports if OFPP_ALL. */ (uint8[2],), # /* Align to 32-bits. */ (ofp_queue, 'queue_id'), # /* All queues if OFPQ_ALL. */ name = 'ofp_queue_stats_request', base = ofp_stats_request, criteria = lambda x: x.type == OFPST_QUEUE, classifyby = (OFPST_QUEUE,), init = packvalue(OFPST_QUEUE, 'type') ) ''' /* Body for stats reply of type OFPST_QUEUE consists of an array of this * structure type. */ ''' ofp_queue_stats = nstruct( (uint16, 'port_no'), (uint8[2],), # /* Align to 32-bits. */ (uint32, 'queue_id'), # /* Queue id. */ (uint64, 'tx_bytes'), # /* Number of transmitted bytes. */ (uint64, 'tx_packets'), # /* Number of transmitted packets. */ (uint64, 'tx_errors'), # /* # of packets dropped due to overrun. */ name = 'ofp_queue_stats' ) ofp_queue_stats_reply = nstruct( (ofp_queue_stats[0], 'stats'), name = 'ofp_queue_stats_reply', base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_QUEUE, classifyby = (OFPST_QUEUE,), init = packvalue(OFPST_QUEUE, 'type') ) ''' /* Vendor extension stats message. */ ''' ofp_vendor_stats_request = nstruct( (experimenter_ids, 'vendor'), name = 'ofp_vendor_stats_request', base = ofp_stats_request, criteria = lambda x: x.type == OFPST_VENDOR, classifyby = (OFPST_VENDOR,), init = packvalue(OFPST_VENDOR, 'type') # /* Followed by vendor-defined arbitrary additional data. */ ) ofp_vendor_stats_reply = nstruct( (experimenter_ids, 'vendor'), name = 'ofp_vendor_stats_reply', base = ofp_stats_reply, criteria = lambda x: x.type == OFPST_VENDOR, classifyby = (OFPST_VENDOR,), init = packvalue(OFPST_VENDOR, 'type') # /* Followed by vendor-defined arbitrary additional data. */ ) ofp_vendor_vendorid = 'vendor' ofp_vendor_subtype = 'subtype' ofp_action_vendor_vendorid = 'vendor' ofp_action_vendor_subtype = 'subtype' ofp_stats_vendor_vendorid = 'vendor' ofp_stats_vendor_subtype = 'subtype' from .nicira_ext import * ''' /* Header for Nicira vendor requests and replies. */ ''' nicira_header = nstruct( (nxt_subtype, 'subtype'), name = 'nicira_header', base = ofp_vendor, criteria = lambda x: x.vendor == NX_VENDOR_ID, init = packvalue(NX_VENDOR_ID, 'vendor'), classifier = lambda x: x.subtype ) ''' /* Header for Nicira-defined actions. */ ''' nx_action = nstruct( (nx_action_subtype, 'subtype'), # /* NXAST_*. */ name = 'nx_action', base = ofp_action_vendor, criteria = lambda x: x.vendor == NX_VENDOR_ID, init = packvalue(NX_VENDOR_ID, 'vendor'), classifier = lambda x: x.subtype ) nx_stats_request = nstruct( (nx_stats_subtype, 'subtype'), (uint8[4],), base = ofp_vendor_stats_request, criteria = lambda x: x.vendor == NX_VENDOR_ID, init = packvalue(NX_VENDOR_ID, 'vendor'), name = 'nx_stats_request', classifier = lambda x: getattr(x, 'subtype') ) nx_stats_reply = nstruct( (nx_stats_subtype, 'subtype'), (uint8[4],), base = ofp_vendor_stats_reply, criteria = lambda x: x.vendor == NX_VENDOR_ID, init = packvalue(NX_VENDOR_ID, 'vendor'), name = 'nx_stats_reply', classifier = lambda x: getattr(x, 'subtype') ) create_extension(globals(), nicira_header, nx_action, nx_stats_request, nx_stats_reply, ofp_vendor_subtype, ofp_action_vendor_subtype, ofp_stats_vendor_subtype)
projects/OneSeg/oneseg/config.py
simon108018/OneNet
611
12673962
# -*- coding: utf-8 -*- # # Modified by <NAME> # Contact: <EMAIL> # # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.config import CfgNode as CN def add_onenet_config(cfg): """ Add config for OneNet. """ cfg.MODEL.OneNet = CN() cfg.MODEL.OneNet.NUM_CLASSES = 80 cfg.MODEL.OneNet.HEAD = "FCOS" # Head. # cfg.MODEL.OneNet.IN_FEATURES = ["res2", "res3", "res4", "res5"] cfg.MODEL.OneNet.IN_FEATURES = ["p3", "p4", "p5", "p6", "p7"] cfg.MODEL.OneNet.FEATURES_STRIDE = [8, 16, 32, 64, 128] cfg.MODEL.OneNet.NUM_CONV = 4 cfg.MODEL.OneNet.CONV_NORM = "GN" cfg.MODEL.OneNet.CONV_CHANNELS = 256 cfg.MODEL.OneNet.ACTIVATION = 'relu' cfg.MODEL.OneNet.NMS = False # for ablation # Deconv cfg.MODEL.OneNet.DECONV_CHANNEL= [2048, 256, 128, 64] cfg.MODEL.OneNet.DECONV_KERNEL = [4, 4, 4] cfg.MODEL.OneNet.DCN = True cfg.MODEL.OneNet.MODULATE_DEFORM = True # Loss. cfg.MODEL.OneNet.CLASS_WEIGHT = 2.0 cfg.MODEL.OneNet.GIOU_WEIGHT = 2.0 cfg.MODEL.OneNet.L1_WEIGHT = 5.0 # Focal Loss. cfg.MODEL.OneNet.ALPHA = 0.25 cfg.MODEL.OneNet.GAMMA = 2.0 cfg.MODEL.OneNet.PRIOR_PROB = 0.01 # Optimizer. cfg.SOLVER.OPTIMIZER = "ADAMW" cfg.SOLVER.BACKBONE_MULTIPLIER = 1.0 cfg.MODEL.CONDINST = CN() cfg.MODEL.CONDINST.SIZES_OF_INTEREST = [64, 128, 256, 512] # the downsampling ratio of the final instance masks to the input image cfg.MODEL.CONDINST.MASK_OUT_STRIDE = 4 cfg.MODEL.CONDINST.BOTTOM_PIXELS_REMOVED = -1 # if not -1, we only compute the mask loss for MAX_PROPOSALS random proposals PER GPU cfg.MODEL.CONDINST.MAX_PROPOSALS = -1 # if not -1, we only compute the mask loss for top `TOPK_PROPOSALS_PER_IM` proposals # PER IMAGE in terms of their detection scores cfg.MODEL.CONDINST.TOPK_PROPOSALS_PER_IM = -1 cfg.MODEL.CONDINST.MASK_HEAD = CN() cfg.MODEL.CONDINST.MASK_HEAD.CHANNELS = 16 cfg.MODEL.CONDINST.MASK_HEAD.NUM_LAYERS = 3 cfg.MODEL.CONDINST.MASK_HEAD.USE_FP16 = False cfg.MODEL.CONDINST.MASK_HEAD.DISABLE_REL_COORDS = False cfg.MODEL.CONDINST.MASK_BRANCH = CN() cfg.MODEL.CONDINST.MASK_BRANCH.OUT_CHANNELS = 8 cfg.MODEL.CONDINST.MASK_BRANCH.IN_FEATURES = ["p3", "p4", "p5"] cfg.MODEL.CONDINST.MASK_BRANCH.CHANNELS = 128 cfg.MODEL.CONDINST.MASK_BRANCH.NORM = "BN" cfg.MODEL.CONDINST.MASK_BRANCH.NUM_CONVS = 4 cfg.MODEL.CONDINST.MASK_BRANCH.SEMANTIC_LOSS_ON = False
recipes/Python/266586_Simple_XOR_keyword_Encryption/recipe-266586.py
tdiprima/code
2,023
12673989
#PEcrypt - use a string key to encrypt/decrypt another string # - <NAME> - January 2004 class PEcrypt: """ PEcrypt - very, very simple word key encryption system uses cyclic XOR between the keyword character bytes and the string to be encrypted/decrypted. Therefore, the same function and keyword will encrypt the string the first time and decrypt it if called on the encrypted string. """ def __init__(self, aKey): """ Initialise the class with the key that is used to encrypt/decrypt strings """ self.key = aKey # CRC can be used to validate a key (very roughly) # if you store the CRC from a previous keyword # and then compare with a newly generated one and # they are the same then chances are the keyword # is correct - only a single byte so not that reliable self.crc = 0 for x in self.key: intX = ord(x) self.crc = self.crc ^ intX def Crypt(self, aString): """ Encrypt/Decrypt the passed string object and return the encrypted string """ kIdx = 0 cryptStr = "" # empty 'crypted string to be returned # loop through the string and XOR each byte with the keyword # to get the 'crypted byte. Add the 'crypted byte to the # 'crypted string for x in range(len(aString)): cryptStr = cryptStr + \ chr( ord(aString[x]) ^ ord(self.key[kIdx])) # use the mod operator - % - to cyclically loop through # the keyword kIdx = (kIdx + 1) % len(self.key) return cryptStr if __name__ == "__main__": def strToHex(aString): hexStr = "" for x in aString: hexStr = hexStr + "%02X " % ord(x) return hexStr # self test routine print "\nTesting PEcrypt!" print "----------------\n" keyStr = "This is a key" testStr = "The quick brown fox jumps over the lazy dog!" print "\nString : ", testStr print "in hex : ", strToHex(testStr) print "key : ", keyStr pe = PEcrypt(keyStr) # generate the PEcrypt instance print "\nPEcrypt CRC = %02X" % pe.crc testStr = pe.Crypt(testStr) print "\nEncrypted string" print "Ascii : ", testStr print "Hex : ", strToHex(testStr) testStr = pe.Crypt(testStr) print "\nDecrypted string" print "Ascii : ", testStr print "Hex : ", strToHex(testStr)
tests/unit/test_signature_verify.py
windies21/loopchain
105
12674001
import json import logging import os from pathlib import Path import plyvel import pytest from pkg_resources import parse_version from plyvel._plyvel import Error from loopchain.blockchain import TransactionVerifier from loopchain.blockchain.blocks import BlockVersioner, BlockVerifier, BlockSerializer from loopchain.blockchain.transactions import TransactionVersioner Logger = logging.getLogger(__name__) @pytest.fixture def base_dir() -> Path: # FIXME : base_dir that you want to test base = Path(os.getcwd()).parents[1] return base @pytest.fixture def plyvel_db(base_dir) -> plyvel.DB: base_dir = base_dir / '.storage' db_path = Path() Logger.info(f"base_dir : {base_dir}") if not os.path.exists(base_dir): pytest.skip(f"'{base_dir}' does not exist") for path in os.listdir(base_dir): if path.startswith('db') and path.endswith('icon_dex'): db_path = base_dir / path break Logger.info(f"db_path : {db_path}") db = None try: db = plyvel.DB(db_path.as_posix()) except (Error, IOError): pytest.skip("db data must be prepared for this verify test") return db @pytest.fixture def block_versioner(): block_versioner = BlockVersioner() # FIXME : block versions mainnet_test = False if mainnet_test: block_versions = { "0.1a": 0, "0.3": 10324749, "0.4": 12640761, "0.5": 14473622 } else: block_versions = { "0.1a": 0, "0.4": 1, "0.5": 30 } for version, height in block_versions.items(): block_versioner.add_version(height, version) return block_versioner @pytest.fixture def tx_versioner(): hash_versions = { "genesis": 0, "0x2": 1, "0x3": 1 } tx_versioner = TransactionVersioner() for tx_version, tx_hash_version in hash_versions.items(): tx_versioner.hash_generator_versions[tx_version] = tx_hash_version return tx_versioner class TestSignatureVerify: def test_verify(self, plyvel_db, block_versioner, tx_versioner): """ 1. prepare plyvel db, block_versioner, tx_versioner 2. pick block, transaction, vote, etc from db 3. verify block, vote transaction, vote, etc... """ # given db instance, block_versioner, tx_versioner block_key = plyvel_db.get(b'last_block_key') while True: # when get block from db block_dumped = plyvel_db.get(block_key) Logger.info(f"block_dump : {block_dumped}") block_serialized = json.loads(block_dumped) block_height = block_versioner.get_height(block_serialized) block_version = block_versioner.get_version(block_height) block_serializer = BlockSerializer.new(block_version, tx_versioner) block = block_serializer.deserialize(block_serialized) Logger.info(f"block_height : {block_height}, block_version : {block_version}") if block_height == 0: break # then block verify block_verifier = BlockVerifier.new(block_version, tx_versioner) block_verifier.verify_signature(block) # then vote verify if parse_version(block_version) >= parse_version("0.3"): Logger.info(f"leader_votes : {block.body.leader_votes}") for leader_vote in block.body.leader_votes: if not leader_vote: continue leader_vote.verify() Logger.info(f"prev_votes : {block.body.prev_votes}") for block_vote in block.body.prev_votes: if not block_vote: continue block_vote.verify() # then transaction verify for tx in block.body.transactions.values(): tv = TransactionVerifier.new(tx.version, tx.type(), tx_versioner) tv.verify_signature(tx) Logger.info(f"prev_hash : {block.header.prev_hash}, {bytes(block.header.prev_hash)}") block_key = block.header.prev_hash.hex().encode("utf-8")
synthtiger/components/wrapper/__init__.py
KoryakovDmitry/synthtiger
153
12674003
<filename>synthtiger/components/wrapper/__init__.py """ SynthTIGER Copyright (c) 2021-present NAVER Corp. MIT license """ from synthtiger.components.wrapper.iterator import Iterator from synthtiger.components.wrapper.selector import Selector from synthtiger.components.wrapper.switch import Switch __all__ = ["Iterator", "Selector", "Switch"]
Server/integrations/azuread/AzureADAuthenticationForGluu.py
rkondratenko/oxAuth
380
12674014
# Author: <NAME> from org.gluu.service.cdi.util import CdiUtil from org.gluu.oxauth.security import Identity from org.gluu.model.custom.script.type.auth import PersonAuthenticationType from org.gluu.oxauth.service import AuthenticationService, UserService from org.gluu.oxauth.model.common import User from org.gluu.util import StringHelper, ArrayHelper from java.util import IdentityHashMap from org.apache.commons.codec.binary import Base64 from java.lang import String import httplib import urllib import json import java class PersonAuthentication(PersonAuthenticationType): def __init__(self, current_time_millis): self.currentTimeMillis = current_time_millis def init(self, customScript, configuration_attributes): print "AzureAD. Initialization" global azure_tenant_id azure_tenant_id = configuration_attributes.get("azure_tenant_id").getValue2() print "AzureAD. Initialization. Value of azure_tenant_id is %s" % azure_tenant_id global azure_client_id azure_client_id = configuration_attributes.get("azure_client_id").getValue2() print "AzureAD. Initialization. Value of azure_client_id is %s" % azure_client_id global azure_client_secret azure_client_secret = configuration_attributes.get("azure_client_secret").getValue2() global MICROSOFT_AUTHORITY_URL MICROSOFT_AUTHORITY_URL = 'login.microsoftonline.com' global AZURE_AD_GRAPH_RESOURCE_ENDPOINT AZURE_AD_GRAPH_RESOURCE_ENDPOINT = 'https://graph.windows.net' global azure_user_uuid azure_user_uuid = "oid" global gluu_ldap_uuid gluu_ldap_uuid = "uid" global ADMIN ADMIN = 'admin' global attributes_mapping if (configuration_attributes.containsKey("azure_ad_attributes_list") and configuration_attributes.containsKey("gluu_ldap_attributes_list")): azure_ad_attributes_list = configuration_attributes.get("azure_ad_attributes_list").getValue2() if StringHelper.isEmpty(azure_ad_attributes_list): print "AzureAD: Initialization. The property azure_ad_attributes_list is empty" return False gluu_ldap_attributes_list = configuration_attributes.get("gluu_ldap_attributes_list").getValue2() if StringHelper.isEmpty(gluu_ldap_attributes_list): print "AzureAD: Initialization. The property gluu_ldap_attributes_list is empty" return False attributes_mapping = self.attribute_mapping_function(azure_ad_attributes_list, gluu_ldap_attributes_list) if attributes_mapping is None: print "AzureAD: Initialization. The attributes mapping isn't valid" return False print "AzureAD. Initialized successfully" return True @staticmethod def attribute_mapping_function(azure_ad_attributes_list, gluu_ldap_attributes_list): try: azure_ad_attributes_list_array = StringHelper.split(azure_ad_attributes_list, ",") if ArrayHelper.isEmpty(azure_ad_attributes_list_array): print("AzureAD: There is no attributes specified in azure_ad_attributes_list property") return None gluu_ldap_attributes_list_array = StringHelper.split(gluu_ldap_attributes_list, ",") if ArrayHelper.isEmpty(gluu_ldap_attributes_list_array): print("AzureAD: There is no attributes specified in gluu_ldap_attributes_list property") return None if len(azure_ad_attributes_list_array) != len(gluu_ldap_attributes_list_array): print("AzureAD: The number of attributes isn't equal") return None attributes_map = IdentityHashMap() i = 0 count = len(azure_ad_attributes_list_array) while i < count: azure_ad_attribute = StringHelper.toLowerCase(azure_ad_attributes_list_array[i]) gluu_ldap_attribute = StringHelper.toLowerCase(gluu_ldap_attributes_list_array[i]) attributes_map.put(azure_ad_attribute, gluu_ldap_attribute) i = i + 1 return attributes_map except Exception, err: print("AzureAD: Exception inside prepareAttributesMapping " + str(err)) def prepareForStep(self, configuration_attributes, request_parameters, step): if step == 1: print "AzureAD. Prepare for Step 1" return True else: return False def authenticate(self, configuration_attributes, request_parameters, step): print "AzureAD. Inside authenticate. Step %d" % step authentication_service = CdiUtil.bean(AuthenticationService) identity = CdiUtil.bean(Identity) if step == 1: print "AzureAD. Authenticate for step 1" logged_in = self.authenticate_user_credentials(identity, authentication_service) print "AzureAD. Status of User Credentials based Authentication : %r" % logged_in if not logged_in: return False print "AzureAD. Authenticate successful for step %d" % step return True else: return False def authenticate_user_credentials(self, identity, authentication_service): credentials = identity.getCredentials() user_name = credentials.getUsername() user_password = credentials.<PASSWORD>() print "AzureAD. user_name: %s" % user_name logged_in = False if StringHelper.isNotEmptyString(user_name) and StringHelper.isNotEmptyString(user_password): # Special condition to allow for Gluu admin login if StringHelper.equals(user_name, ADMIN): return self.authenticate_user_in_gluu_ldap(authentication_service, user_name, user_password) # Authenticate user credentials with Azure AD non-interactively azure_auth_response = self.authenticate_user_in_azure(azure_tenant_id, user_name, user_password, azure_client_id, azure_client_secret) print "AzureAD. Value of azure_auth_response is %s" % azure_auth_response azure_auth_response_json = json.loads(azure_auth_response) if azure_user_uuid in azure_auth_response_json: # Azure authentication has succeeded. User needs to be enrolled in Gluu LDAP user = self.enroll_azure_user_in_gluu_ldap(azure_auth_response_json) if user is None: # User Enrollment in Gluu LDAP has failed logged_in = False else: # Authenticating the user within Gluu user_authenticated_in_gluu = authentication_service.authenticate(user.getUserId()) print "AzureAD: Authentication status of the user enrolled in Gluu LDAP %r " % user_authenticated_in_gluu return user_authenticated_in_gluu else: # Azure authentication has failed. logged_in = False return logged_in @staticmethod def authenticate_user_in_azure(tenant_id, user_name, pwd, client_id, client_secret): post_params_json = {'resource': AZURE_AD_GRAPH_RESOURCE_ENDPOINT, 'client_id': client_id, 'client_secret': client_secret, 'username': user_name, 'password': <PASSWORD>, 'grant_type': 'password', 'scope': 'openid'} post_params_url_encoded = urllib.urlencode(post_params_json) headers_json = {'Content-type': 'application/x-www-form-urlencoded', 'Accept': 'application/json'} conn = httplib.HTTPSConnection(MICROSOFT_AUTHORITY_URL + ':443') relative_url = '/' + tenant_id + '/oauth2/token' conn.request('POST', relative_url, post_params_url_encoded, headers_json) response = conn.getresponse() # print response.status, response.reason azure_response = response.read() conn.close() # print "Response Data: %s" % azure_response azure_response_json = json.loads(azure_response) if 'id_token' in azure_response_json: id_token = azure_response_json['id_token'] id_token_array = String(id_token).split("\\.") id_token_payload = id_token_array[1] id_token_payload_str = String(Base64.decodeBase64(id_token_payload), 'UTF-8') return str(id_token_payload_str) else: return azure_response def enroll_azure_user_in_gluu_ldap(self, azure_auth_response_json): user_service = CdiUtil.bean(UserService) azure_user_uuid_value = azure_auth_response_json[azure_user_uuid] found_user = self.find_user_from_gluu_ldap_by_attribute(user_service, gluu_ldap_uuid, azure_user_uuid_value) print "AzureAD. Value of found_user is %s" % found_user if found_user is None: new_user = User() self.populate_user_obj_with_azure_user_data(new_user, azure_auth_response_json) try: # Add azure user in Gluu LDAP found_user = user_service.addUser(new_user, True) found_user_id = found_user.getUserId() print("AzureAD: Azure User added successfully in Gluu LDAP " + found_user_id) except Exception, err: print("AzureAD: Error in adding azure user to Gluu LDAP:" + str(err)) return None else: self.populate_user_obj_with_azure_user_data(found_user, azure_auth_response_json) try: # Update the user in Gluu LDAP with latest values from Azure AD found_user = user_service.updateUser(found_user) found_user_id = found_user.getUserId() print("AzureAD: Azure User updated successfully in Gluu LDAP " + found_user_id) except Exception, err: print("AzureAD: Error in updating azure user to Gluu LDAP:" + str(err)) return None return found_user @staticmethod def populate_user_obj_with_azure_user_data(user, azure_auth_response_json): # attributes_mapping = ["oid:uid", "given_name:givenName", "family_name:sn", "upn:mail"] for attributesMappingEntry in attributes_mapping.entrySet(): azure_ad_attribute_key = attributesMappingEntry.getKey() gluu_ldap_attribute_key = attributesMappingEntry.getValue() gluu_ldap_attribute_value = "undefined" if azure_ad_attribute_key in azure_auth_response_json: gluu_ldap_attribute_value = azure_auth_response_json[azure_ad_attribute_key] print gluu_ldap_attribute_key + ' : ' + gluu_ldap_attribute_value if (gluu_ldap_attribute_key is not None) & (gluu_ldap_attribute_value != "undefined"): user.setAttribute(gluu_ldap_attribute_key, gluu_ldap_attribute_value) return None @staticmethod def authenticate_user_in_gluu_ldap(authentication_service, user_name, user_password): return authentication_service.authenticate(user_name, user_password) @staticmethod def find_user_from_gluu_ldap_by_attribute(user_service, attribute_name, attribute_value): return user_service.getUserByAttribute(attribute_name, attribute_value) def getExtraParametersForStep(self, configuration_attributes, step): return None def getCountAuthenticationSteps(self, configuration_attributes): return 1 def getPageForStep(self, configuration_attributes, step): return "" def destroy(self, configuration_attributes): print "AzureAD. Destroy" return True def getAuthenticationMethodClaims(self, requestParameters): return None def getApiVersion(self): return 11 def isValidAuthenticationMethod(self, usage_type, configuration_attributes): return True def getAlternativeAuthenticationMethod(self, usage_type, configuration_attributes): return None def logout(self, configuration_attributes, request_parameters): return True def getNextStep(self, configurationAttributes, requestParameters, step): return -1 def getLogoutExternalUrl(self, configurationAttributes, requestParameters): print "Get external logout URL call" return None
blueapps/account/sites/open/conf.py
qqqqqie/bk-sops
881
12674019
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.conf import settings class ConfFixture(object): BACKEND_TYPE = "bk_token" USER_BACKEND = "bk_token.backends.TokenBackend" LOGIN_REQUIRED_MIDDLEWARE = "bk_token.middlewares.LoginRequiredMiddleware" USER_MODEL = "bk_token.models.UserProxy" CONSOLE_LOGIN_URL = settings.BK_PAAS_HOST LOGIN_URL = settings.BK_LOGIN_URL + "/" LOGIN_PLAIN_URL = settings.BK_LOGIN_URL + "/plain/" VERIFY_URL = settings.BK_LOGIN_INNER_URL + "/accounts/is_login/" USER_INFO_URL = settings.BK_LOGIN_INNER_URL + "/accounts/get_user/" HAS_PLAIN = False ADD_CROSS_PREFIX = False ADD_APP_CODE = True IFRAME_HEIGHT = 400 IFRAME_WIDTH = 400 WEIXIN_BACKEND_TYPE = "null" WEIXIN_MIDDLEWARE = "null.NullMiddleware" WEIXIN_BACKEND = "null.NullBackend" SMS_CLIENT_MODULE = "cmsi" SMS_CLIENT_FUNC = "send_sms" SMS_CLIENT_USER_ARGS_NAME = "receiver__username" SMS_CLIENT_CONTENT_ARGS_NAME = "content" RIO_BACKEND_TYPE = "null" RIO_MIDDLEWARE = "null.NullMiddleware" RIO_BACKEND = "null.NullBackend" BK_JWT_MIDDLEWARE = "bk_jwt.middlewares.BkJwtLoginRequiredMiddleware" BK_JWT_BACKEND = "bk_jwt.backends.BkJwtBackend"
sdks/python/apache_beam/io/gcp/dicomio_integration_test.py
hengfengli/beam
5,279
12674028
<gh_stars>1000+ # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Integration test for Google Cloud DICOM IO connector. This e2e test will first create a temporary empty DICOM storage and send 18 DICOM files from gs://apache-beam-samples/healthcare/dicom/io_test_files to it. The test will compare the metadata of a persistent DICOM storage, which reprensets ground truths and has 18 files stored, to the temporary storage in order to check if the connectors are functioning correctly. """ # pytype: skip-file import datetime import random import string import unittest import pytest import apache_beam as beam from apache_beam.io import fileio from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to # pylint: disable=wrong-import-order, wrong-import-position try: from apache_beam.io.gcp.dicomclient import DicomApiHttpClient from apache_beam.io.gcp.dicomio import DicomSearch from apache_beam.io.gcp.dicomio import UploadToDicomStore from google.auth import default from google.auth.transport import requests except ImportError: DicomSearch = None # pylint: enable=wrong-import-order, wrong-import-position REGION = 'us-central1' DATA_SET_ID = 'apache-beam-integration-testing' HEALTHCARE_BASE_URL = 'https://healthcare.googleapis.com/v1' GCS_BASE_URL = 'https://storage.googleapis.com/storage/v1' PERSISTENT_DICOM_STORE_NAME = "dicom_it_persistent_store" BUCKET_NAME = 'apache-beam-samples' DICOM_DIR_PATH = 'healthcare/dicom' DICOM_FILES_PATH = 'gs://' + BUCKET_NAME + '/' + DICOM_DIR_PATH METADATA_DIR_PATH = DICOM_DIR_PATH + '/io_test_metadata/' META_DATA_ALL_NAME = 'Dicom_io_it_test_data.json' META_DATA_REFINED_NAME = 'Dicom_io_it_test_refined_data.json' NUM_INSTANCE = 18 RAND_LEN = 15 def random_string_generator(length): letters_and_digits = string.ascii_letters + string.digits result = ''.join((random.choice(letters_and_digits) for i in range(length))) return result def create_dicom_store(project_id, dataset_id, region, dicom_store_id): # Create a an empty DICOM store credential, _ = default() session = requests.AuthorizedSession(credential) api_endpoint = "{}/projects/{}/locations/{}".format( HEALTHCARE_BASE_URL, project_id, region) # base of dicomweb path. dicomweb_path = "{}/datasets/{}/dicomStores".format(api_endpoint, dataset_id) response = session.post( dicomweb_path, params={"dicomStoreId": dicom_store_id}) response.raise_for_status() return response.status_code def delete_dicom_store(project_id, dataset_id, region, dicom_store_id): # Delete an existing DICOM store credential, _ = default() session = requests.AuthorizedSession(credential) api_endpoint = "{}/projects/{}/locations/{}".format( HEALTHCARE_BASE_URL, project_id, region) # base of dicomweb path. dicomweb_path = "{}/datasets/{}/dicomStores/{}".format( api_endpoint, dataset_id, dicom_store_id) response = session.delete(dicomweb_path) response.raise_for_status() return response.status_code def get_gcs_file_http(file_name): # Get gcs file from REST Api file_name = file_name.replace('/', '%2F') api_endpoint = "{}/b/{}/o/{}?alt=media".format( GCS_BASE_URL, BUCKET_NAME, file_name) credential, _ = default() session = requests.AuthorizedSession(credential) response = session.get(api_endpoint) response.raise_for_status() return response.json() @unittest.skipIf(DicomSearch is None, 'GCP dependencies are not installed') class DICOMIoIntegrationTest(unittest.TestCase): def setUp(self): self.test_pipeline = TestPipeline(is_integration_test=True) self.project = self.test_pipeline.get_option('project') self.expected_output_all_metadata = get_gcs_file_http( METADATA_DIR_PATH + META_DATA_ALL_NAME) self.expected_output_refined_metadata = get_gcs_file_http( METADATA_DIR_PATH + META_DATA_REFINED_NAME) # create a temp Dicom store based on the time stamp self.temp_dicom_store = "DICOM_store_" + datetime.datetime.now().strftime( '%Y-%m-%d_%H%M%S.%f_') + random_string_generator(RAND_LEN) create_dicom_store(self.project, DATA_SET_ID, REGION, self.temp_dicom_store) def tearDown(self): # clean up the temp Dicom store delete_dicom_store(self.project, DATA_SET_ID, REGION, self.temp_dicom_store) @pytest.mark.it_postcommit def test_dicom_search_instances(self): # Search and compare the metadata of a persistent DICOM store. # Both refine and comprehensive search will be tested. input_dict_all = {} input_dict_all['project_id'] = self.project input_dict_all['region'] = REGION input_dict_all['dataset_id'] = DATA_SET_ID input_dict_all['dicom_store_id'] = PERSISTENT_DICOM_STORE_NAME input_dict_all['search_type'] = "instances" input_dict_refine = {} input_dict_refine['project_id'] = self.project input_dict_refine['region'] = REGION input_dict_refine['dataset_id'] = DATA_SET_ID input_dict_refine['dicom_store_id'] = PERSISTENT_DICOM_STORE_NAME input_dict_refine['search_type'] = "instances" input_dict_refine['params'] = { 'StudyInstanceUID': 'study_000000001', 'limit': 500, 'offset': 0 } expected_dict_all = {} expected_dict_all['result'] = self.expected_output_all_metadata expected_dict_all['status'] = 200 expected_dict_all['input'] = input_dict_all expected_dict_all['success'] = True expected_dict_refine = {} expected_dict_refine['result'] = self.expected_output_refined_metadata expected_dict_refine['status'] = 200 expected_dict_refine['input'] = input_dict_refine expected_dict_refine['success'] = True with self.test_pipeline as p: results_all = ( p | 'create all dict' >> beam.Create([input_dict_all]) | 'search all' >> DicomSearch()) results_refine = ( p | 'create refine dict' >> beam.Create([input_dict_refine]) | 'search refine' >> DicomSearch()) assert_that( results_all, equal_to([expected_dict_all]), label='all search assert') assert_that( results_refine, equal_to([expected_dict_refine]), label='refine search assert') @pytest.mark.it_postcommit def test_dicom_store_instance_from_gcs(self): # Store DICOM files to a empty DICOM store from a GCS bucket, # then check if the store metadata match. input_dict_store = {} input_dict_store['project_id'] = self.project input_dict_store['region'] = REGION input_dict_store['dataset_id'] = DATA_SET_ID input_dict_store['dicom_store_id'] = self.temp_dicom_store expected_output = [True] * NUM_INSTANCE with self.test_pipeline as p: gcs_path = DICOM_FILES_PATH + "/io_test_files/*" results = ( p | fileio.MatchFiles(gcs_path) | fileio.ReadMatches() | UploadToDicomStore(input_dict_store, 'fileio') | beam.Map(lambda x: x['success'])) assert_that( results, equal_to(expected_output), label='store first assert') # Check the metadata using client result, status_code = DicomApiHttpClient().qido_search( self.project, REGION, DATA_SET_ID, self.temp_dicom_store, 'instances' ) self.assertEqual(status_code, 200) # List comparison based on different version of python self.assertCountEqual(result, self.expected_output_all_metadata) if __name__ == '__main__': unittest.main()
dataset-construction/src/ndb_data/data_import/wikidata_index.py
j6mes/NeuralDB
213
12674029
# # Copyright (c) 2021 Facebook, Inc. and its affiliates. # # This file is part of NeuralDB. # See https://github.com/facebookresearch/NeuralDB for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import bz2 import json from collections import defaultdict from json import JSONDecodeError import pydash from argparse import ArgumentParser from tqdm import tqdm from ndb_data.wikidata_common.wikidata import Wikidata def read_dump(wikidata_file): with bz2.open(wikidata_file, mode="rt") as f: f.read(2) for line in f: yield line.rstrip(",\n") def get_indexable(instance): wikidata_id = pydash.get(instance, "id") english_name = pydash.get(instance, "labels.en.value") claims = pydash.get(instance, "claims") properties = set() property_entity = defaultdict(list) for property, claims in claims.items(): properties.add(property) for claim in claims: property_entity[property].append( ( pydash.get(claim, "mainsnak.datavalue.value"), list(pydash.get(claim, "qualifiers").values()) if pydash.get(claim, "qualifiers") is not None else None, ) ) sitelinks = pydash.get(instance, "sitelinks") enwiki = pydash.get(instance, "sitelinks.enwiki.title") yield wikidata_id, english_name, sitelinks, enwiki, list(properties), dict( property_entity ) def index_dump(dump): for idx, line in enumerate(dump): try: yield from get_indexable(json.loads(line)) except JSONDecodeError as e: print(e) pass if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("wikidata_file") args = parser.parse_args() wiki = Wikidata() collection = wiki.collection insert_count = 0 dump = read_dump(args.wikidata_file) batch = [] _tqdm_iter = tqdm(index_dump(dump), total=90e6) for w_id, e_name, sitelinks, enwiki, props, prop_dict in _tqdm_iter: batch.append( { "wikidata_id": w_id, "english_name": e_name, "english_wiki": enwiki, "property_types": props, "properties": prop_dict, "sitelinks": list(sitelinks.values()), } ) if len(batch) >= 5000: collection.insert_many(batch) batch = [] insert_count += 1 _tqdm_iter.desc = f"Insert batch {insert_count}" print("last") collection.insert_many(batch)